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Abstract—This paper describes a platform which allows 
humans to interact with robotic arms using augmented reality. 
Low cost “kinect” cameras (Xbox 360) are used for tracking 
human skeletons and locations of robot’s end effectors. The 
main goal of this paper is to develop robust trackers on this 
platform. Concretely, a Kalman filter is used for tracking 
robotic arms using data received from these sensors. It comes 
to finding a low cost platform for human-robot interactions. 

Keywords—low cost vision system; Kalman filter; augmented 
reality; kinematics; Human–machine interaction. 

I.  INTRODUCTION 

There is a wide range of industrial processes in which 
robotic systems are present. Nowadays, the required 
characteristics for such industrial processes are high 
efficiency, flexibility and adaptability. Human–robotic 
systems interaction is a key solution to accomplish these 
requirements, establishing a synergy between the best 
features of both robots and humans: robot’s precision and 
high efficiency and human’s flexibility and adaptability. 

Human–machine interactions have numerous 
applications such as assembly tasks [3][12], wheelchair 
controls through different types of sensors [2][13], 
developments of servomechanisms [1], developments of 
intelligent robots [4], and so on. 

This paper provides the basis for human–machine 
interaction in order to increase efficiency in pieces assembly 
processes, whose flexibility and adaptability characteristics 
require a clos interaction between humans and the robotic 
systems. Interactions between humans and robots improve 
the efficiency of complex assembly processes, especially 
when intelligence is required by the system [3]. However, a 
precondition for this close relationship is human safety. 
Many research advances have been carried out in this area 
and now, some surveillance systems based of sensors used 
to interact with robots in the market can be found. 
Intelligent assistance devices (IAD) are the basis for 
introducing human beings in assembly processes in order to 
use their cognitive and sensory-motor skills to carry out 
assemblies with high flexibility. 

The main goal of this research consists on creating a 
platform which can be used as a basis for developing 

applications with interactions between humans and 
machines. A simple practical case of human–robot 
interaction has been implemented to check this platform. 

A. Related Research 

We consider the problem of estimating and tracking 3D 
configurations of complex articulated objects from images, 
e.g., for applications requiring 3D robot arms pose, human 
body pose and hand gesture analysis. There are two main 
schools of thought on this. Model-based approaches 
presuppose an explicitly known parametric articulated 
object model and estimate the pose either by directly 
inverting the kinematics (which has many possible solutions 
and which requires known image positions for each part 
[26]) or by numerically optimizing some form of model-
image correspondence metric over the pose variables, using 
a forward rendering model to predict the images (which is 
expensive and requires a good initialization, and the 
problem always has many local minima [24]). An important 
subcase is model-based tracking, which focuses on tracking 
the pose estimate from one time step to the next starting 
from a known initialization based on an approximate 
dynamical model [17][23]. In contrast, learning-based 
approaches try to avoid the need for explicit initialization 
and accurate 3D modeling and rendering, instead 
capitalizing on the fact that the set of typical articulated 
object poses is far smaller than the set of kinematically 
possible ones and learning a model that directly recovers 
pose estimates from observable image quantities. In 
particular, example-based methods explicitly store a set of 
training examples whose 3D poses are known, estimating 
pose by searching for training image(s) similar to the given 
input image and interpolating from their poses 
[15][19][22][25]. 

There is a good deal of prior work on articulated objects 
pose analysis, but relatively little on directly learning 3D 
pose from image measurements. Brand [16] models a 
dynamical manifold of human body configurations with a 
Hidden Markov Model and learns using entropy 
minimization, Athitsos and Sclaroff [14] learn a perceptron 
mapping between the appearance and parameter spaces, and 
Shakhnarovich et al. [22] use an interpolated-k-nearest-
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neighbor learning method. Human pose is hard to ground 
truth, so most papers in this area [14][16][19] use only 
heuristic visual inspection to judge their results. However, 
Shakhnarovich et al. [22] used a human model rendering 
package (POSER from Curious Labs) to synthesize ground-
truthed training and test images of 13 degrees of freedom 
upper body poses with a limited (±40º) set of random torso 
movements and viewpoints. Several publications have used 
the image locations of the center of each body joint as an 
intermediate representation, first estimating these joint 
centers in the image, then recovering 3D pose from them. 
Howe et al. [18] develop a Bayesian learning framework to 
recover 3D pose from known centers, based on a training set 
of pose-center pairs obtained from resynthesized motion 
capture data. Mori and Malik [19] estimate the centers using 
shape context image matching against a set of training 
images with prelabeled centers, then reconstruct 3D pose 
using the algorithm of [26]. These approaches show that 
using 2D joint centers as an intermediate representation can 
be an effective strategy. 

With regard to tracking, some approaches have learned 
dynamical models for specific human motions [20][21]. 
Particle filters and MCMC methods have been widely used 
in probabilistic tracking frameworks, e.g., [23][27]. Most of 
these methods use an explicit generative model to compute 
observation likelihoods. 

B. Overwiev of the Aproach 

Using the same philosophy as for tracking human 
skeleton, former approaches can be applied to track robot 
arms. We propose to use a low cost vision system which 
requires a discrete Kalman filter. This allows tracking join 
variables at each instant of time. 

C. Organization 

Section 2 describes the global system. Section 3 describes 
de low cost 3D vision system. Section 4 describes the 
Kalman filter used to track a robot arm. Section 5 presents 
the robot used. Section 6 describes a human skeleton 
tracking approach. Finally, Section 7 concludes with some 
discussions and directions of future work. 

II. GLOBAL SYSTEM DESCRIPTION 

A platform for human–machine interaction using 
augmented reality [8] has been performed between robotic 
systems and human beings. This platform is a distributed 
system where processes can communicate easily between 
them. The main functionalities offered by this platform are: 

1) Communications between processes via XML [5]. 
2) Safety controls. 
3) Tracking of robot arm poses. 
4) Tracking of human skeletons. 
5) Handle of augmented reality scenes. 

A practical case of human–robot interaction has been 
implemented to check this platform. Figure 1 shows the 

distribution of the physical components (robot and camera) 
of this application. 

 

 
Figure 1. Low Cost 3D Vision System. 

 
In this case, the distributed system is composed by two 

processes to perform interactions between a human and a 
robot. One process realizes the monitoring of human 
skeleton. The other process realizes the monitoring of the 
robot arm pose. The data information for human and robot 
state estimation is obtained by a low-cost 3D camera. 

The XML messages set developed ad-hoc for an 
application use special communication software. This 
software is called RT-SCORE [6] and it is a system (based 
on a blackboard system) that allows to assign a 
communication channel between processes. The “channel” 
concept is similar to a “hall” in a chat communication 
system (the chat communication is RT-SCORE); so, only 
the entities connected to a channel receive the information 
sent into this channel. 

Safety regulations require introducing guardrails, so that 
humans do not have direct access to industrial robots 
workspaces. To achieve a human–robot interaction a safety 
protocol has been established that allows such interaction 
without risk of serious damages. The safety control system 
calculates the human and robotic arms location, so that the 
closer they get, the slower the robot moves. 

MatLab [10] has been used in order to implement both 
processes. 

The robot arm monitor tracks the end effector and joint 
angles of the robot. However, it is needed a Kalman filter 
for tracking robot arm poses. 

The human skeleton monitor uses third party libraries 
with functions to estimate locations of each body part. Some 
human skeleton poses are used to handle virtual objects in 
the augmented reality scenario. Additionally these virtual 
objects can be shown on real RGB images captured by the 
camera. 

III.  LOW COST 3D V ISION SYSTEM 

The vision system used in this practical case is the 
“Kinect” camera, which consists of two optical sensors 
whose interaction allows a three-dimensional scene analysis. 
One of the sensors is an RGB camera which has a video 
resolution of 30 fps. The image resolution given by this 
camera is 640x480 pixels. The second sensor has the aim of 
obtaining depth information corresponding to the objects 
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found at the scene. The working principle of this sensor is 
based on the emission of an infrared signal which is 
reflected by the objects and captured by a monochrome 
CMOS sensor. A matrix is then obtained which provides a 
depth image of the objects in the scene, called DEPTH. 

The calibration process of this camera can be seen in [9]. 
Calibration is needed to relate both camera and robot 
coordinates reference systems. Therefore objects located by 
the camera can be handled by the robot. 

IV.  KALMAN FILTER 

The Kalman filter [11] is used in sensor fusion and data 
fusion. Typically real time systems produce multiple 
sequential measurements rather than making a single 
measurement to obtain the state of the system. These 
multiple measurements are then combined mathematically 
to generate the system's state at that time instant. 

Data fusion using a Kalman filter can assist computers to 
track objects in videos with low latency (not to be confused 
with a low number of latent variables). The tracking of 
objects is a dynamic problem, using data from sensor and 
camera images that always suffer from noise. This can 
sometimes be reduced by using higher quality cameras and 
sensors but can never be eliminated, so it is often desirable 
to use a noise reduction method. 

The iterative predictor-corrector nature of the Kalman 
filter can be helpful, because at each time instance only one 
constraint on the state variable needs to be considered. This 
process is repeated considering a different constraint at 
every time instance. All the measured data are accumulated 
over time and help in predicting the state. 

Video can also be pre-processed, using a segmentation 
technique, to reduce computation and hence latency. 

The discrete Kalman filter [11] is implemented as 
follows: 

1) State prediction: 

 *
1

ˆ ˆ
t tX AX −=  (1) 

2) Prediction of error covariance: 

 *
1

T
t tP AP A Q−= +   (2) 

3) Calculate the constant gain K: 

 ( ) 1* *T T
t t tK P H HP H R

−
= +   (3) 

4) Update: 

 ( )* *ˆ ˆ ˆ
t t t t tX X K Z HX= + −   (4) 

5) Update error covariance: 
 ( ) *

t t tP I K H P= −   (5) 

The Kalman filter has been applied to depth information. 
The values returned by depth images are not always right. 
This happens because the sensor does not detect the depth 
correctly when the infrared light is not properly reflected on 
the object. In this case, the input value to the Kalman filter 
is the depth value of zd (state) corresponding to the distance 
between the camera and the object. In (1) and (2) the zd 
value and covariance is predicted to the next step. Equations 

(3), (4) and (5) are the equations to correct the discrete 
Kalman filter. In (3), a new gain of Kalman is calculated. 
Equations (4) and (5) calculate a new value of zd predicted, 
and new covariance of error, respectively. 

Three Kalman filters have been implemented: one for 
each of the three points used to locate (position and 
orientation) the end effector. Figure 2 shows a pose 
estimated during the robot movement. It can be seen the 
three points detected on the end effector. 

 

 
Figure 2. Robot arm pose tracking. 
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Figure 3. Kalman Filter evolution. 

 
Figure 3 shows the evolution of depth information for 

comparing results obtained with Kalman filter and without 
applying the Kalman filter. The first graph shows parameter 
zd over time without applying the Kalman filter. The second 
graph shows zd over time applying the Kalman filter. At 
time 100, incorrect zd values can be observed when not 
applying the filter because the camera does not get properly 
information. It can be seen that the Kalman filter makes a 
correction of these values. 

V. ROBOT FANUC 200IB CONTROL 

DH (Denavit-Hartemberg) is used to solve direct and 
inverse kinematics problems. Figure 4 shows coordinate 
systems and articulation axes used for this Fanuc robot. 
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Figure 4. Coordinate systems and articulation axes. 

 
Hence, the following DH parameter table is obtained: 
 

TABLE 1. DENAVIT-HARTEMBERG. 
 

ART θ  id  ia  iα  

1 0º 0 150 90º 
2 90º 0 250 0 
3 0º 0 75 90º 
4 0º 290 0 90º 
5 0º 0 0 90º 
6 0º 0 0 0 

 
The direct and inverse kinematics problems are solved 

using these parameters. These kinematic models allow 
tracking the robot by using the kinect, so that the end effector 
position is identified on the image and the state of the robot 
joints is calculated. The Kalman filter is necessary to filter 
the information captured by vision sensor. 

VI.  MONITORING HUMAN SKELETON 

To monitor the skeleton of a human being, the toolbox 
[7] and [8] has been used in Matlab. The NITE tracking 
human body module aim is based on extracting the most 
important features of the human skeleton and following 
them over time. Figure 5 shows the result of the skeleton 
detection by the kinect. 

Tracking the human skeleton is necessary to control the 
actions in order to interact with the robot. In the present case 
study, it is used to insert virtual parts in the scene. A virtual 
piece will be created on the hand using a set gesture and 
with another set gesture the object will be fixed in that 
position. Figure 6 shows the gesture to pick up a virtual 
object and Figure 7 shows the gesture to place the object in 
a fixed position. 

 

         
Figure 5. Skeleton pose control. 

 

 
Figure 6. Take object. 

 

 
Figure 7. Place object. 

 
The act of creating a virtual object is performed by 

placing the arm and forearm in an angle of 90 degrees. Once 
the piece appears on the image, it follows the arm 
movements until the subject performs the gesture for placing 
the piece, which consists on stretching out the arm to the 
desired position. 

VII.  CONCLUSION 

A platform that serves as the basis for developing 
applications which establish interaction between humans 
and robots has been created. 
 Using this platform we have carried out a simple case 
study of interaction between a human being and a robotic 
system that allows the handle of virtual and real parts 
between a human and a robot. 
 A discrete Kalman filter is used to reduce noise in data 
get it from the low cost vision system which allows tracking 
robot arms. A human body can be modeled like some 
interconnected robots. Therefore this method can be 
extrapolated for tracking human skeletons. 
 In a future work, we will explore new methods to track 
articulated objects based on efficient robot models, like 
screw theory instead of DH model. 
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