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Foreword

The Eighteenth International Conference on Advances in Signal, Image and Video Processing
(SIGNAL 2023), held between March 13 – 17, 2023, continued the inaugural event considering the
challenges mentioned above. Having these motivations in mind, the goal of this conference was to bring
together researchers and industry and form a forum for fruitful discussions, networking, and ideas.

Signal, video and image processing constitutes the basis of communications systems. With the
proliferation of portable/implantable devices, embedded signal processing became widely used, despite
that most of the common users are not aware of this issue. New signal, image and video processing
algorithms and methods, in the context of a growing-wide range of domains (communications,
medicine, finance, education, etc.) have been proposed, developed and deployed. Moreover, since the
implementation platforms experience an exponential growth in terms of their performance, many signal
processing techniques are reconsidered and adapted in the framework of new applications. Having
these motivations in mind, the goal of this conference was to bring together researchers and industry
and form a forum for fruitful discussions, networking, and ideas.

We take here the opportunity to warmly thank all the members of the SIGNAL 2023 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to SIGNAL 2023. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SIGNAL 2023 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that SIGNAL 2023 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of signal
processing.

We are convinced that the participants found the event useful and communications very open.
We also hope that Barcelona provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city
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Abstract—The main goal of this paper is the evaluation of the 

potential of Fisher-Shannon statistical method applied to 

MODIS evapotranspiration satellite time series to explore the 

inner time dynamics of vegetation cover. In particular, we 

focused on two types of vegetation areas, peri-urban parks and 

olive orchards. For the first, we selected five sites in Italy, one 

of which (Castel Volturno) is affected by Toumeyella 

Parvicornis, a parasite that has been adversely impacting the 

Pinus trees of that area in the recent years. For the second, we 

selected seven sites in Southern Italy, four of which are 

affected by Xylella Fastidiosa, considered one of the most 

dangerous phytopathogenic bacteria in the world. For all the 

investigated sites, to remove the trend and seasonal variability, 

we firstly applied the Singular Spectrum Analysis (SSA); then, 

we analysed the de-trended series by means of the Fisher-

Shannon statistical method, which combines the Shannon 

Entropy Power (SEP) and the Fisher Information Measure 

(FIM). In the Fisher-Shannon Information Plane (FSIP), the 

infected vegetated areas appear well characterized by the 

lowest FIM and the highest SEP. These preliminary results 

seem to envisage the usefulness of the Fisher-Shannon method 

as a reliable statistical tool to be included in an operational 

system for early diagnosis of status of deterioration of 

vegetation. 

Keywords-Fisher-Shannon method; singular spectrum 

analysis; MODIS; vegetation. 

I.  INTRODUCTION 

With the worsening of climate change and the increasing 
of global trade, plant diseases have been accelerating in 
outbreaking and spreading out. Invasive pests and alien plant 
bacteria are considered one of the major threats worldwide, 
because they can induce serious plant diseases with 
devastating impacts on both natural ecosystems and 
agriculture production with huge environmental (loss of 
biodiversity) and economic damage. For instance, Xylella 
Fastidiosa, considered one of the most dangerous plant 
bacteria in the world, causes a number of devasting diseases 

of significant economic importance in many crops as, but not 
only, grapevine, Citrus, Olive trees etc.  As an example, in 
the EU only considering the impact on olive trees, it has been 
estimated that this bacterium has the potential of causing an 
annual production loss of 5.5 billion euros, affecting 70% of 
the EU production value of older olive trees. Thus, detecting, 
quantifying and identifying plant diseases is extremely 
crucial for assessing tempestive measures to contrast them 
[1].  

 
Figure 1. Study areas (A); peri-urban parls (B, C); olive orchards (D). 

 

In the recent years, Remote Sensing (RS) approaches 
have been gaining special attention in monitoring vegetation 
dynamics resulting, among the others, from plant diseases 
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[2]. Several RS applications in phytopathology have been 
focused on the development of methodologies based on 
multi-temporal and multi-spectral satellite data for 
monitoring land-cover changes. Statistical approaches, such 
as principal component analysis [3] and curve fitting 
methods [4], are well known for detecting vegetation 
changes of land surface. 

In this paper, we present a statistical approach, namely 
the Fisher-Shannon (FS) method, to capture evidence of the 
presence of plant diseases. The FS method relies on the 
informational content of a time series and, in our case, is 
used to analyse the time dynamics of MODIS 
Evapotranspiration (ET) satellite data of different vegetation 
covers, affected by Toumeyella Parvicornis and by Xylella 
Fastidiosa.

 
Figure 2. An example of evapotranspiration data. 

 
The MODIS ET product is based on the logic of the 

Penman-Monteith equation, which includes inputs of daily 
meteorological reanalysis data along with satellite 
information. It is expected that ET will suitably characterize 
and capture the impact of plant infected by Toumeyella 
Parvicornis and by Xylella Fastidiosa, since one of the 
recognizable effects is that the plant dries up and dies.  

 

 

 
Figure 3. Power spectra of ET time series of olive orchards (a) and peri-

urban parks (b). 

 
 

II. DATA AND METHODS 

For the purpose of this study, five peri-urban parks in 
Italy were selected, Milano, Torino, Appia, Castel Porziano 
and Castel Volturno, the last one attacked by the Toumeyella 
Parvicornis since 2015. Furthermore, seven olive orchard 
areas were selected, Foggia, Potenza, Matera, X2013, 
X2015, X2016 and X2017, the last four located in Southern 
Apulia and infected by Xylella Fastidiosa in different periods 
from 2013 to 2017 (Figure 1). For each site, one MODIS-
based ET time series was obtained by averaging the ET 
values of all the 500m resolution pixels covering each 
investigated site. The sampling time of the MODIS ET 
satellite data is 8 days. Some examples of the analysed 
MODIS ET time series are shown in Figure 2. 

The statistical approach used in investigating the data is 
composed by two steps: the singular spectrum analysis and 
the Fisher-Shannon method, described in the following 
subsections. 

A. Singular Spectrum Analysis 

The decomposition of a time series into independent 
components can be performed by using several techniques, 
among which the Singular Spectrum Analysis (SSA) [5] 
represents an efficient and well-known tool based on phase-
lagged copies of the series. 

 The independent components obtained by means of the 
SSA can be easily recognizable as slowly changing trend, 
oscillatory components and structureless noise [6]. 

Let us consider a time series yi (i =1, .., N) and a lag M, 
then the Toeplitz lagged correlation matrix can be 
constructed: 

 

 

(
(1) 

 

Sorting its eigenvalues λk in decreasing order, the 
corresponding eigenvectors Ek,j  where j and k vary from 1 to 
M, are used to calculate the k-th principal component i 
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for M≤i≤N-M+1. Since the eigenvalue λk represents the 
fraction of the total variance of the original series explained 
in k-th reconstructed component Rk, the decreasing order of 
the eigenvalues also reflects the decreasing order of the 
reconstructed components by the fraction of the total 
variance of the series [7]. SSA requires that the lag M is 
properly selected, on the base of a trade-off between the 
quantity of information extracted (large M) and the degree of 
statistical confidence in that information (large ratio N/M). 
Khan and Poskitt [8] calculated the maximum M = (log N)c, 

1.5 ≤ c ≤ 2.5.  

 
Figure 4. Application of SSA to Foggia MODIS ET data. 

 
Figure 5. Application of SSA to Milano MODIS ET data. 
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is used to separate the series into two parts that we can 

define as trend and detrended series; λk are the eigenvalues, p 
is the number of eigenvalues, identical to M, and N is the 
length of the original series. The separation occurs at the 

value of k ∈{0, 1, 2, …, p-1} for which the MDL is 
minimized. 

B. Fisher-Shannon method 

The informational properties of a time series can be 
analysed by the Fisher Information Measure (FIM) and the 
Shannon entropy (SE) that quantify respectively the local 
and global smoothness of the distribution of a series. The 
FIM and SE can be utilized for characterizing the complexity 
of non-stationary time series described in terms of order and 
organization [10]. The FIM measures the order and 
organization of the series, and the SE its uncertainty or 
disorder [11]. The FIM and SE are defined by the following 
formulae: 

2

FIM ( )
( )

dx
f x

x f x

+∞

−∞

 ∂ 
=  

∂ 


, 

(
(5) 

( )SE ( ) log
X X
f x f x dx

+∞

−∞

= − 
, 

(
(6) 

where f(x) is the distribution of the series x. Instead of 
SE, it is generally used the Shannon entropy power (SEP) NX 

, 

(
(7) 

 
that is defined positive. FIM and NX are not independent 

of each other due to the isoperimetric inequality FIM⋅NX≥D 
[12], where D is the dimension of the space (1 for time 
series). 

FIM and NX depend on f(x), whose accurate estimation is 
crucial to obtain reliable values of informational quantities. 
For calculating FIM and NX we applied the kernel-based 
approach that is better than discrete-based approach in 
estimating the probability density function [13]. Thus 
applying the kernel density estimator method for f(x) [14], 
[15] as shown in the following formula: 

1

1ˆ ( )
M

i
M

i

x x
f x K

Mb b=

 − 
=  

 


, 

(
(8) 

where M and b denote the length of the series and the 
bandwidth respectively, while K(u) is the kernel that is a 
continuous, symmetric and non-negative function satisfying 
the two following constrains: 

( ) 0≥K u
 and 

( ) 1K u du
+∞

−∞

=
, 

(
(9) 
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f(x) is estimated by means of an optimized integrated 
procedure using the algorithms of Troudi et al. [16] and 
Raykar and Duraiswami [17] with the Gaussian kernel:  

2

2

( )

2

2
1

1ˆ ( )
2

ix x
M

b
M

i

f x e
M πb

−
−

=

= 
. 

(10)

Due to the isoperimetric inequality, the Fisher-Shannon 
information plane (FSIP), which has the NX as x-axis and 
FIM as y-axis, represents a very useful tool to investigate the 
complexity of time dynamics of signals [18]. For scalar 
signals, the curve FIM∙NX=1 separates the FSIP into two 
parts, and each signal can be represented by a point located 
only in the space FIM∙NX>1. 

III. RESULTS 

The SSA requires that the phase lag M is selected to 
capture the main periodicities of the series. Thus, we firstly 
calculated the power spectrum of each ET time series (Figure 
2) and identified the annual cycle as the main periodicity. 

 Thus, to detect at least the annual cycle, M was set as 46, 
consistently with the sampling time of the data, which is 8 
days. As an example, Figure 4 and Figure 5 show the 
application of the SSA to the ET time series of two sites. 

After normalized the series, the SSA eigenvalue spectrum λ 
was obtained along with the reconstructed components; each 
eigenvalue represents the contribution of the corresponding 
component to the total variance of the original series. The 
behaviour of the reconstructed components varies from 
oscillatory trend with amplitude modulation to seemingly 
noisy. Applying the MDL criterion the signal is separated 
into a trend and a de-trended series; the value of kmin 
corresponding to the minimum MDL represents the number 
of the first reconstructed components to sum up for obtaining 
the trend. For the series Foggia, for instance, kmin=9; thus, the 
trend is obtained summing up the first 9 reconstructed 
components and the de-trended series by subtracting the 
trend from the original normalized series. Table I and Table 
II show the SSA parameters (phase lag M and kmin) used for 
each time series.  

The trend is featured by an oscillatory behaviour and 
represents the seasonal cycles of meteo-climatic origin. The 
de-trended series, although apparently noisy, represents the 
inner time dynamics of the series that might not be 
influenced by external driving mechanisms. Thus, since our 
aim is the characterization of the time dynamics of inner 
vegetation by using the Fisher-Shannon method, for each site 
we analysed the de-trended series. Figure 6 and Figure 7 
show the FSIP of de-trended MODIS ET time series of the 
peri-urban parks and the olive orchard areas, respectively. 
The FSIP indicates that among the peri-urban parks Castel 
Volturno that is effectively attacked by the Toumeyella 
Parvicornis is characterized by the lowest FIM and the 
highest SEP. Among the olive orchards, the four sites 
X2013, X2015, X2016 and X2017 that were infected by 
Xylella Fastidiosa occupy the bottom-right part of the FSIP, 
indicating a higher level of disorder and lower level of 
organization of the vegetation index, similarly to Castel 
Volturno. 

TABLE I.  SSA PARAMETERS USED FOR PERI-URBAN PARKS 

Peri-urban parks 

Site M kmin 

Torino 46 7 

Castel Volturno 46 5 

Castel Porziano 46 7 

Appia 46 11 

Milano 46 12 

 

TABLE II.  SSA PARAMETERS USED FOR OLIVE ORCAHRDS 

Olive orchards 

Site M kmin 

Foggia 46 9 

Matera 46 8 

Potenza 46 8 

X2013 46 7 

X2015 46 7 

X2016 46 6 

X2017 46 6 

 
 
         

 
Figure 6. Fisher-Shannon Information Plane for the de-trended MODIS 

ET data of peri-urban parks. 
 

IV. DISCUSSION 

The fatality rate for both Toumeyella Parvicornis 
(affecting pines) and Xylella Fastidiosa (affecting olive 
orchads)  is as high as 100%, and their early detection is the 
critical issue to eradicate the disease and stop tree mortality. 
Therefore, the main question is how to quickly find the 
infected trees? 

From the operational point of view, the existing solutions 
are only based on in situ analysis and visual inspection, and, 
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therefore, are not suitable to identify early signals of plant 
diseases not visible at a naked eye.  

Earth Observation (EO) technologies  provide, instead,  
imaging beyond the visible and therefore much more 
information than those obtained solely from the ground.  
Moreover, EO undoubtly offer cost-effective tools for 
monitoring wide areas at both local and global scale.  

Nevertheless, previous studies based on satellite EO or 
drone surveys did not utilize analyses of long term time 
series that enabled the identification of early signals of 
degradation. Moreover, the use of evapotranspiration time 
series as proxy indicator of plant conditions also improved 
the early detection capability (and facilitate the forecasting of 
pest outbreak) that is the critical issue to eradicate destructive 
disease and pest infestations, as those from  both for Xylella  
and Toumeyella Parvicornis. 

There is a strong requirement for reliable operational 
tools for multiscale, multi-sensor, multi-temporal monitoring 
of biophysical parameters relating to the state of vegetation 
to assess and monitor land degradation and capture early 
signs of both degradation productivity declines and related 
temporal dynamics that often precede tree mortality years to 
decades before death. In more details, the following tasks 
would be useful to implement: i) setting up of EO-based 
metrics/indicators suitable for an early diagnosis of 
vegetation deterioration trends to improve ability to forecast 
tree disease and mortality  from local up  global scale; ii) 
effective satellite-based near real time monitoring of forest 
disease and pest damage for the development of prevention 
and control strategies. 

 

V. CONCLUSIONS 

The vegetation of several study areas from the North to 
the Southern part of Italy was analysed. The study areas were 
peri-urban parks and olive orchards. The peri-urban parks 
were selected as key in improving environmental quality, 
being rich in biodiversity and allowing urban areas to be 
more sustainable, helping to combat climate change and 
make cities more comfortable. The olive orchards were 
selected as extremely important for the economy of Southern 
Italy; in fact, Apulia (were some of the investigated sites are 
located) accounts for about 40% of Italy’s olive oil 
production. 

Thus, for each site we focused on the SSA de-trended 
series since this represents the inner time dynamics of the 
vegetation. 

Our findings point out to the following results: (i) the 
trend of each series is characterized by an oscillatory 
behaviour that might be linked with the meteo-climatic 
cycles, (ii) the de-trended series, although apparently noisy, 
might be not influenced by external driving mechanisms; (iii) 
among the investigated peri-urban parks, Castel Volturno, 
and among the olive orchards, X2013, X2015, X2016 and 
X2017 are characterized by the lowest FIM and the highest 
SEP; (iv) Castel Volturno, X2013, X2015, X2016 and 
X2017 share similar phytopathogenic conditions, which is 
induced by Toumeyella Parvicornis for Castel Volturno and 
Xylella Fastidiosa for the remaining four sites; (v) a plant 

disease seems to be well revealed by analysing the 
informational properties of MODIS ET time series. 

  

 
Figure 7. Fisher-Shannon Information Plane for the de-trended MODIS 

ET data of olive orchards. 

 
Our results could contribute to the definition of 

methodologies able to diagnose the deterioration and 
operational tools for the monitoring of biophysical 
parameters of the status of vegetation.  
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Abstract—Stress as a mental/physiological reaction of a person
in a challenging situation of high discomfort can affect his/her
ability to focus and perform fast and accurate decisions. Thus,
stress can be a key factor in cases of emergency, when first
responders need to be fast and accurate. Continuous monitoring
of the stress levels of the first responders can be crucial in cases
of disaster management situations. Wearable devices and phys-
iological sensors provide real-time monitoring of physiological
signals, which can be helpful for real-time stress monitoring. This
work describes the stress detection module of the xR4DRAMA
project and the results of its application during a disaster
management pilot scenario. For this cause, a wearable smart vest
equipped with an electrocardiograph (ECG) sensor, respiration
(RSP) sensor, and an Inertial Measurement Unit (IMU) with an
accelerometer, gyroscope, magnetometer, and quaternion sensors
has been used. An initial data collection was performed to train
the stress detection module, and the trained model was deployed
for real-time stress detection of first responders in the pilot
scenario. The training performed includes a massive feature
extraction from the different modalities, and the test of four
machine learning algorithms and six fusion and three feature
selection techniques. The results of the continuous valued stress
levels detection indicate that the best performing combination is
the eXtreme Gradient Boosting (XGB) algorithm with the use of
a Genetic Algorithm (GA) feature selection technique, achieving
a Mean Square Error (MSE) of 0.0567. Results from the pilot
show that the stress level detection module can operate in real-
time in real life conditions, offering reasonable results regarding
the detected stress levels.

Index Terms—Stress level detection, wearable sensors, smart
vest, multimodal fusion

I. INTRODUCTION

Stress is among the most important problems in our society.
It can be defined as the reaction of a person when being subject
to high discomfort and challenging situations. As stated by
World Health Organisation “Work-related stress is the response
people may have when presented with work demands and
pressures that are not matched to their knowledge and abilities
and which challenge their ability to cope” [1]. Stress can
impact the mental clarity of a person decreasing his ability
of precise and fast decisions. High levels of stress might

also influence person’s performance, even in actions they are
trained to perform. Thus, stress can be considered one of the
most vital aspects of disaster management situations.

Apart from the effects of stress on first responders per-
formance, their exposure to highly stressful events for long
periods can result in serious health problems. Mental health
issues, such as Post-Traumatic Stress Disorder (PTSD) and
major depressive disorder [2], or other physical health prob-
lems, such as sleep disturbances and musculoskeletal problems
[3], are some of the most common health problems induced by
chronic stress. Therefore, monitoring the stress levels of first
responders during emergencies is of crucial importance. Sim-
ulating a disaster management scenario with first responders
or volunteers assists in collecting physiological data and build
models for prediction of stress. Protocols that induce stress
might be adopted or the exact scenario can be reproduced,
such as in [4].

With the development of the Internet of Things (IoT),
smart devices are equipped with many sensors able to monitor
physiological signals and human body motion attributes. Since
stress is a mental/physiological reaction the monitoring of
physiological signals can be considered useful in the task of
stress detection. Also, in many cases, abnormal human body
movements along with certain physiological signal attributes
can be beneficial for stress detection applications. The IoT
advances with the deployment of multiple sensors in wearable
devices and the high computational power of smart devices and
computers can lead to real-time stress detection capabilities.

In the current work, an application of an experimental
design for stress level detection of first responders is described.
The stress level detection module exploits data from a wear-
able smart vest equipped with sensors, designed for this appli-
cation, and predicts the levels of stress as a continuous value,
which is not the case in most stress detection applications,
where only a categorical variable of two or three classes is
typically predicted. The stress detection module was trained
using data collected through an initial data collection, where
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subjects underwent various challenges that induce different
levels of stress, and they reported their stress level after each
challenge. The trained stress detection module was deployed
for real-time stress level detection during the pilot scenario,
where subjects had to perform certain tasks simulating a real
flood scenario. These tasks include going to certain areas on
the field and sending incident reports. Since there was no
flood simulation or any other stressor to induce high levels of
stress, the pilot scenario mainly tested the ability of the stress
detection module to perform real-time stress level monitoring
in real life conditions. The current work is an application of
stress detection in a general framework of eXtended Reality
(XR) technologies for disaster management, as part of the
xR4DRAMA project [5], which is a solution that makes use
of XR in disasters, or media production scenarios. The pilot
scenario is part of the first pilot of the project regarding
the disaster management pilot use case, where the need for
real-time stress level monitoring using wearable physiological
sensors is present.

The rest of the paper is organized as follows; in Section 2
state-of-the-art methods for stress detection are presented. In
Section 3 the methods used for the data collection and analysis
are described followed by the results of the experiments in
Section 4 and the conclusion of our work in Section 5.

II. RELATED WORK

The most common stress detection methods based on phys-
iological signals include a feature extraction step that attempt
to describe the various affective states. The extracted features
are used to train a state-of-the-art machine learning classifier
which eventually learns to detect the stress levels of the
subjects. A more recent approach attempts to omit the feature
extraction step by utilizing a Deep Neural Network (DNN),
which can do the representation learning of the different
affective states directly from the physiological signals.

Physiological sensors can be exploited separately or in
combination for the task of stress detection. Electrocardiog-
raphy sensors (ECG) are amongst the best performing ones
in predicting stress and are often utilized individually. In
[6] machine learning algorithms were applied on features
extracted from ECG signals to detect stress in drivers. ECG
signals were used in [7] in a simulated stress scenario and
their performance was compared to electromyogram (EMG)
signals. Galvanic Skin Response (GSR) sensors are often
combined with ECG signals and other physiological sensors to
detect stress. Early fusion was used in [8] to combine features
extracted from GSR, Electroencephalogram (EEG) sensor and
Photoplethysmogram (PPG), in order to improve the individual
performance for monitoring stress.

Schmidt et al. [9] created a benchmark for their publicly
available dataset for stress detection using a large number of
well-known features (extracted from physiological and motion
signals) and common machine learning methods (Decision
Tree (DT), Random Forest (RF), AdaBoost (AB), Linear
Discriminant Analysis (LDA) and k-nearest neighbor (kNN)).
The authors validated their methods on a three-class problem

(neutral, stress, amusement) achieving 80.34 % accuracy with
the AB classifier, and on a two-class problem (stress, no stress)
achieving 93.12 % accuracy with the LDA classifier.

Rusell Li et al. [10] proposed a novel Deep Learning (DL)
based method for stress detection, which was trained and
evaluated on the same dataset as [9]. This work attempts
to address the limitation of the handcrafted features that
traditional machine learning methods rely upon and their
potential decrease in accuracy due to the misidentification
of features. The authors designed a novel 1D Convolutional
Neural Network (CNN) and a Multi-Layer Perceptron (MLP)
that take as input the raw physiological signals and do not
require hand-crafted features but instead extract features from
raw data through the layers of the neural networks. The authors
validated their classifiers on both the three and two-class
problems of [9] achieving 97.48 % for the three-class and
99.14 % for the two-class problem.

Sriramprakash et al. [11] proposed a method for detecting
stress during working conditions based on feature extraction
and machine learning. The authors trained and validated their
data on the SWELL-KW dataset [12]. They utilized a set of
17 statistical features derived from ECG and GSR signals and
evaluated which of them are the most dominant to increase
accuracies. They trained a kNN classifier and a Support Vector
Machine (SVM) classifier. The SVM classifier trained on the
dominant selected features achieved the highest classification
accuracy of 92.75 % for the stress vs no-stress classification
task. Another work based on feature extraction and SVM was
reported by Yuan Shi et al. [13]. The authors proposed a
set of 26 handcrafted features derived from ECG, GSR, skin
conductance, temperature and respiration. They reported an 80
% recall over the binary classification of stress vs no stress
problem.

Feng-Tso, et al. [14] extracted statistical features from ECG,
GSR, and accelerometer and trained a DT, Bayesian Network
(BN), and SVM classifier for stress detection inference com-
bined with physical activities (sitting, standing, and walking).
The best classification accuracy (92.4%) was obtained by using
the DT classifier with the all-feature combination.

Keshan et al. [15] proposed an ECG-based feature extraction
scheme for driver stress detection. They trained and evaluated
their data on [16]. They utilized a set of 14 statistical features
derived from ECG signals and found that stress levels can be
successfully detected from ECG signals alone; with a random
tree classifier allowing for the identification of the three classes
of stress, low, medium, and high, with 88.24% accuracy, and
Naı̈ve Bayes for two stress levels, low and high, with 100%
accuracy.

In the work of Nath et al. [17] the authors extracted statis-
tical features from GSR and PPG sensors for stress detection
of healthy elders. They utilized the Trier Social Stress Test to
induce stress in the subjects and a fingertip sensor to monitor
physiological signals. The extracted features were fed into a
feature selection algorithm to remove redundant information
before utilizing a machine learning algorithm for the final
stress detection. They tested kNN, RF, and SVM classifiers
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along with a deep learning Long Short-Term Memory (LSTM)
based classifier and found out that the LSTM classifier per-
forms the best, achieving 0.87 macro F1-score, 0.95 micro
F1-score, and 0.81 AUC.

In all of the previous works, the data were derived from
publicly available datasets. Even though this makes the com-
parison of the different methods easier, since all methods are
based on the same data, this might influence the performance
of the models when deployed in a real-life scenario, where
the sensors will be different. Also, all of the aforementioned
methods are classification methods, with two or three classes.
Our work goes beyond predicting only binary (stress, no
stress) or categorical (low, medium, high) variables by using
regression models to produce continuous values of stress
levels.

III. METHODS

In this Section, the main methods of our work are described.

A. Smart vest and sensors

The physiological data were acquired using a sensing plat-
form based on textile sensors fully integrated into a smart vest
and a data logger that can record and process data on board
and transmit them via Bluetooth 2.1.

Furthermore, an Inertial Measurement Unit (IMU) system
is integrated into the data logger, including accelerometer,
gyroscope, magnetometer and quaternion sensors with the
aim of monitoring the movements of the trunk. The Fig. 1
shows the wearable sensing platform in which its features are
presented:

• two textile electrodes to acquire ECG signal
• one textile respiratory (RSP) movement sensor
• one jack connector to plug the garment into the electronic

device
• a pocket to hold the electronic device during the activity

Fig. 1. Wearable sensing platform architecture.

B. Data collection protocol

The data collection is divided into two different protocols;
the training data collection and the pilot scenario. The training
data collection protocol is an experimental design based on

Fig. 2. The Stroop test

interchanges between stressful challenges and relaxing situ-
ations. The pilot scenario is designed to evaluate an overall
disaster management use case using XR technologies, includ-
ing the real-time stress detection module and all of the other
features of the platform.

1) Training data collection protocol: The training data
collection protocol has been designed to induce stress in
the users followed by calmness. The basis of experimental
design is based on known stressors for both psychological and
physiological stress. The stressors selected, divided into the
two aspects of stress they induce, are the following:

• Psychological:
– The Stroop test. Is a commonly used task to induce

stress [18], in which some slides with certain words
of different color names are presented to each user.
The words are written in different colors than those
they describe (Fig. 2). The user is asked, in a short
period of time, to describe the color in which each
word is written.

– The descending subtraction test. In this also com-
monly used task for inducing stress [19], the user
is asked to begin counting backward from a cer-
tain number, subtracting each time another certain
number. In the context of the training data collection
experiment, the users were asked to begin with the
number 1324, subtracting 17, until 17. If the users
make a mistake, they must start over.

– Explain a stressful situation in your life.
– Explain how it has been the day. This is not a

stressful challenge, but it is used to get low stress
values as well.

– Listen to relaxing music. This task was also used to
get low stress values.

• Physiological:
– Place a hand in cold water (2º C) for two minutes,

make pause, and then place it again.
– Ascend and descend four levels of stairs.
– Tie and untie shoes after exercise.

These different challenges were combined in a different
order each time, to induce various levels of stress, from
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calmness to high stress. The users were asked to report their
stress levels as a number from 0 to 100 after each challenge.
During the whole experiment, the users were wearing the smart
vest to collect their physiological data.

2) Pilot scenario: The pilot scenario of the disaster man-
agement use case of the xR4DRAMA project was designed
to evaluate the overall disaster management solution of the
project. During the phases of the pilot, the roles of control
room operators, first responders, and citizens were assigned
to the participants. The storyline of the pilot scenario can be
summarized in two different phases; the pre-emergency phase
and the emergency phase.

The pre-emergency phase focuses on the forecasting of
flood incidences. In more detail, the storyline starts with the
reception of an official warning message by the municipality of
Vicenza, dealing with the worsening of safety conditions along
the Bacchiglione river. Since the stress detection module is not
involved in this phase there is no need for further analyzing
the design of the certain phase.

During the emergency phase, the first responders are asked
to perform certain tasks from the control room. These tasks
include sending incident reports to signal the authorities that
there were flooding events in various areas of the city center.
For the whole time of the emergency phase, the first responders
were wearing the smart vest to monitor their stress levels in
real time. There was no simulation of flood events during the
experiment, thus the first responders did not experience any
certain stressor that could induce high levels of stress.

C. Data analysis

The data analysis is referring to extraction of features from
the received data and the training of the different machine
learning algorithms and the different fusion and feature selec-
tion techniques. The best performing method was selected to
be implemented for the disaster management pilot scenario.

After receiving the data from the training data collection,
we performed a data analysis involving preprocessing of the
data and feature extraction. The preprocessing of the data
involves only simple transformation of the data by multiplying
them with certain weights. Feature extraction was applied to
all the preprocessed data. The features were extracted using
a 60-second window with 50% overlap. We used the data
of all subjects that were monitored. In total 94 ECG, 28
RSP, and 192 IMU (16 per single-axis data) features were
extracted for a total of 314 features. The ECG features include
statistical and frequency features regarding the signal and the
R-R (the physiological phenomenon of variation in the time
interval between heartbeats) intervals, along with Heart Rate
(HR) variability time and frequency domain statistical features.
For the ECG features, we used the hrv-analysis [20] and
the neurokit [21] toolboxes. The respiration features include
statistical and frequency features of the signal, breathing rate,
respiratory rate variability, and breath-to-breath intervals. The
respiration features were also extracted using the neurokit
toolbox [21]. The IMU features include simple statistical
and frequency features from the IMU signals. These features

are mean, median, standard deviation, variance, maximum
value, minimum value, interquartile range, skewness, kurtosis,
entropy, energy, and 5 dominant frequencies.

For the ground truth values, the self-reported stress levels
of the users refer to the whole challenge they performed right
before they were asked to report their stress. Thus, each of
the 60-second time windows used for the feature extraction
was assigned the stress value the user reported for the whole
challenge that took place at the certain window. The ground
truth values were integer values in the range of 0 to 100.

After extracting the features, the data were split into train
and test with an 80/20 ratio. We applied four different ML al-
gorithms; namely SVM, k-Nearest Neighbors (kNN), RF, and
eXtreme Gradient Boosting trees (XGB) to perform regression
of the stress level since the stress level is a continuous variable.
The evaluation was performed using the Mean Squared Error
(MSE) metric and 10-fold cross validation. Before computing
the MSE we normalized the values of stress level to be
in the range of 0 to 1. We tested each modality alone,
all different combinations of modalities in early-level fusion
(concatenation) and two late-level fusion methods: mean and
median of the predicted stress level of each modality. We
also tested the performance of three different feature selection
algorithms, those being Recursive Feature Elimination (RFE),
Principal Component Analysis (PCA), and Genetic Algorithm
(GA).

IV. RESULTS

In this Section, the main results of our work are presented.
First, the training data collection’s main results are presented,
including the different early and late fusion and feature selec-
tion methods. Following are the results of the pilot scenario,
including the real-time outcomes of the stress detection mod-
ule during the disaster management pilot scenario.

A. Training data collection

For the training data collection, seven subjects (4 female,
age: 40±7.78) participated, each one performing a series
of challenges as described above. The results from all the
different fusion methods tested are presented in Table I. From
the Table, it can be seen that the IMU modality performs better
than the ECG and RSP modalities when used alone. Also,
when combining only two of the three different modalities
it can be seen that when the IMU modality is used, the
results are better. Since IMU sensors are typically used for
activity recognition, this might indicate that along all the
users, the physiological stressors, which include more specific
movements, might have a larger influence on the users’ stress
levels. The best performing method of all the different tested
methods is the early fusion of all the modalities while using
the XGB classifier, achieving an MSE score of 0.073.

Since the best performing fusion method was the early
fusion of all the modalities, we tested the different feature
selection methods on the concatenated feature set of all the
different modalities. In Table II the results from the different
feature selection methods are presented. All the different
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TABLE I
MSE RESULTS OF THE DIFFERENT FUSION TECHNIQUES WITH ALL FOUR DIFFERENT REGRESSORS.

ECG RSP IMU ECG + RSP ECG + IMU RSP + IMU ECG + RSP + IMU Late mean Late median
SVM 0.1709 0.1530 0.1305 0.1723 0.1306 0.1305 0.1305 0.1412 0.1363
kNN 0.1439 0.1553 0.1107 0.1285 0.1106 0.1106 0.1107 0.1170 0.1125
RF 0.1113 0.1280 0.0918 0.1073 0.0916 0.0871 0.0886 0.0984 0.1025

XGB 0.1237 0.1307 0.0844 0.1092 0.0835 0.0858 0.0730 0.0958 0.1006

feature selection algorithms improve the overall performance
of the different classifiers, nevertheless the GA feature selec-
tion algorithm when again applied with the XGB regressor
performs the best, achieving an MSE score of 0.0567. All the
feature selection methods retained features from all modalities.

TABLE II
MSE RESULTS OF THE DIFFERENT FEATURE SELECTION TECHNIQUES

WITH ALL FOUR DIFFERENT REGRESSORS.

RFE PCA GA
SVM 0.1052 0.1201 0.1305
kNN 0.1023 0.1106 0.1106
RF 0.0790 0.1044 0.0742

XGB 0.0772 0.0953 0.0567

Since in all cases the XGB classifier achieves the best
results, it is important to see how the feature selection method
improves the overall performance of the stress detection
module. In Fig. 3 we present concatenation and GA feature
selection results along with the ground truth values in each
subfigure respectively. From the figure, it can be seen that the
use of GA feature selection improves the overall performance
of the XGB regressor, by minimizing the error between the
ground truth values and the predictions.

Fig. 3. Plot of the ground truth stress levels reported versus the predicted
stress levels using the XGB regressor with and without the use of GA feature
selection technique

B. Disaster management pilot scenario

For the pilot, we trained an XGB model using a GA
feature selection, since it was the best performing method
for stress detection. The model was deployed for real-time
stress detection using the data from the smart vest. Four
different subjects were participating, having the role of the
first responder and performing tasks on the field, as described
above. Each subject was wearing a smart vest during the whole
experiment.

Data from the smart vest were streamed while the users were
following the instruction given to them for the pilot scenario.

The streamed data are packed in 5-second packages before
being sent to the stress detection module. The streamed data
were received from the stress detection module, which stacks
them until a full minute of data is collected, and then the
feature extraction, feature selection, and final stress detection
process are taking place. Therefore a 1 min long time window
with 5 seconds step is applied. The full procedure can be
seen in Fig. 4, where the stack of the 5-second packages of
data along with the main stress detection process including
feature extraction, feature selection, and stress detection, are
presented.

Fig. 4. Workflow of the stress detection module during the pilot.

The results from the pilot can be seen in Fig. 5. Each one of
the four different subfigures presents the results of a different
user. Knowing that the users during the pilot were performing
simple tasks, their stress levels are reasonable to be in a range
from 40 to 60. From the Figure, it can be seen that the stress
levels are at a medium level indicating that users were calm,
which is reasonable considering the tasks they were asked to
perform.

V. CONCLUSION

In this paper, we present a solution for real-time stress
level detection based on sensors in the general context of XR
technologies for disaster management. This work focuses on
the training of the sensor-based stress level detection module
from data gathered during a training data collection, and
its implementation into a real-life disaster management pilot
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Fig. 5. Stress level results of the stress detection module (x-axis) from data
from the pilot over time (y-axis) for each subject.

scenario. The sensor-based stress level detection module is
based on data gathered from a smart vest developed for the
current application consisting of an ECG sensor, an RSP
sensor, and an IMU system with 3-axis accelerometer, gy-
roscope, magnetometer and quaternion sensors. Data gathered
from these sensors are analyzed in order to extract features
that are fed into a trained model for the final continuous-
valued stress level detection. From the results of the evaluation
study, where multiple fusion and feature selection methods
were tested using four different machine learning algorithms,
it was revealed that the best performing combination was the
use of XGB regressor along with GA-based feature selection
method, achieving 0.0567 MSE. We retrained the XGB model
with the feature sub-set selected from the GA-based feature
selection method, and deployed it into a real-world disaster
management pilot scenario. Results from four subjects serving
as first responders in this pilot scenario indicate that our
model works reasonable even in real-life conditions and in
real-time. Future work includes performing a second disaster
management pilot scenario in the context of the xR4DRAMA
project, where a more well defined protocol to induce stress
will be implemented. Also in this pilot scenario, the sensor
based stress level detection system will be tested alone and
in combination with the predicted stress of an audio-based
system, through the fusion module of the xR4DRAMA project.
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Abstract—To grow sweet grapes, it is important to be able to
count the number of fruiting mother shoots accurately. In a
previous study, segmentation of aerial photographs containing
fruiting mother shoots and branches was conducted to count
the number of fruiting mother shoots. However, counts were
inaccurate for areas where fruiting mother shoots were
incorrectly segmented into branches. In this study, a fan-
shaped search method was proposed to correctly count shoots
that could not be properly counted in that previous study.
Experiments confirmed the effectiveness of the newly
proposed method.

Keywords-Smart Agriculture; Artificial Intelligence; Image
Processing.

I. INTRODUCTION

To grow sweet grapes, it is vital to be able to determine
the number of fruiting mother shoots properly. Most
vineyards in Japan have adopted shelf cultivation, and
farmers can only see a small area when they are working in
the vineyard. However, aerial photography has made it
possible to check the branching over a wide area [1]. Figure
1 shows an example of such an aerial photograph. The red
outlined areas in Figure 1 represent the fruiting mother
shoots extending from the upper left branch, which is
outlined in blue.

Ito et al. [2] marked branch in red, fruiting mother shoot
in yellow, and the rest in gray to produce teacher data for
training SegNet [3] network. Thus, a neural network system
was developed to separate branches from fruiting mother
shoots in aerial photographs. Finally, they try to determine
the number of fruiting mother shoots by counting the
yellow region in the image.

Figure 2 shows the analysis results from the same aerial
photograph shown in Figure 1 using the method proposed by
Ito et al. From Figure 2, we can instantly see that the upper
left branch has seven fruiting mother shoots growing from it.

The branches and the fruiting mother shoots in the
aerial images used for testing in the first study were in the

best ideal condition, with the fruiting mother shoot not
being obscured by the branch. As a result, the fruiting
mother shoot in the aerial image is also depicted in the
recognition image as a single fruiting mother shoot, without
any division. Therefore, there is no error when counting the
yellow areas in the recognition image to determine the
number of fruiting mother shoots. However, not all of the
branches in the aerial image are actually in the best possible
condition with respect to the fruiting mother shoot. One
fruiting mother shot is counted as more than one in the
calculation of the number of fruiting mother shoots if the
fruiting mother shoot breaks during the recognition process
for a variety of reasons, which results in an error. Ito et al.
and others have failed to offer a workable answer to this
issue.

In order to lessen the inaccuracies that can occur
while counting the number of fruiting mother shoots, the
purpose of this research is to propose a method for correct
the divided fruiting mother shoots. Specifically, the
following methods are used. First, the system automatically
selects the areas that need to be corrected and the areas that
do not need to be corrected. Then, it considers only the areas
that need to be corrected as one area. Finally, it counts the
number of fruiting mother shoots.

Figure 1. Aerial photograph with red outlined mother shoots
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Figure 2. Segmentation analysis results

In Section 2, we will concentrate on the challenges in
tackling this problem.

II. PROBLEM

In Section 1 we indicated that the output of SegNet
occasionally contains incorrectly recognized areas. This
error may cause the fruiting mother branch to divide, which
could result in inaccurate count of its number.

Figure 3 shows another example of an aerial photograph,
and Figure 4 shows a misidentification corresponding to the
blue box in Figure 3. In the aerial photograph, there is only
one fruiting mother shoot, but because it is partially
misidentified as branch instead of a single fruiting mother
shoot, there is a small division, and two fruiting mother
shoots are counted. This problem, which was not addressed
in the study by Ito et al., results in an incorrect final count
when the number of fruiting mother shoots is aggregated.

The pixel range at the division in Figure 4 is 65px, and
the area within this range is calculated to correct the figure.
Figure 5 shows other errors generated when correcting
Figure 4. The correction range can be adjusted, and the blue
outline shown in the Figure 5 is the correction area formed
when the correction range is 65px. If the area of the fruiting
mother shoots in the correction area is corrected to one area,
the number of fruiting mother shoots, which should be
counted as two, will instead be counted as one. Therefore,
the number of fruiting mother shoots cannot be calculated
correctly only by adjusting this pixel range.

Figure 3. Aerial photography example

Figure 4. Divided single shoot counted as two

Figure 5. Falsely corrected shoot

In Section 3 we explain how we used a fan-shaped
search to overcome this issue.

III. PROPOSED METHOD

The unique approach we have suggested for correcting a
divided fruiting mother shoot in a recognition image will be

A
B
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the main topic of this section. We reviewed the data and
found that there is no relevant correction method for the
recognition images of branches. As a result, we had to
change how we were thinking to address this brand-new
subject.

The fruiting mother shoots has characteristics of grow
as straight as possible [4]. Therefore, if there are two close
fruiting mother shoots in the recognition image, when they
are connected start for end, the whole fruiting mother shoot
tend to be straight, or slightly curved to a certain extent. In
that case, we can judge that these two fruiting mother
shoots belong to the same divided single shoot.

If we ignore the width of fruiting mother shoot and take
it as a line, then the problem can be reduced to the correct
of straight line. Studies on line correct, such as fingerprint
correct [5][6] and object contour correct [7], all have
examples to analyze the vector and curvature at both ends
of the broken part of line. Both vector and curvature are
correlated to angles and directions. Therefore, for the
correct in our study, we thought it would be a good idea to
introduce angles and directions.

If we use the fan-shaped area to control the distance and
angle of search, at the same time simulate the extension line
at both ends of fruiting mother shoot along the extension
direction to fix the direction of fan-shaped area. For
example, as shown in Figure 6 and Figure 7, a fan-shaped
search area is made at both ends of each fruiting mother
shoot, through which the parts that need to be corrected can
be found. The part that requires to be corrected in Figure 6
is between points B and C. We stipulate that if two
endpoints appear in each other's fan-shaped area, the area
between these two points shall be judged as the part that
needs to be corrected.

Points C and D exist in the fan shape formed by point B
in Figure 5. Point B exists in the fan shape formed by point
C. Therefore, since points B and C are within each other's
fan shape, the divided part will be corrected by connecting
points B and C. Points A and D in Figure 5, points E and F
in Figure 6 do not meet the judgment criteria, so these
points will not be connected. Figure 8 and Figure 9 show
the correct results after judging Figure 4 and Figure 5,
respectively.

The process involved in the fan-shaped search method is
described below.

(1) Find the two endpoints of a fruiting mother shoot.
(2) Make an extension line for each endpoint.
(3) Plot a fan-shaped area at the specified angle and

radius using the extension line as the base.
(4) Search for other endpoints within each fan-shaped

region.
(5) When the two endpoints are within each other's fan

shape, connect only the single endpoint closest to the search
target.

Through the fan-shaped search area, the divided fruiting
mother shoots can be screened and corrected correctly.

Figure 6. Fan-shaped area of A

Figure 7. Fan-shaped area of B

Figure 8. Correction result for A

A

B
CD

E

F
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Figure 9. Correction result for B

We have created a comparative experiment for Section
4 to help further demonstrate the validity of the approach.

IV. EXPERIMENT

In this section, to verify the effectiveness of the
proposed method, we compared the number of fruiting
mother shoots counted by the method that corrects only by
pixel range, and that by our method.

The images used for comparison were 12 vineyard
aerial photographs in which there are fruiting mother shoots
divided by branches. The correct number of fruiting mother
shoots in the 12 images is 285. There are 57 fruiting mother
shoots that need to be corrected.

Any of the fruiting mother shoots in aerial photograph
can be counted correctly in recognition image within the
following two conditions:

1. There is no single shoot being counted as two or more
due to divided problem.

2. There are no multiple fruiting mother shoots being
counted as one because of the error correct with other
fruiting mother shoots.

The fruiting mother shoots that are counted correctly
should contain those that can be counted correctly without
correct and that can be counted correctly after correct. But
the fruiting mother shoots with error correct should be
excluded. Therefore, the accuracy of fruiting mother shoots
that are counted correctly can be expressed by formula (1).

285
Corrected False ofNumber -Corrected ofNumber 228Accuracy 

 (1)

In the 12 images, the minimum range that needs to be
corrected is 62px, and the maximum range is 173px. The
minimum fan-shaped angle that needs to be corrected is 14°,
and the maximum is 52°. For this reason, in this study, the
radius threshold is set every 50px from 50px to 200px, and
the angle is set every 20° from 20° to 60° for comparison.

Table 1 summarizes the results using the method of
correcting only by pixel range, and Table 2 gives the results

using the proposed method. The numbers in the upper line
of each row are the numbers of fruiting mother shoots that
were successfully corrected. The numbers in parentheses
are shoots that were corrected erroneously. The lower line
in each row shows the accuracy.

TABLE I. RESULTS CORRECTING ONLY BY PIXEL RANGE

200px 150px 100px 50px

57(53)
81.4%

55(18)
93.0%

52(14)
93.3%

0(0)
80.0%

TABLE II. RESULTS USING PROPOSED METHOD

200px 150px 100px 50px

60° 57(2)
99.3%

55(2)
98.6%

52(0)
98.2%

0(0)
80.0%

40° 55(2)
98.6%

53(2)
97.9%

50(0)
97.5%

0(0)
80.0%

20° 49(2)
96.5%

47(2)
95.8%

44(0)
95.4%

0(0)
80.0%

For images in which the fruiting mother shoot is divided
by branches, the method that corrects only by pixel range
has a highest accuracy of 93.3% for a range of 100px. In the
proposed method, when the radius is 200px and the angle is
60°, it a highest accuracy of 99.3% is achieved. This is a
6.0% improvement over the method using only the pixel
range.

The experimental results demonstrate that, using the
method that depends only on the pixel range, the accuracy
decreases as the range increases because erroneous
correction occurs. In the fan-shaped search method, the
correction effect can be improved by extending the radius,
and at the same time, erroneous corrections can be better
avoided. Therefore, it is possible to improve the estimation
accuracy of the number of fruiting mother shoots that are
correctly counted.

V. CONCLUSION

In this study, we proposed a fan-shaped search method
that is effective for aerial photographs where a fruiting
mother shoot is divided by branches, resulting in a more
accurate count of the number of fruiting mother shoots. Not
only can the pruning efficiency of fruiting mother shoots be
improved by quickly and accurately mastering the number
of fruiting mother shoots, but also it is possible to
accurately predict grape yield.

All images in the experiments used to investigate the
effectiveness of the fan-shaped search method were taken
for only one part of a single farm. In the future, we would
like to make a panoramic image from the partial images of
vineyards and correct the number of fruiting mother shoots
in entire vineyards for accurate aggregation.

The research breakthrough takes the grape-growing
process one step further towards full automation.

16Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

                            24 / 86



REFERENCES
[1] https://www.cupidfarm.co.jp/ [retrieved: February, 2023]
[2] Funa Ito, Duke Maeda, Naoki Nakamura, Kenta Morita,

Naoki Morita,:“Shoot Counting System Based on
SegNet”,eKNOW 2020:The Twelfth International
Conference on Information, Process, and Knowledge
Management. [retrieved: February, 2023]

[3] V. Badrinarayanan, A. Kendall, R. Cipolla,:“SegNet :A Deep
Convolutional Encoder- Decoder Architecture for Image
Segmentation.”, IEEE trans. on PAMI, vol. 39, pp. 2481-
2495, 2017. [retrieved: February, 2023]

[4] https://www.pref.shimane.lg.jp/nogyogijutsu/gijutsu/budou-
sisin/4_2.html [retrieved: February, 2023]

[5] L. C. Jian, U. Halici, I. Hayashi, S. B. Lee,:“Intelligent
biometric techniques in fingerprint and face recognition[M].”
Boca Raton: CRC Press, October 1999. [retrieved: February,
2023]

[6] CHEN Pei-hua, CHEN Xiao-guang,:“A new approach to
healing the broken lines in the thinned fingerprint image.”,
CNKI: Vol. 25, No. 6, June 2004. [retrieved: February, 2023]

[7] ZHANG Gui-mei, LIU Pi-yu,:“Gestalt psychology and Euler
spiral for contour completion.”, CNKI: Vol. 30, No. 8, Aug.
2013. [retrieved: February, 2023]

17Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

                            25 / 86



Requirements for Piano Lesson Support System 
Developing “Piano Lesson Whole Visualization System” 

 

Naoki Morita 
School of Information Telecommunication Engineering 

Tokai University 
Tokyo, Japan 

e-mail: morita@tokai.ac.jp 

Kenta Morita 
Faculty of Medical Engineering 

Suzuka University of Medical Science 
 Mie, Japan 

e-mail: morita@suzuka-u.ac.jp 

Chiharu Nakanishi, Chiaki Sawada 
 

Kunitachi College of Music 
Tokyo, Japan 

e-mail: {nakanishi.chiharu, sawada.chiaki}@kunitachi.ac.jp 

Kazue Kawai 
 

Miyagi University 
Miyagi, Japan 

e-mail: kawaik@myu.ac.jp 
 

 
 

Abstract—The authors aim to pass on the tradition of classical 
music to the next generation by greatly reforming and evolving 
the traditional pedagogy of piano education using Information 
and Communication Technology. Specifically, we aim to shift 
the paradigm from conventional subjective performance 
learning that rely on sensitivity and memory of lessons to 
objective, independent and autonomous performance learning 
through the sharing of objective performance video data. This 
presentation is a part of research of the “Whole Visualization 
of Piano Lesson.” This presentation reports on the necessary 
functions of the system and its implementation method, based 
on a questionnaire survey conducted to investigate current 
needs in preparation for the development of the “Piano Lesson 
Whole Visualization System.” 

Keywords- piano; support; system; visualization; connections. 

I.  INTRODUCTION 
This report is part of a study being conducted at a music 

college in Japan to pass on the classical piano tradition to the 
next generation. The Ideas, Connections, and Extensions 
model (ICE model) [1] is a framework that describes phases 
of learning. In the ICE model for piano, there is the Ideas 
phase in which students play the score with rhythmic and 
percussive accuracy, the Connections phase in which the 
learning elements of Ideas are applied to music with 
expression, empathy, and technical connections, and the 
Extensions phase in which the music resonates with the 
audience. With regard to these ICE models, previous studies 
of piano lesson in Japan [2]-[18] have focused on the Ideas 
phase for beginners using electronic keyboards. In these 
studies, the goal is for students to be able to read music and 
hit the keyboard in a precise rhythm without mistakes. This 
study will focus on piano lessons during the Connections 
phase. 

The purpose of this study is to summarize the 
requirements for a piano lesson support system in the 

Connections phase and how to achieve them. Specifically, 
we will analyze the problems in looking back at the lesson 
video archive. Then, we will examine what kind of support 
or functionality can be realized to make the most of the 
lessons, enhance students’ awareness, and link this to their 
improvement in piano playing. 

The rest of this paper is organized as follows. Section II 
describes the flow of piano lessons in the Connections phase. 
In Section III, we conduct a survey on looking back piano 
lesson videos, and in Section IV, we present two key points 
for looking back piano lesson videos necessary for the 
development of the “Piano Lesson Whole Visualization 
System” and Section V provides our conclusions. 

II. PIANO LESSON 
In the Connections phase of the ICE model, 

expressiveness, empathy, and technical connections are 
important. The goal is for students to immerse themselves in 
the music and acquire the technical (physical) and sensory 
skills to perform a certain piece of music as they wish, even 
under pressure, in a practical exam, competition, or other 
performance. 

The lessons leading up to a concert, competition, or other 
performance are given once a week for three to four months, 
as a standard practice. 

A. Before the lesson begins: Preparation 
Student: A student (1) reads score, (2) researches the piece, 

(3) listens to recordings by performers for reference, etc., 
and practices and studies on his /her own to get the piece 
in shape for the day of the lesson.  

B. Every Lesson (beginning) 
Student: The student performs through a piece of music. 
Instructor: The instructor gives a critique (guide) of the 

student's performance. The instructor will discuss any 
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musical or technical problems the student may have, and 
will give the student the necessary tasks to complete the 
performance. The instructor will share the image of the 
piece with the student by mentioning the background of 
the piece, episodes, traditional (common) performance 
techniques, etc. 

Student: After listening to the instructor’s critique (guide), 
the student understands the task at hand. The student 
writes down the assignment in the score (the student is 
encouraged to memorize the critique heard from the 
instructor, not during the lesson, and to make a summary 
note after the end of the lesson). The student should also 
communicate to the instructor any problems or questions 
that emerge from the independent practice, and exchange 
opinions. 

C. During the lesson 
Instructor: The instructor asks the student to resume playing, 

stopping the performance at various points, and 
instructing the student to improve on the issues pointed 
out in B. 

Student: The student immediately improves on the 
instructor’s tasks based on the instructor’s instructions. If 
the student cannot do so on the spot, the student shall 
make it an assignment until the next lesson. 

D. Review at home 
Student: At home, the student should try to overcome the 

tasks given by an instructor, relying on the experience 
and memory of the lesson and the writing on the sheet 
music, and connect them to the next week. 

III. QUESTIONNAIRE SURVEY 
Between April and May 2022, a survey on video review 

of performances was conducted on Google Forms [19]-[21]. 
The subjects were 20 piano instructors and 24 students at a 
music college, with 10 and 9 questions, respectively. 

There are four main things that can be said from the 
instructors’ and students’ questionnaires. 
1. Not a few of the students record their lessons. However, 

students rarely review all of their previously recorded 
lesson videos. Students do not have the time or 
motivation to watch a long lesson recording from 
beginning to end.  

2. Students are dissatisfied with the content of the videos 
when they watch them. e.g. “I can't see how I touch the 
keyboard.” “I can't see my own face and tone.” 

3. Students were dissatisfied with the video viewing. e.g. “It 
takes too much time to find the video I want to watch 
from the video archive,” “It is difficult to pinpoint the 
part I am interested in,” “It is difficult to go back in time 
to watch.” 

4. Students and instructors are dissatisfied with the device 
itself and the application when handling the device. e.g. 
“It is complicated to connect,” “I don't know how to 
operate the application.” 

IV. REQUIREMENTS FOR THE SYSTEM 
Based on the analysis of the needs of the questionnaires, 

the following two things are required to the system. 
(1) The system can instantly locate and view the part of the 

performance that the student wants to see. 
(2) The system can instantly locate videos of certain parts of 

the lesson at different recording times. 
The “Piano Lesson Whole Visualization System” which 

we are developing this time, can be used to connect a score 
and video will locate:    
(1) a certain part of the lesson. 
(2) a certain part of the lesson at a different time for 

comparison of previous performance and current one.  
The connection between the score and the video is made 

by comparing and associating the scale recognized from the 
score and the pitch recognized from the video. This allows 
the user to click on a section of the target score to bring up 
the playback position of the video. Furthermore, the score 
and the video taken at that time are automatically associated 
with the calendar with the date and time of the practice. This 
makes it easy to select videos for comparing one’s own 
previous and current performances, or for comparing one's 
own performance with an instructor’s model performance. 
For students comparing previous and current performances 
will be a great opportunity to improve their piano. 

V. CONCLUSION 
The purpose of this study is to summarize the 

requirements for a piano lesson support system in the 
Connections phase and how to achieve them. Specifically, 
we will analyze the problems in looking back at the lesson 
video archive. Then, we will examine what kind of support 
or functionality can be realized to make the most of the 
lessons, enhance students' awareness, and link this to their 
improvement in piano playing. 
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Abstract— In a piano lesson, the instructor returns feedback to 
the student for each set of measures using a score. In this case, 
we would like to use a video to facilitate the process of instantly 
returning feedback to the student. Specifying the playback start 
position for each section using the seek bar in the video is 
difficult. In the present study, we propose a method by which to 
connect a score and a video by analyzing the score and video and 
comparing sound changes. The effectiveness of the proposed 
method was verified using scores practiced by beginning piano 
students. 

Keywords- Score Analysis; Video Analysis; Piano Lesson; 
Without Seek Bar 

I. INTRODUCTION 

Sound is important in playing music, and knowing how to 
perceive and perform music is important. In piano playing in 
particular, tone changes depending on how players use their 
arms, legs, and body. Therefore, it is important to feedback 
how to use their arms, legs, and body on video. In such cases, 
the performance may be feedbacked by means of a video. 

Prior research has studied various ways to support piano 
lessons [1]-[6]. For example, improvement of remote 
assistance using neural networks and multiple angles [7] and 
bad habits developed when using multiple cameras [8]. It is 
possible to add more information and look back at the way the 
score was played when the video was recorded. However, it is 
not possible to instantly project the points that the instructor 
wants to point out. 

In a piano lesson, the instructor returns a feedback to the 
student using a score. In that case, when using a video for 
feedback, it is necessary to playback the video from the 
beginning of each musical section. However, it is difficult to 
specify the playback position for each passage using the seek 
bar control. 

The purpose of the present study is to support piano 
lessons using video so that instructors can smoothly return 
comments to their students. Specifically, we propose a system 
that enables playback from the corresponding starting point by 
clicking on a measure in the score. Although some piano 
lessons involve the repetition of the same section of music, the 

present study targets videos played through an entire piece of 
music.  

The remainder of the present paper is organized as 
follows: Section II presents the development system. Section 
III describes the experiments conducted and presents the 
results and considerations, and Section IV provides our 
conclusions. 

II. DEVELOPMENT SYSTEM 

The developed system consists of a user interface (UI) 
module, a score analysis module, and a video analysis module. 

In this system, the UI module is first used to upload the 
score and the video. When a music score is uploaded, the 
music analysis module extracts the musical scale from the 
score. When a video is uploaded, the video analysis module 
extracts the musical scale from the video, and then combines 
this scale with the musical scale extracted from the score. The 
video can then be played back from the corresponding time 
by clicking on a measure in the music score display screen of 
the UI module. The following sections describe the UI 
module, score analysis module, and video analysis module. 

 

A. User Interface Module 

The UI module provides a screen for uploading scores, a 
screen for uploading videos, and a screen for displaying 
scores and playing videos. Figure 1 shows the score display 
and video playback screens.  

 

 
Figure 1.  Displaying a score and playing a video. 

21Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

                            29 / 86



 

This screen consists of the music notation screen on the 
left-hand side and the video screen on the right-hand side. In 
Figure 1, when the fifth measure is clicked, the video is 
played from the fifth measure. 

 

B. Score Analysis Module 

The score analysis module creates a scale list from an 
uploaded score, recording measure numbers and scales for 
each clef. This module identifies clefs, staff, bars, sharp, 
natural, flat, and note head symbols in the score. This module 
then finds the relative coordinates of the notehead of each 
note relative to the staff and detects the scale for each note 
stem. Sharp and flat symbols are unified as sharps during 
identification. Figure 2 is a scale list consisting of measure 
numbers and scales generated when the score in Figure 3 is 
uploaded.  

 
Figure 2.  Scale list. 

 
 
 
 
 

Figure 3.  Scores to be analyzed. 

In the present study, we used OpenCV library [9] to 
identify a number of symbols. 

 

C. Video Analysis Module 

The video analysis module creates a time stamp list that 
records the start time of each measure from the uploaded 
video. The method for creating a time stamp list is as follows. 

First, a constant-Q transformation is performed to 
generate a list of constant-Q values from the video. The 
constant-Q transform is a frequency analysis method that 
works well with pitch, chord, and melody analysis of musical 
signals [10]. 

Then, the scale list is read for each line, and the time of 
the beginning of the playing of each note stem is acquired 
from the list of constant-Q values. The acquisition condition 
is when the change in the constant-Q value exceeds a certain 
threshold value. After obtaining the start playing time of the 
first note, the time of the second note is searched. If the search 
process does not find the start playing time within a certain 
period of time, the next note is searched again. When the 
measure of the scale list to be searched changes, the measure 
number and the start time are recorded in the time stamp list. 

In the present study, we used Librosa library [11] to audio 
analysis. 

III. EXPERIMENTS 

We confirmed the effectiveness of the proposed system. 
We conducted an evaluation of the score analysis module and 
the video analysis module. In this experiment, we prepared 
performance videos of playing each of the 12 measures of the 
“Twinkle, Twinkle Little Star” score (the C melody score, the 
arpeggio score, and the open harmony score) [12]. The 
evaluation of the score analysis module compares whether the 
identified scale is correct for each note stem with the score. 
The evaluation of the video analysis module compares the 
start time of each measure with the video. 

Table I shows the aggregate results of the scale 
identification for each stem. The C melody score consists of 
42 stems of 42 notes. The arpeggio score consists of 94 stems 
of 140 notes. Finally, the open harmony score consists of 68 
stems of 164 notes. Pattern matching with scores resulted in a 
100% notehead recognition rate for each of the three score 
stems. 

TABLE I.  RESULTS FOR IDENTIFICATION OF EACH STEM 

 C 
Melody 

Arpeggio Open 
harmony  

Detected/Total(stem) 
Detected/Total(notehead) 
Stem identification rate 

42/42 
(42/42) 
100% 

94/94 
(140/140) 

100% 

68/68 
(164/164) 

100% 

 
Table II shows the aggregate results for the match rate on 

the start time for each measure. The threshold of the constant-
Q value for judging the beginning of a note in this experiment 
was set to 1.00. For the C melody score and arpeggio score, 
the start time of the video matched for all 12 measures out of 
12. However, for the open harmony score, the start times did 
not match. 

TABLE II.  RESULTS FOR MATCH RATE ON THE START TIME 

 C 
Melody 

Arpeggio Open 
harmony 

Detected/Total(measure) 
Measure match rate 

12/12 
100% 

12/12 
100% 

0/12 
0% 

 
As a reason, the starting time was either undetectable or 

could be detected but was actually delayed in each measure. 
We focused on the constant-Q value to find out why the start 
time of any measure did not match the open harmony score. 
Open harmony contains overtone components of certain tones. 
The beginning of the first measure of the open harmony score 
is F4, A3, and F2, and the constant-Q value of F2 was 0.078 
when F4 was 1.119 and A3 was 1.281. The maximum 
constant-Q value of F2 was 0.224 and never exceeded 1.00. 

Therefore, in the open harmony section, instead of 
detecting all notes, it was necessary to detect either note as 
having started playing as being in an overtone relation. 

IV. CONCLUSION 

The purpose of the present study is to make it possible to 
playback videos from the starting point of each corresponding 
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measure by clicking on the measure. When looking back at 
the video, it was difficult to specify the playback position for 
each measure using the seek bar because fine control was 
required. In the present study, we developed a system that 
relates the starting point of each measure and the score and the 
video by analyzing the score and video and comparing the 
tone changes between the score and the video. As a result of 
experiments to verify the effectiveness of the system, we 
confirmed that the proposed method is effective for the C 
melody score and arpeggio score. On the other hand, through 
speech analysis of open harmony score, we found that there 
were cases in which overtone-related notes could not be 
detected by the fixed-Q transformation. 

In the future, we intend to update the proposed system to 
relate the rise time of a note even when the note is an overtone 
and to validate the effectiveness of the proposed system using 
target music at a music academy. 
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Abstract—With the proliferation of convolutional neural net-
work (CNN)-based computer vision solutions, computing infer-
ence on smart sensors has become a challenge. The inference
of CNN is difficult to embed in such tiny devices due to the
constraints on memory. To address this challenge, we propose
a compression method able to reduce the number of weights
to store in a structured way, so that the gain in the number
of weights comes with a gain in the number of computations
at inference. Our solution is based on the replacement of the
convolutional filters by a linear combination of some stored
filters and a set of seeds corresponding to pseudo-random
generated filters. During the inference, pseudo-random number
generators are used to compute the non-stored filters, thanks to
the associated seeds. On the other side, the linear combination
allows mutualizing partly the cost of convolutions. We show that
further exchanging memory for a small logic cost to generate
the pseudo random filters allows to decrease the number of
weights significantly, on several state-of-the-art networks without
sacrificing the accuracy. For example, applying this method to
CNNs like ResNet50 leads to a compression factor of 2.5 for less
than 5% accuracy drop. Furthermore, our method is compatible
with compression methods targeting the precision of the weights
to store, namely quantization. This gives room to further increase
compression gain on specific implementation platforms.

Keywords—Convolutional Neural Network compression, pseudo-
random number generators

I. INTRODUCTION

Computer vision applications widely use convolutional neu-
ral networks to achieve several vision tasks. The accuracy of
Convolutional Neural Network (CNN) drives the development
of these applications, but the memory usage is rarely taken
into account leading to a difficult deployment on embedded
devices.

To improve their performance, CNNs keep increasing the
number of weights they use. With ResNet50 [1] and its 25M
weights or ConvNeXt-XL [2] and its 350M weights, the goal
is to get the best accuracy, but without taking into account
any other constraint, such as memory usage. For an embedded
device, the memory and the computational resources are the
key factors impeding the deployment of state-of-the-art CNNs
in IoT devices.

As well as occupying a significant part of circuit die surface,
the memory also has a high energy consumption due to the

memory accesses. The high number of weights to store to
achieve a CNN inference leads to use a device with high mem-
ory capabilities. But smart sensors used for computer vision
applications are rather tiny, with limited memory capability
and power consumption.

To address the problem, different compression algorithms
have been proposed. Most methods either reduce the memory
requirement by reducing the precision of the weights [3] or
by reducing the number of weights [4]. Several methods just
compute what is possible to do and the accuracy loss, but
do not speak about memory, like unstructured pruning where
the goal is just to get a sparse CNN. Sparse neural network
compression has the drawback that the decompression of the
CNN produces a tensor requiring several operations with many
zeros processing convolutions.

In this article, we propose a new compression method for
CNNs where some weights are stored in the memory, while
the others are generated from stored seeds in a pseudo-random
process during the inference. Replacing memory access by
on-the-fly generation with pseudo-random generators actu-
ally leads to a lower consumption. The identification of the
weights to store and the weights to regenerate relies on a
dimensionality reduction method, the Principal Component
Analysis (PCA). The PCA allows the decomposition of each
convolutional tensor in the CNN in a linear combination, with
an ordering of vector importance. Most significant vectors
are stored while the least significant are pseudo-randomly
generated. This compression method comes not only with a
memory gain, but also with a gain in hardware logic as the
original convolution can be replaced by a double convolution
solution.

The article starts with a brief overview of convolutional
neural network compression methods and the usage of random
weights in neural networks. Then, our compression method
with the randomization is described in Section 3. The impact
on inference is described in Section 4. The Section 5 discusses
the performance obtained when our method is applied to
several convolutional neural networks. Finally, the article ends
with some perspectives to capitalize further on this new
compression method for CNNs.
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II. RELATED WORK

Our work is at the intersection of the following two topics:
the compression of CNN and the use of random weights in
neural networks. CNN compression directly serves our goal as
it reduces the memory use. On the second topic, most works
focus on evaluating the impact of introducing random weights
in CNN with no compression goal.

A. CNN compression

CNN compression techniques are widely studied through
two main approaches: the reduction of the precision of the
weights, thanks to quantization, or the reduction of the number
of the weights, thanks to pruning or dimensionality reduction.
Both approaches aim at reducing the memory usage of CNN,
and they can be combined to further increase the compression
gain.

a) Quantization: This approach focuses on reducing the
precision of the weights. As deep learning frameworks work
with Floating point on 32 or even 64 bits, this precision of
the weights can be reduced to be used on embedded devices.
Quantization is a relatively mature topic in CNN compression,
whether it is INT quantization [5] or Binary quantization [6].
Our work firstly focuses on reducing the number of parameters
before considering quantization.

b) Pruning: This approach reduces the number of
weights to store by removing less significant weights. The
goal is to get a high sparsity percentage in the set of weights.
Pruning techniques can be separated into two types: the
unstructured pruning [7], that sets weights to zero, and the
structured pruning [8], that sets filters to zero. The sparse
matrices of weights are then stored, with efficient encoding
techniques like Huffman coding [9], and decompressed on
the embedded devices to do the inference. Despite high
compression results, the pruning remains difficult to embed on
tiny devices as the decompression stage requires high specific
computational capability. So the memory gain does not come
with a logic gain.

c) Dimensionality reduction: By finding a new repre-
sentation of the weights in a lower dimensional space, this
approach reduces the number of weights to store. This can
be a linear decomposition, such as PCA [10], separable filters
[11] or sparse decomposition [12]. Our approach will use the
PCA as a part of the compression pipeline.

B. Neural networks with random weights

The use of random number in convolutional neural networks
is reported in two main topics: Extreme Learning Machine
(ELM) [13] and random neural networks.

ELM algorithm proposes a learning method where the first
layers of neural networks are randomly initialized and fixed,
and the last layer is learned with a pseudo-inverse method.
The algorithm is applied to neural networks [14] and CNNs
[15] [16]. In CNNs, the random weights are introduced in
the convolutional layers only. These layers representing the
major proportion of the weights, so saving from memory
will bring tinier memory. However, as mentioned in [17],

the accuracy of the models are significantly degraded when
the computer vision task becomes more complex. The use of
random weights, for the ELM, is therefore restricted to simple
vision tasks. In our application we cannot make assumption
about the task complexity.

The neural networks with random weights present better
results than ELM on similar tasks. The method differs in
the training part, for example in [18] the neural networks is
partially trained, after a random initialization of the weights,
only some of them are trained. The challenge is to evaluate
the proportion of the weights that need to be trained. Another
approach described in [19] relies on searching a subnetwork
inside an initially over-parameterized and randomly initialized
CNN. Most other works focus on Neural Architecture Search
(NAS), with the idea of finding the weights that must be
trained.

However, these approaches are different from ours as we
do not start with a from-scratch CNN. Our method capitalizes
on the information present in the trained CNN. Despite this,
the use of random weights for compression purpose becomes
an interesting option as such pseudo-random weights can be
generated from the seeds.

III. RANDOMIZATION METHOD

To compress CNNs, our method replaces the filters’ tensor
of each convolutional layer with a set of principal filters, a set
of coefficients and a set of seeds. This process allows saving
memory as the seeds are used to generate pseudo-random
filters at the inference. To compute these elements, the filters’
tensor is processed in three steps. The first step decomposes
the tensor in a linear combination made of the principal basis
and a set of coordinates in this basis with a PCA and an energy
threshold processes. Secondly, the pseudo-randomization step
replaces a part of the vectors of the principal basis by pseudo-
random vectors and their associated seeds. The pseudo-random
vectors are chosen, so they do not degrade the accuracy of the
CNN significantly. Lastly, the set of coordinates is retrained
in order to recover accuracy.

A. General Notations

Starting from a learned CNN, each convolutional layer can
be described with the following notations:

• T: The tensor of the convolutional layer of dimensions
(kernelh, kernelw, cin, cout).

• W: The matrix of the convolutional weights, where
each column represents a flattened filter of dimensions
(kernelh ∗ kernelw ∗ cin). The matrix is composed of
cout columns.

The method introduces the filter decomposition in several
vector subspaces. In order to reduce the number of notations,
each vector subspace is associated to its basis. To differentiate
each basis, we use the following notations:

• BPCA: The basis produced by the PCA step. BPCA =
{b1, ..., bcout}, such that rank(BPCA) = cout. The bi,
with i ∈ {1, ..., cout}, corresponds to the eigenvectors
arranged in decreasing order of importance.
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• BT : The basis produced after the energy thresholding
step. BT = {b1, ..., bt}, such that rank(BT ) = t with
t ≤ cout.

• BE : The basis of the e first eigenvectors of BT that will
be stored. So BE = {b1, ..., be} with e ≤ t.

• BR: The basis of the pseudo-random vectors {r1, ..., rg}.
Each ri is generated from the seed si, such that Seeds =
{s1, ..., sg}.

• BS :The basis composed of BE and BR corresponding to
an approximation of the vector subspace BT .

To represent the weights in the different bases defined
previously, we use the following notations:

• CPCA: The coordinates of the weights W in BPCA.
• CT : The coordinates of the weights W in BT .
• CS : The coordinates of the weights W in BS .
• CSL: The new representation of the weights W in BS

once the retraining step is done.
The following methods will be used for the pseudocode of

the algorithm:
• ToMatrix(T): Method to transform the tensor T in the

matrix W.
• ZeroCenter(W): Method for zero-centering the matrix W.
• PCA(M, Ethreshold): Method to compute the PCA of the

matrix W followed by pruning the eigenvector below the
energy threshold Ethreshold.

• RandOrtho(): Method to iteratively build the random
basis BR.

B. Method overview

Figure 1. Compression method flow, the CNN passes through the three
steps: PCA, pseudo-randomization of weights and partial retraining to be
compressed.

The method, described in Figure 1, compresses each con-
volutional layer of a CNNs one after the other. The goal
of the compression algorithm described in Algorithm 1 is to
approximate the vector subspace BT by finding another vector
subspace, BS , defined by the concatenation of filters from BE

and pseudo-random filters from BR. By replacing eigenvectors

for ConvLayer in Model do
T ← GetWeights(ConvLayer)
W ← ToMatrix(T )
Wc ← ZeroCenter(W )
BT , CT ← PCA(Wc, EThreshold)
BE ← KeepFirstEigenvectors(BT )
BR, Seeds← RandOrtho()
Model← SetNewWeights(BE , BR, CS)

end for
BE , BR, CSL ← ReTrainCoef(BE , BR, CS)
for ConvLayer in Model do

Save(BS , Seeds, CSL)
end for

Figure 2. Algorithm for the replacement of eigenvectors by random filters.

of BT by pseudo-random vectors, we want to get a maximum
overlap, such that:

BR = argmaxBT ∩BS (1)

Starting from a trained CNN, a principal component analysis
and an energy threshold are done in step 1⃝ to get an efficient
representation of the weights, with the basis BT . Then step 2⃝
replaces some filters in BT by pseudo-random filters in BR

to further reduce the weights to store. The retraining step 3⃝
corrects the coordinates CS to reduce the error. Finally, three
elements are stored:

• A subset of PCA basis: BS

• The Seeds to generate the pseudo-random filters
• The new representation of the weights in BS : CSL

C. PCA and energy threshold

The first step performs the PCA linear decomposition and
energy thresholding of W to get a lower dimensionality
representation of the weights. As in [10], the idea is to store
the PCA linear decomposition of the weight matrix W to save
memory.

The linear decomposition is obtained by the principal com-
ponent analysis:

W = CPCAB
T
PCA + µ (2)

With CPCA being the coordinates of the weights W in the
basis BPCA and µ the means of W .

Once the eigenvectors are computed, we can lighten the
linear combination by performing an energy thresholding
step with a threshold Ethreshold. Only the eigenvectors of
energy below the threshold Ethreshold are kept, the others
are pruned. The threshold is chosen according to the defined
accuracy/performance trade-off. As the goal is to embed state-
of-the-art CNNs, we will not keep a high energy threshold
value, such as 99%, but use a lower one, such as 70%, to get
a more aggressive memory reduction while preserving a good
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accuracy. BT is built with the kept eigenvectors, and we define
an approximation of W , W̃ , such that:

W̃ = CT .B
T
T + µ (3)

where BT a subset of the eigenvectors of W and CT the
coordinates of W in BT .

Memory is saved since the size of CT and BT are lower
than the size of W .

D. Pseudo-randomization of the basis BT

The purpose of the second step is to replace some filters
of BT with pseudo-random filters in order to further alleviate
the storage of the CNN weights, as a part of the filters will
be replaced by their corresponding seeds. To address this,
pseudo-random filters are chosen in order to build a vector
subspace close to the original one, as described in the next
paragraphs. The approximated vector subspace W̃ is built by
concatenating the selected pseudo-random vectors and BE .
The set of pseudo-random filters BR will be generated at each
inference from the stored seeds.

As the CNN performance will depend on the number of
randomized basis filters, there is a trade-off between the
number of filters from BT and pseudo-random generated ones.
An arbitrary number e of BT filters are kept to build BE .
Additional to these filters, g filters are randomly generated to
build BR. In order to ensure the generated filters span BT , to
preserve dimensionality and remove redundancy, the basis BS

must verify the following rules:

BT ∩BS ̸= {0} (4)

and
rank(BS) = e+ g (5)

e and g are set according to the wanted trade-off. In section
5, several values are tested to show the impact of these
parameters on the accuracy of the CNN and the compression
gain. We detail two ways of building BR in the following
paragraphs.

1) Basis-wise construction: We want to minimize the dis-
tance between the vector subspaces BT and BS . To do so,
the adopted strategy consists of selecting the ri, based on the
Grassmann distance [20]:

min
BR

GrassmannDistance(BT , {BE , BR}) (6)

By evaluating the distance between the two equidimensional
vector subspaces BT and BS , the set BR that lowers the
distance will be chosen, and the seeds that generate the
corresponding set of filters will be saved. The method gives
us control only on the entire set BR and not on each filter.

2) Filter-wise construction: To improve the selection filter
by filter, an iterative method is proposed. The idea is to find a
random filter approximation for each eigenvector we want to
replace. The selection is achieved through the criterion:

min
rk

GrassmannDistance({BE , bi}, {BE , rk}) (7)

with k ∈ {1, ..., g}, and for i ∈ {e + 1, ..., p} eigenvectors
replaced.

The selected pseudo-random filter rk is added in the basis
BR and the associated seed is saved in Seeds. Iteratively, we
construct BR and Seeds in order to control each filter we add.
The results presented in the Section 5 are based on the second
approach.

Once the basis BS containing BE and BR is built, the new
approximation of the weights W̃ in the vector subspace BS is
computed:

W̃ = CS .B
T
S + µ (8)

The pseudo-randomization alleviates the needed storage for
each convolutional layer as it replaces memory by on-the-fly
generation at the inference.

E. Retraining and storage

The final step deals with the retraining. The purpose of this
step is to correct the new representation of the weights in
the vector subspace BS . Once the retraining is done, each
convolutional layer has a compressed version that is stored.

As BE and BR computed during the previous steps define
the directions of the vector subspace BS , they stay fixed. We
will only train the coefficients CS to correct the error of the
representation and recover from the accuracy drop of the CNN.
The retraining process returns CSL which are the coefficients
corresponding to the learned representation.

Once the retraining has ended, for each convolutional layer,
we store the following elements:

• the set of principal filters: BE , representing a subset of
the eigenvectors of W .

• The coefficients: CSL representing the new coordinates
of the weights W in the vector subspace BS .

• The seeds: Seeds, used to generate the pseudo-random
filters of BR at inference time.

IV. INFERENCE

The linear combination provided by the method also reduces
the inference computational cost. The computation of each
convolutional layer can be performed without recomputing
W̃ . In order to save computational cost, we use a two-stage
convolution solution.

Indeed, the computation cost of W is heavy and can be
avoided. The convolution can be performed as followed:

fout = (CSL ∗BS) ∗ fin = CSL ∗ (BS ∗ fin) (9)

The input features maps fin will be computed with the
principal filters and the generated pseudo-random filters in
the first convolution to get intermediate features maps. And
then, the second step will do a 1x1 convolution between the
intermediate features maps and the coefficients to get the
output features maps fout.

By modifying slightly the architecture of the CNN as shown
in Figure 3, the gain in memory comes with a computational
saving.
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Figure 3. Architectural modification for the inference, the convolution operation is replaced by a two-convolutions solution to avoid computing the approximation
of the weights.

V. RESULTS

We experiment of Cifar10 dataset with three state-of-the-
art CNNs: VGG16, ResNet50 and MobileNetV2. We start the
section defining the figures of merit and the parameters used to
make the comparison between our method, one unstructured
pruning method and a PCA compression. The results are
presented in Figure 3 for the compression gain and in Figure
4 for the computational cost.

A. Figures of merit

1) Compression gain: To represent the memory gain of our
method, we compute the ratio between the number of weights
in the baseline CNN (#W ) and the number of weights in the
compressed version. We define the following figure of merit:

GCompression =
#W

#F +#S +#C +#O
(10)

Where #F is the number of weights in the principal filters,
#S is the number of seeds, #C is the number of coefficients
and #O the number of the weights in fully-connected layers
of the CNN.

2) Computational cost: To represent the computational
cost, we compute the number of Multiply And Accumulate
(MAC) operations. The number of MAC per convolution layer
can be computed as followed:

k2size.cin.hout.wout.cout (11)

where ksize is the size of the convolutional kernel, cin the
number of input channels, hout and wout the dimension of the
output features maps and cout the number of output channels.
For our method, the number of MAC per convolution can be
computed as followed:

k2size.cin.hout.wout.t+ 12.t.hout.wout.cout (12)

with t the number of filters in BS .
3) Number of principal filters kept e: To introduce pseudo-

random filters in the CNN, we firstly define BE . This basis
contains the e kept eigenvectors. In order to define the param-
eter e for each convolutional layer, we use the parameter p:
the percentage of principal vectors.

e = ⌊t.p⌋ (13)

The number of pseudo-random filters g can also be defined
with e:

g = t− e (14)

We experiment with three different values of p: 0.75, 0.50 and
0.25.

B. Compression methods used in the benchmark

As our method is focusing on the reduction of the number
of weights in the CNN, we compare it to other compression
methods.

The first one is an unstructured pruning approach based on
the magnitude of the weights described in [21]. The pruning
method uses the sparsity metric to measure the proportion
of zero weights. In our experiments, the sparsity is set to
80% meaning that only 20% of the weights are non-zero
values. We cannot express the compression gain from the
sparsity metric as the sparse matrices have to be stored with
an encoding technique. In our benchmark, compressed sparse
column algorithm is used to allow counting the number of
stored weights and compare pruning with our method.

The second approach is a dimensionality reduction based on
PCA [10]. As our method is based also on this dimensionality
reduction technique, the comparison is more straight forward.
In the PCA approaches, two matrices are stored per layer, and
the number of weights is easily countable. The comparison is
done using the same energy threshold: 70%, so we directly
compute the gain of replacing some basis filters by random
ones.

C. Neural networks experiments

1) VGG16: We start evaluating the performance of our
method on VGG16. We use a modified version of TensorFlow
VGG16, where we reduce the fully-connected layers and the
last three convolutional layers to alleviate the training and
keep only 7.7 millions weights in our test version. The neural
network achieves 82.08% accuracy on Cifar10.

As shown on Figure 4, our method allows us to divide
by 11 the number of stored weights to perform an inference
with less than 7% error. It also allows tuning the compromise
between loss and memory gain, depending on the hardware
constraints. We get a low accuracy degradation with p=75%
and p=50% where the error is below 5%. The proposed
trade-offs drastically decrease the number of stored weights
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Figure 5. Computational cost for VGG16, ResNet50 and MobileNetV2. The computational cost is the same for each value of p as the number of filters t
remains constant.

compared to original PCA and pruning with an acceptable
accuracy loss. For each convolutional layer, the use of the
double-convolution solution also reduces the computational
cost to the same extent. For VGG16, the number of MAC is
divided by 4. So, compared to the pruning method where the
computational cost is similar to the baseline, without including
the decompression cost, our method brings another advantage
to the memory saving.

2) ResNet50: We then examine the performance of our
compression algorithm on ResNet50. We use the TensorFlow
ResNet50 version with two fully-connected layers. It contains
25M parameters and achieves 94.60% accuracy on Cifar10.

The use of our method allows us to divide by more than 3
the number of stored weights to perform an inference with
15% error. The accuracy loss is higher when p decreases,
but the compression gain is increased compared to PCA or
Pruning. For p=75%, the loss degradation remains inferior to
5% with an improvement for the compression gain compared
to PCA. For inference, the computational cost is divided by

more than 3 with the double-convolution solution, as shown
in Figure 5.

3) MobileNetV2: We finally examine the performance of
our method on MobileNetV2. We use the TensorFlow Mo-
bileNetV2 version where we modify the output layer to get
10 neurons. It represents 2.2M weights and achieves 91.8%
accuracy on Cifar10.

MobileNetV2 is already optimized for achieving embedded
computer vision tasks with a particular architecture. We ap-
ply our method on the convolutional layers, except on the
separable depthwise convolutions. With our method, we can
still reduce the number of stored weights by more than 2
without degrading the accuracy. The retraining step becomes
an important part of the method for this network, our method
controls the learning rate to ensure the convergence of the
retraining. Our method provides a powerful tool for the com-
pression gain but also for the computational saving, the use
of the double-convolution solution reduces the computational
cost, by a factor of 1.5.
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4) Accuracy consideration: On some cases, mainly for
p=25%, the accuracy degradation is higher than 5%. For
classification purpose this accuracy loss may be difficult to
overpass, however, on other tasks it could still be acceptable.
For example, in detection tasks where we would target a low
number of false negative rather than high accuracy level.

VI. CONCLUSION AND FUTURE WORK

We have introduced a new compression method that reduces
the number of weights to store, and with a slight CNN archi-
tecture modification, it also reduces the computational cost at
inference. Our method introduces pseudo-random weights in
CNN and generates them when an inference is performed.
Through the experiments, the method has been validated
successfully on several CNN architectures, always improving
the compression gain. We can exchange memory cost for less
expensive pseudo-random numbers generator logic on low cost
integrated circuits, allowing the embedding of convolutional
neural networks in constrained cases.

With our method, we address only one topic in the CNN
compression: reducing the number of weights to store. Our
next research will focus on improving our solution by reducing
the precision of the stored weights, to further reduce memory
use. Our method can be combined with integer quantization,
both to further reduce the memory needed to achieve an
embedded inference and to reduce the cost of the pseudo-
random generation part.
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Abstract—Recently, Brain–Computer Interfaces for healthy
subjects have attracted considerable attention. Steady–State Vi-
sual Evoked Potential (SSVEP) has garnered particular attention
because it can be used by anyone without training. However,
SSVEP is mainly used for head measurements and is unsuitable
for daily measurements. We attempted to measure SSVEP via the
application of electrodes around the ears. The highest average
macro F–value was 45.33±16.84 %, and the highest average
Information Transfer Rate (ITR) was 13.86±13.21 bits/min with
the L2+R2 method. A comparison between electrodes 1–3 and
the head showed no significant difference, except in the occipital
area, and the combination of right and left electrodes around the
ear produced the same accuracy as that of the head.

Keywords—Steady–State Visual Evoked Potential (SSVEP);
Canonical Correlation Analysis (CCA); ear EEG.

I. INTRODUCTION

Recently, several efforts have been made to apply brain in-
formation to engineering. One example of such an application
is the Brain–Computer Interface (BCI), which is being actively
pursued, particularly in the medical and welfare fields. This is
because BCI can operate machines using only brain informa-
tion without the use of limbs and can be used to replace some
body functions. However, because devices for measuring brain
information are now commercially available at a relatively low
cost, research on BCI using healthy subjects has also attracted
attention. Many studies using brain information from healthy
subjects have reported using ElectroEncephaloGraphy (EEG),
among other methods to collect brain information.

Steady–State Visual Evoked Potential (SSVEP) is a type of
EEG that has attracted considerable attention for its applica-
tions. The frequency range of the SSVEP is wide, ranging from
1 to 100 Hz [1]. In 2006, a previous study [2] using Canonical
Correlation Analysis (CCA) to discriminate SSVEP detected
a higher discrimination accuracy than that obtained using the
conventional Fourier transform. This indicates that the analysis
of SSVEP is more accurate than the conventional Fourier

transform and that CCA is a useful method for analyzing
SSVEP.

One factor that has drawn attention in CCA is that it
does not require prior preparation, in contrast to analysis
methods using machine learning and other methods. In 2015,
Nakanishi et al. [3] reported the results of a comparison of
various analysis methods based on CCA. In 2021, Li et al.
[4] reported in a review article that there is a wide range of
analysis methods based on CCA and that CCA is superior as
a discrimination method for BCI using SSVEP.

Other EEGs used for BCI, such as the P300, generally
require prior training on the task and data collection for
machine learning. However, SSVEP does not require subject
training because it is an exogenous visual–evoked potential.
Therefore, SSVEP can exploit the previously mentioned ben-
efits of requiring no prior preparation. In addition, compared
to other EEG methods, SSVEP is easy to detect even when
the measurement time is short, and has a high Signal–to–Noise
ratio (S/N), rendering stable measurements relatively easy. In
2009, Parini et al. [5] reported that the Information Transfer
Rate (ITR), a BCI evaluation index, is excellent. Furthermore,
in 2017, Botani et al. [6] proposed an algorithm for a menu
selection interface with SSVEP using six different visual
stimuli, with an average correct response rate of 83.3 % and
an average ITR of 30.5 bits/min. In 2018, a robot control
method based on SSVEP, which can operate in virtual reality
space, was proposed by Stawicki et al. [7], with an average
correct response rate of 98.91 % and an average ITR of 32.00
bits/min.

As described above, BCIs using SSVEP have been actively
studied in various settings. However, most current reports are
based on head measurements using the international 10–20
method. Thus, electrodes must be applied to the scalp to
measure SSVEP when using these systems. In 2017, Wang
et al. [8] attempted to measure SSVEP in hairless areas such
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as the neck and behind the ears, and recently, ear EEG,
wherein electrodes are applied around the ears, has been
gaining popularity as a method for measuring SSVEP outside
the head.

In 2011, Looney et al. [9] proposed a method to measure
EEG signals from inside the ear, and in 2013, Kidmose et al.
[10] developed an earpiece–type EEG measurement device.
The signal measured inside the ear is also being investigated
to determine whether it is similar to an EEG signal. In 2016,
Zibrandsen et al. [11] used in–ear and on–head EEG to classify
sleep stages and reported 90.9 % accuracy in discriminating
between awake and REM sleep states.

However, the amplitude values of measurements inside and
around the ears are lower than those of head measurements,
and it is difficult to significantly improve the accuracy [12].
Here, we attempted to create a new signal by applying
electrodes to both ears and performing additive averaging of
EEG between the two ears. We expected the accuracy to
improve as a results of using this new additive averaging
method. In addition, we investigated the optimal location for
detecting SSVEP from electrodes affixed around the ears when
visual flashing stimuli are provided. The performance of the
BCI was examined by comparing the monopolar induction
electroencephalograms applied around the ears and the elec-
troencephalograms based on the additive averaging of the
electrodes around both ears.

The remainder of this paper is organized as follows. Section
2 describes the methods including experimental design and
EEG data recording. Section 3 describes the EEG data analysis
and evaluation methods. Section 4 presents the analytical
results obtained in this study. Based on the results, a discussion
of the binaural additive electrode method is presented in
Section 5. Finally, the conclusions are presented in Section
6 .

II. METHODS

A. Experimental Design

The subjects remained in a resting, sitting position. A
display (27 in.) was placed 50 cm ahead of the subject for
stimulus presentation. Stimuli were presented within 19.3° of
the visual field.

For the SSVEP elicitation task, a black–and–white square
(17 cm) was presented as a visual flashing stimulus on a
display in front of the subject (Figure 1). Four types of flashing
stimuli were selected in the low-frequency band [13] at 5,
7, 9, and 11 Hz, where high–amplitude values were easily
recorded in the SSVEP. The stimuli were presented in the
order described for 12 s with a 60 s rest between each stimulus
(Figure 2). The subjects were instructed not to blink except
for a minimum amount of blinking during the blinking stimuli,
and to rest their eyes sufficiently during the rest period. This
task was performed in one session, followed by two sessions
of SSVEP–evoked tasks.

Figure 1. Image stimulation in SSVEP-induced experiment.

Figure 2. Experimental protocol.

B. Data recording

BIO–NVX 52 (East Medic, Japan) was used to record the
biometric data with a temporal resolution of 2000 Hz. A
bandpass filter (0.50–70 Hz) was applied to eliminate noise.
The electrode positions were Oz, O1, and O2 based on the
extended 10–20 method [14]. The ground electrode was AFz
and the reference electrode was the average value of both
earlobes (A1 and A2). For the measurement around both ears,
electrodes were affixed at eight locations around each ear, with
the reference electrode for the electrode around the right ear
being the right earlobe (A2) and that for the electrode around
the left ear being the left earlobe (A1) (Figure 3(c, d)).

Figure 3. Electrode position.

32Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

                            40 / 86



The subjects were 14 healthy males and females (10 males,
4 females, Mean±SD: 21.93±0.83 years) enrolled in universi-
ties and graduate schools. Subjects with visual acuity problems
were corrected to achieve normal vision. The subjects were
given a thorough explanation of the experiment and their
consent to participate was obtained. The experiment was
conducted after obtaining approval (H31-9) from the Ethics
Committee of Toyama Prefectural University.

III. DATA ANALYSIS

A. Pre–processing

In this experiment, each stimulus was measured for 12 s.
Time–series data for 10 s were obtained by excluding data
immediately after starting the stimulus presentation and data
for 1.0 s before ending the stimulus presentation. The 10 s data
were divided into ten segments with a time window of 1.0 s to
avoid overlap of the data used. A bandpass filter of 4–35 Hz
was applied. When performing additive averaging between left
and right electrodes, the difference in amplitude between the
electrodes may significantly affect the discrimination accuracy
of one of the two electrodes. Therefore, we employed a robust
z-score after applying the bandpass filter. The position of the
electrodes to be averaged was between the electrodes with the
same number of binaural peripheral electrodes, as shown in
Figure 3.

B. Analysis, discrimination method, and performance evalua-
tion

The waveforms used in CCA were sine and cosine waves of
the same length as the time window length, which were used
for comparison. The sine and cosine waves started at 5, 7, 9,
and 11 Hz, similar to visual stimuli. Those with frequencies
that were two or three times higher than the harmonics were
also used for discrimination. According to Bedard et al. [15],
EEG also elicits harmonics that are multiples of the frequency
of the visual–evoked stimulus. Therefore, using CCA without
considering harmonics in the SSVEP analysis may result in
them being classified as other frequencies [2]. Therefore, we
classified the doubled and tripled frequencies as the same
frequency as those provided as visual stimuli.

The Canonical Correlation Coefficient (CCC) calculated by
CCA was used to discriminate the EEG signals by creating
a 4×4– dimensional mixing matrix at 5, 7, 9, and 11 Hz.
For discrimination, CCC was calculated from the frequencies
of the four stimuli per data–set, and the highest CCC was
predicted as the given stimulus. The discrimination index using
this mixed matrix was evaluated by calculating the macro
F–value, which is the average of the F–values of each of the
four stimuli.

ITR was proposed by Wolpaw et al. [16], where N is the
number of discriminations, P is the percentage of correct
responses, and t is the time required per trial (min).

The calculated CCCs, macro F-value, and ITR were com-
pared between the left and right additive electrodes and the
left and right unipolar electrodes by performing a Friedman
test using the Bonferroni method in the EZR software [17].
The significance level for this study was set at p = 0.05.

Figure 4. Canonical Correlation Coefficient of each position (Mean±SD).
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Figure 5. Macro F–value of each position (Mean±SD).

IV. RESULTS

A. Canonical correlation coefficient

The mean value of CCC was the highest at L2+R2,
0.37±0.06 (Mean±SD). Comparisons were made between the
left, right, and added electrodes. Significant differences were
found for electrodes 1, 2, and 3 as well as between the
electrodes (Figure 4).

B. Macro F–value and ITR

Figure 5 shows the macro F–value results. The highest mean
value was obtained for the L2+R2 electrodes (45.33±16.84
%). Comparisons were made between the left, right, and

Figure 6. ITR of each position (Mean±SD).

added electrodes. Significant differences were found between
electrodes 3, 5, 6, and 8 as well as between electrodes.

The highest mean ITR value was observed for L2+R2, at
13.86±13.21 bits/min. Comparisons were made using elec-
trodes of the same number on the left, right, right, and left
sides. The results showed a significant difference between the
two electrodes at the 2– and 3–number electrodes (Figure 6).

V. DISCUSSION

In a previous study, Sun et al. [18] attached electrodes to
the mirror legs of glasses and acquired data from the upper
part of each ear. Data from the left and right ears were treated
as separate signals with unipolar induction and were classified
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Figure 7. Macro F–value and ITR of change time window. (Mean).

using CCA. Thus, one stimulus of four different frequencies
was presented on the screen, which was similar to the present
study in terms of the presentation of visual stimuli. The results
of the experiment by Sun et al. [18] showed that the estimated
correct response rate for the gazing stimulus was 32.75 %
when a simple CCA without prior learning was applied using
a window length of 1.0 s. However, the estimated correct
response rate increased to 43.75 % when the method was
pre–trained with the participants’ data. The estimated correct
response rate based on binaural additive averaging in this study
was 45.33 %, which is equivalent to that of the pretraining
method proposed by Sun et al. [18]

Conventional CCA does not require prior learning, which is
an advantage; however, Time–’Weighting Canonical Correla-
tion Analysis (TWCCA) with prior learning reported by Sun
et al. [18] boasts an accuracy equivalent to that of the present
study, although it is a monopole induction. Therefore, further
improvements in the accuracy of binaural additive averaging
data can be a chieved by employing methods such as TWCCA
and msetCCA [21], which perform prior learning.

We performed binaural additive averaging using only elec-
trodes attached to the corresponding positions on the left and
right sides of each ear. However, it has been reported that the
accuracy of stimulus estimation also improves when multiple
electrodes are used for binaural additive averaging using only
electrodes in one ear [22]. From the above, we believe that
by selecting areas with high CCCs and exhaustively applying

various additive averaging methods in both ears, rather than
between the corresponding positions on the left and right,
electrode combinations that still improve the accuracy can
be determined. In this study, the highest CCC was R3 for
the right periapical electrode only, whereas L2+R2 was the
highest when additive averaging was applied to both periapical
electrodes. In ITR, R3 was the highest at 8.25±10.45 bits/min
for the right periapical electrode alone, and L2+R2 was the
highest at 13.86±13.22 bits/min when the bilateral periapical
electrodes were added and averaged.

The results of the analysis with different time–window
lengths showed that the F–value increased with the window
length (Figure 7). In the occipital lobe area (Oz, O1, O2), a
prominent peak was observed at a window length of 1 s in
ITR. However, in the case of binaural additive averaging, ITR
was not larger at a window length of 1 s.

In this experiment, only one type of flashing stimulus was
presented, and there was a discrepancy with the actual use of
the BCI. Therefore, in the future, we would like to measure
and analyze SSVEP when two or more different flashing
stimuli are simultaneously presented. In particular, the SSVEP
component can change depending on the visual attention. By
including the covert SSVEP [23], which does not involve eye
movement, we can expect to detect visual attention in the
ear’s vicinity of the ear, which is impossible with eye–tracking
devices. In such research, it is also imprtant to attach the elec-
trodes easily. In the future, we will develop an earpiece–type
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sensor device to measure the electroencephalograms around
the ear.

In this study, we included subjects who were younger in age.
Previous studies have reported [24] an increase or decrease in
accuracy with age, and the age range considered in this study
was the one reported to exhibit high accuracy. In the future,
it will be necessary to investigate whether the same level of
accuracy can be achieved in older subjects by using periapical
electrodes.

In addition, as mentioned above, when the number of sub-
jects is increased, the accuracy converges in case the subjects
are of the same age; therefore, the electrode addition method
and the position of the attachment may be briefly discussed.
However, the accuracy of SSVEP has been observed to change
with age. Moreover, the change in accuracy when subjects
are randomly selected is uncertain. Therefore, dividing the
subjects into groups based on factors that affect accuracy, such
as age, may aid in improving the accuracy of SSVEP around
the ear.

VI. CONCLUSION

Although BCIs have been extensively studied in healthy
subjects, it is difficult to apply electrodes to the head of a
single person. In this study, eight electrodes were applied
around each ear and the potential activity induced by SSVEP
was discriminated using CCA. To improve the accuracy,
new waveforms were derived by adding and averaging the
time–series data between the electrodes attached to the target
sites in both ears and were compared with the single electrode
results for the periapical electrodes.

The L2+R2 electrode exhibited the highest mean CCC of
0.37±0.06, with Macro F–value of 45.33±16.84 % and ITR of
13.86±13.21 bits/min. The CCC at L2+R2 was significantly
higher than that at L2 and R2 monopoles. The CCC at other
sites was also significantly higher for the additive electrodes
than for the monopoles. In addition, when comparing the
head and additive electrodes around the ears, there was no
significant difference in the macro F–value for electrodes 1–3,
and no significant difference in the ITR was observed only for
Oz and L4+R4. In the future, we will examine the detailed
electrode placement, time window length, and algorithms to
improve the accuracy of measurements around the ear.

ACKNOWLEDGEMENTS

The authors are grateful to M. Ito for conducting the
experiments and recording data.

REFERENCES

[1] C. S. Herrmann, “Human EEG responses to 1–100 Hz flicker: Resonance
phenomena in visual cortex and their potential,” Experimental Brain
Research, vol.137, no.3-4, pp.346-353, 2001.

[2] Z. Lin, C. Zhang, W. Wu, X. Gao, “Frequency recognition based on
canonical correlation analysis for SSVEP-based BCIs,” IEEE Transac-
tions on Biomedical Engineering, vol.53, no.12, pp.2610-2614, 2006.

[3] M. Nakanishi, Y. Wang, Y. T. Wang, T. P. Jung, “A comparison study of
canonical correlation analysis based methods for detecting steady-state
visual evoked potentials,” PLoS ONE, vol.10, no.10, e0140703, 2015.

[4] M. Li, D. He, C. Li, S. Qi, “Brain–Computer Interface Speller Based
on Steady-State Visual Evoked Potential: A Review Focusing on the
Stimulus Paradigm and Performance,” brain science, vol.11, no.4, pp.1-
25, 2021.

[5] S. Parini, L. Maggi, A. C. Turconi, G. Andreoni, “A Robust and Self-
Paced BCI System Based on a Four Class SSVEP Paradigm: Algorithms
and Protocols for a High-Transfer-Rate Direct Brain Communication,”
Computational Intelligence and Neuroscience, vol.2009, pp.1-11, 2009.

[6] H. Botani, M. Ohsuga, “Proposal of recognition algorithm for menu
selection using steady state visual evoked potential,” Japanese Journal
of Ergonomics, vol.53, no.1, pp.8-15, 2017.

[7] P. Stawicki et al., “SSVEP-based BCI in virtual Reality - control of a
vacuum cleaner robot,” 2018 IEEE International Conference on Systems,
Man, and Cybernetics, pp.534-537, 2018.

[8] Y. T. Wang, M. Nakanishi, Y. Wang, C. S. Wei, C. K. Cheng, T. P.
Jung, “An online brain-computer interface based on SSVEPs measured
from non-hair-bearing areas,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol.25, no.1, pp.11-18, 2017.

[9] D. Looney et al., “An in-the-ear platform for recording electroencephalo-
gram,” 2011 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pp.6882-6885, 2011.

[10] P. Kidmose, D. Looney, L. Jochumsen, D. P. Mandic, “Ear-EEG from
generic earpieces: A feasibility study,” 2013 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
pp.543-546, 2013.

[11] I. Zibrandtsen, P. Kidmose, M. Otto, J. Ibsen, T. W. Kjaer, “Case
comparison of sleep features from ear-EEG and scalp-EEG,” Sleep
Science, vol.9, no.2, pp.69-72, 2016.

[12] C. Athavipach, S. Pan-ngum, P. Israsena, “A wearable in-ear EEG device
for emotion monitoring,” Sensors, vol.19, no.18, 4014, 2019.

[13] D. Regan, “Human Brain Electrophysiology,” Elsevier, New York, 1989.
[14] G. H. Klem, H. O. Luders, H. H. Jasper, C. Elge, “The ten-twenty

electrode system of the International Federation. The International
Federation of clinical neurophysiology,” Electroencephalography and
clinical neurophysiology. Supplement, vol.52, pp.3-6, 1999.

[15] C. Bedard, H. Kroger, A. Destexhe, “Modeling extracellular field
potentials and the frequency-filtering properties of extracellular space,”
Biophysical Journal, vol.86, no.3, pp.1829-1842, 2004.

[16] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M.
Vaughan, “Brain–computer interfaces for communication and control,”
Clinical Neurophysiology, vol.113, no.6, pp.767-791, 2002.

[17] Y. Kanda, “Investigation of the freely available easy-to-use software
’EZR’ for medical statistics,” Bone Marrow Transplantation, vol.48,
pp.452-458, 2013.

[18] Y. Sun et al., “Cross-subject fusion based on time-weighting canonical
correlation analysis in SSVEP-BCIs,” Measurement, vol.199, 111524,
2022.

[19] P. Israsena, S. Pan-Ngum, “A CNN-based deep learning approach for
SSVEP detection targeting binaural ear-EEG,” Frontiers in Computa-
tional Neuroscience, vol.16, 868642, 2022.

[20] D. O. Won, H. J. Hwang, S. Dähne, K. R. Müller, S. W. Lee, “Effect
of higher frequency on the classification of steady-state visual evoked
potentials,” Journal of Neural Engineering, vol.13, 016014, 2015.

[21] Y. Zhang, G. Zhou, J. Jin, X. Wang, A. Cichocki, “Frequency recognition
in SSVEP-based BCI using multiset canonical correlation analysis,”
International Journal of Neural Systems, vol.24, no.2, 1450013, 2014.

[22] M. Ito, F. Kinoshita, G. Cui, H. Touyama, “A study on electrode posi-
tions around the ear for BCI development using SSVEP,” Transactions of
the Institute of Electrical Engineers of Japan. C., vol.143, no.2, pp.178-
184, 2023.

[23] S. P. Kelly, E. C. Lalor, R. B. Reilly, J. J. Foxe, “Visual spatial
attention tracking using high-density SSVEP data for independent brain-
computer communication,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol.13, pp.172-178, 2005.

[24] I. Volosyak, F. Gembler, P. Stawicki, “Age-related differences in SSVEP-
based BCI performance,” Neurocomputing, vol.250, no.9, pp.57-64,
2017.

36Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

                            44 / 86



RCT-Net: TDNN based Speaker Verification with
2D Res2Nets on Frame Level Feature Extractor

*Note: Sub-titles are not captured in Xplore and should not be used

Razieh Khamsehashari
Quality and Usability

Technical University of Berlin
Berlin, Germany

email: razieh.khamsehashari@tu-berlin.de

Fengying Miao
Quality and Usability

Technical University of Berlin
Berlin, Germany

email: fengying.miao@campus.tu-berlin.de

Tim Polzehl
Speech and Language Technology

German Research Center for Artificial Intelligence (DFKI)
Berlin, Germany

email: tim.polzehl@dfki.de

Sebastian Möller
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Abstract—In speaker verification, Time Delay Neural Networks
(TDNNs) and Residual Networks (ResNets) are currently achiev-
ing cutting-edge results. These architectures have very different
structural characteristics, and development of hybrid networks
appears to be a promising path forward. In this study, inspired by
the combination of Convolutional Neural Network (CNN) blocks
and multi-scale architectures we present a Residual-based CNN
TDNN (RCT) system and evaluate the performance of integrating
different residual blocks into a TDNN-based structure. We
extend the state-of-the-art speaker embedding model for speaker
recognition, namely Emphasized Channel Attention, Propagation,
and Aggregation based CNN-TDNN (ECAPA CNN-TDNN), by
gradually incorporating the proposed 2D convolutional stem with
various bottleneck residual blocks. We evaluate the performance
of our models on standard VoxCeleb1-O test set to investigate
the performance of residual blocks and TDNN in the speaker
verification domain. As a result, the proposed models significantly
outperform the state-of-the-art by up to 14.6% of EER.

Index Terms—ResNet, Residual blocks, TDNN, RCT-Net,
speaker verification, automatic speaker verification (ASV)

I. INTRODUCTION

Current state-of-the-art speaker verification systems try to
improve the most popular neural network topology based on
ECAPA-TDNN by incorporating multiple ideas and techniques
inspired by convolutional blocks, feature aggregation, and
frequency-channel attention methods. ECAPA CNN-TDNN
[6] introduced a 2D convolutional stem for the ECAPA-
TDNN, incorporating frequency translational invariance in the
four top layers of the network. Liu et al. [7] proposed MFA-
TDNN, a Multi-scale Frequency-channel Attention (MFA)
framework, that captures the local information and frame-level
temporal information by the dual-pathway multi-scale mod-
ule while emphasizing the important frequency and channel

components in TDNN systems. Inspired by ECAPA CNN-
TDNN, which enhances ECAPA-TDNN by incorporating a
CNN-based front-end, the MFA module is created as a front-
end module for TDNNs in order to learn multi-scale and
extract high resolution feature representations from short ut-
terances. [8] and [13] adapt the frame-level processing in
ECAPA-TDNN. In [8], their experiments focus on bottleneck
residual blocks, attention mechanisms, and feature aggregation
based on ECAPA-TDNN. They replaced the Res2Block with
SC-Block and proposed the hierarchical feature aggregation
method to build their final model.

Many recent studies have focused on expanding the re-
ceptive field of the convolutional layer on Residual Network
(ResNet) [1]. The first technique integrates the ResNet with
the concept of inception [2] and proposes ResNext, a split-
transform-merge strategy [3]. The introduced cardinality is
intended for processing different sizes of receptive fields in
order to obtain multi-scale features. Furthermore, Res2Net
[4] improves multi-scale feature extraction capability by con-
structing hierarchical residual-like connections within one
single residual block. The preceding ideas are similar to
the TDNN, which obtains a wide range of time information
through convolution with different dilation rates. We believe
that development of hybrid networks to generate multi-scale
features influences the final representation and appears to be
a promising direction moving forward. The ECAPA-TDNN
model [5], as an example, combines the benefits of Res2Net
and TDNN.

Inspired by these recent progresses, we propose Residual-
based CNN TDNN RCT-Net using 2D convolutions based on
different residual blocks as the foundation for the initial net-
work layers. We evaluate the performance of various residual
blocks using the most recent speaker embedding model for
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Fig. 1. The diagram of the proposed architecture.

speaker recognition, ECAPA CNN-TDNN [6], and experiment
with the proposed 2D convolutional stem, including various
bottleneck residual blocks such as Res2Net [4], Res2NeXt [3],
standard ResNet [1], Improved ResNet [9] and ResTCN [10],
[15].

This paper is organized as follows: In Section II, the base-
line architectures are described. The structure of the proposed
Residual-based CNN TDNN RCT-Net and different frame-
level architectures are described in Section III. Section IV
introduces the experimental setup including dataset, training
the speaker embedding extractors, and evaluation protocol.
Results and analysis are presented in Section V. In Section VI
we discuss the potential justification for our best combination
of two strong structures of TDNN and residual blocks. Finally,
Section VII summarizes the findings.

II. BASELINE SYSTEM ARCHITECTURES

Two types of TDNN-based speaker embedding models are
considered as reliable baselines to evaluate the performance
of our suggested architecture: ECAPA-TDNN and ECAPA
CNN-TDNN, which both currently provide state-of-the-art on
speaker verification tasks.

The ECAPA-TDNN [5] model, which is based on the
x-vector architecture [11], attempts to obtain exceptionally
accurate x-vectors by introducing a number of enhancements
to provide more robust speaker embeddings. First, channel-
and context-dependent statistics pooling layer is used to ag-
gregate all frame-level features to generate a fixed dimensional
vector. Second, in order to add global context information to
the locally operating convolutional blocks, the 1-dimensional
Squeeze-Excitation (SE) block [17] is used and integrated with
Res2Block [4], which has the advantage of multi-scale feature
processing through group convolutions in hierarchical residual
connections, and reduces the number of network parameters.

Finally, the output features of all the SE-Res2Block for each
frame are concatenated by multi-layer feature aggregation
technique.

Inspired by 2D-CNNs, Thienpondt et al. [6] introduced
a 2D convolutional stem in ECAPA-TDNN to transfer the
advantages of ResNet architecture to the proposed hybrid
CNN-TDNN network. Using ResNet in top layers allows the
network to initially construct local, frequency-invariant fea-
tures and then 1D convolutions are applied to incorporate the
frequency position information of the features. The flattened
output feature map subsequently is used to feed the ECAPA-
TDNN network.

III. PROPOSED RCT-NET ARCHITECTURE

The neural network is used by the current speaker verifica-
tion methods to derive speaker representations. The effective x-
vector architecture [11] uses TDNN to project variable-length
utterances into fixed-length speaker characterization embed-
dings by applying statistics pooling. On the task of speaker
verification, we aim to obtain an extremely accurate version
of x-vector topology and try to enhance the performance of
the original TDNN-based architectures [12].

We investigate different deep residual unit variations, and
we are particularly interested in whether the TDNN and the
basic residual building blocks simplicity can be successfully
combined with the advantages of standard residual-based
architectures [1] [9] [10] [14], and how the performance of
the resulting architectures compares to the more sophisticated
multi-scale residual blocks [3] [4]. In this regard, our method
integrates, extends, and generalizes the architecture of ASV we
previously described [13]. The proposed architecture, as shown
in Figure 1, follows an established multi-scale and frequency
positional encoding structure, ECAPA CNN-TDNN. In this
study, we propose enhancements to the frame-level feature
extractor.

A. Standard Residual Blocks

We shortly go over the key concepts underlying residual-
based architectures like ResNet and Res-TCN [10] [15]. Res-
Net employs injected residual connections between processing
streams to allow spatial-temporal interaction between them.
Res-TCN redesigned the original TCN [14] by factoring out
the deeper layers into additive residual terms that yielded both
an interpretable hidden representation and model parameters.
In contrast to the original ResNet, the basic residual unit of
Res-TCN and improved ResNet [9] does not use ReLUs to
support the element-wise additions

⊕
(see Figure 2(a-c)) and

can therefore offer representations that are more interpretable.
Additionally, such units create a direct path that enables
the gradients and the signal to be transmitted directly in a
backward pass through the entire network to any unit.

B. Multi-Scale Residual Blocks

Multi-scale feature representation has been integrated from
the beginning into the CNN architectural design with a stack
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Fig. 2. The structures of bottleneck residual blocks in different architectures. Standard residual blocks in (a) ResNet [1], (b) Improved ResNet [9], and (c)
Res-TCN [15]. Multi-scale residual blocks in (d) Res2Net [4] and (e) ResNeXt. [3]

of convolutional layers that automatically learn coarse-to-fine
features [16]. The bottleneck module and shortcut connections
to residual networks are effective at reducing the number of
parameters and successfully addressing the gradient disappear-
ance in deep CNN designs.

ResNeXt-50 [3] enhanced the bottleneck module by adding
cardinal dimension and replacing conventional convolution
with group convolution to perform more sophisticated trans-
formations. Gao et al. [4] substituted the 3×3 convolution with
a series of 3 × 3 convolution with smaller filter groups that
are coupled hierarchically in order to incorporate the multi-
scale capability of the feature representation into the module.
This might be considered a network inside of a network.
As a result, the range of receptive fields for each network
layer is increased by the Res2NeXt, which also represents
multi-scale features at a finer level. Res2NeXt-50 improved
ResNeXt-50 by enabling multi-scale feature representation at
both the global and local levels by integrating hierarchical
multi-scale feature representation into the bottleneck module.
SE-Res2NeXt-50 [4] integrated the SE block [17] to provide
a channel-wise dynamic calibration of feature responses and
provide enhanced feature representation capabilities.

Res2NeXt substitutes a set of 3 × 3 filters with smaller
groups of filters, while connecting different filter groups in a
hierarchical residual-like way, cf. Figure 2. 3× 3 convolution
is followed by the input being split into s feature map subsets,
indicated by the symbol Xi, where i ∈ {1, 2, ..., s}. Each
feature subset Xi differs from the input feature map only in
that it has 1/s fewer channels but the same spatial extent. With
the exception of X1, which is forwarded directly to the output,
each Xi has a matching 3× 3 convolution, indicated by Ki(·).
The output Ki−1(·) from the earlier 3× 3 convolution is then
fed into Ki(·) together with the feature subset Xi. The output
of the module is produced by concatenating the outputs of all
groups and forwarding them to a 1× 1 convolution. Thus, Yi

can be:

Yi =


Xi i=1
Ki(Xi) i=2
Ki(Xi + Yi−1) 2 < i ≤ s

IV. EXPERIMENTAL SETUP

We evaluate the performance of the proposed architecture
on the ECAPA embedding on the development part of the
VoxCeleb2 dataset with 5994 speakers as training data. Vox-
Celeb1 test set is taken into consideration as a validation set for
hyperparameter optimization. As follow the baselines [5] [6],
all models are trained using a standard Adam optimizer with
cyclical learning rates ranging between 1e-8 and 1e-3. Using
AAM-softmax with a margin of 0.2 and softmax prescaling
of 30 for 4 cycles, all systems are trained.

A. Dataset

We use the development part of the VoxCeleb 2 [18] as our
training set. This dataset contains over 1 million utterances
for 5,994 speakers extracted from YouTube. The MUSAN
[19] and RIR [20] datasets are used to generate extra samples
for online data augmentation. VoxCeleb1 [21] has three types
of evaluation trials, which are VoxCeleb1-O, VoxCeleb1-E
and VoxCeleb1-H. For fairness of comparisons, we keep
consistent with the ECAPA-TDNN and ECAPA CNN-TDNN
experiments and choose VoxCeleb1-O as the validation set,
this dataset contains 4,708 utterances from 40 speakers.

B. System Description

Both ECAPA-TDNN [5] and ECAPA CNN-TDNN [6] are
used as baseline systems in this study. We can describe the
proposed systems and the two baselines as follows:

• ECAPA-TDNN (Re-implemented): It follows the stan-
dard ECAPA-TDNN model from [5]. In the convolutional
frame layers, there are 1024 channels, and the number of
Res2Blocks is 3.
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TABLE I
EER PERFORMANCE OF THE ECAPA-TDNN (ET) AND ECAPA CNN-TDNN (ECT) BASELINE MODELS AND PROPOSED ARCHITECTURES ON
VOXCELEB1 TEST SET. PARAMETER s DEPICTS THE VALUE OF SCALE, g IS THE VALUE OF CARDINALITY, AND c IS THE NUMBER OF FILTERS.

Architecture Residual Units Setting No. Params(Million) EER(%) PRI-ET(%) PRI-ECT(%)

ECAPA TDNN [5](Re-implemented) Res2Net 8s×1024c 14.73 1.03
ECAPA CNN-TDNN [6](Re-implemented) ResNet 128c 27.54 0.97

Res2Net 4s×1024c 15.43 1.12 -8.7 -15.5
6s×1024c 14.96 1.07 -3.9 -10.3

Res2NeXt 4s×4g × 1024c 14.17 1.02 +0.97 -5.2
Extended ECAPA-TDNN 6s×8g × 1008c 14.06 0.94 +8.7 +3.1

8s×8g × 1024c 13.87 1.03 0 -6.2
ResNeXt 4g×1024c 16.00 1.12 -8.7 -15.5

6g×1026c 15.23 1.13 -9.7 -16.5
8g×1024c 14.87 1.29 -25.2 -32.99

Improved ResNet 128c 27.54 0.98 +4.9 -1.03
Res-TCN 128c 27.26 0.95 +7.8 +2.06
Res2Net 4s×128c 27.03 0.98 +4.9 -1.03

6s×128c 27.01 0.91 +11.7 +6.2
RCT-Net 8s×128c 27.01 0.94 +8.7 +3.1

Res2NeXt 4s×4g × 128c 26.99 0.97 +5.8 0
6s×8g × 144c 27.01 0.90 +12.6 +7.2
8s×8g × 128c 26.98 0.88 +14.6 +9.3

ResNeXt 4g×128c 27.12 1.11 -7.8 -14.4
6g×132c 27.48 0.97 +5.8 0
8g×128c 27.05 0.98 +4.9 -1.03

• ECAPA CNN-TDNN (Re-implemented): As proposed
in [6] four layers of CNN are employed as a front-
end for ECAPA-TDNN. Different from [6], we do not
increase the intermediate channel dimension and depth
in ECAPA-TDNN module, but the standard version with
3 SE-Res2Blocks and 1024 channels. This is for fair
comparisons with ECAPA-TDNN and the proposed RCT-
Net.

• RCT-Net: The standard ECAPA-TDNN with different
residual blocks as a front-end.

C. Training the speaker embedding extractors

The input features are 80-dimensional Mel-Frequency Cep-
stral Coefficients (MFCCs) extracted from a window length of
25 ms with a frame shift of 10 ms. Cepstral mean subtraction
is used to normalize the two second random cropping of the
MFCCs feature vectors. It is well known that data augmen-
tation has great benefits for neural networks. So, we use the
MUSAN (babble, music, noise, TV noise) corpora and the
RIR corpora (reverb) for online data augmentation to generate
five extra samples for each utterance. We apply SpecAugment
[22] as the last step of augmentation, this algorithm randomly
masks dimension of 10 and 8 in the temporal and frequency
dimensions, respectively.

TABLE II
DIFFERENT SETTINGS OF scale AND cardinality DIMENSIONS ON

MULTI-SCALE RESIDUAL BLOCKS

Residual Units Setting 1 Setting 2 Setting 3

Res2Net 4s 6s 8s
ResNeXt 4g 6g 8g
Res2NeXt 4s×4g 6s×8g 8s×8g

V. RESULTS

A performance overview of the baseline systems described
in Section II and our proposed architectures are summarized
in Table I. We extend the baseline speaker embedding models
by incorporating the proposed 1D and 2D convolutional stems
with various bottleneck residual blocks. We then evaluate the
Percent Relative Improvements (PRI) of the proposed models
with the ECPA-TDNN and ECAPA CNN-TDNN baselines.

Results show that in general almost all RCT-based combi-
nations (10 out of 11 combinations, i.e., around 91% of all
combinations) lead to an improvement over standard ECAPA-
TDNN. The results also demonstrate that all proposed models
with potential to perform better than their corresponding
baselines have fewer parameters. In the following, we analyze
the performance in more detail wrt. to system combination
constituents.

A. Variations in CNN stems representation

Further analyzing the results, we assume a competitive
threshold of EER=1, i.e., a high-performance system threshold
where the amount of falsely rejected and falsely accepted
speakers in an ASV system would be equally high, namely 1%.
Accordingly, as shown in Table I, while 87.5% of any ECAPA-
TDNN extension included in the experiments are above the
threshold of 1%, 91% of RCT-Net proposed models are below
it. We could therefore assume that overall the 2D convolu-
tional stems are more optimally suited for the representation
of speaker embeddings for ASV systems, compared to 1D
representations.

B. Dimension variations

Findings of prior benchmark experiments [4] imply that
scale is an effective dimension to enhance model performance.
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Moreover, scaling up is more efficient than other dimensions.
In general, this finding can be confirmed, as for most system
configurations s=4 results in inferior performance, compared
to higher values. However, rising the scale from 6 to 8 does
not always lead to gain. On this level, the overall performance
also depends on the remaining parameters c and g.

C. Multi-scale residual blocks

In terms of EER, the best model using Res2NeXt−8s ×
8g × 128c surpasses both ECAPA-TDNN and ECAPA CNN-
TDNN baselines by 14.6% and 8.7%, respectively. Remark-
ably, Res2NeXt−6s × 8g × 1008c even outperforms the
baseline, ResNet-128c, with only 51% of the number of
parameters in the model (see Table I). As shown in Figure 3,
for 1D representations the introduction of multi-scale blocks
in ResNeXt alone does not lead to any improvement. However,
when combining the advantages of it into the Res2NeXt
model, the performance significantly improves, i.e., by 8.7% -
a performance value even outperforming the ECAPA CNN-
TDNN baseline operating on a 2D representation in the
stem. For the RCT-Net based models, the introduction of
multi-scale blocks clearly improves the overall performance,
with only the exception of ResNeXt model with too small
scale settings discussed above. All models show significant
improvement, best of which improves performance by 14.6%
using a Res2NeXt block. Eventually, we can hypothesize that
the multi-scale feature setup greatly benefits from the 2D
convolution processing in the entrance of the stem.

VI. DISCUSSIONS

Based on our results, we can conclude that integrating 2D
Res2NeXt with TDNN is the best combination of two strong
structures of TDNN and residual blocks. As a result, in our
experiments representing features at multiple scales and con-
structing hierarchical residual-like connections within a single
residual block in dimensions of both scale and cardinality is
more performant than without or standalone dimensions of
either scale or cardinality. A possible explanation could be the
difference in the approach to obtaining multi-scale features in
different residual-based architectures. Res2Net, for example,
splits the original input into multiple groups according to
the channels. The output of one group is fed into the next
group, and so on, and all segments are concatenated as the
final result. On the other side, Res2NeXt, repeats a building
block that aggregates a set of transformations with the same
topology and expands the range of receptive fields for each
network layer, and depicts multi-scale features at a finer level.
Accordingly, by integrating hierarchical multi-scale feature
representation within the bottleneck module, the multi-scale
feature representation is improved at both the global and
local levels. Finally, in our experiment, the joint benefits of
a parallel stacking layer of ResNeXt rather than sequential
layers of standard ResNet architectures, multi-scaling features
in Res2Net, and expanding the range of receptive fields show
the potential to extract more invariant feature representations
in a joint Res2NeXt architecture.

Fig. 3. Impact of various scale and cardinality dimensions with different
settings as indicated in Table II. (a) ECAPA-TDNN based experiments, (b)
ECAPA CNN-TDNN based experiments.

VII. CONCLUSION

In this study, we adapt the frame-level layer architecture that
integrates multiple ideas motivated by the convolutional block
and multi-scale architectures. In our experiments, we evaluate
the performance of integrating different residual blocks into
TDNN-based structures. The best model using Res2NeXt im-
proves current state-of-the-art by 14.6% relative on VoxCeleb1
test set.

These promising findings motivate us to investigate hybrid
architectures in more detail and propose structures to reduce
computational complexity in our upcoming studies. We will
continue to evaluate the performance of various residual unit
types as we integrate them with the 2D ECAPA-TDNN repre-
sentation and explore several directions of multimodal fusion
approaches. We will also provide speech-level interpretation
of the proposed TDNN-based architectures for understanding
our models. This includes visualizing the acoustic concepts the
model has learned and comparing how they are represented
in the model layers using [23] [24], etc, and generalizing
our findings with more data utilizing additional datasets and
evaluation metrics such as Minimum Value of Detection Cost
Function (MinDCF).
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Abstract—The estimation of fish biomass plays a crucial role in
aquaculture. Performing this task automatically using machine
learning algorithms has attracted the attention of the scientific
community. This work describes the application of Supervised
Spatial Divide-and-Conquer net to counting the number of larvae
present in an image of an aquaculture tank. SS-DCNet is among
the most robust object counters in the state of the art when
applied to different datasets. It is trained with labeled images of
turbots in breeding tanks, taking into account that the sizes can
be variable and that they can be grouped and overlapped. Data
augmentation is applied to obtain a greater number of training
instances. The application of this model to counting turbots in
images provides a mean relative error lower than 3.5%, which
is an acceptable accuracy for this task. The main advantage of
the model studied is its generalization ability, confirmed by its
performance in counting objects in images where the density and
the total number of objects are much higher than for the training
images. Adapting the model for counting other types of fish, or
turbot in other stages of growth, is straightforward since it is
not necessary to build large training datasets.

Index Terms—Image processing, Object detection, SS-DCNet,
biomass estimation

I. INTRODUCTION

Biomass estimation, that is, knowing the number of fish
and their weight, allows fish farmers to optimize the amount
of feed, plan later stages of farming, and make decisions at
the right times. Traditionally, biomass estimation has been
carried out by people using invasive procedures that are usually
slow and laborious and require great expertise, experience, and
knowledge of the conditions of the farm and the environment
[1].

Technological advances in recent decades have allowed the
development of systems that offer automatic estimation of
biomass based on artificial vision, acoustic signals, environ-
mental deoxyribonucleic acid (DNA), or resistivity counters.
These methods are objective, noninvasive and produce repeat-
able and reliable results. In contrast, they can be expensive
and not easily adaptable to variations in the environment [1].

Recently, machine learning (ML) techniques have grown
remarkably in applicability to the fields of industry, social
networks, etc. In aquaculture, they have been used to predict
water quality [2], identify and distinguish among fish types
[3], diagnose diseases [4], estimate biomass [5], etc. Both
image recording technology and computer services have been
generalized and cheapened so that biomass estimation systems
can currently be developed cheaply and reliably. The number
of fishes in an image is among the parameters required for
biomass estimation. For the purpose of estimating it, the
algorithmic approaches used for counting objects in RGB
images can be adapted.

To date, approaches used for counting objects in images
can be grouped in roughly three types: counting by detection,
regression, and density estimation [6]. Counting by detection
is based on the position of each object in the image using the
extracted image features. These methods have shown good
results in datasets where the objects are separated from each
other. However, in scenes where the objects are next to each
other or even overlapping, the results have not been good.
Some recent proposals in this area, using local features instead
of global features, have improved counting results in images
with high object density [6].

Alternatively, counting based on regression models attempts
to establish a relationship between image features and the
number of objects using supervised machine learning tech-
niques. These models do not use datasets based on the location
of individual objects but require only the total number of
objects in the image. Thus, although the results of these models
are generally better than those based on detection, they usually
require large datasets to be trained [6].

The two model types previously described ignore the spa-
tial information of the images; the solution proposed in [7]
incorporates this information. In this work, a mapping of the
features in the images and their corresponding density maps
are developed that improves the accuracy of the counting
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(a) (b)
Figure 1. Example of frames captured at a frequency of 15 f/s. (a)
High density of turbots and (b) Low density of turbots.

results compared to previous approaches [8]. The advantages
of this proposal are the following: the density maps provide
more information about the distribution of the objects, and the
algorithm is more adaptable to objects with different sizes and
more tolerant to different images [8].

Aforementioned research suggests that the application of
ML algorithms to images of fish larval tanks can enable the
implementation of low-cost, accurate, and reliable biomass
estimation systems. In this paper, we develop a system that
allows obtaining an estimated number of turbot larvae present
in RGB (red, green, blue) images. For this purpose, a deep
learning algorithm is trained with labeled images of a fish
larval tank, taking into account that fish sizes can appear to
be variable in the image due to differences in depth, and that
there can be grouped and overlapped objects.

The organization of the document is as follows: section
II.A explains the experimental setting and construction of the
dataset. Section II.B describes the implemented machine learn-
ing algorithm and the evaluation of several hyperparameters.
Furthermore, the influence of different hyperparameter values
on the prediction is measured with error metrics. The optimal
values of the hyperparameters and the generalization capacity
of the neural network were verified in section III: Results and
Discussion. Finally, section IV presents the conclusions of the
work.

II. MATERIALS AND METHODS

This section describes the neural network used to count the
number of turbot larvae in an image, as well as the dataset used
to train and test the model. In addition, the parameters that
characterize a neural network and the metrics used to evaluate
its performance and generalization capacity are explained.

A. Dataset
The dataset consists of 156 RGB images with a resolution

of 2560 × 1920 pixels. Two sample frames are shown in
Figure 1. The images were manually annotated in the Group
of Multimedia and Acoustic Applications (GAMMA) in our
university with a Matlab® application specifically developed
for this purpose.

Figure 1 shows two frames prototypical of two different
cases: the left frame shows a high density of turbots while
density is low in the right one. These images were captured
in the same tank at different moments.The implemented algo-
rithm must produce equally acceptable results in both cases,
and also in intermediate ones.

Figure 2. Segmentation of turbots, the red and blue boundaries stands
out a single turbot and a group of turbots, respectively.

All images were taken from turbot larval tanks. The camera
was located with the lens axis perpendicular to the water
surface. In order to avoid the glaring of lighting reflections
on the water, the camera focused only in part of the tank
surface. Users of the annotation application were provided
with images for which a segmentation by threshold had been
applied to identify the objects present in the image (see
Figure 2). Annotators were asked to check whether each object
corresponded to a turbot larva or not. The process was made
manually, and image by image, which is laborious and time
consuming. But it is the most confident procedure to get a
ground-truth fish count for each frame.

To train and test the neural network, the images were
randomly divided into training and testing sets: 124 (80%) for
training and 32 (20%) for testing. The distribution of turbots in
both sets averaged 246 and 273 turbots per image, respectively.

B. Machine learning algorithm

1) Neural Network: The convolutional neural network
model implemented in our proposal for counting objects shows
the best results in the application of counting people [6]
[8]. The chosen model is the Supervised Spatial Divide-and-
Conquer for Object Counting model (SS-DCNet) because it
has been reported to produce low errors [9] and the applica-
bility of the model beyond counting people has already been
assessed: for counting vehicles [10], and grains of corn [11].
Thus, it is expected to be adaptable to alternative datasets too.

SS-DCNet learns from a closed set of counts and it gener-
alizes to scenarios with open sets. This model was designed to
approach the problem that only finite local patterns (a closed
set) can be observed, but new scenes in the reality have a
high probability of containing out of range objects (an open
set). Specifically, SS-DCNet (see Figure 3) uses a 16-layer
deep neural network (VGG16) as encoder and a Convolutional
Networks for Biomedical Image Segmentation (UNet) like
decoder to generate multi-resolution feature maps in frames
of 64× 64 pixels. All feature maps share the same counter, in
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Figure 3. Diagram of SS-DCNet algorithm. C0, C1 y C2 are the
estimation counters for three different resolutions; the parameters U
y W allows to combine the values of estimation counters to obtain
the density map.

these are obtained C0, C1 y C2 for three different resolutions.
Then is applied two-stage spatial divide and conquer (S-DC)
process to estimate the density map related to sub-image
selected. The density map is used to calculate the local count.
The final count of the image can be recovered by combining all
sub-image counts into one count map with the same size as the
test image. For each pixel, a normalization step is performed
by dividing the number of sub-images that yield a prediction
for the pixel [9]. In local counter modeling, one of the ways
to define a counter in the closed set is [0, Cmax]. In practice,
Cmax should not be larger than the maximum local count
observed in the training set. If the predicted counts are greater
than Cmax, the predictions are simply truncated to Cmax.

Although the authors of the SS-DCNet model [9] have
published source code to evaluate the accuracy of their model,
their implementation only has the ability to evaluate an already
trained model and does not have routines to train a model with
a specific dataset. For this reason, the basic source code used
in this project is that published by Dmitry Burdeiny [12] on
the Github platform as free code. The code has been adapted
to meet the design specifications and to make it compatible
with the current dataset.

Analyzing the distribution of objects on 64 × 64 squares,
it is observed in Table I that the 95th percentile corresponds
to the value of 5 turbots per square. Therefore, following the
recommendations of the model developers, a value of 5 was
chosen as a starting point for model training. However, tests
were performed with the lower and upper values to analyze
their variation.

TABLE I. PERCENTILES OF TURBOTS COUNTED IN
FRAMES OF 64× 64 PIXELS

Percentil Value
65 1
75 2
85 3
95 5

2) Density map: Density maps in SS-DCNet are generated
using a Gaussian kernel. The density estimation based ap-
proach uses an adaptive geometric density mapping system.
This implies that the standard deviation (σ) is calculated
dynamically for each labeled point. This value is usually calcu-
lated as the product of the mean distance to nearest neighbors
and a mitigation coefficient, usually 0.3 [13]. However, the
adaptive calculation of the standard deviation is applied to
images where the size of the object is evenly distributed among
different image regions. For example, an image of a street
where people’s heads have similar size means that they are
in the same image region (foreground, background, other).
However, in our dataset, the turbot size is not distributed across
the image regions, the size varies mainly with distance to the
water surface. Turbots closer to the surface are larger than
those in the depth, therefore neighbors in the same region
can be in different planes. For this reason, a fixed standard
deviation was chosen to create the density maps.

To measure how the value of σ affects the accuracy of the
model, the density map was created with different values of σ
between 3 and 15 in intervals of three, all with a kernel size
of 30 pixels, as shown in Figure 4.

In Figure 4 can be seen that when the parameter σ is
increased, the algorithm detects objects where there are none,
while at a low sigma of 3 it detects fewer objects.

3) Train and validation test: A random division of the
training dataset is made to apply double cross validation:
90% of images for training and 10% for validation. Note that
this validation is different from the final evaluation of the
error on the test set. The goal of this evaluation is to check
during training the evolution of accuracy after certain training
iterations.

Moreover, the technique of data augmentation or artificial
data generation is used to obtain a larger number of training
instances. The strategy followed is to generate nine sub-images
with a quarter of the total image resolution, as in [9] [14].
Four sub-images are drawn from the four corners without
overlapping, and the other five are drawn randomly from the
image. These images need to be normalized, so the average
pixel value was calculated for each RGB channel using all
images set. The calculated average pixel subtracted from pixels
of each RGB channel, and then divided by 255 was the
normalization process implemented.

The Stochastic Gradient Descent (SGD) optimization al-
gorithm is chosen as the learning algorithm of the model.
The implementation uses an initial learning rate of 0.0001,
which is divided by a factor of 10 for each iteration of
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Figure 4. Examples of density maps for different values of σ. The
original frame (top), maps with σ equal to 3 (center-left), 6 (center-
right), 9 (down-left) and 12 (down-right)

the training process. A random Gaussian initialization with a
standard deviation of 0.01 is used to compute the weights. The
convolutional neural network is pre-trained with the ImageNet
dataset and the batch size is equal to 1 in our proposal.

In addition, the following techniques are used to improve
the SGD optimization algorithm:

• Momentum: It is used to reduce excessive fluctuations
in the weight changes in successive iterations and thus
improve the learning rate [15]. The value used for this
parameter is 0.9.

• Weight decay: This is a regularization technique whose
main goal is to avoid overfitting that would affect general-
ization for new data. This technique introduces a penalty
in the cost function to reduce the weights during the
backward propagation of the error [16]. The value used
for this parameter is 10−4.

III. RESULTS AND DISCUSSION

In order to obtain the optimal parameters for the generation
of the density maps and Cmax of the classifier, experiments
began with σ equal to 12 and Cmax equal to 5. The impact of
these parameters was analysed training the system with their
extreme values to appreciate the change of these parameters.

1) Relationship between σ and density map: In order to
evaluate how the choice of σ for the Gaussian kernel affects the
accuracy of the model when generating density maps, it was
trained with a value of Cmax equal to 5 and the density maps

were generated for different σ values, between 3 and 15 in
steps of three. As can be seen in Table II, there is no significant
effect on the model errors at small standard deviations.

TABLE II. ERRORS OBTAINED BY DIFFERENT DEN-
SITY MAPS

σ MAE RMSE MAPE (%)
3 9.00 18.82 3.52
6 11.66 19.46 4.04
9 11.05 19.22 3.56
12 9.66 18.20 3.48
15 10.62 18.09 3.69

A value of 12 was used for σ to create the density maps
for the rest of tests. Although it has a slightly worse Mean
Absolute Error (MAE) value than the map created with a
σ = 3, the Mean Square Error (MSE) and Mean Absolute
Percentage Error (MAPE) values are better and the deviations
are therefore more homogeneous. The Root Mean Square Error
(RMSE) is similar in all cases.

2) Selection of Cmax value: The developers of the SS-
DCNet model obtained the best model accuracy results for a
Cmax value corresponding to the 95th percentile of the objects
distribution in 64 × 64 pixels. This value is 5 for the current
dataset. The validity of that conclusion was verified training
the model with Cmax values below and above 5.

As can be seen in Table III, for Cmax = 5 , the smallest
errors are obtained for both MAE and MAPE. However, for
Cmax = 6, the RMSE is slightly smaller, meaning that there
is less variation. Nevertheless, the difference between MAE
and MAPE is considered to be more significant than RMSE,
so a value of Cmax equal to 5 is used for the further tests.

TABLE III. ERRORS OBTAINED BY DIFFERENT Cmax

Cmax MAE RMSE MAPE (%)
2 14.45 25.98 3.90
3 15.02 27.26 4.13
4 14.67 26.49 4.09
5 9.66 18.20 3.48
6 10.39 18.05 3.64

3) Generalization capability / ability: In order to evaluate
how the model generalizes for frames with higher concentra-
tion of turbot larvae, it was re-trained with images that had
a low density of individuals, less than 350 per frame, and
tested with images that had a high density, between 350 and
898 individuals. For this experiment, 129 and 27 images were
used for training and testing, respectively.

Figure 5 shows a low deviation for predictions in test
images. Therefore, the model maintains an acceptable accuracy
for images with a higher density and number of objects than
that of the training set.
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Figure 5. Generalization capability of SS-DCNet. The Label and
Prediction axes represent the real and estimated number of turbots in
a tank, respectively. The orange dots are the data of training set and
the blue dots are the new data with high turbots density. The broken
line shows the ideal estimation model

IV. CONCLUSIONS

Applying a convolutional neural network model to count
turbot larvae in breeding tanks from images yields a mean
error lower than 3.5%, which is acceptable accuracy for this
task. Adaptation of the model to count other fish species or
turbot at other growth stages is feasible, as it is not necessary
to use large datasets for training. The evaluated model exhibits
a remarkable generalization ability, providing good counting
estimates even when the density and total number of objects
in test images is much larger than in the training images.

While the characteristics of the dataset used do not allow the
application of the adaptive geometry strategies used in people
counting, other strategies for creating the density maps can
be explored, such as adjusting the value of σ for each labeled
point based on the morphological features extracted during the
label segmentation process.

While using a pre-trained VGG16 encoding network helps
in reducing the need for a large training dataset, it is possible
that training the encoder from scratch with application specific
images could improve accuracy, as there may be few or no
images about larval turbot in the ImageNet dataset with that
the encoder was pre-trained, despite its large expansion of
images and categories.
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Abstract— In learning a musical instrument, such as the 
piano, it is beneficial for students to review their 
performances on video. However, it is difficult to search 
through a video for a part of a melody. This is because there 
is currently no way to search for a specific melody within a 
single piece of music. We are working towards the 
development of an in-video searching system for melodies. 
As a first step, in this study, we propose a method to detect 
the time when a particular melody is being played from the 
audio of a student practicing the piano, and test its feasibility. 

Keywords: in-video searching; spectrogram; piano lesson; 
key melody. 

I.  INTRODUCTION 
Reviewing oneself on video is effective in acquiring 

skills [1][2][3], and the same principle applies to piano 
practice. Students can review their performances 
objectively if they record them on video. In previous 
research, several learning methods have been proposed for 
filming lessons, such as systems that can analyze videos to 
detect bad habits [4] and methods that involve filming 
from multiple viewpoints [5].  

However, it is difficult to search for a specific melody 
part in these videos. There are currently several ways to 
search for music. For example, humming searches, such as 
Google's hum to Search [6] search for metadata such as the 
song's title and genre based on the hummed melody. 
Songle [7] can graphically display the structure of a song, 
such as its chorus or refrain. Although there are various 
methods for this type of music retrieval, no method has 
been proposed for searching for parts of melodies 
contained within a single song. 

Against this background, we are working towards the 
development of an in-video searching system for melodies 
that detects scenes in which students are practicing a 
specific melody part in a video showing them practicing 
the piano. 

More specifically, first, students practice music and 
record their practicing in a video. After that, the same 

students perform a short melody that they want to review 
while watching the video and record it as a 'key melody'. 
Then, by using the system to detect the parts of the video 
that match the key melody, the student can immediately 
find and play back the scene in which they are practicing 
that same melody. 

As a first step, this study proposes a method for 
detecting sounds that match the key melody from the 
audio of a video. 

The structure of this paper is as follows. Section II 
describes the specific implementation. Section III verifies 
and evaluates the effectiveness of the proposed method. 
Section IV presents the conclusions of the paper. 

II. METHOD 

This section describes an example of a system of in-
video searching for melodies by comparing spectrograms. 
(1) The system calculates the audio spectrogram of the 

captured video using a constant-Q [8] transform. This 
spectrogram will be described in a "salience 
representation [9]" that takes overtones into account to 
enhance the sound of harmonic instruments. 

(2) The system stores the spectrogram obtained in (1) as an 
image. The frequency components with energies higher 
than the threshold value are drawn in white, and the 
rest are drawn in black. Figure 1 is an image created by 
the system from the processing steps (1) and (2) for a 
video recording of a performance of Twinkle Twinkle 
Little Star. The horizontal axis is time, and the vertical 
axis is scale. 

(3) The system receives a key melody and generates a 
spectrogram using the same process described in (1) 
and (2). Figure 2 is an image generated from the first 
two bars of a performance of Twinkle Twinkle Little 
Star. 

(4) The system overlaps the spectrogram of the video 
obtained in (2) with the spectrogram of the key melody 
obtained in (3) and counts the total number of 
overlapping white dots as the score. We can say that 
the higher the score is, the higher the similarity is. The 
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overlapping position is shifted to the right by 1 px from 
the left end of the spectrogram of the video until the 
entire recording has been covered. Figure 3 shows an 
example of how the system calculates the similarity 
between Figure 1 and Figure 2. Dots that are common 
to both images are shown in green, those that are only 
in Figure 1 are shown in white, and those that are only 
in Figure 2 are shown in red. The scores in the circles 
are the total number of green dots in the range of 
Figure 2. A higher number means a higher similarity to 
the key melody. 

III. EXPERIMENT 
We evaluate whether multiple videos and key melodies 

show higher scores at times that include the melody being 
searched for. 

i. Data used in the experiment 
Two recordings of piano practice at a music academy 

are used as the experimental video. In these videos, 
students practice their set pieces [11][12] repeatedly 
according to an instructor's comments. In each video, 
about two bars of a piece are repeatedly practiced. 

As the key melody, the same melody as the one 
practiced in the video, performed by the same student after 
practice, is used.  

ii. Generating spectrogram 
Scores are calculated every 10 milliseconds of the 

video. The spectrograms of the key melodies searched for 
in video 1 and video 2 had totals of 916 and 2635 white 
dots, respectively.  

iii. Results and Discussion 
Figure 4 and Figure 5 show the changes in scores 

versus time. The horizontal axis is the number of seconds, 
and the vertical axis is the score. The gray area represents 
the time when the melody being searched for is actually 
being played in the video. The red line represents 
approximately 75% of the maximum score. Most of the 
scores were significantly higher at the beginning of the 
gray area. Thus, it was found that the scores were higher at 
the time when the melody being searched for was actually 
being played. 

When a score exceeding 75% of the maximum was 
used as the threshold for similarity, it was found that all 
melodies being searched for could be extracted. 

IV. CONCLUSION 

We proposed a melody retrieval method using 
spectrograms as a method to retrieve specific melodies 
from audio. Experimental results show that a melody 
being searched for can be successfully identified and 

extracted when the threshold is set to about 75% of the 
maximum score. 

As this system uses only the sound of the video to find 
the time when a melody similar to the key melody is being 
played, we will develop a search engine in combination 
with a video viewer and recording functions in the future.  
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Figure 1.  Image corresponding to Twinkle Twinkle Little Star 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Image corresponding to key melody 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Example of similarity audio of a video and key melody 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Score versus time of video 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Score versus time of video 2 
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Abstract—We introduce a novel Affine multi-scale registration
based on the Riemannian metric in the Lie group SL(2, R) to
estimate the best alignment between two planar curves. First, we
smooth and re-simpling the input shapes. Then, in each level, we
compute the special linear transformations Aσp and translation
vectors Bσp using the pseudo-inverse algorithm. The obtained
matrices Aσp are then projected in the Lie algebra of SL(2, R)
which is sl(2, R) to compute their average. In the final step, we
register and calculate the L2 distance.

Keywords—Multi-scale registration; Special affine transformation;
Riemannian metric; Affine Spacial group SA(2, R).

I. INTRODUCTION

The comparison process between images is complicated and
restricted when the images were captured using multiple
sensors and poses and were not shot simultaneously. Most
of the time, a machine will not be able to find the same
thing in different pictures because it can change. In this
situation, it is challenging to integrate two comparable forms.
To address these issues, researchers created different curve
registration methods. The main goal of this method is to find
the geometric transformation between two or more images in
order to get the most desirable alignment. The registration of
the planar curves’ shapes is the optimum solution that has been
presented for a great number of applications, including motion
tracking [1], mosaicing [2] [3], object recognition [4], remote
sensing [5], 3D curve reconstruction [6] [7] and medical
image analysis [8] [9]. Different methods of shape registration
have been proposed in recent years to estimate motion and
align two shapes. Thus, 2D affine shapes can be registered
using techniques that rely on the Riemannian calculation. The
authors in [10] introduce a subspace method for aligning two
2D shapes and estimating the affine transformation between
them. By minimizing the projection error in the subspace
spanned by the two shapes, the affine transformation is es-
timated in the proposed 2D signal method. Bryner et al. [11]
propose a broad Riemannian framework for shape analysis
of planar objects, whose metrics and related quantities are
invariant under the action of affine and projective groups.
Within the framework of landmark-based shape analysis, Sparr
[12] develops affine shape theory through the use of sub-
space computations. Begelfor and Werman [13] provide a
Riemannian geometric metric for computing the averages and

distributions of point configurations, such that configurations
up to affine transformations are regarded as equivalent. Also,
authors in [14] introduce a framework for contour-based shape
analysis based on Riemannian geometry that is robust against
affine transformation and contour re-parameterization. By in-
tegrating the Iwasawa decomposition of GL(2, R) and Lie
group parametrization into the regular Iterative Closest Point
(ICP) method, Ying et al. [17] introduce new techniques for
2D affine shape registration. Moreover, authors in [18] show
how to find a geodesic that is invariant to scale, translation,
rotation, and re-parameterization using a Riemannian quasi-
Newton approach. YI MA [28] highlights how multiple-view
geometry can be studied in three-dimensional spaces with
constant curvatures, like Euclidean space, spherical space, and
hyperbolic space. In [29], the authors talk about the manifold
and Lie group SO(n) of special orthogonal related to the non-
negative independent component analysis (ICA). Huang et al.
[30] come up with a new way to use Riemannian optimization
to align curves in elastic shape analysis.
The purpose of this paper is to introduce a novel Affine Multi-
Scale Curve Registration that employs Riemannian geometry.
For this technique, two curves are taken as input (the source
image and the target image), and then they are sequentially
smoothed and reparametrized with affine arc-length. The
pseudo-inverse algorithm is then used to compute the special
linear transformations Aσp

and translation vectors Bσp
for

each smoothed and reparametrized shape. These matrices Aσp

belong to the affine spacial group SA(2, R). The average of
these matrices, A, is then found using Riemannian calculation
in SA(2, R). Finally, the alignment process is done.
The following is the outline for this paper: In Section II, we
present the affine multi-scale curve registration based on the
Riemannian calculation that we propose. In Section III, we
assess the performance of the suggested methods for shape
retrieval with MCD. Ultimately, a final conclusion is reached.

II. AFFINE MULTI-SCALE CURVE REGISTRATION BASED
ON RIEMANNIAN CALCULATION

Here, we will talk about the main parts of the proposed
method, which is called Affine Multi-Scale Curve Registration
based on Riemannian calculation. In this new method, the
input normalized contours are filtered over and over again,
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and the Riemannian calculation in the special linear group
SL(2, R) is used to find the best transformation. Fig. 1
demonstrates the Affine Multi-Scale Curve Registration based
on the Riemannian calculation procedure.

• A-1: Normalize the input shapes f and h using the affine
arc-length normalization [15]. Fig.2 shows two shapes
that have been normalized with affine arc-length.

• A-2: Convolve each of the two re-sampling curves using
the Gaussian calculation [15], where the resulting curve
is depicted in Fig.3.

• A-3: The obtained p systems at each level are formed by
the following 2N linear equations.

hσ1(l1) = Aσ1fσ1(l1) +Bσ1

hσ1(l2) = Aσ1fσ1(l2) +Bσ1

...
hσ1(lN ) = Aσ1fσ1(lN ) +Bσ1


hσ2(l1) = Aσ2fσ2(l1) +Bσ2

hσ2(l2) = Aσ2fσ2(l2) +Bσ2

...
hσ2(lN ) = Aσ2fσ2(lN ) +Bσ2

(1)

...


hσp(l1) = Aσpfσp(l1) +Bσp

hσp(l2) = Aσpfσp(l2) + B̂σp

...
hσp(lN ) = Aσpfσp(lN ) +Bσp

• A-4, A-5: The Aσp
matrices, which contain the elements

of the special affine group SA(2, R), and the Bσp
trans-

lation vectors, are obtained by performing the pseudo-
inverse calculation [16] on each system.

• A-6: Riemannian calculation in SA(2, R).
We provide a brief introduction to the Special Affine
SA(2), which is the underlying geometric space for non-
rigid registration. In affine space, the special affine group
consists of transformations by scaling, rotation, and then
translation. Specifically, it is the semi-direct product of
the Special Linear group SL(2) and R2.

SA(2) = SL(2)×R2 (2)

It is worth remembering that a Lie group is both a group
and a differential manifold, and that a Lie algebra is a
vector space on which a Lie bracket is defined.

The SL(2, R) special linear group contains all determi-
nants of unit size that are real matrices of size 2 by 2.

SL(2, R) =
{
A ∈ R2/det(A) = 1

}
(3)

An Iwasawa decomposition exists for this 2-dimensional
Lie group SL(2, R) of real matrices.

SL(2, R) = AshearAscaleArotation (4)

In our case, the affine transformation matrices Aσp
∈

SL(2, R) and Ashear represent shears, Ascale is for
scales and Arotation list the rotation matrices.

Aσp
=

(
a11σp

a12σp

a21σp
a22σp

)

Aσp
= AshearAscaleArotation (5)

Aσp
=

(
1 b
0 1

)
×
(
a 0
0 1/a

)
×
(
cos θ − sin θ
sin θ cos θ

)
(6)

=

(
a cos θ b a cos θ − (1/a) sin θ
a sin θ b a sin θ + (1/a) cos θ

)
with det(Aσp) = 1, a ∈ R∗ and θ, b ∈ R.
The Lie algebra of SL(2, R) is denoted by sl(2, R), and
is identified with the set of 2× 2 matrices and they have
a basis provided by en:n = 1, 2, 3.

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
1 0

)
(7)

Lie group theory relies heavily on the Lie algebra of a
Lie group since it encodes many of the group’s global
topological features. Exp, a local diffeomorphism, is
also known as exponential mapping.

In the first step, we do the projection in the space tangent
of the Aσp matrices using the following equation Eq (8)
[19].
Once calculated, the logarithm map of matrices belonging
to the lie algebra elements ln(Aσp

) ∈ sl(2, R) is pro-
jected in the tangent space, and we are in the vector space
where the matrices must satisfy the following conditions
Eq(9): {

ln(Aσp
) ∈ sl(2, R)/Tr(ln(Aσp

)) = 0
}
. (9)

Therefore the exponential mapping of the logarithm map-
ping ln(Aσp

) is expressed as below in Eq(10) [19]:
• A-7: The registration is then performed using the special

linear transformation A obtained after the Riemannian
calculation and the translation vector B deduced after
applying average arithmetic.

A =

(
a11 a12
a21 a22

)
B =

(
Bx

By

)
(11)

Finally, we calculate the euclidean distance L2, which is
denoted by:

L2 = min
(A,B

= ∥Af (la) +B − h (la)∥2 ≈ e (12)

III. EXPERIMENTS

In this section, we compare the proposed Affine Multi-Scale
Curve Registration based on Riemannian metrics to the cur-
rently available shape alignment methods and present the
recognition rates of each. The MCD dataset is used for testing.

A. MCD image database retrieval

One of the most important uses of the proposed algorithm is
in shape registration. Therefore, we will evaluate the Affine
Multi-Scale Curve Registration based Riemannian metrics on
the Multiview Curve Dataset (MCD) [20], which is made
up of 40 shape classes from the MPEG-7 database. Figure
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Fig. 1. Workflow of multi-scale contour registration using Riemannian calculation

(a) (b)

Fig. 2. Example of re-sampling shapes with affine arc-length parametrization

Fig. 3. Example of a convolved shape

4 shows that there are 14 different curves in each of these
categories that are distorted in the same way as the original
curve.

In Table 1, we compare our methods to some of the cur-
rent state-of-the-art studies. We discovered that our technique
(89.21%) performs better than Arber (41%) [21], SC (56.29%)
[22] , Huang (71%) [23], Rube (79%) [24], and Mai (89%)

TABLE I. RETRIEVAL RESULTS ON THE ENTIRE MCD DATASET

Methods Average
Arber [21] 41%
SC [22] 56.29%
Huang [23] 71 %
Rube [24] 79 %
Mai [25] 89 %
Our method 89.21%
Fast and non-rigid global registration [26] 92.8%
ACMA [16] 94 %
Partial Contour Matching Based on ACSS [27] 95.98%
AMSCR [15] 96.36 %
AMSCR with Binary-EM [15] 96.58 %

[25]. Our method, on the other hand, is less effective than the
methods of fast and non-rigid global registration (92.8%) [26]
and ACMA (94%) [16]. Moreover, when compared to AMSCR
(96.36%) [15] and AMSCR with Binary-EM (96.58%) [15],
our technique demonstrated its limits. The difficulty of the
computation in SL(2, R), which will be resolved in future
work, demonstrates this limitation clearly.
In Figure 5 we see an example of successfully registered
shapes made with our approach.

IV. CONCLUSION AND FUTURE WORK

In this paper, we suggested a new affine multi-scale curve
registration method based on the Riemannian calculation that
deals with occlusion and affine transformations. First, the two
curves are normalized and smoothed out on different scales.
So, for each level, we have several rectangular linear systems.
The pseudo-inverse computation is used for each level to
compute the special linear transformations Aσp

and translation
vectors Bσp

. Afterward, the average of the Aσp
matrices is

then calculated using the Riemannian metric in the spatial
affine group SA(2, R). After that, the two shapes are lined
up, and the euclidean distance L2 is calculated.
Despite the novelty of the proposed method, the obtained
results are not always as good as those of other methods since
several numerical challenges remain, such as the choice of the
point in the tangent space and the shape’s starting point. So,
in the future, we will be working to resolve these issues.

53Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

                            61 / 86



if a11σp
+ a22σp

⩾ 2

ln(Aσp
) =

ln
[(

a11σp
+ a22σp

+
√
(a11σp

+ a22σp
)2 − 4

)
/2
]

√
(a11σp

+ a22σp
)2 − 4

(
a11σp

− a22σp
2a12σp

2a21σp
a22σp

− a11σp

)

if − 2 < a11σp
+ a22σp

≤ 2

ln(Aσp) =
arccos

[(
a11σp

+ a22σp

)
/2
]

√
4− (a11σp

+ a22σp
)2

(
a11σp

− a22σp
2a12σp

2a21σp
a22σp

− a11σp

)
(8)

if a211σp
+ a12σp

a21σp
≥ 0

Aσp
= cosh

[√
a211σp

+ a12σp
a21σp

]
I + ln

(
Aσp

) sinh [√a211σp
+ a12σp

a21σp

]
√
a211σp

+ a12σp
a21σp

if a211σp
+ a12σp

a21σp
≤ 0

Aσp
= cos

[√
−a211σp

− a12σp
a21σp

]
I + ln

(
Aσp

) sin [√−a211σp
− a12σp

a21σp

]
√
−a211σp

− a12σp
a21σp

(10)

Fig. 4. Different shape images from the MCD dataset, two images from
each class.
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Abstract— This paper presents the experimental results and 

comparative analysis of Connected Number Speech Recognition 

(CNR) models trained using four feature combinations: Mel 

Frequency Cepstral Coefficient (MFCC), MFCC+Pitch, 

Perceptual Linear Prediction (PLP), and PLP+Pitch. The set of 

experiments is conducted for five Indian Native Languages- 

Bengali, Hindi, Tamil, Kannada, and Marathi. We have 

collected connected number speech datasets for all five 

languages and have trained speech recognition models. The 

Kaldi speech recognition toolkit was used to train acoustic 

model and the SRILM toolkit was used to build an N-gram 

language model to prepare a speech recognition system. The 

model performances were compared and analyzed using Word 

Error Rate (WER) and Sentence Error Rate (SER) as accuracy 

metrics. Although, above mentioned Indian languages are 

atonal in nature, our experiments show that adding pitch 

features along with MFCC features show overall improvements 

in WER and SER Values for connected number speech 

recognition. Moreover, all the speech recognition models are 

trained under identical conditions but show significantly 

different WER and SER for different languages.   

Keywords-MFCC; PLP; speech features; pitch; Indian Langauge. 

I.  INTRODUCTION 

Speech is a natural and effective way of communication 

between human beings, which can be used to communicate 

with machines since it can be captured by a microphone as a 

vibration signal with respect to time. This signal can be 

processed, and the speech content of the signal can be 

recognized and understood to perform further downstream 

tasks. Automatic Speech Recognition (ASR) system has two 

types of architectures broadly classified as (a) conventional 

acoustic model plus language model-based ASR and (b) End 

to End ASR. The conventional architecture makes use of 

statistical, neural network based, or hybrid (of both) models to 

develop ASR systems [1]. These models are typically trained 

on speech features extracted from speech data. Even though 

diverse types of representations are available in terms of 

extracted features, extensive robustness is still being 

investigated. In ASR systems, every speech feature vector 

extracted from the audio is classified as a particular phoneme 

(smallest unit of sound). This step is carried out by the 

acoustic model, which learns the characteristics of each 

phoneme using the speech features extracted from the audios 

in the training set. The acoustic model is often built using a 

hybrid method consisting of Hidden Markov Models (HMM), 

Gaussian Mixture Model (GMM), and Neural Networks. 

Several data augmentation techniques are employed at this 

stage to generate variations in the pronunciation of phonemes, 

such as speed perturbation, volume perturbation, frequency 

perturbations, etc. Phonemes, as recognized by the acoustic 

model are grouped together to form words, which are then 

grouped to form sentences. This is achieved by the language 

model, which can be a simple N-gram language model, or a 

Neural Network based language model, trained on some text 

corpus to learn the grammar. The acoustic model and the 

language model are used in combination to build a decoding 

graph which is used for model inference. The second 

architecture, End-to-End speech recognition [2] has gained 
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significant attention in recent years. The End-to-End neural 

networks are trained to learn directly from raw audio data, 

without the need for feature-engineering or complex modeling 

and show state of the art performance on a wide range of 

speech recognition tasks. However, End-to-End models have 

limited interpretability as they operate as black boxes. One of 

the objectives of the presented work is to gain comparative 

insights over multiple Indian language speech recognition 

models when trained under identical conditions. Therefore, 

we decided to experiment with the conventional architecture 

over End-to-End architecture. 

In this paper, we present our experiments on Connected 

Number Recognition (CNR) − a domain-specific task in ASR 

− we have primarily used Hitachi Dataset–I consisting of 

connected number samples from 1000 speakers for each of the 

five languages (Hindi, Bengali, Marathi, Tamil, Kannada), 

with speakers contributing approximately 56 connected 

number samples each. ASR models for CNR using different 

speech feature combinations, namely – MFCC, PLP, 

MFCC+Pitch, and PLP+Pitch, have been built and tested 

using the Kaldi Speech Recognition Toolkit. The business 

use-case and market significance of CNR are detailed in 

Section II. Data collection process for our work is included in 

Section III. The discussion on different speech features for 

ASR is elaborated in Section IV. Further experimental details 

are mentioned in Section IV. Experimental evaluation results 

for Connected Number recognition and following discussion 

are Section VI and VII respectively. Finally, we have 

concluded the best features for CNR, as well as future 

directions, in Section VIII. 

II. USE CASE 

Connected numbers are at the heart of financial 

transactions of every kind, be it withdrawing cash, 

transferring money, conducting offline transaction with 

merchants, etc. In a country like India with a large rural 

population with limited literacy, a large Section of the society 

is excluded from many financial services, creating an 

ecosystem where people often have to depend on others to 

access the respective services. In order to truly democratize 

financial services, there is an immense need of voice-aided 

financial applications either over smartphones or feature 

phones, ideally combined with multi-modal user interface 

(possible with smartphone) and available in a variety of 

Indian languages. To realize such systems, ASR capability 

for several Indian languages, particularly in this domain, 

needs to be built. Our experiments with connected number 

recognition on five Indian languages aims to identify the best 

type of speech feature to build such a system. This 

investigation will be useful for any use case surrounding 

connected number recognition, for instance, a voice-aided 

number based electronic device, use-cases involving vehicle 

numbers, ticket booking etc.   

III. DATA COLLECTION 

Since our objective is to build highly accurate speech 

recognition systems for various Indian vernacular languages 

in the finance domain, we collected data from various parts 

of the country following a systematic and planned approach. 

Most vernacular Indian languages can be considered 

resource-poor languages, which is why data collection is 

especially necessary for this project. 

Speech data was collected mainly in the form of 

connected numeral samples between zero to one million. Ten 

Indian languages were targeted and most major states in the 

country were covered along with seventy percent coverage 

being given to rural areas, i.e., the places where we believe 

our vernacular language speech recognition system will have 

the most amount of positive impact. Data from five out of 

these ten languages have been used for the presented work. 

The data collection was performed in natural setting hence 

contains native environmental noise and background sounds. 

Collection was done in a way that number of samples for 

connected numerals most likely to be used during financial 

transactions are maximized and have diverse representations 

in the dataset. Volunteers within the age group of eighteen to 

fifty willing to record audio samples were taken through a 

guided data collection process which resulted in 

approximately 56 samples per volunteer. Therefore, per 

language we have collected 56000 samples. The data was 

collected from thousand such volunteers for each of the ten 

languages. The volunteers’ data privacy and security 

measures were taken during this entire exercise. 

IV. SPEECH FEATURES 

 In ASR, every speech audio is processed to extract speech 

features, which are then used for training and testing purposes. 

The popular speech features are- Linear Prediction Cepstral 

Coefficients (LPCC), Mel-Frequency Cepstral Coefficients 

(MFCC), and Perceptual Linear Prediction (PLP).  

The human speech generation system can be broadly 

represented as shown in Figure 1. The vocal folds generate 

periodic excitation input which passes through vocal tracts 

that convert it into speech. The MFCC/PLP features aim to 

model the vocal tracts and pitch features aim to learn about the 

excitation signal. We aim to present a comparative study of 

the performance achieved by four speech feature 

combinations- MFCC, PLP, MFCC+Pitch and PLP+Pitch 

when tested on five different Indian vernacular languages- 

Hindi, Bengali, Marathi, Tamil, and Kannada. The 

performance of various speech features has been tested in past 

studies, for instance a study published in 2019 concluded the 

superior performance of MFCC compared to PLP in case of 

Spanish language [5]. However, a study specifically focused 

on Indian languages is yet to be seen. In 2014, a study on pitch 

features introduced Kaldi Pitch tracker, a modified version of 

a previously existing pitch extractor, and claimed an 

improvement for both tonal and atonal languages, the former 

showing a larger reduction in WER [6].  
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Figure. 1 Human Speech Generation System 

We hope to provide further insights on the performance of 

pitch features when combined with both MFCC and PLP 

features for a small vocabulary domain-specific ASR task for 

Indian languages. A short overview of some common speech 

features and the pitch features is included in this Section.  

A. Mel-frequency Cepstral Coefficients 

Calculating MFCC of short audio segments in frequency 

domain is one of the most popular methods of extracting 

speech features for speech processing. It utilizes the concept 

of Mel-scale, a non-linear frequency scale which is based on 

human auditory perception. Mel-filter bank maps the actual 

frequency, 𝑓 to Mel-scale frequency, 𝑓∗ , i.e., the perceived 

frequency [7] as in (1). Audio segments of 25 ms with an 

overlap of 10 ms are windowed (Hamming window of length 

N with coefficients 𝑊(𝑛), (2)) and represented in frequency 

domain using FFT, and subsequently the Mel-filter bank is 

applied to the log of the amplitude spectrum to represent the 

frequency measurements on the Mel-scale. 

                                   𝑓∗ = 2595 log (
1 + 𝑓

700
)                        (1) 

     𝑊(𝑛) = 0.54 − 0.46 cos (
2𝜋𝑛

𝑁 − 1
) , 0 ≤ 𝑛 ≤ 𝑁 − 1    (2) 

 

Discrete Cosine Transform (DCT) of the output from the 

previous step is calculated to obtain MFCC coefficients [8]. 

Typically, along with the first 12 coefficients and the energy 

of the segment, the first order derivatives and the second 

order derivatives of these 13 features are also included to 

form a 39-feaures MFCC feature vector of a short audio 

segment. The first 12 MFCC features are phonetically 

significant features which are critical for analysis of speech 

signal. 

B. Predictive Coding 

Linear Predictive Coding (LPC) is a method commonly 

used for estimating speech parameters such as spectra and 

pitch formants [9]. It is used to faithfully encode speech for 

low bit-rate transmission. It is based on the principal that the 

value of a sample �̃�(𝑛)  can be estimated by a linear 

combination of all 𝑝 previous samples as displayed in (3). 

The first method to calculate LPC coefficients is by 

minimizing the estimation error and solving a system of 

linear equations by autocorrelation method, covariance 

method, or lattice method. The LPC coefficients 𝛼𝑘  define 

the formants of the signal, i.e., the frequencies at which there 

is an occurrence of resonant peaks, same as the peaks in the 

spectrum of the linear prediction filter resulting from the 

transfer function (5) [7][8][10]. 

The coefficients are calculated over the entire speech 

signal by using sliding time window with overlap of 10 ms 

and multiplying the frame with the Hamming window. The 

set of LPC coefficients of each frame constitute the feature 

vector for the respective audio segment. 

�̃�(𝑛) = ∑ 𝑎𝑘𝑠(𝑛 − 𝑘)

𝑝

𝑘=1

                                (3) 

𝑒(𝑛) = 𝑠(𝑛) −  �̃�(𝑛)                                      (4) 

                          
𝑆(𝑧)

𝐸(𝑧)
=

1

1 − ∑ 𝛼𝑘𝑧−𝑘𝑝
𝑘=1

                               (5) 

  

C. Perceptual Linear Prediction 

PLP is similar to LPC, but it takes into account the human 

auditory perception. It uses critical bands, intensity-to-

loudness compression, and equal loudness pre-emphasis to 

remove irrelevant information and extract feature vectors. It 

utilizes the non-linear frequency scale called Bark scale to 

map frequency in Hertz, 𝑓, to frequency in Bark scale, 𝑓𝑏  (6).  

 

𝑓𝑏 = 7 log (
𝑓

650
+ √1 + (

𝑓

650
)

2
)   (6) 

 

The speech signal segment is windowed using the Hamming 

window and the power spectrum is calculated, post which the 

Bark filter bank is applied. The Bark filter bank incorporates 

the process of frequency warping to the Bark scale, smooths 

the spectrum using the simulated critical-band masking curve, 

and down-samples the smoothened spectrum to ~ 1 bark 

intervals. It essentially compresses the higher frequencies into 

a narrow band. The filter bank outputs are weighted using 

equal loudness pre-emphasis weights to reflect human 

sensitivity of hearing. Linear prediction is applied to this 

warped spectrum to obtain predictor coefficients. From these 

coefficients, the cepstral coefficients are calculated by 

performing an inverse Fourier transform over the log of linear 

prediction model spectrum [7][8][11]. 

D. Pitch Features 

MFCC+Pitch features and PLP+Pitch are combinations 

of the regular MFCC/PLP coefficients with pitch features. 

There are various pitch feature extraction methods such as 

Yin [12], Getf0 (get fundamental frequency) [13], SAcC [14], 
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Wu [15], SWIPE [16], and YAAPT [17] to extract pitch 

features from speech signal, however all of them process 

voiced and unvoiced audio frames separately [18]. All pitch 

trackers aim to get an estimate of the fundamental frequency 

(F0) of a signal, which is a property of all periodic signals 

and is a good indicator of perceived pitch. Estimating F0 

requires the classification frames as voiced or unvoiced. This 

estimation has 3 steps- pre-processing, generation of estimate 

candidates for the true period, and post-processing to select 

the best estimate [13].  

Pre-processing is carried out to perform high-pass and low-

pass filtering, and to remove the DC-offset, noise, vocal-tract 

filter influences, etc. Subsequently to generate period 

candidates, various methods such as auto-correlation, cross-

correlation, and cestrum can be used, although the best 

approach is using normalized cross-correlation function 

(NCCF). It overcomes the issues of the other methods but 

with the caveat of higher computational complexity.  

 

                              ∅𝑖,   𝑘 =
∑ 𝑠𝑗𝑠𝑗+𝑘

𝑚+𝑛−1
𝑗=𝑚

√𝑒𝑚𝑒𝑚+𝑘

                               (7) 

                                   𝑒𝑗 = ∑ 𝑠𝑙
2

𝑗+𝑛−1

𝑙=𝑗

                                           (8) 

NCCF (7) of voiced samples tend towards 1.0 (maxima) for 

lags corresponding to integer multiples of ‘true period’ 

whereas NCCF of unvoiced samples has maximum values at 

zero lag. In post-processing, dynamic programming is used 

for voicing decision and selection of the ‘true period’, 

consequently determining F0 [13]. 

The Kaldi pitch tracker used in our experiments is based 

on the Getf0 pitch extractor. While the original Getf0 makes 

hard decisions on whether a frame is voiced or unvoiced, the 

Kaldi pitch extractor treats all frames as voiced and uses 

Viterbi search to interpolate over unvoiced frames naturally. 

It is based on finding lag values that maximize the 

Normalized Cross Correlation Function (NCCF). Instead of 

just the local maxima, the search is conducted over a fine 

grid. A 'ballast' term is added to the NCCF formula such that 

it tends to zero for quieter regions of the signal. NCCF in 

combination with the raw pitch feature is used to compute the 

three default output features of the Kaldi pitch tracker, 

namely the Probability Of Voicing (POV) feature, mean-

subtracted-log-pitch, and delta-of-raw-pitch. 𝑐  being the 

NCCF of an audio frame, 𝑎 = 𝑎𝑏𝑠(𝑐) and 𝑙 = −5.2 +
5.4 exp(7.5(𝑎 − 1)) + 4.8𝑎 − 2 exp(−10𝑎) +

4.2 exp(20(𝑎 − 1)) . POV, 𝑝 , is given by (9). The POV 

feature,  𝑓 , is described by (10). 

 

                              𝑝 =
1

1 − exp(−𝑙)
                                        (9) 

                              𝑓 = 2((1.0001 − 𝑐)015 − 1)                  (10) 

It gives a gaussian distribution to the feature. For the mean-

subtracted-log-pitch, at time t, the average of pitch value over 

a window of width 151 frames, centered at t and weighted by 

POV, is subtracted from log pitch value to normalize it. The 

third default feature, delta-of-raw-pitch, is calculated from 

the unnormalized log pitch in the standard way using ±2 

frames of context [6]. The three extra pitch features are added 

to the standard MFCC/PLP coefficients, and the first and 

second derivatives are calculated for the MFCC/PLP 

coefficients plus the three additional features as per the 

standard procedure, to form the speech feature vector for 

MFCC+Pitch and PLP+Pitch. 

V. MODEL TRAINING 

All experiments on the comparison of speech features for 

spoken CNR were performed using the Kaldi Speech 

Recognition Toolkit. ASR model training for all five 

languages was performed using 80% connected number 

dataset and 20% general dataset. The connected number data 

collection was outsourced to an external party by Hitachi 

India Pvt. Ltd. and resulted in the Hitachi Dataset-I. The 

general data is obtained from various opensource datasets 

such as OpenSLR [19][20], CommonVoice, and Shrutilipi 

[21]. For a given language, all training conditions except 

speech feature type was ensured to be identical. We used a 

distribution of 70% train, 20% dev, and 10% eval for all 

model training and testing. Additionally, mutual exclusivity 

with regards to speakers was maintained for train, dev, and 

eval datasets to avoid bias towards any speaker. The details 

of model training are explained in following Subsections. 

A. Data Pre-processing 

To train the acoustic model, the initial pre-processing of 

audio training data included volume pre-normalization and 

volume perturbation. An ASR model should be robust against 

volume/amplitude variations of audio signals, thus requiring 

a dataset with a variety of amplitudes. The range of volume 

levels selected for our experiments was 0.125 to 1. 
Before the extraction of speech features, a dataset of 

speed-perturbed audios was created, such that the model 

could learn diverse representations of each phoneme. Speed 

perturbation simply involves resampling the signals to 

change the tempo and pitch. Typically, speed-perturbation-

based data augmentation improves the ASR performance 

[22]. We selected 0.9, 1, and 1.1 as the three speeds to create 

the speed-perturbed dataset, thus increasing the effective data 

size for feature extraction to three times its previous size. 
To prepare the language dictionary with phoneme 

representations, a transliteration tool based on ILSL 2.0 was 

used. Indian languages, in general, have one-to-one 

grapheme to phoneme mapping, unlike the English language. 

ILSL 2.0 consists of unified transliteration standards 

specifically designed for Indian languages, which define 

common phoneme representations for corresponding 

graphemes in respective Indian languages. This is not 

necessarily an IPA-like representation of phonemes but a way 
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to represent the most similar sounding phonemes in multiple 

Indian languages by a common representation. This step is 

critical to perform the comparison of ASR models in multiple 

languages. 

B. Speech Features Extraction 

For our experiments, we tested two primary speech 

features: MFCC and PLP. Furthermore, we combined both 

MFCC and PLP with pitch features to test for MFCC+Pitch 

and PLP+Pitch, respectively. The speech feature extraction 

scripts are a part of Kaldi. For CNR experiments, a 39-

dimensional feature vector was generated for each frame of 

audio, which had a duration of 25ms and was shifted by 

10ms. The first 13 dimensions of the feature vector consisted 

of 12 speech features along with the energy of the spectrum, 

while the remaining 26 dimensions were constituted by the 

first and second order derivatives of the same. This 

architecture was maintained for both MFCC and PLP feature 

vectors. 
Pitch feature extraction and combining them with MFCC 

and PLP features were done using the scripts for Kaldi pitch-

tracker, which is based on the concepts introduced in "A pitch 

extraction algorithm tuned for automatic speech recognition" 

[6]. However, to maintain the 39-dimensional structure of the 

feature vectors, we considered 11 speech features and the 

energy of the spectrum, along with their first and second 

order derivatives for the first 36 dimensions of the feature 

vector. The last 3 dimensions were dedicated to the three 

pitch features extracted using the Kaldi pitch tracker. After 

extracting the features, Cepstral Mean and Variance 

Normalization (CMVN) was applied to reduce differences in 

feature representation of different speakers and enhance the 

noise robustness of speech recognition [23]. 

C. Phoneme Alignment Training 

As a part of conventional speech recognition model 

training, the next step involved alignment of phonemes. We 

implemented Montreal Force Alignment (MFA) [24] for 

phoneme alignment. MFA trains HMM-GMM model in 

consecutive steps, i) Monophone training, ii) Triphone 

training (tri-1), iii) Triphone + LDA + MLLT training (tri-2), 

iv) Triphone + LDA + MLLT + SAT training (tri-3). The 

final alignments generated from tri-3 are passed to the 

TDNN-LSTM network to train the acoustic model. The 

hyperparameters tuned during the training process are listed 

Table 1. The ‘numleaves’ and ‘totgauss’ decide the number of 

triphones which can be modelled and their fine-grained 

nature. The hyper parameter values were obtained as per Kaldi 

community guidelines. Further, we performed Bayesian 

optimization to tune hyper parameters, but it showed 

insignificant improvements. We fixed identical values of 

these hyper parameters for all experiments to compare the 

model performances based on speech feature type and 

language. 

D. TDNN-LSTM Model training 

Once phoneme alignments are learnt, next step is to learn the 

temporal sequences of speech signals. Recurrent Neural 

Network (RNN) is a popular approach to learn sequential 

information; however, it suffers from the vanishing gradient 

problem. Hence, Long Short-Term Memory (LSTM) neural 

networks were invented. Furthermore, Time Delay Neural 

Networks (TDNN) can learn the localized temporal patterns 

better than traditional Deep Neural Networks (DNN). We 

integrated TDNN with LTSM, instead of integrating DNN, 

thus making it a TDNN-LSTM network. Moreover, our 

objective is to compare the speech recognition performance 

for multiple speech features over multiple languages. 

Therefore, we did not necessarily investigate the network 

with the best performance and the best tuning parameters. 

Rather, we opted for a standard network architecture and 

trained multiple models to derive comparative insights. The 

hyperparameters used in the training are listed in Table 1. 

These hyperparameters were set as per IIT Madras Speech 

Lab ASR Challenge demo Kaldi recipe [25] and further 

modified as per Kaldi community guidelines. Again, these 

hyperparameters were set to be identical for all the 

experiments to compare the model performances. 

E. Language Model training 

The connected number language models were built for all 

the languages separately using the SRILM toolkit. The 

corpus for training the language model consisted of the text 

representation of connected numbers from 1 to 100,000 in the 

respective language. 3-gram language models showed the 

best perplexity scores and were thus selected for decoding. 
The model inference of test data is achieved by combining 

the results of the acoustic model and the language model. 

VI. EXPERIMENTAL EVALUATION 

The investigation of speech features with and without 

pitch for five Indian language for CNR has been presented 

with the standard metrics, i.e., Word Error Rate (WER) and 

Sentence Error Rate (SER). The connected number samples 

in the eval set are used to display the results of our 

investigation with the mentioned metrics in Figure 2 and 

Figure 3. The training, dev, and eval set are identical for all 

experiments pertaining to a specific language. The eval set 

connected number audio samples have been collected in a 

natural environment, therefore contain various types of 

background noises native to the environment. 

On average, MFCC+Pitch yields the least WER and SER 

among all the speech features. Inclusion of pitch features with 

MFCC features reduces WER for all languages except 

Bengali, where it shows a slight increase by 0.58%. 

MFCC+Pitch shows 0.68% average reduction of WER and 

1.27% average reduction of SER when compared with 

MFCC. The highest improvement was observed in Hindi 

language in this case. However, adding pitch features with 

PLP shows a slight increase in WER (~0.8%) across three 

languages.  
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TABLE I.  RANGE OF HYPERPARAMETER AND TRAINING CONDITION USED 

AT DIFFERENT STAGES OF TRAINING 

Training Stage Hyperparameters Range 

Monophone iterations 40 

Triphone (tri-1) 

iterations 35 

numleaves 2750 

totgauss 50000 

Triphone + LDA + 
MLLT (tri-2) 

iterations 35 

numleaves 2750 

totgauss 50000 

Triphone + LDA + 

MLLT + SAT (tri-3) 

iterations 35 

numleaves 2750 

totgauss 50000 

TDNN-LSTM 

Epochs 6 

Hidden layers 13 

Dimension of layers 1024 

Non- linearity ReLU 

Initial learning rate 0.0001 

Final learning rate 0.00001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PLP and PLP+Pitch based models show comparable 

results overall. MFCC features with and without pitch show 

better performance than PLP features with and without pitch 

features. 

 

VII. DISCUSSION 

India is a diverse country with multiple languages spoken 

in different regions.  The presented experimental work helps 

in building a single acoustic model for multiple languages. 

The aim is to gather insights regarding the tuning of a 

multilingual ASR model to meet different recognition criteria 

depending on the part of the country where the model is to be 

deployed. Therefore, the model should ultimately show 

higher accuracy for the region-specific language, while also 

supporting multiple other languages. 
For example, if the model needs to be deployed in the 

West Bengal region, it should meet the high accuracy criteria 

for Bengali and Hindi languages and also support other 

languages like Marathi or Kannada. The experimental results 

show that for same amounts of training and testing data, and 

identical training conditions, the Hindi model shows better 

performance as compared to the Bengali model. Therefore, 

while training the multilingual ASR model, one can think of 

including more data for Bengali than for Hindi to get decent 

performance over both languages. Also, using MFCC 

features can be helpful since it shows the best performance in 

Bengali. The presented work provides such heuristics for 

multilingual ASR developments, without which we lose out 

on language-specific nuances of training conditions. This 

leads to higher resource requirements in terms of data, 

infrastructure, and time to get the desired performance. 
This study also provides language-specific learnings. The 

five Indian languages in this experimentation are broadly 

classified into two language families; The Indo-Aryan 

language family to which Hindi, Bengali, and Marathi 

belong, and the Dravidian language family to which Tamil 

and Kannada belong. Amongst these languages, Marathi and 

Hindi are phonetically similar, moreover, they use the same 

‘Devanagari’ script. As mentioned in Section V.A., we use 

an ILSL 2.0 transliteration tool for grapheme-to-phoneme 

representation. For both Hindi and Marathi, the grapheme-to-

phoneme map is one-to-one, hence both languages show 

similar and relatively better performance as per Figure 2 and 

Figure 3.  On the other hand, Bengali language has some 

elements in the grapheme-to-phoneme map which exhibit 

many-to-one mapping, leading to relatively poorer 

recognition performance. Tamil and Kannada languages 

belong to the same language family, and show similar and 

relatively poorer performance. Therefore, one needs to tune 

their training conditions differently to get better performance 

from the models. 

VIII. CONCLUSION 

In this paper, we have presented the experimental results 

for building Connected Number Speech Recognition (CNR) 

models in multiple Indian languages. The experiments were 

conducted for five Indian languages Bengali, Hindi, Tamil, 

Kannada, and Marathi. Different speech recognition models 

were trained for four feature combinations: MFCC, 

MFCC+Pitch, PLP, and PLP+Pitch features. The 

 
 

 

 

 

 

 

 

 

 

 
 

Figure. 2    Comparison of % WER for CNR models built for 5     

Indian languages with 4 feature combinations 

Figure. 3    Comparison of % SER for CNR models built for 5 Indian 

languages with 4 feature combinations. 
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MFCC+Pitch features offers the best result on average; 

however, results may vary from one language to another. 

Such comparative analysis can help select the best feature 

combination for any given training conditions and dataset. 

The presented work provides language specific insights and 

heuristics for building multilingual ASR models. 

In future, we hope to build a single speech recognition 

model for multiple languages for Connected Number 

recognition (CNR), which can be more adaptive for language 

switching and have a smaller memory footprint. 
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Abstract—All signal and data processing is performed on
computing machines. However, the computing efficiency requires
that numbers are represented in a finite memory space. It is
claimed that all such numbers can be considered to be integers,
and that decimal point has purely syntactical meaning to align
numbers in arithmetic operations. This subtle, but fundamental
observation seems to have been ignored so far. As an introductory
exploration of integer arithmetic, this paper introduces a dual
modulo operator to select digits in string representations of
machine numbers. Moreover, it is proposed that natural integers
offset by a real-valued constant satisfy Peano axioms. The Fermat
last theorem is then considered as an example of Diophantine
equation. It is shown how it can be modified to allow the solutions
to exist. A Fermat metric is newly introduced to define distances
between integers to allow their partitioning into subsets. These
results point at the importance of investigating integer arithmetic,
integer algebra, and integer analysis in designing and modeling
computing systems.

Keywords—dual modulo arithmetic; Fermat last theorem; Fer-
mat metric; natural numbers.

I. INTRODUCTION

Numbers are abstract mathematical objects that can also

carry semantic meaning of quantity. The former leads to rich

axiomatic algebraic systems, and the latter enables performing

arithmetic operations in computing problems. Since computing

machines have limited resources, and must execute numerical

algorithms in a time and memory efficient manner, they have

to represent numbers as constant size objects. This limits the

largest and the smallest number values as well as precision,

which can be considered. Therefore, any algorithm described

or implemented in a programming language can only compute

numbers from a finite set, N = {N1 < N2 < .. .}, such that,

∀i : −∞ < inf(N ) ≤ Ni ≤ sup(N ) < ∞. (1)

Thus, two machine numbers, Ni, and, N j, can be compared,

i.e., ordered, and the difference, mini6= j |Ni −N j| = ε0, repre-

sents the precision. The set, N , is necessarily computable [1].

Most machine number systems use floating point and fixed

point number representations. These representations including

basic arithmetic operations are precisely defined by the IEEE

754 standard [2]. They enable efficient utilization of hardware

and software resources to achieve the time and space efficiency

in implementing computing algorithms. Some languages (e.g.,

Python) support infinite-precision integer arithmetic, or per-

form computations at the user-defined precision (e.g., Mathe-

matica). The GNU library [3] is a popular and efficient imple-

mentation in C programming language of the multi-precision

arithmetic for integer and floating-point numbers; this library

is also used in several commercial software products (e.g.,

Mathematica and Maple). The smallest and the largest integers

and single and double precision floating point numbers are

defined in Matlab toolbox, Elementary Matrices, and in the C

standard libraries, limits.h and float.h.

The algorithms described in various programming languages

represent numbers as strings of digits in a given basis. In

particular, the number, N ∈ N , in basis, B, is represented as,

N =
imax

∑
i=imin

Di ×Bi

↔ DimaxDimax−1 · · ·D1D0 ...D−1 · · ·Dimin

(2)

where the digits, Di ∈ {0,1, . . . ,9,A,B,C, . . .B− 1}, and the

orders, imin ≤ 0 ≤ imax. It is customary to place decimal point

between the digits D0 and D−1, which divides the digits into

the integral and the fractional part, respectively. More impor-

tantly, the decimal point allows aligning digits of numbers

when performing arithmetic operations and comparisons.

The most common bases are decimal (B = 10), hexadecimal

(B = 16), and binary (B = 2). However, internally, the numbers

are stored much more efficiently in a byte-size basis, i.e.,

B = 28×#bytes−1, with one bit reserved for the sign. The total

number of bytes used for each number is usually fixed for

different number classes (types) such as short and long inte-

gers, and single and double precision floating point numbers.

The conversions between the string notation and the internal

representation are performed automatically by compilers.

The textbook [2] provides a comprehensive overview of

the number systems used on computers. The computability

of functions of natural numbers is established in [4]. The mis-

match between exact mathematical description and practical

implementation of algorithms with approximate number rep-

resentations has been studied in [5] including the methods how

to mitigate such a discrepancy. The construction of large-scale

real numbers, which are suitable for software implementations

is considered in [6]. Binary approximations of real-numbers

are investigated in [7]. Other representations of real numbers

such as binary expansion, Dedekind cut and Cauchy sequence

are compared in [1]. The p-adic number systems allow defin-

ing real-numbers as an arithmetic of rational numbers [8].

Logical statements involving comparisons of real-numbers are

evaluated in satisfiability modulo theories [9]. The article [10]

conclusively argues that a finite precision is usually sufficient

in practical engineering applications. Many number-theoretic

theorems and conjectures can be found in [11].
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In this paper, it is argued that the number systems commonly

used on computers can be assumed to be integer-valued,

which also includes single and double precision floating point

numbers and the corresponding arithmetic operations. Con-

sequently, computing machines are inherently governed by

integer algebras and arithmetic. The paper contributions are

formulated as four claims and one proposition. In particular,

in Section II, dual modulo operator is introduced to select

digits in string representations of numbers. It can be exploited

to define equivalences between numbers in integer arithmetic.

In addition, it is proposed that natural numbers can be offset

by a real-valued constant, and still be considered as being

integers. In Section III, several modifications of Fermat last

theorem (FLT) are devised to allow the solutions to exist. A

Fermat metric is newly defined, which is then used to compute

distances between natural numbers, and to divide the numbers

into subsets. The paper is concluded in Section IV.

II. MACHINE INTEGERS AND ARITHMETIC

Constraining machine computations to numbers, N , has

several fundamental consequences. First, the results of arith-

metic operations can overflow the limits, inf(N ), or, sup(N ).

Second, the results of arithmetic operations can underflow the

precision, ε0, so the results may have to be truncated, rounded,

or otherwise approximated. Third, the decimal point to align

numbers can be arbitrarily placed in-between any digits as

long as the placement is consistent in the number system and

arithmetic used. This is formalized as the following claim.

Claim 1. The machine numbers allocated a predefined mem-

ory space are integers, N , isomorphic to a finite set of finite

integers, Z = {. . . ,−1,0,+1, . . .}.

The important consequence is that (without a formal proof)

any machine arithmetic is isomorphic to integer arithmetic.

However, implementing such integer arithmetic at large scale

and precision to be efficient and also error-free is non-trivial.

The memory allocated by compilers of programming lan-

guages allows adding only a finite number of digits before and

after a decimal point. If the numbers are padded by zero-digits

from both ends, all numbers are represented by strings of the

same length, and the decimal point becomes a hypothetical

construct. The non-zero digits at the right end of the number

string represent the precision (resolution), whereas the first

non-zero digits from the left represent the scale.

The algorithms usually contain many logical statements

(predicates). These statements involve comparisons of numer-

ical values. The two integers are said to be exactly equal,

provided that all digits in their string representations are the

same. The exact comparison can be rather restrictive in some

applications, where the differences in scale and precision

could be or must be tolerated. Specifically, if the differences

are tolerated in precision (the right-end sub-strings), it is

equivalent to comparing quantized numbers. If the differences

are tolerated at scale (the left-end sub-strings), it is equivalent

to comparing periodically repeated values.

Mathematically, removing the right-end or the left-end sub-

strings from the string representations of numbers can be

expressed by a canonical modulo operator. In particular, for

any integer a, and any positive integer b, let, (a mod b) =
(|a| mod b) ∈ {0,1, . . . ,b−1}, to be a reminder after the inte-

ger division of a by b. Note that this can be readily extended to

real numbers as, 0 ≤ (a mod b) = (|a| mod b) < b, assuming a

real division of, a ∈ R , by integer, b. Then, the numbers, a1,

and, a2, are said to be equivalent in a sense of congruence,

provided that, a1 ≡ a2 (modb). Both equality (indicated by

symbol, =) and equivalence (indicated by symbol, ≡) satisfy

axiomatic properties of reflexivity, symmetry, and transitivity,

and the equality implies equivalence.

If the machine numbers, Ni = ∑
L−1
i=0 DiB

i, are represented by

strings of L digits in some basis B, then the first L1 digits and

the last L2 digits, (L1 +L2) < L, can be zeroed by applying a

dual modulo operator introduced next.

Definition 1. The dual modulo operator has two parameters,

m1, and, m2, and it is defined as the difference,

Ni Mod(m1,m2) = (Ni mod m1)− (Ni mod m2)

= 0 · · ·0
︸ ︷︷ ︸

L1

DL−L1−1 · · ·DL2+1DL2
0 · · ·0
︸ ︷︷ ︸

L2

. (3)

where m1 = BL−L1 , and m2 = BL2 .

Modular arithmetic with dual modulo operator has similar

properties as the arithmetic involving canonical modulo oper-

ator. In particular, given integers a, b, m1, and m2, then,

a Mod(0,m2) = a− (a mod m2)

a Mod(m1,1) = a mod m1

a Mod(m1,m1) = 0.

(4)

Furthermore, it is straightforward to prove that,

a + b ≡ a Mod(m1,m2) + b Mod(m1,m2) (Mod(m1,m2))

a−b ≡ a Mod(m1,m2)−b Mod(m1,m2) (Mod(m1,m2))

a ·b ≡ a Mod(m1,m2) ·b Mod(m1,m2) (Mod(m1,m2)).
(5)

However, in general, for integer division with a reminder,

a/b 6≡ a Mod(m1,m2)/b Mod(m1,m2) (Mod(m1,m2)). (6)

The Chinese reminder theorem [11] can be restated for dual

modulo operator as follows. If m11 and m12 are co-prime, and,

Ni ≡ a1 (Mod(m11,m2))

Ni ≡ a2 (Mod(m12,m2))
(7)

for some integers, Ni, and, m2, then there is a unique integer,

a, such that,

Ni ≡ a (Mod(m11m12,m2)). (8)

The proof is based on the property that, if Ni ≡ a ( mod m1),

then also, Ni ≡ a (Mod(m1,m2)).

Furthermore, it is useful to consider how the machine

integers used in algorithms are approximations of infinite

precision real-numbers obtained from mathematical analysis.
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The dual modulo operator defined in (3) produces a finite-

size integer, x Mod(m1,m2), from a real number, x ∈ R .

This introduces a periodicity due to truncation from the left

(specified by the parameter, m1), and the quantization due to

truncation from the right (specified by the parameter, m2).

It is also useful to define countably infinite integer sets,

Ñx = {x,x + 1,x + 2, . . .} (9)

parameterized by finite constants, x ∈ R , so that, Ñ0, is

the set of natural numbers. Such integer sets can provide

exact solutions to some integer (Diophantine) problems, which

otherwise do not have any solution. More importantly, for all

finite x, the integers, Ñx, satisfy Peano axioms [11].

III. CASE STUDY: FLT PROBLEMS

The FLT states that there are no positive integers a, b, c,

and n > 2, such that, an +bn = cn. This has been first verified

numerically until the proof was obtained only recently [11].

Note also that, |an +bn −cn| ≤ 1, has a trivial solution, a = 1,

and, b = c, for ∀n > 1. The Fermat Number Transform (FNT)

resembles Discrete Fourier Transform, however, the former

assumes the sums modulo a prime [12].

More importantly, the original formulation of FLT can be

modified to allow the solutions to exist.

Claim 2. For every n, there exist infinitely many natural

integers a, b, c, m1 and m2 satisfying the congruence,

an + bn ≡ cn (Mod(m1,m2)). (10)

For example, assuming the first 100 natural numbers as

strings of l = 9 digits in the number basis, B = 8, and, B = 10,

the total number of solutions, nl, and, nr, respectively, of (10)

for the first l1 digits and the last l2 = l − l1 digits is given

in Table I. It can be observed that, always, nl > nr, since the

number strings often contain zeros at the left to make up the

given width, l.

TABLE I. The number of solutions of (10)

B = 8 B = 10
n = 3 n = 4 n = 3 n = 4

(l1, l2) (3,6) (4,5) (3,6) (4,5) (3,6) (4,5) (3,6) (4,5)
nl 69627 22278 5505 2318 1284 44532 10666 3622

nr 212 644 730 2076 198 207 230 596

Claim 3. For any integer, n ≥ 1, the equation,

an + bn = cn (11)

has infinitely many solutions among the integers, ∪xÑx, for

specific real-values (from some set), x > 0.

Proof. Let c = y ∈ R , a = y− d1, and, b = y− d2, where d1

and d2 are arbitrarily chosen positive natural integers. Then,

for any n, the polynomial (11) has at least one real-valued

solution, y>max(d1,d2). Let d0 = ⌊y⌋ (floor function), so that

x = (y−d0) < 1. This defines the positive integers, c = d0 +x,

a = d0 −d1 + x, and b = d0 −d2 + x, from the set, Ñx.

Proposition 1. For any natural integer, n, there exists an

integer, m ≥ n, such that the expression,

m

∑
i=1

an
i = bn (12)

is satisfied for a set of natural integers, {a1,a2, . . . ,am}∪{b}.

The proof of Proposition 1 appears to be rather non-trivial,

except when n = 1 and n = 2 (Pythagorean theorem). However,

it is easy to find examples satisfying the expression (12), e.g.,

32 + 42 = 52 (m = n = 2)

33 + 43 + 53 = 63 (m = n = 3)

24 + 24 + 34 + 44 + 44 = 54 (m = n + 1 = 5)

195 + 435 + 465 + 475 + 675 = 725 (m = n = 5).

(13)

In general, the sequence, an + bn, obtained by enumerating

all natural integers, a, and, b, becomes rapidly very sparse

as the exponent, n, is increased. Given n, it is easy to show

that the best approximation of (an + bn) by cn is obtained

when, c = ⌊(an + bn)1/n⌉ (rounding function). This motivates

the following Fermat metric.

Definition 2. The Fermat metric for positive numbers, a, and,

b, is computed as,

Fn(a,b) = an + bn −⌊(an + bn)1/n⌉n (14)

where n = 2,3, . . . is a natural number, and always, F1(a,b) =
0. The Fermat distance between the numbers, a, and, b, is the

absolute value of the Fermat metric, i.e.,

Dn(a,b) = |Fn(a,b)| . (15)

The distribution of Fermat metric values by enumerating

all pairs of natural integers up to 105 are shown in Figure 1

for n = 2 and n = 3, respectively. It can be observed that the

Fermat metric values are spread much more evenly when n =
2, and the distributions are asymmetric about 0.

-1000 -500 0 500 1000

0

5
10

5

(A)

-1000 -500 0 500 1000

0

5
10

5

(B)

Figure 1. The counts of Fermat metric values for all pairs of natural integers
up to 105, for the exponents n = 2 (A), and n = 3 (B).
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The Fermat distance can be used to cluster natural numbers

into subsets. Figure 2 shows the dendrogram assuming the

distance, F2(a,b). The corresponding assignment of the first

50 natural numbers into four subsets based on the distances,

F2, F3, F4, and F5 are shown in Figure 3.

 4 21 11 17  1 14 22  2 15 18  3  5  7  6  9 20  8 12 24 13 10 19 16 23 25

10

20

30

40

50

60

70

Figure 2. The dendrogram of natural numbers constructed assuming the
Fermat distance, F2(a,b), defined in (15).

0 10 20 30 40 50

n=2

n=3

n=4

n=5

Clust. 1 Clust. 2 Clust. 3 Clust. 4

Figure 3. The first 50 natural numbers partitioned into four clusters (subsets)
using the Fermat distances, Fn(a,b), for n = 2,3,4, and 5.

IV. DISCUSSION AND CONCLUSION

This paper investigated modular arithmetic and introduced

dual modulo operator under the premise that all machine num-

bers can be assumed to be integers, when they are pre-allocated

a fixed space in a computer memory. This is the case with

fixed point as well as floating point number representations.

The meaning of a decimal point is mainly syntactical to allow

aligning the operands in arithmetic operations. This leads to

another fundamental claim.

Claim 4. Any computing algorithm utilizing finite number

representations can be represented by a system of Diophantine

equations.

Hence, there is a large gap between mathematical descrip-

tion based on real analysis, and the actual implementation of

corresponding algorithms on computers [5].

Improving accuracy of machine numbers by p-adic rep-

resentations [8] and by Diophantine approximations [13] is

impractical, since the underlying arithmetic operations require

more time and more memory. More efficient multi-precision

arithmetic is available as a C-library [3]. In many practical

applications, finite accuracy is often sufficient [10]. On the

other hand, the full accuracy is required in cryptography [14].

The FLT can be modified to allow the solutions to exist. The

key ideas introduced in this paper are to define equivalences

between numbers assuming only a subset of digits in their

number string representations, and to consider sets of natural

numbers offset by real-valued constants. In addition, the

Fermat metric can be used to define distances between natural

and other numbers.

Future work can define and prove further properties of ma-

chine numbers and arithmetic, which are explicitly considered

to be integers. This can lead to more efficient design of integer-

based models and architectures for large-scale computing ma-

chines, and improved approximations of real-valued systems.
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Abstract—The goal of this paper is to refine the solution of the
Error Reduction Ratio (ERR)-based method for nonlinear system
identification in the context of epilepsy. Based on a predefined
dictionary, the ERR-based method is composed of two main steps:
(i) identifying the most relevant candidates that are required
to fit the signal at hand, and (ii) estimating their respective
weights in a least squares sense. However, the used candidate
selection criterion, which is based on a fixed threshold, often
leads to an overestimation of the number of retained candidates.
This consequently affects the quality of the system identification.
This point is of particular interest in epilepsy especially for the
identification of brain networks involved in the seizure onset. To
deal with this issue, a refined ERR-based solution is proposed
in this paper. It relies on the assumption that a few number of
the retained candidates using the ERR-based method are really
the most significant ones. This leads to consider a sparse repre-
sentation of the associated estimated coefficient vector. The well-
known Proximal Alternating Linearized Minimization (PALM)
is used in this paper to solve the proposed optimization problem.
To guarantee good estimation results, the used regularization
parameter is, at each iteration, optimally computed using the
discrepancy principle. Results on simulated and real iEEG data
confirm the efficacy of the proposed method.

Keywords—Error Reduction Ratio; Orthogonal Least Squares;
proximal optimization; epilepsy; effective connectivity

I. INTRODUCTION

Epilepsy is a group of neurological disorders that cause
temporary dysfunctions of the brain electrical activity. It is
characterized by repetitive seizures - called ictal periods -
whose frequency and duration may vary. Epileptic seizures
are induced by abnormal excessive or synchronous neuronal
activity in certain regions of the brain, known as epilepto-
genic [1]. Around 30% of epileptic patients are drug-resistant,
for whom alternative therapies, such as surgery or neural
stimulation, must be considered. Satisfactory outcomes of
these therapies require beforehand a reliable identification
of the epileptic network underlying the initiation and/or the
propagation of the epileptic seizures. Identifying the epileptic
network involves not only its nodes (brain regions) but also
the direction of the information flow among them leading
to the concept of brain effective connectivity [2]. Intracere-
bral electroencephalographic (iEEG) recording is a commonly
used invasive technique to record brain electrical activity [3],
[4]. Albeit invasive, it provides recordings with relatively
high Signal-to-Noise Ratio (SNR) and free from the volume
conduction effect. Neural activities are generally the result
of nonlinear processes, and hence interactions between brain

regions can be qualified as nonlinear. Consequently, analyzing
interactions among brain regions in a linear way is sub-
optimal. The Error Reduction Ratio (ERR)-based method
[5]–[9] has already shown promising results in identifying
nonlinear systems and inferring effective connectivity between
brain regions. It is a dictionary based approach comprising two
main steps: (i) identifying from a predefined dictionary the
most relevant candidates that are required to fit the signal at
hand; this is performed through an orthogonal least squares
(OLS) scheme combined with a threshold-based candidate
selection criterion [5] [6], and (ii) estimating their respective
weights (model coefficients) in a least squares sense. Despite
its efficiency, the ERR-based method suffers from the presence
of spurious terms whose number is subject to the predefined
threshold. This often leads to low system identification quality
and consequently induces errors in the inference of effective
connectivity. To cope with this limitation, a refined ERR-based
method, denoted by rERR, is proposed in this paper. The
solution relies on the assumption that, among those retained
dictionary candidates using the original ERR-based method, a
few number is really contributing to the signal at hand. These
few but relevant candidates are found by simply prompting a
sparse representation on the retained dictionary. To this end,
the Proximal Alternating Linearized Minimization (PALM)
[10] method is used. Besides, an optimal computation of the
regularization parameter is also performed at each iteration of
the proposed iterative approach leading to a more reliable iden-
tification quality. The behavior of the proposed rERR-based
approach is compared to the original ERR-based one using
both simulated signals and real epileptic iEEG recordings. In
this contribution, Section II is devoted to the methodology
before presenting the dataset in Section III. Results are given
in Section IV where the rERR-based approach is compared
to the original one. Some concluding remarks are given in
Section V.

II. METHODOLOGY

Assume that a set {ym}m∈1,··· ,M of M epileptic iEEG
signals are recorded over a T period of time. The m-th iEEG
signal ym denotes the neural activity of the m-th brain region.
As brain is a complex network of distributed interconnected
regions, epileptic seizures can be initiated and propagated
due to a specific brain epileptic network whose nodes are
the involved brain regions and edges reflecting how these
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brain regions interact. Thus, the activity of the m-th brain
region, ym, is linked to the ones of other brain regions.
More precisely, assume that ym can be decomposed as a
linear combination of a set of Nm time series, denoted by
ỹ
(m)
i , 1 ≤ i ≤ Nm. Assume also that each of these time series

is a linear and/or nonlinear combination of a subset of delayed
versions of the acquired iEEG signals {yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

where the indices of these time series and their related time
lags are defined in the sets Ω(m)

i and Φ
(m)
i , respectively. Then,

we write:

ym =

Nm∑
i=1

α
(m)
i ỹ

(m)
i +wm

ym =

Nm∑
i=1

α
(m)
i f

(m)
i ({yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

) +wm(1)

where f
(m)
i is the i-th unknown linear or nonlinear function,

α
(m)
i is the i-th decomposition coefficient and wm is the

model residual related to ym. Understanding linear/nonlinear
interactions among brain regions can be summed up to (i) the
identification of the set of signals {yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

, (ii)

the estimation of the Nm functions f
(m)
i and (iii) the iden-

tification of the coefficients vector αm = [α
(m)
1 , · · · , α(m)

Nm
]T

associated to ym. A compact representation of the aforemen-
tioned decomposition problem is expressed as follows:

ym = Dmαm +wm, ∀m ∈ {1, · · · ,M}
= DΠΠ−1θm +wm

(2)

where Dm = DΠ is a matrix collecting the M times series
constituting the signal ym. These times series stand for the
most relevant candidates that can be selected from a predefined
dictionary D ∈ RT×N using a selection matrix Π, N being
the total number of candidates. This predefined dictionary
encodes all possible time series candidates (comprising pos-
sible linear and/or nonlinear functions) and θm ∈ R

N is a
coefficient vector. The matrix Π is binary with exactly one
entry of 1 in each row and each column. More particularly, as
initially suggested in [6], the most relevant candidates required
to fit properly the signal ym, up to an ERR criterion [6], are
found using an OLS scheme combined with a threshold-based
candidate selection criterion [5] [6]. To this end, the matrix
D is decomposed as D = UW where U ∈ R

T×N and
W ∈ R

N×N are orthogonal and upper triangular matrices,
respectively. For the sake of readability, the subscript m will
be dropped from now on keeping in mind that the m-th,
m ∈ {1, · · · ,M}, signal ym is being processed. This leads to
rewrite equation (2) as follows:

y = Dθ = Uθ̃ =

N∑
n=1

θ̃nun (3)

where θ̃ = Wθ, un is the n-th column of U and θ̃n
stands for the n-th component of the coefficients vector θ̃.
Then, decomposing y requires the identification of a subset
Γ = {ukℓ

}kℓ∈{1··· ,N},ℓ∈{1,··· ,Nm} of the most Nm relevant

column vectors of U contributing to y together with their cor-
responding coefficients θ̃ℓ, 1 ≤ ℓ ≤ Nm. The elements of Γ are
found successively according to their contribution (from the
highest to the lowest) to y [5]–[9]. To this end, for the sake of
convenience, let us define D−(0) = D as the initial dictionary
matrix that is used to estimate the first relevant vector, uk1

, in
Γ. Then, the matrix D−(ki−1) ∈ RT×N−ki+1 is a reduced dic-
tionary matrix to be used to estimate uki

, ki > 1. The matrix
D−(ki−1) is obtained by excluding one column vector from
D−(ki−2). The excluded column vector in D−(ki−2) stands
for the most relevant candidate model defining the vector
uki−1. To find this most relevant column vector in D−(ki−1),
a grid search over the columns of D−(ki−1) is applied. More
precisely, let Ũki = [u1

ki
, · · · ,uN−ki+1

ki
] ∈ R

T×N−ki+1 be
defined as

Ũki = D−(ki−1) −HkiŨki−1 (4)

where Ũki−1 = uki−11
T
N−ki+1 and H ∈ RN−ki+1×N−ki+1

is a diagonal matrix that can be obtained by solving the
following optimization problem:

H∗
ki

= argmin
Hki

||D−(ki−1) − Ũki−1Hki ||2F s.t.Hki, i,j
∀i̸=j

= 0

(5)
where Hki,i,j is the (i, j)-th entry of Hki

and 1N is a N -
dimensional column vector of ones. Once the vector uki

is
estimated, the vector θ̃ki is computed also in a least squares
sense:

θ̃
∗
ki

= argmin
˜θki

||y − Ũki θ̃ki ||22 (6)

Then, the (N −ki+1)-dimensional ERR vector, denoted here
by e, is defined by:

eki
= ΛΨθ̃

⊙2

ki
(7)

where Λ is a diagonal matrix whose main diagonal is the
vector [||u1

ki
||22, · · · , ||u1

N−ki+1||22], Ψ = 1
||y||22

IN−ki+1, ⊙
stands for the Hadamard product (element-wise matrix prod-
uct, θ̃

⊙2

ki
= θ̃ ⊙ θ̃ and IK is a (K × K) identity matrix.

Note that the ℓ-th component, eℓ, 1 ≤ ℓ ≤ N − ki + 1, of
the vector eki quantifies the contribution strength of the ℓ-th
candidate model, d

−(ki−1)
ℓ ∈ R

T , in the current dictionary
D−(ki−1). Once the N − ki + 1 ERR values are computed,
the index of the highest ERR value, e

(ki)
max, in the vector

eki
refers to the position of the most relevant candidate in

D−(ki−1). The above mentioned steps are repeated until Nm

candidate models are selected and for which the inequality
1−

∑Nm

i=1 e
(i)
max < ϵ, where ϵ is a predefined threshold chosen

heuristically, becomes true. Let us now define D1 ∈ RT×Nm

as the dictionary collecting the Nm retained column vectors of
the initial dictionary D ∈ RT×N . Then, in order to avoid some
spurious retained models in D1 that could be raised due to the
choice of the threshold ϵ, we propose to refine the obtained
dictionary D1. To this end, we assume that, among all retained
models, few of them are relevant to reconstruct the signal y.
This formally leads to consider a sparse representation of the
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coefficient vector, θ. Then, the refined representation of y can
be obtained by solving the following optimization problem:

θ∗ = argmin
θ

λ

2
||y − x||22 + ||z||1 s.t. x = D1θ and z = θ

(8)
where λ is a regularization parameter and ||.||1 is the L1-norm.
Such optimization problem can be solved using the PALM
method [10]. The choice of the PALM method is justified by
its good convergence properties [11]. PALM minimizes the
augmented Lagrangian function associated to (8) given by:

L(x, z,θ,v, g,λ) =
λ

2
||y − x||22 + ||z||1 +

ρ1
2
||θ − z||22

+vT(θ − z) +
ρ2
2
||D1θ − x||22 + gT(D1θ − x)

(9)

where x and z are auxiliary variables, v and g stand for the
Lagrange multipliers and ρ1, ρ2 ∈ R

∗
+. The update rules of

variables θ and x are computed by looking for the stationary
points of L in these two variables. This leads to :

θ =(ρ1IN + ρ2D1
TD1)

−1(v + ρ1z +D1
T(ρ2x− g))(10)

x =
λy + g+ ρ2D1θ

λ+ ρ2
(11)

As far as the Lagrangian multipliers v and g are concerned,
they are updated through a gradient-ascent scheme as follows:

∆v = ρ1(θ − z), ∆g= ρ2(D1θ − x) (12)

where ∆v = vi+1 − vi and ∆g= gi+1 − gi (i represents the
iteration index). Besides, the update rule of the dual variable
z is performed by:

z = proxϕ,λcz

(
z − 1

cz
∇zL(x, z,θ,v, g, λ)

)
(13)

where ∇zL(x, z,θ,v, g, λ) =
∂L(x,z,θ,v,g,λ)

∂z = (−v −
ρ1(θ − z)), cz ∈ R is the step-size, proxϕ,λcz is a proximal
operator dealing with the non-smooth function (here ϕ = ∥.∥1)
and initially proposed in [12] and λcz denotes the shrink-
ing threshold. Besides, as the proximal operator defined in
equation (13) relies mainly on a gradient-descent scheme, the
gradient learning step is a crucial parameter to be accounted
for. According to [10], a wise choice of such parameter is
cz > Lz(z) where Lz is the Lipschitz modulus verifying
[10]:

||∇zL(x, zi−1,θ,v, g, λ)−∇zL(x, zi,θ,v, g, λ)||2 ≤
Lz ||zi−1 − zi||2 (14)

where zi is the estimate of the vector z at the i-th iteration.
By substituting the expression of ∇zL(x, zi−1,θ,v, g, λ) in
the above inequality, we get Lz ≥ ρ1. This condition leads to
define a lower bound on the value of the gradient learning step
cz . More precisely, as suggested in [10], a good behavior of
the PALM algorithm is guaranteed when the gradient learning
step verifies cz = γzLz with γz > 1. Thus, a lower bound
on the gradient learning step is obtained by combining the
obtained condition on the Lipschitz modulus with the given

expression on cz . This leads to cz ≥ γzρ1. In the current
study the equal part of the latter inequality is considered and
then the parameter γz is tuned, while fixing the parameter ρ1
to one, in such a way good estimation results are obtained.
As far as the regularization parameter λ is concerned, it
is optimally computed, at each iteration, by means of the
discrepancy principle. In fact, the latter principle states that the
regularization parameter is laying in the set {x : ||x− y||22 ≤
c} where c ∈ R is a coefficient related to the noise variance
[13] and can be obtained through the equivalent degree of
freedom method [14] [15]. Then, by considering the equality
part of the latter condition together with equation (11), the
update rule of λ can be written as follows:

λ =
||ρ2(y −D1θ)− g||2√

c
− ρ2 (15)

At each iteration, equations (10), (11), (12), (13) and (15)
are called alternatively where each variable is updated by
fixing the other ones to their last estimate. The optimization
process stops either when the relative estimation error on the
parameter θ exhibits a value that is smaller than (or equal to)
a predefined threshold determined empirically, or when the
maximum number of iterations is reached.

III. DATASET

The evaluation of the proposed approach is performed on
both simulated and real iEEG signals.

A. Simulated iEEG signals

A 3-channel nonlinear model generating iEEG-like signals
[16] is considered and defined hereafter:

y1(k) = 3.4y1(k − 1)(1− y21(k − 1))e−y2
1(k−1) + w1(k)

y2(k) = 3.4y2(k−1)(1−y22(k−1))e−y2
2(k−1)−0.5y21(k−1)

+ 0.25
√
2y2(k − 1)− 0.5y3(k − 3) + w2(k)

y3(k) = 3.4y3(k−1)(1−y23(k−1))e−y2
3(k−1)−0.5y21(k−2)

− 0.5y2(k − 2)− 0.25
√
2y3(k − 2) + w3(k) (16)

where wm ∼ N (0, 1), 1 ≤ m ≤ 3. The interest in such model
is that it covers a variety of non-linearity types which is, to a
large extent, in accordance with the nonlinear characteristic of
the interactions between brain regions. In this study, the initial
dictionary, denoted by D, is defined as the collection of sixty
candidates defined as follows:

• {f (m)
i (yτm

m )}1≤i≤3
1≤m≤3

,∀τm ∈ {1, 2, 3} is the set of their

related time lags with f
(m)
i (yτm

m ) = (yτm
m )⊙i.

• {f (m)
i (e−y

τm
m )}1≤i≤3

1≤m≤3

,∀τm ∈ {1, 2, 3}.

• {f (m)
i1

(y1
m)}i1∈{1,3}

1≤m≤3

× {f (m)
2 (e−y

1
m)}1≤i2≤3

1≤m≤3

.

where a time period of four seconds of iEEG signals sampled
at 256 Hz (i.e., 1024 time samples) is simulated.
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B. Real iEEG signals

Real iEEG signals were recorded in Rennes Hospital
Epilepsy Unit in one female patient aged 35. In this patient
who suffered from temporal lobe epilepsy, twelve intracere-
bral electrodes (10-15 contacts) were implanted in the left
temporal, insular, inferior frontal and inferior parietal regions.
From these recordings, a 64s-epoch, sampled at 256 Hz, was
considered. Based on the clinician’s expertise and according
to preliminary clinical and electrophysiological examinations,
we only kept the most interesting bipolar channels leading
to a set of 12 channels. The objective is to classify these
channels into three groups. The ‘Onset’ group (O) is a group
where rapid discharges were observed by the clinician and
therefore considered as the main regions responsible for the
initiation of the seizure. The ‘Propagation Sink’ group (PS)
consists of channels that are majorly triggered by the Onset
group, and considered as less involved in the triggering of the
seizure. Finally, the ‘Propagation Internal’ group (PI ) consists
of regions that can be triggered by other regions in the O
group. Besides, this PI group can be slightly involved in
the seizure setting up through delayed electrical discharges
with lower intensity compared to the ones of the O group.
Consequently, this PI group refers to less epileptogenic brain
regions, and therefore considered as the one linking the most
epileptogenic zones to those who are the less epileptogenic.
According to the neuroscience expert, the most interesting
time period to be considered corresponds to the onset of the
ictal phase, i.e., between the 18th and 22th seconds in the
recording.

IV. RESULTS

A. Simulated model

To assess the performance of the proposed approach on
the estimation of the coefficients associated to the retained
candidates, a mean squared error (MSE) criterion averaged
over K = 1000 Monte-Carlo (MC) trials was computed for
each simulated signal. The MSE related to the m-th channel
is given by:

MSE(m) =
1

K

K∑
k=1

||y(m) − ŷ
(m)
k ||22 (17)

∀m ∈ {1, · · · ,M} where ŷ
(m)
k is the estimate of y(m) at the

k-th trial. Obtained MSE results for both the original ERR-
based method and the proposed rERR-based one are given in
Table I. A higher performance of the proposed rERR-based
method over the ERR-based one can be clearly noticed from
this table.

More precisely, we can state from Table I that the proposed
rERR-based solution provides around 18%, 11% and 40%
improvement in the nonlinear identification quality of the
simulated iEEG-like signals, y1, y2 and y3 (16), respectively.
Furthermore, the improvement in the obtained MSE standard

TABLE I
MSE±STD COMPUTED OVER K = 1000 MC TRIALS. CASE OF

SIMULATED IEEG-LIKE SIGNALS.

ERR-based method rERR-based method
y1 3.39± 0.22 2.84 ±0.18
y2 6.51± 0.72 5.81 ±0.37
y3 11.50± 2.34 7.70 ±0.54

deviation shows that the proposed rERR-based approach pro-
vides statistically more consistent system identification results.
This fact is also confirmed through Figure 1 where a clear gap
in the estimation quality between the two considered methods
is to be stated in favor of the proposed rERR-based solution.

Fig. 1. MSE box-plots for the three simulated signals described in (16).

B. Real iEEG signals

In this study, each real iEEG signal, ym, 1 ≤ m ≤ M
(where M = 12) is assigned to either the O, PI or PS group
using a defined threshold ϕth:

ϕth =
1

4M

M∑
m=1

|ϕm| (18)

where ϕm is defined as follows:

ϕm =
ODm − IDm

ODm + IDm
(19)

with ODm and IDm stand respectively for the outward and
the inward degrees of the m-th signal (node) in the estimated
brain network. More precisely, let Θ = [θ1, · · · ,θM ] ∈
R

M×M be the adjacency matrix associated to the directed
graph associated to the estimated brain network. Then, we
have [17]:

ODm =

M∑
i=1

Θm,i , IDm =

M∑
i=1

Θi,m (20)

where Θm,i denotes the (m, i)-th entry of Θ. It is noteworthy
that the adjacency matrix associated to a directed graph is
a square asymmetric matrix (i.e., Θi,j ̸= Θj,i). Thus, the
classification rule for a given signal ym is defined by:

ym ∈

 O, if ϕ≥ϕth

PI , if − ϕth ≤ ϕm ≤ ϕth

PS , if ϕm ≤ −ϕth

(21)
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Table II shows the expert’s classification of the 12 iEEG
channels. In addition, obtained classification results using both
the original ERR-based method and the proposed rERR-based
one are reported in Table III and Table IV respectively. Note
that the two considered methods were tested on the seizure
collected from the epileptic patient on the [18s; 22s] time
interval.

TABLE II
EXPERT’S CLASSIFICATION OF THE IEEG CHANNELS.

Expert Classification Expert Classification
Bp1-Bp2 O Cp4-Cp5 PI

Cp1-Cp2 O Ap6-Ap7 PI

Ap2-Ap3 O Bp6-Bp7 PI

Pp1-Pp2 O Fp1-Fp2 PS

Pp4-Pp5 O Dp1-Dp2 PS

Pp8-Pp9 O Tp1-Tp2 PS

TABLE III
CLASSIFICATION OF REAL EPILEPTIC IEEG SIGNALS USING THE

ORIGINAL ERR-BASED METHOD.

ERR-based method Classification ERR-based method Classification
Bp1-Bp2 PS Cp4-Cp5 PS

Cp1-Cp2 PI Ap6-Ap7 O
Ap2-Ap3 O Bp6-Bp7 O
Pp1-Pp2 PI Fp1-Fp2 PS

Pp4-Pp5 O Dp1-Dp2 PS

Pp8-Pp9 PI Tp1-Tp2 PS

TABLE IV
CLASSIFICATION OF REAL EPILEPTIC IEEG SIGNALS USING THE

RERR-BASED METHOD.

rERR-based method Classification rERR-based method Classification
Bp1-Bp2 PS Cp4-Cp5 PS

Cp1-Cp2 O Ap6-Ap7 O
Ap2-Ap3 O Bp6-Bp7 O
Pp1-Pp2 O Fp1-Fp2 PS

Pp4-Pp5 O Dp1-Dp2 PS

Pp8-Pp9 PS Tp1-Tp2 PS

From Tables III and IV, we observe that both methods were
able to correctly classify Ap2-Ap3 and Pp4-Pp5 in the O
group. Besides, ERR and rERR were able to group properly all
the PS channels. Moreover, according to the expert, Pp8−Pp9
showed a delayed discharge, which can explain that it was
classified in the PI / PS groups using both algorithms. As
for Ap6-Ap7, it showed a rapid discharge at the onset of
the seizure, which may explain its classification by the two
algorithms. Now, the proposed rERR-based method outper-
forms the original one in the classification of Cp1-Cp2 and
Pp1-Pp2 channels, in accordance with the expert’s opinion.
To conclude, following the expert’s classification, the rERR-
based approach appears attractive and more reliable in the
identification of brain regions involved in the seizure onset,
which is a crucial point from a therapeutic point of view.

V. CONCLUSION

In this paper, a refined ERR-based solution for nonlinear
system identification problem was proposed with application

to epilepsy. More precisely, the proposed solution handles
the issue of the overestimation of the number of candi-
dates required to decompose the signal at hand, which is
a commonly encountered issue in the original ERR-based
approach. The proposed solution relies on the assumption of
a sparse representation of the model coefficient vector that
the ERR-based approach provides. The defined optimization
problem was solved in the proximal optimization framework
using the well-known PALM algorithm combined with an
optimal computation of the regularization parameter at each
iteration. Numerical experiments on simulated iEEG-like and
real epileptic iEEG signals showed clearly a higher system
identification quality of the proposed approach compared to
the original ERR-based one.
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Abstract—Sensing Matrix Optimization (SMO) in Compressed
Sensing (CS) systems allows improved performance in the un-
derlying signal decoding. Data-driven methods based on deep
learning algorithms have opened a new horizon for SMO. The
matrix is designed jointly with a decoder network that performs
compressed learning tasks. This design paradigm, named End-
to-End (E2E) optimization, comprises two parts: the sensing
layer that models the acquisition system and the computational
decoder. However, SMO in the E2E network has two main
issues: i) it suffers from the vanishing of the gradient since
the sensing matrix is the first layer of the network, and ii)
there is no interpretability in the SMO, resulting in poorly
compressed acquisition. To address these issues, we proposed
a regularization function that gives some interpretability to
the designed matrix and adds an inductive bias in the SMO.
The regularization function is based on the Kullback-Leiber
Divergence (KLD), which aims to approximate the distribution
of the compressed measurements to a prior distribution. Thus,
the sensing matrix can concentrate or spread the distribution
of the compressed measurements according to the chosen prior
distribution. We obtained optimal performance by concentrating
the distribution in the recovery task, while in the classification
task, the improvement was obtained by increasing the variance
of the distribution. We validate the proposed regularized E2E
method in general CS scenarios, such as in the Coded Aperture
(CA) design for the Single-Pixel Camera (SPC) and Compressive
Seismic Acquisition (CSA) geometry design.

Index Terms—Sensing Matrix Optimization; End-to-End op-
timization; Compressive Sensing; Compressive Imaging; Com-
pressive Seismic Acquisition.

I. INTRODUCTION

Compressive Sensing (CS) [1] states that a signal x ∈ Rn

can be recovered from a small set of observations y ∈ Rm

such that m ≪ n as y = Hϕx + w, where Hϕ ∈ Rm×n

is the measurement matrix, ϕ denotes the free-parameters of
the system, and w ∈ Rm is additive noise in the acquisition.
Decoding the measurements to obtain the underlying signal x

requires additional knowledge to solve this ill-posed problem.
While a plethora of decoding algorithms have been proposed,
such as those based on sparsity-promoting solution [2] [3],
dictionary learning [4], low-rank priors [5], or recent data-
driven methods based on deep learning [6] [7]. Comple-
mentary to algorithm development, Sensing Matrix Optimiza-
tion (SMO) has remarkably improved decoding performance
[8]. Traditional design methods are based on improving the
mutual coherence of the sensing matrix as well as the the
representation basis [9], for block-sparse signals [10], joint
dictionary and sensing optimization [11] or the restricted
isometry property [12]. These designs are mostly based on
sparse representations of the desired signal x, which in practice
might not be sufficient to describe the signal [13]. Thus, recent
data-driven methods have enabled SMO based on data priors,
i.e., the SMO is performed depending on the training dataset.
The End-to-End (E2E) learning of the sensing matrix and
the decoding process by a Deep Neural Network (DNN) has
significantly improved the decoding performance. Here, the
free parameters of the sensing matrix ϕ are trainable variables
jointly optimized with the parameters of DNN that perform the
decoding task. This E2E optimization has been successfully
applied in CS [14]–[16], computational imaging where the
free-parameters are optical coding elements such as Coded
Aperture (CA) [17]–[19], diffractive optical elements [20]–
[22] or in compressive seismic acquisition geometries, where
the design is performed over the receivers or sensors [23].
However, the SMO in the E2E method has the following
issues. i) Vanishing of the gradient: Since the sensing is
performed in the first layer of the network, the gradient in
that layer is smaller than the decoding network. Thus, the
performance relies more on the decoder network parameters
than the trained sensing matrix. ii) Lack of interpretability:
traditional SMO results in interpretable optimization in terms
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of the mutual incoherence [24] or the eigenvalues concentra-
tion [25]. However, the resulting sensing matrix in the E2E
methods does not have an interpretation other than the one
adapted to the training data.

In this work, we propose to address these issues by in-
cluding a regularization in the loss function of the E2E
network. Here, we propose a regularization based on the
Kullback-Leiber Divergence (KLD) over the distribution of the
compressed measurements. The KLD is employed to measure
the difference between two probability distributions. Here, we
employed the KLD to approximate the distribution of the
measurements to a chosen prior distribution. This function has
been widely used in DNN to regularize latent representation
distribution of the data, as in variational autoencoders [26] or
in generative models [27]. One of the reasons for the wide
use of this function in DNN regularization is the closed-form
solution of the divergence for Gaussian distributions [26] and
Laplacian distributions [28], which depends on the mean and
variance of the data and prior distribution. We study the effect
of the prior distribution for two computational tasks, recovery
and classification. We found that smaller variance, i.e., the
sensing matrix represents the data in a concentrated distri-
bution, gives better reconstruction performance. While higher
variance produces more accurate classification predictions.
Thus, the regularizer can be set to obtain optimal performance
in different computational tasks. The main interpretation for
the recovery case comes from contractive autoencoders [29],
which states that the original data is better represented in
an invariant low-dimensional manifold. The intuition of the
second behavior is that more separated measurements allow
better identification of the classes by the decoding network.
Preliminary results on this regularizer applied to compressive
imaging were presented in [30].

We evaluate the proposed regularized E2E method in three
cases. In a general CS setting where Hϕ is a dense matrix,
and ϕ are all the entries of the sensing matrix. The second
case is the Single-Pixel Camera (SPC) [31], which is one of
the most common CS systems of imaging applications. Here
the sensing matrix entries are binary values representing a CA.
The last setting is a Compressive Seismic Acquisition (CSA)
model, where the sensing matrix is a diagonal matrix in which
entries are binary values denoting the removed receivers.

The rest of the paper is organized as follows. In section
II the E2E model is established, III presents the proposed
divergence-based regularizers for the E2E training. Section IV
shows the mathematical models of the CS systems used to
validate the proposed method. Section V contains the numeri-
cal simulations of the proposed method and comparisons with
non-regularized models. Finally, in section VI the conclusions
of this work are presented.

II. END-TO-END OPTIMIZATION

With new developments in data-driven algorithms and deep
learning, a method called End-to-End optimization (E2E) has
been developed to optimize the sensing procedure and the
decoding process jointly. In this approach, the sensing model

Hϕ is cast into a differentiable neural network layer, where
the free parameters ϕ are the weights of this layer, named
Sensing Layer (SL). The SL is coupled to a neural network
that receives as input the compressive measurements and
performs the decoding operator, which is called Computational
Decoder (CD), denoted by the operator Nθ where θ are the
trainable parameters of the network. Considering the dataset
{xk,dk}Kk=1 where dk is the ground-truth, e.g., in the recovery
case dk is the same input image xk and in classification dk

is the image label. Then, the E2E optimization problem is the
following

{ϕ̂, θ̂} = argmin
ϕ,θ

1

K

K∑
k=1

L(Nθ(Hϕxk),dk), (1)

where L is the loss function of the computational task. The
main goal is to update the sensing matrix and the decoder
parameters according to the loss function task. Particularly,
following the chain rule, the gradient of the loss function with
respect to the SL trainable parameters is

∂L
∂ϕ

=
1

K

K∑
k=1

∂L
∂θ

∂Nθ

∂yk

∂yk

∂ϕ
, (2)

where yk = Hϕxk. While the network is training, the
gradient of the loss function with respect to the CD parameters
∂L
∂θ is reduced due to the gradient descent optimizer of the
network. Consequently, the gradient of the SL parameters
decreases even more; thus, the optimization relies more on
the CD than on the SL.

III. PROPOSED REGULARIZATION FUNCTION

We propose a regularization function for E2E optimization
based on KLD to approximate the distribution of the mea-
surements to a prior distribution. First, define the matrices
X ∈ RK×N and Y ∈ RK×M containing the set of the
high-dimensional signal and compressed measurements, re-
spectively, i.e., X = [xT

1 , . . . ,x
T
K ]T and Y = [yT

1 , . . . ,y
T
K ]T .

The regularized optimization problem is given by

{θ⋆,ϕ⋆} =argmin
θ,ϕ

1

K

K∑
k=1

L (Nθ(Hϕxk),dk) +R(Y). (3)

This type of regularization function is based on the idea
behind variational auto-encoders [26]. Particularly, this reg-
ularization aims to approximate the probability distribution
of the measurements set denoted by the posterior distribution
qϕ(Y|X), to a prior distribution pβ(Y) where β is the set of
parameters defining the distribution. This regularizer is defined
as

RD(Y) = D (qϕ(Y|X)∥pβ(Y)) , (4)

where D denotes the divergence function. Several divergences
have been used as loss functions in neural network train-
ing. The most common is the Kullback-Leiber Divergence
(KLD), employed in variational-autoencoders [26], genera-
tive adversarial networks [27], self-supervised learning [32]
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among others. Particularly, the KLD is defined as follows,
given two probability distributions P (x) and Q(x), we have
DKL(P∥Q) =

∫
P (x) log

(
P (x)
Q(x)

)
dx. One of the main rea-

sons the KLD is widely used is that it has a closed-form
solution when P (x) and Q(x) are Gaussian or Laplacian
distributions [26] [28]. In these cases, the parameters for the
prior distribution pβ(Y) are β = {µp, σp}, where µp is the
mean value and σp is the variance of the distribution. For
the distribution of the measurements qϕ(Y∥X) we compute
statistics of the measurements, where the mean µY ∈ Rm

and variance σY ∈ Rm
+ are computed pixel-wise across the

measurements training batch. For the Gaussian case, the KLD-
based regularizer is defined as

RKL−G(Y) = log

(
σY

σp

)
− σ2

Y + (µY − µp)
2

2σ2
p

+
1

2
, (5)

and for the Laplacian assumption, the KLD-based regularizer
is given by

RKL−L(Y) = log

(
σY

σp

)
−σp + e

(
−|µp−µY|

σp

)
+ |µp − µY|

σp
−1.

(6)
The mean and variance of the prior distribution are hyper-

parameters that control the effect of the regularizers. There-
fore, those hyperparameters must be tuned to obtain the
desired goal. The computational complexity of employing
these regularization functions in the E2E optimization relies
only on computing element-wise logarithm and its correspond-
ing derivative; thus, they do not increase the computational
complexity significantly with respect to the baseline E2E

IV. COMPRESSIVE SENSING SYSTEM MODELS

In this section, we present the compressive sensing system
models to validate the proposed coding design in the E2E
framework.

A. Single Pixel Camera

The SPC uses a set of CA ϕ = {ϕp}Pp=1 that spatially
modulate all the information of the scene, where the index p
denotes each captured snapshot. In particular, it is a binary pat-
tern in which we employ values {−1, 1} as suggested in [33].
Mathematically, the sensing matrix is built as the concatena-
tion of the vectorized CA of each shot Hϕ = [ϕT

1 , . . . ,ϕ
T
P ]

T

where P denotes the total number of snapshots. Then, the
sensing model is given by

y = Hϕx+w, (7)

where y ∈ RP is the compressed SPC measurements. An
important factor in the SPC is the compression ratio γ defined
as γ = P

N . Here, the optimized parameters are the CA. Since
its entries are binary-valued, we add the regularization term
proposed in [17] in the optimization problem in (3), which

promotes this physical constraint. The E2E optimization for
this case is the following

{θ⋆, ϕ⋆} =argmin
θ,ϕ

1

K

K∑
k=1

L (Nθ(Hϕxk),dk) +R(Y)+

ρRi(ϕ), (8)

where ρ is a regularization parameter and the regularization
Ri(ϕ) =

∑
ij(1− ϕij)

2(1 + ϕij)
2.

Fig. 1. Recovery performance for the general CS scenario employing the
KLD regularizers with the Gaussian (left) and Laplacian (right) cases.

B. Compressive seismic acquisition

The cross-spread is a fundamental seismic acquisition ge-
ometry involving one linear arrangement of shot points and
receivers perpendicular to each other [34] [35]. To math-
ematically represent the seismic data acquired by a cross-
spread, let X ∈ RI1×I2×I3 be a data cube where each
dimension represents I1 time samples, I2 receivers, and I3
number of shots. However, due to different reasons, such
as economic limitations and environmental constraints, the
observed seismic field data is irregular and incomplete along
the receiver dimension, leading to a recovery task. To simulate
the undersampled data, let ϕ ∈ {0, 1}I2 be a sampling
vector with dimensions equal to the number of receivers. The
entries of ϕ, denoted as ϕi, define whether the information is
acquired. If ϕi = 0, the receiver is removed; otherwise, ϕi = 1,
and it is acquired. The diagonalization of the sampling vector
derives the diagonal sampling matrix as Hϕ = diag(ϕ). Once
Hϕ is built, the undersampled measurements are obtained via
n-mode product(×n) defined in [36]

Y = X ×2 Hϕ, (9)

where Eq. 9 represents the 2-mode product between the
full data X and Hϕ. The undersampled measurements Y ∈
RI1×I2×I3 contains the removed receivers as columns in zero
for each shot.

A conventional relation that determines the number of
acquired receivers by the sensing matrix is the transmittance,
calculated as

δϕ =
M∑
i=1

ϕi

I2
. (10)

For instance, when δϕ = 0.7, the 70% of the total receivers are
acquired. The E2E optimization is mathematically expressed
as
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{ϕ̂, θ̂} = argmin
ϕ,θ

L (Nθ (X ×2 Hϕ) ,X ) + ρR (ϕ) , (11)

where the regularization R (ϕ) = (δ0 − δϕ)
2 controls the

transmittance to converge to a desired value δ0, and ρ rep-
resents a weight parameter.

V. SIMULATIONS AND RESULTS

The implementation of the method was performed on Ten-
sorflow and Keras libraries [37]. We trained the E2E network
for 100 epochs for all the experiments, halving the learning
rate every 40 epochs. The Adam optimizer [38] was employed,
setting its hyperparameter with the default values. The input of
each network was the transpose operation of the sensing matrix
to the measurements, i.e., HT

ϕyk. To evaluate the performance
on the classification task, we employ the accuracy metric
defined as

A =
1

C

C∑
c=1

TPc

Totalc
,

where C is the number of the classes and TP are the True
Positive. For the recovery task, we employ the Peak-Signal-
to-Noise-Ratio (PSNR) defined as

PSNR = 10 log10

(
max(x)

MSE(x, x̂)

)
,

where max returns the maximum value of x and MSE(·, ·) is
the mean squared error.

A. General compressive sensing case

In the first experiment to validate the performance of
the proposed regularized E2E network, we study a general
compressive imaging scenario, not imposing any physical and
structural meaning on the sensing matrix Hϕ. Here we use a
compression ratio of 10%. The MNIST dataset of handwritten
digits was employed. This dataset contains 60000 training
examples and 10000 for testing. We upscale the image to
32 × 32. For the CD model, we employed a fully connected
layer.

We analyze the effect of the prior distribution’s mean and
variance (µp, σp) on the network performance. Here, we vary
µp from -2 to 2, and σp was changed from 0.1 to 2.0, taking
five equispaced values. The results of this experiment are
shown in Figure 1 where the test set reconstruction PSNR
is plotted in terms of µp and σp. The optimal reconstruction
PSNR values are obtained at variances close to 1.0 and for
means close to 0. These results suggest better reconstruction
performance is obtained by concentrating on the measure-
ment distribution. The main interpretation is that reducing the
representation space can improve the CD performance since
the variability of the data is reduced. Some visual results of
the reconstructions test set examples are shown in Figure 2
employing the best models for each regularization function,
where an improvement is presented in regularized models
compared with the non-regularized ones.

27.84 [dB]PSNR [dB]
Ground-Truth Baseline KL-Gaussian KL-Laplacian

31.08 [dB] 30.55 [dB]

27.84 [dB]PSNR [dB] 30.48 [dB] 30.95 [dB]

Fig. 2. Visual results of two reconstructed MNIST test images for the
non-regularized model and the models trained with the KL-Gaussian and

KL-Laplacian regularizers.

Fig. 3. Recovery performance for the SPC system the KLD regularizers
with the Gaussian (left) and Laplacian (right) cases.

B. Single Pixel Camera Setting

For the SPC, we performed experiments on classification
and recovery tasks. The classification is performed directly
from the compressed measurements without reconstructing the
underlying scene. During the training of the E2E network, the
parameter of the physical constraint regularizer ρ was dynam-
ically updated during training as suggested in [17], which in
the first epochs the ρ is very low, thus not constraining the
training of the SL and it is increased to obtain a binary CA.
For both the recovery and classification tasks, we employed
the Fashion MNIST dataset with 60000 images for training
and 10000 for testing. All images were resized to 32×32.

Recovery experiments: For this experiment, we vary the
values of µp from -2 to 2, and σp was changed from 0.1 to
2.0, taking five equispaced values. The CD in this experiment
is a UNET [39] with five downsampling and five upsampling
blocks. The results of this experiment are shown in Figure 3.
Here, the performance obtained is similar to that obtained in
the CS case, where lower variance yields better reconstruction
performance. Also, similar to the results in Figure 1, the
optimal performance is obtained in µp = 0, following the
concept of batch normalization where the centered output
distribution yields more stable training and better performance
[40]. Figure 4 presents visual results of two reconstructed test
images where the regularized models outperform the baseline
model.

Classification experiments: Here, we evaluate the proposed
regularization functions on the classification high-level task.
The CD is a Mobilnet-V2 [41], which is a lightweight classi-
fication network. The same values in the experiment of Figure
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TABLE I. OVERALL TEST PERFORMANCE FOR EVERY SETTING. IN BOLD AND UNDERLINED ARE SHOWN THE BEST RESULTS OF EACH EXPERIMENT.

System Dataset Task Metric Model
No Regularized KL-Gaussian KL-Laplacian

General Compressive Sensing MNIST Recovery PSNR 31.87 32.56 32.42

SPC Fashion MNIST Recovery PSNR 28.35 29.49 28.60
Fashion MNIST Classification Accuracy 0.866 0.886 0.881

CSA SEAM Phase II Recovery PSNR 34.27 37.38 41.22

Ground-Truth Baseline KL-Gaussian KL-Laplacian
30.95 [dB]27.77 [dB]PSNR [dB]

PSNR [dB] 26.61 [dB] 25.87 [dB]

25.57 [dB]

24.64 [dB]

Fig. 4. Visual results of the reconstructed image of the Fashion MNIST
dataset in SPC setting for the non-regularized model and the models trained

with the KL-Gaussian and KL-Laplacian regularizers.

Fig. 5. Classification performance for the SPC system the KLD regularizers
with the Gaussian (left) and Laplacian (right) cases.

3 of µp and σp were used in this scenario. The results are
shown in Figure 5, where an opposite performance is obtained
compared to the recovery case. Higher variance gives better
classification performance.

C. Compressive seismic acquisition setting

For the compressive seismic acquisition, we employed the
synthetic dataset SEAM Phase II built by the SEG Advanced
Modeling Program (SEAM) during its second project, named
“SEAM Phase II–Land Seismic Challenges”. The Foothills
model is focused on mountainous regions with sharp to-
pography at the surface and high geological complexity at
depth, which makes this data set a challenge for seismic data
reconstruction [42]. The seismic survey covers a rectangular
patch of 1.5 × 1.2 km with a total sampled depth of 4100
ms. The training and testing datasets comprise 381 images
of 128×128. The transmittance value was set to δ0 = 0.6.
The CD network is a convolutional neural network with
5 convolutional layers with 128 filters each. Here we set
for both regularizers µp = 0.5 and σp = 1.6. Figure 6
shows the reconstruction of two seismic test data, where the
best results are obtained by the KL-Laplacian regularization.
Nevertheless, the KL-Guassian model outperforms the non-

Ground-Truth
Baseline KL-Gaussian KL-Laplacian

PSNR [dB] 34.32 [dB]34.73 [dB] 37.27[dB]33.86 [dB]

PSNR [dB] 33.67 [dB] 36.58[dB]32.73 [dB]

Fig. 6. Visual results of the reconstructed seismic data for the
non-regularized model and the models trained with the KL-Gaussian and

KL-Laplacian regularizers.

regularized model. Also, it is shown the subsampling vector
for each model.

Finally, summarizing the performance of the aforemen-
tioned experiments, for the general CS scenario, the SPC and
the CSA, Table I presents the test set performance for every
experiment. In the CS case, the KL-Gaussian performs better
at obtaining almost 1 dB than the non-regularized training.
Both regularizers improve the baseline model for the SPC
in the recovery task. Similarly, in classification, the optimal
performance was obtained by the KL-Gaussian, gaining up
to 2% respect to the base E2E model. Finally, in CSA, the
KL-Lapacian significantly improved up to 7 [dB] in recovery
performance.

VI. CONCLUSION AND FUTURE WORK

We proposed two regularizations based on the KLD end-
to-end joint sensing matrix optimization and decoding. The
proposed regularizations approximate the distribution of the
measurements set to a prior distribution. We show that the
low-variance and zero-mean prior distributions yield optimal
recovery since they concentrate the training data in the low-
dimensional space, thus easing the decoding process. While
for the classification task, high-variance and zero-mean priors
provide improved classification performance since spreading
the distribution allows easier class identification by the de-
coding network. We validate the performance of the proposed
design in a general compressed-sensing case (unconstrained
and unstructured sensing matrix), in the single-pixel camera,
obtaining up to 1 [dB] and 2% gain in recovery and clas-
sification, and for compressive seismic acquisition showing
improvements of up to 7 [dB].
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