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Abstract—In this paper, we consider a hospital environment,
where each patient’s room is very contagious. Hence, we consider
the problem of picking trash from each patient’s room and
dropping it in a big container through multiple robots. Here,
we assume that all the robots are small and can pick only one
trash bag at a time. Our main objective is to find a plan for the
robots that can minimize the total consumed energy (distance,
time). Our broad approach is to express the environment in
the form of a graph and reduce the problem as an instance of
the Multiple Traveling Salesman problem. Then, we encode the
reduced problem into the Mixed-Integer Linear Programming
(MILP) and solve the encoding using the MILP solver. Next, we
perform our approach for hospitals of varied sizes and pick-
drop tasks. Our experimental results show that our method is
scalable. Finally, we simulate an execution of the optimal plan in
the Virtual Robot Experimentation Platform (V-REP) simulator.

Index Terms—multi robots; path planning; trash pick and
drop; mixed integer linear programming.

I. INTRODUCTION

Path planning [32] is a well-known problem which is widely
used in various applications, such as task spanning [10],
evacuation [24], search and rescue [2, 3, 13], coverage [1, 4,
23], precision weeding [31], pesticide spraying [8, 17, 18],
transportation in the hospital [21, 28] and medicine deliv-
ery [14, 15, 22]. The planning algorithm has been extended
from single mobile robot to multiple robots through different
techniques, such as cell decomposition approaches [11, 12, 23,
26, 35], potential field approaches [7, 27, 29], and road map
approaches [5, 6, 16]. Although different aspects of multi-
robot path planning for a hospital have been explored, there is
a pressing need of multi-robot for picking dustbin bags from
the patient’s room and dropping them into a big container to
avoid contagious diseases, such as COVID-19.

In this paper, we consider a multi-robot path planning for
trash picking and dropping in a hospital environment motivated
by a real need. Here, we want to use multiple robots to pick
trash bags from the desired patient rooms and drop them into a
big container. We assume that robots are small and can collect
the garbage from only one dustbin bag at a time. Our objective
is to find a plan for the robots that covers all the desired trash
bags while minimizing the total distance traveled by all the
robots. Hence, this is an optimization problem.

Our broad approach is to reduce the problem into an
instance of the Multiple Traveling Salesman (MTS) problem.
The MTS problem is a well-known problem where given a
graph between cities, multiple salesmen need to visit all the
cities exactly once and return to their initial position with
the minimum traveling distance. Our approach for reduction
is based on the shortest distance graph algorithm. First, we
transform a given hospital environment E into a weighted
graph GE . In the graph GE , we capture all the valid line
segments of the environment where robots could move. Note
that the size of GE depends on the types of hospitals. Here, we
consider three types of hospitals, namely, small, medium and
large. Next, we capture each pick and drop task as a pair of
one trash bag and one big container. Then, we transform the
graph GE into another weighted graph GΥ

E based on a given
set of tasks Υ. In the graph GΥ

E , we capture only robots’ initial
locations, all the desired trashes and containers’ location and
create the following edges: (a) edges from robots’ location
to trashes’ location; (b) edges between trashes’ location and
containers’ location. We compute the weight of the edges by
applying the shortest distance graph algorithm on GE . Note
that the size of the graph GΥ

E depends on the number of tasks.
Also, for the MTS problem, each city (vertex) must be visited
exactly once by one of the salesmen. However, in the graph
GΥ
E , a robot may need to visit the same container more than

once. So, we need to ensure that each vertex corresponding to
a big container is visited exactly once by one of the robots.
Therefore, we transform GΥ

E into another graph GM , where if
a big container is common among multiple tasks, we create
a copy of the vertex corresponding to the container and add
the respective edges to the copied vertex. Next, we introduce
a dummy vertex to GM for the robots to return to their initial
location. Finally, we encode the reduced problem into the
Mixed-Integer Linear Programming (MILP) similar to the one
given in [19].

We have implemented our method in the Python toolbox
for finding the optimal plan for the robots, where we have
used the NetworkX tool for the graph construction and the
GNU Linear Programming Kit (GLPK) to solve the MILP
encoding for an instance of the MTS problem. Next, we extract
a real optimal plan for the robots from a solution returned
by the GLPK solver and by applying the shortest path graph
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Figure 1: Hospital Environment

algorithm on GE . Finally, we deploy the plan in the Virtual
Robot Experimentation Platform (V-REP) simulator [25].

Our main contributions of the paper are given below.

• We have presented a task-based graph reduction for
reducing the pick and drop problem into an instance of
the MTS problem.

• Since the task-based graph depends on the tasks, the size
of encoding is less and the GLPK solver returns faster.

• We have simulated the plan in the V-REP simulator.

Remark 1: We use the collision avoidance protocol inte-
grated with the V-REP simulator while executing the plan.

II. RELATED WORK

Multi-robot path planning has been explored for hospitals.
Different techniques, such as sub-dimensional expansion [30],
Integer Linear Programming [33], Artificial Potential Field
(AFP) [29], and Enhanced Genetic Algorithm (EGA) [20] have
been explored.

In this paper, we explore selected trash pick and drop tasks
for the hospitals. Some of the research works in the area
of trash collection have been explored. A prototype for the
garbage collection based on Convolutional Neural Networks
(CNNs) has been studied [9], where a CNN is integrated
with a robot to detect and classify different types of garbage.
However, our work is focused on finding an optimal path for
the robots to pick the trash from patient’s room and drop
into a big container. Although the pick and drop problem has
been studied in urban settings [34], there are limited works in
this direction. Hence, further investigation is needed to avoid
contagious diseases.

III. MOTIVATION

In this section, we demonstrate the problem by considering
a hospital environment shown in Figure 1, where there are
eleven small dustbin containers, namely, T1, T2, . . ., T10
located in each patient’s room and W situated in the wash-
room represented by magenta color; two big trash containers,
namely, C1 and C2 represented by yellow color; and four
robots, namely, R1, R2, R3, and R4 represented by green
color. Assume that each container has a small dust bag, and
each (small) robot can pick only one bag at a time. Note that
all the bags do not always have dust. Hence, we consider the
selected pick and drop problem, where we want the robots
to pick the bags from only required dustbins and drop them
into the big containers. For example, in Figure 1, we want
the robots to pick the bag from washroom W and drop it into
C1 and pick the bag from patient dustbin T1 and drop it into
C2. For the problem, each pair of pick and drop points is
considered a task. For example, (W, C1) is a task.

Here, given a list of tasks (W, C1), (T1, C2), we want to
find a path for each robot to solve the selected pick and drop
problem. Note that multiple paths may exist for the robots.
For example, for the tasks, the following two paths solve the
problem, namely, (a) blue path from R1 and R2; (b) blue path
from R1 and red path from R3. Hence, our objective is to find
a path for each robot such that the total distance traveled by
all the robots can be minimized.

IV. PRELIMINARIES

Notations: Let R≥0, R and N denote the set of pos-
itive real numbers, the set of real numbers, and the set of
natural numbers, respectively. We use [n] to denote the set
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Figure 2: Hospital Environment (E)

{1, 2, . . . , n}. Given a set S, we use |S| to denote the number
of elements in S.

Euclidean and Manhattan Distance: Given two
2−dimensional points p1 = (x1, y1) and p2 = (x2, y2), the
Euclidean distance between p1 and p2 denoted by dE(p1, p2),
is defined as follows:

dE(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2.

The Manhattan distance between p1 and p2 denoted by
dM (p1, p2), is defined as follows:

dM (p1, p2) = |x1 − x2|+ |y1 − y2|.

Weighted Graph: A weighted graph is defined as a tuple
G = (V0, V, E,W ) where
• V is a set of vertices;
• V0 ⊆ V is a set of initial vertices;
• E ⊆ V × V is a set of edges;
• W : E → R≥0 is a weight function that captures the

length for each edge.
A path denoted by σ for a given weighted graph G is

a sequence of vertices v0, v1, v2, . . . , vn ∈ V such that
(vi−1, vi) ∈ E for i ∈ [n]. We use cost(σ) to denote the
cost of the path σ, that is,

cost(σ) =

n∑
i=1

W (vi−1, vi).

Complete Paths: Given a weighted graph G, a complete
path is a set of paths % = {σi}ni=1 satisfying the following
conditions:
• n = |V0|;
• for each path σi = vi0, v

i
1, . . . , v

i
m, vi0 ∈ V0.

Succinctly, we use cost(%) to denote the cost of the complete
path %, that is, ∑

σ∈%
cost(σ).

V. PROBLEM FORMULATION

In this section, we formally describe the pick and drop
problem. First, we define an environment for the hospitals
given as below.

Definition 1: [Environment] An environment is a tuple E =
(R, T , C, Edges,D), where
• R ⊆ R2 is a set of robots’ initial location;
• T ⊆ R2 is a set of dustbins’ location;
• C ⊆ R2 is a set of big trash containers’ location;
• Edges ⊆ P × P where P = R∪ T ∪ C, that captures a

set of edges on which robots could move;
• D : Edges→ R≥0 is a distance function that determines

the length for each edge.
Example 1: Consider the hospital environment shown

in Figure 2. It can be represented as a tuple E =
(R, T , C, Edges,D), where
• R = {(6.5,−4.5), (7.5,−4.5), (8.5,−4.5), (9.5,−4.5)};
• T = {(8.5, 0.5), (8.5, 3.5), (4.5, 3.5), (1.5, 3.5), (−1.5, 3.5),

(−4.5, 3.5), (−7.5, 3.5), (−8.5, 0.5), (−8.5,−2.5),
(−5.5,−3.5), (0.5,−3.5)};

• C = {(−3.5,−4.5), (−1.5,−3.5)};
• Edges are all the pairs of end points of each solid black

line segment shown in Figure 2;
• For each line segment e ∈ Edges, D(e) is shown in

Figure 2. For example, D((6.5,−4.5), (6.5,−3.5)) = 1.
Next, we define a pick and drop task given as below:
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Figure 3: Graph (GE )

Definition 2: [Task] Given an environment E =
(R, T , C, Edges,D), a task is defined as a pair τ = (t, c),
where

• t ∈ T is a location of a dustbin;
• c ∈ C is a location of a big container.

Next, we define a plan for a robot to accomplish a set of tasks
in an environment given as below.

Definition 3: [Plan] Given an environment E =
(R, T , C, Edges,D), a set of tasks Υ = {(tk, ck)}pk=1, an
initial robot’s location r ∈ R, a plan for the robot is a sequence
of locations ρ = l0, l1, l2, . . . , ln satisfying the following
conditions:

• l0 = r and (li−1, li) ∈ Edges for i ∈ [n];
• for each li = tk for some i ∈ [n] and k ∈ [p], @ j ∈ [n],

satisfying j 6= i and lj = tk;
• for each li = tk for some i ∈ [n] and k ∈ [p], ∃ j,
j > i satisfying lj = ck and @ m, i < m < j such that
lm = tk′ for some k′ ∈ [p].

The cost of the plan ρ can be computed by the following
formula:

cost(ρ) =

n∑
i=1

D((li−1, li)).

Definition 4: [Complete Plan] Given an environment E =
(R, T , C, Edges,D), a set of tasks Υ = {(tk, ck)}pk=1, a
complete plan is defined as a sequence of plan Γ = {ρi}|R|i=1

such that for each task (tk, ck), there exists a plan ρ =
l0, l1, . . . , ln ∈ Γ starting from some robot’s initial location
r ∈ R such that li = tk for some i ∈ [n].
The cost of the complete plan Γ = {ρi}|R|i=1 can be computed
by the following expression:

|R|∑
i=1

cost(ρi).

Note that multiple complete plans are possible. Hence, our
aim is to find a complete plan whose cost is minimum. We
formally define the optimization problem given as below.

Problem 1: [Problem] Given an environment E =
(R, T , C, Edges,D) and a set of tasks Υ = {τk}pk=1, find
a complete plan Γ = {ρi}|R|i=1 such that

|R|∑
i=1

cost(ρi) is minimum.

VI. OUR APPROACH

In this section, we present a procedure to reduce the problem
as an instance of the MTS problem. The reduction procedure
consists of three steps. First, we express a given environment E
as a weighted graph GE that captures all possible robots’ move-
ments, where the set of initial vertices will be all robots’ initial
location. Second, given a set of tasks Υ = {(tk, ck)}pk=1, we
reduce GE into another graph GΥ

E that consists of only those
vertices, which are either ti, cj , or robots’ initial location for
i, j ∈ [p]. The edges for GΥ

E are constructed as follows: (a)
for each vertex ti, we create edges from ti to all cj’s; (b) for
each vertex cj , we create edges from cj to all ti’s; (c) for each
robots’ initial location r, we create edges from r to all cj’s.
Then, we compute the weight for each edge by computing the
shortest distance between the end points of the edge in the
graph GE . Finally, we reduce the problem as an instance of
the MTS problem by appropriate modification to GΥ

E . Next,
we provide the details about each step.

A. Graph Representation for Environments

In this section, we provide a formal construction of the
weighted graph capturing all the line segments of an envi-
ronment in which robots could move.

Definition 5: [Construction of GE ] Given an environ-
ment E = (R, T , C, Edges,D), the construction of GE =
(V0, V, E,W ) is given below:
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• V0 = R;
• V =

⋃
(u,v)∈Edges

{u, v};

• E = Edges;
• W (e) = D(e).

Next, we demonstrate the construction of GE with an example.
Example 2: Consider the hospital environment E shown

in Figure 2. The constructed graph GE corresponding to the
environment E is shown in Figure 3.

B. Tasks based Reduction of GE
In this section, we reduce the graph GE based on a given set

of tasks. Given a set of tasks Υ, and a graph GE corresponding
to an environment E , we construct a task-based graph GΥ

E from
the graph GE that consists of only those vertices related to
robots’ initial location, trashes’ location, containers’ location.
The formal construction of the graph GΥ

E is given as below.
Definition 6: [Construction of GΥ

E ] Given a graph GE =
(V0, V, E,W ) corresponding to an environment E and a set
of tasks Υ = {(tk, ck)}pk=1, the construction of GΥ

E =
(V ′0 , V

′, E′,W ′) is given as below:
• V ′0 = V0;
• V = V ′0 ∪ T ∪ C, where T = ∪

⋃
(t,c)∈Υ

{t} and C =

∪
⋃

(t,c)∈Υ

{c};

• E = E1 ∪ E2 ∪ E3 where
– E1 = {(v, t) | v ∈ V0, t ∈ T} captures edges from

robots’ initial location to the dustbins associated with
the tasks;

– E2 = {(t, c) | t ∈ T, c ∈ C} captures edges between
each dustbin and container associated with the tasks;

– E3 = {(c, t) | c ∈ C, t ∈ T, } captures edges
between each container and dustbin associated with
the tasks;

• for each edge (u, v) ∈ E′, W ′(u, v) captures the shortest
distance between u and v in GE .

Figure 4: Task based Graph (GΥ
E )

Next, we illustrate the construction of the task-based graph
with an example.

Example 3: Consider the graph GE shown in Figure 3
corresponding to the hospital environment E shown in Figure 2
and a set of tasks Υ = {(W,C1), (T1, C2)}. The constructed
graph GΥ

E corresponding to the graph GE and Υ is shown in
Figure 4.

Note that for the MTS problem, each vertex has to be visited
exactly once by the salesmen. However, in the pick and drop
problem, a vertex corresponding to the big container may need
to be visited more than once. Hence, we convert the graph GΥ

E
into another graph GM for reducing the pick and drop problem
as an instance of the MTS problem.

C. Construction of GM from GΥ
E

In this section, we present the construction of the graph
GM from the graph GΥ

E . First, for each vertex in the graph
GΥ
E corresponding to a big container c associated with the

task, if the maximum number of tasks having c is k, then we
create k−1 copies of vertex c. Then, we add all the incoming
and outgoing edges associated with the container c to all the
copied vertices. Next, we introduce a dummy vertex d for all
the robots to have a common initial point. Finally, we add
edges between d and all the robots’ location and from big
containers to d with distance 0. The formal construction for
the graph GM is given below.

Definition 7: [Construction of GM ] Given a task based
graph GΥ

E = (V ′0 , V
′, E′,W ′), the construction of GM =

(V m0 , V m, Em,Wm) is given as below. Let C = ∪
⋃

(t,c)∈Υ

{c}.

• V m0 = {d};
• V m = V m0 ∪ V ′ ∪ Vc, where Vc =

⋃
c∈C
{ci | 1 ≤ i < k,

k is the number of tasks in which c appears};
• Em = E′ ∪ {(u, v) | u ∈ V m0 , v ∈ V ′0} ∪ {(u, v) | u ∈
V ′0 ∪ Vc ∪ C, v ∈ V m0 };

• Wm(e) = W (e) if e ∈ E′ otherwise Wm(e) = 0.
Example 4: Consider the task based graph GΥ

E shown in
Figure 4. The constructed graph GM corresponding to GΥ

E is
shown in Figure 8.

Now, the graph GM can be used for an instance of the MTS
problem, where vertices corresponding to the robots can be
considered as salesmen. The dummy vertex can be treated as
a source and target vertex for each robot. Finally, we use the
graph GM to encode the pick and drop problem into the Mixed
Integer Linear Programming (MILP) and extract the optimal
plan for the robots.

VII. EXPERIMENTAL ANALYSIS

In this section, we present the analysis of our method for
different number of tasks in three kinds of hospitals, namely,
small, medium, and large shown in Figures 5, 6, and 7,
respectively. We have implemented our method in the Python
toolbox, where we have used the NetworkX tool for the graph
construction; the GLPK solver for solving the optimization
problem. Finally, we use the V-REP [25] simulator to simulate
the optimal plan.

In Table I, #Robots denotes the number of robots for small,
medium, and large hospitals. #Tasks represents the number
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Figure 5: Small Hospital Figure 6: Medium Hospital Figure 7: Large Hospital

Figure 8: Graph (GM )

of tasks. TGE , TGΥ
E

, Topt, and Tp are the times taken for
constructing the graph corresponding to a given environment,
a task-based graph, and finding the optimal solution by the
GLPK solver, and extracting an optimal path for the robots,
respectively. cost denotes the optimal cost, that is, the total
distance traveled by all the robots. The experimental results
are presented in Table I.

TABLE I: COMPUTATIONAL ANALYSIS

#Robots #Tasks TGE (sec.) TGΥ
E

(sec.) Topt(sec.) Tp(sec.) cost

2 (small)
2 0.28 0.18 0.001 0.13 72
3 0.28 0.18 0.005 0.16 113.5
4 0.28 0.19 0.041 0.20 136

4 (med.)
2 0.32 0.23 0.004 0.15 62
3 0.32 0.23 0.031 0.22 101.5
4 0.32 0.24 0.255 0.26 142

6 (large)
2 0.38 0.25 0.019 0.21 60
3 0.38 0.25 0.216 0.24 98.5
4 0.38 0.26 1.337 0.27 138

In Table I, we have observed that the time taken to construct
the graph GE gradually grows for a fixed number of tasks when

Figure 9: Computational Analysis

we increase the size of hospitals, as can be seen in the first row
of small, medium, and large hospital, respectively. A similar
observation can be seen for the task-based graph. The time
taken by the GLPK solver slowly grows when we increase
the number of tasks for a fixed environment, as can be seen in
the first three rows for the small hospital. A similar observation
can be seen for the path extraction. Also, cost increases when
we increase the number of tasks for the same environment. We
have plotted the data in Figure 9 corresponding to the data
presented in Table I, where all the observations mentioned
above can be clearly seen. Overall, our method is scalable.

VIII. CONCLUSION

In this paper, we have investigated optimal multi-robot path
planning for a selected pick and drop problem. We have
reduced the problem as an instance of the MTS problem by
representing a hospital environment as a weighted graph and
transforming the weighted graph into a task-based graph with
the help of the shortest distance graph algorithm. We have used
the GLPK solver to solve the optimization problem. Finally,
we have performed the experiments for different types of
hospitals, namely, small, medium, and large. In the future, we
will investigate optimal multi-robot path planning for multi-
objective tasks.
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