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Abstract—In data mining, erasable-itemset mining is a popular 

research field widely applied in factory production 

management. Traditional erasable-mining algorithms typically 

use a single threshold as the criterion for mining erasable 
itemsets. It implicitly assumes that all items are of equal 

importance, neglecting the fact that each item has a distinct 

value in an application. In this paper, we use the concept of 

multiple thresholds and employ the loose constraint to calculate 

the threshold of an itemset. Since the downward-closure 

property is not applicable to the loose constraint, we thus utilize 

the sorted closure to narrow the search space and improve 
search efficiency. Through experiments, we compare the 

performance of the erasable-itemset mining using single and 

multiple thresholds. 

Keywords-data mining; erasable-itemset mining; multiple 

thresholds, loose constraint. 

I.  INTRODUCTION 

In the digital generation, we are confronted with vast 
amounts of data containing useful information and potential 
value. These massive datasets hide important patterns, trends, 
and knowledge. It is a challenging task to extract these 
treasures efficiently from the data. Data mining, an 
interdisciplinary technology, has thus been proposed to 
reveal latent information within data and help us catch the 
implicit meaning embedded in the data. 

Data mining is a technology that combines statistics, 
mathematics, databases, and artificial intelligence. Its goal is 
to discover patterns, trends, and knowledge within big data. 
By applying various data analysis techniques, data mining 
can uncover previously unknown patterns, providing robust 
support for decision-making, prediction, and optimization. 
The applications of data mining are extensive, spanning areas 
such as business, healthcare, finance, social sciences, 
environmental sciences, and so on. In the business domain, 
data mining is widely used in market analysis [2][4][5], 
customer relationship management, risk management, and 
other aspects to enhance the competitiveness of a company. 

Erasable itemset mining [8] is one of the essential mining 
problems with extensive applications. It deals with the 
problem that raw materials for making products cannot be 
entirely purchased in a factory due to some unforeseen 
problems encountered suddenly, such as insufficient funds, 
limited logistics transportation capacity, insufficient storage 
space, etc. Therefore, it is necessary to make a decision for 
choosing which raw materials should not be purchased so that 

the company's loss can be controlled within an acceptable 
range. 

In traditional erasable-itemset mining, an item (raw 
material) or an itemset (a set of raw materials) is called 
erasable if the profit-loss ratio of not generating the products 
that need to use the materials is larger than or equal to a single 
threshold. In this case, each item (raw material) is treated as 
equally important. However, it is sometimes unfair and 
impractical because other properties of the materials are not 
considered, such as cost, volume, weight, etc. Therefore, in 
this paper, we adopt multiple thresholds to mine erasable 
itemsets. Different thresholds are given to individual items to 
meet the requirements of practical applications. Besides, we 
adopt the loose constraint to decide the threshold value of 
each itemset with more than one item, such that more erasable 
itemsets can be derived as candidates to decision makers. 

The rest of this paper is organized as follows. Section II 
describes the related work. Section III gives the problem 
definition. Section IV explains the sorted closure property. 
Section V goes into the finer steps of the proposed algorithm. 
Section VI describes the experiments, and Section VII gives 
the conclusion.  

II. RELATED WORK 

    Erasable-itemset mining aims to identify combinations of 

materials that are not procured, allowing a factory to control 

loss within an acceptable range. This problem was introduced 

by Deng et al. in 2009, who also proposed a method called 

the META (Mining Erasable iTemsets with the Anti-

monotone property) algorithm [8]. META employs an 

searching approach similar to the Apriori algorithm [1][2], 

progressively discovering all erasable itemsets layer by layer. 

It uses the downward-closure property effectively to reduce 

the search space of candidate itemsets. It, however, requires 

multiple database scans, leading to a lot of execution time. 

Subsequent to META, several improved algorithms have 

been introduced to address this issue, including VME 

(Vertical-format-based algorithm for Mining Erasable 

itemsets) [7], MERIT (fast Mining ERasable ITemsets) [9], 

MERIT+ (MERIT enhanced) [23], dMERIT+ (using 

Difference of NC_Set to enhance MERIT) [23], MEI (Mining 

Erasable Itemsets ) [22], and BREM (Bitmap-Representation 

Erasable Mining) [17]. 
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    VME was proposed by Deng et al. in 2010 [7]. It employed 

a list structure, storing additional information within PID_list 

to reduce the database scans to only twice, resulting in faster 

execution time than META. However, each itemset had its 

own dedicated PID_list, leading to substantial memory usage. 

Hong et al. proposed an enhancement to VME called BERM 

[17]. BERM utilized bit vectors to simplify the recording of 

the PID_list. 

     In 2012, Deng et al. presented a tree-based algorithm 

called MERIT [9]. It initially constructed a WPPC (Weighted 

Pre-Post Code) tree in an FP-growth [10] manner and then 

calculated NC-sets for each itemset using the WPPC tree. The 

NC-sets were leveraged to reduce memory usage and 

enhance execution speed.  

    MERIT+ was subsequently introduced by Le et al. [23], 

building upon the original MERIT and incorporating a 

weighted index to solve the issue of not mining all erasable 

itemsets. However, the duplicate NC-sets increased memory 

usage. Then, dMERIT+ [23] adopted a new structure called 

dNC_sets and used a hash table to eliminate redundant 

information, optimizing both memory and execution time. Le 

et al. then proposed the  MEI approach, which employed a 

depth-first search strategy and the dPID_set structure. 

    In recent years, numerous derivative problems and 

applications related to erasable mining have been 

continuously proposed [24][28]. A factory engages in the 

production of a diverse range of products, considering 

various additional factors. For example, each product may 

require a different quantity of materials [15], and some 

products may experience peak sales only within specific time 

frames [11][12][13][20]. The ordering sequence from 

customers is another consideration for certain products [16]. 

Over time, the variety of products produced by a factory may 

increase [6][21][25][27], or a factory may face product 

discontinuation [18][19]. Incremental erasable-itemset 

mining avoids the need to re-run erasable mining every time 

a new product is added or removed. It becomes crucial to 

perform mining selectively on only the itemsets that have an 

impact rather than the entire database. Different mining 

problems incessantly appear for actual applications. 

III. PROBLEM DESCRIPTION 

    Erasable-itemset mining is utilized in the management of 

manufacturing factories, where various products are 

produced, as illustrated in Table 1. 

TABLE 1: AN EXAMPLE OF A PRODUCT DATABASE. 

Product Database 

PID Items Profit 

Product 1 ABE 200 

Product 2 DEF 200 

Product 3 BCE 100 

Product 4 ADF 100 

Product 5 BF 300 

Product 6 ACDF 100 

 

   In the product database, each product consists of three 

fields: PID, Items, and Profit. The PID (product identification) 

serves as a code to distinguish different products. The items 

represent the materials required to produce a product, and the 

profit is the earnings obtained after selling the product. 

    Let us envision a scenario where a factory encounters 

challenging situations, such as a decline in financial resources, 

limited logistics transportation capacity, or insufficient 

storage space for materials. This leads to the inability to 

procure production from all the raw materials, necessitating 

a decision on which materials to erase. Consequently, 

products reliant on these erased materials cannot be 

manufactured, causing the factory to be unable to sell them 

and resulting in a decline in profits. The challenge is to 

determine which materials not to purchase, thereby 

controlling losses within acceptable proportions for the 

factory. This problem is known as erasable mining, and the 

different combinations of materials identified in this process 

are termed erasable itemsets. Subsequently, we will provide 

detailed definitions for the relevant terms associated with 

erasable mining. 

    Definition 1: (Multiple maximum thresholds) The user or 

factory presets a value between 0 and 1 according to the 

characteristics of each item, which is used to represent the 

percentage of the maximum loss in the total revenue that the 

user or factory can accept if the item is not restocked. The 

maximum threshold value of each item is expressed as λ. An 

example is given in Table 2, in which λ(A) = 0.6 and λ(B) = 

0.5. 

TABLE 2: THE MAXIMUM THRESHOLDS OF THE ITEMS IN THE 
ABOVE EXAMPLE. 

Item A B C D E F 

λ 0.6 0.5 0.4 0.7 0.3 0.8 

    Definition 2: (Maximum gain threshold) The maximum 

gain threshold represents the maximum practical loss 

acceptable to a user or a factory. The maximum gain 

threshold of an item X is expressed as MGT(X), defined as 

follows: 

𝑀𝐺𝑇(𝑋) =  𝑃𝑟𝑜𝑓𝑖𝑡𝑇𝑜𝑡𝑎𝑙  x 𝜆(𝑋). 

    Take the items A and B as examples. The total profit of the 
whole set of products is 200 + 200 + 100 + 100 + 300 + 100 

= 1000. According to the maximum threshold of each item in 

Table 2, MGT(A) = 1000 * 0.6 = 600, and MGT(B) = 1000 * 

0.5 = 500. 

    Definition 3: (Gain) When a particular material cannot be 

purchased or stocked, the products that need to be produced 

with this material will be unable to be manufactured. The 

losses caused by these products that cannot be manufactured 

are called gains. The gain of the itemset X is expressed as 

gain(X) defined as follows:  

𝑔𝑎𝑖𝑛(𝑋) =  ∑ 𝑃. 𝑃𝑟𝑜𝑓𝑖𝑡

{𝑃|𝑋 ∩ 𝑃. 𝐼𝑡𝑒𝑚𝑠 ≠ ∅, P ∈ PD }

 

where P is a product in the product database PD. 
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    In multiple-threshold mining, the maximum thresholds of 
items are not the same. Different itemsets have their own 

distinct maximum thresholds. When an itemset contains only 

one item, we use its given threshold. However, when an 

itemset consists of two or more items, the calculation of the 

maximum threshold depends on different constraints. In this 

paper, we adopt the loose constraint for determining these 

thresholds. The formula for the loose constraint is defined as 

follows: 

𝜆(𝑋) = 𝑚𝑎𝑥(𝜆(𝐼)| 𝐼 ∈ X). 

For example, the 2-itemset {D, E} contains both items D 

and E. Its maximum threshold is then set as max(𝜆(D), 𝜆(E)), 
which is max(0.5, 0.4) = 0.5. Simultaneously, this constraint 

can also be applied to determine the maximum gain threshold. 

    Downward closure is a useful property in data mining and 

has been successfully applied in various mining algorithms, 

including the tight constraint in multiple threshold mining. 

However, this property does not apply to the loose constraint. 

A simple example illustrates this. In Table 1, Gain(DE) = 700 

 MGT(DE) = 700. {D, E} is thus an erasable itemset. But 

the gain of its subset Gain(E) = 400 > MGT(E) = 300. Thus, 

{E} is not an erasable itemset. Hence, the loose constraint 

does not possess the downward-closure property. 

IV. SORTED-CLOSURE PROPERTY 

    As mentioned above, the multiple-threshold mining with 

the loose constraint does not have the downward-closure 

property. Liu et al. proposed a novel technique called the 

sorted-closure property to replace the downward-closure 

property and successfully applied it in frequent itemset 

mining with multiple minimum supports [26]. In the 

traditional erasable-itemset mining algorithm, each item in an 

itemset is usually arranged according to the linguistic order 

or numerical order, such as {A, B, C} or {A1, A2, A3}. 

However, for using the sorted-closure property, items will be 

sorted in the descending order of their thresholds. Through 

such changes, some useful properties will be produced, and 

unpromising candidate itemsets can be effectively pruned off. 

Thus, the time spent on scanning databases for calculating 

gains and verification can be reduced. 

    For example, the items in Table 2 are sorted in descending 

order according to their maximum thresholds. The sorted 

result is shown in Table 3. According to this order, the itemset 

{D, E, F} is rearranged as {F, D, E}.  

TABLE 3: THE SORTED ITEMS ACCORDING TO THEIR MAXIMUM 
THRESHOLDS. 

Item F D A B C E 

λ 0.8 0.7 0.6 0.5 0.4 0.3 

    The following four theorems can then be deduced for the 

sorted items. By employing these theorems, we can 

effectively reduce the search space of candidate itemsets.  

    Theorem 1 Assume item X is an erasable 1-itemset and an 

item Y, after sorting, is located before item X. The gain of the 

1-itemset X must be less than or equal to the maximum gain 

threshold of the 1-itemset Y. That is, gain(X) ≤ MGT(Y). 

    Theorem 2 Assume itemset X is an erasable 2-itemset 

under the loose constraint and represented as {item1, item2}, 

where item1 is located before item2 after sorting. Then the 

following two conditions must be satisfied: 

gain(item1) ≤ MGT(item1), and 

gain(item2) ≤ MGT(item1). 

    Theorem 3 Assume itemset X is an erasable k-itemset (k ≥ 

3) under the loose constraint with the first and the second 

items in X having different maximum gain thresholds. Then, 

the (k-1)-subitemsets of X containing the first item in X  must 

also be erasable under the loose constraint. 

    Theorem 4 Assume itemset X is an erasable k-itemset (k ≥ 
3) under the loose constraint with the first and the second 

items in X having the same maximum gain thresholds. Then, 

all the (k-1)-subitemsets of X must also be erasable under the 

loose constraint. 

V. THE PROPOSED ALGORITHM UNDER THE LOOSE 

CONSTRAINT 

In this section, we will introduce the proposed algorithm 

for finding erasable itemsets under the loose constraint. It 

uses the four theorems mentioned above to reduce candidate 

itemsets. The algorithm is described below.  

STEP 1: Sort the items according to the descending order of 

their maximum thresholds.  

STEP 2: Scan the whole database to calculate the total gain 

of the database and the gain of each item.  

STEP 3: Calculate the maximum gain threshold of each 

item using the total gain of the database.  

STEP 4: Check the sorted items one by one from the front 

until the first one X with its gain smaller than or 

equal to its maximum gain threshold; Put X in the 

set of candidate 1-itemsets CI1. 
STEP 5: Check the sorted items after the above X one by 

one; If the gain of an item is smaller than or equal 

to the maximum gain threshold of X, add the item 

to CI1. 
STEP 6: Check whether the gain of each candidate 1-

itemset in CI1 is less than or equal to its own 

maximum gain threshold. If the 1-itemset 

conforms to the above condition, put it into the set 

of erasable 1-itemsets EI1. 

STEP 7: If EI1 is empty, then no erasable itemsets are found, 

and the algorithm stops.  

STEP 8: Form candidate 2-itemsets CI2 by joining the 

candidate 1-itemsets in CI1.  

STEP 9: For each candidate 2-itemset in CI2 with its first 

item being an erasable 1-itemset in EI1, check 

whether its gain is less than or equal to its 

maximum gain threshold. If the itemset conforms 

to the above condition, put it into the set of erasable 

2-itemsets EI2. 
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STEP 10: If EI2 is empty, then only erasable 1-itemsets are 

found; we output EI1 and stop the algorithm.  

STEP 11: Set k =3, where k is used to represent the number 

of items in an itemset to be processed.  

STEP 12: Find any two itemsets in EIk-1 with the same (k-2) 

items to join and generate a k-itemset X. If the first 

two items (according to the sorted list) in X have 

different maximum gain thresholds, then add X to 

the candidate k-itemsets CIk only if all the (k-1)-

subitemsets of X containing the first item of X  are 

in EIk-1; If the first two items in X have the same 

maximum gain thresholds, then add X to CIk only 

if all the (k-1)-subitemsets of X are in EIk-1. 

STEP 13: Check whether the gain of each candidate k-

itemset in CIk is less than or equal to its maximum 

gain threshold. If the itemset conforms to the 

above condition, put it into the set of erasable k-

itemsets EIk. 
STEP 14: If EIk is empty, then erasable 1-itemsets to (k-1)-

itemsets are the desired; we output them and stop 

the algorithm; Otherwise set k as k+1 and go to 

STEP 12.   

    Note that in STEP 12, CIk is formed effectively according 

to Theorems 3 and 4. 

VI. EXPERIMENTAL RESULTS 

    To enhance clarity in assessing the algorithm's 

performance, we conducted a comparison between multiple 

thresholds under the loose and the tight constraints [14] and 

under single thresholds [8] in our experiments. The program 

was executed on a system with a CPU i7-9750H@2.60GHz, 

8GB RAM, and Windows 10. The programming language 

used was Java 19.0.1. The synthetic dataset 

P100KI0.05KD10 was generated by the IBM data generator 

[3] and named based on its parameters, where P represents 

the number of products, I represents the number of items, and 

D represents the average number of materials in each product. 

However, the data generated by the IBM data generator 

lacked profit information. To better simulate real-world 

scenarios, we thus introduced profit values using a normal 

distribution, denoted as N(100, 20), where the two parameters 

represent the mean and the standard deviation, to ensure most 

product profits fall within a moderate range. Excessively high 

profits could result in unmarketable high prices, while 

excessively low profits might affect factory operations. 

    Concerning the thresholds set in the experiments, we 

initially defined an interval, generating the thresholds of the 

items uniformly within the range, denoted as U(H, L). Here, 

H is the highest threshold, and L is the lowest within the 

interval. H and L are then used as the two thresholds, which 

were set, respectively, in the single-threshold algorithm. In 

the experiments, we first maintained other parameters 

constant while incrementally increasing each threshold by 

0.01. The variation allowed us to observe its influence on the 

algorithm. 

    Figures 1 and 2 represent the quantities of erasable itemsets 

and candidate itemsets, respectively. Erasable itemsets are 

derived from the candidate itemsets. Hence, the number of 

erasable itemsets is always less than that of candidate 

itemsets. As the threshold values increase, both the quantities 

exhibit an upward trend. The two figures show that the 

quantities of the erasable itemsets and the candidate erasable 

itemsets under the tight and the loose constraints in multi-

threshold mining fall between those of the single-threshold 

algorithm under two single thresholds. Specifically, the loose 

constraint tends to be closer to the highest single threshold, 

while the tight constraint tends to be closer to the lowest 

single threshold. 

 

Figure 1. The numbers of erasable itemsets for different threshold intervals. 

 

 
Figure 2. The numbers of candidate itemsets for different threshold 

intervals. 

 

Figure 3 illustrates the memory usage for each program. 

The extent of memory usage is determined by the number of 

products, erasable itemsets, and candidate itemsets. As the 

number of products remains constant, the primary 

influencing factors are the quantities depicted in Figure 1 

(erasable itemsets) and Figure 2 (candidate itemsets). With 

an increase in the quantities of both the erasable and 

candidate itemsets, the memory usage also increases 

accordingly. 
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Figure 3. The memory usage for different threshold intervals. 

 

Lastly, Figure 4 represents the execution time for each 

program. The most time-consuming aspect during the mining 

process is the generation and validation of candidate itemsets, 

which are closely related to the number of candidate itemsets, 

as shown in Figure 2. As the number of candidate itemsets 

increases, the execution time also rises accordingly. 

 

 
Figure 4. The execution time for different threshold intervals. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed an algorithm for the loose 
constraint in multiple-threshold mining. We have also 
demonstrated the applicability of relevant theorems derived 
from the sorted closure, successfully solving the issue of 
lacking downward closure in the loose constraint. In our 
experiments, we have not only compared the algorithms with 
different constraints but also contrasted them with the single-
threshold META algorithm. We have also comprehensively 
analyzed execution time, memory usage, erasable-itemset 
quantity, and candidate-itemset quantity. We will 
continuously explore designing algorithms tailored to various 
constraints for future research. Optimizing the execution time 
of multi-threshold mining could also be a focus of further 
investigation. 
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