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Affordable Quality of Service Assessment for Cellular-Connected UAV
Communications

Hong Zhu∗, José Rodrı́guez-Piñeiro∗, Tomás Domı́nguez-Bolaño†, Xuesong Cai‡§, Xuefeng Yin∗
∗College of Electronics and Information Engineering, Tongji University, Shanghai, China,

{zhuhong0120,j.rpineiro,yinxuefeng}@tongji.edu.cn
†CITIC Research Center & Department of Computer Engineering, University of A Coruña, Spain, tomas.bolano@udc.es

‡Department of Electronic Systems, Aalborg University, Aalborg, 9220, Denmark, xuc@es.aau.dk
§Department of Electrical and Information Technology, Lund University, 22100 Lund, Sweeden, xuesong.cai@eit.lth.se

Abstract—In recent years, Unmanned Aerial Vehicles (UAVs)
have been used extensively in military and civilian fields, making
the research on cellular-connected UAVs a popular topic for
Fifth Generation (5G) and beyond communications. In order
to support the increasing amount of applications, it is essential
to evaluate the performance of UAV communications. In this
work, the end-to-end delay, packet success rate, and throughput
of Air-to-Ground (A2G) communications are evaluated based
on a realistic channel model obtained from measurements. The
measurement campaign, conducted in a suburban environment,
includes both Line-of-Sight (LoS) and Obstructed Line-of-Sight
(OLoS) scenarios. From the results, it can be seen that architec-
tural elements close to the flight route can severely decrease the
communications performance even when the visibility between
the Base Station (BS) and the UAV is permanently ensured.
Moreover, we have shown that the Quality of Service (QoS)
requirements for critical communications proposed by 3rd Gener-
ation Partnership Project (3GPP) can be fulfilled by establishing
a threshold on the received Signal to Interference and Noise
Ratio (SINR). This way, the SINR can be used as a condensed
performance metric for the design of safe flight routes for critical
communications for UAVs.

Keywords- A2G communications; critical communications;
end-to-end delay; QoS requirements; UAV.

I. INTRODUCTION

In recent years, there has been a explosion of Unmanned
Aerial Vehicle (UAV) military and civilian applications, such
as assistance in surveillance and rescue missions, logistics
service, and aerial photography. All these applications get
benefited by the high mobility, flexibility, affordable price,
and extended service life of UAVs [1]. For most of the UAV
applications, a connection between the UAV and a terrestrial
Base Station (BS) is usually required. Different services can
rely on this Air-to-Ground (A2G) communication link, such as
data or video transmission from the UAV to the ground or the
onboard reception of control signals from a terrestrial com-
mander [2]. Due to this, the application of Fifth Generation
(5G) communications for UAVs has attracted a considerable
amount of interest. Therefore, it is essential to judge whether
the terrestrial commercial stations can satisfy the requirements
of UAV communications.

According to the 3rd Generation Partnership Project
(3GPP), the Quality of Service (QoS) requirements (including
availability, end-to-end delay, and throughput requirements)
for the UAV communications can be classified into two types

depending on the communication nature: payload-oriented,
and critical [3]. Comparing these two kinds of communi-
cations, the reliability and latency requirements are more
stringent for critical communications since they transmit safety
and control-related messages. As a consequence, it becomes
of utmost importance to evaluate the performance of A2G
communications in terms of the end-to-end delay and the
network availability (i.e., the probability that the QoS of users
can be satisfied [4]).

Several approaches [4]–[6] have been proposed in the lit-
erature to evaluate the performance of UAV communications.
She et al. [4] characterized the latency, reliability, and network
availability of UAV communications by deriving the decoding
error probability and studying two optimization problems
to minimize the total bandwidth and maximize the network
availability for Ultra-Reliable Low-Latency Communications
(URLLC). An iterative algorithm was proposed in [5] to
optimize the UAV deployments by obtaining the minimum av-
erage transmission power under given constraints of maximum
latency and block error probability. Horani et al. [6] provided
models on both air-to-ground and ground-to-ground scenarios
to characterize the end-to-end latency taking into account the
queuing delay, which depends on the amount of users who are
multiplexed on the same radio resources.

It can be seen that the above-mentioned approaches are
solely focused on theoretical analysis considering the propaga-
tion delay, bandwidth, transmission power, or processing time,
and do not provide empirical validation. Our previous work
[7] evaluated the throughput of A2G communications based
on a realistic (measurement-based) channel model, and in [8]
we considered the joint evaluation of the end-to-end delay,
availability and throughput with measurement-based results
for the first time. However, only purely Line-of-Sight (LoS)
scenarios were considered in these works.

In this work, we extend our previous studies [7] [8] to
Obstructed Line-of-Sight (OLoS) scenarios and show the
influence of the propagation environment elements in the com-
munications performance. We evaluate the end-to-end delay,
packet success rate, and throughput performance of the A2G
communications for low height UAVs. It is noteworthy that
we employ a realistic channel model based on measurements
in a suburban environment, not only for the LoS propagation
conditions but also in the OLoS ones. The effect of the

1Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-878-5
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Hybrid Automatic Repeat reQuest (HARQ) techniques and
retransmission mechanisms were considered, implying the
implementation of both the forward link and feedback link
for the simulations. The obtained results demonstrate that the
architectural elements of the environment may have a sig-
nificant influence on the UAV communications performance,
which is also severely affected by the distance between the BS
and the UAV. The provided results of latency, reliability, and
throughput constitute a basis for the planning of the network
deployments and flight routes for different UAV-based ser-
vices, especially for those requiring critical communications.
However, note that the results consider only the physical layer
of the communication system [9], since upper layers will be
dependent on the specific application or deployment under
consideration.

The rest of the paper is organized as follows: Firstly,
Section II describes the details of the measurement campaign
and the construction of the channel model. Then, Section III
contrastively analyzes the results of performance, in terms of
availability, latency and throughput, for both a LoS scenario
and an OLoS scenario. Finally, Section IV summarizes the
main achievements of this work.

II. MEASUREMENT CAMPAIGN AND CHANNEL MODEL

In this section, we detail the process of analyzing the perfor-
mance of the UAV communications by means of simulations
with a measurement-based channel model. The measurement
campaign used to obtain the channel model is described in
Section II-A. The channel model definition and the signals
processing are detailed in Section II-B. Finally, the required
concepts on HARQ techniques are described in Section II-C.

A. Measurement Environment and Equipment

The measurement campaign was performed in a suburban
environment at the Jiading Campus of the Tongji University
(Shanghai, China). The environment includes rivers, trees,
roads and buildings between 15m and 70m high. The two
scenarios considered, namely the LoS and the OLoS, are de-
scribed in detail in [10] and respectively imaged in Figures 1a
and 1b. The LoS scenario consists of a straight flight in the
absence of large obstacles, whereas in the OLoS scenario
the UAV flies over a low building and close to high ones.
The figures include the representation of the flight routes
and the position of the BS, located about 20m far away
from the starting point of the flight routes, being its (latitude,
longitude) coordinates (31.2873872◦, 121.2040907◦). The co-
ordinates of the starting point for both flight routes expressed
as (latitude, longitude) are (31.287433◦, 121.204179◦); the
coordinates of the end point of the flight routes for the
LoS and OLoS scenarios are (31.284102◦, 121.208412◦)
and (31.288310◦, 121.208793◦), respectively. Representative
buildings are also marked in the figures. The flight height
is 15m and the speed of the UAV is about 5m/s in both
scenarios.

As depicted in Figure 1c, the measurement equipment
consists of two parts, the ground part and the air part. The

Base station

Starting point

End point

Media School

UAV flight route

(a) Measurement environment (LoS scenario).

Base station

Starting point

End pointUAV flight route

Media School

Library

(b) Measurement environment (OLoS scenario).

Air part Ground
part

Router

USRP and
computer

Omnidir.
antenna

GPS-
disciplined
oscillator

Omnidir.
antenna

Power
amplifier

Power
source

USRP
GPS-

disciplined
oscillator

(c) Measurement sounder (air and ground parts).

Figure 1. Measurement scenarios and sounder.

ground part is fixed on a lift at the height of 15 meters and
works as a transmitter. The air part, acting as a receiver,
consists of an UAV equipped with a quasi-omnidirectional
antenna, another Universal Software Radio Peripheral (USRP)
N-210 used to received signals, a GPS-disciplined oscillator,
a small computer to collect the data from the USRP and a
router to control the small computer. More specifically, the
central carrier frequency of the measurement is 2.5GHz with
a bandwidth of 15.36MHz, which is similar to the commercial
Long Term Evolution (LTE) deployments of the measurement
area. Note that the wireless local area network (WLAN)
connection used to control the small computer on the UAV
from the ground causes no interference to the measurements
since it works in the frequency band of 2.4GHz.

B. Signal Processing and Channel Model

For the generation and processing of signals, the “GTEC
5G Simulator” [11], an open development whose source code
(together with that of the “GTEC Testbed”) is publicly avail-

2Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-878-5
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able under the GPLv3 license at [12], was used. The GTEC
5G Simulator includes the necessary modules to configure the
transmit signals and process the acquired samples. What is
more, the functionalities of the “GTEC 5G Simulator” include,
but are not limited to, channel estimation, interpolation and
equalization, as well as signal synchronization in time and fre-
quency domain. In addition, the sounding signal is an Orthog-
onal Frequency-Division Multiplexing (OFDM) signal with
a frame structure similar to that of downlink LTE structure.
After acquiring the OFDM frames, the Space-Alternating Gen-
eralized Expectation-maximization (SAGE) algorithm [13],
integrated in the “GTEC 5G Simulator”, was used to extract
the channel Multipath Components (MPCs). Each snapshot,
regarded as a set of consecutive samples from the received
signal used to estimate the MPCs, is approximately 10ms long.
For the m-th snapshot, the channel impulse response can be
expressed as [10]

hm(t, τ) =

L∑
l=1

αm,lδ(τ − τm,l)ej2πνm,lt (1)

where t is the time variable, τ is the delay variable, and αm,l,
τm,l, and νm,l are the complex amplitude, delay, and Doppler
frequency for the l-th MPC of m-th snapshot, respectively.
δ (·) denotes the channel impulse function (Dirac delta) and
L is the amount of MPCs per snapshot. According to our
observations [10] [14], L = 15 paths are sufficient to capture
all the MPCs of the received signal in our measurements. Note
that, as shown in [15], αm,l, τm,l, and νm,l are approximately
constant for each snapshot since the UAV flies at low speed
(around 5m/s).

The estimated channel snapshots are used to simulate the
transmission of LTE signals according to the 10MHz band-
width downlink LTE profile [16] and further obtain the results
of the communication performance, including the end-to-end
delay, the packet success rate and the throughput. In time
domain, the i-th received LTE subframe can be expressed as
[8]

yi(t) = xi(t) ∗ hm(t, τ) + n(t) (2)

where xi(t) represents the i-th transmitted LTE subframe,
∗ is time-varying convolution operator, m is the number of
snapshot corresponding to the time of simulation for the i-
th subframe, and n(t) is Additive White Gaussian Noise
(AWGN).

In order to match the measured channel in our simulation,
the AWGN power is adjusted to fit the measured Signal to
Interference and Noise Ratio (SINR), calculated as in [17].
The comparison between the simulated and measured SINR
is shown in Figures 2a and 2b for LoS and OLoS scenarios,
respectively. In these two figures, the X-axis is the horizontal
distance defined as the distance between the UAV and the BS
projected on the ground, and the Y-axis is the SINR in dB. The
simulated SINR is displayed as a solid blue curve whereas the
measured SINR is displayed as dotted orange curve. As shown
in the figures, the trend and absolute values of the simulated
SINR are consistent in general. A slight deviation between the

simulated and measured SINR values can be appreciated for
the lowest SINR values due to the limited sensibility of the
receiver.
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Figure 2. Simulated and measured SINR for both scenarios.

C. Retransmission Mechanisms in LTE

After generating the transmit signals and obtaining the
channel model, we simulate the transmission of LTE signals.
In order to calculate the end-to-end delay, the LTE packet re-
transmission mechanisms need to be considered. According to
the LTE standard, each received packet is checked for errors by
means of a Cyclic Redundancy Check (CRC) [18]. If a CRC
error is detected at reception, then probably a retransmission
of a packet will be requested. For each retransmission of a
packet, a different Redundancy Version (RV) value will be
used, hence the RV sequence can be used to represent the
number of transmissions of each packet. More specifically,
when the receiver gets a new packet with errors, it first tries
to correct the errors using a HARQ technique, which combines
both Forward Error Correction (FEC) and Automatic Repeat
reQuest (ARQ) [19]. If there are no remaining errors in the
packet after the correction, the receiver will send a positive
acknowledgement (ACK) to the transmitter. In contrast, if the
errors can not be corrected completely, a negative acknowl-
edgement (NACK) will be sent to the transmitter and the
packet will be retransmitted [16, Section 9.3.4].

As defined in LTE, at most 8 HARQ processes operate
simultaneously [16, Section 10.3.2.5]. In other words, the
ACKs/NACKs corresponding to 8 packets are processed in
parallel despite the fact that the transmitter sends one single
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packet at a time. Note that the reception of the ACK/NACK
reply at the transmitter is not instantaneous, but implies both a
propagation delay as well some processing time at the receiver,
hence several data packets are handled by the transmitter
simultaneously. Furthermore, the sequence of operation of
the HARQ processes is random and hence, the order of
transmissions of packets cannot be predicted [16, Section
10.3.2.5]. This way, in order to calculate the end-to-end delay
per packet, we track the RV value for each of the 8 HARQ
process, which is consistent with the LTE standard definition
[16, Section 10.3.2.5].

When errors remain after the operation of a HARQ process,
a retransmission is requested and the number of transmissions
will increase in one unit until a maximum of 4. When the
RV is 4 and there are still uncorrected errors, the packet will
be dropped as specified by the LTE standard [16, Section
10.3.2.5]. However, when there are no remaining errors for
a HARQ process within the first 4 transmission attempts, the
packet is assumed to be received correctly and an ACK is sent
back to the transmitter. This way, for each packet, the end-to-
end delay is defined as the time instant when it was received
correctly minus the time instant when it was transmitted for the
first time. Note that only the LTE physical layer is considered
in this work and hence, we did not consider additional delays
introduced by higher levels of the communication system [9],
which may be different for different applications.

III. RESULTS

This section shows the obtained results, including the
simulated SINR, number of transmissions per packet, packet
success rate, end-to-end delay and throughput. By comparing
the obtained values with the constraints specified by the 3GPP
in [3], we can judge whether terrestrial deployments enables
critical communications for UAVs.

A. Simulated SINR

The simulated SINR, obtained as in [17], varies with the
horizontal distance between the UAV and the BS for both LoS
and OLoS scenarios, as shown in Figure 3. It can be seen that
the SINR for the LoS scenario is higher than 0 dB for all
the flight distances and it decays with the horizontal distance
with an approximately steady trend. For the OLoS scenario,
the SINR decay is also steady from 50m to 200m. At around
200–250m, a sharp decrease in the SINR occurs, caused by the
building labeled as “Media School” in Figures 1a and 1b. Note
that the height of the building is around 5m lower than the
flight altitude, and hence, even if the UAV is always visually
reachable from the BS, the building has a great impact in
the transmission of the signals, leading to OLoS propagation
conditions. For flight distances larger than 300m, the SINR
becomes lower than 0 dB for the OLoS scenario.

B. Number of Transmissions Attempts per Packet

Figure 4 shows the number of transmissions per packet
versus the horizontal distance. For convenience, a 1 s moving
average was applied. From the results, it can be seen that a
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Figure 3. Simulated SINR for the LoS and OLoS scenarios.

single attempt can lead to the successful transmission during
the early part of the flights for both LoS and OLoS scenarios.
As the horizontal distance gets larger, an increasing number
of transmissions is needed, since the number of transmission
attempts per packet is limited to 4, according to the LTE
standard [16, Section 10.3.2.5]. The increase of the number
of transmission attempts for the OLoS scenario is abrupt
when the horizontal distance is around 200–250m, due to the
decrease of SINR caused by the building labeled as “Media
School” in Figures 1a and 1b. It can also be seen that for
horizontal distances larger than 250m, the packets require 4
transmission attempts with high probability.
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Figure 4. Average number of transmissions attempts per packet for the LoS
and OLoS scenarios.

C. Packet Success Rate

Figure 5 shows the comparison of the packet success rate,
obtained by using an average window of length 1 s, w.r.t the
horizonal distance for the LoS and OLoS scenarios. For the
LoS scenario the packet success rate is 100% during the whole
flight. However, for the OLoS scenario, the packet success rate
is 100% at the beginning of the flight, and it starts to decrease
after reaching a horizontal distance of about 230m. Finally,
it drops rapidly to 0% at about 300m. It can be seen, by
recalling the results on Figure 3, that the decrease in packet
success rate is well correlated with that on the SINR. We can
also observe that, combining the results of Figures 4 and 5,
the number of packet transmission attempts for horizontal
distances larger than 300m (for the OLoS scenario) is always
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4. This means that, for the OLoS scenario, when the horizontal
distance is larger than 300m, all the packets are transmitted
incorrectly even after 4 attempts.

It can be seen that an architectural element of the environ-
ment (the building labeled as ”Media School“ in Figures 1a
and 1b in our case), even still allowing visual contact between
the BS and the UAV, can cause a sudden decrease of the
packet success rate. According to the constraints specified
by the 3GPP in [3], the reliability requirements for UAV
communications state that the packet error rate shall be lower
than 0.1% for critical communications. Therefore, for satis-
fying this criterion, the horizontal distance should be limited
to approximately 230m for the OLoS scenario, whereas the
constraints are always fulfilled for the LoS scenario. More
importantly, it can be seen that a SINR larger than 0 dB
can be a good indicator for the fulfillment of the reliability
requirements for critical UAV communications stated by the
3GPP [3].
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Figure 5. Packet success rate for the LoS and OLoS scenarios.

D. End-to-end Delay

As shown before, when the SINR decreases to around
0 dB, no packets will be received successfully. Figures 6a
and 6b show for the LoS and OLoS scenarios, respectively,
the instantaneous end-to-end delay per transmitted packet w.r.t.
the horizontal distance, including the processing time at the
receiver [16, Section 10.3.2.5]. In the figures, each blue dot
corresponds to the delay for a specific packet. The minimum
delay values correspond to the cases in which the packets are
transmitted successfully at the first attempt. When the SINR
decreases, the delay per packet starts to increase due to the
need of performing several transmission attempts. Note that
since the packets are processed on a 1ms time basis at the
BS, the values of end-to-end delay are almost discrete, being
the propagation delay negligible. The specific discrete values
are affected not only by the number of transmission attempts
per packet, but also by the random ordering of the the HARQ
processes. Finally, as indicated in Section II-C, the packets
with remaining errors after 4 transmission attempts will be
dropped, hence the maximum value of the end-to-end delay is
limited. The specific upper limit of the delay value can change
based on the HARQ ordering strategy followed by the BS. For
our simulations, it is 36ms.

Figure 6c represents the comparison of the end-to-end
delay for the LoS and OLoS scenarios. For convenience,
a 1 s moving average was applied. The growth rate of the
delay for the OLoS scenario when the horizontal distance is
200–250m is greatly larger than that of LoS scenario due
to the presence of the building labeled as “Media School”
in Figures 1a and 1b, which is consistent with the results of
packet success rate shown in Figure 5. The end-to-end delay
is crucial for critical communications, which require to deliver
the packets on time. In particular, an end-to-end delay within
50ms is required for critical communications, according to
the constraints specified by the 3GPP in [3]. It can be seen
that this constraint is fulfilled for all the packets successfully
delivered.
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Figure 6. End-to-end delay for the LoS and OLoS scenarios.
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E. Throughput

Figure 7 shows the throughput w.r.t. the horizontal distance
between the BS and the UAV for the LoS and OLoS sce-
narios, respectively. For convenience, a 1 s moving average
was applied. The maximum throughput value is 12.8Mbps
for both scenarios, corresponding to the case in which all
the packets are successfully received at the first transmission
attempt. The minimum throughput value for the LoS scenario
is about 4Mbps, whereas for the OLoS scenario the throughput
decays to 0Mbps after approximately 300m, since no success-
ful packets are transmitted (see Section III-C). As expected,
the decrease of the throughput is well correlated with the
increase of the number of transmission attempts per packet, the
decrease of packet success rate, and the increase of end-to-end
delay (Figures 4, 5 and 6c, respectively). However, according
to the constraints specified by the 3GPP in [3, Table 5.1-1], the
required data rate for critical communications is relatively low,
just 60–100Kbps, which is always reached for the distances
in which most of the packets are transmitted successfully.
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Figure 7. Throughput comparison for both scenarios

IV. CONCLUSIONS AND FUTURE WORK

In this work, the performance of A2G communications
for low-height small-sized UAVs was evaluated by using a
measurement-based channel model. The measurement cam-
paign was conducted in a suburban environment, considering
both LoS and OLoS scenarios. The performance metrics
considered included the end-to-end delay, the packet success
rate, and the throughput, which were used to further deter-
mine whether terrestrial commercial BS can support critical
communications for UAV applications.

From the results, it can be seen that the measurement sce-
nario can greatly influence the communication performance.
Architectural elements close to the flight route can severely
decrease the communications performance even when the
visibility between the BS and the UAV is permanently ensured.
These kinds of obstructions can lead to sudden changes on
the end-to-end delay, success rate of the transmitted packets,
and throughput, whereas the changes in these performance
metrics are smooth and dominated by the BS-UAV distance
for scenarios without obstructions.

As a general result, it can be seen that all the performance
metrics are highly correlated with the SINR at the receiver,

being the SINR determined by both the BS-UAV distance and
the effect of the objects in the propagation environment. When
the SINR decreases, the number of retransmissions required
per packet starts to increase, and the end-to-end delay increases
accordingly. More required transmission attempts per packet
also lead to lower values of packet success rate and hence, to
a lower throughput. In particular, when the SINR decays to
values close to 0 dB, most of the packets are dropped, and the
throughput becomes 0Mbps.

Based on the obtained results, we have shown that the QoS
requirements for critical communications proposed by 3GPP
(in terms of end-to-end latency, reliability, and throughput) are
fulfilled for all the cases in which the packet success rate is not
severely decreased, which in practice happens when the SINR
is higher than 0 dB. This proves that the SINR can be used
as a condensed performance metric for evaluating the viability
of critical communications for UAV applications, and for the
design of safe flight routes for critical applications, which
should consider the influence of both the BS-UAV distance
and the architectural elements in the propagation environment.
Moreover, the goal should not only be ensuring the fulfillment
of the minimum performance requirements, but to increase the
performance to the highest level achievable. In order to do
this, schemes on dynamic optimization of the modulation and
coding scheme (MCS) based on different performance figures
of merit (e.g., throughput, delay or reliability) constitute one
of our current research topics.
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Abstract— In this article, we look 20 to 30 years ahead and 

provide some thoughts about communication technologies for 

future massive Unmanned Aerial Vehicle (UAV) scenarios in the 

Very Low Level (VLL) airspace. We use the term “massive” to 

stress that the number of UAVs will be in the order of the 

number of cars as of today: we treat scenarios where the 

number of UAVs is about 1 UAV per person. We expect UAVs 

to fly autonomously. Onboard sensors, communication and 

software will be key elements to ensure a safe operation. We 

address fundamental questions and provide thoughts on 

communication solutions. 

Keywords-component; UAV communications; drone-to-drone 

communications; massive UAV scenarios. 

I.  INTRODUCTION 

In a near future, autonomously operating small to mid-
sized Unmanned Aerial Vehicles (UAVs) enable prompt 
parcel delivery to every household and fast delivery of goods 
to shops, companies, restaurants, hospitals and the like. The 
Very Low Level (VLL) airspace will accommodate millions 
of UAVs. We may see scenarios which have been described 
so far only in science fiction novels. However, we are 
progressively getting closer to such a world: since many years 
already, UAVs support commercial, military and private 
purposes, and their number is dramatically growing. 

In this article, we take a closer look on appropriate 
communication technologies for massive UAV scenarios. 
These scenarios are described in Section II and are very 
different from those of controlled airspaces: the density of 
UAVs will be considerably higher than today’s density of 
aircraft in crowded regions. In Section III, we discuss 
fundamental aspects in terms of communications load and the 
number of simultaneously received messages. We sketch first 
results on the communication performance in Section IV. 

II. THE MASS MARKET UAV SCENARIO 

We consider scenarios with 1 UAV per person. This figure 
reflects our vision that the number of UAVs will be similar to 
the number of road motor vehicles as of today. The 
motorization rate in major European countries and in the 
United States is in the order of 60 to 70 % [1], respect. 80% 
[2], including automobiles, trucks, vans, buses, commercial 
vehicles and freight motor road vehicles.  

Eventually, we look on a selected region and consider a 
UAV scenario in a larger city with 1.5 million inhabitants and 
dense traffic situations. Such a city can be Munich, Germany, 

and Philadelphia, Pennsylvania, United States. These cities 
have about 1.5 million inhabitants [3][4] and an area of about 
310 and 350 km2 [3][4], respectively. Thus, both cities have a 
similar number of inhabitants per km2. And both cities have 
about the same number of road motor vehicles [3][5], i.e., 
about 700,000. 

We follow our analogy of today’s car usage pattern and 
the fact that the layout of cities does not dramatically change 
during the next decades. In our analysis, we assume that 
UAVs have a maximum speed of 15 m/s, that the average 
length of their flight paths is 7 km, and that 10 % of all UAVs 
are airborne during a UAV rush hour. Thus, we get an average 
flight duration of 8 minutes. For a UAV rush hour 150,000 
UAVs are airborne over an area of about 300 km2 resulting in 
a density of 500 UAVs per km2; we also obtain about 0.75 
million flights in the UAV rush hour.  

From these numbers, it becomes obvious that traffic 
control of massive UAV scenarios cannot be handled in the 
same way as traffic control for today’s IFR (Instrument Flight 
Rules) flights: due to the tremendous number of airborne 
UAVs a manual and semi-automated way of control is not 
feasible. Therefore, only fully automated traffic control 
systems are an option which in turn require robust and highly 
reliable Communication, Navigation and Surveillance (CNS) 
technologies. We also need very robust collision avoidance 
techniques which rely on the robustness and suitability of 
CNS technologies. In this contribution, we present a de-
centralized communication concept for collision avoidance. 

III. COMMUNICATION LOAD  

We estimate the communication load for a city like 
Munich or Philadelphia. Thus, following our vision of 1 UAV 
per person, we get 1.5 million UAVs for such a city. Assuming 
that 10 % of all UAVs are airborne simultaneously during a 
UAV rush hour, we will have 150,000 UAVs in the air.  

In order to get an estimate for the data volumes to be 
handled we refer to car-to-car communications technologies 
where cars broadcast periodically messages at 1 Hz (normal 
operation) to 10 Hz (in emergency situations). We believe that 
these rates can be transferred to UAV communications. A data 
packet shall encompass 500 bit (optionally 5000 bit) and 
contains the current position and orientation of the UAV, its 
future way points, its destination, information about its size, 
volume, freight type, priority mode and flight characteristics. 
Each UAV shall broadcast such a data packet with 1 Hz. Thus, 
the overall bit rate, i.e., the bit rate simultaneously transmitted 
by 150,000 UAVs is obtained as 75 Mbit/s. 
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We see that the overall bit rate is relatively small. A single 
LTE-Advanced Pro base station provides a total bit rate of up 
to 1000 Mbit/s and 500 Mbit/s for down- and uplink, 
respectively. Thus, the overall amount of data (and even ten 
times more in case of data packets of 5000 bit) is manageable 
even with today’s technologies. The decisive question is 
whether a de-centralized or a centralized communication 
architecture shall be applied. 

In this article, we promote direct communications between 
drones as in other traffic control systems: TCAS, the Traffic 
Collision Avoidance System for air traffic; AIS, the 
Automatic Identification System for maritime users; RCAS, a 
new Railway Collision Avoidance System acting as additional 
safety system; and ITS G5, a car-to-car communications 
standard. Traffic participants periodically broadcast data to 
surrounding aircraft, ships or vehicles, communicate directly 
with each other and use neither a central communications 
entity nor a centralized communication infrastructure. 
Beaconing, the periodic or quasi-periodic broadcast of 
information, is an established transmission mode. 

An important issue to look at is the question up to which 
range the transmitted data shall be correctly received. We 
derive the communication range from two parameters: (1) 
UAVs will travel with a velocity of up to 15 m/s; (2) a 
potential collision course shall be detectable at least 33 
seconds prior to the time instant at which this collision would 
occur when no action is taken. From a collision avoidance 
perspective, the worst case happens when both UAVs are 
heading directly towards each other resulting in the highest 
relative velocity and, hence, in the shortest amount of time to 
detect and solve this situation; this worst case requires a 
communication range of 

 𝑅𝑐𝑜𝑚 = 2 ⋅ 15m/s ⋅ 33𝑠 ≈ 1000𝑚  () 

Assuming all UAVs are equally distributed, the number of 
UAVs within the communication range is obtained as 

 𝑁𝑈𝐴𝑉 = 𝑅𝑐𝑜𝑚
2 ⋅ 𝜋 ⋅ 500km-2 ≈ 1600  () 

 The result reveals that each UAV must be able to correctly 
receive data from 1600 neighboring UAVs every second. 
Since the transmission rate is 500 bit/s, each UAV has to 
process a total of 0.8 Mbit every second. In view of these 
figures, we do not expect that it will be a problem for future 
UAV communication systems to receive, decode, and read 
1600 data packets per second carrying a total of 0.8 Mbit of 
data. Also, managing the communication load for larger cell 
sizes or larger data packets should not be a problem: e.g., 
doubling the cell radius results in 6300 UAVs per cell and, in 
turn, in 6300 data packets carrying a total of 3.2 Mbit. 

We are also confident that it won’t be a problem to check 
1600, respectively 6300 flight trajectories for potential 
collision courses every second and to suggest alternative 
routes if needed. Note that it is not required to repeat checking 
for potential collisions as long as trajectories remain 
unchanged. Thus, trajectories from only those UAVs have to 
be checked which either enter the communication range or 
have changed their trajectories.  

IV. FIRST RESULTS 

At the workshop, the author will provide first results on 
the performance of slotted ALOHA [6] when applied to a 
massive UAV scenario with UAV densities of 100 to 500 
UAV/km2. He will present a relation between communication 
failures (i.e., non-received messages) and the expected 
number of UAV collisions and will apply it to two different 
scenarios: one where all UAVs choose a direct flight path 
between departure and destination locations and one where 
UAVs fly on a grid-like pattern. All UAVs fly above rooftops 
and have line-of-sight conditions. In our first assessment, we 
consider neither multipath propagation although it may 
degrade the communication performance nor take-off and 
landing maneuvers although they are crucial due to shadowing 
situations. The communication system may operate at C-band. 

The analysis will follow a framework which has been 
presented in [7] and is based on the missed detection 
probability that not a single beacon message is received 
correctly at a UAV while approaching another one on a 
collision course. Both UAVs have at least 30 opportunities 
(during 33s) to detect beacon messages of the other UAV 
before the collision happens, and a collision is unavoidable of 
none of the two UAVs correctly receives at least one data 
packet at least 3s prior to the potential collision.  

The first investigations reveal that an ALOHA-type 
beaconing system with 1 MHz bandwidth and 1 Hz beaconing 
rate can support UAV densities up to 150 UAV/km2 when 
UAVs fly direct paths and more than 500 UAV/km2 when 
UAVs fly along a predefined grid while guaranteeing less than 
1 accident per year for a city like Munich. With larger packets 
the bandwidth increases linearly. Note that self-organized 
Time Division Multiple Access (TDMA) or Location-Based 
TDMA may allow even higher UAV densities.  
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Abstract—Reliable location-aware services and corresponding
localization techniques are essential in Unmanned Aerial Vehicle
(UAV) communications. In this paper, localization technology
based on Direction of Arrival estimation is proved to be promising
for UAV channels due to limited angular spread in the air. Then, a
method is proposed to estimate the direction of a ground radio-
frequency transmitter by using a UAV equipped with a single
antenna, which is critical when considering the form factor and
computational capabilities of a UAV. By considering the received
signal at several points along its trajectory, the receiver implicitly
creates a virtual multi-antenna array, which can be used to
estimate the direction of the transmitter. The first difficulty is
estimating the relative positions of the UAV. The other main
challenge is the Local Oscillator frequency offset between the
transmitter and the UAV receiver, which adds an additional
cumulative phase offset to the received signal at each antenna of
the virtual array.

Index Terms—Direction Finding, DoA Estimation, Localiza-
tion, Multi-antenna System, Radiogoniometry

I. INTRODUCTION

Estimation of the location of passive Radio Frequency (RF)
sources (e.g., emitting radio, etc.) has been a subject of re-
search for decades and plays a significant role in many applica-
tions, including radar and sonar processing, search and rescue
missions, and wireless sensor networks [1]. Measurements
used for passive localization can be classified into four cat-
egories: Time Of Arrival (TOA), Time Difference Of Arrival
(TDOA), Direction Of Arrival (DOA), and Received Signal
Strength (RSS) [2]. Also, in most cases, a basic assumption for
passive localization is that the Line-Of-Sight (LOS) visibility
exists between a transmitter and receiver, as the transmitter
location estimates can be significantly biased due to multipath
transmission and shadow fading [3]. While this assumption is
rigid to guarantee in the ground communication channels (e.g.,
a dense urban environment) due to rich obstacles, the LOS path
is easy to establish in the Air-To-Ground (ATG) channels, as
scatters are limited in high altitudes [4]. In other words, the
accuracy of localization services can be significantly improved
by utilizing measurements from the sky, and Unmanned Aerial
Vehicles (UAVs) are a promising platform to serve as an aerial
localization node.

The investment in UAVs has surged in recent years due to
their low cost, ease of on-demand deployment, and excellent

mobility. UAVs are widely used in various applications, in-
cluding target reconnaissance, image acquisition, surveillance,
and wireless communication [5]. Furthermore, as an essential
part of the future Low Altitude Platform (LAP) communi-
cation system, UAV has tremendous amounts of excellent
characteristics, such as the high probability of a LOS path,
unencumbered by rough terrain and fewer reflections from
obstacles on the ground [6]. Current studies are focusing on
the UAV serves as a mobile terminal (e.g., base stations and
relays), and the UAV serves as new aerial users that access
the cellular network from the sky [7]. Alongside the enormous
connectivity potential, reliable location-aware services are also
essential in UAV-based communications. Therefore, localize
ground users with UAVs is becoming an important topic and
has drawn significant attention. For example, UAVs have been
used to localize WiFi devices and GPS jammers [8].

Despite the high potential, performing localization with
UAVs also has some drawbacks: UAVs also have limited
payloads and flight times due to hardware and battery limits.
Therefore, some localization methods are not suitable in UAV-
based scenarios. For example, the TOA-based and TDOA-
based localization systems usually require precise and consis-
tent time synchronization, which is complex in UAV scenarios.
Likewise, DOA estimation uses phase interferometry, i.e.,
the phase differences among the bearing measurements w.r.t.
multiantenna array elements [9]. However, since UAVs are
usually small, the consequent constraints on the size of the
multiantenna array will lead to poor spatial resolution [2].
Ranging localization with RSS methods is attractive due to
their intrinsic simplicity. However, its accuracy is usually not
satisfactory. Therefore, a simple, cost-effective localization
method using a minimum number of UAVs, without heavy
hardware implementation and complex synchronization, is
precious for the development of aerial RF localization.

In this work, we investigate the feasibility of DOA estima-
tion with a UAV equipped with a single antenna only [10].
The unknown signal source to be located is referred to as
the transmitter. The UAV is flying and carried with a single
patch antenna (mounted facing downward), referred to as the
receiver. While the UAV hovers overhead at a certain altitude,
the receiver antenna receives the incoming signal consistently
along the UAV’s trajectory, as shown in Figure 1. Bearing
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measurements are taken at fixed time intervals during the flight
and are then processed to extract the phase difference at these
observation points. Therefore, we implicitly create a virtual
Multiantenna Array (VMA) in 3D space. Combining these
bearing measurements with UAV’s position, an estimate of the
source’s DOA (including azimuth angle and elevation angle)
is obtained. The receiver antenna at each observation point
can be considered a virtual antenna element in VMA. Like
conventional multiantenna arrays, the element spacing should
be smaller than the half wavelength of the carrier frequency
to avoid aliasing effects.

Fig. 1. UAV virtual array concept. Single UAV receiver equipped with one
single antenna, moves and create a virtual array.

The difficulties of such a UAV-based VMA method are
threefold: 1) The aerial channel between UAV stations and
ground users differs significantly from conventional terrestrial
channels, and the effect of aerial channel properties (e.g.,
angular spread) on DOA localization needs to be investigated.
2) The relative coordinates of UAV array elements are essential
when calculating the array response vector that necessary for
DOA estimation. 3) The concept of VMA is based on a
consumption that the phase difference is only caused by the
UAV movement. However, this is not the case in practice.
As the Local Oscillator (LO) in transmitter and receiver has
different frequency stability due to manufacturing tolerances
and temperature variations [2], a LO offset usually appears
and caused cumulative phase drifts for the received signal
over time. Common RF devices usually equip with LOs that
containing significant LO offset. For this reason, we provide
two methods to compensate for the effect of LO offset, and
their performance is tested in simulations.

In summary, the significance of our work lies in proving the
feasibility of the VMA method with cheap, portable hardware
that is already available in modern smartphones. Also, a
UAV-based scenario provides a suitable, favorable propagation
condition for VMA to show localization ability. Furthermore,
by exploiting the potential of UAV’s excellent mobility, our
VMA system does not increase energy consumption or re-
quire multiantenna arrays. The results from simulations and
experiments show that the VMA significantly outperforms the
conventional localization algorithms in UAV-based scenarios
in terms of localization accuracy and system simplicity.

Contributions: The main contributions of this paper are as
follows.
• We proposed a technology to localize ground RF trans-

mitters by creating a virtual multiantenna array with a
single UAV platform. The proposed system is easy to
implement for remote electronics.

• The spatial property of the ATG channel is studied with
the ray-tracing method from a localization perspective.
Our simulation results show that angular spreads at the
UAV are minimal, which is beneficial for DOA-based
localization due to limited power dispersion.

• The proposed system is implemented with simulations,
and simulation results prove the feasibility of the VMA
method.

The remainder of the paper is organized as follows. Section
II provides a detailed spatial channel characteristics analysis
of the ATG channel from a localization perspective. Section
III proceeds with the design and system model of the VMA
model. Two algorithms are provided to eliminate the bias
introduced by LO offset. Section IV concludes this paper and
presents our future work.

II. SPATIAL PROPERTY OF UAV CHANNEL

The estimation of the bearing angle is usually estimated
based on antenna measurements with conventional array pro-
cessing algorithms (e.g., Multiple Signal Classification (MU-
SIC), Beamforming). Nearly all of these algorithms assume
that the source signal arrives at UAV with a discrete, distinct
angle. This assumption leads to a signal subspace of low rank,
and the low-rank property is exploited to find the impinging
direction.

However, in actual spatial channels (e.g., a macro-cell),
several replicas of the signal will be incident on UAV with
multiple angles due to multipath propagation. More specif-
ically, the signal that incident on UAV array may spatially
be distributed (i.e., with an angular spread around a mean
DOA) and no longer propagate along with a plane wave due to
local scatters surrounding the ground transmitter. The angular
spread usually denotes the standard deviation of DOAs from
multipath, also indicates the power dispersion in the angular
domain. Generally speaking, a large angular spread value will
directly degrade the antenna array correlation, which gives rise
to the inaccuracy of the DOA estimation; For small angular
spread, it follows from the consistency that the mean DOA will
only deviate slightly from the true DOA. These mismatches
between the mean DOA and true DOA in the ground channel
is well investigated in [11]. However, very limited research
has thoroughly investigated similar spatial properties in UAV
channels from a localization perspective to the best of our
knowledge.

To ensure the effectiveness of DOA measurements in UAV-
based localization, we investigate the spatial characteristics
of the ATG channel with Ray-Tracing simulations. Given the
purpose of localization, i.e., the UAV-based platform locates
ground users according to their emitted signal, we consider
the ground users serve as Mobile Terminals (MTs, emulating
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a transmitter), the UAV serves as an aerial receiver (Rx), to
locate ground MTs according to their emitted signal. More-
over, When the carrier frequency does not change (which is
our case), the angular spreads in the uplink and downlink are
equivalent due to the channel reciprocity. Therefore, although
the signal travels from MT to UAV, the channel can still be
referred to as the ATG channel.

(a) Ray-tracing simulation scenarios

(b) One example snapshot from ray-tracing simulations

Fig. 2. The Ray-tracing simulations. (a) The scenario contains 4 linear UAV
trajectories, and 250 MTs randomly distributed on the ground. (b) An example
from the RT simulation results. The solid red line represents the line-of-sight
path, the blue lines represent all the multipath components, including reflected
rays, scattered rays and diffracted rays.

Ray-tracing is a powerful map-based hybrid channel mod-
eling approach to describe multipath effects for a given
environment model and deployment configuration [12]. Our
simulations are carried out by using CloudRT, the 3D ray-
tracing software developed by Beijing Jiaotong University. In
this work, we modeled a typical 3D urban city, with 137
buildings under different heights going from 5 m to 70 m.
The total dimensions of the modeled terrain are 650 m by
500 m. The area has 250 ground MTs distributed uniformly
over the whole map, and the MT height is set to 2 m above
ground. The UAV is equipped with a downwards-facing patch
antenna, and MTs are equipped with vertically-oriented dipole
antennas. It is worth mentioning that the tilts of MTs antenna
are randomly distributed but deviate no more than ± 45 ◦

from the vertical direction. Both the UAV antenna and the
MT antenna are vertically polarized with 0 dBi gain, and
the transmission power is set to 0 dBm. The simulation is
conducted by fixing the MT while changing the position of
the UAV along four linear trajectories. Each trajectory has
a length of 450 m and contains 50 UAV positions, with a

resolution of 9 m, as shown in Figure 2(a). Considering that
Long-Term Evolution (LTE) is a reliable technology to support
the required link performance of UAV networks [5], we set
the carrier frequency at 2.6 GHz, corresponding to the LTE
carrier frequencies. Moreover, the UAV altitude in simulations
is conducted at 100 m.

The CloudRT software allows to simulate the direct ray
between transmitters and receivers, first- and second-order
reflections, diffracted rays along building edges, and diffuse
scatterings on rough surfaces, as depicted in Figure 2(b).
During the simulation, rays are collected, and then a Chan-
nel Impulse Response (CIR) is calculated by the software,
including received power strength, phase, propagation time,
angle of arrival, and angle of departure (for both azimuth and
elevation). Also, the direct path between the UAV and MTs can
be obstructed by obstacles; thus, we have a collection of the
LOS and the Non-Line-Of-Sight (NLOS) cases. For the UAV
altitude to be set to 100 m, we collected 250×50×4 snapshots
in total, containing 28626 LOS cases and 21374 NLOS cases.
For each snapshot, the different Multipath Components (MPC)
between the UAV and MT were recorded. These were used
to determine the Azimuth-Of-Arrival (AOA) spread and the
Elevation-Of-Arrival (EOA) spread. The Probability Density
Function (PDF) of the angular spreads in the LOS scenario
and the NLOS scenario are plotted in Figure 3, where the
PDF function is used to specify the probability of an angular
spread falling within a particular range of values.

(a) Distribution of ASA in LOS (b) Distribution of ASA in NLOS

(c) Distribution of ESA in LOS (d) Distribution of ESA in NLOS

Fig. 3. Distributions of ASA/ESA in LOS scenarios and NLOS scenarios.
The superimposed red curves are lognormal distributions used to model the
PDF.

To better characterize the distribution of angular spreads at
the UAV, the lognormal distribution is chosen to be the most
appropriate function to fit the ASA and the ESA. For example,
in LOS scenarios, the PDF of the ASA can be mathematically
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expressed by:

fASA (x) =
1√

2πxσASA
exp

[
− (lnx− µASA)2

2σ2
ASA

]
(1)

where µASA and σASA are the mean and Standard Deviation
(STD) of the fitting PDF, respectively. The fitting of ESA
is similar by replacing parameters µASA, σASA with µESA,
σESA. The value of µ and σ for ASA/ESA spreads in both
LOS and NLOS scenarios are provided in Table I.

TABLE I
LOGNORMAL MODELING PARAMETERS

Parameters ASA ESA
LOS NLOS LOS NLOS

µ 0.42 0.52 0.15 0.24
σ 1.01 1.29 0.68 0.91

By comparing the PDF distribution and the established sta-
tistical model, the spatial multipath propagation characteristics
can be observed as follows.

• The first observation from Figure 3 is that the ESA and
ASA are distributed over a narrow range less than 10◦

(with an average angular spread around 2.5◦), for both
LOS and NLOS scenarios. These magnitudes are much
smaller than the ESA and ASA in conventional 3D cel-
lular channels, e.g., average ASA around 9◦ and average
ESA around 15◦ in [13]. Such observations indicate that
the spatial dispersion of received power at the UAV side
is very limited, and all the multipath components arrived
at the UAV with similar incident angles. Therefore, the
power-weight mean AOA/EOA is a good representation
of the real bearing to the ground MT.

• In Figure 3, the histograms for both ASA and ESA are
steeper in the LOS scenarios than the NLOS scenarios.
The µ and σ in LOS are also smaller than NLOS.
Therefore, the angular spread in NLOS scenarios tends
to be slightly larger than in the LOS scenarios. This
phenomenon is expected and can be explained by the
fundamental of angular spread: When scattered MPCs
make a considerable contribution to the total received
power, the angular spread will be large; When the LOS
path is dominant among the received power, the angular
spread will be small. In NLOS scenarios where the LOS
path has been blocked by obstacles, the direct signal will
be attenuated; Thus, MPCs will make more significant
contributions in the total received power, caused a bigger
angular spread in both azimuth and elevation domain.

The analysis above leads to the following conclusion. In
urban environments, the angular spread at the UAV is minimal,
which means the power dispersion at the UAV is very limited.
Therefore, the DOA-based estimation has a great potential in
UAV-based cellular networks to localize ground targets since
the estimated DOA should be close to the true DOA.

III. UAV VIRTUAL MULTIANTENNA ARRAY SYSTEM
MODEL

A. UAV-based Virtual Array System

The system model of the virtual antenna array is following.
We consider that a single transmitter broadcasts an RF signal
periodically while the UAV-carried receiver is moving. The
periodically transmitted RF signal in our system is in the
form of digital data packets. Both the transmitter and the
receiver know the preamble of the packets. Those preambles
are defined by existing communication standards, e.g., the
Primary Synchronization Signal (PSS) broadcast by the base
stations in LTE standard [9].

As for the DOA localization, the unknown location of
the stationary transmitter in three-dimensional Cartesian co-
ordinates is represented by s = [x, y, z]T (the superscript
T denotes the matrix transpose operator). The knowledge
of UAV’s location is represented by si = [xi, yi, zi]

T for
i = 1, . . . , N . Here, i denotes the ith virtual array element
along UAV’s trajectory, and N represents the total number of
these points. Generally, we can determine the location of s as
long as we estimated the DOA, as seen from the UAV. The
DOA, including the AOA ϕ and the EOA θ, is calculated
by analyzing the phase difference in received packets. As
the signal arrives at si from the far-field, the DOA at each
observation point is considered the same.

Let us denote s
[
m
]

the baseband representation of the
transmitted packet preamble (for m = 1, ...,M ) and r

[
n,m

]
the m-th baseband sample of the n-th received packet, which
can be represented as:

r
[
n,m

]
= h

[
n,m

]
∗ s
[
m
]
· ej(φ0+2πf0(tn+mTs)) + ω

[
n,m

]
(2)

where h
[
n,m

]
is the CIR, which provides temporal and spatial

information and power of multipath components. The term
φ0 is the phase of the first received packet (which contains
the phase offset and accumulated frequency offset at time t0
between the transmitter and receiver front-ends), f0 is the LO
frequency offset between transmitter and receiver, tn is the
elapsed time between the initial packet and the n-th packet.
The term Ts indicates the receiver sample time and ω

[
n,m

]
is an independent and identically distributed Gaussian noise
with distribution ω

[
n,m

]
∼ CN (0, σ2). We assume that f0 is

constant during the observation interval at each interception
position, which means the movement of receiver can not
exceed a certain time limit, e.g. a few seconds. The term φ0
is considered constant between multiple received packets [9].

In the following (unless otherwise stated), we will consider a
narrowband LOS channel. The narrowband channel h[n] when
the receiver receives the n-th packet can be written as:

h[n] = α · ej~β(ϕ,θ)·~r[n] (3)

where α is amplitude of the channel, ~β(ϕ, θ) is the wave
vector, ~r [n] is the n-th virtual array coordinate when receiving
the n-th packet relative to initial coordinate, which requires
knowledge of the location of the UAV to within a small
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fraction of the carrier wavelength. While the UAV flying at a
fixed altitude (as will be considered in the following sections),
the term ~β(ϕ, θ) · ~r [n] can be developed as

~β(ϕ, θ) · ~r [n] =2π

λ
(x [n] sin(ϕ)cos(θ)+

y [n] cos(ϕ)sin(θ) + z [n] cos(θ))
(4)

where x [n], y [n], z [n] represent the displacement of the
receiver along the x-, y- and z- axis when receiving the n-
th packet.

Combining equations (2) and (3), the full signal model can
be written as:

r [n,m] = α ·s [m] ·ej(φ0+2πf0(tn+mTs)+~β(ϕ,θ)·~r[n])+ω [n,m]
(5)

The main difference between (5) and the received signal
with conventional multi-antenna systems is twofold:

1) the frequency offset f0 does not appear in conventional
multi-antenna systems, since the signal is received on
all antenna elements simultaneously;

2) the coordinates ~r [n] are perfectly known in a conven-
tional multi-antenna system, since the array form factor
is known by design.

In principle, the DOA estimation in the virtual array is only
feasible after the LO phase offset caused by f0 is eliminated,
and the relative array element positions ~r [n] is known. The
algorithms and techniques to deal with these two challenges
are provided in the next sections.

B. Estimating the relative UAV Coordinates

While UAV is flying in the sky, its coordinates have to
be known with an accuracy of a fraction of a wavelength.
Current UAV-embedded GPS sensors usually far short from
this requirement in higher frequency, but new generations of
GNSS receivers in the near future may allow knowing the
position of the UAV with such precision, especially since
UAVs benefit from excellent satellite visibility. To address this
challenge with off-the-shelf hardware, we add a 3D inertial
measurement unit (IMU) on the UAV-mounted receiver, con-
taining a combination of accelerometers, gyroscopes, magne-
tometers to measure angular velocity and linear acceleration
with respect to the UAV’s body coordinate frame. The relative
position and orientation are characterized by the IMU readings
through so-called dead-reckoning integration algorithms, with
an Extended Kalman Filter (EKF) or an Unscented Kalman
Filter (UKF) [9].

Due to the integration of biases in the IMU processing,
the navigation solution obtained from IMU measurements will
drift from the real trajectory, and the error of the navigation
solution will increase over time. However, for the Wide-Sense
Stationary Uncorrelated Scattering (WSSUS) assumption to
hold [2], the time over which the UAV forms the virtual array
would be short so that the navigation error incurred by the
IMU is also limited. For typical UAV or vehicle speeds, the
required movement duration is up to a few seconds.

C. Local Oscillator Frequency Offset Compensation

To estimate and compensate the LO frequency offset in (5),
we proposed two methods, based on our previous research
in [9], [10]. The first method is the Stop-and-Start (SaS)
approach, where the UAV first stands still before starting to
move. During standstill, only the LO frequency offset causes
the phase in (5) to change with time and can therefore be easily
estimated. This estimated value f0 is then used during the
movement of the UAV to compensate the LO frequency offset,
where each received subsequent packet can be expressed as
follows:

r′ [n,m] = r [n,m] e−j2πf0·(tn+mTs) (6)

The compensated signal r′ [n,m] contains the phase inter-
ferometry and can be used directly in conventional DOA
estimation techniques. Although the SaS approach is straight-
forward and easy to implement. This method suffers from two
disadvantages. The most obvious disadvantage is that the SaS
approach restricts the movement of the UAV, as the UAV first
needs to stand still before moving. The second disadvantage
is that the LO frequency offset should not change too much
between the moment that the UAV stands still to the moment
that the receiver moves, which might not always be verified
in practice (especially for low-quality LOs).

The other method is called the joint estimation approach,
which has more advantages in practical applications for pro-
viding higher usage flexibility and no need to stop the UAV
before the movement. In this method, we apply the MUSIC
algorithm with an adapted signal model by including the LO
phase offset into the steering vector of the virtual array. Let
us rewrite (5) by stacking the N received packets in a column
vector:

r [m] = a (f0, ϕ, θ)X [m] + ω [m] (7)

with the array steering vector lies in a three-dimensional space
over f0, ϕ and θ and defined as:

a (f0, ϕ, θ) =


ej(2πf0t1+

~β~·r[1]))

ej(2πf0t1+
~β·~r[2]))

...
ej(2πf0t1+

~β~·r[N ]))

 (8)

and X
[
m
]

is constant for all virtual antennas, defined as

X [m] = α0 · s [m] · ej(φ0+2πf0mTs) (9)

By developing the eigen-decomposition of the covariance
matrix of r [m], we can then estimate the nominal DOA and
frequency offset

(
f̂0, ϕ̂, θ̂

)
via a 3D-MUSIC search, and the

corresponding MUSIC spectrum will exhibit the largest peak
at the estimated DOA due to the orthogonality of the signal
subspace and noise subspace [9].

D. Implementing VMA with Simulations

We have simulated the proposed virtual array system by
using MATLAB software. We illustrate the DOA estimation
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results under each of the two LO frequency offset compensa-
tion techniques in the next steps. The azimuth ϕ for each path
in (4) is set to a random angle between 0◦ and 180◦ and the
elevation θ is set to a random angle between 0◦ and 90◦. The
LO drift is simulated using the LO model described in [14].

(a) Azimuth estimation for SaS (b) Elevation estimation for SaS

Fig. 4. Simulation results of the SaS estimation approach based on 2D MUSIC
search (versus ϕ and θ, where f0 is estimated in prior).

Figure 4 shows an example of the MUSIC spectrum of
the SaS method after frequency offset compensation, which
is used to estimate the azimuth and elevation angle simultane-
ously. In this snapshot, a clear peak is observed at azimuth 8◦

and elevation 56◦, which is very close to the true DOA (12◦

for azimuth and 52◦ for elevation).

(a) Joint estimation for Azimuth (b) Joint estimation for Elevation

Fig. 5. Simulation results of the joint-estimation approach based on 3D
MUSIC search (versus f0, ϕ, and θ).

Figure 5 presents an example of the joint-estimation method
for the same snapshot in Figure 4. In this case, only the
received packets during the UAV movement were used for
processing. The peak of the spectrum indicates the estimated
LO frequency offset f0, and also the estimated DOA (azimuth
and elevation) corresponding to the peak. A clear peak can
be identified at 10◦ for azimuth and 55◦ for elevation, close
to the true DOA of 12◦ for azimuth and 52◦ for elevation as
well.

IV. CONCLUSION AND FUTURE WORK

In this paper, the DoA-based localization is proved to be a
suitable technology for UAVs to locate ground targets due to
limited angular spreads for aerial nodes. A promising method
is proposed to estimate the DOA of a ground RF transmitter
with a UAV equipped with a single antenna. This method
actively exploits the UAV movement, which can effectively
be controlled and leveraged to obtain DOA estimations. By
considering received packets along a planned trajectory, the
UAV receiver creates a virtual multi-antenna array that can
use conventional DOA estimation algorithms. In addition, we

propose two alternative methods to compensate for the local
oscillator frequency offset between ground RF transmitters
and UAV receivers. The feasibility of our UAV virtual array
method is verified with simulations. Our future work will focus
on evaluating and improving the proposed method’s robustness
and implementing the VMA system with UAV platforms and
software-defined radios. The whole DoA estimation system
will be tested in outdoor scenarios to investigate the effect of
1) the UAV movement states (height, trajectory length); 2) the
hardware configurations (LO qualities, LO offset compensa-
tion methods); 3) the channel conditions (LOS visibility, SNR,
multipath power).
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Abstract—In this contribution, a recently conducted measurement
campaign in a suburban scenario for the Unmanned Aerial
Vehicle (UAV) Air-to-Ground (A2G) radio channel is introduced.
The downlink signals in an in-service Long Term Evolution
(LTE) network were collected and utilized to extract the Chan-
nel Impulse Responses (CIRs). A high-resolution parameter
estimation algorithm derived based on the Space-Alternating
Generalized Expectation-maximization (SAGE) principle is ap-
plied to estimate the delays, Doppler frequencies and complex
amplitudes of MultiPath Components (MPCs) from the CIRs.
Based on the MPC estimation results, fast fading characteristics
of the A2G channels are investigated. It is found that the
Rician distribution models the fast fading the best compared
to Nakagami, Lognormal and Rayleigh distributions. Rician K-
factors are also calculated for the A2G channels.

Keywords- UAV; air-to-ground; LTE; multipath components; fast

fading.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have recently attracted a

surge of research interest. They can be exploited as aerial Base

Stations (BS) [1] and/or aerial user equipments [2] to enable

various applications such as sensing, delivery, etc. [3]. There

has been a certain amount of works conducted to understand

the Air-to-Ground (A2G) channels, e.g., in [2], [4]–[10] and

references therein. Channel characteristics including path loss,

delay dispersions, Doppler spread, etc. were investigated. It is

worth noting that the first comprehensive measurement-based

angular characterization of the A2G channels was carried out

in [4]. Although some previous works characterized the small-

scale fading, i.e., fast fading, using the Rician K factor, it is not

known whether the Rician distribution is really suitable for the

A2G channels. In this contribution, we conduct measurement-

based analysis, to see which distribution is the most suitable

for modeling the fast fading. The rest of this paper is structured

as follows. The measurement equipment, scenario and raw

data processing are described in Section II. Section III elab-

orates the investigation on the fast fading behavior. Finally,

conclusive remarks are drawn in Section IV.

II. MEASUREMENT EQUIPMENT, SCENARIO, AND RAW

DATA PROCESSING

The measurement equipment, scenario, CIR extraction and

MPC parameter estimation are briefly introduced in this sec-

tion. Detailed information can also be found in [6].

A. Transmitter and receiver

In the measurement campaign, a commercial Frequency

Division Duplexing Long Term Evolution (FDD-LTE) base

station was exploited as the transmitter with its real-time

downlink signals collected by the receiver. The receiver system

mainly consisted of the following components: a UAV, a

Universal-Software-defined Radio-Peripheral (USRP) device

of type B210 [11], an Oven-Controlled Crystal Oscillator

(OCXO), a cube Lenovo computer, an omnidirectional antenna

and three lithium batteries. The OCXO provided a stable local

oscillator for the USRP. The cube computer controlled the

USRP via the GNU radio software and stored the received

data. These components were loaded on the UAV fixed tightly

as illustrated in in Figure 1(a).

B. Measurement scenario

The measurement was performed in the suburban scenario

as illustrated in Figure 1(c). There were several tall buildings

and many metal containers with lower heights. The LTE base

station was located in front of and almost in the Line-of-Sight

(LoS) of the UAV. The carrier frequency of the LTE downlink

signals was 1.8 GHz, and the bandwidth was 13.5 MHz. The

UAV flied vertically from the ground to the height of 50 m in

about 35 seconds as indicated in Figure 1(b). The signals were

acquired by using the USRP with a sample rate of 30.72 MHz.

Due to the hardware data steaming limitations, the data were

stored in fragments each lasting 15 seconds.

C. Raw data processing

The CIRs were extracted from the Cell Specific Signals

(CRSs) as elaborated in [2], [12]. Briefly, synchronization and

physical cell detection were first done. With the transmitted

CRSs known according to [13], the channel transfer functions

can be calculated, and so the CIRs. The signal model of a CIR

in the SAGE algorithm [14] is formulated as

h(t, τ) =

L
∑

ℓ=1

αℓ(t)δ(τ − τℓ(t)) exp

{

j2π

∫ t

0

νℓ(t)dt

}

, (1)

where L, αℓ(t), τℓ(t), and νℓ(t) denote the number of paths,

complex amplitudes, delays and Doppler frequencies, respec-

tively, and δ(·) is the Dirac delta function. Four consecutive

CIRs were considered as one snapshot. The SAGE algorithm

was applied with L = 18 that was found proper to fully extract

the dominant MPCs in each snapshot.
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(a)

To 50 m

(b)

Base stationContainers Containers

(c)

Figure 1. The measurement equipments and scenario. a) All the components
used in the experiments. b) The UAV was flying from the ground to the air.
c) The surroundings of the scenario.

Figure 2. An example concatenated PDPs lasting 15 seconds [6].

III. SMALL-SCALE FADING

As illustrated in Figure 2, we first show concatenated

power-delay-profiles (PDPs) lasting 15 s that correspond to the

UAV flying from the ground to the air. It can be observed that

the channels before and after 7.5 seconds are different. We

use Low Height (LH) and High Height (HH) to distinguish

them. Our conjecture [6] for the difference is that when the

height was low, the UAV could only receive the LoS signals

and the signals reflected from buildings with high heights or

side walls of containers. However, when the UAV flied high

above the containers and buildings, signals reflected from the

roofs started impinging into the UAV, and the signal power also

increased. The SAGE estimation results are also illustrated in

Figure 3 for the example channel shown in Figure 2.

Based on the SAGE estimation results, the channel fading

Figure 3. The SAGE estimation results for the channels as illustrated in
Figure 2 [6].

amplitude is calculated as

G =

L
∑

ℓ=1

αℓ. (2)

To fully understand the small-scale fading behaviors, Akaike’s

Information Criteria (AIC) is applied to select the best fitting

model for the fading amplitudes in both cases, among all

the J (J = 4) candidate distributions: Rician, Nakagami,

Log-normal and Rayleigh. AIC is a measure of the relative

fitting goodness of a statistical model, and is widely used

in the wireless communications [15], [16]. Akaike weights

derived from AICs which satisfy
J
∑

i=1

ωj = 1 are applied to

select the best distribution with the largest Akaike weight. We

choose 80 SAGE snapshots to obtain reliable Akaike weights.

Note that N/U ≥ 40 should be satisfied to obtain reliable

Akaike weights, where N is the sample number, U is the

number of free model parameter(s). Readers are referred to

[16] for elaborated discussions about AIC. The distance that

the UAV moves in 80 SAGE snapshots is about 4 times the

half wavelength, which is in the small-scale level. Figs. 4(a)

and 4(b) illustrate the AIC weights for the four candidate

distributions in the LH and HH cases respectively. It can be

observed that in both cases, the Rician distribution best fits the

small-scale fading, the goodness of Nakagami and Log-normal

distributions is similar, and the Rayleigh distribution is not

suitable for modelling the fading behaviors. Furthermore, the

best fitting rate of Rician distribution in the HH case (70.9%)

is lower than that of the LH case (74.3%). This is consistent

with the fact that the HH channel measured in this specific

scenario herein includes more non-negligible MPCs.

Since the Rician distribution has the best goodness of fit

in both cases and is commonly used to model the propagation

channel with a dominant path, the Rician K-factor is investi-

gated by using the moment-based method, specified in [17],
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Figure 4. Akaike weights for the four candidates in the LH case and the HH
case. a) LH case. Rician 74.3% best, Nakagami 19.2% best, Lognormal 6.5%
best, and Rayleigh 0% best. b) HH case. Rician 70.9% best, Nakagami 15.7%
best, Lognormal 13.4% best, and Rayleigh 0% best.
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Figure 5. CDFs for Rician K-factors in the LH case and the HH case.

as

K =

√

1− Var[G2]
(E[G2])2

1−
√

1− Var[G2]
(E[G2])2

, (3)

where Var(·) and E(·) represent the variance and the expec-

tation of the argument, respectively. Figure 5 illustrates the

CDFs for the K-factors in the LH and HH cases respectively.

It can be observed that the HH K-factor is smaller than the LH

K-factor under the 65% level. This is consistent with the fact

that the more MPCs with non-negligible powers in the HH

case can sometimes result in more severe fading compared to

the LH case. However, the maximum HH K-factor is larger

than that of the LH case. This is also understandable since the

blockage to the LoS path is lower.

IV. CONCLUSIONS

The low altitude UAV radio channel in a suburban scenario

was investigated. Based on the downlink data received from

a commercial LTE base station, high resolution estimation

results of multipath components were obtained using the

SAGE algorithm. Based on the SAGE estimation results, fast

fading behaviors were analyzed. Among Rician, Nagakami,

Lognormal and Rayleigh distributions, it has been found that

the Rician distribution can best model the fast fading of

the UAV channel with a best-fitting rate of more than 70%.

Moreover, large Ricean K-factors, with average values of

10 dB and maximum ones of 20 dB, were found. In addition, it

is interesting to find that in this special suburban scenario, the

UAV channel became less Los-dominant (probably due to the

reflections at the roofs of buildings and metallic containers),

which is different from the common belief that the A2G

channel at a higher hight should be more LoS-dominant.
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Abstract—In this paper, we focus on ultra-dense network mod-
eling where both the Base Stations (BSs) and Mobile Terminals
(MTs) are UAVs. In this case, two communication nodes can
be very close to each other. However, existing cellular network
analyses typically use the standard unbounded path loss model
where received power decays like rβ over a distance r. This
standard model is a good approximation for the path-loss in
wireless communications over large values of r but is not valid
for small values of r due to the singularity at 0. This model is often
used along with a random uniform node distribution, even though
in a group of uniformly distributed nodes some may be arbitrarily
close to one another, thus, it will lose accuracy and may be
not applicable for UAV-to-UAV communications. To tackle this
problem, by using mathematical tool behind stochastic geometry,
we propose tractable analytical frameworks of coverage and rate
based on the novel unbounded path-loss model with a constant
distance factor r0 for analyzing the UAV-to-UAV communications.

Index Terms—Cellular Networks, UAV, Stochastic Geometry,
Bounded Path-Loss Model

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have received significant
attention in wireless research as they can not only be exploited
as aerial BSs, but also functioned as a new type of MTs. In
most of the available literatures, the path-loss models for UAVs
are devised and formulated via experimental measurement [1],
[2], which may not yield a tractable analytical approach for
system-level analysis. Due to the simplicity and mathematical
tractability, the unbounded path-loss model L prq “ rβ has
been widely applied to characterize channel power gain caused
by large scale fading in wireless networks [3], especially when
transmission distance is large in the rural areas. However, as
the network density becomes larger in the fifth generation
(5G) and wireless networks, it becomes more likely that
the transmission distance is small. Despite its simplicity,
unbounded path-loss model fails to accurately characterize
channel power gain in this case. In particular, when r P p0, 1q,
applying unbounded path-loss model would artificially force
the received signal power to be greater than the transmitted
signal power, which is physically impossible.

Therefore, a more realistic model, namely, bounded pathloss
model, has been adopted to model the channel power gain
caused by pathloss, especially for dense urban scenarios.
Widely applied bounded path-loss models include p1` rqβ ,
1` rβ and max

 

1, rβ
(

. In literature, the impact of bounded
path-loss model on wireless network performance has been
extensively investigated, e.g., [4]. However, all the previous
investigated models are based on the fixed distance factor, i.e.,

1m, which is not suitable for modeling and analyzing UAV
networks. The generalization to a generic bounded distance
is never analyzed in the previous studies for ultra-dense UAV
networks.

Motivated by these considerations, in the present paper, we
propose the novel bounded path-loss model with a generic dis-
tance factor, r0 as an approximated formulation for a measured
path-loss model [5]. To evaluate the performance, tractable
analytical frameworks of coverage probability and average
rate are obtained with aid of the mathematical tool behind
stochastic geometry. Specifically, a closed-form expression of
coverage probability is derived, which could provide the po-
tential insights for the system-level analysis and optimization.

II. SYSTEM MODEL

Consider a bi-dimensional downlink ultra-dense cellular
networks with aerial BSs and MTs, i.e., drones or UAVs. The
BSs are modeled as points of a homogeneous Poisson point
process (PPP), denoted by ΨBS, of density λBS. The MTs are
densely distributed as another independent homogeneous PPP,
denoted by ΨMT, of density λMT. Each BS is assumed to emit
a constant transmit power P . Without any loss of generality,
the analytical frameworks are developed for the typical MT,
denoted by MT0, that is located at the origin. The BS serving
MT0 is denoted by BS0. The subscripts 0, i and n identify the
intended link, a generic interfering link, and a generic BS-to-
MT (UAV-to-UAV) link. The set of interfering BSs is denoted
by ΨBS,i.

For each BS-to-MT link, path-loss and fast-fading are
considered. Shadowing is not explicitly taken into account
because its net effect lies in modifying the density of the
BSs [6]. All BS-to-MT links are assumed to be mutually
independent and identically distributed (i.i.d.).

1) Path-Loss: Consider a generic BS-to-MT link of length
rn, the path-loss is L prnq “ kpr0 ` rnq

β , where k and β ą 2
are the path-loss constant and the path-loss slope (exponent).

2) Fast-Fading: Consider a generic BS-to-MT link. The
power gain due to small-scale fading is assumed to follow
an exponential distribution with mean Ω. Without loss of
generality, Ω “ 1 is assumed. The power gain of a generic
BS-to-MT link is denoted by h.

3) Cell Association Criterion: A cell association criterion
based on the highest average received power is assumed. Let
BSn P Ψ denote a generic BS of the network. The serving
BS, BS0, is obtained as follows:

BS0 “ arg max
BSnPΨ

t1{L prnqu (1)
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As for the intended link, L0 “ minrnPΨ tL prnqu holds.

III. COVERAGE PROBABILITY AND RATE

In this section, we present the analytical frameworks of
coverage probability and average rate of a typical MT, which
are defined by [6]:

Pcov “ Pr tSIR ě γthu (2)

R “ E tln p1` SIRqu “

ż 8

0

Pcov ptq

t` 1
dt (3)

where SIR denotes the signal-to-interference ratio and γth

is the reliability threshold for the successful decoding of
information data. SIR is formulated by:

SIR “
P ph0{L0q

P
ř

iPΨBS,i

phi{Liq1 pLi ą L0q
(4)

The analytical framework of coverage probability can be
derived into a closed-form, which is given by (5), and the
short-hands in (5) are defined in Table I, where erfi p¨q is the
imaginary error function and F p¨q is the Dawson function. The
general mathematical proof of stochastic geometry background
follows the steps in [6].

TABLE I: AUXILIARY FUNCTIONS.
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IV. NUMERICAL AND SIMULATION RESULTS

In this section, we illustrate the numerical results of pro-
posed analytical framework based on the bounded path-loss
model with a generic distance r0.

In Fig. 1, we evaluate the performance of coverage probabil-
ity and average rate as a function of density of BSs for different
values of r0 based on (2), (3) and closed-form formulation
in (5). Note that the density of BSs is represented by the
cell radius Rcell, and λBS “ 1

L

πR2
cell. In addition, Monte-

Carlo simulation results are provided to validate the accuracy
of proposed analytical frameworks.

It is worth noting that the performance trends of both
coverage and rate for the unbounded path-loss model are
independent with cell radius or density of BSs. Nevertheless,
with the bounded path-loss model, the trends of rate would
be monotonically increasing when cell radius increases. In

addition, it is indicated that lower r0 value could enhance the
system performance for ultra-dense scenario, and vice versa.
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Fig. 1: Coverage probability & rate versus density of BSs. Markers:
Monte-Carlo simulations. Solid lines: Analytical frameworks.

V. CONCLUSION

In this paper, we have introduced new analytical frameworks
of coverage probability and average rate under the application
of the bounded path-loss model with r0. The proposed mathe-
matical approach is in a good agreement with Monte-Carlo
simulations. Through the performance comparisons of the
conventional unbounded path-loss model, it is verified that the
bounded path-loss model could provide different performance
trends as a function of BSs density, which delivers potential
insights and design guidelines for UAV network deployment.
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Abstract—5G envisions a society that is constantly intercon-
nected with a large number of devices, anywhere and anytime.
The developed technologies play an important role, allowing
low latency, a large data traffic, and improved quality of
services. 5G encourages providers and investors to develop
innovative services that meet consumer demands. However,
the viability of a new service is being investigated from an
economic perspective. This paper analyzes 5G technologies and
evaluates them from a techno-economic point of view and
pricing models. In particular, the main factors used to estimate
the cost are CAPEX and OPEX, which compare the viability of
the investment. 5G is proved to be a profitable investment due
to its low cost and the increase in the average data consumption
of each consumer. Finally, reusing existing sites is less costly in
developing a dense macro-cell network.

Index Terms—5G, models, IoT, CAPEX, OPEX.

I. INTRODUCTION

5G will play a vital role in the transmission of mobile data
to provide higher capabilities to individual mobile radio cells.
On the other hand, mobile data are not used appropriately by
users due to reckless usage and increased demand. Due to
this increment in data traffic, mobile providers are fighting
to normalize the massive demand with high-speed and multi-
site data links providing a faster and wide-ranging wireless
network.

The 5G technology is based on Orthogonal Frequency Di-
vision Multiplexing (OFDM) using various technologies such
as Multi-user Multiple-Input Multiple-Output (mu-MIMO),
Distributed Antenna Systems (DAS), Femtocells, Network
Function Virtualization & Software Defined Network (NFV
& SDN), Cognitive Radio (CR), Millimetre Wave (mmWave).
Also, 5G enables support for almost infinite innovations
and uses. It is undoubtedly the network of the future sup-
porting more new services, besides digital communication
and wireless Internet. 5G is a communication standard and

not just a wireless standard. Since the digital relationship
between humans and machines is evolving rapidly, robust in-
frastructure and appropriate networks are required. Increasing
data volume requires faster data transfer. Therefore, the 5G
network needs to face the enormous and complex range of
requirements.

The current mobile standard is known as Long Term
Evolution (LTE). The present technology satisfies almost
all the requirements of the subscribers for various applica-
tions.However, the advent of 5G does not mean that LTE
has come to an end, but rather it will be an upgrade that
will expand the existing network resulting in the simultane-
ous operation of both technologies that will lead to higher
capacities and internet speeds. In addition to the billions of
people already using mobile internet, more than 100 billion
connected devices will connect and the 5G network is a
solution to the demands of digitalization.

The development of 5G mobile broadband technology will
have a significant impact on the future economy according
to several techno-economic studies. Adapting to the IoT
means that remarkable changes will occur in the current
communication networks. According to [1], crucial factors
that will radically affect the dimensioning of the network
must be considered and are the coverage, range, capacity,
and data rate. Furthermore, it is important to indicate the
cost and energy consumption of the base stations that will
be used for the needs of the network coverage, for example,
an urban or rural area [2]. Also, according to [2], which
refers to an analysis made between macro and femtocell,
it appears that Operator Mobile Network (OMNs) need
to formulate the appropriate strategies to adapt to future
business developments. Finally, it is important to mention the
CAPEX and OPEX costs associated with BS strategy carried

22Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-878-5

ICWMC 2021 : The Seventeenth International Conference on Wireless and Mobile Communications

                            31 / 80



out in urban areas where traffic demand is high [3].
The remaining part of this paper is structured as follows:

in Section II, the characteristics of 5G technologies are
presented. Section III refers to compare & contrast the afore-
mentioned technologies. Section IV refers to cost analysis
and needs for upgrading to 5G network. In Section V,
conclusions are summarized and future research is proposed.

II. SYNOPSIS OF 5G TECHNOLOGIES

In this section will analyze the features of technologies
such as mu-MIMO, DAS, Femtocells, NFV & SDN, Cogni-
tive Radio, mmWave.

A. mu-MIMO

MIMO technology utilizes limited resources to meet user
demand, but due to the insufficient number of antennas at
the MIMO system base station, system performance problems
are caused. It constitutes the fundamental technologies of the
future 5G, MIMO technology must meet the requirements
of wireless companies, improve the effectiveness of the
spectrum, the capability of the system communication, the
reliability of the connections, and the data rate. If the number
of antennas is equal to 4, 8, or 16, then the technology
is called MIMO. In case there is a enormous number of
antennas in each transceiver, for example, 128, 256, or more,
then it is called mu-MIMO or Massive MIMO [1]. Figure 1
describes the concept of mu-MIMO architecture.

Fig. 1: mu-MIMO architecture scheme.

B. DAS

The Distributed Antenna System (DAS) contains several
antennas that are considered as nodes and are connected
to a transmission medium, for example, optical fiber. As
mentioned in [1], at least two antennas must be per floor
of a building, so that they adequately cover the floor of
an apartment complex or a non-densely populated building.
Also, the DAS includes two basic structures. The first basic
structure is a base station (BS) and a distributed system (DS
- Distributed System). The second basic structure is several
antennas representing the DS along with many transceivers
that facilitate the transmission.

C. Femtocells

Femtocells are known as Femto Access Point (FAP) or
Home NodeBs (HNBs) and the transmission of base stations
consumption is around 100 mW, which is installed indoors.
Femtocells use the licensed range and provide services like
voice and data to mobile subscribers. Subscribers using
femtocell technology enjoy high-quality voice dialing and
peak data rates because of improved Radio Frequency (RF)
coverage. Furthermore, mobile providers benefit from the
low cost of infrastructure development, considering cover-
age improvements and capacity upgrades. Also, to expand
coverage, femtocells minimize the movement of a macrocell
network and significantly increase network capacity by using
the same range many times over smaller pieces. That helps to
achieve higher efficiency, as fewer subscribers share valuable
resources macrocell [4]. Figure 2 describes the concept of
Femtocell architecture.

Fig. 2: Femtocell architecture scheme.

D. NFV & SDN

Network and telecommunications applications that use
NFV technology currently operate exclusively from specific
platforms on NFV cloud infrastructures. The devices that
the user uses increase, because of the requirements of the
users increased. That results in limitations such as expensive
equipment and complex control protocols. At the same time,
it has an impact on the innovation of new services, the
creation of new architectures and technologies in general.
Networking is defined by SDN and NFV, which are critical
tools for the future of the IoT [5].

Utilizing both SDN and NFV technologies for dynamic
Virtual Mobile Network (VMN) development is fundamen-
tal. SDN and NFV technologies are being developed with
the goal of control, reliability, scalability, cost-effectiveness,
and flexibility for VMN [5], [6] development. Also, these
technologies allow VMN to flexibly control the virtual core
of their mobile network by considering traffic load, Radio
Access Network (RAN), and Evolved Packet Core (EPC).
Figure 3 describes the concept of SDN architecture.

E. Cognitive Radio

Cognitive Radio Networks (CRNs) make greater use of
the spectrum because they exploit the points of a spectrum
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Fig. 3: SDN architecture scheme.

that are used less or not at all. Unauthorized users are given
access by the spectrum if their interference is negligible. The
operation of CRN is based on the Cognitive Radio Devices
(CRD), which can automatically adjust some parameters such
as bandwidth, waveform, and transmission power depending
on the environment, avoiding bottlenecks, exploiting parts of
the spectrum. The Cognitive Process (CP) is known to con-
tribute to gathering relevant information, machine learning,
reasoning, and decision making. There are regulated radio
platforms such as Software Defined Radio (SDR) software
to execute the decisions of the CP [7].

It is necessary to clarify the difference between the terms
cognitive communication system based on SDR and CR
software. SDR consists of a group of radio frequencies, in
which most of the intermediate radio frequencies are con-
verted to digital format, to be compared with the classic radio
technology, providing greater flexibility in radio operation.
On the other hand, CR is related to the control that contributes
to the SDR to determine the mode of operation as well as
the necessary parameters that will be applied in the specific
networking mode [7].

Cognitive communication devices (CRD) are designed to
respond to complex wireless environments which are [7]:
Multi-band, Multi-channel, Multi-mode, Multi-standard and
Multi-service.CRDs and CRNs are characterized as complex
and designed to operate in these situations. The functions
used for management are four and are [7]: spectrum detec-
tion, spectrum management spectrum sharing and spectrum
mobility. Figure 4 describes the concept of CR architecture.

Fig. 4: Cognitive Radio architecture scheme.

F. mmWave
MmWave cellular systems operate in the 30-300 GHz band

and are candidates for 5G cellular systems supporting high
speeds. An innovative technology consisting of millimeter-
wave (mmWave) communications and providing two advan-
tages [8]: 1) proper management of unlicensed additional

Fig. 5: mmWave C-/U- plane architecture scheme.

spectrum bands and 2) huge bandwidth up to 1GHz to
provide high data rates for demanding subscribers.

However, the use of mmWave presents some propagation
barriers, which are [8]: loss of travel due to a high carrier
frequency, reduced dispersion, which helps to reduce the
available diversity, increased blockage, atmospheric absorp-
tion and rain, and noise power due to the use of the high
bandwidth.

To address the prior issues, mmWave can be combined
with other technologies such as Massive MIMO, SDN and
femtocells, which help to achieve an optimal system [8]. Such
as: massive MIMO and Beamforming, Ultra-Dense Networks
(microcell development), a cellular architecture that supports
heterogeneous layers and integrates the SDN standard and
the functional split between the user layer (U-level) and
the control layer (level-C), and a geographical database,
that will include information related to the environment of
each geographical area to increase the efficiency of cell
functions, which will support the ability to store and process
information related to previous cell discoveries. Figure 5
describes the concept of mmWave architecture.

III. COMPARE & CONTRAST

In this section, a comparative analysis of the technologies
will be performed based on the characteristics explained
below, (see Table I [9]):

Adoption: Each technology has its degree of adoption.
Low means that its adoption rate is not widespread enough.
High means that its adoption rate is quite widespread. Future
means that it will be presented in the future.

Appeared: The first introduction of each technology ac-
cording to research studies.

Bandwidth: Some of the previous technologies need more
bandwidth to increase their efficiency, while others directly
reallocate the existing bandwidth. Table I presents the tech-
nologies, which are characterized as reallocate, in need, and
virtual.

Capacity: Each technology offers the appropriate capacity.
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TABLE I: Comparison of 5G Technologies.

Factors 5G Technologies
mu-MIMO DAS Femtocells NFV & SDN CR mmWave

Adoption High High High Low Future Future
Appeared 2018 1987 2010 2012 / 2011 1999 2017

Bandwidth Need Need Reallocate Virtual / Reallocate Reallocate Reallocate
Capacity
Coverage

Cost High CAPEX Low CAPEX Low CAPEX Low CAPEX Low CAPEX High CAPEX
High OPEX Low OPEX Low OPEX Low OPEX Low OPEX High OPEX

Efficiency
Heterogeneous

Interference NFV only
Power Consumption

Scalability
Standardization IEEE IEEE IEEE Many / OpenFlow IEEE IEEE

Coverage: Each technology must meet the needs of the
network, either by redistributing or by purchasing more
resources.

Cost: The development of each technology has a specific
valuation. The cost-valuation for each technology is charac-
terized by CAPEX and OPEX. CAPEX is the capital expen-
diture relating to the initial purchase or investment in new
equipment, a service, or a product. OPEX is the operating
costs relating to the costs of maintenance, operation, and
energy consumption e.tc.

Efficiency: The continuous development of technologies
offers increased efficiency and better resource management
in a network.

Heterogeneous: Heterogeneity exists between some tech-
nologies, for example, they can corporate together.

Interference: In some technologies, interferences are re-
sulting in signal distortion.

Power Consumption: Each technology consumes electric-
ity according to its requirements for functionality.

Scalability: Scalability is an vital feature for many tech-
nologies and means whether it is possible to expand a
network by adding the right resources.

Standardization: The standardization of technologies
means a description of the core functions they perform.
According to Table I, some technologies are standardized,
while others are not.

IV. COST ANALYSIS AND NEEDS FOR UPGRADING TO 5G
NETWORK

A. Prediction and assumptions of cost analysis in Shanghai.

It is a fact that OMNs are considering ways in which
migrating to a 5G network will be profitable or not. First,
in [2], a high-level model is examined, which describes the
factors on which it depends whether it is worth investing in
5G networks. The factors that contribute to the completion
of the investment are the forecast of the number of users,

the churn rate, the pricing model, and the cost forecast.
Regarding the prediction of the number of users, a Bass
forecasting model has been chosen, which explains well
the market forecasting system for the types of products or
services. It is achieved according to the formula [10]:

# (C) = " ∗ 1 − 4−(C−C0) (?+@)

1 + @

?
∗ 4−(C−C0) (?+@)

(1)

where M is the Market Capacity, ? > 0 is the innovation
factor and symbolizes the probability of starting a service
and is related to the initial size of the adopters, @ ≥ 0
is the imitation coefficient which refers to the size of the
potential future subscribers or adopters’ imitators. N(t) is the
number of subscribers at time t and C0 the initial time. From
formula (1) and setting the appropriate coefficients p=0.009,
q=0.42 and M=50000000 [2]. It appears that the number of
adopters or subscribers until 2021 will remain low and then
will increase exponentially until 2025, as shown in Figure 6.

The churn rate or transfer rate from provider to provider
is used to calculate lost and new revenue. Also, the transfer
rate from provider to the provider must be of the order of
[4%, 10%] where the four represents the best case and ten
the worst case [2], so it is concluded that when a user leaves
not only the future revenue is lost, but also the resources
acquired for the needs of the investment are spent.

About the pricing model, a volume-based pricing strategy
is currently being used, which is not efficient for the 5G
mobile network [11]. That is why a hybrid pricing strategy
has been developed that is a combination of volume-based
and value-based and aims at profitability. The volume-based
pricing strategy includes parameters such as location, usage
time, and content. The value-based pricing strategy includes
parameters such as time, speed, and data. In addition, a pre-
requisite for OMNs is to find the optimal service price which
has been approached in two perspectives and is transparency
and PED.
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OMNs collect information related to the cost of their
services to properly assess subscriber behavior. Therefore,
to minimize risk and uncertainty, two economic concepts are
proposed, which help to predict the sales of volume-based
data and to determine their prices. The first concept is Price
Elasticity of Volume �+ (%) and proportional to the price
elasticity of demand and is defined as the percentage change
in actual volume V per percentage change in unit price P. So,
the following formula applies [2]:

�+ (%) = lim
%′−%→0

+ ′−+
1
2 (+ ++ ′)
%′−%

1
2 (%+%′)

=
% · Δ+
+ · Δ% ⇒

Δ+

%
= �+ (%) ·

Δ%

%

(2)
The second concept is Volume Elasticity of Revenue

�' (+): defined as the percentage change in revenue R
(charge) per percentage change in actual volume V. So, the
following formula applies [2]:

�' (+) = lim
+ ′−+→0

'′−'
1
2 ('+'′)
+ ′−+

1
2 (+ ++ ′)

=
+ · Δ'
' · Δ+ ⇒

Δ'

'
= �' (+) ·

Δ+

+

(3)
The two formulas (2) and (3) apply the following [2]: 1)

for the subscriber, if �+ (%) < 1 means that the increase
in volume demand contributes to the reduction of service
prices, otherwise there is an increase in service prices. 2)
For the provider, if �' (+) > 1 means that that the increase
in volume demand affects the increase in profits. In addition
to the above, the following applies to PED:1) When the
|%�� | < 1 means that it is inelastic, specifically changes
in price have little impact on the volume of service required.
2) When |%�� | > 1 the means that it is elastic, specifically
changes in price have a crucial impact. 3) When PED = 1
subscriber and the provider are benefitted.

Based on the results reported [2], the hybrid pricing model
uses subscriber contents (usage time, content, location) and
according to formulas (2) and (3) it is concluded that if the
price of services decreases then the demand for subscribers
increase and vice versa. Therefore, the ideal solution is when
the PED is equal to one where both the user and the provider
are benefitted. Finally, another conclusion that emerges is the
effect of value and volume on profit at 5G, specifically 5G
technologies are more beneficial than 4G, due to low cost
and increased average data consumption.

Then, two scenarios have been developed for cost fore-
casting and estimation [2]: The first scenario concerns the
creation of new Radio Access Technology (RAT) technology
by replacing the previous BS equipment. The second scenario
concerns the addition of new carriers and equipment to
the existing RAT to reuse the previous BS equipment in
conjunction with the latest equipment and a software upgrade.

Based on the results from [2], which relate to the predicted
CAPEX and OPEX values, the scenario two is more efficient
due to lower CAPEX, but for OPEX the two scenarios do
not show a significant difference.

It is known that the demand for network traffic is pro-
portional to the population density since the volume of data
per subscriber does not depend on the growth scenario.
According to [12], the estimamtion of the traffic demand
for 1 :<2 in Shanghai shows that the level of demand
corresponding to the average user data rates is 2.59 Mbps,
which was obtained during the eight working hours. However,
the formula (2) shows that it needs an output of 20 Gbps /
:<2 [2].

A key issue is the modeling of indoor network investments
using various scenarios to achieve the rate of 20 Gbps per
1 :<2. The main features to consider are cost, coverage,
and capacity for each BS category. However, for all of
these scenarios there are penetration losses due to a specific
wall barrier, so to address this issue two possible solutions
have been proposed: creating a denser 2.6 GHz network or
developing a network using 10 MHz and 0.8 GHz bands
within the zone in order to maximize internal coverage [2]
[13].

Based on the results reported in [2], it appears that de-
veloping many new sites is costly as opposed to reusing
existing sites, which are less expensive even if the sites are
equipped with a new RAT. Also, the 5G mmW Pico Base
Station (PBS) strategy provides the lowest cost but is limited
in terms of network coverage, which results in that if the
network is expanded, it will have a high overall CAPEX [14].
In addition, a more efficient strategy with low base station
density is to use the LTE-A RAT carrier aggregation. Also,
the option to develop new carrier aggregation sites is a more
cost-effective solution than new site development scenarios,
and the development of Femto Base Station (FBS) and Wi-
Fi IEEE 802.11ac becomes more cost-effective when FBS
deployment can support a large number of users. Finally,
the above concludes that the main disadvantage of the 5G
network is that the limited coverage resulting from the use
of small cells such as femtocells, picocells developed with 5G
mmW and Wi-Fi, and the lack of capacity limited by macro-
cell sites and one solution is to combine Macro Base Station
(MaBS), femtocells, 5G mmW PBS or Wi-Fi to achieve the
right balance between cost, capacity, and coverage.

B. Prediction and assumptions of cost analysis in three cities.

The study carried out in Indonesia to upgrade the network
to 5G includes the following cities Jakarta, Surabaya, and
Medan. As mentioned above, using the Bass model which
predicts the number of users of a market and applying the
appropriate rates in formula (1), based on the data taken from
[2], [3] where p=0.0267, q=0.3356 and M is 15000000 for
Jakarta, 3500000 for Surabaya and 2500000 for Medan. The
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TABLE II: Needs in BS and in Bandwidth per :<2 for each city.

Cities
BS Strategy

CAPEX (k$) OPEX (k$)MaBS (4G LTE-A) MetBS (5G mmW) PBS (5G mmW)
Number Band (MHz) Number Band (MHz) Number Band (MHz)

Jakarta 35 40 6 400 6 400 4352.4 1094.4
Surabaya 16 40 3 400 3 400 1996.2 502.2

Medan 14 40 3 400 3 400 1756.2 442.2

accruing forecast results are shown in Figure 6, where the
forecast number of subscribers is being increased by 2025
for all cities.

Fig. 6: Forecast of subscribers for six years for four cities [2], [3].

Besides, the different strategies used for the development
of the 5G network are MaBS, Metro Base Station (MetBS),
and PBS. The design of the network was carried out by
dividing areas into three categories of network requirements
based on the total demand, in high, medium, and low.
According to [3], the results are summarized in Table II
and relate to the needs of each city in BS, bandwidth, and
used for the evaluation of CAPEX and OPEX. Therefore,
Jakarta is the dominant city concerning the rest in terms of
network needs and investments related to the development of
5G networks.

V. CONCLUSIONS & FUTURE WORK

Today there is a relatively large number of 5G IoT
technologies. But to use a communication technology must
be considered whether it is cost-effective and whether it is
a solution to be implemented by providers. In this paper,
the characteristics of 5G technologies are introduced and a
comparison between them in numerous terms was studied.
A forecast model for the development of a 5G mobile
network in Shanghai was also studied, which includes the
estimation of subscriber numbers, the churn rate, a hybrid
pricing model, the estimation of traffic demand, the capacity,
the CAPEX cost for the FBS, WiFi IEEE 802.11ac and
the macro site’s strategy with carrier aggregation and wall
losses compensation. Finally, a high-demand model for the
development of a 5G mobile network in the cities of Jakarta,
Surabaya, and Medan was studied, in which the number of

subscribers, the total CAPEX and OPEX costs for the BS
strategies MaBS, MetBS, and PBS were estimated.

For future study, based on the above, further research
is needed on energy consumption and the impact it will
have on the profit and the further improvement of the 5G
network. Also, there is a need for research for improving the
heterogeneity, scalability, efficiency, and cost of 5G cellular
technologies.
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Abstract—Fog computing extends the cloud services and brings
them to the edge of the network. By taking advantage of edge
devices that have sufficient resources (i.e., storage, compute, and
bandwidth), the cloud becomes closer to the edge. The fog has
been proved as a promising solution for avoiding unbearable
latency and network capacity saturation with the proliferation
of Internet of Things (IoT) end-devices. Lately, researchers have
investigated the impact of cloud-fog cooperation on the perfor-
mance of the network in terms of latency, network capacity and
security. While the cloud can handle heavy-weight delay-tolerant
tasks, the fog becomes in charge of all light-weight delay-sensitive
tasks. In such integrated networks, resource management be-
comes a key challenge that must be addressed effectively. In this
paper, we design and study two different resource management
strategies at the fog layer: a flat one versus a clustered one.
Both strategies are formalized as optimization problems and
constrained by minimum resource allocation requirements, as
well as Quality of Service (QoS) and privacy requirements. The
comparison of the two strategies shows the superiority of the flat
approach in terms of overall performance and fog delay, while
the clustered approach results in lower number of overall tasks
being rejected.

Keywords—fog computing; resource management; security;
latency; optimization.

I. INTRODUCTION

Computing in general is an on-demand utility model where
users opt to benefit from services without worrying about
where these services are hosted or how they will be delivered.
Cloud computing is a well established technology defined as
a tool that provides ready-to-consume resources like CPU,
I/O, and memory based on the users’ demands. Lately, the
number of smart end-devices, renowned as the Internet of
Things (IoT), has been proliferating at a tremendous scale.
Consequently, such a number of devices is going to produce
trillion gigabytes of data [1]. Imagine this huge amount of
data being sent to a centralized and far located cloud. This
will cause network saturation and severe degradation in users’
experience. Thus, cloud computing will lose its luster for
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Figure 1. Network Architecture.

latency-sensitive applications that require resources just in the
vicinity.

To address this issue and to meet the delay and mobility
requirements of various IoT applications, it is necessary to
have an intermediate control layer that resides between the
end-devices and the far located cloud. This shifting from the
core to the edge of the network is termed as edge computing.
Subsequently, Cisco proposed Fog Computing (FC) in 2012
[2]. According to Cisco, the fog is just another cloud layer
that is closer to the IoT devices. The fog extends the assets
of the original cloud as storage, computing and networking
services to the edge of the network by taking advantage of
devices, e.g., access points, routers, that are rich in resources
and located near end-devices. The aim of the fog is to provide
lower latency and better user experience.

Resource management in fog computing is still considered
as a key challenge due to the limited computational resources
of edge devices and their heterogeneity. It is essential to
address this challenge in a way that optimizes the fog resources
while satisfying the QoS and privacy requirements of the
IoT applications and their computational tasks. Therefore,
the research question that we address in this paper is the
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following: Given a backend cloud with ”infinite” resources
and considerable latency, a pool of fog nodes with different
characteristics and arriving IoT tasks with different require-
ments, what is the best distributed and hierarchical strategy
to support scheduling and assignment decisions?

The rest of the paper is organized as follows: In Section II,
we present background information. In Section III, we review
related work. Section IV discusses the system model. The
scheduling strategies are detailed in Section V. Simulation and
experimental results are tailored in Section VI. Finally, Section
VII concludes the paper and sheds the light on future work.

II. BACKGROUND

Cloud computing replaced traditional hosting by enabling
customers to rent compute resources like applications, storage
and virtual machines through Internet. Similar to any other
utility like water and electricity, users do not need to worry
about managing and maintaining the utility infrastructure [3].
Cloud computing follows the Pay-as-You-Go usage model,
which facilitates the scaling and customization of computing
resources. The edge is any computing and network resources
that reside between the end-users and the cloud data centers.
The aim behind fog computing is to perform all the processing
and computing at the proximity of data resources and thus
to minimize the latency. An IoT device is any device that
is able to transmit and receive data, and has an attached
sensor or actuator. IoT devices are becoming part of every
aspect of our lives since they give more control on routine
work and personal tasks. For that, IoT applications have been
deployed in various areas such as smart homes, smart cities,
transportation, and healthcare. Examples of IoT applications
are door locks, smart heating, coagulation testing in medicine
and smart traffic signals.

III. RELATED WORK

A task scheduling algorithm in the fog layer based on
priority levels is proposed in [4]. The fog nodes in the fog
layer can communicate with each other for efficient resource
allocation and load balancing. The tasks are first processed
in the fog layer based on their priority levels. Only when all
the micro datacenters in the fog layer are saturated that tasks
are propagated to the cloud layer. A more real-time oriented
resource management approach is proposed in [5]. Factors,
such as fluctuating relinquish probability of the customer,
service type, service price, and variance of the relinquish prob-
ability are taken into account. In the proposed architecture,
the fog node is capable of predicting the consumption of
resources for a particular customer. The Distributed Earliest
deadline First (DEF) algorithm was proposed in the context
of symbiotic fog computing [6]. The presented model accounts
for dynamic resources that arrive into the system for an interval
of time and lend a fraction of their computing capacities
against financial incentives. The assignment design is seen as a
recommendation system. Given a task’s requirements, multiple
nodes can be recommended based on task similarity, node
similarity and node previous performance on a similar task.

A Fog Resource Selection algorithm (FResS) is proposed in
[7]. The proposed model collects and maintains a repository
of performance data in the form of execution logs, and uses
the data to train a neural network model. When a new
task arrives, the neural network model predicts the amount
of required resources and uses it for task placement and
estimating the execution time. The load balancing problem
under the constraint of achieving the minimum latency in
Fog networks is also addressed in [8]. A reinforcement Q-
learning based decision-making process is proposed to find the
optimal offloading decision with the assumption of unknown
reward and transition functions. The proposed process allows
fog nodes to offload an optimal number of tasks to the
cloud. The lack of approaches for the leasing and releasing
of resources in fog computing is also highlighted in [9]. A
conceptual framework and an optimization problem for fog
resource provisioning are presented. The optimization problem
has the goal to provide delay-sensitive utilization of available
fog nodes. The resource provisioning plan is generated by
an orchestration node. We follow a similar approach in this
paper. Our work is different from previous related work for
two reasons: (1) we focus on the orchestration topology and
differentiate between a flat one versus a clustered one, (2) we
add abstract variables representing security and privacy to our
model.

IV. SYSTEM MODEL

Our model (Figure 1) is derived from [10]: the cloud
manages the fog and handles the heavy-weight delay-tolerant
IoT tasks, while the fog is responsible for handling the light-
weight delay-sensitive IoT tasks. Each fog cluster is assigned
a number of IoT devices that are directly connected to it.
In the flat scenario, an IoT device can reach to any of the
other fog clusters for requesting a task. In the clustered
scenario, the task issued from an IoT device is directed to
the controller of the cluster it is connected to. Fog controllers
communicate to migrate a task from a cluster to another.
Inter-cluster communication should be harnessed to achieve
load balancing and efficient task distribution. Moreover, fog
controllers communicate with the cloud to avoid fog saturation
and offload tasks that are deemed heavy weight or delay-
tolerant.

Each fog node fj is represented as a profile vector {CPUj ,
Memoryj , PMj} corresponding to its available CPU type and
available Instructions Per Second (IPS), memory, and privacy,
at time t, respectively. We omit t to simplify the notation.
The privacy measure is a trust value representing the security
and privacy strength of a fog node. Many approaches can be
used to build such a trust model, [11] in particular. Each task
Ti arriving at the fog layer is represented by a profile vector
{CPUi, Memoryi, SLi, ICi, Bytesi, MADi, SCi}. The entries in
the vector correspond to the minimum required CPU type and
available IPS, the minimum required memory, the minimum
security level, the task instruction count, the task data size in
bytes, the maximum allowed delay, and the scheduling class
(priority level), respectively. The scheduling class is one if
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(a) Choosing a Local Fog Node.

(b) Choosing a Local Node in another Fog.

(c) Offloading Task to Cloud.

Figure 2. Three Possible Scenarios for an IoT task.

the task is delay tolerant and zero otherwise. The maximum
allowed delay attribute determines the latency requirement of
the task. Thus, a fog node can be assigned a task if the
total time it takes to process the task along with the total
transmission, routing and propagation delays do not exceed the
maximum allowed delay attribute of the task. We represent the
link between any two network devices, source s and destination
d, by the profile vector {BWs,d, PDs,d} corresponding to the
upload bandwidth and propagation delay, respectively.

Each fog controller is logically connected to a set of IoT
devices. The IoT device is homed with one or more fog
controllers. Upon receiving a request from an IoT device, the
controller’s job is to take a decision on the best way to handle
this task. The controller replies to the IoT source with the
decision and additional information that helps proceeding with
the task. As shown in Figure 2, three scenarios are possible:

(a) the controller predicts that the task can be accomplished
by a local node and responds with the IP address of this
node,

(b) the controller has a busy cluster, estimates that some extra
delay is tolerable and forwards the task to a neighbor
cluster’s controller. Note that this can be done in an
iterative way by forwarding the task and relaying the
response to the client, or in a recursive way by directly
responding with the IP address of the next fog controller.

(c) the controller decides that the task is delay-tolerant and not
computationally affordable at the fog layer at this moment,
the task can be offloaded to the cloud. The controller
replies with IP address of the cloud service.

In case where the constraints cannot be fulfilled by any of

these three scenarios, the task is rejected and the IoT device
has to try at another time, or try another controller in the case
of multi-homing.

V. THE TASK ALLOCATION STRATEGIES

Our formulation uses Integer Linear Programming (ILP)
since our decision variables are discrete (0 or 1). ILP problems
are NP-complete, however, efficient solvers can be used to
deal with our formulations. For instance, we have used the
pywraplp linear solver module from OR-Tools [12].

A. Flat-Based Fog Node Selection
In this variation, the controller has the full knowledge of

the fog layer. It can build this knowledge by receiving periodic
updates from the other controllers. The updates contain timely
information about the available fog nodes and their capabili-
ties. The controller has to keep measurements of the Round
Trip Times (RTTs) for all the nodes. We define Xj

i as the
decision variable for our optimization problem. Xj

i = 1 means
that Task Ti is assigned to fog node fj and 0 otherwise. In
case where the output of the optimization is all-zeros decision
variables, none of the reachable fog nodes is suitable for
executing the task. If the scheduling class of the task is one, the
decision will be to offload the task to the cloud, otherwise the
task will be rejected. The Spare Time (ST j

i ) is the difference
between the maximum allowed delay and the predicted total
delay for node fj (TDj

i ) as in (1) and (2).

ST j
i =MADi − TDj

i (1)

ST j
i ≥ 0 (2)

We denote P j
i the difference between the minimum required

privacy/security level for task Ti and the privacy measure PMj

of the fog node fj as in (3) and (4).

P j
i = SLi − PMj (3)

P j
i ≥ 0 (4)

Assuming that a fog controller receives a batch of tasks
i = 1, 2, .., N and has a set of reachable nodes j = 1, 2, ...,M ,
the controller has to solve for a sequence of objective func-
tions. Each function finds an integer vector assignment Xi

that maximizes the weighted average of the spare time and the
privacy difference as controlled by a variable α. The sequence
of objective functions is depicted in (5) and is subject to
constraints (6), (7), (8), (9), and (10).

maximize
M∑
j=1

(αST j
i + (1− α)P j

i ) ∗X
j
i

∀i ∈ {1, . . . , N}
(5)

Each task can be assigned to exactly one fog node. This
constraint is formalized in (6). To guarantee (2) and (4), we
add the constraints in (7) and (8).∑M

j=1X
j
i ≤ 1 ∀i

Xj
i ∈ Z ∀j ∀i

Xj
i ≥ 0 ∀j ∀i

(6)
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∑M
j=1(ST

j
i ∗X

j
i ) ≥ 0 ∀i (7)∑M

j=1(P
j
i ∗X

j
i ) ≥ 0 ∀i (8)

Moreover, we need to meet the resources requirements of
CPU and memory of the task by comparing it to the dynamic
remaining (available) CPU and memory at the node as in (9)
and (10). ∑M

j=1(CPUR
j − CPUi) ∗Xj

i ≥ 0 ∀i (9)∑M
j=1(MemR

j −Memi) ∗Xj
i ≥ 0 ∀i (10)

B. Clustered-Based Fog Node Selection

A second variation is to go along the clustered topology. We
allow the controller to select the best cluster instead of directly
searching for the best node. For this purpose, we represent
each fog cluster k by a profile vector: {AvgCPUk, AvgMemk,
AvgPMk}. This vector specifies the cluster’s average available
CPU, average available memory, and average privacy measure,
respectively. These values are computed based on the profile
vectors of the fog nodes belonging to each cluster. Each fog
controller periodically receives timely cluster profiles from
the other controllers. The profile can also be retrieved in a
pull manner. This method reduces the size of the optimization
problem as we are currently looking for the best cluster rather
than the best fog node. We define Yk

i as the decision variable
for the cluster Ck and task Ti. Y k

i = 1 means that cluster Ck

is selected for task Ti, and the request will be forwarded to
its fog controller. If Ck happens to be the controller’s cluster,
a local fog node is selected. If the output of the optimization
is the all-zeros vector, the decision is solely based on the task
scheduling class. If it is delay tolerant, we offload it to the
cloud, otherwise, we reject it.

The Spare Time (ST k
i ) is the difference between the max-

imum allowed delay and the predicted total delay for a node
fj in cluster Ck in average, as in (11) and (12).

ST k
i =MADi − TDk

i (11)

ST k
i ≥ 0 (12)

We denote P k
i the difference between the minimum required

privacy/security level for task Ti and the average privacy
measure of the cluster Ck, as in (13) and (14).

P k
i = SLi −AvgPMk (13)

P k
i ≥ 0 (14)

The sequence of objective functions is defined in (15) and is
subject to constraints (16), (17), (18), (19), and (20).

maximize
M∑
j=1

(αST k
i + (1− α)P k

i ) ∗Xk
i

∀i ∈ {1, . . . , N}
(15)

α is a hyper-parameter used to control the weights of privacy
versus QoS. Each task can be assigned to exactly one cluster

node as in (16). To guarantee (12) and (14), we add the
constraints in (17) and (18), respectively.∑K

k=1 Y
k
i ≤ 1 ∀i

Y k
i ∈ Z ∀k ∀i
Y k
i ≥ 0 ∀k ∀i

(16)

∑K
k=1(ST

k
i ∗ Y k

i ) ≥ 0 ∀i (17)∑K
k=1(P

k
i ∗ Y k

i ) ≥ 0 ∀i (18)

The selected cluster also needs to meet the resources re-
quirements of CPU and memory of the task by comparing
them to the dynamic available average CPU and average
memory at the cluster, as in (19) and (20).∑K

k=1(AvgCPUR
k − CPUi) ∗ Y k

i ≥ 0 ∀i (19)∑K
k=1(AvgMemR

k −Memi) ∗ Y k
i ≥ 0 ∀i (20)

C. Delay Calculation

The Total Delay (TD) is an important optimisation factor
since it represents the QoS contribution to the decision taken
by the controller. The total (or end-to-end delay) for a given
task is the time difference between the moment when the task
has been issued and the moment marking the end of the task
execution. The controller has to estimate the round trip time
between the IoT device and each of the fog nodes in the
selection pool. We describe the delay calculation for the flat
versus clustered scenarios:

Flat. The delay for task Ti is the sum of the delay at the
controller Cj and the delay at the selected fog node
fj :

TDj
i = dCj

+ dfj (21)

Clustered. The delay for task Ti is the sum of the delay
at the controller Cj , the delay at the chosen cluster’s
controller Ck and the delay at the selected fog node
fk′ :

TDj
i = dCj + dCk

+ dfk′ (22)

Other delay calculations are also possible. For in-
stance, a task can be forwarded from a cluster to
another more than one time. The task can be of-
floaded to the cloud, or rejected. We do not consider
the delay calculation for these cases in our work.
Note that we overloaded the notation of a cluster
Ck to denote the controller at this cluster. We only
consider the iterative scenarios.

The delay at a controller Ck or at fog node j is calculated
as the sum of four terms:

d = dtransmission + dpropagation + dprocessing + dqueuing (23)

Note that some of these terms are also composed as a sum of
multiple delays of the same nature. For example, dtransmission
involves the round trip transmission. dpropagation involves the
round trip propagation as well. The profile vectors {BWs,d,
PDs,d} ∀s ∀d are used in these calculations.
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VI. SIMULATION AND EXPERIMENTAL RESULTS

To implement and analyze our proposed variations, we
used the Yet Another Fog Simulator (YAFS) [13]. Preliminary
simulations showed that a value of α = 0.9 achieves a
good balance in between privacy and QoS. Four types of
topology were created, each containing 5, 10, 15, and 20
clusters, respectively. Each fog cluster consists of a number
of fog nodes, having a single controller and a number of
IoT devices directly connected to it. Each cluster in every
type of topology has a small number of fog nodes, since as
mentioned in [10], small scale fogs would result in better
performance metrics. In the simulation, the number of fog
nodes belonging to a cluster ranges between 4 and 8. Each
fog cluster has a range between 3 to 5 IoT devices directly
connected to it. To set the characteristics of the fog nodes,
we used values from real servers. As for the privacy measure
attribute, we sampled values from a uniform distribution. We
assumed that each cluster has a range of privacy measures.
The privacy measure for any fog node belonging to the cluster
is within this specified range. For example, assume having
fog cluster k with privacy measure range between 0.3 and
0.5. Each value in the range represents a trust value. The
trust value can be obtained in reality based on a security and
privacy assessment tool as described in [11]. The CPU and
IPS parameters of the cloud are set higher than any value
being set to the fog nodes. This is due to the fact that the
cloud has higher processing capabilities than any fog node.
As for the connections, the bandwidth between an IoT device
and a fog node could be either 54 Mbits/s as in wireless
802.11g networks or 100 Mbits/s as in fast Ethernet. The
bandwidth between the controllers, which act as routers for
IoT devices, and the cloud is set to 10 Gbits/s. While the
bandwidth between fog controllers is set to 100 Mbits/s. We
adopted these values from the topology created in [14]. We
created five sets each containing 100 different types of tasks.
For every set of tasks and each type of topology (which differs
by the number of clusters available), four experiments were
performed. In each experiment, different simulation times were
set to increase the number of tasks being generated.

The results were evaluated based on the average fog delay
which is the delay of tasks being executed in the fog layer,
the average total delay, the number of tasks being rejected,
and the number of tasks being offloaded to the cloud. We
present the results for when a low and a high number of
tasks are generated based on simulator time (138 tasks and
816 tasks on average). Our goal is to evaluate the behavior of
both variations when the number of tasks being generated in
the network increases. The results for both approaches are
shown in Figure 3. The results of the flat based approach
show that the number of tasks being rejected and offloaded
to the cloud and the average fog and total delay decreases as
the number of fog clusters in the network increases from 5
to 20. This decrease is due to the higher probability of task
to node assignment with the increase in the number of fog
nodes that the generated IoT tasks can be assigned to in the

.
(a) Average Total Delay.

.
(b) Average Fog Delay.

.
(c) Rejected Tasks.

.
(d) Offloaded Tasks to Cloud.

Figure 3. Flat Based vs. Clustered Based.

network. As for the results of the clustered based approach, it
shows that the average fog delay and number of tasks being
rejected and offloaded to the cloud decreases as the number of
clusters available in the network increases. The average total
delay starts to decrease as the number of clusters increases to
reach 15 then increases as this number reaches 20. This can
be justified by the increase in the number of clusters that the
controller has to examine when selecting a suitable fog node
for assignment. Comparing results of both variations in Figure
3 shows that the flat based variation is more applicable when
having a large scale fog topology consisting of 20 or more
clusters. This can be justified by the fact that this variation
gives lower values for the fog and total delays as desired
and decreases the number of tasks being propagated to higher
layers (cloud). On the other hand, when having an average
scale topology of around 15 clusters, both variations behave
the same and thus both are applicable.

Figure 4 and Figure 5 show the impact of including and
excluding the privacy and security factors from the formalized
optimization problem. The figures show that a security aware
variation leads to a higher probability of task rejection and task
propagation to higher layers. For repeatability, we provide the
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(a) Average Total Delay.

.
(b) Average Fog Delay.

.
(c) Rejected Tasks.

(d) Offloaded Tasks to Cloud.

Figure 4. Flat Based Fog Selection: Security Aware vs. Non Security Aware.

source code of all experiments at [15].

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed, designed and studied two
run-time resource allocation strategies, flat-based fog node
selection and clustered-based fog node selection.

The results showed that the flat-based strategy permits better
performance, especially when the number of clusters in the fog
increases. We attribute this result to the potential number of
layers of indirection required for demanding IoT tasks. The
flat approach promotes a ”take it or leave it” behaviour.

In future work, we intend to provide more insights on
solving the optimisation problems and the scalability of the
solving method for large-scale settings. We want to report
measurements on using different solvers, their solving time
and accuracy. We will also consider the comparison between
solving the optimization problems in batch mode and in direct
(one-by-one) mode. We will also consider refining our model
to include inter-cluster communication and the exchange of
updates. We would like to assess our approaches based on real-
world data, and explore whether using reinforcement learning
can lead to better recommendations for task allocation in the
fog.
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Abstract—In this paper, we present a Dynamic and Opportunistic 

Spectrum Access (DOSA) technique that allows access to the static 

and equal licensed 28 GHz millimeter-wave (mmWave) spectrum 

of each Fifth-Generation (5G) New Radio (NR) Mobile Network 

Operator (MNO) to every other MNOs in a country to serve their 

respective in-building Small Cells (SCs) subject to avoiding Co-

Channel Interference (CCI). We derive the system-level Average 

Capacity (CA), Spectral Efficiency (SE), and Energy Efficiency 

(EE) performance metrics for an arbitrary number of NR MNOs. 

With extensive simulation results and analyses for four MNOs, we 

show that the proposed DOSA can provide CA and SE 2.5 times 

and improve EE by about 60% as compared to that of the 

traditional Static and Equal Spectrum Access (SESA) technique. 

Moreover, DOSA can achieve both SE and EE requirements 

expected for the Sixth-Generation (6G) mobile networks by 

reusing the countrywide mmWave spectrum for 46.87% fewer 

buildings of SCs than that required by SESA.   

Keywords—5G; 28 GHz; in-building; small cell; millimeter-

wave; multi-operator; new radio; dynamic spectrum access.   

I. INTRODUCTION  

      Traditionally, the mobile radio spectrum specified for a 

country is allocated statically in an equal amount to each of its 

Mobile Network Operator (MNO) regardless of the inequality 

in the number of subscribers of one MNO from another. This 

uniform distribution of spectrum causes one MNO to allocate 

more spectrum than necessary, whereas the other MNO suffers 

from the lack of a sufficient amount of spectrum, resulting in 

low spectrum utilization. Due to this reason, such Static and 

Equal Spectrum Allocation (SESA) is no longer considered 

effective. Recently, Cognitive Radio (CR) has been considered 

an effective technology to address this issue. In CR, the 

spectrum is given access to the secondary User Equipment (UE) 

with the primary UE to use unused spectra of the primary UE 

opportunistically, resulting in improving spectrum utilization.  

    Several research studies have addressed the spectrum 

allocation problem in CR systems. For example, to address 

constraints with SESA, an underlay CR access technique in 

Saha [1] and an interweave shared-use model in Saha [2] have 

been presented to share the unused millimeter-wave (mmWave) 

spectrum of one MNO to another. However, both studies are 

limited by the assumption of a specific number of MNOs in a 

country. In this paper, we address this constraint by relaxing 

this assumption and present a Dynamic and Opportunistic 

Spectrum Access (DOSA) technique for an arbitrary number of 

MNOs to share the 28 GHz spectrum opportunistically with in-

building Small Cells (SCs) of each Fifth-Generation (5G) New 

Radio (NR) MNO with that of other MNOs in a country.  

      The paper is organized as follows. In Section II, the system 

model, including the system architecture and the proposed 

DOSA technique, is presented. We formulate the problem in 

Section III. Section IV covers the performance results of the 

proposed technique where the Spectral Efficiency (SE) and 

Energy Efficiency (EE) performances are compared with that 

of the prospective Sixth-Generation (6G) mobile systems. We 

conclude the paper in Section V.   

II. SYSTEM MODEL 

A. System Architecture  

A system architecture consisting of an arbitrary O number 

of 5G NR MNOs in a country is considered. Each MNO 

comprises three Base Stations (BSs), including Macrocell BSs 

(MBSs), Picocell BSs (PBSs), and Small Cell BSs (SBSs). An 

SBS of each MNO is located in each apartment of any building, 

and each SBS can serve one Small Cell UE (SUE) at a time. 

SBSs operate in the 28 GHz, whereas MBSs and PBSs operate 

in the 2 GHz, bands. Assuming similar architecture of all 

MNOs, Figure 1 shows the system architecture of MNO 1.  

MBS   

PBS offMUE

oMUE

(a)

A multistory building  

iMUE

An apartment 

. . .

. . .

M1

. . .

. . .M1 M2 MO

MC

(b)

(c)

. . .

. . .

. . .

MNO 1 MNO 2 MNO O. . .
Licensed 

Spectrum

SC

SUE

 
Figure 1. (a) System architecture of MNO 1 and SBSs of MNO 1 with the 

shared mmWave spectrum of other O-1 MNOs (b) maximum (c) none. 

oMUE, offMUE, and iMUE denote, respectively, outdoor, offloaded, and 
indoor macrocell UEs. 

B. Proposed DOSA Technique   

The proposed DOSA technique can be stated as follows. 

Static allocation of an equal amount of mmWave spectrum to a 
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5G NR MNO x in the primary level can be reallocated in the 

secondary level to SBSs of another MNO y in a building l as 

long as no UE of x exists within l to avoid Co-Channel 

Interference (CCI) between SBSs of x and y. 

     Let O denote a set of 5G NR MNOs in a country such that  

 1,2,...,o O . Let each MNO is allocated to an equal amount 

of 28 GHz spectrum, denoted as M in Resource Blocks (RBs) 

where an RB=180 kHz. To analyze the performance, we 

consider that the occurrence (i.e., either presence or absence) of 

an SUE of each MNO within an apartment is equally likely over 

an observation period of QT such that any combination of 

the occurrence of SUEs of all MNOs happens with a probability 

of 
12OQ 

. The reallocated spectrum to an SUE of MNO o can 

be expressed as a set of   0, ,...,M n M with each component 

scaled by a Binomial coefficient  ,n kC of row 1n O   of 

the left-justified Pascal’s triangle [3] corresponding to 

0n k  . For example, the minimum reallocated spectrum of 

0 and the maximum reallocated spectrum of n M  occur for 

an SUE of o, respectively, for no absence (Figure 1(c)) and no 

presence (Figure 1(b)) of SUEs of MNOs O\o in an apartment 

of a building. 

III. PROBLEM FORMULATION      

      Let CM denote the countrywide mmWave spectrum for all 

5G NR MNOs. Let 
MCP , 

PCP , and 
SCP denote the transmission 

power of an MBS, a PBS, and an SBS, respectively for each 

MNO o. Let each MNO has the same number of MBSs 
MS , 

PBSs 
PS , and SBSs

FS  per building. By Shannon’s formula, a 

link throughput at RB i in TTI t in bps per Hz is given by [4],  

     ,

,

dB 10

, , 2 ,

,

0, 10dB

log 1 10 , 10dB 22dB

4.4, 22dB

t i

t i

t i t i t i

t i



   
  

         
 

   

(1) 

where   denotes implementation loss factor. Let MC

oM  in RBs 

denote the spectrum of an MBS of  MNO o such that the 

average capacity of an MBS can be given as follows.  
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                                       (2) 

where  and are responses of MNO o over MC

oM RBs in tT .                     

For DOSA, the capacity of SBS s of MNO o is given by [5], 
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     Assume that each building has similar indoor characteristics, 

so that by linear approximation, the countrywide average 

capacity, SE, and EE of MNOs O for L buildings of SBSs are 

given, respectively, by, 
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   If DOSA is not employed, the system-level average capacity, 

SE, and EE of all MNOs for SESA are given, respectively, by,  
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IV. PERFORMANCE RESULT AND COMPARISON 

      Selected parameters and assumptions are given in Table I. 

Detailed parameters and assumptions can be found in [1]-[2]. 

From Figure 2(a) for a single building of SBSs of all MNOs, it 

can be observed that the proposed DOSA can provide 2.5 times 

average capacity and SE as compared to that of the traditional 

SESA. The additional 1.5 times improvement in the 

performance of the capacity and SE comes from reallocating 

mutually the licensed mmWave spectrum of one NR MNO to 

another. Due to the same reason, DOSA improves EE by about 

60% as compared to SESA.      

TABLE I. DEFAULT PARAMETERS AND ASSUMPTIONS 

Parameters and Assumptions Value 

Spectrum bandwidth per MNO 50 MHz (28GHz) and 10 MHz (2GHz) 

Number of MNOs (O), Transmission direction 4, downlink 

SBSs per building, UE per SBS 48, 1 

  

      Figures 2(b)-2(c) show SE and EE responses of DOSA and 

SESA techniques when reusing the same countrywide 

mmWave spectrum to more than one building of SBSs (i.e., 

L>1) located over the macrocell coverage. Note that SE 

increases linearly, whereas EE improves negative-

exponentially, with an increase in L. This can be justified by the 

expressions of SE and EE in (8) and (9), respectively. 

Moreover, from Figures 2(b)-2(c), it can be found that the 

proposed DOSA technique outperforms SESA with a great 

margin in terms of SE and EE. Furthermore, it can be observed 

from Figures 2(b)-2(c) that the proposed DOSA technique can 

achieve both SE (10 times of 5G, i.e., 370 bps/Hz) and EE (10-

100 times of 5G, i.e., 0.03µJ/bit) requirements ([6]-[9])  
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Figure 2. (a) Performance improvement factors, (b) SE, and (c) EE responses.

expected for the 6G mobile networks by reusing the 

countrywide mmWave spectrum for 46.87% less number of 

buildings of SBSs than that required by SESA. 

V. CONCLUSION  

      A Dynamic and Opportunistic Spectrum Access (DOSA) 

technique has been presented to allow opportunistic and 

dynamic access to the static and equal licensed 28 GHz 

mmWave spectrum of one NR MNO to that of the other in a 

country to serve their in-building SCs. System-level Average 

Capacity (CA), Spectral Efficiency (SE), and Energy 

Efficiency (EE) performance metrics for an arbitrary number of 

NR MNOs are derived.  For an example case of four NR MNOs, 

the outperformance of DOSA in CA, SE, EE, as well as 

satisfying both SE and EE requirements expected for the future 

6G mobile networks, over that of SESA have been shown.   
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Abstract—In this paper, we present a time-domain coexistence 

technique to operate small cells of a Fifth-Generation (5G) New 

Radio (NR) operator in the 60 GHz band with the access points 

(APs) of an IEEE 802.11ad/ay, also termed as Wireless Gigabit 

(WiGig), operator located within a multistory building. Small cells 

are dual-band enabled operating in the 60 GHz unlicensed and 28 

GHz licensed bands. Moreover, we assume that small cells are not 

Listen-Before-Talk (LBT) feature enabled. Hence, to avoid 

blocking the transmission of APs of the WiGig operator, an 

interference avoidance scheme is developed in the time-domain 

that divides the air time in the 60 GHz band between the 

incumbent WiGig APs (WiAPs) and 5G NR Unlicensed (NR-U) 

small cells.  We derive average capacity, Spectral Efficiency (SE), 

and Energy Efficiency (EE) metrics for 5G NR-U small cells. With 

system-level simulation results, the average capacity, SE, and EE 

responses for three variants of the 5G NR, namely 5G NR 

Standalone, 5G NR-U Standalone, and 5G NR-U Anchored are 

evaluated. It has been shown that NR-U Anchored can achieve the 

maximum average capacity and EE, whereas NR-U Standalone 

can achieve the maximum SE when coexisting with a WiGig 

operator. Because the 60 GHz unlicensed band is present in both 

schemes, this signifies the importance of operating a 5G NR 

operator in the unlicensed bands.    

Keywords—5G; 28 GHz; 60 GHz; millimeter-wave; unlicensed 

band; new radio; small cell; coexistence.  

I. INTRODUCTION 

Introduction of the Fifth-Generation (5G) New Radio (NR) 

to serve a large volume of data traffic has increased the burden 

on the licensed spectrum of a Mobile Network Operator (MNO) 

[1]. An effective solution to address this problem is to serve 

data traffic in the unlicensed bands along with the existing 

licensed bands. The 3rd Generation Partnership Project (3GPP) 

has recently taken initiatives to operate cellular networks in the 

unlicensed bands with the Long-Term Evolution (LTE) [2]. 

However, technologies such as the IEEE 802.11 based WiFi 

have already been in operation globally over a wide range of 

unlicensed bands, including 2.4 GHz, 5 GHz, and 60 GHz 

bands [3]. This necessitates developing a technique that can 

allow both cellular networks and incumbent WiFi networks to 

coexist.  

      So far now, several research studies have addressed WiFi 

and cellular network coexistence such as LTE and 5G NR. For 

example, the authors in [4] addressed the coexistence of 5G NR 

Unlicensed (NR-U) and WiFi in the 6 GHz band, and in [5], the 

authors addressed the coexistence of WiFi with the beam based 

5G NR-U in the millimeter-wave (mmW) bands. Moreover, in 

[1], by implementing a mode selection procedure in 5G NR, the 

authors investigated the coexistence performance of the 5G 

NR-U and WiFi networks. Moreover, to address the 

coexistence between WiFi and cellular systems, several studies 

proposed to apply the Almost Blank Subframe (ABS) based 

Enhanced Intercell Interference Coordination (eICIC) 

technique. For example, using the concept of ABS, the authors 

in [6] proposed a scheme to coexist LTE with WiFi systems in 

an unlicensed band. Similarly, the authors in [7] proposed the 

LTE muting mechanism to mute the transmission of LTE in a 

certain number of subframes of every 5 subframes during which 

the channel can be used by WiFi users. Furthermore, an ABS-

based coexistence scheme to avoid co-channel interference 

between small cells and WiFi systems was presented by the 

authors in [8].  

      However, to operate in unlicensed bands, certain regulatory 

requirements, for example, using Listen-Before-Talk (LBT) 

and transmission power limits, are needed to be maintained [3]. 

Hence, to address the transmission power requirement in the 

unlicensed bands, 5G NR-U is expected to be operated in the 

small cells deployed indoors. In this regard, 60 GHz unlicensed 

band is considered an attractive unlicensed band for NR-U [5] 

[9] due to its wider contiguous bandwidth availability.  This 

implies that NR-U will aggregate the licensed 28 GHz or 38 

GHz spectrum and the 60 GHz unlicensed spectrum [9]. 

However, studies on the NR-U operating in both the licensed 

and unlicensed mmW spectra for in-building small cells are in 

the early stage, and detailed analysis and evaluation of major 

performance metrics, including capacity, Spectral Efficiency 

(SE), and Energy Efficiency (EE), for NR-U is yet to be 

addressed, which we aim to contribute in this paper.  

In line with so, we derive and evaluate average capacity, SE, 

and EE responses of in-building 5G NR-U small cells that are 

considered coexisting with the IEEE 802.11ad/ay, also termed 

as Wireless Gigabit (WiGig), where each small cell operates in 

both the 28 GHz licensed and the 60 GHz unlicensed bands. In 

doing so, we present a time-domain coexistence technique to 

avoid co-channel interference by modifying the concept of 

ABS. A system-level performance analysis is carried out for a 

number of variants of 5G NR, including 5G NR Standalone 

operating only in the 28 GHz band, 5G NR-U Standalone 

operating only in the 60 GHz band, and 5G NR-U Anchored 

operating in both the 28 GHz and 60 GHz bands.   

We organize the paper as follows. in Section II, system 

architecture and time-domain coexistence techniques are 

discussed. In Section III, we derive average capacity, SE, and 

EE metrics for each variant of 5G NR-U. In Section IV, we 
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carry out system-level performance analysis in terms of average 

capacity, SE and EE by varying the amount of transmission 

time of small cells under each variant of 5G NR-U. We 

conclude the paper in Section V.  A list of notations is given in 

Table I. 

TABLE I. A LIST OF NOTATIONS. 

Notation Description 

1T and 2T  The optimum value of the number of FBSs for 

NR-U and WiGig, respectively 

1 and 2  The average rate of arrival of NR-U and 

WiGig, respectively 

FPPT  An FBS Pattern Period 

t and  i Index of a transmission time interval and a 

resource block, respectively 

T Simulation run time 

MB  Total capacity served by transceiver 1 and 

transceiver 2 of all SBSs in the building of 

operator NR-U 

NR-U,Anch

cap , NR-U,Anch

SE  

, and NR-U,Anch

EE  

The system-level aggregate capacity, SE, and 

EE for NR-U Anchored, respectively 

NR,Std

cap and NR-U,Std

cap  The system-level average capacity for NR 

Standalone and NR-U Standalone, 

respectively 

28GHzP and 60GHzP  The transmission power of transceiver 1 and 

transceiver 2, respectively, of each SBS 

2GHz,MCP  and 

2GHz,PCP  

The transmission powers of a macrocell and a 

picocell, respectively  

2GHzM , 28GHzM , and 

60GHzM  

The number of resource blocks of 2 GHz, 28 

GHz, and 60 GHz spectra, respectively, of the 

NR-U operator 

FS  The number of SBSs of the NR-U operator 

MS  The number of macrocell base stations of the 

NR-U operator 

PS  The number of picocell base stations per 

macrocell of the NR-U operator 

II. SYSTEM ARCHITECTURE AND TIME-DOMAIN COEXISTENCE 

Figure 1 shows the system architecture consisting of a 5G 

NR-U operator and a WiGig operator. Each NR-U operator has 

three types of base stations (BSs), namely macrocell BSs 

(MBSs), picocell BSs (PBSs), and small cell BSs (SBSs). We 

assume that all SBSs and WiGig Access Points (APs) are 

deployed only within a building, one per apartment per operator. 

An SBS or a WiGig Access Point (WiAP) serves only one User 

Equipment (UE) at a time. Each SBS is dual-band enabled such 

that the 28 GHz licensed band operates at its transceiver 1, and 

the 60 GHz unlicensed band operates at its transceiver 2. Note 

that each WiAP operates at the 60 GHz band. Moreover, we 

assume that any MBS or any PBS of the NR-U operates in the 

2 GHz band.   

Since both SBSs and WiAPs operate in the 60 GHz 

unlicensed band, co-channel interference is generated. To 

coexist both SBSs and WiAPs in the 60 GHz unlicensed band, 

we present the following coexistence technique. An SBS can 

share the 60 GHz spectrum with an incumbent WiAP by 

allocating them in different time slots to avoid simultaneous 

access by either the SBS or the WiAP to the 60 GHz spectrum 

using the well-established concept termed as ABS in LTE. We 

consider modifying ABSs to avoid transmitting control signals 

as well during ABSs resulting in Fully Blank Subframes (FBSs) 

as shown in Figure 2.  

An optimal amount of time to transmit data by NR-U 

operator in terms of Transmission Time Intervals (TTIs) can be 

defined by considering the average number of UEs of each 

operator over a certain time period T. According to [10], the 

arrival process of UEs of NR-U and WiGig operators can be 

assumed to follow the Poisson processes with a mean 1 and 2

, respectively, over T. An optimum value of the number of FBSs 

(which is strictly a positive integer) over an FBS pattern period 

(FPP) TFPP of 5G NR-U operator can be obtained as follows.   

      1 1 1 2 FPPT T                                                          (1) 

Since UEs of different Radio Access Technologies (RATs) 

are allocated orthogonally in the time-domain, i.e., in different 

TTIs, no collision from simultaneous transmissions from UEs 

of both RATs occurs. Moreover, cellular technologies use a 

centralized scheduling-based approach to transmit continuously 

without sensing the channel status such that, based on the 

values of 1 and 2 over T, an effective allocation of FBSs 

using (1) can be performed for UEs of both NR-U and WiGig 

operators. Furthermore, (1) can be generalized for any arbitrary 

number of NR-U and WiGig operators, which we show in 

Appendix I. In general, an increase in the number of active 

operators, either NR-U or WiGig, causes a corresponding 

decrease in the number of subframes allocated to each operator 

for a given TFPP and vice versa.   

Remark 1: The value of TFPP plays a significant role in the 

allocation of subframes to each operator. If TFPP is less than the 

total number of NR-U and WiGig operators, there would be a 

high probability that one or more operators might not get 

scheduled over each TFPP. This problem would get worsen if all 

operators are active over any TFPP, particularly, for delay-

sensitive traffic. Hence, to ensure that each active NR-U, as 

well as WiGig, operator is scheduled in every TFPP to address 

the delay-sensitive traffic, it is recommended that the value of 

TFPP should be chosen such that each active operator is 

scheduled at least once per TFPP, i.e., TFPP (in terms of TTIs) 

should be at least equal to the sum of the number of NR-U and 

WiGig operators. As a general rule, a higher value of TFPP with 

respect to the total number of operators results in a better 

performance in subframe allocations to NR-U and WiGig 

operators.  

III. PERFORMANCE METRICS ESTIMATION 

Let SF denote the maximum number of SBSs of the NR-U 

operator in the building. Assume that there are SM macrocells 

and SP picocells per macrocell. Let 2GHzM , 28GHzM , and 60GHzM  

denote, respectively, the number of Resource Blocks (RBs) of 

2 GHz, 28 GHz, and 60 GHz spectra of NR-U operator where 

an RB is equal to 180 kHz. Let transceiver 1 and transceiver 2 
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of each SBS operate at the transmission power of 28GHzP and

60GHzP , respectively, whereas the transmission powers of a 

macrocell and a picocell are denoted as 2GHz,MCP  and 2GHz,PCP , 

respectively.  

Let T denote simulation run time with the maximum time of 

Q (in time step each lasting 1 ms) such that T={1, 2, 3, …, Q} 

and hence QT . Let 1T  denote the number of FBSs of NR-

U operator over T. Let 1t  denote an FBS of NR-U operator such 

that 1t  1T . Using Shannon’s capacity formula, a link 

throughput at RB=i in TTI=t for NR-U operator in bps per Hz 

for the Signal-to-Noise-Plus-Interference Ratio (SINR) ,t iρ is 

given by [11], 

    
     ,

,

dB 10

, , 2 ,

,

0, 10dB

log 1 10 , 10dB 22dB

4.4, 22dB

t i

t i

ρ

t i t i t i

t i

ρ

ρ β ρ

ρ

  
  

      
 

    

(2) 

where β=0.6 denotes the implementation loss factor that takes 

into account modulation and coding schemes, for example.

           

 

The capacity of macrocell UEs of NR-U operator can be 

expressed as 

     2GHz

2GHz , ,1 1

Q M

t i t it i 
                                                 (3) 

where   and    are the throughput and the corresponding 

SINR responses over 2GHzM  RBs of all macro UEs in tT for 

NR-U operator.  

Now, transceiver 1 of all SBSs in the building operates at 

the 28 GHz spectrum in tT such that the capacity served by 

transceiver 1 of all SBSs in the building is given by,  

     F 28GHzTrans 1

28GHz , , , ,1 1

S M

s t i s t is i
t

 


    
T

                              (4)                                                  

Similarly, transceiver 2 of all SBSs in the building operates 

at the 60 GHz spectrum in 1t  1T such that the capacity served 

by transceiver 2 of all SBSs of NR-U is given by,  

     F 60GHz

1 1

Trans 2

60GHz , , , ,1 1

S M

s t i s t is i
t

 


    
T

                             (5)  

 So, the total capacity served by transceiver 1 and 

transceiver 2 of all SBSs in the building of operator NR-U is 

given by, 

    
Trans 1 Trans 2

MB 28GHz 60GHz                                                                 (6)   

       Due to a short distance between a UE and its SBS and a 

low transmission power of an SBS, we assume similar indoor 

signal propagation characteristics for both mmWs of the NR-U 

operator. So, by linear approximation, the system-level average 

aggregate capacity for the 5G NR-U Anchored is given by, 

60GHzM
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NR-U operator and WiAP of WiGig operator
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Figure 1. System architecture for the coexistence of small cells of a 5G NR-U operator with WiAPs of a WiGig operator. 
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Figure 2. CCI avoidance in time-domain using FBSs. 

    
NR-U,Anch

cap 2GHz MB                                                              (7)  

The SE is then given by,  

      NR-U,Anch NR-U,Anch

SE cap 2GHz 28GHzM M Q                 (8)  

Similarly, the EE (i.e., the energy required per bit transmission) 

is given by, 

      

   
 

NR-U,Anch

EE

F 28GHz 60GHz NR-U,Anch

cap

P 2GHz,PC M 2GHz,MC

L S P P
Q

S P S P

 

    
 

    

   (9)  

It is to be noted that for the SE estimation, only the licensed 

spectra, i.e., 2 GHz and 28 GHz spectra, of the NR-U operator 

are considered due to paying the licensing fee by the respective 

operator to use these bands. Now, 5G NR Standalone and 5G 

NR-U Standalone operate only in the licensed and unlicensed 

bands, respectively. The system-level average capacity for NR 

Standalone and NR-U Standalone can be expressed, 

respectively, as follows.    

    
NR,Std Trans 1

cap 2GHz 28GHz                                                             (10)  

    
NR-U,Std Trans 2

cap 2GHz 60GHz                                                          (11)  

Now, following (8) and (9), SE and EE can be expressed 

using (10) for NR Standalone and (11) for NR-U Standalone. 

IV. PERFORMANCE RESULT AND EVALUATION 

Table II shows selected simulation parameters and 

assumptions. Detailed parameters and assumptions can be 

found in [12] [13]. Transmission time is varied to evaluate the 

performance of 5G NR-U small cells when applying the 

proposed technique as given below.  

TABLE II. SIMULATION PARAMETERS AND ASSUMPTIONS 

Parameters and Assumptions Value 

Number of 5G NR-U and WiGig operators, respectively 1, 1 

Spectrum bandwidth of 5G NR-U operator   2 GHz  10 MHz (for an MBS and PBSs) 

28 GHz  50 MHz (for transceiver 1 of all SBSs) 

60 GHz  100 MHz (for transceiver 2 of all SBSs and WiAPs) 

Number of cells Macrocells, picocells, and small cells   1, 2, and 48  

 

 

Path loss 

MBS and a UE1  
Outdoor macrocell UE PL(dB)=15.3 + 37.6 log10R, R is in m 

Indoor macrocell UE PL(dB)=15.3 + 37.6 log10R + Low, R is in m and Low=20 dB 

PBS and a UE1 PL(dB)=140.7+36.7 log10R, R is in km 

SBS and a UE1,2 
28 GHz PL(dB)=61.38+17.97 log10R, R is in m   

60 GHz PL(dB)=68+21.7log10(R), R in m 

Total base station transmit power 

(dBm)  

Macrocell1 and picocell1  46 and 37  

Small cell operating in 28 GHz1 19  

Small cell operating in 60 GHz1 17.3  

Co-channel small-scale fading 

model1 

2 GHz  Frequency selective Rayleigh  

28 GHz no small-scale fading effect 

60 GHz no small-scale fading effect 

3D multistory building and SBS models (square-grid apartments) A single building, 6 floors, 8 apartments per floor, 1 SBS and 1 WiAP per 

apartment, and  10×10 m2 area of an apartment 

Scheduler, traffic model2, Type of SBSs Proportional Fair, full buffer, and Closed Subscriber Group femtocell BSs 

TTI1, FPP, and PF scheduler time constant (tc) 1 ms, 8 ms, and 100 ms 

Total simulation run time 8 ms 

taken 1from [12], 2from [13]. 
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Figure 3.  Average capacity, spectral efficiency and, energy efficiency responses of small cells of a single operator of 5G NR Standalone (Std), 5G NR-U Std, and 
5G NR-U Anchored (Anch) with the variation of the number of FBSs (i.e., its transmission time) per FPP, including 50% and 75% of FPP, which coexists with a 

single WiGig operator in a building of small cells. (a) average capacity, (b) spectral efficiency, and (c) energy efficiency. 

We vary the transmission time (i.e., the number of allocated 

FBSs) per FPP (including 50% and 75% of FPP) of small cells 

of a 5G NR operator coexisting with a single WiGig operator 

within a building. Figure 3 shows the average capacity, SE, and 

EE responses for three variants of the 5G NR operator, namely 

5G NR Standalone, 5G NR-U Standalone, and 5G NR-U 

Anchored (Anch), which can be summarized as follows. 

 Since 5G NR Standalone operates only in the 28 GHz 

licensed spectrum, which is allocated exclusively to it only, 

no changes in capacity, SE, and EE occur with a change in 

the number of FBSs over an FPP. 
 

 Since 5G NR-U Standalone operates only in the 60 GHz 

unlicensed spectrum, which is shared as well by the WiGig 

operator, the capacity, SE, and EE responses increase with 

an increase in the transmission time from 50% FPP to 75% 

FPP due to having more time to transmit by the small cells.  
 

 Since 5G NR-U Anchored operates both in the 28 GHz 

licensed spectrum, as well as in the 60 GHz unlicensed 

spectrum, with an increase in the transmission time, the 

average capacity response increases more than that of NR 

Standalone, as well as NR-U Standalone, operators due to 

operating in both the 28 GHz licensed and the 60 GHz 

unlicensed spectra. However, SE is a function of both 

achievable capacity and system bandwidth. Particularly, 

though SE is directly proportional to the achievable 

capacity, it is also inversely proportional to the effective 

licensed spectrum as given by (8). Due to this reason, SE 

for the 5G NR-U Anchored does not improve 

proportionately with its achievable capacity as the 

transmission time increases from 50% FPP to 75% FPP. 

Rather, 5G NR-U Standalone achieves the maximum SE 

due to requiring the least amount of the effective licensed 

spectrum. However, since EE is a function of transmission 

energy (Joule/bit), as well as achievable capacity (bits/s), 

the increase in the achievable capacity due to increasing 

the transmission time from 50% FPP to 75% FPP is 

significant enough to exceed the increase in the 

transmission energy for the NR-U Anchored as given by 

(9) in the same duration. This results in the minimum 

average energy required per bit transmission for the NR-U 

Anchored.  

Overall, NR-U Anchored can achieve the maximum 

average capacity and EE, whereas NR-U Standalone can 
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achieve the maximum SE when coexisting with a WiGig 

operator.  Because in NR-U standalone, as well as NR-U 

Anchored, the 60 GHz unlicensed spectrum plays a role, this 

implies the importance of operating the 5G NR operator in the 

unlicensed bands.    

V. CONCLUSION 

     In this paper, we have presented a time-domain coexistence 

technique for small cells of a 5G NR located within a building 

to coexist with a WiGig operator in the 60 GHz band. Each 

small cell has been considered dual-band enabled, operating in 

both the 60 GHz unlicensed and 28 GHz licensed bands. 

Because each small cell has not been considered Listen-Before-

Talk (LBT) feature enabled, to avoid complete blockage of the 

transmission of WiGig Access Points (APs), an interference 

avoidance scheme has been proposed in the time-domain to 

divide the air time in the 60 GHz band between the incumbent 

WiGig APs (WiAPs) and small cells.  We have derived average 

capacity, Spectral Efficiency (SE), and Energy Efficiency (EE) 

performance metrics for in-building small cells of the NR-U. 

With system-level simulation results, by varying the number of 

allocated FBSs per FPP the 5G NR operator, the average 

capacity, SE, and EE responses for three variants of the 5G NR, 

namely 5G NR Standalone, 5G NR-U Standalone, and 5G NR-

U Anchored (Anch) have been evaluated. It has been shown 

that NR-U Anchored can achieve the maximum average 

capacity and EE, whereas NR-U Standalone can achieve the 

maximum SE when coexisting with a WiGig operator. Because 

the 60 GHz unlicensed band is present in both schemes, this 

signifies the importance of operating a 5G NR operator in the 

unlicensed bands.    

APPENDIX I 

 Let X1 and X2 be the maximum number of NR-U operators 

and WiGig operators, respectively, such that  1 10,1,...,x X

with a corresponding average rate of arrivals 

 
1 1, ,1 ,0, ,...,n x n n X    , whereas  2 20,1,...,x X

corresponding to  
2 2, ,1 ,0, ,...,w x w w X    . Then, (1) can be 

expressed for NR-U operators as follows.    

  
1 2

1 1 1 2

1 2
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0 0

X X

n x n x n x w x

x x

T T
 

   
        
    

   

Similarly, for WiGig operators, (1) can be expressed as follows.
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Abstract— The National Academy of Engineering’s “Fourteen 

Grand Challenges for Engineering in the Twenty-First Century” 

identifies challenges in science and technology that are both 

feasible and sustainable to help people and the planet prosper. 

Four of these challenges are: advance personalized learning, 

enhance virtual reality, make solar energy affordable and 

provide access to clean water. In this work, the authors discuss 

developing of applications using immersive technologies, such as 

Virtual Reality (VR) and Augmented Reality (AR) and their 

significance in addressing four of the challenges. The Drinking 

Water AR mobile application helps users easily locate drinking 

water sources inside Auburn University (AU) campus, thus 

providing easy access to clean water. The Sun Path mobile 

application helps users visualize Sun’s path at any given time 

and location. Students study Sun path in various fields but often 

have a hard time visualizing and conceptualizing it, therefore 

the application can help. Similarly, the application could 

possibly assist the users in efficient solar panel placement. 

Architects often study Sun path to evaluate solar panel 

placement at a particular location. An effective solar panel 

placement helps optimize solar energy cost. The Solar System 

Oculus Quest VR application enables users in viewing all eight 

planets and the Sun in the solar system. Planets are simulated to 

mimic their position, scale, and rotation relative to the Sun. 

Using the Oculus Quest controllers, disguised as human hands 

in the scene, users can teleport within the world view, and can 

get closer to each planet and the Sun to have a better view of the 

objects and the text associated with the objects. In a camp held 

virtually, due to Covid-19, K12 students were introduced to the 

concept and usability of the applications. Likert scales metric 

was used to assess the efficacy of application usage. The data 

shows that participants of this camp benefited from an 

immersive learning experience that allowed for simulation with 

inclusion of VR and AR. 
 

Keywords-Augmented Reality; Engineering Challenges; 

Immersive Technology; Virtual Reality. 

 

I. INTRODUCTION 

The National Academy of Engineering’s “Fourteen 
Grand Challenges for Engineering in the Twenty-First 
Century” identifies challenges in science and technology that 
are both feasible and sustainable to help people and the 
planet prosper. The grand challenges of engineering were 
announced in 2008 by a committee of leading technological  
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thinkers. These challenges were broadly classified into fourteen 
game-changing goals. Working towards these goals, as per the 
committee, is a way for improving life on the planet [1]. This 
research makes use of immersive technologies to addresses 
four of such challenges: 1. Advance personalized learning, 2. 
Enhance virtual reality, 3. Make solar energy affordable, 
and 4. Provide access to clean water. 

AR and VR are two emerging, immersive technologies in 
recent times. AR creates a composite view by adding digital 
content to a real-world view, often by using the camera of a 
smartphone while VR creates an immersive view where the 
user’s view is often cut off from the real world. In AR, users’ 
world views remain intact and virtual objects simply augment 
the reality, whereas, in VR, users’ world views are totally 
altered, and they can no longer see their actual surroundings. 

In this research, a VR application aims to address the 
first two challenges while two AR applications aim to address 
the last two challenges. The VR application assists users in 
visualizing and understanding our solar system by using a VR 
headset. Users can take an immersive, virtual tour of the solar 
system. This virtual simulation closely parallels the 
movements of the planets, as well as their form, scale, and 
location in relation to the Sun. Thus, this application enables 
users to view our solar system in an immersive environment, 
which could be helpful in visualizing and comprehending a 
system that is not easily observable. The Drinking Water AR 
application displays information on drinking water 
accessibility and the environmentally sustainable use of water 
bottles rather than plastic cups. The application can be used to 
locate drinking water related information by simply pointing 
the device camera towards a Point of Interest (POI). Also, it 
can be used to file and view water-related complaints. Thus, 
the application helps users to conveniently identify drinking 
water related information inside AU, thus providing easy 
access to clean drinking water. The Sun Path AR application 
helps users visualize Sun’s path at a selected date and 
location. Students study the Sun’s path in several areas, but 
they often fail to visualize and comprehend it. Architects often 
analyze the sun’s path to evaluate the positioning of solar 
panels at a particular location. An effective solar panel 
placement helps optimize solar energy cost. Thus, the 
application could possibly assist the users in efficient solar 
panel placement. 
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Empirical studies on the effectiveness of adding mobile 
game-based augmented reality into basic education suggests 
that AR techniques can boost student learning [2]. Similarly, 
there is an AR application to hydrate dementia-affected older 
adults [3]. The application reminds, inspires, directs, and 
monitors hydration among those adults. Likewise, students 
were readily engulfed in AR and their ability to interact with 
the interface and control virtual objects helped them to 
understand more advanced concepts of Earth-Sun 
relationships [4]. All the above-mentioned works in the 
literature back up this study's argument that AR can help 
with customized learning, resource access, and visualizing 
abstract concepts. 

In conclusion, the applications serve as a proof of 
concept for use of immersive technology in addressing 
engineering concerns. In addition, K-12 students were 
introduced to the concept and usability of applications at a 
camp held virtually due to Covid-19. Likert scales metric 
was used to assess the efficacy of application usage.  

In section 2, the paper discusses previous work by other 
authors related to this research. The project architecture used 
in the research is then presented in section 3. In section 4, the 
paper depicts the usability study of the research. In section 5, 
the result of the study is reported. Finally, in section 6, the 
authors provide conclusions and future work briefings. 

II. RELATED WORK 

 

A. AR/VR Modes and Characteristics 

Virtual reality and augmented reality are two different 
types of immersive technology. Virtual reality (VR) fully 
takes over one's vision, giving users the feeling of being 
transported from the physical world to a virtual one. On the 
other hand, augmented reality (AR) simply overlays virtual 
objects onto the user's view of the real world. Based on the 
underlying implementation scheme, AR is classified into 
three different categories: Marker-less AR, Mark-based AR, 
and Location-based AR. In the same way, VR is classified in 
3 Degrees of Freedom (DoF) and 6DoF based on user's 
degree of freedom. 

Augmented Reality creates a composite view by adding 
virtual components to users’ real view. AR is quite popular 
these days in various fields such as social media, learning, 
shopping and so forth. With the advent of Snapchat filters, 
AR became quite popular in social media. Soon after 
Facebook too integrated filter-based AR functionalities in 
many of its applications. Similarly, Ikea has AR features in 
its shopping application with the help of which customers 
can pick a product and place it at different points in their 
world view to see how the virtual product fits in their world 
view. Likewise, various apps such as Quiver, Blippar and 
Aurasma use AR to help student with learning [5]. There are 
basically 3 types of AR: Marker-based AR, Marker-less AR, 
and Location-based AR. 

Marker-based AR uses pre-defined markers set by the 
developer of the application. When the markers are detected 
in the real world, virtual objects are augmented to the scene. 
Markers may be any form of 2D image, including black- 
and-white and color images. Figure 1 depicts AR content 
overlay over a pre-defined marker. 

 
 

 
 

Figure 1. Marker based AR [6]. 

 

Marker-less AR is not bounded to a particular marker, but 
rather allows users to position objects anywhere they want 
within their real-world view. After placing an object, even if 
the device camera is removed from the line of sight, the 
application still remembers the position of the object using a 
method called Simultaneous Localization and Mapping 
(SLAM), and so when the device is brought back into line of 
sight the object is once again visible [7]. Figure 2 is an AR 
enabled retail application by Ikea. It is a marker-less AR app 
that allows users to place virtual products at desired position 
before buying them, thus assisting users with product selection 
and decision-making. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 2. IKEA AR app example [8]. 

Location-based AR enables the ability to place virtual 
objects at various GPS coordinates. Location-based AR, in its 
simplest form, collects data from device components such as 
GPS, accelerometer and digital compass to identify the device 
location and position. The application then compares device 
data to POI information and adds virtual objects to the real 
environment accordingly [9]. An example of one of the most 
popular location-based AR apps is Pokémon Go. Figure 3 
depicts another location- based AR application where different 
points of interest objects are overlaid as per their 
corresponding GPS coordinates. 

 

 
Figure 3. Location based AR app [10]. 
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VR is an immersive technology that allows users to 
interact with a virtual environment as if it were the reality. 
In virtual reality, Head-Mounted Displays (HMDs) are 
important for bringing the technology to life. An HMD is 
worn over the head, with the user's world view entirely 
obscured and only the screen displays visible in front of their 
eyes. The display supports a stream of data, images, and 
other such material. Currently, there are several powerful 
3DoF and 6DoF HMDs available on the market. Google 
Cardboard is an example of a 3DoF headset and supports 
3DoF (rotational movement around the x, y, and z axes). 
Similarly, Oculus Quest by Facebook, illustrated in Figure 
4, is an example of a 6DoF headset and supports 6DoF 
(rotational movement around the x, y, and z axes, up, down 
forward, and backward). 

 

 
 

Figure 4. Oculus Quest headset [11]. 

6DoF tracking ensures a higher level of immersion than 
3DoF as the user presence is more authentic. Figure 5 
illustrates 3DoF and 6DoF tracking. 

 
 

 
Figure 5. 3DoF and 6DoF [12]. 

B. Applications in Academic Settings 

A survey study regarding use of augmented reality 
provided a scenario in which enabled mobile devices were 
used for learning and the associated pros and cons of the 
device usage was evaluated [2]. The questionnaire type 
survey is based on one single application – EduPARK – 
which analyzes mobile learning via students’ opinion 
regarding the use of mobile devices for learning. The survey 
considers a total of 244 students at primary Portuguese 
Education System. The study participants consisted of 
students aged 10-16 years old among which 51.6 percent 
were girls and 48.4 percent were boys. The EduPARK 
application is designed for a specific urban park in Portugal. 

The application uses Augmented Reality (AR) to 
provide various biological and historical references of the 
local park. The app was developed in Unity 5 using Vuforia 

framework and makes use of Vuforia’s 2D marker-based 
technology. The marker-based technology allows the app to 
detect images/markers, pre-defined by the app creator, and 
overlay AR contents when the markers are detected by the 
device camera. As per the paper, the markers were manually 
installed in either tiles already existing in the park, or on 
plaques positioned for the purpose of sticking the markers 
onto them. The authors of the paper weigh in on students’ 
perspective with the application usage. The findings of the 
paper suggest that the overall perspective remained positive 
with application usage amongst the students. The study also 
suggests that students believe that mobile devices, in general, 
are beneficial when they want to quickly find up-to- date 
information. However, students had their concerns with some 
of the external aspects of the application usage such as 
unstable, slow access to internet connectivity, restrictions 
forbidding them from carrying mobile devices to the 
classroom and ease of distraction by other applications in 
the mobile device. All in all, this paper suggests that use of 
AR mobile applications in learning can be beneficial. 

A study was done that proposed an AR app that helps 
cognitively impaired elderly people with hydration [3]. Even 
though a significant number of older adults are capable of 
drinking water/fluid by themselves, several cognitive deficits 
such as poor initiation, decreased motivation, amnesia, and 
premature decay of intention may hinder their capability [13]. 
Poor Initiation in older adults is observed when they fail to 
recall, and this deficit is common in elderly people with 
dementia [14]. Due to poor initiation, old adults fail to recall 
where and how to fetch water. Often, older adults have a 
degraded sense of taste and smell due to which drinking water 
might not be as quenching. Thickening of orbitofrontal cortex, 
a part of the brain that pleases and is activated after drinking 
water [14], when medically observed in older adults, results in 
lack of fulfillment and delight that follows water intake [15]. 
Premature decay of intention occurs when a certain activity 
takes longer than anticipated time to fulfil, or when an activity 
is thought of, but execution is hindered by some other 
distraction. Decay in intention is significantly higher in 
elderly people with cognitive defects [16]. The paper claims 
that the AR app proposed has advantages over existing water 
drinking reminder apps when it comes to helping cognitively 
impaired old adults to stay hydrated [3]. The app makes use of 
Vuforia marker- based technology and a game like activity to 
motivate users to meet/increase water intake. Furthermore, it 
also mentions carrying out a feasibility study of two versions 
of the app- basic and advanced - with elderly people (in 
assistance with their caregivers) to find out which of the two 
could be more suitable. It is, therefore, clear from the paper 
that the proposed AR game is beneficial for hydration amongst 
elderly people since it assists them to cope with their cognitive 
disabilities. 

In the application-based paper, the authors use AR 
involving exercises designed to teach spatial concepts of 
rotation/revolution, solstice/equinox, and seasonal variation of 
light and temperature [4]. It utilizes ARToolkit to teach about 
earth-sun relationships to thirty undergraduate geography 
students. Users utilized a lightweight Cy-Visornf DH-440 head 
mounted display (HMD) with a Logitech QuickCam Pro 3000 
video camera attached. The HMD and camera were connected 
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Figure 6. Drinking Water AR application wireframe 

to a laptop running Windows XP and ARToolkit version 
2.52 software. The paper claims that students find it 
challenging to understand spatial concepts and phenomena 
that are complex, and the use of AR based application 
resulted in a significant improvement in student 
understandings along with reduction in misunderstandings. 
Often, teachers use 3d objects or props available in the 
classroom to explain complex concepts but both teacher and 
students struggle since the available objects often fail to 
mimic the actual concept. AR based applications usually 
come in handy at such scenario and eradicate the need for 
props. The research made use of pre- and post-assessment 
worksheets, and the analysis of the assessment resulted in 
some definitive statistics as follows: 

• In general, conceptual, and factual understanding 
of the concepts improved in all cases. 

• The most significant improvement was seen in 
those with lower pre-assessment scores. 

• Most of the students resorted to pictorial 
descriptions to help illustrate their understanding 
on both pre and post assessment which further 
fortified the stance on use of pictures being more 
intuitive when it comes to understanding and 
explaining complex spatial concepts 

The research also made some qualitative analyses and 
drew some definitive conclusions as stated below: 

• Ability to interact with the interface and control 
over virtual objects helped students to understand 
more advanced concepts. 

• In some cases, the students could no longer 
distinguish the difference between real and 
superimposed virtual objects. In no time, they felt 
like all virtual objects were assimilated in the real 
world. 

The paper, thus, explores AR’s potential to help student 
visualize complex spatial concepts, and puts forth a definitive 
conclusion that AR rightly assists students with their learning 
and understanding. 

III. PROJECT ARHITECTURE 

 

A. Approaches to Deployment 

The approach to deployment depends on the wireframes 
of the applications. 

Wireframes for Drinking Water AR Application: 
The welcome activity is a splash screen that shows the logo 
of the application and lets users know that the application is 
starting up. After the splash screen is successfully rendered, 
if it is the first time that the user is using the app then the app 
will ask the user for device camera and GPS permissions. 
When and if the user allows all required permissions, then 
the loading device location dialog is shown while device 
GPS is asynchronously being fetched by a background 
thread. After the location is fetched the app makes use of 
ARCoreLocation to fetch and position the water marker 
overlay on the device camera view. The main activity also 
has a view/file complaint button which can be used by 
general users to file complaint and admin users to view and 
resolve the complaints. The user authentication and data 

storage functionalities are achieved using Google’s Firebase (a 
cloud database). The application wireframes are illustrated in 
Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wireframes for Sun Path AR Application: The 

welcome activity is a splash screen that shows the logo of the 
application and lets the user know that the application is 
starting up. After the splash screen is successfully rendered, if 
it is the first time that the user is using the app then the app 
will ask the user for device camera permission. When and if 
the user allows camera access, the user is taken to the main 
activity of the application. All other functionalities of the 
application is found in the main screen of the app. The 
application wireframes are illustrated in Figure 7. 
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Wireframes for Solar System VR Application: The 

main screen is the world space view for the user. The view 

includes all eight planets and the Sun in the solar system. 

All planets are simulated to mimic their position, scale, and 

rotation relative to the Sun. Users can use the Oculus Quest 

controllers to teleport within the world view. To give users a 

more realistic feel, the controllers are disguised as human 

hands in the scene. Users can get closer to each planet and 

the Sun to have a better view of the objects and the text 

associated with the objects. The application wireframe is 

illustrated in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Solar System VR application wireframe 

 

B. Equipment Selection 

Software & hardware requirements stay the same for AR 
applications and differ with the VR application. 

AR applications software requirements: 

• Minimum Android version: 7 (API level 24). 

• Target Android version: 9 (API level 28) 

AR applications hardware requirements: 
• ARCore supported Android mobile devices. 

• Target Android version: 9 (API level 28) 
VR application software requirements: 

• Quest builds 20.0 release 
VR application hardware requirements: 

• Oculus Quest. 

C. Drinking Water AR Application 

The pictorial representation in Figure 9 is the flowchart 
that depicts the runtime flow of the water application. When 
the application is started it first checks to see whether the 
device is supported. If the device is supported, then the 
application seeks user permission to use device camera and 
GPS coordinates since both components are required for the 
application to run. Once the permissions are granted then 
the application initializes ARCore and ARCorelocation 
functionalities asynchronously. After the asynchronous 
methods return Future objects, the application renders the 
location markers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Solar System VR application wireframe 

 

The water AR application is developed in Android Studio 
using Java programming language, and libraries such as 
Google’s ARCore, Google’s FireBase and ARCoreLocation by 
APPoly. ARCore is Google’s platform for building AR 
experiences. It assists a device to understand its real 
environment so that it can augment it. Two fundamental 
features of ArCore are as follows: 

• Motion tracking: allows tracking position of the 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

Figure 7. Sun Path AR application wireframe 
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mobile device relative to the world. 

• Understanding of the real world: Allows 
devices to understand vertical and horizontal 
surfaces and planes [17] 

ARCore API which handles session lifecycle, access to 
device camera and pose is instantiated using ARCore session 
class. While this session is running ARCore holds exclusive 
access to device camera. Since this class consumes a 
significant amount of heap memory of the device, it is 
essential to call close method to release memory while not 
using the session. Failure to close may result in app crashing 
[18]. Similarly, ArSceneView is a SurfaceView which 
integrates with ARCore to render a scene [19]. 
Two of the methods from the ArSceneView class that have 
significant implementation in the application are getArFrame 
method which returns the most recent ARCore Frame, if 
available, and getSession method which returns the ARCore 
Session used by the view. Likewise, Frame class in ARCore 
captures the state and changes to the AR system by making a 
call to session object. It makes use of the getCamera method 
of the class to get the camera object [20]. Once the libraries 
are imported, to place a virtual object in a scene, anchor must 
be defined. Anchor class describes a fixed location and 
orientation in the real world [21]. 

Anchor in the application is obtained from the 
ArCoreLocation library by APPoly. APPoly is a software 
company based in the United Kingdom and contributes to 
the open-source community with various software packages. 
One such software package is ARCoreLocation. Since 
ARCore does not support use of real-world coordinates in its 
AR space [22], this application makes use of the ARCore 
Location library to realize the location-based functionality in 
the app. The location library used to realize location- based 
AR is ARCore-Location: 1.2 [23]. ARCoreLocation allows the 
water app to position AR objects at real-world GPS 
coordinates. The real-world GPS coordinates (longitude and 
latitude) are provided to the application by making use of a 
JSON file. 

The application data related to users and complaints is 
handled using Google’s Firebase – a cloud service that is used 
to authenticate users and store data in Cloud Firestore. Cloud 
Firestore is a NoSQL database that can be used to easily store, 
sync and query data for applications. 

 

D. Sun Path AR Application 

The pictorial representation in Figure 10 is the flowchart 
that depicts the runtime flow of the sun path application. 
When the application is started, it seeks user permission to 
use device camera since the component is required for the 
application to run. Once the permission is granted then it 
initializes the default scene and overlays the sun path on top 
of the device camera view. The user then can select custom 
location, date and time and the application will update the 
scene accordingly. Figure 10 depicts the flowchart for the 
application. 

The Sun path AR application is developed in visual 
studio using JavaScript programming language and React 
Native framework. React Native provides developers with a 
community of open-source modules that can be readily 

incorporated in app development. An overview of components 
is as illustrated in Figure 11. This application is realized into 
three main custom components: 1. Location Component 2. 
Display Component, and 3. Main Component. Each of these 
components make use of core components and community 
components and interact with one another. Location 
Component: This is the component where location-based logic 
and code is written. This component makes use of following 
community components: 

• @react-native-community/geolocation 

• react-native-google-places-autocomplete 

• react-native-maps 
Display Component: This is the main user interface 

component where UI logic and code is written. This 
component mainly comprises of core components such as 
View, Text and ScrollView. The community components used 
are: 

• @react-native-community/datetimepicker 

• react-native-vector-icons/MaterialCommunityIcons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Solar System VR application wireframe 

 
 

 
Figure 11. React Native overview [24]. 

 

 

Main Component: Is the engine of the application. All 
custom components are called here along with the following 
community components: 

• react-native-WebView 

• react-native-camera 
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Amongst various sun position calculation algorithms (such as 
Spencer, Pitmann and Vant-Hull, Walraven, PSA, and 
Michalsky), PSA has superior accuracy and performance 
[25]. Figure 12 illustrates PSA algorithm’s performance in 
terms of accuracy in calculating zenith distance, azimuth, 
and sun vector deviation. User provided GPS coordinates, 
date and time is fed into the PSA algorithm function. The 
function returns Sun spherical coordinates and that is used in 
a projection matrix to visualize the sun path and overlay it on 
top of the world view. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. PSA algorithm 

 

 

E. Solar System VR Application 

Figure 13 shows the flowchart of the runtime flow of the 
Solar System VR application, developed in Unity using C# 
programming language. When the application is started, it 
first checks to see if the headset in which the application is 
being run is compatible. The application currently only 
supports Oculus Quest, and so trying to run it on other 
headset will cause the application to crash. After the initial 
validation is successful, the app will then initialize the 
camera component and the world space/scene of the 
application. Immediately after, the application will render all 
GameObjects of the scene and start the planetary rotation 
script (which is used to simulate planet revolution around the 
Sun). While in the world space of the application, the user 
can use controllers to teleport to different areas in the solar 
system and have a closer look at each of the planets. As 
illustrated in Figure 14, a scene in Unity can have objects 
that are called GameObjects. GameObjects serve as 
containers for components. Depending on the type of object 
desired, various combinations of components can be added 
to a GameObject. Developers can either use in-built 
components or create a custom component using Unity 
Scripting API [26]. Transform component, which defines 
position and orientation of the object it is attached to, is the 
only indispensable component in a GameObject. All other 
components either default or custom can be attached or 
detached from a GameObject. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Flowchart of Solar System VR Application 

 

 

 
 

Figure 14. Unity3D GameObject Component Model 

 

IV. USABILITY STUDY 

 

A. Virtual Educational K12 Camp 

Research in the Formation of Engineers (RFE) computing 
virtual camp was conducted for K-12 students, in which, 
students from grade 9 to 11 participated. These students were 
instructed on important topics of AR/VR and were also asked 
to use the applications. The following observations were 
gathered from students’ responses: 

• All the students were unsure if they had used 
AR/VR applications before, as shown in Figure 
15. 

• Many students indicated that the use of AR/VR 
functionalities helped them in better 
understanding of subject topics. 

• Students equivocally agreed that the apps were 
easier to use and that they were able to 
effortlessly determine drinking water sources 
and sun location. 

Pre-survey and post-survey detail the discrepancies in 
subjects' comprehension before and after using the AR/VR 
applications developed for this research. Students developed a 
greater understanding of the technology by using the 
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applications. According to the post-survey findings, as 
depicted in Figure 16, 50 percent of the students strongly 
agreed, and the other 50 percent agreed that using such 
technologies was interesting. The Drinking Water AR app 
made it easy to find drinking water places, according to 50 
percent who agreed somewhat, 25 percent who agreed, and 
the remaining 25 percent who strongly agreed. Similarly, 50 
percent strongly agreed, 25 percent agreed, and 25 percent 
slightly agreed that determining the sun's location using the 
Sun Path AR app was simpler. 

 

B. Pre-Survey 

 

According to the pre-survey findings, as shown in Figure 

15, 100 percent of the students were unaware of the AR/VR 

technology prior to being introduced in this study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Pre-Survey results 

 

C. Post Survey 

According to the Post Survey findings, as shown in Figure 
16, 100 percent of the students agreed that using AR/VR 
technologies is interesting. 

Figure 16. Post Survey results 

 

V. RESULTS 

 

A. Drinking Water AR Application 

 

 The application makes use of location-based AR to overlay 
virtual objects when the device is pointed towards the line of 
sight of POIs. Currently, Haley building and Shelby 
Engineering buildings are the POIs for the application. Figure 
17 shows the overlay when the app is brought to the line of 
sight of one of the coordinates. By pointing their phones 
towards the POIs, users can quickly identify drinking water 
sources and related information. In addition, the app also 
promotes civic engagement. Users can register/sign into the 
program and then file complaints about water supplies. Also, 
the application has provisions to add admin users. Admin users 
can look at the complaints and mark them resolved when 
accomplished. Currently, people on campus can use Google 
Maps to locate buildings but they do not have access to 
building related information. In the future, the application 
could be expanded to provide users with not only water 
information about the buildings, but also information about the 
buildings' internal mappings. 

The application makes use of marker-less AR to overlay 
virtual objects in device’s camera view. The main scene of the 
app displays Sun’s path at a given date, time, and location, as 
illustrated in Figure 18. Sun is the major source of energy to 
our planet, and examining its path is essential for better 
harvesting its energy. Sun path diagrams provide a wealth of 
information on how the sun can affect a site and structure over 
the year. The solar azimuth and altitude for a given position 
can be determined using the diagram. A conventional way of 
examining its path is by manually plotting points/lines in the 
diagram to get solar azimuth and altitude. Accurate and timely 
analysis of Sun’s path plays a significant role in multitude of 
sectors. This app eliminates the need to manually measure 
the position of the sun at a specific date, time, and place.  
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Figure 17. Drinking Water AR Application prototype 

 

B. Sun Path AR Application 

Users can easily access sun related information such as 
sun position, sunrise time and sunset time. Users can use the 
search functionality in the app to visualize Sun’s path in 
any coordinates searchable in Google Maps API, as 
demonstrated in Figure 18. Practical uses, such as estimating 
solar power and solar water capacity, as well as agricultural 
applications, are possible with this app. 

 

Figure 18. Sun Path AR Application prototype 

C. Solar System VR Application 

The application makes use of VR to simulate our solar 
system. In the main scene, users can see the movements of the 
planets, as wells as their form, scale, and location in relation to 
the Sun. Users can use controllers as their hands to teleport 
within the app and have a better visual of the Sun and planets, 
as illustrated in Figure 19. This can be useful to K-12 
education as it provides an immersive, interactive way to 
visualize and comprehend the solar system. This way of 
teaching using VR could be extended to other subjects. 

Figure 19. Solar System VR Application prototype 

 

VI. CONCLUSIONS AND FUTURE WORK 

The Drinking Water AR app served as a prototype to 
resolve the issue of access to safe drinking water while also 
encouraging public participation by enabling users to file 
water-related complaints. By assisting users in visualizing sun 
path at a given time, date, and place, the Sun Path AR 
application served as a prototype to help users learn about sun 
path and its role in making solar energy affordable. It provides 
solar azimuth and altitude information to the user, eliminating 
the need to manually calculate the values using a sun path 
diagram. The Solar System VR app acted as a model for 
enhancing virtual reality by creating an immersive and 
interactive solar system application. The app aided the user in 
visualizing a concept which is not readily apparent. 

The effectiveness of apps was also evaluated among K- 12 
students using a Likert scale-based pre- and post-survey 
metric. The study included twelve students from various 
schools across the United States. Based on the user reviews, it 
is fair to say that the applications were effective in terms of 
interaction, functionality, usability, and user experience. 

However, the implementations and evaluations had some 
limitations that could be addressed in the future. A virtual 
camp, conducted online due to Covid-19, was not quite 
effective to quantitatively evaluate the effectiveness of the 
work. In the future, the authors propose evaluating the 
application in an in-person camp with greater number of 
participants. Besides, following changes to the applications is 
proposed: 

• Currently, the water application only supports two of 
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the buildings inside Auburn University, and so 
scaling it to add more buildings is proposed. 

• The mock data used for drinking water application 
could be replaced with actual data from the 
university. 

• Both the sun path application and the water 
application are developed for android phones only. 
So, equivalent versions of the applications 
compatible to iPhone could be developed. 

• Similarly, solar system VR application is only 
runnable in Oculus Quest Headset and could be 
built to support a greater number of headsets. 
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Abstract—Beamforming (BF) appropriately weights the ampli-
tude and phase of individual antenna signals to create narrowly
focused radiation. This makes it possible to provide better
coverage in an indoor environment and at the edge of a cell.
To make the best use of this technology, it is important to
know the location of the device to direct the antenna beam
of the radio Base Station (BS). Consequently, the Direction of
Arrival (DOA) method is becoming very crucial and essential in
this time. This paper proposes a Machine Learning (ML) based
approach for DOA by evaluating three models: Support Vector
Classification (SVC), Decision Tree (DT) and Bagging Classifier
(BC). These models are trained using a public database built from
drone’s radio frequency signals. The proposed model significantly
outperforms the techniques presented in previous work.

Index Terms—Beamforming; Direction of Arrival; Machine
Learning.

I. INTRODUCTION

Up to the Fifth Generation Mobile Network (5G), the de-
velopment of the cellular systems focused on communication
aspects, while other services, had low priority. Diverging from
current networks, future communication systems will become
pervasive across multiple industry verticals by enabling a
plethora of services that require location, such as assets
tracking, context-aware marketing, transportation and logistics
systems, Cross Reality (XR) experiences, and health care.

For location services, the Direction of Arrival (DOA)
method estimates the direction angle of a source transmitting
a signal to a receiver. DOA is highly applicable in wireless
communications, astronomical observations, radar, and sonar
[1]. In addition, with the beginning of the studies of the 6G
network, the DOA methods assumes a new importance.

One of the key technologies in 6G is expected to be
Beamforming (BF), specifically Holographic Beamforming
(HBF) [2]–[5]. BF is a technique that focuses a wireless signal
towards a specific receiving device, rather than having the
signal spread in all directions from a broadcast antenna, as it
usually would. Therefore, it is important to know the location
of mobile devices and Internet of Things (IoT) terminals
to direct the antenna beam of the radio BS. The resulting
connection is faster and more reliable than it would be without
BF.

The location technique for BF in 6G should be autonomous,
reconfigurable, adaptive, and fast responsive. It is impossible

to manually adjust the BF direction due to the extensive
enhancement of the capacity of communication networks. ML
has been considered part of the most important technologies
in 6G [2], [6]–[10] due to the high capacity of communication
networks and the massiveness of IoT devices.

ML is presented as a promising technology to be used for
DOA. ML-based methods are data-driven and it can be more
robust than other methods because they adapt better to array
geometry imperfections and sensor imperfections. They also
do not depend of the array geometry shape [1]. In addition,
ML offers low-cost implementation and simplicity.

In [11], the authors propose a new DOA method based
on an ML model to estimate the azimuth angle of a signal.
The system employs only four antennas to find the direction
of eight possible signal provenance angles. With this system
was obtained a dataset named as Dround Data New, which
contains well-known signals transmission powers for the eight
angles. The authors trained and validated the dataset with a
Deep Neural Network (DNN) model. The main goal of this
work is to propose another ML model in order to increase the
accuracy during prediction and decrease the training time over
the same dataset Dround Data New.

The article is organized as follows. Section II is an overview
of the related work. Section III extends the system architecture,
the training dataset, the data modification for classification,
and the proposed ML model. Section IV compares and
discusses the results of the proposed DOA model with the
approach presented in [11]. Finally, Section V concludes the
paper.

To promote reproducible research, the code to generate the
results of this paper is available here: [12].

II. RELATED WORK

Inherently multi-channel techniques, Multiple Signal Clas-
sification (MUSIC) [13], and Estimation of Signal Parameters
Via Rotational Invariance Techniques (ESPRIT) [14], are con-
sidered to be the most popular DOA methods. However, there
have been many problems associated with their application
due to the base-band data from all antenna elements should
be extracted simultaneously. A data correlation matrix needs
to be formulated. Therefore, calibrating the values of each
Radio Frequency (RF) channel becomes necessary to have a
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coherent multi-channel receiver [11]. A technique that does
not require phase calibration is proposed in [15] as a Sparse
Signal Representation (SSR) technique. However, this scheme
cannot offer adequate accuracy.

In order to avoid the phase synchronization mechanism and
antenna calibration mechanism, the authors in [11], [16], [17]
used a system consisting of a single channel receiver, an M
independent antennas, and a rotating switch similar to the
one depicted in Figure 1. The authors in [16], examined the
potential in using the different radiation patterns of a Switched
Parasitic Antenna (SPA) for DOA. The DOA performance of
the SPA is examined by calculating a lower bound on DOA
accuracy, which is called the Cramer-Rao lower Bound (CRB).
Then, all DOA estimation schemes derived from a general
antenna array can also be applied to a parasitic antenna by
inserting a new steering matrix. The authors in [17], employ
a receiver, which is connected to one of M available sensors.
Each sensor is enabled for reception every MT , where T
is the time a sensor is enabled. The single-channel receiver
has an RF switch that selects one sensor at a time. For the
direction estimate, the posterior distribution of DOA is derived.
Then, the Bayesian maximum posterior probability is applied
to select the direction angle. The results of that work show high
accuracy for the direction estimate of signals arriving from
10◦ and 40◦ angles simultaneously. However, the convergence
time for the estimate is not clear because it is presented as a
dimensionless quantity.

In [18], a comprehensive study is conducted to optimize
the channel estimation and DOA estimation fields of massive
Multiple Input Multiple Output (MIMO) based on the deep
learning technique. Simulation results corroborate that the
proposed scheme can achieve better performance in terms
of DOA estimation compared with conventional methods.
However, the system is complex and expensive because it em-
ploys 128 antennas. The authors in [19], proposed a cascaded
neural network, which can be implemented to estimate the
DOA of two closely spaced sources. The cascaded network
consists of two parts: a SNR classification network and a
DOA estimation network. The latter network contains two
estimation subnetworks, which are applied to high and low
SNRs to train the noisy data. The results of that work show
better performance than other DOA techniques by detecting
two signals coming from two directions separated by angles
less than 5◦. However, the performance is worse than the other
techniques for sources with greater separation.

The authors in [11] used a system consisting of a single
channel receiver, four antennas, and a rotating switch like
the one depicted in Figure 1. There, the receiver sequentially
activates the n-th antenna element at a time using the rotating
switch, and measures the corresponding received power (Pn)
where n ∈ {1, ..., N}. Then, the value of the normalized power
measured in the n-th antenna will be given as:

xn =
Pn∑N
i=1 Pi

(1)

Next, the obtained normalized power values are fed to a

Sparse Denoising Autoencoder (SDAE)-based DNN to find the
azimuth angle of the transmitted signals. The SDAE makes
compression and later a reconstruction of the power values
to obtain a version of the power values with only essential
information. Then, it starts the DNN training phase. DNN
comprises three fully connected hidden layers and a softmax
layer [20] for the classification task. The model achieved an
overall accuracy of 96.25%. However, this paper proposes
another ML method using the same dataset than in [11] to
show improvements in both the overall accuracy and the
elapsed training time for DOA.

III. SYSTEM MODEL AND DATASET

A. System overview

The system model consists of a single-channel receiver,
and N directional antennas arranged circularly, see Figure
1. The antenna array is connected to the receiver using a
non-reflective Single-Pole-N-Throw (SPNT) RF switch, which
sequentially activates each antenna, and measures the received
power values. The power measurements (P1, P2, P3, ..., PN)
corresponding to each switching cycle are fed to the proposed
ML model. Then, it is performed the DOA by exploiting the
sparsity property of the incoming signal, and the gain variation
property of the directional antenna array.

N-element
Directional

Antenna Array

P1

P2

P3

PN

...

Single-pole-N-throw
Antenna Switch

Single Channel
SDR

Machine Learning
Classifier

Fig. 1. The System Model.

B. Dround Data New dataset review

The Dround Data New dataset was collected by Software
Defined Radio (SDR) (USRP B210), and a four-element sector
antenna. The authors in [11], use only a single RF receiving
channel for the SDR. Thus, the SDR is connected to the
antenna using a non-reflective Single-Pole-4-Throw (SP4T)
RF switch. The DJI Phantom 3 drone is the device that
has been involved in this dataset. It is considered as the
target device throughout the experiment. The drone downlink
channel occupies the bandwidth from 2.401 GHz to 2.481
GHz. Each drone transmits a 10 MHz bandwidth Orthogonal
Frequency Division Multiplexing (OFDM) signal. The OFDM
signal transmitted by the drones is the main source to perform
the DOA task. Figure 3a in [11] represents the environment
that they used for the training data collection. The scenario
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represents a large ground with an open area. Also, there was
a negligible RF intereference on the 2.0401 GHz - 2.481 GHz
range due to the experiment occurring in a remote area.

To simplify the experiment, the authors in [11] virtually
divided the area into eight octants (see Figure 3b in [11]).
Therefore, Dround Data New is made up of octants. Each
octant is considered as one direction (azimuth angle). For
example, the first octant is considered as the angle’s range 0◦-
45◦, while the second octant is considered as the angle’s range
45◦-90◦, and so on. Therefore, when the drone is flying, its
direction is indicated by its corresponding octant. The dataset
just has one type of data labeling for the classification of
the azimuth angles. The Dround Data New dataset consists
of 120 samples per angle’s range. It is important to clarify
that in the future more tests can be done and more data can
be obtained to achieve a more precise direction. For example,
instead of splitting the area into octants it can be splitted into
sixteen or sixty-four parts.

C. Dataset modifications

It is common practice when performing a supervised ML
experiment to hold out part of the available data as a validation
set. The validation dataset is not used for training, instead, it
is used to validate the trained model by predicting the labels
of those unseen data. In [11], the dataset is divided into data
to train and data to validate. The Dround Data New consists
of 110 samples per angle for training and 10 samples for val-
idation (representing approximately 8.33% of the total data).
It is not a convincing validation dataset because it is small
compared with the entire dataset due to the Pareto principle
[21]. Besides, the data to train and validate were divided into
different files in a fixed way, which makes it difficult to do
different tests with different sizes of data for training and
validation. Therefore, this data was joined in the same file and,
shuffled, and splitted by using the train test split [22] method
from the Scikit-Learn (sklearn) library to readjust dynamically
the training and validation dataset sizes. In this work, the
train test split method take as input: an array holding the
samples, an array holding the class labels for the samples,
a parameter called test size which represents the proportion
of the dataset to include in the validation dataset, and the
parameter called random state which controls the shuffling
applied to the data before applying the split.

D. Classification model

In this subsection, a brief review of the ML model and the
ensemble methods used in this work is given.

1) Support Vector Classification (SVC): SVC tries to find
the best hyperplane to separate different classes by maximizing
the distance between sample points and the hyperplane. The
SVC model takes as input the following parameters:

• kernel: Selects the type of hyperplane used to separate
the data. It must be one of linear, poly, rbf, sigmoid,
precomputed or a callable.

• C: Is the penalty parameter of the error term. It controls
the trade off between smooth decision boundary and
classifying the training points correctly.

• gamma: Kernel coefficient for rbf, poly and sigmoid.
2) Decision Tree (DT): DT models are one of the simplest

and most successful forms of ML models [23]. The goal of DT
is to create a model that predicts the value of a target variable
by learning simple rules inferred from the data features. The
DT models build a tree during training that is the one applied
when making the prediction. The input and output values can
be discrete or continues. The DT model takes as input the
following parameter:

• max depth: This indicates how deep the tree can be.
3) Bagging Classifier (BC): It is an ensemble meta-

estimator that fits base classifiers each on random subsets
of the original dataset and then aggregates their individual
predictions (either by voting or by averaging) to form a final
prediction [24]. This work uses the Bagging Classifier class
from the sklearn library and it takes as input the following
parameters:

• base estimator: Applied to random subsets of the dataset.
The base classifier used was DT [25].

• n estimators: The number of base estimators (in this case,
the number of DTs in the ensemble.

• max samples: The number of samples to extract from the
training data to train each base estimator.

• bootstrap: Defines whether samples are drawn with re-
placement. If False, sampling without replacement is
performed.

• n jobs: Tells Scikit-Learn the number of CPU cores to
use for training and prediction. n jobs is None by default,
which means unset; it will generally be interpreted as
n jobs=1, which means that only one core will be used
by Scikit-Learn. n jobs=-1 tells Scikit-Learn library to
use all available cores. For n jobs below -1, number of
cores + 1 + n jobs are used. For example, with n jobs=-
2, all CPUs but one is used.

• random state: Provided to control the random number
generator used. The values of random state can be: None
(default), an integer, and a numpy.random.RandomState
instance. random state=None calls the function multiple
times. It will reuse the same instance, and it will produce
different results. If random state is an integer, it is going
to use a new random number generator seeded by the
given integer. Using an integer will produce the same
results across different calls. Popular integer random
seeds are 0 and 42. The numpy.random.RandomState
instance uses the provided random state, only affecting
other users of that same random state instance.

IV. SIMULATION RESULTS

A. Tuning the parameters and the validation set

Figures 2 and 3 show the validation curves and learning
curves for SVC and DT respectively. Figure 2a shows the
behavior of the training score and validation score against the
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a. Validation Curve for the parameter.C

b. Validation Curve for the parameter.gamma

c. Learning Curve.

Fig. 2. Validations curves and Learning curves of SVC.

values of the parameter C. It is observed that the training
score is always increasing and the validation score decreases
slightly for a value of C equal to 100. Therefore, the value
of C will be 100 to avoid overfitting, which means that the
noise or random fluctuations in the training data is picked up
and learned as concepts by the model. Figure 2b shows the
training scores and validation scores of an SVC for different
values of the kernel parameter gamma. Until gamma equal to
approximately 100, it can be seen that both the training score
and the validation score are increasing. After gamma equal
to 100 the training score keeps increasing but the validation
score decreases; therefore, the classifier overfit. The problem
is that these concepts do not apply to new data and negatively
impact the models ability to generalize.

Figure 3a shows that for low values of max depth the
DT model is underfitting, which means that it can neither

a. Validation Curve for the parameter.max_depth

b. Learning Curve.

Fig. 3. Validations curves and Learning curves of DT.

model the training data nor generalize to new data. With the
previous analysis and with the use of the search grid provided
by GridSearchCV [26]—which exhaustively considers all
parameter combinations to optimize a model— the best
parameters for the SVC and DT models are summarized in
Table I.

TABLE I
INPUT PARAMETER VALUES OF THE SCV AND DT MODELS.

Model Parameters Value

SVC kernel rbf
C 100

gamma 100
DT max depth 16

Figure 2c shows that the validation score is maximum after
approximately 700 training samples and then remains almost
constant, and the training score is still around the maximum.
Therefore, 700 samples were destined for training, which
represents 72.9% of the total samples (the total samples is
960). As a result of the total data, 70% was allocated for
training and 30% to validate the SVC model. The same is
observed in Figure 3b for the DT model. Therefore, 70% of
the samples will also be used for training the DT model.

As BC is designed to reduce the possibility of overfitting
complex models there is no need to analyze their validation
curves. Table II shows the values given to the BC input
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parameters. The values of n estimators and max samples have
been decided with the use of the search grid provided by
GridSearchCV [26]. Figure 4 shows the learning curve of the
BC model with a behavior similar to that of SVC and DT.
Therefore, 70% of the data from Dround Data New dataset
was also used to train the BC model.

Fig. 4. Learning curves of BC.

TABLE II
INPUT PARAMETER VALUES OF THE Bagging Classifier.

base estimator Decision Trees
n estimators 300
max samples 0.55

bootstrap False
n jobs -1

random state 42

B. Results

The performance of the SDAE-DNN model used in [11],
SVC model, DT model and the BC model is shown in Figure
5 by means of confusion matrices and in Table III. It can be
concluded that the DT and BC models present a better result
than the SDAE based DNN and SVC models despite using
less data to train. It can be seen that the BC and DT results
are practically the same but with a longer time in BC (which
makes sense as it is a more complex method). Therefore, the
use of BC in this case does not make sense since DT provides
the same results in a shorter time.

TABLE III
COMPARISON BETWEEN MODELS

Model Validation Elapsed time Accuracy
dataset size

SDAE-DNN 8.33% 109.29s 96.25%
SVC 10% 0.02s 95.83%
DT 30% 0.0s 98.61%
BC 30% 5.23s 98.61%

Fig. 5. Confusion matrix.
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V. CONCLUSION

The necessity of having an intelligent system for DOA with
reliable accuracy is becoming crucial for Next Generation
Mobile Networks techniques like BF in 6G to improve the
communication. These systems can integrate well-trained ML
models to improve the robustness in performance. In this work,
different ML models were trained using a public dataset. The
best results were obtained for the DT model, overcoming
another model proposed in the literature.

In future works, we will include not only the azimuth angle
for DOA but also the elevation angle using the analyzed ML
models. It will be considered an angle resolution of 5◦ instead
of 45◦ to reduce the antenna beam and increase its directivity.
The performance of the ML models will be evaluated by
simulation results.
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Abstract—Wireless sensor networks (WSNs) are composed of
several sensors nodes with limited resources. Nodes can collect
data in their deployed area and forward them to the sink using
multi-hop communication. WSNs have limited energy and are
generally deployed in harsh areas. So, it is not easy for humans
to access and replace batteries. Thus, the lifetime of the network
must be extended to allow data collection for a long time. To
optimize energy consumption in low-power and lossy networks,
the Routing Protocol for Low-Power and Lossy Networks (RPL)
has been proposed. However, the energy consumption in RPL
protocol is not fairly distributed. Some nodes are more solicited to
forward data toward the sink node. As a result, the most solicited
nodes deplete more quickly their energy, that lead to the network
partitioning, data packets lost and more re-transmissions.

In the literature, most of the proposed optimization techniques
are not able to balance both routing load and power consumption.
To address this challenge, in this paper, we present a routing
technique based on children weights to fairly distribute children
nodes among candidate parent nodes. Doing so helps all forward-
ing nodes in the network to have nearly the same traffic load.
That permits to balance routing load and power consumption in
the network. Analytical results show that our proposal is better
compared to other improved RPL protocols using the Expected
Transmission Count (ETX) and number of children metrics.

Keywords—Wireless Sensor Network; RPL; load balancing;
energy consumption

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are collections of sensor
nodes able to collect data from their deployment environment
and transmit them through a multi-hops routing toward the
sink.

The miniaturization and low costs of sensor devices have
led to the vulgarization of their usage. They have various
fields of application, such as monitoring of harmful chemicals,
precision agriculture and monitoring of hostile environments.
In most cases, sensor nodes operate with batteries that are

generally difficult to recharge or replace. These batteries com-
monly have a limited lifetime. In addition, human intervention
ends after the deployment of the sensor network. Most of the
time, we would like to be able to collect data over a long
period of time. Source nodes need to collect data from their
environments, treat and transmit them to the sink. But, due to
the short communication range, many of them are out of the
communication range of the sink and multi-hop transmissions
must be used to forward the collected data. In turn, that may
result to a concentration of traffic on nodes closer to the sink
and may induce an imbalance load and power consumption.
As direct consequence, this may induce a negative impact on
the end-to-end delay and increase the packet loss rate due to
congestion, affecting the network lifetime.

To optimize the use of these sensors limited resources,
Routing Over Low power and Lossy networks (ROLL), an
Internet Engineering Task Force (IETF) working group, has
developed a Routing Protocol for low-power and Lossy net-
works (RPL) [1]. The real problem with RPL is the lack
of a mechanism to ensure fair balance of traffic among the
nodes in the network. Consequently, as the size of the network
increases, techniques for optimizing parent selection do not
perform well [2].

In a large size network, energy wastage, non-optimal parent
selection, slow recovery time after the death of a preferred
parent node and imbalanced load are the main factors leading
to low performance in WSNs [2]. In this paper, we focus on the
problem of traffic load balancing in WSNs. Our contributions
are:

1) a critical analysis of existing methods and techniques
for traffic load balancing and lifetime optimization of
WSNs;

2) a method for balancing traffic load and energy con-
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sumption taking into account the number of intermediate
nodes during the parent selection phase;

3) an evaluation of this new approach by comparing its
performances with those in the literature.

The remainder of the paper is organized as follows. Section
II the briefly presents RPL protocol. Section III is dedicated
to related work. In Section IV, we present our new parent
selection approach and Section V shows an analytical study
of the performance of the contribution. Section VI concludes
the paper.

II. BRIEF OVERVIEW OF RPL

RPL is a reactive distance vector routing protocol developed
by the Internet Engineering Task Force (IETF) to overcome
the problems of Low-power and Lossy Networks (LLNs). It
is primarily designed for static lossy networks. It operates on
the principle of Destination Oriented Cyclic Graph (DODAG).
To form the network topology, a DODAG root broadcasts a
first DODAG Information Object (DIO) message to non-root
nodes. Thus, when a non-root node wants to join a DODAG,
it sends a first DIO message including its rank, identifier and
version number of the requested DODAG. On the way to the
requested DODAG, each traversed intermediate node updates
its view of the topology. This DODAG version number allows
the DODAG roots to reset the routing information and starts
the DODAG creation process from scratch. Also, each time a
non-root node receives a DIO message with a different version
number than the previous one, it resets all information and
restarts the process of selecting the preferred parent [2].

The process of sending DIO messages is periodic and
regulated by the trickle timer algorithm [3]. This algorithm
is integrated in RPL to control the DIO messages sending
rate in order to minimize the network routing load and thus
save energy. However, it has been found that variations in
link quality can lead to a long convergence period or sub-
optimal routes. Indeed, if after a certain time, the node has
received enough coherent DIO messages from its neighbors,
it can increase exponentially the DIO message sending period
until it reaches a maximum value called Imax. Otherwise, it
reduces to a minimum value called Imin in order to encourage
the dissemination of new information.

It is important to notice that DIO messages are not the
only control messages. There is also DODAG Information
Solicitation (DIS), which is used by nodes that wishe to
have information on available routes. We also have DODAG
Advertisement Object (DAO) that child nodes send to a parent
node as a membership request and when the parent accepts
the request, it sends the DAO-Acknowledgement (DAO-ACK)
to the child. However, these messages alone do not allow
the election of the preferred parent. Thus, the designers of
the RPL protocol have implemented two objective functions.
They define the routing metrics and the way they is applied to
compute the rank and the selection of the preferred parents.
The first one is the objective function 0 (OF0) [4], which
allows the selection of the path with the lowest rank toward the
route. The second is the Minimum Rank Hysteresis Objective

Function (MRHOF) [5] the used to select best path according
to the number of re-transmissions or the number of hops and
energy.

III. RELATED WORK

In this section, we present and discuss existing techniques
for traffic load balancing and energy consumption optimization
in WSNs.

In [6], Farshid H et al. present an algorithm to identify
the quality of all the shortest paths toward the sink using
spatio-temporal correlations and constraints-based program-
ming techniques. These allowed to fairly distribute the energy
consumption for all nodes in the same rank. However, given
the complexity of the exploited spatio-temporal correlation, it
could lead to an additional energy consumption.

Ghaleb et al. [7] have designed an objective function to
optimize routing load by taking into account the number of
children of potential parent nodes. They extended the DIO
message with a field, namely, the number of children nodes.
Thus, when receiving DIOs, a child compares the number of
children of each parent and chooses as parent the one with
the lowest number of children. Their proposed approach is
not always efficient. The number of one-hop children does
not always reflect the data load to be passed to the parent. It
is better to take into account the traffic load to the leaf nodes.

In order to increase the stability of the network and extend
its lifetime, Iova et al. in [8] have improved the standard
Expected Lifetime (ELT) [9] metric to detect bottleneck nodes.
The authors estimate the amount of traffic that each node
could carry for an fair distribution of the traffic load. However,
the proposal is only compared to single and multiple path
ETX metric and ELT standards. To further optimize energy
consumption, the authors should determine the possible paths
towards the sink as a function of the node’s traffic load.

Lamaazi et al. [10] have addressed shortcomings associated
with the exploitation of singular metrics and proposed a
new objective function exploiting a composite metric (ETX,
energy consumption and transmission delay). The evaluation
and determination of each parameter is quite delicate and may
lead to an additional energy consumption cost.

Nassiri et al. [11] proposed a composite metric to efficiently
select preferred parents. This proposal consists in forming
DoDAGs using the Received Signal Strength Indicator (RSSI)
and the metric in DIO messages. To select links with lowest
traffic load and lowest latency, they exploit the upstream load
estimate and superframe distance. However, the exploitation
of DIO and beacon-enabled message at the same time could
induce a significant additional routing overhead.

Pereira et al. [12] first proposed a new objective function
that helps to discover all potential paths and then selects
the preferred parent based on energy. The proposed approach
consists in estimating the energy consumed by a node during
the transmission and packet re-transmission phase. Then, on
the Network Interface Average Power (NIAP), they determined
the rank of the potential parent. To optimize the energy
consumption, the authors opted to update that metric before
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updating the tickle timer. However, the estimation made by
NIAP is not adaptive because, in some cases, it can not support
all the load.

Authors in [13] present a new way to elect cluster heads.
Their technique allows to select among several candidate
nodes, the one with the smallest distance from the sink and
in case of same distances, the one with the highest residual
energy. Then by exploiting the Voronoi diagram [14] and the
probabilistic perception model, nodes are distributed among
clusters. Finally, these nodes will coordinate data sending
according to the members of each cluster via Time Division
Multiple Access (TDMA). However, nothing has been said
about time slot allocation according to the amount of data per
cluster and its effect on the network performance.

Sampayo et al. [15] have proposed a technique of duty
cycling to optimize energy consumption in the network. When
an application wants to send packets, it broadcasts control
messages with an unique identifier. Then, upon receipt the
message, it compares its rank with the previous one. a node
wakes up if the rank of the received message is higher than
the previous one. A few moments after sending the control
message, the source node broadcasts its data packets. Then,
it goes into standby mode and starts a timer to wake up and
receive the acknowledgment message. The drawback here is
that un-synchronized sleep and wake-up of nodes can cause
packet loss leading to re-transmissions.

In [16], Shah et al. proposed a scheduling algorithm for
connectivity and node coverage. Then, they balanced the
power consumption of the WSNs nodes using the duty cycle
technique. To ensure continuous operating of the network, the
authors divided the network life into cycles. At the end of each
cycle, nodes are allowed to send data with statistics on the
different operations to the receiving node. The performance
evaluation with ns-2.34 simulator show that the approach
outperforms some existing works in terms of energy efficiency.
However, their metrics are unrealistic. Since, allowing each
node to consume the same amount of energy or imposing
an energy threshold is almost impossible. Because, there are
nodes that are only within the coverage range of a specific
node.

To fairly distribute traffic load and reduce frequency of
parents switching, Wang et al. [17] proposed a QoS based
method. As QoS metric, they combined the ETX and Packet
Transmission Rate (PTR) parameters. Thus, for a node to
change its parent, the difference in metrics between it and
its current parents must be greater than a defined hysteresis
threshold. However, the need to calculate and compare metrics
each time a node wishes to change parent shows that the
solution will incur an additional energy cost.

The authors in [18] designed a new load balancing routing
based on objective function that works as follows. First, this
function, exploit the ETX metrics to select best parent node.
Then, they used the Packet Re-transmission Rate (PTR) metric
to select among these parent nodes the one with the lowest
PTR value. However, the PTR creates fluctuations. Also, flow
metric is more complex and does not reflect the total number

of flows in a node. It does not take into account the numbers
of sub-children of a child node in the choice of the parent.

The related work shows that several approaches are pro-
posed in the literature to optimize energy consumption in
LLNs networks. The main drawback of these proposed ap-
proaches are that, they does not take into account all upstream
children when selecting the preferred parent. Also, these
proposed approaches lack of method to fairly distribution the
traffic load amount parent nodes.

Load balancing techniques based on selecting the preferred
parent with the fewest children does not take into account all
upstream children when selecting the preferred parent. Indeed,
when selecting parent, it is better to choose a parent that has
less children and its children also have less children.

IV. OUR PROPOSAL

A. Number of children based algorithm

The proposed load balancing routing protocol is based on
a composite metrics that combines the ETX metric and the
number of children. The protocol has two phases: (i) the
network construction and the metric designs phase and (ii)
the network optimization phase. In this section, we describe
in details these two phases.

1) The network construction and the metric design phase:
This phase allows the RPL DODAGs construction and the
initialization of the routing metric values. The different steps
are presented as follows:

1) At the starting of the network, nodes exploit the ETX
metric to form DODAGs;

2) Each node periodically broadcasts DIO messages.

3) Nodes receiving the DIO messages may select the trans-
mitting one as its parent toward the sink;

4) Each node evaluates the value of its metric by summing
the child metric (the metric, which counts the weight
of all upstream nodes from it) communicated by its
children. This information is carried by the DIO message
and helps parent nodes to have an updated state of its
children including the number of children of each child.

Unlike most RPL improvements that take into account the
number of children, our approach allows to consider the actual
weight of a each child. Indeed, instead of counting a child as
weight 1, we take into account its children and grandchildren
(more than one hop children of the parent). Therefore, for a
given parent node, the children will not have the same weight.

2) The network optimization phase: This phase will permit
to fairly distribute the traffic load of each intermediate node
toward the sink and works as follows:

1) if a child node receives DIOs messages from multiple
parents, it compares the received values of the metric
(that has defined early) and selects the parent with the
lowest metric value;

2) then, for each node, a DAO message including its weight
(its number of children) is transmitted for the selected
parent;
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3) to avoid fluctuations, a child node can only move to a
new parent if the metric value of this parent have two
(02) units greater than the old parent;

4) upon receipt of DAO message, the parent node sends a
DAO-Ack message to the child node if its membership
request is accepted.Then, the parent node increments the
number of its children by the weight of this accepted
child. The weight of a node is the number of children
using it as an intermediary to reach the sink;

5) To have an updated number of children of each parent,
a timer is defined. All children that have not transmitted
data to the parent node will be removed after the
expiration of the timer. So the parent node decrement
its weight by the weight of disconnected node;

6) Each time a node receives a DIO message then restart
the process from step 1.

B. Analytical study of the performance of our proposal com-
pared to the ETX metric and to the number of children metric

In our evaluated scenarios, nodes have the same packet
generation rate of 5 packets each 10 minutes per nodes. Figure
1 represents a network scenario where 6 children nodes (4, 5,
6, 7, 8 and 9) have possibility to choose a parent node among
the three nodes that are (1, 2, 3) as the next hop toward the
sink. In this scenario, the selection of parent node is based
on the link quality metric. Thus, upon receipt of the DIOs,
nodes (6, 7, 8 and 9) select node 2 as the preferred parent
because it is the best according to the ETX metric. This will
create unbalance load because the number of children of node
2 is 7 when nodes 1 and 3 have 3 and 2 respectively. As a
consequence, node 2 will run out of energy more quickly than
the others.

we supposed that the only obstacle for the communication
is the distance. Node 2 is the nearest parent. In the second
scenario, Figure 2, parent node selection is based on the
number of children. Here, upon receiving the DIOs including
the number of children and after comparing its DIOs, nodes 4
and 5 select node 1 as their parent, node 6 and 7 select node 2
as their parent, and nodes 8 and 9 select node 3 as their parent
toward the sink. If we evaluate the load on the basis of the
number of children metrics only, we notice a fair distribution
of the routing load. Because each of parent nodes 1, 2 and 3
have 2 children. Respectively node 4 and 5 for parent 1, nodes
6 and 7 for parent 2 and nodes 8 and 9 for parent 3.

However, the application of this metric results in load
unbalance because, in the Figure 2, node 2 support 5 children
when nodes 1 and 3 have 4 and 3 children respectively. Doing
so, the parent node with the lowest number of children will be
more selected by children that increased its number of children
(including grandchildren). As its number of children increased
it may be overloaded and can quickly run out of energy.

In the third scenario, Figure 3, we have exploited the number
of children of the child metric during the preferred parent
selection phase. The results show that the data traffic is fairly
distributed between the three intermediate nodes 1, 2 and 3.
This result is due to the fact that parent nodes ( 1, 2 and 3) have

exactly the same number of one hop children (02) parent nodes
that are one hop away from the sink and the same number of
two hop children (04) nodes that are upstream of the parent
node. In this scenario, all nodes will have to transmit the same
number of packets. As a result, all parent nodes will consume
the same amount of energy and the network lifetime will be
extended.

The results of the analytical evaluations show that the data
traffic of scenario 3 is fairly distributed among the three parent
nodes. As the parent nodes have the same traffic load, their
energy depletion will be similar and the network lifetime
can be extended. So the proposed approach optimize the
energy consumption compared to the approach based on ETX
metric [19] and the number of children metric [20].

Fig. 1: Network exploiting the ETX metric.

Fig. 2: Network exploiting the number of children metric

TABLE I: LOAD OF DIFFERENT NODES ACCORDING
TO ROUTING APPROCH

Nodes/Protocols ETX Number of children Node Weight
1 4 α 6 α 6 α
2 11 α 7 α 6 α
3 3 α 5 α 6 α
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Fig. 3: Network exploiting the number of children of child
metric

For simplicity and ease of understanding, we assume in
our scenario that each node periodically sends 5 packets each
10 minutes during 30 days. Also, in the current scenario,
packets are not treated by intermediate nodes, they are directly
forwarded to the sink node. During the evaluation period, each
node generates 21600 packets ((5 packets∗ 30 days∗ 24 hours∗
60 minutes)/ 10 minutes = 21600 packets) that we call α.
The Table 1 presents analytical result according to the pre-
sented packet generation rate. According to the results pre-
sented in Table 1, we notice that with ETX metric node 1 has
receive 4α packets while node 3 has 3α and node 2 has 11α.
So, node 2 need to transmit three times more than node 1 and
3, thus it will run out of energy more quickly than the two
other. This will create the network partitioning. If we consider
the number of children protocol we find a slight improvement
compared to the ETX metric. Node 1 has to transmit 6α data
packet, node 2 has 7α data packet to transmit and node 3
has 5α data packet. However, with our approach, nodes 1,
2, 3 transmit approximately the same amount of data packet,
which is 6α. As the energy consumption is proportional to the
number of data transmitted. Our proposal is better because in
the same time period the nodes consumed the same amount
of energy.of the network.

V. CONCLUSION

WSNs are increasingly being used in everyday life and
are proving to be an effective solution for data collection.
But, the fact that sensors nodes are powered by low capacity
batteries limits network lifetime. Also, for the reason that these
nodes communicate with the sink on multiple hops, lead to an
inequitable energy consumption. Nodes near the sink wastage
their energy faster.

Effective energy consumption optimization solution consti-
tute a real challenge for the efficiency of these networks.

In this paper, we first highlighted the shortcomings of
works on traffic load optimization in WSNs. Then, we pro-
posed a new approach for parent selection mechanism. In

our approach, a node takes into account all other nodes
soliciting intermediate services from the target parent in its
next-hop selection process. Finally, we performed an analytical
evaluation on a given scenario. The results show that our
approach improves load balancing in these networks.

In future work, we will carry out an exhaustive evaluation
with several parameters and embedded tests in various sce-
narios to confirm these trends and the impact on performance
parameters such as PDR, end-to-end delay.

REFERENCES

[1] T. Winter et al., “RPL:IPv6 Routing Protocol for Low-Power and Lossy
Networks,” rfc 6550, 2012, pp.1-157.

[2] N. Guan et al., “Delay compensated asynchronous adam algorithm for
deep neural networks,” 2017 IEEE International Symposium on Parallel
and Distributed Processing with Applications and 2017 IEEE Inter-
national Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), IEEE, 2017, pp. 852-859,.

[3] P. Levis et al., “The trickle algorithm,” Internet Engineering Task Force,
RFC6206, 2011.

[4] Thubert and Pascal, “Objective function zero for the routing protocol
for low-power and lossy networks (RPL),” pp. 1-14, 2012.

[5] O. Gnawali et al., “The minimum rank with hysteresis objective func-
tion,” RFC 6719, 2012, pp. 13.

[6] F. H. Bijarbooneh et al., “Energy-efficient sensor selection for data qual-
ity and load balancing in wireless sensor networks,” 22nd International
Symposium of Quality of Service (IWQoS), IEEE, 2014, pp. 338-343.

[7] B. Ghaleb et al., “Load Balancing Objective Function in RPL draft-
qasem-roll-rpl-load-balancing-00,” 2017, pp.16.

[8] O. Iova et al., “Exploiting multiple parents in RPL to improve both
the network lifetime and its stability,” International Conference on
Communications (ICC), IEEE, 2015, pp. 610-616.

[9] O. Iova et al., “Improving the network lifetime with energy-balancing
routing: Application to RPL,” 7th IFIP Wireless and Mobile Networking
Conference (WMNC), IEEE, 2014, pp. 1-8.

[10] H. Lamaazi et al., “A comprehensive survey on enhancements and
limitations of the RPL protocol: A focus on the objective function,”
Ad Hoc Networks 96, 2020, pp. 102001.

[11] E. M. Ahrar et al., “RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks,” rfc, 6550,2012, pp.1-15.

[12] H. Pereira et al., “Increased Network Lifetime and Load Balancing
Based on Network Interface Average Power Metric for RPL,” IEEE
Access 8, 2020, pp.48686-48696.

[13] S. R. Samal et al., “An Energy Efficient Head Node Selection For
Load Balancing In A Heterogeneous Wireless Sensor Network,” 52nd
Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018,
pp. 1428-1433.

[14] K. Hoff et al., “Interactive motion planning using hardware-accelerated
computation of generalized Voronoi diagrams,” Proceedings 2000 ICRA,
Millennium Conference, IEEE International Conference on Robotics
and Automation, Symposia Proceedings (Cat. No. 00CH37065), Vol.
3. IEEE, 2000, pp. 2931-2937.

[15] Sampayo, L. Sebastian , Julien Montavont, and Thomas Noël, “LoBaPS:
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Abstract—In this paper, we review the state-of-the-art 

research studies to present the potential of small cells to address 

the high capacity demands of in-building users in mobile 

networks. In doing so, we explore existing works in three major 

directions toward improving the network capacity, including 

spectrum accessibility, spectral efficiency improvement, and 

network densification. It is shown that the exploitation of the 

Cognitive Radio technology to improve spectrum utilization and 

the 3-Dimensional (3D) spatial reuse of millimeter-wave spectrum 

with in-building multiband-enabled ultra-dense small cells to avail 

additional spectrum using Dynamic Spectrum Sharing can 

address enormous capacity demand in indoor mobile networks.  

Keywords—3D; small cell; network capacity; in-building; 

millimeter-wave; review; mobile network.   

I. INTRODUCTION 

A. Background      

In typical cellular mobile networks, a major portion of the 

data is generated by indoor users at high data rates to support 

rich multimedia services on mobile phones, particularly in 

urban high-rise buildings, many of which encompassing several 

hundreds of apartments. Due to the presence of high external 

wall penetration loss of a building, the scarcity of available 

system bandwidth below 3 GHz, and a limit to the maximum 

transmission power to avoid excessive interference, serving this 

large amount of indoor data at a high rate with an outdoor 

Macrocell Base Station (MBS) is difficult. Hence, it now 

becomes inevitable how to address indoor high data rates and 

enormous capacity demands. 

The received signal capacity at a receiver is a function of 

the distance from the transmitter and available spectrum 

bandwidth. The lower the distance and higher the spectrum 

bandwidth, the better the received signal capacity. The distance 

can be lowered by reducing the cell size so that the transmitter 

and receiver are as close in distance as possible. Figure 1 shows 

the formation of small cells each having a radius r operating at 

the spectrum bandwidth of b from a large macrocell having a 

radius R operating at the spectrum bandwidth of B. 

Clearly, it can be observed that the reduction in the 

macrocell coverage into a number of smaller ones allows 

reusing the same spectrum (B where B=b) spatially (an indirect 

impact toward the spectrum extension), resulting in achieving 

more capacity over a certain area (i.e., S MC x C  where MC

and SC  denote, respectively, the macrocell capacity and the 

total small cell capacity, and x denotes spectrum reuse factor, 

which is 7 in Fig. 1), assuming that the Signal-to-Interference-

plus-Noise-Ratio (SINR) is the same for both the macrocell and 

small cells.  

Note that a small cell is a cellular radio access node that 

provides small coverage (typically in the order of 10 meters) at 
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Figure 1. Formation of small cells from a large macrocell. 

low power in both licensed and unlicensed spectrum bands to 

serve its users' mobile and Internet services. Small cells can be 

deployed by either users or network operators. Operators use 

them to extend their networks, particularly, to cover dense 

urban areas, where the presence of several high-rise buildings 

is a usual scenario, to provide a good signal quality. Femtocells 

are examples of small cells, and we use the terms “small cell” 

and “femtocell” interchangeably. Hence, because of a small 

coverage and a low transmission power, deploying Small Cell 

Base Stations (SBSs) within buildings as shown in Fig. 2 is 

considered an effective approach to serve such a large amount 

of indoor traffic at a high data rate. 

 

Figure 2. In-building small cell networks. 
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where LC  ,   , B  , rP  , N  , and TI   denote, respectively, 

achievable capacity, spectrum reuse factor, available spectrum 

bandwidth, received desired signal power, noise, and received 

total interference signal power. 

observed that the network capacity can be improved mainly by 

addressing three directions, including spectrum accessibility, 

spectral efficiency improvement, and network densification. 

These are shown in a network capacity improvement triangle in 

Fig. 3 along with three directions. Corresponding enabling  

Spectrum 

Accessibility   

Network 

densification 

Spectral Efficiency 

Improvement 

Network Capacity 

Modeling in-building small cells
Horizontal densification 
Vertical densification 
Spatial spectrum reuse Direct approach 

(Spectrum extension)

Indirect approach
(Dynamic spectrum sharing)

Cognitive Radio 
Interference management

 

Figure 3. Network capacity improvement triangle. 

technologies to improve network capacity indoors using small 

cells deployed in a building are also shown along each direction. 

B. Related Work 

Numerous existing research studies have already addressed 

the enabling technologies along with the three directions [1]-

[13]. For example, Saha [1] and Saha and Aswakul [2] have 

addressed the modeling of in-building small cells in the 

Millimeter-Wave (mmWave) and microwave spectrum bands, 

respectively. By deducing the minimum distance between co-

channel small cells in both intra-floor and inter-floor levels 

subject to satisfying predefined interference thresholds, a 3-

Dimensional (3D) cluster of small cells has been defined such 

that the same spectrum can be reused in each 3D cluster of small 

cells within a building. It has been shown that both horizontal 

densification of small cells on each floor between adjacent 

buildings, as well as vertical densification of small cells 

between floors within each building, can achieve high capacity 

and Spectral Efficiency (SE) indoors. 

Further, Saha [3] has presented how to realize numerous in-

building SBS architectures to enable numerous Dynamic 

Spectrum Sharing techniques by varying the number of 

physical transceivers as well as the number, amount, and 

characteristics of spectra per SBS. Further, using game theory, 

Kamal et al. [4] have presented inter-operator dynamic 

spectrum access (DSA) algorithms. Furthermore, by allowing 

both operators to share a fraction of their licensed spectra, Joshi 

et al. [5] have presented DSS with a view to improving their 

profit gain, as well as fairness.  

Besides, the authors in [6]-[13] have addressed Cognitive 

Radio technology to address spectrum utilization. More 

specifically, Saha [6] has addressed an interweave spectrum 

access technique. Moreover, underlay spectrum access 

techniques by Saha [7], Khoshkholgh et al. [8], and Liang et al. 

[9], whereas hybrid interweave-underlay spectrum access 

techniques by Saha [10], Khan et al. [11], Zuo et al. [12], and 

Mehmeti et al. [13], have been addressed. It has been shown in 

[6]-[7], [10] that each spectrum access can improve the average 

capacity and SE when operating individually, and the hybrid 

interweave-underlay technique provides the best average 

capacity and SE performances of all [10]. Hence, though 

studies in the context of in-building small cells that explore the 

above three directions of network capacity improvement are 

essential, no such study is not obvious in the existing literature.  

C. Contribution  

In this paper, we address this gap by exploiting in-building 

small cells along these aforementioned three directions to 

achieve the high indoor capacity demand of existing and 

upcoming mobile networks. In doing so, we consider reviewing 

mainly the research works in [1]-[3], [6]-[7], [10]. 

Consequently, contents in this paper, in terms of texts, figures, 

equations, and other forms, can be found merged partly or fully 

with the above works. For interested readers, please refer to the 

relevant works for any sort of further information. References 

other than the above works are cited in the appropriate places, 

wherever used.    

D. Organization 

The paper is organized as follows. In Section II, spectrum 

accessibility is discussed under both direct and indirect 

approaches. Section III covers spectral efficiency improvement 

techniques, particularly, interweave, underlay and hybrid, 

spectrum access approaches. In Section IV, in-building network 

densification and spectrum reuse strategies are presented. 

Performance results based on [1]-[3], [6]-[7], [10] along three 

directions toward achieving high in-building capacity are 

evaluated in Section V. We conclude the paper in Section VI. 

A list of abbreviations is given in Appendix I.   

II. SPECTRUM ACCESSIBILITY 

Because spectrum bands below 3 GHz are almost occupied, 

the high-frequency mmWave spectrum bands have already 

been considered to address the high capacity demand of Fifth-

Generation (5G) and beyond mobile systems, particularly, 

indoors within multistory buildings. In this regard, to address 

the massive deployments of small cells to provide high data 

rates at a short distance, the short-range and the availability of 

a large amount of mmWave spectrum are promising, 

particularly in urban indoor environments. Available spectrum 

for a Mobile Network Operator (MNO) can be increased in two 

major ways as follows: 

 Direct approach: by adding (licensing) new spectrum 

statically and   

 Indirect approach: by sharing used spectrum dynamically/ 

opportunistically. 

In the direct approach, a new licensed spectrum can be 

added directly to a mobile system using techniques such as 

Carrier Aggregation (Fig. 4), be it contiguous or noncontiguous. 

However, the traditional direct approaches to extend spectrum 

are no more effective due to the scarcity of radio spectrum 
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availability, particularly below 3 GHz [14], as well as a huge 

cost of licensing spectrum. This asks for exploiting indirect 

approaches to address ever-increasing indoor high data rates 

and capacity demands for MNOs. 

In the indirect approach, the spectrum already used by a 

system (primary) can be shared dynamically or 

opportunistically by another system (secondary) subject to  

. . .

f

fa fb+

faLicensed spectrum Licensed spectrum fb

fa

Carrier Aggregation 

fb

 

Figure 4. Spectrum access using the Carrier Aggregation approach. 

satisfying the condition that the primary system is not affected 

due to sharing. Such an approach can be termed Dynamic 

Spectrum Sharing (DSS). Small cells indoors can play a crucial 

role in DSS.  

       Based on the number of physical transceivers as well as the 

number, amount, and characteristics of operating spectra of an 

SBS, several small cell base station architectures can be 

realized to address numerous DSS approaches [3]. More 

specifically, in [3], by enabling SBSs with a single-/multiple-

transceiver and operating them at either a single or multiple 

licensed/unlicensed spectra of homogeneous/ heterogeneous 

systems, a total of nine SBS architectures are exploited to 

realize numerous DSS approaches, including Co-Channel 

Shared Access (CSA), Licensed Shared Access (LSA), 

Unlicensed Shared Access (ULA), Authorized Shared Access 

(ASA), Co-primary Shared Access (CoPSA), and Licensed 

Assisted Access (LAA).  

      For convenience, a multi-transceiver multiband enabled 

SBSs operating in the licensed and unlicensed spectrums is 

shown in Fig. 5. One of the transceivers of an SBS operates at  

...

...

...

...

Fl,1+f2+Fl,3+,…,+Fl,xm+

Ful,1+Ful,3+,…,+Ful,xm

SBS 

 

Figure 5. Type 9 SBS.  , ,1 ,2 ,xm, ,...,l x l l lF F F F l,xF and 

 , ,1 ,2 ,xm, ,...,ul x ul ul ulF F F F ul,xF denote, respectively, a set of licensed 

spectra of other systems than any mobile system (e.g., satellite systems) and a 

set of unlicensed spectra (e.g., 60-GHz, 5-GHz, and 2.4-GHz) [3]. 

the spectrum of its own MNO, the second transceiver operates 

at the licensed spectrum of a heterogeneous system (e.g., a 

satellite system), and the third transceiver operates at an 

unlicensed spectrum (e.g., 60-GHz unlicensed spectrum) using 

multiple transceivers. Hence, transceiver 1 of an SBS and the 

spectrum of the MBS of its MNO can realize CSA, transceivers 

1 and 2 of the SBS can realize LSA, and transceivers 1 and 3 of 

the SBS can realize LAA [3]. 

To avoid Co-Channel Interference (CCI) when sharing the 

licensed spectrum of homogeneous/ heterogeneous system, 

Almost Blank Subframe (ABS) based Enhanced Intercell 

Interference Coordination (eICIC) based on the following 

principle: An SBS architecture can be configured such that it 

can operate only during non-ABSs per ABS Pattern Period 

(APP) as shown in Fig. 6 is applied to any transceiver of an SBS 

depending on its operating spectrum. An ABS is a Transmission 

Time Interval (TTI) during which no data signal is transmitted  

TAPP1

F
re

q
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H

z)

.  .  .  . .  .  . 

180 
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Time (ms)

An ABS A non-ABS

1 ms

 

Figure 6. An illustration of the ABS-based eICIC technique [3]. TAPP1 and 

TAPP2 denote APP 1 and APP 2, respectively. 

except for some control signals such as broadcast and 

synchronization signals. An SBS can be scheduled at the same 

frequency as that of another system only during non-ABSs per 

APP [3]. Note that for an unlicensed band, no CCI is considered. 

III. SPECTRAL EFFICIENCY IMPROVEMENT 

MNOs in a country facing challenges from enabling 

efficient utilization of its available licensed spectrum. This is 

because the user traffic demand of different MNOs in a country 

varies abruptly over time and space such that the demand for 

the required amount of spectra for different MNOs varies 

accordingly. This causes a great portion of the available 

spectrum allocated to each MNO in a country to be left unused 

or underutilized either in time or space. In recent times, 

Cognitive Radio (CR) has appeared as an enabling technology 

to address this spectrum under-utilization issue. In CR, 

spectrum access is a major function, which prevents collisions 

between primary User Equipments (UEs) and Secondary UEs 

(SUs) to allow sharing the licensed spectrum of one MNO with 

another to increase its effective spectrum bandwidth, resulting 

in improving its spectral efficiency to serve high capacity. 

Based on how the collisions between primary and secondary 

UEs are prevented while accessing any spectrum, there are 

three major categories of spectrum access techniques in CR 

systems, including interweave, underlay, and overlay. In this 

paper, we limit our focus on studying interweave and underlay 

spectrum access techniques.  

In the interweave model, the unused spectrum in time, 

frequency, and geographic location of licensed primary UEs 
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(PUs) can be shared opportunistically by SUs in a dynamic 

shared-use basis without interfering PUs, for example, when 

PUs are inactive [15]. To find an idle spectrum of PUs, SUs 

need to be able to sense the used spectrum of PUs. Once sensed 

idle, SUs can transmit at the maximum power. In [6], an 

Interweave Strategy Based Shared-Use (ISSU) model for the 

dynamic spectrum access of licensed 28-GHz mmWave 

spectrum of one MNO to another under an in-building small 

cell scenario in a country has been proposed and stated as 

follows. The licensed mmWave spectrum of one MNO, i.e., 

primary-MNO (p-MNO) can be allowed to share with small 

cells in a building of another MNO, i.e., secondary-MNO (s-

MNO) only if no UE of p-MNO is present inside the 

corresponding building of small cells of s-MNO to avoid co-

channel interference between UEs of p-MNO and s-MNO. If 

otherwise, no spectrum of p-MNO can be shared with in-

building small cells of s-MNO [6].   

However, in underlay access, SUs can simultaneously 

access the spectrum of PUs at a reduced transmission power to 

serve its users subject to satisfying the interference threshold 

set by PUs. Unlike the interweave access, the underlay access 

does not need any spectrum sensing. However, it suffers from 

the reduced transmission power of SUs to limit CCI to PUs. In 

[7], an Underlay Cognitive Radio Spectrum Access (UCRSA) 

technique for the dynamic spectrum access of licensed 28 GHz 

mmWave spectrum of one MNO to another under in-building 

small cell scenario in a country has been proposed and stated as 

follows. The licensed 28 GHz mmWave spectrum of one MNO 

(i.e., p-MNO) can be allowed to share with small cells in a 

building of another MNO (i.e., s-MNO) subject to operating 

each small cell of the s-MNO at a reduced transmission power 

at any time irrespective of the existence of a UE of the p-MNO 

within the coverage of the corresponding small cell. The 

reduced transmission power is varied in accordance with the 

predefined interference threshold set by the p-MNO [7].  

Though both interweave and underlay have pros and cons 

as aforementioned, the combination of these two spectrum 

accesses can maximize the SE. More specifically, SUs can 

explore interweave access when the spectrum of PUs is idle and 

the underlay access when the spectrum of PUs is busy. In [10], 

a hybrid interweave-underlay spectrum access technique for the 

dynamic spectrum access of the licensed 28 GHz mmWave 

spectrum of one MNO to another under an in-building small 

cell scenario in a country is proposed and stated as follows.  The 

licensed 28 GHz mmWave spectrum of one MNO (i.e., p-MNO) 

can be allowed to share with small cells in a building of another 

MNO (i.e., s-MNO) subject to operating each small cell of the 

s-MNO at the maximum transmission power if no UE of the p-

MNO is present, but at a reduced transmission power if a UE 

of the p-MNO is present [10]. The reduced transmission power 

is varied in accordance with the predefined interference 

threshold set by the p-MNO.  

IV. NETWORK DENSIFICATION 

SBSs can be deployed both in the intra-floor, as well as the 

inter-floor, level of a building, resulting in an ultra-dense 

deployment of SBSs over a certain area of 2-Dimensional (2D) 

physical space within the coverage of a macrocell. Moreover, 

due to the high penetration losses of mmWave bands through 

external and internal walls and floors in any multi-story 

building compared to low-frequency microwave bands, the 

reuse of mmWave bands can be explored in the third dimension 

(i.e., the height of a multistory building), which results in 

reusing the same mmWave band more than once at the inter-

floor level. In addition, the conventional spectrum reuse 

techniques at the intra-floor level in a multistory building can 

be used to facilitate the reuse of mmWave spectra in ultra-dense 

deployed small cells within the building. 

In [1], a minimum separation distance for the intra-floor 

level and inter-floor-level are expressed numerically for the 28 

GHz mmWave spectrum to define a set to SBSs (also called a 

cluster of SBSs) corresponding to the minimum distances both 

intra-floor and inter-floor levels subject to satisfying co-

channel interference constraints in both levels. The size of a 3D 

cluster of SBSs is then defined such that the same spectrum 

bandwidth can be reused in each cluster of SBSs. Figure 7 

shows an example minimum distance constraint-based 3D 

cluster of SBSs with respect to floor n+1. Region of Exclusions 

(RoEs) for both intra-and inter-floor levels are shown with red  
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Figure 7. Formation of an in-building 3D cluster of SBSs subject to satisfying 

the minimum distance constraints in both intra-and inter-floor levels to reuse 

the same spectrum in a 3D in-building scenario [2]. 

color lines. Green color circles represent Co-channel SBSs 

(cSBSs) and ash color circles represent non-cSBSs. Hence, 

resources can be reused in every 3 SBSs intra-floor level and 

every alternate floor inter-floor level such that a 3D cluster 

consists of 18 SBSs [2]. 

V. PERFORMANCE RESULTS 

      Default parameters and assumptions used for generating the 

following performance responses can be found in the respective 

references cited (i.e., [1]-[3], [6]-[7], [10]). Hence, regarding 
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spectrum accessibility, with extensive simulation and numerical 

results and analyses, it is shown in [3] that the network capacity 

and SE (Fig. 8) can be improved by exploiting an SBS 

architecture to allow more spectrum to be available using the 

DSS technique. SBS architectures, including Types 9, 8, 7, and 

3, give better SE responses than others due to operating in the  

 

Figure 8. SE responses of numerous SBS architectures [3]. 

60-GHz unlicensed spectrum providing better channel 

responses than that of other licensed spectrums. For further 

information, please refer to [3]. 
Regarding SE improvement, by applying the ISSU model in 

[6], it is shown that the average capacity, as well as the SE, 

performances of an MNO (i.e., an s-MNO) are improved by 

about 150% as shown in Fig. 9. Further, by limiting the  

 

Figure 9. Average capacity and SE performance improvement factors for an s-

MNO with applying ISSU for a single building of small cells [6]. 

transmission power of an SBS to 20% of its maximum power, 

it is shown in [7] that the proposed underlay technique (i.e., 

UCRSA) can improve the average capacity and SE of an MNO 

by about 2.67 times what can be obtained by the traditional 

Static Licensed Shared Access (SLSA) where each MNO is 

allocated exclusively to an equal amount of the licensed 

spectrum as shown in Fig. 10 [7]. Furthermore, as shown in Fig. 

11, by limiting the transmission power of an SBS to 20% of its 

maximum power, it is shown in [10] that the hybrid technique 

outperforms both the interweave and underlay techniques when 

each operating individually in terms of SE of an MNO.  

 

Figure 10. Average capacity and SE improvement for an MNO due to 

applying the UCRSA technique over that of the SLSA technique for a single 
building of small cells [7]. 

 

Figure 11. SE improvement factors for an s-MNO due to applying, 

interweave, underlay, and the proposed hybrid inter-weave-underlay 

techniques for a single building of SBSs [10]. 

Finally, regarding the network densification, with extensive 

simulation results in [2], it is shown in Fig.12 that the SE 

increases significantly when employing 3D spatial reuse of the 

 

Figure 12. Impact of applying 3D spatial reuse of mmWave spectra to in-

building small cells on the average SE [1]. 
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same spectrum (i.e., Vertical Reuse Factor (vRF)) to small cells 

within each building as compared to when no reuse is 

considered. Also, in Fig.13, it is shown that the SE improves  

 

Figure 13. Average SE response for numerous 3D spatial reuse factors per 

building with a variation in the number of buildings of SBSs (i.e., hRF) [1]. 

linearly with an increase in Horizontal Reuse Factor (hRF) for 

any value of vRF such that the overall SE improves by a factor 

defined as the product of vRF and hRF, i.e., (vRF×hRF). 

VI. CONCLUSION 

In this paper, we have provided a review on how to explore 

small cells to address the ever-growing high capacity demands 

of indoor users, particularly, in dense urban in-building 

scenarios. In this regard, we have considered exploring major 

three directions toward achieving high network capacity, 

including spectrum accessibility, spectral efficiency 

improvement, and network densification. A set of existing 

papers [1]-[3], [6]-[7], [10] highly relevant to the enabling 

technologies along each direction have been reviewed under an 

in-building scenario to present the potentiality of small cells in 

achieving high capacity indoors. Relevant theoretical 

background in the context of in-building small cells has been 

discussed followed by the performance evaluation of major 

enabling technologies along each direction.  

It has been shown that the following approaches along three 

directions can help achieve an enormous amount of in-building 

capacity, required by the existing, as well as future mobile 

networks.       

 Multi-band multi-transceiver enabled small cells operating 

in the high-frequency millimeter-wave licensed or 

unlicensed spectrum to realize dynamic spectrum sharing 

techniques by exploiting small cell base station 

architectures subject to satisfying co-channel interference 

threshold for the spectrum accessibility,  

 A hybrid spectrum access model (i.e., interweave-underlay 

spectrum access) in Cognitive Radio Networks for the 

spectral efficiency improvement, and  

 Exploiting both the vertical and horizontal spectrum reuse 

in small cells deployed densely within buildings for the 

network densification.   

 

 

APPENDIX I 

A LIST OF ABBREVIATIONS 

Abbreviation  Description  

2D 2-Dimensional 

3D 3-Dimensional 

5G Fifth-Generation 

ABS Almost Blank Subframe 

APP ABS Pattern Period 

BS Base Station 

CCI Co-Channel Interference  

CR Cognitive Radio 

CSA Co-channel Shared Access 

cSBS Co-channel SBS 

DSS Dynamic Spectrum Sharing 

eICIC Enhanced Intercell Interference Coordination 

hRF Horizontal Reuse Factor 

LAA Licensed Assisted Access  

LSA Licensed Shared Access 

MBS Macrocell Base Station 

mmWave Millimeter-Wave  

MNO  Mobile Network Operator 

p-MNO Primary MNO 

PU Primary UE 

RoE Region of Exclusion 

SBS Small Cell Base Station 

SE Spectral Efficiency 

SINR Signal-to-Interference-plus-Noise-Ratio 

SLSA Static Licensed Spectrum Allocation 

s-MNO Secondary MNO 

sSBS Serving SBS 

sSU Serving Small Cell UE 

SU Secondary UE 

TTI Transmission Time Interval 

UE User Equipment 

vRF Vertical Reuse Factor 
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