NexTech 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • UBICOMM 2021, The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
  • ADVCOMP 2021, The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences
  • SEMAPRO 2021, The Fifteenth International Conference on Advances in Semantic Processing
  • AMBIENT 2021, The Eleventh International Conference on Ambient Computing, Applications, Services and Technologies
  • EMERGING 2021, The Thirteenth International Conference on Emerging Networks and Systems Intelligence
  • DATA ANALYTICS 2021, The Tenth International Conference on Data Analytics
  • GLOBAL HEALTH 2021, The Tenth International Conference on Global Health Challenges
  • CYBER 2021, The Sixth International Conference on Cyber-Technologies and Cyber-Systems

SoftNet 2021 Congress
October 03, 2021 to October 07, 2021 - Barcelona, Spain

  • ICSEA 2021, The Sixteenth International Conference on Software Engineering Advances
  • ICSNC 2021, The Sixteenth International Conference on Systems and Networks Communications
  • CENTRIC 2021, The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
  • VALID 2021, The Thirteenth International Conference on Advances in System Testing and Validation Lifecycle
  • SIMUL 2021, The Thirteenth International Conference on Advances in System Simulation
  • SOTICS 2021, The Eleventh International Conference on Social Media Technologies, Communication, and Informatics
  • INNOV 2021, The Tenth International Conference on Communications, Computation, Networks and Technologies
  • HEALTHINFO 2021, The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

NetWare 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • SENSORCOMM 2021, The Fifteenth International Conference on Sensor Technologies and Applications
  • SENSORDEVICES 2021, The Twelfth International Conference on Sensor Device Technologies and Applications
  • SECURWARE 2021, The Fifteenth International Conference on Emerging Security Information, Systems and Technologies
  • AFIN 2021, The Thirteenth International Conference on Advances in Future Internet
  • CENICS 2021, The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
  • ICQNM 2021, The Fifteenth International Conference on Quantum, Nano/Bio, and Micro Technologies
  • FASSI 2021, The Seventh International Conference on Fundamentals and Advances in Software Systems Integration
  • GREEN 2021, The Sixth International Conference on Green Communications, Computing and Technologies

TrendNews 2021 Congress
November 14, 2021 to November 18, 2021 - Athens, Greece

  • CORETA 2021, Advances on Core Technologies and Applications
  • DIGITAL 2021, Advances on Societal Digital Transformation

 


ThinkMind // DBKDA 2011, The Third International Conference on Advances in Databases, Knowledge, and Data Applications // View article dbkda_2011_2_40_30122


Studying the Impact of Partition on Data Reduction for Very Large Spatio-temporal Datasets

Authors:
Nhien An Le Khac
Martin Bue
M-Tahar Kechadi

Keywords: spatio-temporal datasets; data reduction; data partition; density-based clustering; shared nearest neighbours

Abstract:
Nowadays, huge amounts of data are being collected with spatial and temporal components from sources such as metrological, satellite imagery etc. Efficient visualisation as well as discovery of useful knowledge from these datasets is therefore very challenging and becoming a massive economic need. Data Mining has emerged as the technology to discover hidden knowledge in very large amounts of data. Furthermore, data mining techniques could be applied to decrease the large size of raw data by retrieving its useful knowledge as representatives. As a consequence, instead of dealing with a large size of raw data, we can use these representatives to visualise or to analyse without losing important information. Recently, we proposed a new approach based on different clustering techniques for data reduction to help analyse large spatio-temporal data. This approach is based on the partition of huge datasets due to the memory constraint. In this paper, we evaluate the impact of various numbers of partitions on our data reduction approach

Pages: 41 to 46

Copyright: Copyright (c) IARIA, 2011

Publication date: January 23, 2011

Published in: conference

ISSN: 2308-4332

ISBN: 978-1-61208-115-1

Location: St. Maarten, The Netherlands Antilles

Dates: from January 23, 2011 to January 28, 2011

SERVICES CONTACT
2010 - 2017 © ThinkMind. All rights reserved.
Read Terms of Service and Privacy Policy.