
VALID 2011

The Third International Conference on Advances in System Testing and Validation

Lifecycle

ISBN: 978-1-61208-168-7

October 23-29, 2011

Barcelona, Spain

VALID 2011 Editors

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

 1 / 139

VALID 2011

Forward

The Third International Conference on Advances in System Testing and Validation Lifecycle
(VALID 2011), held on October 23-29, 2011 in Barcelona, Spain, continued a series of events focusing on designing
robust components and systems with testability for various features of behavior and interconnection.

Complex distributed systems with heterogeneous interconnections operating at different speeds and based on
various nano- and micro-technologies raise serious problems of testing, diagnosing, and debugging. Despite
current solutions, virtualization and abstraction for large scale systems provide less visibility for vulnerability
discovery and resolution, and make testing tedious, sometimes unsuccessful, if not properly thought from the
design phase.

The conference on advances in system testing and validation considered the concepts, methodologies, and
solutions dealing with designing robust and available systems. Its target covered aspects related to debugging and
defects, vulnerability discovery, diagnosis, and testing.

The conference provided a forum where researchers were able to present recent research results and new
research problems and directions related to them. The conference sought contributions presenting novel result
and future research in all aspects of robust design methodologies, vulnerability discovery and resolution, diagnosis,
debugging, and testing.

We welcomed technical papers presenting research and practical results, position papers addressing the pros and
cons of specific proposals, such as those being discussed in the standard forums or in industry consortiums, survey
papers addressing the key problems and solutions on any of the above topics, short papers on work in progress,
and panel proposals.

We take here the opportunity to warmly thank all the members of the VALID 2011 technical program committee as
well as the numerous reviewers. The creation of such a broad and high quality conference program would not have
been possible without their involvement. We also kindly thank all the authors that dedicated much of their time
and efforts to contribute to the VALID 2011. We truly believe that thanks to all these efforts, the final conference
program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations and sponsors.
We also gratefully thank the members of the VALID 2011 organizing committee for their help in handling the
logistics and for their work that is making this professional meeting a success. We gratefully appreciate to the
technical program committee co-chairs that contributed to identify the appropriate groups to submit
contributions.

We hope the VALID 2011 was a successful international forum for the exchange of ideas and results between
academia and industry and to promote further progress in system testing and validation.

We hope Barcelona provided a pleasant environment during the conference and everyone saved some time for
exploring this beautiful city.

 2 / 139

VALID 2011 Chairs

Advisory Chairs
Andrea Baruzzo, Università degli Studi di Udine, Italy
Cristina Seceleanu, Mälardalen University, Sweden
Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany
Mehmet Aksit, University of Twente - Enschede, The Netherlands
Amirhossein Alimohammad, Ukalta Engineering - Edmonton, Canada

Research Institute Liaison Chairs
Juho Perälä, VTT Technical Research Centre of Finland, Finland
Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Kazumi Hatayama, Nara Institute of Science and Technology, Japan
Alin Stefanescu, University of Pitesti, Romania
Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS), Russia
Tanja Vos, Universidad Politécnica de Valencia, Spain

Industry Chairs
Abel Marrero, Daimler Center for Automotive IT Innovations - Berlin, Germany
Sebastian Wieczorek, SAP AG - Darmstadt, Germany
Eric Verhulst, Altreonic, Belgium

 3 / 139

VALID 2011

Committee

VALID Advisory Chairs

Andrea Baruzzo, Università degli Studi di Udine, Italy

Cristina Seceleanu, Mälardalen University, Sweden

Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany

Mehmet Aksit, University of Twente - Enschede, The Netherlands

Amirhossein Alimohammad, Ukalta Engineering - Edmonton, Canada

VALID 2011 Research Institute Liaison Chairs

Juho Perälä, VTT Technical Research Centre of Finland, Finland

Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Kazumi Hatayama, Nara Institute of Science and Technology, Japan

Alin Stefanescu, University of Pitesti, Romania

Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS), Russia

Tanja Vos, Universidad Politécnica de Valencia, Spain

VALID 2011 Industry Chairs

Abel Marrero, Daimler Center for Automotive IT Innovations - Berlin, Germany

Sebastian Wieczorek, SAP AG - Darmstadt, Germany

Eric Verhulst, Altreonic, Belgium

VALID 2011 Technical Progam Committee

Fredrik Abbors, Åbo Akademi University - Turku, Finland

Jaume Abella, Barcelona Supercomputing Center (BSC-CNS), Spain

Mehmet Aksit, University of Twente - Enschede, The Netherlands

Amirhossein Alimohammad, Ukalta Engineering - Edmonton, Canada

Giner Alor Hernandez, Instituto Tecnologico de Orizaba - Veracruz, México

César Andrés Sánchez, Universidad Complutense de Madrid, España

Cesare Bartolini, ISTI - CNR, Pisa, Italy

Andrea Baruzzo, Università degli Studi di Udine, Italy

Paolo Bernard, Politecnico di Torino, Italy

Serge Bernard, UniversitÈ Montpellier 2, France

Domenico Bianculli, University of Lugano, Switzerland

Bruce Cockburn, University of Alberta -Edmonton, Canada

Maurizio D'Arienzo, Seconda Università degli studi di Napoli, Italy

Florian Deissenboeck, Technische Universität München - Garching, Germany

Stefano Di Carlo, Politecnico di Torino, Italy

Rolf Drechsler, University of Bremen, Germany

Lydie du Bousquet, Laboratoire d'Informatique de Grenoble, France

 4 / 139

Stephan Eggersglüß, German Research Center for Artificial Intelligence (DFKI) & University of Bremen, Germany

Khaled El-Fakih, American University of Sharjah, UAE

Robert Eschbach, Fraunhofer IESE - Kaiserslautern, Germany

Leire Etxeberria, Mondragon University, Spain

Florian Fankhauser, Vienna University of Technology, Austria

Eitan Farchi, IBM Haifa Research Laboratory, Israel

Michael Felderer, University of Innsbruck, Austria

Teodor Ghetiu, University of York, UK

Patrick Girard, LIRMM, France

Debasis Giri, Haldia Institute of Technology - Purba Medinipur, India

Hans-Gerhard Gross, Delft University of Technology, The Netherlands

Jon Hall, Open University, UK

Kazumi Hatayama, Nara Institute of Science and Technology, Japan

Florentin Ipate, IFSoft, Romania

David Kaeli, Northeastern University - Boston, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Alexander Klaus, Fraunhofer IESE - Kaiserslautern, Germany

Philippe Lahire, Université de Nice Sophia-Antipolis, France

Abel Marrero, Daimler Center for Automotive IT Innovations - Berlin, Germany

Julio Medina, Universidad de Cantabria, Spain

Seda Ogrenci Memik, Northwestern University - Evanston, USA

Atif Memon, University of Maryland, USA

Mercedes G. Merayo, Universidad Complutense de Madrid, Spain

Maria K. Michael, University of Cyprus - Nicosia, Cyprus

Roy Oberhauser, Aalen University, Germany

Juho Perälä, VTT Technical Research Centre of Finland, Finland

Eric Piel, Technical University of Delft, The Netherlands

Miodrag Potkonjak, Univeristy of California, Los Angeles (UCLA), USA

Wishnu Prasetya, Utrecht University, The Netherlands

Paolo Prinetto, Politecnico di Torino, Italy

Andreas Raabe, fortiss --- An-Institut der Technischen Universität München, Germany

Henrique Rebêlo, Federal University of Pernambuco, Brazil

Michel Renovell, LIRMM, France

Filippo Ricca, University of Genoa, Italy

Thomas Rings, University of Göttingen, Germany

Vladimir Rubanov, Institute for System Programming / Russian Academy of Sciences (ISPRAS), Russia

Goiuria Sagardui, Mondragon University, Spain

Christian Schanes, Vienna University of Technology, Austria

Cristina Seceleanu, Mälardalen University, Sweden

Amit Prakash Singh, Guru Gobind Singh Indraprastha University - Delhi, India

Alin Stefanescu, University of Pitesti, Romania

Dinesh Subhraveti, IBM Almaden Research Center - San Jose, USA

Mehdi Tahoori, Karlsruhe Institute of Technology (KIT), Germany

Michael Tautschnig, University of Oxford, UK

Nur A. Touba, University of Texas - Austin, USA

Spyros Tragoudas, Southern Illinois University Carbondale, USA

 5 / 139

Dragos Truscan, Åbo Akademi University - Turku, Finland

Eric Verhulst, Altreonic, Belgium

Bart Vermeulen, NXP Semiconductors, The Netherlands

Arnaud Virazel, Université de Montpellier 2 / LIRMM, France

Tanja Vos, Universidad Politécnica de Valencia, Spain

Stefan Wagner, Technische Universität München, Germany

Melanie Ware, University of Ulster - Jordanstown, UK

Sebastian Wieczorek, SAP AG - Darmstadt, Germany

Cemal Yilmaz, Sabanci University - Istanbul, Turkey

Zeljko Zilic, McGill University, Canada

 6 / 139

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 139

Table of Contents

Using Assertion-Based Testing in String Search Algorithms
Ali Alakeel and Mahmoud Mhashi

1

An Approach to Modularization in Model-Based Testing
Teemu Kanstren, Olli-Pekka Puolitaival, and Juho Perala

6

Dealing with Challenges of Automating Test Execution
Vitalina Turlo and Valery Safronau

14

Detecting Equivalent Mutants by Means of Constraint Systems
Simona Nica, Mihai Nica, and Franz Wotawa

21

Answer-Set Programming as a new Approach to Event-Sequence Testing
Esra Erdem, Katsumi Inoue, Johannes Oetsch, Jorg Puhrer, Hans Tompits, and Cemal Yilmaz

25

A Test Case Suite Generation Framework of Scenario Testing
Ting Li, Zhenyu Liu, and Xu Jiang

35

Is Mutation Testing Scalable for Real-World Software Projects?
Simona Nica, Rudolf Ramler, and Franz Wotawa

40

Testing As A Service for Component-based Developments
Hien Le

46

A Zone-based Reachability Analysis of Variable Driven Timed Automata
Omer Nguena-Timo and Antoine Rollet

51

Retrospective Project Analysis Using the Expectation-Maximization Clustering Algorithm
Steffen Herbold, Jens Grabowski, and Stephan Waack

58

Extracting and Verifying Viewpoints Models in Multitask Applications
Selma Azaiez, Belgacem Benhedia, and Vincent David

64

Requirements and Solutions for Tool Integration in Software Test Automation
Bernhard Peischl, Rudolf Ramler, Thomas Ziebermayr, Stefan Mohacsi, and Christoph Preschern

71

RobusTest: Towards a Framework for Automated Testing of Robustness in Software
Ali Shahrokni and Robert Feldt

78

Simulated Injection of Radiation-Induced Logic Faults in FPGAs 84

 1 / 2 8 / 139

Cinzia Bernardeschi, Luca Cassano, Andrea Domenici, Giancarlo Gennaro, and Mario Pasquariello

Concurrent Engineering used to Implement Risk & Hazard Control
Gheorghe Florea and Luiza Ocheana

90

Model Reconstruction: Mining Test Cases
Edith Werner and Jens Grabowski

97

Generic Data Format Approach for Generation of Security Test Data
Christian Schanes, Florian Fankhauser, Stefan Taber, and Thomas Grechenig

103

A Classification for Model-Based Security Testing
Michael Felderer, Berthold Agreiter, Philipp Zech, and Ruth Breu

109

Utilizing Domain-Specific Modelling for Software Testing
Olli-Pekka Puolitaival, Teemu Kanstren, Veli-Matti Rytky, and Asmo Saarela

115

Comparison of off-chip interconnect validation to field failures
Michael Shepherd, David Blankenbeckler, and Adam Norman

121

Software Testing in Critical Embedded Systems: a Systematic Review of Adherence to the DO-178B Standard
Jacson Rodrigues Barbosa, Marcio Eduardo Delamaro, Jose Carlos Maldonado, and Auri Marcelo Rizzo
Vincenzi

126

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 139

Using Assertion-Based Testing in String Search Algorithms

Ali M. Alakeel1 and Mahmoud M. Mhashi2

College of Computers and Information Technology
University of Tabuk

P.O.Box 1458, Tabuk 71431, Saudi Arabia
alakeel@ut.edu.sa1

mmhashi@ut.edu.sa2

Abstract—Software programs may contain faults that cause them
to work improperly. Assertion-Based testing has been shown to
be effective in detecting program faults as compared to
traditional black-box and white-box software testing methods.
String search algorithm problem is one of the most important
problems that had been investigated by many studies to find all
the occurrences of a pattern (with size m characters) occurs in
text (with size n characters), where m<<n. String search
algorithms are one of the main elements of Information Retrieval
Systems which are found in a wide range of applications such as
military applications, aircraft software, medical applications, and
commercial applications. Therefore, the correctness of any string
search algorithms is vital. Different errors might occur during
the implementation of any of these algorithms. An example of
error, if the shift distance becomes zero, then the algorithm will
not move forward. In this research, we show that Assertion-
Based software testing may be effective in uncovering software
faults associated with string searching algorithms. Our
preliminary experimentation with this approach shows that
several types of errors associated with string searching
algorithms are uncovered using Assertion-Based software testing.

Keywords-Software testing; Assertion-Based Testing; Program
Assertions; String Search Algorithms.

I. INTRODUCTION
Software programs may contain faults that cause them to

work improperly. The effects of software failure could be very
disastrous and life threatening. For example, a software failure
may cause an airplane to crash, a nuclear factory to meltdown
or even to cause a military missile to hit the wrong target, e.g.,
[22]. For this reason, software testing methods has gained so
much attention from researchers and industry practitioners
since computers were invented.

Software testing is a very labor intensive task and cannot by
any means guarantees the correctness of any software or that
the software is error-free. However, thorough and rigorous
software testing may increase the confidence in the software
under test. There are two main approaches to software testing:
Black-box and White-box. Test data generation is the process
of finding program input data that satisfies a given criteria. Test
generators that support black-box testing create test cases by
using a set of rules and procedures; the most popular methods
include equivalence class partitioning, boundary value analysis,
cause-effect graphing. White-box testing is supported by
coverage analyzers that assess the coverage of test cases with
respect to executed statements, branches, paths, etc.

Programmers usually start by testing their software using
black-box methods against a given specification. By their
nature black-box testing methods might not lead to the
execution of all parts of the code. Therefore, this method may
not uncover all faults in the program. To increase the
possibility of uncovering program faults, white-box testing is
then used to ensure that an acceptable coverage has been
reached, e.g., branch coverage.

Assertion-Based testing [4-5, 7] has been shown to be
effective in detecting program faults as compared to traditional
black-box and white-box software testing methods. Given an
assertion A, the goal of Assertion-Based testing is to identify
program input for which A will be violated. The main aim of
Assertion-Based Testing is to increase the developer
confidence in the software under test. Assertion-Based Testing
is intended to be used as an extra and complimentary step after
all traditional testing methods have been performed to the
software. Assertion-Based Testing gives the tester the chance
to think deeply about the software under test and to locate
positions in the software that are very important with regard to
the functionality of the software. After locating those important
locations, assertions are added to guard against possible errors
with regard to the functionality performed in these locations.

String search algorithms are one of the main elements of
Information Retrieval Systems (IRS) which are found in a wide
range of applications such as military applications, aircraft
software, medical applications, and commercial applications.
If an information retrieval system fails to return the correct
piece of information, the results could be disastrous. For
example, if a medical information retrieval system fails to
return the exact prescribed medicine, this action may
jeopardize the patient's life. Also, if a missile control system
fails to retrieve the exact coordinates of the target, the results
could be disastrous. Therefore, the correctness of any string
search algorithms is vital. String searching algorithms are so
fundamental that most computer programs use them in one
form or another.

In this paper, we show that Assertion-Based software
testing [4-5, 7] may be effective in uncovering software faults
associated with string searching algorithms. Since the time
Assertion-Based testing was proposed in [4] and to the best of
our knowledge, this research is the first to present an
application a proposed testing methodology, i.e., Assertion-
Based testing, to a well known reported algorithms, i.e., string
search algorithms. For the purpose of this research we have
selected a number of well-known published string searching
algorithms, gave them to programmers to implement them and
then used Assertion-Based software testing to test these

1

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 10 / 139

implementations. Our result is presented in a case study
presented in Section IV of this text. It should be noted that the
efficiency, performance or the competency of each string
search algorithm, considered in our study, are not questioned.
Our main objective is to show that Assertion-Based testing
may be effective during the development and testing of such
algorithms.

The rest of this paper is organized as follows. Related work
is discussed in Section II. Section III presents an application of
Assertion-Based software testing method to the string search
algorithms. In Section IV, we present a case study, followed
by our conclusion and future work in Section V.

II. RELATED WORK

A. String Search Algorithms
Exact string searching is one of the most important

problems that had been investigated by many studies, e.g., [8-
21]. The problem of string searching may be stated as follows.
Given a text string (Text) of size n and a pattern string (Pat) of
size m (where n >> m), find all occurrences of Pat in Text [8].

As reported in the literature, many exact string searching
and pattern matching algorithms were introduced and their
performance was investigated against classical exact string
searching algorithm such as Naïve (brute force) algorithm and
Boyer-Moore-Horsepool (BMH) algorithm. Some of these
algorithms preprocess both the text and the pattern, e.g., [9]
while others need only to preprocess the pattern, e.g., [10, 11].
In all cases, the exact string searching problem consists of two
major steps: checking and skipping. The checking step itself
consists of two phases:

1) A search along the text for a reasonable candidate
string

2) A detailed comparison of the candidate against the
pattern to verify the potential match.

Some characters of the candidate string must be selected
carefully in order to avoid the problem of repeated examination
of each character of text when patterns are partially matched.
Intuitively, the fewer the number of character comparisons in
the checking step the better the algorithm is. Different string
search algorithms may differ in the way they implement the
checking process, e.g., [12, 13]. After the checking step, the
skipping step shifts the pattern to the right to determine the
next position in the text where the substring text can possibly
match with the pattern. The reference character is a character in
the text chosen as the basis for the shift according to the shift
table. Some string search algorithms may use one or two
reference characters and the references might be static or
dynamic [14, 15]. Additionally, some algorithms focus on the
performance of the checking operation while others focus on
the performance of the skipping operation [16]. The shift
distance used may differ from one string search algorithm to
another; it ranges from only one position in the Naïve
algorithm, up to m positions in Boyer-Moore-Horspool
algorithm [11], m+1 positions in Raita's algorithm [10], and up
to 3m+1 positions in CSA algorithm [17].

From the previous discussion, it can be noticed that there
are different factors and elements of string search algorithms

that may lead to program errors during the implementations of
these algorithms into real program’s code. Some of these
elements are the starting point of checking, the direction of
checking, the skipping strategy, the number of static or
dynamic reference characters, and different shift distances.
Thus it is possible that errors might occur during the
implementation of any string searching algorithm. For instance,
the shift distance might become zero or the number of
occurrences of Pat in Text found by the algorithm might be less
than or greater than the actual occurrences of Pat in Text. In a
case study, presented in Section IV, we found out that
Assertion-Based testing may be effective in catching some of
the faults associated with string search algorithms.

B. Assertion-Based Softwre Testing
Assertions are recognized as a supporting aid in revealing

faults during software testing, debugging and maintenance,
e.g., [1-7]. Therefore, many programmers place them within
their code in positions considered error prone or have the
potential to lead to software crash or failure. An Assertion
specifies a constraint that applies to some state of computation.
The state of an assertion is represented by two possible values:
true or false. For example, assert(0<index<=100), is an
assertion that constraints the values of some variable “index” to
be in the range of 1 and 100 inclusive. As long as the values of
“index” is within the allowed range the state of this assertion is
true. Any other values beyond this range, however, will cause
the state of this assertion to become false which indicates the
violation of this assertion.

Many programming languages support assertions by
default, e.g., Java and Perl. For languages without built-in
support, assertions can be added in the form of annotated
statements. For example, [4] presents assertions as commented
statements that are pre-processed and converted into Pascal
code before compilation. Many types of assertions can easily
be generated automatically such as boundary checks, division
by zero, null pointers, variable overflow/underflow, etc.
Beyond simple assertions that can easily be generated
automatically, reference [4] presents a method to generate
more complex assertions for Pascal programs. For this reason
and to enhance their confidence in their software, programmers
may be encouraged to write more programs with assertions.

It should be noted that writing the proper type of assertions
and choosing the proper locations to inject them into programs
depend heavily on the tester’s experience and knowledge of the
program under test. As mentioned previously, a simple tool
may be used to automatically generate assertions in certain
locations of the program which guard against errors such as
division by zero, array boundary violations, uninitialized
variables, stack overflow, null pointer assignment, pointer out
of range, out of memory (heap overflow), and integer / float
underflow and overflow [3]. However, there are application-
specific locations in the program itself that may need to be
guarded by assertions depending on the importance of these
locations to the correctness of the application. For example, in
string searching algorithms, computing the location of the
pattern in the input string and index manipulation during the
checking and skipping process are very important to the
correctness of such algorithms.

2

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 11 / 139

1 #include <iostream>
2 #include <iomanip>
3 #include <cstring>
4 using std::cout;
5 using std::cin;
6 #define ASIZE 300
7 #define XSIZE 300
8 void preBmBc(char *x, int m, int bmBc[]) {
9 int i;
10 for (i = 0; i < ASIZE; ++i)
11 bmBc[i] = m;
12 for (i = 0; i < m - 1; ++i){
/* A1: (x[i]>=0 and x[i]<ASIZE) */ // Assertion No. 1
13 bmBc[x[i]] = m - i - 1;
 }
 }
14 void suffixes(char *x, int m, int *suff) {
15 int f, g, i;
16 suff[m - 1] = m;
17 g = m - 1;
18 for (i = m - 2; i >= 0; --i) {
/* A2: (i + m - 1 - f)>=0 and (i + m - 1 - f)<XSIZE) */ // Assertion No. 2
19 if (i > g && suff[i + m - 1 - f] < i - g){
/* A3: (i)>=0 and (i)<XSIZE) */ // Assertion No. 3
20 suff[i] = suff[i + m - 1 - f];
 }
21 else {
22 if (i < g)
23 g = i;
24 f = i;
25 while (g >= 0 && x[g] == x[g + m - 1 - f])
26 --g;
/* A4: (i)>=0 and (i)<XSIZE) */ // Assertion No. 4
27 suff[i] = f - g;
 }
 }
 }
28 void preBmGs(char *x, int m, int bmGs[]) {
29 int i, j, suff[XSIZE];
30 suffixes(x, m, suff);
31 for (i = 0; i < m; ++i)
32 bmGs[i] = m;
33 j = 0;
34 for (i = m - 1; i >= 0; --i)
35 if (suff[i] == i + 1)

36 for (; j < m - 1 - i; ++j)
37 if (bmGs[j] == m)
38 bmGs[j] = m - 1 - i;
39 for (i = 0; i <= m - 2; ++i){
/* A5: (m - 1 - suff[i])>=0 and (i)<XSIZE) */ // Assertion No. 5
40 bmGs[m - 1 - suff[i]] = m - 1 - i;
 }
 }
41 void BM(char *x, int m, char *y, int n) {
42 int i, j, bmGs[XSIZE], bmBc[ASIZE];
 /* Preprocessing */
43 preBmGs(x, m, bmGs);
44 preBmBc(x, m, bmBc);
 /* Searching */
45 j = 0;
46 while (j <= n - m) {
47 for (i = m - 1; i >= 0 && x[i] == y[i + j]; --i);
48 if (i < 0) {
49 cout<<"\nAn occurrence at location "<<j;
50 j += bmGs[0];
 }
51 else{
 /* A6: (i>=0 and i<XSIZE) */ // Assertion No. 6
/* A7: ((y[i + j])>=0 and (y[i + j])<ASIZE) */ // Assertion No. 7
52 if(bmGs[i] > bmBc[y[i + j]] - m + 1 + i)
53 j += bmGs[i];
54 else
55 j += bmBc[y[i + j]] - m + 1 + i;
 }
 }
 }
56 int main()
 {
57 char Text[] = "test This is a test for string test";
58 char Pat[] = "test";
59 int m = 4;
60 int n = 35;
61 cout << "\nInput text: " << Text << "\nPattern: " << Pat;
62 BM(Pat, m, Text, n);
63 cout<< "\n Press ENTER to exit";
64 getchar();
65 return 0;
}

Figure 1. Boyer-Moore Algorithm with Assertions

During our case study presented in Section IV, assertions were
injected in locations that are error-prone and crucial to the
correctness of a string search algorithm. This knowledge is
gained through our investigation of each string search
algorithm considered during our experiment.

III. USING ASSERTION-BASED TESTING IN STRING SEARCH
ALGORITHMS

In this section, we present an application of Assertion-
Based software testing to the Boyer–Moore string search
algorithm [11]. Our complete case study is presented in section
IV.

A. Boyer–Moore Algorithm
The Boyer–Moore string search algorithm [11] is a

particularly efficient string searching algorithm. It has been the
standard benchmark for the practical string search literature.
The algorithm preprocesses the target string (key) that is being

searched for, but not the string being searched in (unlike some
algorithms that preprocess the string to be searched and can
then amortize the expense of the preprocessing by searching
repeatedly). The execution time of the Boyer-Moore algorithm,
while still linear in the size of the string being searched, can
have a significantly lower constant factor than many other
search algorithms: it doesn't need to check every character of
the string to be searched, but rather skips over some of them.
Generally the algorithm gets faster as the key being searched
for becomes longer. Its efficiency derives from the fact that
with each unsuccessful attempt to find a match between the
search string and the text being searched, it uses the
information gained from that attempt to rule out as many
positions of the text as possible where the string cannot match.
Figure 1 shows an implementation of Boyer-Moore Algorithm
after assertions have been added to it. In this program we
inserted a total of seven assertions in different positions of the
code. Assertions are numbered and shown in bold in Figure 1.

After applying Assertion-Based Testing to Boyer-Moore
Algorithm of Figure 1 Assertion #2 was violated. As described
in [4], during Assertion-Based Testing, each assertion found in
the program under test is converted into a corresponding code

3

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 12 / 139

during a pre-processing stage. For example, Assertion#2 of
Figure 1 will be converted into the following code:

18.1 if (!((i + m - 1 - f)>=0))
18.1.1 cout << "\nAssertion 2a Violation!";
18.2 if (!((i + m - 1 - f)<XSIZE))
18.2.1 cout << "\nAssertion 2b Violation!”;

Considering the above segment of code, according to
Assertion-Based Testing presented in [4], Assertion#2 is
violated if either of statements 18.1.1 or 18.2.1 is executed.
During our experiment, Assertion #2 was violated through the
execution of statement 18.1.1. The violation of Assertion #2
has detected a fault in this program which is caused by the use
of an uninitialized variable “f” used in statement#19 in Figure
1. Note that uninitialized variables might cause very serious
bugs in the program due to the nondeterministic values those
variables might take during the course of different program
executions. It should also be noted that many forms of
uninitialized variable go undetected by C++ compiler.

IV. CASE STUDY
For the purpose of this case study, we have selected, from

the literature, seven different string searching algorithms.
These algorithms are implemented in C++ by three
programmers with more than 5 years of experience in software
development. C++ language was selected because it is widely
used in the industry in our area and in America. The programs
are executed and tested using traditional software testing
methods. Specifically the following software testing methods
were used: black-box testing as represented by boundary value
analysis and equivalence class partitioning while white-box
testing is represented by branch coverage. Using these
traditional software testing methods, we were not able to
uncover any faults in any of the seven programs. As stated in
[4], Assertion-Based testing is intended to be used as an extra
and complimentary step after all traditional testing methods
have been performed to the software. Assertion-Based Testing
gives the tester the chance to think deeply about the software
under test and to locate positions in the software that are very
important with regard to the functionality of the software. After
locating those important locations, assertions are added to
guard against possible errors with regard to the functionality
performed in these locations. Therefore, and in order to
uncover any faults, we injected assertions in certain locations
of each of the selected string search algorithms used in this
study and then applied Assertion-Based Testing as described in
[4]. As reported in Table I, we were able to uncover program
faults, in all of the seven programs, which were left uncovered
by traditional software testing methods or by tests performed
by the original authors of those string matching algorithms.

Information presented in Table I may be interpreted as
follows. Column#1 and Columun#2 show the name of the
string search algorithm and the number of assertions inserted in
each one, respectively. Column#3 shows the number of
assertions that were violated during Assertion-Based software
testing. For example, row#3 of Table I shows that in an
implementation of the Horespool algorithm [18], a total of
three assertions were inserted in this program. Two out the

three assertions (66.7%) were violated during Assertion-Based
testing. In this case study, the number of assertions ranges from
3 to 18 assertions. The percentage of assertion violations
ranges from 5.5% to 66.7% and the percentage of the tested
algorithms that contains faults was 100%. It should be noted
that the result of this experiment might be different for
different programs with different types of assertions. The
purpose of this case study is only to show that Assertion-Based
Testing [4-5, 7] may be effective in detecting program faults
when applied to the considered set of string search algorithm
implementations used in this experiment. We emphasize that
the quality and the merits of the string search algorithms
themselves are not questioned and is beyond the scope of this
research.

TABLE I. CASAE STUDY RESULTS

Algorithm’s Name #Assertions #Violations
Boyer-Moore Algorithm 7 1

CSA Algorithm 13 1
Horespool Algorithm 3 2

KR Algorithm 4 1
AXAMAC Algorithm 9 1
COLUSSI Algorithm 18 1

V. CONCLUSION and FUTURE WORK
In this paper, we presented a new approach in which

Assertion-Based testing is utilized to find software faults
associated with string searching algorithms. We performed a
case study in which a set of well-known string search
algorithms are implemented and tested. During this case study,
assertions were inserted in selected locations of each subject
program to guard against possible errors. The result of this case
study is encouraging and shows that Assertion-Based software
testing was able to uncover faults in these programs that were
overlooked by traditional software testing methods such as
black-box and white- box testing. This result indicates that
Assertion-Based testing may be very effective during the
development and testing of string search algorithm. For our
future research, we intend to extend our case study to include a
wider range of string search algorithms especially those which
function as a part of bigger commercial applications.

REFERENCES

[1] Stucki L. and Foshee G., “New Assertion Concepts for Self-
Metric Software Validation,” Proceedings of the International
Conference on Reliable Software, pp. 59-71,1975

[2] Yau S. and Cheung R., “Design of Self-Checking Software,”
Proceedings of the International Conference on Reliable
Software, pp. 450-457, 1975.

[3] Rosenblum, D., “Toward A Method of Programming
WithAssertions,” Proceedings of the International Conference
on Software Engineering, pp. 92-104, 1992.

[4] Korel B. and Al-Yami A., “Assertion-Oriented Automated Test
Data Generation,” Proc. 18th Intern. Conference on Software
Eng., Berlin, Germany, pp. 71-80, 1996.

[5] Alakeel A., “An Algorithm for Efficient Assertions-Based test
Data Generation,” Journal of Software, vol. 5, No. 6, pp. 644-
653, 2010.

4

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 13 / 139

[6] Korel B. and Alyami A., “Automated regression test
generation,” Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing and analysis, pp.
143 – 152, 1998.

[7] Alakeel A., “A Framework for Concurrent Assertion-Based
Automated Test Data Generation,” European Journal of
Scientific Research, Vol. 46, No. 3, pp. 352-362, 2010.

[8] Stephen G., "String Searching Algorithms", World Scientific,
Singapore, 1994.

[9] Fenwick P., "Fast string matching for multiple searches",
Software–Practice and Experience, Vol. 31, No. 9, pp. 815–833,
2001.

[10] Raita T., "Tuning the Boyer-Moore-Horspool String Searching
Algorithm", Software Practice and Experience, Vol. 22, No. 10,
pp. 879-844, 1992.

[11] Boyer RS. and Moore JS., "A fast string searching algorithm",
Communications of the ACM, Vol. 20, No. 10, pp. 762–772,
1977.

[12] Ager M. S., Danvy O., and Rohde H. K., "Fast partial evaluation
of pattern matching in strings", ACM/SIGPLAN Workshop
Partial Evaluation and Semantic-Based Program Manipulation,
San Diego, California, USA, pp. 3 – 9, 2003.

[13] Fredriksson and Grabowski S., “Practical and Optimal String
Matching”, Proceedings of SPIRE'2005, Lecture Notes in
Computer Science 3772, , pp. 374-385, Springer Verlag, 2005.

[14] Smith P., "On Tuning the Boyer-Moore-Horspool String
Searching Algorithm", Short Communication, Software Practice
and Experience, Vol. 24, No. 4, pp. 435-436, 1994.

[15] Mhashi M., "The Effectof Multiple Reference Characters on
Detecting Matches in String Searching Algorithms," Software
Practice and Experience, Vol. 35, No. 13, pp. 1299 -1315, 2005.

[16] Mhashi, M., "The Performance of the Character-Access On the
Checking Phase in String Searching Algorithms", Transactions
on Enformatica, Systems Sciences and Engineering, Vol. 9, pp.
38 –43, 2005.

[17] Mhashi M. and Alwakeel M, “New Enhanced Exact String
Searching Algorithm” IJCSNS International Journal of
Computer Science and Network Security, Vol. 10, No. 4, pp. 13
– 20, 2010.

[18] Horspool R.N., “Practical fast searching in strings,” Software -
Practice & Experience, Vol. 10, No. 6, pp. 501-506, 1980.

[19] Karp R.M. and Rabin M.O., 1987, “Efficient randomized
pattern-matching algorithms, “IBM J. Res. Dev., Vol. 31, No. 2,
pp. 249-260, 1987.

[20] Apostolico A. and Crochemore M., “Optimal canonization of
all substrings of a string,” Information and Computation, Vol.
95, No. 1, pp. 76-95, 1991.

[21] Colussi L., “Correctness and efficiency of the pattern matching
algorithms,” Information and Computation, Vol. 95, No. 2, pp.
225-251, 1991.

[22] [http://www.pcworld.com/article/110035/software_bug_may_ca
use_missile_errors.html]. Last access date: July 26, 2011.

5

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 14 / 139

An Approach to Modularization in Model-Based Testing

Teemu Kanstrén, Olli-Pekka Puolitaival, Juho Perälä
VTT Technical Research Centre of Finland

Oulu, Finland
{teemu.kanstren, olli-pekka.puolitaival, juho.perala}@vtt.fi

Abstract—Test models in model-based testing are typically
represented as state machines in terms of states and transi-
tions. These states and transitions also are typically the focus of
the test modeling approaches. Yet these test models are basical-
ly software components for the test automation domain, and
need to be considered from test automation and software engi-
neering viewpoints. In this paper, we describe a modeling
approach that takes better into account these viewpoints. Tak-
ing these viewpoints into account, we propose a modularization
approach for modeling in model-based testing and present a
tool for supporting this modularization approach.

Keywords-model based testing; test automation;
modularization

I. INTRODUCTION

Model-based testing (MBT) is an advanced test automa-
tion technique focused on generating test cases from state-
based models. In recent years several MBT tools have been
presented and the industrial adoption of MBT techniques has
been increasing [1,2]. The underlying modeling approach in
these different tools is typically state-based, augmented by
some programming language constructs to embed test in-
structions inside the test model to produce executable test
cases from the state-machine transitions. The test generation
is guided by the algorithms analyzing the model and parsing
these programming language constructs to form test se-
quences and test data.

As such, this modeling approach can be seen as similar to
other programming tasks. State transitions are executed to
move from one state to another and these executions are
performed in terms of programming language instructions
embedded in these transitions. Yet the test modeling ap-
proach is based almost solely on state-machine notions–
transitions between states and guard statements defining
when transitions are allowed. While it is recognized that
different domains and abstraction levels are important in
MBT (e.g., [3]), the domain of test automation in itself is not
considered in the common MBT modeling approaches. Rela-
tions between the test models and other software engineering
artefacts are sometimes considered (e.g., [4]) but not the
composition of the test models themselves. As these test
models are in practice software components in themselves,
we believe it is possible to provide a more efficient test mod-
eling approach by introducing good practices from the soft-
ware engineering domain, and specifically the software test
automation domain into the test modeling approach itself.

Based on this background, we present a modularization
approach for test modeling in MBT. This includes further

modularization of the different traditional state-machine
elements (transitions and guards) as well adding new ones
specific to test automation (test oracles as specific transi-
tions). We further present a modeling approach for describ-
ing test input and expected output in terms of a taxonomy of
runtime invariance as described by our earlier work [5].
Finally, we identify a set of additional topics for future study
that we believe will enable taking these approaches further.
Similar to our inspiring domain of generic software engineer-
ing, we believe the end result helps achieve easier test model
creation, evolution and maintenance. This forms a basis for
more effective test modeling. The approach is implemented
in a tool called OSMOTester, available as open-source [6].

The rest of the paper is structured as follows. Section II
describes the background concepts relevant to this paper.
Section III describes our test model modularization ap-
proach. Section IV discusses the concept in a wider context.
Finally, conclusions summarize the paper and future works.

II. PRELIMINARIES

This section introduces the background concepts relevant
for this paper.

A. Modularization
Modularization is one of the basic concepts in software

engineering in general. Van der Hoek and Lopez [7] provide
an overview of software modularization and its different
aspects in software engineering. They show how modulariza-
tion has been considered important from the early days of
programming and has since evolved to all aspects of modern
software engineering, and continues to be an important re-
search question. The aspects they describe include program-
ming languages, software architectures and software evolu-
tion. They also note the need to avoid excess modularization
where not necessary. In terms of addressing modularity, van
der Hoek and Lopez [7] list a number of benefits such as
reduced complexity, enabling parallel work, enabling evolu-
tion (easier understanding, resilience to change, etc.), and
easing reuse. The cost is described in terms of requiring
added effort for composition of the modular pieces to form a
whole.

While this shows that modularity is considered important
and is addressed in many software engineering domains, the
consideration in MBT has focused on state-machine concepts
[8] and not considered modularization in terms of test auto-
mation concepts and model elements generally. These are the
concepts we address in this paper, in providing extended
means to express modularity in test models, including im-

6

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 15 / 139

portant test automation concepts, and in mitigating the costs
by providing automated support for module composition.

Considering modularity in software engineering in gen-
eral, Sarkar et al. [9] list seven main properties of modulari-
ty. Similarity of purpose refers to grouping together elements
related to providing a specific service. Encapsulation refers
to encapsulating the internals of a module from its environ-
ment and external collaborators. Compilability refers to pos-
sible issues in compiling a module due to issues such as
circular dependencies. Extensibility refers to providing
means to extend a specific module without accessing its
internals. Testability refers to the ease of testing the module.
Cyclic dependencies negate many of the benefits of modular-
ization and as such need to be avoided. Module size should
be overall roughly equal. In the following sections we pre-
sent our approach in Section IV also discuss how it relates to
these properties.

B. Example System
Throughout the rest of this paper, we will use a simple

vending machine example to illustrate the concepts dis-
cussed. This vending machine is a modified version of the
example used in [2]. The relevant part of the operation of the
machine can be described as the set of following properties:

Accepts 10, 20, and 50 cent coins.
When a total of 100 cents have been inserted the action
vend is enabled.
When vend is enabled, no more coins can be inserted
(this assumption is relaxed later).
When vend is activated, a bottle is produced, reducing
the total number available and resetting the number of
inserted cents to 0.
When the machine is empty (no bottles), all actions are
disabled.

Notice that for the sake of providing a concise example,
this model simplifies several aspects such as providing
change to the user when going over the total of 100 cents.

C. Model-Based Testing
The term model-based testing (MBT) can be defined in

different ways. We follow Utting and Legeard [2] who de-
scribe MBT as “Generation of test cases with oracles from a
behavioural model”. The model describes the expected be-
haviour of the system under test (SUT), and is used by a
MBT tool in order to generate test cases, in a form suitable
for the test target, such as method invocation sequences and
input data. The SUT output is checked by the test oracles
also encoded into the model.

A typical model applied in the context of MBT is based
on some form of states and transitions (sometimes referred to
as pre/post conditions, historical or functional notations [8]),
such as an extended finite state machine (EFSM). This de-
scribes the system behaviour in terms of states and transi-
tions between these states. Basically a state can be described
as a relevant combination of system internal variables. A
transition forms an invocation of some functionality of the
SUT, possibly affecting the observed state. Finally, guard
statements over the transitions impose constraints on when a
transition is allowed to happen.

To illustrate these concepts, Figure 1 shows an example
snippet of a state-machine for the vending machine. In this
example, state 1 is where the machine includes 10 bottles
and 100 cents have been inserted. As defined by the example
guard statements, the vend transition to state 2 is allowed if
there are bottles available in the machine and 100 cents have
been inserted.

Figure 1. Vending machine model snippet.

In this case, both of these conditions have been met and
thus this transition is enabled. Once it is taken, the number of
bottles is reduced to 9 as one is deducted and the number of
inserted cents is reset to zero. In this example, state is com-
posed of the number of bottles available as well as the num-
ber of inserted cents.

To produce suitable test cases from such a model, this in-
formation is then transformed to test data for the SUT as
defining the input to be given to invoke this transition on the
SUT. This can be, for example, a message to the vending
machine to produce a vend action. This is information en-
coded into the model by the user.

The test model must also define the expected output for
each taken transition (the test oracle) in order to validate the
correctness of the responses from the SUT for the given
input. For example, the vend request should impact the re-
ported number of bottles and produce a response as the “bot-
tle” itself. This can be encoded in the test model along with
the transition as an expected result, forming a test oracle.

Thus, to produce a suitable test model, the model must
embed in itself means to identify test input to stimulate the
SUT, the expected output for each input to produce a test
oracle that gives verdict if the test passes or not, and a test
harness that actually links the execution of the tests with the
actual SUT.

III. TEST MODEL MODULARIZATION

The typical EFSM modeling notation for MBT was pre-
sented in the previous section. From this, we can list the
following components that are needed to produce a suitable
test model for test generation.

Transitions to define what are the possible test steps
for a specific SUT in its current state.
A representation of the SUT state for the model.
Test oracles to check the correctness of the received
output and the internal state of the SUT when differ-
ent transitions are taken.
Guard statements to define when a specific transition
is allowed to be taken.
Test input to be linked to each transition/test step.

A. Traditional Modeling Approach for MBT
Figure 2 shows an example snippet of a test model for the

vending machine, using the notation of the OSMOTester

7

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 16 / 139

MBT tool. This is based on existing works such as Model-
JUnit described in [2], modified to better address the modu-
larization aspects discussed in this paper. In this example, the
variable sut represents the system and can either directly
delegate the commands to the SUT itself or to a scripter
writing a test script for later execution. The internal state of
the model is composed of the cents and bottles variables. The
guards are methods identified by the @Guard annotation and
providing a Boolean value (true for allowing the transition).
A transition is matched to its guard by the name given for
both the @Transition and @Guard annotations.
private int cents = 0;
private int bottles = 10;
private VendingMachine sut = new VendingMachine();

 @Guard("10cents")
 public boolean allow10cents() {
 return cents <= 90 && bottles > 0;
 }

 @Transition("10cents")
 public void insert10cents() {
 sut.insert(10);
 cents += 10;
 assertEquals(cents, sut.cents());
 }

 @Guard("vend")
 public boolean allowVend() {
 return cents == 100;
 }

 @Transition("vend")
 public void vend() {
 sut.vend();
 cents = 0;
 bottles--;
 assertEquals(cents, sut.cents());
 assertEquals(bottles, sut.bottles());
 }

Figure 2. Example model snippet.

Test oracles are represented inside the transitions by the
assertEquals() method calls (here from the JUnit test frame-
work [10]) that compare the state of the test model to the
state of the SUT. Input is given to the SUT in each transition.
For example, sut.insert(10) in the “10cents” transitions,
where 10 represents the number of cents inserted.

This is an example of the traditional approach to MBT,
where every transition encodes all test components, includ-
ing test input, and test oracles. In this approach, there is also
a direct mapping from a single guard to a single transition.
This is how traditionally most MBT tools expect the test
models to be provided and how they process them (see e.g.,
[1] for comparison).

Figure 2 also illustrated two basic aspects of a test model
in the terminology of this paper. What we term as control-
flow in this aspect is the way the MBT tool traverses the
EFSM expressed by this model, in evaluating the guards and
taking suitable transitions as chosen by the active test gen-
eration algorithm. Together with this, we use the term data-
flow to describe how the state variable values of the model
evolve as the MBT tool traverses over the control-flow. For
the vending machine, this translates to the evolution of the
cents and bottles variables over time.

B. Modularizing the Control-Flow Modeling
Besides representing the guards, transitions and states of

the EFSM as their own components, the traditional approach
presented in the previous subsection is not very modular. It
does not consider the separation of the different aspects of
test inputs and test oracles (and associated test output). Fur-
thermore, by assuming a direct one-to-one mapping from
guards to transitions, the flexibility of the EFSM modeling is
limited. As these test models are in practice software compo-
nents themselves, this leads to several problems from their
evolution and maintenance viewpoints such as duplication,
low cohesion and weak separation of concerns.

To address these issues, we introduce new test model
components and refine existing components. This includes
more advanced guard composition, extensions for more
explicit test oracles as components of the test model itself,
and objects for generating input data and evaluating output
data. In this subsection we discuss the control-flow elements
and in the following subsection the data-flow elements.

The typical approach to modeling guard statements in an
EFSM is to provide a specific guard attached to a specific
transition as illustrated by Figure 2, where both the 10 cents
and vend are transitions and have a single dedicated match-
ing guard statement. Taking the guard statement for 10 cents
as an example, it provides assertions over two separate con-
cepts, the number of bottles and the number of cents. To help
separate these concerns and provide a manageable modeling
notation, we extend guard modeling by allowing decomposi-
tion of guard statements for a transition into several separate
guards, and to share a single guard statement across several
transitions as needed.

The decomposition aspect is illustrated in Figure 3. This
decomposition provides for more cohesive structure where
different concerns are addressed by different guards. In this
case, the checks over the different state variables have been
split into separate guard statements, each mapping to their
specific transition by their name (e.g., “10cents”). The end
result is more cohesive guard and better separation of model
concerns.
@Guard("10cents")
 public boolean checkMaxCents() {
 return cents <= 90;
 }

 @Guard("10cents")
 public boolean checkBottles() {
 return bottles > 0;
 }

Figure 3. Guard decomposition.

However, decomposition alone does not fully address the
need for providing cohesive guard statements over all the
different transitions in the model. For example, if we consid-
er the vending machine example, there are several transitions
for inserting different types of coins (10, 20, 50 cents). In
practice, none of these or the vend transition, should be al-
lowed to execute if there are no bottles available. To support
this, we need to provide specific shared guard statements.

This is illustrated in Figure 4 where the first guard
checkBottlesExist() is shared by all transitions in the model,

8

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 17 / 139

and the second one is shared by the three listed transitions
(10, 20, 50 cents). The first of these examples is an example
suitable for our simple vending machine example as is. The
second one is an example of how we might model a common
guard in a case where the user is allowed to insert enough
coins for several bottles at once and we need to check that
the total of inserted coins does not go over the number of
available bottles.
 @Guard
 public boolean checkBottlesExist() {
 return bottles > 0;
 }

 @Guard({"10cents", “20cents”, “50cents”})
 public boolean allowMoreCoins() {
 return bottles >= (cents/100);
 }

Figure 4. Shared guard example.

In addition to having guards and transitions govern how
test sequences are generated, we have to consider the evalua-
tion of the test results. This is done by a test oracle and is
traditionally part of each transition as shown in Figure 2 (the
assert statements). In many cases, specific checks are needed
for transitions to check their specific results. However, it is
also commonly important to evaluate the general state of the
model against the matching state in the SUT. To support
more explicit modeling of test oracles, we extend our model-
ing notation to add general test oracles for program state over
several transitions. These are similar in decomposition to the
shared guards and identified by the @Oracle annotation.
Figure 5 illustrates this with an example for the two state
variables shown in Figure 2 for the vending machine. In
practice, our MBT tool sees these as specific transitions to be
executed between other transitions. It is also possible to
relate them to specific transitions with the style of
@Oracle(“transition-name”) similar to guards. In our mod-
els, generic oracles apply regardless of existence of specific
ones. Any oracle matching a transition is always evaluated.
 @Oracle
 public void evaluateBottles() {
 assertEquals(bottles, sut.bottles());
 }

 @Oracle
 public void evaluateCents() {
 assertEquals(cents, sut.cents());
 }

Figure 5. Generic oracle example.

As these generic checks can be expressed separately and
evaluated specifically by OSMOTester, they not only allow
for the modular expression of generic test oracles but also
add more power to the verification functionality of the test
model and the MBT approach itself. In Figure 5, the state of
the model and the state of the SUT are now evaluated to
match continuously without the need to express them explic-
itly over each transition. Any deviation is thus captured as
soon as it occurs and not possibly several transitions later in
the vend transition (if at all) as was the case in Figure 2.

Finally, we also need to consider how and where test
generation should be stopped. The typical approach in MBT

is to describe the test model as a state machine with the ex-
pectation that test cases can be generated and the model can
be traversed at different points, where test generation should
practically always be enabled. The choice of what transi-
tions to take and when to stop the test generation is mainly
up to the test generation algorithm. However, there are points
where it is possible that no transition is enabled and the typi-
cal modeling approach gives no indication to test generation
as to how this should be evaluated. The generic algorithms
used to generate tests from the test model cannot know how
to evaluate this condition for a specific SUT and its test
model. For example, in the case of the vending machine
example, if the vend() transition is taken 10 times, the num-
ber of bottles will reach zero and the shared guard checkBot-
tlesExist() will cause a state where no new transitions are
available. At this point, the test generation tool cannot know
if this should be treated as a failure or as a clue to end test
generation for this step.

To enable the model to express this kind of information,
we add a new annotation called @EndCondition and as illus-
trated in Figure 6. When a method with this annotation re-
turns true, it is taken as an indicator that the current test
generation from this model should be stopped and a new test
case should be started. If no transitions are available and
there is no @EndCondition that returns true, the current test
case is reported by the tool as a failure. This will most likely
indicate a problem in the test model itself. It should be noted
that this annotation is not required for the test generation
algorithms to stop test generation but they can also stop in
other phases where found appropriate by the algorithm. It
can also be used at any point to describe conditions to stop
test generation, regardless of the state of the model.

 We also provide specific notations for setting up new
test cases and shutting down a running system using nota-
tions such as @BeforeTest, @AfterTest, @BeforeSuite, and
@AfterSuite. We borrow these concepts from familiar tools
such as JUnit [10] and TestNG [11], helping also to provide
familiar concepts for other tool users. They basically define
methods that are to be executed before and after a test case or
a test suite respectively, regardless of the algorithms and end
conditions.
 @EndCondition
 public boolean endIfNoBottles() {
 return bottles == 0;
 }

Figure 6. Expressing end conditions.

Using our new control-flow modeling notations we can
thus produce the model shown in Figure 7. Notice that there
is now only a single test oracle where all test assertions are
centralized. The transitions can now focus on performing
actions on the SUT and updating the model state according-
ly. Also, the transition 10cents no longer requires a guard
statement as it is fully covered by the shared guard statement
(also applying to vend). Finally, the model can no longer
enter an unknown state as the end condition for a state with
no bottles is explicitly specified.

9

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 18 / 139

private int cents = 0;
private int bottles = 10;
private VendingMachine sut = new VendingMachine();

 @Guard
 public boolean checkBottlesExist() {
 return bottles > 0;
 }

 @Transition("10cents")
 public void insert10cents() {
 sut.insert(10);
 cents += 10;
 }

 @Guard("vend")
 public boolean allowVend() {
 return cents == 100;
 }

 @Transition("vend")
 public void vend() {
 sut.vend();
 cents = 0;
 bottles--;
 }

 @Oracle
 public void evaluateState() {
 assertEquals(bottles, sut.bottles());
 assertEquals(cents, sut.cents());
 assertTrue(cents >= 0);
 assertTrue(cents <= 100);
 assertTrue(bottles >= 0);
 }

 @EndCondition
 public boolean endIfNoBottles() {
 return bottles == 0;
 }

Figure 7. The model snippet in updated notation.

C. Modularizing the Data-Flow Modeling
The modeling notation described so far in the previous

section shows how we can modularize the control-flow as-
pects of test modeling in MBT. From the viewpoint of data-
flow we need to consider also the input- and output-data
values and their respective constraints. Input data needs to be
generated for the different parameters given to the SUT, and
needs to respect the set of expected constraints for the SUT
functions they are linked to. But since full coverage of most
input combinations is not possible to achieve, we must also
define a set of constraints to define what type of test data
should be generated. The output must similarly consider the
constraints for the output values received from the SUT as
response to the provided stimuli (input).

To support modeling these data-flow constraints, we pro-
vide a generic library of objects we term as invariants ob-
jects. These are based on our previous work in identifying
different aspects of runtime invariance in software behavior
[5]. Each invariant object allows one to specify a set of con-
straints over the data value it represents and to use these as a
basis to perform actions such as generate input data or evalu-
ate the conformance of given (output) values. These allow
for addressing data-flow invariance for a specific value in a
single object, effectively modularizing the constraints over a
single variable in a single object.

An updated model for the vending machine using this no-
tation is shown in Figure 8. This time, the use of the invari-
ant objects for data-flow representation allows for a compact
representation, and this includes transitions for all possible
coin types and vending. By adding the shared guard and end
condition from Figure 7 the model will include all the im-
portant model elements for the vending machine. The invari-
ant objects presented in the figure are specified for integer
data types, and we currently support the basic data types of
integers, floating points, Booleans and character strings. The
constraints supported by these are defined according to the
taxonomy presented in [5].

Note that this model slightly changes the expected behav-
ior of the vending machine towards a more realistic one. This
specification now accepts any number of coins and deducts
100 from the number of inserted coins when vend is applied.
It also collapses all insertXXCents() transitions (10, 20, 50)
from the previous models into a single one, where the input
is represented by a single invariant object defining the al-
lowed input values. This is the ci object (short for centInput
for space reasons in the figure) for the input value defini-
tions. Test oracle expectations for both cents and bottles
variables are expressed by the co and bo variables (short for
centOracle and bottleOracle for space reasons in the figure).
 private IntInvariant ci = new IntInvariant();
 private IntInvariant co = new IntInvariant();
 private IntInvariant bo = new IntInvariant();

 public void TestModel() {
 //set up allowed input values
 ci.addValue(10);
 ci.addValue(20);
 ci.addValue(50);

 //set up evaluation constraints
 co.setMin(0);
 bo.setMin(0);
 bo.setMax(10);
 }

 @Transition("insertCoins")
 public void insertCents() {
 int coin = ci.input();
 sut.insert(coin);
 cents += coin;
 }

 @Guard("vend")
 public boolean allowVend() {
 return cents >= 100;
 }

 @Transition("vend")
 public void vend() {
 sut.vend();
 cents -= 100;
 bottles--;
 }

 @Oracle
 public void evaluateState() {
 assertEquals(bottles, sut.bottles());
 assertEquals(cents, sut.cents());
 co.evaluate(cents);
 bo.evaluate(bottles);
 }

Figure 8. Data-flow modularization.

10

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 19 / 139

D. Further modularization support
In the previous sections we have shown how to build a

modularized test model in our notation. So far we have in-
cluded the elements needed to build a useful model for gen-
erating test sequence and test data. Additionally, it is also
important in test automation to be able to express how the
generated test cases cover different requirements, a concept
also supported by different MBT tools [2]. We support this
through a special requirements object as illustrated in Figure
9. Note that defining the requirements twice is not required
(add() and covered() methods) but doing so allows the tool to
report the coverage percentage.
 @RequirementsField
 private Requirements req = new Requirements();
 @TestSuiteField
 private TestSuite s = null;

 public TestModel() {
 req.add(“vend”);
 }

 @BeforeTest
 public void startTest() {
 System.out.println(“Starting Test “+s.count());
 }

 @Transition("vend")
 public void vend() {
 req.covered(“vend”);
 …
 }

Figure 9. Additional supported test model components.

Figure 9 also illustrates how the modeler can access the
test generation history by adding a TestSuite field that will be
initialized by the MBT tool before starting test generation.
This provides useful information for evaluating and debug-
ging the test model itself. It also allows the user access to the
current test case object, for example, enabling the user to set
the test case as passed or failed for any special reporting
extensions in the MBT tool.

So far we have discussed several new notations for MBT
that help produce more modular test models. However, an
important question of decomposing the objects representing
this notation remains. Besides expressing all elements in a
single model, we also support decomposing the model ob-
jects into several sub-models. When these are registered into
OSMOTester, it will parse them all and match all the ex-
pressed model elements into a single internal representation.
This effectively allows one to, for example, represent the test
oracles in one partial model, guards in another, transitions in
a third, and the remaining ones in fourth. Merging is based
on handling the model element naming across the different
model objects as if they were one.

Finally, we also support the basic set of modular aspects
for any MBT tool as discussed in [12]. It is possible to plug
in different test generation algorithms, algorithms for defin-
ing length of generated test suites and test cases, and to at-
tach various test harnesses and test analysis tools. Figure 10
shows an example of a test sequence visualization tool we
provide as a plugin to the core OSMOTester itself, using as
output a test listener interface provided by the core.

Figure 10. Test sequence visualization.

This visualization shows each transition in the test model
as a box, and the sequences of transitions taken as arrows
from one to another. In this case, the user has chosen to use
“10cents” as the default state, which is why the arrows seem
to originate from this box. This is just one of the available
visualizations as an example of something that can be
plugged in to describe the test cases.

E. Modularization Summary
Figure 11 illustrates the overall flow of the different con-

trol-flow modules in our model. Before test suite generation
commences, @BeforeSuite annotated methods are executed.
Before each new test generation, @BeforeTest annotated
methods are executed. @Guard methods are checked for
enabled transitions, of which one is picked by the test gener-
ation algorithm. After each transition any associated
@Oracle methods are executed. If @EndConditions exist,
they are evaluated for stopping criteria for a single test case.
If not, the criterion is left to the test generation algorithm.
@AfterTest methods are executed when a test generation
stops, and @AfterSuite when all test generation stops.

Data-flow support is defined in terms of invariant objects
defining constraints over data-flow values that support gen-
erating input and evaluating output. Coverage requirements
can be expressed in the test model as objects of their own,
and models can be built from separate model objects as best
seen fit. We see further developments in terms of more com-
plex combinations of data-flow and control-flow elements as
discussed next.

In relation to the different properties of modularization
that were discussed in section II.A, we improve on several of
these properties. Similarity of purpose is supported by more
explicit grouping of elements such as test oracles. Extensibil-
ity is supported by allowing composition of the model ele-
ments (test steps/transition components) from several differ-
ent objects and linking them automatically together. It is
possible to add new test oracles, guards and other elements
as separate model objects without touching existing ones
(also helping address similarity composition). We avoid
cyclic dependencies and enhance compilability by keeping
elements separate and associating by the transition name
metadata only (vs. strict static linking). Our framework is
encapsulated in a set of simple annotations, providing only
minimal exposure on the test models. We make module size
easier to manage with finer granularity of model elements.
Testability is mostly handled in itself by generating tests
from the model and executing them against the SUT as in
MBT in general, verifying both the test model and the SUT.

11

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 20 / 139

@BeforeSuite

@BeforeTest

@Guard

@Transition

@Oracle

@EndCondition

@AfterTest

@AfterSuite

[enabled]

[true]

[false]

Figure 11. Control-Flow Summary.

IV. DISCUSSION

Modularization is one of the key aspects of good soft-
ware engineering in general. As we have discussed and illus-
trated in the previous sections, test modeling in MBT is
practically a software engineering activity in itself. It is basi-
cally about engineering a piece of software that generates a
test suite in terms of the MBT framework, provided by avail-
able tools and libraries. While the traditional test modeling
approaches for MBT have been lacking proper modulariza-
tion mechanisms, we provide a set of means to achieve in-
creased modularity in test modeling. This provides for in-
creased separation of concerns, more cohesion and less du-
plication. As generally in software engineering, this helps
achieve higher maintainability and supports model evolution.

While we advocate the use of our new modularized mod-
eling notation, our approach also fully supports the more
traditional modeling approach. It is possible to fully compose
the model of transitions, guards and embedding all the in-
formation inside these without any modularization. This
means just using a specific subset of our modeling notation
(@Transition and @Guard). It is our experience that the best
result in practice is to combine parts of the different ap-
proaches where most benefit can be gained. That is, modu-
larizing the most common parts while keeping specific parts
where it makes more sense according to the case at hand.

As our models are written in a standard programming
language (Java), it is also possible to decompose the models
into modules in terms of classes and methods. This can help
achieve some of the benefits discussed here in itself (by
using classes and objects), but it is also our experience that

as the model is made more explicit in terms of generic test
oracles, guards and invariant objects, this helps build a more
explicit and understandable model. This also further helps in
the model creation, evolution and maintenance, where hu-
man understanding is typically the key factor in software
engineering. The use of a common programming language
also helps more generic modularization as we can make use
of the wide set of existing Java libraries.

Another aspect related to the modularization of test mod-
els is the modularization of the test models into representing
different viewpoints of the SUT behavior. While the test
models we have presented in this paper describe the expected
correct behavior of the vending machine, another interesting
aspect is the modeling of the failure behavior of the SUT. In
case of the vending machine, this would include trying to
insert incorrect values, access the vending functionality with
less than 100 coins, using negative values, and so on. These
different viewpoints can be modeled as separate models
addressing these specific constraints along with matching
test oracle definitions. This is a form of modularization itself.

Related to the @Oracle elements we have also found that
it is useful to be able to access selected pre-transition state
when checking the overall state after the transition. Similarly
we have noted that this notation can be used for extended
purposes such as supporting data collection for test reporting.
Thus we are looking into options to extend this to support
both with @Pre and @Post transition annotations as exten-
sions of the current @Oracle approach.

In relation to the invariant objects, we described our sup-
port for test modeling in terms of data-flow invariants based
on our earlier work on creating a taxonomy of runtime invar-
iance in software behavior [5]. While we currently use this
invariance to provide support for data-flow modeling, the
taxonomy in itself is more extensive in describing also pat-
terns over control-flow and various invariant scopes. This is
a topic for future work in providing more extensive support
for modeling software behavior.

Our experience thus far has been that we can modularize
control-flow in terms of the generalized test oracles and
guard conditions (in a way defining invariant control-flow
patterns), but the more advanced support in terms of runtime
invariance is challenging to express in a textual support in a
way that is natural for human consumption. In terms of data-
flow modeling, we also see the use of data-flow constraints
to support test generation more widely in terms of boundary
conditions, category partitions, and other relevant test data
constraint and analysis definitions. This requires pairing data
generation algorithms with the invariant constraint defini-
tions. At the same time our experience has also been that
using more domain friendly names (e.g., splitting integer
invariants into value range and similar objects) is easier to
understand and we are evolving the expressiveness of the
data-flow elements into this direction. These are some of the
more advanced research topics in relation to invariant objects
that are out of the scope of the modularization approach
described in this paper but relevant for future studies.

Similarly related to extending the modeling approach is
the combination of different properties of invariance ex-
pressed in the model. For example, in the model presented in

12

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 21 / 139

Figure 8, the ci variable presents a set of input constraints for
the generated test data related to the operations over the
coins state variable. At the same time the co state variable
presents a set of constraints over the expected values of the
same state variable. Expressing these relations such as how
the input should be constrained in relation to the current
value of the state variable is challenging. This also applies to
combining these invariants more generally over different
control-flow aspects and data-flow aspects. Some viable
approaches could be found in existing works such as com-
bining evolutionary testing with MBT (e.g., [13]).

Many of these aspects come back to the limitations of the
textual modeling approach in relation to the advanced con-
cepts presented by the taxonomy in [5]. Thus one interesting
aspect in relation to this is the application of visual modeling
tools and domain-specific concepts. We have previously
studied combining visual representations in terms of domain-
specific models (DSM) to provide more visual support for
test modeling [14]. Combining this to provide more intuitive
support for representing complex interactions over the invar-
iant properties is another interesting research topic for future
studies. While DSM commonly considers the models it
builds from the perspective of the application domain of a
specific company, the modeling notation we describe here
can also be seen as a form of a domain specific language for
test modeling in the domain of MBT.

While we have so far discussed mainly aspects related to
dynamic analysis and modeling related aspects, there are also
several points where static analysis can be useful. This in-
cludes algorithms and techniques such as symbolic execution
to generate test paths to reach defined requirements, test end
conditions, automated input data boundary analysis, and
other similar optimizations. These are aspects supported
already in many advanced (commercial) MBT tools. So far,
we have focused on the modularization of the dynamic
runtime aspects. Extending this to the domain of static analy-
sis of these models is out of the scope of our work but an
interesting and relevant topic for future works.

We have applied our approach and tool on several com-
mercial projects and keep evolving it according to our expe-
riences in these projects. Due to the nature of the projects we
cannot disclose their details. However, they have been suc-
cessful in improving the aspects of model creation, manage-
ment and evolution described here. Similarly, it has helped
make the adoption of MBT approach easier, also leading to
reduced costs in test automation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a modularization ap-
proach for test models in model-based testing. This approach
extends the traditional approach that focuses on the state-
machine abstraction by considering common software engi-
neering aspects and specific components of test automation.
While the traditional approach focuses on state-machine
abstractions in terms of guards and transitions, we extend
this to include new state-machine elements for test models,
including shared guards over several transitions, generic test
oracles over the general system tests, and test end conditions.
These are mainly related to the control-flow aspects of be-

haviour modeling, and we further provide added support for
data-flow representations in terms of objects describing
properties of runtime invariance over system behavior.

Finally, we identify potential topics for future works in
terms of extending invariant object representations to con-
trol-flow aspects and their relation to the data-flow over
different scopes (as identified in our previous work), and also
more extensively in terms of test automation components
such as input value boundary and category analysis. We also
identify extensions of the modularization into the domain of
static analysis, and providing more human-friendly modeling
notations for complex models and invariant objects as inter-
esting topics for future work.

VI. REFERENCES

[1] O-P. Puolitaival, M. Luo, and T. Kanstrén, "On the Properties
and Selection of Model-Based Testing Tool and Technique,"
in 1st Workshop on Model-Based Testing in Practice
(MOTIP), 2008.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A
Tools Approach.: Morgan Kaufmann, 2007.

[3] W. Prenninger and A. Pretschner, "Abstractions for Model-
Based Testing," Electronic Notes in Theoretical Computer
Science, vol. 116, pp. 59-71, 2005.

[4] Q. Farooq, M. Z. Zohaib, Z. Malik, and M. Riebisch, "A
Model-Based Regression Testing Approach for Evolving
Software Systems with Flexible Tool Support," in 17th IEEE
In'tl. Conf. and Workshops on Engineering of Computer-
Based Systems, 2010, pp. 41-49.

[5] T. Kanstrén, "Towards a Taxonomy of Dynamic Invariants in
Software Behaviour," in 2nd Int'l. Conf. on Pervasive
Patterns and Applications (PATTERNS), 2010.

[6] T. Kanstrén. (2011, July) OSMOTester. [Online].
http://code.google.com/p/osmo/

[7] A. van der Hoek and N. Lopez, "A Design Perspective on
Modularity," in 10th Int'l. Conf. on Aspect-Oriented Software
Development, Pernambuco, Brazil, 2011, pp. 265-279.

[8] M. Utting, A. Pretschner, and B. Legeard, "A Taxonomy of
Model-Based Testing Approaches," Software Testing,
Verification and Reliability, 2011.

[9] S. Sarkar, G. M. Rama, and A. C. Kak, "API-Based and
Information-Theoretic Metrics for Measuring the Quality of
Software Modularization," IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 14-32, Jan. 2007.

[10] (2011, July) junit.org. [Online]. www.junit.org
[11] (2011, July) testng.org. [Online]. www.testng.org
[12] V. V. Kuliamin, "Component Architecture of Model-Based

Testing Environment," Programming and Computer
Software, vol. 36, no. 5, pp. 289-305, 2010.

[13] F. Lindlar, A. Windisch, and J. Wegener, "Integrating Model-
Based Testing with Evolutionary Functional Testing," in
Third Int'l. Conf. on Software Testing, Verification and
Validation Workshops, 2010, pp. 163-172.

[14] O-P. Puolitaival and T. Kanstrén, "Towards Flexible and
Efficient Model-Based Testing, Utilizing Domain-Specific
Modelling," in 10th Workshop on Domain Specific Modelling,
2010.

13

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 22 / 139

Dealing with Challenges of Automating Test Execution

Architecture proposal for automated testing control system based on integration of testing tools

Valery Safronau and Vitalina Turlo

Software Testing Automation Department

Applied Systems Ltd.

Minsk, Belarus

safer@appsys.net, turlo@appsys.net

Abstract—If implemented correctly, automated software

testing maybe an efficient way to circumvent time and resource

shortages and ensure faster time to market for new products.

Our experience and survey data show that the execution of

automated tests is often accompanied by a number of time-

consuming and routine operations that are performed

manually, e.g., operating virtual machines, setup and cleanup

of the environment, test launch, logging defects, etc. These

menial chores can be automated with the help of simple

command files or by developing an automated testing control

solution. In the long run, the latter is a more efficient

approach. The paper focuses on the challenges that companies

face in attempting to build such a solution, and provides

practical recommendations on implementation. Finally, we

provide an architecture proposal for the system for automated

testing based on testing tools integration, define its features

and describe the interactions between its components.

Keywords-Desktop application testing; survey; industrial

experience; integration of testing tools; automated testing control

solution.

I. INTRODUCTION

High quality, timely testing is crucial to the development
of a reliable software product. By the same token, running
regression tests on every released (stable) build is critical,
especially in the case of continuously developed complex
systems with extensive functionality. However, due to the
shortage of resources, regression testing is often being
neglected, and its significant lack or incompleteness is one of
the greatest problems in software development quality
assurance.

In order to solve this issue, Automated Testing (AT) is
used. The fact is that implementing AT can be a great
challenge in its own right, as it requires well-tuned software
development and testing processes as well as clearly
organized communication flows. “One of the primary
reasons software testing tool implementations fail is because
there is little or no testing process in place before the tools
are purchased [1].”

In many instances the expression “automated testing” is
misleading, as the testing process is still being controlled by
a test engineer, especially where desktop applications are
concerned. According to the online surveys conducted by
Applied Systems Ltd. via the SurveyMonkey.com service, a
tester has to manually fulfill some or all of the operations to

execute automated tests on a new product build, such as
configuring the testing environment, starting/shutting down
Virtual Machines (VMs), launching tests, submitting bugs to
a tracking system, closing fixed bugs, generating reports, and
so on [2][3]. In addition to being very time-consuming,
manual operations drastically increase the probability of
human error. For these reasons, our goal is to enable the
unmanned execution of the full AT cycle by completely
automating these routine operations.

In this paper we describe a new, efficient approach to
controlling automated software testing that meets the
aforementioned challenges. The solution is based on the
integration of testing tools. It has been applied in practice,
and has proven useful in the automated testing of
desktop applications, ensuring non-stop execution of tests
while eliminating menial and boring tasks from the work of
testers. One of the most obvious benefits of this solution is
guaranteed regression testing of each new build.

The present work focuses on the realization of unmanned
execution of automated tests – from environment set-up and
test launch to defect tracking and report generation – but not
on design and development of automated test scripts. We
assume that test automation engineers know how to create
tests that are reliable, maintainable and data-driven, while
complying with the principles of test case independence,
absence of redundant code, and scalability.

The findings of this paper are based on more than five
years of practical experience in the automated testing of
desktop software, as well as the results of two IT community
surveys with a pool of more than 300 respondents.

Section 2 gives an overview of key previous work in the
field of automated testing. In Section 3 we examine the
evolution of automated testing and suggest a new
classification of test automation levels emphasizing the
amount of manual routine operations in the AT process.
Section 4 is dedicated to exploring the main challenges
inherent in building an Automated Testing Control System
(ATCS). In Section 5 we propose the working archetype of
such an ATCS with a detailed description of its main features
and components. The Conclusion section summarizes the
paper’s findings and outlines the field of research for future
work.

The insights of the present work will be useful to Test
Automation Engineers, Heads of Testing and QA
departments, and those practitioners who wish to develop an
in-house solution for automated testing control.

14

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 23 / 139

II. RELATED WORK

As automated software testing gains popularity, the body
of literature on the subject has been growing steadily in
recent years. They provide test engineers with the theoretical
and practical base necessary for a successful implementation
of automated tests [1][4][5][6]. Authors with extensive
professional experience in the industry guide the reader
through the decision whether to automate tests, help to
navigate through a plethora of testing tools to select the best
fit ones, and give advice on building robust and documented
testing processes [1]. The works also offer guidance on test
planning, design, development, execution, and evaluation
[4][6].

For a constructive discussion on which tests cases should
be automated and guidelines for assessment of return on
investment, see the work by Dustin and Garrett in [6] and
[7], as well as Chapter 2 in Mosley and Posey in [1].

In Automated Software Testing Dustin, Rashka and Paul
introduce the concept of Automated Test Life-Cycle
Methodology (ATLM), “which is a structured methodology
geared toward assuring successful implementation of
automated testing [4].” They identify five phases of ATLM,
namely:

1) Decision to automate test.
2) Automated test tool acquisition.
3) Introduction of automated testing to a new project and

its optimization.
4) Test planning, design, development and execution.
5) Test evaluation.
Mosley and Posey argue that ATLM is an “artificial

construct” that is not very useful for practitioners. They
argue against the idea of a software testing life cycle, and
claim that the result of the implementation of test automation
depends on the quality of the processes already in place in
the organization [1]. Despite certain differences in their
approach to testing, Dustin and Mosley both promote a
deliberate, well-reasoned preparation for test automation,
including in-depth studies of test requirements, setting
realistic expectations and planning for automated testing.

Our contribution to the existing knowledge on the topic
consists in proposing an architecture design for automated
testing control system, which is based on the integration of
testing tools. We focus on how to realize completely
unmanned test execution.

III. EVOLUTION OF AUTOMATED SOFTWARE TESTING

 “Automated software testing” is a controversial
expression employed by software companies regardless of
the test automation level they have achieved.

Attempts to classify the levels of maturity of automated
testing are not new. For instance, Dustin et al. correlate the
four levels of automated testing described by Krause to the
Software Testing Maturity Model (TMM) [4][8][9].

At the initial TMM level testing is not separated from
debugging. It corresponds to “accidental automation,”
automated testing that is nonexistent or carried out on an ad-
hoc or experimental basis. Test automation is not supported

by process, planning and management activities; scripts are
not reusable or maintainable.

At the second, Phase Definition level, testing and
debugging are separated, and “incidental automation”
occurs. At this phase automated scripts are adapted, but not
reusable, and there are no defined processes.

The integration phase corresponds to a level of maturity
where testing no longer follows coding, but is integrated into
the software life cycle. At this stage, automated testing is
referred to as “intentional automation.” The process is well
documented and well-managed; scripts’ reusability and
maintainability are at the core of test design and
development.

At the fourth TMM level, testing is a measured and
quantified process. Defects are tracked and assigned a
severity level. In automated testing, this stage is called
“advanced automation” and is supplemented with post-
release defect tracking. The test team is an integral part of
product development, which ensures that bugs are found as
early as possible.

The classification of automated testing maturity levels
that we suggest below does not conflict with the TMM
model. However, we focus on a different criterion, which is
the number of operations that are still being performed
manually during automatic test execution. In addition, we
emphasize such factors as organizational needs and project
length and requirements.

In this section, we will define three stages of testing
automation evolution as we view it and provide their
principal characteristics (see Fig. 1).

A. Infancy Stage

This phase is marked by the emergence of scripts and
automated tests. The scripts usually perform frequent,
routine functions necessary to prepare the product for testing,
e.g., the copying of product installation and configuration
files to the testing PC and basic system setup. The scripts can
also be used to verify particular product functionality. Along
with the scripts, the automated tests created with special test
automation tools (e.g., Visual Studio, HP QTP) appear in the
testing process of an organization.

The main characteristics of this stage are:

 Lack of arranged test storage (generally, the tests
are stored on the tester’s PC and used solely by him
or her, i.e., they are not reusable or adapted to any
changes of tested interfaces).

 Need for systemized test launch.

 Figure 1. Stages of testing evolution.

15

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 24 / 139

 Shortage of documented procedures and common
practices for interpreting test results and creating
reports.

The infancy stage lacks a systematic approach to the
integration of AT into the software quality assurance
process.

At this point the tests are often unstable and their results
cannot be reliable. However, they may free up a certain
amount of resources by helping testing specialists fulfill the
most routine tasks.

Typically, organizations that dwell at this phase have
short-term projects, and thus lack the opportunity to upgrade
to a higher level of test automation. These include small
companies that have no testing process as such, as well as
firms that are just beginning to use automated tests.

B. Awareness Stage

In this phase the majority of activities are automated
using, for example, batch files: launching tests, starting and
shutting down VMs, copying the necessary configuration
files to the testing PC and other operations.

The following features are typical of the second stage:

 Improvement of test quality.

 Arrangement of centralized storage for tests and
libraries of functions (tests become reusable).

 Tests are launched automatically upon the issue of
each new product build.

 Naming rules for automated tests take effect.

 Guidelines for processing test results (submitting and
closing bugs) are elaborated.

At this stage, which is the most widespread among
companies, we may trace particular signs of automated
testing. A typical company representing this phase is a
developer of middle- and long-term software projects, which
has well-established testing processes and realizes the need
for regular regression testing.

C. Maturity Stage

This is the most advanced level of automated software
testing, where it is seamlessly integrated into the company’s
testing processes. As Mark Fewster and Dorothy Graham put
it, “A mature test automation regime will allow testing at the
“touch of a button” with tests run overnight when machines
would otherwise be idle [5].”

We characterize this stage as “full testing automation”.
By that we mean that all the operations related to test
execution are done automatically, without the participation
of a test engineer. These include:

 Starting and shutting down Virtual Machines (VMs)
in cases using virtualization during testing.

 Configuring the testing environment.

 Queuing builds for testing according to their priority.

 Execution of tests upon successful build compilation.

 Submission of defects to the Bug Tracking System
(BTS).

 Closing fixed bugs in the BTS (optional).

 Generation of a unified report on all passed tests.

Obviously, all of these elements should be automated to
the extent that it is cost and time efficient [1]. Generally,
such an advanced level of automation is attained by
companies developing complex software products with
extensive functionality. They are engaged in middle- and
long-term projects and have to meet the challenges of
missing or incomplete regression testing, and the effort of
achieving the advanced level is worthwhile for them.

As we proceed, we will assume that introducing
automated tests is a decided matter, its economical feasibility
is proven, and a company’s goal is to achieve the maturity
stage where tests are executed automatically, i.e., without the
interference of a test engineer. Many publications discuss the
criteria according to which tests should be automated. They
also provide techniques for evaluating return on investment
of test automation [6][7]. These particular topics are beyond
the scope of this paper.

This paper focuses on achieving the advanced level of
automation by means of a special automated testing control
solution. Below, we describe the main challenges of
developing an ATCS and propose the software architecture
of such a system.

Along with the above-listed functionality, the AT control
solution provides a common User Interface (UI) that enables
the user to fully parameterize test execution and customize
all related tools (virtualization server, BTS, automated
scripts) according to the project requirements.

At the maturity stage, the experience of earlier attempts
at testing automation is taken into account, and special
attention is paid to the scalability and expandable
architecture of the ATCS itself.

IV. MAIN CHALLENGES OF BUILDING AN AUTOMATED

TESTING CONTROL SOLUTION

In order to remove manual activities from automated test
execution, test engineers have a choice: whether to develop
special configuration and command files, or attempt to create
a special AT control program with a front-end interface that
would send relevant instructions to the testing tools [5]. We
focus on the latter, as this approach is more thoughtful and
sustainable.

This section will cover the most common challenges that
software companies are contending with while building
automated testing solutions. These statements are based on
our own professional experience, the experience of our
colleagues and the results of our industry research.

With the view of studying certain problems of automated
test execution, we conducted two online surveys. The first
survey took place from May 10 to May 30, 2011 among the
Russian-speaking IT community from all over the world.
The link to the survey was placed at one of the most popular
IT-specialized resource sites, Habrahabr.ru. The
questionnaire consisted of 10 questions and gathered answers
from 292 respondents [2]. The second survey was run among
members of testing related groups on professional
networking site LinkedIn.com from May 25, 2011 to June 4,
2011, and received 34 responses [3]. It was comprised of the
same questions as the first survey and included an additional
question (see Section IV-C below).

16

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 25 / 139

The objective of our surveys was to show that despite the
use of automated tests there are manual routine operations a
tester typically performs to have them executed.

A. Incomplete Automation

“When you start implementing automated tests, you will

find that you are running the (supposedly automated) tests

manually. Automating some part of test execution does not

immediately give automatic testing [5].”
To assess the level of testing automation in their

organizations, we asked a question in our survey: “During
the automated testing, what are the operations that you still

have to perform manually?” This particular question
received 247 answers, and 45 respondents skipped it
[2].

According to the survey, only 12.6% of respondents
claim that in their organization all the operations related to
AT are executed automatically, i.e., without the interference
of an operator. As illustrated in Fig. 2, the most widespread
tasks that a tester has to perform manually are submitting and
closing bugs in the BTS (60.3% and 55.1%, respectively),
launching automated tests (52.2%) and creating reports
(44.5%). As the question allowed multiple answers, the total
percentage exceeds 100 % [2].

On the one hand, these operations are monotonous and
have a lower added value than, for example, the creation of
new test cases – an alternative to investing the tester’s time.
On the other hand, they are time-consuming. For instance, in
the case of data-driven testing, where the value of each
particular output is important, a new bug must be submitted
each time the test criteria are violated. On average, an
experienced tester submits a defect into the bug-tracking
system, including completing the assigned fields, in slightly
more than a minute, and closing a fixed bug takes about 15
seconds

1
. Multiplied by the number of defects the tester has

to process, the amount of wasted time may be considerable.

1 Measurements were done with the following properties:

1. Bug Tracking System (BTS): Microsoft Team Foundation Server (MS

TFS), Mantis, Bugzilla.
2. Experimenters: 2 Testers (both 4 years of experience).

During the experiment 10 bugs were created with the following required

fields:
MS TFS: Title, AssignTo, Iteration, Area, Tester, FoundIn, Severity.

Mantis: Category, Summary, Description, Platform, OS, Severity.

Bugzilla: Component, Version, Summary, Description, Severity, Assignee.
Opening BTS is also measured.

Another example is the set-up of the testing environment,
which is carried out manually by 25.5% of our respondents
[2]. The tester has to place a specific file into a specific
directory before the automated test run. These actions are
time-consuming, difficult to document and can be easily
missed, resulting in flawed test results [5].

B. System Scalability and Expandability

In our interviews with peers, we found that oftentimes

when a company develops a system for controlling

automated testing, it focuses on the tools currently used

without providing for system expandability. As a matter of

fact, the solution being built for specific tools has important

shortcomings. For instance, when the organization upgrades

to a new version of the bug tracking system, or wants to add

virtualization servers to the test lab, or introduces new types

of automated tests created using a different framework,

system integration and customization efforts will have a

significant cost.

The outcome is the same when the crucial factor of

system scalability is not taken into account. As product

functionality increases over time, the number of automated

tests increases as well, and there is a need for rational

distribution of virtualization resources. The extension of the

virtualization capabilities results in the rise of efforts to

maintain the test automation system, and to manage a

number of additional elements.

Therefore, such features as scalability and expandability

have to be realized in the testing control solution’s

architecture in order to maximize its performance through

the software life cycle.

C. Absence of an Easy-to-use Control Tool (User

Interface)

In the majority of cases there is no single client interface

for control and adjustment of the AT process, which

negatively affects the overall performance. The settings of

test execution are parameterized by means of config files

(see Fig. 3) [3]. More often than not, the code of the

configuration files is not subject to validation, resulting in an

increase in human errors.

Figure 2. Manual tasks in automated testing (survey results) [2].

Figure 3. Configuring the parameters of AT run (survey results) [3].

17

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 26 / 139

It is recommended to develop a front-end providing a
“user interface that is independent of the automation tool
used [5]. A common UI that enables the set-up of the
automated test run without writing a single line of code
augments the efficiency of software quality assurance. It
helps reduce the learning curve, as the test engineer works
with the single UI instead of interacting with several tools.

D. Lack of Uniform Cumulative Reports

In general, each test automation framework, such as HP

QTP or IBM Rational Robot, generates reports in its own

native format. In our practice we experienced firsthand the

situation when a stakeholder (manager, customer) was not

able to view test results because the corresponding tool was

not installed on his/her computer. Even if any of these

frameworks possesses an export feature, they have to handle

a stack of separate lengthy records.

A testing automation solution should provide for uniform

cumulative reports, meaning that a single summary report is

based on the results of a batch of test cases and is presented

in a structured and easily readable form. Furthermore, up-to-

date results should be available and accessible at any

moments of test execution, and the storage of reports history

should be enabled.

E. Uninterrupted Operation

An automated testing process resembles a conveyor belt.

At the entry point, we have new builds of the system under

test, and at the output, found defects and reports. To ensure

the continuity of operation and system stability, it is

necessary to develop mechanisms preventing system hang-

up. For instance, if a test has an error, it will be run

endlessly, keeping a virtual machine’s resources busy and

preventing the execution of other queued tests. Therefore, it

is useful to implement the “timeout kill” algorithm to ensure

the system’s fault tolerance.

F. Insufficient or Lacking System log

Deficient system logging hampers the debugging

process, which makes an ATCS non-transparent and its

activities hardly traceable. Therefore, when developing a

system for automated testing control, it is crucial to enable

the logging of all system components, including the events

of automated tests, virtual machines, defect management

system, reports, etc. These measures help minimize the time

needed for debugging and increase the efficiency of software

quality assurance and validation.

V. ARCHITECTURE PROPOSAL OF AUTOMATED TESTING

CONTROL SOLUTION

In this section, we describe an efficient approach to bring
automated test execution to the highest maturity level. We
present a working archetype of the software system that
controls automated tests and is independent of testing tools
used. The proposed solution eliminates routine manual
operations from the test execution process.

A. Integration of Testing Tools

The approach we recommend consists of building a
coherent and comprehensive software solution which
independently controls all operations related to AT – from
launching tests and operating virtual machines to submitting
bugs and generating reports. The solution, as Fig. 4 suggests,
is based on the integration of software tools engaged in AT,
namely the file server, the build machine, the versioning
control system, the virtualization server, the bug tracking
system, and automated tests themselves.

In order to develop such an integrator, first one needs to
analyze the tester’s interaction with all the above-mentioned
tools. The second step is to examine the APIs (Application
Programming Interfaces) of each tool. The final stage is the
development of a solution that integrates all these software
tools under a common UI, via which the tester can easily and
quickly adjust the automated testing control system
according to the requirements and processes established in
the organization.

In other words, instead of customizing and configuring
each tool separately (virtualization server, BTS, automated
tests, etc.), the tester will be able to adjust all settings via a
single easy-to-use UI.

The prototype of the described automated testing control

system was developed and successfully deployed by Applied

Systems Ltd. The program architecture consists of three

modules:

1) Automated Test Manager (ATManager)
ATManager is a complex service that controls the whole

AT process and assures communication among all elements

in the system. It plays a central part in the functioning of the

test automation solution and works using the algorithms

described below.

When a new project is created, the tester (operator) presets

the ATCS for verifying a specific build branch: adds tests

into the system, groups them into test runs, etc. Once this is

done, ATManager takes over and probes every new build in

automatic mode.

1. ATManager monitors the state of the build machine via

its API. If the new build is completed successfully,

ATManager is notified and starts the testing procedure.

Each build can have several test runs configured to verify

it. Different test runs can be executed simultaneously on

different machines.

2. ATManager finds an appropriate test machine (VM or

physical PC). Each test run has a set of virtual machines on

which they can be executed.

Figure 4. Integration of testing tools.

18

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 27 / 139

3. ATManager starts a VM (in the case of using

virtualization during testing) via the API of the

corresponding virtualization server. It chooses appropriate

machines from the least busy virtualization server.

4. ATLauncher is initialized.

5. ATManager deploys build binaries and automated tests

from the file server or version control system on the VM.

Then it configures the environment on the test machine.

ATLauncher launches tests.

…Automated tests are executed…

6. ATManager sends test results to the File Server.

7. ATManager submits/updates defects to the BTS, closes

fixed bugs if these actions were allowed by the tester.

ATManager service fills in the required fields in the BTS

(e.g., Title, Tester, Product, Assigned to, etc.) using its API

(see Fig. 5 for illustration).

2) Agent for Launching Automated Tests (ATLauncher)
ATLauncher is a console application installed on each

testing machine. It is a small service that does not impact the

performance of the host system.

The main functions of the module are:

 presetting the testing environment (i.e., copy

configuration files, install the software under test);

 launching various types of tests (using the APIs of

frameworks in which they were developed);

 processing and converting the test results, etc.

The module architecture must be expandable and allow the

addition of new features.

ATLauncher starts working after ATManager has started

a VM (in the case of using virtualization) and copied all

required files, including automated test scripts and config

files. The XML file created by the control module

ATManager contains the description of tests and usage

instructions. As soon as the tests are finished, ATLauncher

creates a special results file to notify ATManager about the

completion of its task.

3) Control Panel
The user interface is represented by the control panel. It is

a client application which facilitates the interaction

between the tester and the ATCS, providing the tools

necessary to configure and manage the test run for an

application under test.

The UI allows the user to:

1. Specify the tests to be run on each build, assign priority

to the build branch, schedule test launch on event (issue

of a new build) or on schedule; choose defect tracking

options (Fig. 6).

2. Allocate the sets of valid machines for each test run,

assign tests for execution on a particular real or VMs

and their snapshots.

3. Manually launch tests on a specific build, interrupt test

execution.

4. View ATManager’s logs.

5. Monitor the testing queue in real-time (Fig. 7).

In the time of ever-increasing mobility, it is useful to

provide access to the control panel from the desktop as well

as a web interface.

B. Distribution of Functionality Among Components

While creating a solution to control an automated testing
cycle it is necessary to distribute the functionality of your
future system among its components.

 Figure 5. Scheme of communication between the components of the
ATCS.

Figure 7. Sample screenshot of the ATCS(Builds tab).

Figure 7. Sample screenshot of the ATCS(Queue tab).

19

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 28 / 139

In Table 1, we suggest possible options to distribute basic
functionality among ATM, ATL and the client UI. To
coordinate the work of all these components, one needs to
develop a large set of algorithms and solutions.

VI. CONCLUSION AND FUTURE WORK

One of the most serious problems facing software
development companies today is the lack of resources for
regular and comprehensive regression testing.

The most obvious and popular solution is implementing
automated testing. However, despite the abundance of tools
for testing automation, this endeavor presents many
challenges, especially in the case of testing desktop
applications. In the first place, the word “automated” does
not mean, as one might be led to believe, that operations are
handled without human interaction. In fact, in the process of
automated test execution – Configure the testing
environment  Start the virtual test machine  Launch tests
 Execute tests  Submit bugs to the bug-tracking system
 Generate test reports – only a few operations, besides the
test execution itself, are automated. In addition to the fact
that “non-automated” activities are time-consuming and
inefficient, they also leave room for human error.

To meet these challenges, some companies developing
complex software are trying to create a solution that would
control the whole AT process from A to Z without the
participation of an operator. Only 12.6% succeed [2].

In this paper, we have described an efficient and
innovative approach to automating test execution based on
the integration of all testing tools under a common UI. We
also provided practical advice on how to develop such an AT
control solution, proposed the system architecture, defined
the key functionality of its components and schematized the
communication among them.

In the future, we plan to assess the costs and benefits of
implementing an AT control solution into a company’s QA
management system.

ACKNOWLEDGMENT

We would like to express gratitude to Ivan Bachtin, who
did a wonderful job developing the prototype of the
automated testing control system we refer to in this paper,
and to Sergei Usovich, who provided financial support and
shared our enthusiasm. We also thank our friends and
colleagues who shared their experience and insights and
contributed to this work, namely Maks Shatokhin, Alexander
Abramov, and Dmitry Romanovich.

In fact, a few hundred people contributed to the progress
of this paper in different ways, and we are especially
thankful to the respondents to our online surveys, which
provided a solid support to our statements and arguments.

 REFERENCES

[1] D. Mosley, B. Posey, “Just Enough Test Automation,” Prentice Hall,
2002, pp. 12-14.

[2] Online survey “Problems of automated desktop software testing” by
Applied Systems Ltd. via Habrahabr.ru,
https://www.surveymonkey.com/s/automated_testing_problems
30.05.2011.

[3] Online survey “Challenges of automated software testing” by Applied
Systems Ltd. via LinkedIn.com,
https://www.surveymonkey.com/s/automated_testing, 30.05.2011.

[4] E. Dustin, J. Rashka, and J. Paul, “Automated Software Testing:
Introduction, Management, and Performance,” Addison-Wesley
Professional, 1999, pp. 38- 45.

[5] M. Fewster, D. Graham, “Software Test Automation: Effective use of
test execution tools,” Addison-Wesley Professional, 1999, pages: 3,
62, 246, 329.

[6] E. Dustin, T. Garrett, “Implementing Automated Software Testing:
How to Save Time and Lower Costs While Raising Quality,”
Addison-Wesley Professional, 2009, pp. 192-204.

[7] T. Garrett, “Useful Automated Software Testing Metrics,”
http://idtus.com/img/UsefulAutomatedTestingMetrics.pdf,
21.07.2011.

[8] M. Krause, "A Maturity Model for Automated Software Testing,"
Medical Device and Diagnostic Industry Magazine, December 1994.

[9] I. Burnstein, T. Suwanassart, and C. Carlson, “The Development of a
Testing Maturity Model,” Proc. Ninth International Quality Week
Conference, San Francisco: The Software Research Institute, 1996.

TABLE 1. DISTRIBUTION OF BASIC FUNCTIONALITY AMONG

COMPONENTS OF ATCS

Functionality

Module Control via

common UI
AT-

Manager

AT-

Launcher

1. Operate virtual
machines (VM)

- start/shut down VM

- add VM and snapshots
to the system

- group VMs

+ - +

2. Launch automated
tests

- + +

3. Submit/close bugs in

the BTS

+ - +

4. Generate a uniform
cumulative report

+ - +

5. Convert results into a

single easy-to-interpret

format

+ - -

6. Copy tests, config
files, product setup files

to the testing machine

+ - +

7. Install the tested
product

- + +

8. Log all system events + + -

9. Abort text execution + + +

20

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 29 / 139

Detecting Equivalent Mutants by Means of Constraint Systems

Simona Nica, Mihai Nica and Franz Wotawa

Technical University of Graz, Institute for Software Technology
Inffeldgasse 16B/II, A-8010 Graz, Austria
{snica, mnica, wotawa}@ist.tugraz.at

Abstract—Mutation testing has been used along the research
community as an efficient method to evaluate the process
of software testing, i.e., the quality of the test suite. One
major drawback is represented by the equivalent mutant
problem. Through this current research we aim to come with
a reliable solution to this problem and improve the available
test suite pool. We do this by combining the mutation testing
procedure together with a constraint satisfaction paradigm and
the concept of distinguishing test cases. Mutation testing has
been seen, in most of the cases, as a measure for evaluating the
quality of a user’s test suite. But, also mutation testing can be
of great help in the test case generation process. By means of a
constraint system we generate test scenarios able to distinguish
between two different versions of a program. We start from the
hypothesis that when our constraint system is not able to find
any solution it might be the case that two equivalent mutants
were encountered. The first empirical results, i.e. an increased
mutation score, encourage us to further apply the strategy on
medium size applications.

Keywords-Mutation Testing; Equivalent Mutants; Mutation
Score; Constraint Satisfaction Problem; Distinguishing Test
Case.

I. INTRODUCTION

Mutation testing has been intensively used in a large
number of experiments as an efficient way to detect the
quality of a program’s test suite [1]. It is a fault based
technique that makes use of a well determined set of faults
for measuring the efficiency of the test suite. In mutation
testing the original program is slightly changed using mu-
tation operators and the resulting mutant is executed using
the test suite. If there is at least one failing test run, the
mutant is said to be detected or killed. In mutation testing
mutants that are not killed are alive. A test suite is said to be
more effective if it has the capability to detect more mutants.
The efficiency of a test suite in mutation testing is measured
using the mutation score. The mutation score is equivalent
to the number of mutants detected divided by the overall
number of of non equivalent mutants (a mutant is said to be
equivalent if there is not a test case which can distinguish

The research herein is partially conducted within the competence network
Softnet Austria (www.soft-net.at) and funded by the Austrian Federal
Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT) and the Austrian
Science Fund (FWF).

Authors are listed in alphabetical order.

the output of the mutant from the output of the original
program). In the ideal case the mutation score is 1 and all
mutants are successfully detected. Mutation analysis is a
good metric for measuring the coverage levels achieved [2].
In the work presented in this paper, we are using mutations
not only for measuring the efficiency but also for improving
the quality of the test suite. The idea is to generate new
test cases in case of mutants that cannot be detected. The
proposed technique is based on the constraint representation
of programs [3], [4] and on the concept of distinguishing test
cases [5]. We convert both the program and its alive-mutants
to a constraint satisfaction problem (CSP) [6] and ask the
constraint solver to search for an input such that the two
programs differ by at least one output value (computation
of a distinguishing test case). When receiving such an input
we are able to discriminate the mutant and the original
program using the generated test case. An input that allows
to discriminate two programs is called a distinguishing test
case.

However, sometimes it might happen that a mutation over
the original program will not change the semantics of the
program, making thus hard to detect the change by a test
case. This is one important issue which must be considered
when generating the mutants. In the literature this is
denoted as the equivalent mutant problem. Although several
techniques are available in order to solve this problem [7],
[8], we do not have a general solution. Therefore, in the
first phase, we propose an algorithm to detect and reduce
the equivalent mutants and then apply the distinguishing test
cases algorithm in order to improve the test suite of a given
application, i.e. improve the mutation score.

The goal is to clarify the research question whether it
is always possible to increase the mutation score of a test
suite from x%, e.g., 70%, to 100%, based on the method
of computing distinguishing test cases from alive-mutants
and eliminating the equivalent ones. Our hypothesis in
this respect is that a mutation score close to 100% can be
achieved when using our proposed technique. In some initial
experiments we observed increases of the mutation score
even from 42% to 100%. However, in these experiments
we only used small-size programs for testing the algorithm.
Hence, the initial experiments confirmed our hypothesis and
further more sophisticated experiments have to be carried

21

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 30 / 139

out.
In what follows, we will give the basic definitions and

then describe the proposed algorithm.

II. BASIC DEFINITIONS

In order to have an accurate understanding of the algo-
rithms described later in the paper, we present the basic
definitions which we will use throughout our paper. We
will explain what a mutation is, what we understand by
equivalent mutant and what a constraint system is.

Definition 1: [Test Case] A test case for a program Π
is a set (I,O) where I is the input variable environment
specifying the values of all input variables used in Π, and O
the output variable environment, which does not necessarily
specifies the values for all output variables.

A test case is a failing test case if and only if the output
environment computed from the program Π when executed
on input I is not consistent with the expected environment
O. Otherwise, we say that the test case is a passing test
case. If a test case is a failing (passing) test case, we also
say that the program fails (passes) executing the test case.

Definition 2: [Test Suite] A test suite TS for a program
Π is a set of test cases of Π.

Definition 3: [Constraint Satisfaction Problem (CSP)]
A constraint satisfaction problem is a tuple (V,D,CO)
where V is a set of variables defined over a set of domains
D connected to each other by a set of arithmetic and
boolean relations, called constraints CO. A solution for a
CSP represents a valid instantiation of the variables V with
values from D such that none of the constraints from CO
is violated.

The variables from the CSP system do not necessarily
need to be the variables used in the program.

Definition 4: [Mutant] Given a program Π and a state-
ment SΠ ∈ Π. Further let S′

Π be a statement that results from
SΠ when applying changes like modifying the operator or
a variable. We call the program Π′, which we obtain when
replacing SΠ with S′

Π , the mutant of program Π with respect
to statement SΠ.

Definition 5: [Equivalent Mutant] Given a program
Π ∈ L and one of its mutant Π′, we say that Π′ is an
equivalent mutant if the mutation that differentiates Π from
Π′ does not change the semantic of Π.

For a better understanding, we illustrate our definition
with the example from Figures 1 and 2. Over the original
version of the program from 1 we apply the relational
operator replacement ≥.

Definition 6: [Distinguishing Test Case] Given a pro-
gram Π and one of its mutant Π′, a distinguishing test case
for program Π and its mutant Π′ is a tuple (I, ∅) such that
for the input value I the output value of program Π differs
from the output value of program Π′.

int a, b;
int compute;
if (a == b)
compute = a;

else
compute = (a + b)/2;

System.out.println(compute);

Figure 1. Original Program

int a, b;
int compute;
if (a >= b)
compute = a;
else
compute = (a + b)/2;

System.out.println(compute);

Figure 2. Equivalent Mutant for ROR

III. RESEARCH STRATEGY

Mutation testing is used mainly to determine the effective-
ness of the given test suite by making use of the mutation
score metric [9]. The idea of using mutation testing also
for test case generation is not new. In [10], the authors use
model based mutation testing in order to obtain distinguish-
ing test cases from contract mutations. In [5], there are used
distinguishing test cases obtained from mutants to reduce the
number of diagnoses in case of fault localization. Mutation
can also be used to indicate possible fixes of faulty programs
as suggested in [11]. Moreover, the use of constraints for
test case generation is also not new. In [12], the authors
propose a method that makes use of the constraint systems
to generate test cases. What distinguishes our work from
the previous one is the combination of program mutation
and constraint solving techniques in order to improve the
mutation score of the test suites and, moreover, to help
detecting the equivalent mutants [13].

Moreover, we try to determine an efficient method for
eliminating the equivalent mutants. In what follows, we will
describe first the algorithm we use to detect and remove the
equivalent mutants from the set of generated mutants, and
then the algorithm for improving the mutation score of test
suite.

In our research, we make use of an extended version
of the MuJava tool [14], [15] for computing the mutants
and the MINION constraint solver [16] for obtaining the
distinguishing test cases.

First, we define an algorithm which will translate the
original program into a constraint system. We will call

22

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 31 / 139

this algorithm along the research experiment. It receives
as input the original program and it gives as output the
constraint system.

Algorithm Transform To CSP (Π)

1) Eliminate all loops from the original program by
replacing them with a bounded number of nested
conditional statements,

2) Convert Π to its equivalent SSA (static single assign-
ment form) representation,

3) Convert SSAΠ into its corresponding constraint rep-
resentation system.

For the elimination phase, the algorithm receives
as input the original program Π and the set of generated
mutants MΠ and offers at the output the new set of mutants.

Algorithm Eliminate Equivalent Mutants (Π,MΠ)

1) Call Transform To CSP (Π) and obtain the constraint
system CONΠ

2) For each Πi from MΠ

a) Call Transform To CSP (Πi) and get the mu-
tant constraint system CONΠi

b) Create the constraint system CS, corresponding
to CONΠ ∧ CONΠi , in order to apply the
distinguishing test case restriction to the entire
constraint system;

c) Add the same inputs - different outputs con-
straints, i.e., I(CONΠi

) = I(CONΠ) and
O(CONΠi) 6= O(CONΠ) to the set of con-
straints CS.

d) Solve the constraint system CS.
e) if no solution is found, then do:

i) Equivalent mutant detected
ii) Remove mutant Πi from MΠ

The above algorithm will always end either when one or
several solutions are found or when the constraint system is
not able to detect any solution. The condition same input -
different outputs is first used in our research in order to help
us detect an equivalent mutant. The experiments conducted
have demonstrated that when the constraint solver is not able
to offer at least one solution, the two programs taken into
consideration are semantically equivalent.

Now, we present the method for improving the test
suite of a given program. The algorithm takes as input the
program Π and the test suite TS, and delivers as output a
test suite that must have a higher mutation score than the
original one.

Algorithm Generate Test Cases (Π, TS)

1) For the program Π generate the finite set of mutants
MΠ.

2) MΠ = Eliminate Equivalent Mutants (Π,MΠ)

3) Run the original test suite TS against the set of
mutants MΠ and, compute the mutation score µ =
MutantsKilled

MutantsTotal
where MutantsKilled is the number of

killed mutants, and MutantsTotal represents the total
number of mutants.

4) If the mutation score µ is larger than a predefined
value, return TS as result. In this case no improve-
ment is necessary.

5) Otherwise, for each Πi from MΠ

a) Call Transform To CSP (Πi) in order to convert
the original program and the alive mutants into
their CSP representation (for more information
concerning program conversion to its constraint
representation we refer the interested reader to
[4])

6) Let CONΠ be the constraint representation of the
original, bug-free, program.

7) For every constraint representation ΠDSi of the avail-
able set of mutants ΠDS , i = 1, ..., |ΠDS | do:

a) Let CS be the set of constraints comprising the
constraints from CONΠ and ΠDSi .

b) Add the same inputs - different outputs con-
straints, i.e., I(ΠDSi

) = I(CONΠ) and
O(ΠDSi

) 6= O(CONΠ) to the set of constraints
CS.

c) Solve the constraint system CS.
d) if a solution is found, then do:

i) Let T
′

denote the valid test case that kills
mutant ΠDSi

.
ii) Add T

′
to the test suite TS;

iii) Run T
′

against the set of mutants ΠDS of
program Π and eliminate Π

′

DSi
from ΠDS if

Π
′

DSi
fails on T

′
.

8) Compute the mutation score µ and return TS as result.
Our research experiment was run over a small set of

simple Java programs (no more than 200 lines of code), e.g,
bubble sort, arithmetic operations, and some of the classes
belonging to HTML Parser project [17] - a Java library used
to parse HTML. Only small deviations, i.e., mutants that are
close to the original program, were taken into consideration.
Up do now we did not benefit from a significant test pool,
but we were able to obtain a higher mutation score with
a small number of generated distinguishing test cases and
a smaller number of mutants. In order to demonstrate the
practicability of our approach, we intend to substantially
extend the empirical results based on larger programs with
a variety of test suites.

In Table I, we summarize the first empirical results of
our approach. By LOC we denote the lines of code, by
LineCov we show the line coverage. For each class we
record the initial mutation score, MSInit, resulted from
the normal mutation testing procedure, and then, after
applying our algorithm, we compute the new mutation score

23

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 32 / 139

Class LOC LineCov MSInit MSDTC

tagTests.AppletTagTest 96 52.00% 27.41% 65.00%
tagTests.BaseHrefTagTest 13 23.00% 18.10% 54.13%

tagTests.BodyTagTest 7 86.00% 79.00% 84.30%
tagTests.CompositeTagTest 156 27.00% 17.56% 51.12%

tagTests.FormTagTest 46 11.00% 6.18% 19.23%
tagTests.LinkTagTest 58 43.00% 31.33% 65.34%

DivATC 21 100.00% 67.66% 100.00%
SumATC 18 100.00% 41.87% 100.00%

BubbleSort 43 99.97% 56.40% 79.10%

Table I
MUTATION SCORE WITH DISTINGUISHING TEST CASES

MSDTC, not taking into account the equivalent mutants.
The strategy is prone to some limitations, connected to the

mutation testing tool and the constraint solver we use. The
MINION solver does not support object-oriented constructs.
Concerning the mutations we produce, we are not able to
mutate constant values, nor to add or remove statements.

IV. CONCLUSION

In this paper, we aim at improving the quality (given as
the mutation score) of a program’s test suite. We achieve
this by generating distinguishing test cases for extending
the available test suite, and also by reducing the number of
equivalent mutants. A distinguishing test cases is a test case
that allows for distinguishing a program from its mutant
using the same input. When adding this test case to the
test suite, the mutation score of the new test suite has to
increase, assuming a mutant that is not equivalent to the
original program.

Up to now, the obtained empirical results support the
claim that our approach improves test suites. However, we
further strengthen the empirical results and aim to test our
algorithm on medium scale applications.

REFERENCES

[1] Y. Jia and M. Harman, “An Analysis and Survey of the
Development of Mutation Testing,” in IEEE Transactions of
Software Engineering, vol. PP, no. 99, Paris, France, 2010,
p. 1.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using Mutation Analysis for Assessing and Comparing
Testing Coverage Criteria,” in IEEE Transactions on Software
Engineering, September 2006, pp. 608–624.

[3] R. Ceballos, M. Nica, J. Weber, and F. Wotawa, “On the com-
plexity of program debugging using constraints for modeling
the program’s syntax and semantics,” in Proc. Conference of
the Spanish Association for Artificial Intelligence (CAEPIA),
Seville, Spain, 2009, pp. 22–31.

[4] M. Nica, J. Weber, and F. Wotawa, “How to debug sequential
code by means of constraint representation,” in International
Workshop on Principles of Diagnosis (DX-08), Leura, Aus-
tralia.

[5] F. Wotawa, M. Nica, and B. K. Aichernig, “Generating
Distinguishing Tests using the MINION Constraint Solver,”
in CSTVA 2010: Proceedings of the 2nd Workshop on Con-
straints for Testing, Verification and Analysis, Paris, France,
2010, pp. 325–330.

[6] R. Dechter, Constraint Processing. The Morgan Kaufmann
Series in Artificial Intelligence, 2003.

[7] A. J. Offutt and W. M. Craft, “Using compiler optimization
techniques to detect equivalent mutants,” in Software Testing,
Verification, and Reliability, 1994, pp. 131–154.

[8] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mu-
tants,” in ICST ’10: Third International Conference on
Software Testing, Verification and Validation. Paris, France:
IEEE Computer Society, April 2010, pp. 45–54.

[9] J. H. Andrews, L. Briand, and Y. Labiche, “Is Mutation an
Appropriate Tool for Testing Experiments?” in Proceedings
of IEEE International Conference on Software Engineering,
St. Louis, MO, USA, May 2005, pp. 402–411.

[10] W. Krenn and B. K. Aichernig, “Test Case Generation by
Contract Mutation in Spec #,” in Electronic Notes in Theo-
retical Computer Science, 2009, pp. 71–86.

[11] V. Debroy and W. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Third International
Conference on Software Testing, Verification and Validation
(ICST 2010), Paris, France, 2010, pp. 65–74.

[12] A. Gotlieb, B. Botella, and M. Rueher, “Automatic Test Data
Generation using Constraint Solving Techniques,” in Proceed-
ings of the 1998 ACM SIGSOFT International Symposium
on Software testing and analysis, Clearwater Beach, Florida,
United States, 1998, pp. 53–62.

[13] B. J. M. Grün, D. Schuler, and A. Zeller, “The Impact
of Equivalent Mutants,” in IEEE International Conference
on Software Testing, Verification, and Validation Workshops,
Denver, USA, 2009, pp. 192–199.

[14] Y. Ma, J. Offutt, and Y. Kwon, “Mujava : An automated
class mutation system,” in Software Testing, Verification and
Reliability , 2005, pp. 97–133.

[15] S. Nica and B. Peischl, “Challenges in Applying Mutation
Analysis on EJB-based Business Applications,” in Proceed-
ings of Metrikon 2009, Kaiserslautern, Germany, November
2009.

[16] I. Gent, C. Jefferson, and I. Miguel, “Minion: A fast, scalable,
constraint solver,” in 17th European Conference on Artificial
Intelligence ECAI-06, Trento, Italy, 2006, pp. 98–102.

[17] HTML Parser, “http://htmlparser.sourceforge.net/,” 2011.

24

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 33 / 139

Answer-Set Programming as a new Approach to Event-Sequence Testing

Esra Erdem1, Katsumi Inoue2, Johannes Oetsch3, Jörg Pührer3, Hans Tompits3, Cemal Yilmaz1

1Sabanci University, Faculty of Engineering and Natural Sciences,
Orhanli, Tuzla, Istanbul 34956, Turkey

Email: {esraerdem,cyilmaz}@sabanciuniv.edu
2National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
Email: ki@nii.ac.jp

3Technische Universität Wien, Institut für Informationssysteme 184/3,
Favoritenstraße 9-11, A-1040 Vienna, Austria

Email: {oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract—In many applications, faults are triggered by

events that occur in a particular order. Based on the assumption

that most bugs are caused by the interaction of a low number

of events, Kuhn et al. recently introduced sequence covering
arrays (SCAs) as suitable designs for event sequence testing. In

practice, directly applying SCAs for testing is often impaired

by additional constraints, and SCAs have to be adapted to

fit application-specific needs. Modifying precomputed SCAs

to account for problem variations can be problematic, if not

impossible, and developing dedicated algorithms is costly. In

this paper, we propose answer-set programming (ASP), a well-

known knowledge-representation formalism from the area of

artificial intelligence based on logic programming, as a declar-

ative paradigm for computing SCAs. Our approach allows

to concisely state complex coverage criteria in an elaboration
tolerant way, i.e., small variations of a problem specification

require only small modifications of the ASP representation.

Keywords-event-sequence testing; combinatorial interaction

testing; answer-set programming.

I. INTRODUCTION

In many applications, faults only show up if events occur in
a certain order. An example are atomicity violations in multi-
threaded applications where a pair of shared memory accesses
of one thread is interleaved with an unfortunate access
of another thread. Testing such applications thus requires
exercising event sequences. Since the number of event
sequences is factorial in the number of events, exhaustive
testing is infeasible in general. If we assume that bugs are
triggered by the interaction of only a low number of events—
this is empirically supported by respective bug reports—,
testing costs can be reduced drastically without sacrificing
much fault-detection potential by using suitable combinatorial
designs [1], [2]. To this end, Kuhn et al. [3], [4] introduced
sequence covering arrays (SCAs) for combinatorial event
sequence testing. An SCA is an array of permutations of
events such that any t events, possibly interleaved with other
events, will be tested in every t-way order at least once. SCAs

are relevant in scenarios where the order of events is decisive,
like testing of user-interfaces, dynamic web applications,
method calls for unit-testing, or multi-threaded programs.

In practice, a direct application of SCAs for testing is often
impaired by additional constraints on the order of events.
Also, the conditions that identify the sequences that should be
covered can vary and often involve quite complex definitions.
For example, to test thread interleavings, one could require
to test all sequences such that one variable is written by one
thread and subsequently read by another thread such that
there is no write operation between them [5], [6].

One approach to address such considerations is to accord-
ingly modify precomputed SCAs as exemplified by Kuhn et
al. [3], [4]. This means that any test sequence which, e.g.,
violates some ordering constraints has to be removed from
the SCA. To maintain coverage, removed sequences have
to be replaced by permutations thereof that comply to the
problem specific requirements. This is not always possible in
a straightforward way and can result in a considerable and
in principle avoidable overhead regarding the size of arrays.
On the other hand, developing and maintaining dedicated
algorithms to compute variations of SCAs usually comes
with high costs and is not preferable if requirements change
over time or one wants to experiment with different designs.

We propose to use answer-set programming (ASP) [7] for
computing SCAs and variations thereof. ASP is a genuine
declarative programming paradigm where a problem is
encoded by means of a logic program such that the solutions
of a problem correspond to the models, called answer sets,
of the program. On the one hand, as an expressive high-level
specification language, it allows to state complex coverage
criteria, involving constraints and complex, possibly recursive,
definitions, in a concise and elaboration-tolerant way, i.e.,
small variations in a problem specification require only small
modifications of the program representation. On the other
hand, SCAs can be efficiently computed through highly

25

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 34 / 139

optimised ASP solvers [8]. Since it requires only little effort
to state quite complex coverage conditions in ASP, a tester
is able to rapidly specify different versions of SCAs.

This paper is organised as follows. In Section II, we review
SCAs and ASP. Then, we show how SCAs can be generated
using ASP in Section III. We present improved, sometimes
optimal, upper bounds regarding the size of many SCAs. We
furthermore present a greedy algorithm, based on ASP, for
computing larger SCAs. In Section IV, we turn towards a
real-world example described by Kuhn et al. [3], [4]. We
discuss how the basic ASP encoding from Section III can be
refined to take different constraints and problem variations
into account. Finally, we discuss related work in Section V
and conclude in Section VI.

II. PRELIMINARIES

In this section, we review the formal definition of SCAs
and give a brief background on ASP.

A. Sequence Covering Arrays (SCAs)
SCAs, introduced by Kuhn et al. [3], [4], are combinatorial

designs related to covering arrays. While covering arrays
require that each t-way combination of parameters occurs
at least once in a test case for some fixed t, SCAs take the
order of events into account and require that each t-sequence
of events is tested in at least one test sequence in that order,
where a t-sequence over a set S of symbols is a t-tuple of
pairwise distinct elements of S. Following Kuhn et al. [3],
[4], we formally define SCAs as follows.

Definition 1: A sequence covering array (SCA) with
parameters n, S, and t, or an (n, S, t)-SCA for short, is
an n × |S| matrix M of symbols from a finite set S of
symbols such that (i) each row of M is a permutation of
S and (ii) for each t-sequence σ = (s1, s2, . . . , st) over S,
there is at least one row � = (ai1, . . . , ai|S|) in M such that
σ is a subsequence of �.
We say that an (n, S, t)-SCA is of strength t and of size
n. The sequence covering array number SCAN(S, t) is the
smallest n such that an (n, S, t)-SCA exists. An (n, S, t)-
SCA is optimal if SCAN(S, t) = n. We will also denote an
(n, {1, . . . , s}, t)-SCA as an (n, s, t)-SCA with SCAN(s, t)
for brevity.

For illustration, the following matrix M constitutes an
optimal (7, 5, 3)-SCA:

M =





5 2 3 1 4
3 2 5 4 1
1 5 4 3 2
3 4 5 1 2
4 2 5 1 3
2 4 3 1 5
1 2 3 4 5





.

Each of the 7 rows is a permutation of the set S = {1, . . . , 5}
and each 3-sequence over S is covered by at least one row.

For instance, the 3-sequence (5, 3, 4) is covered by the first
row of M . Note that there are 5 ·4 ·3 = 40 such 3-sequences.

A collection of precomputed SCAs of strength 3 and 4,
involving 5 to 80 events, is available online [9].These SCAs
were computed using a simple greedy algorithm introduced
by Kuhn et al. [3], [4]. Note that this algorithm is the
only approach for computing SCAs implemented so far. To
compute a t-strength SCA for a set S of events, this algorithm
iteratively computes single rows of the SCA: It computes
a fixed number of permutations of S. Then, it selects the
permutation π that obtains maximal coverage of previously
uncovered t-sequences as the next row of the SCA. After
that, π in reverse order, π�, is added. Adding π� is justified
because π� always covers the same number of previously
uncovered t-sequences as π [4]. This procedure is iterated
until all t-sequences are covered.

One downside of this greedy algorithm is that additional
constraints on the order of events arising from the require-
ments of different test scenarios are hard to incorporate. To
overcome this shortcoming, we use ASP in what follows as
a declarative tool to compute SCAs and demonstrate that
quite complex constraints can be incorporated into a solution
in a concise and elaboration-tolerant way, and with ease.

B. Answer-Set Programming (ASP)

ASP [7] is a relatively new declarative programming
paradigm. The underlying idea of ASP is to declaratively
represent a computational problem as a logic program whose
models, called “answer sets”, correspond to the solutions, and
to find the answer sets for that program using an ASP solver.
Due to the expressiveness of ASP that allows to represent, for
instance, aggregates and recursive definitions, and due to the
continuous improvements of the efficiency of ASP solvers,
such as clasp [10], we argue that ASP can efficiently
and effectively be used to compute SCAs. Indeed, ASP has
been used in a wide range of applications from different
fields, such as semantic-web reasoning, systems biology,
planning, diagnosis, information integration, configuration,
multi-agent systems, cladistics, and super optimisation. For a
comprehensive introduction to ASP, we refer to the textbook
by Baral [7].

We recapitulate the basic elements of ASP in the following.
An answer-set program is a finite set of rules of the form

a0 :− a1, . . . , am,not am+1, . . . ,not an, (1)

where n ≥ m ≥ 0, a0 is a propositional atom or ⊥, and all
a1, . . . , an are propositional atoms; the symbol “not” denotes
default negation. If a0 = ⊥, then Rule (1) is a constraint (in
which case a0 is usually omitted). The intuitive reading of
a rule of form (1) is that whenever a1, . . . , am are known
to be true and there is no evidence for any of the default
negated atoms am+1, . . . , an to be true, then a0 has to be
true as well. Note that ⊥ can never become true.

26

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 35 / 139

An answer set for a program is defined following Gelfond
and Lifschitz [11]. An interpretation I is a finite set of
propositional atoms. An atom a is true under I if a ∈ I ,
and false otherwise. A rule r of form (1) is true under I
if {a1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅ implies
a0 ∈ I . Interpretation I is a model of a program P if each
rule r ∈ P is true under I . Finally, I is an answer set of P
if I is a subset-minimal model of P I , where P I is defined
as the program that results from P by deleting all rules
that contain a default negated atom from I , and deleting all
default negated atoms from the remaining rules.

Programs can yield no answer set, one answer set, or many
answer sets. For instance, the program

{p :− not q , q :− not p} (2)

has two answer sets: {p} and {q}.
When we represent a problem in ASP, some rules “gener-

ate” answer sets corresponding to “possible solutions”, and
some “eliminate” the answer sets that do not correspond to
solutions. The rules in program (2) are of the former kind;
constraints are of the latter kind. For instance, adding the
constraint ⊥ : − p to a program P eliminates all answer
sets of P containing p. In particular, adding ⊥ : − p to
program (2) eliminates the answer set {p}.

When we represent a problem in ASP, we often use special
constructs of the form l{a1, . . . , ak}u (called cardinality
expressions) where each ai is an atom and l and u are
nonnegative integers denoting the lower bound and the
upper bound of the cardinality expression [12]. Such an
expression describes the subsets of the set {a1, . . . , ak}
whose cardinalities are at least l and at most u. In heads of
rules, cardinality expressions generate answer sets containing
subsets of {a1, . . . , ak} whose cardinality is at least l and
at most u. When used in constraints, they eliminate answer
sets that contain such respective subsets.

A group of rules that follow a particular pattern can often
be described in a compact way using schematic variables.
For instance, we can write the program pi : − not pi+1,
(1 ≤ i ≤ 7) as follows:

index (1), index (2), . . . , index (7),
p(i) :− not p(i + 1), index (i).

ASP solvers compute an answer set for a given program that
contains variables after “grounding” the program, e.g., by the
grounder gringo [13]. A grounder systematically replaces
each rule r with variables by its ground instances that result
from r by uniformly replacing each variable by constants
from the program. Variables can also be used “locally” to
describe a list of literals. For instance, the rule 1{p1, . . . , p7}1
can be represented as 1{p(i) : index (i)}1.

In addition to the constructs above, current state-of-the-art
ASP solvers support many language extensions like functions,
built-in arithmetics, comparison predicates, aggregate atoms,

maximisation and minimisation statements, as well as weak
constraints.

In the remainder of this paper, we use the syntax that is
supported by the solver clasp along with the grounding
tool gringo when presenting programs [14].

For illustrating problem solving in ASP, consider the
following encoding of the 3-colorability problem (3COL):

colour(red;green;blue).
1{asgn(N,C):colour(C)}1 :- node(N).
:- edge(X,Y), asgn(X,C), asgn(Y,C).

The first rule abbreviates three facts that state that red, green,
and blue are colours, respectively. The second rule is a choice
rule. Its intuitive reading is that if N is a node, then both an
upper bound and a lower bound on the number of colours
assigned to this node, expressed by asgn(N,C), is 1. This
means that each node gets assigned precisely one colour from
the set of available colours defined by colour/1. The last
rule is a constraint that forbids that there is an edge between
any two nodes with the same colour. If the above program is
joined with facts over edge/2 and node/1 that represent a
graph G, the answer sets correspond one-to-one to the valid
3-colourings of G.

Sometimes, one is not only interested in arbitrary solutions
to a problem but in solutions that are optimal according to
some preference relation. ASP solvers like clasp support
optimisation statements that allow to express such preferences.
For illustration, assume that, for some reason, we want to
minimise the number of blue nodes in the above 3COL
example. This can be expressed by simply adding the
following minimise statement:

#minimize[asgn(N,blue):node(N)].

The meaning of such a statement is that clasp computes
answer sets where the sum of literals asgn(N,blue),
where N is a node, is minimal among all answer sets.

III. SCA COMPUTATION

We now discuss how ASP can be used to generate SCAs.
Our goal is not only to present approaches to compute generic
SCAs, i.e., SCAs created without additional constraints or
requirements, rather we want to demonstrate that ASP can be
used as an efficient and effective declarative tool to compute
SCAs tailored to specific test scenarios.

Ahead of our discussion in Section IV, addressing how
different problem elaborations can be incorporated into
a single answer-set program, we introduce an answer-set
program for computing generic SCAs. We also introduce a
new greedy approach that combines a simple variation of
the basic ASP encoding with an iterative greedy procedure.

A. Basic Encoding
We first present an ASP program for computing (n, s, t)-

SCAs with t = 3. We assume throughout that s ≥ 2. Note
that this program can be changed in a straightforward way

27

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 36 / 139

% guess sequence covering array
sym(1..s). row(1..n).
1{first(N,S):sym(S)}1 :- row(N).

1{next(N,S,T):sym(T)}1 :- first(N,S).
0{next(N,T,U):sym(U)}1 :- next(N,_,T).

% the happens-before relation
hb(N,X,Y) :- next(N,X,Y).
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

% each symbol occurs once in each row
:- hb(N,S,S).
:- row(N), sym(S), first(N,T), S!=T,

not hb(N,T,S).

% check if each 3-sequence is covered
threeSeq(X,Y,Z) :- sym(X;Y;Z),X!=Y,Y!=Z,X!=Z.
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- threeSeq(X,Y,Z), not covered(X,Y,Z).

Figure 1. ASP encoding Π3(n, s).

to obtain encodings for any fixed t > 3. An encoding for
SCAs where t is not fixed can be obtained using disjunctive
ASP—this is however beyond the scope of this paper.

1) Encoding: We start by expressing that the symbols of
the array are integers between 1 and s, and row indices of
the SCA correspond to integers 1 to n. Note that s and n
function as parameters of the program:

sym(1..s). row(1..n).

For the representation of the SCA, we use the predicate
next(N,X,Y) expressing that in row N symbol Y is the
direct successor of X. We next state that in any row N (i) one
symbol S occurs first, (ii) the first symbol S in row N has
a direct successor T, and (iii) if T is consecutive to S, then
there is at most one symbol U that is consecutive to T:

1{first(N,S):sym(S)}1 :- row(N).
1{next(N,S,T):sym(T)}1 :- first(N,S).
0{next(N,T,U):sym(U)}1 :- next(N,_,T).

So far, the above conditions are only necessary conditions
for an (n, s, 3)-SCA. We need further rules to guarantee
that any row is a permutation of the symbols {1, . . . , s} and
that coverage of all 3-sequences is achieved. We proceed by
formalising the happens-before relation between two events.
In particular, that one event symbol X occurs before another
symbol Y in row N is represented by predicate hb(N,X,Y),
which is simply the transitive closure of the next/3 relation:

hb(N,X,Y) :- next(N,X,Y).
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

Directly expressing inductive definitions as above is a
particular strength of ASP. Based on the happens-before
relation, we can quite easily state that each event symbol
has to occur precisely once in each row. We express this
by means of two constraints. The reading of the first one
is that it is forbidden that there is a row N such that a

symbol S occurs before itself. The second constraint ensures
that it is forbidden that there is a row N such that some
symbol S different from the first symbol T does not occur
after T. Together, the constraints imply that next/3 indeed
represents permutations.

:- hb(N,S,S).
:- row(N), sym(S), first(N,T), S!=T,

not hb(N,T,S).

It only remains to require that each 3-sequence of
symbols is covered by some row. We use predicate
threeSeq(X,Y,Z) to represent the 3-sequences that we
want to cover. A 3-sequence is simply a 3-tuple of pairwise
distinct symbols:

threeSeq(X,Y,Z) :- sym(X;Y;Z),X!=Y,Y!=Z,X!=Z.

A 3-sequence (X,Y,Z) is covered if X happens before Y and
Y happens before Z in some row N. We finally define covered
3-sequences and forbid that a 3-sequence is not covered:

covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- threeSeq(X,Y,Z), not covered(X,Y,Z).

The entire ASP program Π3(n, s) with parameters n and s
for generating (n, s, 3)-SCAs is given in Figure 1.

Intuitively, each answer set of program Π3(n, s) represents
an (n, s, 3)-SCA. In fact, the answer sets of Π3(n, s) and
the (n, s, 3)-SCAs are in a one-to-one correspondence. This
relation can be formalised as follows:

Definition 2: An answer set X of Π3(n, s), for s ≥ 2,
represents an n× s matrix M iff for any i, 1 ≤ i < s, and
any r, 1 ≤ r ≤ n, Mr,i = s1 and Mr,i+1 = s2 precisely in
case X contains the atom next(r, s1, s2).

Proposition 1: Each answer set of Π3(n, s) represents a
single (n, s, 3)-SCA, and each (n, s, 3)-SCA is represented
by a single answer set of Π3(n, s).

For illustration, to compute a (7, 5, 3)-SCA, gringo and
clasp can be invoked as follows:

gringo sca-3.gr -c n=7,s=5 | clasp .

File sca-3.gr contains program Π3(n, s). The gringo
option -c n=7,s=5 instantiates the program parameters
n and s to 7 and 5, respectively. Any resulting answer
set corresponds to a (7, 5, 3)-SCA. For instance, in some
answer set, the first row of the SCA M given in Section II-A
is encoded by the atoms next(1,5,2),next(1,2,3),
next(1,3,1),next(1,1,4). To compute more than
one (7, 5, 3)-SCA, an upper bound on the number of answer
sets that clasp should compute can be specified as an
integer option (0 means that all answer sets are computed).

2) Discussion: Program Π3(n, s) nicely illustrates how
challenging search problems can be concisely encoded using
ASP: The program consists of only 12 rules that closely
reflect the problem statement in natural language. We note
that only little training time is needed to enable a tester to
use ASP for test authoring. This is mainly because of the

28

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 37 / 139

Table I
UPPER BOUNDS FOR SCAN(s, 3) OBTAINED BY KUHN ET AL. AND OUR

ASP ENCODING. A STAR INDICATES AN OPTIMAL BOUND.

s n (Kuhn et al.) n (ASP)
5 8 7∗

6 10 8∗

7 12 8∗

8 12 8∗

9 14 9
10 14 9
11 14 10
12 16 10
13 16 10
14 16 10
15 18 10
16 18 11
17 20 11

genuine declarative nature of ASP, which does not require
specialised knowledge on data structures or algorithms. A
more experienced ASP user needs about 15 minutes to
develop a program such as the one given in Figure 1.

Also, by using our ASP encoding Π3(n, s) and the ASP
solver clasp, we could improve known upper bounds
for many SCAs significantly. A comparison of the SCAs
generated using ASP and the greedy algorithm of Kuhn et al.
is given in Table I. The SCAs that we have computed using
ASP are publicly available [15]. Computation times for the
reported upper bounds range from fractions of a second to
about 20 minutes. We have considered strength 3 SCAs for 5
to 17 events. The known upper bounds reported by Kuhn et
al. [3], [4] could be improved throughout. The more events
are considered, the more drastic are the improvements; e.g.,
for 17 events, we need 45% less test sequences.

For small SCAs—viz. for 5 to 8 events—the new upper
bounds are actually optimal bounds. Optimality of upper
bounds was established using ASP itself. To show that an
(n, s, t)-SCA is optimal, we try to compute an (n− 1, s, t)-
SCA. If this fails, i.e., the ASP solver terminates without
returning an answer set, the (n, s, t)-SCA is indeed optimal.
Since SCAN(8, 3)=8, 8 is a trivial lower bound for any
SCAN(s, 3) with s > 8. Note that greedy algorithms, or any
approaches based on incomplete search, are unable to prove
optimal bounds or to establish lower bounds at all.

A limitation of using the ASP encoding Π3(n, s) concerns
scalability. Though memory usage is always limited by a
polynomial with respect to the input parameters n and s, the
runtime of clasp is worst-case exponential for encoding
Π3(n, s). On the other hand, the greedy approach of Kuhn
et al. seems to scale quite well; the authors report on SCAs
of strength three and four for up to 80 events [4].

B. Greedy Algorithm

In the remainder of this section, we introduce and discuss
an ASP-based greedy algorithm, inspired by that of Kuhn
et al. [3], [4], for computing larger SCAs. The motivation
to study such an algorithm is to combine the modelling

Require: s is the number of symbols.
Ensure: N represents an (n, s, 3)-SCA.

1: N ⇐ ∅
2: n ⇐ 0
3: repeat

4: n ⇐ n + 1
5: X ⇐ answer set of Π3

grdy(s, n) ∪N
6: N ⇐ N ∪X|next/3
7: until N represents an (n, s, 3)-SCA

Figure 2. Greedy algorithm for computing an (n, s, 3)-SCA.

capabilities of ASP, especially in the light of constraints and
problem elaborations (as detailed in the next section), with
the scalability of a greedy approach.

In this context, we also mention that the greedy algorithm
of Kuhn et al. has a certain weakness, which is related
to the heuristic that for any newly computed sequence the
reverse sequence is added as well (cf. Section II). As we
will show next, this makes the algorithm inherently unable to
compute optimal SCAs in general. Actually, the inability to
find optimal SCAs follows immediately from the observation
that some optimal SCAs, e.g., (7, 5, 3)-SCAs, are of odd
size. However, ASP can be used to show that even optimal
SCAs of even size cannot be found by that greedy approach
in general. The idea is to augment program Π3(n, s) by a
rule that states that every second row is the inversion of the
previous one. This is simply expressed by the following rule:

next(N,S,T):- row(N),next(N-1,T,S),N#mod2==0.

Here, predicate #mod is the usual modulo operation. Hence,
the intuitive reading of this rule is that for any row with
even index N, the next relation is the inverse of the next
relation of the preceding row N-1. We know already from
Table I that any (8, 6, 3)-SCA is optimal. However, Π3(8, 6)
augmented by the above rule yields no answer set, which
shows that (8, 6, 3)-SCAs cannot be computed by the greedy
algorithm of Kuhn et al. [3], [4]. Next, we present an ASP-
based greedy algorithm inspired by that of Kuhn et al. that
does not rely on adding inverted rows.

1) Encoding: Figure 2 represents our ASP-based greedy
algorithm for computing SCAs. The main idea is to compute
one row of a SCA at a time instead of computing the entire
array. In each iteration, one further row is computed using
ASP where the number of covered 3-sequences is maximised.
For this purpose, we use program Π3

grdy(s, n), which is
depicted in Figure 3. Program Π3

grdy(s, n) takes the number
s of events and a row index n as parameters. Both the ASP
encoding and the greedy algorithm are introduced only for
SCAs of strength 3. However, versions for computing SCAs
of strength greater than 3 are obtained in a straightforward
way. To obtain a program for strength 4 SCAs, for example,
only the last two rules of Π3

grdy(s, n) have to be replaced
by the following two rules:

covered(W,X,Y,Z) :- hb(n,W,X), hb(n,X,Y),
hb(n,Y,Z).

29

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 38 / 139

% guess single SCA row with index n
sym(1..s).
1 {first(n,S) : sym(S)} 1.
1 {next(n,S,T) : sym(T)} 1 :- first(n,S).
0 {next(n,S,T) : sym(T)} 1 :- next(n,_,S).

% the happens-before relation
hb(N,X,Y) :- next(N,X,Y).
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

% each symbol occurs once in each row
:- hb(S,S).
:- sym(S), first(n,T), S!=T, not hb(n,T,S).

% maximize coverage
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
#maximize[covered(_,_,_)].

Figure 3. ASP encoding Π3
grdy(s, n).

#maximize[covered(_,_,_,_)].

Program Π3
grdy(s, n) is quite similar to Π3(n, s). However,

each answer set of Π3
grdy(s, n) corresponds only to a single

row with index n of an SCA. The idea is to represent
preceding rows with index 1 to n − 1 by means of facts
next/3. These facts are joined with Π3

grdy(s, n). Then,
the answer sets of Π3

grdy(s, n) correspond to those rows
that obtain maximal coverage of previously uncovered 3-
sequences. The encoding follows the guess, check, and
optimise pattern, hence we use guessing rules to span
the search space, constraints to filter unwanted solution
candidates, and rules that express a preference relation on
answer sets. In particular, rule

#maximize[covered(_,_,_)].

states that we seek for answer sets with a maximal number
of covered 3-sequences.

The algorithm itself is rather simple, see Figure 2: It
takes parameter s as input and computes an (n, s, 3)-SCA.
Initially, the set N that represents a (partial) SCA by means
of facts next/3 equals the empty set. In each iteration,
Π3

grdy(s, n) ∪ N are used to compute the next row of the
SCA that obtains maximal increase of previously uncovered
3-sequences. The respective next/2 facts for that row are
then added to N . This procedure iterates until no uncovered
3-sequences are left (the ASP solver itself will indicate that
no further optimisation is possible). Since the computation
of optimal answer sets can become very time consuming,
we additionally impose an upper bound on the time that is
spent for optimising answer sets, thus improvements in each
step will not be maximal in general. However, this seems to
be a reasonable compromise regarding runtime and the size
of computed SCAs. The time limit for computing a single
row ranged from 10 seconds to several minutes, depending
on the problem size.

Table II
COMPARISON OF OUR GREEDY ASP APPROACH AND THAT OF KUHN ET

AL. [3], [4]: UPPER BOUNDS FOR SCAN(s, 3) AND SCAN(s, 4).

s t = 3 t = 4
Kuhn et al. ASP Kuhn et al. ASP

10 14 11 72 55
20 22 19 134 104
30 26 23 166 149
40 32 27 198 181
50 34 31 214 -
60 38 34 238 -
70 40 36 250 -
80 42 38 264 -

2) Discussion: Table II summarises a comparison of our
greedy ASP algorithm with the greedy algorithm of Kuhn
et al. [3], [4] for strength 3 and 4 SCAs involving 10 to 80
events. For strength 3 SCAs, our algorithm is competitive
with that of Kuhn et al. and upper bounds could be improved
throughout by some rows. For strength 4 SCAs, the greedy
ASP approach is feasible for up to 40 symbols where upper
bounds could be improved even more drastically than for
strength 3 SCAs. However, we were not able to compute
SCAs for 40 to 80 symbols, which shows a limitation
of our ASP-based approach that is probably acceptable
unless the need for larger instances with a high level of
interaction is indeed motivated by some application scenario.
This limitation basically comes from the huge number of 4-
sequences that need to be covered and that are represented by
the program. Here, it is to mention that scalability is certainly
a characteristic strength of the simple greedy algorithm of
Kuhn et al., since dedicated data structures, e.g., efficient
bit-vectors, can be used for representing covered sequences.
However, by using ASP we get better bounds for 3-SCAs for
up to 80 symbols and can also improve bounds for 4-SCAs
for up to 40 symbols. Again, we emphasise that our goal
is not to compute generic SCAs but to allow a tester to
express different requirements with little effort, by adding or
changing some rules of the ASP program, which can readily
be done using the greedy ASP approach. We pursue this
issue in the next section.

IV. PROBLEM ELABORATIONS

Next, we turn to the actual strengths of using ASP as
an elaboration tolerant representation formalism for event
sequence testing. We describe how ASP can be used for
generating SCAs in a scenario that involves additional con-
straints and other problem variations that make it impossible
to directly use precomputed SCAs. In particular, we use
a real-world testing problem described by Kuhn et al. [3],
[4] for making our point. The specification of this testing
problem is as follows: There are 5 different devices that have
to be connected to a laptop. These devices can be connected
before or after a boot-up phase. Further actions that have
to be performed on the laptop are opening an application
and initiating a scanning process. The peripherals can be

30

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 39 / 139

connected to the laptop in any order; however, the order of
events influences the functionality of the system. Thus, SCAs
lend themselves as a basis for a suitable testing plan.

There are 8 events relevant for testing: connecting devices
(p1, . . . ,p5), booting the system (boot), starting an appli-
cation (appl), and running a scan (scan). Testing in this
scenario is rather time consuming since it requires setting
up the system manually. Therefore, obtaining an optimal
test plan is a clear desideratum. Following Kuhn et al., only
SCAs of strength 3 are considered to keep the size of the
test plan reasonable.

A. Forbidden Sequences

For 8 events, optimal SCAs of strength 3 comprise 8
rows. However, we cannot use precomputed (8, 8, 3)-SCAs
since certain constraints regarding the order of events have
to be taken into account. While most events can happen
in any order, starting the application cannot happen before
the system is booted, and running a scan requires that the
application is already running.

1) Encoding: Instead of covering all 3-sequences, we want
to generate SCAs such that (i) in each row, boot happens
before appl and appl happens before scan, and (ii) all 3-
sequences such that boot happens before appl and appl
happens before scan are covered by at least one row. We
only have to slightly modify program Π3(n, s) to account
for (i) and (ii). First, instead of integers to denote events, we
would like to use more descriptive constant symbols. Thus,
we replace sym(1..s) in Π3(n, s) by

sym(boot; p1; p2; p3; p4; p5; appl; scan).

Concerning (i), we define which orderings are excluded and
add a respective constraint that forbids that event a happens
before b if “a before b” is excluded.

excluded(scan,appl).
excluded(appl,boot).
excluded(X,Z) :- excluded(X,Y),excluded(Y,Z).
:- hb(_,X,Y), excluded(X,Y).

Regarding (ii), we simply define those 3-sequences that are
not consistent with the excluded orderings as already covered:

covered(X,Y,Z) :- excluded(X,Y), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(X,Z), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(Y,Z), sym(X;Y;Z).

We denote the resulting program as Π3
1(n).

2) Discussion: Recall that for 8 symbols, (8, 8, 3)-SCAs
are optimal. Since, Π3

1(8) does not yield any answer set, it
follows that the stipulation on admissible orderings requires
additional rows. In this case, this is because the number of
3-sequences that can be covered by a single row is reduced if
certain events are required to happen in a strict order. Indeed,
a solution for Π3

1(9) can be computed, hence 9 is an optimal
bound for an SCA satisfying that each row is consistent with
the specified ordering constraints. The solver clasp needs

fractions of a second to find an SCA of size 9 and about
one minute for checking optimality.

B. Redundant Sequences
Besides forbidden orderings, we also have to deal with

redundant sequences: If devices are connected to the laptop
before the boot-up phase, the order is not relevant. In fact,
we only require strength 3 coverage for events p1, . . . ,p5,
appl, and scan. Concerning the interaction of events
p1, . . . ,p5, and boot, we regard strength 2 coverage
as sufficient, i.e., we are only interested in whether the
connection of the peripherals happens before or after the
boot-up phase. Hence, we need a variable strength SCA, in
which we seek to have strength 2 coverage for one set of
events and strength 3 coverage for another one.

1) Encoding: First, we add two sets of facts to declare
the sets of events for which we want to obtain strength 2
and strength 3 coverage, respectively:

threeWay(p1; p2; p3; p4; p5; appl; scan).
twoWay(boot; p1; p2; p3; p4; p5).

Next, we have to modify some rules where appropriate. In
particular, we only want to cover 3-sequences over symbols
from threeWay/1. Hence, we rewrite rule

threeSeq(X,Y,Z) :- sym(X;Y;Z),X!=Y,Y!=Z,X!=Z.

into

threeSeq(X,Y,Z) :- threeWay(X;Y;Z),
X!=Y, Y!=Z, X!=Z.

To address 2-way coverage of the symbols from twoWay/1,
we add two further rules:

covered(X,Y) :- hb(_,X,Y).
:- twoWay(X;Y), X != Y, not covered(X,Y).

The resulting program is denoted by Π3
2(n).

2) Discussion: Program Π3
2(n) incorporates both forbid-

den configurations and redundant sequences. Respective
SCAs can be obtained for n = 8 already. SCAs of size 8 are
indeed optimal arrays, which follows from the observation
that Π3

2(7) yields no answer set at all. It takes on average
0.1 seconds to compute the first answer set of a size 8 SCA
when using clasp as ASP solver. Showing optimality, i.e.,
that no size 7 SCA exists, needs several minutes.

The solution approach of Kuhn et al. uses a pre-computed
(12, 7, 3)-SCA to account for the seven events p1, . . . ,p5,
scan, and appl. In a post-processing step, rows that are
not consistent with the ordering constraints (cf. Section IV-A)
are replaced. However, this requires that further rows are
added to preserve coverage. Then, in a further manual post-
processing step, to account for the two-way coverage with
respect to events p1, . . . ,p5, and boot, Kuhn et al. add
boot as the first event of each row. Finally, an additional
row is added, in which all events p1, . . . ,p5 are arranged
prior to boot, thereby obtaining strength 2 coverage between

31

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 40 / 139

Table III
TEST PLAN OF SIZE 8 FOR THE LAPTOP APPLICATION OBTAINED FROM AN ANSWER SET OF Π3

4(8).

row event 1 event 2 event 3 event 4 event 5 event 6 event 7 event 8
1 p3(l) p2(r) p1(b) p4 boot appl scan p5
2 boot p4 p1(r) appl p5 p3(l) scan p2(b)
3 boot appl scan p1(r) p2(b) p4 p3(l) p5
4 p1(r) p2(b) p5 p3(l) boot appl scan p4
5 boot p3(b) p5 p1(r) appl p4 p2(l) scan
6 p4 boot p2(b) p5 appl p1(l) scan p3(r)
7 boot appl scan p5 p3(l) p4 p2(b) p1(r)
8 p5 boot p2(l) p4 p3(r) appl scan p1(b)

boot and events p1, . . . ,p5. The resulting array consists
of 18 rows.

The first thing to note is that using ASP enabled us to
easily embed the additional requirements directly in the ASP
program rather than employing an ad hoc and mostly manual
approach. Furthermore, using ASP significantly reduced the
size of the resulting SCA by 55.56% (cf. Table III).

C. Adding Attributes to Events
The next problem elaboration that we consider is related to

the way the peripherals are connected to the laptop. Devices
p1, p2, and p3 have to be connected to USB ports. Three
ports are available: left, right, and back. In each test
sequence, one port has to be assigned to a USB device.

1) Encoding: Predicate port(N,X,Y) states that USB
device X is connected to port Y in row N of the array. This
assignment should satisfy the following coverage criteria:
(i) each USB device has to be connected to each port at least
once and (ii) connections to the ports after the boot event
should be made in any possible order. The above requirements
can be formalised using few further rules.

In the following rules, we first specify the USB ports
and devices. Then, it is expressed that each USB device is
assigned to precisely one port in each test sequence. Finally,
USB devices must not be connected to the same port in any
sequence.
usbPort(right; left; back).
usbDevice(p1; p2; p3).
1{port(N,X,Y):usbPort(Y)}1 :- row(N),

usbDevice(X).
:- port(N,X,Y), port(N,Z,Y), X != Z.

Next, we state coverage criterion (i):
portCov(X,Y) :- port(N,X,Y).
:- usbDevice(X),usbPort(Y),not portCov(X,Y).

Lastly, we add rules for coverage criterion (ii):
portSeq(X,Y,Z) :- usbPort(X;Y;Z),

X!=Y,X!=Z,Y!=Z.
seqCov(N,X,Y,Z):-hb(N,boot,X),hb(N,X,Y),

hb(N,Y,Z).
pSeqCov(R,S,T) :- seqCov(N,X,Y,Z),

port(N,X,R), port(N,Y,S), port(N,Z,T).
:- portSeq(X,Y,Z), not pSeqCov(X,Y,Z).

Let us denote the resulting program by Π3
3(n).

2) Discussion: Note that the additional conditions regard-
ing the USB ports do not result in larger SCAs, still SCAs
of size 8 can be obtained by computing the answer sets of
Π3

3(8). Clearly, 8 is also an optimal bound. The runtime of
the ASP solver is not affected by the additional requirements.

Kuhn et al. deal with the issue of USB ports by adding
respective port assignments in a post-processing step once
an SCA is computed. However, they do not provide details
on which basis this is done, i.e., it is not clear if or in what
sense they strive for systematic coverage.

D. Expressing Preferences

Any answer set of Π3
3(n) represents one admissible test

plan for the application under test. Although each such SCA
satisfies all of the requirements discussed so far, different
SCAs could differ in their fault detection potential.

We next augment program Π3
3(n) by rules that state a

preference relation among solutions, similar to program
Π3

grdy(·, ·) from the previous section. In particular, although
any SCA guarantees full 3-way interaction coverage for some
specified events, the degree of 4-way coverage of events may
differ from one SCA to another. We will use the number
of covered 4-sequences as discrimination criterion regarding
the quality of solutions and consequently prefer SCAs that
cover more 4-sequences over SCAs that cover fewer.

1) Encoding: We define program Π3
4(n) as Π3

3(n) aug-
mented by the following rules:

covered(W,X,Y,Z) :- hb(N,W,X),hb(N,X,Y),
hb(N,Y,Z).

#maximize[covered(_,_,_,_)].

The first rule defines which 4-sequences are covered, the
second rule states that the number of covered 4-sequences
should be maximised.

2) Discussion: An SCA of size 8 corresponding to an
answer set of Π3

4(8) is given in Table III. In the computation
of the SCA, clasp has been configured to optimise a
solution until no improvements can be found for 15 minutes.

On the other hand, Kuhn et al. has not handled preferences
over solutions at all. The algorithm of Kuhn et al. is tailored
for computing a single SCA. Thus, it may be hard to use such
an algorithm to directly deal with optimisation issues, since
this requires that solutions should be efficiently enumerated.

32

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 41 / 139

This case study demonstrates that often generic SCAs
cannot be used in a real world scenario without significant
modifications. In general, such modifications lead to a
considerable overhead or are not feasible at all. By using
ASP, however, a test author has a tool to state different
requirements relevant for individual scenarios. Often, this
will need only little effort such as adding few rules.

V. RELATED WORK

Since the approach of Kuhn et al. [3], [4] is based on
a greedy algorithm for generating SCAs, which have to
be modified in a post-processing step to meet different
user requirements, the ASP-based approach introduced in
this paper is the first account of an approach for directly
generating SCAs in the presence of expressible constraints
and problem elaborations.

Closely related to our work are techniques for computing
covering arrays (CAs), which we will review next. There,
greedy algorithms that construct one row at a time are
quite common. The most prominent representative is the
AETG system [16]. Our greedy approach to compute SCAs
is close in spirit to AETG-like algorithms since it also
proceeds row by row. Also, meta-heuristics, like simulated
annealing, tabu search, or genetic algorithms, have been
applied for constructing CAs [17], [18], cf. respective
overview articles [1], [2]. However, neither greedy techniques
nor meta-heuristics can guarantee optimal bounds.

As a complete method being able to establish optimality
of arrays, different SAT encodings have been considered [19],
[20]. A distinctive feature of ASP compared to SAT is the
high-level modelling capabilities of ASP that allow to model
problems concisely at the first-order level as demonstrated by
our SCA encodings. SAT is certainly a promising approach
for tackling problems described in Section III, i.e., for
computing SCAs and checking optimality of upper bounds.
However, the problem variations discussed in Section IV
require a formalism that allows for elaboration-tolerant
representations, which is not a characteristic feature of SAT.
Regarding modelling, it is to mention that Hnich et al. [19]
and Banbara et al. [20] initially considered constrained
programming (CP) models, which are subsequently translated
to SAT. Though this has not been considered, further
constraints, at least forbidden tuples, could be incorporated
rather easily into the CP model. A comparison of ASP and
constrained (logic) programming (CLP) is given in a related
article [21]. There, the authors conclude that ASP allows for
more declarative and concise problem representation and is
easier to learn for newcomers than CLP. We also mention in
passing that a vital aspect of the CP models was related to
breaking symmetries, which obscures problem representation
somewhat. Though symmetry breaking is also an issue in ASP,
we experienced that adding symmetry-breaking constraints
to our ASP programs has a quite negative effect on the
performance of ASP solvers for improving upper bounds.

Cohen, Dwyer, and Shi [22], [23] introduced approaches
that integrate techniques for generating covering arrays
with SAT to deal with constraints. Forbidden tuples are
represented as Boolean formulas and a SAT solver is used to
compute models. They integrated SAT with greedy AETG-
style algorithms and also with simulated annealing. Hence,
their approach is closely related to our integration of ASP
into a greedy procedure. Calvagna and Gargantini [24] follow
a similar approach but they use an SMT solver instead of a
SAT solver, which offers a richer language than plain SAT
solvers. In their approach, constraints are stated as formal
predicate expressions. Besides SMT, Calvagna and Gargantini
also considered a model checker for verifying test predicates.

Bryce and Colbourn [25] distinguish forbidden tuples and
tuples that should be avoided. They refer to the latter as
soft constraints and they present an algorithm for generating
CAs that avoids the violation of soft constraints. However,
their algorithm cannot guarantee that certain tuples are
avoided, hence it cannot deal with forbidden tuples or other
hard constraints. Using ASP, soft constraints can be easily
expressed by means of minimise or maximise statements.
We illustrated in the previous section how one can combine
hard integrity constraints with soft constraints to express that
uncovered 4-sequences should be avoided.

VI. CONCLUSION AND FUTURE WORK

In this paper, we dealt with the generation of SCAs, which
have recently been advocated as suitable combinatorial design
for event sequence testing [3], [4]. In particular, we applied
ASP as a declarative approach for generating SCAs. While
the only previously introduced algorithm is an AETG-like
greedy algorithm [3], [4], ASP can be used as an exact
method that combines high-level modelling capabilities with
highly performative search engines [8].

To summarise, our contribution is two-fold: On the one
hand, we introduced and showed feasibility of a new approach
for generating SCAs that can be readily used as it is.
On the other hand, we regard this work as a contribution
towards methodology. While ASP is well established in other
communities as a method to address problems from the
area of artificial intelligence and knowledge representation,
too little is known about ASP in the software-engineering
community. Hence, we want to promote ASP as an approach
to tackle challenging problems in the realm of combinatorial
testing. Besides improving the state-of-the-art of event
sequence testing, our aim is to show that ASP provides
a tool that enables a tester to rapidly specify problems and to
experiment with different formulations at a purely declarative
level. ASP solvers are then used for computing solutions
without the need of post-processing steps or developing
dedicated algorithms.

For future work, we plan to deal with versions of SCAs
for different testing applications like testing of concurrent
programs where the order of shared variable accesses was

33

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 42 / 139

identified as crucial for triggering certain bugs that are
otherwise hard to evoke [6], [26].

ACKNOWLEDGMENT

This work was supported by the Austrian Science Fund
(FWF) under project P21698. We also would like to thank
D. Richard Kuhn for providing us with related work [4].

REFERENCES

[1] M. Grindal, J. Offutt, and S. F. Andler, “Combination
testing strategies: A survey,” Software Testing, Verification
& Reliability, vol. 15, no. 3, pp. 167–199, 2005.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,”
ACM Comput. Surv, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[3] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical combinatorial
testing,” NIST National Institute of Standards and Technology,
NIST Special Publication 800–142, October 2010.

[4] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and
Y. Lei, “Combinatorial methods for event sequence testing,”
2010, submitted for publication. Available at http://csrc.nist.
gov/groups/SNS/acts/documents/event-seq101008.pdf.

[5] M. J. Harrold and B. A. Malloy, “Data flow testing of
parallelized code,” in Proceedings of the 8th International
Conference on Software Maintenance (ICSM 1992). IEEE
Computer Society Press, 1992, pp. 272–281.

[6] S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving
coverage criteria,” in Proceedings of the 6th joint meeting
of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2007, pp. 533–536.

[7] C. Baral, Knowledge Representation, Reasoning, and Declar-
ative Problem Solving. Cambridge University Press, 2003.

[8] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and
M. Truszczyński, “The second answer set programming compe-
tition,” in Proceedings of the 10th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR
2009), ser. LNCS, vol. 5753. Springer, 2009, pp. 637–654.

[9] “Combinatorial testing for event sequences,” http://csrc.nist.
gov/groups/SNS/acts/sequence cov arrays.html, last visited:
July 18, 2011.

[10] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub,
“Conflict-driven answer set solving,” in Proceedings of the
20th International Joint Conference on Artificial Intelligence
(IJCAI 2007). AAAI Press/MIT Press, 2007, pp. 386–392.

[11] M. Gelfond and V. Lifschitz, “The stable model semantics
for logic programming,” in Proceedings of the 5th Logic
Programming Symposium, MIT Press, 1988, pp. 1070–1080.

[12] P. Simons, I. Niemelä, and T. Soininen, “Extending and im-
plementing the stable model semantics,” Artificial Intelligence,
vol. 138, no. 1–2, pp. 181–234, 2002.

[13] M. Gebser, T. Schaub, and S. Thiele, “Gringo: A new
grounder for answer set programming,” in Proceedings of
the 9th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2007), ser. LNCS, vol.
4483. Springer, 2007, pp. 266–271.

[14] “Potassco—the potsdam answer set solving collection,” http:
//potassco.sourceforge.net, last visited: July 18, 2011.

[15] http://www.kr.tuwien.ac.at/research/projects/mmdasp/
collection-of-scas.tar.gz, last visited: July 18, 2011.

[16] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton, “The AETG system: An approach to testing based on
combinatorial design,” IEEE Trans. Software Eng., vol. 23,
no. 7, pp. 437–444, 1997.

[17] M. B. Cohen, P. B. Gibbons, and W. B. Mugridge, “Construct-
ing test suites for interaction testing,” in Proceedings of the
25th International Conference on Software Engineering (ICSE
2003), 2003, pp. 38–48.

[18] K. J. Nurmela, “Upper bounds for covering arrays by tabu
search,” Discrete Applied Mathematics, vol. 138, no. 1-2, pp.
143–152, 2004.

[19] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith,
“Constraint models for the covering test problem,” Constraints,
vol. 11, no. 2-3, pp. 199–219, 2006.

[20] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue, “Gen-
erating combinatorial test cases by efficient SAT encodings
suitable for CDCL SAT solvers,” in Proceedings of the 17th
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2010), ser. LNCS, vol.
6397. Springer, 2010, pp. 112–126.

[21] A. Dovier, A. Formisano, and E. Pontelli, “An empirical study
of constraint logic programming and answer set programming
solutions of combinatorial problems,” J. Exp. Theor. Artif.
Intell., vol. 21, no. 2, pp. 79–121, 2009.

[22] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing
of highly-configurable systems in the presence of constraints,”
in Proceedings of the 16th ACM/SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2007,
pp. 129–139.

[23] ——, “Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy
approach,” IEEE Trans. Software Eng., vol. 34, no. 5, pp.
633–650, 2008.

[24] A. Calvagna and A. Gargantini, “A formal logic approach
to constrained combinatorial testing,” Journal of Automated
Reasoning, vol. 45, no. 4, pp. 331–358, 2010.

[25] R. C. Bryce and C. J. Colbourn, “Prioritized interaction
testing for pair-wise coverage with seeding and constraints,”
Information & Software Technology, vol. 48, no. 10, pp. 960–
970, 2006.

[26] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes:
a comprehensive study on real world concurrency bug charac-
teristics,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems. ACM, 2008, pp. 329–339.

34

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 43 / 139

A Test Case Suite Generation Framework of Scenario Testing

Ting Li 1,3

1) Shanghai Development Center

of Computer Software Technology
Shanghai, China
lt@ssc.stn.sh.cn

Zhenyu Liu 2

2) Shanghai Key Laboratory of
Computer Software

Testing and Evaluating
Shanghai, China

{lzy, jiangx}@ssc.stn.sh.cn

Xu Jiang 2

3) Shanghai Software Industry
Association

Shanghai, China
lt@softline.sh.cn

Abstract—This paper studies the software scenario testing,
which is commonly used in black-box testing. In the paper, the
workflow model based on task-driven, which is very common
in scenario testing, is analyzed. According to test business
model in scenario testing, the model is designed to
corresponding test case suite. The test case suite that conforms
to the scenario test can be obtained through test case
generation and test item design. In the last part of the paper,
framework of test case suite design is given to illustrate the
effectiveness of the method.

Keywords-test case; software test; scenario testing; test suite.

I. INTRODUCTION

Software testing is the main activity of software quality.
The goal of software testing is to validate whether software
is good or conform to the initial requirement. However,
software engineers always consider that software testing
should be terminated under certain conditions. The adequacy
of software testing is an important factor according to testing
purpose. It is generally agreed that when software testing
reaches expected test purpose, the software testing activities
could be terminated. Thus, the quality and overhead cost of
software testing can be considered fully and controlled
effectively.

Nowadays, business processes become complicated by
the development of technology and information. At present,
many factors led to the e-business more complicated, such as
business logical become complexity, component-based
development widely accepted and complete workflow
processes scattered in various business components. The
component-based software led to process the data flow and
control flow the more tightly and more complicated.
Therefore, the scenario testing and verification has become
important increasingly before system runtime. The scenario
testing can be regarded as an independent test, which
becomes an important part of black box testing. On the one
hand, many business processes adopted e-business
management. The traditional paper-based business model
was replaced. On the other hand, uncertainty of system
requirement brings risks to scenario testing. So, it is
necessary to consider scenario testing gradually.

Software testing is the critical activity in the software
engineering. However, some research shows the design of
test cases will cost much time during software testing. While
many business workflow management systems have

emerged in recent years, few of them provide any
consideration for business workflow verification.

The research work on business scenario testing and
validation is less. As for the actual development of the
application system, the every operation in business is
designed and developed well. However, business processes
testing and requirements verification are very important and
necessary for software quality. The scenario testing satisfies
software requirement through the test design and test
execution.

Scenario testing is to judge software logic correction
according to data behavior in finite test data and is to analyze
results with all the possible input test data. It is generally
considered that test design can evaluate software testing
quality and select the test data. Scenario-based testing
focuses on what the end-user does, not what system does.
The flow path and boundary conditions are used to design
test data corresponding to business scenario. Therefore, the
main purpose of scenario testing is to find business flow
interaction defects as possible. The test results also help to
record results of software runtime during test execution.

Based on the existing test purpose of scenario-testing, in
this article, we’ll focus our research efforts on test case
design of scenario testing. In the first section, we introduce
the business scenario testing and its importance. And then, in
the second section, we give out a business scenario model. In
the third part, a test case suite model is proposed. The
generation method of design test case is introduced in the
fourth section, according to the requirements of business
scenario which conforms to test case suite model. The fifth
part gives related works and the conclusion is drawn with a
corresponding discussion in the final section.

II. BUSINESS SCENARIO MODEL

Firstly, we give the typical business scenario model,
which supports business model. The business model consists
of three elements: business workflow, business scenario and
basic operation.

A. Concepts

The business workflow indicates the typical business to
accomplish the basic business process. Indeed, the basic
workflow always consists of different scenario in the
business, and any scenario corresponding to the business
workflow. Therefore, we give the definition of the business
scenario model.

35

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 44 / 139

Firstly, notations are introduced (see Table 1).

TABLE I. NOTATIONS

Symbol Implication

BW Business Workflow

SC Scenario

OP Operation

I Input Set

O Output Set

D Data, Test Data

U User

R Role

S State

PS Previous State

SS Success State

TR Test Result

TC Test Case

TCS Test Case Suite

Definition 1: (Business Workflow) Assumes the business

workflow, there are some business models for the fully
business operations.

BW= {I, O, SC, D}, in BW, I am input set, O is output
set, SC is related the scenarios, D is the test data
corresponding to specific scenarios.

Definition 2: (Scenario) As for business process, there
are scenarios in the business workflow. Every scenario could
represent the possible workflow path in business flow.

SC= {I, O, OP, R, U, D, S, RE}, in SC, I and O indicate
input and output separately, OP is the operation related to the
current scenario, U and R are abbreviated of user and role
separately. User and Role are the execute member of the
operation. S is the state which describes the workflow.

Definition 3: (Operation) In any scenario of business
workflow, operation is the basic element which
accomplishes the specific function or function collection.

OP= {PS, SS, UR, D}, in the OP, PS and SS are previous
state and successive state, which indicate the workflow state
before and after the operation.

Definition 4: (Role) There are three kinds of roles, one is
the workflow initiator (Sender), other two are workflow
receiver and workflow informed person the workflow-based
business model.

Definition 5: (User) Assumes the business process, there
are multiple operators, operator is a member of role for
specific operation.

For the two operations are carried out by the two users in
workflow, there are seven typical models for operation. In
these seven models, one model is concurrency or parallel,
and the other models are different orders of successive
operations. For the two operations and two users, two
operations implement the following executable sequence
(see Table 2).

Now, many collaborative business software systems are
followed these two models: concurrently and end-start. Other

models would exist in some special collaborative software
system.

TABLE II. MODELS OF TWO OPERATIONS

Model Description Notation

Concurrent Starts at the same time A||B

Switch Any one starts A|B

Start Start One start and another state ss(A, B)

End Start One finish then another state es(A, B)

End End One finish then another could finish ee(A, B)

Start End One start the another could finish se(A, B)

Loop Repeat when finish [A]

Based on the workflow definition, four typical business
models: sequence, parallel, switch and loop.

B. Model

 Sequence structure is used to define some activities
in sequence execute order. In Fig. 1, where OPa,
OPb are two independent tasks, OPb is defined as S2
and the causal state is S3. The sequence model could
be denoted as es(OPa,OPb).

Figure 1. Sequence Structure

 Parallel structure used to define the order is not
strictly executable. Every task in branch is not
running at the same time, it needs to use two basic
workflows: ‘branch’ and ‘connection’. Fig. 2, where
OPa, after implementation by S1 directly transferred
to the S2 and S4, then the two tasks OPb, OPc can
be executed separately, therefore is a parallel
relationship, and then performed the OPb, OPc, after
its implementation by the OPd. Fig. 2 could be
denoted as es(OPa, (OPb || OPc), OPd).

S2 S3

S6S1 OPa

OPb

OPd

S4 S5OPc

Figure 2. Parallel Structure

 Switch Structure is similar to the parallel structure,
but the condition is selected according to state of
S2/S3, rather than parallel structures, which OPb and
OPc is performed at the same time. This model
could be denoted as es(OPa, (OPb|OPc), OPd).

Figure 3. Branch/Select Structure

36

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 45 / 139

 Loop Structure. This structure is used to define that
repeat the implement is needed in many tasks. The
loop structure shown in Fig. 4 is modeled as es(OPa,
[es(OPb,OPc)]). Here, operation OPb is executed
repeatedly in loop structure.

Figure 4. Loop Structure

III. TEST CASE SUITE MODEL

During software testing, a standard test script template is
provided to facilitate execute test case and collect test results.
The standard template not only is the standardized collection
process of quality elements, but also can assist comparative
analysis of different test results.

The test script is the basic element for test execution.
Therefore, test script design is accounting for much time on
test design. It is necessary to find generic test cases in order
to reduce the cost of the test case design for the further test
case design and test execution. For some same operation in
business, the reuse test script can accelerate the test case
design. The process of automatically generating test cases
can also improve the efficiency of test design [1]. As for
testing activities is high cost work, test design is accounting
for the workload and ability of test designer, the test case
reuse method is adopted to improve the design efficiency.
The reuse test case can reduce the design costs if used
existing test case which have been used. The test case reuse
technique can improve the test efficiency and reduce test cost
[2].

Figure 5. Test Case Suite Level Model

The test case suite is top level in the test suite model. The
test case suite, also named test suite, is the collection of test
case. The test case suite is corresponding to the business
model. The test case is the middle level in Fig. 5. The every
test case in test case suite is corresponding to the specific
scenario in the business model. In other words, the test case
could accomplish one of the business flows. The business
flow always consists of many possible workflow paths. For
example, as for the bank transaction workflow, the same
bank transaction in different bank could design two scenarios
in the transaction business workflow. The example
demonstrates the relationship between the business and
scenario. There are more scenarios than the examples in the
actual test requirement. Therefore, the different methods of

transaction could design for different test case in the test
suite of business.

The test case is related to specific scenario in business
workflow. In the business scenario, many tasks constitute the
integrated scenario. The operation is executed by user with
authority role. The relation between two operations in the
specific scenario should be modeled, which introduced in
section 2. The operations could be converted into test items
in test suite model. In the test suite model, the operation is
the basic element. During software testing, test item is the
basic elements during testing execution.

Definition 6: (Test Case Suite) Test case suite consists of
test purpose and related test cases. Test case consists of
related scenario, test method, expected test result and test
item collection. BNF is shown as Table 3.

TABLE III. BNF OF TEST CASE SUITE

<TestCaseSuite>::=<BusinessRule><TestPurpose><User><Role>
<TestType><Data>{<TestCase>}

<BusinessRule>::== /*refer to the business model */
<TestPurpose>::= /* test goal for the business*/
<TestType>::= function | performance | security | others
<User>::=/* user info for the operator */
<Role>::={<User>} /* usergroup */
<TestCase>::=<Scenario><Method>{<TestItem>}<TestResult>
< Scenario >::= /* test case state and its function when start */
<Method>::= manual | automated
<TestResult>::= /* the expected test result for test case */
<TestItem>::=<TestInput><TestOutput><TestData><TestOracle>
<TestInput>::= /* operation procedure and input information*/
<TestData>::= /* test data collection refers to the input */
<TestOracle>::= /*expected the result based on input and data*/
<TestOutput>::= /* software output information*/
Definition 7: (Test item) Test item is an individual test

step in the test case model, including the test input, test data,
test oracle and test output.

Test case consists of many test items. The test items
belong to the relevant test case. The test item is the part of
the test case and every test item is run during the test
execution. The different test scenario can add different test
items to fulfill the test case. Therefore, scenario testing can
be reconstructed according to the description of the test case.
Test item is a fundamental element to construct test case.

IV. GENERATION METHOD

The test case suite should be designed according to the
business model. The business model and workflow is
complicated in that the possible business flow path should be
considered completed for the validation and verification.

A. Generation Framework

The paper gives an integrated framework. Fig. 6 gives the
test case suite generation framework. The framework helps
test designer to design test case suite, test case and test item.
The business model and test purpose are input items. The
important activities in test design are analyzing path and
related operation. The analyze path is to get the possible path
according to the business model. The all possible paths are to
help generate related test case. The purpose of analyzing
operation is to design the test item. The test case, test item,

37

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 46 / 139

and their test data constitute the test case suite, which is
needed for test execution.

Figure 6. The framework of test case suite generation

 Analyze Execute Path
The test scenarios need to be analyzed all possible

execution paths. According to the model presented earlier
and test purpose, the designer should analyze the paths to
accomplish the specific business. Test cases need to be
considered that the coverage of business processes should
conform to test purpose. The typical logic coverage consists
of statement coverage, decision coverage, condition coverage,
decision/condition coverage.

Test requirements consist of various logical coverage,
such as path coverage, decision coverage, condition coverage
and condition/decision coverage, etc. The different coverage
requirements impact on test data design. The decision
coverage is to determine the true and false values in one
statement.

Here, we consider the situation, including two conditions,
the one condition (C1) is x<0 or y>5 and the other condition
(C2) is x>2 and y>3. The x value and y value constitute
collection 1 and collection 2, the detail value and condition
as below. The collection 2 satisfies the condition/decision
coverage.

Collection 1(C1)
x y x<0 y>5 x>2 y>3 C1 C2
-1 3 T F F F T F
2 6 F T F T T F
3 2 F F T F T T

Collection 2(C2)
x y x<0 y>5 x>2 y>3 C1 C2
-1 3 T F F F T F
2 4 F F F T T F
3 2 F F T F T T

The data size should be further considered. The more
data size, the more test execution time and cost. That is to
say, the minimum number of test cases improved test
efficiency. The design test data will affect the size of test
case. Although different test data could achieve the same test
purpose eventually, the less test data will reduce the test
execution time.

It can be seen, the value y in condition 2 is not meet is
true of the condition y> 5, so a new value is needed to design.

If consider further optimization, the collection can be two
data sets, which reduce one data set compare to original data
sets. The final collection is:

x y x<0 y>5 x>2 y>3 C1 C2
-1 3 T F F F T F
3 4 F T T T F T

 Analyze Operation
Operation analysis will get the basic operation based on

business model, including test items and test cases. Each test
item is corresponding to a basic operation. The basic
operations maintain consistency with the test data.

 Combine Test Case
Each operation will be designed to one test item. Test

case consists of test procedures and related test data. Test
procedures are sequence collection of test items, which
sequence corresponds to execution path that analyzed during
test design. The execution path is transformed into a series of
branches that determine the condition and coverage. The user
role information is also to be considered.

Through a set of test cases, test designer can be combined
into a test case suite based on business models and their test
purpose.

B. Algorithm

Here, we develop the algorithm for generating the test
case suite, test cases and related test data. The algorithm
analyzes the business rule and transverse all possible
workflow paths. The every execution path is corresponding
to the test case. The all test cases are composed into an
integrated test case suite, that is to say, the test case suite
consists of all possible execution paths. Indeed, some
execution paths may be invalid due to the contradiction
between test data and business logical. The some execution
paths will be reduced according to test data.

INPUT: SC,OP,TR
OUTPUT: TCS
Begin
 OP’= {};
 EP = {};
 TD = {};
 COND = {};
 Foreach sc In SC Do
 Begin

OP’ = OP’ U getOper(SC);
EP = getAllPath(SC);
TD = createTestData(OP’);
Foreach ep In EP Do
 TD’ = TD’ U getTestData(ep, TR);
TD’ = ProcessUnsed(TD);

 End
Foreach op in OP Do

TC =TC U Generation (OP);
 TCS = Combine(TC,TD’)
End

C. Example

Here, we give the actual example to demonstrate the
experimental result. The business process consists of four
operations, Oa-Od; four conditions, C1-C4. Therefore, the
maximum path is 2*2*2*2=16, if consider the possibility of
execution, the all possible paths are {OaC1C2Ob,
OaC1C2Oc, OaC1C3Oc, OaC1C3C4Oc, OaC1C3C4Od}.

38

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 47 / 139

The Oa-Od is needed to design the test item corresponding to
an operation.

Figure 7. An actual business process

The second step is to design the test data for possible
path. If test requirement is condition/decision coverage,
some condition coverage should be deleted or redesigned
due to the contraction with test data. In table 4, the 8th test
data are unreachable for condition (x>1 and y>10000) true.
The condition is false due to y=6000 in No.8. And then, we
could design the test data for execution path. So the final test
data in No.8 should be x=2, y=20000, z=4.

TABLE IV. CONDITIONS AND TEST DATA

No. Condition (T)
Test Data

x y z T/F

1
x>0 or y>5000

0 3000 0 T

2 2 12000 -2 F

3
y<2000 or z<3

 1000 2 T

4 4000 3 F

5
x>1 and y>10000

1 5000 T

6 2 15000 F

7
y/(x+z)>10000

1 20000 1 T

8 2 6000 2 F

V. RELATED WORKS

Software testing, as is mentioned by Zhu [3], can be
divided into white-box testing and black-box testing,
according to whether or not it involves with code. The white-
box testing includes testing based on code and testing based
on standard. Well, the black-box testing includes hybrid test,
which is based on standard. Moreover, FSM (finite state
automata) is used to generate test data for lots of models
[4-6]. Also, many researches are aim at generating testing
path of EFSM (extended finite state automata). As for EFSM
testing, testing coverage will involve many aspects, for
example, state coverage, transition coverage, path coverage,
and so on. These coverages are used to generate FTP
(feasible transition path), which is required by test cases [7]
[8].

Weyuker's axiomatic system proposed basic properties of
software test adequacy criteria. By using axioms set, it could
assess the adequacy criteria for the testing. In the evaluation
of axiom, Weyuker’s criteria for testing are compared with
test adequacy of the criteria [2]. The anti-composition axiom

in [2] is not positive. This axiom points out, even though test
case suite T is adequate for each component in testing
program P, T in the case of P, it may not necessarily be
adequate. This axiom shows, as for the tested program, the
adequacy of testing is impossible to be fulfilled. Although
the axiom indicates an intuitive concept in software testing, it
cannot enhance the confidence of test engineer with certain
test case. So, the test criterion, which is described by the
axiom, has a kind of a negative character.

VI. CONCLUSION AND FUTURE WORK

The paper gives the method of generating the complete
test case suite according to the business model for the
scenario test. The framework is fulfilling the demand of test
requirement and supporting the design test case and test suite
effectively in scenario testing.

Future work of this research includes deeply research
further improve the efficiency and correctness of the test
case suite and give more extension of choosing better test
cases from the alternative test case which generate thought
reuse technique. The related work and the newly exploration
of reusing technique are still ongoing for software testing.

ACKNOWLEDGMENT

The work is supported by National Torch Program under
Grant No. 2009GH510068 and Shanghai STCSM Program
under Grant No.10DZ2291800. The authors would like to
thank without knowing the name for their helpful
suggestions.

REFERENCES
[1] W. K. Leow, S. C. Khoo, and Y. Sun, “Automated generation

of test programs from closed specifications of classes and test
cases”, Proceedings of the International Conference on
Software Engineering, 2004, pp. 96-105.

[2] E.J. Weyuker, Axiomatizing software test data adequacy.
IEEE Trans. on Software Engineering, 1986, vol. 12(12), pp.
1128-1138.

[3] H. Zhu and Z. Jin, Software Quality Assurance and Testing.
Science Press, Beijing, 1997, pp. 142-147.

[4] Z. Liu, G. Yang, and T Li, “A Component-based Reuse
Technique of Software Test Cases, Proceedings of the 3rd
World Congress for Software Quality”, Munich, Germany,
2005, vol. 1, pp. 26-30.

[5] A. A. Andrews, J. Offutt, and R. T. Alexander, Testing Web
Applications by Modeling with FSMs. Software and Systems
Modeling, 2005, vol. 4(3), pp. 326-345.

[6] R. Lai, "A survey of communication protocol testing," Journal
of Systems and Software, 2002, vol. 62, pp. 21-46.

[7] D. Lee and M. Yannakakis, "Principles and methods of
testing finite state machines-a survey," Proceedings of the
IEEE, 1996, vol. 84, pp. 1090-1123.

[8] A. Kaliji, R. M. Hierons, and S. Swift, Generating Feasible
Transition Paths for Testing from an Extended Finite State
Machine(EFSM) In proceedings of 2nd International
Conference on Software Testing Verification and Validation,
Denver, USA, 2009, pp. 230-239.
A. Y. Duale and M. U. Uyar, "A method enabling feasible
conformance test sequence generation for EFSM models,"
IEEE Transactions on Computers, 2004, vol. 53, pp. 614-627.

39

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 48 / 139

Is Mutation Testing Scalable for Real-World Software Projects?

Simona Nica, Franz Wotawa
Institute for Software Technology

Graz University of Technology
Graz, Austria

snica,wotawa@ist.tugraz.at

Rudolf Ramler
Software Competence Center Hagenberg GmbH

Hagenberg, Austria
rudolf.ramler@scch.at

Abstract—A significant amount of research has been con-
ducted in the area of mutation testing. It is a fault based
technique that has been intensively used, over the last decades,
as an efficient method to assess the quality of a given test
suite. In the literature different mutation tools are available,
corresponding to different programming languages or different
types of applications. Although mutation testing is a powerful
technique, limitations do exist. The most common problems are
represented by the increased computation time, necessary to
derive the entire mutation testing process, and the equivalent
mutants problem. Therefore a natural question arises: is
mutation testing really suitable in real-world environments?
Through the research we start here, we aim to come with an
accurate answer to this question.

Keywords-mutation testing; mutation tools; coverage tools;
eclipse project;

I. INTRODUCTION

Mutation testing is a test technique that has been used
to evaluate the test suite of an application, but also for the
test case generation process. It is a fault based technique
that makes use of a well determined set of faults for
measuring the efficiency of the test suites. The mutation
process involves the following steps:

1) Faults are introduced into a program resulting in
different faulty versions (mutants) of this program.

2) Each mutant is run against the provided set of test
suites. When a mutant fails to pass a test case, it is
said that the mutant is killed. Otherwise it is still alive
or it could not be detected - e.g., due to dead code or
because it is an equivalent mutant.

3) The mutation score (the ratio between the number
of killed mutants and the number of all mutants) is
computed. The mutation score is an indicator used to
evaluate the effectiveness of a test suite, i.e., its capa-
bility to detect the faults introduced through mutations,
and thus describes the test suite adequacy.

A mutant is said to be equivalent with the original
program when there is no way that a test case can detect
the modification - since the output will always be the same
with the output of the original program. Figure 1 presents
an example, the arithmetic operator replacement (AOR)
mutation. It is important to detect and avoid equivalent

mutants because they cause an artificially low mutation
score, as they cannot be killed.

Mutation testing is seen as a good metric for measuring
the coverage levels achieved through different test coverage
techniques. The authors in [1] prove that in some situations
coverage measure techniques do not represent the most
adequate measure in discovering all the faults an applica-
tion is prone to. For example, in the case of test driven
development, one first writes the tests and then starts writing
the source code. In most of these situations the programmer
obtains a good coverage of the code, but only those specific
faults may be detected, the ones the programmer had thought
of during the development of the tests. In contrast, mutation
testing can be taken as a good indicator for measuring
the coverage levels achieved through different test coverage
techniques.

In 1971, Richard Lipton introduced the concept of mu-
tation testing. The technique was further developed by De-
Millo, Lipton and Sayward [2]. The technique can be applied
at unit testing level [3], [4], [5], integration testing level[6],
[7] or it can be used to validate the specifications [8], [9],
[10], [11]. Several mutation testing tools were developed, for
different existing programming environments: Fortran [12],
[13], Java [14], [15], [16], [17], [18], C# [19], [20], C [21]
and SQL [22]

Although the mutation testing technique can be computa-
tionally very expensive and also time consuming, it has been
shown that mutation testing is stronger than coverage based
metrics [4]. Therefore a natural question arises: is mutation
testing worth the effort in a real life software project?

This paper is structured as follows. In Section 2 we give
a brief description of the working environment and the tools
used in our research. In Section 3, we present and discuss the
results. In Section 4 we discuss the related research. Finally,
in Section 5 we conclude the paper.

II. ENVIRONMENT SETTING

In this paper, we aim to assess the costs of applying
mutation testing on a real-life software system. Following
aspects have been investigated to answer the questions
whether mutation testing worth the effort in a real life
software project:

40

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 49 / 139

if(a == 2 && b == 2)
c = a * b;

−−−−−−−−−−−−−−−−−−→
Applying AOR operator

if(a == 2 && b == 2)
c = a + b;

Figure 1. Equivalent Mutant

• The time required for mutation testing,
• The results of mutation testing compared to coverage

analysis,
• The issues encountered in setting up and running se-

lected mutation testing tools.

In what follows, we briefly present the working environ-
ment configuration.

A. Environment Configuration

We have chosen to use mutation testing on Eclipse
[23], a widely known and large open source project that
shows many parallels to commercial and industrial software
projects, especially those developed on the basis of the
Eclipse application framework. We retrieved the source code
Eclipse Release Build 3.0, from the Eclipse repository [23].

In Table I, the versions and configuration parameters of
the tools and test objects used throughout our research are
described. All of the presented work was conducted using
the virtual environment Oracle VM Virtual Box. The virtual
machine is configured to run on Windows XP SP2 operating
system, on an Intel Core 1.73 GHz with 2 GB of RAM. For
the Java Virtual Machine, we compile and run all the files
involved in the research with version 1.6, update 24. We
have chosen to work within a virtual environment, in order
to offer a fast portability and also an easy management for
our research. We aim at a fully automatized process, for all
the Eclipse plug-ins, which will run over a predefined period
of time, on different architectures.

We apply three of the most widely used mutation tools:
MuJava [3], Jumble [16] and Javalanche [15]. We run the
mutation testing technique and then compare the results with
the code coverage information provided by Clover [27] and
EclEmma [28].

B. Applied Mutation Tools

For computing the mutation score metric, we take into
account, throughout the research, the following mutation
tools:

Tool / System Version Location/Comment
Eclipse 3.0 [23]
MuJava 3 [24]
Jumble 1.1.0 [25]

Javalanche 0.3.6 [26]
Clover 3.0.2 [27]

EclEmma 1.5.1 [28]

Table I
OVERVIEW ENVIRONMENT CONFIGURATION

1) MuJava: MuJava is a Java based mutation tool, which
was originally developed by Offut, Ma, and Kwon
[14]. Its main three characteristics are:

• Generation of mutants for a given program.
• Analysis of the generated mutants.
• Running of provided test cases.

Due to the newly implemented add-ons, the tool sup-
ports a command line version for the mutation analysis
framework, which offers an easy integration into the
testing or debugging process. Offutt proved that the
computational cost for generating and executing a
large number of mutants can be expensive, and thus
he proposed a selective mutation operator set that is
used by the MuJava tool. It works with both types of
mutation operators:

• Method level mutation operators (also called tra-
ditional), which modify the statements inside the
body of a method;

• Class level mutation operators, which try to simu-
late faults specific to the object oriented paradigm
(for example faults regarding the inheritance or
polymorphism).

MuJava was not designed to work with JUnit test
cases, nor to compile with Java versions greater than
1.4; i.e., Java development kit 1.5 or 1.6. Due to the
fact that for most of the applications we use throughout
the research, we work with MuJava as the mutation
testing tool, we have implemented different add-ons to
support JUnit test cases and partial mutation of Java
source files compiled with JDK 1.5 or greater. We take
into account both the traditional mutation operators,
i.e., the method level, and the class level ones. MuJava
comes with a graphical user interface.

2) Jumble It is a class level mutation tool. Moreover, this
tool supports JUnit 3 and, recently, it was updated
to work with JUnit 4. Similar to MuJava, just one
mutation is possible at a time, over the source code
under test. First, the tool runs all the tests on the
original, unmodified, source file and checks whether
they pass or not, recording the time necessary for each
test. Then, it mutates the file according to different
mutations operators and runs the tests again. The pro-
cess is done when all the mutations have been tested.
Unlike MuJava, Jumble is able to mutate constants.

3) Javalanche This mutation testing tool should resolve
two major problems in mutation testing: efficiency
and equivalent mutants problem. Javalanche works on
byte code and can mutate very large programs. The

41

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 50 / 139

authors resolve the problem of equivalent mutants by
assessing the impact of mutations over the dynamic
invariants [29]. According to the authors of the tool,
Javalanche has an unique feature. The tool is able to
rate the mutations in accordance with their impact on
the behavior of program functions, i.e., the greater the
impact of an undetected mutation is, the lower the
possibility of an equivalent mutant.

We have chosen to conduct the research using the above
described tools, taken into account their usage inside the
experiments conducted in the mutation testing area.

III. RESULTS

In this section, we present the first results of our research,
by taking into consideration the three aspects that we follow
in our research work: time, mutation testing results, using
the JUnit tests provided on the Eclipse repository, and finally
we describe the issues encountered in setting up and running
the different mutation testing tools.

A. Research Procedure

In our research we follow the next steps:
1) Check-out the project from the Eclipse repository;
2) Run the plug-in test cases associated to the checked

out project;
3) Download and install the coverage and mutation tools;
4) Set all the necessary class paths for each tool;
5) Run the tools over the original project and record the

results. This step is the one that consumes most of the
time, i.e., approximately 1 month and a half in case
of our chosen plug-in project. This is mainly due to
the different compilation exceptions encountered; for
the compilation and tools running tasks one human
resource was allocated.

As the research procedure is the same for each of the
Eclipse plug-ins, we conduct the first research steps with
the Eclipse Java development tools Core project. The JDT
[30] provides the tool plug-ins that implement the Java IDE,
which supports the development of any Java application,
including Eclipse plug-ins.

The JDT Core project, org.eclipse.jdt.core, has associated
three test projects:

1) org.eclipse.jdt.core.tests.builder
2) org.eclipse.jdt.core.tests.compiler
3) org.eclipse.jdt.core.tests.model

B. Time

Concerning the time necessary to derive this research, we
have to take into account:

• The time necessary to configure the tools; the effort
estimated was of approximately one week;

• The mutants generation time; for the selected plug-in,
it took us between 6 to 8 hours, i.e., a full working
day;

• The time needed to run the test cases against the set of
mutants. This is the most significant one, as we have a
huge number of mutants.

C. Mutation Results
For each test project from Table II, we computed the total

number of initial test cases NoTC, the initial time Torig, in
minutes, needed to run the tests, and the success rate Srate

which tells us the percentage of tests that initially passed.
In Table III, we show the detailed mutation test-

ing information for one of the three test projects,
org.eclipse.jdt.core.tests.compiler.regression. We record the
number of generated mutations NoMut, the necessary time
for generating all the mutations, TMut, the mutation score
MS and the total time for running the tests over the mutants,
i.e., TTCMut

. MuJava generated 123 class mutants and al-
most 31 000 method mutants, in approximately 360 minute,
i.e., 6 hours. We estimated the total time for running all
the generated mutants; we did not run all the method level
mutants, due to the increased time complexity. The average
mutation score recorded was around 65%. The computed
mutation score, for MuJava, is the average of all the mutation
scores computed for each run of the plug-in, in accordance
with the selected mutants.

As it can be observed from Table III, we were not able
to obtain any mutation points for Jumble and Javalanche.
By TNoTC

we denote the total number of test cases from a
specific test project. In Table IV, we record, the success rate
for the three plug-in projects, after running all the test cases
from each project, using the coverage tools. Concerning
the types of code coverage recorded by the tools we have
selected for our research, we know that:

• Clover measures statement, branch and method cover-
age;

• EclEMMA computes class, method, statement and basic
block code coverage.

In the research conducted so far, we have reported the
mutation score to the statement coverage level. Further code
coverage measures will be taken into account for the mature
stages of our research.

D. Encountered Issues
Up to now we were not able to generate mutants, for the

JTD Core project, with Jumble or Javalanche; this part of

Test Project NoTC Torig Srate

org.eclipse.jdt.core.tests.builder 79 161.312 100.00 %
org.eclipse.jdt.core.tests.compiler 2542 16.203 100.00%

org.eclipse.jdt.core.tests.regression 2622 387.735 100.00%
org.eclipse.jdt.core.tests.eval 350 65.562 100.00%
org.eclipse.jdt.core.tests.dom 1584 136.437 100.00%

org.eclipse.jdt.core.tests.formatter 486 21.109 100.00%
org.eclipse.jdt.core.tests.model 2084 293.782 100.00%

Table II
ECLIPSE JUNIT TEST RESULTS

42

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 51 / 139

Tool NoMut TMut MS TTCMut
MuJava 123/30947 174.69 min/185.7min app.65% est. 2 months
Jumble - - - -

Javalanche - - - -

Table III
MUTATION TESTING INFORMATION PER MUTATION TESTING TOOL

Project TNoTC
Clover EclEMMA

org.eclipse.jdt.core.tests.builder 79 100.00% 100.00%
org.eclipse.jdt.core.tests.compiler 16287 100.00% 100.00%

org.eclipse.jdt.core.tests.model 8639 99.97% 100.00%

Table IV
SUCCES RATE

our work is still in progress. The main problem we have
encountered was to run the test cases as plug-ins test, using
the different mutation tools. Besides time consuming, the
generation of mutants proved to be also very complex.

Concerning the first mutation tool, MuJava, there are some
limitations we have to take into consideration:

• MuJava is not able to generate any mutants in case of
constants (it does not mutate constant values);

• Also, missing statements are another limitation of the
tool. We are not able to generate mutants, by statement
deletion nor insertion;

• In case of multiple bugs in one statement, the MuJava
tool is not able to mutate more than one variable or
operator per statement and mutant, i.e., each mutant
contains only one change when compared with the
original program (this limitation is however easy to
overcome);

• In order to support execution of JUnit tests, the nullary
constructor has to be added to each test class file. Also,
the private methods setUp() and tearDown() must have
public access;

• The last problem regarding mutation is that sometimes
equivalent mutants are generated.

Regarding MuJava, as it can be already observed from
Table III, the majority of mutants was represented by the
method ones. From this large pool of traditional mutants,
the three most commonly encountered were:

1) AOIS, i.e., Arithmetic Operator Insertion, with 13654
mutants,

2) LOI, i.e., Logical Operator Insertion, with 4698 mu-
tants, and

3) ROR, i.e., Relational Operator Replacement, with
3980 mutants.

Javalanche is of real interest in our approach, as it should
deal with the equivalent mutant problem. This would allow
us to reduce the high number of generated mutants and
thus reduce the effort. Therefore, we further try to run the
research and, together with the people involved in Javalanche
development, come with a solution.

We have to mention that on small and simple projects,
i.e., no more than 200 lines of code and which have the test
sets in the same project as the mutated classes, we were able
to configure and successfully use with success Jumble and
Javalanche.

In what follows, we briefly describe the experience
recorded for configuring and running the mutation tools we
have used in this paper. We denote by ToolConfig, i.e., tool
configuration, the knowledge accumulated when configuring
all the paths; by MutGen we present the mutants generation
step and by RunningTC the observations when running the
mutants.

1) MuJava
• ToolConfig: The graphical user interface, but also

the command line version, are intuitive and easy
to use.

• MutGen: The tool must have access to the class
files corresponding to each file to be mutated;
also, the user can select which mutation operators
to apply, both from the set of traditional mutants
and also from the class level ones.

• RunningTC: MuJava requires the tests to have
the nullary constructor. Also, the methods setUp()
and tearDown() must have public access (default
is protected). This was time consuming, as we
had to update all the test classes with the nullary
constructor and the public access for the two
methods.
Both for generating the mutants and then running
them it takes a lot of time. A solution may be the
integration into an ant script, which is to be run
on a monthly basis without any user interaction.

2) Jumble
• ToolConfig: A readme.txt file is available, where

the steps to take are quite easy to follow. Never-
theless, after following the instructions and setting
the classpath, we were not able to derive a running
configuration.

• MutGen: We were not able to get any mutants,
due to execution errors.

• RunningTC: Not reachable.
3) Javalanche

• ToolConfig: The javalanche.xml file has to be
copied to the current user directory, where it is
located the project to be mutated. Then an easy
configuration follows, i.e., change the paths to the
installation folder and for the working project into
the xml file.

• MutGen: Javalanche instruments the byte code
and then needs to take control over the test
execution. For test execution Javlanche relies on
JUnit test suites. If a test suite is not supplied,
Javalanche just mutates the code, but it can not

43

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 52 / 139

take over the control of the test execution.
• RunningTC: We did not manage to reach this

step.
Regarding the two coverage tools we have used, we found

it easy to setup and integrate them into a daily ant script,
but also as an Eclipse plug-in (both Clover and EclEmma
can be used as Eclipse plug-ins).

IV. RELATED RESEARCH

As mutation testing has proven to be an efficient technique
in assessing the quality of the test pool, the attention was
focused on whether or not mutation can be used in large
scale software applications. In [4], the authors try to answer
this problem by running mutation testing over a set of
software programs, written in C language, each the size of
more than 200 lines of code, and with a large pool of test
cases. All the programs had available a pool of faults. The
authors were able to show that, when carefully used, the
mutation testing technique can provide good results in fault
detection.

In [31], the authors proposed a new mutation testing tool,
developed in Java and AspectJ for Java programs. They run
a research study on real-world open source Java projects,
randomly selected, and compare the results with Jumble and
MuJava.

What distinguishes our work from the previous ones,
is the fact that we take a huge, well known and widely
used software project, i.e., Eclipse, and start to record
different software metrics. The most important of them is the
mutation score metric. For Eclipse we can track the faults
database and therefore derive a realistic and practical report
of the mutation testing technique, together with other quality
software metrics, in order to depict real software bugs. One
of the work we report to is the research conducted by Zeller
[32].

V. CONCLUSION

Mutation testing is an efficient method to detect errors
inside the software projects. Unfortunately, the available
open source mutation testing tools we have used so far in
our research work, have proven to take a lot of time in order
to derive all the configuration settings. Although mutation
testing can assist in revealing many errors, not all of them
represent real actual software failures. The problems mostly
encountered with this technique are the complexity to derive
the process (as higher the number of generated mutants is, as
higher the computation time) and also the equivalent mutant
problem.

Each of the above described mutation tools requires
different configuration settings. The time effort we have
invested just in configuring each tool and then deriving the
entire mutation testing technique is now of several months.
From the results obtained during the research work, we
state that mutation can be regarded as a good software

quality metric, but special attention should be given to the
drawbacks presented above and, also, to the total amount
of time. Meanwhile, setting up the configuration and then
running the code coverage tools has proven to be easy to
conduct. Based on other previous works, we compare the
results given by code coverage with the ones obtained from
the mutation testing process.

Through this current research work we start a study, trying
to answer the title question: is Mutation Testing Scalable for
Real-World Software Projects?. We aim to further develop
this work, trying also to benefit from the advantage offered
by Javalanche: equivalent mutant detection.

ACKNOWLEDGMENT

The research herein is partially conducted within the
competence network Softnet Austria II (www.soft-net.at,
COMET K-Projekt) and funded by the Austrian Federal
Ministry of Economy, Family and Youth (bmwfj), the
province of Styria, the Steirische Wirtschaftsfrderungsge-
sellschaft mbH. (SFG), and the city of Vienna in terms of
the center for innovation and technology (ZIT).

REFERENCES

[1] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using Mutation Analysis for Assessing and Comparing
Testing Coverage Criteria,” vol. 32, no. 8, August 2006, pp.
608–624.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Program
Mutation: A New Approach to Program Testing,” in Infotech
State of the Art Report, Software Testing, 1979, pp. 107–126.

[3] Y.S.Ma, J. Offutt, and Y. R. Kwon, “MuJava : An Automated
Class Mutation System,” vol. 15, 2005, pp. 97–133.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is Mutation an
Appropriate Tool for Testing Experiments?” in Proceedings
of the 27th International Conference on Software Engineering
(ICSE’05), St Louis, Missouri, 15-21 May 2005, pp. 402–411.

[5] A. J. Offutt, “A Practical System for Mutation Testing: Help
for the Common Programmer,” in Proceedings of the IEEE
International Test Conference on TEST: The Next 25 Years,
2-6 October 1994, pp. 824–830.

[6] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Inter-
face Mutation: An Approach for Integration Testing,” vol. 27,
no. 3, 2001, pp. 228–247.

[7] U. Praphamontripong and A. J. Offutt, “Applying Mutation
Testing to Web Applications,” in Proceedings of the 5th In-
ternational Workshop on Mutation Analysis (MUTATION’10),
Paris, France, 6 April 2010, pp. 132–141.

[8] W. Krenn and B. Aichernig, “Test Case Generation by Con-
tract Mutation in Spec#,” in Proceedings of Fifth Workshop
on Model Based Testing (MBT’09), York, UK, March 2009,
pp. 71–86.

44

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 53 / 139

[9] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C.
Masiero, “Mutation Testing Applied to Validate Specifica-
tions Based on Statecharts,” in Proceedings of the 10th
International Symposium on Software Reliability Engineering
(ISSRE’99), Boca Raton, Florida, 1-4 November 1999, pp.
210 –219.

[10] V. Okun, “Specification Mutation for Test Generation and
Analysis,” PhD Thesis, University of Maryland Baltimore
County, Baltimore, Maryland, 2004.

[11] W. Ding, “Using Mutation to Generate Tests from Specifica-
tions,” Master Thesis, George Mason University, Fairfax, VA,
2000.

[12] B. J. Choi, R. A. DeMillo, E. W. Krauser, R. J. Martin,
A. P. Mathur, A. J. Offutt, H. Pan, and E. H. Spafford, “The
Mothra Tool Set,” in Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences (HICSS’22), 3-6
January 1989, pp. 275–284.

[13] K. N. King and A. J. Offutt, “A Fortran Language System
for Mutation-Based Software Testing,” vol. 21, no. 7, October
1991, pp. 685–718.

[14] Y. Ma, A. J. Offutt, and Y. Kwon, “MuJava: a Mutation
System for Java,” in Proceedings of the 28th international
Conference on Software Engineering (ICSE ’06), Shanghai,
China, 20-28 May 2006, pp. 827–830.

[15] D. Schuler and A. Zeller, “Javalanche: Efficient Mutation
Testing for Java,” in Proceedings of the 7th joint meeting
of the European Software Engineering Conference and the
International Symposium on Foundations of Software Engi-
neering, Amsterdam, Netherlands, 24-28 August 2009, pp.
297–298.

[16] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. J.
Inglis, and M. Utting, “Jumble Java Byte Code to Measure
the Effectiveness of Unit Tests,” in Proceedings of the 3rd
Workshop on Mutation Analysis (MUTATION’07), Windsor,
UK, 10-14 September 2007, pp. 169–175.

[17] I. Moore, “Jester - a JUnit test tester,” in Proceeding of
eXtreme Programming Conference (XP’01), 2001.

[18] PIT Mutation Testing, “http://pitest.org/,” 2011.

[19] A. Derezinska and A. Szustek, “CREAM- A System for
Object-Oriented Mutation of C# Programs,” Warsaw Uni-
versity of Technology, Warszawa, Poland, Technical Report,
2007.

[20] Nester, “http://nester.sourceforge.net/,” 2011.

[21] Y. Jia and M. Harman, “MILU: A Customizable, Runtime-
Optimized Higher Order Mutation Testing Tool for the Full
C Language,” in Proceedings of the 3rd Testing: Academic
and Industrial Conference Practice and Research Techniques
(TAIC PART’08), Windsor, UK, 29-31 August 2008, pp. 94–
98.

[22] J. Tuya, M. J. S. Cabal, and C. de la Riva, “SQLMutation:
A Tool to Generate Mutants of SQL Database Queries,”
in Proceedings of the 2nd Workshop on Mutation Analysis
(MUTATION’06), Raleigh, North Carolina, November 2006,
p. 1.

[23] Eclipse, “:pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse,”
2011.

[24] M. D. Site, “http://cs.gmu.edu/∼offutt/mujava/,” 2011.

[25] Jumble, “http://jumble.sourceforge.net/,” 2011.

[26] Javalanche, “http://www.st.cs.uni-saarland.de/∼schuler/
javalanche/download.html,” 2011.

[27] Clover, “http://www.atlassian.com/software/clover/,” 2011.

[28] EclEmma, “http://www.eclemma.org/,” 2011.

[29] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mu-
tants,” in ICST ’10: Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation.
IEEE Computer Society, April 2010, pp. 45–54.

[30] JDT, “http://www.eclipse.org/jdt/,” 2011.

[31] L. Madeyski and N. Radyk, “Judy a mutation testing tool
for java.”

[32] R. Premraj and A. Zeller, “Predicting Defects for Eclipse,” in
Proceedings of the Third International Workshop on Predictor
Models in Software Engineering, ser. PROMISE ’07, 2007,
p. 9.

45

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 54 / 139

Testing As A Service for Component-based Developments

Hien Le
Department of Telematics

Norwegian University of Science and Technology
hiennam@item.ntnu.no

Abstract— In this paper, we present an approach to model testing
as a service for component-based development. The approach is
based on the Service-oriented Architecture in which testing
services are modeled using UML collaboration structure to
support the validation of components. We categorize two types of
components: elementary and composite. Elementary components
are non-decomposable and reusable computing units. Composite
components are developed by composing existing components,
which can either be elementary or composite ones. Our main
contributions presented in this paper are: (1) to provide an
approach for modeling component testing as a service; and (2) to
provide a constructive mechanism for composing testing services.
In this paper, testing services for railway control system will be
used to illustrate our approach.

Keywords – software components; component testing; testing as
a service

I. INTRODUCTION

A component, in general, may be defined as a reusable
software or computing unit [1], which is designed to partially
or fully perform specific functionalities invoking through
component interfaces. The reusable components are normally
verified, validated and stored in a repository. Component-based
development is a software development approach in which new
components are developed by composing existing components
retrieved from the component repository [2] to satisfy new
requirements. By this approach, on the one hand, new
components and software systems can be rapidly developed [3,
4] while reducing development efforts and costs. On the other
hand, however, there are many challenges, for examples, how
to ensure that these newly developed components do not posse
any unusual behaviors [7, 8, 10] while fulfill the requirements.

Component verification and validation are software
development activities whose aim is to ensure that newly
created components fulfill the requirements without
introducing any emerging or unexpected behaviors [7, 10]. In
this paper, an approach to model testing as a service to support
the component validation, also known as component testing to
guarantee that the component fulfills its expected
functionalities when performing in the intended environment
[12], is presented. The approach is based on the Service-
oriented Architecture in which testing services are modeled and
composed using UML collaboration structure to support the
validation of components.

As shown in Figure 1, the ComponentUnderTest represents
the service clients, which are newly developed components.
These components must be validated. TestingServiceProvider

plays the role of the service providers, i.e., providing
simulation environments and testing suites for validating the
new components. TestingServiceRegistry is where the
descriptions of testing services are published so that they can
be found by the service clients, i.e., the Component Under Test.
When a suitable testing service has been matched with the
testing requirements of the new components, the validation
process (refereed as testing process in this paper) for these new
components can be carried out. The testing process, which is
modeled and deployed as a service, emphasizes that testing
services are independently developed from the component-
based development view; and newly testing services can be
developed by composing existing testing services in the same
manner as service composition [9]. However, to be able to
apply the Service-oriented approach for supporting component
testing, we must answer two questions: (1) how to model
testing as a service; and (2) how to compose testing services,
i.e., constructing new testing services as a composition of
existing ones. In this paper, we focus our discussion on these
two issues.

Figure 1: SOA for testing services

In the following discussion, we categorize two types of

components: elementary and composite components.
Elementary components are the ones which can not be
decomposed further. Composite components are composed
from existing components, which can be either elementary or
composite one. Normally, an elementary component is first
designed, verified and validated and stored in a repository to be
re-used [4]. The validation of components is ensured by
applying test suites to the component interfaces in a simulation
environment [11].

The rest of the paper is organized as follows. Related work
is discussed in Section II. Section III presents the modeling
approach which is based on UML collaboration structure to
model testing as a service. Section IV discusses how to create
new testing services by service compositions. Conclusion and
future works are given in Section V. A railway control system
which is built by component-based development approach will

46

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 55 / 139

be used to illustrate the applicability of our testing service
modeling approach.

II. RELATED WORK

In this section, we discuss the related work on modeling
testing as a service for components and how to compose testing
services. To our knowledge, there are many approaches that
support the validation of elementary components [13, 14].
However, the current research which focuses on validating of
composite components is very limited [7, 8]. These existing
approaches mainly focus on testing specification [14],
generating test cases for component testing [7] or performance
[11, 13]. Furthermore, these testing approaches do not
differentiate the different between elementary and composite
components. In [11], a testing method which utilizes the
Service-oriented architecture to support testing of complex and
safety-critical systems is presented. However, this testing
approach focuses on the distribution and performance of testing
process, e.g., distributed testing among testing hosts, rather
than how to model testing as a service. Existing approaches for
designing test suites of elementary components may not be
applicable to composite components due to, for example, the
new dependencies between sub-components which are the
results of composed behaviors of components. Furthermore,
the question of how to re-use the test suites or simulation
environments, which have been used to validate the elementary
components, in the new testing services for composite
components may not be fully addressed.

In our recent research [15], a service can be defined as “an
identified functionality aiming to establish some desired effects
among collaborating entities”. We have also shown that, based
on the collaborative service models, reusable components can
be automatically synthesized and such components can then be
composed together [16]. Based on this approach, we argue that
testing can also be modeled as a service, whose desired goal is
to validate the behavior of components, i.e., the two
collaborating entities are the component under test and the
testing component. From the service models and choreography
models of testing services, testing components will be
generated and deployed for testing process. Our approach
presented in this paper does not focus on issues related to
generate test suites for component testing or testing
specification (e.g., TTCN-3 [14]), but contributes to modeling
testing as a service at abstraction level and to support
composition of testing services. This way, the testing of
components can be specified at the early phase in the
component development lifecycle [2].

III. MODELING TESTING AS A SERVICE

In this section, we first present a railway control system,
which is built using a component-based development approach.
Second, we will discuss how to model testing as a service for
component testing.

A. Train control scenario

Figure 2 shows the overview of the train control system,
which is modelled using UML collaboration structure. The
operation of the train control system is described as follows.
While moving in a geographical region, a Train must always

be supervised by the Train Controller Center (TCC). The TCC
responsibility is to monitor and control all train movements in a
region.

• The train position on the railway track system is always
monitored by the TCC. The train, while moving, keeps
sending its position report to the TCC. This is modeled as
collaboration activity between the Train and the TCC (i.e.,
the PositionReport collaboration shown in Figure 2).

• The TCC validates the received position information of the
train and will issue successive movement authorities (MA)
to the train. The MA specifies a safe distance that the train
can travel. This is modeled by the Movement Authority
collaboration.

Figure 2: Collaboration structure of the train control system

Based on the collaboration models, the service models and
the behavior models of the train control system will be
developed and finally the components of the train control
system will be synthesized [15, 16]. Figure 3 shows the
architecture overview of components of the train control
system. The train control system will have the following
components.

• The Position Report component, which is a sub-
component of the TrainMovementControl component,
reads the location of the train from the external
environments, i.e., location indicator installed on the
railway tracks [5], and sends this information to the TCC
component at the control center.

• The Movement Authority component handles the
movement authority, which is send by the TCC to the
train. The Position Report and the Movement Authority
components also collaborate to ensure that the train will
not travel beyond the safe distance.

Train Movement Control

Position

Report

Movement

Authority

PR

MA

Train

Control

Center

PR

MA

Figure 3: Component view of the train control system

47

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 56 / 139

In order to validate the behavior of the
TrainMovementControl component, which is composed from
the PositionReport and MovementAuthority components, the
developer must carry out the following component testing:

• Testing of sub-components: in this case, both the Position
Report and Movement Authority components must be fully
tested. The testing of sub-components may in addition
require several simulation modules or components [11]
which represent the external environments, e.g., location
indicators on the railway track systems.

• Testing of the composite component: in this case, the
behavior of the composite TrainMovementControl
component must be verified and validated. In order to
validate the TrainMovementControl component, the TCC
counterpart must be available. By our approach to model
testing as a service, the corresponding TCC will be
replaced by a testing component, whose behavior is
equivalent to the real TCC component (i.e., the
TrainControlCenter component as shown in Figure 3)
during the testing process.

In order to support the testing process, a testing service for
components must first be modeled and developed. Next, we
present the approach to model testing as a service for
components.

B. Testing service for components

The objective of the testing service for components is to
support the validation of components at the early stage of
development, i.e., design step. Our testing service is based on
the concepts of services in which services are defined as a
collaboration activity among entities to achieve service goals
[6, 15]. Figure 4 shows the basic service structures of the
testing service for components.

As shown in Figure 4, the testing service has two main
structures, which are specified based on the UML collaboration
structure [5], Simulating and Inspecting. The objective of the
Simulating is to provide a structural view if the component
under test (CUT) requires additional simulation modules. The
Component role represents the component under test (CUT),
and the EnvSimulator represents the simulation environment
which is required so that thorough test on the component can
be performed. The Inspecting structure presents the actual
testing activity applied on the component, i.e., test suites
execution via the Inspector role.

Figure 4: Testing service structures for components

Figure 5 shows the structure of the Testing Service, which
is the composition of the two testing services, i.e., the Testing
Service is the composition of Simulating and Inspecting. The
Testing Service collaboration includes two main roles: the
ComponentUnderTest (CUT) role and the Tester role. When
the testing is performed, the role ComponentUnderTest will be

dynamically binding to the actual component which will be
tested. The main operation of the Tester role is to play the role
of the testing component which includes the environment
simulator (i.e., EnvSimulator role) and generated test suites,
i.e., to submit test cases to the ComponentUnderTest via the
Inspector role in an intended operation environment. In other
words, the Tester will implement the interface of the
complement testing component. Based on this model, we can
identify the structure and specify the test services which take
into account the correlation between the required simulation
modules and test cases executors.

Figure 5: Test model for components

Figure 6(a) illustrates how the Testing Service is applied for
testing the Position Report component. The role CUT of the
Testing Service will be performed by the Position Report
component, and the Tester role will be executed by the
PR_Tester component, whose functionalities includes both the
environment simulation and inspector. Figure 6(b) shows the
involved components in the testing process: the Position
Report is the developed component, and the PR_Tester
component is synthesized from the testing service model.

(a)

(b)

Figure 6: Testing service for Position Report component

IV. COMPOSITION OF TESTING SERVICES

In this section, we present our approach to create testing
services which are applied to composite components. In this
approach, we discuss an integrated testing service to generate
required composite testing services which are composed based
on the existing testing services (i.e., of existing components).
To simplify our discussion without losing the general
discussion details, we assume that all the sub-components of
the train control systems have been verified and validated.

Train

Movement

Control

TCC

PositionReport

MovementAuthority

Figure 7: Composite component testing

48

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 57 / 139

A. Integrating testing services for composite components

As described in Section III, based on the information of the
position of the train, the TCC will issue movement authority to
the train so that the train can safely continue to travel. This
means that, for testing the composite component
TrainMovementControl, the Tester role now will be performed
by the composite testing component TCC which includes both
PR_Tester and MA_Tester roles (as shown in Figure 7). In
other words, the output of the PR_Tester testing will be
validated before the testing of movement authority
functionality, i.e., the MA_Tester, can be performed. In order to
handle the dependency of testing services, we propose an
Integrating Test Service which provides a mechanism so that
the two sub-roles of the Tester, i.e., PR_Tester and MA_Tester,
can collaborate. The structural model of the Integrating Test
Service is shown in Figure 8(a). There are two main roles:
outTester and inTester which perform the sending results from
the previous testing service, i.e., testing of the Position Report
component, and initiating the next testing service, i.e., testing
of the Movement Authority component.

:outTester :inTester

Integrating Testing Service

(a)

(b)

Figure 8: Integrating testing service for Train Movement Control component

Figure 8(b) shows how the Integrating Testing Service is
re-used and composed to the composite testing service,
explained as follows:

• The pr:TestingService collaboration is the original testing
service for the Position Report component and involves
two roles CUT and Tester.

• The ma:TestingService collaboration is the original testing
service of the Movement Authority component and
involves two roles CUT and Tester.

• The IntegratingTestingService is re-used to integrate the
two existing testing services pr:TestingService and
ma:TestingService. In this situation, the role outTester and
inTester is binding to the PR_Tester and MA_Tester,
respectively.

There are several advantages of our Integrating Testing
Service. First, the testing service provides a flexible mechanism
to support the integration of testing services which have been
applied to existing components. Second, the integrating test
service focuses on describing the integration of testing services
at the design stages while components are being developed.
This ways, the testing of composite component can be early
specified and carried out.

B. Realization and deployment of testing services

The Integrating Testing Service provides a mechanism for

composing testing services for composite components. This
testing service can be deployed in either centralized or
distributed testing systems. For example, a centralized testing
system can be deployed if both outTester and inTester roles
are realized, i.e., implemented, as testing sub-components of
the Tester component. In other words, the Tester will now
perform both PR_Tester and MA_Tester roles. Figure 9
illustrates a distributed testing scenario in which the sub-
components Position Report and Movement Authority are
tested in different systems. In this case, both the distributed
testing sub-components PR_Tester and MA_Tester must
implement the Integrating Testing Service interface, i.e.,
outTester and inTester roles, respectively.

Figure 9: Distributed testing scenario

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to model
testing as a service for component-based development
approach. An Integrating Testing Service which supports the
composition of testing services, i.e., to support the integration
and re-usability testing services of existing components, is also
presented. This ways, new testing services for composite
components can be quickly composed and deployed in either
centralized or distributed testing systems.

In future work, we plan to further using the Model-Driven
Development approach to automatically synthesize the testing
components. A full testing framework, which includes both
service models [15] and component-based approach [16], can
be developed to dynamically discover and compose for testing
of composite components.

REFERENCES

[1] Clemens Szyperski. Component Software: Beyond Object- Oriented

Programming. Addison-Wesley Longman Publish- ing Co., Inc., Boston,
MA, USA, 2002.

49

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 58 / 139

[2] Ivica Crnkovic, Stig Larsson, and Michel R. V. Chaudron. Component-
based Development Process and Component Lifecycle. CIT 13(4), 321-
327, 2005.

[3] Jisa Dan Laurentiu. Component based development methods:
comparison, Computer systems and technologies, 1-6, 2004.

[4] Kung-Kiu Lau and Zheng Wang. Software Component Models. IEEE
Trans. Software Eng. 33(10): 709-724, 2007.

[5] Surya Bahadur Kathayat, Rolv Bræk, and Hien Le. Automatic derivation
of components from choreographies - a case study. International
conference on Software Engineering, 2010.

[6] Surya Bahadur Kathayat and Rolv Bræk. From flow- global
choreography to component types. In System Analysis and Modeling
(SAM), LNCS 6598, 2010.

[7] Camila Ribeiro Rocha and Eliane Martins. A Method for Model Based
Test Harness Generation for Component Testing. 14(1): Journal of the
Brazilian Computer Society (JBCS), 7-23, 2008.

[8] Gerardo Padilla, Carlos Montes de Oca, and Cuauhtemoc Lemus Olalde.
An Execution-Level Component Composition Model Based on
Component Testing Information. 10th International Symposium on
Component-Based Software Engineering, 2007.

[9] Surya Bahadur Kathayat, Hien Le, and Rolv Bræk. A Model-Driven
Framework for Component-based Development, SDL forum 2011 (to
appear).

[10] Jerry Gao and Ming-Shih Shih. A Component Testability Model for
Verification and Measurement. International Computer Software and
Applications Conference (COMPSAC), 2005.

[11] Renato Donini, Stefano Marrone, Nicola Mazzocca, Antonio Orazzo,
Domenico Papa, and Salvatore Venticinque. Testing Complex Safety-
Critical Systems in SOA Context. International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), 2008.

[12] 7CMU/SEI-2000-TR-028, CMMISM for Systems Engineering/Software
Engineering, Version 1.02, Software Engineering Institute, 2000.

[13] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and
George Candea. Cloud9: a software testing service. Operating Systems
Review 43(4), 5-10, 2009.

[14] Bernard Stepien, Liam Peyton, and Pulei Xiong. Framework testing of
web applications using TTCN-3. Journal on Software Tools for
Technology Transfer (STTT), 10(4), 371-381, 2008.

[15] Surya Bahadur Kathayat, Hien Le and Rolv Bræk. Collaboration-based
Model-Driven Approach for Business Service Composition. Book
chapter in Handbook of Research on E-Business Standards and
Protocols: Documents, Data and Advanced Web Technologies, Ejub
Kajan, Frank-Dieter Dorloff, Ivan Bedini, IGI, 2011 (to appear).

[16] Surya Bahadur Kathayat, Hien Le and Rolv Bræk. A Model-Driven
Framework for Component-based Development, SDL 2011 (to appear).

50

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 59 / 139

A Zone-based Reachability Analysis of Variable
Driven Timed Automata

Omer Nguena-Timo
University of Bordeaux (LaBRI - CNRS)

Talence, France
nguena@labri.fr

Antoine Rollet
University of Bordeaux (LaBRI - CNRS)

Talence, France
rollet@labri.fr

Abstract—In this paper, we propose an algorithm for effi-
cient reachability analysis of Variable Driven Timed Automata
(VDTA). VDTA is a new timed behavioural model for data-flow
reactive systems in which inputs and outputs are modelled by
variables. Such an approach is commonly used in the indus-
try. Reachability analysis is often the basis of model-checking,
test generation (especially Test Purpose approach), or control
algorithms. For example, a model-based testing framework with
VDTA derives test cases by performing a region-based reachabil-
ity analysis. Thus, an efficient analysis is needed. We propose an
algorithm based on the zone abstraction. The algorithm not only
checks the reachability, but it also computes timed sequences of
input updates required to reach a target. In practice, it is more
efficient than region based one.

Keywords-reachability analysis, zone, timed systems, data-flow,
urgent edges.

I. INTRODUCTION

In the context of reliable systems design, formal methods
provide a rigorous framework for modelling and reasoning
about the systems. Formal reasoning includes methods for test-
ing [15], model-checking [9], supervising [14], etc., the sys-
tems, which are commonly and efficiently modelled in a state-
transition/automata formalism in which systems behaviours are
represented by sequences of (constrained/guarded) transitions
between states. Reachability analysis amounts to checking
whether a target state is reachable from an initial one. A target
state may represent a failure of the system that may cause
considerable damages. Reachability analysis is often involved
in many validation methods. For example, the generation of
test cases with test purposes usually consists in analysing the
reachability of certain states and to compute the sequence of
actions permitting to reach them. The paper presents a new
efficient algorithm for the reachability analysis of Variable
Driven Timed Automata [12].

A. Variable Driven Timed Automata (VDTA)

VDTA [12] is a new timed model adapted for modelling and
reasoning about data-flow reactive systems in which input and
output are rather modelled by variables. A VDTA model-based
testing framework has been developed in [11], [13].

A VDTA is a guarded edge (transition) system in which
every edge is labelled with an update of output variables and
a constraint on input, output and clock variables. VDTA is
inspired by urgent timed input/ouput automata [2], [3]. VDTA

implements three main mechanisms. The first mechanism,
which is not new, implemented in VDTA is urgent edges. As
with urgent timed automata [3], edges in VDTA are urgent
meaning that they are fired as soon as their constraints become
true. Only output variable updates are performed on edges
firings. It is well-known [3] that urgency mechanism may
allow short and clear specification. Secondly, VDTA imple-
ments the variable based communication mechanism. This
supposes that systems communicate with their environment
through input and output variables or sockets. This is closer
to how engineers think and how open systems are specified.
The VDTA model assumes that the environment freely updates
the input variables and only the systems can update the output
variables according to their states and timing information given
by clock variables. VDTA allows to specify explicitly the
events to the environment only. Unlike [2], [3], [8], the events
from the environment are not explicitly specified. Thirdly,
VDTA is a variable driven model. Edges firings in VDTA
do not depend on occurences of synchronizing actions but
rather on the truth value of constraints only. The values
of the variables are persistent and they last until they are
updated. Consequently, a single input variable change can
trigger instantaneously a chain of consecutive edges in VDTA.
This is not the case with event-based formalisms like [3], [8]
where each edge firing is provoked by an occurrence of a (non
persistent) synchronising action.

The VDTA-based testing method [11], [13] is based on
test purposes. Test purposes are VDTA with special states
labelled with ACCEPT; they allow to guide the test selection.
Roughly speaking, the method consists of two main steps: (1)
a test graph is constructed from the specification and a test
purpose and then (2) the reachability of the states labelled with
ACCEPT is checked. A VDTA reachability analysis algorithm
is proposed in [11]. This algorithm is inspired by a seminal
reachability algorithm for timed automata [2]. It uses the
symbolic region [2] representation of the time, which allows
elegant reasoning on timed systems. Since it is a precise
discrete representation of clock valuations, it allows to abstract
a timed model into a discrete model making thus easier
the analysis of urgent edge and unspecified input updates in
VDTA. In the backside, region abstraction is expensive. As for
the analysis of timed automata [4], [7], we wondered how the
symbolic zone abstraction could be used for the reachability

51

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 60 / 139

analysis of VDTA. Roughly speaking, zones are larger abstrac-
tions of clock valuations: one zone can be decomposed into
an equivalent finite set of regions. Thus a single computation
over a zone may need many computations over the regions
it includes. Consequently, the region abstraction is in practice
less efficient than the zone abstraction [2], [6]. So, providing
an efficient zone-based analysis for VDTA will improve the
VDTA test generation algorithm [11], [13].

B. Contributions

We propose a backward zone-based reachability analysis
algorithm for VDTA. The general idea is presented in Algo-
rithm 1. Contrary to the forward one, it starts in the target
states P0 and iteratively visits predecessors of states until
a fixpoint is reached and no new states is computed. P0 is
reachable if the fixpoint include the initial state.

Algorithm 1 Principle of the Backward Analysis
P0 ← P
repeat
Pi+1 ← Pi ∪ Predecessor(Pi)

until Pi+1 equal to Pi

The predecessors of a state of a VDTA include its input
updates predecessors, output updates predecessors and time
predecessors. To ensure its termination, our algorithm rather
works on symbolic states. Input, output and clock values are
represented by zones in symbolic states. A similar method is
used for timed automata [2], [3], [5], [7]. But the zone-based
backward reachability analysis for VDTA could not be a
simple adaptation of the zone-based reachability of timed
automata. Besides, we found that the analysis of VDTA
has many common points with the analysis of timed game
automata (TGA) [6]. But TGA analysis algorithm cannot
work for VDTA. Nevertheless, as for the analysis of TGA
we consider a notion of safe time predecessor in order to
compute predecessors of symbolic states.

C. Outline

Section II presents the VDTA model and its semantics. In
Section III we define symbolic states and the computation of
their predecessors. At the end of the section we present the
reachability algorithm and we discuss about its termination.
Section IV concludes the paper giving future works with
VDTA.

II. VARIABLE DRIVEN TIMED AUTOMATA (VDTA)

Before we provide a formal definition for VDTA, we
consider the following specification of the control program
designed to start a “two buttons machine” [10]:
The machine starts when two buttons (L and R for left and
right buttons) are pushed within 1 time unit. If only one button
is pushed (then L or R is true) and a delay of greater than 1
time unit is performed (time-out has occurred), then the whole
process must be started again. After the machine has started

`0

`1

?L
R

;x
:=

0

`2

t ≤ 1;?LR

`3 `4

`5

`6

?LR; t := 0

?LR; t := 0

t ≤ 1;?LR;x := 0

t > 1; !timeout

x = 0; !S

?LR;x := 0

?LR;x := 0
?LR;x := 0

x = 0; !S

?LR

x = 0;!S

(a) TIOA model for the two buttons machine.

`0 `1 `2 `3

L = 0 ∧R = 0

L = 1 ∨R = 1
t := 0

L = 0 ∧R = 0 ∧ t ≤ 1

L = 1 ∧R = 1 ∧ t ≤ 1
s := 1

L = 0 ∨R = 0
s := 0

t > 1

(b) VDTA for the two buttons machine.

Fig. 1. Event-based Vs variable-Based Model

(S=1), it stops as soon as one button is released, and it can
start again only after both buttons have been released (L and
R are both false).

The VDTA in Figure 1(b) is clearer and shorter than the
Timed Input Output Automata (TIOA) in Figure 1(a). The
TIOA has 4 input events (LR, LR, LR, LR where L/ L
mean that the left button is pushed/released), 2 output events
(S, S) and 2 clocks (x, t) whereas the VDTA model has 2
boolean input variables(L and R), 1 boolean output variable
(S), and a unique real-valued clock variable (t). The TIOA
assumed that in every state the program may receive (denoted
by the symbol “?”) an event that corresponds to a combination
of values of L and R before leaving the state. More generally,
if there are n buttons (variables) all in domains of size m,
one may consider up to nm outgoing edges for each location.
This explosion can be reduced using a variable-based mod-
elling approach. The main idea is to hide the synchronisation
(between the environment and the system) that happens on
variable updates and to concentrate on the functional behaviour
of the system that depends on constraints. Even if there is
not an explicit edge from `0 to `2 in Figure 1(b), one can
move instantaneously (through `1) from `0 to `2 if L and R
are pressed simultaneously. Such a behaviour has required an
explicit edge from `0 to `2 in Figure 1(a).

However, the VDTA formalism would not have been advan-
tageous in situations where the behaviours depend on former
states of the buttons. This may occur when a rising edge of the
button needs to be captured and processed even if the button

52

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 61 / 139

has been released again in the meantime; in such a situation,
we would probably need to keep the state “button was pressed”
and use a TIOA model.

Anyway, modelling input/output by variables is quite ordi-
nary for engineers. This allows short and clear specification
in some circumstances.

A. Model and Semantics of VDTA

Let N, Q+ and R+ denote the sets of natural, non-
negative rationals and real numbers, respectively. Let
V = {V1, · · · , Vn} be a set of variables; each variable Vi ∈ V
ranges over a (possibly infinite) domain Dom(Vi) in N, Q+ or
R+. We define Dom(V) = Πi∈[1..n]Dom(Vi), the domain of
V . In the sequel, vi denotes a valuation of the variable Vi and
v the tuple of valuations of the set of variables V . A variable
assignment for V is a tuple Πi∈[1..n]({Vi}×(Dom(Vi)∪{⊥}))
and we denote by A(V) the set of variable assignments for
V . Given a valuation v = (v1, · · · , vn) of V and a variable
assignment A ∈ A(V), we define the tuple of valuations
v[A] as v[A](Vi) = c if (Vi, c) is an element of A and
c 6= ⊥, and v[A](Vi) = vi otherwise. Intuitively, an element
(Vi, c) of variable assignment A, requires to assign c to
the variable Vi if c is a constant from Dom(Vi); otherwise
c is equal to ⊥ and no access to the variable Vi should
be done. V ar(A) denotes the set of variables of V that
are updated by A. We denote IdV the identity variable
assignment that let unchanged all the variables of V . We
denote by G(V) (resp.G+(V)) the set of variable constraints
defined as conjunction (resp. boolean combinations) of simple
constraints of the form Vi ./ c with Vi ∈ V , c ∈ Dom(Vi)
and ./∈ {<,≤,=,≥, >}. Given G ∈ G+(V) and a valuation
v ∈ Dom(V), we write v |= G when G(v) ≡ true and we
define [[G]] = {v ∈ Dom(V) | v |= G}. For a subset I of
V , we denote GI the projection of G over the variables in
I . To ease the notation, if I , O, are two sets of different
sorts of variables, a constraint G in G+(I,O) is a boolean
combination of a constraint GI ∈ G+(I), and a constraint
GO ∈ G+(O). This generalises to an arbitrary number of sets
of variables.

Definition 1: A Variable Driven Timed Automaton (VDTA)
is a tuple A = 〈L,X, I,O, `0, G0,∆A〉, where L is a finite set
of locations, X is a finite set of clocks, I and O are disjoint
finite sets of input and output variables, `0 ∈ L is the initial
location, G0 ∈ G(I,O) is the initial condition with only one
solution, a constraint with variables in I ∪O and ∆A ⊆ L×
G(I,O,X)×A(O)× 2X × L is the set of edges.
In an edge 〈`,G,A,X , `′〉 ∈ ∆A (often written `

G,A,X−−−−→`′):
G ∈ G(I,O,X); A ∈ A(O) is an assignment on output
variables and X ∈ 2X is a set of clocks that are reset when
passing the edge. There is no explicit assignment on input
variables.

A state of a VDTA A is of the form (`, i, o, x) where ` ∈ L
is a location, i, o and x are valuations of input, output and
clock variables. A valuation is simply a function that returns

the values of the variables. For example, (`0, (0, 0), 1, 0.5)
is a state of the VDTA in Figure 1(b) where (0, 0) is the
valuation of the inputs L and R, S equals 1 and t equals 0.5.

If A ∈ A(I) is an assignment on input variables, the
valuation i[A] changes the value of input variables according
to the assignment. If x is clock valuation, X is a subset
of clocks, and δ ∈ R+ a delay, the valuation x + δ adds
δ to each clock value and the valuation x[X ← 0] resets
from x all clocks in X . For example, if i = (0, 0) and
A = {L := 1;R := 1} is an assignment over L and R then
i[A] is the valuation (1, 1).

Definition 2: The semantics of a VDTA A is a timed
transition system [[A]] = 〈SA, s0,Σ,→〉 where SA = L ×
Dom(I) × Dom(O) × RX+ is the (infinite) set of states,
s0 = (`0, i0, o0, x0) is the initial state where x0 is the clock
valuation that maps every clock to 0 and (i0, o0) is the only
solution of G0, Σ = A(I) ∪ A(O) ∪ R+ is the (infinite) set
of actions, and → is the transition relation with the following
three types of transitions:

T1 (`, i, o, x)
A−→ (`′, i, o[A], x[X ← 0]) if there exists

(`,G,A,X , `′) ∈ ∆A such that (i, o, x) |= G,
T2 (`, i, o, x)

A−→ (`, i[A], o, x) with A ∈ A(I) if
∀(`,G,A′,X , `′) ∈ ∆A, (i, o, x) 6|= G.

T3 (`, i, o, x)
δ−→(`, i, o, x+δ) with δ > 0 if for every δ′ < δ,

for every symbolic transition (`,G,X ′, `′) ∈ ∆A, we
have (i, o, x+ δ′) 6|= G.

The semantics considers discrete transitions (T1 and T2)
and continuous transitions (T3). Output-update transitions of
type T1 allow to update the output variables. Output-update
transitions correspond to edges passing. Edges are passed as
soon as their constraints are satisfied. Input-update transitions
of type T2 allow to update the input variables. Time-elapsing
transitions of type T3 represent the continuous elapse of time.

Definition 3: A stable state is a state from which no output-
update transition can be fired.

Note that input-updates and time-elapsing transitions are
allowed stable states only; they are not allowed in non stable
states. Input-update transitions allow to change the inputs.
They are fired by the environment. Considering Figure 1(b),
(`0, (1, 0), 0, 0) is not stable whereas (`0, (0, 0), 0, 0) is
stable. Consequently, the only transition from (`0, (1, 0), 0, 0),
(`0, (1, 0), 0, 0)

IdO−−→ (`1, (1, 0), 0, 0) corresponds to the
edge `0

L=1∨R=1;t:=0−−−−−−−−−−→ `1 (`0, (0, 0), 0, 0) whereas from
(`0, (0, 0), 0, 0) one can perform input-update transitions
or time-elapsing transitions like: (`0, (0, 0), 0, 0)

L=1−−−→
(`0, (1, 0), 0, 0), (`0, (0, 0), 0, 0)

0.3−−→ (`0, (0, 0), 0, 0.3) or
(`0, (0, 0), 0, 0)

0.7−−→(`0, (0, 0), 0, 0.7).

Definition 4: A run of A, r = s0a1s1 · · · ansn in
SA.(Σ.SA)∗ is a sequence of alternating states si ∈ SA and
actions ai ∈ Σ with Σ = A(I) ∪ A(O) ∪ R+ such that
∀i ≥ 0, si

ai+1−→ si+1.

53

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 62 / 139

`0

`1 `2

`3

L = 1 ∧ 0 < t < 1
S := 0

L = 0 ∧ 1 < t < 2
S := 1

L = 0 ∧ 3 < t < 4
S := 1

Fig. 2. A VDTA

Here are two possible runs of the VDTA in Figure 1(b):
(`0, (0, 0), 0, 0)

L:=1−−−→ (`0, (1, 0), 0, 0)
IdO−−→ (`1, (1, 0), 0, 0)

0.3−−→
(l1, (1, 0), 0, 0.3) and (`0, (0, 0), 0, 0)

L:=1,R:=1−−−−−−−→ (`0, (1, 1), 0, 0)
IdO−−→(`1, (1, 1), 0, 0)

s:=1−−−→(`2, (1, 1), 1, 0).

B. Principle of Reachability Analysis

The reachability analysis amounts to checking whether
there exist a run that goes through a given target state. We
want that the VDTA reachability analysis algorithm returns
how and when to modify the inputs in order to reach the target
state eventually.

Let us consider the small running example VDTA in Fig-
ure 2 where L is the only boolean input variable, S is the
only boolean output variable and t is the only clock variable.
Now assume that one wants to check the reachability of the
location `3 whatever are the values of L, S and t in `3. We
want the reachability algorithm to return the verdict “yes” and
the following scenario:

1) From the initial state (`0, 0, 0, 0), keep the value of L
unchanged and let the time elapse until t equals 1.

2) When t equal 1, set L to 1; then let the time elapse.
3) set L to 0 after the value of t has passed 3 and before

it reaches 4.
But if one wants to check the reachability of `3 when S equals
0, the algorithm should return that the state is not reachable
since S equals 1 after the edge from `0 to `3 is taken.

Let Goal be a set of states of A we want to check
the reachability of. Algorithm 1 gives the principle of the
backward reachability analysis for A: it starts in Goal and
computes in each step the predecessors of already encountered
states. The algorithm stops when no new state is computed.

a) Predecessors: Let P ⊆ SA be a subset of states
of A. The computation of the set of predecessors of P
(denoted Pre(P)) involves the computation of its output-
update predecessors (Preo(P)), its input-update predecessors
(Prei(P)) and its time predecessors (Pret(P)).

The output-update predecessors of P , Preo(P) is the
set of states from which a state in P can be reached just
after an output-update is performed; formally, Preo(P) =

{(`, i, o, x) | ∃ A ∈ A(O) ∃ (`′, i′, o′, x′) ∈ P s.t (`, i, o, x)
A−→

(`′, i′, o′, x′)}. None of the states in Preo(P) is stable.
Similarly, we define the input-update predecessors of P ,

Prei(P) = {(`, i, o, x) | ∃A ∈ A(I), ∃ (`′, i′, o′, x′) ∈
P s.t (`, i, o, x)

A−→ (`′, i′, o′, x′)}. All the states in Prei(P)
are stable.

The time predecessors of P , Pret(P) is the set of states
from which a state in P can be reached by letting the
time elapse. Formally, Pret(P) = {(`, i, o, x) | ∃δ >

0, ∃ (`′, i′, o′, x′) ∈ P s.t (`, i, o, x)
δ−→(`′, i′, o′, x′)}. All the

states in Pret(P) are stable.
Finally, Pre(P) = Preo(P) ∪ Prei(P) ∪ Pret(P).

For example, let us consider the VDTA in Figure 2. The
state (`0, 0, 0, 2.2) is a time predecessor of (`0, 0, 0, 2.8); but
(`0, 0, 0, 1.999) is not a time predecessor of (`0, 0, 0, 2.8) since
(`0, 0, 0, 1.999) is not stable and the transition to `2 is taken
prior to time elapsing. (`0, 0, 0, 1.999) is an output-update
predecessor of (`2, 0, 1, 1.999).

An execution of Algorithm 1, which computes predecessors
of states, may not terminate. This is because VDTA has
infinitely many states and each computation step may return
a new state. Thus, we consider symbolic representations
for states or shortly symbolic states; then we describe the
computation of predecessor (Preo, Prei, Pret and Pre) of
symbolic states. Later, we show that the number of symbolic
states encountered during the execution of the algorithm is
finite. This will ensure its termination.

b) Relation with other models: A similar zone based
analysis method is used for timed automata [2], [3], [5],
[7]. But it cannot be simply adapted for VDTA. The output
predecessor operator over symbolic states of VDTA works
like the discrete predecessor operator for timed automata
whereas the input and time predecessors do not. In particular,
the computation of the time predecessor should not return
time instants that enable an urgent edge. Similarly, the input
predecessors can not return input data that enable urgent edges.
Besides, the analysis of VDTA has many common points with
the analysis of timed game automata (TGA) [6]. Indeed, since
input-update are freely performed by the environment, they are
analogous to “controllable actions” in TGA. Output update
transitions are analogous to “uncontrollable actions” since all
edges in VDTA (that allow output-update) are eager and fired
as soon as their constraints become true. But TGA analysis
algorithm cannot work for VDTA: edges passing in VDTA
cannot be restricted by letting the time progress forever or
by changing the inputs. This is because all edges in VDTA
are urgent. Moreover, input actions are not explicit in VDTA
whereas they are in TGA. Nevertheless, for the analysis of
VDTA we have considered the notion of safe time predecessor
inspired from [6].

III. PREDECESSORS OF SYMBOLIC STATES

There are two popular symbolic representations of a set of
clock valuations: the region-based [2] and the zone-based [4]
representations. Roughly speacking, regions and zones are
abstract representations of (infinite) set of valuations; but zones
are larger representations: a zone can be decomposed into
an equivalent finite set of regions. A region-based analysis
algorithm for VDTA inspired by [2] early appeared in [11].
The algorithm is used for selecting real-time test cases for

54

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 63 / 139

systems modeled with VDTA. The region abstraction allows
elegant reasoning on timed systems however it is practically
less efficient than the zone abstraction: a single operation over
a zone needs many operations over the regions it includes.
We consider a zone-based approach for representing symbolic
states and to compute their (input/output/time) predecessors.

A. Symbolic States, Zones, and Operations

A symbolic state for A is a quadruple (`, ZI , ZO, ZX)
where ` ∈ L, ZX ⊆ RX+ is the standard clock-zone as
defined in [4], ZI ⊆ V al(I) is a subset of V al(I) such
that ZI = [[G]] for some G ∈ G(I); the same for ZO.
We say that ZI and ZO are zones over input and output
variables. A symbolic state represents a set of states. We
write (`, i, o, x) ∈ (`′, ZI , ZO, ZX) if and only if ` = `′,
i ∈ ZI , o ∈ ZO and x ∈ ZX . A symbolic state is stable iff
every state in it is stable.

The input, output and clock-zone ZI , ZO and ZX are
represented with difference bound matrices (DBM) [4]. DBM
are kinds of constraints (comparison between two clocks are
allowed). Considering Figure 2, (`0, L = 1, true, 1 ≤ t < 4)
is one symbolic state where true denotes the constraint that
is always true.

Remark: zones for input/output values are simpler than the
ones used for linear integer systems or other models with
variables (like in [1]). This is because constraints in VDTA
never compare clock with input/output variables. Abstractions
for clock valuations can be separated for abstractions of signal
values. It is not the goal of this paper to discuss the effect of
this restriction on the expressiveness of the model.

Remark: in the sequel, constraints are often considered
as zones for simplifying the notations. We implicitly assume
that every constraint in G+(I,O,X) is equivalent to a set of
constraints of G(I,O,X).

Computable operations on zones [4]: if Z is a zone (over
clocks or variables), and A is a variable assignment or a clock
reset then [A]Z = {x | x[A] ∈ Z} denotes the set of valuations
from which we can reach a valuation in Z after A is executed.
Similarly we define Z[A] = {x[A] | x ∈ Z}. The past of a
clock zone Z, Z↓ = {x | ∃ δ ∈ R+, s.t x + δ ∈ Z} is the
set of valuations (the zone) from which valuations in Z can
be reached by letting the time elapse.

Safe time predecessors: given two clock zones Z and g,
Prest (Z, g) denotes the set of safe time predecessors [6] of Z
with respect to g. Intuitively, a clock valuation x′ belongs
to Prest (Z, g) if from x′ we can reach x ∈ Z by time
elapsing and along the (time) path from x′ to x we avoid all
valuations in g. Later, the safe time predecessor is involved in
the computation of the time predecessors. Intuitively, it will
prevent the time predecessor to return zones that enable urgent
edges. Formally:

Prest (Z, g) = {x′ ∈ RX+ | ∃ δ ∈ R+ x ∈ Z s.t x = x′ + δ,

and ∀δ′ ∈ [0, δ], we have x′ + δ′ 6∈ g}

The computation of Prest (Z, g) is effective [4], [6]:
Prest (Z, g) = (Z↓ ∩ (¬(g↓))) ∪ ((Z ∩ (g↓) ∩ ¬g)↓) where Z,
g are convex sets and ¬g is the complement of g.

Partitioning of set of zones: later, we will also need to split
sets of zones into equivalent sets of disjoint zones. Indeed,
since zones are abstractions of larger sets of valuations, it
could happen that the input/time predecessors of two valua-
tions in a same zone differ according to constraints on urgent
edges. So we will need to consider these valuations separately.
The operation Split(C) allows to partition a set of sets of
valuations (or a set of zones) into a set of disjoint sets of
valuations (or a set of disjoint zones). Formally, let C be a
finite set of zones (or constraints). Split(C) is a finite set of
zones {Z1, . . . , Zn} such that: it partitions the set C meaning
that

⋃
i=1..n Z

i =
⋃
Z∈C Z and ∀i 6= j Zi ∩ Zj = ∅; and

secondly, its elements ”match” the clock constraints of C,
meaning that ∀i ∈ {1, . . . , n},∀Z ∈ C, Zi ⊆ Z or Zi∩Z = ∅.
For example, Split({1 ≤ t < 4, 1 < t < 2, 3 < t < 4} may
return {t = 1, 1 < t < 2, 2 ≤ t ≤ 3, 3 < t < 4}.

B. Output-update Predecessors of Symbolic States

Definition 5: The set of output-update predecessors of a
symbolic state (`, ZI , ZO, ZX), Preo(`, ZI , ZO, ZX) is de-
fined by:

Preo(`, ZI , ZO, ZX) = {(`′, Z ′I , Z ′O, Z ′X) | ∃`′ G,A,X−−−−→` ∧
Z ′I = ZI ∩GI
Z ′0 = [A](GO[A] ∩ ZO) ∩GO
Z ′X = [X](GX [X] ∩ ZX) ∩GX}

Proposition 1: (`′, i′, o′, x′) ∈ Preo(`, ZI , ZO, ZX) iff
there is (`, i, o, x) ∈ (`, ZI , ZO, ZX) such that (`′, i′, o′, x′) ∈
Preo(`, i, o, x)
Proof:
=⇒ This part of the proof is not difficult.
⇐= Let (`, i, o, x) ∈ (`, ZI , ZO, ZX) then i ∈ ZI , o ∈ ZO

and x ∈ ZX . If (`′, i′, o′, x′) ∈ Preo(`, i, o, x) then
i = i′, o = o′[A] and x = x′[X] for some A ∈ A(O).
Moreover, according to the semantics of VDTA there
exists an edge `′

G,A,X−−−−→` such that i′ ∈ GI , o′ ∈ GO
x′ ∈ GX and additionally i = i′, o = o′[A] and
x = x′[X].

1) we get that i′ ∈ ZI ∩GI since i = i′, i′ ∈ GI and
i ∈ ZI .

2) Let us show that o′ ∈ [A](GO[A] ∩ ZO) ∩ GO.
Since o = o′[A] and o′ ∈ ProjO(G) we get
that o ∈ GO[A]. Then o ∈ GO[A] ∩ ZO since
o also belongs to ZO. Additionally, o = o′[A]
implies o′ ∈ [A]o. As o ∈ GO[A] ∩ ZO we
get that o′ ∈ [A](GO[A] ∩ ZO). Since it is
required that o′ ∈ GO we finally get that

55

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 64 / 139

o′ ∈ [A](GO[A] ∩ ZO) ∩GO.

3) A similar justification is used to show that x′ ∈
[X](GX [X] ∩ ZX) ∩GX .

As there exists an edge `′
G,A,X−−−−→`, i′ ∈ ZI ∩ GI , o′ ∈

[A](GO[A]∩ZO)∩GO, and x′ ∈ [X](GX [X]∩ZX)∩GX
we get that (`′, i′, o′, x′) ∈ Preo(`, ZI , ZO, ZX). This
ends the proof of the proposition.

C. Input-update Predecessors of Symbolic States

Let us consider the VDTA in Figure 2 and the symbolic
state se = (`0, L = 0, true, 1 ≤ t < 4). Assume that one
wants to compute Prei(se). As input update transitions keep
the outputs and the clocks unchanged, a simple implementation
of Prei could only replace in se the input zone L = 0
by the input zone true (i.e, any value of L) and return
(`0, true, true, 1 ≤ t < 4). Such a simple implementation is
not correct since it is not possible to execute an input update
transition (the one that sets L to 0) from (`0, 0, 1, 1.5) ∈
(`0, true, true, 1 ≤ t < 4) in order to reach se. Indeed
(`0, 0, 1, 1.5) is not stable and the edge `0

L=0;1<t<2;S:=1−−−−−−−−−−−→`1
is urgently taken. A correct implementation returns stable
symbolic states only. On the other hand, a correct imple-
mentation may return the following input predecessors for
se: (`0, true, true, t = 1), (`0, L 6= 0, true, 1 < t <
2), (`0, true, true, 2 ≤ t ≤ 3), (`0, L 6= 0, true, 3 < t < 4).
Clearly, such an implementation has decomposed the output
and clock zones of se in order to allow/forbid some input
values. The decomposition considers the constraints on the
outgoing edge of `0.

Given a location `, an output and a clock zone ZO and ZX
we consider the following sets.
The set of constraints on the outgoing edges of
` that may become true upon an input update is
Gds(`, ZO, ZX) = {G | ∃` G,A,X−−−−→`′ : GO ∩ ZO 6= ∅
and GX ∩ ZX 6= ∅}.
The timing context of the tuple (`, ZO, ZX) is the set
Ctxδ(`, ZO, ZX) = {ZX} ∪ {GX | G ∈ Gds(`, ZO, ZX)}.
The output context of the tuple (`, ZO, ZX) is the set
CtxO(`, ZO, ZX) = {ZO} ∪ {GO | G ∈ Gds(`, ZO, ZX)}.

Following the example we get that :
Gds(se) = {(L = 1 ∧ 1 < t < 2), (L = 0 ∧ 3 < t < 4)},
Ctxδ(`0, true, 1 ≤ t < 4) = {1 ≤ t < 4, 1 < t <
2, 3 < t < 4} and CtxO(`0, true, 1 < t < 2) = {true}.
The computation of Prei(se) works as follows: We
partition the timing context Ctxδ(`0, true, 1 ≤ t < 4)
into an equivalent set of disjoint “atomic” clock constraints
{t = 1, 1 < t < 2, 2 ≤ t ≤ 3, 3 < t < 4}. Then, for
each atomic clock zone Z ′X in set of disjoint “atomic”
clock constraints, we partition CtxO(`0, true, Z

′
X) into an

equivalent set of disjoint “atomic” output constraints. In
this example, the result is always {true}. Finally for each
“atomic” clock constraints Z ′X and for each atomic output
constraint Z ′O the input predecessor compute the negation of

input part of constraints in Gds(`, Z ′O, Z
′
X).

Let us abstract the above thought into a formal definition.

Definition 6: The set of input-update predecessors of a
symbolic state (`, ZI , ZO, ZX), Prei(`, ZI , ZO, ZX) is de-
fined by:

Prei(`, ZI , ZO, ZX) = {(`′, Z ′I , Z ′O, Z ′X) |
`′ = `,

Z ′X ∈ Split(Ctxδ(`, ZO, ZX)),

Z ′O ∈ Split(CtxO(`, ZO, Z
′
X)),

Z ′I ∈
⋂

G′∈Gds(`,G′
O,Z

′
X)

¬G′I}

One can show the following.

Proposition 2: (`′, i′, o′, x′) ∈ Prei(`, ZI , ZO, ZX) iff
there is (`, i, o, x) ∈ (`, ZI , ZO, ZX) such that (`′, i′, o′, x′) ∈
Prei(`, i, o, x)

D. Time Predecessors of Symbolic States

The time predecessor Pret(`, ZI , ZO, ZX) is implemented
analogously to Prei. Similarly to input updates, the time
elapses in stable states only and then we also need to carefully
decompose constraints. As far as time elapsing transitions only
change the value of clocks, we decompose the input and the
output constraints.

We define the sets Gds(`, ZI , ZO) =
{G | ∃` G,A,X−−−−→`′ : GI ∩ ZI 6= ∅ and GO ∩ ZO 6= ∅},
CtxI(`, ZI , ZO) = {ZI} ∪ {GI | G ∈ Gds(`, ZI , ZO)} and
CtxO(`, ZI , ZO) = {ZO}∪{GO | G ∈ Gds(`, ZI , ZO)}. The
set Gds(`, ZI , ZO) returns the constraints on the outgoing
edges of ` that may become true when one looks back into
the time from (`, ZI , ZO, ZX).

Consider Figure 2 and assume that one wants to compute
Pret(s2) where s2 = (`0, L = 0, true, 3 < t < 4). Note
that although 0 ≤ t < 4 is the past of 3 < t < 4, the
symbolic state (`0, L = 0, true, 0 ≤ t < 4) is not a time
predecessor of st since it is not possible to reach s2 from
(`0, 0, 0, 1.3) ∈ (`0, L = 0, true, 0 ≤ t < 4) by letting
the time elapse. Indeed, (`0, 0, 0, 1.3) is not stable. Then,
we consider Gds(L = 0, true) = {L = 0 ∧ 3 < t <
4, L = 0 ∧ 1 < t < 2}, CtxI(L = 0, true) = {L = 0}
and CtxO(L = 0, true) = {true}. In a first time one
decomposes CtxI(L = 0, true) into a set of disjoint
“atomic” input constraints and one gets {L = 0}. Secondly
one decomposes CtxO(L = 0, true) into a set of disjoint
“atomic” output constraints and one gets {true}. The unique
input/output context obtained after the decompositions is
given by L = 0 and true. Then, from the symbolic state
(`0, L = 0, true, 3 < t < 4) we compute a clock zone
Z ′ from which we can reach 3 < t < 4 by time elapsing
and along the (time) path from Z ′ to 3 < t < 4 we must
avoid the clock part of all constraints in Gds(L = 0, true)
since otherwise one reach non stable states. This correspond

56

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 65 / 139

to the computation of safe time predecessors of a clock
zone with respect to another one. For instance we compute
the safe time predecessor of 3 < t < 4 with respect to
{3 < t < 4, 1 < t < 2} and we should get 2 ≤ t ≤ 3. Finally
we should get that Pret(s2) = (`0, L = 0, true, 2 ≤ t ≤ 3).

For the computation of Pret(`, ZI , ZO, ZX), the next
step after the decomposition of input/output constraints is
to compute the safe time predecessors. We define the time
predecessor as follows:

Definition 7: The set of time predecessors of a symbolic
state (`, ZI , ZO, ZX), Prei(`, ZI , ZO, ZX) is defined by:

Pret(`, ZI , ZO, ZX) = {(`′, Z ′I , Z ′O, Z ′X) |
`′ = `,

Z ′I ∈ Split(CtxI(`, ZI , ZO)),

Z ′O ∈ Split(CtxO(`, Z ′I , ZO)),

Z ′X ∈ Prest (ZX , {GX | G ∈ Gds(`, Z ′I , Z ′O)})}

One can show the following.

Proposition 3: (`′, i′, o′, x′) ∈ Pret(`, ZI , ZO, ZX) iff
there is (`, i, o, x) ∈ (`, ZI , ZO, ZX) such that (`′, i′, o′, x′) ∈
Pret(`, i, o, x)

E. Zone-Based Reachability Analysis Algorithm

The zone based reachability analysis algorithm computes at
each step the predecessors of already encountered symbolic
states. The predecessors are computed as follows:

Pre(`, ZI , ZO, ZX) =
⋃

τ∈{i,o,t}

Preτ (`, ZI , ZO, ZX)

Note that all the operations on zones (update, pre-update,
past time, Split) can be effectively computed [4] using
DBM (or simple adaptations for input and output zones).
The iterative fixpoint process of Algorithm 1 converges after
finite many steps. This is true as the computation of Prei,
Preo, Prest and Pret involves exactly the constants in A
and variable updates only set variables to constants. Using
similar argument to [6], one can show that the reachability
analysis algorithm is EXPTIME. Although we did not carry
out experiments of the zone-based algorithm, it should be clear
that this new algorithm for VDTA is practically more efficient
than that based on regions [11].

IV. CONCLUSION AND FUTURE WORK

The paper proposed a more efficient zone-based backward
algorithm for the reachability analysis of Variable Driven
Timed Automata (VDTA). The algorithm is based on the
definition of predecessors operators of symbolic states. Sym-
bolic states contain input, output, and clock constraints that
should be respected in order to reach the target state. These
informations can be used by the environment to control the
execution of systems or select test cases.

The VDTA model received a favorable echo among some
industrial partners since it is a good compromise between
simplicity and expressiveness. Ongoing works include com-
posability issues. Moreover, one can intensify the model with
tough arithmetic operations and study decidability issues.

ACKNOWLEDGMENT

This work has been supported by the ANR (Agence Na-
tionale de la Recherche) TesTEC Project. We also would like
to thank Hervé Marchand for his comments.

REFERENCES

[1] Rajeev Alur, Thao Dang, and Franjo Ivancic. Reachability analysis of
hybrid systems via predicate abstraction. In 5th International Workshop
on Hybrid Systems: Computation and Control (HSCC’02), pages 35–48.
Springer, 2002.

[2] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[3] Roberto Barbuti and Luca Tesei. Timed automata with urgent transitions.
Acta Informatica, 40(5), 2004.

[4] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithm
and tools. In Lectures on Concurrency and Petri Nets, pages 87–124.
Springer, 2004.

[5] Patricia Bouyer. Untameable timed automata! In 20th Symposium on
Theoretical Aspects of Computer Science (STACS’03), pages 620–631.
Springer, 2003.

[6] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen,
and Didier Lime. Efficient on-the-fly algorithms for the analysis of
timed games. In 16th International Conference on Concurrency Theory
(CONCUR’05), pages 66–80. Springer, 2005.

[7] Frédéric Herbreteau and B. Srivathsan. Efficient on-the-fly emptiness
check for timed büchi automata. In 8th Int. Symp. on Automated
Technology for Verification and Analysis (ATVA’10), pages 218–232.
Springer, 2010.

[8] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager.
Timed i/o automata: A mathematical framework for modeling and
analyzing real-time systems. In The 24th IEEE International Real-Time
Systems Symposium (RTSS’03), volume 0, pages 166–177. IEEE, 2003.

[9] Stephan Merz. Model checking: A tutorial overview. In Modeling and
Verification of Parallel Processes, pages 3–38. Springer, 2001.

[10] Houda Bel Mokadem, Béatrice Bérard, Patricia Bouyer, and François
Laroussinie. A new modality for almost everywhere properties in timed
automata. In 16th International Conference on Concurrency Theory
(CONCUR’05), pages 110–124. Springer, 2005.

[11] Omer Nguena-Timo, Hervé Marchand, and Antoine Rollet. Automatic
test generation for data-flow reactive systems with time constraints. In
22nd IFIP International Conference on Testing Software and Systems:
Short Papers (ICTSS’10). CRIM-Canada, 2010.

[12] Omer Nguena-Timo and Antoine Rollet. Conformance testing of vari-
able driven automata. In 8th IEEE International Workshop on Factory
Communication Systems Communication in Automation (WFCS’10),
2010.

[13] Omer Nguena-Timo and Antoine Rollet. Test selection for data-flow
reactive systems based on observations. In Software Testing, Verification
and Validation Workshops (ICSTW’11). IEEE Xplore, 2011.

[14] Peter J. Ramadge and W. Murray Wohnam. The control of discrete event
systems. Proceedings of the IEEE Computer Society, 77:81–98, 1989.

[15] J. Tretmans. Test generation with inputs, outputs, and repetitive
quiescence. Software-Concepts and Tools, 17:103–120, 1996.

57

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 66 / 139

Retrospective Project Analysis Using the Expectation-Maximization Clustering
Algorithm

Steffen Herbold, Jens Grabowski, Stephan Waack
Institute of Computer Science

Georg-August-Universität Göttingen, Germany
Email: {herbold, grabowski, waack}@cs.uni-goettingen.de

Abstract—Schedule slips are often the reason for failed
projects or low-quality software. Therefore, investigation if a
project was on schedule is an important task when analyzing
software projects in retrospective. In this paper, we present
a data-driven approach for the retrospective determination of
project phases through a clustering algorithm. The analysis
is based on software metrics measured at different points of
time during the project execution. We will describe how the
data can be collected, prepared and analyzed. Our findings are
validated through a case study where we analyzed two large-
scale open-source projects. The results show that it is possible
to successfully identify the final phase of a project using our
approach.

Keywords-EM clustering, project analysis, repository mining

I. INTRODUCTION

One of the biggest challenges of software projects other
than the task at hand is the project plan. Often, time seems
too short and schedule slips occur, or features have to be
removed to remain on schedule with milestones and release
candidates. On the other hand, this can also cause developers
to ignore parts of the schedule, e.g., they add features after a
feature freeze, instead of focussing on stabilizing the project.
This increases the risk of producing low-quality software,
which will reduce costumer satisfaction and increase the
maintainance costs. It is the task of good software devel-
opment processes to prevent this. To improve the current
process, the retrospective analysis of past projects with
respect to their schedule is an important means. This is often
performed using experts intuition, based on tangible data
consciously and unconsciously taken into account. This can
include knowledge about the project environment as well
as information about the project itself, e.g., the size or the
number of unresolved bugs.

In our previous work [1], we have successfully used the
k-means algorithm [2] to identify feature freezes during a
project. The approach is based on software metric data about
the project’s milestones mined from the projects repository.
The contribution of this paper is an extension of this ap-
proach. First, we extend the points of time for the measure-
ment from milestones to arbritrary points of time t1, . . . , tn,
e.g., the milestones but also weekly measurements. This
allows steering of the coarseness of the analysis. For the

clustering, we propose the Expectation-Maximization (EM)
clustering algorithm [3], because it is more powerful than k-
means. The assumption of the approach is that metric values
are similar if they are measured during the same phase of a
project and different, if they are from different phases. For
that reason, we use clusters as indicators about the actual
project phases and when they changed.

The remainder of this paper is structured as follows. In
Section II, we introduce software metrics and discuss which
metrics we use and how we selected them. Afterwards,
in Section III, we explain the basic concept of the EM
clustering algorithm. Section IV discusses our methodology
for data collection, preparation, and analysis. In Section
V, we apply our approach in a case study. The results of
our work and the threats to its validity are discussed in
VI. Finally, Section VII concludes the paper and gives an
outlook on future work on this subject.

II. SOFTWARE METRICS

The first problem when analyzing software or software
projects is that software is an abstract and difficult to
grasp product. Software metrics are a means to describe the
abstract product software with numbers. The IEEE defines
software metrics as “the quantitative measure of the degree
to which a system, component, or process possesses a
given attribute” [4]. For our analysis, we need quantifiable
attributes of software development projects, which is exactly
what software metrics can provide.

We use a target-oriented approach for the selection of soft-
ware metrics, the Goal/Question/Metric (GQM) approach
[5], [6]. In this approach, first a goal that shall be achieved
is defined. Then, questions are formulated whose answer can
be used to achieve the goal. Finally, metrics that can answer
the questions are selected. This methodology ensures that
there is no ‘measurement for the sake of measurement’, but
that it is clear why the metric data is collected and how it
is used.

We applied the GQM approach to select metrics to achieve
our goal, the detection of project phases (Figure 1). We
defined two questions to evaluate the goal.

1) How large is the source code?
2) How many bugs are in the software?

58

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 67 / 139

Goal Questions Metrics

Detection of
Project Phases

How large is the
source code?

Lines of Code
(LOC)

How many bugs
are in the
software?

Number of Bugs
(BUG)

Number of Active
Bugs (ACTBUG)

Figure 1. GQM approach to select apropriate metrics.

The rational behind these questions is that we feel that
the most important features to determine the progress of a
project are the software’s size and its number of bugs. The
size determines how much of the software’s source code
is written and should increase continously as the projects
progresses. The number of bugs is an indicator for the
stability of a project. It should drop sharply at the end
of the project, as the focus switches from development to
stabilizing the project. For the first question, we selected
the metric Lines of Code (LOC) to measure the size of
the software. For the second question, we determined two
similar candidates: Number of Bugs (BUG) and Number of
Active Bugs (ACTBUG). The metric BUG measures how
many of the total number of bugs known about the software
at the end of the project are still open, i.e., have not yet been
fixed. The metric ACTBUG includes when a bug has been
reported, i.e., it does not measure the number of open bugs
with relation to the end of the project, but to the currently
known bugs. To our mind, one of these two metrics should
be sufficient, because it can be shown that a small number
of metrics often performs similar to larger sets [7]. As part
of the case studies we plan to investigate this further and
evaluate if either BUG or ACTBUG performs better than
the other.

III. THE EM ALGORITHM

To analyze the data, we use the EM clustering algorithm
[3], which belongs to the unsupervised learning algorithms.
Unsupervised means that no prior knowledge except the data
is used. In our case, this means that the algorithm does
not know when a data point has been measured and which
project phase it belongs to, only the metric data itself is
known. Clustering algorithms estimate the data sources that
created the data. In our case, the data sources are project
phases. The EM algorithm determines a mixture of gaussian
distributions that fits the data. This mixture is basically
a number of k gaussian distributions and each data point
“belongs” to the distribution which generated it with the
highest probability. Each of the distribitions defines a cluster,
i.e., a set of points that the algorithm determines to be
generated by the same data source. The points are assigned

to the clusters based on the likelyhood that the underlying
gaussian distribution generated the data point. The number
k of clusters is not fixed, but determined by the algorithm
itself.

The acronym EM stands for expectation maximization
and describes the two basic steps of the algorithm: 1)
calculate the expected likelihood of the current hypothesis;
2) determine a new hypothesis to maximize the likelihood.
Additional details of the algorithm can be found in [8].

IV. APPROACH

Our approach for the retrospective analysis of software
project consists of three phases: 1) data collection; 2) data
preparation; 3) data analysis.

A. Data Collection

We selected the metrics LOC, BUG, and ACTBUG for
the evaluation (see Section II). For the analysis, we need the
values of these metrics at regular points of time t1, . . . , tn
during the project. To collect the metric data in retrospective,
access to the software project’s repository is necessary.

Source code based metrics, like LOC, can be extracted
from a code versioning system, e.g., Concurrent Versions
System (CVS) [9], Subversion (SVN) [10] or Git [11].
These system allow the access to the whole history of the
source code. That way, the state of source code at the
times t1,, tn can be accessed. Once the source code
is available, we can measure the LOC with any software
measurement tool.

The metrics BUG and ACTBUG are gathered from bug-
tracking systems, e.g., Bugzilla [12]. Bugtracking systems
maintain all data related to bugs, i.e., when they were
discovered, in which versions of the software they are
present, the current state of the bug, a record or its state-
changes, and how it was resolved. Possible states of the bugs
are, e.g., OPEN and CLOSED: OPEN indicates that a bug
is reported and still being worked on; CLOSED means that
the bug is resolved. Possible resolutions are, e.g., FIXED,
INVALID, and WONTFIX: FIXED means that a bug has
been corrected; INVALID means that the entry is not a bug;
WONTFIX means that for some reason the bug will not be
fixed. Using all these informations, we extract all known
bugs for a specific version of a software to measure the
metric BUG. By including the information when a bug has
been reported, we measure the metric ACTBUG.

The result of the data collection are the metric values for
LOC, BUG, and ACTBUG at times t1, . . . , tn.

B. Data Preparation

The collected data needs to be prepared for the anal-
ysis. To this aim, we normalize the data. Normalization
means, that we change the scales of the metrics to the
interval [0, 1] while keeping the relative distances between
the metric values. The normalized metric values valuenorm

59

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 68 / 139

are calculated as valuenorm = value−valuemin

valuemax−valuemin
, where

valuemin, valuemax represent the minimal and maximal
measured values of the metric.

The reason for the normalization is to reduce the impact
of the metric scales. The different scales of the metrics
effect the result of the clustering. The scale of LOC is much
larger than the scale of BUG and ACTBUG. This difference
can give LOC a higher weight than the other two metrics.
The important feature for the analysis are not the absolute
values but the relative distances to the other values in the
project, because the relative distance reflect the progress.
Normalization keeps the relative distances, but removes the
scale effects, thereby allowing a better data analysis.

As result of the data preparation, we have a the data
set DATA = {values(t1), . . . , values(tn)} ⊂ [0, 1]3. The
notation values(ti) stands for the value of metrics LOC,
BUG and ACTBUG at ti.

C. Data Analysis

For the data analysis, we use the EM clustering algorithm
and apply it to the metric data. The input of the algorithm is
only the metric data itself and no information about project
phases according to the project plan or even the date of
the measured. As result, the algorithm yields k clusters
C1, . . . , Ck ⊂ DATA. The clusters are a disjoint partition
of the input, i.e.,

⋃k
i=1 Ci = DATA and Ci ∩Cj = ∅ for all

i, j = 1, . . . , k. The number k is not fixed and the algorithm
can determine as many or few clusters as required to fit the
data.

If the analysis is successfull, the resulting clusters contain
time-adjacent data, i.e., Ci = {values(tj), values(tj +
1), . . . , values(tj+|Ci|)}. Such a cluster describes a time-
interval [tj , tj+|Ci|]. The time-intervals can then be mapped
to the project phases by an expert to gain knowledge about
the project. In case the resulting clusters are not time-
adjacent, there are to possible conclusions: 1) the approach
failed; 2) the project was chaotic. Which of the two is the
case needs to be determined by an expert.

V. CASE STUDIES

To validate our approach, we performed a case study
where we applied it to two large-scale open source projects.
We designed our case study to answer the following two
research questions:

• RQ1: Is the approach able to identify project phases?
• RQ2: is either BUG or ACTBUG sufficient or are both

required?

In the following, we will describe the case study method-
ology and data. Then, we will present the results of the
experiments. Based on the results, we answer the research
questions in Section VI.

A. Methodology and Data

The experiments we performed in this case study are
based on data obtained from the development of projects
hosted by the Eclipse Foundation [13]. We mined data about
the developement of two versions of the Eclipse Platform
project [14], the versions 3.2 and 3.3. We excluded the
Standard Widget Toolkit (SWT) subproject of the platform
from our measurements, as it is for the most part independent
of the remainder of the project. We obtained the source code
from the Eclipse CVS repository [15]. To measure the bug
related metrics, we used SQL queries to directly extract the
metrics from a database dump of the Eclipse Bugzilla [16]
bugtracking system made available to us.

As dates for the measurements we choose weekly intervals
on monday mornings. For the Eclipse Platform 3.2 the
starting date was 2005-06-27 and the final measurement was
2006-06-26. For the Eclipse Platform 3.3 the start date was
2006-06-26 and the final date 2007-06-26. For the analysis
we used Weka’s [17] implementation of the EM clustering
algorithm, with a maximum of 100 iterations and a dynamic
number of clusters.

To answer the research question, we performed three
experiments with both software versions respectively. In the
first experiment, we used all three metrics as input for the
EM clustering algoritm, in the second experiment we used
only the metrics LOC and BUG, and in the third experiment
we used only the metrics LOC and ACTBUG. The first
experiment is to evaluate if the identification of project
phases through the clustering works to answer RQ1. The
other two experiments evaluate how each of the bug metrics
alone performs in order to answer RQ2.

B. Results

The results of the experiments are visualized in figures 2-
7. The figures depict the weekly measured data points for
the metric used in the experiments and where the clusters
are located. Both projects had several milestones and release
candidates. MX stands for milestone X , M0 denotes the
beginning of the project. RCX denote release candidate
X . The number of clusters varies between two and four,
depending on the experiment. Each cluster only contains
time-adjacent data. While the number of clusters varies, the
last cluster found is in all six experiments very similar. The
cluster is within 3 weeks of the first release candidate. The
clusters before the last one are inconsistent and vary.

VI. DISCUSSION

In this section we discuss the case study results and use
them to answer our research questions. Furthermore, we list
the threats to the validity of our studies.

A. RQ1: Is the approach able to identify project phases?

All clusters determined in the case study were time-
adjacent, thereby providing evidence that cluster analysis is

60

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 69 / 139

0

0.25

0.5

0.75

1
M

0

M
1

M
2

M
3

M
4

M
5

M
6

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

R
C

6

R
C

7

R
e

le
a

s
e

Normalized LOC Normalized BUG Normalized ACTBUG

Cluster 1 Cluster 2 Cluster 3

Figure 2. EM clustering with normalized LOC, BUG, and ACTBUG for the Eclipse Platform 3.2

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

R
C

6

R
C

7

R
e

le
a

s
e

Normalized LOC Normalized BUG

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 3. EM clustering with normalized LOC and BUG for the Eclipse Platform 3.2

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

R
C

6

R
C

7

R
e

le
a

s
e

Normalized LOC Normalized ACTBUG

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 4. EM clustering with normalized LOC and ACTBUG for the Eclipse Platform 3.2

61

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 70 / 139

0

0.25

0.5

0.75

1
M

0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

R
C

1

R
C

2

R
C

3

R
C

4

R
e

le
a

s
e

Normalized LOC Normalized BUG Normalized ACTBUG

Cluster 1 Cluster 2 Cluster 3

Figure 5. EM clustering with normalized LOC, BUG, and ACTBUG for the Eclipse Platform 3.3

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

R
C

1

R
C

2

R
C

3

R
C

4

R
e

le
a

s
e

Normalized LOC Normalized BUG

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 6. EM clustering with normalized LOC and BUG for the Eclipse Platform 3.3

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

R
C

1

R
C

2

R
C

3

R
C

4

R
e

le
a

s
e

Normalized LOC Normalized ACTBUG

Cluster 1 Cluster 2

Figure 7. EM clustering with normalized LOC and ACTBUG for the Eclipse Platform 3.3

62

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 71 / 139

indead capable of partitioning a project into phases. The
case study results show that the final phase of the project
leading up to the release can be detected with good accuracy.
With regard to this phase, we answer this research question
with yes. However, other phases could not accurately be
determined and the results varied between the experiments.
For example, with the metrics LOC and BUG and for the
Eclipse Platform 3.3 (Figure 6), the first cluster seems to be
an initializing project phase, where the project was still in
planning mode. Thus, this experiment did not only detect
the final phase, but also the intial one. But the detection is
singular and not repeated accurately in other experiments.
Therefore, the approach seems to be capable of detecting
further phases, but is not reliable.

B. RQ2: Is either BUG or ACTBUG sufficient or are both
required?

When it comes to detecting the final phase of a project,
the results show no significant difference between using both
BUG and ACTBUG or only one of them. Thus, any of the
three combinations is feasible. Therefore, one should use
either only BUG or ACTBUG instead of using both, as
it reduces the demands on the data mining as well as the
dimension of the data set, thereby simplifying the analysis.

C. Threats to validity

There are several threats to the validity of our results.
Our case study was only performed for successful industrial
open-source projects. We did not consider closed-source
projects, or community driven open-source projects. Fur-
thermore, both projects are consecutive version of the same
software. The results of the case study are only consistent
when it comes to the detection of the final project phase and
inconsistent otherwise, indicating possible problems with the
analysis.

VII. CONCLUSION

In this paper, we defined an approach for the retrospective
analysis of software development projects. The approach
is purely data-driven and based on software metrics. We
described how we selected appropriate metrics using the
GQM approach. As basis for the analysis we use metric
data measured at different times during the execution of a
project. We then partition the data into clusters using the
EM clustering algorithm. Aim of the analysis is to map the
clusters to phases of the project. Our case studies showed
that the approach can accurately determine the final phase
of a project, but has problem detecting prior phases.

Future work on this project has several promising direc-
tions. First, it is possible to tweak the clustering algorithm
used for the analysis, e.g., by predefining a number of
clusters that matches the project plan. A detailed comparison
with other clustering algorithms should also be explored.
Second, the metric set can be extended with further metrics.

For example, the number of successfull tests or the overall
complexity of the project. Third, the time intervals used
for the measurement can also be varied to try to determine
whether they have an effect on the results. Finally, we will
consider further projects to broaden the scope of the case
studies.

REFERENCES

[1] S. Herbold, J. Grabowski, H. Neukirchen, and S. Waack,
“Retrospective Analysis of Software Projects using k-Means
Clustering,” in Proc. of the 2nd Design for Future 2010
Workshop (DFF 2010), Bad Honnef, Germany, May 2010.

[2] D. J. MacKay, Information theory, inference, and learning
algorithms. Cambridge Univ. Press, 2003.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
Likelihood from Incomplete Data via the EM Algorithm,”
J. Royal Statistical Soc., vol. 39, no. 1, pp. 1–38, 1977.
[Online]. Available: http://www.jstor.org/stable/2984875

[4] IEEE, “Ieee glossary of software engineering terminology,
ieee standard 610.12,” IEEE, Tech. Rep., 1990.

[5] V. Basili and D. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Trans. Softw. Eng., vol. 10,
no. 6, pp. 728–738, 1984.

[6] V. Basili and H. Rombach, “The TAME project: towards
improvement-oriented softwareenvironments,” IEEE Trans.
Softw. Eng., vol. 14, no. 6, pp. 758–773, 1988.

[7] S. Herbold, J. Grabowski, and S. Waack, “Calculation and
Optimization of Thresholds for Sets of Software Metrics,”
Empirical Softw. Eng., pp. 1–30, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10664-011-9162-z

[8] T. Mitchell, Machine Learning (Mcgraw-Hill International
Edit), 1st ed. McGraw-Hill Education (ISE Editions),
Oct. 1997. [Online]. Available: http://www.worldcat.org/isbn/
0071154671

[9] July 2011. [Online]. Available: http://www.nongnu.org/cvs/

[10] July 2011. [Online]. Available: http://subversion.apache.org/

[11] July 2011. [Online]. Available: http://git-scm.com/

[12] July 2011. [Online]. Available: http://www.bugzilla.org/

[13] July 2011. [Online]. Available: http://www.eclipse.org/

[14] July 2011. [Online]. Available: http://www.eclipse.org/
platform/

[15] July 2011. [Online]. Available: dev.eclipse.org:/cvsroot/
eclipse

[16] July 2011. [Online]. Available: https://bugs.eclipse.org/bugs/

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an
update,” SIGKDD Explor. Newsl., vol. 11, pp. 10–18,
November 2009. [Online]. Available: http://doi.acm.org/10.
1145/1656274.1656278

63

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 72 / 139

Extracting and Verifying Viewpoints Models in
Multitask Applications

Selma Azaiez, Belgacem Ben Hedia, Vincent David
CEA, LIST, Embedded Real Time Systems Laboratory,

Point Courrier 94, Gif-sur-Yvette, F-91191 France
Email: {selma.azaiez,belgacem.ben-hedia,vincent.david} @cea.fr

Abstract—Static analyzers are most of the time dedicated to
checking runtime errors in sequential programs or are specific to
one particular property in the multitasking domain such as
deadlock detection. However, the safety of multitask and realtime
applications relies on several properties (e.g., absence of
deadlock, atomicity, respecting the temporal constraints, etc.).
Verification of each property requires a specific abstract model.
In this paper, we introduce a generic pattern-based method
allowing automatic extraction of viewpoint models appropriate
for verification of various properties. Each property is defined by
a property analysis pattern specifying the algorithm for its
verification (steps are defined to specify needed viewpoint
models). The extraction of each viewpoint model is described
within a dedicated model extraction pattern. Property analysis
patterns and model extraction ones are the main achievement of
our work. By introducing these patterns, our method allows
harmonizing the validation process and capitalizing the knowhow
by explicitly defining the verification and transformation
processes.

Keywords- multitask applications; semantic-based static
analysis; property verification; property analysis pattern; model
extraction pattern.

I. INTRODUCTION

To validate multitask and real-time systems, developers or
validators in independent certification authorities have to use
different tools based on different methods (e.g., static analysis
[5] or model checking [3]). Each tool is dedicated to a specific
class of properties or even to a specific stage in the
development process [15][16]. For instance, model checking
tools are usually used to validate system specifications
(expressed using dedicated formal languages); which does not
really reflect what is really implemented. In the other hand, the
safety of multitask and real-time applications relies on the
satisfaction of several properties such as deadlock freedom,
atomicity, respecting the temporal constraints, etc. The
verification of each property is based on a different viewpoint
model. For instance, models focusing on locks are necessary to
detect deadlocks; models focusing on shared memory – to
check atomicity. Using such different techniques and tools
complicate the validation process and a high expertise is
required for each type of property.

In this paper, we propose an approach targeting to
harmonize validation process for multitask and realtime
systems. The approach is applicable to check correctness in
these systems from their source code. It is based on the

extraction of different viewpoint models driven by the
properties to verify. It uses property analysis and model
extraction patterns. A property analysis pattern defines the
algorithm for determining which models have to be extracted
in order to verify the property. The extraction process of each
model is described within a model extraction pattern.

The paper is structured as follows. In Section II, we provide
an overview of our approach. In Section III, we explain the
semantic annotation. Then, in Sections IV and V, we introduce
property analysis and model extraction patterns, respectively.
Finally, in Section VI we illustrate our approach on a simple
example.

II. RELATED WORK AND APPROACH OVERVIEW

To address our topic, we study different types of validation
and verification techniques. We first look at techniques dealing
with source code analysis: static analysis [5] and reverse
engineering [19]. Then, we study model checking and theorem
proving techniques that are suitable for verifying multitasking
and realtime systems.

Most static analysis tools were developed for detecting
numerical software bugs in sequential programs [15] (e.g.,
buffer overflows or underflows, null pointer references, etc.).
Some examples of such analyzers are ASTREE [10], CAVEAT
[11], PolySpace[12], Coverity [13], etc. Other existing tools are
more suitable for our context (i.e., multitask realtime systems)
but are specific to particular types of properties (e.g., deadlock
freedom or race condition detection) [14][17][18]. In reverse
engineering approaches, some tools [20] are only focusing on
generating structural models such as UML diagram class or
function dependencies while others are based on model
checking techniques [21][22] but do not address concurrency
issues. Hence, in both areas limited concurrency and realtime
issues are addressed. By contrast, model checking and theorem
proving techniques [4][6][7][8][9] focuses on safety properties
in multitask realtime systems. However, verifications are
performed on systems specifications which make them suitable
for top-down approaches where developers need to be sure that
their programs are correct by construction. In our context, a
bottom-up approach is needed where different viewpoint
models can be extracted from the source code driven by the
properties to verify.

The method we propose allows bridging the gap between
techniques such as static analysis that checks source code and

64

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 73 / 139

techniques such as model checking and theorem proving that
uses more abstract models. It is based on three main levels. In
the first level, source code is parsed and the AST (Abstract
Syntax Tree) is produced. In the second level, AST nodes are
annotated. The annotation allows capturing the semantics of
specific real-time multitasking APIs objects (such as those
provided by POSIX [1], OSEK VDX[2], etc.). A formalism
(introduced in Section III) is used for this purpose. During
annotation phase, nodes using multitasking elements
(primitives or variables) are identified and they are assigned
with annotations provided by the semantic description.

Figure 1. Layers of analysis

In the third level, models are extracted and properties are
verified according to user-defined patterns. Properties analysis
patterns specify within a checking process which models are
necessary to perform the verification.

Model extraction patterns define transformation rules
according to pre-conditions describing initial model
configuration and post-conditions describing configuration of
output model. Once models are extracted the verification of the
property is performed. The result of the verification process
can either be a Boolean value or an extracted model.

III. SEMANTIC ANNOTATION

Multitasking concepts are usually implemented within
API(s) that include a set of functionalities, data types, data
structures, and protocols aiming to facilitate access to resources
or services. The use of API(s) elements in the source code is
identified during AST annotation phase according to the
provided semantic description. In this section, we introduce the
formalism that allows capturing API semantics. Then, we
introduce features that facilitate models extraction from the
AAST (Annotated Abstract Syntax Tree).

A. Semantic description

We introduce a set of annotations in order to capture
multitask API semantics, based on two main concepts:

• Semantic primitives: functions introduced by the API;

• Semantic variables: constraints on the type and values
of the parameters and values returned by the primitive
call.

1) Multitask primitives

Multitask primitives are classified upon their general
semantics:

• Task management: task creation, destruction, sleep and
awakening;

• Critical sections management: locks acquisition and
release;

• Communication mechanisms: creation or destruction
of message-passing mechanisms or shared memories,
sending and receiving of messages.

 A multitasking primitive is described as follows:

P = (id, φ(parami), φ(res), sem-role)

where:
• id : is the identifier of the primitive (e.g., fork);

• φ(parami): value and type constraints having to be
respected by primitive parameters;

• φ(res): value and type constraints that have to be
respected by the primitive return value;

• sem-role: annotation expressing the primitive role
(e.g., CREATE-TASK, TAKE-LOCK, RELEASE-LOCK,
SLEEP, etc.).

2) Semantic variables

Semantic variables are the parameters or return values of a
primitive. They are defined as following:

V = (id, φ(type), range)

where:
• id: is an identifier (used in semantic description of the

primitive);

• φ(type): are type constraints;

• range: is the range of acceptable values or a constant.

B. AAST node structure

During parsing phase, the program is tokenized then, the
AST is generated. A node in the AST is associated to each
word in the source code. Additional nodes are added that we
call branch-node and that inform about the syntactical nature of
the branch (e.g., statement, function call, loop body, else body
etc.). A token is associated to each node to inform about the
node nature (e.g., FUNC-CALL, END-LOOP, etc.).

65

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 74 / 139

Figure 2. The structure of the annotated AST node

During annotation phase, AST nodes conserve information
about syntactical structures. This information is augmented by
semantic information mentioned in the previous Sections. After
semantic annotation phase, AST nodes have the structure
shown in Figure 2.

C. From AAST to model extraction

Model extraction consists in applying a set of
transformation rules to extract a new model configuration from
one or several initial ones. To be able to define such rules,
original and target models have to follow a common abstract
definition. In this subsection, we introduce abstract definition
of models as well as a navigation feature that will facilitate the
definition of transformation rules.

1) Abstract definition of models

A common representation to all models used in our
approach (i.e., AAST, control graphs, synchronization and
communication graphs) is graph representation. For all these
representation, we adopt a generic definition stating that a
graph is a quadruple G(S, T, s0, sf) where

• S: is a set of nodes;

• T: is a set of transitions which can be labeled or not;

• s0 ⊂ S: is the initial node;

• se ⊂ S: is the set of final nodes.

2) Navigation formalism

During patterns specification, one can need to select
specific model elements (nodes or transition sets) or to test
nodes according to their identifiers, tokens, branches to which
they belong or their semantic annotation. To this purpose, we
introduce the operator “::” that allows such navigation. For
instance, the expression G::S states that we refer to the set of
nodes S in the graph G.

In Figure 3, we provide an example written in C that creates
two tasks by using the fork primitive, provided by POSIX
[1]. Tasks are synchronized using a producer/consumer process
(for the sake of clarity, we suppose that P and V are lock
acquisition primitives provided by the platform). In the
corresponding annotated AST, all nodes calling a semantic
primitive are red while nodes corresponding to semantic values
are light gray.

Figure 3. Annotated AST

To select a node calling a primitive with the semantic role
CREATE-TASK, the following expression is used (where
node ∈ AST).

node::semantic::primitive::sem-role==

CREATE-TASK

In order to check whether the returned value of the fork is
tested, we use the following expression:

node::semantic::variable::type == PID-T ∧
node::root::token == IF-BODY

The first expression selects a node corresponding to a

semantic variables having PID-T type. The second expression
tests whether this node is in conditional branch which means
that the token corresponding to the root of the current node is
an IF-BODY.

IV. SPECIFICATION OF PROPERTIES

Once the AST is annotated, verification of properties can be
performed. Each property is described using a pattern
provided by Table I.

TABLE I. A PROPERTY ANALYSIS PATTERN

Identifier Property identifier

Checking process
Defines the steps of the property
verification process. These steps can
comprise extraction of various models.

Property
Specification

Specification of the property

Several models can be used to check a single property.
Steps of the checking process are specified by using the
following formalism:

step-id: from [quantifier]{input models}
 extract[quantifier]{output model}
 according to{model extractor
 pattern}
step-id: verify {prop-id} on {model}

66

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 75 / 139

Property specification is a logical expression that can be

stated using first order logic, CTL, LTL, or other specific
formalism and that can be verified upon the last extracted
model.

V. MODEL EXTRACTOR PATTERNS AND TRANSFORMATION

RULES

When stating the checking process within the property
analysis pattern, steps refer to model extraction patterns. These
patterns define how to build abstract models according to the
API semantics. They have the format described in Table II.

TABLE II. MODEL EXTRACTOR PATTERN

Input Models Input models from which output
models will be extracted

Output Model
output model can be referred
here, several instances can be
extracted.

Model Transformation
Rules Model building rule

A model extraction is based on transformation rules. We
introduce how to state the method for specifying pre-conditions
and post-conditions constraining initial configurations in input
models and resulting configurations in output models
respectively.

A. Models transformation rules

Model transformation rules allow deriving a new graph
configuration from one or several initial ones.

{G0,…,Gn} ⇒ Gd

Transformation rules are based on three elements
introduced in Table III.

TABLE III. TRANSFORMATION RULES

Pre-conditions Set of configuration rules that are
respected by input models

Nodes building
rules Algorithm for building sets S, s0 and se

Transitions
building rules Algorithm for building the set T

B. Pre-conditions

In the pre-condition section, the user will define a set of nodes
from which the output model will be derived. Pre-conditions
are expressed using the following formalism:

p-id : { nodes: input-graph | ϕ(nodes)}

p-id describes a precondition ϕ that has to be respected by the
set nodes ⊆ input-graph ("|" means "such that").
p-id is the identifier of the pre-condition. A pre-condition can
state, for instance, ”There exists at least one

node that is a fork call” which is expressed as
follows:
p1: {fork-node ∈ AST |
 (fork-node::identifier==fork) ∧
 (fork-node!=0)}

C. Nodes building rules

Nodes building rules define S, s 0 and s e of output
models according to provided pre-conditions. They are
considered as implication rules expressed as follows:

{precondition} →{{graph}::set=building-rule}

" →" means "implies". Building rules are expressed by
using one of the following propositions (ni, nj ∈ {graph}::S
and one of expressions between brackets or even both):

• include all[from ni until nj][such that
ϕ]: this rule includes into the specified set all the
nodes of the subset specified by the optional
expression [from n0 until ni] or [such that
ϕ] ;

• exclude all[from n0 until ni][such that
ϕ]: exclude from the set S nodes of the subset
specified by the optional expression [from n0 until
ni] or [such the ϕ] ;

• build nodes according to (f): build a node
with a new format generated by the function f (e.g.,
from control graph, build a node with task-id).

D. Transition rules

Transition rules define the algorithm for connecting nodes
to each other in the output model Gd according to their
configuration in the initial model {G0,…, Gn} . Transition rules
are also expressed using:

• Pre-condition: we assume that there exists one or
several element si ∈ S that have their projection sd
∈ Sd, pre-conditions introduce properties that have to
be respected by si in the initial model G;

• Post-condition: define the type of links that connect Sd
nodes in Gd.

Transition rules are expressed as follows:

{precondition} →{connection-rule}

Where connection-rule have the following format (the
fourth optional parameter specifies the transition label):

connection(G d::s 1,G d::s 2,type,[l])

VI. APPLICATION

We illustrate our methodology on the simple example
provided in Section III.C.2). Let us suppose that we want to
check whether locks are correctly released after their
acquisition. We will provide the property pattern analyzer
corresponding to this property. Then, we provide model
extraction patterns used in the verification process.

67

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 76 / 139

A. CORRECT-LOCKS-USE property analysis pattern

To check whether acquired locks are always released, we
need to first extract control graphs in order to determine which
task is using which lock. After that, a lock-use-graph is
extracted where nodes represent tasks. These nodes are
connected by transitions labeled by lock operations (cf. Figure
4).

The property consists of verifying that each node, which is
a source of an arc labeled with ACQ-LOCK on a lock, has an
entrant arc labeled with RLS-LOCK on the same lock.

Figure 4. Lock-use-graph extraction

The pattern corresponding to this property is provided in
the Table IV.

TABLE IV. CORRECT-LOCKS-USE ANALYSER PROPERTY
PATTERN

Identifier CORRECT-LOCKS-USE

Checking
Process

step1 : from {AAST}
 extract all {CG:CONTROL-GRAPH}
 according to{CONTROL-GRAPH-
 EXTRACTOR-PATTERN}
step2 : from all {CG}
 extract all {LG:LOCK-USE-GRAPH}
 according to{LOCK-USE-GRAPH-
 EXTRACTOR-PATTERN}
step3 : verify {CORRECT-LOCKS-USE}
 on{LG}

Property
Specification

{ ∀n ∈ LG::S}
if

{ ∃t1 ∈ LG::T |
 ((t1::org==n) ∧
 (t1::label::sem==ACQ-LOCK))}
then

{ ∃t2 ∈ LG::T |
 ((t2::dest==n) ∧
 (t2::label::sem==RLS-LOCK) ∧
(t1::label::param==t2::label::sem))}
else
 Error

B. Model extraction patterns

The property specification pattern refers to two model
extraction patterns that are described in the following
subsections.

1) Control graph extraction

In this example, fork primitive is used to create tasks.
Fork is provided by POSIX and allows the duplication of the
current process. Fork does not take any parameters and returns

either 0 (for the child process) or the PID value of the child
process (for the parent process). Fork can be used differently
within a conditional expression or not (cf. Figure 5) and this
influences the extraction of the control graph.

Figure 5. fork writing styles

The first writing style (1) implies that both created tasks have
the same behavior and start on the instruction following the
call to fork (i.e., the instruction in line 3) until the end of the
program. In the second case, the behavior of both tasks starts
by instructions following fork (e.g., instruction in line 2).
However, according to the conditional expression that is
testing the PID value, the control graph of the child task
continues in else block (i.e., line 6) while the behavior of the
parent task is defined by the if block (i.e., line 4). Then, both
tasks behavior continues until the end of the program (i.e., line
7).

To specify such semantics, the corresponding pattern
described in Table II is expressed as follows:

1. if there exists a conditional expression testing the
returned PID value; then control graphs CG1 and
CG2 are created where (1) S0 refers to the statement
following the call to fork , (2) Se points towards the
end of the program, (3) S includes S0, Se and all nodes
following S0 except those included in IF_BODY for
CG1 and those included in ELSE_EXPR for CG2;

2. if the return value of the fork is not tested, both
control graphs include all nodes between S0 and Se.

A simplified control graph extractor pattern is provided in
Table V.

TABLE V. FORK CONTROL GRAPH EXTRACTION PATTERN

Identifier FORK-CONTROL-GRAPH-EXTRACTOR
Input AAST
Output CG1, CG2 : CONTROL-GRAPH

Pre-condition
-- there exists in the AST at least one --
-- with fork identifier and one node --
-- with END-OF-PROGRAM node --
p1:{fork-node, end-node ∈ AAST |
 (fork-node::identifier==fork) ∧
 (end-node::token==END-OF-PROGRAM)}

-- return value of fork is tested --
p2:{cond, fork-if-body, fork-if-end ∈ AAST |
 (cond::token={VALUE,FUNC-CALL} ∧
 ((cond::semantic::VAR::type=PID-T) ∨
 (cond::identifier==fork)) ∧
 ((fork-if-body::token==IF-BODY-EGIN(cond))
 ∧
 (fork-if-end::token==IF-BODY-END(cond))}

68

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 77 / 139

-- pre-condition stated to check whether --
-- else exists --
p3:{fork-else-body, fork-end-body ∈ AAST |
 ((p2::cond) ≠ 0 ∧
 (fork-else-body::token==ELSE-BODY-
BEGIN(cond))
 ∧
 (fork-else-end::token==ELSE-BODY-END(cond))}}

Node building rules

{p1 ∧ p2} →{{CG1, CG2}::S 0 = NEXT(fork-node)
 ∧
 {CG1, CG2}::S e = END-OF-PROGRAM}

-- both graphs have the same behavior --
{p1 ∧ ¬p2∧ ¬p3} →{{CG1, CG2}::S =
 include all from S 0 until S e}

-- graphs have different behavior --
{p1 ∧ p2 ∧ p3} →
 {CG1::S= include all from S 0 until S e
 ∧
 CG1::S =exclude all from fork-else-body
 until fork-else-end
 ∧
 CG2::S= include all from S 0 until S e
 ∧
 CG2::S =exclude all from fork-if-body
 until fork-if-end }

Transition building rules
{ ∃ {n1, n2} ∈ AAST, {gn1, gn2} ∈ CG::S
 | gn1=proj(n1), gn2=proj(n2) ∧ next(n1,n2)}
→
{ connect(gn1, gn2, direct-transaction) }

2) Extraction of the lock use graph

The lock use graph is extracted according to the pattern
provided in the Table VI.

TABLE VI. LOCK USE GRAPH EXTRACTION PATTERN

Identifier LOCK-USE-GRAPH-EXTRACTOR
Input CONTROL-GRAPH
Output LG : LOCK-USE—GRAPH

Pre-condition

-- there exists a lock acquisition node --
-- in the control graph --

p1:{lock, lock-acq-node ∈ CONTROL-GRAPH |
 (lock::sem::var::type==LOCK
 ∧
 lock-acq-node::sem::primitive::sem-role
 == LOCK-ACQ(lock))}
-- there exists a lock release node in the --
-- control graph --
P2:{lock, lock-rls-node ∈ CG |
 (lock::sem::var::type==LOCK
 ∧
 lock-rls-node::sem::primitive::sem-role
 == LOCK-RLS(lock))}

Nodes building rules
{ ∀cg : CG |
 (p1 ∨ p2)} →{LG::S = build(identifier(cg))}

Transitions building rules
{ ∀ l1, n1 ∈ CG1: CONTROL-GRAPH,
 ∀ l2, n2 ∈ CG2: CONTROL-GRAPH,
 ∃ n3,n4 ∈ LG::S |

 ((n1==lock-acq-node) ∧
 (n2==lock-rls-node) ∧
 l1::identifier==l2::identifier) ∧
 (n3==identifier(CG1) ∧
 n4==identifier(CG2)}
→
{ connect(n3,n4,direct,n1) ∧
 connect(n4,n3,direct, n2)}

VII. CONCLUSION AND FUTURE WORKS

This paper deals with the question of how to automatically
extract different viewpoint models from source code in order to
validate system behavior according to a set of properties. We
propose a pattern-based approach that allows specifying the
property to check and the transformation rules to apply. For
each pattern, a dedicated formalism was introduced. This
approach provides more generality than the existing ones. It
can be applied for different systems using different languages.
Users can plug-in different language parsers and provide the
corresponding API semantics.

This approach also allows knowledge capitalization by
explicitly defining the verification and transformation
processes. It can facilitate verification and validation processes,
particularly when these are performed by a third-party
organization.

Currently, a prototype was developed allowing checking
several design rules such as correct use of locks, atomicity and
deadlock. The next step will consist on testing its scalability on
great systems.

For future work, we aim to improve our method in order to
address temporal constraints. The key point is specifying how
to extract a temporal viewpoint model and how to perform the
analysis of the satisfaction of temporal constraints.

ACKNOWLEDGMENT

We would like to thank Simon Bliudze for comments on this
work.

REFERENCES
[1] POSIX Certification – updated on 3 November 2003 -

http://www.opengroup.org/certification/idx/posix.html

[2] OSEK VDX version 3.0.3 – July 2004 - http://portal.osek-
vdx.org/index.php?option=com_content&task=view&id=9&Itemid=13.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, "Model checking", MIT
Press, 1999, ISBN 0-262-03270-8.

[4] M. P. Bonacina: "On theorem proving for program checking: historical
perspective and recent developments", PPDP 2010, pp. 1-12.

[5] P. Cousot and R. Cousot, "Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints", Conf. Rec. of the 4th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL' 77), ACM
Press (New York), Los Angeles, USA, Jan. 1977, pp. 238-252.

[6] K. M. Chandy and J. Misra. "Parallel Program Design: A Foundation".
Addison-Wesley, 1988, ISBN 0-201-05866-9.

[7] L. Lamport., "The Temporal Logic of Actions". ACM Trans. on Prog.
Lang. and Systems, 1994, pp. 872-923.

[8] Z. Manna and A. Pnueli. "Temporal Verification of Reactive Systems:
Safety". Springer-Verlag, New York, 1995, ISBN 0-387-94459-1.

69

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 78 / 139

[9] E.A. Emerson, "Temporal and modal logic", Handbook of Theoretical
Computer Science, Chapter 16, the MIT Press, 1990, pp. 995-1072.

[10] P. Cousot, R. Cousot, J. Feret, A. Miné, D. Monniaux, L. Mauborgne, X.
Rival. "The ASTRÉE Analyzer". ESOP 2005: The European
Symposium on Programming, Edinburgh, Scotland, April 2-10, 2005.
Lecture Notes in Computer Science 3444, © Springer, Berlin, pp. 21-30.

[11] P.Baudin, A.Pacalet, J.Raguideau, D.Schoen, N.Williams. "CAVEAT : a
Tool for Software Validation". In Proceedings of the International
Conference on Dependable Systems and Networks (DSN’02), pp. 537-
537.

[12] A. Deutsch. "Static Verification Of Dynamic Properties". PolySpace
Technologies, 27 november 2007, www.polyspace.com

[13] Coverity prevent: Static Source Code Analysis for C and C++, 2008,
http://www.coverity.com/library/pdf/coverity_prevent.pdf.

[14] D. Engler and K. Ashcraft, "RacerX: Effective, Static Detection of Race
Conditions and Deadlocks", In Proceedings of the Symposium on
Operating Systems Principles, October 2003, pp. 237-253.

[15] P. Cousot, R. Cousot, "A gentle introduction to formal verification of
computer systems by abstract interpretation". In Logics and Languages
for Reliability and Security, J. Esparza, O. Grumberg, & M. Broy (Eds),
NATO Science Series III: Computer and Systems Sciences, © IOS
Press, 2010, pp. 1-29.

[16] G.S. Avrunin, J.C. Corbett, M.B. Dwyer, C.S. Păsăreanu, S..F. Siegel,
"Comparing Finite-State Verification Techniques for Concurrent

Software". Technical Report UM-CS-1999-069, Department of
Computer Science, University of Massachusetts, 1999.

[17] Sun MicroSystem "Analyzing Program Performance With Sun
WorkShop",1999,
http://www.atnf.csiro.au/computing/software/sol2docs/manuals/worksho
p/analyzing/AnalyzingTOC.html

[18] R. C. Seacord. "Secure Coding in C and C++". Addison-Wesley,
September 2005. ISBN: 0321335724.

[19] B. Bellay and H. Gall. "A Comparison of Four Reverse Engineering
Tools". In Proceedings of the 4th Working Conference on Reverse
Engineering (WCRE ’97), Washington, DC, USA, 1997. IEEE
Computer Society, pp. 2-11.

[20] R. Kollman, P. Selonen, E. Stroulia, T. Syst, and A. Zundorf. A Study
on the Current State of the Art in Tool-Supported UML-Based Static
Reverse Engineering. In Proceedings of the 9th Working Conference on
Reverse Engineering (WCRE ’02), Washington, DC, USA, 2002. IEEE
Computer Society, pp. 22-33.

[21] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, "The Software
Model Checker Blast: Applications to Software Engineering". Int.
Journal on Software Tools for Technology Transfer, 9(5-6): pp. 505-
525, 2007. Invited to special issue of selected papers from FASE
2004/05.

[22] T. Ball, E. Bounimova, R. Kumar, V. Levin, " SLAM2: Static Driver
Verification with Under 4% False Alarms", In Formal Methods in
Computer-Aided Design (FMCAD), 2010, pp. 35-42.

70

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 79 / 139

Requirements and Solutions for Tool Integration in Software Test Automation

Bernhard Peischl
Softnet Austria

8010 Graz, Austria
bernhard.peischl@soft-net.at

Rudolf Ramler, Thomas Ziebermayr
Software Competence Center Hagenberg

4232 Hagenberg, Austria
{rudolf.ramler, thomas.ziebermayr}@scch.at

Stefan Mohacsi
Siemens IT Solutions and Services

1100 Wien, Austria
stefan.mohacsi@siemens.com

Christoph Preschern
Ranorex GmbH

8053 Graz, Austria
christoph.preschern@ranorex.com

Abstract—In this article, we exemplified today's requirements
in integrating test automation tools in terms of three integra-
tion scenarios combining industrial strength tools in the area of
test management, model-based testing and test executionThe
article further sketches solutions for the three scenarios by
introducing various integration concepts and by discussing
their advantages and drawbacks. Based on successful results
we propose a framework for test tool integration.

Keywords—software test tools; test automation framework;
application integration.

I. INTRODUCTION

The current landscape of solutions for test automation is
characterized by a large number of heterogeneous commer-
cial and open source tools. Many of these tools are highly
specialized solutions for specific aspects of testing, they
focus on different technologies, or they have been designed
with certain development and test paradigms in mind. Hence,
although there is a large variety of specialized test tools for
test case generation, test management, test execution, etc.,
little support for combining the numerous specialized tools to
an integrated solution is offered. In practice, thus, engineers
bother about interfacing two or more tools at the technical
level rather than being able to integrate and enhance these
tools to a custom tool chain that meets the needs of a specific
project or organization. Furthermore, besides the provision
of technical interfaces between single tools, testing activities
require automated support for activities that span across
several steps in the testing process and link testing with re-
lated activities of software development and project man-
agement. Especially with model-based testing gaining mo-
mentum, integration requirements have notably increased
due to the various ways to represent and evolve test cases in
combination with artifacts from requirements engineering,
design and development.

From the perspective of test tool vendors and solution
providers, the situation is characterized by similar chal-
lenges. “80% of the effort Automated Software Quality
(ASQ) tool vendors spend today duplicates the work of oth-
ers, recreating an infrastructure to enable testing and debug-
ging activities. Only 20% of their work produces new func-
tion that’s visible and valuable to testers and developers.” [1]

Vendors and developers of test tools have recognized the
increasing need for integration that allows them to focus on
their specific tool competencies, while still being able to
offer a comprehensive testing solution to their customers.

The objective of our work, therefore, is the development
of integration concepts for test tools that allow connecting
tools from different vendors, each specialized on a particular
task in test automation, within an extensible test automation
framework. In Section 2, we introduce three commercial
software test tools from international tool vendors participat-
ing in the Softnet Austria Competence Network. Section 3
describes the application scenarios used for exploring the
integration requirements. Section 4 summarizes established
integration approaches from which we draw in Section 5,
where we present and discuss concepts and first solutions.
Section 6 summarizes the paper and outlines future work.

II. TEST TOOL LANDSCAPE

To demonstrate and evaluate the proposed integration
concepts, we work together with two international compa-
nies developing commercial software test tools that, in com-
bination, represent a lateral cut across typical activities in test
automation. The following three tools have been involved in
the studied scenarios:
 IDATG [3] (Integrating Design and Automated Test case

Generation) is a tool for generating test data and test
cases that has been developed since 1997 by the Sie-
mens Support Center Test in cooperation with universi-
ties and the Softnet Austria Competence Network. The
IDATG tool supports various approaches for test design
and test case generation including equivalence class par-
titioning, boundary value analysis, cause-effect analysis
[2] as well as random and hybrid test case generation
[3]. Over the years, the functionality has been conti-
nuously expanded and the tool has been successfully ap-
plied in numerous commercial and industrial projects
within Siemens and by customers such as the European
Space Agency ESA. Today, IDATG is a commercial
tool offered in combination with the test management
solution SiTEMPPO described in the following.

 SiTEMPPO [23] is a solution for managing large test
case portfolios and related artifacts such as test data, test

71

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 80 / 139

results and execution protocols. The tool supports test
planning, test case design and specification, the compo-
sition of test suites, manual and automated execution of
test cases as well as the analysis and reporting of test re-
sults [20]. Test management as the coordinating function
of software testing interacts with a variety of other de-
velopment and testing activities such as requirements
management, change and defect management and test
automation. Hence, the tool has to offer interfaces to a
number of related but separate tools for data exchange
and synchronization. SiTEMPPO has been developed by
an initiative of Siemens Austria. Nowadays, the tool is
applied in projects within Siemens all over the world
and it is licensed as commercial product for test man-
agement on the open market with customers from vari-
ous industrial domains as well as commercial and public
organizations.

 Ranorex [24] is a solution for developing and executing
automated test cases. The focus of the Ranorex test tool
is on the user-friendly capture and replay of robust test
scripts building on the accurate recognition and unique
identification of user interface elements of applications
based on a broad spectrum of different technologies,
from C#, VB.NET, WPF, Flex/Flash, to Java and even
Qt. The unique strengths of Ranorex's capturing facili-
ties made it a widely recognized test automation tool
successfully applied by numerous customers all over the
world. The reliable capturing facility allows for an au-
tomatic provision of the various elements of the user in-
terface and can thus support the modeling of user inter-
faces and workflows. Therefore the Ranorex test tool
has also been used in a lightweight model-based ap-
proach for random test case generation and execution
[4]. With the ever increasing variety of user interfaces
and the various notification mechanisms in behind, ro-
bust replay mechanisms are further an important part in
executing and recording the tests being generated.

III. USAGE SCENARIOS AND REQUIREMENTS

In the context of the tools listed above, various usage
scenarios have been identified and investigated.

A. Scenario 1: Test Automation and Execution

The integration of executable test cases provided, e.g., as
test scripts in a test management environment like SiTEMP-
PO is a vital part of automating the test process. In this sce-
nario, we do not address the generation of test cases but take
care of the task of executing the test cases (no matter where
the test cases stem from) and recording the results in a test
case management tool. This scenario involves several tasks.
Typically, for every test case we have to provide test data
and the path to the test script for executing the test case. The
result of the execution is typically persisted in form of a log
file. The test management tool has to access and interpret the
log file in order to derive the results of the test case execu-
tion.

Although a technical solution for interfacing the tools in
this basic scenario can easily be envisioned, when coupling
tools of two different vendors, a couple of challenges are

involved. For example, how can the message "testscript
foo.bar failed in line 42" be mapped to a step in the test case
specification? What is reported if the test case execution is
not terminating or terminates with a timeout? Who should be
notified when the test execution failed due to a problem in
the setup of the execution environment? Such questions are
typical for any integration scenario and illustrate that the
various aspects involved have to be addressed at different
levels of integration by different integration concepts.

B. Scenario 2: Model Evolution in Model-based testing

Model-based testing promises to offer solutions to many
of the problems that make software testing a complex task.
In theory, given a suitable behavioral model of the SUT, any
number of test cases can automatically be generated with
respect to planned adequacy criteria and the model serving as
a test oracle [7]. To leverage the full potential of test case
generation, a complete, detailed and correct model of the
SUT – a golden model – has to be provided. Ideally, such a
model of the SUT is built on the grounds of requirements or
existing specification documents. So the model encodes the
intended behavior and can reside at various levels of abstrac-
tion [7]. Further models that focus on the workflow and the
possible user interactions (e.g., via the GUI elements) may
assist in the systematic design of test cases respectively in
their automated generation.

Even with considerable upfront investments in terms of
resources, time and money, such a golden model can hardly
ever be achieved in practice due to several reasons. First, the
model needs to capture specific aspects of the SUT at a very
detailed level, e.g., GUI elements and workflows. However,
in many cases the requirements do not contain the necessary
details and, thus, the only options are making adequate as-
sumptions or reverse engineering these missing details by
exploring the actual implementation. Second, like program-
ming, modeling is an error-prone task and without frequently
executing the model throughout model development, faults
in modeling are rather the rule than the exception.

Executable models are known to improve the situation,
but are not able to overcome this problem fully. Therefore,
tools such as IDATG propose the combination of model-
based testing with GUI exploration and capturing techniques
employed within capture and replay tools like the Ranorex
Studio. This allows for an early detection of faults in the
models being developed as test cases, as they can be ex-
ecuted on the GUIs and workflows even in early stages of
development when almost no business logic is implemented
behind the GUIs. An agile development process, where GUIs
- from the very beginning - are crucial elements and are thus
directly influencing the modeling process, increase the
chance that the software finally will solve the problem of the
customer rather than conform to a specification that does not
capture the problem in its full shape.

Figure 1 illustrates a scenario for an integrated tool chain.
The scenario involves several tools: the Siemens IDATG test
case generator, a model editor (e.g., a workflow editor or a
UML modeling tool, the IDATG tool comes with its own
model editor), the Ranorex GUI spy and the Ranorex replay
component. The scenario starts with capturing a specific

72

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 81 / 139

view of an application (view 1) and continues with recording
of a second view of the SUT (view 2). Capturing of the GUIs
establishes a rather detailed level of modeling from the very
beginning when compared to a purely manual modeling
process. The process of capturing introduces conceptual units
and recurring building blocks, which support reuse between
test cases and even between test cases across different
projects.

Afterwards, the result is handed over to a modeling tool
where the result of the recording process (view 1 and view 2)
is combined and enriched with further details from the re-
quirements document or the knowledge of the SUT. The
automated extraction of model components alongside with
the composition of components reduces the upfront invest-
ments and thus removes a substantial entry barrier into mod-
el-based testing also from an economical perspective.

Thereafter the criteria for the test case generation are
specified and the model is handed over to the IDATG test
case generator for generating the test sequences (which cor-
respond to paths in the model) and corresponding test data.
Finally, the Ranorex replay component is employed to ex-
ecute the generated test cases on the GUI of the SUT.

Figure 1: Example workflow with an integrated tool chain.

C. Scenario 3: Managing Requirements-based Testing

Testing that the specified requirements have been cor-
rectly and completely transferred into executable software is
an essential part in the software development lifecycle. In
this scenario testing embraces a range of verification and
validation activities as well as interfaces linking the results to
development and management. In particular, this scenario
demonstrates the need to integrate tools across the test and
development process to establish a tool chain where the
results of one phase build the basis for the next phase. How-
ever, the integration is not only characterized by passing on
results but includes several update and feedback cycles.

SiTEMPPO supports a requirements-based approach for
testing by organizing the test case portfolio according to the
structure of the requirements, by tracing test cases to re-
quirements and by reporting test results from the perspective
of covered requirements. Figure 2 gives an overview of the
involved activities and interactions.

Figure 2: Activities and interactions in requirements-based testing.

(1) Requirement trees are imported into the test manage-
ment tool as read-only structure. For every imported re-
quirement one or more test cases are derived. The tree struc-
ture is used to organize the set of new test cases. Coverage
reports show which test cases are linked to requirements and,
vice versa, which requirements are covered by test cases.

(2) In a first run, the test cases are executed manually.
The test execution results are evaluated and (3) defect reports
are issued to a separate defect database when bugs are en-
countered. (4) Furthermore, the evaluated test execution
results are mapped to requirements, indicating that the im-
plementation of a requirement has either been successfully
verified or still contains bugs. This first manual run has a
strong explorative character and not only focuses on testing
the software system but also serves as check whether the
requirements have been correctly translated into test cases.

(5) For stable requirements that are subject to ongoing
regression testing, test engineers – often located at distri-
buted development sites – automate the manual test cases
with tools such as Ranorex Studio or IDATG. The resulting
test scripts are linked to the test cases in the test management
tool. As described in Scenario 1, SiTEMPPO provides me-
chanisms for running the test scripts from within the test
management environment and (6) for collecting the execu-
tion results to evaluate which test cases passed or failed. The
results are again mapped to requirements for reporting.

In many projects changing requirements are a constant
factor that adds further complexity and dynamics to require-
ments-based testing. (7) Changes in the requirements have to
be propagated to the derived test cases and, furthermore, to
the associated test scripts. Keeping requirements, test cases
and test scripts synchronized requires coordination and col-
laboration between the different roles such as requirements
analyst, test manager and test engineer. However, without
appropriate mechanisms incorporated in test and develop-
ment tools, coordination and collaboration becomes an ever
increasing challenge for distributed teams.

While most of today's tools lack support for coordination
and collaboration, SiTEMPPO already includes basic me-
chanisms like versioning of test cases and linking execution
results to the corresponding version of a test set. Neverthe-
less, as users demand short feedback cycles and constantly
up-to-date information on the status and progress of testing
across all involved roles and activities, future solutions need
to close the currently existing gap between the different tools
at the process level.

RE&M
Test

Mgnt.

Manual
Exec.

Auto-
mat.

Exec.
Defect

DB
Test

Report

Exec.
Log

(1) (7)
(2)

(3)
(4)

(5)

(6)

73

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 82 / 139

IV. INTEGRATION CONCEPTS

The area of Enterprise Application Integration (EAI) has
a long history in developing integration concepts for interac-
tion between existing functionality. Approaches for integra-
tion can be categorized by the architectural level where the
integration is established [11] or by the communication para-
digm underlying the integration [12]. We adopted the catego-
ries proposed in literature and summarized the existing inte-
gration concepts in Table 1.

In Table 1, the column Layer indicates the architectural
layer at which the integration is taking place. Technology
names the commonly applied technologies used for integra-
tion. Communication shows whether the possible communi-
cation options are synchronous, asynchronous or both. The
column Coupling indicates the strength of the connection
between the integrated applications. Interaction dynamics
states whether the integration is static or dynamic, i.e., has to
be set up before the start of the application or can be estab-
lished and changed at runtime. Data Transformation is an
important aspect for data exchange between applications and
is therefore supported by some of the listed integration con-
cepts. Usage context indicates from the user perspective
whether integration is possible with one or more other appli-
cations.

In the following, the integration concepts as presented in
Table 1 are briefly described.
 File and Database: Integration at the lowest architectur-

al level, the data level, allows the exchange of data be-
tween otherwise heterogeneous applications. Data level
integration can be implemented in various ways, e.g., by
file exchange, by sharing a database, or by copying data
from one database to another [15]. This approach may
include data transformation if data structures are not
compatible. File data might be structured as XML data
which provide a stable basis for data exchange and
transformation, e.g., using XSLT. While the communi-
cation at data level is often easy to implement and has
minimal impact on the existing applications, the main
drawback of this level is that the applications' existing
functionality is not integrated and therefore not reused.
Redundant implementations of the same functionality
may lead to an increased development and maintenance
effort and, furthermore, increases the risk of incompati-
bility between applications.

 Shared Library and Application Programming Inter-
face (API): Good software design encourages the reuse
of existing implementations, e.g., provided as compo-
nents in a shared library or in form of plugins. Interfaces
encapsulate the functionality and implementation. Via
interfaces the functionality of other applications can be
accessed. Integration at application interface level (see
[11]) can be implemented at different abstraction levels
like integration of data access functionality or integra-
tion of functionality that contains business logic. Inte-
gration at this level leads to strong coupling between
applications. Transformation is not supported by default
and it supports integration with a single other applica-
tion. However, if an application already provides an
API, implementing integration at this level is easily
achievable even without additional infrastructure.

 Business components, Remote Procedure Calls
(RPC): At higher abstraction levels an application may
consist of business components that provide rather
coarse-grained business functionality [13]. This functio-
nality can be integrated in other applications in various
ways, either by packing them to the application where
they should be integrated or by remote procedure calls.
Using business components remotely requires that the
remote application is running. Business components
provide the highest functional abstraction level of an ap-
plication and, therefore, reuse at the highest functional
level. Coupling at this level is strong and transformation
support not natively built in. Yet the functional reuse
level is high.

 Service: Software services provide means for loose
coupling of applications as they encapsulate functionali-
ty and the site where this functionality is running [14].
The concept of Web services provides standardized pro-
tocols for communication to integrate applications
across platform borders. Overall, integration at service
level means integration at a coarse-grained business
function level for reusing application functionality at
business level. The advantage of this level is the loose
coupling and mostly standardized communication proto-
cols, but without additional infrastructure, communica-
tion is still synchronous without transformation support
and it is used for integration with a single application.

 Messaging: In some cases asynchronous communica-
tion is required due to performance reasons or the need

TABLE I. OVERVIEW OF INTEGRATION CONCPETS

Layer Technology Communication Coupling
Interaction

dynamics
Transformation Usage context

Business process Workflow Engine both transparent business rules low multi role

Service Bus both transparent business rules yes multi application

Messaging asynchron transparent registration low multi application

Service synchron loose registration/broker low single application

Business components/RPC both strong static low single application

Shared library/API synchron strong static/plug‐in low single application

Database both strong static low single/multi app.

File both strong static possible (XSLT) single application
Data

Application

74

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 83 / 139

for weak coupling. These requirements can be addressed
by a message queue which decouples communication
partners in a timely manner and provides guaranteed
message delivery. Message queues are also used for
sending messages to multiple applications (broadcast),
with or without feedback about delivery; see integration
styles in [6]. Advantages of this integration level are
asynchronous communication, low coupling and inte-
gration possible with multiple applications.

 Service Bus: A common integration concept is the ser-
vice bus which provides functional support for the inte-
gration and communication between applications. The
idea is to connect all applications with a bus where ap-
plications put messages on the bus and others listen and
take the messages relevant to them. A service bus also
supports plugging in additional components like trans-
formation or filter components that allow modifying or
removing messages. Furthermore, some service bus im-
plementations support defining message flows between
applications and components including splits and joins
[6]. This integration level supports all features presented
in Table 1 except the possibility of integration along a
workflow involving responsibilities and roles.

 Workflow Engine: From a user perspective, the usage
of applications follows organizational workflows which
define task order and responsibilities. In order to ac-
complish the work, a workflow might contain multiple
tasks that utilize different applications. From a technical
perspective, a sequence flow between tasks utilizing dif-
ferent applications indicates integration of those applica-
tions (see also [16]). Workflow engines are able to im-
plement communication at workflow level and coordi-
nating the use of applications integrated at a technical
level. This is the highest and most abstract integration
level with support for transparent coupling, dynamic in-
teraction based on business rules and integration of the
work processed by multiple roles.

V. SOLUTIONS AND DISCUSSION

This section describes and discusses how the integration
requirements elaborated from the usage scenarios in Section
III can be supported by the technologies presented in Section
IV. The integration concepts have been explored either via a
(prototypical) implementation or a design study elaborated
together with developers and architects of the test tools.

A. Scenario 1: Test Automation and Execution

In coupling the SiTEMPPO test management solution
with the Ranorex test automation tool, we follow the para-
digm of a strong coupling with the need for both, asynchron-
ous and synchronous communication. Due to the specialized
interface, the interaction dynamics remains static without the
need for transformations. Thus, the integration is established
via files, i.e., at the level of the data layer (Table I). In detail,
the prototypical integration of the SiTEMPPO and Ranorex
tools has been implemented as follows:

Ranorex Studio allows creating executable test suites.
When the execution of a set of automated tests is triggered in
SiTEMPPO, Ranorex Test Runner is called for each test

case, passing the name of the corresponding test script as
command line parameter. The execution generates a log file
in a predefined directory, which is processed by an import
adapter implemented as part of SiTEMPPO. The adapter
extracts the information relevant for deciding on the test
result (passed, failed or blocked).

In order to access the Ranorex tool from within Si-
TEMPPO, several global settings have to be made in the
configuration of the test management environment, e.g., the
path to the executable test scripts, the execution log, and the
necessary runtime libraries. Hence, the interface implementa-
tion part of SiTEMPPO requires exception handling strate-
gies to deal with erroneous configurations and timeouts.
Additional setup, rollback and restart mechanisms need to be
included in the automated test scripts. Furthermore, prede-
fined execution orders due to implicit dependencies between
test scripts cannot be handled by SiTEMPPO.

The benefit of the low-level, static coupling between the
two tools is the straightforward implementation of the inter-
face and the ability to consider tool-specific extensions. This
benefit turns into a drawback as soon as interfaces for several
different test automation tools should be provided. Develop-
ing and maintaining a large set of interfaces is cumbersome
as the external interfaces may change without notice when-
ever a new version of an integrated tool is released.

Our experience with implementations for this scenario
showed that the initial use case also stretches into the organi-
zation dimension. While in an ideal setting the test manage-
ment supervises the top-down development of automated test
scripts from previously defined and specified test cases, in
practice, many valuable test scripts also emerge bottom-up
and need to be incorporated into the managed test structure.
Gathering existing test cases and keeping them synchronized
results in a considerable effort for test managers, especially
in a distributed project setting. Hence, the need for tool sup-
port for discovering and "importing" existing test cases soon
appeared as additional requirement. As a consequence we
propose an approach emphasizing the inversion of control –
developers of automated test scripts should register the new
or changed test cases with test management. The responsibil-
ity to maintain and update the test cases remains with the test
script developers. Integration concepts that support this ap-
proach are presented and discussed as part of Scenario 3,
Section C.

B. Scenario 2: Model Evolution in Model-based Testing

A key requirement for our Scenario 2 is the interaction
dynamics. Any solution has to guarantee acceptable response
times and ease of use in switching from one tool to the other.
Thus, we favor synchronous communication mechanisms
and no or rather low need for transformations. There are no
multiple roles involved and the interaction happens always
between two tools. Thus we propose shared libraries, busi-
ness components, and plug-ins to implement Scenario 2.

Plug-ins are a common mechanism for adding third-party
tools to a tool suite. A plug-in explicitly provides informa-
tion about its dependencies on other plug-ins. Furthermore, a
plug-in can change menus and menu entries as well as popup
menus and toolbars. Additionally, it is possible for plug-ins

75

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 84 / 139

to notice the execution of menu actions of other plug-ins [8].
For these reasons, a plug-in mechanism is very well suited to
implement the desired coupling on the application level.

According to [9], a software component is a unit of com-
position with contractually specified interfaces and explicit
context dependencies only. A software component can be
deployed independently and is subject to composition by
third parties. Besides the specification of provided interfaces,
the definition of a component also requires components to
specify their needs. In other words, a component requires a
specification of what the deployment environment will need
to provide such that the component will operate. In principle,
this is a generalization of plug-ins and might thus be appro-
priate for implementing the coupling as well.

Software engineers in general create many scenarios (and
corresponding model artifacts) and often recall prior work as
they develop models for novel use cases. The process of re-
finding patterns is a popular approach in this respect and will
be supported by the concept of a shared library. However,
the adequate abstraction level of the models (or building
blocks) stored in the library is a challenging research issue.
Basically, we pursue two main directions in supporting re-
usability: tagging and structural similarity [5].

C. Scenario 3: Managing Requirements-based Testing

The third scenario is characterized by the need for inte-
gration at the process level to support coordination and col-
laboration across different roles, phases and distributed de-
velopment sites. Conventional approaches rely on a central
coordination instance, usually represented by test manage-
ment. In that constellation the test management tool is used
as central hub, gathering and consolidating information from
the various other test tools. Technically, the interfaces be-
tween the involved tools remain on the lowest level; mainly
data exchange via import/export facilities is supported.

The specialization of the different tools is generally
quoted as reason why sharing functionality between tools is
insufficiently attractive. However, the numerous redundant
features provided by the different tools reveal that the oppo-
site is true. For example, almost all tools implement their
own reporting. The slight but obvious variances in the report-
ing of the different tools are a common nuisance for users,
especially when they try to analyze the status of testing over
all activities from data spread across different tools. As a
result, existing reporting facilities are once more imple-
mented as part of test management tools in an attempt to
create a homogeneous, aggregated view on the test process.

With the test management tool as central hub and all oth-
er tools arranged as satellites, the management tool becomes
the bottleneck in the test tool infrastructure. It has to provide
interfaces to all tools included in testing and, thus, the pro-
vided interfaces are the main limitation in the choice of ap-
plicable tools. Projects suffer from this inflexibility when the
optimal test tool cannot be applied due to test management
not offering the corresponding interface or – in case generic
adapters exist – when test management lacks the resources to
setup and maintain the necessary interface configurations.
Moreover, the strong coupling of the data level integration
turns intro rigid dependencies. Even minor changes in the

data format may render the interface incompatible. Hence, in
practice, many projects are tied to outdated versions of tools
because of update incompatibilities. Tool providers, howev-
er, often do not even know about the potential conflicts since
they are not aware of the dependencies to the interface im-
plemented as part of the test management tool.

As indicated in Scenario 1, Section A, we propose to em-
phasize the Inversion of Control principle for tool integration
at the process level. Test management has to be released
from the burden of gathering and extracting data from the
various other test tools. In contrast, the satellite tools have to
take over the responsibility of providing the necessary data
and maintaining compatibility. Now, however, instead of test
tools interfacing directly with various different test manage-
ment tools resulting in a complex point to point integration,
the tool communication should be extracted into a separate
integration facility serving as backbone of the tool infrastruc-
ture. Service-oriented concepts have been proposed and were
successfully evaluated for software engineering environ-
ments [17]. Drawing from positive experience with integrat-
ing software engineering tools, we adopted the service bus
approach (Figure 2) specifically for test tools.

Figure 3: Engineering Service Bus (EngSB) for integrating software

engineering tools [17].

The illustrated approach enables communication between
the different tools beyond the level of data exchange. Status
messages can be exchanged to notify other tools about com-
pleted activities and pending updates. For example, test ex-
ecution tools can send a message indicating the successful
completion of a test run. The message can include relevant
result information and a link to the execution log. Thus,
instead of storing static configuration details such as the
location of execution logs in the test management tool's
settings, all concerned tools register for the corresponding
message and receive the information at runtime. Further-
more, the link may not point to a static location from where
the log is retrieved as file, but to a service interface that al-
lows querying and analyzing relevant aspects of the execu-
tion. Providing the query logic as a service of the execution
tool avoids redundant implementation of analysis functions.

A prerequisite for the service-based integration of tools is
the agreement about offered services, data structures and
exchange formats. In software and systems engineering and
in particular in testing, several relevant standards are in
place, for example the UML Testing Profile [21, 22], the
IEEE Std. 829-2008 for Software and System Test Docu-
mentation, or the Requirements Interchange Format [18].

76

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 85 / 139

Furthermore, automated transformation of messages, models
and data formats implemented in form of services are also
connected to the service bus.

Communication and teamwork requirements can be ad-
dressed by adding shared services for reporting, monitoring,
status notification and even workflow-based collaboration.
An example for a tool providing shared services is a test
cockpit [19] providing insight on the status and progress of
testing across all involved roles and activities.

VI. CONCLUSION AND FUTURE WORK

In this article, we exemplified today's requirements in in-
tegrating test automation tools in terms of three integration
scenarios combining industrial strength tools in the area of
test management, model-based testing and test execution:
The test and requirements management tool SiTEMPPO, the
Siemens IDATG tool for model-based testing, and the Rano-
rex automation tool suite. The integration scenarios represent
typical situations frequently encountered in real-world
projects by the authors: (1) Combining test automation and
test execution, (2) model development and evolution in mod-
el-based testing, and (3) the management of requirements-
based testing and regression testing. For each of these scena-
rios, solution concepts have been developed and explored
together with developers and architects of the presented
tools, based on existing integration technologies (file-level
data exchange, plug-in concept, messaging and service bus).
It could be shown that the elicited integration requirements
of each scenario can be addressed by applying existing con-
cepts, which are attributed the potential for building a
framework able to combine a set of heterogeneous tools by
different vendors. Although the higher-level integration
concepts show a larger potential w.r.t. integrating heteroge-
neous tools, we also found that no single integration concept
is able to cover all requirements from the explored scenarios.

Our next step will be to consolidate the existing imple-
mentations and concepts towards a service-oriented integra-
tion platform easily extendable by future test and develop-
ment tools.

ACKNOWLEDGMENT

The research herein is partially conducted within the
competence network Softnet Austria II (www.soft-net.at,
COMET K-Projekt) and funded by the Austrian Federal
Ministry of Economy, Family and Youth (bmwfj), the prov-
ince of Styria, the Steirische Wirtschaftsförderungsgesell-
schaft mbH. (SFG), and the city of Vienna in terms of the
center for innovation and technology (ZIT).

REFERENCES
[1] The Hyades Project Automated Software Quality for Eclipse:

http://www.eclipse.org/tptp/home/archives/hyades/project_info/Hyad
esFormation.12.pdf, last visited on 27th June 2011.

[2] A. Beer and S. Mohacsi, “Efficient Test Data Generation for
Variables with Complex Dependencies”, Int. Conf. on Software
Testing, Verification, and Validation, 2008, pp. 3-11.

[3] S. Mohacsi and J. Wallner, “A Hybrid Approach for Model-Based

Random Testing”, in Advances in System Testing and Validation
Lifecycle (VALID), 2010, pp.10-15, 22-27 Aug. 2010

[4] B. Hofer, B. Peischl, and F. Wotawa, “GUI Savvy End-to-End
Testing with Smart Monkeys”, Fourth International Workshop on the
Automation of Software Test, Vancouver, Canada, May 16-24, 2009.

[5] W.N. Robinson and H.G Woo,“Finding reusable UML sequence
diagrams automatically”, IEEE Software, vol. 21, no. 5, pp. 60- 67,
Sept.-Oct. 2004.

[6] G. Hohpe and B. Woolf, “Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions”, Addison-Wesley
Professional, 2003.

[7] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches”, Software Testing, Verification and
Reliability, 2011. Published online, paper version in press.

[8] S. Burmester et al., “Tool integration at the meta-model level: the
Fujaba approach”, Int. J. Softw. Tools Technol. Transf. 6, 3 (August
2004), pp. 203-218.

[9] C. Szyperski, “Component Software: Beyond Object-Oriented
Programming”, 2nd ed. Addison-Wesley Professional, Boston ISBN
0-201-74572-0.

[10] Eclipse TPTP, Eclipse Test & Performance Tools Platform
Project,http://www.eclipse.org/tptp/, last visited 27th July 2011.

[11] D.S. Linthicum, “Enterprise Application Integration”, Addison-
Wesley Professional, 1999, ISBN.: 978-0-201-61583-8.

[12] Gregor Hohpe, Bobby Woolf: Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Professional, 2003.

[13] P. Herzum and O. Sims, “Business Components Factory: A
Comprehensive Overview of Component-Based Development for the
Enterprise”, John Wiley & Sons, New York, NY, USA 2000,
ISBN:0471327603.

[14] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and
Design”, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[15] M. Vujasinovic and Z. Marjanovic, “Data Level Enterprise
Applications Integration”, in Business Process Management
Workshops, pp. 390-395, Volume 3812, Lecture Notes in Computer
Science 2006, Springer.

[16] J.A. Espinosa and A. Sanz Pulido, “IB (Integrated Business): A
Workflow-Based Integration Approach”, Hawaii International
Conference on System Sciences (HICCS), 2002.

[17] S. Biffl and A. Schatten, “A Platform for Service-Oriented Integration
of Software Engineering Environments”, 8th International
Conference on Software Methodologies, Tools and Techniques
(SOMET 09), 2009.

[18] M. Jastram and A. Graf, “Requirements, Traceability and DSLs in
Eclipse with the Requirements Interchange Format (RIF/ReqIF)”,
Dagstuhl-Workshop MBEES 2011: Modellbasierte Entwicklung
eingebetteter Systeme, 2011.

[19] S. Larndorfer, R. Ramler, and C. Buchwiser, “Experiences and results
from establishing a software cockpit at BMD Systemhaus”, 35th
Euromicro Conf. on Software Engineering and Advanced
Applications (SEAA 2009), pp. 188-194, IEEE, 2009.

[20] R. Ramler, G. Czech, and D. Schlosser, “Unit Testing beyond a Bar
in Green and Red”. 4th int. Conf. on Extreme Programming and Agile
Processes in Software Engineering, XP 2003.

[21] OMG, “UML testing profile Version 1.0”, OMG, 2005. formal/05-
07-07; http://utp.omg.org/.

[22] P. Baker, Z. Ru Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and
C. Williams, “Model-Driven Testing: Using the UML Testing
Profile”, Springer, 2007.

[23] SiTEMPPO: www.siemens.at/sitemppo, visited 27th July 2011.

[24] Ranorex Automation Studio: www.ranorex.at, visited 27th July 2011.

.

77

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 86 / 139

RobusTest: Towards a Framework for Automated
Testing of Robustness in Software

Ali Shahrokni, Robert Feldt
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

ali.shahrokni, robert.feldt@chalmers.se

Abstract—Growing complexity of software systems and in-
creasing demand for higher quality systems has resulted in
more focus on software robustness in academia and research.
By increasing the robustness of a software many failures which
decrease the quality of the system can be avoided or masked.
When it comes to specification, testing and assessing software
robustness in an efficient manner the methods and techniques
are not mature yet.

This paper presents the idea of a framework RobusTest for
testing robustness properties of a system with focus on timing
issues. The test cases provided by the framework are formulated
as properties with strong links to robustness requirements.
These requirements are categorized into patterns as specified
in the ROAST framework for specifying and eliciting robustness
requirements. The properties are then used for automatically
generating robustness test cases and assessing the results.

Index Terms—Robustness, real time systems, testing, timing

I. INTRODUCTION

Robustness is an essential software quality attribute that is
defined as [1]:

The degree to which a system or component can
function correctly in the presence of invalid inputs
or stressful environmental conditions.

Timing properties of software have a major role in deter-
mining the degree of robustness of the system. In our previous
work [2] we focused on elicitation and specification of robust-
ness requirements. In that study we have categorized require-
ments for developing a robust system in form of patterns. The
motivation for using patterns is to capture the commonalities
in structure and purpose of the requirements. The patterns
can in general be divided into requirement patterns with the
main focus to detect and solve robustness issues intrinsically
and patterns that provide extrinsic architectural and design
means to prevent robustness issues to surface. The patterns that
provide intrinsic robustness are mainly to assure input stability
or execution stability of the software. Input and events can be
erroneous in two main manners, which can cause instability in
systems, incorrect value or incorrect timing. The majority of
academic research on robustness has so far been focused on
stability of the system given erroneous input [3], [4], [5], [6],
[7]. This paper discusses the stability in the presence of input
and events with invalid timing. In ROAST, there are seven
different patterns that focus on this problem area.

Robustness testing tools for generating random test data
such as Ballista [3] and JCrasher [4] are the most well known
methods of testing robustness of software systems. Using these
frameworks help the user to assess how the system behaves
in presence of input with invalid value. These frameworks
are automated and the user has very little power to specify
what data to test and what the expected result is. Instead,
they use simple oracle frameworks such as CRASH [8], which
is introduced later in this paper to determine whether the
randomly generated input data results in failure in the system.
Moreover, there is no or very little focus on the timing aspects
of the input data in these framework.

Another framework which works on specifying and testing
timing properties of a system is called Timed Input Output
Automata (TIOA). With TIOA the user can model the inter-
faces of the system and specify the expected time intervals
for the communications and between the different states of
the system [9]. This model can then be used to automatically
generate random test cases. To use TIOA the user often
needs to create a sequential and large model of the system.
Furthermore, when it comes to testing, TIOA mostly focuses
on testing for timeout and has no or very little focus on other
causes or patterns that can create robustness issues [9].

This paper presents the structure of RobusTest, which is
a framework included in the ROAST framework for testing
robustness requirements with timing focus. By writing testable
properties, RobusTest automatically generates robustness test
cases. If specified in sufficient detail these properties can be
used as an oracle for the test cases. If there is no specification
of the expected behavior, RobusTest oracle will assure that the
test case will not put the system in a state with catastrophic
consequences using the CRASH benchmarking framework.
RobusTest not only provides to a large extent automatic testing
but also a strong traceability between the generated test cases
and the requirements through properties.

Section II discusses some of the concepts used to build the
RobusTest framework. In Section III, we present the RobusTest
patterns dealing with timing issues, test case generation,
executor and oracle included in RobusTest. Finally, Section V
discusses the current and future work planned for RobusTest.

78

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 87 / 139

II. BACKGROUND

In the first part of this section, the robustness benchmarking
CRASH is introduced. The second part discusses the concept
of property based testing and some of the techniques and tools
available for this topic. Both these concepts are used in the
framework RobusTest.

A. CRASH

The CRASH framework for benchmarking the robustness
of operating systems (OS) was introduced by Koopman and
is described in [8]. This framework acted as a simple oracle
where the availability of functionality and the functions in
the system rather than the correct functionality after the
occurrence of a robustness issue can be measured. CRASH
is used as the default oracle built in to the RobusTest frame-
work. The CRASH framework is explained below, which
will be implemented in our solution as an underlying layer
to the framework. However, using RobusTest framework the
expected functionality can be specified and benchmark on top
of the extent of functionality.

C Catastrophic (OS crashed multiple tasks affected)
R Restart (task/process hangs, requiring restart)
A Abort (task/process aborts, e.g., segmentation
S Silent (no error code returned when one should be)
H Hindering (incorrect error code returned)
Catastrophic class occurs when a fault in a part of the

system under test (SUT) results in failure in other parts or
even crash or hanging of the whole SUT. It usually requires
hardware or software restart of the SUT. The Restart class
occurs when one task hangs and can be resolved by killing
or restarting that task. The Abort class occurs when a single
task is abnormally terminated. The Silent class occurs when
invalid parameters are submitted, but neither an error return
code nor other task failure is generated. The Hindering type
of failures is caused when the diagnosis is incorrect and could
cause incorrect recovery.

B. Property based testing

A property is a statement which specifies how a system
should or should not behave in a specific situation [10] in
contrast to a test case that is set of executions done in a
certain order. Using property based testing (PBT), high level
properties of the system that should hold are stated and
they are used to generate test cases in order to verify and
validate a certain aspect or property of the system. In PBT
a property is specified in a low level specification language.
A PBT specification language should provide temporal and
logical operators and location specifiers to the tester [10]. This
specification written is then used to automatically generate test
cases for that property. The expected behavior of the system
is also specified in the property specification that can be used
by the oracle to automatically analyze the results from the test
execution.

Property-based testing intends to establish formal validation
results through testing. “To validate that a program satisfies
a property, the property must hold whenever the program is

executed. Property-based testing assumes that the specified
property captures everything of interest in the program, be-
cause the testing only validates that property” [10]. Notice that
property based testing is in the same way as robustness testing
a complementary to other types of verification and validation
activities.

Fink et al. have used property based testing to identify
security flaws and vulnerabilities in critical Unix programs
such as sendmail [11], [12]. In the recent years, this type
of testing has received increasing attention from the industry
and research community. One example is the ProTest project1

financed by the European Commission to improve methods
and tools for property based testing. A well known tool for
property testing is QuickCheck, which was initially developed
for functional programming languages such as Haskell and
Erlang but has now been developed for Java and other lan-
guages [13]. An example property written in QuickCheck for
testing the functionality to reverse a list of integers can look
like this [14]:

prop reverse()− >
?FORALL(L, list(int()),

reverse(reverse(L)) == L).

Another relevant study for this paper that uses property
based testing for verification of the timing properties of an
instant messaging server is presented in [14]. Using the Erlang
language Hughes et al. generate test cases with a timing
focus on an instant messaging server and compare the results
of a property based approach with state-machine approach.
However, this study has no focus on robustness testing and
argues how property based testing can perform well for testing
the timing aspects of a system. The timing parts here are
mostly focused on timeout and not other timing aspects.

III. DESIGN OF ROBUSTEST

This section will discuss the design of the framework Ro-
busTest for testing robustness with focus on timing properties.
As discussed earlier there are seven patterns in ROAST with
timing focus that are also used in RobusTest since RobusTest
is a part of the ROAST framework. These are presented in
this section and the first two are discussed in more detail. The
other patterns are presented and discussed in less detail.

Figure 1 shows the overall structure of the RobusTest
framework. The patterns discussed in this paper and [2] will
give a structure to the requirements on the SUT that will be
used by the testers to specify properties. These properties are
then used by the test generator (TG) to generate test cases
automatically. The number of test cases generated can be set
manually by the tester. These test cases are then used by the
test executor (TE) on the SUT. The results from execution
of the tests are sent to the test oracle (TO) for assessment.
Assessment is done based on the expected behavior in the
properties, the results from running the test cases and the
CRASH benchmarking framework.

1http://www.protest-project.eu/

79

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 88 / 139

In order to analyze the robustness of the SUT expected
behavior and response should be specified. However, in some
cases it might be enough to check whether running the test case
has any critical effect on the SUT in form of crash or restart.
The functionality to detect these kinds of failure is therefore
built into the framework. Using the framework without spec-
ifying the expected behavior can in this way detect the most
critical failures. This part of the framework is implemented
using the CRASH benchmarking framework. CRASH is built
in to the TO as the default oracle. However, CRASH can be
supplanted by the expected behavior if provided in the property
and it can even be disabled to generate some types of faults
if that type of fault such as a system restart is an expected
behavior of SUT.

In addition to the automated part of the oracle, it is possible
to specify a concrete expected result for the test cases. The
mechanism for generating test case and analyzing the result
for the two first patterns is given below.

Another important aspect of RobusTest is the alignment of
requirements and test cases. This is one of the main focuses of
ROAST. Traceability between the requirements specified for
the SUT based on the RobusTest patterns and the test cases
generated by RobusTest is ensured through properties.

RobusTest patterns Requirements

Test properties

Test case

generator

(TG)

Test cases

Test

executor

(TE)

Verdict

Test Oracle

(TO)

CRASH

Fig. 1. RobusTest framework structure: The circles are parts of RobusTest
and the rectangles are resources provided to or generated by RobusTest. The
round rectangles are resources generated by RobusTest, the dotted rectangles
are already available and the rectangle with a solid border should be specified
by the tester.

A. Specified response to timeout and latency

This pattern specifies the expected behavior of the SUT
in case an input or event is not received by an expected
timeout deadline. To specify a property for this pattern the
following factors can be specified: IUT , t0, tT , SI , E, SE

The description of all the parameters in this section is given
in Table I.

Given these parameters the timeout property can be speci-
fied. This specification can then be used to generate test cases
that are run both before and after the timeout deadline to
compare the behavior of the SUT in case of timeout with
the case when the input is received on time.
SI is used to specify what the test case needs to perform

in order to have the SUT in the appropriate state for starting
the test case. SE is the expected SUT state after the test cases
are run.

To generate test cases for this pattern not only the input
arriving after the timeout deadline needs to be tested but in
some cases test cases with input arriving before the deadline
and very close to the deadline need to be generated to have a
better understanding of the SUT’s timing behavior. Test cases
need to set the state of the SUT to SI and simulate the input
or event E. The SUT is then expected to be in state SE after
these actions.

To generate and analyze test cases for timeout the following
algorithms are used. If the expected result SE is not specified
those steps with SE will be neglected. The following is
the description of three algorithms for three possible cases
occurring when testing this pattern2

Input with timing before the timeout deadline:
1. Set the SUT to state SI . (TG)
2. Generate a random delay tT − δ < t < tT starting on

t0. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT (TE)

4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid output according to SE → Pass (TO)

Input or event not received on deadline:
1. Set the SUT to state SI . (TG)
2. Generate a random delay t > tT starting on t0. (TG)
3. On time tT : (TE)

3.1. CRASH → Fail (TO)
3.2. If the behavior of the SUT is according to SE →

Pass (TO)
Input is sent after the deadline tT :
1. Set the SUT to state SI . (TG)
2. Generate a random delay t > tT starting on t0. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT . (TE)

4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid output according to SE → Pass (TO)

The first algorithm analyzes the behavior of the SUT in
cases where the input or event happens very close to the dead-
line. The purpose for this step is to ensure the correct behavior

2The letters in front of each step indicate what part of the framework is
responsible for executing that step.

80

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 89 / 139

TABLE I
DESCRIPTION OF PARAMETERS THAT NEED TO BE SPECIFIED FOR TEST CASE GENERATION AND ANALYSIS

Parameter Description
IUT The set of interface(s) under test.
t0 The reference time from when the timer should start counting. This is usually connected to an event in the form of an

input received or an event in the execution environment.
tT The amount of time after the reference time until timeout occurs.
SI The initial state of the SUT at the reference time.
E The expected input.
SE The expected behavior and response of the SUT. This might be as simple as the SUT not having any of the CRASH

states. It can even be a specified expected behavior such as receiving a specific error message in case of timeout.
f The maximum acceptable output or input frequency.
EF A follow up set of inputs that are dependent on E that will generate faults in the SUT if received before E.

of the SUT in general when the timeout is not expected to
happen. The second algorithm assesses the behavior in case
a deadline happens when the SUT is supposed to detect the
deadline and take appropriate measures to ensure the rest of
the functionality is not affected by the omitted input or event.
The last algorithm is for generating an input or event after
the deadline has been reached. Since the SUT does not have
control on how the external parts behave and can not normally
avoid them sending inputs or events, this part makes sure that
receiving messages after deadline does not affect the correct
functionality of the SUT.

A property for this pattern is specified in the following
way3:

∀tT − δ < t < tT + δ : setState(SI , {t0}), timeout
(Event(E, {IUT}), t)→ Expected({SEb}, {SEt}, {SEa})

where setState(SI , {t0}) specifies that the state
of the SUT should be set to SI at time t0.
timeout(Event(E, {IUT}), t) specifies that the timeout
happens at time t. Expected({SEb}, {SEt}, {SEa}) specifies
that the expected behavior upon receiving the event E before
timeout is SEb, after timeout SEt, and the expected behavior
in case timeout occurs is specified by SEt.

B. Specified response to input with unexpected timing

This pattern represents cases where an input or event is
received while it was not expected. The reason for too early
input can be either a missing event that causes irregularities
in the reception sequence or input that causes out of order
events or inputs or the SUT not being ready to handle the event
or input. To specify a property for this pattern the following
factors are to be specified: IUT , t0, SI , E, SE .

The difference between this pattern and the timeout pattern
is that in this case there can be a need for more thorough
understanding of the SUT as a whole. Modeling the SUT or
at least parts of it is in some cases inevitable where we want
automated generation of test cases for this pattern while in the
case of timeout it can be enough to specify a property on a
specific interface. The reason is that the initial state is more

3Parameters inside {} are optional in RobusTest.

complex and simulating missing inputs is a more troublesome
work than generating a timeout.

To generate test cases the SUT is configured to SI after
which the event or input E occurs. In the same manner as the
previous pattern this needs to be tested on both sides of the
deadline. SE specifies in what state the SUT needs to be after
this test in each case.

To generate and analyze test cases for inputs and events
occurring with unexpected timing and specially too early
inputs the following algorithms are built into RobusTest.
Similar to the previous pattern, if the expected result SE is
not specified steps including SE will be ignored by RobusTest
and the default oracle (CRASH) is used.

Input with timing after t0:
1. Set the SUT to state SI . (TG)
2. Generate a random delay t0 < t < t0 + δ. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT. (TE)

4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid output according to SE → Pass (TO)

Input or event has been received before the starting time
t0:

1. Set the SUT to state SI . (TG)
2. Generate a random delay t < t0. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT for a certain amount of time

for output: (TE)
4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid error message output according to SE →

Pass (TO)
4.4. No output received → Pass (TO)

5. When IUT is ready to receive messages if the state of
the SUT is incorrect → Fail

The first algorithm checks the behavior of the system for
inputs received a short while after the SUT is ready to process
inputs, while the second algorithm checks the behavior when

81

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 90 / 139

the SUT is not ready yet to receive any input. This way it is
possible to check the behavior of the SUT in cases which
should not happen and timings that are very close to the
acceptable limit.

A property for this pattern is specified in the following way:

∀t0 − δ < t < t0 + δ : setState(SI , t), earlyEvent
(Event(E, {IUT}), t)→ Expected({SEb}, {SEa})

where setState(SI , t) specifies that the state of the
SUT should be set to SI at a time before t. and the
event E should be generated and sent to IUT at time t.
earlyEvent(Event(E, {IUT}), t) specifies that the event or
input Event(E, {IUT}) is sent to the SUT at time t. The
expected behavior in that case is SEb or SEa depending on
whether t is before or after t0.

C. High input frequency

This pattern tests the behavior of the system when the
input frequency is high and higher than what the system or
module can handle given the resources and processing power.
These tests are specified generically and since the frequency
can be dependent on what platform and hardware the SUT
is running on, RobusTest will increase the frequency of the
input gradually until it comes to a state where the SUT can
not handle the work load. At that point the SUT is expected to
behave in accordance with the specification without crashing.
To specify a property for this pattern the following factors are
to be specified: IUT , SI , f , SE .

Test cases for this pattern start with setting the initial state
SI to the SUT and then generating inputs and events with
higher frequency than f to check the behavior of the SUT in
that case.

D. Lost events

This pattern discusses robustness issues that occur when an
event is expected but is missing. Although this pattern is not
directly a timing pattern it usually has a close correlation to
the timing issues as seen in the first two patterns discussed
above. The following parameters are to be specified in order
to generate test cases for this pattern: E, SI , EF , SE .

The test cases in this pattern aim to test the robustness of
the SUT when an important event is lost or ignored. In order
to simulate this situation the event E is not created or created
in an erroneous manner in the test cases.

E. High output frequency

This pattern discusses the robustness issues resulted from
high output frequency of a module and its consequences for
the whole system or other systems. In the same manner as
high input frequency to specify a property for this pattern the
following factors are to be specified: IUT , SI , f , SE .

The high input from one module or unit can lead to missing
events and messages or overloading other part of the SUT
that might lead to robustness issues. Since the framework
focuses mostly on black box testing it is not always possible
to generate tests for this pattern. Although if the structure of

the SUT allows this, it can be simulated by limiting the output
channels of the system or the input of the receiving unit.

F. Input before or during startup, after or during shut down

The focus of this pattern is to test the behavior of the system
towards inputs received during startup or shut down. The test
cases for this pattern can be generated in the same way as for
input with unexpected timing. The main focus here is though
to check whether inputs during startup and shut down can
change the state of the SUT in a way that causes irregularities
after the SUT has started properly.

G. Error recovery delays

This pattern focuses on the state where the SUT is re-
covering from an error or has degraded functionality. In the
same way as the previous pattern inputs received during error
recovery needs to be handled in a specific way. Although the
SUT is running during these phase but the functionality is
degraded and the transmitting parts and modules need to be
aware of that and the received input needs to be handled
properly according to the requirement specification for the
SUT.

IV. CONCLUSION

This paper has discussed a framework called RobusTest
for testing robustness properties of software systems. In the
current version the framework mostly focuses on timing issues
that lead to robustness vulnerabilities. Testing is done using
properties that are written to specify an expected behavior from
the system. These properties are then used to generate test
cases automatically. The properties are even used to analyze
the results from executing the test cases on the system and is
in this way used as an oracle for the behavior of the system.

In this paper, seven properties from ROAST, which is a
framework for specifying and testing robustness properties in
software, are introduced. RobusTest is a part of ROAST with
focus on the testing part. In the current study, the patterns
with focus on timing issues were presented and the properties
extracted from each pattern were discussed in more detail.
After writing properties based on the patterns there is a clear
link through those properties from the requirements elicited
and specified by ROAST and the test cases generated by
RobusTest.

V. CURRENT AND FUTURE WORK

Given the structure presented in this paper, the framework
is being built for Java as an extension of JUnit. However, this
framework can be implemented in any programming language
and the Java framework is a case study for proof of concept.
The idea is to extract commonalities for requirements in the
same patterns and wrap them in RobusTest for testing those
requirements. In this manner, there will be a common interface
with built in functionality such as generation of test cases and
automated CRASH oracle that can be used to test a specific
type of requirement. This JUnit extension is then to be tested
initially for protocol testing in a communication protocol with
timing restrictions.

82

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 91 / 139

This paper aimed to present the idea and structure of the
framework. However, a small evaluation of the concept was
performed by testing parts of the framework on two simple
programs. The generated test cases were able to identify the
faults that were injected in the programs. However, since
this evaluation was very small compared to the size of the
framework, it is not possible to draw any conclusion regarding
the validity of RobusTest. A more thorough evaluation on two
large open source systems is currently in progress and will be
published in our future publications.

Another important next step is to look at other patterns in
ROAST that are not currently included in RobusTest. Testing
for input with invalid value and testing unexpected conditions
in the execution environment are to be added to RobusTest in
order to have a complete structure and a clear link from the
requirements in those patterns and the test cases.

REFERENCES

[1] IEEE Standard Glossary of Software Engineering Terminology, IEEE
Std 610.12-1990, 1990.

[2] A. Shahrokni and R. Feldt, “Towards a Framework for Specifying
Software Robustness Requirements Based on Patterns,” Requirements
Engineering: Foundation for Software Quality, pp. 79–84, 2010.

[3] J. DeVale, P. Koopman, and D. Guttendorf, “The Ballista software
robustness testing service,” in Testing Computer Software Conference,
1999.

[4] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic robustness
tester for Java,” Software-Practice & Experience, vol. 34, no. 11, pp.
1025–1050, 2004.

[5] A. K. Ghosh, M. Schmid, and V. Shah, “Testing the robustness of Win-
dows NT software,” in Proceedings of the 9th International Symposium
on Software Reliability Engineering, 4-7 Nov. 1998, ser. Proceedings of
the 9th International Symposium on Software Reliability Engineering
(Cat. No.98TB100257). Los Alamitos, CA, USA: IEEE Computer
Society, 1998, pp. 231–235.

[6] M. Dix and H. D. Hofmann, “Automated software robustness testing -
static and adaptive test case design methods,” in Proceedings of the
28th Euromicro Conference, 4-6 Sept. 2002, ser. Proceedings of the
28th Euromicro Conference. Los Alamitos, CA, USA: IEEE Computer
Society, 2002, pp. 62–66.

[7] J. Fernandez, L. Mounier, and C. Pachon, “A model-based approach for
robustness testing,” Testing of Communicating Systems, pp. 333–348,
2005.

[8] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, “Com-
paring operating systems using robustness benchmarks,” in Proceedings
of the 16th Symposium on Reliable Distributed Systems, 1997., 1997,
pp. 72–79.

[9] D. Clarke and I. Lee, “Automatic generation of tests for timing con-
straints from requirements,” in words. Published by the IEEE Computer
Society, 1997, p. 199.

[10] G. Fink and M. Bishop, “Property-based testing: a new approach to
testing for assurance,” SIGSOFT Softw. Eng. Notes, vol. 22, pp. 74–80,
July 1997.

[11] G. Fink and K. Levitt, “Property-based testing of privileged programs,”
in Computer Security Applications Conference, 1994. Proceedings., 10th
Annual. IEEE, 1994, pp. 154–163.

[12] G. Fink, C. Ko, M. Archer, and K. Levitt, “Towards a property-based
testing environment with applications to security-critical software,” in
Proceedings of the 4th Irvine Software Symposium, vol. 39, 1994, p. 48.

[13] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” SIGPLAN Not., vol. 35, pp. 268–279,
September 2000.

[14] J. Hughes, U. Norell, and J. Sautret, “Using temporal relations to specify
and test an instant messaging server,” in Proceedings of the 5th Workshop
on Automation of Software Test, ser. AST ’10. New York, NY, USA:
ACM, 2010, pp. 95–102.

83

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 92 / 139

Simulated Injection of Radiation-Induced Logic Faults in FPGAs

Cinzia Bernardeschi, Luca Cassano, Andrea Domenici
Department of Information Engineering

University of Pisa, Italy
Pisa, Italy

first name.last name@ing.unipi.it

Giancarlo Gennaro, Mario Pasquariello
Intecs S.p.A.
Pisa, Italy

first name.last name@intecs.it

Abstract—SRAM-FPGA systems are simulated with a model
based on the Stochastic Activity Networks (SAN) formalism.
Faults are injected into the model and their propagation is
traced to the output pins using a four-valued logic that enables
faulty logical signals to be tagged and recognized without
recurring to a comparison with the expected output values.
Input vectors are generated probabilistically based on assumed
signal probabilities. By this procedure it is possible to obtain
a statistical assessment of the observability of different faults
for the generated inputs. The analysis of a 2-out-of-2 voter is
shown as a case study.

Keywords-SRAM-FPGA; Simulation; Single Event Upset;
Single Event Transient; Stochastic Activity Networks

I. INTRODUCTION

In the last decade SRAM-FPGAs played a very important
role in the market of silicon devices, thanks to the low
cost and relatively good performance. In the last years
FPGAs have increasingly been employed also in safety-
related applications such as railway signaling [1], radar
systems for automotive applications [2] and wireless sensor
networks for aerospace [3].

The industrial use of electronic devices in safety-critical
systems imposes a rigorous system design and the iden-
tification of hazardous failure modes. This is particularly
true for programmable electronic devices, such as FPGAs,
since the failure modes observable at the boundary of the
system strongly depend on the application implemented in
the device.

Radiations in the atmosphere are responsible for introduc-
ing Single Event Upsets (SEU) and Single Event Transients
(SET) in digital devices [4], [5]. SEUs have particularly
adverse effects on FPGAs using SRAM technology, as they
may alter a bit in the configuration memory, causing a
permanent fault (correctable only with a reconfiguration of
the device) [6]. SETs may temporarily alter the behaviour
of user resources, such as flip-flops and multiplexers.

In this work, we present a simulation based fault injector
for SRAM-FPGA systems that can be used for the analysis
of radiation-induced logic faults. The FPGA is considered
at the netlist level and SEUs and SETs affecting the logic
resources of FPGAs are considered. The simulator is based
on a model of SRAM-FPGA systems described with the

Stochastic Activity Networks (SAN) formalism [7] and
developed with the Möbius tool [8]. Faults are injected into
the model and their propagation is traced to the output
pins using a four-valued logic (along the lines of the D-
calculus [9]) that enables faulty logical signals to be tagged
and recognized. Input vectors are generated probabilistically
based on assumed signal probabilities. For every generated
test pattern (i.e., a sequence of input vectors), each possible
fault in the adopted model is injected. By this procedure it is
possible to obtain a statistical assessment of the observability
of different faults for the given test patterns.

The remainder of this paper is organized as follows:
Section II, briefly discusses the state of the art in the FPGA
fault injection field; in Section III, the considered fault model
is presented; Section IV, shows the SAN formalism and
the Möbius tool; in Section V, the model of FPGA-based
systems and the fault injector are presented; in Section VI,
the simulator engine, the available measures and an example
of application are shown; Section VII, concludes the paper.

II. STATE OF THE ART

Fault injection is a widely used approach to evaluate
the propagation of faults in digital devices. Fault injection
techniques for SRAM-FPGA based systems can be divided
into prototype-based [10], [11] and simulation-based [12],
[13]. Prototype-based techniques have high performance and
accuracy, but, since they are performed at the end of the
design process, they make corrections expensive. Addition-
ally they often depend on the particular vendor and model
of the FPGA chip. Simulation-based techniques alleviate
these problems offering the designer greater observability
and controllability, but their accuracy may be limited by the
assumptions on the system and fault model.

To the best of our knowledge, simulated fault injection for
FPGAs at the netlist level has been proposed only in [12] and
in [13], but, unlike our method, these tools are not entirely
based on simulation, since they rely on an underlying
prototype-based analysis. Further, with respect to both [12]
and [13], the four-value logic allows us to recognize faulty
signals without recurring either to a golden run or a golden
copy of the system. Our choice of considering the system

84

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 93 / 139

at the netlist level is due to the fact that at the register-
transfer level (i.e., VHDL or Verilog description) faults in
the hardware structure of the system can not be analysed.
Moreover, the SAN model is quite general and allows
different kind of analyses to be performed, such as failure
probability computation [14].

III. FAULT MODEL

An FPGA is a prefabricated array of programmable
blocks, interconnected by a programmable routing architec-
ture and surrounded by programmable I/O blocks [15].

Programming an SRAM-FPGA device consists in down-
loading a programming code, called a bitstream, into its con-
figuration memory. The bitstream determines the function-
alities of logic blocks, the internal connections among logic
blocks and the external connections among logic blocks and
I/O pads. Interconnections are realized internally by routing
switches and externally by I/O buffers. The most common
programmable logic blocks are lookup tables (LUT), small
memories whose contents are defined by configuration bits.

In this work the FPGA system is modelled at the netlist-
level representation produced in the synthesis phase before
the place and route. At this level, the elements visible in the
model are I/O buffers, LUTs, flip-flops, and multiplexers. We
consider both SEUs in the configuration memory of LUTs
and I/O buffers and SETs in multiplexers and flip-flops

A SEU in the configuration memory of a LUT causes
the alteration of the functionality performed by the LUT.
Figure 1(a) shows a SEU causing a bit flip in the configu-
ration bit associated to input (1 1). In this case the logic
function implemented by the LUT changes from an AND to
a constant 0. I/O buffers are connecting resources placed at
the input and output of the chip. Each buffer is opened/closed
by a configuration bit. A SEU in the configuration bit
of a buffer causes an undesired connection/disconnection
between two wires, as shown in Figure 1(b).

A SET in a multiplexer causes the temporary selection
of a wrong signal, as shown in Figure 1(c). Finally a SET
in a memory element, such as a flip-flop (see Figure 1(d)),
causes the storage of a wrong value, until a new value is
written in the flip-flop.

IV. THE SAN FORMALISM

SANs [7] are an extension of Petri Nets (PN). SANs are
directed graphs with four disjoint sets of nodes: places, input
gates, output gates, and activities. The topology of a SAN
is defined by its input and output gates and by two functions
that map input gates to activities and pairs (activity, case)
(see below) to output gates, respectively. Each input (output)
gate has a set of input (output) places.

The activities replace and extend the transitions of the
PN formalism. Any activity may have mutually exclusive
outcomes, called cases, chosen probabilistically according
to the case distribution of the activity.

(a) Lookup table failure

(b) I/O buffer failure

(c) Multiplexer failure

(d) Flip-flop failure

Figure 1. Failure modes of various resources of the FPGA chip.

As in PNs, the state of a SAN is defined by its marking.
The marking of each place is a non-negative integer (called
the number of tokens of the place).

SANs enable the user to specify any desired enabling con-
dition and firing rule for each activity. This is accomplished
by associating an enabling predicate and an input function
to each input gate, and an output function to each output
gate. The enabling predicate is a Boolean function of the
marking of the gate’s input places. The input and output
functions compute the next marking of the input and output
places, respectively, given their current marking.

Graphically, places are drawn as circles, input (output)
gates as left-pointing (right-pointing) triangles, and activities
as vertical bars. Cases are drawn as small circles on the right
side of activities. Gates with default (standard PN) enabling
predicates and firing rules are not shown.

A. The Möbius Tool

Möbius [8] is a popular software tool that provides a
comprehensive framework for model-based evaluation of
system dependability and performance.

SAN models can be composed by means of Join and
Rep operators. Join is used to compose two or more SANs.
Rep is a special case of Join, and is used to construct a
model consisting of a number of replicas of a SAN. Models
composed with Join and Rep interact via place sharing.
Graphically, a composed model is represented as a tree

85

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 94 / 139

whose nodes are either atomic models (i.e., simple SANs),
or Join and Rep operators.

Properties of interest are specified with reward functions.
A reward function specifies how to measure a property on
the basis of the SAN marking. Measurements can be made
at specific time instants, over periods of time, or when
the system reaches a steady state. A desired confidence
level is associated to each reward function. At the end of
a simulation the Möbius tool is able to evaluate for each
reward function whether the desired confidence level has
been attained or not thus ensuring a high accuracy of the
measurements.

V. MODELLING FPGAS WITH SANS

The FPGA model is split into a number of modules
that interact through shared places [16]. Modules System
Manager, Input Vector, Combinatorial Logic, and Sequen-
tial Logic describe the FPGA operation and module Fault
Injector deals with faults.

The System Manager module orchestrates the activity of
the other modules of the system according to the following
steps: (i) a fault is injected; (ii) an input vector, i.e., an n-
tuple of the input signal values, is applied to the input lines;
(iii) the combinatorial part of the system is executed; (iv)
a clock tick arrives and the sequential part of the system is
executed. Steps (ii) through (iv) are repeated until all input
vectors have been applied.

The Input Vector module applies an input vector to the
input lines of the FPGA.

The Combinatorial Logic module models the combinato-
rial part of the system. The modelled components are lookup
tables, multiplexers, and I/O buffers.

The Sequential Logic module models the flip-flops in the
FPGA. Various types of flip-flops can be modelled.

The Fault Injector module is in charge of injecting faults
into the netlist. For the purpose of this work, the fault in-
jector injects a single permanent fault into the configuration
memory of LUTs and I/O buffers or a single transient fault
in the user resources (flip-flops or multiplexers). The fault
is injected at the beginning of the simulation. Faults are
exhaustively injected in the system one at a time.

Combinatorial and sequential elements are modelled by
a SAN model, called Generic_Component (see Fig-
ure 2(a)). Places spA and spB are used to control the
execution of a component. The output gate OG0 implements
the functionality of the component. When the execute
activity of a component completes, the function specified in
gate OG0 is executed, and a token is added to spB.

Three shared places (input_lines, output_lines,
and internal_lines) encode the value of the signals on
the input, output, and internal connections of the FPGA. The
shared place faults keeps track of the faults injected in the
system. Components behave correctly or faulty according to
the content of place faults.

(a) (b)

Figure 2. Generic Component (a) and Fault Injector (b) module.

The SAN model of the Fault Injector is shown in Fig-
ure 2(b). Places p0 and p1 are used to control the execution
of the fault injector. Place faults is shared with the
combinatorial logic module. Place faults is an array of
C Boolean values, where C is the number of configuration
bits associated to LUTs and I/O buffers, plus the number of
flip-flops and multiplexers. In particular faults[i] equals
1 if the i-th configuration bit is faulty or the associated
user resource is faulty. The output gate OG1 implements the
fault injection function resetting the element of faults
associated to the previously injected fault and setting the
element affected by the new fault. When the inject
activity completes the function specified in gate OG1 is
executed, and a token is added to p1. When every possible
faults have been injected and the associated simulation runs
have been performed, a token is placed into end.

The logical connections are specified in a connectivity
matrix, a data structure accessed by the input and output
functions of the model. This way, the logical connections
are not hardwired in the SAN models, and can be set up
starting from netlist EDIF file generated by CAD tools, such
as the Xilinx ISE tool, on the basis of the specification of
the FPGA-based system.

VI. THE SIMULATOR

The simulator executes the previously discussed model
of FPGA-based systems on a four-valued logic that enables
faulty logical signals to be tagged as such and followed along
their propagation path. In this logic we distinguish correct
values from faulty ones (as in D-Calculus [9]).

Correct and faulty Boolean values are named zero correct
(0c), one correct (1c), zero faulty (0f) and one faulty (1f).
More precisely, let B = {0, 1} and D = {0c, 0f , 1c, 1f},
where B is the set of standard Boolean values and D is the
domain of the four-valued logic. Then we establish a corre-
spondence between B and D by the following mappings:
φ : D → B, such that φ(0c) = φ(0f) = 0 and φ(1c) =
φ(1f) = 1, is a projection function that translates values of
D to values in B ignoring the faulty/correct annotation.
χ : D → B, such that χ(0c) = 0, χ(1c) = 1, χ(0f) = 1 and
χ(1f) = 0, is a corrective projection that replaces a faulty
value with its complemented Boolean value (i.e. it extracts
a correct value from a faulty one).

Then we define tracking functions for components. These

86

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 95 / 139

x y ∧∗

0c - 0c
- 0c 0c
1c 1c 1c
1c 0f 0f
1c 1f 1f
0f 1c 0f
1f 1c 1f
0f 0f 0f
0f 1f 0c
1f 0f 0c
1f 1f 1f

x y ∨∗

1c - 1c
- 1c 1c
0c 0c 0c
0c 0f 0f
0c 1f 1f
0f 0c 0f
1f 0c 1f
0f 0f 0f
0f 1f 1c
1f 0f 1c
1f 1f 1f

x ¬∗

0c 1c
1c 0c
0f 1f
1f 0f

function q∗

D Qprev Q
- 0c 0c
- 1c 1c
- 0f 0f
- 1f 1f

function q∗c
D Qprev Q
0c - 0c
1c - 1c
0f - 0f
1f - 1f

Table I
FOUR-VALUED TRUTH TABLES FOR AND, OR, NOT, AND D

EDGE-TRIGGERED FLIP-FLOP.

functions trace the propagation of values through compo-
nents. Each non-faulty component implements a Boolean
function f : Bn → B. For such function, its tracking
function f∗ : Dn → D extends the semantics of f to
the four-valued domain D. For a given n-tuple of inputs
(d1, · · · , dn) in Dn, this function evaluates f both with the
projection of (d1, · · · , dn) to Bn (i.e., (φ(d1), · · · , φ(dn)))
and with the corrective projection of (d1, · · · , dn) to Bn

(i.e., (χ(d1), · · · , χ(dn))). This amounts to applying f to the
actual inputs and to the input that would have been applied
in absence of faults. Function f∗ compares the two results.
If they are equal, the result is f(φ(d1), · · · , φ(dn)) tagged as
a correct value, otherwise the result is f(φ(d1), · · · , φ(dn))
tagged as faulty.

In particular, we define the four-valued logical operators
∧∗, ∨∗ and ¬∗ as the tracking functions of the corresponding
Boolean operators. The semantics of these operators is given
by truth tables (see Table I). We may notice that for the ∧∗
operator, a 0c on one input masks any faulty value on the
other input; similarly for the ∨∗ operator a 1c masks any
faulty value on the other input.

We defined the tracking function for the components of
the netlist: I/O buffers, LUTs, multiplexers, and flip-flops.
Flip-flops are modelled with two functions: the first one
models the behaviour of the flip-flop in the presence of
a clock rising edge (called q∗c), the other (q∗) models the
behavior of the flip-flop during the inactive period. For
example, the functions for a standard D-Edge Triggered flip-
flop are shown in Table I. We may notice that the output
(correct or faulty) is unchanged in absence of a rising edge,
while it follows the input when a rising edge occurs.

We now show how to model the generation of faulty
values by faulty components and the propagation of val-
ues through faulty components. Given a Boolean function
f : Bn → B implemented by a logic component, for each

possible fault i of the component we define a faulty function
f̂i : B

n → B that describes the behaviour of the component
in presence of that fault. This behaviour may be given in
the form of truth table or as an expression. For simplicity,
in the following we will drop the subscript.

Then, the tracking function f̂∗ of a faulty function f̂
compares the output of the faulty component with possibly
faulty inputs to the output of the correct component with
correct inputs. If the two are equal, the result is taken as
correct. Otherwise it is tagged as faulty.

For example, given a two-input LUT implementing the
AND function, let us assume that a fault occurs in the
configuration bit associated with the input x = 1 and y = 1
(Figure 1(a)). When the input is (1, 1), the output of the LUT
is 0 instead of 1 (the output of the faulty LUT is always 0).

Function fLUT describes the behaviour in absence of
faults: fLUT (d1, d2) = d1 ∧ d2, whereas function f̂LUT

represents the behaviour of the faulty LUT: f̂LUT = 0 if
d1 = 1 and d2 = 1, f̂LUT = f(d1, d2) otherwise.

Table II shows three cases for the tracking function of the
faulty LUT: in the first case, two correct inputs activate the
fault and generate a faulty output; in the second case the
correct input 1c and the faulty input 0f do not activate the
fault. However, the resulting output differs from the output
that should have been produced with 1 and 1, and the faulty
value is propagated. In the third case the correct input 1c and
the faulty input 1f activates the fault but the resulting output
equals the output that should have been produced with 1 and
0. We notice that in the course of simulation, the tracking
functions can be calculated off-line and synthesized as truth
tables before starting the simulation.

d1 d2 f̂(φ(d1), φ(d2)) f(χ(d1), χ(d2)) f̂∗

1c 1c 0 1 0f
1c 0f 0 1 0f
1c 1f 0 0 0c

Table II
AN EXCERPT OF THE FAULTY LUT TRUTH TABLE

Using this four-valued logic we are able to trace the
propagation of faults and to determine whether they reach
the output, and, if not, to find which components mask
or propagate the fault. This four-valued logic allows the
observability of faults to be measured (a comparison of the
actual output values with the expected ones is not necessary).

A. Simulation and Measurements

The configurable parameters of our simulations are the
number of simulated clock cycles N and the signal proba-
bility of input signals SPi, i.e. the probability of the signal
to be 1 at a given time [17].

In order to measure the fault observability of the system
under analysis we perform multiple simulation runs of the
system. Each simulation run is structured in the following
steps, graphically represented by Figure 3:

87

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 96 / 139

Figure 3. Functional blocks of the simulator.

1) A test pattern is stochastically generated according
to given input signal probabilities and a number of
clocks.

2) A fault is injected in the system.
3) The netlist is executed until the maximum number of

clock cycles is reached. The following reward function
detects system failures:
if(System_Manager->clock->Mark()==1){

for(int i=0; i<N_out; ++i)
if(System_Manager->output_lines->

Index(i)->Mark() == 1f ||
System_Manager->output_lines->
Index(i)->Mark() == 0f)

return 1;
return 0; }

4) If more faults have to be injected, the current fault
is removed and the simulation re-starts from step 2,
otherwise simulation terminates.

Data that can be obtained with our analysis are the list of
observed faults for each generated test pattern, and the total
number of observed faults using the generated test patterns.
From these data we can compute a quality factor, called total
observability, of the set of test patterns, defined as the ratio
of observed faults to the total number of injected faults.

The above shown reward function allows the analysis of
the observability of faults at the output of the system. Other
analyses can be performed: the behavior of any internal
signal can be observed and, if a certain fault has been
activated and it has not been observed at the output, we can
find where the fault has been masked. Moreover, we can
model different fault hypotheses, such as multiple faults,
or faults confined to a certain area of the device, simply
modifying the initialization of the fault injector module.

B. An Example
In order to analyse the applicability of our method we

considered as a simple case study an 8-bit 2-out-of-2 voter.
The behaviour of the system is the following:
• After a 0→ 1 transition of Data Valid, the circuit starts

reading serially 8 bits from Stream A and Stream B.

Figure 4. The netlist of the 8 bit 2-out-of-2 voter.

Figure 5. Total observability vs. test pattern length.

• If Stream A and Stream B are equal, Stream Out
follows Stream A and Faulty Out is 0.

• If Stream A and Stream B are different for at least one
bit, Stream Out is set to 0 and Faulty Out to 1 for the
rest of the byte.

We synthesised the system for the Xilinx Virtex 6 device
into a netlist with the Xilinx ISE tool. The resulting netlist,
(Figure 4), has 4 input signals, 2 output signals, 6 I/O
buffers, 8 LUTs, and 6 flip-flops. We then used a parser
from EDIF to our specification language to instantiate the
model.

In every simulation we set the signal probability of the
four input signals of the system to the same value.

In a first scenario we calculated the total observability of
the system for SP = 0.1, SP = 0.5 and SP = 0.9, varying
the number of simulated clock cycles. The resulting total
observability is shown in Figure 5.

In a second scenario we calculated the total observability
of the system for N = 4, N = 8 and N = 12 clock cycles,
varying the signal probabilities of the input signals. The
resulting total observability is shown in Figure 6.

Each simulation run took from 0.3 to 0.5 seconds to be
carried out. In order to reach a confidence level of 0.95
with a confidence interval of 0.1, we needed from 2000 to
3000 simulation runs. The complete analysis required a few
minutes to be performed.

88

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 97 / 139

Figure 6. Total observability vs. input signal probability.

VII. CONCLUSIONS AND FUTURE WORK

A simulation based fault injection tool for FPGA systems
is shown. The FPGA system is modelled at netlist level. The
considered fault model is fine-grained as the effect of SEUs
affecting any configuration bit of a LUT and an I/O buffer
can be simulated, as well as the effects of SETs in flip-flops
and multiplexers. In this work the fault injector has been
used for fault observability analysis. These measures can
be used for giving details on the places in the logic design
where injected faults have been/have not been observed. This
information, given as feedback to designers, allows them
to increase the system observability by reworking the logic
around these places, for example by adding test points for
the diagnosis of faults. As future work we intend to analyse
the observability of other types of faults, such as faults in
the routing architecture. Moreover, we intend to implement
the generation of selective test patterns for fault diagnosis.

REFERENCES

[1] J. Borecky, P. Kubalik, and H. Kubatova, “Reliable Railway
Station System Based on Regular Structure Implemented in
FPGA,” in Proceedings of the 12th Euromicro Conference
on Digital System Design, Architectures, Methods and Tools
(DSD ’09), 2009, pp. 348 –354.

[2] V. Winkler, J. Detlefsen, U. Siart, J. Buchler, and M. Wagner,
“FPGA-based Signal Processing of an Automotive Radar Sen-
sor,” in Proceedings of the First European Radar Conference
(EURAD), 2004, pp. 245 –248.

[3] J. Henaut, D. Dragomirescu, and R. Plana, “FPGA Based
High Date Rate Radio Interfaces for Aerospace Wireless
Sensor Systems,” in Proceedings of the Fourth International
Conference on Systems (ICONS ’09), 2009, pp. 173 –178.

[4] R. Baumann, “Radiation-induced Soft Errors in Advanced
Semiconductor Technologies,” IEEE Transactions on Device
and Materials Reliability, vol. 5, no. 3, pp. 305 – 316,
September 2005.

[5] G. Wirth, F. Kastensmidt, and I. Ribeiro, “Single Event
Transients in Logic Circuits Load and Propagation Induced
Pulse Broadening,” IEEE Transactions on Nuclear Science,
vol. 55, no. 6, pp. 2928 –2935, 2008.

[6] P. Graham, M. Caffrey, J. Zimmerman, D. E. Johnson, P. Sun-
dararajan, and C. Patterson, “Consequences and Categories of
SRAM FPGA Configuration SEUs,” in Proceedings of the 6th
Military and Aerospace Applications of Programmable Logic
Devices (MAPLD’03), September 2003, p. n.a.

[7] W. Sanders and J. Meyer, “Stochastic activity networks: for-
mal definitions and concepts,” in Lectures on Formal Methods
and Performance Analysis, ser. Lecture Notes in Computer
Science, E. Brinksma, H. Hermanns, and J. Katoen, Eds.
Springer Berlin / Heidelberg, 2001, vol. 2090, pp. 315–343.

[8] G. Clark, T. Courtney, D. Daly, D. D. Deavours, S. Derisavi,
J. M. Doyle, W. H. Sanders, and P. G. Webster, “The Möbius
modeling tool,” in 9th Int. Workshop on Petri Nets and
Performance Models. Aachen, Germany: IEEE Computer
Society Press, September 2001, pp. 241–250.

[9] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a
Method,” IBM Journal of Research and Development, vol. 10,
no. 4, pp. 278 –291, July 1966.

[10] L. Sterpone and M. Violante, “A New Partial Reconfiguration-
Based Fault-Injection System to Evaluate SEU Effects in
SRAM-Based FPGAs,” IEEE Transactions on Nuclear Sci-
ence, vol. 54, no. 4, pp. 965 –970, 2007.

[11] E. Johnson, M. Wirthlin, and M. Caffrey, “Single-Event Upset
Simulation on an FPGA,” in Proceedings of the International
Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA), June 2002, pp. 68–73.

[12] M. Violante, L. Sterpone, M. Ceschia, D. Bortolato,
P. Bernardi, M. Reorda, and A. Paccagnella, “Simulation-
Based Analysis of SEU Effects in SRAM-Based FPGAs,”
IEEE Transactions on Nuclear Science, vol. 51, no. 6, pp.
3354 – 3359, December 2004.

[13] G. H. Wang Zhongming, Yao Zhibin and L. Min, “A Software
Solution to Estimate the SEU-induced Soft Error Rate for
Systems Implemented on SRAM-based FPGAs,” Journal of
Semiconductors (Chinese Institute of Electronics), vol. 32,
no. 5, pp. 1–7, May 2011.

[14] C. Bernardeschi, L. Cassano, and A. Domenici, “Failure
Probability of SRAM-FPGA Systems with Stochastic Activity
Networks,” in Proceedings of the 14th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems,
April, pp. 293 – 296.

[15] I. Kuon, R. Tessier, and J. Rose, “FPGA
Architecture: Survey and Challenges,” Foundations and
Trends in Electronic Design Automation, vol. 2,
pp. 135–253, February 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1454695.1454696

[16] C. Bernardeschi, L. Cassano, A. Domenici, and P. Masci,
“A Tool for Signal Probability Analysis of FPGA-Based
Systems,” in Proceedings of the 2nd International Conference
on Computational Logics, Algebras, Programming, Tools, and
Benchmarking, 2011, in press.

[17] V. Saxena, F. Najm, and I. Hajj, “Estimation of State Line
Statistics in Sequential Circuits,” ACM Transactions on De-
sign Automation of Electronic Systems, vol. 7, no. 3, pp. 455–
473, 2002.

89

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 98 / 139

Concurrent Engineering used to Implement Risk & Hazard Control

Gheorghe Florea
Societatea de Inginerie Sisteme – SIS S.A.

Bucharest, Romania
e-mail: gelu.florea@sis.ro

Luiza Ocheana
University “Politehnica” of Bucharest

Bucharest, Romania
e-mail: luiza.ocheana@sis.ro

Abstract — In the current modern and industry-based society,
automation is the key to success. The technology has changed
over the last decades towards full control systems.
Requirement specifications for Safety Instrumented Systems
(SIS) form the core of Risk and Hazard (RH) assessment. SIS
are the most flexible and effective tools for guarding the plants.
Despite the debate pro and against the integrated approach of
Basic Process Control System (BPCS) and SIS, more than a
safety system is needed to keep the process running even with
diminished functionalities instead of shutdown the plant. Our
new approach is based on how a new hierarchical decision level
can complete the mission regarding safety when the control
room is not functional or cannot act properly in a hazard
situation. Layers of protection should be used in order to
reduce the risk to an acceptable level. The key is RH control
implemented as a superior hierarchical level of decision and
intervention. Concurrent Engineering (CE) applied to process
control is the approach that can help the designers to achieve
this level and efficiently use the proposed system architecture.
Basically, a remote Process Help Center will host not only the
copy of the process control system but the strategy and
algorithms (RH control) to accomplish the safety task and to
keep the process running. The CE and simulation are basic
approaches to build the functionalities of new systems.

Keywords – SIS; Redundancy; Remote intervention;
Simulation; Diagnostics; Hierarchical decision; Concurrent
engineering; Risk and hazard assessment.

I. INTRODUCTION

Process control and optimization represent the current
way for safer and more efficient industrial plants, while risk
management represents the starting point for new control
algorithms and strategies. There is a stringent need for
enhancing plant operations at production management level,
because plants often operate near criticality, meaning in
conditions far from the ideal ones from the point of view of
control and stability. Continuous process industries are
usually very complex and difficult to model and keep under
control. While plant personnel feel there is a tremendous
need for better and more versatile simulation and modeling
tools, no product on the market offers the features necessary
for dealing with the uncertain nature of complex plants [1].

Safety is an important issue nowadays that receives an
increasing amount of focus lately. The reasons are,
unfortunately, the numerous accidents that occurred in
industrial plants, which compel the industry to take a better
look at current practices like process design, process control,
risk analysis and control, risk assessment. Worldwide
engineering organizations have developed standards for the

engineering of process safety. IEC released two standards
IEC 61508 aimed at the suppliers of process safety
equipment and IEC 61511 aimed at the end users of process
safety equipment. ISA S84.01 “Application of Safety
Instrumented Systems for the Process Industry” includes all
elements from sensors to final elements, including inputs,
outputs, power supply, logic solvers and user interfaces [2].

Applying these standards we obtain reliable facilities, but
still we do not solve the problem of continuity of the
production process - the main goal in the economic
competition. This paper presents a way to solve the problem
of maintaining the continuity of the process by introducing a
level of control for risk and hazard situations.

In this paper, we present the challenge of Safety and
Security systems (Section II), the introduction of Risk and
Hazard control as a new level of decision (Section III),
simulation as the key for Risk and Hazard control (Section
IV), technologies to be used (Section V), results and
conclusions (Sections VI and VII).

II. SAFETY AND SECURITY (SS) – THE CHALLENGE

In order to obtain the required level of safety and
security, we must take into account four important phases:
analyze the needed level of SS for the plant, design,
implementation and maintenance.

Stand-alone safety systems have been the traditional
method of choice, meaning separate design and operation
requirements for Basic Process Control Systems (BPCS) and
Safety Instrumented Systems (SIS) [3]. Separate systems
were developed for process control and safety with
proprietary operator interfaces, engineering workstations,
configuration tools, data and event historians, asset
management, and network communications. This approach
affects the costs of infrastructure acquisition, plant systems
integration, control and instrumentation hardware, wiring,
project execution, installation, and commissioning, as well as
ongoing expenses such as training, spare parts procurement,
and logistics contracts [4]. Until recently, users had little
choice other than to use completely different systems for
control and safety. “A war of words is raging in the process
control industry over the “integration” of safety and control
systems. It’s a debate that has been ongoing for years, but the
recent introduction of new integrated systems by several
process controls vendors has lately added fuel to the fire” [5].

Today, integrating safety and control has become a cost
effective choice for manufacturers that could not justify a
separate SIS in the past. As a process manufacturer, you need
to perform rigorous Risk and Hazard (RH) analysis based on
IEC 61511 or ANSI/ISA-84.00.01 safety standards to decide

90

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 99 / 139

on the right level of protection required for your plants. You
may do that by selecting a SIS that provides close integration
with the software tools of your BPCS while still providing
the required degree of separation. Figure 1 illustrates the
three options.

Figure 1 – SIS and BPCS Integration Levels

In the traditional sense, process safety refers to additional
components that protect personnel and plant from injury,
death and economic loss. However, many end users now
recognize that the deployment of intelligent integrated safety
solutions can directly improve process and personnel safety.

The entire issue of safety has direct influence upon the
activity of the plant and therefore it must be integrated into
the control system.

III. RH CONTROL – THE NEW LEVEL OF DECISION

According to process safety standards, the process risk
has to be reduced to a tolerable level as set by the process
owner [6]. The solution is to use multiple layers of
protection, including the BPCS, alarms, Operator
Intervention (OI), mechanical relief system and a SIS.

The BPCS is the lowest layer of protection and is
responsible for the operation of the plant in normal
conditions. If BPCS fails or is incapable of maintaining
control, then, the second layer, OI, attempts to solve the
problem. If the operator also cannot maintain control within
the requested limits, then the SIS Layer must attempt to
bring the plant in a safe condition [7]. If SIS also fails in
restoring normal operation, then the hazard is imminent.

Risk is defined as the combination of the probability and
the severity of a hazardous event, meaning how often it can
appear and how severe are the consequences when it does.
The best way to reduce risk in a manufacturing plant is to
design safer processes. Unfortunately, it is impossible to
eliminate all risks, so a manufacturer must agree on a level of
risk that is considered tolerable. After identifying the

hazards, a RH analysis must be performed to evaluate each
risk situation.

The layers of protection and also the impact over the
process are illustrated in Figure 2. On the left side, the layers
of protection are listed; on the right side, the corresponding
actions on the process are listed.

Figure 2 - Layers of protection and impact on process

Risk assessment procedure (detailed in Figure 3) is the
first process in the risk management methodology to
determine the extent of the potential threat and the risk
associated with a system [8]. The procedure includes 5
important steps: (1) identify all possible hazard situations
and (2) risks, (3) evaluation of the existing tools and
strategies, (4) implementation of new ones if needed, and (5)
the continuous monitor and evaluation of the behavior of the
process.

Figure 3 - Risk assessment procedure

BPCS, along with process alarms and facilities for
manual intervention, provide the first level of protection and
reduce the risk in a manufacturing facility. Additional
protection measures are needed when a BPCS does not
reduce the risk to a tolerable level. They include SIS along
with hardware interlocks, relief valves, and containment
dikes. Unfortunately, all the additional protection measures
mentioned above can only help to safely shut down the plant.

91

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 100 / 139

We have proposed designed and implement a new level of
decision: RH Control (Figure 4) to keep the plant running.

Figure 4 – System architecture

Better automation is a key aspect for improving industrial
competitiveness [9]. Intelligent automation, at management
levels in particular can play a major role regarding this
aspect. The purpose of RH Control is to help with this
improvement by building a new architecture and a
distributed, generic decision support software system for
near critical situation management in continuous process
industries. In particular, assistance in terms of diagnosis and
elaborating solutions is provided (directly to the plant’s
control system and/or to the staff) when certain situations are
detected, i.e. situations suitable to be corrected, prevented or
enhanced.

The focus is on new algorithms and strategies for the
integration of different software components as well as on
the system architecture itself. These software components
include core, user interface and problem solving modules.

RH Control follows the conceptual structure of most
distributed control systems that is a hierarchical and
multilayered structure, similar to a pyramid. The complexity
of the control mechanism increases for the higher layers. All
the basic functionalities of the system are grouped into
problem solving components that work in a cooperative way
to find a solution to the plant problems or to optimize
according to the plant objectives.

These applications include the following functionalities
at different control layers:
 Strategies: Management of global objectives of the plant

and their interrelation (management of maintenance
operations, incident prevention, RH control, assessment of
production costs in real time, loop tuning optimization, set-
point deviation detection and alarm management)

 Tactics: Assistance through the problem lifespan, including
process failure prevention, risk detection and diagnosis,
plant-wide analysis, corrective actions, actions or
recommendations for reestablishing effective control.

 Operations: Tasks such as filtering and validation of plant
data, variable estimation, alarms analysis and optimization,
intelligent alerting based on intuitive technologies and
trend forecasting.

The main challenges at the beginning of a system
configuration are: software architecture and reusability.

A. Reusability

The technical approach tries to provide reusability in the
broadest sense using functional blocks. Object oriented
technology can be one of the cornerstones of this approach
[10]. Reusability can be achieved for any stage in the life
cycle: from defining requirements and design to
commissioning and maintenance. The approach is based on
the availability of design template and reusable component
implementation with few design compromises. These
implementations are flexible enough to be adapted or
modified to comply with the new requirements with little
effort. The concepts of function block–based development
and integration middleware provide the basis for reusability.
RH Control will incorporate components for process control,
risk analysis, optimization, etc.

The customized components will be integrated in a
global architecture using real-time integration. This software,
based on function block standard, will incorporate extensions
to make possible for its use in real-time applications. This
facilitates the easy reuse of components and even of the
global application architecture because run-time components
can be easily changed without affecting the behavior of
others.

B. Software architecture

The software architecture is based on the Service–
oriented architecture concept (SOA) [11]. In most
applications, the infrastructure and the environment are very
important security-related issues and it gets even more
important if a SOA-based on Web Services has been chosen.

For this purpose, asymmetric cryptography will be used,
implying a pair of two keys: public key and private key.

The benefits of this approach can be classified into two
categories:
 From the user’s point of view: the implementation

addresses problems related to the global management of
the plant while taking into account the interrelation of the
strategic objectives, such as production, quality,
maintenance, safety, efficiency and availability, as well as
problems closer to the process control layer.

 From the systems integrator’s point of view: the
development of an open software architecture, based on the
OPC standard and function blocks, will allow the
construction of distributed intelligent control systems on
top of the existing ones, with back-up functions.

IV. SIMULATION - THE KEY FOR AN EFFECTIVE RH
CONTROL

Future applications of simulation technology applied to
process control will be driven by the advancing simulator
capabilities. Many of them are the direct result of computing
technology applied to certain activities with high return on
investment: concurrent engineering, process fault detection,
self testing capabilities for hardware and internet retrievable
simulation models and tools.
 Advanced networking

Advances in network technology are allowing for faster
data sharing between computers, parallel processing for

92

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 101 / 139

simulating more complex models and linking the simulator
with the real process. Three types of network interfacing
applicable to simulation can be used:
o Bus adapter and shared memory
o Data broadcast network
o Internet

 Intelligent I/O
Applied Dynamics International (ADI) developed and

uses an intelligent input/output processor card to predict
outputs and update the value more frequently than the update
rate from the simulator, increasing speed for the next
prediction
 Very High Speed Simulation

This approach is based on the development of digital
hardware-in-the-loop simulations that allow simulation
frame-times lower than 10 microseconds.

Simulation technology
There are many approaches to achieve good results in

time. We will briefly present the most important of them.
 Integration algorithms

Integration algorithms are used to solve a function in the
time domain, given the differential equation of the variable
of interest. Runge-Kutta is probably the best known
integration algorithm. A newer algorithm, named after its
developers R. Bulirsch and J. Stoer is gaining popularity and
may replace Runge-Kutta [12].
 Discrete-Event Simulation

Two types of discrete-event simulation tools are
available: the state transition diagram editor and user /
resource queuing tools.

State-transition diagram editors allow the user to model a
process by the state the process is in and by the events that
cause a transition from one state to another [13]. The use of
state-transition diagrams allows the behavior of a process to
be dependent on the state. A process simulator with a state –
transition - diagram editor allows different dynamics to be
assigned to different operational states of the same process.
Figure 5 shows the classical states: start-up, nominal and
shut-down but the RH state is added in order to maintain the
system under control.

Figure 5 - Operational states

The user / resource analysis queuing system can be
described as a collection of resources and the tasks using

these resources [14]. The modeling tools allow resources to
be allocated to tasks according to several prioritization
strategies such as first-come-first-served, infinite servers,
last-come-first-served, processor-sharing. System parameters
such as response times, rate of use, queue populations and
throughput rates can be assessed. Probability distributions
and tasks attributes such as creating, terminating and
delaying can be changed. This will be used later to
implement the appropriate Distributed Control System
(DCS) or Programmable Logic Controller (PLC) and
Supervisory Control And Data Acquisition (SCADA)
strategies to run on site or remote.
 System Identification

Data handling and processing power available today
enables not only standard on-line identification techniques
but also sophisticated, empirical model development
methods that in the past were not feasible. Tools are
available for today’s simulators to help gather perturbation
data from the process and develop empirical models that
sometimes boast more fidelity than classical models.
Although system identification theory has been around for a
long time, only recently these theoretical tools become
practicable because of the large amount of data processing
required.

V. EMERGING TECHNOLOGIES

Emerging technologies analyzed helped us to establish
the most important of them to be used in our project.

a) Concurrent Engineering (CE)

An activity that requires a high degree of effort from a
design company, but not without a rewarding return on
investment is CE. This design paradigm is based upon the
principle that the process and the associated control strategy
are designed in parallel before the process is built. Trade-off
analysis is performed in advance, in order to prevent
conflicting criteria of the two designs. Dynamic process
simulators are combined with traditional static simulators to
assess transient behavior and controllability of the process.

The CE approach is based on the following key elements:
 the system engineering process;
 a multidisciplinary team (process, control, safety and

security, management, accounting, inventory)
 a collaborative platform, control environment and data &

information distribution
 supporting tools and facilities.

The approach can evolve into an Integrated System
Development based on cross functional System / Process
Teams for all systems and services, and a System
Engineering and Team to cover the system issues,
performances, balance requirements.

By applying CE to plant design and installation, non-
value added activities both in the upstream and downstream
activities of the plant can be eliminated at the early stage of
the design process, plant, operations and control. Plant wide
controllability analysis in the conceptual design stage is an
issue that has been raised by process industry [15].

93

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 102 / 139

Figure 6 - Concurrent engineering apply to process control

The role of CE is obvious since it reflects that
opportunities exist even at the conceptual design stage, to
optimize the downstream operations including the
capabilities to run the process instead of risks and hazards.
This is against the conventional approach of the control as an
add-on to process design after the flow sheet structure has
already been determined.

There are a number of tools available for the design of
process using CE including: simulation, process modeling,
on – line identification, asset assessment, risk and hazard
analysis. Including all this we can have a conceptual
framework for the implementation of CE in process control.

Figure 7 – Conceptual framework

b) Controller Testing

Using simulators to test control systems is an increasing
trend in almost every industry. Simulator-based testing takes
the control software development from the project critical

path. Tests using simulators can be more comprehensive than
a test using the actual process because the normal safety or
process operational limits are not a concern, so the virtual
test can exceed those limits, if necessary, to perform a more
robust test. The networking options enable interfacing a
simulator to a control system at a higher level in the
architecture than in the past when individual wiring
terminations were required.

c) On-line Diagnostics

Modern simulators offer the ability to detect faults in
operating plants. A well tuned model of the plant runs in
parallel with the plant, on-site or remote, comparing the
model’s outputs with the real outputs. As shown in Figure 8,
a difference between the two indicates a fault. Advanced
fault-detection algorithms will lead the RH control or the
supervisory engineers to the appropriate action.

Figure 8 - Online diagnostics

d) Internet Applications

This technology offers today the capability to
interconnect the on-site system with a remote control center
(PH center) and to perform simulation, on-line identification
[16], RH strategies, on-line tests and training, back-up and
restoration. Operating remote from the site, the Process Help
Center will host not only a copy of the process control
system but the strategy and algorithms to fulfill the safety
task and to keep the process running even in RH conditions.

VI. RESULTS

The new approach in process control system engineering,
based on new algorithms, scalable and modular architectures
and platforms, RH control, is industry independent. The
capability of the systems to model and implement the 4
states, start-up, nominal, RH, shut-down, having 4 different
strategies and the capability to change the state according to
the functional parameters can be taken in consideration by
CE. The diagnosis system, hosted remotely, will be
continuously improved by gathering knowledge from various
applications, based on identified problems, the solutions
offered and their impact on the plant performance. The
correlation factor between these different applications will
influence future decisions. This way, the required period of
time for solving a problem will be minimized, as well as the
time that a plant needs to be shut down because of the
instrumentation process control strategy.

Some of the expected results are an integrated
exploitation of a collection of heterogeneous technologies for
the prevention of anomalous situations related to the safety
of an industrial complex and determining the suitability of

94

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 103 / 139

function blocks and OPC based development for integrated
control systems construction.

From the user’s point of view, the accomplishment is that
RH Control will allow the integration of the preventive and
corrective aspects of safety, which were dealt, until this
moment, in separate ways. Another advantage arises from
being able to automatically take into account the constraints
posed by the current plant situation and the ongoing
maintenance operations.

The results achieved so far within the R&D project “Help
Center and platform for remote diagnosis and remote
intervention for the management of plants in hazardous
situations – PH Center” will be used to develop and
implement the hierarchically superior level for safety and
security problems. The work carried out in the project
establishes the baselines for a new architecture of process
control taking into consideration the remote operation.

Figure 9 - The simulated process

In the meantime, the results achieved underlay the
feasibility of the idea. This statement is based on two
reasons:
 Two demo-applications have been designed according to

real plant requirements with a large involvement of plant
staff. At present, two applications are installed and under
operation after a period of user validation and evaluation:

- a simulator for a simple process - controlling the level of
liquid in a tank – Figure 9.
- a Building Management System (BMS) designed for a
supermarket – Figure 10.

Figure 10 - Supermarket BMS – remote connection main screen

Also, we are currently working on including a new
connection to the PH Center, a DCS control system
(Experion - Honeywell) from LPG terminal, Midia, Navodari
(Figure 11).

Figure 11 – PH Center connected to DCS

 The three generic products constructed within the project
are truly reusable and can be exploitable components of
other implementations.

This approach demonstrates that advanced control
technology can be modularized, deployed and integrated
with legacy control systems, progressing effectively towards
complete automatic operation.

VII. CONCLUSIONS

In the past, SIS were strictly separated from the BPCS,
mainly to segregate the safety and control functions and to
have higher availability and reliability. Lately, many
"integrated" control systems were deployed that have both
BPCS and SIS systems in the same package

Hazard identification, risk assessment and control are on-
going processes that involve a critical sequence of
information gathering and also the application of a decision-
making process. They assist in discovering what could
possibly cause a major accident (hazard identification), how
likely it is that a major accident would occur and the
potential consequences (risk assessment) and what options
exist for preventing and mitigating a major accident (control
measures). The state of the art has no real and integrated
solution. The work done by authors and the team has
proposed:

 The new concept: Risk and Hazard Control;
 A new system architecture of process control;
 The guidelines and advantage of using CE to the

design of process control system.

95

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 104 / 139

REFERENCES

[1] Gheorghe Florea, Luiza Ocheana, Radu Dobrescu, and Dan
Popescu - Emerging Technologies - the base for the next goal
of Process Control - Risk and Hazard Control, Proceedings of
WSEAS International Conference, 2011, pp. 227 – 232.

[2] American Institute of Chemical Engineers - Guidelines for
Safe and Reliable Instrumented Protective Systems, 2007.

[3] Asish Ghosh and Dave Woll - Business Issues Driving Safety
System Integration, ARC White Paper, 2006.

[4] Ged Farnaby - Protect the plant. Leading edge trends in
process control safety, InTech, June 2005.

[5] Wes Iversen - The Great Safety Debate, Automation World
april 2007, pp. 30.

[6] David Hatch and Todd Stauffer - Operators on alert. Operator
response, alarm standards, protection layers keys to safe
plants. InTech, Cover Story, September 2009.

[7] Merry Spooner and Trevor MacDougall - Safety Instrumented
Systems can they be integrated but separate?, ABB White
Paper, 2011.

[8] Gary Stoneburner, Alice Goguen, and Alexis Feringa - Risk
Management Guide for Information Technology Systems.
Recommendations of the National Institute for Standards and
Technology, 2002.

[9] Ricardo Sanz, Miguel Segarra, Angel de Antonio, and Idoia
Alarcon - Plantwide Risk Management Using Distributed
Objects, Proceedings of IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Processes 2,
2000, pp. 14 – 16.

[10] Michael Guttman and Jason R. Matthews - The Object
Revolution, Wiley, New York, 1995.

[11] Stefan-Helmut Leitner and Wolfgang Mahnke. OPC UA –
Service – oriented Architecture for Industrial Applications.
ABB White Paper, 2006.

[12] Ruppel Francis and Wysor Wes - Mighty microprocessors
boost process simulation, InTech, September 1997.

[13] David Harel - Statecharts: A Visual Formalism for Complex
Systems, Science of Computer Programming vol.8, 1987, pp.
231 – 274.

[14] Christos Cassandras - Discrete Events Systems: Modeling and
Performing Analysis, IFAC Best Control Engineering
Textbook, 1999.

[15] Angappa Gunasekaran - Concurrent engineering: a
competitive strategy for process industries, Journal of the
Operational Research Society, Volume: 49, 1998, pp. 758-
775.

[16] Mauro Coccoli and Antonio Boccalatte - Future Directions of
Internet-based Control Systems, Journal of Computing and
Information Technology, 2002, pp. 115–124.

96

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 105 / 139

Model Reconstruction: Mining Test Cases

Edith Werner and Jens Grabowski
Software Engineering for Distributed Systems Group

Institute for Computer Science,
University of Göttingen, Göttingen, Germany
{ewerner|grabowski}@cs.uni-goettingen.de

Abstract—System monitors need oracles to determine
whether observed traces are acceptable. One method is to
compare the observed traces to a formal model of the sys-
tem. Unfortunately, such models are not always available —
software may be developed without generating a formal model,
or the implementation deviates from the original specification.
In previous work, we have proposed a learning algorithm to
construct a formal model of the software from its test cases,
thereby providing a means to transform test cases for offline
testing into an oracle for monitoring. In this paper, we refine
our learning algorithm with a set of state-merging rules that
help to exploit the test cases for additional information. Using
the additional information mined from the test cases, models
can be learned from smaller test suites.

Keywords-Machine Learning, Reverse Engineering, Testing

I. INTRODUCTION

Today, software systems are generally designed to be
modular and reusable. A common scenario of a modular,
reusable system is a web service, where simple services
are accessed as needed by various clients and orchestrated
into larger systems that can change at any moment. While
the vision of ultimate flexibility is clearly attractive, there
are also drawbacks, as the further usage of a module is
difficult to anticipate. In this scenario, it may be advisable
to monitor a system for some time after its deployment, to
detect erroneous usage or hidden errors.

Monitors are used to observe the system and to assess the
correctness of the observed behavior. To this end, monitors
need oracles that accept or reject the observed behavior, e.g.,
a system model that accepts or rejects the observed traces of
the monitored system. Unfortunately, the increasing usage
of dynamic software development processes leads to less
generation of formal models, as the specification of a formal
model needs both time and expertise. Generating a formal
model in retrospect for an already running system is even
harder, as the real implementation often deviates from the
original specification.

We propose a method for learning a system model from
the system’s test cases without probing the System Under
Test (SUT) itself. When test cases are available, they often
are more consistent to the system than any other model.
Ideally, they take into account all of the system’s possible
reactions to a stimulus, thereby classifying the anticipated
correct reactions as accepted behavior and the incorrect or

unexpected reactions as rejected behavior. As the test cases
are developed in parallel to the software, they provide a
means to judge the correct behavior of the system. Also,
test cases are generated at different levels of abstraction,
e.g., for unit testing, integration testing, and system testing.
By selecting the set of test cases to be used, the abstraction
level of the generated model is influenced.

The basis of our approach is a learning algorithm, first
introduced by Angluin [1], which learns a Deterministic
Finite Automaton (DFA). To learn from test cases, we
adapted the query mechanisms of the algorithm [2]. Exper-
iments with our approach show that while a model can be
learned this way, the algorithm only accepts simple traces
as input, thereby losing additional information from the test
cases, e.g., regarding branching, default behavior, or syn-
chronization. We believe that exploitation of this additional
information would enhance the learning algorithm.

In this paper, we propose a state-merging approach,
termed semantic state-merging, which exploits the semantic
properties of test cases in order to identify implicitly defined
behavior. We first define a data structure, the trace graph, to
store the available test cases. Then, we define merging rules
for cyclic test cases and for test cases with default branches
for the construction of the trace graph.

The remainder of this paper is structured as follows.
Section II gives an overview on related work. In Section III,
we introduce the foundations of our work in testing and ma-
chine learning. Section IV describes the trace graph and its
construction. Based on this, Section V defines our approach
to semantic state-merging on test cases. Subsequently, in
Section VI, we give an overview on our experimental
results. In Section VII, we conclude with a summary and
an outlook.

II. RELATED WORK

During the last years, a number of approaches have
adapted Angluin’s learning algorithm in combination with
testing. Mainly, the approaches focus on the learning side
of the problem and refine the properties of the generated
model. Among the most recent adaptations are approaches to
learning Mealy machines [3] and parameterized models [4],
[5], [6], [7]. Some approaches can handle large or even
infinite message alphabets [4] or potentially infinite state

97

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 106 / 139

spaces [5]. In all those approaches, the learning algorithm
generates test cases that are subsequently executed against
the SUT, so that the System Under Test itself is the oracle
for the acceptability of a given behavior.

Some approaches use outside guidance to improve the
learning approach. The algorithm presented in [8] learns
workflow petri nets from event logs and handles incomplete
data by asking an external teacher. In [9], learning is used
in a modeling approach. In this approach, a domain expert
provides Message Sequence Charts representing desired and
unwanted behavior.

Our approach differs from the above in two aspects. First,
our aim is to generate a model for online monitoring. To
this end, we need a model that is independent from the
implementation itself. Therefore, we can neither use the
implementation as an oracle nor learn from event traces
generated by the implementation. Instead, we choose to learn
from a test suite that was developed due to external criteria.
Using a test suite also leads to the second difference of our
approach. Where other approaches rely on unstructured data,
a test suite provides relations between the distinct traces.
We exploit those relations in order to enhance our learning
procedure. Where other approaches address the learning side
of the problem, our focus is actually on the structure of the
teacher.

III. FOUNDATIONS

In the following, the foundations of testing and on the
learning of DFA are given.

A. Testing

A test case is itself a software program. It sends stimuli to
the SUT and receives responses from the SUT. Depending
on the responses, the test case may branch out, and a test
case can contain cycles to test iterative behavior. To each
path through the test case’s control flow graph, a verdict is
assigned. A common nomenclature is to use the verdict pass
to mark an accepting test case and the verdict fail to mark a
rejecting test case. An accepting test case is a test case where
the reaction of the SUT conforms to the expectations of the
tester. This can also be the case, when an erroneous input is
correctly handled by the SUT. Accordingly, a rejecting test
case is a test case where the reaction of the SUT violates
its specification. Depending on the test specification, there
may be additional verdicts, e.g., the Testing and Test Control
Notation version 3 (TTCN-3) [10] extends the verdicts pass
and fail with the additional verdicts none, inconc, and
error: none denotes that no verdict is set; inconc indicates
that a definite assessment of the observed reactions is not
possible, e.g., due to race conditions on parallel components;
and error marks the occurrence of an error in the test
environment. During the execution of a test case, the verdict
may be changed at different points. The overall assessment
of a test case depends on the verdicts set along the execution

trace, and is computed according to the rules of the test
language. E.g., in TTCN-3, the overall verdict may only be
downgraded, i.e., once an event was rated as fail the overall
verdict may not go back to pass. For most SUTs, there is a
collection of test cases, where each test case covers a certain
behavioral aspect of the SUT. Such a collection of test cases
for one SUT is called a test suite.

The main objective when constructing test cases for a
software system is to assure that the specified properties are
present in the SUT. To test against a formal specification,
e.g., in the form of a DFA, test cases are derived from the
model by traversing the model so that a certain coverage
criterion is met, e.g., state coverage or transition coverage.
State coverage means that every state of the model is visited
by at least one test case. Transition coverage means that
every transition of the model is visited by at least one test
case. The largest possible coverage of a system model is
path coverage, where every possible path in the software is
traversed.

B. Learning a Finite Automaton Model from Test Cases

Our learning approach is based on a method proposed by
Angluin [1]. The algorithm consists of the teacher, which
is an oracle that knows the concept to be learned, and the
learner, who discovers the concept. The learner successively
discovers the states of an unknown target automaton by
asking the teacher whether a given sequence of signals is
acceptable to the target automaton. To this end, the teacher
supports two types of queries. A membership query evaluates
whether a single sequence of signals is a part of the model
to be learned. An equivalence query establishes whether the
current hypothesis model is equivalent to the model to be
learned.

For learning from test cases, we need to redefine the two
query types for test cases. The most important mechanism
of the learning algorithm is the membership query, which
determines the acceptability of a given behavior. In our case,
the behavior of the software and thus of the target automaton
is defined by the test cases. Since the test cases are our only
source of knowledge, we assume that the test cases cover the
complete behavior of the system. In consequence, we state
that every behavior that is not explicitly allowed must be
erroneous and therefore has to be rejected, i.e., rejected ≡
¬accepted. In consequence, we accept a sequence of signals
if we can find a pass test case matching this sequence, and
reject everything else.

The equivalence query establishes conformance between
the hypothesis model and the target model. This is exactly
what a test suite is designed for, therefore, we redefine the
equivalence query as an execution of the test suite against the
hypothesis model, where every test case in the test suite must
reproduce its verdict. A detailed description of the learning
algorithm can be found in [2], [11].

98

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 107 / 139

IV. REPRESENTING TEST CASES

For the learning procedure, it is important that queries can
be answered efficiently and correctly. Therefore, we need a
representation of the test suite that is easy to search and
provides a means to compactly store a large number of test
cases. In the following, we define the trace graph as a data
structure and describe its construction.

A. The Trace Graph

As described in Section III-A, in general, a test case is
itself a piece of software and can therefore be represented
as an automaton containing a number of event sequences.
Usually, a test case distinguishes events received from the
SUT, events sent to the SUT, and internal actions like value
computation or setting verdicts. Each possible path through
the test case must contain the setting of a verdict.

For the learning procedure, we only regard input and
output events as the transitions in our target model and
ignore internal actions except for the setting of verdicts. The
verdicts are used to identify accepting test cases.

In general, every test case combines a number of traces,
depending on the different execution possibilities. At the
same time, a test suite contains a number of test cases, where
different test cases may contain identical traces as they partly
overlap. To present the test cases to the learning algorithm,
we combine all traces from all test cases in the test suite into
a single data structure, the trace graph, thereby eliminating
duplicates and exploiting overlaps.

To enable an efficient search on the test cases, the trace
graph is based on a labeled search tree, where all traces share
the same starting state and traces with common prefixes
share a path in the trace graph as long as their prefixes match.
For the state-merging approach, the nodes in the trace graph
are annotated with the verdicts. Cycles in the test cases are
represented in the trace graph by routing the closing edges
back to the starting node of the cycle. For better control,
nodes where a cycle starts are also marked.

The trace graph forms the basic data structure for our se-
mantic state-merging. The semantic state-merging methods
depend on the information contained in the test cases, which
in turn depends on the test language. To represent this, the
trace graph can be extended to represent diverse structural
information on the test cases by defining additional node
labels. That way, information on the test cases will only
affect the construction of the trace graph, but not the learning
procedure that depends on its structure.

B. Constructing the Trace Graph

To construct the trace graph, we dissect the test cases into
single traces and add them to the trace graph. Starting in the
root of the trace graph, the signals in the trace to be added
are matched to the node transitions in the trace graph as far
as possible. We call this part of the trace the common prefix.
The remainder of the new trace, the postfix, is then added to

the last matched node. Algorithm 1 describes the procedure
in pseudo code.

Data: A sequence of signals w
Start at the root node n0 of the trace graph;1

for all signal in w do2

Get the first signal b in w;3

if the current node has an outgoing edge marked b4

then
Move to the b-successor of n, which is δ(n, b);5

Remove the first signal from w;6

else7

// The signal is unknown at the current node
Add w as a new subgraph at the current node;8

return;9

end10

end11
Algorithm 1: Add a Trace to the Trace Graph

Cycles of the test case automaton need special treatment,
as a cycle means that an edge loops back to an existing node.
To this end, we separate the cyclic traces into three parts, a
prefix leading into the cycle, the cycle itself and a postfix
following the cycle. We then add the prefix and the cycle,
whereby the last transition in the cycle is linked back to the
beginning of the cycle. Finally, the postfix then is added to
the trace graph.

V. MINING THE TEST CASES

So far, the state-merging in the trace graph only means
the combination of the test case automata, where traces
are only merged as far as their prefixes match. The trace
graph therefore exactly represents the test cases, but nothing
more. In the following, we show two techniques to derive
additional traces based on our knowledge of test cases.

A. Cycles and Non-Cycles

When testing a software system with repetitive behavior
or a cyclic structure, the cycle has of course to be tested.
However, usually it is sufficient to test the correct working
of the cycle in one test case. In all other test cases the
shortest possible path through the software is considered,
which may mean that test cases execute only a part of a cycle
or completely ignore a cycle. Depending on the test purpose,
the existence of the cycle might not even be indicated in the
test case. As long as the cycle itself is tested by another
test case, the test coverage is not influenced. This approach
results in shorter test cases, which means shorter execution
time and thus faster testing. Furthermore, the readability
of the test cases is increased. While the preselection of
possible paths for cycles is appropriate for software testing,
for machine learning it is desirable to have access to all
possible paths of the software.

99

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 108 / 139

start

 a
b

 c

setverdict
(pass)

(a) A Test Case with a Cycle

start
 a

 c

setverdict
(fail)

(b) A Test Case without a Cycle

PASS

NONEa

NONE

b

FAILc

c

(c) Trace Graph Combining
Both Test Cases

Figure 1. Precedence of Cyclic Behavior

Consider the two test cases shown in Figures 1a and 1b.
Although this is only a small example for demonstration
purposes, the setting is quite typical. The test case shown in
Figure 1a tests the positive case, that is, a repeated iteration
of the three signals a, b, and c. The test case shown in
Figure 1b tests for a negative case, namely what happens
if the system receives the signal c too early. In the latter
test case, the repetitive behavior is ignored, as it has been
tested before and the test focus is on the error handling of
the system. However, usually this behavior could also be
observed at any other repetition of the cycle.

For the learning procedure, we would like to have all
those possible failing traces, not only the one specified. We
therefore define a precedence for cycles, which means that
whenever a cycle has the same sequence of signals as a non-
cyclic trace, the non-cyclic trace is integrated into the cycle.
Figure 1c shows the trace graph combining the two test cases
in Figures 1a and 1b. Besides the trace a, c, setverdict(fail)
explicitly specified in Figure 1b, the trace graph also con-
tains traces where the cycle is executed multiple times, (a,
b, c)*, a, c, setverdict(fail). With precedence of cycles, the
test suite used as input to the learning algorithm can be more
intuitive, as cycles only need to be specified once.

B. Default Behavior

Another common feature of test cases is the concentration
on one test purpose. Usually, the main flow of the test
purpose forms the test case, while unexpected reactions of
the SUT are handled in a general, default way. Still, there
may exist a test case that tests (a part of) this default behavior
more explicitly.

Default branches usually occur when the focus of the test
case is on a specific behavior, and all other possible inputs
are ignored or classified as fail. Also, sometimes a test case
only focuses on a part of the system, where not all possible
signals are known. In such cases, the test case often contains
a default branch, which classifies what is to be done on
reading anything but what was specified.

For our application, this poses two challenges. The first
challenge is in the learning procedure. For the different
queries, we need to have as many explicitly classified traces
as possible, but at the same time we do not want to blow
up the size of the test suite. The second challenge is in the

start
a

 b

else

setverdict
(pass)

setverdict
(fail)

(a) Test Case

NONE NONEa
PASSb

FAIL

C{b}

(b) Trace Graph

Figure 2. Representing Default Branches

start
 prefix

subgraph Aa

subgraph BC{a}

Figure 3. Generic Trace Graph with Default Branch

construction of the trace graph. When adding all different
traces into one combined structure, the implicit context
of what is “default” in the local test case is lost. Also,
sometimes another test case uses the same default, adds more
specific behavior in the range of the default, or defines a new
default which slightly differs. We therefore need a method
of preserving the local concept of “default” in the test cases
and a method of combining different defaults in the trace
graph.

Consider a typical default situation, like a default state-
ment in a switch-case environment. The default collects
all cases that are not explicitly handled beforehand. As
branching on alternatives splits the control flow in a pro-
gram, each of the branches belongs to a different trace.
Therefore, when taking the traces one by one, the context
of the default is not clear. To preserve this context, instead
of default we record the absolute complementary of the set
of other alternatives, which is {{a, b}. A complementary set
is a set that contains everything but the specified elements.
Figure 2 shows a test case with defaults (Figure 2a) and
its representation as a trace graph using the complementary
set notation (Figure 2b). The branch marked with {{a}
represents every branch not marked with a.

Figure 3 shows a trace graph with a default branch in
a general way. There are some arbitrary transitions leading
to the default (marked with prefix), the default branching
itself with an edge marked a and an edge marked {{a}
(”everything but a”), and the arbitrary subgraphs of a and
{{a}.

When adding a trace with a matching prefix to this trace
graph, the signal s following the prefix can be matched to
the trace graph according to one of the following three cases.

• Exact Match: s matches one of the branches of the trace
graph, i.e., if s is a complementary set, it is identical
to the complementary set in the trace graph.

• Subset: s matches one signal (or a subset of signals) of
the complementary set in the trace graph.

• Overlap: s is a complementary set, and overlaps the
complementary set in the trace graph.

The first and simplest case is the exact match, where
a trace with a matching complementary set is added. As
the complementary sets are identical, it suffices to add

100

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 109 / 139

start
prefix

 C{a}

postfix

(a) Test Trace to be Added

start
 prefix

subgraph A a

subgraph B
 +

postfix

 C{a}

(b) New Trace Graph

Figure 4. Add a Trace with a Matching Default

start
prefix

 b

postfix

(a) Test Trace to be Added

start
 prefix

subgraph Aa

subgraph B
C{a,b}

subgraph B

b copy

(b) Modify the Trace Graph:
Split the Default Branch

start
 prefix

subgraph Aa

subgraph BC{a,b}

subgraph B
 +

postfix

b

(c) New Trace Graph

Figure 5. Add a Trace with a Subset of the Default

the postfix of the trace to the subgraph of the default
already in the trace graph. Figure 4 illustrates this. Figure 4a
shows the test trace to be added. The prefix of the trace
matches the prefix of the trace graph (see Figure 3) and
the complementary set {{a} matches the complementary
set in the trace graph. Therefore, the postfix of the trace
has to be added to the subgraph of the complementary set.
Assuming that there are no other defaults in the postfix,
this is done according to the construction rules described
in Section IV-B. Figure 4b depicts the resulting trace graph
after the new trace was added.

In the second case, the new trace matches a subset of
the complementary set in the trace graph. The situation is
depicted in Figure 5, the signal following the prefix in the
trace (Figure 5a), b, is a subset of the complementary set
{{a}. However, the postfix cannot simply be added to the
subgraph of the complementary set, as this would allow
unspecified traces. Instead, before adding the postfix, the
trace graph is modified as shown in Figure 5b. The signal b
is removed from the complementary set and represented by
a distinct edge. Now, the new trace matches exactly and the
adding proceeds as described for the first case. Figure 5c
shows the result.

In the third and last case, the complementary sets of the
new trace and the trace graph overlap (see Figure 6). The
trace contains an edge marked with the complementary set
{{b} (Figure 6a), whereas the trace graph contains an edge
marked with the complementary set {{b} (see Figure 3). The
complementary set of the test trace to be added does not fit
the complementary set of the trace graph, but there is an
overlap, i.e., every signal which is neither a nor b matches
both sets.

The solution is similar to the second case. The transitions

start
prefix

C{b}

postfix

(a) Test Trace to be Added

start
prefix

subgraph Aa

subgraph B
C{a,b}

subgraph B

b copy

(b) Modify the Trace Graph:
Split the Default Branch

start
prefix

 C{a,b}

a

 copy

postfix

postfix

 copy

(c) Modify the Test Trace:
Split the Default Branch

start
 prefix

subgraph A
 +

postfix
a

subgraph Bb

subgraph B
 +

postfix

C{a,b}

(d) New Trace Graph

Figure 6. Add a Trace with a Differing Default

in the trace need to match the transitions in the trace graph,
so the sets are split accordingly. For the trace graph, the
edge marked b is branched out from the complementary set
(Figure 6b). The remaining complementary set in the trace
graph is {{a, b}. However, the complementary set of the
test trace still does not match, so the test trace is also split
(Figure 6c). The complementary sets of the trace graph and
the test trace are now identical, {{a, b}, but the test trace
has been split into two test traces. Now, the two resulting
test traces can be added to the trace graph, resulting in the
trace graph shown in Figure 6d.

The described techniques also generalize to sets with more
than one element. In this case, the sets associated with
the split branches are determined as the intersections and
differences of the given sets.

VI. EXPERIMENTAL RESULTS

To assess the power of our learning approach, we have
developed a prototypical implementation [11]. The imple-
mentation realizes an Angluin-style learner, which is adapted
to learning from test cases, and the organization of the test
data into a trace graph as discussed in Sections IV and V.
Using the prototype, we performed a case study based on the
conference protocol [12]. The conference protocol describes
a chat-box program that can exchange messages with several
other chat-boxes over a network.

Table I shows our results for a simple version of the
conference protocol, where the sequence of the signals
was fixed. The protocol scaled according to the number of
participating chat-boxes. As the table shows, the semantic
state-merging reduces the size of the trace graph by more

101

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 110 / 139

Number of Size of Size of the Trace Graph Size of the Test Suite
Chat-Boxes Target Automaton Without Merging With Merging Without Merging With Merging

1 72 edges, 8 nodes 33 nodes 13 nodes 6 pass traces 2 pass traces
2 168 edges, 12 nodes 60 nodes 22 nodes 9 pass traces 3 pass traces
3 304 edges, 16 nodes 90 nodes 30 nodes 12 pass traces 4 pass traces
4 480 edges, 20 nodes 120 nodes 40 nodes 15 pass traces 5 pass traces
5 696 edges, 24 nodes 164 nodes 48 nodes 18 pass traces 6 pass traces

Table I
EFFECT OF SEMANTIC STATE-MERGING

than half in this example, while the learned automaton was
identical. Also, the test suite can be smaller. In addition, the
compact version of the trace graph also allows an optimized
equivalence query.

Additional experiments show that while our approach
quickly learns clearly structured models, models with a
high degree of variation are hard to learn and require a
large test suite. In fact, for a more complex version of the
conference protocol with variable signal sequence, the model
could only be reconstructed from a test suite satisfying path
coverage [11]. However, it is possible that the size of the test
suite can be further reduced using additional state-merging
rules, e.g., marked stable testing states.

VII. CONCLUSION

We have presented a learning approach that combines
state-merging and learning techniques to generate a DFA
from a test suite. The state-merging is used to represent
the test suite and to find additional test cases exploiting
the semantic properties of the test language. The combined
approach has been implemented in a prototypical tool.
Experiments show that while the state-merging approach
reduces the size of the test suite needed for correct iden-
tification of the model, complex models still need a large
number of test cases for correct identification.

Optimizations to deal with this problem comprise the
extension of the semantic state-merging approach to exploit
further information contained in the test cases and an exten-
sion of the learning algorithm to work with unanswerable
membership queries. In addition, the relation between test
suite coverage, system structure, and learnability offers in-
teresting research topics. Based on the experiments with our
learning approach, the next step is to incorporate the identi-
fied optimizations into our prototypical implementation. In
the long run, our findings on the learnability of different
models could also be used to assess the adequacy of a test
suite.

REFERENCES

[1] D. Angluin, “Learning Regular Sets from Queries and Coun-
terexamples,” Information and Computation, vol. 75, no. 2,
pp. 87–106, 1987.

[2] E. Werner, S. Polonski, and J. Grabowski, “Using Learning
Techniques to Generate System Models for Online Testing,”
in Proc. INFORMATIK 2008, ser. LNI, vol. 133. Köllen
Verlag, 2008, pp. 183–186.

[3] M. Shahbaz and R. Groz, “Inferring Mealy Machines,” in
Proc. FM 2009, ser. LNCS, vol. 5850. Springer, 2009, pp.
207–222.

[4] F. Aarts, B. Jonsson, and J. Uijen, “Generating Models of
Infinite-State Communication Protocols Using Regular Infer-
ence with Abstraction,” in Proc. ICTSS’10, ser. LNCS, vol.
6435. Springer, 2010, pp. 188–204.

[5] T. Berg, B. Jonsson, and H. Raffelt, “Regular Inference for
State Machines Using Domains with Equality Tests,” in Proc.
FASE 2008, ser. LNCS, vol. 4961. Springer, 2008, pp. 317–
331.

[6] T. Bohlin, B. Jonsson, and S. Soleimanifard, “Inferring Com-
pact Models of Communication Protocol Entities,” in proc.
ISoLA 2010, ser. LNCS, vol. 6415. Springer, 2010, pp. 658–
672.

[7] M. Shahbaz, K. Li, and R. Groz, “Learning and Integration
of Parameterized Components Through Testing,” in Proc.
TestCom 2007, ser. LNCS, vol. 4581. Springer, 2007, pp.
319–334.

[8] J. Esparza, M. Leucker, and M. Schlund, “Learning Workflow
Petri Nets,” in Proc. PETRI NETS 2010, ser. LNCS, vol. 6128.
Springer, 2010, pp. 206–225.

[9] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker, “SMA —
The Smyle Modeling Approach,” Computing and Informatics,
vol. 29, no. 1, pp. 45–72, 2010.

[10] ETSI Standard (ES) 201 873: The Testing and Test Control
Notation version 3; Parts 1–10, ETSI Std., Rev. 4.2.1, 2010.

[11] E. Werner, “Learning Finite State Machine Specifications
from Test Cases,” Ph.D. dissertation, Georg-August-
Universität Göttingen, Göttingen, Jun. 2010. [Online].
Available: http://webdoc.sub.gwdg.de/diss/2010/werner/

[12] L. D. Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. F. E.
Belinfante, and R. G. Vries, “Formal Test Automation: The
Conference protocol with TGV/Torx,” in Proc. TestCom 2000,
ser. IFIP Conference Proceedings. Kluwer Academic Pub-
lishers, 2000, pp. 221–228.

102

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 111 / 139

Generic Data Format Approach for Generation of Security Test Data

Christian Schanes, Florian Fankhauser, Stefan Taber, Thomas Grechenig

Vienna University of Technology

Industrial Software (INSO)

1040 Vienna, Austria

E-mail: christian.schanes,florian.fankhauser,

stefan.taber,thomas.grechenig@inso.tuwien.ac.at

Abstract—Security testing is an important and at the same

time also expensive task for developing robust and secure

systems. Test automation can reduce costs of security tests

and increase test coverage and, therefore, increase the number

of detected security issues during development. A common

data format as the basis for specific test cases ensures that

the implementation of the generation logic for security test

data is only needed once and can be used for various data

formats by transforming the data to the common data format,

generating the test data and transforming back to the original

data format. The introduced approach enables to generate test

data for various formats using a single implementation of the

generation algorithm and applying the results for specific test

cases in different data formats.

Keywords—Software testing; Computer network security;

Fuzzing.

1. Introduction

Software systems are getting more and more complex

today using various programming languages and protocols

developed by many different companies. Security testing

of such systems is required to increase robustness against

attacks. The extent of the attack surface of systems with

different interfaces requires multiple different tools for se-

curity testing, which also increases required resources for

test execution. The generation of the required test data and

the execution of security tests are time consuming and,

therefore, expensive. Automatization of test execution is

required to reduce costs and increasing the test coverage

of a System Under Test (SUT).

Applications for conducting security tests require test data

as input, which can be mutated using methods to alter the

data to structures and values that are specific for security

tests. For generating such information a possible available

input format definition can be used, e.g., XML Schema

Definition (XSD). Our approach considers the automated

extraction of such a format definition based on a set of

test data if such a definition is not available or not accurate

enough for generating proper test data. Such test data can

be gained during development or by using input data of

functional tests.

This work presents an approach using Extensible Markup

Language (XML) as generic data format for test execution.

Using one generic format allows the implementation of

one smart generation algorithm instead of using specific

algorithms for various data formats and allows to use a

reduced tool set for test execution. For additional protocols

only new transformation rules are required and not the new

implementation of a completely new generation algorithm.

For testing a single service multiple tools are required

to test the various layers of the service. For example, a

web service uses Hyper Text Transfer Protocol (HTTP)

as transport protocol, XML or JavaScript Object Notation

(JSON) for data transport and in security critical environ-

ments cryptographic methods are used to ensure protection

goals, which often require X.509 certificates. Our approach

allows to use one tool to generate test data for all of the used

protocols in a web service. As description language we use

XSD [1] introduced by W3C as a standard for describing

how a certain XML document is supposed to look like.

As a prototype we implemented transformation routines for

Abstract Syntax Notation One (ASN.1), which is used for

many Public Key Infrastructure (PKI) protocols of the X.509

standard like revocation lists or certificates [2].

The remainder of this paper is structured as follows:

Section 2 lists related work. Section 3 discusses XML as

a common format for security tests. Section 4 gives details

about the introduced approach for generating test data. The

implemented prototype was used for generating test data for

PKI protocols, which is presented in Section 5. The paper

finishes with a conclusion and ideas for further work in

Section 6.

2. Related Work

Thompson [3] defines security failures as side effects of

the software, which are not specified and make security

testing hard. Fuzzing is one possible technique to find

such side effects by executing the application with many

automatically randomly or rule-based generated input data

[4]–[6].

103

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 112 / 139

If no detailed specification of the interfaces are available

to generate data automatically it is possible to extract test

data from executed functional tests, e.g., by using stored test

data, network traffic [7], [8] or by dynamic binary analysis

[9]–[11].

Transforming from different data formats to XML and

vice versa is discussed by various authors, e.g., for Resource

Description Framework (RDF) [12], relational databases

[13], [14] or ASN.1 [15]. ASN.1 [16] is a format commonly

used by different protocols and applications. Yoon et al. [17]

discuss the usage of ASN.1 for Simple Network Manage-

ment Protocol (SNMP). The ASN.1 format is also used for

various PKI protocols like X.509 [2].

Moreover, different authors discussed the similarity of

ASN.1 and XML [18]–[22] and mapping of ASN.1 and

XML [21].

Due to the widespread usage of XML processing systems

the generation of test data was discussed by various authors.

Different approaches are available, which are based on

different sources for generation like document specification

languages (e.g., XSD or Document Type Definition (DTD)),

based on specific generation rules in a non XML format or

by using example input data. Aboulnaga et al. [23] discuss

a generator, which is based on simple implemented rules,

which allow limited generation of XML data. Bertolino

et al. [24]–[26] implemented TAXI, a XML generator,

which generates documents (instances) based on a given

XML schema and follows the XML-based Partition Testing

approach (XPT), which is a modification of the Category

Partition Method. Xu et al. [27] also use a XML schema

as basis to generate valid and invalid messages for testing

web services. ToXgene by Barbosa et al. [28] is a template

based XML generator, which uses a template specification

language within a XML schema to describe the rules for

generating data. Pan et al. [29] use example instances to

extract allowed values for the generated data additionally to

the document specification.

3. XML as Common Format for Test Data

Generation

Implementing techniques for optimized data generation

for tests is often required for test execution to detect as

many errors as possible with as less effort as possible. For

this our approach considers the usage of a common data

format where optimized algorithms for data generation have

to be implemented only once.

3.1. Definition of Security Test Data

The attack surface of a SUT contains various interfaces

using different protocols and data formats on various layers,

e.g., network or application. Analyzing the attack surface

of an application is important for conducting security tests.

The application takes the input data and, often, at first

performs syntactical validation of the data. For state based

protocols another validation is done by the state machine,

which only allows specific state transitions. Finally, the data

will be handed over to the business logic, which processes

the values. Understanding and considering such validation

steps is important to test the intended piece of software

within the application, which is only seen as black box.

For preparing input data for security tests, semantical,

syntactical and state aspects have to be considered. Se-

mantical aspects consider a standard compliant processing

of the information. The generated values have to fulfill

certain restrictions, e.g., a valid checksum. The definition

can be stated in the technical interface specification, e.g.,

restrictions in XSD, or restrictions in the applications with-

out explicit definition in the interface specification. Both

aspects have to be considered. For testing semantical aspects

structural and state valid data is required because otherwise

the data will be discarded during the validation process of the

SUT and the business logic, which semantically processes

the data will not be triggered. State aspects consider state

based protocols where the underlying state machine expects

data in a specific order and otherwise discards it. The

structure is considered by validating the syntax. It is the

most basic aspect of the SUT interface because a structural

invalid message will be rejected early before handling the

information to the state machine or the business logic. It is

required to generate structural valid documents according to

the interface specification and structural invalid documents

to test the robustness of the system with such data. For

increased coverage of the SUT all of the mentioned aspects

have to be considered when creating test data for security

tests.

Common practice for tests is to inject only one fault per

test case to ensure reproducibility [30]. This applies for

semantical, syntactical as well as for state aspects. Therefore,

valid data is required for security tests to be able to inject

faults on specific positions only.

3.2. Data Generation Approach Based on XML

Figure 1 shows the test data generation process used in our

approach. There are several alternative paths depending on

the available source information for producing test data. One

path is based on existing data definition languages, which

are used directly if they are already available as XSD. If they

are available in a different format they can be transformed to

the used XSD format. Another path is the usage of available

input data, which will first be transformed to XML and based

on XML input data a data definition will be derived as XSD.

The generation is always based on the given or generated

XSD and an optional set of rules or example data to produce

accurate values for the test data.

104

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 113 / 139

Figure 1. Process of Test Data Generation Approach Based on a Common
Data Format

3.3. Using Transformation to Generate Data for

Various Formats

Transformation is one of the key aspects of our approach.

By transforming from various data formats to XML/XSD

a generic data generation approach is possible. For many

different data formats there already exist methods for trans-

forming to and from XML [12]–[14], [20], [21], [31].

The approach also allows transformation of data definition

languages, e.g., DTD. This allows the generation of test data

if a data definition is available, which can be transformed

to XSD. After the generation process all the produced XML

test data will be transformed to the destination data format.

3.4. Extraction of Interface Definition Based on

Samples

Additionally, the generation is also possible without a

document specification as can be seen in Figure 1, e.g., based

on a set of input data extracted from the network.

A way to find or rather deduce some kind of schema

is to use a set of XML input data samples. Only valid

XML instances can be used as samples. Such data can be

identified, for example, by executing the application and

logging the generated data.

The approach uses the given samples to deduce rules

which the XML (its structure and content) follow and build

a specification as XML schema. The resulting XML schema

can then be used for the test data generation.

The samples usually can not cover every possible data

variation that is actually allowed and some assumptions

have to be made when deducing rules for a common input

specification. This means that some information about the

actual input specification gets lost and, therefore, the data

that can be generated will be restricted.

4. Automated Generation of Test Data

The presented approach for generating test data uses

XSD as source, which builds the model to generate the

test data. Based on the given XSD, structural valid and

invalid XML documents with valid and invalid values can be

generated. XML is hierarchically structured, which allows to

systematically traverse through the hierarchical tree, starting

at the root-element. Each node (e.g., sequences, elements,

attributes, . . .) of the tree will be processed and based on

schema details, e.g., min-/maxOccurs, choices, various

possible facets, etc. the test data will be generated.

The generated test data will be used for security testing

by using a fuzzing approach. Two different aspects are

considered during test data generation to allow usage by

the fuzzing engine. Firstly, valid test data, which can be

further used to inject faults are generated. This requires

valid structures with valid values to avoid discarding by

validation routines in the SUT. Secondly, a set of test data is

required that is using invalid structures, which do not fulfill

the available data definition.

4.1. Approach for Generation of Valid XML Struc-

tures

In XML schema it is possible to define customized data

types in form of simple and complex types. These types can

then be used like built-in data types to specify the content

of elements or attributes. Simple types are used to constrain

existing data types. They do not allow the definition of

attributes or child elements. Complex types are used for

defining a structure of elements with possible further child

elements, which can again be simple or complex types.

There are three indicators for ordering or choosing these

elements, which are sequence, all and choice. The

sequence indicator specifies that the elements have to be

in a specific order, which has only one valid variant for

ordering the elements, because every other sequence of the

given elements makes the document schema invalid.

The order of the defined elements is irrelevant if the

all indicator is used. Every permutation of those elements

within the all indicator would represent a valid variant of

the complex type.

The choice indicator differs from the others in the way

that from the child elements only one element can be chosen.

Therefore, there is one valid data variation for each element

defined in the choice.

XSD further supports to define elements and attributes

optional or required. If an element is marked as

105

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 114 / 139

optional, then there exist at least two valid variants for this

element. One with the element and one without it. In case of

elements, it is also possible to define the occurrence of such

an element by using the facets (restrictions or “rules” defined

in XSD) minOccurs and/or maxOccurs, which also has

to be considered for the generation of data. If such restric-

tions exist, a variant with the minimum occurrence, one

with the maximum occurrence and one with an occurrence

between those two limits are chosen. If the restriction of

maxOccurs is “unbounded” a predefined maximum value

has to be defined for the element.

The result of the test data generation in form of the

generated XML instances in the end is basically just the

combination of the available valid variants of each element

to form a number of different XML documents. These XML

documents will all be valid according to the given XML

schema, because they were produced by applying every rule

defined in the schema and using them to find meaningful

variants based on the existing restrictions.

4.2. Approach for Generation of Schema Invalid

Variants

In addition to the generation of valid XML documents,

in this section different approaches for manipulating the

structure of an XML document are explained, so that it

is not valid according to its XML schema. Such instances

are required for testing SUT behavior during processing

schema invalid data. For the presented approach only invalid

variants are possible, which are describable in XSD and no

manipulated instances are generated, e.g., non XML well

formed documents, because such documents can not be

transformed back to the required data format, e.g., ASN.1.

For generating invalid variants only complex types and

indicators are considered. Generating invalid simple types

are not required in the used approach because this is done

by the fuzzing approach.

The order of the elements within a sequence is crucial,

which means that the elements can be swapped to produce an

invalid XML instance. In the case of an all or a choice

the order of the elements is irrelevant so it is not possible to

produce invalid instances when shuffling the order. Invalid

instances for all indicators are possible by inserting not

allowed elements.

The maxOccurs and minOccurs attributes are used

for producing an invalid XML instance with a wrong

number of elements. For that, equivalence partitioning is

applied. Moreover, specific security critical values are used

as, for example, byte ranges. The same approach applies to

maxOccurs and minOccurs within an indicator as well.

For example, if a choice is used in which minOccurs and

maxOccurs are 1, no item or several items are selected

from the choice so that the XML instance is invalid.

Attributes can be optional or mandatory by using the

attribute fixed in XSD. For mandatory attributes an invalid

instance is given by skipping the attribute.

4.3. Generation of Proper Values

The generation of proper values is important to get valid

XML documents for test execution. The documents will

further be used as input in a fuzzing engine, which uses

fault injection to prepare the final security test data.

For the generation the definitions of the XSD are used,

which provide information about data types and specific

constraints. Additionally, it is possible to provide a set of

samples to extract proper values from.

The XML schema defines built-in primitive and derived

types. For many types it is possible to define further con-

straining facets for their value space in the XML schema

definition. For example, string allows the facets listed in

Figure 2. During generation special aspects (e.g., format,

value space and facet/restrictions) of all types have to be

considered.

Facet Description

length For a fixed length string

minLength Minimum length of the expected string

maxLength Maximum length of the expected string

pattern Regular expression restriction

enumeration Only allow a set of possible values

whiteSpace Definition of handling white spaces

Figure 2. Relevant Facets for a String Type in XSD

If samples are given for the generation process as shown

in Figure 1 then the values from the samples are extracted.

The example values can be further used for building valid

test data. For this process the XML samples are parsed and

each value is stored in a list together with the position of

the value as XPath statement. Additionally, it is possible to

use predefined values from a configuration file again as a

tuple of the position as XPath statement and the value. This

approach allows manual overriding of the automatic value

generation.

For specific data it is possible to use a predefined gen-

erator implementation, which will build valid data, e.g.,

timestamps, unique IDs, . . .Additionally, the used fuzzing

engine supports the extraction of values of the communica-

tion protocol, which is required for further input data, e.g.,

session ID in the response from the server.

5. Prototype Implementation: Generating Data

for PKI

We implemented the presented approach as a prototype

and used it for generating data for ASN.1 based PKI

106

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 115 / 139

protocols. Our approach uses the BouncyCastle library to

read the ASN.1 structure. We implemented the transforma-

tion between ASN.1 and XML and applied the approach

for generating data for Online Certificate Status Protocol

(OCSP) messages and X.509 certificates.

5.1. ASN.1 and XML

ASN.1 supports a number of different encoding rules, e.g.,

Basic Encoding Rules (BER) or Distinguished Encoding

Rules (DER). The considered encodings are Type Length

Value (TLV) based structures where type is a unique identi-

fier for the type and basically resembles the element name in

XML documents (e.g., <TBSCertificate>). Instead of

using closing elements as used by XML ASN.1 defines the

length of the value. The value can be a simple or complex

type, which is again another TLV structure, which is similar

to those of XML documents.

5.2. Fault Injection for Generating X.509 Certifi-

cates

X.509 certificates are used for many scenarios for securing

infrastructures, e.g., Virtual Private Network (VPN) or Se-

cure Socket Layer (SSL). Thorough testing of such security

gateway implementations is important to ensure secure and

robust implemented security functionality. We generated

X.509 test certificates for security testing infrastructures.

Therefore, we used samples available from functional tests

to generate security test data. Figure 3 shows the process

of generating certificates using a fuzzing approach for fault

injection.

Figure 3. Process of Certificate Fuzzing Using XML

For testing structural robustness problems schema invalid

variants were generated as discussed in Section 4.2. Faults

for value fields for simple data will be injected by the

used fuzzing engine based on random generated data and

predefined attack vectors. This is done for each field in

the X.509 certificate. The used transformation implemen-

tation additionally allows fuzzing of the ASN.1 length and

type fields to ensure robustness of internal ASN.1 parsing

functionality by manipulating the values so that the defined

type and length are not fitting the content of the field.

The algorithm for generation of the data considers the

certificate content, e.g., key, subject, and the signature part,

e.g., signature value, signature algorithm.

Finally, for X.509 certificates a valid signature is required.

For this a valid signature will be attached to the certificate

after transforming back to ASN.1. This allows the usage of

the certificate for the tested use case, e.g., in Figure 3 the

certificate will be used to establish a SSL connection.

6. Conclusion and Further Work

We presented an approach for using XML as a common

format for the generation of security test data, which allows

to test semantical, syntactical and state aspects. For the

generation of security test data various data formats can be

transformed to and from XML, which allows testing dif-

ferent protocols by implementing the generation algorithm

for the security test data only once. This reduces costs and

allows the introduction of a framework for the generation of

test data. For new formats only the transformation routines

have to be implemented.

The approach was applied for security testing ASN.1

based PKI protocols. As samples for the generation algo-

rithm X.509 certificates of the functional tests were used.

The process started by transforming ASN.1 based X.509

certificates to XML, generating test data and transforming

back to ASN.1 for testing a SSL implementation.

For future work the approach should be extended by

automatically detecting semantical constraints, which are not

defined in the XSD to produce semantical valid test data.

Currently, the performance of the implemented prototype

leads to long running generation tasks. A more efficient

implementation is required to increase the number of data

variations for the test execution.

References

[1] W3C, “Xml schema,” http://www.w3.org/TR/xmlschema-0/,
[accessed: 2010-10-20].

[2] Y. Turcotte, O. Tal, S. Knight, and T. Dean, “Security
vulnerabilities assessment of the x.509 protocol by syntax-
based testing,” vol. 3, Oct./Nov. 2004, pp. 1572–1578.

[3] H. H. Thompson, “Why security testing is hard,” IEEE
Security & Privacy Magazine, vol. 1, no. 4, pp. 83–86, 2003.

[4] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of unix utilities,” Commun. ACM, vol. 33,
no. 12, pp. 32–44, 1990.

107

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 116 / 139

[5] J. E. Forrester and B. P. Miller, “An empirical study of the
robustness of windows nt applications using random testing,”
in WSS’00: Proceedings of the 4th conference on USENIX
Windows Systems Symposium. Berkeley, CA, USA: USENIX
Association, 2000, pp. 6–6.

[6] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in PLDI ’08: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design
and implementation. New York, NY, USA: ACM, 2008, pp.
206–215.

[7] O. Udrea, C. Lumezanu, and J. Foster, “Rule-based static
analysis of network protocol implementations,” Inf. Comput.,
vol. 206, no. 2-4, pp. 130–157, 2008.

[8] W. Cui, J. Kannan, and W. Helen, “Discoverer: automatic
protocol reverse engineering from network traces,” in SS’07:
Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium. Berkeley, CA, USA: USENIX Asso-
ciation, 2007, pp. 1–14.

[9] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: auto-
matic extraction of protocol message format using dynamic
binary analysis,” in CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security. New
York, NY, USA: ACM, 2007, pp. 317–329.

[10] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Briz, “Tupni:
automatic reverse engineering of input formats,” in CCS ’08:
Proceedings of the 15th ACM conference on Computer and
communications security. New York, NY, USA: ACM, 2008,
pp. 391–402.

[11] Z. Lin and X. Zhang, “Deriving input syntactic structure from
execution,” in SIGSOFT ’08/FSE-16: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
software engineering. New York, NY, USA: ACM, 2008,
pp. 83–93.

[12] D. Van Deursen, C. Poppe, G. Martens, E. Mannens, and
R. Walle, “Xml to rdf conversion: A generic approach,” nov.
2008, pp. 138 –144.

[13] J. Fong, F. Pang, and C. Bloor, “Converting relational
database into xml document,” 2001, pp. 61 –65.

[14] M. Jacinto, G. Librelotto, J. Ramalho, and P. Henriques,
“Bidirectional conversion between xml documents and rela-
tional databases,” 2002, pp. 437 – 443.

[15] ITU-T, “X.693 information technology asn.1 encoding rules:
Xml encoding rules (xer),” X SERIES: DATA NETWORKS,
OPEN SYSTEM COMMUNICATIONS AND SECURITY
OSI networking and system aspects - Abstract Syntax No-
tation One (ASN.1), Nov. 2008, identical standard: ISO/IEC
8825-4:2008 (Common).

[16] ——, “X.680, Abstract syntax notation one (ASN. 1): Spec-
ification of basic notation,” 1994.

[17] J. Yoon, H.-T. Ju, and J. Hong, “Development of snmp-
xml translator and gateway for xml-based integrated network
management,” Int. J. Netw. Manag., vol. 13, no. 4, pp. 259–
276, 2003.

[18] D. Mundy and D. Chadwick, “An xml alternative for perfor-
mance and security: Asn.1,” IT Professional, vol. 6, no. 1,
pp. 30–36, 2004.

[19] D. Mundy, D. Chadwick, and A. Smith, “Comparing the per-
formance of abstract syntax notation one (asn.1) vs extensible
markup language (xml),” in In Proceedings of the Terena
Networking Conference, 2003.

[20] T. Imamura and H. Maruyama, “Mapping between asn.1 and
xml,” Applications and the Internet, IEEE/IPSJ International
Symposium on, vol. 0, 2001.

[21] A. Triglia, “The asn.1 language as a new schema definition
language for xml,” XML Europe 2002 Conference, May 2002.

[22] ITU-T, “X.690: ITU-T Recommendation X.690 (1997) In-
formation technology-ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER),” 1997.

[23] A. Aboulnaga, J. F. Naughton, and C. Zhang, “Generating
synthetic complex-structured xml data,” in In Proc. 4th Int.
Workshop on the Web and Databases (WebDB2001, 2001.

[24] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Taxi–
a tool for xml-based testing,” in ICSE COMPANION ’07:
Companion to the proceedings of the 29th International
Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 53–54.

[25] ——, “Systematic generation of xml instances to test complex
software applications,” in RISE’06: Proceedings of the 3rd
international conference on Rapid integration of software
engineering techniques. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 114–129.

[26] ——, “Automatic test data generation for xml schema-based
partition testing,” in Automation of Software Test , 2007. AST
’07. Second International Workshop on, may. 2007, p. 4.

[27] W. Xu, J. Offutt, and J. Luo, “Testing web services by xml
perturbation,” in ISSRE ’05: Proceedings of the 16th IEEE
International Symposium on Software Reliability Engineering.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
257–266.

[28] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons,
“Toxgene: a template-based data generator for xml,” in SIG-
MOD ’02: Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data. New York, NY,
USA: ACM, 2002, pp. 616–616.

[29] C.-C. Pan, K.-H. Yang, and T.-L. Lee, “A flexible generator
for synthetic xml documents,” in Proceedings of the Interna-
tional Conference on Information Networking (ICOIN 2003),
2003, pp. 1232–1239.

[30] G. J. Myers and C. Sandler, The Art of Software Testing. John
Wiley & Sons, 2004.

[31] E. Day, “The use of asn.1 encoding rules for binary xml,”
http://www.obj-sys.com/docs/ASN1forBinXML.pdf (last ac-
cessed: August 15, 2011).

108

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 117 / 139

A Classification for Model-Based Security Testing
Michael Felderer, Berthold Agreiter, Philipp Zech and Ruth Breu

Institute for Computer Science
University of Innsbruck

Technikerstr. 21a, A-6020 Innsbruck, Austria
{michael.felderer, berthold.agreiter, philipp.zech, ruth.breu}@uibk.ac.at

Abstract—Security testing defines tests for security require-
ments of software. Security requirements are non-functional, and
thus require a different way of testing compared to functional
requirements. Model-based testing applies model-based design
for modeling test artifacts or the automation of test activi-
ties. Although model-based testing techniques improve security
testing, these two testing activities have rarely been combined
systematically. Like functional system models improve functional
testing, risk models can improve security testing. This paper
first gives an overview of existing security testing approaches,
and based on that, develops a novel classification for model-
based security tests along the two dimensions risk and automated
test generation. The classification allows for understanding which
areas of model-based security testing are already well-covered by
research and practice, and furthermore, can serve as a guideline
for deciding which testing approach fits specific circumstances.
Based on the classification, we identify tasks for interesting future
research.

Keywords-Secure Systems, Verification and Testing, Security
Testing, Model-based Testing

I. INTRODUCTION

Security testing means to test for security requirements of
software. By the increasing use of software in more and more
areas of our daily life, also the amount of sensitive data
which is processed automatically, e.g., in electronic health or
e-government applications, increases. Consequently, the adher-
ence to security requirements, which aim to protect sensitive
data and the systems processing that data, is constantly gaining
importance. Several classifications of security requirements
can be found in literature, e.g., [1]–[3]. The most prominent
list of security requirements (cf. [3]) distinguishes six types
of security requirements:

• Confidentiality is the assurance that information is not
disclosed to unauthorized individuals, processes, or de-
vices.

• Integrity is provided when data is unchanged from its
source and has not been accidentally or maliciously
modified, altered, or destroyed.

• Authentication is a security measure designed to establish
the validity of a transmission, message, or originator,
or a means of verifying an individual’s authorization to
receive specific categories of information.

• Authorization provides access privileges granted to a user,
program, or process.

• Availability guarantees timely, reliable access to data and
information services for authorized users.

• Non-repudiation is the assurance that none of the partners
taking part in a transaction can later deny of having
participated.

Security testing aims at checking whether these
requirements are satisfied under various conditions. Due
to the openness of modern service-oriented systems, security
testing has gained much interest in the last years [4] and has
become a vast field of research.

Model-based testing (MBT) applies model-based design
for the modeling of test artefacts, or the automation of test
activities [5]. MBT supports the early definition and automatic
validation of tests on the abstract model level. Most of to-
day’s model-based testing approaches consider the automated
generation of test cases from a functional system description.
MBT itself is well-covered in literature, and many tools are
already on the market applying model-based approaches [6].
Furthermore, also partial test models are often encountered in
practice, where domain expertise by a test engineer is needed
for designing tests. Although model-based testing increases the
level of abstraction in different aspects, supports a systematic,
model-based, a-priori security test design, and reduces the
required expertise for security testing, it is not widely used
for testing security requirements today. So far, model-based
security testing (MBST), i.e., model-based testing of security
requirements, is more or less only used for testing access
control policies in academia (see Section II on security testing
approaches).

MBT re-uses functional system knowledge which is
provided by models, so that the test engineer can abstract
from many aspects in that respect. However, for testing
security requirements, the test engineer further needs security
knowledge for being reasonably able to design tests. Since
security is tightly coupled with risk, risk models can
potentially fill this gap. Based on an overview of existing
classical and model-based security testing approaches,
the contribution at hand defines a novel classification of
model-based security testing approaches, and systematically
identifies interesting future research directions to promote
model-based security testing. We classify model-based
security testing approaches along the two dimensions risk and
automated test generation. For each category of security tests,
we describe typical approaches and identify fields which offer
the potential to put the discipline of security testing forward.

109

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 118 / 139

Since we want to classify security testing approaches in
this contribution, we first detail what security is. Security
is a non-functional property, and defines how a system is
supposed to be, in contrast to what a system is supposed to do.
Security threats are caused by faults and flaws. Faults may lead
to failures which harm security requirements, and flaws are
security problems which may lead to vulnerabilities. Security
can be classified into three main levels. Each level exhibits its
own security threats, but also offers the corresponding security
requirement to deal with these threats. The three security levels
network security, operating system security, and application
security (cf. [7]) are characterized as follows:

• Network Security involves tackling threats which target
the network. The main threats are (distributed) denial-
of-service, network intrusion, or attacks during message
transport (cf. [8]).

• Operating System Security is related to the basic services
of operating systems and includes protection against
all sorts of malware (virus, worm, spyware, etc.). The
protection mechanisms involve antivirus, anti-malware,
operating system level access control mechanisms, fire-
walls, etc. (cf. [9])

• Application Security deals with the threats targeting
a specific application. It includes unauthorized access,
information theft, and misuse of the application. The
security mechanisms include access control mechanisms
and policies, application level encryption/decryption, etc.

All these security levels can be subject to software tests.
In this paper, we focus on application security and disregard
the network and operating system, nevertheless this does not
limit the applicability of the classification we introduce later.

The remainder of this paper is organized as follows: In
Section II, we give an overview of existing security testing
approaches. In Section III, we define a novel classification
of model-based security testing with the dimensions risk
and automated test generation. Finally, in Section IV, we
summarize and sketch future work in the area of model-based
security testing arising from our classification.

II. SECURITY TESTING APPROACHES

In this section, we give a representative overview of
actual security testing approaches to motivate model-based
security testing that considers risks and partial test generation.
Security testing is often fundamentally different from
traditional software testing because it emphasizes what
an application should not do rather than what it should
do. This fact was also pointed out by Alexander in [10],
where the author distinguishes between positive and negative
requirements modeled as use cases and misuse cases.

For testing positive security requirements, i.e., functional
security properties that are defined in the requirements
specification, classical functional testing techniques can be
applied (Michael and Radosevich [11] provide a detailed
listing of functional testing techniques for testing positive

security requirements, e.g., equivalence testing or decision
tables). Testing positive security requirements can be
performed by the traditional test organization [12].

Negative security requirements express what a system
should not do, respectively what should not happen. The set
of negative requirements is therefore infinite on principle, and
this makes it impossible to achieve complete test coverage. A
promising way to overcome this problem is the derivation of
tests based on a risk-analysis [11]. Due to this fact, risk-based
testing (RBT) techniques [13] are highly relevant for security
testing [14]. Based on a threat model, or based on abuse
cases [15], vulnerabilities can be identified and prioritized
relying on a risk analysis.

Tests can be designed in a classical operational way or, very
frequently, as penetration tests which attempt to compromise
the security of a system [16] by acting like an attacker trying
to penetrate the system and exploit its vulnerabilities. Specif-
ically, it tests missing functionality or side-effects of the sys-
tem. Often also the environment of a system is the target of at-
tacks instead of the system itself (e.g., exploiting an unpatched
operating system). Furthermore, there are several penetration
testing strategies [17], e.g., internal, external, or blind testing
strategy, and penetration testing tools available [18], e.g.,
port or vulnerability scanners. Moreover, several standards
for penetration testing exist, among which the Open Source
Security Testing Methodology Manual (OSSTMM) [19] is the
most prominent one. The OSSTMM methodology covers the
whole process of risk assessment involved in a penetration
test, from initial requirements analysis to report generation.

Besides penetration testing, another well-known approach
to functional security testing is fuzzing [20]. The very basic
idea behind a fuzzer is to test a protocol implementation on
possible security flaws due to improper handling of malicious
input. However, as Takanen et al. show in their book [20],
fuzzing may also be used for testing other types of software
in terms of security. Yet, what makes fuzzers difficult to use
is the fact that a fuzzer by design cannot be general-purpose.
Hence, for each new software to test, a specific fuzzer has to
be implemented from scratch, which in fact is a challenging
task. For instance, Taber et al. [21] present a fuzzer dedicated
to security testing SIP-based VOIP applications. Yet, fuzzers
still suffer from their randomness, put another way, testing
with a fuzzer lacks all aspects of a structural approach.
However, as done in [22], combining the idea of fuzzing with
the concept of model–based testing, allows for systematic
and automated testing of software applications.

On a more abstract level, model-based testing approaches
have been applied for testing access control policies.

In [23], the authors describe a model–based testing approach
for checking whether access control policies are properly
enforced by the system under test (SUT). The functional model
is written in the B language [24] and used for the security
test generation from so called test purposes. Test purposes are
defined as regular expressions and describe a general sequence

110

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 119 / 139

of operation calls to induce a certain situation on the SUT. The
approach aims at the automated generation of test cases from
the SUT.

A similar approach is used in [25] for testing smart cards
where the access control rules are defined by test purposes.
Another model-based approach for testing role-based access
control policies is presented in [26]. The creation of test
targets (actual access requests) is based on three different
strategies: (1) only taking into account roles and permissions,
(2) considering all rules in a policy and (3) completely at
random. The tests target the policy decision point to check
whether its decisions are correct or not.

Usually, models that are used for test generation are sup-
posed to be correct and attack-resistant. In an attack-driven
approach, a common practice is to modify the model such that
it contains errors that can be revealed by attacks. The model
mutation makes it possible to simulate attack scenarios on the
model such that the response provides an observable answer to
the attack. If a test representing an attack is executed against
the SUT and reacts as expected from the modified model,
then a vulnerability has been identified. In the mutation-based
testing approach of DeMillo et al. [27], modified models are
used in the standard test generation process. The mutation
guides the test generation with a focus on the introduced
errors.

Traon et al. [28] present a set of security mutations in access
control policies used to drive the test generation. The generated
tests are used to request access to secure data. The success of
the access, allows to conclude the presence of failures in the
SUT.

Jurjens [29] uses fault-injection techniques to introduce
security faults in UMLsec models [30], and model-checkers
are then used to build traces leading to the faults. The traces
are then used as test cases for the system.

The model-based testing approaches mentioned above focus
on the test generation from complete models where all security
tests are derived fully automated from a formal model. Such
models are costly to create and hard to maintain, and there-
fore only rarely applied in practice. Thus, we also consider
partial security test generation where some security tests are
generated automatically from a security model, and others are
added manually. In classical approaches no test models are
created, and the automatic test generation is missing.

Fig. 1 shows and compares the three degrees of automatic
security test generation from software (components), i.e.,
complete, partial, and missing.

In the case of complete test generation, all tests are
generated from a formal security model which is depicted as
graph in Fig. 1. In the case of partial test generation, tests
are generated from a formal security model and manually
which is depicted by a graph and a cloud as source of test
generation. The graph and the cloud are linked to show that
the design of the test model and the manual test definition
informally influence each other. Finally, if automatic test
generation is missing, then all tests are generated manually

System Under Test
Test Code

Test Environment

Testing

Security Model

System Under Test
Test Code

Test Environment

Testing

Security Model

Test Generation

Feedback

Test Generation

Feedback

System Under Test
Test Code

Test Environment

Testing

Test Generation

Feedback

complete

partial

missing

Fig. 1. Complete, Partial, and Missing Security Model

which is depicted by a cloud only. Assuming that the security
model is provided, the skills needed by a test designer
increase from complete to missing.

Partial security test generation is very promising because it
does not require complete models and integrates the expertise
of security testers. But partial security test generation is hardly
employed in practice. Additionally, actual MBST approaches
do not consider risk values for the test case generation. To
increase the acceptance of MBST approaches in industry, and
to consider existing risk-based security testing approaches, we
extend the view on model-based security testing. In a novel
classification of MBST approaches, we incorporate risks and
partial test generation. Today, especially testing negative re-
quirements strongly depends on expertise and experience [12].
We intend to lower the required level of expertise needed
for security testing by defining new approaches based on our
classification.

111

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 120 / 139

III. MODEL-BASED SECURITY TESTING CLASSIFICATION

As motivated before, in this section, we classify model-
based security tests along the two dimensions automated
test generation and risk. The automated test generation
dimension describes how much of the system and the
security requirements is captured by formal models. The
fewer information on system and security requirements
is available, the more individual knowledge by the test
engineer is needed to specify meaningful test cases. Fully
automated test generation is only possible with formal
and complete models which are typically not available.
However, a possibility to support the test engineer in test
design is the consideration of risk models, on the one
hand, for deriving test cases, and, on the other hand, for
prioritizing test execution. This results in the classification
of model-based security testing approaches shown in Figure 2.

The degree of “automated security test generation” can be
complete, i.e., all security tests are derived from a model,
partial, i.e., some security tests are generated from a model,
and others are added manually, or missing, i.e., all tests
are defined manually. Assuming that the security model is
provided, needed test design skills increase from complete to
missing test generation. The more complete a security model
is, the more functional are the security requirements. Note
that the degree of automated test generation may vary for
different system components.

The dimension “risk” can have the values integrated into
the model or not integrated into the model. Note that the
boundaries between the different characteristics are fuzzy. In
the following sections we provide examples for each category.

A. Individual Knowledge

If a model does not support automated test generation
and does not consider risk values, then individual knowledge
determines the design of security tests and the selection
of appropriate functional [11] and penetration testing tech-
niques [17]. The efficiency of such techniques heavily relies
on the experience and the specific domain knowledge of the
test designers. However, employing the idea of pattern based
testing allows to, although no better than very rudimentary,
tweak this otherwise quite random testing techniques in terms
of testing process itself.

B. Adapted RBT

If automated test generation is not possible because of a
missing security model but risks have been evaluated, then a
prioritization of tests is possible. Most actual risk-based testing
approaches, e.g., [13] assign risk values to design elements
and can therefore be categorized as risk enhanced model-
based testing approaches without automated test generation.
Wysopal et al. [14] define an adapted risk-based security
testing approach based on threat models. The risk values
in case of adapted RBT approaches are often only defined
as additional informal artifacts, e.g., in spreadsheets. But

the risk assessment itself is typically systematized in such
approaches [31].

C. Scenario-Based MBT

The partial automated generation is supported e.g., by the
Telling TestStories approach [32]. Telling TestStories supports
the automated generation but also the manual definition of so
called test stories, i.e., test scenarios modeled as UML activity
diagrams or UML sequence diagrams plus assigned test data in
a tabular form. Telling TestStories has been applied to model
security tests of service-centric systems [33]. However, the
idea of scenario-based MBT is not only restricted on UML
diagrams, also the application of control flow graphs allows to
derive scenarios by employing graph coverage criteria, geared
towards covering high security sensitive execution traces.
Obviously, following such an approach the graph replaces the
classical perception of a software model, based on notions
of UML. Tuglular et al. [34] suggest an approach to firewall
testing based on Event Sequence Graphs, used to directly
generate test cases.

D. Risk Enhanced Scenario-Based MBT

The Telling TestStories approach mentioned before is scal-
able for integrating risks into the test model to define a
risk enhanced partial test generation process. We consider the
integration of risks into Telling TestStories as future work.

E. Adapted MBT

The adapted model-based testing for security models is
supported by the automated test generation approaches for
access control policies discussed in Section II, e.g., [23], [26],
[27], [29], which automatically generate test cases but do not
consider risk values.

However, the application of adapted MBT in the field is
quite rare, as often a complete model, as required by MBT
approaches, does not exist.

F. Automated RB Security Test Generation

RiteDAP [35] is a model-based approach to risk-based
system testing that employs annotated UML activity diagrams
for automated test case generation and prioritization. RiteDAP
is therefore an approach that manages risks on the model
level and supports the complete automated test generation. But
it does so far not consider the automated test generation of
security tests.

The approach, suggested by Zech [36] actually attempts to
go one step further as RiteDAP by additionally supporting
the automated generation of test cases. Based on attack
patterns and threat profiles, enabling the generation of a risk
model from a system model, test case are generated out of
misuse cases, automatically derived from the aforementioned
risk model. Hence, this approach can be considered as an
approach to automated RB security test generation, based on
a tailored security model. Again, such an approach, building
on a complete model currently lacks acceptance in the field,
as most of the time, as already mentioned before, a complete

112

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 121 / 139

complete partial missing

AutomatedTest Generation

R
is

k

in
te

gr
at

ed
n

o
t

in
te

gr
at

ed

Adapted MBT

Automated RB Security
Test Generation

Scenario-based
MBT

Adapted RBT

Individual
Knowledge

Risk Enhanced Scenario-
based MBT

Fig. 2. Model-Based Security Testing Classification

model, capable of being employed for test generation, simply
does no exist.

According to the presented categorization there exist only
very few model-based security testing approaches that inte-
grate complete or partial automated test generation and risks.
Both, a risk enhanced scenario-based MBT approach and an
automated RB security test generation approach contribute
to utilize the full potential of model-based security testing
of positive and negative security requirements. We therefore
motivate the further investigation and development of risk-
aware and automated MBST approaches based on existing
frameworks such as Telling TestStories or RiteDAP.

IV. CONCLUDING REMARKS

In this contribution, we have first explained the benefits
of model-based testing, which is already widely used today.
To employ model-based approaches for testing security re-
quirements, security models are needed which describe how a
system is supposed to behave. The security model lowers the
level of required security expertise of the test designer due to
several reasons.

First, such a security test model improves the test designer’s
understanding of the software’s security aspects which results
in more efficient test cases. By using models, the level of
abstraction is raised which enables more people to design
tests. Finally, the model can be employed to automatically
generate test cases. Additionally, security models are often

created in conjunction with a risk analysis. This risk
information can on the one hand be used for deriving test
cases, and on the other hand for prioritizing test execution. We
have developed a categorization along these two dimensions
and provided examples for each category.

Based on an overview of security testing approaches, we
have motivated the increasing importance of model-based
security testing. We especially pointed out that the integration
of risks into test models has not been investigated in detail, but
has high potential for practical application in security testing.

According to our classification and existing security testing
approaches we identify the following future research tasks in
the area of model-based security testing:

• Development of a risk enhanced scenario- and model-
based security testing approach on top of a scenario-based
MBT approach.

• Development of an automated risk-based security test
generation approach grounded on a model-based ap-
proach to risk-based testing.

• Integration of manually, semi-automatically and automat-
ically determined metrics for the assessment of risks
values in the risk model which is the basis for the
integration of risks into a test model.

• Application and evaluation of model-based security test-
ing for service-centric systems such as service-oriented
architectures or cloud applications.

113

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 122 / 139

ACKNOWLEDGEMENTS

This work is sponsored by the SecureChange project (EU grant
number ICT-FET-231101), the MATE project (FWF project
number P17380), and QE LaB - Living Models for Open
Systems (FFG 822740).

REFERENCES

[1] D. Firesmith, “Engineering Security Requirements,” Journal of Object
Technology, vol. 2, no. 1, 2003.

[2] Common Criteria Recognition Arrangement, “Common Criteria for
Information Technology Security Evaluation,” 2009, http://www.
commoncriteriaportal.org/thecc.html [accessed: April 7, 2011].

[3] Committee on National Security Systems, “National Information Assur-
ance Glossary,” CNSS, Tech. Rep., 2006.

[4] G. Canfora and M. D. Penta, “Testing Services and Service-Centric
Systems: Challenges and Opportunities,” IT Professional, vol. 8, pp.
10–17, 2006.

[5] T. Roßner, C. Brandes, H. Götz, and M. Winter, Basiswissen Modell-
basierter Test. dpunkt Verlag, 2010, in German.

[6] H. Götz, M. Nickolaus, T. Roßner, and K. Salomon, iX Studie Modell-
basiertes Testen. Heise Zeitschriften Verlag, 2009, in German.

[7] T. Mouelhi, “Testing and Modeling Security Mechanisms in Web
Applications,” Ph.D. dissertation, RSM, University of Rennes, 2010.

[8] W. Stallings, Network Security Essentials. Prentice Hall, 2002.
[9] T. Jaeger, Operating System Security. Morgan & Claypool, 2008.

[10] I. Alexander, “Misuse cases: Use cases with hostile intent,” Software,
IEEE, vol. 20, no. 1, pp. 58–66, 2002.

[11] M. C. C. and R. Will, “Risk–based and Functional Security Testing,”
Cigital, Tech. Rep., 2009, https://buildsecurityin.us-cert.gov/bsi/articles/
best-practices/testing/255-BSI.pdf [accessed: April 7, 2011].

[12] B. Potter and G. McGraw, “Software Security Testing,” IEEE Security
& Privacy, 2004.

[13] S. Amland, “Risk-based testing: : Risk analysis fundamentals and
metrics for software testing including a financial application case study,”
Journal of Systems and Software, vol. 53, no. 3, pp. 287–295, 2000.

[14] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The Art of Software
Security Testing. Addision–Wesley, 2006.

[15] D. Firesmith, “Security use cases,” Journal of Object Technology, vol. 2,
no. 1, pp. 53–64, 2003.

[16] M. Bishop, “About Penetration Testing,” IEEE Security & Privacy,
vol. 5, no. 6, 2007.

[17] SearchNetworking.com, “Penetration Testing Strategies,” 2011, http:
//searchnetworking.techtarget.com/tutorial/Penetration-testing-strategies
[accessed: April 7, 2011].

[18] K. van Wyk, “Penetration Testing Tools,” 2008, available at https:
//buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.pdf
[accessed: April 7, 2011].

[19] P. Herzog, The Open Source Security Testing Methodology Manual 3,
2010, http://www.isecom.org/mirror/OSSTMM.3.pdf.

[20] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance, 1st ed. Norwood, MA, USA: Artech
House, Inc., 2008.

[21] S. Taber, C. Schanes, C. Hlauschek, F. Fankhauser, and T. Grechenig,
“Automated Security Test Approach for SIP-based VoIP Softphones,”
Advances in System Testing and Validation Lifecycle, International
Conference on, vol. 0, pp. 114–119, 2010.

[22] Y. Yang, H. Zhang, M. Pan, J. Yang, F. He, and Z. Li, “A
model-based fuzz framework to the security testing of tcg software
stack implementations,” in Proceedings of the 2009 International
Conference on Multimedia Information Networking and Security
- Volume 01, ser. MINES ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 149–152. [Online]. Available: http:
//dx.doi.org/10.1109/MINES.2009.111

[23] J. Julliand, P.-A. Masson, and R. Tissot, “Generating Security Tests
in Addition to Functional Tests,” in AST ’08: Proceedings of the 3rd
international workshop on Automation of software test. ACM, 2008.

[24] K. Lano, The B language and method: a guide to practical formal
development. Springer-Verlag New York, 1996.

[25] P.-A. Masson, M.-L. Potet, J. Julliand, R. Tissot, G. Debois, B. Legeard,
B. Chetali, F. Bouquet, E. Jaffuel, L. Van Aertrick, J. Andronick,
and A. Haddad, “An access control model based testing approach for
smart card applications: Results of the POSÉ project,” JIAS, Journal of
Information Assurance and Security, vol. 5, no. 1, pp. 335–351, 2010.

[26] A. Pretschner, T. Mouelhi, and Y. Le Traon, “Model-Based Tests for
Access Control Policies,” in Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation, 2008.

[27] R. DeMillo, R. Lipton, and F. Sayward, “Hints on Test Data Selection:
Help for the Practicing Programmer,” Tutorial software quality assur-
ance: a practical approach, 1985.

[28] Y. L. Traon, T. Mouelhi, and B. Baudry, “Testing Security Policies:
Going Beyond Functional Testing,” in The 18th IEEE International
Symposium on Software Reliability, 2007, pp. 93–102.

[29] J. Jürjens, “Model–based Security Testing Using UMLsec,” Electron.
Notes Theor. Comput. Sci., vol. 220, no. 1, 2008.

[30] ——, “UMLsec: Extending UML for Secure Systems Development,”
in UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language. Springer-Verlag, 2002.

[31] E. Veenendaal, “Practical Risk-Based Testing PRoduct RIsk Manage-
ment: the PRISMA method,” Improve Quality Services BV, Tech. Rep.,
2006.

[32] M. Felderer, P. Zech, F. Fiedler, and R. Breu, “A Tool-based method-
ology for System Testing of Service-oriented systems,” in VALID 2010,
2010, pp. 108–113.

[33] M. Felderer, B. Agreiter, and R. Breu, “Security Testing by Telling
TestStories,” in Modellierung 2010, 2010.

[34] T. Tuglular, O. Kaya, C. A. Muftuoglu, and F. Belli, “Directed Acyclic
Graph Modeling of Security Policies for Firewall Testing,” Secure
System Integration and Reliability Improvement, vol. 0, pp. 393–398,
2009.

[35] H. Stallbaum, A. Metzger, and K. Pohl, “An automated technique for
risk-based test case generation and prioritization,” in Proceedings of the
3rd international workshop on Automation of software test, 2008, pp.
67–70.

[36] P. Zech, “Risk–Based Security Testing in Cloud Computing Environ-
ments,” 2011 Fourth IEEE International Conference on Software Testing,
Verification, and Validation, pp. 411–414, 2011.

114

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 123 / 139

Utilizing Domain-Specific Modelling for Software Testing

Olli-Pekka Puolitaival, Teemu Kanstrén
VTT Technical Research Centre of Finland

Oulu, Finland
{olli-pekka.puolitaival, teemu.kanstren}@vtt.fi

Veli-Matti Rytky, Asmo Saarela
Elektrobit Wireless

Oulu, Finland
{veli-matti.rytky, asmo.saarela}@elektrobit.com

Abstract—Automated execution of manually defined regression
tests is a very widely used and well-known area. While test
execution can be more easily automated, test case creation and
maintenance are still mainly manual efforts and practically the
biggest cost factors in software testing. We view writing test
cases as basically a programming activity and believe it can
thus benefit from extended application of generic program-
ming tools and techniques. In this paper, we describe our work
in applying domain-specific modelling (DSM) to the domain of
test case creation. DSM is a variability handling method typi-
cally applied in software development. It is widely used and
powerful method best applied when there are several kinds of
variations. DSM is typically tailored to make own optimized
modelling solution inside a company, after which it can be
applied effectively and without requiring specific program-
ming skills. In this paper we describe how we have applied
DSM to describe variability in software behaviour in terms of
test cases, and its application in a case study. The results show
a reduction in the cost of over test automation.

Keywords-domain-specific modellin; test automation

I. INTRODUCTION
Test automation these days is a popular concept with an

extensive body of knowledge and a large set of mature tools
available. The most popular approach in this domain is the
automation of test case execution [1]. Automated execution
of test cases gives a lot of benefits such as faster execution
times, automatic smoke tests after each commit and nightly
regression tests. Test cases are typically written in a form of
programming language, describing input- and output se-
quences, data values, and their expected interactions. These
test cases are then executed using a test automation frame-
work. This activity of test execution has a long history and a
large set of mature testing tools and techniques available.
While test execution can be viewed as highly advanced, the
largest effort in the software testing process is in manual test
case creation and maintenance. As we view test case creation
as closely related to general programming activities, we
believe it is possible to use more advanced techniques and
tools from the domain of software engineering to also en-
hance the test creation activity.

One way to provide more effective support for test crea-
tion and maintenance is to use a higher abstraction level for
describing the test cases. In the software engineering domain
this is commonly addressed through different modelling
techniques. A specific approach for this in the software engi-
neering domain is domain-specific modelling (DSM). In
DSM a specific optimized modelling solution is first tailored
for a chosen domain by the domain expert and then applied
continuously by the domain users [2].

Traditionally, DSM is used to handle variability of prod-
uct lines. In this case, the different products in a product line
are modelled using a common notation and focusing on the
differentiating aspects with the optimized, domain-specific
modelling language. In our view, this translates very effec-
tively to the domain of test automation and specifically that
of test creation.

In software testing, we typically need to exercise the dif-
ferent aspects of system behaviour with different variations.
For example, when we have one boundary value that needs
to be covered, we need at least three test cases to cover that
(below, equal, and above boundary values). Therefore, we
view software testing as a domain with high variability and
large potential to benefit from the different aspects of DSM.
Another related aspect related to this is Model-Based Testing
(MBT) [3] that aims to improve test coverage by automati-
cally generating test sets from a system behavioural model
utilizing several algorithms. In our previous work, we have
described how DSM can be combined to provide added
benefits for MBT [4]. However, although advanced test
generation techniques such as MBT can be powerful, our
experience is that there is still need for manually defined test
cases. In this paper, we present our work on using DSM as
an aid for more effective creation of test cases. We demon-
strate this with the aid of a case study, including the observed
cost-benefits achieved.

The rest of the paper is structured as follows. In Section
II, we describe the background concepts relevant to the work
presented in this paper. In Section III, we describe the case
study system used to illustrate the discussed concepts
through the rest of this paper. In Section IV, we describe our
approach to using DSM to help in test creation. In Section V,
we describe the results of the case study and discuss the
DSM test modelling approach a wider context. Finally, con-
clusions summarize the paper.

II. BACKGROUND CONCEPTS
In this section, we describe the background information

required to understand the concepts described in this paper.

A. Test case automatic execution
With test case automatic execution we refer to a tool

chain in which test cases are described in a form of pro-
gramming language, such as a scripting language, and tests
can be run automatically once they have been specified (as
defined, e.g., in [1]). This tool chain needs to address the
different needs for test components in test automation. This
includes providing test input as stimuli for the system under
test (SUT), test output as a reference of the expected re-
sponse, and a test harness to link the test cases themselves to

115

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 124 / 139

the SUT. A test oracle is a component needed for determin-
ing the correctness of the behaviour of software during (test)
execution [5]. Together these components form what we
term as the test execution environment.

Test automation in this type of an environment takes the
following process. First the test scripts are written (typically
manually) by a test expert. This includes defining both the
test input and expected output in the given notation for the
test execution environment. These tests are then executed
using the test execution environment and the results are
presented to the user.

B. Modelling for testing purposes
Modelling for testing purposes can be divided in two cat-

egories: modelling test cases, and modelling for test genera-
tion. Modelling for test generation refers to creating models
that are used as a basis for test generation with techniques
such as model-based testing. We have discussed this aspect
before in [4], and in this paper we focus on the test case
modelling aspects.

Test case modelling refers to modelling specific test cas-
es separately in terms of chosen abstraction level. This can
be either textual, graphical or some hybrid notation. In this
paper we discuss this in terms of DSM concepts, which are
in our case graphical or hybrid notations. Some of the most
popular existing graphical notations for test modelling are
UML testing profile [6] and TTCN-3 graphical presentation
format [7]. These and other generic languages can be widely
applied but are not as powerful for the chosen domain as the
DSM based notations. In this paper, we describe a case study
in using test modelling using DSM tools and concepts.

C. Domain-Specific Modelling
DSM is about creating a new modelling language based

on domain concepts and using a (typically) self-made code
generator to transform this to a different form such as textual
source code. These modelling languages are typically easier
and quicker to understand for most of the people because
they describe the intended domain using higher level domain
concepts. These languages can be visual, textual or combina-
tions of both. The modelling language is typically con-
strained to reduce the modelling options to only those rele-
vant to the expected variance in the domain, which also
serves to simplify the modelling process and reduce the
number of errors in generated output. Based on our experi-
ences, the DSM are most useful when there is some kind of
variability in the product.

The idea in addressing variability in the DSM language is
that static part of output (the common part of the target do-
main) is in generator or in the used platform. Thus the mod-
elling can focus only on the varying aspects of the domain,
while the static parts are provided off-the-shelf. Because of
this, the support for the dynamic parts can be highly opti-
mized, simplified and made easier to use. A common appli-
cation domain is with product lines due to variability be-
tween products [8] [9].

 Domain-Specific Modelling work flow is following:
1. Create a modelling language based on your domain

concepts

2. Write a generator which generates your code
3. Create a model using your language
4. Generate the code or document or what you want
Because the code is generated from a model, the debug-

ging can be also made in to the model. Normally the system
sends information from its state and the workbench high-
lighted it to the model. If an error exist it is easy to see in
which part of model it happens. There can also be a need to
display additional debug data into the model, e.g., perfor-
mance metrics.

D. Generating test cases utilizing DSM
As test cases are typically expressed as scripts using a

textual notation, this makes their generation from specific
domain test models a viable approach. We can summarize
that the main benefits of DSM in the context of test automa-
tion are:

 Model is easier to understand because it is expressed
using our domain concepts.

 Modelling is faster because it is optimized for the
domain and constrained to avoid obvious mistakes.

 Models can be expressed visually, providing for eas-
ier to understand test expressions.

 Non-programmer can create test cases.
In this case, DSM can be understood also as a more illus-

trative user interface for test scripts or a test script visualiza-
tion method. The structure of DSM for test case generation is
illustrated in Figure 1.

Figure 1. Domain-specific modelling with automated test execu-

tion

III. MILITARY PHONE AS TESTING TARGET
The case study system described in this paper is using

Elektrobit Tough Voip (ETV) [10] as the SUT. ETV is a
military Voice Over Internet Protocol (VOIP) communica-
tion device. The device has to be very easy to use and resis-
tive because it is made for military purposes. As failures and
bugs in a military system can obviously lead to big problems,
the quality and reliability of these devices are a major con-
cern. ETV is presented in Figure 2.

116

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 125 / 139

Figure 2. EB Tough VOIP

The ETV has point to “point call” and “all call” features.

In a practical deployment setting, all devices have to be con-
nected on the same network and any terminal can connect to
another one just by dialling the number of that terminal. This
is the “point call” feature. The “all call” feature connects a
single device to the all other devices in the network using a
specific dialling pattern.

Our viewpoint in testing these devices is that of a high-
level abstract black-box viewpoint. From this perspective,
the complexity is not in the functional on one particular
device, as a single device does not contain highly complex
external behaviour. The main complexity is in having many
devices connected to the network, calling each other within
very tight time limits and in varying sequences. While com-
pletely manual test execution is possible, without automation
it is hard to address fast time limits or to create test cases for
time border values. Therefore, the system also has a TTCN-3
based testing environment for executing automated test cases
against the devices.

Besides fully manual test execution, also test creation and
maintenance even with an automated test execution envi-
ronment has its own issues. As noted before, there is a re-
quirement to test various connection- and call-sequences as
well as various time limits within these sequences. With the
traditional TTCN-3 test scripting and environment, the main-
taining of the test suite was found to require a large effort
and to require a large amount of TTCN-3 expertise which
was found expensive and limited in availability. To address
these issues, we created a DSM based solution where the test
cases can be expressed in domain concepts without having to
work with detailed internals of the TTCN-3 notation.

IV. A MODELLING LANGUAGE FOR TEST CASE
GENERATION

In creating a domain-specific modelling language for
ETV testing, we used the main domain concepts as a basis.
These are the devices themselves, the call types, their order-
ing and time constraints. The created language is composed
of the basic test automation elements of test suite, test case,
and test setup. The test suite model is a collection of test
cases, the test case model describes test case structure for a
single test case, and test setup describes the setup of the

device under testing. The overall test model architecture is
illustrated in Figure 3.

Figure 3. Test model architecture

We used MetaEdit+ [11] as a language workbench for

creating our DSM language, and TTCN-3 as the test script-
ing language. The effort in creating the overall test automa-
tion environment was shared with two engineers. The first
engineer developed the modelling language (modelling lan-
guage developer) and the associated TTCN-3 script genera-
tor, and the second one manually developed TTCN-3 based
test scripts and the overall test case execution process (test
case developer).

At the beginning, the test case developer gave a test
script sample and initial requirements of modelling language
to the modelling language developer. The modelling lan-
guage developer used these as a basis for creating the first
DSM language version. This and the associated test script
generator were then evaluated by the test case developer,
who made change requests based on the results. Based on
this feedback, the modelling language developer made fixes
to the language and generator. After one week of iterations,
the language and test execution environment was ready for
testing in a real test environment.

In the following subsections we describe each of the
model elements and an additional test run visualizer compo-
nent used to show the actual executing test cases.

A. Test suite model
The test suite model is a collection of test cases. Test cas-

es are represented as objects in the model and the colour of
these objects tells their enabled status. A green object is
enabled and red ones are disabled. Figure 4 shows an example
of a test suite model, where two of the test cases are enabled
and one is disabled.

Figure 4. Test suite graph

117

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 126 / 139

The test case objects in this model contain sub-models
that can be opened to further explore the test case represent-
ed by that model. The test case name is presented as the sub
model name in the visual presentation shown in Figure 4.
This example has three test cases, one for “point call”, one
for “all call”, and one for testing both. The both test graph is
presented in the following section.

B. Test case model
A test case model is used for representing individual test

cases for the EVP system. This model consists of six differ-
ent types of objects and two types of connection lines. These
components are the following:

 Start object represents the test case starting point.
 End object represents the end of test case.
 Call object represents a test step where a device calls

to another device or devices including oracle disa-
bling option if time limits are too tight for oracle be-
tween the call and next call.

 End calls object represent a test step where a single
device ends the call.

 Device object represents a device including device
name and phone number.

 Test setup object is a link to the test setup graph.
 Connection lines are arrows in to the model repre-

senting test case order, calling device and destination
device.

Figure 5. Test case graph

Figure 5 shows an example test case using this notation.
It describes the following scenario:

1. Device1 makes a call to Device3
2. After 2 seconds Device 1 ends the call
3. After 1 second Device7 calls to all devices
4. After 5 seconds Device7 ends the call

C. Test setup model
A test setup model represents devices in the current test

network. In practice, the test setup changes a lot and we do
not wish to change all the test cases in case the setup needs
to be changed. Instead, we wanted an option that allows us to
change the test setup and immediately re-run the existing test
cases with a different set of devices and their configurations.
In our modeling language, the test setup model is used to
represent this type of information and to allow the
modification of the different test setups independently of the
individual test cases.

In the tests, the test setup model is mainly used for
automatic device initialization. The test oracles in the AllCall
test steps also use the test setup model because they needs to
verify the status of all devices that are connected to the
network. Figure 6 shows an example of a test setup model in
our case study.

Figure 6. Test setup graph

D. Test execution visualization
Showing the execution of test cases is always important

for understanding the execution and debugging the results.
Initially, our test execution process illustration was just a lot
of text running quickly in the command line shell on the test
execution platform, which in our case was called Elektrobit
Test Tool Platform. This was not a very human friendly form
of feedback.

To provide a better support for visualization of test exe-
cution, we created visualizations of the DSM test models,
showing at all times the current object of the testing as high-
lighted. This visualization was made using application pro-
gramming interface (API) of the MetaEdit+ DSM tool,
which allows connecting external elements to the model
code using the commonly supported SOAP [12] protocol.
Practically, the test environment would send SOAP messag-
es to the MetaEdit++ tool, where the specific test DSM lan-
guage and model received these messages and as a result
highlighted the matching elements in the model. For us, this
illustrated the possibility to easily and effectively use the test
models as tools for following test execution, reporting the
test results and debugging possible errors in a human friend-
ly way.

118

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 127 / 139

E. Test generation
Test generation is made by MetaEdit+ providing MERL

language. MERL is a small programming language and it is
decided for code generation providing effective way to go
through the model and print the output.

Before starting any generation, the generator checks the
most typical errors and reports if some exist. The checks are
self-made and based on our experiences. First, the generator
makes initializations based on test setup model. Then the
generator starts from start state object and goes through the
model following the arrows and printing object specific code
and finally ends to the end state object.

F. Test model execution
In addition to support the test creation (modelling) pro-

cess, we also aimed to automate the test case execution itself.
Initially, test cases were created and executed manually. In
the first phases of our DSM application, we proceeded to
generate the test cases for the execution environment from
the models which only required manual linking of the gener-
ated test cases to the test environment. From this, we further
linked the whole test environment into the modelling envi-
ronment, allowing one to run all tests directly from a single
interface and not requiring any direct low-level interaction
with the TTCN-3 notation or test environment itself.

 Finally, only pressing a single button in the test case or
test suite model view is needed. After the test execution, the
results are presented. The test execution consists of follow-
ing steps:

1. User presses test-button in the model.
2. MetaEdit+ generates test cases using the domain-

specific test code generator.
3. OpenTTCN tool compiles the test cases.
4. The test platform executes the test cases.
5. During the test case execution, the test platform

sends execution information to the MetaEdit+ tool
that visualizes the execution in the model.

6. After a test ends, the OpenTTCN provides a test re-
port with highlighted issues that were observed
while test execution.

7. Tests engineer check the report, fix from test model
and generator or report system bugs to the develop-
ers and starts over the testing process.

V. RESULTS AND DISCUSSION
Our initial goal in creation of our DSM based test case

modelling approach was to enable test case creation for users
without requiring specific detailed knowledge of the test
environment or the used TTCN-3 notation. However, in
practice as experienced in our case study, the test expert still
defined most of the test models. This is a person who had
also previously been involved in test script creation and
manual test case creation for the SUT using the TTCN-3
notation. Thus the test expert already was familiar with the
underlying notations and had expertise on the expected SUT
behaviour.

However, despite this background we found our results
very encouraging. Our experiences are based on about twen-

ty models in real environment and those models are more
complex and having some more features than case study
models. The test engineer estimated the modelling using our
new DSM approach as being at least ten times faster than
manual test script writing. The set-up time for creating the
modelling notation and the test script generator for this nota-
tion was about one week. We used one more week for add-
ing more advanced features and for making our system ma-
ture. It took about one week to make changes for the under-
lying TTCN-3 code to make it easier to generate and to fix
bugs we found in it. However, this work was found to im-
prove the overall test system and was not just useful only for
our DSM approach. Since our DSM approach needed to
evolve to adapt to the actual needs, we added several features
to the language. The average time for integrating a new fea-
ture was about 30 minutes. In addition, we extended the
language to cover other variations of EB Tough VoIP, which
took about 3 days. These results were available as we rec-
orded the time we took in the different steps and the compa-
ny in the case study had also made effort to record this in-
formation for their previous approaches.

In our case study, we found that the test case develop-
ment speed is not the only benefit. The developers and other
interest groups assessed the DSM based test case creation
and visualization approach as easier to understand. As the
test case is graphical, it is easy to see what it does. During
the test execution, the progresses are visualized. This saves
time in analysing test cases.

In our experience, the development of DSM based test
script generation is like normal system development. The
DSM method is different but it is just one technology to
learn. The DSM modelling workbenches (such as
MetaEdit+) are just one form of a programming environ-
ment. As these are created specifically to support building
this type of modelling notations and environments, the work
amount for use has been in the amount of weeks instead of
months or years.

The main challenges for applying DSM for test creation
are in creating a good modelling language. This requires
good understanding of both the application domain and the
test automation domain. In this case the modelling language
creator and maintainer needs to have quite a wide under-
standing of the system to create a suitable and powerful test
modelling environment. However, this is offset by the re-
duced need in the test modelling phase where less detailed
knowledge of the low-level operations is needed.

Our development style for the case study described in
this paper was close to consulting. An external research
entity was helping an industrial partner build a DSM test
modelling approach and apply it. Thus the people creating
the test modelling language and writing the test scripting
environment were different. This approach is perhaps not as
effective as when entity person is creating both the model-
ling language and the test scripting environment. However,
our experience is that the result is better because of discus-
sion with different entities. In case of a single company this
can also be different people from different entities inside the
company. During the development people from both entities
were describing the solutions to each other and getting feed-

119

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 128 / 139

back on their part. This helped avoid overly complex struc-
tures and modelling approaches, as the other entity had to
use the results of the other entity in both cases and immedi-
ately objected if they found the result too complex for easy
adoption.

While results might be different in a different type of an
environment and when applied by people with different
backgrounds, we believe our result can encourage other
people to try our DSM based test modelling and creation
approach.

VI. CONCLUSION
In this paper, we described how DSM languages can be

used to support the manual test case modelling and creation
process, which we observed as one of the most expensive
parts in software testing. Using a practical case study, we
illustrated the approach in practice. In our experience, the
results have been encouraging. The setup effort to create the
required modelling languages and environment using exist-
ing DSM tools was a couple of weeks and provided more
than ten times faster test case creation speed in comparison
to previous experience in the case study environment. Thus
we can conclude that our modelling approach takes more
investment in the beginning but quickly becomes more effec-
tive as more test cases need to added and existing ones need
to be maintained.

In the future research we need to try this approach in sev-
eral cases in different domains and get more experiences in
its application. We are also using model based testing with
DSM test models for reaching even more enhanced test au-
tomation.

VII. REFERENCES

[1] Dustin Elfriede, Rashka Jeff, and Paul John, “Automated
Software Testing,” Massachusetts: Addison Wesley
Longman, 1999.

[2] Kelly Steven and Tolvanen Juha-Pekka, “Domain-Specific
Modeling,” New Jersey: John Wiley & Sons, 2008.

[3] M. Utting and B. Legeard, “Practical Model-Based Testing:
A Tools Approach,” Morgan Kaufmann, 2007.

[4] O-P. Puolitaival and T. Kanstrén, "Towards Flexible and
Efficient Model-Based Testing, Utilizing Domain-Specific
Modelling," in 10th Workshop on Domain Specific
Modelling, 2010.

[5] Debra J. Richardson, Stephanie Leif Aha, and T. Owen
O'Malley, "Specification-Based Test Oracles for Reactive
Systems," in Proc. of the 14th Internation Conference on
Software Engineering, Melbourne, Australia, 1992, pp. 105-
118.

[6] OMG. UML Testing Profile. [Online]. http://utp.omg.org/
15.7.2011

[7] ETSI. TTCN-3 Graphical presentation Format. [Online].
http://www.ttcn-3.org/StandardSuite.htm 15.7.2011

[8] Mika Karaila, Domain-specific Template-based Visual
Language and Tools for Automation Industry. Tampere:
Tampere University of Technology, 2010.

[9] Kärnä Juha, Tolvanen Juha-Pekka, and Kelly Steven,
"Evaluating the Use of Domain-Specific Modeling in
Practice," in 9th OOPSLA Workshop on Domain-Specific
Modeling (DSM 2009), Orlando, 2009.

[10] Elektrobit wireless. EB Tough Voip. [Online].
http://www.elektrobit.com/what_we_deliver/wireless_soluti
ons/device/products/eb_tough_voip 15.7.2011

[11] Metacase. MetaEdit+ Modeler- Support Your Modeling
Language. [Online]. http://www.metacase.com/mep/
15.7.2011

[12] W3C. (2007, April) SOAP Version 1.2. [Online].
http://www.w3.org/TR/soap12-part1/ 15.7.2011

120

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 129 / 139

1

Comparison of off-chip interconnect validation to field failures

David Blankenbeckler, Adam Norman

Intel Corporation

Santa Clara, CA, USA

David.Blankenbeckler@Intel.com

Adam.j.Norman@Intel.com

Michael Shepherd

Dell Inc.

Round Rock, TX, USA

Michael_Shepherd@Dell.com

Abstract— Memory subsystem errors continue to be a common

problem in modern computer systems. Through a large scale

field study, this paper will introduce the interconnect transient

margin validation metrics and compare to the observed field

failures. The results will demonstrate that transient bus errors

are not a dominant cause of system memory problems.

Keywords – DDR, DRAM, memory, bus margin

I. INTRODUCTION

Memory subsystem errors have remained a common form
of failure since the advent of the computer. While much
work has been done to reduce failures and gracefully handle
them, they continue to be a significant problem in modern
day computer architecture.

Over the past several years, at least two large scale

studies have been conducted to help quantify the extent of
memory bus related failures. The recent white paper “Dram
Errors in the Wild: A Large-Scale Field Study” by Bianca
Schroeder, et al, indicated the rate was as high as 1/3 of
systems experiencing at least one memory error per year [1].
Another study found at least 11 systems out of 212 that show
symptoms of memory errors [7]. But what is the cause of
these high failure rates? Most large scale studies have
focused on Soft Error Rates (SERs) due to alpha particles
[8], junction/cell leakage, manufacturing defects and the rate
of errors across die shrinks.

During the late 70‟s, alpha particles from decaying

package contaminants were a dominant source of memory
errors [2]. Around the same time, researchers at IBM found
that cosmic rays were also a source of transient memory
errors, even at sea level [3][4]. In one study it was reported
that memory errors were about 100x more likely at the
altitude typically used by commercial aircraft [5]. These
radiation induced errors are generally referred to as soft
errors and have been the subject of much research. Today,
this phenomenon is generally understood and thus effective
mitigation techniques have been and continue to be
developed [6].

Besides soft errors, there are various types of hard errors

which could occur in either the memory controller or DRAM
device. The most common hard failures are due to defects

produced during the wafer manufacturing process. These
failures may also be caused by design marginalities or aging
effects.

This study is uniquely different from prior work in that

the goal was to better understand the relationship between
bus related margins and their resulting error rates. As bus
speeds have increased signal integrity has become a factor
suspected of being a significant contributor to transient
errors. A properly designed system should have a reliable
interface between the memory controller and the DRAMs.
However, in the real world, factors such as excessive
manufacturing variation or unexpected environmental
conditions may impact reliable data transfers. Over large
volume, these variations may increase noise on the bus and
thereby increase the chance of transient errors. As shown in
Figure 1, the year over year incident rate of end user memory
errors has remained relatively unchanged. This data indicates
that even across DRAM technologies and speeds between
2006 and 2009; memory system failure rates have remained
relatively stable. Why do we see this consistent failure rate
and what is causing it?

Figure 1. Year over year failure rates have remained relatively stable.

Could signal integrity now be a key factor in transient

memory errors? This paper will explore this question
through a large scale study comprised of nearly a quarter

121

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 130 / 139

2

million systems and over a million DIMMs (dual in-line
memory module). Section II will describe the concept of bus
margin which provides a measure of bus noise susceptibility
and the different sources of memory subsystem errors.
Section III will describe the data collection methodology.
This includes the measurement and collection of memory
bus margin at the system assembly factory as well as the data
regarding end user memory issues. Section IV provides
analysis of the data leading to the conclusion that bus margin
is not a dominant source of end user memory issues. Finally,
Section V will summarize and conclude the paper.

II. MEMORY SUBSYSTEM FAILURE CHARACTERIZATION

There are four main sources of memory errors as shown

in Figure 2. At a high level, memory subsystem errors can

be categorized as:

1. Internal Memory Controller Errors include logic or

timing faults inside the memory controller.

2. Internal DRAM Errors include logic faults, timing

faults, and cell faults.

3. Bus errors, which occur when one device (memory

controller or DRAM) transmits one state but, due

to noise or other factors, the other device receives

the data in the opposite state. The susceptibility to

transient bus errors is commonly measured by bus

voltage and timing margin.

4. Soft Errors, which refer to radiation-induced

transient events whereby a bit is flipped due to

interference from energy sources such as cosmic

rays or alpha particles. These are random events,

which are very unlikely to repeat and cause an end

user DIMM replacement. The primary focus of this

paper is to distinguish the relative contributions of

the other three sources of memory subsystem

errors. The other three sources often appear

random but are usually repeatable.

Figure 2. Sources of memory subsystem errors.

A. DDR3 Bus Margin

There are many sources of noise which can create

transient errors on a high speed bus such as DDR3. These

include crosstalk, inter symbol interference (ISI), and power

delivery issues. In addition, there is manufacturing process

variation that impacts the performance of the bus. Examples

include impedance variation of the printed circuit board,

variation in the nominal supply voltage, and variation in the

transmitter and receiver characteristics. To account for noise

and high volume manufacturing variation, system designers

commonly use the concept of bus margin.

Bus margin, in concept, is a measure of the amount of

noise a bus can sustain before an error is induced. For many

buses, such as DDR3, this concept is implemented in

practice by measuring the voltage and timing margin. The

measured margin is then compared against a minimum

expectation of margin, or guardband, to account for factors

such as different data patterns, high volume manufacturing

variation, and other factors not included in the

measurement.

Figure 3. Data (DQ) bus topology for DDR. Vref and Strobe Delay are the

bus margining offsets that can be adjusted to produce a bit error.

A typical implementation of measuring bus margin is to

transfer a set of patterns over the bus while adjusting either

the voltage reference (Vref) or internal timing controls to

alter the relationship between the clock and the transmitted

or received data, as shown in Figure 3. The voltage or

timing is shifted to the point that a data error occurs. The

voltage or timing offset required to induce an error

establishes the voltage or timing margin for that specific

configuration and conditions. Voltage and timing margin are

measured for both the positive and negative direction, as

shown in Figure 4. For example, the Vref is adjusted up

until failure and is also adjusted down until failure. This

establishes a high side and low side voltage margin and

provides a source of parametric data which can be analyzed.

Likewise, the sampling position (strobe delay) is moved

both left and right to establish timing margin in both

directions. Voltage and timing margins are measured at both

ends of the bus, the memory controller in the CPU as well

as the DRAM‟s receiver.

122

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 131 / 139

3

Figure 4. Bus margin example. The left plot shows the data and strobe
signals at the Rx pad. The right plot shows the timing and voltage bus

margin after adjusting the Vref and strobe delay until a bit error.

Bus margin is a system level metric which can be

impacted by multiple factors. Specific areas that can have an

impact include: varying characteristics of the transmitters

drive strength for the Memory Controller and DIMM, the

receivers jitter tolerance, the interconnect, the board, and the

connector.

The focus of this paper is on understanding the relative

impact of bus margin on the overall population of memory

subsystem errors. In this study, the specific factor

contributing to low bus margin it is not generally known,

however we do know which margin parameter was at risk.

More importantly perhaps, the data shows us those issues

related to bus margin versus the other possible causes

(Internal Memory Controller Error, Internal DRAM Error,

or Soft Error).

III. DATA COLLECTION METHODOLOGY

Figure 5 shows an example of the data collection

methodology where a large number of server systems

(235,736) were margined during the production test process

and then correlated to failures at the customers‟ site.

A. Factory Data Collection

Bus margin data used in this study was captured in the

system manufacturing and test process at a large server

system manufacturer. Using built in test features, the margin

data was collected at multiple points throughout the test and

stored to a database for future analysis before the system

was packaged and shipped to the end customer for

installation. Margin data was collected, however, it was not

used as a production pass or fail screen. In some cases, other

system level tests failed and the memory modules or CPU

were replaced but in those cases, the margin data was

recaptured after the system was repaired. Only the final data

for as-shipped configurations were used for this analysis.

Consequently, the margin data in this study represents the

actual margin data of the systems as they were shipped out

of the factory.

B. End User DIMM Replacements

Tracking of end user DIMM issues was accomplished

through an analysis of service call data for systems

manufacturer over a period of 360 days. All systems which

required a DIMM replacement in the field were identified

and correlated back to the margin data collected for that

system in the factory. Note that although these service calls

may have included replacement of other system components

in addition to memory, such as motherboard or CPU, in all

cases, the DIMM was replaced.

Figure 5. Data collection overview. Failing systems are cross referenced to

original “end-of-line” bus margin for analysis.

IV. DATA ANALYSIS

A. Factory Margin Distribution

Significant insight can be obtained by analyzing the

distribution of observed DDR bus margin across the

resulting high volume factory dataset. The resulting data

included 6 different server board designs across many

different DIMM configurations. Since the data was

collected in the factory environment as a study versus a

screen, the margins measured represent exactly what the end

customer would experience. In other words, the margins

were simply measured and logged – a low margin case was

shipped „as is‟ to the end customer.

Therefore, it is interesting to consider the number of

systems that fall below the minimum margin expectation

(guardband). The data in Figure 6 shows that only 15 cases

out of 235,736 systems were below the guardband which

equals a system per million (SPM) of 64. This indicated that

about 64 systems out of a million, or 0.0064%, may be at

risk of experiencing a bus related error if margins remain

the same over time.

123

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 132 / 139

4

Figure 6. Cases falling below guardband

Further analysis of the data, shown in Figure 7, indicates

that of the 15 systems below guardband, 8 of those were the

same DIMM part number/type. These 8 DIMMs were

produced in a limited DIMM manufacturing date range of 6

weeks. In fact, 6 of the 8 were in a 3 week period. This

particular DIMM represented only 1.6% of the population of

DIMMs yet accounted for more than half the low margin

cases. This strongly suggests a manufacturing deviation or

test hole in the DIMM manufacturing and test process

leading to a bus marginality situation. If you were to remove

this sub-population of “defective” DIMMs, the effective

ratio of systems at risk of bus errors would drop to 0.0030%

or 30 SPM.

Figure 7. Low Margin Cases by DIMM Information. Highlighted rows are
the same part number and date code range of week 7-12, 2010 indicating a

DIMM manufacturing excursion.

Consider this low percentage of systems at risk of bus

errors (0.0030%) compared to either the 30% of systems

experiencing memory errors in one large scale study [1] or a

more commonly expected rate of 10%-15%. Note in the

referenced study [1] that these systems experiencing errors

have a median number of errors between 25 and 611 per

year. Given the random nature of Soft Errors, there is strong

evidence that these are instead related to one of the other

three sources. The margin data also suggests that relatively

few systems should experience bus errors which would

indicate that the bulk of end user memory errors are likely

not Soft or Bus Errors, but instead either Internal Memory

Controller or Internal DRAM Errors. This of course

assumes that the populations of systems from the two

studies were similar. We‟ll explore this from another angle

by looking at service call data for DIMM replacements.

B. End User DIMM Replacement Analysis

The prior analysis was done against systems that had

low margin and were at risk to fail. Next we will consider

systems that actually did experience some form of memory

error in the field. In this analysis, we will study systems that

required a DIMM module replacement at the end customer

installation.

The systems which required DIMM replacement were

cross-referenced back to the bus margin data collected for

that specific system when it was tested at the factory. The

bus margin for these systems was then compared against the

minimum bus margin guardband expectation. The data in

Figure 8 shows that only a small proportion of the systems

requiring DIMM replacements contained low margins at the

time the system was shipped from the factory. Only 0.16%

of the systems were below the margin guardband and in

fact, even if you double the guardband, this would still be

less than 1% of systems.

Clearly, the margins on the memory bus are a minor

factor driving field DIMM replacements for the population

of systems under study. What is driving these replacements

then? Unfortunately, detailed failure analysis was not

possible for the failures returned from customer sites, but

we can use the data we have to draw some important

conclusions. The factory bus margin data indicates that both

the CPU and DRAMs have sufficient voltage and timing

margin to ensure robust data transfers. Assuming that bus

margins have not degraded over time, there is a strong

indication that signal integrity issues are not a major factor

in memory failure rates. Considering that the sub-population

of systems requiring a DIMM replacement included 32

unique DIMM part numbers across 5 different vendors,

margin degradation due to aging seems unlikely. While it

might be reasonable to assume that a particular DRAM

design might have degradation problems due to aging, it is

124

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 133 / 139

5

very unlikely that this is a widespread problem across so

many different part numbers and DRAM suppliers. What

about margin degradation due to aging of the CPU? The fact

that the DIMM is being replaced and thereby resolving the

issue contradicts this theory and indicates it is not the CPU.

Given that these DIMM failures don‟t correlate to low

bus margins as measured in the factory and it seems

unlikely that DRAM I/O degradation is a widespread

problem, it is assumed that these DIMM replacements are

largely driven by internal DRAM issues.

Figure 8. Chart shows the percentage of systems with low bus margin.

This is for all field memory failures within our data set.

V. CONCLUSIONS

Through a large scale study of almost a quarter of a

million systems and over a million DIMMs, we have found

that memory bus margin is a minor contributor to memory

subsystem issues which drive end user DIMM replacements.

The key data supporting this conclusion:

 Prior studies indicate that somewhere between 5

and 30% of systems experience memory issues, yet

high volume margin data collected at the system

assembly factory suggests that only about 0.0064%

of systems would be susceptible to experiencing

problems due to bus margin.

 Only 0.16% of the systems that required a DIMM

replacement showed low bus margin in the factory

study.

 Bus margin degradation over time is unlikely given

that the population of DIMM replacements

includes a large variety of different DIMMs from 5

different DRAM manufacturers, eliminating any

systemic problems.

It should be noted that this data was from a specific CPU

family and set of product design requirements. The data

suggests that the systems are well designed from a bus

integrity point of view. It is possible that other products may

have inferior bus designs, higher memory error rates, and

higher proportion of those memory errors attributable to bus

marginality. Also, further aging studies including contact

corrosion and degradation are under investigation to better

understand how bus margins may change over several years.

However, for a well-designed system, the data shows that

bus marginality is a very small contributor to overall

memory subsystem health.

REFERENCES

[1] B. Schroeder, E. Pinheiro, and W. Weber. “DRAM Errors in the

Wild: A Large-Scale Field Study”, SIGMETRICS/Performance ’09,
June 15-19, 2009, Seattle, WA, USA

[2] T. C. May and M. H. Woods, “Alpha-Particle-Induced Soft Errors in
Dynamic Memories”, IEEE Transactions on Electron Devices 26, No.
1, 2-9, 1979

[3] J. F. Ziegler and W. A. Lanford, “Effect of Cosmic Rays on
Computer Memories”, Science 206, No. 4420, 776-788, 1979

[4] J. F. Ziegler and W. A. Lanford, “The Effect of Sea Level Cosmic
Rays on Electronic Devices”, IEEE International Solid-State Circuits
Conference, 1980

[5] S. Mukherjee. “Computer Glitches from Radiation: A Problem with
Multiple Solutions”, Microprocessor Report, May 19, 2008

[6] T. J. Dell, “System RAS implications of DRAM soft errors”, IBM
Journal of Research and Development, Vol. 52, No.3, May 2008

[7] X. Li, M. C. Huang, K. Shen, and L. Chu, “An Empirical Study of
Memory Hardware Errors in A Server Farm”, HotDep Workshop,
2007

[8] “Soft Errors in Electronic Memory – A White Paper”, Tezzaron
Semiconductor, January 5, 2004, Naperville, IL, USA

125

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 134 / 139

Software Testing in Critical Embedded Systems: a Systematic Review of
Adherence to the DO-178B Standard

Jacson Rodrigues Barbosa∗, Auri Marcelo Rizzo Vincenzi∗
∗Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

E-mail: {jacsonbarbosa,auri}@inf.ufg.br

Márcio Eduardo Delamaro†, José Carlos Maldonado†
†Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

E-mail: {delamaro,jcmaldon}@icmc.usp.br

Abstract—Computing is becoming increasingly
critical as far as embedded applications are con-
cerned. Depending on the software, its malfunction
may have consequences varying from serious financial
problems to the loss of human lives. In view of
this, this paper presents a systematic review that
investigates the evolution of the work-related activity
of embedded software critical tests in order to assess
the level of compliance of the works found in relation
to the DO-178B standard (Software Considerations in
Airborne Systems and Equipment Certification). The
ultimate goal of this research is the composition of ex-
isting works to define a test process that incorporates
the quality and DO-178B requirements considering
the different levels of criticality.

Keywords-software testing; critical embedded sys-
tem; DO-178B.

I. Introduction

Embedded systems are often critical computational
modules for monitoring and control used together with
physical devices such as robots, autonomous vehicles and
unmanned aircraft. Some systems impose restrictions
with regard to security, performance, reliability and
other factors, since failures in these systems may result
in danger to human lives, environmental hazards or high
financial losses.

By aiming to ensure quality levels which will reduce
the chances of these tragic events, the Radio Technical
Commission for Aeronautics (RTCA), together with
the European Organization for Civil Aviation Equip-
ment (EUROCAE) have created the DO-178B standard,
which provides a set of guidelines for the development
and certification of embedded software systems and
applications, since these devices cannot be marketed
by the industry without the latter’s approval of this
standard [1].

Because of this, the National Institute of Science and
Technology Critical Embedded Systems (INCT-SEC)
has recently been created to establish a network of
collaboration and research in critical embedded systems
(CES) [2]. The present work supports the goals of the
INCT-SEC, investigating the evolution of research in

software testing of critical embedded systems through
a systematic review (SR) and assessing the level of
compliance of such research with the DO-178B, in an
attempt to identify a set of works which could be used
together in a methodology for CES testing.

This paper is organized into four sections. Section II
presents the main concepts related to the DO-178B stan-
dard. Section III describes the SR planning. Section IV
shows the results obtained after conducting the review.
Section V presents our conclusions on the topic and
suggests future work to be carried out in the field.

II. Background: the DO-178B standard

The DO-178B standard defines the software’s demand
levels by considering the effects (failure condition) pro-
duced if the software behaves abnormally. Table I shows
this relationship.

Table I
Software levels and failure condition (adapted from [3])

Software Level Failure Condition
A Catastrophic
B Hazardous
C Major
D Minor
E No effect

In DO-178B, the test on critical embedded systems
has aims that complement the software verification pro-
cess, showing that such software meets the relevant
requirements and reveals a high degree of certainty that
the defects which could lead to unacceptable failure
conditions were removed [1].

To meet these goals in the software testing process,
the standard defines a set of five requirements.

A. Normal range test cases

Normal range test cases show the software’s ability to
respond to inputs and normal conditions; for instance, an
entire input variable should be executed by using valid
equivalence classes and limit values.

126

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 135 / 139

B. Robustness test cases

Robustness test cases demonstrate the software’s abil-
ity to respond to inputs and abnormal conditions; for
instance, an input variable must be performed by using
values of invalid equivalence classes.

C. Requirement-based testing methods

There are three testing methods based on re-
quirements: integration of requirement-based hard-
ware/software, integration testing of requirement-based
software and low-level requirement-based test.

D. Requirement-based test coverage analysis

The purpose of this analysis is to determine how the
implemented software requirements were verified with
the requirement-based tests.

E. Structural coverage analysis

This analysis aims to show how the code structure was
not executed by the requirement-based test.

Given the importance of the DO-178B standard as
regards software certification for critical embedded sys-
tems used in aviation, one of the goals of INCT-SEC is
to develop software for the control of unmanned aerial
vehicles. The following section shows the planning of
the systematic review conducted to identify previously
developed research in this area of expertise.

III. Systematic review planning

The systematic review (SR) was planned following
the model proposed by [4]. Figure 1 shows the SR’s
development process.

Figure 1. Systematic review process (adapted from [5])

A. Definition of Research Question

The purpose of the SR was to find answers to the
following questions:

• Primary Research Question 1 (PRQ1): What
techniques and software testing criteria have been
proposed for software testing in critical embedded
systems?

• Secondary Research Question 1.1 (SRQ1.1):
What standards have been proposed for software
testing in critical embedded systems?

• Primary Research Question 2 (PRQ2): What
is the degree of adherence of experimental studies
related to the objectives and activities of the soft-
ware testing process defined in DO-178B?

• Secondary Research Question 2.1 (SRQ2.1):
What evidence is there to confirm that the objec-
tives and activities of the software testing process
defined in DO-178B provide high quality standards
in critical embedded systems?

• Primary Research Question 3 (PRQ3): What
has been the strength of evidence supporting the
conclusions drawn?

B. Quality and Breadth of Research Question

A well-formulated research question includes the fol-
lowing elements:

1) Keywords and Synonyms: the following were re-
garded as keywords in English:

• critical embedded, safety-critical, mission-critical,
embedded software

• software test, system test

2) Intervention: software testing processes, tech-
niques and criteria were observed in this review.

3) Control: we identified eight articles relevant to the
context of this work , which served as control items of the
search string. If the search string came up with all these
articles, then that would confirm its appropriateness.

4) Population: the group was observed by researchers
and software developers working on the design and
construction of critical embedded systems.

5) Findings: software verification and validation
(V&V) activities, software testing methodology, tech-
niques and criteria for testing software used in the
context of critical embedded systems.

6) Application: software development projects imple-
mented within the context of critical embedded systems.

C. Search Strategy for Selection of Primary Studies

By taking into account the keywords, study sources,
language and types of primary study, the following were
selected for review:

1) Listing sources: electronic indexed databases IEEE
Xplore (IEEE) and ACM Digital Library (ACM).

2) Language of primary studies: English.
3) Type of primary studies: reference lists of primary

studies, journals, technical reports and conference pro-
ceedings.

D. Pilot Search

From the research questions and their respective at-
tributes of quality and breadth, a search string was
defined in order to perform an initial evaluation: (critical
embedded OR safety-critical OR mission-critical OR em-
bedded software). AND (test) AND (software OR system)

127

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 136 / 139

E. Criteria and Procedure for Selection of Studies

1) Inclusion criteria: the following inclusion criteria
were defined:

• IC1 – implementation of software V&V (static
and/or dynamic) activities in the context of critical
embedded systems;

• IC2 – application of techniques and test criteria (dy-
namic) for software in critical embedded systems.

2) Exclusion criteria: the following exclusion criteria
were defined:

• EC1 – implementation of software V&V activities
in the context of non-critical embedded systems e.g.
mobile applications;

• EC2 – application of techniques and criteria for
software testing in non-critical embedded systems;

• EC3 – does not address the activities of software
V&V or techniques and criteria for software testing
in the context of critical embedded systems.

F. Selection Process for Primary Studies

1) Primary Selection Process: search strings were
formed by combining synonyms of the keywords iden-
tified. These strings were used to conduct searches in
the search engines mentioned. The studies found through
this research were analyzed by two reviewers (co-authors
of this paper), who read and reviewed their titles and
abstracts to rate them in terms of importance. If the
reviewers reached an agreement over a given article, the
manuscript was selected to be read in full.

2) Final Selection Process: we performed a thorough
reading of papers selected in the preliminary stage by at
least one of the reviewers.

3) Evaluation of Primary Studies: all primary studies
were assessed individually by the reviewers based on
the criteria defined in [5]. Reviewers then produced a
document containing the summary, methodology and
testing techniques mentioned in the primary studies, as
well as other related concepts.

G. Strategies for Extraction and Summarization of Find-
ings

For each primary study selected, we used the JabRef
tool to store the collected data [6].

The summary of the results collected was organized
into a tabular format.

IV. Data analysis

In Figure 2, Phase 1 amounts to the number of pri-
mary studies found by indexed electronic databases after
submitting the query string (n=872). Phase 2 shows the
number of studies resulting from the primary selection
process (n=285); the remaining n=587 were excluded
because their titles and summaries did not address the
SR’s scope of research questions. In Phase 3, n=185

were eliminated after the reading because they failed
to meet the SR’s full scope, thereby leaving n=100
primary studies. Finally, in Phase 4 n=3 were eliminated
following the evaluation of primary studies according to
quality criteria defined in the SR planning; they were
considered of low quality. Thus, n=97 primary studies
selected for extraction and summary of results remained.
These phases were carried out by the authors during a
period of five months. Further details about the primary
studies selected are available in [7].

Figure 2. Phases of the final selection, adapted from [4]

Tables II, III and IV summarize the data of 97
primary studies and show partial quantities (IEEE and
ACM), total studies (n) and total percentage of stud-
ies (%).

Table II presents quantitative information about the
type of experimental study employed in the papers
selected. This classification is based on the terminology
defined by [4], according to which multiple-case refers to
projects that include more than one case. By examining
the table, it seems that 59.79% of the studies are obser-
vational (single-case and multiple-case), thus indicating
that the majority are a result of monitoring one or more
projects in depth.

Table II
Type of experimental study

Experimental Study IEEE ACM n %

Single-case 28 20 48 49.48

Multiple-case 4 6 10 10.31

Experiment 5 12 17 17.53

Survey 3 0 3 3.09

Not mentioned 12 7 19 19.59

Total 52 45 97 100

Table III shows the software testing techniques em-
ployed by the studies; if one approaches more than one
technique, for instance quantity (q) equal to 3, a value
of 0.33 (q−1) would be assigned for each technique. It
appears that the functional testing technique is most

128

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 137 / 139

frequently used (36.77%), followed by model-based test-
ing (28.36%), which allows us to eliminate ambiguities
and to derive test cases from the model. The paper
in [8] proposes the transition coverage criterion based
on security requirements as a new alternative for the
model-based testing technique.

Table III
Software testing techniques explored

Software testing IEEE ACM n %

Model-based testing 14.5 13 27.5 28.36

Mutation testing 0.33 1.83 2.16 2.23

Structural testing 8.83 14.83 23.66 24.4

Functional testing 21.33 14.33 35.66 36.77

Not mentioned 7 1 8 8.25

Total 51.99 44.99 96.98 100

Among the primary studies selected in the SR, the
Safety Critical Application Development Environment
(SCADE) has been widely quoted to specify critical
embedded software, since the SCADE Suite allows the
automatic generation of C code from specific models,
such as state machines.

As regards the software testing criteria explored by
the studies in question, the equivalence partition crite-
rion was the most frequently used (12.37%). As far as
structural testing criteria are concerned, the Modified
Condition/Decision Coverage MC/DC was the most fre-
quently used (10.23%). The remaining structural criteria
required by DO-178B have been explored as follows:
Decision Coverage DC (0.68%) and Statement Coverage
SC (5.82%) , in response to PRQ1.

With respect to the norms and standards related to
the development of critical embedded software (SRQ1.1),
the DO-178B standard was the most frequently used
(20.92%), thus indicating that the objectives and ac-
tivities defined in DO-178B provide conditions to build
a critical embedded software quality (in response to
SRQ2.1). Furthermore, standards were used for specific
industrial contexts; for instance, the standards set by
the European Committee for Electrotechnical Standard-
ization (CENELEC) are recommendations for the devel-
opment and testing of rail transport systems [9].

As can be seen in Table IV, the requirement Structural
coverage analysis of DO-178B has been extensively inves-
tigated - this is possibly due to the complexity associated
with it. It has been observed that 36.09% of the studies
carried out are not directly mappable to DO-178B test
requirements, due to the fact that most studies address
issues related to the definition of software life cycle
models or other critical embedded software processes
(responding to PRQ2). Further detailed information on
this topic can be found in [7].

To meet software level A, the criteria for structural

testing (MC/DC) must be adhered to, as these are the
most rigorous structural criteria defined by DO-178B.
The article in [10] presents a case study that meets
the criteria when looking for MC/DC. Important errors
that failed to be identified by functional technique were
found by MC/DC, thus demonstrating its effectiveness
for identifying critical bugs and for complementing the
functional technique.

However, the study in [8] presents a subsumption hi-
erarchy which compares the MC/DC and other criteria,
thereby confirming that the Multiple-Condition Cover-
age test (M-CC) is more stringent than the MC/DC.
In terms of overall effectiveness for fault detection, the
following tests stand in decreasing order: MC/DC <
CUTPNFP < MUMCUT < M-CC.

Table IV
Adherence to testing process requirements

DO-178B Testing Process
Requirements

IEEE ACM n %

Normal range test cases 4.61 2.91 7.52 7.75

Robustness test cases
4.48 2.58 7.06 7.28

Requirement-based testing
methods

3.11 4.33 7.44 7.67

Requirement-based test cov-
erage analysis

9.65 3.58 13.23 13.64

Structural coverage analysis 10.15 16.58 26.73 27.56

No direct mapping to DO-
178B requirements

20 15 35 36.09

Total 52 44.98 96.98 100

By comparing Tables III and IV, it appears that
the functional testing technique was the most frequently
used, but the first two requirements of the DO-178B
testing process shown in Table IV, which adhere to
the functional test criteria (partitioning equivalence and
boundary value analysis), have few related works. This
is because the corresponding functional test criteria
employed were not specified in this subset of primary
studies.

As regards study characteristics, 59.79% of the stud-
ies selected are observational (as shown in Table II),
whereas only 17.53% correspond to experiments. In ac-
cordance with the guidelines of the Grading of Recom-
mendations Assessment, Development and Evaluation
(GRADE), the evidence obtained by the SR concerning
study characteristics are considered low (refer to [4], [5]
for an overview).

Regarding the quality of the studies selected, their
approaches to data analysis were explained in a mod-
erate way, including issues such as potential bias, cred-
ibility and study limitations. Only in one study did
the researcher critically assess his own role. Credibility
was discussed in 98.45% of the studies, whereas study

129

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 138 / 139

limitations were discussed in 72.68% of them. Based on
the quality criterion results, the studies show moderate
evidence.

As far as the consistency criterion is concerned, we
identified similarities between 63.91% of the studies re-
garding DO-178B requirements (as shown in Table IV),
since at least one of these requirements could be asso-
ciated in more than a single primary study; the rest do
not emphasize the requirements (36.09%). As a result,
the strength of evidence regarding consistency may be
classified as moderate.

Finally, we focused on the directness criterion, which
assesses whether the people involved (students or soft-
ware professionals), interventions and study results are
consistent with the area of interest. In the SR, most
studies were carried out in an academic context, and
only one study mentioned the level of knowledge and
experience of the students involved - both undergraduate
and experienced graduate students. As regards interven-
tion, objective comparisons were carried out with 63.91%
of the studies concerning DO-178B requirements, even
though only 20.92% of the studies clearly mentioned the
use of the standard in question. Finally, as for the results
obtained, even though most of the studies are observa-
tional, they are not trivial, being thus comparable with
the software/systems developed by the industry. This
information allows us to regard the strength of evidence
related to objectivity as low to moderate.

Once the four criteria (characteristics, quality, con-
sistency and directness) are combined to determine
the strength of evidence for this RS , the latter may
be classified as moderate, hence responding to PRQ3.
Therefore, defining the strength of evidence may help
future research to have a crucial impact on the reliability
of effect estimates, hence changing current estimates [5].

V. Final considerations and future work

In the analysis of the studies selected, we found that
all DO-178B testing process requirements have been
explored, but few studies have discussed how to solve
problems of structural coverage analysis (n=2), such as
dead code and deactivated code.

In the future, we intend to propose a software test
methodology that supports the INCT-SEC projects
compliant with DO-178B and uses the activities of
software verification and validation as well as the tech-
niques and criteria for software testing identified in the
systematic review. Since DO-178B does not define how
to implement the respective processes, the methodology
should state how the processes are to be implemented in
accordance with the necessary requirement levels.

Moreover, it is possible to reuse the SR protocol
further, collecting more data aiming at identifying how

the state of the art evolved and the still missing pitfalls in
the context of testing of critical embedded system (CES).

Acknowledgments

We are indebted to CNPq (573963/2008-8), FAPESP
(08/57870-9), FAPEG (200910267000662) and CAPES
for their financial support. We also thank professor
Pĺınio de Sá Leitão Júnior for reviewing this paper.

References

[1] Software considerations in airbone systems and equipa-
ment certification, RTCA SC-167/EUROCAE WG-12,
1992.

[2] J. C. Maldonado, “National institute of science
and technology critical embedded systems (INCT-
SEC),” São Carlos/SP - Brazil, 2008. [Online].
Available: http://www.inct-sec.org/?q=en-us. Accessed
on: [08/18/2011].

[3] T. K. Ferrel and U. D. Ferrel, The Avionics Handbook.
CRC Press LLC, 2001.

[4] T. Dyb̊a and T. Dingsøyr, “Empirical studies of agile
software development: A systematic review,” Informa-
tion and Software Technology, 2008.

[5] M. S. Ali, M. Ali Babar, L. Chen, and K.-J. Stol, “A
systematic review of comparative evidence of aspect-
oriented programming,” Inf. Softw. Technol., vol. 52, pp.
871–887, September 2010.

[6] JabRef 2.4, 2008. [Online]. Avail-
able: http://jabref.sourceforce.net/. Accessed on:
[08/18/2011].

[7] J. R. Barbosa and A. M. R. Vincenzi, “Software
testing in the context of critical embedded
systems,” Web page, july 2011. [Online]. Available:
http://www.inf.ufg.br/˜auri/sec-en/. Accessed on:
[08/18/2011].

[8] Y. T. Yu and M. F. Lau, “A comparison of
MC/DC, MUMCUT and several other coverage
criteria for logical decisions,” J. Syst. Softw.,
vol. 79, pp. 577–590, May 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2005.05.030. Accessed
on: [08/18/2011].

[9] J. Kloos and R. Eschbach, “Generating system models
for a highly configurable train control system using a
domain-specific language: A case study,” in Proceedings
of the IEEE International Conference on Software Test-
ing, Verification, and Validation Workshops. Washing-
ton, DC, USA: IEEE Computer Society, 2009, pp. 39–47.

[10] A. Dupuy and N. Leveson, “An empirical evaluation of
the MC/DC coverage criterion on the HETE-2 satel-
lite software,” in Digital Avionics Systems Conferences,
2000. Proceedings. DASC. The 19th, vol. 1, 2000, pp.
1B6/1 –1B6/7 vol.1.

130

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Powered by TCPDF (www.tcpdf.org)

 139 / 139

http://www.tcpdf.org

