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Abstract—This paper describes a platform which allows applications with interactions between humans and
humans to interact with robotic arms using augmente reality. machines. A simple practical case of human-robot

Low cost “kinect” cameras (Xbox 360) are used forracking interaction has been implemented to check thigqutat
human skeletons and locations of robot's end effemts. The

main goal of this paper is to develop robust trackes on this  A. Related Research
platform. Concretely, a Kalman filter is used for tracking We consider the problem of estimating and tracidby
robotic arms using data received from these sensort comes .,y rations of complex articulated objects framages,
to finding a low cost platform for human-robot interactions. s -

e.g., for applications requiring 3D robot arms pdagman

Keywords—Ilow cost vision system: Kalman filter; augnted ~ ©0dy pose and hand gesture analysis. There aremiamn

reality; kinematics; Human—machine interaction. schools of thought on this. Model-based approaches
presuppose an explicitly known parametric artiadat
l. INTRODUCTION object model and estimate the pose either by djrect

) i i ) y inverting the kinematics (which has many possiblettons

There is a wide range of industrial processes iithvh 504 which requires known image positions for eaaht p
robotic systems are present. Nowadays, the reqquc%]) or by numerically optimizing some form of meid
characteristics for such industrial processes aigh h image correspondence metric over the pose variaisg

efficiency, flexibility and adaptability. Human-robc  , t,nyard rendering model to predict the imagesicttis
systems interaction is a key solution to accompttsbse expensive and requires a good initialization, ame t

requirements, establishing a synergy between _tr_rﬁ beproblem always has many local minima [24]). An imtpat
features of both robots and humans: robot’s preeisind

; - , o > subcase is model-based tracking, which focusesaching

high efficiency and human’s flexibility and adapitia the pose estimate from one time step to the netirsg
Human-machine interactions ~ have — numerougom g known initialization based on an approximate

applications such as assembly tasks [3][12], winaéic dynamical model [17][23]. In contrast, learning-eds

controls through different types of sensors [2][13] ynnrgaches try to avoid the need for explicit adiiation
_deve_lopments of servomechanisms [1], developmefts Q4 accurate 3D modeling and rendering, instead
intelligent robots [4], and so on. capitalizing on the fact that the set of typicaficalated

_This paper provides the basis for human-machingpiect poses is far smaller than the set of kinaathy
interaction in order to increase efficiency in gieassembly possible ones and learming a model that directtpvers

processes, whose flexibility and adaptability chtgastics  oce  estimates from observable image quantities. In
require a clos interaction between humans and dbe'_uc particular, example-based methods explicitly swrset of
systems. Interactions between humans and robot_s)wap training examples whose 3D poses are known, estignat
the efficiency of complex assembly processes, @iheC se by searching for training image(s) similathe given

when intelligence is required by the system [3]wdwger, a input image and interpolating from their poses
precondition for this close relationship is humaafety. [15][19][22][25].

Many research advances have been carried outsratba
and now, some surveillance systems based of sensets

fgtellﬂteerr?tc t a;\gi[gta:10ct<)30tzle\I/ri]ca:-,:[:L1 e(lg]g)rk(;treca}[ple bﬁaf;)sund.pose from ima}ge measurements. Brar!d [16-;] moo!els a
. ger : ! dynamical manifold of human body configurations hwé
mtroducyng hur‘r_lgn beings in assembly progessesoiercho Hidden Markov Model and learns using entropy
use their cognitive and sensory-motor skills torgasut  inimization, Athitsos and Sclaroff [14] learn argeptron
assemblies with high flexibility. mapping between the appearance and parameter spades

The main goal of this research consists on creaing gpakhnarovich et al. [22] use an interpolated-keesta
platform which can be used as a basis for devedppin

There is a good deal of prior work on articulatéjeots
pose analysis, but relatively little on directlyataing 3D
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neighbor learning method. Human pose is hard targio
truth, so most papers in this area [14][16][19] usdy
heuristic visual inspection to judge their resuliawever,
Shakhnarovich et al. [22] used a human model rémgler
package (POSER from Curious Labs) to synthesizerglo
truthed training and test images of 13 degreesaddom
upper body poses with a limited (£+40°) set of randorso
movements and viewpoints. Several publications heses
the image locations of the center of each bodytjasan
intermediate representation, first estimating thésmt
centers in the image, then recovering 3D pose fiioam.
Howe et al. [18] develop a Bayesian learning framdwito
recover 3D pose from known centers, based on rirtigaset
of pose-center pairs obtained from resynthesizediomo
capture data. Mori and Malik [19] estimate the eenusing
shape context image matching against a set ofingain
images with prelabeled centers, then reconstructp8Be
using the algorithm of [26]. These approaches slhioat
using 2D joint centers as an intermediate representcan
be an effective strategy.

With regard to tracking, some approaches have déearn
dynamical models for specific human motions [20][21
Particle filters and MCMC methods have been widedgd
in probabilistic tracking frameworks, e.qg., [23][2Most of
these methods use an explicit generative modebhopate
observation likelihoods.

B. Overwiev of the Aproach

distribution of the physical components (robot aadhera)
of this application.

Figure 1. Low Cost 3D Vision System.

In this case, the distributed system is composetivoy
processes to perform interactions between a humdnaa
robot. One process realizes the monitoring of human
skeleton. The other process realizes the monitoointhe
robot arm pose. The data information for human ranimbt
state estimation is obtained by a low-cost 3D camer

The XML messages set developed ad-hoc for an
application use special communication software. sThi
software is called RT-SCORE [6] and it is a sys{&ased
on a blackboard system) that allows to assign a
communication channel between processes. The “gfiann
concept is similar to a “hall” in a chat communioat
system (the chat communication is RT-SCORE); sdy on
the entities connected to a channel receive tharrirdtion

Using the same philosophy as for tracking humargent into this channel.

skeleton, former approaches can be applied to trabkt
arms. We propose to use a low cost vision systerichwh
requires a discrete Kalman filter. This allows kiag join
variables at each instant of time.

C. Organization

Section 2 describes the global system. Sectiors8rilees
de low cost 3D vision system. Section 4 descrilfes t
Kalman filter used to track a robot arm. Sectiopr&sents

the robot used. Section 6 describes a human skelet

tracking approach. Finally, Section 7 concludeshvgibme
discussions and directions of future work.

Il.  GLOBAL SYSTEM DESCRIPTION

A platform for human-machine
augmented reality [8] has been performed betwebnti©
systems and human beings. This platform is a Higed

system where processes can communicate easily &etwe

them. The main functionalities offered by this fdatn are:
1) Communications between processes via XML [5].
2) Safety controls.
3) Tracking of robot arm poses.
4) Tracking of human skeletons.
5) Handle of augmented reality scenes.

A practical case of human-robot interaction hasnbee

implemented to check this platform. Figure 1 shaivs
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interaction using

Safety regulations require introducing guardraits that
humans do not have direct access to industrial tsobo
workspaces. To achieve a human-robot interactisafety
protocol has been established that allows suchaictien
without risk of serious damages. The safety corgystem
calculates the human and robotic arms locatiorthabthe
closer they get, the slower the robot moves.

MatLab [10] has been used in order to implemenh bot

(processes.

The robot arm monitor tracks the end effector aidt]
angles of the robot. However, it is needed a Kalfilter
for tracking robot arm poses.

The human skeleton monitor uses third party lilesri
with functions to estimate locations of each bodytpSome
human skeleton poses are used to handle virtuaktsbjn
the augmented reality scenario. Additionally thestual
objects can be shown on real RGB images captureticoy
camera.

Ill.  LowCosT3D VISION SYSTEM

The vision system used in this practical case & th
“Kinect” camera, which consists of two optical serss
whose interaction allows a three-dimensional searadysis.
One of the sensors is an RGB camera which has epvid
resolution of 30 fps. The image resolution given this
camera is 640x480 pixels. The second sensor hasrthef
obtaining depth information corresponding to thgeots
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found at the scene. The working principle of theasor is  (3), (4) and (5) are the equations to correct treerdte
based on the emission of an infrared signal whish iKalman filter. In (3), a new gain of Kalman is aalkted.
reflected by the objects and captured by a monaelro Equations (4) and (5) calculate a new valueygdredicted,
CMOS sensor. A matrix is then obtained which presidéd and new covariance of error, respectively.

depth image of the objects in the scene, calledTHEP Three Kalman filters have been implemented: one for

The calibration process of this camera can be sef). each of the three points used to locate (positiod a

Calibration is needed to relate both camera andtrob orientation) the end effector. Figure 2 shows aepos
coordinates reference systems. Therefore objectgdd by estimated during the robot movement. It can be ghen
the camera can be handled by the robot. three points detected on the end effector.

IV. KALMAN FILTER

The Kalman filter [11] is used in sensor fusion atada
fusion. Typically real time systems produce mudipl
sequential measurements rather than making a single
measurement to obtain the state of the system. eThes
multiple measurements are then combined mathertgtica
to generate the system's state at that time instant

Data fusion using a Kalman filter can assist corapito
track objects in videos with low latency (not to dmfused
with a low number of latent variables). The trackiof
objects is a dynamic problem, using data from seasd
camera images that always suffer from noise. This ¢
sometimes be reduced by using higher quality casnanal
sensors but can never be eliminated, so it is afesirable
to use a noise reduction method.

The iterative predictor-corrector nature of the rdah
filter can be helpful, because at each time ingamy one
constraint on the state variable needs to be ceresid This
process is repeated considering a different cadnstrat
every time instance. All the measured data areraotated
over time and help in predicting the state.

Video can also be pre-processed, using a segnmmtati
technique, to reduce computation and hence latency.

The discrete Kalman filter [11] is implemented as
follows:

1) State prediction:

X =AX, 1)

2) Prediction of error covariance:

Figure 2. Robot arm pose tracking.

2D values without applying the Kalman Fitter

P*t = AFt)_l A+ Q 2 Figure 3. Kalman Filter evolution.
3) Calculate the constant gafn
T T -1 Figure 3 shows the evolution of depth informatiam f
K =P.H (HFft H+ R) 3) comparing results obtained with Kalman filter andhaut
4) Update: applying the Kalman filter. The first graph showargmeter
X, = X +K (Z _ H)<) 4) Z4 over time without applylng thg Kalman filter. Tbgcond
: graph showszy over time applying the Kalman filter. At
5) Update error covarlance: time 100, incorrectzy values can be observed when not
P= (I - KIH)PI (5) applying the filter because the camera does noprggterly

The Kalman filter has been applied to depth infdiara informa_ltion. It can be seen that the Kalman filteakes a
The values returned by depth images are not alsigis. ~ correction of these values.
This happens because the sensor does not detedepitie
correctly when the infrared light is not properéflected on
the object. In this case, the input value to thémém fiter ~  DH (Denavit-Hartemberg) is used to solve direct and
is the depth value of; (state) corresponding to the distanceinverse kinematics problems. Figure 4 shows coatein
between the camera and the object. In (1) and @)t  Systems and articulation axes used for this Faolotr
value and covariance is predicted to the next gigpations

V. RoBoTFANuUC 200I1BCONTROL
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Figure 4. Coordinate systems and articulation axes.

Hence, the following DH parameter table is obtained

TABLE 1. DENAVIT-HARTEMBERG.

Figure 7. Place object.

ART 2] d a a.

i The act of creating a virtual object is performeg b

1 0° 0 150 90° placing the arm and forearm in an angle of 90 degrénce

2 90° 0 250 0 the piece appears on the image, it follows the arm
j 82 ch 705 ggz movements until the subject performs the gesturelfiing

= 0 5 5 o the piece, \{vhlch consists on stretching out the tonthe

6 0° 0 ) 0 desired position.

. . . . VII.  CONCLUSION
The direct and inverse kinematics problems areesblv

using these parameters. These kinematic modelsvallo A Pplatform that serves as the basis for developing
tracking the robot by using the kinect, so thatehe effector ~applications which establish interaction betweemans
position is identified on the image and the stdtthe robot  and robots has been created.

joints is calculated. The Kalman filter is necegstar filter Using this platform we have carried out a simpdsec
the information captured by vision sensor. study of interaction between a human being andbatio
system that allows the handle of virtual and reattp

VI.  MONITORING HUMAN SKELETON between a human and a robot.
To monitor the skeleton of a human being, the toolb A discrete Kalman filter is used to reduce noiselata

[7] and [8] has been used in Matlab. The NITE tmagk get it from the low cost vision system which allotrecking
human body module aim is based on extracting thetmorobot arms. A human body can be modeled like some
important features of the human skeleton and faligw interconnected robots. Therefore this method can be
them over time. Figure 5 shows the result of theletkn  extrapolated for tracking human skeletons.
detection by the kinect. In a future work, we will explore new methods tack
Tracking the human skeleton is necessary to cottiel articulated objects based on efficient robot mqdéke
actions in order to interact with the robot. In firesent case screw theory instead of DH model.
study, it is used to insert virtual parts in therse A virtual
piece will be created on the hand using a set gestnd
with another set gesture the object will be fixed that This work was partially funded by the Universitat
position. Figure 6 shows the gesture to pick upirtual Politécnica de Valéncia research funds (PAID 2@0ject
object and Figure 7 shows the gesture to placebject in  no. 2566) and by Spanish government and the Eumopea
a fixed position. Community under the project DPI2010-20814-C02-02
(FEDER-CICYT) and DP12010-20286 (CICYT).
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