
PATTERNS 2016

The Eighth International Conferences on Pervasive Patterns and Applications

ISBN: 978-1-61208-465-7

March 20 - 24, 2016

Rome, Italy

PATTERNS 2016 Editors

Herwig Manaert, University of Antwerp, Belgium

Alexander G. Mirnig, University of Salzburg, Austria

 1 / 64

PATTERNS 2016

Forward

The Eighth International Conferences on Pervasive Patterns and Applications (PATTERNS 2016),
held between March 20-24, 2016 in Rome, Italy, continued a series of events targeting the
application of advanced patterns, at-large. In addition to support for patterns and pattern
processing, special categories of patterns covering ubiquity, software, security,
communications, discovery and decision were considered. It is believed that patterns play an
important role on cognition, automation, and service computation and orchestration areas.
Antipatterns come as a normal output as needed lessons learned.

The conference had the following tracks:

 Patterns basics

 Patterns at work

 Discovery and decision patterns

Similar to the previous edition, this event attracted excellent contributions and active
participation from all over the world. We were very pleased to receive top quality
contributions.

We take here the opportunity to warmly thank all the members of the PATTERNS 2016
technical program committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors that dedicated much of their time and effort to contribute to
PATTERNS 2016. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the PATTERNS 2016
organizing committee for their help in handling the logistics and for their work that made this
professional meeting a success.

We hope PATTERNS 2016 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of
pervasive patterns and applications. We also hope that Rome provided a pleasant environment
during the conference and everyone saved some time for exploring this beautiful city.

 2 / 64

PATTERNS 2016 Chairs

PATTERNS Advisory Chairs

Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany
Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany
Richard Laing, Robert Gordon University, UK
Ricardo Sanz, UPM ASlab, Spain

PATTERNS Research/Industry Chairs

Teemu Kanstren, VTT, Finland
Markus Goldstein, Kyushu University, Japan
Zhenzhen Ye, IBM, Essex Junction, USA
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany
Nguyen Vu Hoàng, Vertigo, France
Alexander Mirnig, University of Salzburg, Austria

PATTERNS Publicity Chairs

Bastian Roth, University of Bayreuth, Germany
Steve Strauch, IAAS at University of Stuttgart, Germany
Jaap Kabbedijk, Utrecht University, Netherlands

 3 / 64

PATTERNS 2016

Committee

PATTERNS Advisory Committee

Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany
Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany
Richard Laing, Robert Gordon University, UK
Ricardo Sanz, UPM ASlab, Spain

PATTERNS Research/Industry Chairs

Teemu Kanstren, VTT, Finland
Markus Goldstein, Kyushu University, Japan
Zhenzhen Ye, IBM, Essex Junction, USA
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany
Nguyen Vu Hoàng, Vertigo, France
Alexander Mirnig, University of Salzburg, Austria

PATTERNS Publicity Chairs

Bastian Roth, University of Bayreuth, Germany
Steve Strauch, IAAS at University of Stuttgart, Germany
Jaap Kabbedijk, Utrecht University, Netherlands

PATTERNS 2016 Technical Program Committee

Ina Suryani Ab Rahim, Pensyarah University, Malaysia
Mourad Abbas, Computational Linguistics Department - CRSTDLA, Algeria
Siby Abraham, University of Mumbai, India
Adel Al-Jumaily, University of Technology, Sydney, Australia
Adel Alimi, University of Sfax, Tunisia
Junia Anacleto, Federal University of Sao Carlos, Brazil
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Annalisa Appice, Università degli Studi di Bari, Italy
Martin Atzmueller, University of Kassel, Germany
Noor Azilah binti Draman@Muda, Universiti Teknikal Malaysia, Malaysia
Senén Barro, University of Santiago de Compostela, Spain
Rémi Bastide, University Champollion / IHCS - IRIT, France
Bernhard Bauer, University of Augsburg, Germany
Noureddine Belkhatir , University of Grenoble, France

 4 / 64

Hatem Ben Sta, Université de Tunis - El Manar, Tunisia
Silvia Biasotti, Consiglio Nazionale delle Ricerche, Italy
Firkhan Ali Bin Hamid Ali, Universiti Tun Hussein Onn Malaysia, Malaysia
Félix Biscarri, University of Seville, Spain
Cristian Bonanomi, Universita' degli Studi di Milano, Italy
Mohamed-Rafik Bouguelia, LORIA - Université de Lorraine, France
Julien Broisin, IRIT - Université Paul Sabatier, France
I. G. P. Asto Buditjahjanto, Institut Teknologi Sepuluh Nopember (ITS), Indonesia
Michaela Bunke, University of Bremen, Germany João Pascoal Faria, University of Porto, Portugal
Michelangelo Ceci, University of Bari, Italy
M. Emre Celebi, Louisiana State University in Shreveport, USA
Jian Chang, Bournemouth University, UK
Amitava Chatterjee, Jadavpur University, Kolkata, India

William Cheng-Chung Chu(朱正忠), Tunghai University, Taiwan
Loglisci Corrado, University of Bari, Italy
Bernard Coulette, Université de Toulouse 2, France
Karl Cox, University of Brighton, UK
Jean-Charles Créput, Université de Technologie de Belfort-Montbéliard, France
Sergio Cruces, University of Seville, Spain
Mohamed Dahchour, National Institute of Posts and Telecommunications - Rabat, Morocco
Jacqueline Daykin, King's College London, UK
Angelica de Antonio, Universidad Politecnica de Madrid, Spain
Vincenzo Deufemia, Università di Salerno - Fisciano, Italy
Moussa Diaf, Mouloud Mammeri University, Algeria
Zhong-Hui Duan, University of Akron, USA
Mark J. Embrechts, Rensselaer Polytechnic Institute / CardioMag Imaging, Inc., USA
Susana C. Esquivel, University of San Luis, Argentina
Eduardo B. Fernandez, Florida Atlantic University - Boca Raton, USA
Simon Fong, University of Macau, Macau SAR
Francesco Fontanella, Università di Cassino e del Lazio Meridionale, Italy
Pawel Forczmanski, West Pomeranian University of Technology, Poland
Dariusz Frejlichowski, West Pomeranian University of Technology, Poland
Hong Fu, Chu Hai College of Higher Education, Hong Kong
Laurent Gasser, IRT-SystemX, France
Christos Gatzidis, Bournemouth University, UK
Markus Goldstein, Kyushu University, Japan
Gustavo González, Mediapro Research - Barcelona, Spain
Pascual Gonzalez Lopez, University of Castilla-La Mancha, Spain
Carmine Gravino, University of Salerno, Italy
Christos Grecos, University of the West of Scotland, UK
Yann-Gaël Guéhéneuc, École Polytechnique - Montreal, Canada
Pierre Hadaya, UQAM, Canada
Brahim Hamid, IRIT-Toulouse, France
Sven Hartmann, TU-Clausthal, Germany
Christina Hochleitner, AIT - Austrian Institute of Technology, Austria
Danielly Holmes, Universidade Federal da Paraíba, Brazil
Władysław Homenda, Warsaw University of Technology, Poland
Samuelson W. Hong, Zhejiang University of Finance & Economics, China

 5 / 64

Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Chih-Cheng Hung, Southern Polytechnic State University-Marietta, USA
Shareeful Islam, University of East London, UK
Biju Issac, Teesside University, UK
Yuji Iwahori, Chubu University, Japan
Alex James, Nazabayev University, Kazakhstan
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Agnieszka Jastrzebska, Warsaw University of Technology, Poland
Jinyuan Jia, Tongji University, China
Maria João Ferreira, Universidade Portucalense - Porto, Portugal
Jaap Kabbedijk, Utrecht University, Netherlands
Hermann Kaindl, TU-Wien, Austria
Martin Kampel, Vienna University of Technology, Austria
Abraham Kandel, University South Florida - Tampa, USA
Teemu Kanstren, VTT, Finland
Alexander Knapp, Universität Augsburg, Germany
Sylwia Kopczyńska, Poznan University of Technology, Poland
Sotiris Kotsiantis, University of Patras, Greece
Adam Krzyzak, Concordia University, Canada
Binod Kumar, JSPM's Jayawant Technical Campus, Pune, India
Yau-Hwang Kuo, National Cheng Kung University, Taiwan
Richard Laing, The Scott Sutherland School of Architecture and Built Environment/ Robert Gordon
University - Aberdeen, UK
Robert Laramee, Swansea University, UK
Fritz Laux, Reutlingen University, Germany
Hervé Leblanc, IRIT-Toulouse, France
Gyu Myoung Lee, Liverpool John Moores University, UK
Alex Po Leung, Macau University of Science and Technology, Macau, China
Haim Levkowitz, University of Massachusetts Lowell, USA
Pericles Loucopoulos, Harokopio University of Athens, Greece / Loughborough University, UK
J. A. Tenreiro Machado, Institute of Engineering (ISEP), Polytechnic of Porto, Portugal
Herwig Manaert, University of Antwerp, Belgium
Ronei Marcos de Moraes, Federal University of Paraiba, Brazil
Elio Masciari, ICAR-CNR, Italy
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Fuensanta Medina-Dominguez, Carlos III University of Madrid, Spain
Mahmoud Mejdoub, College of Al Ghat, Majmaah University, Saudi Arabia
Alexander G. Mirnig, University of Salzburg, Austria
Ivan Mistrík, Independent Consultant. Heidelberg, Germany
Hongwei Mo, Harbin Engineering University, China
Laura Monroe, Los Alamos National Laboratory, USA
Paula Morais, Universiadade Portucalense - Porto, Portugal
Fernando Moreira, Universidade Portucalense, Portugal
Azah Kamilah Muda, Universiti Teknikal Malaysia Melaka, Malaysia
Asoke Nath, St. Xavier's College, Kolkata, India
Antonino Nocera, University Mediterranea of Reggio Calabria, Italy
Jean-Marc Ogier, Université de la Rochelle, France
Krzysztof Okarma, West Pomeranian University of Technology, Poland

 6 / 64

Hichem Omrani, CEPS/INSTEAD, Luxembourg
Alessandro Ortis, University of Catania, Italy
Jerry Overton, Computer Sciences Corporation, USA
Ana Paiva, University of Porto, Portugal
Eric Paquet, National Research Council / University of Ottawa, Canada
Vicente Palazón González, Universitat Jaume I, Spain
Mrutyunjaya Panda, Utkal University, India
George A. Papakostas, Eastern Macedonia and Thrace Institute of Technology, Greece
João Pascoal Faria, University of Porto, Portugal
Galina Pasko, Uformia, Norway
Rodrigo Paredes, Universidad de Talca, Chile
Giuseppe Patane', CNR-IMATI, Italy
Photis Patonis, Aristotle University of Thessaloniki, Greece
Christian Percebois, IRIT/Université de Toulouse, France
Carlos Pereira, Polytechnic Institute of Coimbra, Portugal
Gabriel Pereira Lopes, Universidade Nova de Lisboa, Portugal
Luciano Pereira Soares, Insper, Brazil
Charles Perez, PSB Paris School of Business, France
José R. Pires Manso, University of Beira Interior, Portugal
Agostino Poggi, Università degli Studi di Parma, Italy
Sylvia C. Pont, Delft University of Technology, Netherlands
Giovanni Puglisi, University of Cagliari, Italy
Francisco A. Pujol, Universidad de Alicante, Spain
Mar Pujol, Universidad de Alicante, Spain
Marjan Kuchaki Rafsanjani, Shahid Bahonar University of Kerman, Iran
Claudia Raibulet, University of Milano-Bicocca, Italy
Giuliana Ramella, CNR - National Research Council, Italy
Theresa-Marie Rhyne, Consultant, USA
Alessandro Rizzi, Università degli Studi di Milano, Italy
Marcos A. Rodrigues, Sheffield Hallam University, UK
José Raúl Romero, University of Córdoba, Spain
Agostinho Rosa, Technical University of Lisbon, Portugal
Bruno Rossi, Masaryk University, Czech Republic
Gustavo Rossi, UNLP - La Plata, Argentina
Muhammad Sarfraz, Kuwait University, Kuwait
Ozgur Koray Sahingoz, Turkish Air Force Academy, Turkey
Lorenza Saitta, Università del Piemonte Orientale, Italy
Antonio-José Sánchez-Salmerón, Universidad Politécnica de Valencia, Spain
Maria-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Kurt Sandkuhl, Jönköping University, Sweden
José Santos Reyes, Universidad de A Coruña, Spain
Hans-Jörg Schulz, Fraunhofer IGD Rostock, Germany
Isabel Seruca, Universidade Portucalense - Porto, Portugal
Caifeng Shan, Philips Research, The Netherlands
Patrick Siarry, Université de Paris 12, France
Karolj Skala, Ruder Boškovic Institute Zagreb, Croatia
Karina Sokolova Perez, University of Technology of Troyes, France
Carina Soledad, Universidad de La Laguna, Spain

 7 / 64

Michael Stal, Siemens, Germany
Janis Stirna, Stockholm University, Sweden
Mu-Chun Su, National Central University, Taiwan
Sam Supakkul, Sabre Inc., USA
Stella Sylaiou, Hellenic Open University, Greece
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Dan Tamir, Texas State University, USA
Shanyu Tang, China University of Geosciences - Wuhan City, P. R. China
Horia-Nicolai Teodorescu, "Gheorghe Asachi" Technical University of Iasi / Romanian Academy, Romania
Ghanshyam Singh Thakur, Maulana Azad National Institute of Technology, India
Daniel Thalmann, Nanyang Technological University, Singapore
Alain Léger, Orange Labs - France Telecom R&D, Cesson Sévigné, Rennes, France
Mati Tombak, University of Tartu / Tallinn Technical University, Estonia
Alessandro Torrisi, Università di Catania, Italy
George Tsihrintzis, University of Piraeus, Greece
Theodoros Tzouramanis, University of the Aegean, Greece
Domenico Ursino, University Mediterranea of Reggio Calabria, Italy
Michael Vassilakopoulos, University of Thessaly, Greece
Phan Cong Vinh, Nguyen Tat Thanh University (NTTU), Vietnam
Panayiotis Vlamos, Ionian University, Greece
Krzysztof Walczak, Poznan University of Economics, Poland
Stefan Wendler, Ilmenau University of Technology, Germany
Laurent Wendling, University Descartes (Paris 5), France
Wojciech Wiza, Poznan University of Economics, Poland
Mudasser F. Wyne, National University- San Diego, USA
Dongrong Xu, Columbia University & New York State Psychiatric Institute, USA
Reuven Yagel, The Jerusalem College of Engineering, Israel
Zhenzhen Ye, IBM, Essex Junction, USA
Jin Soung Yoo, Indiana University - Purdue University Fort Wayne, USA
Lihua You, Bournemouth University, UK
Nicolas H. Younan, Mississippi State University, USA
Hongchuan Yu, Bournemouth University, UK
Amelia Zafra Gómez, University of Cordoba, Spain
Lihong Zheng, Charles Sturt University, Australia
Alfred Zimmermann, Reutlingen University, Germany
Michal Žemlička, Charles University, Czech Republic

 8 / 64

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 64

Table of Contents

Learning Multi-Class Discriminative Patterns using Episode-Trees
Eng-Jon Ong, Nicolas Pugeault, Andrew Gilbert, and Richard Bowden

1

Car User Experience Patterns: A Pattern Collection in Progress
Tim Kaiser, Alexander G. Mirnig, Nicole Perterer, Alexander Meschtscherjakov, and Manfred Tscheligi

9

Knowledge Extraction from German Automotive Software Requirements using NLP-Techniques and a Grammar-
based Pattern Detection
Mathias Schraps and Alexander Bosler

17

Indoor Localization by Map Matching Using One Image of Information Board
Kento Tonosaki, Toshihiro Sugaya, Tomo Miyazaki, and Shinichiro Omachi

22

Towards Antipatterns-Based Model Checking
Hassan Loulou, Sebastien Saudrais, Hassan Soubra, and Cherif Larouci

27

Search++: More Control than a Simple Search Interface without the Complexity and Confusion of Advanced
Search
Alessandro Agnello and Haim Levkowitz

33

Assessing the Suitability of Architectural Patterns for Use in Agile Software Development
Samira Seifi Jegarkandy and Raman Ramsin

39

Fast Fingerprint Recognition Using Circular String Pattern Matching Techniques
Oluwole Ajala, Mudhi Aljamea, Mai Alzamel, Costas S. Iliopoulos, and Yoann Strigini

47

Powered by TCPDF (www.tcpdf.org)

 1 / 1 10 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 1

Learning Multi-Class Discriminative Patterns using
Episode-Trees

Eng-Jon Ong∗, Nicolas Pugeault†, Andrew Gilbert∗ and Richard Bowden∗
∗Centre for Vision, Speech and Signal Processing

University of Surrey, UK
Email: e.ong,a.gilbert,r.bowden@surrey.ac.uk

† College of Engineering, Mathematics and Physical Sciences,
University of Exeter, UK

Email: n.pugeault@exeter.ac.uk

Abstract—In this paper, we aim to tackle the problem of recognis-
ing temporal sequences in the context of a multi-class problem.
In the past, the representation of sequential patterns was used for
modelling discriminative temporal patterns for different classes.
Here, we have improved on this by using the more general
representation of episodes, of which sequential patterns are a
special case. We then propose a novel tree structure called
a MultI-Class Episode Tree (MICE-Tree) that allows one to
simultaneously model a set of different episodes in an efficient
manner whilst providing labels for them. A set of MICE-Trees
are then combined together into a MICE-Forest that is learnt in a
Boosting framework. The result is a strong classifier that utilises
episodes for performing classification of temporal sequences. We
also provide experimental evidence showing that the MICE-Trees
allow for a more compact and efficient model compared to
sequential patterns. Additionally, we demonstrate the accuracy
and robustness of the proposed method in the presence of
different levels of noise and class labels.

Keywords–Data Mining, Classification, Episodes Patterns, De-
cision Trees

I. INTRODUCTION

There are many problems in machine learning where the
data consists of temporal sequence of events. In this work,
we consider the problem where we have a collection of data
streams that we want to label according to a large number of
classes. Although there has been significant work concerned
with mining frequently occurring patterns in data streams, few
studies have focused on the different task of classifying such
data streams. When solving this problem, we face several
challenges: 1) a large number of classes may lead to bloated
models, and large class confusion; 2) learning discriminative
sequences rather than frequently occurring ones; 3) relevant
sequences that contain discriminative power may be sparse in
the data stream; and 4) the presence of ambiguities in the
ordering of some parts of a discriminative sequence. In order
to address these problems, this article presents a theoretical
framework for learning of discriminative temporal sequences
based on episodes [1] that are structured efficiently within a
tree. We show how multiple episode-trees can be combined in
a Boosted framework to yield an accurate and robust classifier.

There is a significant amount of prior research that investi-
gate the discovery of frequently occurring temporal sequences,
represented using sequential patterns. There are two main
approaches for mining frequent sequential patterns: Apriori-
based methods [2], [3] and pattern growth methods [4], [5].

An alternative to sequential patterns is the representation of so-
called “episodes”. Episodes are a more generic representation
of temporal patterns proposed by Mannila et al.[1], [6] that
allow the formalisation of ambiguity in the sequencing of some
events in the pattern (whereas sequential patterns represent
strict ordering). They also proposed algorithms for finding
frequent episodes in data streams, in the limited case of either
serial or parallel episodes. More recently, two independent
groups have proposed algorithms for mining frequent episodes
in the general case [7], [8], [9].

The present work addresses a different problem: our aim is
the classification of data streams, and therefore the sequence
of events are learnt for maximizing discrimination between the
classes. Hence, a pattern may be discriminative for a single
class amongst many without being frequent over the whole
dataset. An early attempt at learning discriminative sequential
patterns was proposed by Nowozin [10] and showed promising
results for action recognition, yet the proposed approach is
limited to binary discrimination. For problems containing more
than two classes, this entails learning a collection of 1 versus
1 classifiers within a voting framework—this approach is
clearly not scalable to problems with large number of classes.
Recently, Ong et al. [11], [12] proposed a scalable approach
to multi-class sequential pattern classification that makes use
of boosted Sequential Pattern trees (SP-trees) for learning
discriminative sequential patterns. One essential property of
this approach is that the SP-trees allow for feature sharing
between sequential patterns that describe different classes. To
our knowledge these articles are the only attempts at learning
discriminative sequential patterns.

This article extends SP-trees to the more general formalism
provided by episodes. We will show that for certain specific
patterns, episode trees will allow for a more compact encoding
of discriminative temporal patterns. This article has four main
contributions: first, we present a theoretic definition of a
tree structure called MultI-Class Episode Trees (MICE-Trees)
allowing for multiple classes to share sub-episodes; second, we
propose an efficient algorithm for learning Boosted collections
of such multi-class trees; third we demonstrate that MICE-
Trees are similar to SP-Trees, but allow for a better and more
compact representation of certain type of temporal sequences;
and fourth, we show that the resulting classifiers can cope
with a large amount of signal noise while still providing good
classification accuracy.

 11 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 2

Figure 1. Illustration of a generic episode α, of the form
(a, c)→ (b)→ (c).

The rest of the paper is organised as follows: section 1
will provide the theoretical framework of episodes and some
important results; section 2 will present the MICE-Trees and
provide proofs that paths in such a tree are effectively episodes;
section 3 will describe an efficient algorithm for learning such
MICE-Trees from a dataset of labelled streams; section 4 will
present an approach for learning a Boosted forests of MICE-
Trees; section 5 will present two synthetic dataset that are used
to evaluate the performance and robustness of the proposed
approach; and finally we will conclude in section 6.

II. PROBLEM STATEMENT

Given a vocabulary of events E = {E1, . . . , E|E|}, we
define a data stream S ∈ SE (where SE is the set of all
possible data streams for a vocabulary E), as a sequence of
pairs

S =
〈
(E1, t1), . . . , (E|S|, t|S|)

〉
, (1)

where (Ei, ti) denotes the occurence of the transient event Ei
at time ti—where the time labels ti are such that ti ≤ tj ∀i <
j.

Given a collection of data streams D = {(Si, λi)}i∈[1,|D|,
with associated class labels λi ∈ L, the task of stream
classification can be seen as the function

F : SE → L, (2)

that associates labels λi to data streams Si. Specifically, this
article proposes an approach for learning F from a set D of
labelled streams using discriminative episodes.

A. Episodes
Following from Mannila et al. [6], we define an episode as

Definition 1. An episode is defined as α = (Vα, <α, gα),
where Vα =

{
v1, . . . , v|v|

}
is a collection of vertices, <α⊆

Vα × Vα is a strict partial order, and g:Vα → E is a mapping
between episode vertices and observed events.

where

Definition 2. The relation <α is a strict partial order, iff.
∀(a, b) ∈<α, we have:

a 6= b (3)
(b, a) /∈<α (4)

(b, c) ∈<α⇒ (a, c) ∈<α (5)

This is illustrated in Fig. 1. In this figure, each green
box corresponds to an episode vertex vi, and the letter in
the box corresponds to the mapped event Ej = gα(vi), with

Figure 2. Illustration of a parallel episode (left) of the form (a, b) and of a
serial episode (right), of the form (a)→ (b)→ (c).

an alphabet E = {a, b, c}. The blue arrows joining the boxes
represent the serial ordering between vertices enforced by the
strict partial order <α.

Moreover, we define sequential patterns as special cases,
coined serial episodes(see Fig. 2, right):

Theorem 1. If <+
α is a strict total order, then α = (Vα, <

+
α

, gα) is a serial episode (i.e., a sequential pattern).
Proof: If <+

α is a strict total order, then ∀a, b ∈ Vα, a 6= b,
we have

(a, b) ∈<+
α or (b, a) ∈<+

α ,

hence there exists a sequence (β1, . . . , β|Vα|) such that

∀i, j ∈ [1..|Vα|], i < j ⇒ (vβi , vβj) ∈<α (6)

and therefore (gα(vβi))
|Vα|
i=1 is a sequential pattern.

and conversely we define parallel episodes (illustrated in
the left panel of Fig. 2):

Definition 3. If <α= ∅, then α is a parallel episode.

Finally we define a relation α v S which states that an
episode α occurs within a stream S ∈ S:

Definition 4. Let α be an episode and S ∈ S be a stream, we
define that α v S, iff. there exists a sequence β1, . . . , β|Vα|
such that ∀i, j ∈ [1..|Vα|], i < j ⇒ (vβi , vβj) ∈<α, and that
∃{ti}|Vα|i=1 ,

(
(gα(vβi), ti)

|Vα|
i=1

)
⊂ S.

This is illustrated in Fig. 3, where the red arrows indicate
the occurrences of the episode α’s vertices vi, mapped to
events a, b, c ∈ E in the stream S. Note that the sequence
of the occurrence of events a and b for the episode vertices v1
and v2 do not matter (they form a parallel episode).

B. MultIClass Episode Trees (MICE-Trees)
This section presents a definition of the MICE-Trees and

how paths to a MICE-Tree’s leaves model different episodes
αk.

First, we define a MICE-Tree as T = (N,L), where N =

{ni}|N |i=1 is the set of all tree nodes and L = {li}|L|i=1 the set of
all links, such that L ⊆ N ×N—such a tree is illustrated in
Fig. 4. In the following section we will define the nodes and
links of the MICE-Trees and their specificity for the purpose
of learning and encoding episodes.

1) Tree nodes n ∈ N : MICE-Tree nodes have the double
purpose of storing episode information and the most likely
class label given the data. Formally:

Definition 5. A MICE-Tree node n ∈ N is defined as the
tuple n = (Vn, gn, λn), where λn ∈ L is the most likely label
at this node, Vn is a set of vertices and gn is a mapping such

 12 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 3

Figure 3. Illustration of how an episode α is matched in a data stream S, such as α v S.

that ∀vi ∈ Vn, ∃Ei ∈ E such that Ei = gn(vi) and {Ei}|Vn|i=1
is a set of (unordered) events.

Without loss of generality, we enforce that the set of
vertices in all tree nodes be strictly disjoint:

Definition 6. For any two nodes n, n′ ∈ N , if n 6= n′ then
V∗(n) ∩ V∗(n′) = ∅

Moreover, it follows from the definition that:

Property 1. A tree node n ∈ N models a (trivial) parallel
episode α = (V∗(n), ∅, g∗(n)).

For convenience we define the following accessor functions
for the properties of a node n = (Vn, gn, λn), namely: V∗(n) =
Vn, g∗(n) = gn and λ∗(n) = λn.

2) Tree links l ∈ L: Now that we have defined the MICE-
Tree nodes as encoding the parallel components of episodes,
we will define how the tree links encode the serial constraints
in the episode, and whether these are satisfied or not by data
streams. Formally, we define a tree link as follows:

Definition 7. A MICE-Tree link l ∈ L is defined as the tuple
l = (a, b, s) where a, b ∈ N are nodes in the tree and s ∈
{+,−} is the type of edge (positive or negative).

For convenience, we define the root of the tree as

Definition 8. We call root node of a tree T = (N,L) the
unique node n0 ∈ N that satisfies the condition @l ∈ L, n ∈
N, s ∈ {+,−} such that l = (n, n0, s).

and its leaves:

Definition 9. We say that a node n∗ ∈ N is a leaf node if
@l ∈ L, n ∈ N, s ∈ {+,−} such that l = (n∗, n, s).

Without loss of generality, we will define that leaf nodes
are the only nodes in the tree containing no vertices, hence we
have:

Property 2. For any node n ∈ N , we have V∗(n) = ∅ iff. n
is a leaf node.

This property is ensured by the learning mechanism de-
scribed in section 3.

In this work, we restrict ourselves to using binary trees,
whereby every non-leaf tree-node (n ∈ N) will have exactly
two child tree-nodes n+, n− ∈ N , where (n, n+,+) ∈ L and
(n, n−,−) ∈ L. Also, as for the nodes we define for links
l = (pl, cl, sl) the accessor function s∗(l) = sl.

Property 1 showed that MICE-Tree nodes model parallel
episodes; conversely, we will now show that links can be
interpreted as the serial components of episodes. As a first
step, we need to show that two nodes connected by a link
form a strict partial order (see definition 2).

Definition 10. We define a function ϕ between two sets of
vertices Va and Vb, such that ϕ(Va, Vb) = {(x, y) : x ∈ Va, y ∈
Vb}.
Theorem 2. If Va ∩ Vb = ∅ then ϕ(Va, Vb) is a strict partial
order.

Proof: Let (a, b) ∈ ϕ(Va, Vb), then from definition 10, we
have a ∈ Va and b ∈ Vb, and therefore Va ∩ Vb = ∅ implies:
(1) a 6= b; (2) b /∈ Va and therefore ∀c ∈ Vb, (b, c) /∈ ϕ(Va, Vb)

From definitions 6, 7, 10 and theorem 2, we derive the
following property for linked nodes:

Corollary 1. A tree node n ∈ N models a parallel episode
α = (V∗(n), ∅, g∗(n)), and a pair of nodes n and n′ connected
by a link l models the general episode α′, such as:

α′ = (V∗(n)∪V∗(n′), ϕ(V∗(n), V∗(n′)), g∗(n)∪g∗(n′)). (7)

3) Tree Paths P ⊂ T : In the previous section we have
presented the MICE-Tree nodes and edges, we will now define
paths in the tree, and show that any path in a MICE-Tree
encodes an episode.

First we will define a tree path:

Definition 11. A path P is a sequence of node-edge pairs
P = ((n1, l1), . . . , (nK , lK)), where K is the length of the
path, and all the nodes Ni in the path are connected by their
edges. Formally, li = (ni, ni+1, si), ∀i ∈ [1,K−1], and lK =
(nK , n

∗, sK), where n∗ is a leaf node.

and leaf nodes:

Definition 12. We say that a node n∗ = (∅, ∅, λ) ∈ N is a leaf
node if @l ∈ L, n ∈ N, s ∈ {+,−} such that l = (n∗, n, s).

Then we define the function ξ that generates an episode
from any MICE-Tree path:

Definition 13. Let P = ((n1, l1), . . . , (n|P |, l|P |)) be a path
in tree T , and let ψ(P) ⊂ P be the indices of positive links
in the path: ψ(P) = {i : i ∈ [1, |P |], s∗(li) = +}. Then we

 13 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 4

define the function ξ(P) = (VP , <P , gP), such that
VP =

⋃
i∈ψ(P) V∗(ni)

<P =
⋃
i∈ψ(P)

⋃
j∈{k∈S(P):k>i} ϕ(V∗(ni), V∗(nj))

gP =
⋃
i∈ψ(P) g∗(ni)

.

(8)

Lemma 1. If P is a path in a MICE-Tree gP is a map such
that gP : VP → E .

Proof: For all nodes n in the tree, we have g∗(n) a map
such that g∗(n) : V∗(n) → E , ∀n ∈ N (definition 5) and
V∗(ni) ∩ V∗(nj) = ∅ ∀ni, nj ∈ N,ni 6= nj (definition 6),
therefore

⋃
i∈ψ(P) V∗(ni) is a map.

Lemma 2. If P is a path in a MICE-Tree <P is a strict partial
order.

Proof: From definition 10, ϕ(V∗(ni), V∗(nj)) is a strict
partial order for any pair of nodes ni, nj ∈ N, i 6= j (i), and
definition 6 enforces that the sets of vertices of all tree nodes
are disjoint V∗(ni)∩ V∗(nj) = ∅ if ni 6= nj ,∀ni, nj ∈ N (ii),
therefore we have:

From definition 2, <P is a strict partial order iff:
(1) (a, b) ∈<P implies that a ∈ V∗(ni) and b ∈ V∗(nj)

with i 6= j, and therefore because V∗(ni) ∩ V∗(nj) = ∅ from
(ii), we have a 6= b

(2) According to definition 13, (a, b) ∈<P implies that
a ∈ V∗(ni) and b ∈ V∗(nj) with i < j, and therefore because
V∗(ni) ∩ V∗(nj) = ∅ we have (b, a) /∈<P .

(3) let (a, b) ∈<P , and (b, c) ∈<P , from definition 7 we
have a ∈ V∗(ni), b ∈ V∗(nj) and c ∈ V∗(nk) such that
i, j, k ∈ ψ(P), and from definition 13, i < j < k, and therefore
(a, c) ∈<P .

Therefore, from lemmas 1 and 2 we can draw the following
theorem:

Theorem 3. If P is a path in a MICE-Tree T , then ξ(P) =
(VP , <P , gP) is an episode.

Proof: According to definition 1, the triplet (VP , <P , gP)
defines an episode iff. (1) gP : VP → E , proved by lemma 1;
and (2) <P is a strict partial order, proved by lemma 2.

An example of a MICE-Tree is then illustrated in Fig. 4. In
this figure, each green square denote a non-leaf node n ∈ N ,
that code a parallel episode—the letters in the box indicate the
events Ei ∈ {g∗(n)(v) : v ∈ V∗(n)}. The blue boxes denote
leaf nodes n∗ associated to a valid label λ∗(n∗) ∈ {c1, c2, c3},
and below are indicated the episodes that correspond to each
leaf node’s path. Finally, the orange boxes denote rejection leaf
nodes where no assertion can be made on the episode’s class
and the blue arrows denote tree links l ∈ L.

C. Classifying Datastreams using MICE-Trees
In order to classify an input sequence S given a MICE

Tree T = (N,L), we define the following recursive function
CT : N × Sε → L:

CT (n, S) =

 CT (n
+, S) if ξ(Pn) v S, Vn 6= ∅

CT (n
−, S) if ξ(Pn) 6v S, Vn 6= ∅
λn otherwise

(9)

Figure 4. Example of a MICE-Tree.

where the tree node n is the triplet, n = (Vn, gn, λn),
and n+, n− are the positive and negative child-nodes of n
respectively: (n, n+,+), (n, n−,−) ∈ L. It is now possible
to define a multi-class classification function for labelling an
input sequences given a MICE-Tree with root node r:

hT (S) = CT (r, S) (10)

This is achieved in an computationally efficient manner using
Algorithm 1.

Algorithm 1 MICE-Tree Classifier: P = CT (S)

Input: Input datastream S =< (Si, ti) >
|S|
i=1

Input: MICE-Tree T = (N,L), root node r.
Output: Label of S : λ ∈ L
Initialise current node to root node: ncur = r
The contents of current node: ncur = (Vcur, gcur, λcur)
Init start offset: e = 1
while ncur is not leaf-node do

For each k ∈ [1, |Vcur|] get:
Gk = {j : j ∈ [e, |S|], Sj = gcur(vk)}

Z =
⋂
k∈[1,|Vcur|][min(Gk), |S|]

if Z = ∅ then
ncur = m, such that (ncur,m,−1) ∈ L

else
ncur = m, such that (ncur,m,+1) ∈ L
e = mink∈[1,|Vcur|](min(Gk))

end if
end while
Return λcur

III. LEARNING MICE TREES

In this section, we propose a novel method for constructing
a MICE-Tree given a database of weighted and labelled data
streams. Here, the construction of a MICE-Tree is achieved
in a greedy and recursive manner, whereby the multi-class
training dataset is recursively partitioned into smaller and
smaller subsets that are distributed across different nodes of
the MICE-Tree. To achieve this, we theoretically show that a
node in the MICE-Tree does indeed induce a binary partition
on the training dataset in Section III-A. However, it is also

 14 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 5

important that there is a method for measuring the optimality
of such a binary partition. To this end, a node-split criteria
based on the Gini impurity measure is described in Section
III-B. Finally, the MICE-Tree learning algorithm is described
in Section III-C

A. MICE-Tree Node Binary Partition

For the purpose of learning, we are provided with a training
data stream collection that we will denote as D (defined in
Section II). Additionally, we are given a set of weights W =

(wi)
|D|
i=1, where each example (Si, λi) ∈ D is associated with

the weight wi.

In order to construct a MICE-Tree T , we firstly introduce
a useful function D : Sε → 2N based on Eq. 9 that extracts
the set of nodes a datastream example X passes through when
it is classified by T (using Eq 9):

DT (n, S) = n∪

 DT (n
+, S) if ξ(Pn) v S, Vn 6= ∅

DT (n
−, S) if ξ(Pn) 6v S, Vn 6= ∅
∅ otherwise

(11)
Both functions in DT (Eq. 11 and CT (Eq. 9) provides a
deterministic mechanism for classifying an input datastream:
Remark 1. Let S be an input datastream, T = (N,L) be a
MICE-Tree and r its root node, then there exists only one
unique path, whose nodes are DT (r, S), that will be used to
classify it. That is, a sequence S will always go through the
same path when C is used to classify it.

It can be observed that the properties of Eq. 11 will allow
us to see that each node in a MICE-tree “captures” a subset
of training datastreams from D: Since each example training
datastream can only “carve” a single unique path through a tree
during classification (Rem. 1), then, only a subset of example
datastreams will pass through a particular node in a tree. More
specifically:

Definition 14. Let T = (N,L) be a MICE-Tree, D be the
labelled collection of datastreams. Let n ∈ N be a node and
m ∈ N be its parent node, with Pm being the path from the
root node to m. We then define the set of captured example
indices of n as the following set: In = {i ∈ [1, |D|] : ξ(Pm) v
Si, n ∈ D(r, Si)}.

A consequence of the above definition is that a non-
leaf node n will induce a binary partitioning of its captured
example set In into a positive partition, I+n , and negative
partition, I−n where I = I+n ∪ I−n and:

I+n = {i ∈ I : ξ(Pn+) v Si} (12)
I−n = {i ∈ I : ξ(Pn+) 6v Si} (13)

The partitioning induced by a node n is clearly dependent
on its contents (i.e. Vn and gn). Thus, for learning purposes,
we define the following operation on a node:

Definition 15. Given a node n = (Vn, gn, λn) in a MICE-
Tree, a new (episode vertex,event) pair (v′, e′) can be added
into n, denoted as n′ = n+ (v′, e′), where e′ ∈ ε and a v′ is
an episode-vertex. The new node is: n′ = (Vn′ , gn′ , λn′) with
Vn′ = Vn ∪ {v′}, gn′ = gn ∪ {(v′, e′)} and λn′ = λn),

Importantly, adding (episode-vertex, event) pairs into any
node has the effect of moving examples from its positive
partition to the negative partition.

Theorem 4. Let n = (Vn, gn, λn) be a node in a MICE-
Tree, In the index set of examples captured by n and I+n , I−n ,
its induced partition respectively. Then, adding an (episode-
vertex,event) pair, (v′, e′) to n will produce a new node, n′ =
n+(v′, e′), with a potentially smaller positive partition, I+n′ ⊂
I+n and potentially larger negative partition, I−n′ ⊃ I−n .

Proof: It is clear that the episode modelled by the path
from the root node r to n is a subsequence that from r to n′:
ξ(Pn) v ξ(Pn′). Then, by the Apriori rule, we have {i ∈ In :
ξ(Pn′)} ⊂ {i ∈ In : ξ(Pn)}

Algorithm 2 GetBestSplit Algorithm

Input: Train Set: S = {(Si, λi, wi)}|S|i=1
Output: MICE-Tree Node, +ve partition, -ve partition, error
Let λS be the class with highest frequency in S.
Initialise empty node: n = (∅, ∅, λS).
Initialise the event set: E = E .
Initialise error: γbest = −1
while E 6= ∅ do

Let v′ be an episode-vertex not present in any tree-node.
Find ebest ∈ E s.t. n+ (v′, ebest) minimises γ from

Eq. 14 given weights wi.
if γbest < 0 or γbest > γ then
n = n+ (v′, ebest)
E = E − {ebest} {Remove ebest from the set E}

else
break

end if
end while
Let the path from the root node to n be Pn.
S+n = {(S, λ,w) ∈ S : ξ(Pn) v S}
S−n = {(S, λ,w) ∈ S : ξ(Pn) 6v S}
Return (n,S+n ,S−n , γbest).

B. Node-Split Criteria

The final tool required for learning tree is a method of
evaluating how “good” a node split is. This is achieved using
an adapted Gini impurity that is popular in decision tree
learning [13]. Here, we have changed the criteria to account
for weighted training examples. Suppose we have found that
non-leaf node n has caused a partition I+ and I−. Suppose
the corresponding weights of these partitions are W ′+ and
W ′− respectively. Similarly, let the corresponding labels be Y ′+
and Y ′− respectively. We define the total positive and negative

partition weight coefficient as: Z+ =
∑|W ′+|
i=1 w′+,i/

∑|W ′|
i=1 w′i

and Z− =
∑|W ′−|
i=1 w′−,i/

∑|W ′|
i=1 w′i respectively. Using both

the weights and labels, it is possible to compute a normalised
label histogram for each partition: F ′+ and F ′− respectively.
The node-split criteria is defined as:

γ = Z+(1−
C∑
i=1

f2+,i) + Z−(1−
C∑
i=1

f2−,i) (14)

 15 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 6

Algorithm 3 MICE-Tree Learn Algorithm

Input: Training Set: {(Si, λi)}|S|i=1, (wi)
|S|
i=1

Output: MICE-Tree T = (N,L)

Make Offseted Train Set: S = {(Si, λi, wi, oi)}|S|i=1, oi = 1
Queue element: (ParentNode, TrainSubset,Depth, LinkType)
Get optimal root node:

(r,S+,S−, ε) = GetBestSplit(S)
Initialise the queue:
Q = {(r,S+, 2,+), (R,S−, 2,−)}.
while Q 6= ∅ do

Remove last item of Q: (ncur,Scur, Dcur, scur)
if |Scur| ≤ α OR Dcur ≥ β then

Get class (λ) with highest weighted freq. in Scur
λ = −1 if Scur = ∅.

m = (∅, ∅, λ)
N = N ∪ {m} {Add new tree-node}
L = L ∪ {(ncur,m, scur)} {Link to new tree-node}
break

end if
Get optimal current node:
(m,S+,S−, ε) = GetBestSplit(Scur)

N = N ∪ {m} {Add new tree-node}
L = L ∪ {(ncur,m, scur)} {Link to new tree-node}
if ε > 0 then
Q = Q ∪ {(m,S+, Dcur + 1,+), (m,S−, Dcur +
1),−}.

end if
end while
Return MICE-Tree: T = (N,E)

C. MICE-Tree Learning Algorithm
The algorithm for learning the MICE-Tree is given in Algo.

3, where a MICE-Tree is constructed in a greedy and recursive
manner. One key mechanism for constructing MICE-Trees
is given in Algo. 2. Here, episode-vertices are sequentially
added in a greedy fashion to the parent nodes of leaf nodes to
maximally improve the splitting criteria (Eq. 14). This process
terminates when the splitting criteria cannot be improved.

Algo. 3 then starts by constructing the root node using Algo
2. This induces a partitioning of the dataset into two training
subsets (i.e. +ve and -ve partitions). Two new children tree
nodes (+ve and -ve) are constructed and linked to the root
node. Each training subset is then passed on to its respective
child node. The algorithm then recursively applies Algo 2
to configure the contents of both child nodes.This recursive
process is performed via a queue-based system until one of
3 termination criteria is reached: 1) maximum tree-depth β is
reached; 2) training subset is smaller than minimum size α (set
here as 1); 3) The training subset is “pure” (i.e. only belongs
to a single class).

IV. BOOSTING MICE FORESTS

In this section, we describe the method for learning and
combining the multiple MICE-trees in order to produce a
robust and accurate classifier that generalises to unseen novel
sequences in the presence of noise. To this end, we propose a
novel machine learning method for learning strong classifiers
based on MICE-Tree within the Multi-class AdaBoost frame-
work [14]. A strong classifier outputs a class label based on the

maximum votes cast by a number (S) of selected and weighted
weak classifiers:

H(I) = argmax
c

S∑
i=1

αiI(hi(I) = c) (15)

In this paper, the weak classifiers hi are the MICE-Tree
classifiers defined in Section II-C as Eq. 10. Each weak
classifier hi is selected iteratively with respect to the following
error:

εi =

X∑
i=1

I(hi(Xi) 6= yi) (16)

Typically, in order to determine the optimal weak classifier at
each Boosting iteration, the common approach is to exhaus-
tively consider the entire set of possible weak classifiers and
finally select the best weak classifier (i.e. that with the lowest
εi). Such an exhaustive search will not be possible due to the
large search space of possible MICE-Trees. Thus, Algo. 3 is
used for choosing the appropriate MICE-Tree weak classifier
instead given a set of training datastreams with associated
boosted weights.

The final MICE-Tree Boosting algorithm is detailed in
Algo. 4. We have chosen to iteratively learn new MICE-Tree
based on the multi-class AdaBoost method. However, we are
not limited to this particular form of Boosting and it would be
easy to integrate the MICE-Tree learning algorithm (Algo. 3)
into other Boosting methods (e.g. GentleBoost, etc...).

Algorithm 4 MICE-Tree-Boost Algorithm

Initialise example weights: ∀wi ∈W,wi = 1/X
for t = 1, ...,M do

Select (ht = hTbest) using Algo. 3
Obtain the classification error εt for ht (Eq. 16)
Obtain the weight αt = ln 1−εbest

εbest
+ ln(C − 1)

Update weights: wi = wi exp(−αi [ht(Xi) 6= yi])
Normalise weights:

∑X
i=1 wi = 1

end for
Return the strong classifier:
H(X) = argmaxc

∑M
i=1 αiI(hi(X) = c)

V. EXPERIMENTAL EVALUATION

In this section we evaluate the proposed approach using
two different sets of generated data streams, that allow us
to control for properties of the encoded episodes. The first
experiment, in section V-A was designed to illustrate the
limitations of the more common Sequential pattern framework
(as used by [10], [11]), and the advantages of the more generic
episodes framework presented herein. The second experiment,
in section V-B was designed to have a thorough evaluation of
the MICE-Trees robustness to noise in the data streams.

A. Exp 1: Comparison with SP-trees
The first experiments evaluates the special case where

classes cannot be discriminated by purely serial episodes, and
therefore form a special challenge for SPs and should benefit
from the greater generality of the episode model.

In order to assess this, we generated a specifically designed
dataset where all serial episodes are ambiguous. We achieved

 16 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

(m
e
a
n
 o

v
e
r

1
0

0
 r

u
n
s)

Boosting rounds

Performance comparison (max depth 1)

MICE-Trees
SP-Trees

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

(m
e
a
n
 o

v
e
r

1
0

0
 r

u
n
s)

Boosting rounds

Performance comparison (max depth 2)

MICE-Trees
SP-Trees

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

(m
e
a
n
 o

v
e
r

1
0

0
 r

u
n
s)

Boosting rounds

Performance comparison (max depth 3)

MICE-Trees
SP-Trees

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100
E
rr

o
r

(m
e
a
n
 o

v
e
r

1
0

0
 r

u
n
s)

Boosting rounds

Performance comparison (max depth 4)

MICE-Trees
SP-Trees

Figure 5. Performance of the classification for the dataset A (10 classes). The graphs show the mean classification error over 100 randomised tests, for rounds
of Boosting from 1 to 100 and for maximal tree depths from 1 to 4. The error bars show the standard deviations for all curves.

this by generating 10 classes A, . . . , J , each characterised by
a unique episode of the form: αλ = (Eλ1 , E

λ
2) → (Eλ3 , E

λ
4),

such that there are no two class episodes that share any event.
Then we generated exhaustively a collection of streams that
satisfy each class λ, and injected noise in the resulting streams
by sampling from all possible sequence of events present in
other classes λ′ 6= λ that do not satisfy any class episode.
For example, some streams of class A perturbated with events
from class B would be:

S1 =
〈
(EA

1 , 1), (EA
2 , 2), (EB

1 , 3), (EB
2 , 4), (EB

4 , 5),(EA
3 , 6), (EA

4 , 7)
〉

S2 =
〈
(EA

2 , 1), (EA
1 , 2), (EB

1 , 3), (EB
4 , 4), (EB

3 , 5),(EA
3 , 6), (EA

4 , 7)
〉

S3 =
〈
(EA

1 , 1), (EA
2 , 2), (EB

2 , 3), (EB
3 , 4), (EB

4 , 5),(EA
4 , 6), (EA

3 , 7)
〉

...
(17)

In this case, the EBi elements (shown in blue in Eq. 17),
injected in the middle, will contain all serial episodes that
define the episode αB—hence only the generic episodes are
unique to the classes we generated this way.

We then learnt a collection of 100 SP-Trees and 100
MICE-Trees from this data, using 500 training samples out
of a collection of 2,880 streams and testing on the rest. The
results, for different values of maximal tree depth are shown
in Fig. 5. There, we can see that SP-Trees require significantly
mode complex models, in terms of both number and depth of
trees, to match the performance of MICE-Trees, confirming
our assertion that the episode framework allow for a more
efficient and compact encoding of certain classes of temporal
patterns.

B. Exp 2: Robustness to noise
The aim of this second experiment was to assess the

robustness of the MICE-Trees classification for a large number

of classes (we used 100 classes) denoted by temporal patterns
corrupted by increasing amounts of noise.

1) Episode generation: In order to generate the dataset
we first defined a vocabulary E of 26 symbols. Then for
each of the classes we generated a signature episode by the
following steps: first, we generated a single sequence of events
(E1, . . . , EN) ∈ EN , where N = 18 is the number of events
in the sequence; second, in order to transform this purely serial
episode in a generic one, we permuted randomly a number of
contiguous pairs of symbols. Hence if the original sequence
created was

(E1)→ (E2)→ (E3)→ (E4)→ (E5)

then after permutation of the leftmost (E1, E2) and rightmost
(E4, E5) adjacent pairs of events, we obtain the alternative
sequence

(E2)→ (E1)→ (E1)→ (E4)→ (E3)

and therefore this class is best described by the episode

(E1, E2)→ (E3)→ (E4, E5).

We use the same procedure to randomly generate unique
episodes for each of the 100 classes.

2) Episode corruption with temporal noise: All the patterns
generated at this point are perfect occurences of the class’
episode: there are no spurious events in the data stream. In
order to be able to control the proportion of spurious events in
the training and testing data streams, we propose modelled the
pattern generation as a Markov process. The process starts at
the beginning of the pattern and from there has a chance α to
move onto the next event in the noise-free pattern. Conversely,
the process has a 1− α chance to generate a noisy event Eε.

 17 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 8

ε

1-α

E_2

α
ε

1-α

E_3

α
ε

1-α

E_4

α

E_1

1-α

α

1-α

α

1-α

α

Figure 6. Illustration of the noise injection process in a noise-free sequence
(E1, E2, E3, E4). The generation is processed as a Markov process where
the chance to insert spurious events ε (randomly generated) is dependent on

a purity parameter α.

Hence, a purity parameter of α = 1 will generate a noise-free
sequence, and a purity parameter of α = 0 would generate an
infinite sequence of randomised events. Moreover, the length
of the generated pattern increases with diminishing values of
α. This Markov process is illustrated in Fig. 6 for a simple
noise-free sequence.

Moreover, and in order to make the injected noise more
structured, spurious event Eεk are not generated using a uniform
distribution, but using a noise generator that keeps a memory
of the previous noisy event generated, and produces the next
one using an a priori, randomly generated, Markov transi-
tion matrix encoding inhomogeneous transition probabilities
p(Eεk|Eεk−1)—this noise generation approach ensures that the
injected noise will be more likely to feature structure and
repeating patterns.

The usage of the α parameter and Markov chain allows the
pattern to be heavily corrupted, Figure 7 shows the corruption
of a pattern with noise for decreasing levels of α.

Figure 7. A example of the pattern corruption for increasing α

Note that the pattern length increases quickly with noise;
for values of α lower than 0.5 the proportion of noise elements
is greater that the original pattern.

3) Results: Figure 8 shows the performance of the MICE-
Trees classification for 100 classes and values of α varying
between 20% and 100%. The full red line shows the classi-
fication error and the dashed blue line shows the Signal to
Noise Ratio (SNR) for this value of α. This graph shows that
the MICE-Trees yield excellent classification results, providing
near-perfect classification for values of α above 75%. For
values of α below 50%, the classification performance drops
sharply, illustrating the fact that diminishing SNR values make
the learning extremely challenging.

Overall, this shows that the MICE-Trees can provide ex-
cellent classification performance event in presence of large
amount of spurious events and can handle a large number of
classes.

VI. CONCLUSIONS

In this work, we presented a theoretic definition of a
tree structure called MultI-Class Episode Trees (MICE-trees)
allowing for multiple classes to share sub-episodes whilst
providing the ability to classify datastreams. We then proposed
an efficient algorithm for learning Boosted collections of such
multi-class episode trees. The performance of the proposed
model was then evaluated using two sets of experiments. The

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20 30 40 50 60 70 80 90 100

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

E
rr

o
r

S
N

R

α

Robustness to stream noise

Error

SNR

Figure 8. This figure illustrates the robustness of the MICE-Trees to noise
injected in the data streams.

first demonstrated that MICE-Trees allow for a better and more
compact representation of certain type of temporal sequences
when compared to sequential patterns. We also show that the
resulting classifiers can cope with a large amount of signal
noise while still providing good classification accuracy.

REFERENCES
[1] H. Mannila, H. Toivonen, and A. Verkamo, “Discovering frequent

episodes in sequences,” in Proc. of Int. Conf. on Knowledge Discovery
and Data Mining (KDD’95), 1995, pp. 210–215.

[2] R. Agrawal and R. Srikant, “Mining sequential patterns: Generalizations
and performance improvements,” in Proc. of 5th International Confer-
ence on Extending Database Technology, 1996.

[3] M. Zaki, “Spade:an efficient algorithm for mining frequent sequences,”
Machine Learning, 2001.

[4] J. Han, J. Pei, and Y. Yin, “Mining frequent pattern without candidate
generation,” in Proc. of International Conference on Management of
Data (SIGMOD), 2000.

[5] J. Han, J. Pei, B. Mortazavi-Asl, and H. Zhu, “Mining access patterns
efficiently from web logs,” in Proc of Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), 2000.

[6] H. Mannila, H. Toivonen, and A. Verkamo, “Discovery of frequent
episodes in event sequences,” Data Mining and Knowledge Discovery,
vol. 1, 1997, pp. 259–289.

[7] N. Tatti and B. Cule, “Mining closed strict episodes,” in Proc. of the
Int. Conf. on Data Mining (ICDM’2010), 2010.

[8] ——, “Mining closed strict episodes,” Data Mining and Knowledge
Discovery, vol. 25, 2012, pp. 34–66.

[9] A. Achar, S. Laxman, R. Viswanathan, and P. Sastry, “Discovering
injective episodes with general partial orders,” Data Mining and Knowl-
edge Discovery, vol. 25, 2012, pp. 67–108.

[10] S. Nowozin, “Discriminative subsequence mining for action classifica-
tion,” in IEEE Int. Conf. in Computer Vision (ICCV’2007), 2007.

[11] E. Ong, H. Cooper, N. Pugeault, and R. Bowden, “Sign language
recognition using sequential pattern trees,” in Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR’2012), 2012.

[12] E. Ong, O. Koller, N. Pugeault, and R. Bowden, “Sign spotting using
hierarchical sequential patterns with temporal intervals,” in Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’2014),
2014.

[13] L. Brieman, J. Friedman, R. Olshen, and C. Stone, Classification and
regression trees. Wadsworth & Brooks/Cole Advanced Books &
Software, 1984.

[14] J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class adaboost,”
Statistics and Its Interface, vol. 2, 2009, pp. 349–360.

 18 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 9

 19 / 64

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7 10

 20 / 64

Car User Experience Patterns: A Pattern Collection in Progress

Tim Kaiser, Alexander G. Mirnig, Nicole Perterer, Alexander Meschtscherjakov, Manfred Tscheligi
Christian Doppler Laboratory for ”Contextual Interfaces”

Center for Human-Computer Interaction, University of Salzburg
Salzburg, Austria

Email: {firstname.lastname}@sbg.ac.at

Abstract— Car user experience patterns are a systematic way
to capture best practices and solutions to reoccurring problems
in automotive interaction design. Combining empirical data,
industry knowledge, and experts experience, they facilitate
communication between scientists and industry stakeholders.
In this paper, we present a newly generated set of eight car
user experience patterns that describe answers to problems in
automotive interaction design and engineering. These patterns
are part of an ongoing project with the aim of providing
a comprehensive, User Experience focused, pattern collection.
The patterns presented in this paper mainly contain information
on reducing potential distraction caused by the usage of in-
vehicle information systems and on designing efficient in-car
warning systems. They are the result of a novel approach
combining scientific and industry know-how into very brief
and domain-specific design problem solutions.

Keywords— design patterns; pattern identification and extrac-
tion; pattern reuse.

I. INTRODUCTION AND RELATED WORK

The usage of patterns is well established in Human-
Computer Interaction (HCI) and is advantageous for various
reasons. First, patterns are a method to capture proven design
solutions to reoccurring problems. Second, the use of patterns
improve the design process (regarding both time and effort
spent) to a considerable degree [1][2]. Moreover, scientific
research in HCI also strongly relies on communicating scien-
tific findings to the industry. By translating these findings so
that they convey relevant and useful information to designers
and developers, patterns can help facilitate the design process
by reducing time and effort that has to be put into it.

Designing for a good User Experience (UX) has become
an increasingly important topic in academia and industry
[3][4][5]. User Experience can be defined as ”the users sen-
sory, emotional and reflective response to the interaction with
a system in a context” [6]. The car industry in particular has
become a fast-paced global market that can draw substantial
benefits from a modular and flexible documentation of best
practices.

Based on this consideration, we created a set of car
User Experience patterns, of which we present the eight
most recent car ones in this paper. In the following two
subsections, we will give an overview on the state of the art
on Contextual UX patterns in general, and our approach in
particular. In Section II, we show each pattern in its entirety,
and conclude with a brief summary in Section III.

A. Contextual User Experience Patterns

Recently, specific domains in HCI, such as UX research,
employed patterns to collect and structure their knowledge
based on empirical findings [2][7][8]. This is illustrated, e.g.,
by Martin et al. [9] and Crabtree [10] who use patterns for
organizing and presenting ethnographic material. The first
who emphasized a focus on the human perspective in the
history of patterns was Alexander [11]. In 2010, Blackwell
and Fincher [5] suggest to adopt the idea of patterns and
UX in the form of Patterns of User Experience (PUX). Such
patterns should help HCI professionals to understand what
kind of experiences people have with information structures.

In the same year, Obrist et al. [2] developed 30 UX
patterns for audiovisual networked applications based on a
huge range of collected empirical data, which was further
categorized into main UX problem areas. An extension
of these UX patterns, are the so-called Contextual User
Experience (CUX) patterns. Accordingly, patterns are used
to describe the knowledge on how to influence the users
experience in a positive way by taking context parameters
during the interaction with a system into account. Within
their work, the authors provide a detailed description of
how to structure CUX patterns in the car context. Three
years later, Krischkowsky et al. [8] presented a step-by-
step guidance for HCI researchers for generating patterns
form HCI study insights. In particular, they intended to
support User Experience (UX) researchers in converting their
gathered knowledge from empirical studies into patterns. The
structural foundation for the intended patterns is the so-
called Contextual User Experience (CUX) patterns format,
as mentioned before.

Following in the footsteps of Obrist et al. [7], we decided
to pursue a triangular approach towards driver space design
and cover three major UX factors via appropriate design
patterns.These factors are:

• Mental Workload Caused by Distraction [12]: Safety is
paramount in an automotive environment, and distrac-
tion is one of the major contributing factors to accidents
on the road [13][14]. Especially in UX, where function-
alities and interface complexities are ever increasing,
this is one of, if not the, most important factors to
consider regarding driver safety.

• Perceived Safety [15]: The increased safety gained by
designing for decreased mental workload and less dis-

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 21 / 64

traction needs to be communicated to the driver. The
difference between objective and perceived safety can
be relatively large. For many situations, it has to be
evaluated if car interfaces should increase or decrease
perceived safety.

• Joy of Use [16][17]: This is strongly tied to the pre-
vious factor, but is not the same. Cars have more and
more become instruments that are not simply means of
transportation but are also used for entertainment. Thus,
it becomes important that car interfaces can be used not
only without frustration, but also in a way that makes
using them a joyful experience.

B. Pattern Generation Process

The pattern generation process for car user experience pat-
terns has been described in detail by Mirnig et al. [18]. First,
an initial knowledge transfer workshop was conducted in
order to provide HCI researchers with know-how regarding
patterns. The HCI researchers then generated an initial set of
16 patterns following the initial pattern structure. This lead
to several issues with the initial structure, so that an iteration
of the initial structure took place in a second workshop.
The resulting refined pattern structure consists of 9 parts:
Name (a description of the solution of the pattern), Intent (a
short abstract to allow quick judgment whether the pattern
can be applied in a certain context), Topics (problem scope
and addressed automotive user experience factor), Problem
(a short but more detailed description of the problem which
should be solved by the pattern), Scenario (an example
application context of the pattern), Solution (the proposed
solution), Examples (concrete examples of best practices),
Keywords (other topics related to the pattern), and Sources
(origin of the pattern).

In the next step, patterns were presented to industry
stakeholders in a pattern evaluation workshop. Based on
their feedback, the name, intent and topics section were
standardized and kept brief, so it takes less time and effort to
process them. The context and forces sections were combined
into the new scenario category.

II. PATTERN COLLECTION

We developed a list of design problems together with
designers and engineers working in the automotive industry
and applied the aforementioned pattern generation approach,
involving the industry stakeholders at several stages in the
process. The following is one part of a resulting collection
of patterns, which combines scientific and industry know-
how into concrete problem solutions for UX-centered driver
space design problems in the automotive domain.

A. Pattern 1: Menu Depth and Number of Options

Intent: This pattern is about reducing distraction caused
by navigating visual menus as a secondary task.

Topics: Workload caused by distraction, driver, haptic,
input

Problem: While driving, navigation of in-vehicle user
interface menus causes distraction. Given the safety implica-
tions of visual distraction, it is important to minimize visual
demand of these menus.

Scenario: Drivers interact with visual menus to access in-
formation, communication and entertainment systems. Nav-
igating menus with high visual demand severely distracts
the driver and can thus lead to road deviations and crashes.
Visual demand of menus is determined by a depth/breadth-
trade-off. The deeper a menu, the less menu options per page
there should be. A National Highway Traffic Safety Agency
(NHTSA) guideline based on current research recommends
that a driver should be able to complete a task in a series
of 1.5 second glances with a cumulative time spent glancing
away from the roadway of not more than 12 seconds [19].

Solution: Designing menus with limited depth allow
drivers to complete secondary tasks in a relatively short
time period. With the help of an empirically derived formula
provided by Burnett et al. [20], it is possible to calculate
different menu structures that comply with design guidelines:

T = D(0.87 + 1.24 ∗ log(B)

where T = time to complete the task, D = depth of menu
where B = number of menu options. Table I shows acceptable
menu structures that comply with maximum task completion
time according to the NHTSA guideline, as calculated using
this formula.

TABLE I
MENU DEPTH AND NUMBER OF OPTIONS FOLLOWING NHTSA

GUIDELINES

Menu Depth Menu Breadth
3 12
4 5
5 3
6 2

Examples: see Figures 1 and 2.

B. Pattern 2: Display Touch Field Size

Intent: This pattern is about determining the optimal touch
screen target size.

Topics: Workload caused by distraction, driver, touch
screen, visual, haptic, input

Problem: Navigating in-vehicle displays while driving
causes distraction, leading to road deviations and possibly
to crashes. Thus, visual demand of touch screen menus has
to be minimized while preserving maximum usability.

Scenario: Because they are easy to use and to understand,
touch-screen interfaces are more and more used for operating
in-vehicle systems. Drivers use them to control entertainment
and navigation features provided by these systems as a
secondary task. The key factor for navigating these displays
easily is the size of the touch target like a menu button [21].
Subjective usability ratings, as well as objective measures
like task completion time and error rate heavily depend on
this factor.

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 22 / 64

Figure 1. BMW iDrive - accessing vital information requires only three
navigation steps.

Figure 2. BMW iDrive - changing the radio station requires only two
steps.

Solution: Touch targets need to be large enough in order
to minimize task completion time and error rate. Design
guidelines suggest a minimum contact surface area of 80
mm [19]. However, in a recent driving simulation study
that focused on touch target size for in-vehicle information
systems, the authors determined that a touch key size of at
least 17.5x17.5 mm minimizes navigation error rate, lane
deviations, driving speed variation and glance time while
maximizing subjective usability ratings [22]. While touch
screen size and overall visual complexity of the menu always
have to be taken in consideration, the recommended touch
key size may serve as a starting point for menu design.

Examples: See Figure 3.

Figure 3. Apple Car Play menu.

C. Pattern 3: Auditory Informations and Warnings
Intent: this pattern is about designing auditory informa-

tions and warnings that are quick to capture and easy to
comprehend.

Topics: perceived safety, driver, acoustic, output
Problem: When using only visual warnings, driver distrac-

tion can occur. Still, drowsiness and inattentiveness increase
the risk of traffic accidents. Thus, it is still necessary to direct
the drivers attention to potential dangers by different means.

Scenario: Well-designed auditory warning systems can
serve this purpose. Perceptibilty of auditory warnings de-
pends on loudness, background noise and complexity. Also,
the driver needs to know which actions have to be taken to
react appropriately.

Solution: Different warning techniques are appropriate
for different situations. According to Bliss and Acton [23],
verbal speech notifications and auditory icons (sounds with
real-world representations, e.g., the sound of a car engine)
are equally efficient when it comes to response accuracy
and reaction time. Auditory warnings also have to convey
enough information to be accurately understood. Due to
driving comfort reasons, warnings of low urgency should
not be annoying and can even be quite pleasant, while high-
urgency warnings are bound to be annoying [24].

Examples: Table II shows auditory warnings for some
common situations of varying urgency. Empirical work on
the perceived urgency of speech based warnings has been
done [25].

D. Pattern 4: Choosing the Best Modality for Warning
Displays

Intent: this pattern is about choosing the right warning
display modality for different situations, combining different

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 23 / 64

TABLE II
RECOMMENDED WARNINGS FOR COMMON SITUATIONS OF VARYING URGENCY

Urgency Speech Based Warnings Auditory Icons Appropriate Situation

Informational (low)
Signal words that convey
low urgency:
”Notice”, ”Information”

Pouring water,
steam, released air Low petrol and oil levels, low tire pressure

Warning (moderate)
Signal words that convey
medium urgency:
Warning, Caution

Shutting car door,
Roaringmotor sound,
squeaking sound

Car door opened, speed limit exceeded, hand brake on

Critical (high)
Signal words that convey
high urgency:
Danger

Car horn, car crash,
alarm siren

Blind spot overtaking, car drifting off road, collision possible

modalities if adequate.
Topics: perceived safety, driver, multimodal, output
Scenario: In-vehicle information system (IVIS) informa-

tion needs to be delivered effectively while minimizing the
interference with driving. Display modality has a significant
impact on the performance of in-vehicle information systems.
Visual, auditory and tactile displays all have their advantages
and disadvantages [26]: Visual warnings can be inspected
at the drivers own pace and can be viewed multiple times.
However, they cause visual distraction from the driving task
and can be overlooked. Auditory warnings can be picked up
without causing visual distraction, but they require the drivers
full attention when they are displayed. Tactile warnings are
highly noticeable, not influenced by noise and have no visual
demand, but they are limited to a few types of information,
such as simple alerts. In order to maximize IVIS efficiency,
designers have to choose carefully between the different
modalities.

Solution: When choosing between auditory and visual
presentation, table III offers decision guidelines based on
current empirical research for a variety of cases. Some of
these cases will probably benefit if combined with another
display modality.

Examples: Figure 4 shows combined auditory and visual
warnings. See [27] for a live demonstration.

Figure 4. Audi A8 Distance Warning through a combination of auditory
and visual warning displays.

E. Pattern 5: IVIS System Response Time

Intent: This Pattern addresses the role of system response
time while operating in-vehicle information systems by touch
interfaces or hardware keys and its influence on driver
distraction and comfort.

Topics: Workload caused by distraction, joy of use, driver,
keys, visual, haptic, input

Problem: While getting more and more complex, many
modern in-vehicle information systems possess significant
delays when using them because of the sheer amount of
information that they have to process. The influence of
system response time - the delay of a systems response after
user input until it is ready to take new commands - has
been discussed as a potential source of driver distraction and
annoyance [28].

Scenario: Drivers use in-vehicle information systems for
a wide variety of functions. While navigating their menus,
the IVIS processes large amounts of information, which may
lead to long and uncertain loading times.

Solution: Keep system response time below 250 ms.
According to current design guidelines [19], control feedback
should be given within 250ms after the input. A study
by Utesch and Vollrath [29] showed that longer feedback
delays (500 or 1000 ms) dont impair driving performance
but caused significant annoyance in drivers. Keep system
response times constant. It has also been shown in this
study that delays that vary in their length distract the driver,
while constant delays cause less off-road glances. It can be
concluded that feedback delays should be kept constant so
that waiting times for system response are predictable. For
longer delays, use additional feedback modalities. According
to guidelines of the European Commission [30], if system
responses take longer than 250 ms, the system should inform
the driver that it has recognized the input. If longer delays
(500 ms and above) are inevitable, Utesch and Vollrath [29]
recommend using acoustic or tactile feedback to indicate
system readiness, as this will reduce off-road glances.

Examples:
1. Demonstration of a 2015 Audi MMI System, showing

constant and short system response times [31].
2. Demonstration of a BMW 5 Series iDrive, showing long

but constant delays [32].
3. Demonstration of an Apple CarPlay IVIS in the Ferrari

FF showing long and variable delays. This might cause
distraction and annoyance [33].

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 24 / 64

TABLE III
RECOMMENDED WARNINGS FOR COMMON SITUATIONS OF VARYING URGENCY

Case Primary Modality Reason Combine with...

High priority messages Auditory[34][35] Visual warnings alone
are likely to be overlooked

Tactile [36] for
decreased reaction times

Complex secondary task Auditory[37][38][39] Further distraction due
to increased glance duration

Visual[40] for reduced
reaction times and less navigation errors

Driving task is highly demanding,
e.g., high driving speed Auditory[37][38][39] Divided visual attention

poses a security risk
Displaying instructions, commands,
warnings or alarms Auditory [41] Speech is more suitable

for this information type Tactile [42]
Auditory message cannot be kept
short and precise Visual [43] Auditory messages that are

too long cause severe distraction

Driver performs auditory tasks Visual [25] Auditory perception is
partially or completely blocked

Tactile [44] for reduced lane
deviations and annoyance,
increased pleasantness

F. Pattern 6: In-Vehicle Display Icon Size

Intent: this pattern addresses recommended IVIS icon
sizes.

Topics: Joy of use, driver, icons, visual
Problem: IVIS displays transport various informations,

some of which require quick and accurate recognition. How-
ever, as in-vehicle displays have to convey more and more
information, available space on in-vehicle displays becomes
sparse.

Scenario: Icons are a way of presenting information in a
spatially condensed, yet clearly understandable way. When
relying on icons, the driver needs to be able to quickly grasp
and process information, which in turn requires that icons
can be easily recognized.

Solution: According to Zwaga [45], icons perform better
than text displays only if they are well designed. According
to FHWA guidelines [46], choosing the adequate size for an
icon can be determined with the following set of formulæ.
See Figure 5 for an illustration of visual angle, distance
and symbol height (where Symbol Height = the height of
the symbol; Distance = distance from viewers eyepoint to
the display; Visual Angle = angle in degrees. Height and
Distance use the same unit of measure).

Figure 5. Relationship Between Viewing Distance, Symbol Height and
Visual Angle.

1. If viewer distance and Symbol Height are known,
the following formulæwill calculate the distance.

arctan(
Symbolheight

Distance
) (1)

or
3438 Height

Distance

60
(2)

2. If distance and visual angle are known.

Distance[tan(V isualAngle)] (3)

3. If visual angle and symbol height are known, the
following formulæwill calculate the distance.

Symbolheight

tan(V isualAngle)
(4)

Examples: See Figure 6.

Figure 6. Audi A4 2008 Dashboard Icons, taken from the users manual.
[47]

G. Pattern 7: Visual Display Colour Choices

Intent: this pattern is about choosing adequate colours for
visual displays.

Topics: Joy of use, driver, colors, visual
Problem: IVIS displays transport various informations,

some of which require quick and accurate recognition. How-
ever, as in-vehicle displays have to convey more and more
information, they still need to be processed quickly.

Scenario: IVIS displays have to display information in a
clear and efficient way. One way to achieve this is picking
adequate colors for displays, so that reading and recognizing
symbols can be accomplished without delay.

Solution: According to NHTSA guidelines, visual display
colors should comply to a number of standards.

• Avoid using red/green and blue/yellow combinations so
that color blind drivers can process the display easily.

• According to a survey conducted by Lee and Park
[48], senior people prefer combinations with distinc-

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 25 / 64

tive brightness contrasts between foreground and back-
ground color because of their better legibility.

• Displays that are too colorful distract the driver in
various ways. Excluding black and white, a maximum
of five different colours should be used.

• Use different colours for different priorities, e.g., red
for critical alerts, amber for warnings, white for infor-
mation.

Visual displays are easier to process if high color contrasts
are used. A driving simulation study showed that inefficiently
designed car displays strongly increase reaction times in
driving tasks. They also increase reading errors [49]. Table
IV shows color contrasts that guarantee high legibility.

TABLE IV
RECOMMENDED COLOR CONTRASTS FOR IVIS DISPLAYS

Black/yellow Black/yellow
Black/white Black/white

Black/orange Black/orange
Blue/white Blue/white

Green/white Green/white
Red/white Black/yellow

Examples: See Figure 7. This dashboard relies on white-
on-black and orange-on-black contrasts which are highly
visible. Orange is the only color besides black and white.

Figure 7. Dashboard with color contrasts that are highly visible.

H. Pattern 8: Physical Buttons Versus Touch Screen Inter-
faces

Intent: this pattern addresses the question whether touch
screens or physical buttons should be used.

Topics: workload caused by distraction, driver, touch
screen, visual, haptic, input

Problem: Current touch-screen devices provide no tactile
feedback concerning control orientation, location, separation
from one another. While driving, they can not be operated
with eyes on the road, which in turn leads to long off-
road glances. NHSTA guidelines [19] suggest that touch
interfaces should not be operated while driving. On the other
hand, touch screen devices provide much more flexibility,

Figure 8. BMW iDrive screen, showing blue-on-white contrasts with an
orange highlight.

which is needed to operate modern, feature-rich in-vehicle
information systems.

Scenario: Drivers use in-vehicle information systems for
a wide variety of functions. Ways to navigate through the
increasing number of functions are getting more and more
complex. Touch screen interfaces are getting more and
more popular, but navigating them while driving is highly
distracting.

Solution:
1) While driving, limit the amount of time spent to

interact with touch devices. NHTSA recommends a
maximum of six touches for every 12 seconds period
[50]. Physical buttons do not require such strict reg-
ulations as their functionality is limited and they are
not as visually distracting. Thus, functions that must be
available to the driver while the car is moving should
be represented by physical buttons or clearly identifi-
able, big touch buttons. Recommended limitations are
as follows

• For touch devices without haptic feedback, limit
touch screen interactions to six touches for every
12 seconds.

• For touch devices with haptic feedback, limit
touch screen interactions only to certain functions.

• No restrictions apply to physical buttons while
driving.

• No restrictions apply while standing.
2) Equip touch devices with haptic feedback. According

to Harrison and Hudson [51], touch screens lead to a
high number of off-road searching glances and require
long periods of operation time. They also found that
this could be mitigated by provide touch screens with
haptic feedback, which is confirmed by other studies
[52]. Studies suggest that this kind of feedback greatly
increases performance and reduces operation time. If
haptic feedback is used, touch devices still should to
be limited to the functionality provided by traditional
physical buttons.

3) Also, consider alternative input methods that dont
require visual attention (e.g., voice interaction).

Examples: See Figure 9.

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 26 / 64

Figure 9. VW Passat dashboard which combines few physical buttons with
a well-readable touch display.

III. CONCLUSION
In this paper, we presented a collection of patterns, which

deals with recurring questions of automotive design as re-
ported by designers working in that area. By relying on
design guidelines as well as empirical research, the collection
tries to bridge the gap between government regulations,
scientific findings and industry needs. These patterns were
intended to be of direct practical use for automotive design-
ers. The pattern structure and length, which we described
in earlier work [18], has been fit to stakeholder demands,
resulting in patterns with an increased emphasis on brevity
and conciseness. The car User Experience patterns proposed
in this paper constitute a small part of a constantly growing
collection of design knowledge. The speed of innovations,
the complexity, and the range of functions of car interfaces
is increasing constantly. In addition, even if there are more
and more connections between single car interfaces, innova-
tions do not necessarily occur in parallel. Thus, an equally
dynamic approach to document best practices in design
is required. This pattern collection shows how a pattern
approach to car UX design can meet these demands. The
pattern collection will continue to grow into a substantial
body of car UX design knowledge, which covers at least
three of the most important UX factors for driver space
design [53].

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry of

Science, Research and Economy and the National Founda-
tion for Research, Technology and Development and AU-
DIO MOBIL Elektronik GmbH is gratefully acknowledged
(Christian Doppler Laboratory for ”Contextual Interfaces”).

REFERENCES

[1] A. Dearden and J. Finlay, “Pattern languages in hci: A critical
review,” Human-Computer Interaction, 2006, pp. 49–102, Sheffield
Hallam University. [retrieved: 02, 2016] URL: http://research.cs.vt.
edu/ns/cs5724papers/dearden-patterns-hci09.pdf.

[2] M. Obrist, D. Wurhofer, E. Beck, A. Karahasanovic, and
M. Tscheligi, “User experience (ux) patterns for audio-visual
networked applications: Inspirations for design,” in Proceedings
of the 6th Nordic Conference on Human-Computer Interaction:
Extending Boundaries, ser. NordiCHI ’10. New York, NY,
USA: ACM, 2010, pp. 343–352. [retrieved: 02, 2016] URL:
http://doi.acm.org/10.1145/1868914.1868955

[3] J. O. Borchers, J. C. Thomas, A. Sutcliffe, J. Coplien, and R. N.
Griffiths, “Patterns: What’s in it for hci?” in Extended Abstracts of
the CHI 2001 Conference on Human Factors in Computing Systems.
ACM, 2001.

[4] M. Hassenzahl and N. Tractinsky, “User experience-a research
agenda,” Behaviour & information technology, vol. 25, no. 2. Taylor
& Francis, 2006, pp. 91–97.

[5] A. F. Blackwell and S. Fincher, “PUX: Patterns of User Experience,”
Interactions, vol. 17, no. 2. New York, NY, USA: ACM, 2010, pp.
27–31.

[6] M. Tscheligi, “User experience design for vehicles,” in Christian
doppler laboratory: contextual interfaces. Tutorial for conference AUI.
ACM, 2012.

[7] M. Obrist, D. Wurhofer, E. Beck, and M. Tscheligi, “Cux
patterns approach: Towards contextual user experience patterns,”
in Proceedings of the 2nd International Conferences on Pervasive
Patterns and Applications, PATTERNS, vol. 10. IARIA, 2010.
[retrieved: 02, 2016] URL: http://www.thinkmind.org/index.php?
view=article&articleid=patterns 2010 3 20 70079

[8] A. Krischkowsky, D. Wurhofer, N. Perterer, and M. Tscheligi,
“Developing patterns step-by-step: A pattern generation guidance
for hci researchers,” in PATTERNS 2013, The Fifth International
Conferences on Pervasive Patterns and Applications. IARIA, 2013,
pp. 66–72. [retrieved: 02, 2016] URL: http://www.thinkmind.org/
index.php?view=article\&articleid=patterns 2013 3 30 70053

[9] D. Martin, T. Rodden, M. Rouncefield, I. Sommerville, and S. Viller,
“Finding patterns in the fieldwork,” in Proceedings of the Seventh
European Conference on Computer Supported Cooperative Work.
Kluwer Academic Publishers, 2001, pp. 39–58.

[10] A. Crabtree, T. Hemmings, and T. Rodden, “Pattern-based support
for interactive design in domestic settings,” in Proceedings of
the 4th Conference on Designing Interactive Systems: Processes,
Practices, Methods, and Techniques, ser. DIS ’02. New York,
NY, USA: ACM, 2002, pp. 265–276. [retrieved: 02, 2016] URL:
http://doi.acm.org/10.1145/778712.778749

[11] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language:
towns, buildings, construction. Oxford University Press, 1977, vol. 2.

[12] K. Young, M. Regan, and M. Hammer, “Driver distraction: A review
of the literature,” Distracted driving. Australasian College of Road
Safety, 2007, pp. 379–405.

[13] M. A. Recarte and L. M. Nunes, “Mental workload while driving:
effects on visual search, discrimination, and decision making.” Journal
of experimental psychology: Applied, vol. 9, no. 2. American
Psychological Association, 2003, p. 119.

[14] J. Engström, E. Johansson, and J. Östlund, “Effects of visual and
cognitive load in real and simulated motorway driving,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 8, no. 2.
Elsevier, 2005, pp. 97–120.

[15] R. Buchner, D. Wurhofer, A. Weiss, and M. Tscheligi, “Robots in
time: How user experience in human-robot interaction changes over
time,” in Social Robotics. Springer, 2013, pp. 138–147.

[16] R. Buchner, P. M. Kluckner, A. Weiss, and M. Tscheligi, “Assisting
maintainers in the semiconductor factory: Iterative co-design of a
mobile interface and a situated display,” in Proceedings of the 12th In-
ternational Conference on Mobile and Ubiquitous Multimedia. ACM,
2013, p. 46.

[17] G. Stollnberger, A. Weiss, and M. Tscheligi, “”the harder it gets”
exploring the interdependency of input modalities and task complexity
in human-robot collaboration,” in RO-MAN, 2013 IEEE. IEEE, 2013,
pp. 264–269.

[18] A. G. Mirnig et al., “Generating patterns combining scientific and
industry knowledge: An inclusive pattern approach,” in PATTERNS
2015, The Seventh International Conferences on Pervasive Patterns
and Applications. IARIA, 2014, pp. 38–45.

[19] A. Stevens, A. Quimby, A. Board, T. Kersloot, and P. Burns, NHTSA
Design Guidelines for Safety of In-Vehicle Information Systems.
National Highway Traffic Safety Administration, 2002.

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 27 / 64

[20] G. E. Burnett, G. Lawson, R. Donkor, and Y. Kuriyagawa, “Menu
hierarchies for in-vehicle user-interfaces: Modelling the depth vs.
breadth trade-off,” Displays, vol. 34, no. 4. Elsevier, 2013, pp. 241–
249.

[21] M. Pfauth and J. Priest, “Person-computer interface using touch screen
devices,” Proceedings of the Human Factors Society 25th Annual
Meeting, no. 1, 1981, pp. 500–504.

[22] H. Kim, S. Kwon, J. Heo, H. Lee, and M. K. Chung, “The effect of
touch-key size on the usability of in-vehicle information systems and
driving safety during simulated driving,” Applied ergonomics, vol. 45,
no. 3. Elsevier, 2014, pp. 379–388.

[23] J. P. Bliss and S. A. Acton, “Alarm mistrust in automobiles: how col-
lision alarm reliability affects driving,” Applied ergonomics, vol. 34,
no. 6. Elsevier, 2003, pp. 499–509.

[24] A. Guillaume, L. Pellieux, V. Chastres, and C. Drake, “Judging the
urgency of nonvocal auditory warning signals: perceptual and cognitive
processes.” Journal of experimental psychology: Applied, vol. 9, no. 3.
American Psychological Association, 2003, p. 196.

[25] J. Edworthy and E. Hellier, Complex Nonverbal Auditory Signals and
Speech Warnings. Lawrence Erlbaum Associates Publishers, 2006,
pp. 199–220.

[26] Y. Cao and M. Theune, “The use of modality in in-vehicle information
presentation: A brief overview,” in Proceedings of the 2nd International
Workshop on Multimodal Interfaces for Automotive Applications
(MIAA), in conjunction with IUI. ACM, 2010, pp. 1–5.

[27] “Collision warning systems at the test track,” 2012, [retrieved: 02,
2016] URL: https://www.youtube.com/watch?v=rYckJqp4XTc#t=45.

[28] P. Burns and T. Lansdown, “E-distraction: the challenges for safe and
usable internet services in vehicles,” in Internet Forum on the Safety
Impact of Driver Distraction When Using In-Vehicle Technologies,
2000. [retrieved: 02, 2016] URL: http://www-nrd.nhtsa.dot.gov/
departments/Human%20Factors/driver-distraction/PDF/29.PDF

[29] F. Utesch and M. Vollrath, “Do slow computersystems impair driving
safety?” in European Conference on Human Centred Design for
Intelligent Transport Systems, 2nd, 2010, Berlin, Germany, 2010.

[30] T. F. HMI, “European statement of principles on human machine
interface for in-vehicle information and communication systems,”
Tech. rep., Commission of the European Communities, Tech. Rep.,
1998.

[31] “2015 Audi MMI Infotainment Review in the 2015 Audi A3 Sedan,”
2014, [retrieved: 02, 2016] URL: https://www.youtube.com/watch?v=
xadb1vSXw7Q.

[32] “BMW 5 Series Connected-Drive (iDrive) Full Demo - including
Head-Up Display,” 2013, [retrieved: 02, 2016] URL: https://www.
youtube.com/watch?v=Ulcgm-GN M.

[33] “Apple CarPlay Demo,” 2014, [retrieved: 02, 2016] URL: https://www.
youtube.com/watch?v=TQz64rhefqY.

[34] C. Kaufmann, R. Risser, A. Geven, and R. Sefelin, “Effects of
simultaneous multi-modal warnings and traffic information on driver
behaviour,” in Proceedings of European Conference on Human Cen-
tred Design for Intelligent Transport Systems. Humanist Publications,
2008, pp. 33–42.

[35] B. Seppelt and C. Wickens, “In-vehicle tasks: Effects of modality,
driving relevance, and redundancy,” Tech. Rep., 2003. [retrieved: 02,
2016] URL: http://www.aviation.illinois.edu/avimain/papers/research/
pub pdfs/techreports/03-16.pdf

[36] C. Ho, H. Z. Tan, and C. Spence, “Using spatial vibrotactile cues to
direct visual attention in driving scenes,” Transportation Research Part
F: Traffic Psychology and Behaviour, vol. 8, no. 6. Elsevier, 2005,
pp. 397–412.

[37] J. B. Hurwitz and D. J. Wheatley, “Using driver performance measures
to estimate workload,” in Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting, vol. 46, no. 22. Sage Publications,
2002, pp. 1804–1808.

[38] S. G. Klauer, T. A. Dingus, V. L. Neale, J. D. Sudweeks, and D. J.
Ramsey, “The impact of driver inattention on near-crash/crash risk:
An analysis using the 100-car naturalistic driving study data,” Tech.
Rep., 2006.

[39] R. Srinivasan and P. P. Jovanis, “Effect of selected in-vehicle route
guidance systems on driver reaction times,” Human Factors: The
Journal of the Human Factors and Ergonomics Society, vol. 39, no. 2.
Sage Publications, 1997, pp. 200–215.

[40] Y.-C. Liu, “Comparative study of the effects of auditory, visual and
multimodality displays on drivers’ performance in advanced traveller

information systems,” Ergonomics, vol. 44, no. 4. Taylor & Francis,
2001, pp. 425–442.

[41] K. Stanney, S. Samman, L. Reeves, K. Hale, W. Buff, C. Bowers,
B. Goldiez, D. Nicholson, and S. Lackey, “A paradigm shift in
interactive computing: Deriving multimodal design principles from
behavioral and neurological foundations,” International Journal of
Human-Computer Interaction, vol. 17, no. 2. Taylor & Francis, 2004,
pp. 229–257.

[42] J. B. Van Erp and H. A. Van Veen, “Vibrotactile in-vehicle navigation
system,” Transportation Research Part F: Traffic Psychology and
Behaviour, vol. 7, no. 4. Elsevier, 2004, pp. 247–256.

[43] Y. Cao, S. Castronovo, A. Mahr, and C. Müller, “On timing and modal-
ity choice with local danger warnings for drivers,” in Proceedings of
the 1st International Conference on Automotive User Interfaces and
Interactive Vehicular Applications. ACM, 2009, pp. 75–78.

[44] D. Kern, P. Marshall, E. Hornecker, Y. Rogers, and A. Schmidt,
“Enhancing navigation information with tactile output embedded into
the steering wheel,” in Pervasive Computing. Springer, 2009, pp.
42–58.

[45] H. Zwaga and T. Boersema, “Evaluation of a set of graphic symbols,”
Applied Ergonomics, vol. 14, no. 1. Elsevier, 1983, pp. 43–54.

[46] J. L. Campbell, J. Richman, C. Carney, and J. Lee, “In-vehicle display
icons and other information elements. volume i: Guidelines, technical
report,” Tech. Rep., 2004.

[47] Audi A4 2008 Owner’s Manual, http://www.alkivar.com/AUDI/Audi
A4 2008 Owner s Manual.pdf [retrieved: 02, 2016].

[48] M. Lee and J. Park, “Senior users color cognition and color sensitivity
features in visual information on web-interface,” in Universal Access
in Human-Computer Interaction. Aging and Assistive Environments.
Springer, 2014, pp. 129–137.

[49] E. S. Wilschut, G. Rinkenauer, K. A. Brookhuis, and M. Falkenstein,
“performance in a lane-change task is vulnerable to increased sec-
ondary task complexity.” TNO Publications, p. 5.

[50] Authors unknown, “Visual-manual nhtsa driver distraction guidelines
for in-vehicle electronic devices,” Washington, DC: National Highway
Traffic Safety Administration (NHTSA), Department of Transportation
(DOT), 2012.

[51] C. Harrison and S. E. Hudson, “Providing dynamically changeable
physical buttons on a visual display,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2009,
pp. 299–308.

[52] H. Richter, R. Ecker, C. Deisler, and A. Butz, “Haptouch and the
2+ 1 state model: potentials of haptic feedback on touch based in-
vehicle information systems,” in Proceedings of the 2nd international
conference on automotive user interfaces and interactive vehicular
applications. ACM, 2010, pp. 72–79.

[53] A. G. Mirnig et al., “User experience patterns from scientific and
industry knowledge: An inclusive pattern approach,” International
Journal On Advances in Life Sciences, vol. 7, no. 3 and 4. IARIA,
2015, pp. 200–215. [retrieved: 02, 2016] URL: https://www.thinkmind.
org/index.php?view=article&articleid=patterns 2015 2 30 70011.

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 28 / 64

Knowledge Extraction from German Automotive Software Requirements

using NLP-Techniques and a Grammar-based Pattern Detection

Mathias Schraps

Software Development

Audi Electronics Venture GmbH

85080 Gaimersheim, Germany

e-mail: mathias.schraps@audi.de

Alexander Bosler

Fakultät für Informatik

Technische Universität München

85748 Garching, Germany

e-mail: alexander.bosler@tum.de

Abstract—In Requirements Engineering, natural language is

often used to specify the system under development with

textual requirements. Especially in the automotive industry it

is used to specify the processing of signals and parameters, as

well as the behavior of sensors or actuators. During the

creation of a specification first executable software models

were developed, which have to be implemented according to

the corresponding requirements. Due to the asynchronous

development of specifications and software models,

inconsistencies and defects may occur. To overcome this issue,

we developed an approach using Natural Language Processing

(NLP) techniques and a formal grammar to match semantic

patterns in order to extract knowledge of requirements and

represent it in an ontology. This approach will be introduced

based on an example of an automotive software requirement.

Keywords-Natural Language Processing; Requirements;

Ontology; Knowledge Representation; Semantic Annotated

Grammar; Knowledge Extraction; Pattern Detection.

I. INTRODUCTION

The development of embedded software in the
automotive domain is a challenging task. First, requirements
regarding architecture, data communication and behavior of
the system under development have to be elicited and
documented. This involves several stakeholders like
electronic engineers, software developers, architects and
other domain engineers.

During the phase of Requirements Elicitation, first
executable software models are created, so-called Rapid
Prototyping [1]. Therein, a partial amount of these
requirements are implemented so far. During the progress of
the project more and more requirements will be specified and
have to be covered by the model and later by the
implementation. This procedure implies a high linkage
between two project phases: Requirements Elicitation and
Modelling. If the artifacts of these both phases were not
updated permanently by the involved developers and
stakeholders, defects, errors or inconsistencies may occur
and could be propagated across the entire development
process. The later these issues are detected and solved, the
more cost-intensive is their removal [2]. Therefore, the
artifacts created in early phases of a software development
project have to be consistent as much as possible.

In the automotive industry, a software requirement
specification consists of more than only one document. Even

though these documents come from many authors with
different background and interests, they share one thing in
common to specify their requirements: a natural language.
Unfortunately, these natural language requirements can be
incomplete, ambiguous and error-prone [3]–[5], especially in
early phases of development.

This paper presents a method of extracting knowledge
from textual requirements formulated in German natural
language using Natural Language Processing (NLP)
techniques. According to the detected patterns within a
single requirement, this knowledge will be transferred into a
requirements ontology in order to be able to check
consistency between several requirements and for reuse
purposes.

The structure of this paper is as follows. Section II gives
an overview about the annotation of textual requirements
using NLP-techniques. This is illustrated on a sample
requirement given at the end of this section. In Section III,
the pattern detection and the mapping of the sample
requirement into an ontology will be introduced. Section IV
provides a conclusion and outlines possible future work. The
sample requirement on which all illustrations in the
following sections are based, is formulated as follows:
“Wenn die Klemme 50 eingeschalten ist und
s_MTrig=p_MAn, dann ist der Motor zu starten
(s_MStart=1).“ An English translation of this requirement
would be: “If clamp 50 is switched on and s_MTrig=p_Man,
then the engine must be started (s_MStart=1).”

II. REQUIREMENTS ANNOTATION USING NLP

The NLP annotation process is the concatenation of
different NLP-tools in a pipeline-style manner, where each
tool provides additional information about the processed
requirement (cf. Fig 1). This process was inspired by Arora
et al [6] and adds a possibility to map the knowledge within
the requirement about the system under development into an
ontology.

If needed, tools are able to query the underlying
ontology, where the knowledge is stored. This knowledge is
extracted from the requirements in later steps. At the
beginning of the requirement acquisition, it is possible to
initialize the underlying ontology with a priori knowledge
about predefined signals, constants and parameters.
Furthermore, it is possible to add an existing taxonomy,
which in this case is extracted from an existing High Level

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 29 / 64

Requirements (HLRs) Specification [7]. To improve the
results of the OpenNLP-tools [8], which are based on
machine learning models the AEV-Corpus (internal Audi
Electronics Venture Requirement based Corpus) was
introduced (cf. , ,  in Fig. 1). At the moment the AEV-
Corpus consists of about 450 tokenized, POS-tagged and
chunked automotive software requirements. In the following
paragraphs the annotation of the requirement, which results
in an “NLP Annotated Requirement” (cf. Fig. 1), is
described in more detail.

The “RegEx-based search & replace” activity provides
the possibility to define search and replace pairs, which are
enforced at the start of the NLP-process in order to fix
syntactical problems like missing or multiple whitespace
characters and to standardize symbol usage.

During the “Tokenization” (cf.  in Fig. 1), the
OpenNLP Tokenizer splits the requirements according to a
Maximum Entropy Model trained on the AEV-Corpus. The
model achieves results similar to the default models provided
by OpenNLP when tokenizing the natural language parts of a
given requirement. The main advantage achieved by
introducing the AEV-Corpus trained model, is the
tokenization of very formal requirements: concepts like
formal equations of signals and constants, C-Structs or
Arrays are not part of the OpenNLP default models and thus,
tokenization tends to fail. To improve the tokenization
results, generated by the OpenNLP Tokenizer, the Named
Entities (contained in the underlying ontology) are used to
verify their correct tokenization of the currently processed
requirement. The tokens, which are generated for the sample
requirement (cf. Section I), are shown at  in Fig. 2.

The “Spell & Synonym Checking” activity uses the Java
version of the JLanguageTool [9] to detect misspelled tokens

and provides a list of suggestions for each of them.
Furthermore, a set of synonyms for each token is created
using GermaNet [10] and OpenThesaurus [11]. The resulting
set is used to query the underlying ontology to check if one
or more of them are already included. After this, the
synonyms provided and found at least once in the ontology,
are added to their corresponding token.

In the “POS Tagging” activity (cf.  in Fig. 1), each
token (word, punctuation character and mathematical
symbol) of the requirement is tagged with its corresponding
Part Of Speech (POS) Tag. Since formal definitions are very
common in automotive software requirements and common
Tagsets only provide Part Of Speech Tags for natural
language, we extended the STTS Tagset [12] by $S to tag
mathematical symbols (=,<,>,≥,≤,+,-,…) and $L to tag listing
symbols (:,->) to address this issue. The assignment of the
POS-Tags to each token is done using the OpenNLP POS-
Tagger based on a Maximum Entropy Model, which is
trained on the AEV-Corpus. To improve the POS-Tagging
results generated by the OpenNLP POS-Tagger, the Named
Entities and Concepts (contained in the underlying ontology)
are used to verify their correct tagging in the currently
processed requirement. The POS-Tags for all tokens,
generated during the “Tokenization” of the sample
requirement (cf. Section I), are shown at  in Fig. 2.

The “Text Chunking” activity (cf.  in Fig. 1) uses the
OpenNLP Chunker to chunk the requirement according to a
Maximum Entropy Model, which is trained on the AEV-
Corpus. Each chunk consists of one or more tokens, tagged
with the corresponding Chunk-Tag and can be considered as
a “part of interest” of the processed requirement. The
chunks, generated for the sample requirement (cf. Section I),
are shown at  in Fig. 2. The meaning of the used Chunk-

Figure 1. NLP based knowledge extraction process (part 1)

Figure 2. Sample requirement annotated by the NLP-process according to Fig. 1

RegEx-based

find&replace
Tokenization

Spell & Synonym

Checking
POS Tagging

Text

Chunking

Ontology

NLP Annotated

Requirement
Requirement

OpenNLP
Max. Ent.
Tokenizer

OpenNLP
Max. Ent.
Chunker

OpenNLP
Max. Ent.

POS Tagger

AEV-Corpus

 Syntax-Rules
 Symbol-

transformation

 LanguageTool
 GermaNet
 OpenThesaurus

 HLRs Taxonomy

 Predefined: Signals,
Constants, Parameters

  

Wenn | die | Klemme | 50 | eingeschalten | ist | und | s_MTrig | = | p_MAn | , | dann | ist | der | Motor | zu | starten | (| s_MStart | = | 1 |) | .

ED PD FO ED RD FO

|…| = Token, italic = POS-Tag, bold = Chunk

KOUS ART NN CARD ADJD VAFIN KON NE $S NE $, ADV VAFIN ART NN PKTZU VVINF $(NE $S CARD $($.







18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 30 / 64

Tags is as follows: Entity Definition (ED), State/Property
Definition (PD), Action/Relation Definition (RD),
Formula (FO).

III. PATTERN DETECTION AND ONTOLOGY ADJUSTMENT

Based on the NLP Annotated Requirement (cf. Fig. 2)
and patterns in the form of a semantic annotated grammar
(cf. Fig. 4), which is inspired by [13], the “Pattern Detection”
and the “Ontology Adjustment” (which is split into “Identify
Ontology Adjustments” and “Ontology Adjustment” to allow
User Interaction), extracts the knowledge contained in the
processed requirement and stores it into the underlying
ontology (cf. Fig. 3). A more detailed view on the knowledge
extraction process is given in the following paragraphs.

 During the “Pattern Detection”, the semantic aspect of
the semantic annotated grammar is ignored since it does not
provide any additional information for this activity. The first
step in the Pattern Detection is the aggregation of tokens,
POS-Tags and chunks to a list, which is referred to as
“word”. The “word” only contains elements, which are
available in the NLP Annotated Requirement and also
terminals of the grammar. According to this rule and the
semantic annotated grammar, the following elements in the

annotated sample requirement (cf. Fig. 2.) would be ignored:
|ist|(VAFIN), |,|($,), |ist|(VAFIN), |zu|(PKTZU), |.|($.) and
the “word” would be: “Wenn ED PD KON FO dann ED RD
FO”. To verify if the "word" can be expressed in the formal
language defined by the semantic annotated grammar, a
finite state machine based recognizer is being used. For the
sample requirement the recognizer would tell us that our
“word” can be expressed using the If-Then-Pattern of the
semantic annotated grammar (cf. <If-Then-Pattern> in
Fig. 4).

At the end of the “Pattern Detection” activity, the user is
informed about the results of the “Spell & Synonym
Checking” activity (cf. Section II) and whether a valid
requirement pattern was found in the processed requirement
or not. This allows the user to rephrase the requirement or to
start the “Ontology Adjustment” for the processed
requirement.

The “Identify Ontology Adjustments” activity performs
two major tasks. At first, it creates a temporary knowledge
representation for the processed requirement, based on the
semantic annotated grammar (cf. Fig. 4, Fig. 5 and Fig. 6).
Secondly, it checks whether the insertion of the temporary
knowledge representation can be performed to the

Figure 3. NLP-based knowledge extraction process (part 2)

Figure 4. Simplified Semantic Annotated Grammar for Pattern Detection
and Ontology Adjustment in BNF-Style Figure 5. Ontology representation of ED and FO chunks

ConfirmPattern

Detection

User
Interaction

Identify Ontology

Adjustments

Ontology

Semantic
Annotated Grammar

NLP Annotated
Requirement

Rerun

Pipeline

Rephrase

Confirm User
Interaction

Ontology

Adjustment

Rephrase

<ED-Chunk> ::= <optional-Article> <Entity>

<optional-Article> ::= “ ” | ART

<Entity> ::=

NN => createIndividual(valueOf(NN),valueOf(NN)) |

NN CARD => createIndividual(valueOf(NN),

concat(valueOf(NN),“ ”,valueOf(CARD)))

<If-Then-Pattern> ::=

Wenn <Condition> dann <Action> => createIfThenReq(

individualOf(<Condition>),

individualOf(<Action>))

<Condition> ::=

FO => createCondition(individualOf(FO)) |

ED PD KON <Condition> => createCondition(individualOf(ED),

individualOf(PD),

addSubCondition(<Condition>))

<Action> ::=

ED RD => createAction(individualOf(ED),individualOf(RD)) |

ED RD FO => createAction(individualOf(ED),individualOf(RD),

individualOf(FO))

Klemme 50

Klemme

s_MStart = 1s_MTrig = p_MAn

Formula

ED

Motor

Motor

Part created by Semantic Annotated Chunk or Pattern Grammar

italic Classes provided by the Semantic Annotated Grammar

bold Classes introduced in Ontology

Individuals introduced in Ontology

Instance of

Legend for Ontology representation

FO

ObjectProperty in Ontology

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 31 / 64

underlying ontology without the violation of existent axioms
or not. To create the temporary knowledge representation for
the entire processed requirement, a knowledge representation
is created for each chunk according to the semantic
annotations of its Chunk-Grammar (cf. <ED-Chunk> in
Fig. 4). The temporary knowledge representation, created for
the ED and FO chunks of the sample requirement are
different, since FO is an instance of a generic Formula Class
and ED, as defined in the Semantic Annotated Grammar (cf.
Fig. 4), creates both, the Class itself and an Individual as an
instance of the Class (cf. Fig. 5). After the temporary
knowledge representation for the chunks has been build, the
contained individuals are connected and enhanced with new
knowledge according to the semantic annotations of the
Pattern-Grammar (cf. <If-Then-Pattern> in Fig. 4),
determined during the “Pattern Detection” activity. The
temporary knowledge representation, which is created for the
sample requirement, is given in Fig. 6. Otherwise, if there is
no matching pattern found during the “Pattern Detection”
activity and the user confirmed the formulated requirement
in the previous activity, the temporary knowledge
representation of each single chunk will be linked to a
temporary DefaultRequirementIndividual, which represents a
lean requirement structure within the ontology. Finally, the
“Identify Ontology Adjustments” activity checks whether it
would be possible or not to insert the temporary knowledge
representation into the underlying ontology without violating
existent axioms of previous inserted requirements, which
may lead to an inconsistent ontology. During this step, the
underlying ontology is not updated or modified but queried
to detect axiom violations.

 If the “Identify Ontology Adjustments” activity
determines, that it is not possible to insert the temporary
knowledge representation into the ontology without violating
existent axioms, the user is asked whether he/she wants to
rephrase or refine the requirement or continue with the next
process step according to Fig. 3 by confirming the detected
issue.

“Ontology Adjustment” is the final step in the knowledge
extraction process. It updates the underlying ontology
according to the temporary knowledge representation of the
sample requirement (cf. Fig. 6), which was created by the
“Identify Ontology Adjustments” activity. If the ontology
can’t be updated with the temporary knowledge acquired
during the previous activity without violating existent
axioms (as determined by the “Identify Ontology

Adjustments” activity) and the user confirmed the issue after
the “Identify Ontology Adjustments” activity, every element
of the temporary knowledge representation, that violates an
existing axiom is removed from the remaining temporary
knowledge representation and the therein remaining
elements are inserted into the ontology and marked to be
partial.

IV. CONCLUSION AND OUTLOOK

In this paper, we presented an approach to annotate
automotive software requirements formulated in German
natural language using NLP-techniques. The pattern
detection matched predefined patterns and transforms the
tagged and chunked parts of a requirement according to its
semantic into a requirements ontology in order to represent
the knowledge of the entire requirement.

In our next work, we will support a mapping of the
developed requirements ontology to block-elements of a
software model created with MATLAB Simulink. This will
provide the ability to trace the semantic of requirements
between the phases Requirements Elicitation and Modelling
within the embedded software development process. In
further stages, this approach will be evaluated by a
prototypical tool with a graphical user interface to let the
user write requirements and check the consistency to the
corresponding software model.

REFERENCES

[1] J. Schäuffele and T. Zurawka, Automotive Software

Engineering: Grundlagen, Prozesse, Methoden und

Werkzeuge effizient einsetzen, 5th ed. Wiesbaden: Springer

Fachmedien Wiesbaden, 2013.

[2] S. McConnell, Code complete: A practical handbook of

software construction, 2nd ed. Redmond, Washington:

Microsoft Press, 2004.

[3] E. Hull, K. Jackson, and J. Dick, Requirements Engineering,

3rd ed. London: Springer Verlag London Limited, 2011.

[4] C. Rupp and SOPHIST GROUP, Requirements-Engineering

und -Management: Professionelle, iterative

Anforderungsanalyse für die Praxis, 5th ed. München, Wien:

Hanser, 2009.

[5] K. Pohl, Requirements Engineering: Grundlagen, Prinzipien,

Techniken, 2nd ed. Heidelberg: dpunkt-Verlag, 2008.

[6] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, and R.

Gnaga, “RUBRIC: A Flexible Tool for Automated Checking

of Conformance to Requirement Boilerplates,” Proceedings of

Figure 6. Knowledge representation of the sample requirement

Condition 1

s_MTrig = p_MAn

hasSubCondition

starten

Motor

Requirement 1

hasCondition hasAction

s_MStart = 1

doesPerform

s

isFormal

Motor starten
Klemme 50

eingeschalten
eingeschalten

StatefulIndividual

Klemme 50

State

onObject

ActionActionIndividualCondition IfThenRequirement

statefulIndividualOf hasSubCondition

inState

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 32 / 64

the 2013 9th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2013), New York, NY: Association

for Computing Machinery, 2013, pp. 599–602,

doi:10.1145/2491411.2494591.

[7] M. Ringsquandl and M. Schraps, “Taxonomy Extraction from

Automotive Natural Language Requirements Using

Unsupervised Learning,” International Journal on Natural

Language Computing (IJNLC), vol. 3, no. 4, pp. 41–51, 2014.

[8] Apache Software Foundation, “Apache OpenNLP,” [Online].

Available: https://opennlp.apache.org/. Accessed: Nov. 11,

2015.

[9] D. Naber, “LanguageTool,” [Online]. Available:

https://languagetool.org/. Accessed: Nov. 11, 2015.

[10] University of Tübingen, Tübingen, Germany, “GermaNet - An

Introduction,” [Online]. Available: http://www.sfs.uni-

tuebingen.de/GermaNet/. Accessed: Nov. 11, 2015.

[11] D. Naber, “openthesaurus.de,” [Online]. Available:

https://www.openthesaurus.de/. Accessed: Nov. 11, 2015.

[12] Universität Stuttgart, Institute for Natural Language

Processing, Stuttgart, Germany, “STTS Tag Table

(1995/1999),” [Online]. Available: http://www.ims.uni-

stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-

table.html. Accessed: Nov. 16, 2015.

[13] M. Schraps and M. Peters, “Semantic Annotation of a Formal

Grammar by SemanticPatterns,” 2014 IEEE 4th International

Workshop on Requirements Patterns (RePa), 2014, pp. 9–16,

doi:10.1109/RePa.2014.6894838.

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 33 / 64

Indoor Localization by Map Matching Using One Image of Information

Board

Kento Tonosaki, Yoshihiro Sugaya, Tomo Miyazaki, Shinichiro Omachi

Department of Communications Engineering, Graduate School of Engineering

Tohoku University

Sendai, Japan

e-mail: {sea, sugaya, tomo, machi}@iic.ecei.tohoku.ac.jp

Abstract—Indoor navigation systems have not become common

like an outdoor navigation system, because we cannot correctly

receive the signals from Global Positioning System (GPS)

satellites in indoor environments, and indoor map databases are

unavailable in most locations. Existing indoor localization

methods and navigation systems have problems such as

management and deployment cost, and limitation of available

places. In this paper, we present a novel method of indoor

navigation using an information board and several functions of

a smartphone. Our framework does not require large-scale

preparations and expenses for owners of buildings unlike

existing methods, and is available wherever an information

board exists. This method comprises image analysis and map

matching. The former is to analyze the picture of information

board taken by a smartphone and estimate the passageway

region from the image. The latter gives us real-time localization

in the map by using inertial sensors in the smartphone after the

input of current places by the user at two different positions.

Keywords- indoor positioning; particle filter; map matching.

I. INTRODUCTION

There are two keys of indoor navigation; positional

information and a map. GPS is now contributing outdoor

localization, and in combination with an outdoor map

database, such as Google Maps, it provides us a good outdoor

navigation system. Many modern mobile devices such as

smartphones have a built-in GPS receiver. Therefore, we can

easily use applications for outdoor navigation.

On the other hand, localization using GPS is inaccurate in

indoor environment. GPS positioning is performed by using

the signals from some satellites, but the signals cannot arrive

at the receiver in indoor environment. Indoor localization is a

hot topic now, and various systems are developed; Wi-Fi,

radio-frequency identification (RFID), ultrasound, camera

image, inertial measurement unit (IMU), and so on. However,

these methods do not have decisive superiority that can be

considered as a de facto standard because they require some

infrastructure and it limits available places. Another approach

is pedestrian dead reckoning (PDR) making use of several

inertial sensors embedded in smartphones as well as GPS

receiver. Owing to no expenses except for smartphone, we

can estimate relative position at a low price. The drift of

gyroscope is the main cause of error in PDR estimation, then

by the combination with other methods, accuracy of

localization can be improved [1][2].

Moreover, the absence of indoor map database makes

construction of indoor navigation system more difficult.

Although "Google Maps" provides several indoor maps,

there are not many available places. In some place, e.g.,

Tokyo Station and Narita Airport in Japan, a special

application for navigation of each place is offered. However,

it requires for users to install the special application on their

smartphone to use the navigation.

In this paper, we propose a novel framework of indoor

navigation system using an information board with a floor

map (Figure 1) and several functions in smartphone. Since

information boards exist in many buildings, we can easily

obtain a map by taking a picture of the information board with

smartphone’s camera. In addition, we can estimate the

current position without infrastructure by using PDR with

inertial sensors.

The usage scenarios of our approach are as follows. First,

a user takes a photo of the map on the information board with

his/her smartphone; note that the information boards are

usually installed at the entrance of malls or the side of

elevators. After the picture is analyzed, the user taps the point

on the map displayed on the screen corresponding to his

current place. Then, the user walks a little, and taps the

screen where the point corresponds to the current position

again. By using the information obtained by the two taps, the

reduced scale and orientation of the map could be estimated,

and inertial sensors enable to estimate current position of the

user.

Figure 1. Examples of information board

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 34 / 64

II. PASSAGEWAY REGION ESTIMATION

We considered that passageway regions are necessary at

least to implement a demonstration of the indoor navigation.

We develop a method to estimate passageway region from an

image of information board, and we show the method in this

section.

The estimation is conducted using two conditions that

many of information boards meet. These are based on our

survey of 104 information boards throughout Japan, and

about 92% of them fulfill two conditions: (1) the color of

passageways is different from any shops’ colors, (2) only one

color is used for passageways in a map. The proposed method

consists of labeling and passageway label estimation.

A. Labeling

According to the conditions, it is considered that

segmentation of a map picture based on its color information

is useful for the estimation of passageway regions.

At first, we create a segmentation image with mean shift

[3] and an edge image with the Canny method [4] from the

original image. Then, we scan the segmentation image from

upper left. When we find unlabeled pixel (𝑖, 𝑗) , we also

search the pixel (𝑘, 𝑙) satisfying (1) in 4-neighborhood pixels

around (𝑖, 𝑗) except for edge pixel, and assign the same label.

Although we can do labeling only using the segmentation

image, which is obtained by mean shift, the labeling results

are not sufficient. Therefore, we use the edge image together

with segmentation image to improve the accuracy of labeling.

If the area size of label is smaller than the threshold 𝜏𝑙, we

give them no label.

 {

|𝑅(𝑖, 𝑗) − 𝑅(𝑘, 𝑙)| ≤ 𝜏𝑑

|𝐺(𝑖, 𝑗) − 𝐺(𝑘, 𝑙)| ≤ 𝜏𝑑

|𝐵(𝑖, 𝑗) − 𝐵(𝑘, 𝑙)| ≤ 𝜏𝑑

 

𝑅(𝑖, 𝑗), 𝐺(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) are red, green and blue values of

the pixel (𝑖, 𝑗), respectively. The symbol 𝜏𝑑 is a threshold.

B. Passageway Region Estimation

After labeling, we estimate the labels of passageway

region. A set of passageway labels often contains larger areas

than shop ones, and according to the above-mentioned

conditions, only one color different from every shop labels’

colors is used for passageway labels. We estimate the

passageway region by using these conditions.

At first, we decide the first passageway labels (FPL),

which is the most likely passageway label, and we estimate it

along the flow chart (Figure 2). We assumed that 𝐿1 or 𝐿2 or

both are the passageway labels, where 𝐿1 is the first largest

label and 𝐿2 is the second. We compare the label sizes

because we suppose that the passageway region would be

much bigger than any shop’s regions. If 𝐿1 > 𝛼𝐿2, FPL is 𝐿1.

Otherwise, we compare the label colors in consideration that

the passageway region in the map are divided by some lines

such as arrows. If the Euclidian distance between the color

averages of 𝐿1 and 𝐿2 in RGB color space is lower than

threshold 𝜏𝑐, FPL is the combination of 𝐿1 and 𝐿2. Otherwise,

we compare the sizes of bounding boxes of them, and we

consider that the larger one is passageway region.

After FPL is decided, we search other passageway labels

using color information of FPL. We compare the average

color of FPL and other labels, and when Euclidian distance

between them in RGB color space is lower than threshold 𝜏𝑐,

they are determined as the passageway label.

III. PARTICLE FILTER AND MAP MATCHING

In this method, the scale and the orientation of a map are
unknown because the map is a picture of information board.
To estimate them to a certain extent, the user taps the screen
to show where they are in the map at two different positions.
In addition, a map of information board is inaccurate, owing
to noises and distortions resulting from light reflection and the
direction of taking the picture. We employ map matching with
particle filter (PF), which can cope with these problems
flexibly.

PF is a method to estimate a state in non-linear and non-
Gaussian state place model, and is sometimes implemented to
apply map filtering technique [2][5][6]. PF is the algorithm by
Monte-Carlo method composed of propagation, correction
and re-sampling. To obtain an observation 𝑧𝑡 at time 𝑡, the
state 𝑠𝑡|𝑡−1 at time 𝑡 estimated by the state 𝑠𝑡−1 at time 𝑡 − 1

(particle) and its likelihood (weight) are generated using
pseudorandom number, and 𝑧𝑡 is decided with particles’
distribution and weights.

In our model, particles are updated only after each step
event. The 𝑘-th step event 𝑠𝑡𝑒𝑝𝑘 is represented by step time
𝑡𝑘 , step length 𝑙𝑘 and heading direction ℎ𝑘 in global
coordinate system (GCS). These parameters are computed by
the method of SmartPDR [7] by using accelerometer,
magnetometer and gyroscope in a smartphone. In our method,
each particle has a state 𝑠𝑘 after the 𝑘-th step event, and 𝑠𝑘 is

Candidate

The first largest label: 𝑳𝟏

The second largest label: 𝑳𝟐

Output:

𝐿1

Output:

𝐿1, 𝐿2

Output:

𝐿1

Output: 𝐿2

Yes

Yes

Yes

No

No

No

Size:

𝐿1 > 𝛼𝐿2

Color:

| 𝑳𝟏 − 𝑳𝟐 | < 𝜏𝑐

Rectangle:

𝐿1 > 𝐿2

Figure 2. Flow chart of the method to decide the first passageway labels

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 35 / 64

 s𝑘 = [𝑥𝑘 , 𝑦𝑘 , 𝑚𝑝𝑝𝑘 , 𝜃𝑘]. 

Here, (𝑥𝑘 , 𝑦𝑘) is a particle’s position in image coordinate
system (ICS), but we possess them with not integer but float.
The parameter 𝑚𝑝𝑝𝑘 (meter-per-pixel) is the length in GCS
per one pixel, and 𝜃𝑘 is the heading direction ℎ𝑘 when the
device turns toward x-axis of ICS.

A. Particle Initialization

We show the method to create an initial distribution

𝑝(𝑠0|∅) of the state 𝑠0 at the step event 𝑘 = 0. Let the two

coordinates pointed by the user be (𝑥𝑡𝑎𝑝,𝑛
𝐼𝐶𝑆 ′

, 𝑦𝑡𝑎𝑝,𝑛
𝐼𝐶𝑆 ′

)(𝑛 = 1,2),

which is in ICS. Because the designation of the points is

performed with the user’s visual, there may be an error

between the designated position and the user’s real position

(𝑥𝑡𝑎𝑝,𝑛
𝐼𝐶𝑆 , 𝑦𝑡𝑎𝑝,𝑛

𝐼𝐶𝑆)(𝑛 = 1,2) . Assuming that the probability

distribution of the error is a Gaussian distribution with

standard deviation 𝜎𝑡𝑎𝑝 , this probability distribution

𝑃(𝑥𝑡𝑎𝑝,𝑛
𝐼𝐶𝑆 , 𝑦𝑡𝑎𝑝,𝑛

𝐼𝐶𝑆) is

 𝑃(𝑥𝑡𝑎𝑝,𝑛
𝐼𝐶𝑆 , 𝑦𝑡𝑎𝑝,𝑛

𝐼𝐶𝑆) = 𝑁(𝑥𝑡𝑎𝑝,𝑛
𝐼𝐶𝑆 ′

, 𝜎𝑡𝑎𝑝
2)𝑁(𝑦𝑡𝑎𝑝,𝑛

𝐼𝐶𝑆 ′
, 𝜎𝑡𝑎𝑝

2) 

where 𝑁(𝜇, 𝜎2) is an error model generated using a Gaussian

distribution with a mean 𝜇 and a variance σ2.

When step events between two taps are detected 𝑘′ times,

the motion on 𝑥-axis and 𝑦-axis in GCS is represented as

 [
𝑥𝑚𝑜𝑣𝑒

𝐺𝐶𝑆

𝑦𝑚𝑜𝑣𝑒
𝐺𝐶𝑆] = ∑ 𝑙𝑠 [

cos ℎ𝑠

sin ℎ𝑠
]𝑘′

𝑠=1  

The moving length 𝑙𝑚𝑜𝑣𝑒 and the direction 𝜃𝑚𝑜𝑣𝑒 between

two taps are

 𝑙𝑚𝑜𝑣𝑒＝√(𝑥𝑚𝑜𝑣𝑒
𝐺𝐶𝑆)2 + (𝑦𝑚𝑜𝑣𝑒

𝐺𝐶𝑆)2 

 𝜃𝑚𝑜𝑣𝑒 = atan2(𝑦𝑚𝑜𝑣𝑒
𝐺𝐶𝑆 , 𝑥𝑚𝑜𝑣𝑒

𝐺𝐶𝑆). 

Where the function atan2(𝑦, 𝑥) is defined as

 atan2(y, x) = 2 tan−1 (
𝑦

√𝑥2+𝑦2+𝑥
) 

We can also calculate the length 𝑙𝑡𝑎𝑝 and the direction 𝜃𝑡𝑎𝑝

in ICS between two taps with a similar equation.

Therefore, the initial state s0
(𝑖)

= [𝑥0
(𝑖)

, 𝑦0
(𝑖)

, 𝑚𝑝𝑝0
(𝑖)

, 𝜃0
(𝑖)

]
of 𝑖-th particle is decided with the following equations.

𝑥0
(𝑖)

= 𝑥𝑡𝑎𝑝,2
𝐺𝐶𝑆 (𝑖)

𝑦0
(𝑖)

= 𝑦𝑡𝑎𝑝,2
𝐺𝐶𝑆 (𝑖)

𝑚𝑝𝑝0
(𝑖)

= 𝑙𝑚𝑜𝑣𝑒/𝑙𝑡𝑎𝑝
(𝑖)

𝜃0
(𝑖)

= 𝜃𝑚𝑜𝑣𝑒 − 𝜃𝑡𝑎𝑝
(𝑖)

(8)

B. Particle Propagation

The particle’s state 𝑠𝑘 after the 𝑘-th step event 𝑠𝑡𝑒𝑝𝑘 is

created by a posterior distribution 𝑝(𝑠𝑘|𝑠𝑘−1, 𝑠𝑡𝑒𝑝𝑘) with the

previous state 𝑠𝑘−1 and 𝑠𝑡𝑒𝑝𝑘 . With paying attention that

x𝑘
(𝑖)

 and y𝑘
(𝑖)

 are coordinates in ICS, the state sk
(𝑖)

= 𝑠𝑘|𝑘−1
(𝑖)

 of

𝑖th particle is decided as follows.

𝑚𝑝𝑝𝑘
(𝑖)

= 𝑚𝑝𝑝𝑘−1
(𝑖)

+ 𝑁(0, 𝜎𝑚𝑝𝑝
2)

𝜃𝑘
(𝑖)

= 𝜃𝑘−1
(𝑖)

+ 𝑁(0, 𝜎𝜃
2)

𝑥𝑘
(𝑖)

= 𝑥𝑘−1
(𝑖)

+ 𝑙𝑘 cos(ℎ𝑘 − 𝜃𝑘
(𝑖)

)/𝑚𝑝𝑝𝑘
(𝑖)

𝑦𝑘
(𝑖)

= 𝑦𝑘−1
(𝑖)

+ 𝑙𝑘 sin(ℎ𝑘 − 𝜃𝑘
(𝑖)

)/𝑚𝑝𝑝𝑘
(𝑖)

(9)

Here, 𝑁(0, 𝜎𝑚𝑝𝑝
2) and 𝑁(0, 𝜎𝜃

2) are error models of

𝑚𝑝𝑝𝑘
(𝑖)

 and 𝜃𝑘
(𝑖)

 based on Gaussian distributions with

deviations 𝜎𝑚𝑝𝑝
2 and 𝜎𝜃

2 , respectively. These models also

affect the moving length and direction.

C. Correction and Re-Sampling

In this paper, we assume that users go to their destination

along a passageway, namely users do not go out of the

passageway region from navigating start to end. Hence, we

estimate user’s position with map matching using

passageway region created by the proposed method. In our

method, map matching is applied to compute particles’

weight, and the weight w𝑘
(𝑖)

 of the 𝑖-th particle 𝑠𝑘|𝑘−1
(𝑖)

 is

w𝑘
(𝑖)

= {
0

1/𝑀
 𝑖𝑓 (𝑥𝑘

(𝑖)
, 𝑦𝑘

(𝑖)
) 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑎𝑠𝑠𝑎𝑔𝑒𝑤𝑎𝑦 𝑟𝑒𝑔𝑖𝑜𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

  

where, 𝑀 is the number of particles after the correction. The

output of the current position is the average of 𝑀 particles.

Re-sampling is the process that reallocates all the

particles. In our method, re-sampling is based on random

sampling, but each particle has the same weight before re-

sampling. Therefore, a particle after re-sampling is decided

from 𝑀 particles randomly.

IV. EXPERIMENT

The proposed method has several thresholds and

parameters, and we set them shown as Table I, which were

decided by the preliminary experiments.

Symbol Value Symbol Value

𝜏𝑑 3 𝜎𝑡𝑎𝑝 25

𝜏𝑐 15 𝜎𝜃 5π/180

α 2

Symbol Value

𝜏𝑙 1/500 of the image size

𝜎𝑚𝑝𝑝 1/60 of 𝑚𝑝𝑝𝑘−1
(𝑖)

TABLE I. SYMBOLS AND VALUES

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 36 / 64

A. Passageway Region Estimation

We conducted passageway region estimation using the

proposed method. We applied the method to 92 pictures of

information boards satisfying two conditions described in

Section II except for some pictures with extremely low

quality. In the method, an estimated passageway region

consists of a set of labels and it has gaps at boundaries

between each region of labels. To remove them, we applied

erosion and dilation to each region, so that we can create

passageway region more suitable for the position estimation.

Figure 3 shows examples of the results. We subjectively

evaluated whether passageway region could be estimated to

a certain extent, and we found that the estimation went well

on 77% of information boards. We conducted the experiment

using 92% of images that meet two conditions mentioned in

Section II; therefore it means that the proposed method could

estimate passageway region for about 70% of information

boards.

The failures to obtain passageway region were mainly

caused by labeling mistakes (Figure 3(b)) and failure to get

FPL (Figure 3(c)). The former means that passageway and

shop regions were mistakenly connected when labeling. The

failure often happened when a shop label had similar color to

passageway label and their edges are unclear. The latter

means that a label unrelated to passageway region became

FPL. The failure happened when FPL was not decided using

sizes and colors.

B. Localization

We evaluated whether the proposed method can estimate

positions by map matching with a picture of information

board. The experiments were conducted on B1 floor in

Jozenji-Dori building of Sendai Mitsukoshi (Fig. 3(a)). The

proposed system was implemented on Sony Xperia S Tablet,

and the sampling rate of each inertial sensors is 15 Hz. The

users held the device on their right palm. The application for

the experiment indicates the estimated path where the user

walked in real time after tapping at two different position. We

set the number of particles as 2000. We conducted the

experiments four times.

Figure 4 shows examples of the results. A successful case

is Figure 4(a), where the step events are totally 245 (11 steps

between 2 taps). A failure case is Figure 4(b), where the step

events are totally 218 (9 steps between 2 taps). Estimation

error increased at the left area of the map in both cases. Of

the four experiments, we succeed two times and failed two

times.

Figure 3. Results of passageway region estimation:

original images (left) and estimated passageway region (right)

(a)

(b)

(c)
Figure 4. Result of the paths estimated using PDR and map matching:

gray points are 2 tapped positions, red are user’s estimated position

and blue lines are real path.

(a)

(b)

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 37 / 64

We consider that the error was caused by the way to

decide a current position. Now, the position is computed as

the average of particle’s positions before re-sampling,

however, in case that particles are divided into two or more

clusters, the output has a large error even if one of the clusters

lies at the correct position.

V. CONCLUSION

In this paper, we proposed an indoor localization method

using information board and several functions in smartphone.

To estimate passageway region, we apply labeling to the

picture of information board based on its color and edge, and

make use of label information. Furthermore, we developed a

method to estimate position on passageway region using PDR

and map matching with PF. Through our experiments, we

confirmed that the proposed method can accurately estimate

passage region from 70% of information board, and the

analysis results are useful for map matching with particle

filter.

At the same time, we found out some problems. The

method of labeling and passageway label estimation cannot

obtain satisfactory results from some information boards. In

reference to this, labeling results depend on the ambience

when taking the picture. It is necessary to develop the method

to analyze the picture resistant to light reflection. We were

pointed out that using Lab color space might bring better

results when labeling because the color space is designed to

approximate human vision. Moreover, the labeling method is

time consuming and requires high machine performance.

Therefore, we are considering use of servers for the map

picture analysis.

Furthermore, the proposed method has great limitation,

and the method to decide a position from a distribution of

particles has a room to be improved; we can track only on the

passageway. To estimate the position on both passageway

and shops, we would have to improve not only the method of

map matching but also the method to analyze the picture of

information board. Additionally, we have only confirmed

whether the proposed method can trace the pass the user

walks. It is necessary to evaluate our localization method

quantitatively. They are remained as future works.

ACKNOWLEDGMENT

A part of this research was supported by JSPS KAKENHI
Grant Number 15K12014. This research was also supported
in part by JST, CREST.

REFERENCES

[1] V. Renaudin, O. Yalak, P. Tomé, and B. Merminod, “Indoor
navigation of emergency agents,”, Europian Journal of
Navigation, vol. 5, no. 3, pp. 36-45, 2007.

[2] F. Zampella, A. R. J. Ruiz, and F. S. Granja, “Indoor
Positioning Using Efficient Map Matching, RSS
Measurements, and an Improved Motion Model, “ IEEE Trans.
on Vehicular Technology, vol. 64, pp. 1304-1317, no. 4, April
2015.

[3] D. Comaniciu and P. Meer, “Mean shift: A robust approach
toward feature space analysis,” IEEE Trans. on PAMI, vol. 24,
no. 5, pp. 603-619, 2002.

[4] J. Canny, “A Computational Approach To Edge Detection,”
IEEE Trans. on PAMI, vol. 8, no. 6, pp. 679-714, 1986.

[5] C. Ascher, A. Kesseler, M. Wankerl, and G. F. Trommer,
“Dual IMU Indoor Navigation with Particle Filter based Map-
Matching on a Smartphone,” Int. Conf. on IPIN, September
2010, pp. 1-5.

[6] O. Woodman and R. Harle, “Pedestrian Localisation for Indoor
Environments,” in Proc. 10th Int. Conf. UbiComp, 2008, pp.
114–123.

[7] W. Hang and Y. Han, “SmartPDR: Smartphone-Based
Pedestrian Dead Reckoning for Indoor Localization,” IEEE
Sensor Journal, vol. 15, pp 2906-2916, no. 5, May 2015.

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 38 / 64

Towards Antipatterns-Based Model Checking

Hassan Loulou

University of Paris-Sud
Paris, France

email: hassan.loulou@u-psud.fr

Sebastien Saudrais

ESTACA’LAB
Laval, France

email: sebastien.saudrais@estaca.fr

Hassan Soubra

ESTACA’LAB
Saint-Quentin-en-Yvelines, France

email: hassan.soubra@estaca.fr

Cherif Larouci

ESTACA’LAB
Saint-Quentin-en-Yvelines, France

email: cherif.larouci@estaca.fr

Abstract—Discovering bugs in the early stages of the develop-
ment life cycle is an important issue. However, software model
checking realized by transforming design models into formal
methods cannot test all the possible execution scenarios. Thus,
we developed an approach to guide the model checker and the
security engineer to the most suspicious parts of these models
firstly. The objective is to build and analyze antipatterns to
notify the security engineer to concentrate on specific parts of
their models during the model checking. Our first contribution is
dedicated to exploring ProB model checker features which help
the translated model to find attack scenarios automatically. The
second one is the definition and the analysis of 10 antipatterns
as a step towards their automatic detection.

Keywords–Antipatterns; Model Checking; Formal Methods.

I. INTRODUCTION

Hidden errors in software design phase lead in later soft-
ware development stages into complex bugs which need a lot
of time to be solved. Thus, discovering these errors at this
phase is of high importance.

Few works have examined the impacts of models’ func-
tional and non-functional artifacts co-evolution on design
constraints. This type of co-evolution exists in UML profiles
such as SecureUML [1]. Our approach validates SecureUML
models’ dynamic aspects by applying model checking oper-
ations after transforming them into a formal representation
called B-method [2]. Meanwhile, the validation of design
models cannot explore all the possible software executions and
requires certain level of experience with formal methods. For
realizing a systematic validation of security policies, the model
checker needs to be guided to discover design constraints by
applying appropriate enhancements on the models’ resulted
formal representations. Furthermore, system designers would
prefer intuitive solutions depending on antipatterns representa-
tions for those design structures which must be avoided. Also,
a solution for highlighting suspicious parts of the models which
are likely to introduce violations during the system evolution
may make their work easier.

We study the existing facilities for guiding the model
checker to detect security constraints’ violations in Se-
cureUML. Thereafter, we define the design artifacts which
were the source of violations in form of antipatterns. These
antipatterns are substructures suspected to be the reason of
design constraints’ violations during software evolution. They
are discovered after the transformation of models into a formal
representation and after launching their formal verification
using ProB [3] model checker’s facilities. We aim at paving
the way towards an automatic detection of the root cause

of security bugs by introducing design artifacts which are
responsible for these bugs to the software security engineer. We
applied our approach on a case study related to the verification
of access control constraints.

This paper is organized as follows: In Section II, we explain
the structure of SecureUML [4] profile and the limitations of
its validation works. In Section III, we show how we exploited
ProB model checker to find the violations automatically. There-
after, in Section IV, we introduce an example of the extracted
antipatterns. Finally, in Section V, we make a conclusion on
our contribution and perspectives.

II. SECUREUML VALIDATION

In this section, we show the basic idea of SecureUML,
the works related to validating it and our choice to represent
SecureUML models and to exploit this representation.

A. SecureUML
Role-based access control (RBAC) has been standardized

by the National Institute of Standards and Technology (NIST)
[5]. It defines a role as a set of permissions to access resources.
Users get their permissions by being assigned to one or more
roles. SecureUML [1], is an extension of UML for specifying
RBAC access control policies. In SecureUML, a permission
is a relation connecting a role to actions on resources. The
permission semantics are defined by the action elements used
to classify the permissions [6]. Every action represents a class
of security relevant operations on a protected resource. Access
control can be expressed as an assignment of users to permis-
sions by using their roles. Otherwise, authorization constraints,
or more commonly the Object Constraint Language (OCL) [7]
constraints, are checked on snapshots of the meta-model. OCL
can specify constraints on users permissions in an expressive-
contextual manner.

B. Related Works
Yu et al [8][9] exploited USE tool to support lightweight

analysis of RBAC security policies expressed by UML and
OCL to find violations. In their approach, an application design
model was translated into a model containing predefined
valid sequences of object diagrams. A snapshot is an object
configuration that describes a system state. A sequence of
object interactions, called a scenario, is then checked against
the invariants defined in the snapshot model. After the analysis,
if a good scenario is described as invalid, or a bad scenario
is described as valid, then there is a problem in the security
policy which either prevents valid scenarios or permits invalid
ones. Basin et al [6][10] introduced SecureMOVA. This tool is

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 39 / 64

TABLE I. THE LACK OF AUTOMATED DISCOVERY FOR ATTACK SCENARIOS

used to ask questions about a current state, i.e., a given object
diagram. Such queries return the permissions authorized for
a given role, or a given user. However, these two approaches
do not consider the real execution sequence of operations to
reach a specified state. They just give a possible object diagram
representing a required constraint and conforming to the class
diagram according to some specified constraints. Nevertheless,
they do not ensure the reachability of this state. Another
approach tried to simulate the real execution of software
systems by introducing the notion of execution scenarios. It
depends on transforming UML diagrams augmented with OCL
constraints into Alloy [11][12][13]. However, these works do
not transform the security constraint to validate them by Alloy
model checker and they do not consider the impacts of the
functional model evolution on the security policy. Moreover,
these works suffer from the false negative alerts (Alerts that
should have happened but did not because the model checker
did not reach certain states). Additionally, they do not define
a systematic approach for guiding the model checker. An
interesting approach exploited Z formal method to animate
SecureUML models [14]. However, false negatives still exist
and antipatterns are not defined and thus not exploited to
automate the search for attacks. We compare these works in
Table I, showing the lack of a validation approach for the
functional model evolution impacts on the security parts of
secureUML. Also, no antipatterns are defined to guide the
security engineer or the model checker into the suspicious parts
of the models under test. To solve this problem, we translated
both functional and security parts into B-method. Then, we
proposed solutions to guide the model checker to find the co-
evolution of SecureUML parts and we exploited these solutions
to resume our findings in the form of antipatterns.

C. B-method for SecureUML validation
We decided to transform SecureUML models into B-

method [15]. The reason is that B-method allows to simulate
the co-evolution of functional and non-functional parts of mod-
els by its animator called ProB. This simulation mimics the
real execution of software system. Moreover, a B-method tool
called B4Msecure [16] is developed by Ledru et al. [17][14]
to transform SecureUML models into B-method. B-method is
a formal method for specifying, refining and implementing
software systems. It is based on Set Theory and Predicate
Calculus. Each B model is called an abstract machine. These
machines are animated using ProB. Yet, the model checker
needs to be guided by the user in order to find the potential

Figure 1. SecureUML case study

attacks. Thus, the tool still needs an automation in order to
search for models’ most suspicious artifacts and to examine
the impacts of these artifacts’ possible compositions.

III. OUR PROPOSITIONS FOR VALIDATING SECUREUML
In this stage, we aim at exploring ProB features which help

to find an attack scenario depending on the capabilities of ProB
model checker.

A. Illustrative example
We built the security model shown in Figure 1. It is sup-

plied with a stereotype representing the notion of organization.
In this way, a user, called Jack, who has the role supervisor,
is able to access data related to employees in organization
E2, but he is prevented from doing so in E1. In this model,
we notice that a new function setBoss() is added to express
the uncontrolled reflexive association presented in [10] and
to examine the potential risks resulting from the solution
introduced there.

B. Validating the resulting model by ProB
We explored many mechanisms to find attack scenarios.

The validation process considers an initialization state as
shown in Figure 2, where there are two employees and one
supervisor in the same organization E2.

1) Finding flaws by querying the functional model: When
an employee in the functional model gets the role supervises
of the reflexive association, he gets simultaneously a new
role in the security model and new permissions according
to this new role. In our example, when the employee Martin
becomes a supervisor, an interaction between the functional
and the security models occurs by invoking the operation

Figure 2. The initial state

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 40 / 64

add userAssign. This operation makes him a supervisor in his
organization. As a result, the following assignment, which adds
new role to the user in his organization, takes place: (user 7→
(org 7→ role)). This relation has the following values in our
illustrative example: (Martin 7→ (E2 7→ Supervisor)).

We can search for this scenario in ProB by searching a state
satisfying specific predicate in the checked model as follows:
find a state in which Boss(Martin) = Fred. As a result, the
model checker finds a scenario which makes an employee
as a supervisor. Consequently, this new supervisor has new
permissions and this case is suspicious. We found that as the
reflexive association is not controlled by constraints, it does
not have a clear interpretation. Moreover, as Basin et al [10]
used an actional tool, which cannot simulate the real reachable
methods in a specific system state, they could not consider the
operations’ real effects on the security policy and they could
not find this potential attack.

2) Querying security aspects of the model: The proposition
here is to make queries about all the roles which someone
must not be authorized to have. Thus, we ask the model
checker queries about the roles of users. If the translated model
contains a scenario which can give a user, Martin, the role
supervisor, considering that he was an employee with the role
worker, then this scenario is suspicious and it can be a flaw in
the security policy. The query about the system states takes the
following form: User assign (Martin) = (E2 7→ Supervisor).
This query means: is there a scenario that leads the system
to a state where Martin is a supervisor? Considering that the
latter state is assumed as an invalid state. We search for this
state, because the existence of such sequence of operations
may make Martin able to change the salary of other users in
the system, which is considered illegal in that organization.

The result given by the model checker is the following
susceptible scenario: after giving the values of the system
constants concerning the system users, the system’s functional
and security models are initialized. After that, the users are
assigned to their permissions. Jack, who is a supervisor,
connects to the system as a supervisor in the organization
E2. This assignment of Jack to his roles occurs in the session
S1. While, in another session, a user whose name is Fred and
who has the role worker takes the session S2 and connects
to the system as a worker. When Fred gives Martin a position
supervisor by applying the function secure Employee setBoss,
the state of the system evolves and Martin gets the role
supervisor. As a result, with the existence of another employee
like Bob, Martin who has got temporarily the role supervisor
becomes able to make Bob as a supervisor. Subsequently, even
if Martin loses his new role, Bob holds this role and can change
the salary of his colleagues Martin and Fred.

3) Exploiting the attainability of an operation: An opera-
tion is enabled if its precondition and its guard’s sections are
true. These two sections are computed taking into account the
system state. We proposed a new solution benefiting from this
property. The mechanism of this scenario detection solution
is explained by the following example. A system variable
currentUser is related to an active session user. Therefore, we
can add a constraint in the guard’s section of an operation,
where this constraint says that the operation will not be enabled
if the current user is not Fred, for example. We do that taking
into account that this user does not have an authorization
to execute this operation. Next, we search for a scenario in

which this operation could be attainable and executable. If such
scenario exists, we conclude that there is a suspicious scenario
which may cause a serious attack. As will be shown next, the
constraint (currentUser = Fred) is added in the guards section
of the operation secure Employee SetSalary:

s e c u r e Employee S e t S a l a r y (I n s t a n c e , Employee
↪→ s a l a r y V a l u e) = SELECT c u r r e n t U s e r = Fred

The disadvantage of this solution is: to reach the state we
are searching for (where currentUser = Fred), we may need
the same operation without the added pre-condition. Thus, the
solution is to add another operation with the same name but
without that obstructive constraint. In this way, this additional
operation will be executed first, if needed. Then, ProB continue
searching for the target suspicious state.

4) Searching flaws by asking ProB about permissions: In
this way, we are interested in finding a scenario where a user
is capable of reaching a permission he did not have before. For
example, is there a scenario in which the user Martin can get
the access to execute the operation employee SetSalary? The
execution of this operation was granted, at the beginning of
the system execution, only to Jack who is a supervisor. This
question can be formulated using B as follows:

employee S e t S a l a r y ε i s P e r m i t t e d [c u r r e n t O r g R o l e
↪→ S e s s i o n] ∧ C u r r e n t U s e r = M ar t i n

Consequently, if the model checker reaches a state where
the previous constraint holds, we conclude that the user Martin
will be able to get an unauthorized permission. The resulted
scenario given by the model checker is the same as the one
mentioned in the previous solutions.

5) Taking the initial state into account: We consider dif-
ferent possible object diagrams resulted from the reflexive
association and its multiplicities in the illustrative example.

a) Studying initialization object diagrams: The first ob-
ject diagram, Figure 3, is composed of the following structure:
an employee with a role worker who is not associated to a
supervisor and another employee with a role worker associated
to a supervisor. In this state, we cannot find an attack scenario.
No scenario can lead Martin to change Freds salary because
Jack is not the supervisor of Fred. Thus, he is not able to
execute the setBoss() operation. Likewise, in the following
state, Figure 4, there is no attack scenario. The only case
where there is an attack scenario is, as shown in Figure 2,
when there is an object diagram containing more than one
employee managed by a common supervisor. This is because
the existence of a supervisor for an employee is essential to
change the value of the reflexive association represented as
a relation called boss in the functional model. This relation
issues an association between two objects in the Employees
functional class diagram.

Moreover, we found another kind of attack happening when
we have a hierarchy of employees in the same organization,
as shown in Figure 5. It is impossible to change the salary of
the employee E7, as he is not associated to a supervisor. An
employee E1, E3 has found a scenario to change the salary of
their supervisors E3, E5 respectively. As a result, we found out
that the initial state which is constructed using the supervisor
hierarchy two times at least is essential to have such risk.

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 41 / 64

Figure 3. Initialization state1.

Figure 4. Initialization state2

Figure 5. Initialization state3

b) An approach to construct an important object dia-
gram (tree): A solution is needed to construct either all the
possible object diagrams of the class diagram or all those states
which are considered more suspicious to produce the attack
scenario. The produced object diagram differs according to
the structure it tries to instantiate. For example, the different
states we must consider in the previous reflexive association
are: (i) initializing the B machine with two employees, one of
them has a different manager, (ii) two employees, each of them
has one different manager, (iii) a tree structure representing the
structure of the hierarchy. (iv) considering another organization
with some users.

The initial state must be considered separately in each
new diagram. However, in addition to the previous recurring
structure, we try to give solutions to produce initial states
for the main possible structures of SecureUML as follows:
(A) When there is an association affecting an OCL constraint,
the multiplicity of the two ends of the association has to be
considered in the initialization. For the many multiplicity, two
objects at least are instantiated.
(B) Each of the entities mentioned in a constraint must be
instantiated in order to construct a structure capable of tricking
the OCL constraint. As shown in Figure 6, a malicious user
connects with a manager and staff roles at the same time.
When he is a manager, he delegates the user with the role staff
(himself) in order to make him able to approve the refund, as
stated by the OCL constraint associated with the permissions
on the class refund. Thus, this user will be able to give the
value True to the variable IsApproaved in the class refund.
Hence, the constraint Approved by 2 managers became true, as
the staff become also a manager. Then, this manager approves
the refund and refund procedure starts. Thus, the manager
prepares and issues the payments after approving them. This
separation of duties (SoD) problem comes from the structure in

Figure 6. Example showing the importance of instantiating OCL entities

which the manager inherits the permissions of staff role. The
solution to this problem is to add an OCL constraint saying
that the same person can connect as a manager or as a staff
in the same session, but not as the both.
The instantiation of this diagram could take the following
way: an instance of the class refund and two users had to
be instantiated as mentioned in the OCL constraint Approved
by 2 managers. Additionally, according to the constraint is
delegated, the delegation instance must be presented. That
means, we must produce an object delegates and an object
delegated. As a result, this initialization diagram is capable of
starting the game of finding the attack.
(C) For a unidirectional association, the accessed object must
be instantiated and linked to the instance accessing it.
(D) When there is an OCL constraint controlling permissions
and depending on an attribute value, we ought to instantiate
the class where this variable exists, then we assign a user who
has a modify permission.
(E) When there is a role inheritance, we assign users to the
inheriting roles to check all the prevented separation of duties
conditions as happened in Figure 6. Thus, an invariant has
been added to prevent this user getting two conflicting roles.

The result of Figure 1 translation contains a reflexive
association: bb ε Employee 9 Employee ∧ bb. Before setting
the permissions of users, we applied the previous approach
for constructing an efficient object diagram. The approach
contains the following steps: (i) give the possible values for
associations’ ends and specify their multiplicities, (ii) avoid
constructing circular associations to avoid a state where a
person is supervisor of himself, (iii) add properties for asso-
ciations members’ multiplicities, (iv) initialize the functional
model, (v) produce the possible values of the relation: user →
({E2} × ROLES), (vi) initialize the user assignment model.
To make the possible suspicious initial state (the tree shown
before), the following constraint is defined on the association
multiplicity:

(c a r d (r a n (bb)) =1 ∧ c a r d (dom (bb)) =2)
∨

(c a r d (r a n (bb))
↪→ =2 ∧ c a r d (dom (bb)) =2)

∨
(c a r d (r a n (bb)) =4

As a result, the way we ask our queries to the model checker
must change. This is because the model checker possibly
will take a shorter path while searching and this path is not
normally an attack scenario. For example, if we ask ProB about
a state in which Martin can change the salary of Fred, the

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 42 / 64

model checker finds rapidly a scenario satisfying this query.
However, in this scenario, Martin is assigned directly to the
role supervisor and he changes the salary of Fred, which is
not an interesting scenario for us. As a solution, we propose
to make the queries separated from users names and related to
a general description of the attack meaning, as shown in the
next section.

6) Generalizing the way we search the suspicious scenar-
ios: To avoid the problems of making automatic initialization
with specified properties, we propose to avoid asking about
a user who has a specific permission. The question becomes
more general as follows: is there a scenario which allows a
user who have a worker role to have a supervisor role?

∀ (u) . (u ε USERS ∧ u ε
dom (u s e r a s s i g n (r a n (u s e r a s s i g n) {Worker})) ∧ u 6∈
r a n (B) =⇒ u 6∈ dom (u s e r a s s i g n (r a n (u s e r a s s i g n)
{S u p e r v i s o r})))∧ . .

Where, the variable B contains the boss relations values
calculated during the initialization of the security machine. In
another way, the set wasWorker contains all the users assigned
to the role worker at the initialization step of the security
machine. Consequently, we add this formula as an invariant of
the machine. Thus, when this invariant is violated, this means
one of the users has obtained the role supervisor. This formula
is constructed as follows:

∀ (u) . (u ε USERS ∧ u ∧ wasWorker
=⇒ r a n ({u s e r a s s i g n (u)}) 6= {S u p e r v i s o r})

Where:

wasWorker :=dom (u s e r a s s i g n � (r a n (u s e r a s s i g n)
� {Worker})) ∩ dom (boss)

The other invariant we added to capture the attack risks con-
cerns preserving the permissions during the execution of the
model checker. It can answer the following question: is there
a scenario that leads to an increase in any users permissions
during the system execution? The formula is constructed to
ask always about the user connected to the role which has a
lower number of permission such as the role worker in the
illustrative example. The following formula shows an example
of an added invariant in the security machine. This formula
searches if the number of a user’s permissions with the role
worker may increase during the execution of the system.

∀ (u , org , r o l e) . (u ε USERS ∧
u= c u r r e n t U s e r ∧ u ε dom (boss) ∧ org ε ORG
∧ org =E2 ∧ r o l e ε ROLES ε r o l e =Worker =⇒
i s P e r m i t t e d [{ u s e r a s s i g n (u) }] − i s P e r m i t t e d
[{ (o rg 7→ r o l e) }] 6= ∅)

Similarly, we can add the names of other roles if they exist
in the system to be contained in the last formula. By doing
so, the query covers all the users in the system. As a result,
searching those scenarios, which may affect the security policy,
has become easier.

7) Detecting possible vulnerabilities in OCL constraints:
The goal in this stage is to violate the OCL constraints which
describe security aspects because the ability to violate them
is considered as a flaw. To succeed in doing that, we express
this constraint but with a change in their parts expressing the
name of the roles. Then, these names are replaced by other

Figure 7. An example of the defined patterns

unauthorized ones. In other words, we reached this state by
adding a constraint as a pre-condition for an operation like the
operation secure setSalary(). This constraint restricts the op-
eration execution permission to Fred who has the role worker,
such access must be prohibited. This constraint specifies Fred
as the employee whose salary will change. Checking the model
under this condition shows an important evolution of the
functional model. This evolution violates the access permission
which limits the execution of setSalary to a supervisor in the
same organization of the employee.

Furthermore, when an employee is delegated to do the
supervisor tasks, he keeps his previous role. That means a
person who executes the operation secure setSalary() can be
the same one for whom this operation is executed. As a
result, an employee is able to change his own salary. Thus,
a user keeps owning his previous roles when his position
changes. The structure of SecureUML model, which contains
the previous artifacts, could be considered as a recurring
antipattern that needs to be checked in new models under test.

IV. EXTRACTING THE ANTIPATTERNS

To reduce the impacts of the state explosion, we are
going to define scenario attack patterns according to our
experimentations using the previous translation and validation
techniques. Thereafter, we will try to find out the suspicious
recurring structures, as well as the operations affecting these
structures to help the model checker to find its way to the
suspicious attack states.

A. Defining SecureUML antipatterns structures
To help the model checker estimating if a translated Se-

cureUML model may have an access attack, we constructed
a table containing characteristics of previous suspicious Se-
cureUML diagrams. For the time being, we are going to define
some patterns found in the examined diagrams.

In the following, we introduce an example of the defined
antipatterns structure, suspicious recurring structure, shown in
Figure 7. In this antipattern, there is a read permission on
an entity. But, after initializing the security machine, the user
finds himself able to modify parameters in the entity C2.

The detailed parts of this suspicious structure are as
follows: Users u1, u2 assigned to role r1. Class C1 has a
reflexive association a1. R1 has a modify permission p1 on
class c1. R1 has methodAction permission on the operation
op1 which changes a1. A1 and attr1 decide the value of ocl1.
R1 has permission p2 on class c2 controlled by ocl1.
This structure existed in different examples of SecureUML.

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 43 / 64

TABLE II. REASONS OF VIOLATIONS IN THE ANTIPATTERNS

SubStructure Description
Sub1 There is a unidirectional association.
Sub2 The accessing class is itself accessed directly by a fullaccess permis-

sion which affects the accessed class operations and attributes.
Sub3 The role owning a direct permission on the accessing class has only

Read permission on an accessed class.
Sub4 An OCL constraint depends on an association value (grant permission).
Sub5 An operation modifies an association’s values.
Sub6 Methodaction permission on an operation which modifies an important

association.
Sub7 An OCL constraint depends on an attribute value.
Sub8 Role inheritance without adding SoD constraints.
Sub9 More than one user are assigned to the same role, but they have some

hierarchy defined by a reflexive association. Their permissions could
differ according to a constraint.

Sub10 Assigning roles after changes in a hierarchy association.
Sub11 User assigned to two roles at the same time. These two roles did not

come from the inheritance. They have permissions on the same entity.
Sub12 An operation changes an attributes value which participates in calcu-

lating the value of an OCL constraint.

We use it with the other supposed 9 antipatterns to analyze
and predict the existence of flaws in the new models.

B. Extracting the reasons of attack in the previous structures
In order to avoid the arbitrary search of the model checker

algorithms, we have extracted the most important factors of the
security policy vulnerabilities depending on some characteris-
tics, shown in Table II. These characteristics describe the most
suspicious recurring structures used in SecureUML diagrams.

For each attack pattern, we search for the existence of
each of the sub-structures (sub-structures 1 to 12). When this
structure exists, we modify the scores of this pattern parts in a
probabilistic suspicious-table. Thereafter, the suspicious-table
is used for guiding the model checker. Due to the limited
space, we show later how to extract the exhaustive search plan
which concentrates on suspicious execution scenarios. The
optimization process of the suspicious-table is done according
to the incremental feedback loop process, shown in Figure 8.

V. CONCLUSION AND FUTURE WORK

According to our knowledge, bugs resulted from the co-
evolution of the functional and non-functional parts of Se-
cureUML models are not sufficiently studied. Moreover, no
antipatterns have been defined to help the system designers to
avoid suspicious compositions of design artifacts.

This paper introduced an approach based on the trans-
formation of SecureUML diagrams into formal models to
simulate their execution. Moreover, we exploited the possible
offered validation techniques in the model checker ProB. By

Figure 8. Feedback loop for guiding the model checker

applying them on many different systems, we could define
10 kinds of suspicious rudimentary antipatterns. Then, we
analyzed them to notify the security engineer to investigate
much more validation efforts on the suspicious parts when they
are introduced in their models. However, this work must be
extended to detect the antipatterns automatically. Moreover, the
transformation of the security models into B-method still needs
user interventions to make the resulted model executable. This
limitation should be avoided to make the approach presented
in Figure 8 achievable.

Next, we are going to use a graph query language to
efficiently discover antipatterns substructures in large models.
The objective of this task is to generate a controller to guide
the model checker automatically to design flaws.

REFERENCES
[1] D. Basin, M. Clavel, J. Doser, and M. Egea, “A metamodel-based

approach for analyzing security-design models,” in Model Driven
Engineering Languages and Systems. Springer, 2007, pp. 420–435.

[2] J.-R. Abrial, M. K. Lee, D. Neilson, P. Scharbach, and I. H. Sørensen,
“The b-method,” in VDM’91 Formal Software Development Methods.
Springer, 1991, pp. 398–405.

[3] “Prob,” https://www3.hhu.de/stups/prob/index.php/Main Page,
accessed: 2016-01-21.

[4] T. Lodderstedt, D. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in ł UML 2002The
Unified Modeling Language. Springer, 2002, pp. 426–441.

[5] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4,
no. 3, 2001, pp. 224–274.

[6] D. Basin, M. Clavel, J. Doser, and M. Egea, “Automated analysis of
security-design models,” Information and Software Technology, vol. 51,
no. 5, 2009, pp. 815–831.

[7] “Ocl,” http://www.omg.org/spec/OCL/, accessed: 2016-01-25.
[8] L. Yu, R. B. France, and I. Ray, “Scenario-based static analysis of uml

class models,” in Model Driven Engineering Languages and Systems.
Springer, 2008, pp. 234–248.

[9] L. Yu, R. France, I. Ray, and S. Ghosh, “A rigorous approach to
uncovering security policy violations in uml designs,” in Engineering of
Complex Computer Systems, 2009 14th IEEE International Conference
on. IEEE, 2009, pp. 126–135.

[10] D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security,”
in Proceedings of the 16th ACM symposium on Access control models
and technologies. ACM, 2011, pp. 1–10.

[11] “Alloy,” https://www3.hhu.de/stups/prob/index.php/Main Page,
accessed: 2016-01-22.

[12] W. Sun, R. France, and I. Ray, “Rigorous analysis of uml access control
policy models,” in Policies for Distributed Systems and Networks
(POLICY). IEEE, 2011, pp. 9–16.

[13] M. Toahchoodee, I. Ray, K. Anastasakis, G. Georg, and B. Bordbar,
“Ensuring spatio-temporal access control for real-world applications,”
in Proceedings of the 14th ACM symposium on Access control models
and technologies. ACM, 2009, pp. 13–22.

[14] Y. Ledru, A. Idani, J. Milhau, N. Qamar, R. Laleau, J.-L. Richier, and
M.-A. Labiadh, “Taking into account functional models in the validation
of is security policies,” in Advanced Information Systems Engineering
Workshops. Springer, 2011, pp. 592–606.

[15] J.-R. Abrial, J.-R. Abrial, and A. Hoare, The B-book: assigning pro-
grams to meanings. Cambridge University Press, 2005.

[16] “B4msecure,” http://b4msecure.forge.imag.fr/, accessed: 2016-01-15.
[17] Y. Ledru, A. Idani, and J.-L. Richier, “Validation of a security policy

by the test of its formal b specification: a case study,” in Proceedings of
the Third FME Workshop on Formal Methods in Software Engineering.
IEEE Press, 2015, pp. 6–12.

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 44 / 64

Search++:
More Control than a Simple Search Interface without the Complexity and Confusion of

Advanced Search

Alessandro Simone Agnello
Haim Levkowitz

Department of Computer Science
University of Massachusetts

Lowell, Massachusetts
01854-2874

alessandro_agnello@student.uml.edu
haim@cs.uml.edu

Abstract—On-line search engines are a key component of all
on-line activity and have evolved through the years. Despite
search engine advances, users today may need to execute multiple
searches prior to reaching their desired search results. However,
executing multiple searches in an effort to do so can be time con-
suming and may not lead to the best results. Leveraging complex
search interfaces, including Boolean filters, can exacerbate the
problem if the interface is too confusing and unfamiliar to the
user. To help overcome these issues, we introduce Search++, a
new search interface that reduces the steps for a common user to
reach their desired search results, through the use of latest Web
technologies and advanced visualizations.

Keywords–Search Interface; User Decision Pattern; Priority
Sorting; Web Visualization.

I. INTRODUCTION

Numerous studies have attempted to characterize the cogni-
tive process of searching for information and model the related
series of steps. A common theme amongst the models is a step
or steps, where an individual will evaluate results of a search
and use the information for a subsequent search to reach,
or get closer to, the desired search results. These steps are
referred to in many ways amongst the models: “Refinement”
[1], “Formulation” [2], and “Query reformulation tactics” [3]
to name a few. These models are applicable to searching for
information on-line. They have been used to formulate new
techniques for on-line search engine interfaces.

Search engine interfaces have evolved throughout the years
starting with the first on-line search engine “Archie”, which
included many Boolean filter options [4], to today's popular
search engines, which include a single input box, button,
and complex back-end algorithms to return results. Simplified
search interfaces are preferred by common users as advanced
search engines can be overwhelming to them. Despite ad-
vancements users find themselves executing multiple searches
prior to honing in on the desired search results. This effort is
time consuming and can lead users to feel discouraged and
frustrated [2].

It has been found that a technique that includes summarized
hierarchical display of data related to the search results along
with the search results themselves can be effective at quickly
reaching the final desired search results. However, success
depends on how well the summarized data aligns with the

Figure 1. Subset of a result shown, when a user typed in Fitbit as a search
term.

search terms [5]. Site-specific search engines, such as Amazon,
include Boolean filters with search results. However, the filters
are pre-arranged based on the category (e.g., price filter may
have a range from lowest to highest priced item within the
result set). Furthermore, Boolean filters omit search results,
which may further delay a user from honing in on the desired
search results. Users have been known to enter broad search
terms at first in an effort not to exclude search results that
may help them further define the desired search results [6].
This suggests that a user's awareness of all available data helps
her/him reach the desired search results.

To help accommodate users, refining their search and to
alleviate their struggling using advanced interfaces, we intro-
duce a new technique, Search++. Search++ bridges the gap
between the familiar but simplistic standard search interface
and the complex advanced search interface. Search++ utilizes
an expandable data source plugin utility that allows users to
search for attributes of single or multiple source result sets.
Search++ allows the user to rank these attributes, including
their sub-attributes. The ranking informs Search++ what the
user is more interested in (e.g., the user has a higher interest
in the price of an item than in its weight). Colors are used to
help depict which attributes have the largest number of sub-
attributes. Search++ associates a base light green color with

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 45 / 64

the attribute with the highest frequency of sub-attributes. Light
green was chosen to show contrast against the background
and green creates a relaxing effect for people [7]. We felt
that attributes with the highest frequency of sub-attributes,
shows the most likely sorted set for the common user. These
attributes are most common throughout the returned result
set. Attributes are darkened in color proportional to their
decrease of sub-attribute frequency. (E.g., Features: 20 sub-
attributes, Price: 10 sub-attributes, thus Features is light green,
and Price is darker). This allows the user to quickly visualize
the attributes with greatest sub-attribute frequency. In Figure
1, we provide an example result set of Search++. Upon initial
data retrieval or user interaction our query processing modules
will be triggered. These modules retrieve, normalize, sort,
and visualize user's search input and interaction (discussed in
Section IV-B). The main contributions of Search++ are:

• A new search interface that provides more control
than the standard stripped down interface. Without
overwhelming the user with advanced search interface
components.

• User defined and controlled relevance ranking.
• A framework that aggregates multiple Web

Server/Client technologies.
• An interactive and visual interface that lets the user

control the process and view results.

To help evaluate the capabilities of Search++, we con-
structed a case study using Amazon Web Services (AWS) [8].
We asked a group of ten individuals who described themselves
as “non-technical” to search for six unique products they are
seeking to purchase; three searches using Amazon's search
interface and three using Search++. Section VI describes this
in further detail.

In Section II, we discuss the past and present implementa-
tions of search interfaces. Section III define the components of
Search++. Section IV describes how the various components
work among each other and user interaction. Section V define
the processing modules upon initial load and user interaction
results. Section VI shows our case study using AWS as our
data repository. Section VII recaps our findings of Search++.

II. RELATED WORK

The goal of any search engine is to find information that
matches or is relevant to some criteria [9]. In the early days
of on-line computing, it was common to have complex input
criteria that may not be readable/understandable to today's
common user.

Complex interfaces are only usable by a few very tech-
nically savvy users who are able to negotiate the interface's
complexity to their needs. They often cause confusion and
frustration for the common user. Various approaches, such as
WISE-Integrator [10], try to bridge this gap by giving the user
more fields to fill out (e.g., price range, author name, etc.), but
this assumes the user knows more about what they are looking
for, which is often not the case. Common e-commerce based
search engines [11] have filter-down mechanisms to help users
identify some of their needs (e.g., price, brand, etc.). However,
the user cannot explicitly state what is their highest relevance.
These filtering mechanisms intentions are to remove entries
rather than resort them. Complex, advanced search engine

interfaces [12] [13] are not designed for the common user.
They show powerful results, but they lack in ease of control
and instant understanding/intentions of use.

Our Search++ approach is designed to support a common
(i.e., not particularly technical) user, offering a little more
control than just an input field, without overwhelming the
user with a tremendous amount of additional fields that may
or may not be coherent. We define a dynamic attribute as a
parent level descriptor of a given item. A dynamic attribute
instance may have child attributes. Child attributes are child
level descriptors of a single dynamic attribute. It is possible
that a child attribute may also be a dynamic attribute and have
child attributes. Our case study (Section VI) does not show
any child attributes also being a dynamic attribute. Dynamic
attribute instances are obtained from the search result set
and grouped in a way that shows only distinct results. Our
case study (Section VI) demonstrates various forms of this
scenario. We color code each attribute to show frequency of
sub-attributes (discussed more in Section V-D). Additionally,
the user can sort these attributes based on her/his priorities.
Upon resorting attributes, Search++ will display results based
upon their attribute ranking.

In Section VI, we demonstrate an application of Search++
on data exploration of e-commerce products. We explore the
usage of ranking of dynamic and child attributes along with
color scheme. We demonstrate the usefulness of Search++, and
display the value of ranked attribute and sub-attribute results.

III. COMPONENTS
The current fundamental set of Search++ components

includes three base views (Dynamic Table, Input Box, and
Dynamic Attributes), Session State Management, Data Source
Plugins, and four Query Processing Modules (Frequency Based
Priorities, Resorting Priority, Selection, and Color Code). Ad-
ditional libraries provide data organization and presentation.
We now describe each component in more detail.

A. Dynamic Table
Search++'s dynamic table provides a spreadsheet-like view

of the data. Each table may have up to i rows and j columns.
A user may select n row(s) to view the dynamic and child
attributes related to the selection. Upon selecting a row, it will
be highlighted. The dynamic and child attributes related to
selected row(s) will be displayed. Upon deselection of the
row(s), the entire list of dynamic and child attributes are
displayed. This technique provides an on-demand multiview
linked visualization that helps the user learn what dynamic
and child attributes make up the related dynamic table entries.
Figure 2 show the various states of a dynamic table.

B. Input Box
Search++'s input box is the initial visualization and first

point of interaction for the user. This component is common
in most search interfaces.

C. Dynamic Attributes
Search++'s dynamic attributes are created from data asso-

ciated with each of the search results. A dynamic attribute
may have n child attribute(s) (e.g., “Feature” being a dynamic
attribute having child attributes of: “16 Megapixels”, “5x

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 46 / 64

Figure 2. User has clicked on a single dynamic table entry. Only the
associated dynamic and child attributes are displayed.

Figure 3. User has expanded dynamic attribute “Feature” and associated
child attributes are now displayed.

optical zoom”, “20x digital zoom”, etc.). Figure 3 shows
various child attributes.

Search++'s interface allows users to sort dynamic and child
attributes according to their priority. Upon sorting, our query
processing modules will be engaged (discussed in Section
III-F). The dynamic attributes are color coded by their fre-
quency of child attributes (discussed in Section V-D). This
allows the user to learn how common an attribute is. Dynamic
and child attributes may be hidden when the user is interacting
with the dynamic table row(s). This technique allows users to
view the dynamic and child attributes related only to their
selection.

D. Session State Management
There are three common techniques to store session state:

client, server, database [14]. Search++ utilizes server based
session state. Each user has one session, which are not shared
between users. Sessions allow the server to automatically
garbage collect un-utilized data [15]. Session state manage-
ment in Search++ allows the system to retain critical infor-
mation that was normalized and processed upon the initial
and subsequent execution of the search. This information is
referenced upon UI interaction within the same result set. This
technique eliminates the need for re-access to the data source.

E. Data Source Plugins

We define a data source plugin as a utility to retrieve
and normalize external data requests. Traditional and pure
plugin architectures [16] were examined. We chose traditional
plugin architecture as it allowed us to retrieve data with
less complexity compared than pure. Search++'s data source
plugins allows for various API's to be called and normalized
to a single result set. This technique allows Search++ to
add and configure plugins without impacting the downstream
processes. In Section VI, we demonstrate the usefulness of this
technique.

F. Query Processing Modules

Search++ has four primary query processing modules
(frequency based priority, resorting priority, selection, and
color coding). Each module is responsible for a single task
(e.g., retrieve data, organize data). This technique allows other
modules to be added or removed during run-time without
affecting the entire system. Each module is discussed in detail
in Section V.

G. Implementation

Search++ is implemented using commonly-used libraries
(Microsoft MVC5, Angular-JS, Bootstrap and jQuery-Sortable
[17], [18], [19], [20]) for user interactions, design of each
component, session management and algorithm runtime. The
combination of these technologies is common and has been
shown to provide the necessary performance capability when
used in conjunction.

IV. UI, INTERACTION, AND WORKFLOW
Search++'s interface displays a single view. This view

allows a user to search for criteria and rank attributes according
to their priority. Search++'s query processing modules will
leverage the attribute priority to obtain a list of prioritized
search results. In this section, we describe the workflow that
a user needs to carry out in Search++ to accomplish a goal.

A. Initial Search

Upon initial search, Search++ retrieves data to render the
visualization. Upon retrieval of data from our data source
plugins (Section III-E) Search++'s query processing modules
will engage to normalize the data set for visualization. The
result set includes dynamic attributes and tables. The dynamic
attributes are presented in the default sort order in accordance
to the dynamic and child attribute frequency (described in
Section V-A). The dynamic table will include the sorted search
results based upon the dynamic and child attribute priority
(described in Section V-C).

The following is the exchange that takes place between
client and server for initial data acquisition.

• Client : HTTP GET request for data
• Server : Receives request

◦ Queries data within plugin architecture
◦ Performs normalization and engages algo-

rithms
• Client : Receives Data

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 47 / 64

B. Manipulating Data
Manipulating details within a data set to further derive

insight is important. Search++ allows for manipulations within
dynamic and child attributes, dynamic table, or re-searching for
criteria. Upon any of these manipulations our dynamic table
will update (discussed in Section IV-B2). In the following sub-
sections we will discuss each manipulation and the reactions
that occur.

1) Dynamic and Child Attributes: A user can manipulate
dynamic and child attributes. A dynamic attribute can be
reordered amongst other dynamic attributes. A child attribute
can be reordered among other child attributes within the
particular dynamic attribute. A user can reorder a dynamic or
child attribute by selecting and dragging the attribute above or
below other attributes. Upon reordering our query processing
module is engaged and the dynamic table is updated. Figure
4 demonstrates the result of a user reordering.

2) Dynamic Table: Search++ has a simplistic view for the
user to quickly understand what is available. The dynamic table
entries may be reordered depending on the user's interaction. If
the user changes their search criteria the dynamic table entries
will be replaced. To help users understand what dynamic
and child attributes are associated with a particular row in
the dynamic table, Search++ allows the user to select n
row(s). Upon selection of a given row, Search++ displays the
dynamic and child attributes related to the selection. If a user
deselects all rows previously selected, the dynamic and child
attributes related to the entire result set will reappear. Figure
2 demonstrates this action. This creates a multiview linked
visualization that helps the user learn what attributes comprise
a particular set of entries.

3) New Search: On a new search, Search++ will reinitialize
all data to the begin state. Search++'s visualization will update
the result set to a similar format of all previous searches.
This consistency allows users to be more effective conducting
searches as the components become familiar to the user.

V. QUERY PROCESSING MODULES
Search++ has four query processing modules that work

together to provide a normalized result set. We will discuss
each module in further detail below.

A. Frequency Based Priority
The frequency based priority module is run when the user

conducts a new search. The input to this algorithm is the output
dynamic and child attributes from the originating data source.
The output is a sorted occurrence list of dynamic and child
attributes (i.e., attributes that are most common are earlier in
the list and tail down to least). Table I shows an example
input and output. This algorithm sorts dynamic attributes in
descending order according to the dynamic attributes with the
greatest number of distinct child attributes. This allows the user
to quickly ascertain the attributes with the greatest amount of
variation.

B. Resorting Priority
Resorting dynamic and child attributes allows the user

to identify search results that most closely align with their
ranked ordered priorities. This technique is preferable to that
of complex interfaces that filter criteria as result sets are not
removed but reordered.

TABLE I. THE FOLLOWING TABLE SHOWS AN EXAMPLE INPUT AND
EXPECTED OUTPUT FROM THE FREQUENCY BASED PRIORITY

ALGORITHM.

Input Output
Fragile (5) Feature (30)
Weight (10) Weight (10)
Feature (30) Warranty (8)
Warranty (8) Fragile (5)

Figure 4. User has prioritized “ListPrice” and “Brand” above “Feature”.

Upon sort of dynamic or child attributes, the Web client
will notify the server of change. Search++ has an optimal
approach of sending this data, by sending only the unique
identifiers of the new order, rather than the organized full
data set. With the use of session state management (discussed
in Section III-D) we are allowed to quickly manipulate the
resorting and allow our selection algorithm to engage.

C. Selection
Search engines typically provide results in a table. Com-

mon users have grown accustomed to such an interface.
Search++ additionally displays the results as such referred to
as a dynamic table (described in Section IV-B2). The selection
algorithm is designed to create entries in a table manner. The
priority sort order of dynamic and child attributes define the
sort order of the dynamic table entries. The selection algorithm
maps the dynamic and child attributes to the data source entries
to provide the dynamic table.

The selection algorithm first identifies the search results
with parent and child attribute pair ranked highest in the
priority. These search results are designated to be first on the
list in the dynamic table. The selection algorithm will then
identify search results that were not used in the first iteration
and contain the parent and child attribute pair ranked second
in priority. These search results are designated to be second
on the list of the dynamic table. This process is repeated until
all search results have been identified and designated to be
included in the dynamic table. This algorithm will be triggered
upon new search creation or user interaction of dynamic or
child attributes.

D. Color Code
We color code dynamic attributes with the highest fre-

quency in light green and darken the color of each subsequent

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 48 / 64

dynamic attribute with lower frequency than the previous. We
felt that attributes with the highest frequency of sub-attributes,
shows the most likely sorted set for the common user. If two
or more dynamic attributes have the same number of child
attributes, their color will be identical. We only color these
dynamic and child attributes once, upon initial data retrieval.

Each dynamic attribute following the base attribute is
shaded using the following calculation: previous dynamic
attribute color + (((current dynamic attribute child count -
previous dynamic attribute child count) / previous dynamic
attribute child count) * base light color).

VI. CASE STUDY
To demonstrate Search++'s functionality and utility, we

conducted a user case study. In order to facilitate the case
study, a data source plugin for Search++ was developed to
leverage AWS as a repository. We asked a group of ten
individuals who described themselves as “non-technical”, five
male, five female, aging from 25 – 62, having highest educa-
tion degree: graduate (2), undergraduate (4), and high school
diploma (4) to search for six unique products they are seeking
to purchase; three searches using Amazon's search interface
and three using Search++. We compared the number of steps
taken by participants to find the desired search result, level of
confidence participants had with the search result, and overall
experience using each (Amazon, Search++). In the following
sections we describe the results and conclusions of this case
study.

A. Results
We captured data from ten participants and sixty search

attempts; thirty using Amazon’s search interface and thirty us-
ing Search++. We counted the number of steps each participant
took in each search attempt to find the desired search result. A
step is defined as any and each manipulation that a participant
performs on the view. On average we found each participant
took 7.8 steps using Amazon’s search interface compared to
7.3 steps using Search++ to find the desired search result.
Table II shows summarized results of participant steps. Table
IV shows summarized results of Amazon‘s search interface.
Table V shows summarized results of Search++.

In general, we found participants using Search++ required
fewer steps compared to Amazon’s search interface to find the
desired search target. Search++ required fewer steps except for
filtering/re-ranking. We believe participants in this study re-
ranked items more than necessary as they were experiencing
the Search++ technique for the first time. In the next section
we will discuss user feedback of this case study.

TABLE II. THE FOLLOWING TABLE SHOWS SUMMARIZED RESULTS OF
PARTICIPANT STEPS

Amazon Search++
Average Number of Steps 7.8 7.37
Median 7 7
Mode 6 7
Standard Deviation 2.98 1.45

At the conclusion of each participant’s search, we asked
the participant: “How confident do you feel that your selected
search result is best result that could be found? Rate 1–
5 (1 being the lowest level of confidence and 5 being the

highest)”. Participant confidence with the selected search result
was found to be higher using Search++. Table III shows the
summarized results of participant confidence with the selected
search result. We believe the Amazon’s search interface filters,
which omit results from the result set, led participants to have a
low level of confidence. In contrast, Search++ re-prioritization
technique does not omit results, but re-orders the result set.

TABLE III. THE FOLLOWING TABLE SHOWS USERS SUMMARIZED
CONFIDENCE LEVEL

Amazon Search++
Average Confidence Level 3.53 4.37
Median 4 4
Mode 4 4
Standard Deviation 0.73 0.49

TABLE IV. THE FOLLOWING TABLE SHOWS SUMMARIZED RESULTS OF
PARTICIPANT STEPS USING AMAZON’S SEARCH INTERFACE

Back
Button

New
Search
Term Filtering

Product
Detail
View

Next
Page

Average 0.6 1.37 3.33 1.6 1.33
Median 0.0 1.0 3.0 1.0 1.0
Mode 0.0 1.0 3.0 1.0 1.0
Standard Deviation 0.81 0.56 0.48 0.81 0.55
Count 18 41 100 48 40

TABLE V. THE FOLLOWING TABLE SHOWS SUMMARIZED RESULTS OF
PARTICIPANT STEPS USING SEARCH++

Back
Button

New
Search
Term

Rank
Change

Product
Detail
View

Next
Page

Average 0.27 1.2 3.93 1.27 1.33
Median 0.0 1.0 4.0 1.0 1.0
Mode 0.0 1.0 4.0 1.0 1.0
Standard Deviation 0.45 0.41 0.64 0.45 0.55
Count 8 36 118 38 40

In addition to the confidence rating, we asked participants:
“What was your experience using Search++” and “Would you
like to use the Search++ technique in other areas of search on-
line?” Eight out of the ten participants responded favorably to
their experience using Search++.

Nine out of the ten participants would like to see Search++
in other areas of search on-line. “I like how I can just
continuously re-shuffle my results without having to search
over and over again.”

One more observation: We collected all dynamic and child
attributes that were used to present the returned Search++
fields. Table VI shows a summary of the result set. Note that
the selection pool of dynamic and child attributes listed in
the table provides plenty data to priority-sort search terms.
This seems to offer more power to the user than the prevailing
filtering approaches, which tend to remove potentially relevant
data from the analysis.

B. Conclusion
The case study yielded favorable results for Search++,

showing that it is easily adopted by users, can reduce the
number of steps to obtain search results, and might be preferred
over existing search interfaces. We believe that participants
that did not respond favorably to Search++ may have factored

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 49 / 64

TABLE VI. THE FOLLOWING TABLE SHOWS DYNAMIC AND CHILD
ATTRIBUTES RETREIVIED DURING SEARCH++ SEARCHES

Dynamic Child Attributes
Average 32.8 289.12
Mode 30 288
Min 25 233
Max 51 357
Standard Deviation 5.64 32.37
Total 820 7228

Amazon’s other offerings above and beyond search results
when making the comparison (e.g., “Customer Reviews”,
“Customers also bought”). The technique allows users to find
results that they may not have known existed using other search
interfaces. “I found a school supply package using Search++
including the crayons I was looking for as well as other
markers and paper which I assumed I’d have to buy separate,
I didn't see this on Amazon’s search.”

Search++ yielded only slightly better results in terms of
steps to find desired search results; 7.3 steps on average
compared to that of 7.8 using Amazon however, Search++
rated hire in participant confidence. However, it is worth
considering that subjects had had more experience searching
with Amazon’s search interface than with Search++; it is
reasonable to expect that with a little more experience, their
performance and satisfaction using Search++ would improve.

VII. CONCLUSIONS
It has been shown that better search tools are needed for

better exploration [21]. Oblinger and Oblinger [22] argue that
the “Net generation” (those who learned to read after the Web)
are qualitatively different in their informational behaviors and
expectations; they multitask and expect their informational
resources to be electronic and dynamic. The Net generation
expects to be able to use Web resources to lookup, learn, and
investigate tasks with fluid user interfaces. To the best of our
research, even now, ten years after that observation was made,
search tools still cannot meet those expectations.

In this paper, we have introduced Search++, a technique
that allows users to easily execute a search against one or many
sources, identify the attributes that may be most important to
them, prioritize attributes according to importance, and find the
search results that most closely align with their priorities. We
have demonstrated that additional search options are needed.
We have shown various ways to explore these integrated results
within the interactive visualization paradigm, by the three UI
components described in Section III (Dynamic Table, Input
Box, and Dynamic Attributes). We have provided methods
to efficiently organize these results without interfering with
cognitive workflow.

We provided a case study that explored the value in
Search++, by asking ten “non-technical” individuals to search
for six unique products they are seeking to purchase; three
searches using Amazon’s search interface and three using
Search++. We found that Search++ offered a slight improve-
ment over Amazon’s search interface. Our research was limited
with our case study of ten users. We plan on advancing
Search++ by introducing a collaboration feature, which will
allow multiple searchers to work towards a a common goal.
Search++ may be adapted to solve other decision based real
world problems, by taking into considerations features inherent

to each problem. (For example, consider the problem of
seeking a new job, and imagine the various job-related features
that might impact the search.)

REFERENCES
[1] B. Shneiderman, D. Byrd, and W. B. Croft, “Clarifying search: A user-

interface framework for text searches,” D-lib magazine, vol. 3, no. 1,
1997, pp. 18–20.

[2] C. C. Kuhlthau, “Inside the search process: Information seeking from
the user’s perspective,” JASIS, vol. 42, no. 5, 1991, pp. 361–371.

[3] M. J. Bates, “Information search tactics,” Journal of the American
Society for information Science, vol. 30, no. 4, 1979, pp. 205–214.

[4] A. Halavais, Search engine society. John Wiley & Sons, 2013.
[5] M. W. Newman and J. A. Landay, “Sitemaps, storyboards, and speci-

fications: a sketch of web site design practice,” in Proceedings of the
3rd conference on Designing interactive systems: processes, practices,
methods, and techniques. ACM, 2000, pp. 263–274.

[6] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger, “The perfect
search engine is not enough: a study of orienteering behavior in directed
search,” in Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, 2004, pp. 415–422.

[7] K. Naz and H. Helen, “Color-emotion associations: Past experience and
personal preference,” in AIC 2004 Color and Paints, Interim Meeting
of the International Color Association, Proceedings, vol. 5. Jose Luis
Caivano, 2004, p. 31.

[8] E. Amazon, “Amazon elastic compute cloud (amazon ec2),” Amazon
Elastic Compute Cloud (Amazon EC2), 2010.

[9] J. Y. Kim, M. Cramer, J. Teevan, and D. Lagun, “Understanding how
people interact with web search results that change in real-time using
implicit feedback,” in Proceedings of the 22nd ACM international
conference on Conference on information & knowledge management.
ACM, 2013, pp. 2321–2326.

[10] H. He, W. Meng, C. Yu, and Z. Wu, “Wise-integrator: An automatic
integrator of web search interfaces for e-commerce,” in Proceedings of
the 29th international conference on Very large data bases-Volume 29.
VLDB Endowment, 2003, pp. 357–368.

[11] Q. Peng, W. Meng, H. He, and C. Yu, “Clustering e-commerce search
engines,” in Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters. ACM, 2004, pp.
416–417.

[12] M. Wilson, A. Russell, D. A. Smith et al., “mspace: improving
information access to multimedia domains with multimodal exploratory
search,” Communications of the ACM, vol. 49, no. 4, 2006, pp. 47–49.

[13] J. Zhang and G. Marchionini, “Evaluation and evolution of a browse
and search interface: Relation browser++,” in Proceedings of the 2005
national conference on Digital government research. Digital Govern-
ment Society of North America, 2005, pp. 179–188.

[14] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[15] B. C. Ling, E. Kiciman, and A. Fox, “Session state: Beyond soft state.”
in NSDI, vol. 4, 2004, pp. 22–22.

[16] D. Birsan, “On plug-ins and extensible architectures,” Queue, vol. 3,
no. 2, 2005, pp. 40–46.

[17] A. Leff and J. T. Rayfield, “Web-application development using the
model/view/controller design pattern,” in Enterprise Distributed Object
Computing Conference, 2001. EDOC’01. Proceedings. Fifth IEEE
International. IEEE, 2001, pp. 118–127.

[18] N. Jain, P. Mangal, and D. Mehta, “Angularjs: A modern mvc frame-
work in javascript,” Journal of Global Research in Computer Science,
vol. 5, no. 12, 2015, pp. 17–23.

[19] M. Otto and J. Thornton, “Bootstrap,” Twitter Bootstrap, 2013.
[20] B. Bibeault and Y. Kats, jQuery in Action. Dreamtech Press, 2008.
[21] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis,

and T. L. Madden, “Ncbi blast: a better web interface,” Nucleic acids
research, vol. 36, no. suppl 2, 2008, pp. W5–W9.

[22] D. Oblinger, J. L. Oblinger, and J. K. Lippincott, Educating the net
generation. Boulder, Colo.: EDUCAUSE, c2005. 1 v.(various pagings):
illustrations., 2005.

38Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 50 / 64

Assessing the Suitability of Architectural Patterns for Use in Agile Software

Development

Samira Seifi Jegarkandy, Raman Ramsin

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

e-mail: seifi@ce.sharif.edu, ramsin@sharif.edu

Abstract—The software industry is moving towards agile

software development methods, as they accommodate rapidly

changing requirements, and cope remarkably well with

modern challenges of software development. On the other

hand, it has long been recognized that software architecture

has a major impact on the maintainability, scalability, and

quality assurance of software systems, so much so that it is

virtually impossible to produce high-quality software systems

(which are inherently complex) without architectural design.

Agile methodologies use lightweight architectural practices,

and applying architectural patterns is a common practice in

agile development. However, to this date, there has been no

comprehensive study on the suitability of existing architectural

patterns for agile development. We introduce a set of criteria

for assessing the suitability of architectural patterns for use in

agile approaches, and evaluate a set of prominent architectural

patterns based on these criteria. Agile developers can use the

results of this evaluation to assess the suitability of each

pattern for application in their agile development projects.

Keywords-agile software development; software architecture;

software pattern; architectural pattern; criteria-based evaluation

I. INTRODUCTION

Agile software development methodologies have been
gaining in popularity, among industry practitioners and
researchers alike, since they emphasize rapid and flexible
development [1]. On the other hand, software architecture, as
a discipline, deals with modeling and managing a software
system’s structure, project blueprint, and communications
among stakeholders, which are essential for achieving
quality attributes such as usability and maintainability [2].
Architectural design has always been an important issue in
agile approaches, even though these approaches have strived
to keep their architectural design tasks as lean as possible
[3]. It has been suggested that agile methods’ support for
architectural activities should be enhanced even further [4].

In software engineering, an architectural pattern is a
structured description of a reusable coarse-grained
architectural solution to a commonly occurring problem
within a given context [5]. Architectural patterns mainly
target the non-functional requirements of the product, and
provide an overall structure for the target system in order to
address these requirements [2]. Architectural patterns are
widely used today in all development approaches, including

agile development, for structuring software systems.
Although several approaches have been proposed for
applying architectural patterns in agile development (such as
[6]-[9]), there is currently no comprehensive review of these
patterns to assist developers in selecting agile-friendly
patterns. This paper focuses on evaluating the suitability of
architectural patterns for application in agile development.
To this aim, we propose a criteria-based evaluation approach.
The evaluation criteria used in our approach have been
elicited from the Agile Manifesto and Principles [10] and the
CEFAM evaluation framework [11]. We have used these
criteria to evaluate existing architectural patterns; due to
space limitations, however, only the patterns that are most
prominent and relevant will be focused upon in this paper.

The evaluation results obtained in our research (reported
herein) can be leveraged to identify a set of agile-friendly
architectural patterns. Thus, our proposed set of criteria
provides a valuable framework for assessing the suitability of
architectural patterns for use in agile development, and also
for warning against the use of architectural patterns that are
not particularly suitable for agile development. Another
potential benefit of our proposed criteria is the applicability
of the evaluation results for improving architectural practices
in agile approaches; this has indeed been our ultimate
intention in this research: we intend to combine architectural
patterns and agile methodologies in order to address
architectural issues in agile development without any adverse
effect on agility. Even if an agile method puts sufficient
emphasis on software architecture, misusing the method can
cause architectural problems; the individual criteria and their
respective evaluation results can potentially alleviate this
problem by helping to determine the appropriate time and
situation for applying each pattern in an agile context, thus
enabling the developer to address architectural design issues.

 The rest of this paper is organized as follows: Section II
reviews the architectural patterns used in agile development;
Section III introduces the proposed evaluation criteria, based
on which the evaluation results are presented in Section IV;
and Section V presents the concluding remarks and discusses
possible directions for furthering this research.

II. ARCHITECTURAL PATTERNS AND AGILE

DEVELOPMENT

In this section, we will provide an overview of
architectural patterns and their use in agile development.

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 51 / 64

A. Review of Architectural Patterns

Patterns have been defined for many different areas of
software development. However, our focus here is strictly on
patterns for software architecture, which are commonly used
for shaping the high-level structure of a software system. The
terms architectural style and architectural pattern are widely
used for describing these reusable structures [2]. In this
subsection, brief descriptions will be provided for major
architectural patterns; it should be noted that in cases where
there are several variants for a pattern, the variant that is
more widely used has been included, even if it is an older
(earlier) variant. In later sections, we will assess these
patterns as to their applicability in agile development.

We have categorized the architectural patterns according
to their application areas in order to better manage the
complexity of the spectrum of patterns under review. Even
though some of the patterns are usually categorized as design
patterns, we have included them herein as they can also be
used for solving architectural problems, e.g., the Decorator
pattern [12] can be used for creating dynamically configured
chains of subsystems, and can thereby offer a solution at the
architectural level. Some patterns address several application
areas; in such cases, one of these areas has been designated
as the main application area. All such patterns have been
categorized based on their main application areas, e.g., we

have assigned the Architecture with Component-as-a-Service
(CaaS) pattern [13] to the Mobile Software Development
category, even though it belongs to the Distributed Systems
Development category as well. The patterns have been
briefly described in Tables I and II; these tables also show
the main category to which each pattern belongs.

There are six pattern categories, as explained below:

 Patterns for Mobile Software Development: Various
architectural patterns yielding different levels of
qualities, especially as to performance and energy
consumption, which are used for developing mobile
systems and applications (shown in Table I).

 Patterns for Cloud Systems Development: Patterns
for using cloud-platform services (shown in Table I).

 Security Patterns: Patterns that provide a high level
of security (shown in Table II).

 Patterns for Distributed Systems Development:
Patterns that define how distributed components
collaborate with each other (shown in Table II).

 Patterns for Agent-Oriented Systems Development:
These include patterns for developing systems in
agent-oriented contexts (shown in Table II).

 General-Context Patterns: General patterns that do
not belong to a specific application area or
development context (shown in Table II).

TABLE I. ARCHITECTURAL PATTERNS FOR MOBILE SOFTWARE DEVELOPMENT AND CLOUD SYSTEMS DEVELOPMENT

Pattern Category|Name Brief Description

M
o

b
il

e
 S

o
ft

w
a

re
 D

ev
e
lo

p
m

e
n

t

Architectural Pattern for Mobile

Groupware Platforms [14]
Used for developing groupware platforms, providing separate functionality for three basic concerns:

Collaboration, Communication, and Coordination. It divides systems into three separate layers: the collaboration

layer consists of mobile groupware applications; the communication layer handles messages interchanged among

mobile units; and the coordination layer provides the services required by applications to coordinate their
operations on shared resources.

Balanced MVC Architecture
[15]

Used for supporting service-based mobile applications. This pattern is an extended Model View Controller

(MVC) architecture where client and server systems embody the MVC pattern.

External Customizer [16] Focuses on adapting web content to mobile clients by creating a component that converts data from arbitrary
mobile web information systems to a suitable format for potential clients.

Internal Customizer [16] Removes the need for external customization by providing the client with a response directly suitable for its

manipulation. This pattern uses customization mechanisms in the design of mobile web information systems.

Web Channel Broker [16] Extends the Broker pattern with the capability to interact with the whole web while presenting only a subset of it.

Application with External User

Interface (UI) Elements [17]
Represents interactive applications with physically separated UI components. This pattern is an adaptation and

extension of the MVC approach.

Standalone Mobile Application

[13]
Runs the entire expected functionality on a mobile device without referring to any external services or servers

[13].

Mobile Application with Full

Offloading [13]
Offloads the whole application and its associated database to a server. The mobile device just transmits the

required dataset to the server, and is not involved in any computations.

Mobile Application with Partial

Offloading [13]
Offloads parts of the application and the dataset to an external server.

Architecture with Software-as-a-

Service (SaaS) [13]
In this pattern, the client incorporates a simple web browser or dedicated client program, while all the

functionality required is fulfilled by external services.

Architecture with Component-

as-a-Service (CaaS) [13]
Provides cloud services as finer-grained units of common and reusable functionality.

CaaS-Based Architecture with

Offloading [13]
Divides the required functionality into three parts: one part is fulfilled by the CaaS architecture, one part is

offloaded to a dedicated server, and the remaining part is implemented in the client application.

Extended MVC [18] Extends the common MVC pattern with additional components and adaptations specifically intended for mobile
application development.

C
lo

u
d

 S
y

st
e
m

s

D
e
v

el
o

p
m

e
n

t

Cloud Policy Management Point

[19]
Controls security functions, including authentication, authorization, cryptography, and control of virtual machine

images.

Eventually-Consistent User

Interface [20]
Ensures the eventual consistency of the user interface in cases where it is not possible (or desirable) to ensure the
consistency of the cloud data stores that are used by the user interface.

Loose Coupling [21] Reduces dependencies among distributed applications and their components by using Brokers.

Service Level Agreements

Compliance Checking [22]
Provides a three-layered architecture for distinguishing probe concerns from monitoring data collection concerns

according to the SLAs.

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 52 / 64

TABLE II. ARCHITECTURAL PATTERNS RELATED TO SECURITY, DISTRIBUTED SYSTEMS DEVELOPMENT, AGENT-ORIENTED SYSTEMS DEVELOPMENT,
AND GENERAL CONTEXT

Pattern Category|Name Brief Description

Security Secure MVC [23]
Shows how several fundamental security patterns must be applied to MVC components in order to provide

secure access/modification of the information residing in the Model component.

Distributed

Systems

Development

Component-Based

Architectural Style [24]

Decomposes the application into reusable components (functional or logical), which are location-transparent

and expose well-defined communication interfaces.

Service-Oriented

Architectural Style [24]
In this style, some of the components provide services to other components.

Event-Based Integration

Style [25]

Removes the need for identities on the connector interfaces in order to reduce the coupling among

components. This style is also known as the Implicit Invocation or Event System style.

Client/Server Architectural

Style [24]

Provides distributed systems consisting of separate clients and servers and a connecting network. There are

variants such as Client-Queue-Client and Peer-to-Peer (P2P).

Distributed

Publish/Subscribe [26]
Decouples the publishers of events from those interested in them.

Enterprise Service BUS

[26]

Integrates a variety of distributed services and related components. Within this architectural pattern, various
components connect to a service bus via their service interfaces.

Broker [5]
Achieves better decoupling of clients and servers through providing indirect, location-transparent access to

distributed services by handling message calls to the appropriate objects.

A-3 Style [27]

Defines a structure for coordinating distributed components. This style adopts the concept of “group” as an
abstraction for organizing an application into semi-independent slices, providing a single and coherent view

of these aggregates, and coordinating them.

AO Systems

Development

Layered Agent [28]
Provides a structure for supporting the behavior of agents. This pattern decomposes agents into layers. All

agents do not have the same layers.

AO-Broker [28]
This pattern is a special kind of Broker specifically customized and extended for use in agent-oriented

systems [28].

Presentation-Abstraction-

Control (PAC) [5]

Provides a structure for interactive systems. This pattern defines the system as a set of cooperating agents,

each of which is responsible for a specific aspect of the system's functionality.

General

Context

Model-View-Controller

(MVC) [5]

Divides an interactive system into three interconnected, highly specialized, and loosely coupled components:

Model, Views and Controllers. The model component encapsulates core data and functionality, view
components display information to the user, and controllers handle user input.

Model-View-Controller-

Context (MVCC) [29]

An extension of the MVC pattern that also incorporates a context component, which is solely responsible for

handling context-awareness concerns.

Zone [30]
Provides flexibility in changing the logical and physical architecture of the processing unit, and the resources

the processing units need to accomplish their tasks.

Microkernel [5]

Provides mechanisms for extending the software system with additional and/or customer-specific

functionality, thus making systems adaptable and extensible. In this pattern, the most important core services
of the system are encapsulated in a microkernel component.

Reflection [5]

Supports extension of applications and their adaptation to evolving technology and changing functional

requirements. This pattern splits the system into two levels: a base level defines the application logic, and a
meta level makes the software self-aware by providing information on its essential features.

Façade [12]
Provides a unified interface to a complex subsystem. This pattern shields the components of a subsystem

from direct access by their clients.

Blackboard [5]
Useful for combining patchy knowledge to arrive at solutions, even if they are sub-optimal or not guaranteed.
This pattern tackles problems that do not have any deterministic solution strategies.

Component-Based

Framework [31]

Used for developing component-based systems. This pattern provides a mixture of fixed and flexible

elements that maximize the scalability and extensibility of systems.

Configured Handler

Method [32]

Performs event handling by using metadata, thus avoiding proliferation of empty methods or reduction in
class cohesion. Also known as Metadata-based API and Metadata-based Invoker,

Layers [5]
Divides the system into distinct layers where each layer is at a particular level of abstraction and handles a

specific concern of the system.

Pipes and Filters [5]
Used for processing date streams. This pattern divides the tasks of a system into several sequential processing
steps (filters) that form a pipeline. Data is passed between adjacent filters through pipes.

Adapter [12]
Used for translating calls between two different interfaces. This pattern converts the interface of a class into

the interface that clients expect.

Decorator [12] Additional responsibilities can be dynamically attached to an object by using this pattern.

Command [12]
Encapsulates a request as an object, thereby letting users parameterize clients with different requests, queue

or log requests, and support undoable operations [12].

Command Processor [5]
Complements the Command pattern [12] by addressing the management and scheduling of Command

objects.

View Handler [5] Manages all the UI views that are provided by the system.

B. Using Architectural Patterns in Agile Development

Architectural concerns have always been addressed in
agile development methodologies; the system “metaphor”
used in XP is a prominent example [1]. However, there is a

growing interest in further extending agile methods with
architectural approaches [3][4]. One way to improve
architectural design in agile software development is to use
architectural patterns. These patterns should make
architectural tasks more agile or add architectural tasks to

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 53 / 64

agile activities [7]. Research is ongoing on combining agile
development with architectural patterns in order to improve
agile processes; MASAM [8] and Mobile-D [9] are two such
methods that use architectural patterns in agile approaches in
order to capture architectural knowledge. References [33]-
[35] provide examples of the use of architectural patterns in
agile software development; these patterns have reportedly
improved the quality of the systems produced, and have
provided a holistic view of the system, without which agile
projects could face serious impediments.

III. PROPOSED EVALUATION CRITERIA FOR ASSESSING

SUITABILITY OF ARCHITECTURAL PATTERNS FOR AGILE

DEVELOPMENT

As mentioned before, the suitability assessment proposed
herein is based on suitability criteria. To this aim, we
propose a special set of qualitative criteria based on the agile
traits outlined in the Agile Manifesto and Principles [10], and
the CEFAM Framework for evaluating agile methodologies
[11]. This approach is based on the rather obvious
observation that a pattern that violates these characteristics
and damages agility cannot be used in agile development.

Our proposed set of evaluation criteria will be introduced
throughout the rest of this section. The criteria, listed in
Table III, are divided into two categories according to the
type of evaluation results obtained through applying them:

 Simple form: The evaluation results for these criteria
are of the “Yes/No” type, denoting the satisfaction or
non-satisfaction of the criterion. “Need for
formalism” is the only criterion in this category.

 Scale form (multilevel): The result of applying a
Scale-form criterion is selected from among a
number of predefined discrete levels. The levels are
numbered in descending order of satisfaction; in
other words, level 1 signifies the highest degree of
satisfaction of the criterion. To provide a more
precise evaluation, two of the criteria (“Reusability”
and “Complexity Management) have been further
divided into finer-grained sub-criteria.

In order to show the validity of the proposed criteria for
their ultimate purpose (i.e., assessment of agile-friendliness),
Table III also depicts the Agile Principles [10] that underlie
(are addressed by) each and every criterion. The proposed
criteria have also been assessed based on the validity
metacriteria of [36]; this assessment shows that the proposed
criteria are valid in that they are: 1) General enough to be
used for evaluating all architectural patterns as to their
suitability for application in agile development; 2) Precise
enough to help discern and highlight the similarities and
differences among architectural patterns as to their agile-
friendliness; and 3) Comprehensive enough to cover all
significant features of architectural patterns as pertaining to
their suitability for application in agile development.

IV. SUITABILITY OF ARCHITECTURAL PATTERNS FOR USE

IN AGILE DEVELOPMENT: EVALUATION RESULTS

In this section, we provide the results of assessing the
reviewed architectural patterns based on the proposed

criteria. The evaluation results, as assessed by the authors,
are presented in Table IV.

Assessing the overall suitability of an architectural
pattern for use in agile development can be a matter of
opinion, as many patterns are strong in some of the criteria,
but weak in others. Deciding the overall suitability of a
pattern is therefore subjective, and depends on the priority of
the criteria in the mind of the assessor. The last column of
Table IV shows the overall suitability of each pattern as
judged by the authors: “” denotes “Overall Suitable”, and
“” signifies “Overall Unsuitable”. In our opinion, the
criteria and sub-criteria pertaining to “Reusability”,
“Decomposability”, and “Complexity Management” are
more important than others in assessing the overall agile-
friendliness of the patterns. We have therefore given more
weight to these criteria when giving our final verdicts.

To better understand the nature of the assessments made
in this section, Table V illustrates how the proposed criteria
have been used for assessing the MVC architectural pattern.
Overall, based on the evaluation results, the MVC
architectural pattern has been deemed as a suitable pattern
for use in agile software development.

The selection of the appropriate pattern depends on the
results of applying the whole set of criteria, not just one
criterion; this means that the final evaluation result might be
the same for all the assessors. Yet, even if the assessors do
not concur on the final result, the evaluations are still
valuable in that they help identify the strengths and
weaknesses of the patterns under review; this knowledge can
be used for comparing alternative patterns and improving the
use of the patterns in agile methods. As an example, consider
comparing MVC to Layers. Comparing the evaluation results
shows that MVC fares better than Layers in most of the
criteria; therefore, if these criteria are deemed crucial in a
project, MVC would be preferable to Layers in that
particular project situation.

V. CONCLUSION AND FUTURE WORK

The software industry is becoming increasingly keen on
using agile methodologies to achieve rapid and flexible
development. On the other hand, software architecture has
evolved into a vast, essential discipline in software
engineering; architectural design has become indispensable,
especially when reusable, distributed, and maintainable
software systems are required. Agile methodologies are in
need of improvement as to their support for architectural
design, and architectural patterns seem to be a promising
means for addressing this need. This has been our ultimate
goal in this research: to use architectural patterns for
enhancing architectural design in agile methodologies.

As the first step towards this goal, we have evaluated
existing architectural patterns as to their suitability for use in
agile development. A set of qualitative criteria have been
defined for evaluating existing methodologies. The results of
criteria-based evaluation reveal that not every architectural
pattern is suitable for use in an agile context; therefore, if an
application requires the use of an architectural pattern that
has been deemed as agile-unfriendly, using an agile approach
for its development would be considered risky (at best).

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 54 / 64

TABLE III. PROPOSED EVALUATION CRITERIA FOR ASSESSING THE SUITABILITY OF ARCHITECTURAL PATTERNS FOR AGILE DEVELOPMENT

Criterion Description Possible values

Underlying

agile

principles*

R
e
u

sa
b

il
it

y

Encapsulation

and abstraction

How does the pattern promote abstraction

and encapsulation? Abstract modules are

more reusable by nature, and encapsulation
enhances reusability by setting up barriers

among modules and reducing coupling [5].

1: At the level of components/classes;

2: Only at the level of subsystems/layers;

3: Addressed implicitly;
4: Not addressed, but not adversely affecting reusability;

5: Reusability reduced due to violation of encapsulation or lack of

abstraction.

CR; CS; FD;

FWS; GD; S

Separation of

concerns and

high cohesion

How does the pattern support separation of

concerns and promote high cohesion in

modules? Separation of concerns and high
cohesion go hand in hand, and enhance

reusability by encouraging non-complex,

specialized modules.

1: At the level of components/classes;

2: Only at the level of subsystems/layers;

3: Addressed implicitly;
4: Not addressed, but not adversely affecting reusability;

5: Reusability reduced due to clustering of functionality and execution of

non-related work at the level of layers/components.

CP; CR; FD;

GD; R; TP

Decomposability How is the structure decomposed by the
pattern so that each individual piece is small

enough to be developed in an agile manner?

1: Explicitly addressed for the entire system;
2: Explicitly addressed for part of the system;

3: Addressed implicitly;

4: Not addressed, but not adversely affecting decomposability;
5: Decomposability is adversely affected by the pattern.

CP; CR; CS;
CW; FD;

FWS; R

C
o

m
p

le
x
it

y
 M

a
n

a
g

em
e
n

t Coupling and

change

propagation

How does the pattern promote low coupling

and prevent the propagation of change?

1: At the level of components/classes;

2: Only at the level of subsystems/layers;
3: Addressed implicitly;

4: Not addressed;

5: Coupling and change propagation is adversely affected by the pattern.

CP; CR; CS;

FD; GD

Modularity How does the pattern provide a meaningful

decomposition of the software system into

subsystems and components? How does the
pattern indicate how to physically package

the entities that form the logical structure of

the system?

1: At the level of components;

2: Only at the level of subsystems/layers;

3: Addressed implicitly;
4: Not addressed.

CR; R; S; TP

Hiding of

implementation

details

Does the pattern hide implementation

details?

1: Only provides the overall system architecture;

2: Shows class structure;

3: Shows the classes and interfaces needed to create the elements;

4: Implicitly implies implementation details;
5: Explicitly states implementation details.

FTFC; SOT;

TP

Removal of

extra/duplicated

work

Does the pattern pay special attention to

removing extra/duplicated parts, thereby
enhancing the simplicity of the design and

avoiding unnecessary development work?

1: Addressed;

2: Addressed, but needs extra effort when applying the pattern;
3: Addressed implicitly;

4: Not addressed, but not adversely affecting simplicity;

5: Extra/duplicated work is introduced by the pattern itself.

CS; FD;

FWS; GD; S

Application costs Are the time, cost, and effort required for
applying the pattern justifiable?

Application costs are:
1: Lower than the “before” state;

2: Reasonable;

3: Acceptable, because the pattern solves important problems;
4: High, because the problems solved are not important.

CS

Explicit definition

Does the pattern define the architectural

solution (structure of the system and the
relationships among its constituent

elements) in a detailed and explicit fashion?

1: Explicit definitions of structure and relationships are provided;

2: Explicit definition of structure and implicit definition of relationships
are provided;

3: Implicit definition of structure and explicit definition of relationships

are provided;
4: Implicit definitions of structure and relationships are provided;

5: Not addressed.

CW; R

Need for modeling Does applying the pattern require modeling
(analysis/design)?

1: The modeling required can be supported by all agile methodologies
(e.g., in a “metaphor” document);

2: The modeling required can be supported by some (but not all) agile

methodologies;
3: The modeling required cannot be supported by agile methodologies,

as it can have an adverse impact on agility.

CS; FTFC;
FWS

Need for

Formalism

Does applying the pattern require

formalism? If yes, the pattern is not
recommended for use in agile development.

“Y”: Yes;

“N”: NO.

CR; FTFC;

FWS

Legend:

* CP: Consistent Pace; CR: Changing Requirements; CS: Customer Satisfaction; CW: Collaborative Work; FD: Frequent Delivery; FTFC: Face-to-Face

Conversation; FWS: Focus on Working Software; GD: Good Design; R: Reflection; S: Simplicity; SOT: Self-Organizing Teams; TP: Trust in People.

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 55 / 64

TABLE IV. EVALUATION RESULTS

Pattern

E
n

ca
p

su
la

ti
o

n
 a

n
d

A
b

st
r
a

c
tn

e
ss

S
e
p

a
ra

ti
o

n
 o

f

C
o

n
c
er

n
s,

 a
n

d
 H

ig
h

C
o

h
e
si

o
n

D
e
c
o
m

p
o

sa
b

il
it

y

C
o

u
p

li
n

g
,
a

n
d

C
h

a
n

g
e

P
r
o

p
a
g

a
ti

o
n

M
o

d
u

la
ri

ty

H
id

in
g

 o
f

im
p

le
m

e
n

ta
ti

o
n

D
e
ta

il
s

R
e
m

o
v
a

l
o

f

E
x

tr
a
/D

u
p

li
c
a

te
d

W
o

r
k

A
p

p
li

ca
ti

o
n

 C
o

st
s

E
x

p
li

ci
t

D
e
fi

n
it

io
n

N
e
e
d

 f
o
r
 M

o
d

el
in

g

N
e
e
d

 f
o
r
 F

o
rm

a
li

sm

O
v

er
a
ll

 S
u

it
a

b
il

it
y

Mobile

Software

Architectural Pattern for Mobile Groupware Platforms [14] 2 2 3 2 2 2 2 2 1 3 N 

Balanced MVC Architecture [15] 1 1 2 2 1 1 1 2 1 1 N 

External Customizer [16] 1 2 3 1 2 2 2 3 2 2 N 

Internal Customizer [16] 5 4 4 4 3 1 4 3 2 2 N 

Web Channel Broker [16] 1 1 3 2 2 1 3 2 1 2 N 

Application with External User Interface Elements[17] 2 1 2 2 1 1 2 2 1 2 N 

Standalone Mobile Applications [13] 4 4 4 4 4 1 4 2 3 1 N 

Mobile Application with Full Offloading [13] 2 2 4 4 2 1 1 2 3 1 N 

Mobile Application with Partial Offloading [13] 2 2 2 2 2 1 2 2 3 1 N 

SaaS [13] 1 1 2 2 2 1 1 1 3 1 N 

CaaS [13] 2 2 2 2 2 1 1 1 3 1 N 

CaaS-Based Architecture with Offloading [13] 2 2 2 3 2 1 1 3 3 3 N 

Extended MVC [18] 1 1 2 2 1 2 2 2 1 1 N 

Cloud

Systems

Cloud Policy Management Point [19] 1 1 1 2 2 2 3 3 2 3 N 

Eventually-Consistent User Interface [20] 3 3 4 4 4 4 3 2 4 1 N 

Loose Coupling [21] 1 1 2 1 2 1 3 3 1 1 N 

SLA Compliance Checking [22] 2 2 3 2 3 1 2 2 3 2 N 

Security Secure MVC [23] 1 1 2 2 1 2 2 3 1 2 N 

Distributed

Systems

Component-Based Architectural Style [24] 1 1 1 1 1 1 2 2 1 1 N 

Service-Oriented Architectural Style [24] 1 1 1 1 2 1 1 1 1 1 N 

Event-Based Integration [25] 1 2 1 1 1 1 2 3 1 2 N 

Client/Server Architectural Style [24] 2 2 2 2 2 1 2 2 1 1 N 

Distributed Publish/Subscribe [26] 2 2 2 2 2 1 2 2 1 1 N 

Enterprise Service Bus [26] 2 1 1 1 2 1 2 2 1 1 N 

Broker [5] 2 1 2 1 2 1 1 1 1 1 N 

A-3 style [25] 2 2 2 2 1 2 3 2 1 2 N 

AO

Systems

Layered Agent [28] 1 1 1 2 1 1 2 2 1 1 N 

AO-Broker [28] 1 1 2 1 1 1 1 1 1 1 N 

PAC [5] 1 1 1 1 1 1 2 2 1 2 N 

General

Context

MVC [5] 1 1 2 2 1 1 2 2 1 1 N 

MVCC [29] 1 1 2 2 1 1 2 2 1 1 N 

Zone [30] 1 2 2 2 2 1 2 2 1 3 N 

Microkernel [5] 1 2 1 1 1 1 1 2 1 1 N 

Reflection [5] 3 2 3 2 3 1 3 3 4 3 N 

Façade [12] 2 1 3 1 2 1 2 1 1 1 N 

Blackboard [5] 3 2 5 3 2 1 3 4 2 2 N 

Component-Based Framework [31] 1 1 2 1 2 1 1 2 1 2 N 

Configured Handler Method [32] 2 2 2 2 3 2 3 2 1 2 N 

Layers [5] 2 2 3 2 2 1 2 1 3 1 N 

Pipes and Filters [5] 2 1 1 1 1 1 2 2 1 2 N 

Adapter [12] 2 2 3 2 3 2 2 2 1 1 N 

Decorator [12] 2 2 2 2 2 2 1 2 1 1 N 

Command [12] 1 1 2 1 1 3 2 3 1 1 N 

Command Processor [5] 1 1 2 2 1 3 2 3 1 1 N 

View Handler [5] 1 1 2 2 1 2 2 2 1 2 N 

We have based our proposed evaluation approach on the

Agile Manifesto and Agile Principles in order to ensure that
agility requirements are properly and comprehensively
addressed by the proposed criteria. The proposed criteria
have also been validated through the application of
assessment metacriteria.

Future research can focus on using the patterns that have
been deemed as agile-friendly to improve specific agile
software development methodologies. Architectural patterns
can also be empirically evaluated by application to real-
world development projects, the results of which can be used
for enriching the results of criteria-based evaluation.

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 56 / 64

TABLE V. DETAILED EXPLANATIONS FOR THE EVALUATION

RESULTS OF THE MVC PATTERN

Criterion Description Value

Encapsulation

and abstraction

The Model, View and Controller components

defined in MVC are encapsulated and abstract.

1

Separation of

concerns, and

high cohesion

MVC separates the business logic from the

presentation logic, so it supports separation of

concerns. Constituent components are highly
specialized and cohesive.

1

Decomposability Model, View, and Controller components can

be developed in different releases; but MVC is

silent as to further decomposition of these
components, especially the Model component.

2

Coupling and

change

propagation

MVC decouples the Model from Views and

Controllers, so changes in the UI do not
propagate to the system’s core functionality

(implemented in the Model). However, Views

and Controllers are tightly coupled.

2

Modularity MVC provides modularity by decomposing the
system into Model, View and Controller

components.

1

Hiding of

implementation

details

MVC is silent as to implementation, and just
defines the overall architecture of the system.

1

Removal of

extra/duplicated

work

The system structure defined by MVC

implicitly removes duplications and extra parts,
and thereby precludes extra/duplicated

development work.

2

Application

costs

The large number of updates and runtime
components increases the cost; however, this is

controllable, and the cost of applying the

pattern can be considered as reasonable.

2

Explicit

definition

MVC provides explicit and detailed definitions

for the system’s main components and the

relationships among them.

1

Need for

modeling

MVC can be modeled in a “metaphor”. 1

Need for

Formalism

No Formalism is required. N

Another strand of research can focus on defining detailed

quantitative criteria for assessing the suitability of
architectural patterns for use in agile development. This
would enable developers to obtain a more rigorous
assessment of architectural patterns.

REFERENCES

[1] R. Ramsin and R. F. Paige, “Process-centered review of object
oriented software development methodologies,” ACM Computing
Surveys, vol. 40, no. 1, February 2008, pp. 1–89,
doi:10.1145/1322432.1322435.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 2nd ed. Addison-Wesley, 2003.

[3] S. Ramakrishnan, "On integrating architecture design into
engineering agile software systems," Proc. Informing Science and IT
Education Conference, June 2010, pp. 9–25.

[4] H.P. Breivold, D. Sundmark, P. Wallin, and S. Larsson, “What does
research say about agile and architecture?” Proc. 15th International
Conference on Software Engineering Advances, August 2010, pp.
32–37, doi:10.1109/ICSEA.2010.12.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, vol. 1.
Wiley, 1996.

[6] N. Harrison and P. Avgeriou, “Pattern-based architecture reviews,”
IEEE Software, vol. 28, no. 6, November 2011, pp. 66–71,
doi:10.1109/MS.2010.156 .

[7] C. G. Álvarez, Overcoming the Limitations of Agile Software
Development and Software Architecture. Master’s Thesis, Blekinge
Institute of Technology, September 2013.

[8] Y. Jeong, J. Lee, and G. Shin, “Development process of mobile
application SW based on agile methodology,” Proc. 10th International
Conference on Advanced Communication Technology, February
2008, pp. 362–366, doi:10.1109/ICACT.2008.4493779.

[9] P. Abrahamsson, et al., “Mobile-D: An agile approach for mobile
application development,” Proc. 19th Conference on Object-Oriented
Programming Systems, Languages, and Applications, October 2004,
pp. 174–175, doi:10.1145/1028664.1028736.

[10] K. Beck, et al., “Manifesto for agile software development,”
Available online at http://www.agilemanifesto.org [retrieved:
January, 2016].

[11] M. Taromirad and R. Ramsin, “CEFAM: Comprehensive evaluation
framework for agile methodologies,” Proc. 32nd Software
Engineering Workshop, October 2008, pp. 195–204,
doi:10.1109/SEW.2008.19.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[13] J. Kim, “Architectural patterns for service-based mobile
applications,” Proc. International Conference on Service-Oriented
Computing and Applications, December 2010, pp. 1–4,
doi:10.1109/SOCA.2010.5707181.

[14] A. Neyem, S. F. Ochoa, J. A. Pino, and D. Franco, “An architectural
pattern for mobile groupware platforms,” Proc. On the Move to
Meaningful Internet Systems Workshops, November 2009, pp. 401–
410, doi:10.1007/978-3-642-05290-3_52.

[15] H. J. La and S. D. Kim, “Balanced MVC architecture for developing
service-based mobile applications,” Proc. 7th International
Conference on E-Business Engineering, November 2010, pp. 292–
299, doi:10.1109/ICEBE.2010.70.

[16] W. A. Risi and G. Rossi, “An architectural pattern catalogue for
mobile web information systems,” International Journal of Mobile
Communications, vol. 2, no. 3, September 2004, pp. 235–247,
doi:10.1504/IJMC.2004.005162.

[17] A. Lorenz, “Architectural patterns for applications with external user
interface elements,” Pervasive and Mobile Computing, vol. 9, no. 2,
April 2013, pp. 269–280, doi:10.1016/j.pmcj.2012.09.006.

[18] F. E. Shahbudin and F. F. Chua, “Design patterns for developing high
efficiency mobile application,” Journal of Information Technology &
Software Engineering, vol. 3, no. 3, 2013, pp. 1–9, doi:10.4172/2165-
7866.1000122.

[19] E. B. Fernandez, R. Monge, and K. Hashizume, “Two patterns for
cloud computing: Secure virtual machine image repository and cloud
policy management point,” Proc. 20th Conference on Pattern
Languages of Programs, October 2013, pp. 1–11.

[20] C. Fehling, et al., “Capturing cloud computing knowledge and
experience in patterns,” Proc. 5th International Conference on Cloud
Computing, June 2012, pp. 726–733, doi:10.1109/CLOUD.2012.124.

[21] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter,
Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer, 2014.

[22] A. Chazalet, “Service level agreements compliance checking in the
cloud computing: Architectural pattern, prototype, and validation,”
Proc. 5th International Conference on Software Engineering
Advances, August 2010, pp. 184–189, doi:10.1109/ICSEA.2010.35.

[23] N. Delessy-Gassant and E. B. Fernandez, “The secure MVC pattern,”
Proc. 1st International Symposium on Software Architecture and
Patterns, July 2012, pp. 1–6.

[24] J. D. Meier, et al., Microsoft Application Architecture Guide, 2nd ed.
Microsoft Corporation, 2009. Available online at
https://msdn.microsoft.com/en-us/ee658086 [retrieved: January,
2016].

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 57 / 64

[25] R. T. Fielding, Architectural Styles and the Design of Network-Based
Software Architectures. PhD Thesis, University of California at
Irvine, 2000.

[26] E. Fernandez and N. Yoshioka, “Two patterns for distributed systems:
Enterprise service bus (ESB) and distributed publish/subscribe,” Proc.
18th Conference on Pattern Languages of Programs, October 2011,
pp. 1–10, doi:10.1145/2578903.2579146.

[27] L. Baresi and S. Guinea, “A-3: An architectural style for coordinating
distributed components,” Proc. 9th Conference on Software
Architecture, June 2011, pp. 161–170, doi:10.1109/WICSA.2011.29.

[28] E. A. Kendall, P. V. M. Krishna, C. V. Pathak, and C. B. Suresh,
“Patterns of intelligent and mobile agents,” Proc. 2nd International
Conference on Autonomous Agents, May 1998, pp. 92–99,
doi:10.1145/280765.280781.

[29] H. Shams and K. Zamanifar, “MVCC: An architectural pattern for
developing context-aware frameworks,” Proc. 11th International
Conference on Mobile Systems and Pervasive Computing, July 2014,
pp. 344–351, doi:10.1016/j.procs.2014.07.035.

[30] K. J. Rothenhaus, J. B. Michael, and M. Shing, “Architectural
patterns and auto-fusion process for automated multisensor fusion in
SOA system-of-systems,” IEEE Systems Journal, vol. 3, no. 3,
September 2009, pp. 304–316, doi:10.1109/JSYST.2009.2022572.

[31] D. Parsons, A. Rashid, A. Telea, and A. Speck, “An architectural
pattern for designing component-based application frameworks,”
Software: Practice and Experience, vol. 36, no. 2, February 2006, pp.
157–190, doi:10.1002/spe.694.

[32] E. Guerra, C. Fernandes, and F. F. Silveira, “Architectural patterns
for metadata-based frameworks usage,” Proc. 17th Conference on
Pattern Languages of Programs, October 2010, pp. 1–25,
doi:10.1145/2493288.2493292.

[33] S. Prakash, A. Kumar, and R. B. Mishra, “MVC architecture driven
design and agile implementation of a web-based software system,”
International Journal of Software Engineering & Applications, vol. 4,
no. 6, November 2013, pp. 13–26, doi:10.5121/ijsea.2013.46021.

[34] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, “Does
refactoring improve reusability?” Proc. International Conference on
Software Reuse, June 2006, pp. 287–297, doi:10.1007/11763864_21.

[35] R. Mordinyi, “Towards an Architectural Framework for Agile
Software Development,” Proc. 17th International Conference and
Workshops on Engineering of Computer Based Systems, March
2010, pp. 276–280, doi:10.1109/ECBS.2010.38.

[36] G. M. Karam and R. S. Casselman, “A cataloging framework for
software development methods,” IEEE Computer, vol. 26, no. 2,
February 1993, pp. 34–44, doi:10.1109/2.191987.

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 58 / 64

Fast Fingerprint Recognition Using Circular String Pattern Matching Techniques

Oluwole Ajala, Moudhi Aljamea, Mai Alzamel, Costas S. Iliopoulos
Yoann Strigini

Department of Informatics
King’s College London

London, UK
e-mail:{oluwole.ajala, mudhi.aljamea, mai.alzamel, costas.iliopoulos, yoann.strigini}@kcl.ac.uk

Abstract—The performance of Automated Fingerprint Identi-
fication System (AFIS) heavily relies on how efficiently minu-
tiae are extracted. Most, if not all, AFIS compare minutiae
information (such as ridge endings and bifurcation position)
in form of sets of coordinates for verification or identification.
Surprisingly, research on alternative minutiae extraction schemes
is scarce. This paper, proposes the implementation of the novel
approach to fingerprint recognition based on the extraction of
minutiae in form of circular strings, which are suitable for
approximate circular string matching. In addition to that, the
proposed solution is able to detect the exact location and rotation
of the input fingerprint regardless of its location on the scan
surface.

Keywords—Biometrics; Fingerprints; Matching; Verification;
Orientation Field.

I. INTRODUCTION

Previously, a plethora of schemes for identification such as
knowledge based schemes like passwords, Personal Identifica-
tion Number (PIN) and token based schemes like passports,
driving license were used for identification purposes. However,
with the emergence of the internet,the need for automatic
person identification has become imperative. Specially with
the increase of the dynamic nature of personal activities,
particularly business and industry. Consequently, biometric
means of attaining this has become predominant. [1], [2].

Biometrics has to do with the metrics or statistical anal-
ysis of biological data which can be human traits or char-
acteristics. Biometric identifiers are peculiar and unique to
individuals; personal identification based on biometric data
offer the most accurate means of identification, hence, among
all other forms of biometrics such as eye, face, voice and
speech [3], the fingerprint identification remains the most
popular till date. Fingerprints have provided an impeccable
means of user authentication and personal identification for
a long time, possibly dating back to the 19th century, when
the records of fingerprint details of criminals in Argentina
were released [4]. It has long since been adopted not just
for law enforcement purposes (forensics and police) but also
for commercial purposes like financial transactions and most
recently, it is used as an authentication method in mobile
devices and computers. With regards to application, two kinds
of fingerprint recognition systems exist (identification and

verification). In the identification system, the query fingerprint
is inputted and then matched against a computed list of stored
fingerprints for resemblance. In this case, the output will be
understandably short or non-existent as no two fingerprints
are alike. The verification system however, involves an input
of query fingerprints with claimed identities, to be matched
against already stored IDs (name and fingerprint) within a
database to corroborate consistency. The system then outputs
a result which can be either an affirmative or a negative
message. The bulk of research that has focused on fingerprint
authentication, has however, neglected the rotational issues
that arise with fingerprints resulting to incorrect orientation
identification. This is because it is assumed and often times
wrongly, that the direction of the fingerprint will align with
the stored fingerprint image. This singular issue poses tension
in fingerprint matching, which only a negligible number in
the literature [5] have considered. As computers and mobile
devices adopt fingerprint recognition as a way to authenticate
user, this apparent tension gains more popularity, becoming an
integral research area which must be addressed.

A. Our Contribution

Responding to this rotational issue, this paper proposes a
novel pattern matching technique that caters for orientation
differences in fingerprints. Despite a plethora of fingerprint
matching algorithms, there is still room for improvement [6].
Our proposed solution will employ A Novel Pattern Matching
Approach for Fingerprint-based Authentication proposed by
[7], by implementing a pre-matching stage called the ori-
entation identification stage and then match the fingerprint
image with stored images using an efficient, error tolerant,
pattern matching algorithm. The fingerprint is intercepted
with a series of scan circles and the minutiae information is
derived. This information will then be translated into a string.
This fingerprint string information is now matched against a
database of stored images using approximate string matching
techniques. With this approach, identification of fingerprints
can be done in linear time, with respect to the total length of
all strings to be searched [7].

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 59 / 64

B. Road Map

The organization of the rest of this paper is as follows. In
Section II, we present some background related to fingerprints.
Section III presents a very brief literature review. We present
our approach in Section IV. The experiment and the result
analysis will be presented in section V. Finally, we briefly
conclude and state the future work in VI.

II. BACKGROUND

Fingerprints are made up of minutiae, which are basically
ridges and furrows in parallelism with each other. These
minutiae form a complicated pattern that when impressed
on a fingerprint scanner, leaves a print. These prints are
matched to stored images on a database for either verification,
authentication or both purposes. The fundamental fingerprint
(FP) patterns that exist are whorl, loop and arch [8]. However,
a commonly used classification is the Henrys classification
[9] [10] consisting of eight classes: Plain Arch, Tented Arch,
Left Slant Loop, Right Slant Loop, Plain Whorl, Double Loop
Whorl, Central Pocket Loop Whorl and Accidental Whorl (see
Figure 1).

Figure. 1. Classification of fingerprint patterns

Each fingerprint is permanent and of course unique. This
distinctiveness is derived by features such as ridges-ridge
endings, ridge bifurcation, valleys and furrows referred to as
minutiae which form a unique pattern. Recent studies have
shown that the probability of two persons sharing same fin-
gerprint is less than one in a billion [11], hence its uniqueness.
In early cultures, fingerprints have been relied on to identify

individuals using the so-called ink-technique [12]. This ink-
technique required that a persons fingers were first coated in
printing ink to get an impression on paper cards. This copy
was then scanned to get a digital image. The ink-technique,
though an off-line obtainment method, is still applicable today
especially in forensic studies as fingerprints often have to be
gathered from crime grounds. However, it is impractical for
biometric studies [13]. The alternative approach is of course
to scan and match fingerprints in real time.

III. RELATED WORKS

Fingerprint recognition has been a core study since prehis-
toric times, leading to the proposal of several algorithms to
developing an almost precise recognition system. Literature
on fingerprint recognition has attempted to cover a wide
span on the minutiae of fingerprints [14], [15], [16], [17].
Additionally, the memory and processor intensive computation
issues has been discussed and addressed in some previous
works. However, most of these recognition approaches hinge
on the assumptions that the fingerprint impression was got
from a vertically placed finger to produce a linear pattern.
The minutiae based matching remain the most popular ap-
proach. This is because minutiae are believed to be the most
discriminating and reliable features [18].

These previous works that have been grounded on the
fingerprint minutiae recognition ignored to deliberate on the
image distortions that can occur when obtaining a print with
different rotation (see Figure 2). As a result, researchers have
also used other features for fingerprint matching. For example,
the algorithm in [19] works on a sequence of points in
the angle-curvature domain, after transforming the fingerprint
image into these points. A filter-based algorithm using a bank
of Gabor filters to capture both local and global details in a
fingerprint as a compact fixed-length finger code is presented
in [20]. In the literature, the combination of different kinds of
features have also been studied [21], [22]. There exist various
other works in the literature proposing different techniques
for fingerprint detection based on different feature sets of
fingerprints [16], [23], [24]. Due to brevity we do not discuss
these works in this paper. Interested readers are referred to a
very recent review by Unar et al. [2] and references therein.

Note that, in addition to a large body of scientific literature,
a number of commercial and proprietary systems are also in
existence. In the related industry, such systems are popularly
termed as Automatic Fingerprint Identification System (AFIS).
A problem with the Automated Fingerprint Identification
system (AFIS) has to do with the sensors used to capture
the image. It is impractical to assume that the fingerprints
to be compared are obtained from a central sensor. This
will inevitably lead to a conflict in pattern matching when
a different sensor is used [25].

Also, with the commercially available AFISs, there poses
the challenge of increasing the matching speed without com-
promising the accuracy in the application context of identifica-
tion, more so, when the database is large [6]. For this reason,

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 60 / 64

the quest for yet a better fingerprint recognition algorithm is
nascent [6].

Figure. 2. An example of large distortion from FVC2004 DB1 [26]

IV. OUR APPROACH

As opposed to gathering information about ridge endings
and bifurcations from each fingerprint, the proposed algorithm
extracts minutiae information in form of circular strings.
Thereafter, the Approximate Circular String Matching via
Filtering (ACSMF) algorithm [27] is applied to the circular
strings, to find all occurrences of the rotations of a pattern of
length m in a text of length n [28], where n is the concate-
nation of all string representations of the fingerprints in the
database, and m is the string representation of the fingerprint
to identify. It follows that complexity of this approach is O(n).
The solution proposed in [7] is divided into two main stages:

• Stage 1 Orientation Identification
• Stage 2 Verification and Matching

A. Algorithmic Overview

Figure. 3. Minutiae Extraction Algorithm.

B. Details of Stage 1: Orientation Identification

In this stage, we employ a novel approach based on circular
templates as follows. Let us use fi to denote the image
of the input fingerprint. Let us assume that we know the

appropriate center point, p of fi. We then can convert fi to
a representation consisting of multiple circular bit streams by
extracting circular segments of the image as shown in the al-
gorithmic overview /Figure 3. This is achieved by constructing
k concentric circles Cj of radius rj , 1 ≤ j ≤ k, with center
at point p. For each circle, we obtain minutiae features of the
image by storing 1 wherever the edge of a circle intersects
with a ridge and a 0 if it intersects with a furrow. So, in
this way, for fi, we get k concentric circles, which can be
transformed into k circular binary strings see Figure 4. Clearly,
this procedure can be easily applied on a fingerprint data stored
on the database. In what follows, we will use Yj , 1 ≤ j ≤ k to
denote the k circular strings obtained after applying the above
procedure on a fingerprint data stored in the database. In what
follows, we may slightly abuse the notation and say the Yj

corresponds to the circle of radius rj .

Figure. 4. Intersection of a circle with the fingerprint

Now, to identify the location and orientation of the input
fingerprint we generalize the above approach to extract the
minutiae feature and apply the approximate circular string
matching algorithm of [28] as described in Figure 5. What we
do is as follows. For the input fingerprint, we cannot assume
a particular center point to draw the concentric circle which
is actually the main reason for difficulty in the process. So,
instead, we take reference points at regular intervals across
rows and columns of the entire frame of the image (i.e.,
the input scanning area) and at each point p`, concentric
circles Cj` of radius rj are constructed. Like before, k is the
number of circles at each reference point p`. So, from the
above procedure, for each point p` we get k circular strings
Xj`, 1 ≤ j ≤ k.

Figure. 5. Identifying the orientation and surface area of the fingerprint
impression

At this point the problem comes down to identifying the best
match across the set of same radius circles. To do this we make
use of the Approximate Circular String Matching via Filtering
(ACSMF) algorithm, presented in [28], which is accurate and
extremely fast in practice. To do this we take a particular
Xj`, construct Xj`.Xj` (to ensure that all conjugates of Xj`

are considered) and apply algorithm ACSMF on Xj`.Xj` and

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 61 / 64

Yj . In other words, we try to match the circular string Yj

(corresponding to the circle of radius rj) to all circular strings
Xj` (corresponding to the circle of radius rj) generated at
each point p`. Thus we can identify the best matched circular
string, i.e., the best matched circles and thereby locate and
identify the fingerprint impression with the correct orientation.
Once the orientation has been identified, we can apply standard
techniques to reorient the image to match with the image from
the database in the next stage.

C. Details of Stage 2: Verification and Matching

As with most other fingerprint recognition systems, a
database with fingerprint information is kept. It is against this,
that the queried fingerprint will be matched. Once stage 1
(the orientation identification stage) is complete, we can then
simply re-orient the fingerprint impression to suit the stored
format in the database, then the matching algorithm runs on an
assumed dual image of the same orientation and magnitude.
This is called the verification and can be effectively carried out
thus. Each image, now viewed as a two dimensional matrix,
consisting of zero and one values can be converted to a binary
string (one dimension). At this point, we are left with just
pattern matching between two strings of equivalent length.
However, note that the possibility of errors must be considered
here. Hence, we simply compute the edit distance between the
two binary strings and if the distance is within the tolerance
level, we consider the fingerprint to be recognized. Otherwise,
the authentication fails. In fact, the used matching algorithm
(Levenshtein algorithm) computes the best alignment by using
an edit distance which simply states the number of differences
that must be changed to attain a perfect match, without
considering error possibilities,

V. THE EXPERIMENT

The proposed approach has been developed in ANSI C/C++
using the external library OpenCV (freely available for aca-
demic use, under the BSD licence, at http://opencv.org) for
standard image processing. Different inputs have been tested
by running the fp_auth several times against the Fingerprint
Special Database of the National Institute of Standards (NIST)
[29]. All external sources are open/free for academic purposes
under (BSD licence). The experiment has been tested with
black and white Tiff images. These images have been prepro-
cessed to be thinned fingerprints using C++ implementation
of the Guo-Hall image thinning algorithm [30]. The results in
(Table I) shows the experiment results over enhanced images
with different parameters.

The data entries in the table are explained as follows:
Mated image refers to the input image whether it is related
to the compared image or not, No. of mismatch allowed is
the tolerance threshold under which the input fingerprint is
to be considered as candidate match corresponding to the
set of circular strings, , Max radius, is the radius for the
maximum circle by pixels that can be scanned per image,
Radius distance, is the number of interval in pixels between

TABLE I. EXPERIMENT RESULTS 1

each circle centre point.Elapsed time to get scans is the time in
seconds to get the total circular scans per image. No. matches
is the number of candidate matches after applying the ACSMF
algorithm. Finally,Finally, Rotation in pixels is the rotation to
be applied on the input fingerprint image in pixels.

In particular, the table shows that the time to get scans
for each image is less than a second. Essentially, it displays
that increasing the number of allowed mismatch, will result
in increasing the number of matched candidates returned by
ACSMF. For instance, when mated images are scanned and
compared when the number of allowed mismatch is very
low, almost equal to 10, it results to a negative return. .
In contrast, when the number of mismatch allowed is very
high for example 80, the number of returned matches is 2
even though the input image is different to the stored image.
However, the correct match is shown when the number of
mismatch is equal to 30. In general, the results show the effect
of choosing the number of mismatch allowed which should
not be very high to avoid false positive returns nor very low
to prevent the false negative rate either. Finally, the results
indicates the direct proportion between the circles centre point
in each image and the scanning speed. Finally, the results
indicate the direct proportion between the circles centre point
in each image and the scanning speed.

The main advantage of this approach is regardless of the
fingerprint rotation degree, the accuracy of the result will not
be affected, whereas most of the other finger print detection
algorithms accuracy results are affected by the rotation degree.
Moreover, according to the Fingerprint Matching and Non-
Matching Analysis for Different Tolerance Rotation Degrees
study in [31] where they evaluated three biometric systems
Neurotechnology Verifinger 6.0 Extended, Innovatrics IDKit
SDK and Griaule Fingerprint SDK 2007 and the influence of
the fingerprint rotation degrees on false match rate (FMR),
their results showed that the FMR values increase as rotation
degrees increase too. Additionally, it was stated that one of the
factors that affect the performance of the matching algorithm
is the fingerprint rotation. However, this is not the case in our
approach.

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 62 / 64

A. Accuracy and Speed

We have two parameters that determine the accuracy of our
approach. In Stage 1, the accuracy depends on the number of
concentric circles, k. The larger the value of k, the higher the
accuracy of pinpointing the location with the correct orienta-
tion. However, as k increases the computational requirement
and time also increases. In Stage 2, we have another parameter
d which is the tolerance level, i.e., the (edit) distance allowed
between the two strings. At this point a brief discussion on
the response time of our algorithm is in order. Note that,
the bulk of the computational processing in our approach
is required in Stage 1, where we apply algorithm ACSMF
to identify the best matched circles. As has been shown in
[28], on average, ACSMF works in linear time to the size of
the input and is extremely fast. The size of the circles and
hence the corresponding circular strings are very small and
can be assumed to be constant for all practical purposes. As
a result the running time of Stage 1 would be extremely fast.
Again, since the size of the fingerprint image is very small,
any efficient approximate string matching algorithm in Stage 2
would give us a very quick result. As an example, for an image
of 300x300 pixels, extracting 45 circular strings having radius
of 60 pixels takes on average 0.2200 seconds. Furthermore,
the per-column loop nested inside the per-row loop allows for
a 10x faster access this is because of the way C accesses
memory.

B. Two Modes of Fingerprint Recognition System

As has been mentioned before, in terms of applications,
there are two kinds of fingerprint recognition systems. So
far, we have only considered the mode where the input is
a query fingerprint with an identity (ID) and the system
verifies whether the ID is consistent with the fingerprint (i.e.,
verification mode). Here, the output is an answer of Yes or
No and we need only match against one fingerprint from
the database (i.e., the finger print coupled with the ID). To
handle the other mode (identification mode), we need to
match the query fingerprint against a list of fingerprints in the
database. This can be done using an extension of algorithm
ACSMF, namely Approximate Circular Dictionary Matching
via Filtering algorithm (ACDMF) [32]. We omit the details
here due to space constraints. Both ACSMF and ACDMF
implementations are available at [27].

VI. CONCLUSION AND FUTURE WORK

This paper proposes yet a new pattern matching based
approach for fast and accurate recognition of fingerprints. A
notable challenge in fingerprint matching is that the rotation
of the fingerprint is assumed to be in sync with the stored
image; in this paper we have tackled this issue. The novel
element of this paper is the process of using a series of circles
to transform minutiae information into string information
consisting of 0s and 1s, and then using the approximate
circular string matching algorithm to identify the orientation.
This technique has improved the performance and accuracy

of the fingerprint verification system. Although our matching
algorithm produces nearly accurate results at high speed,
implementing the suffix tree technique to this approach will
improve the accuracy and speed for big volume data.

REFERENCES

[1] S. Sebastian, “Literature survey on automated person identification
techniques,” International Journal of Computer Science and Mobile
Computing, vol. 2, no. 5, pp. 232–237, May 2013.

[2] J. Unara, W. C. Senga, and A. Abbasi, “A review of biometric technology
along with trends and prospects,” Pattern Recognition, vol. 47, no. 8,
pp. 2673–2688, August 2014.

[3] P. Szor, The art of computer virus research and defense. Addison-
Wesley Professional, 2005.

[4] National Criminal Justice Reference Service, The Fingerprint Source-
book, A. McRoberts, Ed. CreateSpace Independent Publishing Platform,
2014.

[5] A. Agarwal, A. K. Sharma, and S. Khandelwal, “Study of rotation
oriented fingerprint authentication,” International Journal of Emerging
Engineering Research and Technology, vol. 2, no. 7, pp. 211–214, 2014.

[6] P. Gutierrez, M. Lastra, F. Herrera, and J. Benitez, “A high performance
fingerprint matching system for large databases based on gpu,” IEEE
Transactions on Information Forensics and Security, vol. 9, no. 1, pp.
62–71, 2014.

[7] M. Aljamea, T. Athar, C. S. Iliopoulos, S. P. Pissis, and M. S. Rahman,
“A novel pattern matching approach for fingerprint-based authentica-
tion,” in PATTERNS 2015: The Seventh International Conferences on
Pervasive Patterns and Applications. IARIA, 2015, pp. 45–49.

[8] K. H. Q. Zhang and H. Yan, “Fingerprint classification based on extrac-
tion and analysis of singularities and pseudoridges,” in Proceedings of
the Pan-Sydney area workshop on Visual information processing-Volume
11, ser. VIP 2001. Sydney, Australia: VIP, 2001, pp. 83–87.

[9] E. R. Henry, Classification and Uses of Finger Prints. Routledge, 1900.
[10] H. C. Lee, R. Ramotowski, and R. E. Gaensslen, Eds., Advances in

Fingerprint Technology, Second Edition. CRC Press, 2002.
[11] S. Sebastian, “Literature survey on automated person identification

techniques,” International Journal of Computer Science and Mobile
Computing, vol. 2, no. 5, pp. 232–237, 2013.

[12] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. Springer-Verlag, 2009.

[13] Griaule Biometrics. (2014, Nov.) Online and offline acquisition.
[retrieved: 01.2016]. [Online]. Available: http://www.griaulebiometrics.
com/en-us/book/

[14] X. Tan and B. Bhanu, “Fingerprint matching by genetic algorithms,”
Pattern Recognition, vol. 39, no. 3, pp. 465–477, 2006.

[15] A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An identity-
authentication system using fingerprints,” Proceedings of the IEEE,
vol. 85, no. 9, pp. 1365–1388, 1997.

[16] Z. M. Kovacs-Vajna, “A fingerprint verification system based on triangu-
lar matching and dynamic time warping,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1266–1276,
2000.

[17] X. Tan and B. Bhanu, “Robust fingerprint identification,” in International
Conference on Image Processing 2002, vol. 1. IEEE, 2002, pp. I–277.

[18] C. Kai, Y. Xin, C. Xinjian, Z. Yali, L. Jimin, and T. Jie, “A novel ant
colony optimization algorithm for large-distorted fingerprint matching,”
Pattern Recognition, vol. 45, no. 1, pp. 151–161, 2012.

[19] A. A. Saleh and R. R. Adhami, “Curvature-based matching approach
for automatic fingerprint identification,” in System Theory, 2001. Pro-
ceedings of the 33rd Southeastern Symposium on. IEEE, 2001, pp.
171–175.

[20] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Filterbank-based
fingerprint matching,” Image Processing, IEEE Transactions on, vol. 9,
no. 5, pp. 846–859, 2000.

[21] A. Jain, A. Ross, and S. Prabhakar, “Fingerprint matching using minutiae
and texture features,” in Image Processing, 2001. Proceedings. 2001
International Conference on, vol. 3. IEEE, 2001, pp. 282–285.

[22] A. V. Ceguerra and I. Koprinska, “Integrating local and global features
in automatic fingerprint verification,” in Pattern Recognition, 2002.
Proceedings. 16th International Conference on, vol. 3. IEEE, 2002,
pp. 347–350.

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

 63 / 64

[23] A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach to
fingerprint classification,” IEEE Transactions on Pattern Analysis and
Machine Intelligence , vol. 21, no. 4, pp. 348–359, 1999.

[24] M. R. Girgis, A. A. Sewisy, and R. F. Mansour, “A robust method
for partial deformed fingerprints verification using genetic algorithm,”
Expert Systems with Applications, vol. 36, no. 2, pp. 2008–2016, 2009.

[25] A. Ross and A. Jain, “Biometric sensor interoperability: A case study in
fingerprints,” in Biometric Authentication. Springer, 2004, pp. 134–145.

[26] C. Xinjian, T. Jie, Y. Xin, and Z. Yangyang, “An algorithm for distorted
fingerprint matching based on local triangle feature set,” Information
Forensics and Security, IEEE Transactions on, vol. 1, no. 2, pp. 169–
177, 2006.

[27] S. P. Pissis. (2015) Acsmf implementation. [retrieved: 01.2016].
[Online]. Available: https://github.com/solonas13/asmf/

[28] C. Barton, C. S. Iliopoulos, and S. P. Pissis, “Fast algorithms for ap-
proximate circular string matching,” Algorithms for Molecular Biology,
vol. 9, no. 1, pp. 1–10, 2014.

[29] NIST. (2015) Biometric special databases and software. [retrieved:
01.2016]. [Online]. Available: http://www.nist.gov/itl/iad/ig/special
dbases.cfm

[30] OpenCV-code. (2015) Implementation of guo-hall thinning algorithm.
[retrieved: 01.2016]. [Online]. Available: http://opencv-code.com/
quick-tips/implementation-of-guo-hall-thinning-algorithm/

[31] A. Perez-Diaz and I. Arronte-Lopez, “Fingerprint matching and non-
matching analysis for different tolerance rotation degrees in commercial
matching algorithms,” Journal of applied research and technology,
vol. 8, no. 2, pp. 186–199, 2010.

[32] C. Barton, C. S. Iliopoulos, S. P. Pissis, and F. Vayani, “Accurate and
efficient methods to improve multiple circular sequence alignment,”
submitted.

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Powered by TCPDF (www.tcpdf.org)

 64 / 64

http://www.tcpdf.org

