
MOPAS 2012

The Third International Conference on Models and Ontology-based Design of

Protocols, Architectures and Services

ISBN: 978-1-61208-196-0

April 29 - May 4, 2012

Chamonix / Mont Blanc, France

MOPAS 2012 Editors

Petre Dini, Concordia University, Canada / China Space Agency Center, China

 1 / 25

MOPAS 2012

Foreword

The Third International Conference on Models and Ontology-based Design of Protocols,
Architectures and Services [MOPAS 2012], held between April 29th and May 4th, 2012 in Chamonix /
Mont Blanc, France, proposed a new context for presenting achievements, surveys and perspectives in
the areas of design, architecture and implementation based on ontologies and related models.

We take here the opportunity to warmly thank all the members of the MOPAS 2012 Technical
Program Committee. The creation of such a high quality conference program would not have been
possible without their involvement. We also kindly thank all the authors who dedicated much of their
time and efforts to contribute to MOPAS 2012. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the MOPAS 2012 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that MOPAS 2012 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of models and
ontology-based design and protocols, architectures and services.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed their stay in the French Alps.

MOPAS Advisory Committee:

Raj Jain, Washington University in St. Louis, USA
Marc Lacoste, Orange Labs, France

 2 / 25

MOPAS 2012 PROGRAM COMMITTEE

MOPAS Advisory Committee

Raj Jain, Washington University in St. Louis, USA
Marc Lacoste, Orange Labs, France

MOPAS 2012 Technical Program Committee

Mourad Alia, Orange Business Services- Grenoble, France
João Caldeira, Instituto de Telecomunicações / University of Beira Interior / Polytechnic Institute of
Castelo Branco, Portugal
Shu-Ching Chen, Florida International University - Miami, USA
Vanea Chiprianov, Telecom Bretagne, France
Michel Diaz, LAAS, France
Rachida Dssouli, Concordia University, Canada
Antti Evesti, VTT Technical Research Centre of Finland, Finland
Bin Guo, Northwestern Polytechnical University, China
Robert C. H. Hsu, Chung Hua University, Taiwan
Zahid Iqbal, University Graduate Center (UNIK) - Kjeller, Norway
Brigitte Jaumard, Concordia University - Montreal, Canada
Achilles Kameas, Hellenic Open University-Patras, Greece
Marc Lacoste, Orange Labs, France
Thomas D. Lagkas, University of Western Macedonia, Greece
Vlad Nicolicin Georgescu, Université de Nantes / SP2 Solutions - La Roche sur Yon, France
Peera Pacharintanakul, TOT, Thailand
Arun Prakash, Fraunhofer Institute for Open Communication Systems (FOKUS) - Berlin, Germany
Neeli R. Prasad, Aalborg University, Denmark
Vasco Soares, Instituto de Telecomunicações / University of Beira Interior / Polytechnic Institute of
Castelo Branco, Portugal
Shensheng Tang, Missouri Western State University, USA
Zoltan Theisz, evopro Informatics and Automation, Ltd., Hungary
Dimitrios D. Vergados, University of Piraeus, Greece
Roberto Willrich, Santa Catarina Federal University, Brazil
Nataša Živic, University of Siegen, Germany

 3 / 25

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 4 / 25

Table of Contents

Use of Persistent Meta-Modeling Systems to Handle Mappings for Ontology Design
Henry Valery Teguiak, Yamine Ait-Ameur, and Eric Sardet

1

Cloud Computing Ontologies: A Systematic Review
Darko Androcec, Neven Vrcek, and Jurica Seva

9

An Ontology-based reperesentation of the Google+ API
Konstantinos Togias and Achilles Kameas

15

Powered by TCPDF (www.tcpdf.org)

 1 / 1 5 / 25

Use of Persistent Meta-Modeling Systems to Handle Mappings forOntology Design

Valéry Téguiak
LIAS/ISAE-ENSMA
Futuroscope, France
teguiakh@ensma.fr

Yamine Ait-Ameur
IRIT-ENSEEIHT
Toulouse, France

yamine@enseeiht.fr

Éric Sardet
CRITT Informatique
Futuroscope, France

sardet@ensma.fr

Abstract—To enable data intensive application including
global information systems with heterogeneous models, the
model mapping problem in which a source model is mapped to
a target one should be addressed. Current work about mapping
provides a finite set of mapping constructors available for
writing mappings. In this case, adding a new concept in a
meta-model describing mapped schemas could have the effect
of building new types of mapping constructors. Thus, this
paper attempts to provide a generic and systematic approach
for modeling mapping constructors, so that new mapping
constructors could be handled efficiently without requiring to
rebuild completely the mapping repository system.

Keywords-data integration; mapping; meta-modeling; model
transformation; ontology engineering.

I. I NTRODUCTION

The huge amount of data created by several application
domains and development activities was at the origin of the
emergence of several heterogeneous data models and model-
ing languages. The need of exploiting data and these models
in an integrated manner led to several studies on data and
model integration and heterogeneous modeling [1], [2]. Two
particular and interesting studies are model mappings and
mapping languages. Moreover, these approaches have also
been developed in the context of the semantic web where
model mappings were required for defining transformations,
instance migration, etc.

In order to deal with various heterogeneous models used
to represent the same real word domain, several mapping
languages [8], [12], [20] have been proposed. Their central
objective is to establish relationships between models. Most
of these approaches run in central memory and do not
address the scalability problem when dealing with huge
amount of data, instances of those models.

However, many information systems rely on databases to
ensure scalability. As a consequence, the need of managing
mappings in a persistence context appeared. Therefore, the
availability of a repository of mappings is required. Also,a
way for exploiting mappings by interpreting, handling and
manipulating such mapping operators is also required.

The work of Miller et al. [3] and Ling et al. [4] was
precursor. It addressed the problem of mapping management
in a database. The main assumption in this work consists in
modeling mapping constructors as a finite set of operators.

This assumption is acceptable if models to be mapped are
encoded in a meta-model that will not evolve dynamically
due to the fixed set of mapping constructors.

Nevertheless, offering the capability to manipulate and/or
to modify the meta-model could offer more flexibility and
extensions capabilities dynamically. Indeed, offering the
capability for the meta-model to evolve by supporting the
creation of new concepts would also offer the capability to
dynamically define on the fly new mapping constructors. As
a consequence, the definition of mapping constructors in a
generic way becomes possible.

Moreover, because the size of models and instances are
growing drastically, the traditional approaches for mapping
models need to scale up. Therefore, offering persistent
settings for managing such mappings and instances becomes
a necessity if one wants to address real sized problems.

This paper focuses on the definition of a generic infras-
tructure for managing mappings in a database context. It uses
a specific database architecture that supports definition of
meta-models and their instances. This database infrastructure
consists of: (1) a space for representing mapping construc-
tors, (2) a space for representing models and mappings
between these models and finally (3) a space for representing
data (instances of models).

This paper is organized as follows. Section II outlines
related work on mappings. Then, our contribution using
constructive data models to model mappings is presented
in Section III. In Section IV, we discuss how to represent
a graph of mappings in a persistent context. Once our
persistent solution for handling mappings in a database
structure, through model repositories, is presented in Section
V, we briefly present, in Section VI, how this approach has
been set up to encode the transformation process for building
ontologies starting from texts. This work has been conducted
in the context of the DaFOE4App (Differential and Formal
Ontologies Editor for Application) project [22]. We finally
conclude and give some perspectives of this work.

II. RELATED WORK

Many proposals address model mapping and data trans-
lation problems. These proposals can be splitted into two
categories: hard encoded and rule-based approaches.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 6 / 25

A. Hard encoded approach

By the termhard encoded, we refer to approaches where
both mappings and mapped models representations are
hidden within a framework as a program. It means that
these representations are not exposed as declarative and
user-comprehensible rules. This leads to several difficulties.
First, models and mappings can only be extended by the
framework designers. Secondly, because of the program-
based representation of models and mappings, any exten-
sion requires changes at the framework code level. As a
consequence, correctness of these representations has to be
accepted by users as a dogma. For example, the approach
of Papotti and Torlone [14] can be said to be hard encoded.
In that context, the expressed transformations are imperative
programs, which have the weaknesses described above. The
instance translation process is achieved by firstly converting
the source data into XML, and then by performing an
XML-to-XML translation expressed in XQuery to reshape
instances in order to be compatible with the target schema,
and finally, by converting the XML representation into the
target model.

B. Rule-based approach

Weaknesses of the hard encoded approach can be solved
using a rule-based approach. This approach attempts to
provide a generic way to handle models, mappings and
data translation without using a hard encoded program.
For example, the approach proposed by Bernstein et al.
[13] is a rule-based one. In that approach, they focus on
a flexible mapping based on inheritance hierarchies, and
in the incremental regeneration of mappings each time the
source schema is modified. Other rule-based approaches are
driven by a dictionary of schemas, models and translation
rules. Among them, we can quote the work of Bowers and
Delcambre [11] that proposes Uni-Level Description (UDL).
UDL is a meta-model in which models and translations can
be described and managed in a uniform process environment
for models, schemas and instances. UDL is used to express
specific model-to-model translations of both schemas and in-
stances. Like the approach of Atzeni et al. [16], translations
are expressed as Datalog rules and the source and target
models are stored in a generic relational dictionary.

Our approach is also considered as a rule-based approach.
But, compared to the previous quoted approaches,
we provide a more abstract level where, in addition,
the dictionary is explicitly represented and becomes
manageable. Indeed, the dictionary representation according
to a meta-meta-model allows the user for example, to
modify mapping models without modifying the underlying
program.

Furthermore, Kalfoglou and Schorlemmer [7] address
the problem of mapping discovery which consists of an

automatic synthesis of an alignment between models. In
our proposal, we assume that the discovery process has
already been achieved. Indeed, our work deals with mapping
specification and instance mediation in database environ-
ment. More discussions on topics around mapping problems
and provided solutions can be founded in [4], [9], [15],
[18]. As illustrated in Figure 1, mappings can be composed
transitively. This requirement has been formalized in [10],
[19], where an approach to use composition among mod-
els has been proposed. Because this paper focuses on a
repository for storing mappings, we do not discuss handling
composition between mappings (composition is handled by
a query engine in our framework). Furthermore, [3], [4]
introduce the notion ofvalue correspondenceas a proposal
of representation for mapping operators.

III. O UR APPROACH

In our approach, modeling mapping consists in creat-
ing mapping constructors (Model level mapping, Entity
level mapping, Attribute level mapping, etc.). In this sec-
tion, we present a formal model for mapping construc-
tors. Furthermore, before connecting domain models us-
ing mappings, these models should be represented in a
way allowing them to be managed efficiently. The meta-
modeling-based approach is often used for this purpose.
We use a meta-model called Entity-Attribute meta-model
(E-A meta-model) to handle domain models. Using this E-
A meta-model, a modelm is formally defined bym =
〈E,A, I, T, dom, range, its entity〉 where:

• E represents the set of entities of the modelm;
• A represents the set attributes used to describe entities

of the modelm;
• I represents the set of entity instances of the modelm;
• T is a set of primitive types (Int, String, Boolean, etc.);
• dom : A → E defines the domain of an attribute;
• range : A → E ∪ T defines the range of an attribute;
• its entity : I → E returns the entity associated to a

given instance.

Figure 1. An mLink graph of model mappings.

A. Model level mapping: mLink

Correspondences between models are represented by a
directed acyclic graph whose nodes are models. Formally,

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 7 / 25

Figure 2. eLink graph. Figure 3. aLink graph.

if M represents a set of models, the graphGm of cor-
respondences between models (Cf. Figure 1) is defined by
Gm = (Nm, Lm) where:

• Nm ⊆ M represents the set of nodes of the correspon-
dence graph;

• Lm = {(ms,mt, αm) ∈ Nm ×Nm × [0; 1]} repre-
sents a set of correspondences between a source model
(ms) and a target model (mt). Here,αm is a confidence
degree of this correspondence.

Through this paper, we will use the termmLink, formally
defined as element ofLm, to refer to a correspondence or a
mapping between models.

B. Entity level mapping: eLink

Correspondences between entities of the models are repre-
sented by a directed acyclic graph whose nodes are entities.
Formally, if E represents a set of entities, the graphGe of
correspondences between entities (Cf. Figure 2) is defined
by Ge = (Ne, Le) where:

• Ne ⊆ E is the set of nodes of the correspondence graph;
• Le = {(es, et, αe,mL) ∈ Ne ×Ne × [0; 1]× Lm}

represents correspondences between a source entity (es)
and a target entity (et) built in the context of themLink
mL with confidence degreeαe.

Through this paper, we will use the termeLink, formally
defined as element ofLe, to refer to a correspondence
between entities.

C. Attribute level mapping: aLink

The arity of correspondences between attributes is n:0
reflecting the fact that one needs zero or more attributes
of the source entity to compute an attribute of the target
entity. Formally, if A represents the set of attributes, the
graphGa of correspondences between attributes (Cf. Figure
3) is defined byGa = (Na, La) where:

• Na ⊆ A represents the set of nodes of the correspon-
dence graph;

• La =
{

(As, at, αa, ϕ, eL) ∈ Nk
a
×Na × [0; 1]× Φ× Le

}

represents a set of correspondences from a set of
sources attributesAs = (as1, as2, ..., ask) to a target
one (at ∈ Na) where:

– the eLink eL represents the context in which the
correspondence has been created;

– ϕ is an expression used to writeat in terms ofasi
(1 ≤ i ≤ k).

– αa represents the confidence degree of the corre-
spondence.

Through this paper, we will use the termaLink, formally
defined as element ofLa, to refer to a correspondence
between attributes.

Unlike other work performed on mappings [3], [4], [12],
our approach does not presuppose the existence of a finite
set of mapping constructors but it aims at providing a formal
support to dynamically create new mapping constructors
or evolving existing one. Indeed, all mapping constructors
presented above use a numeric confidence degreeα. This is
the most used approach for handling fuzzy mappings. How-
ever, what will happen if a user (who is not the framework
designer) want to create another fuzzy property for mapping
by annotating each mapping with a quality value (“Weak”,
“Average”, “Good”, “Very”, “Good”, “Excellent”, etc. for
example)? Thus, our approach propose to model mapping
constructors so that mapping constructors likemLink, eLink,
aLink, etc., could be managed in a generic way and easily
extended at runtime. As our work is conducted in a database
context, we discuss in the following sections, modeling
possibilities of a database repository to store such a graph-
based representation of mapping.

IV. M ODEL REPOSITORIES

In the recent years, several works [6], [17] investigated the
problem of representing ontologies and their instances within
a database. We reuse this approach for models in general and
the resulting database (that we simply call Model Based-
Database (MBDB)) can be represented according in three
main approaches. In this section, we present a taxonomy of
these approaches. Our goal here is to discuss how the graph
of mappings presented in Section III can be stored in each
of these database types.

A. MBDB of type 1

In MBDB of type 1, information is represented using
a single schema composed of a single table of triples
(subject, predicate, object). This table, referred as vertical
table [5] is used both for model level data and instance
level data. For model level data, the three columns of this
table respectively represent the Identifier of an element ofthe
model, a predicate and the value taken by the predicate (Cf.
Figure 4). Furthermore, in order to implement our mapping
representation proposal with MBDB of type 1, we apply the
following rules:

• use RDF Schema as the meta-model for representing
domain models. For instance, the triplet (e1, Type,
Entity) means that the concepte1 is an RDF Class
(called Entity in the E-A meta-model);

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 8 / 25

• extend RDF Schema with new concepts representing
mapping constructors (mLink, eLink, aLink);

• extend RDF Schema with new properties representing
parameters ofLm, Le, La. For instance, “rdf : ms” is
used to represent the source model of amLink while
“rdf : eL” is used to identify amLink representing the
context in which a giveneLink is created.

Putting all these previous rules together results in a database
as illustrated in Figure 4. Unfortunately, it clearly appears
that, this approach is not enough scalable because of the
number of auto-join operations required on the underlying
vertical table.

Figure 4. MBDB of type 1.

B. MBDB of type 2

MBDB of type 2 store separately model level data and the
instance level data in two distinct schemes [6]. In classical
databases, the system catalog part plays the role of the
model level where models are stored as meta-data. The main
problem with this representation comes from the fact that the
meta-model provided by the DataBase Management System
(DBMS) cannot be manipulated. Indeed, this meta-model
is frozen and therefore, it cannot be evolved according to
some particular requirements. For example, how do we rep-
resent mapping concepts likemLink, eLink, aLink, etc.(not
available in this meta-model) using this type of database?
However, as illustrated in Figure 5, one can use the semantic
part of the database to represent mappings. Even if this
approach provides a solution independent of a particular
DBMS, the meta-model of the semantic part is also frozen
and cannot be extended at runtime in order to provide new
mapping constructors.

C. MBDB of type 3

MBDB of type 3 [17] propose to add another schema to
MBDB of type 2. This schema stores the E-A meta-model in
a reflexive meta-meta-model. Thus, for the meta-model, the

Figure 5. MBDB of type 2.

meta-meta-model plays the same role as the one played by
the system catalog. Compared to MBDB of type 2, adding a
meta-meta-model in MBDB of type 3 provides possibility to
extend the meta-model. So, thanks to that meta-meta-model,
MBDB of type 3 could be reused to reach our goal related to
the representation of mapping concepts in database. Figure
6 illustrates the OntoBD [17] architecture as an example of
a MBDB of type 3. OntoDB is based on 4 main parts:

• the meta-base part: it corresponds to the catalog
system of databases. It contains system tables used to
manage all the data contained in the database;

• the data part: it represents domain objects also called
data;

• the semantic part: it contains models defining the
semantics of data. More precisely, domain models of
information system stored in the semantic part;

• the meta-schema part:the meta-schema part records
the E-A meta-model.

Figure 6. OntoDB: a MBDB of type 3.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 9 / 25

The next Section presents how the approach led by MBDB
of type 3 has been used to persist the graph of mappings.

V. HANDLING MAPPINGS IN A DATABASE

In this section, we give some details about the imple-
mentation of our proposal. Thanks to its extension facility,
MBDB of type 3 are therefore better suited to implement the
mapping approach presented in this paper. Indeed, a type 3
MBDB provides enough flexibility for the extension of both
the E-A meta-model and the mapping model. It is therefore
possible, for example, to create new mapping constructors.
The resulting database repository is illustrated in Figure
7 where labels purposes (instead of object identifier) are
used only for more readability. Compared to Figure 6, we
have extended the semantic part with mapping constructors.
All these mapping constructors are created as instances of
the meta-schema. That provides for creating dynamically
new mapping constructors. The resulting infrastructure is
obtained in 3 steps.

Figure 7. MBDB with mappings.

1) Setup of the mapping management infrastructure.
This infrastructure consists in building a repository
for mapping constructors. After creating tables in the
meta-schema part, we populate them. For example,
the statements of Table I insert new rows in tables
MetaEntityand MetaAttributetables of Figure 7. As
a consequence, a physical repository for each con-
structor is automatically built in the semantic part. A
table is created for each meta-entity with its attribute
found in the meta-attribute table. At this level, we use
classical SQL queries and the designer needs to know
the meta-schema tables structure. The MQL language
[21] provides the user with high level operators that
hide implementation details available in such SQL
queries. We do not give details of this language to
keep this paper in reasonable size. Notice that, for
readability purposes all statement examples provided

Table I
CREATION OF THEE-A META-MODEL

INSERT INTO MetaEntity (label) VALUES(“mLink”)
INSERT INTO MetaEntity (label) VALUES(“eLink”)
INSERT INTO MetaEntity (label) VALUES(“aLink”)
INSERT INTO MetaEntity (label) VALUES(“Model”)
...
INSERT INTO MetaAttribute (label, domain, type)
VALUES(“ms”,”mLink”,”Model”)
...
INSERT INTO MetaAttribute (label, domain, type)
VALUES(“mt”,”mLink”,”Model”)
...
INSERT INTO MetaAttribute (label, domain, type)
VALUES(“α”,”mLink”,INT)
...

in this paper use ‘‘label” as foreign key instead of
URI.

2) Model creation. The models creation task consists in
populating theEntity, Attribute and Model tables of
the E-A meta-model (Cf. Figure 7). For each entity of
the E-A meta-model, the physical structure (ei tables)
for storing data is created in the Data part.

3) Mapping creation. Creating a mapping consists in
populating themLink, eLink, aLinktables material-
izing mapping constructors (Cf. Figure 7). This ex-
plicit representation keeps traceability of mappings.
However, it also keeps traceability between instances.
Indeed, instance level mappings results from the in-
stantiation ofeLink. This instance mapping constructor
is handled by creating, for eacheLinka table (e1TOe2
for example) storing those instances of the source
entity that have been used to build the instance of the
target entity.

An example of both of model and mapping creation tasks
is given in Section VI, where the case study of modeling an
ontology building process is detailed.

Notice that we have defined directed links from models
and concepts to others. The reverse links can be easily built,
if needed, using the same process. This capability will offer
full traversals in the database from models to others. As a
consequence, it is possible to trace the source concept used
to produce target ones. The MQL language [21] offers high
level operators for such traversals.

VI. A PPLICATION

This section summarizes the use of the approach de-
veloped above in a particular context: building ontologies
starting from text analysis.

A. Overview

The proposal of this paper has been applied in the DAFOE
platform, a platform led by the ANR DaFOE4App project.
This platform provides a stepwise methodology where the

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 10 / 25

first step is dedicated to linguistic analysis (called Termi-
nology Step) in which users manage linguistic information
(terms and relations between terms) extracted with natural
language processing tools (NLP). After the linguistic anal-
ysis, the step for structuring linguistic information (called
TerminoOntology step), in order to avoid possible ambiguity
of terms, is performed. Finally, a formalization step (called
Ontology Step) allows users to createclassesandproperties
of the ontologies and to populate created classes. Each of
these autonomous steps has been modeled as illustrated in
Figure 8, 9 and 10 respectively. Notice that the main goal
of the DaFOE platform is not to populate classes but to
build ontologies that are intended to be exported into other
systems that provide instance management facilities. Thus,
instance management is out of the scope of the application
domain.

Figure 8. A simplified representation of the Terminology model.

Figure 9. A simplified representation of the TerminoOntology model.

B. Setting up our approach

Applying our approach leads to the persistent infras-
tructure represented in Figure 11. It consists in writing
correspondences between elements of the model of each step
using mapping constructors. The developed approach in the

Figure 10. A simplified representation of the Ontology model.

DaFOE4App project has identified two bridges for switching
between steps: a first one for producing termino-ontology
concepts from texts and a second one for producing ontology
concepts from termino-ontology concepts. According to our
approach, bridge means the creation ofmLink, eLinkand
aLink respectively after setting the models to be mapped.
These two bridges are detailed below.

1) Bridge 1. Terminology to TerminoOntology step.
Considering bothTerminologyand TerminoOntology
steps through their models (Cf. Figure 8 and 9 re-
spectively), a simplified mapping between these steps
consists in:
mLink creation. The statementS1 of Table II creates
a mLink from the Terminologymodel to theTermi-
noOntologymodel. As a result, row 700 is inserted in
tablemLink (Figure 11).
eLink creation. The statementS3 of Table III creates
a eLink from the Term entity to theTerminoConcept
entity to express that instances of theTermentity will
be transformed as instances of theTerminoConcept
entity. As a result of this statement, row 800 is inserted
in the table eLink as illustrated in Figure 11. A
eLink from theTermRelationentity of theTerminology
model and theTerminoConceptRelationentity of the
TerminoOntologymodel is also available.
aLink creation. The statementS5 of table IV shows a
aLink expresing that an instance of theTerminoCon-
cept entity has the samelabel as its corresponding
instance in theTerm entity prefixed by ’tc ’ . An-
other aLink expresses that the rate of an instance
of TerminoConceptentity equals to the frequency of
corresponding instances inTermentity divided by 100.
As a result, rows 200 and 201 are inserted in table
aLink (Figure 11).

2) Bridge 2. TerminoOntology to Ontology step.
For TerminoOntologyandOntologysteps, a simplified
mapping between their respective models consists in:
mLink creation. The statementS2 of Table II creates
a mLink from the TerminoOntologymodel to the
Ontology model. As a result, row 701 is inserted in

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 11 / 25

Table II
STATEMENTS FOR ML INKS CREATION

StatementS1−

INSERT INTO mLink (label,ms, mt, αm)
VALUES(“Terminology2TerminoOntology”, “Terminology”,
“TerminoOntology”, 0.8);

StatementS2−

INSERT INTO mLink (label,ms, mt, αm)
VALUES(“TerminoOntology2Ontology”, “TerminoOntology”,
“Ontology”, 0.9);
...

Table III
STATEMENTS FOR EL INKS CREATION

StatementS3−

INSERT INTO eLink (label,es, et, αe, mL)
VALUES(“Term2TerminoConcept”, “Term”, “TerminoConcept”,
0.8, Terminology2TerminoOntology);

StatementS4−

INSERT INTO eLink (label,es, et, αe, mL)
VALUES(“TerminoConcept2Class”, “TerminoConcept”, “Class”,
0.8, “TerminoOntology2Ontology”);
...

tablemLink of Figure 11.
eLink creation. In the context of the previous created
mLink, a eLink is created from theTerminoConcept
entity to the Class entity to express that instances
of the TerminoConceptentity will be transformed as
instances of theClass entity. This eLink is created
using statementS4 represented Table III. AeLink
from TerminoConceptRelationof theTerminoOntology
model and thePropertyentity of the Ontology model
is also available. As a result, row 801 is inserted in
tableeLink (Figure 11).
aLink creation. The statementS7 of Table IV shows
a aLink expressing that an instance of theClassentity
has the samelabel as its corresponding instance in
TerminoConceptentity. As result, rows 202 is inserted
in tableaLink (Figure 11).

Putting these mappings all together results in a stepwise
design methodology for a database recording manipulated
data and produced to build an ontology from texts according
to the process defined in the DaFOE4App project.

VII. C ONCLUSION

In this paper, we presented an approach for persisting
mappings. Focusing on a specific type of databases i.e
persistent meta-modeling systems, we proposed an exten-
sible infrastructure for mapping management. Rather than
freezing all the mapping constructors in a database, we have
proposed to represent them as a model. This model is then
used on the one hand to create new mapping constructors and
on the other hand for the automatic generation of a persistent

Table IV
STATEMENTS FOR AL INKS CREATION

StatementS5−

INSERT INTO aLink (label,As, at, αa, ϕ, eL)
VALUES(“TermLabel2TcLabel”, (“termlabel”), “tc label”,
0.8, “tc label= “tc ” + term label”, “Term2TerminoConcept”);

StatementS6−

INSERT INTO aLink (label,As, at, αa, ϕ, eL)
VALUES(“TermLabel2TcLabel”, (“frequency”), “rate”,
0.8, “rate= “frequency/100”, “Term2TerminoConcept”);

StatementS7−

INSERT INTO aLink (label,As, at, αa, ϕ, eL)
VALUES(“TcLabel2ClassLabel”, (“tclabel”), “tc label”,
0.8, “class label= tc label”, “TerminConcept2Class”);
...

repository for mappings to ensure their traceability. As
an assessment, our approach has been deployed and then
implemented for the modeling process of building ontologies
from texts in the context of the DaFOE4App project.

Furthermore, once models and mappings are created and
models are populated with data, it would be interesting for
example, to exploit these mappings when querying data.
Indeed, because our mapping modeling is applied to models
that represent the same real world domain, the domain
related retrieving process needs to interpret mappings be-
tween models. Unfortunately, the resulting mapping graph
as presented in this paper may be complex to manage with
the classical SQL queries. For instance, as mappings are
transitive thanks to mapping composition, one would want
to use this capability to retrieve data transitively. Writing
such a query could become complex. Thus, in continuity
to this work, we have defined a SQL-like management and
query language, namely MQL [21], that provides high level
operators that makes easier querying data using mappings
between models. This language, that hides implementation
details regarding the database structure will be benchmarked
in the context of engineering data retrieving where response
time may be critical because of the huge amount of the
underlying data. In this particular case, we are planing to
improve performance analysis of the MQL query language.

ACKNOWLEDGMENT

The authors would like to thanks the partners of the ANR
DaFOE4App project for their contribution.

REFERENCES

[1] Michael Genesereth, Arthur Keller and Oliver Duschka. Info-
master: an information integration system. In Proceedings of
the ACM SIGMOD Record, pp. 539–542, 1997

[2] Pepijn Visser, Martin Beer, Trevor Bench-Capon, B. M. Diaz
and Michael Shave. Resolving Ontological Heterogeneity in
the KRAFT Project. In Proceedings of DEXA’99, pp. 668–
677, 1999

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 12 / 25

Figure 11. Mapping management in the DaFOEApp project.

[3] Reńee Miller, Laura Haas and Mauricio Hernández. Schema
Mapping as Query Discovery. In Proceedings of VLDB’00,
pp. 77–88, 2000

[4] Yan Ling, Miller Reńee, Haas Laura and Fagin Ronald. Data-
driven understanding and refinement of schema mappings. In
SIGMOD Record, pp. 485–496, 2001

[5] Rakesh Agrawal, Amit Somani and Yirong Xu. Storage and
Querying of E-Commerce Data. In Proceedings of VLDB’01,
pp. 149–158. Rome, Italy 2001

[6] Jeen Broekstra, Arjohn Kampman and Frank van Harmelen.
Sesame: A Generic Architecture for Storing and Querying RDF
and RDF Schema. In Proceedings of ISWC’02, pp. 54-68, 2002

[7] Yannis Kalfoglou and Marco Schorlemmer. IF-Map: an on-
tology mapping method based on information flow theory. In
JoDS’03, pp. 98–127, 2003

[8] Sergey Melnik, Erhard Rahm and Philip Bernstein. Developing
metadata-intensive applications with Rondo. In Journal of
Semantic Web, pp. 47–74, 2003

[9] Philip Bernstein. Applying Model Management to Classical
Meta Data Problems. In SIGMOD Record, pp. 209-220. 2003

[10] Madhavan Jayant and Halevy Alon. Composing mappings
among data sources. In Proceedings of VLDB’03, pp. 572–
583, 2003

[11] S. Bowers and L. M. L. Delcambre. The Uni-Level Descrip-
tion: A uniform framework for representing information in
multiple data models. In Proceedings of ER’03, pp. 45-58,
2003.

[12] Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof and Mike Dean. SWRL: a semantic
web rule language combining OWL and RuleML, 2004, http://
www.w3.org/Submission/SWRL/,2012-04-09 06:00:05 +0100

[13] Philip Bernstein, Sergey Melnik and Peter Mork. Interactive
schema translation with instance-level mappings, In Proceed-
ings of VLDB’05, pp. 1283–1286, 2005

[14] P. Papotti, R. Torlone. Heterogeneous data translation through
XML conversion. J. Web Eng., pp. 189-204, 2005.

[15] Choi Namyoun, Song Il-Yeol and Han Hyoil. A survey on
ontology mapping. In SIGMOD Record, pp. 34–41. New York,
USA 2006

[16] Paolo Atzeni, Paolo Cappellari and Philip A. Bernstein.
MIDST: model independent schema and data translation, In
SIGMOD Record, pp. 1134-1136, 2007

[17] Hondjack Dehainsala, Guy Pierra and Ladjel Bellatreche. On-
toDB: An ontology-based database for intensive applications.
In Proceedings of DASFAA’07, pp. 497–506, 2007

[18] Jérôme Euzenat, Pavel Shvaiko. Ontology matching. In
Springer-Verlag(eds.), 2007

[19] Alan Nash, Philip Bernstein and Sergey Melnik. Composition
of Mappings Given by Embedded Dependencies. In ACM
TODS’07, Volume 32 Issue 1, pp. 172–183, 2007

[20] Naouel Moha, Sagar Sen, Cyril Faucher, Olivier Barais and
Jean-Marc J́eźequel: Evaluation of Kermeta for solving graph-
based problems. In STTT’10 Journal, pp. 273–285, 2010

[21] Valéry Téguiak, Yamine Ait-Ameur,́Eric Sardet and Ladjel
Bellatreche. MQL: an extension of SQL for mappings
manipulation. Internal report, LIAS/ISAE-ENSMA, 2011,
http://www.lisi.ensma.fr/ftp/pub/documents/papers/2011/
2011-Report-Teguiak1.pdf, 2012-04-09 06:00:05 +0100

[22] Projet DaFOE4App.́Etat de l’art etétude des besoins pour
une plate-forme de construction d’ontologies. Livrable de
projet, 2007, ftp://ftp.irit.fr/IRIT/IC3/Dafoe-livrableA.0.1.pdf,
2012-04-09 06:00:05 +0100

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 13 / 25

Cloud Computing Ontologies: A Systematic Review

Darko Androcec, Neven Vrcek, Jurica Seva

Faculty of Organization and Informatics

Varazdin, Croatia

e-mail: darko.androcec@foi.hr, neven.vrcek@foi.hr, jurica.seva@foi.hr

Abstract—The main objective of this study is to obtain a

holistic view of Cloud Computing ontologies, their applications

and focuses. The identification of primary studies in this

systematic review is based on a pre-defined research protocol

with a research question, inclusion and exclusion criteria and a

search strategy. We summarize the selected studies into four

main categories: Cloud resources and services description,

Cloud security, Cloud interoperability and Cloud services

discovery and selection. The analysis of the included studies

indicates a number of challenges and topics for future

research, including those specifically related to using ontologies

to improve security and interoperability of Cloud Computing

offerings.

Keywords—Cloud Computing; ontology; systematic review;

Cloud service

I. INTRODUCTION

Cloud Computing has become a new paradigm for the
provision of computing infrastructure, platform or software
as a service. Its main benefits are flexibility, pay-per-use
model and significant cost reduction. Linthicum [1]
concludes that the most comprehensive definition of the
aforementioned paradigm is that provided by NIST.
According to this definition, ―Cloud computing is a pay-per-
use model for enabling available, convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g. networks, servers, storage, applications,
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction‖
[1]. The minimum definition of Cloud Computing must
contain scalability, pay-per-use utility model and
virtualization [2]. Cloud Computing is primarily a new
business paradigm [3] that enables on-demand access,
elasticity, pay-per-use, connectivity, resource pooling and
abstracted infrastructure [4].

There are a lot of Cloud Computing review papers in the
current literature but to date no systematic review of Cloud
Computing ontologies has been published. Therefore the
primary aim of our research is to systematically select and
review published work and provide an overview of Cloud
Computing ontologies, their types, applications and focuses.
The following research questions are stated: What are the
main focus and application contexts of Cloud Computing
ontologies covered in the scientific literature? What is the
impact of the studies to scientific and professional
community?

This paper proceeds as follows. Firstly, in Section 2, we
describe the research method used in this review. Section 3

contains the overview data concerning the included studies.
In the Section 4 we provide a detailed description of relevant
reviewed papers and classify them into appropriate
categories according to topics. Then, Section 5 presents a
synthesis of this systematic review. Our conclusions are
presented in the last section.

II. RESEARCH METHOD

Our research uses a systematic review method [5], which
is a formalized process to assess and interpret all available
research related to a specific research question. Guidelines
that address specific problems of software engineering
research are introduced in [5]. A systematic review has three
main phases: planning the review, conducting the review and
reporting the review.

We developed a review protocol in the planning phase.
The background and the research question are specified in
the introduction of our paper. Only full papers in English
from peer-reviewed journals and conferences published from
2008 to 2011 were considered. Studies that are not related to
the usage of ontology in Cloud Computing were excluded. In
cases where several duplicated studies were found that
existed in different versions, only the most complete version
of the study was included. We focused on searching Google
Scholar and the following electronic scientific databases:
ScienceDirect, Current Contents, IEEE Xplore, SpringerLink
and ISI Web of Science. These databases had been chosen
since they provide the most important journals and
conference proceedings covering Cloud Computing and
ontology engineering. The following search term was used
to find relevant studies: Cloud Computing AND ontology.
Irrelevant studies were excluded based on the analysis of
their titles, abstracts and keywords, whereas primary studies
were obtained based on full text read. The search process
was performed in November 2011, during which a total of
463 publications were identified. After filtering the
publications list by reading titles, abstracts and keywords,
full text reading of the articles that had not been excluded
was performed to ensure that the content is related to our
research question. Finally, 24 studies were identified as
primary studies. Data extraction and synthesis were done by
reading the full text of these 24 studies and extracting
relevant data to Excel spreadsheets.

III. OVERVIEW DATA CONCERNING SELECTED STUDIES

In this section we describe the sources of publication and
the citation status of the selected studies. Most of these

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 14 / 25

studies were published in conference proceedings, book
chapters and journals. Table I. provides an overview of the
distribution of the studies and the number of studies from a
particular source type.

TABLE I. DISTRIBUTION PER PUBLICATION SOURCE TYPES

Source Count

Conference proceedings 13

Book chapters 5

Journals 5

Workshops 1

Total 24

Figure 1. Number of studies by year of publication.

TABLE II. ACTIVE RESEARCH COMMUNITIES

Institution Number of studies

Gwangju Institute of Science and

Technology, South Korea

3

Wuhan Univ. of Technol., China 2

Victoria Univ. of Wellington, New
Zealand

2

The obtained distribution is in line with expectations

since Cloud Computing is a relatively new paradigm. The
citation rates for the included studies were obtained from
Google Scholar. The citation rates of the studies are quite
low (most studies <10 citations). This result is in line with
expectations since all the initially selected studies were
published from 2008 to 2011, and 75% of those that were
eventually included were published in last two years.
According to Google Scholar data, the most cited
publications from our selected set of studies are [6] with 191
citations and [7] with 38 citations. When the year of
publication of the papers is concerned (Figure 1), we noticed
an upward trend in the number of relevant publications about
Cloud Computing ontology. In the selected set of studies we
also looked for the authors’ affiliation details in order to
identify active research communities involved in work
related to Cloud Computing ontologies (Table II.).

IV. RESULTS

Our examination of the selected studies was based on

their similarities in terms of the main focus and application

of Cloud Computing ontologies. We identified four main

categories: Cloud resources and services description, Cloud

security, Cloud interoperability and Cloud services

discovery and selection.

Figure 2. Classification of included studies.

Figure 2 illustrates these categories while also specifying

their distribution across studies. The identified categories

will be elaborated in the following subsections.

A. Cloud Resources and Services Description

The studies in this category use the Cloud ontologies to
describe Cloud resources and services, classify the current
services and pricing models or define new types of Cloud
services.

One of the first attempts to establish a detailed Cloud
ontology was presented in [6]. In that paper the authors
proposed an ontology which demonstrates a dissection of the
Cloud into five main layers: applications, software
environments, software infrastructure, software kernel and
hardware. Each layer encompasses one or more Cloud
services which belong to the same layer if they have
equivalent levels of abstraction. The authors of the ontology
in [6] also discussed each layer’s strengths, limitations and
their dependency on preceding computing concepts.

Weinhardt et al. [7] proposed a Cloud business ontology
model to classify current Cloud services and pricing models.
Their ontology consists of three layers: infrastructure,
platform and application as a service. Cloud users and
providers can use it to map the existing Cloud services and
set pricing schemes.

Bohm et al. [8] suggested various definitions of Cloud
Computing, its billing models and a systematic description of
its major actors and value network. They also reviewed the
definitions, models and ontologies from the existing
literature.

The concept of ontology as a service was proposed in [9].
Ontology as a service (OaaS) is a service where Cloud
vendors provide the application and infrastructure to tailor
the source ontology to the users’ requirements. The authors
of the study reported in [9] elaborated ontology extraction
and sub-ontology merging process.

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 15 / 25

Sheng-Yuan et al. [10] proposed an ontology-supported
ubiquitous interface agent and described the interaction with
the backend information agent system in Cloud Computing.

A formal catalog representation of Cloud services was
proposed in [11]. In this paper, Deng et al. introduced a
range of Cloud services and their processes modeled by
means of ontological representation.

B. Cloud Security

The studies in this category use ontologies to describe
and improve Cloud security.

Takahashi, Kadobayashi and Fujiwara [12] built the
ontology for cyber security operational information and
applied it to Cloud Computing. Since the essential changes
of cyber security information in Cloud Computing are data-
asset decoupling, composition of multiple resources and
external resource usage, they included data provenance and
resource dependency information into their ontology.

The architecture of a deployed service in the Cloud
Computing environment used for malware detection was
presented in [13]. The authors used the ontology for malware
and intrusion detection that represents the signatures for
known and novel attacks as well as an ontological model for
reaction rules creating the prevention system.

C. Cloud Interoperability

One of the biggest obstacles of Cloud Computing is
provider lock-in that can be solved by means of interoperable
Cloud services. The studies in this category show how to use
ontologies to achieve interoperability among different Cloud
providers and their services.

The FP7 mOSAIC project is aimed at creating and
exploiting an open-source Cloud application programming
interface and a platform for developing multi-Cloud oriented
applications. The mOSAIC Cloud Ontology is described in
[14]. The concepts in this ontology were identified by
analyzing standards and proposals from literature and will be
used for semantic retrieval and composition of Cloud
services.

Bernstein and Vij [15] presented the InterCloud
Directories and Exchanges mediator to enable connectivity
and collaboration among Cloud vendors. Their ontology of
Cloud Computing resources intended for facilitating work
with heterogeneous providers of Cloud Computing services
was defined using RDF.

A method for semantic interoperability aggregation in
requirements refinement and a metric framework for
calculating semantic interoperability capability based on
ontologies are proposed in [16]. This methodology can
provide a semantic representation mechanism for refining
users’ requirements in the Cloud Computing environment.

D. Cloud Services Discovery and Selection

This category consists of the studies that use ontologies
to discover and select the best Cloud service alternative.

Along with a lack of standard definitions of resource
requirements, managing Cloud resources implies resource
information management issues and resource allocation
compatibility problems. As a solution to the aforementioned

problems, Yoo et al. [17] proposed a resource virtualization
method using ontology.

Wang and Li [18] introduced the basic principles of the
HCCloud (Heterogeneous Computing Cloud) design. The
HCCloud is their architecture for the deployment and
management of distributed applications in the Cloud where
users can access services based on their requirements
regardless of where the services are hosted. The resource
selection mechanism starts with the user's requirements,
calculates the similarity between resources and a particular
candidate in the database of the Cloud resource ontology and
ranks candidate resources accordingly.

Han and Sim [19] presented a Cloud service discovery
system that uses Cloud ontology to determine the similarities
between and among services. It is an agent-based discovery
system that enables reasoning about the relations of Cloud
services using three types of similarity reasoning to assist
users in searching available Cloud services more efficiently.
Their Cloud ontology consists of concepts of different Cloud
services for IaaS (infrastructure as a service), PaaS (platform
as a service) and SaaS (software as a service).

Zhou, Yang and Hugill [20] introduced a novel approach
to reengineering enterprise software for Cloud Computing.
They proposed the ontology for enterprise software and then
partitioned it to decompose enterprise software from legacy
system into potential service candidates during migration to
the Cloud Computing environment.

In their study, Kang and Sim [21] proposed a Cloud
ontology to semantically define the relationship among
different Cloud services. The similarity among Cloud
services is determined using concept similarity reasoning,
object property similarity reasoning and data type property
similarity reasoning. They also presented their own Cloud
service search engine that uses the defined ontology. Users
can specify functional, technical and cost requirements, and
the search engine returns the list of relevant Cloud services.
Sim [22] proposed the development of software agents for
Cloud service discovery, service negotiation and service
composition. An agent-based search engine for Cloud
service discovery consists of a service discovery agent that
uses the defined Cloud ontology and multiple Cloud
crawlers. In the aforementioned study, Sim [22] also devised
a complex Cloud negotiation mechanism and adopted a
focus selection contract net protocol and service capability
tables to automate Cloud service composition.

In [23] Dastjerdi, Tabatabaei and Buyya presented an
architecture using ontology-based discovery to provide QoS
aware deployment of virtual appliances on Cloud IaaS
services. Virtual appliances are sets of virtual machines
including operating systems, pre-configured and ready-to-
run applications and embedded needed components. The
proposed architecture can help users to deploy their virtual
appliances on the most appropriate IaaS providers based on
their definition of QoS requirements.

Yun et al. [24] introduced a tele-management system
using a Cloud Computing platform for ubiquitous city.
Ontology was used for context aware intelligence
processing.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 16 / 25

Semantic services discovery from the available Cloud
providers is described in [25]. In this study, Wang et al.
extended the Support Vector Machine (SVM)-based text
clustering technique and proposed an iterative process to
incrementally enrich domain ontology.

Ma, Schewe and Wang [26] extended their ASM-based
model of Abstract State Services (ASSs) to a Cloud
Computing model. They proposed a formalism of Clouds by
federations of services and a description of Cloud services in
form of ontology. These descriptions contain a technical
description of services (types, pre- and post-conditions) and
keywords which describe the application area and
functionality of the annotated service.

The architecture to provide a semantic service for
document management in Cloud Computing implemented by
using techniques of web service and ontology was proposed
in a book chapter by Wei and Junpeng [27].

In their paper, Ma, Jang, and Lee [28] proposed an
ontology-based job allocation algorithm for a resource
management system in Cloud Computing. They considered
virtual machines as Cloud resources and built a Cloud
ontology based on Cloud resource information and agreed
SLAs (Service Level Agreements). The aforementioned
ontology can be used to process complicated queries for
searching Cloud resources. Its experimental results have
verified that the ontology-based resource management
system improves the efficiency of resource management for
Cloud Computing when compared to the existing resource
management algorithms.

The approach to developing semantic Cloud services
which are annotated based on shared ontology was proposed
in a book chapter by Chen, Bai, and Liu [29], along with a
description of the usage of these annotations for semantics-
based discovery of relevant Cloud services.

V. DISCUSSIONS

Research papers regarding Cloud Computing ontologies
vary in terminology, descriptions and involved activities, but
they also share a lot in common (focus, goal, application
etc.). Our examination of the selected studies was based on
their similarities in terms of the main focus and application
of Cloud Computing ontologies. We divided them in the four
categories: Cloud resources and services description, Cloud
security, Cloud interoperability and Cloud services discovery
and selection.

Since the bias in our selection of the studies to be

included presented the main threat to validity of our

research, we used a research protocol to define the research

question, inclusion and exclusion criteria and our search

strategy. The review protocol was prepared by the first

author and reviewed by the other two authors.

Our review reveals that Cloud Computing ontologies are

predominantly applied in the discovery and selection of the

best service alternative in accordance with users’ needs and

the description of Cloud resources and services (80% of the

relevant identified studies deal with these issues). The

identified categories of themes provide an overview of

Cloud Computing ontologies research as well as a basis for

discovering possibilities for improvement in research and

practice. Table III specifies the main achievements,

limitations and challenges of these categories in the existing

literature.

TABLE III. CURRENT STATE OF THE CLOUD COMPUTING ONTOLOGIES

Category Achievements
Limitations and

challenges

C
lo

u
d

re
so

u
rc

es
 a

n
d

se
rv

ic
es

d
es

cr
ip

ti
o
n

- general Cloud business

ontology
- dissection of the Cloud

into layers

- classification of the
current Cloud services

- Cloud market is very

dynamic, new Cloud
services often emerge

- detailed ontology of the

Cloud resources and
services is missing

C
lo

u
d

 s
ec

u
ri

ty

- the ontology for

cyber security

operational information
in Cloud Computing

- the ontology for

malware and intrusion
detection deployed in the

Cloud

- data and assets can be

decoupled and

manipulated
independently in the

Cloud Computing

- external resources usage
and composition of

multiple resources

- privacy and data security
risks

C
lo

u
d

 i
n
te

ro
p
er

ab
il

it
y

- the mOSAIC Cloud
ontology that uses

concepts from standards

and proposals from
literature to improve

interoperability

- ontology based Cloud

Computing resources

catalog to federate or

interoperate resources

- lack of interoperability
among Cloud Computing

services

- common Cloud API or
an orchestration platform

is currently not available

(some on-going FP7

research projects such as

mOSAIC plan to develop

Cloud interoperability
platforms)

- detailed ontology

focused on Cloud API
resources and operations

does not exists

C
lo

u
d

se
rv

ic
es

d
is

co
v

er
y

 a
n
d

se
le

ct
io

n

- multiple Cloud services
discovery and selection

approaches were

proposed

- user-friendly application
for Cloud services

discovery and selection is

still missing

The analysis of the selected studies indicates a number of

challenges and topics for future research based on identified
limitations and challenges in the existing literature. The most
promising area of future research is the use of ontologies to
improve security and interoperability of Cloud Computing
offerings, because the main obstacles of the Cloud
Computing paradigm are provider lock-in and
security/privacy issues. For example, interesting research
challenge is using an ontology-based approach as a basis for
creation of the mechanism to automatically determine and
solve interoperability problems among two or more Cloud
Computing services provided by different vendors.
Ontologies can also be useful tool to annotate sensitivity of
data and portions of data stored in Cloud services. Existing
Cloud Computing ontologies are mostly general and detailed
ontologies of each Cloud Computing layer (software as a

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 17 / 25

service, platform as a service, infrastructure as a service) are
still missing.

Besides for researchers, this systematic review might have
implications for practitioners. They can use this review as a
source in searching for relevant approaches for Cloud
services discovery and selection. The identified limitations of
the current literature can inspire programmers and Cloud
users (e.g., development of user-friendly application for
Cloud services discovery and selection).

VI. CONCLUSION

Cloud Computing is a new paradigm for the provision of

computing infrastructure, platform or software as a service.

The main objective of the systematic review presented in

our paper is to obtain a holistic perspective of Cloud

Computing ontologies, their applications and focuses. We

identified 24 primary studies using the systematic review

methodology described in [5].

 The main focus and application contexts of Cloud

Computing ontologies covered in the scientific literature

are: Cloud resources and services description, Cloud

security, Cloud interoperability and Cloud services

discovery and selection. The studies in the first category use

the Cloud ontologies to describe Cloud resources and

services, classify the current services and pricing models or

define new types of Cloud services. The Cloud security

category shows how to use ontologies to describe and

improve Cloud security. Cloud interoperability consists of

the studies that use ontologies to achieve interoperability

among different Cloud providers and their services. Finally,

the fourth category comprises the studies that focus on

discovery and selection of the best Cloud service alternative

using the previously defined ontology.

The analysis of the selected studies indicates a number of

challenges and topics for future research, including those

specifically related to using ontologies to improve security

and interoperability of Cloud Computing offerings. The

main obstacles of the Cloud Computing paradigm are

provider lock-in and security/privacy issues, which

researchers can overcome by using an ontology-based

approach. Practitioners can use our work to find existing

approaches or develop new applications inspired by

identified limitations of the currently available solutions.

REFERENCES

[1] D. S. Linthicum, Cloud Computing and SOA Convergence in

Your Enterprise: a step-by-step guide, 1st ed., Addison-
Wesley, 2009.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M.
Lindner, ―A Break in the Clouds: Towards a Cloud
Definition‖, ACM SIGCOMM Computer Communication
Review, vol. 39, pp. 50-55, January 2009.

[3] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and
P. Reynolds, ―Cloud computing: A new business paradigm for
biomedical information sharing‖, Journal of Biomedical
Informatics, vol. 43, pp. 342-353, April 2010.

[4] D. Durkee, ―Why Cloud Computing Will Never Be Free‖,
Communications of the ACM, vol. 8, pp. 62-69, April 2010.

[5] B. Kitchenham, ―Procedures for Performing Systematic
Reviews‖, Technical Report 0400011T, Keele University,
July 2004.

[6] L. Youseff, M. Butrico, and D. Da Silva, ―Toward a Unified
Ontology of Cloud Computing‖, GCE '08 Grid Computing
Environments Workshop, pp. 1-10, November 2008.

[7] C. Weinhardt, A. Anandasivam, B. Blau, and J. Stosser,
―Business Models in the Service World‖, IT Professional, vol.
11, pp. 28-33, March-April 2009.

[8] M. Bohm, S. Leimeister, C. Riedl, and H. Krcmar, ―Cloud
Computing – Outsourcing 2.0 or a new Business Model for IT
Provisioning?‖ in Application Management, F. Keuper, C.
Oecking, and A. Degenhardt, Eds. Gabler, 2011, pp. 31-56.

[9] A. Flahive, D. Taniar, and W. Rahayu, ―Ontology as a Service
(OaaS): a case for sub-ontology merging on the cloud‖, The
Journal of Supercomputing, pp. 1-32, October 2011.

[10] Y. Sheng-Yuan, H. Chun-Liang, and L. Dong-Liang, ―An
ontology-supported ubiquitous interface agent for cloud
computing — Example on Bluetooth wireless technique with
Java programming‖, Proceedings of the Ninth International
Conference on Machine Learning and Cybernetics, pp. 2971-
2978, July 2010.

[11] Y. Deng, M. R. Head, A. Kochut, J. Munson, A. Sailer, and
H. Shaikh, ―Introducing Semantics to Cloud Services
Catalogs‖, 2011 IEEE International Conference on Services
Computing, pp. 24-31, July 2011.

[12] T. Takahashi, Y. Kadobayashi, and H. Fujiwara, ―Ontological
approach toward cybersecurity in cloud computing‖,
Proceedings of the 3rd international conference on Security of
information and networks, pp. 100-109, September, 2010.

[13] C. A. Martinez, G. I. Echeverri, and A. G. C. Sanz, ―Malware
detection based on Cloud Computing integrating Intrusion
Ontology representation‖, 2010 IEEE Latin-American
Conference on Communications (LATINCOM), pp. 1-6,
September, 2010.

[14] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortis, and V.
Munteanu, ―An Analysis of mOSAIC ontology for Cloud
Resources annotation‖, Proceedings of the Federated
Conference on Computer Science and Information Systems,
pp. 983-990, 2011.

[15] D. Bernstein, and D. Vij, ―Intercloud Directory and Exchange
Protocol Detail Using XMPP and RDF‖, 2010 6th World
Congress on Services (SERVICES-1), pp. 431-438, July,
2010.

[16] K.-Q. He, J. Wang, and P. Liang, ―Semantic Interoperability
Aggregation in Service Requirements Refinement‖, Journal of
Computer Science and Technology, vol. 25, pp. 1103-1117,
November 2010.

[17] H. Yoo, C. Hur, S. Kim, and Y. Kim, ―An Ontology-Based
Resource Selection Service on Science Cloud‖ in Grid and
Distributed Computing, D. Slezak, T. Kim, S. S. Yau, O.
Gervasi, and B. Kang, Springer Berlin Heidelberg, 2009, pp.
221-228.

[18] B. X. N. Wang and C. Li, ―A Cloud Computing Infrastructure
on Heterogeneous Computing Resources‖, Journal of
Computers, vol. 6, pp. 1789-1796, 2011.

[19] T. Han, K. M. Sim, ―An Ontology-enhanced Cloud Service
Discovery System‖, Proceedings of the International
MultiConference of Engineers and Computer Scientists 2010
Vol I, March 2010.

[20] H. Zhou, H. Yang, and A. Hugill, ―An Ontology-Based
Approach to Reengineering Enterprise Software for Cloud
Computing‖, 2010 IEEE 34th Annual Computer Software and
Applications Conference (COMPSAC), pp. 383-388, July
2010.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 18 / 25

[21] J. Kang and K. M. Sim, ―Ontology and search engine for
cloud computing system‖, 2011 International Conference on
System Science and Engineering (ICSSE), pp. 276-281, June
2011.

[22] K. M. Sim, ―Agent-based Cloud Computing‖, IEEE
Transactions on Services Computing, vol. PP, pp. 1-13,
October 2011.

[23] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, ―An
Effective Architecture for Automated Appliance Management
System Applying Ontology-Based Cloud Discovery‖, 2010
10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pp. 104-112, May 2010.

[24] C. H. Yun, H. Han, H. S. Jung, H. Y. Yeom, and Y. W. Lee,
―Intelligent Management of Remote Facilities through a
Ubiquitous Cloud Middleware‖, 2009 IEEE International
Conference on Cloud Computing, pp. 65-71, September 2009.

[25] J. Wang, J. Zhang, P. C. K. Hung, Z. Li, J. Liu, K. He,
―Leveraging Fragmental Semantic Data to Enhance Services
Discovery‖, 2011 IEEE International Conference on High
Performance Computing and Communications, pp. 687-694,
September 2011.

[26] H. Ma, K.-D. Schewe, and Q. Wang, ―An Abstract Model for
Service Provision, Search and Composition‖, APSCC 2009.
Services Computing Conference, pp. 95-102, December 2009.

[27] Y. Wei and C. Junpeng, ―Semantic Service in Cloud
Computing‖ in Advances in Information Technology and
Education, T. Honghua and Z. Mark, Springer Berlin
Heidelberg, 2011, pp. 156-160.

[28] Y. B. Ma, S. H. Jang, and J. S. Lee, ―Ontology-Based
Resource Management for Cloud Computing‖ in Intelligent
Information and Database Systems, N. Nguyen, C.-G. Kim,
and A. Janiak, Springer Berlin Heidelberg, 2011, pp. 343-352.

[29] F. Chen, X. Bai, and B. Liu, ―Efficient Service Discovery for
Cloud Computing Environments‖ in Advanced Research on
Computer Science and Information Engineering, G. Shen and
X. Huang, Springer Berlin Heidelberg, 2011, pp. 443-448.

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 19 / 25

An Ontology-based Representation of the Google+

API

Konstantinos Togias

School of Science and Technology

Hellenic Open University

Patras, Greece

ktogias@eap.gr

Achilles Kameas

School of Science and Technology

Hellenic Open University

Patras, Greece

kameas@eap.gr

Abstract—Social Networking Services (SNS) provide users with

functionalities for developing their on line social networks,

connecting with other users, sharing and consuming content.

While most of popular SNS provide open Web 2.0 APIs, they

remain disconnected from each other thus fragmenting user's

data, social network and content. Semantic social web

technologies such as public vocabularies and ontologies can be

used for bridging the semantic gap between different SNS.

Ontology-based representations of SNS APIs can help

developers share knowledge about SNS APIs and can be used

for linking APIs with public Social Semantic Web ontologies

and vocabularies and for enabling automatic ontology-based

service composition. In this paper, we study the API of

Google+ SNS and create an ontology based representation of

its structural and functional properties. The proposed ontology

describes valuable structural and functional details of the API,

in a machine processable format useful for understanding the

API and appropriate for integrating into ontology based

Mashups.

Keywords—Semantics; Social Networking System; Web

Mashup; Social Semantic Web.

I. INTRODUCTION

Social Networking Services (SNS) are web applications
that allow users create and maintain an online network of
close friends or business associates [1]. Typical examples of
SNS are Facebook, Myspace, Twitter and the most recent
Google+. While SNS have much common functionality they
do not usually interoperate and therefore require the user to
re-enter her profile and redefine her connections when
registering for each service [1]. Also content shared in one
SNS is not available to users of other SNS.

Web 2.0 is a widely-used term characterizing the modern
web made popular by Tim O' Reilly. Web 2.0 is the network
as platform, spanning all connected devices [2]. Web 2.0
applications consume data and services from other
applications and enable the reuse and remixing of their own
data and services through public Application Programming
Interfaces (APIs). Experienced users and programmers use
those APIs for creating new integrated web applications,
popular known as mashups [3] that combine different data
sources and APIs into an integrated end user experience.

Most SNS participate to the Web 2.0 ecosystem by
providing their own open APIs. Those APIs provide a first
step towards bringing down the walls between SNS.
Nevertheless, every SNS use its own terms for defining
concepts and representing resources, while it interconnects
the resources it provides in its own custom way. Thus
common concepts, resources and functionalities are
described and provided in different ways in each SNS API.

The Social Semantic Web is the vision of a Web where
all of the different collaborative systems and SNS, are
connected together through the addition of semantics,
allowing people to traverse across these different types of
systems, reusing and porting their data between systems as
required [1]. Social Semantic Web uses Semantic Web
technologies in order to describe in an interoperable way
users' profiles, social connections and content creation,
sharing and tagging accross different SNS and Sites in the
Web.

Ontologies have become the means of choice for
knowledge representation in recent years as they provide
common format and understanding on domain concepts,
while being machine processable [4]. Hendler [5] supports
that the ontology languages of the Semantic Web can lead
directly to more powerful agent-based approaches.
Furthermore, ontologies are used for representing and
sharing knowledge about structural and behavioral properties
of software [6], for building context-aware and pervasive
applications [7], and for achieving context-aware web
service discovery and automatic service composition in
Service Oriented Software (SOA) [8][9].

Web 2.0 APIs, SOA technologies and Social Semantic
Web approaches provide the basic means for bridging the
gap between today’s SNS and for unifying users' data, social
networks and interactions scattered across various SNS.
However, today’s SNS APIs lack semantic representations,
while existing Semantic Web Ontologies and Vocabularies
do not provide links with the API resources and methods
used for actually accessing and manipulating users, social
networks and content within SNS. Thus, Social Semantic
Web approaches, SOA service discovery and service
composition techniques cannot be directly applied on them.
Moreover, combining multiple SNS APIs for building
Mashups require for developers to search, read and combine

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 20 / 25

information from miscellaneous documentation pages
scattered across the web. Using Ontologies for describing
those APIs can help addressing those shortcomings by
providing common, machine processable representations
suitable for both sharing knowledge between developers and
achieving automatic service discovery and service
composition in SNS Mashups.

In this work, we study the API provided by Google+, one
of the most popular and most recent SNS and we propose an
ontology based representation of its structural and functional
characteristics. Our ontology is compatible with the
technologies of the Semantic Web and aims to be useful for
sharing knowledge about the Google+ API between
developers of Web 2.0 Mashups and as part of future inter-
operable ontology based social networking software.

The paper is organized as follows. Section 2 briefly
reviews related work in the areas of Social Semantic Web,
Web 2.0 Mashups, ontology representation of software
properties, and Service Oriented Architectures (SOA).
Section 3 presents the proposed ontology-based
representation of Google+ API. Section 4 discusses the
representation and visualization of the ontology, while
Section 5 presents test queries run on the proposed ontology.
Section 6 presents conclusions and suggestions for future
work.

II. RELATED WORK

Berslin and Decker [10] and Berslin et al. [1] propose the
use of Semantic Web mechanisms in order to bridge the
isolation and fragmentation of todays SNS. Public
vocabularies and ontologies can be used to give meaning to
Social Networks and interconnect social websites. The
FOAF ontology [11] provides a formal, machine readable
representation of user profiles and friendship networks. The
SIOC Core Ontology provides the main concepts and
properties required to describe information from online
communities (e.g., message boards, wikis, weblogs, etc.) on
the Semantic Web [12]. The SIOC and FOAF ontologies are
used in combination with metadata vocabularies like Dublin
Core [13] and SKOS [14] for describing user-generated
content on the Social Web. Zhou and Wu in [15] propose an
ontology representing SNSs based on FOAF in order to
resolve the problem of social data inconsistency and to
achieve interoperability among multiple social network
services. Their ontology defines some of the basic attributes
of a generic SNS API, such as operations, arguments and
responses, combined with some user profile and contact
attributes borrowed by FOAF ontology, but it does not
provide any structural description of the resources that can
be accessed through it.

While the above approaches describe generic concepts
about people, content and SNS, they do not describe the
functional and structural aspects of specific SNS APIs
necessary for building ontology based Mashups. Specialized
ontology-based representations of the APIs of existing SNS
could be used in combination with the above ontologies and
vocabularies in order to bridge abstract concepts with
specific resources and actions provided by each API.

Hartmann et al. [16], Zang et al. [3], and Wong and Hong
[17] investigate how users with programming skills and
programmers build Mashups that make use of public APIs
provided by popular web 2.0 services. Most of those users
are self-taught and depend on the documentation of the API
they want to use. Some of the most common problems
encountered when creating Mashups is the complexity of
communicating data from one server to another and the lack
of proper tutorials and examples in the documentation [3].

Dietrich and Elgar [6] propose that knowledge about
structural and behavioural properties of software can be
shared across the software engineering community in the
form of design patterns expressed in the web ontology
language (OWL). The inherent advantage of their approach
is that it yields descriptions that are machine processable, but
also suitable for a community to share knowledge taking
advantage of the decentralized infrastructure of the Internet
[6]. Ontology-based representations of SNS APIs can bring
the same advantages for the community of Mashup
developers.

Kurkovsky, Strimple and Nuzzi in [18] discuss the
possibility of convergence of Web 2.0 and SOA, while Xiao
et al [8][9] propose the use of ontologies for context-aware
web service discovery and automatic service composition.
The availability of ontology-based representations of SNS
APIs can also help to build software able to automatically
compose services that integrate data and functionality from
SNS.

Our work takes into consideration the above works by
providing an ontology-based representation of Google+ API,
compatible with Semantic Web mechanisms and ontology
based service discovery and composition approaches that can
be used for knowledge sharing and as part of ontology-based
Mashups that integrate Google+ functionality and data.

III. AN ONTOLOGY BASED REPRESENTATION OF THE

GOOGLE+ API

Google+ is an SNS operated by Google Inc. The service
was launched on June 28, 2011in an invite-only testing phase
and went public on September 20, 2011. Google+ integrates
longer existent Google social services such as Google
Profiles and Google Buz, and introduces new features
identified as Circles for organizing users' connections into
custom groups and Hangouts for group video chat [19].
Google+ became popular form the very first days of its
testing phase and in Octomber 2011 reached 40 million users
[19].

On September 15, 2011 Google released its first open
API for Google+ [20]. Google+ API follows a RESTful API
design, meaning that applications use standard HTTP
methods to retrieve and manipulate Google+ resources. The
API is currently read only, thus it provides only methods for
retrieving and searching resources through the HTTP GET
method. The API can be used free of charge, with
applications being limited to a courtesy usage quota.
Developers can request a higher limit for their applications
for a fee. Many API calls require that the user of the
application is granted permission to access their data. Google
uses the OAuth 2.0 [21] protocol to allow authorized

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 21 / 25

applications to access user data. Resources in the Google+
API are represented using JSON [22] data formats. It also
supports pagination and partial responses for sending only
requested fields instead of the full representation of a
resource. The API currently provides read only access to
three main types of resources named “Persons”, “Activities”
and “Comments”. Person resources represent Google+ API
users, Activities resources stand for content shared by users
and Comments resources are content posted as a replies to
Activities. Google also provides free client libraries for
various programming languages including Python, PHP,
Ruby, Javascript and Java.

In order to describe the structural and be properties of
Google+ API in a way that can be shared among Software
Developers and automatically interpreted by software
components, we have introduced an ontology based
representation of its main characteristics, resources and
actions. For designing our ontology we followed the steps
described by Noy and MacGuinness in [23]:

A. Specification of the domain and the purpose of the

ontology

The domain of the ontology is the Google+ API and
more specifically its structural and functional properties.
That is, the data interchange and auhentication methods it
uses, the types of entities that can be accessed through it and
their attributes, and the actions that can be performed
through it on these entities. The purpose of the ontology is
dual: On the one hand the ontology is playing the role of a
shareable and browsable knowledge base for researchers and
programmers that want to develop applications and Mashups
that integrate Google+ data and functionality, while on the
other hand, because of its machine interpretable format, it
may be used for building inter-operable ontology based
social networking software. Such software will be
programmed in a higher level of abstraction and use
automatic reasoning on ontologies for providing integration
with Google+.

B. Enumeration of important terms in the ontology

For enumerating the important terms in the ontology we
studied the Google+ API documentation available online
[24]. Through the documentation pages we identified
references to key terms such as “Authorization Protocol”,
“Value Type”, and “Parameter”. Other terms like “Action
Type”, “Field” and “Resource Type” where produced
through generalization of the descriptions provided by the
documentation.

C. Considering reusing existing ontologies

The FOAF ontology describes user profiles and
friendship networks, while the SIOC Core Ontology
provides the main concepts and properties required to
describe information from online communities. Both
describe concepts relative to SNS at a high level of
abstraction. For describing Google+ API, we needed lower
level concepts such us urls, resources and methods that are
not provided by those ontologies. The ontology proposed by
Zhou and Wu in [15] defines some of the basic attributes of

a generic SNS API, such as operations, arguments and
responses, without describing them further or defining
relations between them and the resources accessed through
them. Thus, there was no important gain in reusing concepts
from these ontologies for building our ontology. However,
we would like to connect our ontology with ontologies like
those in the future.

D. Specification of the classes of the ontology and class

hierarchy

The classes of an ontology describe the main concepts of
its domain. Since the domain of our ontology is the Google+
API, its classes will represent the concepts that are necessary
for describing its structural and functional properties. Based
on the documentation of the API we defined the following
classes: API (an API), APIType (an API type), DataFormat
(a data interchange format), AuthorizationProtocol (an
authorization protocol used to access the API),
ResourceType (a resource type provided by the API), Field
(a field of a resource; fields represent attributes of a
resource), Action (an action that can be performed to
Resource), ActionType (an action type), Parameter (a
parameter of an action), ValueType (the type of the value
contained in a field or a parameter) and DataStructure (the
type of the data structure contained in a field or a parameter).

The domain of the ontology is found to be flat in terms of
generalization. The concepts we used for describing the API
are considered to belong all at the same level of generality.
Thus the classes of the ontology are disjoint with each other
and no subclasses where defined.

E. Specification of the properties of the classes and

property value types

The properties of a class represent the characteristics of
the corresponding concept. The API is described in terms of
its type, the format in which it exchanges data, the
authorization protocol it supports and the resource types it
provides. It has a name property, a base url used to build http
request urls, and a documentation url where developers can
access the official documentation of the API. The API
provides some types of Resources. A Resource type has a
name and may have a specific documentation url. A
Resource type consists of Fields and can provide Actions. A
Field is characterized by the type of its value (e.g. String,
Integer, or Resource) and the type of its data structure (a
single value or a structure like a list). An Action can have
required or optional parameters and be performed by an
HTTP/1.1 GET, PUT, POST or DELETE method. The
Action also has a url mask used to build the http request url,
and may require authentication using a token that has been
granted to the caller application. Finally, a Parameter has a
name, and it (the parameter) may be required or not.

Figure 1 depicts the classes and object properties of the
Google+ API ontology. While analyzing the Google+ API
we found that in some cases the Field of a Resource Type
provides a reference to another Resource Type. This type of
connection between resource types through their fields is not
clearly presented in the API documentation, and a developer
has to study the detailed documentation of the responses of

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 22 / 25

various actions in order to detect it. We describe this type of
connection in our ontology with the connectsWith object
property of Field Class. There are also some common
optional parameters that can be applied to any action. We
used the hasCommonParameter object property connecting
API and Parameter classes to describe this relation.

Figure 1. The classes and object properties of the ontology. An oval

represents a class and an arrow stands for an object property.

F. Specification of the value types and restrictions of the

properties

We defined the value types and restrictions of the
properties of the ontology by analyzing the classes specified
at the previous step. For example, the type property of the
API class takes exactly one value that has to be instance of
the APIType class, while the connectsWith property of the
Field class can have at most one value of the type
ResourceType. Figure 2 lists the properties and their value
types for the API and ResourceType classes.

Figure 2. Properties and value types of API and ResourceType classes.

G. Creation of instances

We defined the Instances of the Ontology based on the
documentation of the API. We firstly created an instance of
the API class representing the Google+ API. Since Google+
API is a Restful API, we created the RestfullAPI instance of
the APIType class. The API uses the JSON data structure, so
we created a DataFormat instance for it. The API also uses
the OAuth authentication protocol for granting access to
applications, so OAuth is an instance of the
AuthorizationProtocol Class. Google+ API is currently read
only, so all its actions are of ActionType GET, corresponding
to the GET HTTP/1.1 method.

Based on our study of the parameters and return values of
the Actions provided by the API, we identified 5 instances of
the ValueType class: String, UnsignedInteger, Boolean,
DateTime and ResourceType.

Two instances of the DataStructure class where also
created: SingleValue and List.

The API explicitly specifies three main resource types
(People, Activities and Communities), but with a more
thorough study we identified a much larger number of
resource types. The API does not currently provide actions
for directly accessing all those resource types, but they can
be indirectly accessed through the actions provided by the
main three resource types. In our ontology we defined all the
identified resource types as instances of ResourceType Class.
Thus we created 25 instances of the ResourceType class:
Access (identifies who has access to see an activity),
AccessItem (an Access entry), Activity (a note that a user
posts to her stream), ActivityFeed (list all of the activities in
the specified collection for a particular user), Actor (the
person who performes an activity), Attachment (the media
objects attached to this activity), CommentObject (the object
of a comment), Circle (a Google+ Circle), Comment (a
comment is a reply to an activity), CommentFeed (list of all
comments for an activity), Email (an email adderess for a
person), Embed (if an attachment is a video, the embeddable
link), Name (an object representation of the individual
components of a person's name), Object (the object of an
activity), Organization (an organization with which a person
is associated), PeopleFeed (a list of all public profiles),
Person (a person as represented in the Google+ API), Place
(a place where a person has lived), Plusoners (people who
+1'd an activity), PreviewImage (the preview image for
photos or videos), ProfileImage (the representation of the
person's profile photo), Provider (the service provider that
initially published an activity), Replies (comments in reply to
an activity), Resharers (people who reshared an activity) and
Url (a URL for a person).

Finally, we created an instance of Field class for every
property of every ResourceType, an instance of Action class
for every action presented in the documentation of the API,
and an instance of the Parameter class for every action
parameter.

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 23 / 25

IV. REPRESENTATION AND VISUALIZATION OF THE

ONTOLOGY

For the representation of the ontology we used the
RDF/XML exchange syntax for the OWL ontology
language. We used VIM text editor for editing the XML
expressions of the classes and the properties and the
specialized ontology editing software Protégé for checking
the ontology, creating instances, and producing
visualizations. Figure 3 is a visualization depicting the
connections detected between the main resource types in the
ontology. From this visualization we observe for example
that a resource of type Person can be the Actor of an Activity
or a Comment, or a member of a feed of people that
Reshared or “PlusOned” (a term that is used by Google+ for
evaluating other user's activities) the Object of an Activity.

Figure 3. Connections between the main resource types in the ontology.

Figure 4 depicts all the fields of the Object resource type
and their types.

Figure 4. Fields of the Object resource type and their value types.

V. TEST QUERIES

In order to test the proposed ontology we run test queries
regarding the completeness and correctness of the resulting
ontology and validated the results. We queried for all class
instances and their properties and cross-checked the returned
results with the API documentation pages. We also made
sure that all the identified instances were returned. Figure 5
depicts the query for getting the name, description and
documentation url for all instances of ResourceType class.

We also the run two sets of usage test queries and
verified the returned results. For the first set of queries, we
tried to extract information useful for developers that wish to

use the API for building Mashups. Such queries are: (1)
What authentication protocol is supported by Google+ API?
(2) What is the API's documentation url? (3) What actions
and what parameters can be used for directly accessing a
Person resource? (4) What resources can be directly accessed
through the API? (5) What are the resource types that
provide a second rank reference to the Person resource type
(i.e. Have a field that connects to a resource type that has a
field that connects to Person)?

Figure 5. The SPARQL Query for getting the name, description and

documentation URL for all ResourceType instances returns correct info for

all the 25 identified resource types.

For the second set of queries we assumed that the
ontology is used in ontology-based software for
automatically invoking API's methods. Such software needs
to extract low-level information about the actual method
calls needed for performing an action and the structure of the
data needed to be exchanged. Some example queries of this
type are the following: (1) What is the APIs base url? (2)
What is the APIs data format? (3) What is the urlMask of an
Action? (4) What fields are contained in a Person resource
type and what value type and data structure is each of them?

Moreover if such software is programmed in a higher
level of abstraction, it may execute complex queries on the
ontology in order to combine data form multiple API
resources or to translate generic actions into sequences of
API calls. For example: (1) What resource types that can be
directly accessed through a GET Action provide a reference
to an Email resource type? (2) What sequence of Actions can
be called in order to get the image (PersonImage) of the
Actor of an Activity?

We expressed the above queries in the SPARQL
ontology querying language and executed using Protege.
Figure 6 depicts a usage test query and the returned results.

Figure 6. SPARQL query for getting all the resource types that provide

second rank access to Person resource type.

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

 24 / 25

VI. CONCLUSIONS AND FUTURE WORK

Ontology-based representations of SNS APIs can help
developers comprehend the structure and functionalities of
SNS and their APIs and share this knowledge. Moreover
they can be used to link those APIs with public Social
Semantic Web ontologies and vocabularies and for enabling
automatic ontology-based service composition.

We studied the API provided by Google for its popular
Google+ SNS and created an ontology based representation
of its structural and functional properties. For designing the
ontology we followed the methodology proposed by Noy
and MacGuinness in [23]: First we specified the domain and
the purpose of the ontology, then specified the classes of the
ontology, the hierarchy, the properties and finally we created
the instances. We tested the ontology with SPARQL queries.
The proposed ontology reveals the existence of important
resources and connections between them that are not clearly
presented in the official documentation. We identified a total
of 25 resource types in Google+ API connecting with each
other in various ways. We have made the ontology publicly
accessible in OWL format at http://goo.gl/Oefl2.

In this work, we focused on representation of the basic
structural and functional features of Google+ API such as the
resources it provides, the way they connect with each other
and the actions they provide. We would like to extend the
ontology with descriptions of the authentication process, the
manipulation of paging and partial queries and bindings of
the actions to client libraries method calls, in order to support
automatic invocation of the API calls from ontology driven
applications. In the near future we would also like to connect
the ontology with ontologies and vocabularies like FOAF
and SIOC that describe more abstract concepts about users,
social networks and content. Finally, we would like to create
ontology based representations for the APIs provided by
other popular SNS such as Facebook and Twitter and to use
them for building ontology-based mashups that
automatically combine data and functionalities from multiple
SNS.

REFERENCES

[1] J.G. Breslin, A. Passant, and S. Decker , “The Social
Semantic Web”, Springer-Verlang Berlin Heidelberg, 2009

[2] Tim O'Reilly, “What Is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software”,
Published in: International Journal of Digital Economics No.
65, March 2007, pp. 17-37.

[3] N. Zang, M.B. Rosson, and V. Nasser, “Mashups: who?
What? Why?”, In: CHI 2008: CHI 2008 extended abstracts on
Human factors in computing systems, ACM, New York,
2008, pp. 3171-3176.

[4] T. R. Gruber, “Toward Principles for the Design of
Ontologies Used for Knowledge Sharing”, In International
Journal of Human-Computer Studies, Vol 43 Issue 5-6,
Nov./Dec. 1995, pp. 907-928.

[5] J. Hendler, “Agents and the Semantic Web”, In IEEE
Intelligent Systems, Vol. 16 No 2, 2001, pp. 30-37.

[6] J. Dietrich and C. Elgar, “Towards a web of patterns”, In:
Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 5, num. 2, Elsevier, 2011.

[7] B. Guo, D. Zhang, and M. Imai, “Toward a cooperative
programming framework for context-aware applications”, In
Personal and Ubiquitous Computing, Vol 15, Issue 3, March
2011, pp. 221-233.

[8] H. Xiao et al, “An automatic approach for ontology-driven
service composition”, Proc. IEEE International Conference on
Service-Oriented Computing and Applications (SOCA) 2009,
Taipei, Taiwan, 14-15 December 2009, pp 1-8.

[9] H. Xiao et al, “An Approach for Context-Aware Service
Discovery and Recommendation”, Proc., IEEE International
Conference on Web Services (ICWS), 5-10 July 2010, Miami,
FL, 2010, pp. 163 – 170.

[10] J. Berslin and S. Decker, “The Future of Social Networks on
the Internet: The Need for Semantics”, IEEE Internet
Computing, vol. 11, November 2007, pp. 86-90.

[11] The Friend of a Friend (FOAF) project, online at
http://goo.gl/Rdpja, retrieved December 2011.

[12] U. Bojārs and J.G. Breslin (editors), “SIOC Core Ontology
Specification”, W3C Member Submission 12 June 2007,
online at http://goo.gl/8OQV1, 2007, retrieved December
2011.

[13] Dublin Core Metadata Initiative, “Dublin Core Metadata
Element Set”, Version 1.1, online at http://goo.gl/MHLlw,
2010, retrieved December 2011.

[14] A. Miles and S. Bechhofer (editors), “SKOS Simple
Knowledge Organization System Reference”, W3C
Recommendation 18 August 2009, online at
http://goo.gl/ypDOU, 2009, retrieved December 2011.

[15] B. Zhou and C. Wu, “Social networking interoperability
through extended FOAF vocabulary and service”, Proc. 3rd
International Conference on Information Sciences and
Interaction Sciences (ICIS), 23-25 June 2010, Chengdu,
China, 2010, pp. 50 – 55.

[16] B. Hartman, S. Doorley, and S.R. Klemmer, “Hacking,
Mashing, Gluing: Understanding Opportunistic Design”, in
IEEE Pervasive Computing, vol. 7 issue 3, July 2008.

[17] J. Wong, J. and J. Hong, “What do we "mashup" when we
make mashups?”, Proc. WEUSE '08: Proceedings of the 4th
international workshop on End-user software engineering,
2008.

[18] S. Kurkovsky, D. Strimple, and E. Nuzzi, “Convergence of
Web 2.0 and SOA: Taking Advantage of Web Services to
Implement a Multimodal Social Networking System”, proc.
11th IEEE International Conference on Computational
Science and Engineering - Workshops, 2008, pp. 227-232.

[19] Wikipedia, Google+, online at http://goo.gl/N5rou, retrieved
December 2011.

[20] C. Chabot, “Getting Started on the Google+ API”, The
Google+ Platform Blog, online at http://goo.gl/EPfiM,
September 15, 2011, retrieved December 2011.

[21] E. Hammer-Lahav (editor), “The OAuth 1.0 Protocol, Internet
Engineering Task Force (IETF)”, online at
http://goo.gl/eN6VT, April 2010, retrieved December 2011.

[22] D. Crockford, “The Media Type for JavaScript Object
Notation (JSON)”, online at http://goo.gl/7oDGo, July 2006,
retrieved December 2011.

[23] N. F. Noy and D. L. McGuinness, “Ontology development
101: a guide to creating your first ontology”. Technical
Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880. Stanford Knowledge
Systems Laboratory. Available at http://goo.gl/kr6n4, 2001,
retrieved December 2011.

[24] Google, Inc., “Google+ API”, online at http://goo.gl/q2jai,
retrieved December 2011.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Powered by TCPDF (www.tcpdf.org)

 25 / 25

http://www.tcpdf.org

