ComputationWorld 2017
February 19 - 23, 2017 - Athens, Greece

  • SERVICE COMPUTATION 2017, The Ninth International Conferences on Advanced Service Computing
  • CLOUD COMPUTING 2017, The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization
  • FUTURE COMPUTING 2017, The Ninth International Conference on Future Computational Technologies and Applications
  • COGNITIVE 2017, The Ninth International Conference on Advanced Cognitive Technologies and Applications
  • ADAPTIVE 2017, The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications
  • CONTENT 2017, The Ninth International Conference on Creative Content Technologies
  • PATTERNS 2017, The Ninth International Conferences on Pervasive Patterns and Applications
  • COMPUTATION TOOLS 2017, The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking
  • BUSTECH 2017, The Seventh International Conference on Business Intelligence and Technology

DigitalWorld 2017
March 19 - 23, 2017 - Nice, France

  • ICDS 2017, The Eleventh International Conference on Digital Society and eGovernments
  • ACHI 2017, The Tenth International Conference on Advances in Computer-Human Interactions
  • GEOProcessing 2017, The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services
  • eTELEMED 2017, The Ninth International Conference on eHealth, Telemedicine, and Social Medicine
  • DIGITAL HEALTHY LIVING 2017, A Multidisciplinary View on Digital Support for Healthy Living and Self-management for Health
  • MATH 2017, The International Symposium on Mobile and Assistive Technology for Healthcare
  • eLmL 2017, The Ninth International Conference on Mobile, Hybrid, and On-line Learning
  • eKNOW 2017, The Ninth International Conference on Information, Process, and Knowledge Management
  • ALLSENSORS 2017, The Second International Conference on Advances in Sensors, Actuators, Metering and Sensing

NexComm 2017
April 23 - 27, 2017 - Venice, Italy

  • ICDT 2017, The Twelfth International Conference on Digital Telecommunications
  • SPACOMM 2017, The Ninth International Conference on Advances in Satellite and Space Communications
  • ICN 2017, The Sixteenth International Conference on Networks
  • SOFTNETWORKING 2017, The International Symposium on Advances in Software Defined Networking and Network Functions Virtualization
  • ICONS 2017, The Twelfth International Conference on Systems
  • MMEDIA 2017, The Ninth International Conferences on Advances in Multimedia
  • PESARO 2017, The Seventh International Conference on Performance, Safety and Robustness in Complex Systems and Applications
  • CTRQ 2017, The Tenth International Conference on Communication Theory, Reliability, and Quality of Service
  • COCORA 2017, The Seventh International Conference on Advances in Cognitive Radio
  • ALLDATA 2017, The Third International Conference on Big Data, Small Data, Linked Data and Open Data
  • KESA 2017, The International Workshop on Knowledge Extraction and Semantic Annotation
  • SOFTENG 2017, The Third International Conference on Advances and Trends in Software Engineering

 


ThinkMind // DEPEND 2011, The Fourth International Conference on Dependability // View article depend_2011_1_40_40045


Efficient and scalable steady-state dependability verification

Authors:
Diana El Rabih
Nihal Pekergin

Keywords: Statistical model checking, Perfect simulation, Dependability verification, Continuous Stochastic Logic (CSL)

Abstract:
We have proposed to perform statistical model checking by combining perfect sampling and statistical hypothesis testing based on single sampling plan method in order to verify steady-state formulas. This approach allows us to consider very large monotone models and to verify rare event properties efficiently. In this paper, we extend our proposed approach by implementing different statistical methods in our verification engine and by comparing their efficiency when we verify steadystate dependability properties for large non monotone models. We show that SPRT statistical method is generally more efficient than the other statistical methods. Moreover, we show that our statistical verification approach is efficient and scalable when we consider large non monotone models.

Pages: 18 to 23

Copyright: Copyright (c) IARIA, 2011

Publication date: August 21, 2011

Published in: conference

ISSN: 2308-4324

ISBN: 978-1-61208-149-6

Location: Nice/Saint Laurent du Var, France

Dates: from August 21, 2011 to August 27, 2011

SERVICES CONTACT
2010 - 2015 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.