

Data Stream Optimization of Sum of Absolute Differences Algorithm
on a Graphics Processing Unit

Tom Pudpai, Tae Kyun Kim, and Charles Liu

Electrical and Computer Engineering, California State University, Los Angeles, California, United States
Email: tompudpai@gmail.com, ttkkus@gmail.com, and cliu@calstatela.edu

Abstract— This paper describes the data streaming approaches
to performance optimization of the Sum of Absolute Differences
(SAD) algorithm on an NVIDIA Graphics Processing Unit
(GPU) using the OpenCL programming paradigm. The SAD
algorithm forms one of several steps required to implement
stereo vision. It creates pixel-based disparity maps from two
concurrent images captured by a pair of cameras positioned
with a distance in between. The disparity maps can be used to
derive depths of objects in the scenes of interest. The massively
parallel architecture of a GPU can take advantage of the highly
parallelizable SAD algorithm. OpenCL programming
framework was chosen to develop the parallel algorithm on the
GPU. Performance gains are realized by explicitly mapping
data from the slower global memory to the faster shared local
memory of the GPU. Local memory is loaded by either a
centralized or distributed approach from the OpenCL-defined
work-items operating in a workgroup. The resulting
performance improvements were discussed based on the
architectural features of the GPU and the data streaming
approaches used in this research work.

Keywords - data streaming; Sum of Absolute Differences
algorihtm; massive parallel architecture.

I. INTRODUCTION

Computer vision is a field of study concerned with
extracting information from visual data through computers in
a variety of applications, such as robotics, augmented reality,
and face detection [1]. Computer vision algorithms typically
step through the stages of a vision pipeline. A vision pipeline
generally starts from image processing methods to improve
results from feature extraction and image analysis. Global and
local feature metric extraction form the next stages. Different
operations are used on rows or blocks of pixels. In this paper,
the SAD algorithm takes place in the local feature metric
stage, performing an area operation on the GPU’s Single
Instruction Multiple Thread (SIMT) architecture.

Advanced Driver Assistance Systems (ADAS) leverage
computer vision to increase road safety. One ADAS
application is stereo vision, which constructs a three-
dimensional image by finding corresponding pixels in image
frames from two adjacent cameras [2]. The SAD algorithm is
one method to generate the matching costs functions that finds
point correspondence in stereo vision. This paper focuses on
the use of OpenCL, a generic parallel programming paradigm,
to develop the SAD algorithm while utilizing the locality of
data reference in the memory hierarchy of a GPU. This
research supports the efficient use of restricted memory space
in an embedded system for data streaming applications.

Prior research has studied the implementation of the SAD
algorithm on different hardware platforms. One study
evaluated performance on the FPGA platform with respect to
embedded systems [2]. More emphasis was placed on the
validity of the algorithm itself, and finding the optimal
window size and accuracy over different test image pairs. One
of the image pairs was the Venus image sequence, an
established stereo vision benchmark that was chosen in this
research as well [3]. Another study experimented on the SAD
algorithm using an SoPC (System-on-Programmable-Chip)
heterogeneous architecture [4]. Their work is similar to ours
in that they optimize performance by leveraging on-chip
memory and selectively transfer data to off-chip memory. By
drawing from the parameters and benchmarks of these
previous works, we would like to survey performance speedup
of the SAD algorithm on the GPU architecture through
optimal data mapping. The rest of this paper is organized as
follows. Section II describes the SAD algorithm in relation to
computer vision-based ADAS applications. Section III
introduces the NVIDIA GPU platform. Section IV describes
the OpenCL parallel programming paradigm. Section V
described the design and the implementation of the data
streaming methodology behind the SAD algorithm
implementation and optimization. Section VI described the
data streaming approaches. Section VII presents and analyzes
the observed results. Section VIII concludes this paper.

II. SAD ALGORITHM IN ADVANCED DRIVER

ASSISTANCE SYSTEMS (ADAS)
An ADAS increases driver situational awareness and

safety by providing important information to warn the driver
of any dangerous events. However, humans are not infallible,
and ADAS must eventually advance to take control tasks such
as braking or steering, mitigating the errors human drivers
make. Eventually, as ADAS applications grow more robust,
we can expect fully autonomous vehicles to enter the
consumer market.

A variety of sensors enable ADAS applications by
providing timely and relevant feedback of the environment.
We can roughly categorize these sensors into two categories:
time-of-flight and camera [1] (see Figure 1). For front-facing
imaging sensors, there are applications available such as lane
detection, traffic sign and pedestrian recognition, forward
collision warning, and adaptive front-lighting. Imaging
sensors that face the rear or side of the vehicle can support
ADAS applications, such as parking assistance, rear collision
warning, and blind spot detection. Imaging sensors inside the
vehicle can even detect occupancy and the alertness of the

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-658-3

ACCSE 2018 : The Third International Conference on Advances in Computation, Communications and Services

driver [1]. Detection of vehicles, pedestrians, and traffic signs
require substantial computing power. Adding an additional
imaging sensor can allow for more accurate and robust
detection system by the addition of depth information. The
means for extracting depth information from a stereo camera
setup, also known as stereo vision. Stereo vision allows 3D
information to be extracted from a pair of 2D images taken
from adjacent cameras and is an important application of
ADAS for vehicles. The fundamental problem with stereo
vision analysis is finding the corresponding elements within
the image pair. For correct correlation of image pair elements,
rectification is required [5]. It ensures that the images are
horizontally aligned, allowing for the epipolar curve between
each image to be a linear. This means that any algorithm that
matches pixels from one image to the next will only need to
search horizontally across a row of pixels.

Figure 1. Key applications for ADAS [1].

Figure 2. SAD value calculation example; h x k = 5 x 5, and disp=64.

After rectification, each pixel in one image is matched with

a pixel in the other image. Then, a disparity map can be
generated, indicating the disparity level of each pixel, to be
referenced for acquing depth information. The Sum of
Differences (SAD) algorithm is the method chosen to
calculate a disparity map in this paper. The benefit of this
algorithm is computation efficiency, since the calculations
involve primarily addition and subtraction operations. The
operational form of the SAD addresses window size and the
disparity range because area operations are less
computationally costly and depth range is physical limited to
the distance between the cameras. For instance, if the disparity
range is 64 pixels and the window 5x5, a SAD value may be
defined as follows:

,ሺ݅ܦܣܵ ݆, ሻ݌ݏ݅݀ ൌ ෍ ෍ | ோܲሺ݅ ൅ ݄, ݆ ൅ ݇ሻ െ ௅ܲሺ݅ ൅ ݄, ݆ ൅ ݇ ൅ |ሻ݌ݏ݅݀
ଶ

௞ୀିଶ

ଶ

௛ୀିଶ

Where i and j are the indices of the reference pixel in the
right and left images, PR and PL respectively, disp (the

disparity range) is the number of candidate windows that are
evaluated in the left image, and h and k define the size of the
window. Note that the matching pixel is only searched
horizontally after image rectification. Thus, the disp is only
applied in the second dimension of the left image in the SAD
calculation. Figure 2 illustrates the SAD value calculations for
matching the tip of a red cone between the right and left
images. After the 64 SAD values have been calculated for
every pixel from coordinate (i, j) to (i, j+dist), the disparity
level selected is based on the minimum cost function:

,ሺ݅݌ݏ݅ܦ ݆ሻ ൌ ArgMinሺܵܦܣሺ݅, ݆, ,ሻሻ݌ݏ݅݀ 0 ൑ ݌ݏ݅݀ ൑ 63

Using the Argument Minimum (ArgMin) function, the index
of the candidate window with the smallest computed SAD
value will be treated as the disparity level for the pixel
coordinate (i, j). The disparity range and window size should
be scaled based on the parameters of the application where the
SAD algorithm is used. The disparity range will depend on
the distance between the two cameras, as well as the distance
from the camera to the object of interest.

III. NVIDIA GPU PLATFORM
The NVIDIA GeForce 940M graphics card is the primary

hardware architecture used to run the SAD algorithm. The
GM 108 has three Maxwell Streaming Multiprocessors
(SMMs). Figure 3 shows the architecture of an SMM.

Figure 3. Maxwell Streaming Multiprocessor (SMM) block diagram.
(excerpted from [6]).

There are 128 cores in each SMM. Each SMM is

partitioned into four separate processing blocks, each with its
own instruction buffer, scheduler, and 32 cores, as well as a
16,384 x 32-bit register file [6]. There are two L1/texture
caches per SMM that act as coalescing buffers for memory
accesses. There is also 64 KB of shared memory that can be
programmed and allocated by the programmer. Since it is

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-658-3

ACCSE 2018 : The Third International Conference on Advances in Computation, Communications and Services

located on-chip like cache memory, the shared memory can
be accessed very quickly. Thus, the explicit streaming of data
to shared memory is the focal point of the SAD algorithm
optimization for this paper.

IV. PROGRAMMING PARADIGM

 OpenCL was used as the Application Program Interface
(API) in developing the parallel SAD program on the GPU. It
is a heterogeneous programming framework [7]. OpenCL
kernels are modeled in a similar manner to Single Program
Multiple Threads (SPMT), where parallel threads (i.e., work-
items) execute instances of the kernel to map effectively on
both scalar and vector hardware. The OpenCL specification
can be divided into four models: Platform model, Execution
model, Programming model, and Memory model [8]. The
Platform model specifies that there is one host processor that
coordinates execution of kernels, and that there are one or
more device processors that actually execute the kernels. Each
device is modeled as a group of compute units, which are
further divided into processing elements where each element
can execute instances of kernels. The Execution model defines
how the OpenCL environment is configured by the host, and
how the host may direct the devices to perform work. The
Programming model defines how concurrency is mapped to
physical hardware. Each unit of concurrent execution is
defined as a work-item, which executes the kernel function
body. The work-items are indexed in an n-dimensional range,
also known as NDRange. To achieve scalability, the work-
items of an NDRange can be divided into equally-sized
workgroups. Synchronization of work-items is only possible
within workgroups (see Figure 4). The workgroup and global
work-item size dimensions are specified by the programmer
and must be a power of two number. Also, the global work-
item size must be evenly divisible by the workgroup size [8].

Figure 4. OpenCL Programming and Memory models [5].

The Memory model defines memory object types, and the

abstract memory hierarchy that kernels use regardless of
actual underlying hardware architecture. Memory in OpenCL
is divided into host memory and device memory [8]. Device

memory is divided into global memory, local memory, private
memory, and constant memory (see Figure 4). Global memory
can be read from or written to by all work-items running on
the device. Data transferred to or from the host will reside in
global memory. Reads and writes may be implicitly cached
depending on the capabilities of the device [7]. Local memory
is shared by work-items in a workgroup only. It is typically
mapped to on-chip memory that has shorter latency and higher
bandwidth than global memory. Private memory is visible
only within a work-item. Constant memory is a region of
global memory that remains constant during kernel execution.

 The memory model of OpenCL is well suited for
NVIDIA GPUs. Each core running a thread, or OpenCL
work-item, contains dedicated private memory. All
workgroups can communicate through global memory located
in off-chip GPU memory. SMMs have dedicated shared
memory for communication between work-items in a
workgroup, which fits the role of OpenCL’s local memory.
Accessing this shared memory is fast as long as there are no
bank conflicts between threads [9]. Shared memory is divided
into equally sized memory banks, which can all be accessed
simultaneously. If there are multiple requests to the same
bank, the requests become sequential, incurring memory
access delays. Therefore, for maximum performance, bank
conflicts should be minimized by considering how the
memory addresses are mapped.

V. DESIGN AND IMPLEMENTATION

In the OpenCL Platform Model, the host sends commands
to the device to transfer data between host and device
memories, as well as to execute the parallel device code. The
host (an Intel Core i5) executes serial code and is typically a
CPU. The host is responsible for setting up the execution
pathway to and from the device, and requires a lengthy setup
process which begins by identifying the platform and device.
Memory buffers must be created to link objects on the host to
objects in the kernels executed on the device. For this
research, memory buffers are needed for the left and right
input image values, the output SAD values, the image
dimensions, the padded image dimensions (to round up to the
closest power of 2 number in each image dimension as
explained below), disparity level, window dimensions, work
item dimensions, and conditional values.

The device is responsible for execution of the kernel as
directed by the host. Initially, the input images, disparity
output, and other kernel parameters defined in the previous
section are transferred from the host memory and allocated to
the global memory of the device. In this paper, the images
used are the Venus pair, used in several benchmarks amongst
stereo vision researchers. Given the 384 pixels x 434 pixels
image size, there are 162,222 Disparity Levels to be calculated
based on the SAD algorithm (see Section II). Each one is
executed on a work-item. Because of the size restriction by
OpenCL, we must round up the image dimensions to the
nearest power of 2 in order to process every pixel of the image
pair. Thus, the image values of L and R are padded with values

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-658-3

ACCSE 2018 : The Third International Conference on Advances in Computation, Communications and Services

of 0 to reach dimensions of 512 x 512. The partitioning of
work-items into workgroups is determined by the OpenCL
local-item size and global-item size dimensions. In this
NVIDIA GeForce 940M GPU architecture, each work-item
from OpenCL is operated on a GPU core. Each workgroup is
operated on an SMM with 128 cores. Thus, 128 work-items
can run in parallel. Since this GPU has 3 SMMs, a total of 3 *
128 = 384 work-items can run in parallel. If the GPU were to
run at maximum occupancy, there would be
 .iterations of the SAD algorithm needed 423=ۀ384⧵162222ڿ

To differentiate and track each work-item, the OpenCL
API function get_global_id() is used to return its unique
global ID value [8]. This is important because the instances
of the kernel operating on SAD values of the image edges
must be treated differently. In this paper, without losing the
generality of the parallel algorithm, we use a common
window size with 5 pixels x 5 pixels for the SAD algorithm
for performance analysis. A reference window in an image
compares to 64 iterations of candidate windows in the
counterpart image. Note that the SAD values on the border
cannot be computed because the 5 x 5 windows will be
incomplete. Thus, the SAD values cannot be computed for
kernels two pixels within each border. In the device kernel
code, this padding is implemented through a conditional
statement with a reference to the global ID of the kernel to
avoid the incomplete calculations of such close-to-border
SAD values. Upon finding the minimum SAD value for all
64 candidate windows, the corresponding disparity level
must be saved to the disparity map output. The output matrix
is stored as an integer array in global memory.

The performance of the SAD algorithm can be first
enhanced through loop unrolling. Loop unrolling involves the
rewriting of loops into a repeated sequence of similar
independent statements. This helps eliminate the loop
overhead and also hides stalls due to data dependencies [10].
The original implementation of the SAD algorithm in this
paper consists of a nested for loop that increments the
kernel’s SAD value a total of 25 times, one for each pixel in
the 5 x 5 window. The disadvantage to this approach is much
lengthier code, which is particularly harmful to embedded
systems with limited instruction memory.

The other important factor to affect performance is the
workgroup size; i.e., the number of work-items defined in a
workgroup. In our design, the workgroup size varies from 32
to 512. Based on the feature of the GPU hardware, there are
128 x 3 = 384 cores. 512 is that number’s next power of two
value. Thus, a workgroup size greater 512 is not considered
due to the mismatch to the hardware.

VI. DATA STREAMING OPTIMIZATION

The first SAD algorithm in this paper was implemented to
access all data from the GPU’s global memory. Global
memory is visible to all of the Streaming Multiprocessors in
the GPU, but is located off-chip, so accesses to global memory
incur heavy delays. As addressed in Section III, The OPENCL
local memory is mapped to the SMM’s shared memory, which

is shared by all of the cores in that single SMM, and is stored
on-chip (see Figure 3). By taking advantage of this local
memory and the mapping scheme for utilizing the spatial and
temporal localities of data, significant speedup can be
achieved for the SAD algorithm.

Datatype optimizations are possible through OpenCL. As
mentioned in Section III, memory copying incurs
performance penalties because bandwidth and power wasted
on data transfer. We must consider the input format of our
algorithm, which is made up of pixel intensity values between
0 and 255. This means that only an 8-bit unsigned integer is
required to store the input value. Previously, we have used
32-bit signed integers to transfer from the CPU host to the
GPU device. OpenCL does not provide support for 8-bit
unsigned integer types, but it does allow for an 8-bit unsigned
char type. By typecasting the 32-bit integer pixel intensity
input values to type unsigned char, we can reduce the
memory copied to the GPU by 75%. This produces a
noticeable decrease in execution time.

A. Centralized Memory Access

 The first implementation of the data streaming
optimization requires that the first work-item in the first row
of a work-group to process its kernel will populate local
memory with the necessary pixel values needed by the
workgroup row. This is considered the centralized memory
access approach to data streaming optimization. The
centralized approach of having one work-item load local
memory for its workgroup is depicted in Figure 5.

Figure 5. Centralized loading approach visualization.

Figure 6. Round-robin local memory loading.

Figure 6 shows the data streaming from the global
memory to the local memory. The working set, WS(i, j),
shows the amount of memory needed to determine Disp(i,j).
In Iteration 1, 5 rows of global memory are loaded to local
memory. In subsequent iterations (for determining Disp(i+1,
j), Disp(i+2, j), etc.), only 1 new row needs to be loaded and
to replace an existing row in the local memory in a round-
robin fashion to fulfill the local memory accesses to their
corresponding working sets. This approach reduces the data

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-658-3

ACCSE 2018 : The Third International Conference on Advances in Computation, Communications and Services

accesses by utilizing the spatial and temporal localities in
local memory.

Modifications to the host-side code are required for
implementation of local memory optimization. The size of
local memory allocated on the device must be specified by
the host code. For the NVIDIA GeForce 940M GPU, the
local memory capacity is 49,152 bytes. For this
implementation, using a 5 x 512 local memory size, where
each value is represented by a 4-byte integer, leads to 5 x 512
x 4 = 10,240 bytes allocated in local memory. Both left and
right images require their own local memory allocations,
leading to 20,480 bytes allocated total. This local memory
allocation is explicitly declared when setting the kernel
argument for the device code kernel. Normally, this kernel
argument is linked to a memory buffer previously defined in
the host code. However, data in local memory is private to
the workgroup in the device. Thus, data is never read from or
written to local memory from the host directly.

Another modification needed for the host code is the
declaration of a Boolean array named rowDone, which keeps
track of completed rows of work-items in each workgroup.
The size of this array is equal to the height of the padded
image times the number of workgroups along the width of the
original image. The implementation of this array allows
work-items in consequent rows to check the status of the
work-items in the previous rows prior to completing
execution. This array must be declared as a readable and
writable memory buffer since it must be read from and
written to by different work-items.

The first implementation of this data streaming
optimization requires that every work-item populate local
memory with the relevant data for its workgroup. Each work-
item begins by defining boundaries for the data that must be
loaded to local memory. The work-items in the first row of
the workgroup will load local memory first and then perform
the SAD algorithm. The following row will wait until this
previous row has finished execution, and will then replace
one row of local memory with the next row of data from
global memory. When the last work-item of a row has
finished execution, it will set rowDone to “true” for its
corresponding row and workgroup. This is possible because
in OpenCL, work-items execute in order along rows of work-
items in a workgroup.

B. Distributed Memory Access

The Centralized Memory Access approach will introduce
increased workload to the first work-item as the number of
work-items in a workgroup increases. This is due to the pre-
load of a larger number of working sets. Thus, it may
eventually cause workload imbalance among the work-items.
In this paper, the second approach to data streaming
optimization is distributed memory access. We attempt to
distribute the task of loading to local memory equally among
all of the work items. In this manner, the work is divided
evenly within each workgroup, and no work-items are left
idle. Figure 7 depicts this process of distributed loading for

one row of work items. In Iteration 1, each work-item loads
5 pixels, where the center pixel has the same image
coordinates as the global ID of that work-item. Then, in the
subsequent iterations, the pixels from the next rows will be
read by the corresponding work-item and be located to the
local memory buffer in a round-robin fashion. The mapping
is the same as shown in Figure 6.

Figure 7. Distributed loading approach visualization.

Conceptually, this implementation is much simpler than

the centralized approach. Previously, the centralized
approach involved multiple if-else statements to check the
row position and whether the previous row of work-items
completed execution. Without these conditional statements,
the distributed approach saves execution time

For implementation of this distributed approach to the
data streaming optimization, modifications are made to the
kernel code alone. The scenario in Figure 7 where each work-
item loads exactly the same number of pixel values from to
local memory is ideal, but not feasible. The work-items are
executing in parallel, but the latency to load the pixels across
the boundaries of local memory is significantly higher than it
of the others due to the lack of spatial locality of accessing
their local memories across the boundaries. This may result
in some work-items attempting to calculate SAD disparity
values before these lagging work items have completed
loading the required values. Therefore, they must be
synchronized with a barrier. All work-items in a workgroup
must execute the OpenCL function
“barrier(CLK_LOCAL_MEM_FENCE)” before they can
proceed, and the CLK_LOCAL_MEM_FENCE flag ensures
that local memory accesses are visible to all work-items in
the workgroup [8].

VII. EXPERIMENTAL RESULTS

The performance of the three implementations 1) global
(the first implementation with global memory access) 2)
centralized local (Section VI A), and 3) distributed local
(Section VI B) are compared.

There is a trend of declining execution time as the
workgroup size increases in Figure 8. It can be explained as
the better mapping of the parallel SAD algorithm to the GPU
hardware. A larger workgroup will allow more work-items to
share local memory, and hence, have better temporal and
spatial locality in memory accesses. As expected, the SAD
algorithm with global memory access had the worst
performance as the workgroup size was set smaller than 256.
At the largest workgroup size of 512, the two aforementioned
approaches have similar execution times at 18.03 ms, and
18.01 ms, respectively. This is explained as the increase of

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-658-3

ACCSE 2018 : The Third International Conference on Advances in Computation, Communications and Services

overhead due to the workload imbalance on the first work-
item, which is responsible for pre-loading all working sets to
the local memory for the entire workgroup. In contrast, the
distributed approach to the local memory data streaming
optimization remains consistently faster than the others,
ending up at 4.88 ms for the same workgroup size of 512.
4.88 ms for one disparity calculation would lead to 1 /
0.00488 ≅ 205 frames per second, without taking into
consideration the overhead between frames.

Figure 8. Comparison of SAD algorithm Performance
across Different Optimizations.

Figure 9. Comparison of Rate of Decrease from Previous Smallest
Workgroup for SAD Algorithm Across Different Optimizations.

As the workgroup size gets larger, the rate of decrease in

execution time generally decreases, as depicted in Figure 9.
The centralized local approach consistently decreases the rate
of decrease until it achieves a negative rate from workgroup
size 128 to 256 and workgroup size 256 to 512. A negative
rate of decrease means that the execution time actually
increased. The other approaches have a consistent rate of
decrease between 40 and 50%, until reaching a workgroup
size of 128. For the three approaches described previously,
the rate of decrease is diminished but still positive when
transitioning from workgroup sizes of 128 and above.
Performance is expected to peak at workgroup size 128 and
drop off as the workgroup size increases, but performance
continues to increase. These results can be partially attributed
to the implicit use of spatial/temporal locality of memory
accesses stored in caches by OpenCL. The continuing
performance gain may also be explained by the number of
kernels queued to an SMM exceeding the number of cores
available, leading to a queuing delay. Each SMM has 4

instruction buffers that delegate instructions to their
respective cores, and they are loaded with kernel instances
each time a workgroup is executing. Larger workgroup sizes
mean fewer workgroups, and fewer times the instruction
buffers must be loaded.

VIII. CONCLUSION

 This paper has shown that the SAD algorithm can
be optimized on a GPU platform through OpenCL by explicit
programming of local memory data loading and implicit data
caching. Code optimizations and explicit caching of global
memory have been observed to increase performance.
Switching from a centralized approach to a distributed
approach to local memory loading further improves
performance. This work can be applied to embedded systems
running ADAS applications where immediate distance
calculation of objects is crucial and life-saving. With a
maximum disparity map calculation rate of roughly 205
frames per second on a CPU-GPU heterogeneous
environment, this algorithm optimization will surely make a
beneficial impact when implemented on real-time embedded
systems in automobiles. The work can scale to GPUs with
more cores, and to higher resolution images. The code would
be very similar in either case. In the future, we hope to
continue the distributed memory access optimization
approach by parallelizing the loading in a vertical fashion for
each workgroup, which will enable us to compute multiple
disparity values from the same kernel. We would also like to
port this code to an embedded platform to see if the real-time
performance gain will carry over as suspected.

REFERENCES
[1] B. Kisačanin and M. Gelautz, Eds., Advances in Embedded

Computer Vision, Springer International Publishing, 2014.
[2] Citron, C. (2014). “Stereo vision system module for low-cost

FPGAs for autonomous mobile robots”.
doi:10.15368/theses.2014.149

[3] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms,"
International Journal of Computer Vision, vol. 47, pp. 7-42,
2002. doi: 10.1109/SMBV.2001.988771,

[4] X. Zhang and Z. Chen, "SAD-Based Stereo Vision Machine on
a System-on-Programmable-Chip (SoPC)," Sensors, no. 13, pp.
3014-3027, 2013. doi: 10.3390/s130303014.

[5] K. Konolige, “Small Vision Systems: Hardware and
Implementation”, Proceedings of the 8th International
Symposium in Robotic Research, pp. 203–212, 1997.

[6] NVIDIA, "NVIDIA GeForce GTX 750 Ti Whitepaper," 2014.
[7] D. Kaeli, M. Perhaad, D. Schaa, and D. P. Zhang,

Heterogeneous Computing with OpenCL 2.0, Morgan
Kaufmann, 2015.

[8] Khronos Group, "The OpenCL Specification Version 2.0,"
2015.

[9] NVIDIA, "OpenCL Best Practices Guide," 2011.
[10] A. Nicolau, "Loop quantization : unwinding for fine-grain

parallelism exploitation," Cornell University, Dept. of
Computer Science, Ithaca, N.Y., 1985.

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-658-3

ACCSE 2018 : The Third International Conference on Advances in Computation, Communications and Services

