
Mining Erasable Itemsets with Multiple Thresholds under the Loose Constraint

Tzung-Pei Hong1,2, Yi-Chen Chang2, Chun-Ho Wang2, and Wei-Ming Huang3
1Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan

2Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
3Department of Electrical and Control, China Steel, Inc., Kaohsiung, 806, Taiwan

Email: tphong@nuk.edu.tw, 4a0g0902@stust.edu.tw, dodo166577@gmail.com, granthill168@gmail.com

Abstract—In data mining, erasable-itemset mining is a popular

research field widely applied in factory production

management. Traditional erasable-mining algorithms typically

use a single threshold as the criterion for mining erasable
itemsets. It implicitly assumes that all items are of equal

importance, neglecting the fact that each item has a distinct

value in an application. In this paper, we use the concept of

multiple thresholds and employ the loose constraint to calculate

the threshold of an itemset. Since the downward-closure

property is not applicable to the loose constraint, we thus utilize

the sorted closure to narrow the search space and improve
search efficiency. Through experiments, we compare the

performance of the erasable-itemset mining using single and

multiple thresholds.

Keywords-data mining; erasable-itemset mining; multiple

thresholds, loose constraint.

I. INTRODUCTION

In the digital generation, we are confronted with vast
amounts of data containing useful information and potential
value. These massive datasets hide important patterns, trends,
and knowledge. It is a challenging task to extract these
treasures efficiently from the data. Data mining, an
interdisciplinary technology, has thus been proposed to
reveal latent information within data and help us catch the
implicit meaning embedded in the data.

Data mining is a technology that combines statistics,
mathematics, databases, and artificial intelligence. Its goal is
to discover patterns, trends, and knowledge within big data.
By applying various data analysis techniques, data mining
can uncover previously unknown patterns, providing robust
support for decision-making, prediction, and optimization.
The applications of data mining are extensive, spanning areas
such as business, healthcare, finance, social sciences,
environmental sciences, and so on. In the business domain,
data mining is widely used in market analysis [2][4][5],
customer relationship management, risk management, and
other aspects to enhance the competitiveness of a company.

Erasable itemset mining [8] is one of the essential mining
problems with extensive applications. It deals with the
problem that raw materials for making products cannot be
entirely purchased in a factory due to some unforeseen
problems encountered suddenly, such as insufficient funds,
limited logistics transportation capacity, insufficient storage
space, etc. Therefore, it is necessary to make a decision for
choosing which raw materials should not be purchased so that

the company's loss can be controlled within an acceptable
range.

In traditional erasable-itemset mining, an item (raw
material) or an itemset (a set of raw materials) is called
erasable if the profit-loss ratio of not generating the products
that need to use the materials is larger than or equal to a single
threshold. In this case, each item (raw material) is treated as
equally important. However, it is sometimes unfair and
impractical because other properties of the materials are not
considered, such as cost, volume, weight, etc. Therefore, in
this paper, we adopt multiple thresholds to mine erasable
itemsets. Different thresholds are given to individual items to
meet the requirements of practical applications. Besides, we
adopt the loose constraint to decide the threshold value of
each itemset with more than one item, such that more erasable
itemsets can be derived as candidates to decision makers.

The rest of this paper is organized as follows. Section II
describes the related work. Section III gives the problem
definition. Section IV explains the sorted closure property.
Section V goes into the finer steps of the proposed algorithm.
Section VI describes the experiments, and Section VII gives
the conclusion.

II. RELATED WORK

 Erasable-itemset mining aims to identify combinations of

materials that are not procured, allowing a factory to control

loss within an acceptable range. This problem was introduced

by Deng et al. in 2009, who also proposed a method called

the META (Mining Erasable iTemsets with the Anti-

monotone property) algorithm [8]. META employs an

searching approach similar to the Apriori algorithm [1][2],

progressively discovering all erasable itemsets layer by layer.

It uses the downward-closure property effectively to reduce

the search space of candidate itemsets. It, however, requires

multiple database scans, leading to a lot of execution time.

Subsequent to META, several improved algorithms have

been introduced to address this issue, including VME

(Vertical-format-based algorithm for Mining Erasable

itemsets) [7], MERIT (fast Mining ERasable ITemsets) [9],

MERIT+ (MERIT enhanced) [23], dMERIT+ (using

Difference of NC_Set to enhance MERIT) [23], MEI (Mining

Erasable Itemsets) [22], and BREM (Bitmap-Representation

Erasable Mining) [17].

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-144-2

ACCSE 2024 : The Ninth International Conference on Advances in Computation, Communications and Services

mailto:4a0g0902@stust.edu.tw

 VME was proposed by Deng et al. in 2010 [7]. It employed

a list structure, storing additional information within PID_list

to reduce the database scans to only twice, resulting in faster

execution time than META. However, each itemset had its

own dedicated PID_list, leading to substantial memory usage.

Hong et al. proposed an enhancement to VME called BERM

[17]. BERM utilized bit vectors to simplify the recording of

the PID_list.

 In 2012, Deng et al. presented a tree-based algorithm

called MERIT [9]. It initially constructed a WPPC (Weighted

Pre-Post Code) tree in an FP-growth [10] manner and then

calculated NC-sets for each itemset using the WPPC tree. The

NC-sets were leveraged to reduce memory usage and

enhance execution speed.

 MERIT+ was subsequently introduced by Le et al. [23],

building upon the original MERIT and incorporating a

weighted index to solve the issue of not mining all erasable

itemsets. However, the duplicate NC-sets increased memory

usage. Then, dMERIT+ [23] adopted a new structure called

dNC_sets and used a hash table to eliminate redundant

information, optimizing both memory and execution time. Le

et al. then proposed the MEI approach, which employed a

depth-first search strategy and the dPID_set structure.

 In recent years, numerous derivative problems and

applications related to erasable mining have been

continuously proposed [24][28]. A factory engages in the

production of a diverse range of products, considering

various additional factors. For example, each product may

require a different quantity of materials [15], and some

products may experience peak sales only within specific time

frames [11][12][13][20]. The ordering sequence from

customers is another consideration for certain products [16].

Over time, the variety of products produced by a factory may

increase [6][21][25][27], or a factory may face product

discontinuation [18][19]. Incremental erasable-itemset

mining avoids the need to re-run erasable mining every time

a new product is added or removed. It becomes crucial to

perform mining selectively on only the itemsets that have an

impact rather than the entire database. Different mining

problems incessantly appear for actual applications.

III. PROBLEM DESCRIPTION

 Erasable-itemset mining is utilized in the management of

manufacturing factories, where various products are

produced, as illustrated in Table 1.

TABLE 1: AN EXAMPLE OF A PRODUCT DATABASE.

Product Database

PID Items Profit

Product 1 ABE 200

Product 2 DEF 200

Product 3 BCE 100

Product 4 ADF 100

Product 5 BF 300

Product 6 ACDF 100

 In the product database, each product consists of three

fields: PID, Items, and Profit. The PID (product identification)

serves as a code to distinguish different products. The items

represent the materials required to produce a product, and the

profit is the earnings obtained after selling the product.

 Let us envision a scenario where a factory encounters

challenging situations, such as a decline in financial resources,

limited logistics transportation capacity, or insufficient

storage space for materials. This leads to the inability to

procure production from all the raw materials, necessitating

a decision on which materials to erase. Consequently,

products reliant on these erased materials cannot be

manufactured, causing the factory to be unable to sell them

and resulting in a decline in profits. The challenge is to

determine which materials not to purchase, thereby

controlling losses within acceptable proportions for the

factory. This problem is known as erasable mining, and the

different combinations of materials identified in this process

are termed erasable itemsets. Subsequently, we will provide

detailed definitions for the relevant terms associated with

erasable mining.

 Definition 1: (Multiple maximum thresholds) The user or

factory presets a value between 0 and 1 according to the

characteristics of each item, which is used to represent the

percentage of the maximum loss in the total revenue that the

user or factory can accept if the item is not restocked. The

maximum threshold value of each item is expressed as λ. An

example is given in Table 2, in which λ(A) = 0.6 and λ(B) =

0.5.

TABLE 2: THE MAXIMUM THRESHOLDS OF THE ITEMS IN THE
ABOVE EXAMPLE.

Item A B C D E F

λ 0.6 0.5 0.4 0.7 0.3 0.8

 Definition 2: (Maximum gain threshold) The maximum

gain threshold represents the maximum practical loss

acceptable to a user or a factory. The maximum gain

threshold of an item X is expressed as MGT(X), defined as

follows:

𝑀𝐺𝑇(𝑋) = 𝑃𝑟𝑜𝑓𝑖𝑡𝑇𝑜𝑡𝑎𝑙 x 𝜆(𝑋).

 Take the items A and B as examples. The total profit of the
whole set of products is 200 + 200 + 100 + 100 + 300 + 100

= 1000. According to the maximum threshold of each item in

Table 2, MGT(A) = 1000 * 0.6 = 600, and MGT(B) = 1000 *

0.5 = 500.

 Definition 3: (Gain) When a particular material cannot be

purchased or stocked, the products that need to be produced

with this material will be unable to be manufactured. The

losses caused by these products that cannot be manufactured

are called gains. The gain of the itemset X is expressed as

gain(X) defined as follows:

𝑔𝑎𝑖𝑛(𝑋) = ∑ 𝑃. 𝑃𝑟𝑜𝑓𝑖𝑡

{𝑃|𝑋 ∩ 𝑃. 𝐼𝑡𝑒𝑚𝑠 ≠ ∅, P ∈ PD }

where P is a product in the product database PD.

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-144-2

ACCSE 2024 : The Ninth International Conference on Advances in Computation, Communications and Services

 In multiple-threshold mining, the maximum thresholds of
items are not the same. Different itemsets have their own

distinct maximum thresholds. When an itemset contains only

one item, we use its given threshold. However, when an

itemset consists of two or more items, the calculation of the

maximum threshold depends on different constraints. In this

paper, we adopt the loose constraint for determining these

thresholds. The formula for the loose constraint is defined as

follows:

𝜆(𝑋) = 𝑚𝑎𝑥(𝜆(𝐼)| 𝐼 ∈ X).

For example, the 2-itemset {D, E} contains both items D

and E. Its maximum threshold is then set as max(𝜆(D), 𝜆(E)),
which is max(0.5, 0.4) = 0.5. Simultaneously, this constraint

can also be applied to determine the maximum gain threshold.

 Downward closure is a useful property in data mining and

has been successfully applied in various mining algorithms,

including the tight constraint in multiple threshold mining.

However, this property does not apply to the loose constraint.

A simple example illustrates this. In Table 1, Gain(DE) = 700

 MGT(DE) = 700. {D, E} is thus an erasable itemset. But

the gain of its subset Gain(E) = 400 > MGT(E) = 300. Thus,

{E} is not an erasable itemset. Hence, the loose constraint

does not possess the downward-closure property.

IV. SORTED-CLOSURE PROPERTY

 As mentioned above, the multiple-threshold mining with

the loose constraint does not have the downward-closure

property. Liu et al. proposed a novel technique called the

sorted-closure property to replace the downward-closure

property and successfully applied it in frequent itemset

mining with multiple minimum supports [26]. In the

traditional erasable-itemset mining algorithm, each item in an

itemset is usually arranged according to the linguistic order

or numerical order, such as {A, B, C} or {A1, A2, A3}.

However, for using the sorted-closure property, items will be

sorted in the descending order of their thresholds. Through

such changes, some useful properties will be produced, and

unpromising candidate itemsets can be effectively pruned off.

Thus, the time spent on scanning databases for calculating

gains and verification can be reduced.

 For example, the items in Table 2 are sorted in descending

order according to their maximum thresholds. The sorted

result is shown in Table 3. According to this order, the itemset

{D, E, F} is rearranged as {F, D, E}.

TABLE 3: THE SORTED ITEMS ACCORDING TO THEIR MAXIMUM
THRESHOLDS.

Item F D A B C E

λ 0.8 0.7 0.6 0.5 0.4 0.3

 The following four theorems can then be deduced for the

sorted items. By employing these theorems, we can

effectively reduce the search space of candidate itemsets.

 Theorem 1 Assume item X is an erasable 1-itemset and an

item Y, after sorting, is located before item X. The gain of the

1-itemset X must be less than or equal to the maximum gain

threshold of the 1-itemset Y. That is, gain(X) ≤ MGT(Y).

 Theorem 2 Assume itemset X is an erasable 2-itemset

under the loose constraint and represented as {item1, item2},

where item1 is located before item2 after sorting. Then the

following two conditions must be satisfied:

gain(item1) ≤ MGT(item1), and

gain(item2) ≤ MGT(item1).

 Theorem 3 Assume itemset X is an erasable k-itemset (k ≥

3) under the loose constraint with the first and the second

items in X having different maximum gain thresholds. Then,

the (k-1)-subitemsets of X containing the first item in X must

also be erasable under the loose constraint.

 Theorem 4 Assume itemset X is an erasable k-itemset (k ≥
3) under the loose constraint with the first and the second

items in X having the same maximum gain thresholds. Then,

all the (k-1)-subitemsets of X must also be erasable under the

loose constraint.

V. THE PROPOSED ALGORITHM UNDER THE LOOSE

CONSTRAINT

In this section, we will introduce the proposed algorithm

for finding erasable itemsets under the loose constraint. It

uses the four theorems mentioned above to reduce candidate

itemsets. The algorithm is described below.

STEP 1: Sort the items according to the descending order of

their maximum thresholds.

STEP 2: Scan the whole database to calculate the total gain

of the database and the gain of each item.

STEP 3: Calculate the maximum gain threshold of each

item using the total gain of the database.

STEP 4: Check the sorted items one by one from the front

until the first one X with its gain smaller than or

equal to its maximum gain threshold; Put X in the

set of candidate 1-itemsets CI1.
STEP 5: Check the sorted items after the above X one by

one; If the gain of an item is smaller than or equal

to the maximum gain threshold of X, add the item

to CI1.
STEP 6: Check whether the gain of each candidate 1-

itemset in CI1 is less than or equal to its own

maximum gain threshold. If the 1-itemset

conforms to the above condition, put it into the set

of erasable 1-itemsets EI1.

STEP 7: If EI1 is empty, then no erasable itemsets are found,

and the algorithm stops.

STEP 8: Form candidate 2-itemsets CI2 by joining the

candidate 1-itemsets in CI1.

STEP 9: For each candidate 2-itemset in CI2 with its first

item being an erasable 1-itemset in EI1, check

whether its gain is less than or equal to its

maximum gain threshold. If the itemset conforms

to the above condition, put it into the set of erasable

2-itemsets EI2.

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-144-2

ACCSE 2024 : The Ninth International Conference on Advances in Computation, Communications and Services

STEP 10: If EI2 is empty, then only erasable 1-itemsets are

found; we output EI1 and stop the algorithm.

STEP 11: Set k =3, where k is used to represent the number

of items in an itemset to be processed.

STEP 12: Find any two itemsets in EIk-1 with the same (k-2)

items to join and generate a k-itemset X. If the first

two items (according to the sorted list) in X have

different maximum gain thresholds, then add X to

the candidate k-itemsets CIk only if all the (k-1)-

subitemsets of X containing the first item of X are

in EIk-1; If the first two items in X have the same

maximum gain thresholds, then add X to CIk only

if all the (k-1)-subitemsets of X are in EIk-1.

STEP 13: Check whether the gain of each candidate k-

itemset in CIk is less than or equal to its maximum

gain threshold. If the itemset conforms to the

above condition, put it into the set of erasable k-

itemsets EIk.
STEP 14: If EIk is empty, then erasable 1-itemsets to (k-1)-

itemsets are the desired; we output them and stop

the algorithm; Otherwise set k as k+1 and go to

STEP 12.

 Note that in STEP 12, CIk is formed effectively according

to Theorems 3 and 4.

VI. EXPERIMENTAL RESULTS

 To enhance clarity in assessing the algorithm's

performance, we conducted a comparison between multiple

thresholds under the loose and the tight constraints [14] and

under single thresholds [8] in our experiments. The program

was executed on a system with a CPU i7-9750H@2.60GHz,

8GB RAM, and Windows 10. The programming language

used was Java 19.0.1. The synthetic dataset

P100KI0.05KD10 was generated by the IBM data generator

[3] and named based on its parameters, where P represents

the number of products, I represents the number of items, and

D represents the average number of materials in each product.

However, the data generated by the IBM data generator

lacked profit information. To better simulate real-world

scenarios, we thus introduced profit values using a normal

distribution, denoted as N(100, 20), where the two parameters

represent the mean and the standard deviation, to ensure most

product profits fall within a moderate range. Excessively high

profits could result in unmarketable high prices, while

excessively low profits might affect factory operations.

 Concerning the thresholds set in the experiments, we

initially defined an interval, generating the thresholds of the

items uniformly within the range, denoted as U(H, L). Here,

H is the highest threshold, and L is the lowest within the

interval. H and L are then used as the two thresholds, which

were set, respectively, in the single-threshold algorithm. In

the experiments, we first maintained other parameters

constant while incrementally increasing each threshold by

0.01. The variation allowed us to observe its influence on the

algorithm.

 Figures 1 and 2 represent the quantities of erasable itemsets

and candidate itemsets, respectively. Erasable itemsets are

derived from the candidate itemsets. Hence, the number of

erasable itemsets is always less than that of candidate

itemsets. As the threshold values increase, both the quantities

exhibit an upward trend. The two figures show that the

quantities of the erasable itemsets and the candidate erasable

itemsets under the tight and the loose constraints in multi-

threshold mining fall between those of the single-threshold

algorithm under two single thresholds. Specifically, the loose

constraint tends to be closer to the highest single threshold,

while the tight constraint tends to be closer to the lowest

single threshold.

Figure 1. The numbers of erasable itemsets for different threshold intervals.

Figure 2. The numbers of candidate itemsets for different threshold

intervals.

Figure 3 illustrates the memory usage for each program.

The extent of memory usage is determined by the number of

products, erasable itemsets, and candidate itemsets. As the

number of products remains constant, the primary

influencing factors are the quantities depicted in Figure 1

(erasable itemsets) and Figure 2 (candidate itemsets). With

an increase in the quantities of both the erasable and

candidate itemsets, the memory usage also increases

accordingly.

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-144-2

ACCSE 2024 : The Ninth International Conference on Advances in Computation, Communications and Services

Figure 3. The memory usage for different threshold intervals.

Lastly, Figure 4 represents the execution time for each

program. The most time-consuming aspect during the mining

process is the generation and validation of candidate itemsets,

which are closely related to the number of candidate itemsets,

as shown in Figure 2. As the number of candidate itemsets

increases, the execution time also rises accordingly.

Figure 4. The execution time for different threshold intervals.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an algorithm for the loose
constraint in multiple-threshold mining. We have also
demonstrated the applicability of relevant theorems derived
from the sorted closure, successfully solving the issue of
lacking downward closure in the loose constraint. In our
experiments, we have not only compared the algorithms with
different constraints but also contrasted them with the single-
threshold META algorithm. We have also comprehensively
analyzed execution time, memory usage, erasable-itemset
quantity, and candidate-itemset quantity. We will
continuously explore designing algorithms tailored to various
constraints for future research. Optimizing the execution time
of multi-threshold mining could also be a focus of further
investigation.

ACKNOWLEDGMENT

This work was supported by the National Science and
Technology Council, Taiwan, under the grant NSTC 112-
2221-E-390-014-MY3.

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” The 1993 ACM
SIGMOD International Conference on Management of Data,
pp. 207-216, 1993.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” The 20th International Conference on Very
Large Data Bases, pp. 487-499, 1994.

[3] R. Agrawal and R. Srikant, Quest Synthetic Data Generation
Code. 1994.

[4] R. Agrawal and R. Srikant, “Mining sequential patterns,” The
Eleventh International Conference on Data Engineering, pp.
3-14, 1995.

[5] R. Chan, Q. Yang, and Y.-D. Shen, “Mining high utility
itemsets,” The Third IEEE International Conference on Data
Mining, pp. 19-19, 2003.

[6] R. Davashi, “IME: efficient list-based method for incremental
mining of maximal erasable patterns,” Pattern Recognition,
vol. 148, pp. 110166, 2024.

[7] Z. Deng and X. Xu, “An efficient algorithm for mining erasable
itemsets,” The International Conference on Advanced Data
Mining and Applications, pp. 214-225, 2010.

[8] Z. H. Deng, G. D. Fang, Z. H. Wang, and X. R. Xu, “Mining
erasable itemsets,” The 2009 International Conference on
Machine Learning and Cybernetics, pp. 67-73, 2009.

[9] Z. H. Deng and X. R. Xu, “Fast mining erasable itemsets using
NC_sets,” Expert Systems with Applications, vol. 39(4), pp.
4453-4463, 2012.

[10] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” ACM Sigmod Record, vol. 29(2), pp. 1-
12, 2000.

[11] T.-P. Hong, J.-X. Li, Y.-C. Tsai, and W.-M. Huang, “Tree-
based unified temporal erasable-itemset mining,” The Asian
Conference on Intelligent Information and Database Systems,
pp. 224-233, 2023.

[12] T. P. Hong, H. Chang, S. M. Li, and Y. C. Tsai, “A unified
temporal erasable itemset mining approach,” The 2021
International Conference on Technologies and Applications of
Artificial Intelligence, pp. 194-198, 2021.

[13] T. P. Hong, H. Chang, S. M. Li, and Y. C. Tsai, “A dedicated
temporal erasable-itemset mining algorithm,” The
International Conference on Intelligent Systems Design and
Applications, pp. 977-985, 2022.

[14] T. P. Hong, Y. C. Chang, W. M. Huang, and W. Y. Lin,
“Multiple-threshold erasable mining under the tightest
constraint,” The International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, pp.
369-377, 2022.

[15] T. P. Hong, H. W. Chen, W. M. Huang, and C. H. Chen,
“Erasable pattern mining with quantitative information,” The
2019 International Conference on Technologies and
Applications of Artificial Intelligence, pp. 1-4, 2019.

[16] T. P. Hong, Y. L. Chen, W. M. Huang, and Y. C. Tsai,
“Erasable-itemset mining for sequential product databases,”
International Conference on Hybrid Intelligent Systems, pp.
566-574, 2022.

[17] T. P. Hong, W. M. Huang, G. C. Lan, M. C. Chiang, and J. C.
W. Lin, “A bitmap approach for mining erasable itemsets,”
IEEE Access, vol. 9, pp. 106029-106038, 2021.

[18] T. P. Hong, C. C. Li, S. L. Wang, and C. W. Lin, “Maintenance
of erasable itemsets for product deletion,” The Fifth
Multidisciplinary International Social Networks Conference,
pp. 1-4, 2018.

[19] T. P. Hong, C. C. Li, S. L. Wang, and J. C. W. Lin, “Reducing
database scan in maintaining erasable itemsets from product

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-144-2

ACCSE 2024 : The Ninth International Conference on Advances in Computation, Communications and Services

deletion,” The 2018 IEEE International Conference on Big
Data, pp. 2627-2632, 2018.

[20] T. P. Hong, J. X. Li, Y. C. Tsai, and W. M. Huang, “Unified
temporal erasable itemset mining with a lower-bound
strategy,” The 2022 IEEE International Conference on Big
Data, pp. 6207-6211, 2022.

[21] T. P. Hong, K. Y. Lin, C. W. Lin, and B. Vo, “An incremental
mining algorithm for erasable itemsets,” The 2017 IEEE
International Conference on Innovations in Intelligent Systems
and Applications, pp. 286-289, 2017.

[22] T. Le and B. Vo, “MEI: an efficient algorithm for mining
erasable itemsets,” Engineering Applications of Artificial
Intelligence, vol. 27, pp. 155-166, 2014.

[23] T. Le, B. Vo, and F. Coenen, “An efficient algorithm for
mining erasable itemsets using the difference of NC-Sets,” The
2013 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 2270-2274, 2013.

[24] T. Le, B. Vo, and G. Nguyen, “A survey of erasable itemset
mining algorithms,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 4(5), pp. 356-379,
2014.

[25] G. Lee, U. Yun, H. Ryang, and D. Kim, “Erasable itemset
mining over incremental databases with weight conditions,”
Engineering Applications of Artificial Intelligence, vol. 52, pp.
213-234, 2016.

[26] B. Liu, W. Hsu, and Y. Ma, “Mining association rules with
multiple minimum supports,” The Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp. 337-341, 1999.

[27] H. Nam, U. Yun, E. Yoon, and J. C. W. Lin, “Efficient
approach for incremental weighted erasable pattern mining
with list structure,” Expert Systems with Applications, Vol.
143, pp. 113087, 2020.

[28] D. M. D. Raj and M. Ranganathan, “A comprehensive survey
on erasable itemset mining,” International Journal of
Computer Science and Information Security, vol. 15(7), pp.
184-201, 2017.

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-144-2

ACCSE 2024 : The Ninth International Conference on Advances in Computation, Communications and Services

