
A Natural Language Dialog System Based on Active Ontologies

Alexander Wachtel, Jonas Klamroth, Walter F. Tichy

Karlsruhe Institute of Technology
Chair for Programming Systems Prof. Walter F. Tichy

Am Fasanengarten 5, 76131 Karlsruhe, Germany
Email: alexander.wachtel@kit.edu, jonas.klamroth@student.kit.edu, walter.tichy@kit.edu

Abstract—Programming today requires years of training. With
natural language, programming would become available to
everyone and enable end users to program their devices or
extend their functionality without any knowledge of programming
languages. We present an assistant usable in technical domains
that uses natural language understanding, programming step-
by-step and an active dialog management system. It allows users
to manipulate spreadsheet data by using natural language. We
extend our previous system with active ontologies. By adding
additional information to an ontology, such as a rule evaluation
system and a fact store, it becomes an execution environment
instead of just being a representation of knowledge. Sensor nodes
register certain events and store them in the fact store. An
evaluation mechanism tests the new facts against the existing
rules and performs the associated action if one or more rules
apply to the stored facts. The system also handles references
to previous results and expressions, allowing the construction of
complex expressions step-by-step. It also creates new formulas by
using End-User Programming concepts and supports the use of
repetitive tasks that involve use of conditions and negations. An
evaluation shows that the active ontology-based approach resolves
90% of the input tasks which is an increase of 10% over the
pattern matching approach.

Keywords–Natural Language Processing; Natural Language
Interfaces; Dialog Systems; Human Computer Interaction; End-
User Programming; Spreadsheet.

I. INTRODUCTION

Since their invention, digital computers have been pro-
grammed using specialized, artificial notations, called pro-
gramming languages. However, only a tiny fraction of hu-
man computer users can actually work with those notations.
An alternative would be ordinary, natural language. Ordinary
language would enable almost anyone to program and would
thus cause a fundamental shift in the way computers are used.
Rather than being a mere consumer of programs written by
others, each user could write his or her own programs [3]. The
idea of programming in natural language was first proposed by
Sammet in 1966 [4], but enormous difficulties have resulted
in disappointingly slow progress. One of the difficulties is
that natural language programming requires a domain-aware
counterpart that asks for clarification, thereby overcoming the
chief disadvantages of natural language, namely ambiguity and
imprecision. In recent years, significant advances in natural
language techniques have been made, leading, for instance, to
IBM’s Watson [5] computer winning against the two Jeopardy!
world champions, Apple’s Siri routinely answering wide-
ranging, spoken queries, and automated translation services
such as Google’s becoming usable. However, programming in
natural language remains an open challenge [6][7].

Spreadsheets have been used for at least 7000 years [8].
Spreadsheet programs such as Microsoft Excel have become
ubiquitous. It is estimated that each year hundreds of millions
of spreadsheets are created [9]. In article [1], we presented first
prototype of an assistant that uses natural language understand-
ing and a dialog management system to allow inexperienced
users to manipulate spreadsheets with natural language. Mo-
tivated by a pilot study based on the selected problems from
Frey’s book Microsoft Excel 2013 [10] the system requests
missing information and is able to resolve ambiguities by
providing alternatives to choose from. Furthermore, the dialog
system must resolve references to previous results, allowing
the construction of complex expressions step-by-step.

In this paper, we extended the prototype with an active
ontology. The idea of active ontology was first presented by
Guzzoni in 2006 [2]. In general, an ontology is a formal rep-
resentation of knowledge. By adding a rule evaluation system,
a fact store and sensor nodes to an ontology it becomes an
execution environment rather than just a formal representation
of knowledge. Sensor nodes register certain events and save
them in the fact store. An evaluation mechanism tests the new
facts against the existing rules and performs the associated
actions if one or more rules apply. Our paper is structured as
following: section II describes the active ontology framework
and the dialog system. Section III evaluates prototype in
an user study, followed by performance tests. Section IV
discusses both different approaches of pattern matching and
active ontologies. Section V presents related work in the
research areas of programming in natural language, End User
Programming and natural language dialog systems. Finally,
section VI presents a conclusion of our topic and future work.

II. ACTIVE ONTOLOGY-BASED DIALOG SYSTEM

The prototype is implemented as an add-in for Microsoft
Excel and looks like an instant messaging system. The dialog
system allows users to express spreadsheet calculations in
ordinary typed English and converts the natural language
input into arithmetic spreadsheet formulas. All calculations are
stored as valid Excel-formulas that allows future manipulation
of the spreadsheet data.

A. Active Ontology Framework
We used Guzzoni’s approach [2] to develop an active

ontology-based framework, further implemented a dialog sys-
tem relying on this work to understand and interpret ordinary
English inputs. The framework generally provides a system
that enables the developer to arrange nodes and thus design

417Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

an active ontology. Thus nodes can communicate directly with
each other. Sensor nodes register based on regular expression
evaluations whether they are affected by the given input or
not. If activated each node notifies its connected nodes. This
sequence recursively repeats itself. On activation, nodes that
are defined as ”end-nodes” advise the post-processor. This
way the post-processor collects all detected events of the
active ontology and the user can react accordingly. Guzzoni
distinguishes between the following node types:

• Selection node: this node passes the event with the
highest reliability score on to its parents, e.g., see
Instruction node in Figure 1.

• Gather node: this node just sends an event if all
children were activated, e.g., Binary operation node
or Unary operation.

Figure 1. Example of an Active Ontology for mathematical tasks

In addition to Guzzoni, we introduced a new type of node:
the generalization node. This node simply collects all incoming
events and passes them on to their parent-nodes. It enables the
user to combine several events and concentrate them into one
single type of event. This is often useful as it enables the user
to use different types of events as arguments for one and the
same action. In Figure 2, the node operand is a Generalization
node. Without this node the sum as well as the difference
would have to have three different sum-/difference-nodes for
each argument-type one.

Figure 2. An example of the use of an generalization node

To further clarify how active ontology framework works
we discuss the input ”save 3 times 2 in A2” as an example.
For save and times the respective sensor node will fire an
event signaling that the keyword was found. Additionally two
number-values, 3 and 2, and cell A2 will be found. Activated
by the incoming event the multiplication-node will determine
the two most fitting values and thus fire an event signaling
a recognized product (3 * 2). A2 is not considered as fitting
operand since it is the only valid target for the save operation
and thus is reserved for this argument. The product will be
recognized as a new operand and thus be send to the save-
action-node. Here the node triggered by the keyword save will
find that an operand (3 * 2) as well as a target cell A2 was
found resulting in a new save-action-event. It represents the
desired action and can now be performed by the instruction-
execution-module leading to the intended outcome.

To ease the act of creating such active ontologies and
ensure that there are as few design errors as possible, our
framework comes with an editor. The existing active ontology
can be displayed either as a graph or a tree structure. This
editor not only allows the user to manipulate and create active
ontologies but also validates them as far as possible to avoid
typical mistakes. Any changes are checked by a validation
process for errors. Duplicate names, orphaned nodes, empty
regular expressions, missing end node or cycles in the ontology
can be detected. Cycles can be especially problematic for
recursive algorithms.

B. Dialog System
The dialog system [1] extends the active ontology frame-

work. We use two different active ontologies: Natural Lan-
guage Understanding (NLU) ontology, to interpret the user
input, and Natural Language Generation (NLG) ontology, to
generate answers (See Figure 3).

Figure 3. Overview of the active ontology-based dialog system

The active ontologies recognize several mathematical op-
erations by searching the input, and then recursively building
an entire instruction. This instruction is the input to the second
active ontology that, based on the type and content of the built
instructions, generates a response. When a node gets triggered
it builds an answer based on patterns stored in its children.
Thus the answer can be built recursively from reusable prede-
fined patterns. The response generator carries out the process
of speech generation in six basic tasks according to Reiter [11]:

• Content determination: the basic planning of what
should be communicated in the output

418Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

• Discourse planing: process of imposing the order and
structure over the set of messages

• Sentence aggregation: grouping of information that
should be processed in the response sentence

• Lexicalization: choice of words for the sentence
• Referring expression generation: insertion of

anaphoras to shorten the output
• Linguistic realization: bringing the selected words and

phrases in a grammatically correct form

Our system roughly follows these steps to generate the
answers. Sentence aggregation is almost irrelevant for our use
case since the answers of the system are most likely just one
or two sentences. The content determination is covered by the
use of the input of the NLU ontology. This way the system
always knows that information should be communicated in
the coming answer. Discourse planning and lexicalization are
implicitly stored in the structure and the content of the NLG
ontology. The structure of the ontology defines the structure of
the generated output and the saved words in the nodes provide
this output with the necessary vocabulary. Since the content
of the answer is already very specific and very short, referring
expressions can be inserted in the sentence structure and do not
need to be added in a separate processing step. The structure
of the NLG ontology also guarantees a grammatically valid
output.

The system is successful in resolving references to pre-
viously provided information, understands negations and asks
questions depending on the dialog context:

User: Generate a random number between 1000 and 1500
System: Your input results in the following formula:

randbetween(1000, 1500). Where exactly do you
want me to save that in the worksheet?

User: C2
System: Ok, I did that for you

Can I do something else for you?
User: No
System: Alright

User: Calculate C5 minus D5 multiplied with C5
System: Your input may be interpreted in various ways:

a) (C5 - product(D5, C5))
b) product((C5 - D5), C5)
Which one should I use?

User: a
System: Where do you want me to save that in the

worksheet?
User: B5
System: Ok, I did that for you.

III. EVALUATION

To validate our approach we conducted a user study.
Furthermore, several performance tests on the active ontology
framework have been done.

A. User Study
Natural language is highly dynamic and expression vary

among humans. We asked 16 participants to perform several
tasks in Microsoft Excel using solely our dialog system and
give feedback on how well the dialog system performed. The
tasks covered several complex problems such as resolving
references, ambiguities, and conditionals. The study shows
that the subjects were able to solve nearly 90% of the tasks
and rated the system as helpful in 76% of the tasks. The
participants rated the system overall as good and very good in
15 out of 16 cases. More than 80% of the participants stated
they would use the system at least occasionally. Last but not
least the answers of the system were appropriate in 88% of
the cases according to our participants and 75% of the test
persons found the answers to be natural or very natural. User
experience with the system is very positive (See Figure 4).
75% of participants said they perceive the dialog system as
natural or very natural. The overall quality of our prototype
was ranked by 15 of the 16 participants as good or very good.

0 20 40 60 80 100

The system shows good natural language quality

I will use this dialog system frequently

The response speed of the system is good

Overall rating of the system is good

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree

Figure 4. Overall results in %

B. Performance-Tests
One of the most important features of an interactive dialog

system is the response time that is required by the dialog
system to generate an appropriate answer to a given user input.
The user perceives the response time of the dialog system as
natural or human-like if it is less than 1s [12]. Larger response
times appear as too long and unnatural. In order to evaluate the
response time of the dialog system, the response time for every
user input during the user study was logged. The average time
was 6 ms - the standard deviation was 7.86 ms. Furthermore,
our ontology with about 80 nodes and 120 edges needs 140
kB of disk space.

We also designed several automatic tests to explore re-
sponse times and scaling for large ontologies. In order to avoid
the manipulation of the results by choosing specific ontologies
we decided to develop a tool that generates random ontologies
with certain number of nodes and edges independently. We
conducted three different tests measuring the response time.
Each test was executed several times on different randomly
generated ontologies. The average response time of the active
ontology used for our dialog system was less than 6 ms while it
took the previous system 150 ms to answer the same questions.
It is important to note, that both systems were developed in
C# and the tests were run at the same computer with the same
operating system (Windows 8.1). Thus we are able to exclude
the possibility that the differences are caused by programming

419Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

language, operating system and/or computation power. In all
tests ontologies contained over 10000 nodes and 15000 edges
whereby the active ontology framework never exceeded the
response time of 600 ms.

1) Length of the input: 10 ontologies all with 100 nodes
and 150 edges have been created to test the scaling with length
of input. Then, the response time of the system was observed
for each ontology for a randomly generated entry. At the same
time the length of the input was increased from 100 to 1000
characters. The experiment was repeated 100 times to obtain
statistically meaningful values. Figure 5 shows the average
values for each input length. While the input size increased
tenfold, the response time rose far faster. The values suggest
a quadratic growth. These values are negligible for our dialog
system, since the input length does not reach the critical time
of 1s in almost all cases.

y = 2,0464x2 - 1,542x + 5,2949

0

50

100

150

200

250

100 200 300 400 500 600 700 800 900 1.000

R
es

p
o

n
se

ti
m

e
[m

s]

Length of input [Number of characters]

Figure 5. Performance-Test on the length of the input

2) Number of nodes: For this test, 100 ontologies with 100
nodes and 150 edges were created. During the test the number
of edges was increased by 10 from 100 to 200. These values
were chosen because we determined a ratio of edges to nodes
of approximately 1.5 in the ontology. It turns out that in the
investigated area, the response time increases linearly with a
number of edges and nodes. The slope of the trend line lies
below 0.3. This means that the response time increases very
slow with increasing interconnectedness (See Figure 6).

0

1

2

3

4

5

6

100 110 120 130 140 150 160 170 180 190

R
es

p
o

n
se

ti
m

e
[m

s]

Number of edges

Figure 6. Performance-Test on number of nodes

This demonstrates that our approach is not only capable,
but also suited to handle rather large ontologies of nearly every
format.

IV. DISCUSSION

Inspired by the Turing Test [13], we asked 17 independent
spreadsheet users to formulate requests for particular calcula-
tion tasks. Each task was answered by both the prototype and a
human independently. Afterwards the participants were asked
to identify the computer generated response. This however
turned out to be surprisingly hard to decide. With 34 decisions
made in total, 47.1% falsely identified the dialog system
answer as human. This result indicates that the prototype
is capable of generating suitable responses for sufficiently
specific requests within the language domain.

The system [1] is based on matching the user input to
patterns that are stored in a database. The iterative dialog
system was based on small knowledge base with 92 patterns
covering all basic arithmetic operations and assists in the
accomplishment of computational tasks. The approach uses
a limited vocabulary and a small set of syntactic patterns
organized as a grammar. As part of an example, the pattern
sum matches the first clause, with keywords add and to, and
placeholders any (See Figure 7). The placeholders are filled
with the respective elements (4 and A1). By successively
matching additional patterns within the placeholder elements,
more complex sentences can be transformed into a semantic
representation. It builds a tree structure consisting of operators
and operands which makes it easier to determine whether a
valid arithmetic expression has been provided.

Figure 7. Examplary pattern matching

After the evaluation of an active ontology-based dialog
system, we are confident that it has several advantages: it
solved 10% more tasks, produces 35% more natural outputs
and improves the system by 10% according to the subjects of
the user study (See Figure 8).

0

10

20

30

40

50

60

70

80

90

100

solved tasks quailty of system output improves of the system

Pattern matching approach Active ontology approach

Figure 8. Comparison of pattern matching and active ontology approaches

420Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

Furthermore, the active ontology-based system is far more
flexible in two ways. First, the design of the application itself is
easier and more intuitive when using active ontologies as you
can visually arrange the nodes. Second, using patterns the end
user is far more restricted in the way talking to the rule-based
system in order to be understood. If the user expresses the same
action in a slightly different way the provided pattern may not
match the input and the system thus fails to understand the
user. Active ontologies are much more forgiving in this area
as they do not expect the specific order in the input to fit
a narrow pattern. This way instructions can be expressed in
various ways and still result in the expected behavior.

V. RELATED WORK

Our work combines different research on Programming in
Natural Language, End User Programing and Dialog Systems.

A. Programming in natural language
In 1979 Ballard et al. [14][15][16] introduced their Natural

Language Computer (NLC) that enables users to program
simple arithmetic calculations using natural language. Our
prototype extends the idea with a dialog system component for
step-by-step construction of complex expression and enables
users to perform tasks they otherwise would not be able to
accomplish. Although NLC resolves the references as well,
there is no dialog system. User feedback has been only
provided by the result output. NLyze [17], an Add-In for
Microsoft Excel that has been developed at the same time
as our prototype, behaves in a similar manner. This approach
uses a separate domain-specific language for logical interpre-
tation of the user input. Another approach of programming
in natural language is the Pegasus system [18] that creates
limited executable programs from natural language using an
intermediate knowledge and reference representation. Metafor
introduced by Liu et al. [19] has a different orientation. Based
on user stories the system tries to derive program structures
to support software design. A different approach regarding
software design via natural language is taken by RECAA [20].
RECAA can automatically derive UML models from the text
and also keep model and specification consistent through an
automatic feedback component. A limited domain end-to-end
programming is introduced by Le. SmartSynth [21] allows syn-
thesizing smartphone automation scripts from natural language
description. However, there is no dialog interaction besides the
results output and the output of the error messages.

B. End User Programming
The main question in this area of research is, how to allow

users to interact with the computer more easily and allow
general users, who are not software developers and have no
access to the source code, to program a computer system [22].
In 2009 Myers [23] provides an overview of the research in
the area of End-User Programming. Nearly 90 million people
in US use computers at work, 50 million use spreadsheets
at work, 12 million considered themselves programmers in
a self-assessment and only 3 million people are professional
programmers. As Myers summarized, many different systems
for End-User Programming have already been developed -
Whyline, Visual Programming or programming by example
and programming by demonstration for spreadsheets. However,
there are no End-User Programming systems such as our

prototype that can be controlled with natural language. During
a study in 2006 Ko [24] identifies six learning barriers in
End-User Programming systems: Design, Selection, Coordina-
tion, Use, Understanding and Information barriers. Jones [25]
encapsulates computation in spreadsheets as a function and
proposes a mechanism to define functions using spreadsheet
cells, formulas and references. Sestoft [26] extends it by
increasing expressiveness and emphasizing execution speed of
the functions thus defined by supporting recursive and higher-
order functions, and fast execution by a careful choice of data
representation and compiler technology. Burnett [27] shows
with research language Forms/3 that graphics output, proce-
dural and data abstraction can be supported in the spreadsheet
paradigm. Cunha [28] realizes techniques for model-driven
spreadsheet engineering that employs bidirectional transfor-
mations to maintain spreadsheet models and synchronized in-
stances. Begel [29] introduces voice recognition to the software
development process. His approach uses program analysis to
dictate code in natural language, thereby enabling the creation
of a program editor that supports voice-based programming.

C. Natural Language Dialog Systems
Many dialog systems have already been developed. Com-

mercially successful systems, such as Apple’s Siri, actually
based on Active Ontology approach [2], and Google’s Voice
Search [30][31] are characterized by the cover of many do-
mains. The reference resolution makes the systems also acts
very natural. However, there is no dialog interaction besides
the results output and the output of the error messages. The
Mercury system [32] designed by the MIT research group is
a telephone hotline for automated booking of airline tickets.
Mercury guides the user through a mixed initiative dialog
towards the selection of a suitable flight based on date, time
and preferred airline. Furthermore, Allen [33] describes a
system called PLOW developed at Stanford University. As a
collaborative task agent PLOW can learn to perform certain
tasks, such as extracting specific information from the internet,
by demonstration, explanation, and dialog.

VI. CONCLUSION AND FUTURE WORK

We present the implementation of an active ontology-based
prototype for an assistant that uses natural language under-
standing and an active dialog management system. It allows
inexperienced users to manipulate spreadsheet data by using
the natural language. Programming languages provide loops
and conditionals. Our prototype already supports conditional
expressions. The implemented active ontology framework is
robust with large and dense ontologies. The response time of
the framework containing 1000 nodes is less than 1 ms. The
entire dialog system runs faster than the previous version based
on pattern matching - execution time was reduced from 150 ms
to 6 ms. Furthermore, the system resolves more tasks correctly
and shows better user experience. An evaluation shows that
the active ontology-based approach resolves 90% of the input
tasks which is an increase of 10% over the pattern matching
approach.

However, plenty of work still needs to be done. The goal
is to implement Excel scripts called macros from natural
language input. We are exploring ways to extend the system
functionality with the help of the dialog. Furthermore, the
system needs to be extended for handling graphs and charts,

421Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

filtering and sorting the spreadsheet data, and supporting loops.
Overall, we will implement a module that uses machine learn-
ing techniques for context interpretation within spreadsheets
and connects natural language to the data in the spreadsheets.
That module would enable end users to search for values in
the schema of the table and to address the data in spreadsheets
implicitly, e.g., what is the average age of people in group A?
Perhaps the most important insight is the following: in the
past, computers were expected to follow instructions blindly,
without a notion of right or wrong or what users expected.
With natural language, programming would become available
to everyone. We believe that systems like our prototype take
first steps in the right direction and are a reasonable approach
for end user software engineering, and will help to overcome
the present bottleneck of professional developers.

REFERENCES
[1] Alexander Wachtel, Sebastian Weigelt, and Walter F. Tichy, ”Initial im-

plementation of natural language turn-based dialog system”, International
Conference on Intelligent Human Computer Interaction (IHCI), 2015.

[2] Didier Guzzoni, Charles Baur, and Adam Cheyer, ”Active: A unified
platform for building intelligent web interaction assistants”, IEEE Web
Intelligence and Intelligent Agent Technology Workshops, 2006.

[3] Walter F. Tichy, Mathias Landhäußer, Sven J. Körner. Universal Pro-
grammability - How AI Can Help. 2nd International NSF sponsored
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, May 2013.

[4] Jean E. Sammet, ”The Use of English as a Programming Language”,
Communication of the ACM, Volume 9 Issue 3, March 1966, pp. 228–
230.

[5] David Ferrucci et al., ”Building Watson: An Overview of the DeepQA
Project”, Association for the Advancement of Artificial Intelligence,
Volume 31 Issue 3, 2010, pp. 59–79.

[6] Hugo Liu and Henry Liebermann. ”Toward a programmatic semantics of
natural language”, IEEE Symposium on Visual Languages and Human
Centric Computing, September 2004, pp. 281–282.

[7] Charles L. Ortiz, ”The Road to Natural Conversational Speech Inter-
faces”, IEEE Internet Computing, Volume 18, Number 2, pp. 74-78,
Mar.-Apr. 2014.

[8] Matthew F. Hurst, ”The interpretation of tables in texts”, PhD. Thesis,
University of Edinburgh, 2000.

[9] Robin Abraham, ”Header and Unit Inference for Spreadsheets Through
Spatial Analyses”, IEEE Symposium on Visual Languages and Human
Centric Computing, September 2004, pp. 165–172.

[10] Curtis D. Frye, ”Microsoft Excel 2013, Step by Step”, O’Reilly Media
Inc., 2013.

[11] Ehud Reiter and Robert Dale, ”Building applied natural language
generation systems”, Natural Language Engineering, Volume 3 Issue 01,
March 1997, pp 57–87.

[12] Sofia Strombergsson, Anna Hjalmarsson, Jens Edlund, and David
House, ”Timing responses to questions in dialogue”, Proceedings of
INTERSPEECH 2013, pp. 2584-2588.

[13] Alan M. Turing, ”Computing machinery and intelligence”, 1950, pp.
433-460.

[14] Bruce W. Ballard and Alan W. Biermann, ”Programming in natural
language: NLC as a prototype”, Association for Computing Machinery
(ACM), Volume 10, 1979, pp. 228–237.

[15] Alan W. Biermann and Bruce W. Ballard, ”Toward Natural Language
Computation”, American Journal of Computational Linguistics, Volume
6, Number 2, 1980.

[16] Alan W. Biermann, Bruce W. Ballard, and Anne H. Sigmon, ”An
experimental study of natural language programming”, International
Journal of Man-Machine Studies, January 1983, pp. 71–87.

[17] Sumit Gulwani and Mark Marron, ”NLyze: Interactive programming
by natural language for spreadsheet data analysis and manipulation”,
Proceedings of the 2014 ACM SIGMOD, 2014, pp. 803–814.

[18] Roman Knöll and Mira Mezini, ”Pegasus - First Steps towards a
Naturalistic Programming Language”, 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications,
2006, pp. 542–559.

[19] Hugo Liu and Henry Lieberman, ”Metafor: Visualizing stories as code”,
Proceedings of the 10th international conference on Intelligent user
interfaces, 2005, pp. 305–307.

[20] Sven J . Körner, Mathias Landhäußer, and Walter F. Tichy, ”Transferring
Research Into the Real World - How to Improve RE with AI in
the Automotive Industry”, First International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE), 2014, pp. 13-18.

[21] Vu Le, Sumit Gulwani, and Zhendong Su, ”SmartSynth: Synthesizing
Smartphone Automation Scripts from Natural Language”, Proceeding of
the 11th annual international conference on Mobile systems, applications,
and services (MobiSys), 2013, pp. 193–206.

[22] Henry Liberman, Fabio Paternò, Markus Klann, and Volker Wulf,
”End-User Development: An Emerging Paradigm”, Springer, Human-
Computer Interaction Series, Volume 9, 2006, pp. 1–8.

[23] Brad A. Myers, Andrew J. Ko, and Margaret M. Burnett, ”Invited re-
search overview: end-user programming”, Extended Abstracts on Human
Factors in Computing Systems, 2006, pp. 75–80.

[24] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung, ”Six Learning
Barriers in End-User Programming Systems”, Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing
(VLHCC), 2004, pp. 199–206.

[25] Simon P. Jones, Alan Blackwell, and Margaret Burnett, ”A user-centred
approach to functions in excel”, 8th ACM SIGPLAN international
conference on Functional programming, 2003, pp. 165–176.

[26] Peter Sestoft and Jens Zeilund, ”Sheet-defined functions: Implementa-
tion and initial evaluation”, Springer, Volume 7897 of the series Lecture
Notes in Computer Science, 2013, pp. 88-103.

[27] Margaret Burnett, John Atwood, Rebecca W. Djang, James Reichwein,
Herkimer Gottfried, and Sherry Yang, ”Forms/3: A First-Order Visual
Language to Explore the Boundaries of the Spreadsheet Paradigm”,
Journal of Functional Programming, Volume 11 Number 2, March 2001,
pp. 155–206.

[28] Jácome Cunha, João P. Fernandes, Jorge Mendes, Hugo Pacheco and
João Saraiva, ”Bidirectional Transformation of Model-Driven Spread-
sheets. Springer Lecture Notes in Computer Science”, Proceedings of
the 5th International Conference on Theory and Practice of Model
Transformations (ICMT), Springer, 2012, pp. 105–120.

[29] Andrew B. Begel, ”Spoken Language Support for Software Devel-
opment”, IEEE Symposium on Visual Languages and Human Centric
Computing, 2004, pp. 271 - 272.

[30] Jerome R. Bellegarda, ”Spoken Language Understanding for Natural In-
teraction: The Siri Experience”, Springer New York, Natural Interaction
with Robots, Knowbots and Smartphones, 2014, pp. 3–14.

[31] Jason D. Williams, ”Spoken dialogue systems: challenges and opportu-
nities for research”, IEEE Workshop on Automatic Speech Recognition &
Understanding (ASRU), December 2009.

[32] Stephanie Seneff, ”Response planning and generation in the MERCURY
flight reservation system”, Computer Speech & Language, Volume 16,
Issues 34, 2002, pp. 283-312.

[33] James Allen et al., ”PLOW: A Collaborative Task Learning Agent”,
Proceedings of the 22nd national conference on Advances in Artificial
intelligence (AAAI), Volume 2, 2007, pp. 1514–1519.

422Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

