
ICSEA 2019

The Fourteenth International Conference on Software Engineering Advances

ISBN: 978-1-61208-752-8

November 24 - 28, 2019

Valencia, Spain

ICSEA 2019 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Herwig Mannaert, University of Antwerp, Belgium

Krishna Kavi, University of North Texas, USA

 1 / 241

ICSEA 2019

Forward

The Fourteenth International Conference on Software Engineering Advances (ICSEA 2019), held
on November 24 - 28, 2019- Valencia, Spain, continued a series of events covering a broad spectrum of
software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Software engineering for service computing (SOA and Cloud)

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile and Lean approaches in software engineering

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving productivity in research on software engineering

 Trends and achievements

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2019 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2019. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

 2 / 241

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2019 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2019 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope Valencia provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful city.

ICSEA 2019 Steering Committee

Herwig Mannaert, University of Antwerp, Belgium
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Abo Akademi University, Finland
Radek Koci, Brno University of Technology, Czech Republic
Stephen W. Clyde, Utah State University, USA
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
Christian Kop, Universitaet Klagenfurt, Austria
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Bidyut Gupta, Southern Illinois University, USA

ICSEA 2019 Industry/Research Advisory Committee

J. Paul Gibson, Telecom Sud Paris, France
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Muthu Ramachandran, Leeds Beckett University, UK
Michael Gebhart, iteratec GmbH, Germany

ICSEA 2019 Publicity Chair

Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France

 3 / 241

ICSEA 2019

Committee

ICSEA Steering Committee
Herwig Mannaert, University of Antwerp, Belgium
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Abo Akademi University, Finland
Radek Koci, Brno University of Technology, Czech Republic
Stephen W. Clyde, Utah State University, USA
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
Christian Kop, Universitaet Klagenfurt, Austria
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Bidyut Gupta, Southern Illinois University, USA

ICSEA Industry/Research Advisory Committee
J. Paul Gibson, Telecom Sud Paris, France
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Muthu Ramachandran, Leeds Beckett University, UK
Michael Gebhart, iteratec GmbH, Germany

ICSEA Publicity Chair
Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France

ICSEA 2019 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM), Malaysia
Tamer Abdou, Ryerson University, Toronto, Canada
Muhammad Ovais Ahmad, University of Oulu, Finland
Iftekhar Ahmed, University of California, Irvine, USA
Jacky Akoka, CNAM & IMT, France
Mustafa Al-Hajjaji, pure-systems GmbH, Germany
Saadia Binte Alam, Advanced Medical Engineering Center (AMEC) | University of Hyogo, Japan
Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France
Abdullah Alqahtani, Imam Abdulrahman Bin Faisal University, Saudi Arabia
Hussein Alrubaye, Rochester Institute of Technology, USA
Mohammad Alshayeb, King Fahd University of Petroleum and Minerals, Saudi Arabia
Zakarya Alzamil, King Saud University, Saudi Arabia
Daniel Andresen, Kansas State University, USA
Gilbert Babin, HEC Montréal, Canada
Doo-Hwan Bae, School of Computing - KAIST, Korea
Aleksander Bai, Norsk Regnesentral, Norway
Jorge Barreiros, ISEC (Instituto Superior de Engenharia de Coimbra) / NOVA-LINCS, Portugal

 4 / 241

Bernhard Bauer, University of Augsburg, Germany
Ateet Bhalla, Independent Consultant, India
Mitra Bokaei Hosseini, St. Mary’s University, USA
Kenneth Boness, University of Reading, UK
Mina Boström Nakicenovic, NetEnt, Stockholm, Sweden
Nadia Bouassida, Higher Institute of Multimedia and Informatics, Sfax, Tunisia
Uwe Breitenbücher, University of Stuttgart, Germany
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Fernando Brito e Abreu, Instituto Universitário de Lisboa (ISCTE-IUL), Portugal
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Luigi Buglione, Engineering Ingegneria Informatica SpA, Italy
Carlos Henrique Cabral Duarte, Brazilian Development Bank (BNDES), Brazil
Haipeng Cai, Washington State University, Pullman, USA
Gabriel Campeanu, Mälardalen University, Sweden
José Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Everton Cavalcante, Federal University of Rio Grande do Norte, Brazil
Antonin Chazalet, Orange, France
Fuxiang Chen, Hong Kong University of Science and Technology, Hong Kong
Federico Ciccozzi, Mälardalen University, Sweden
Marta Cimitile, University Unitelma Sapienza of Rome, Italy
Siobhán Clarke, Trinity College Dublin | University of Dublin, Ireland
Stephen W. Clyde, Utah State University, USA
Methanias Colaço Júnior, Federal University of Sergipe, Brazil
Rebeca Cortazar, University of Deusto, Spain
Monica Costa, Politechnic Institute of Castelo Branco, Portugal
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Yanja Dajsuren, Eindhoven University of Technology, Netherlands
Darren Dalcher, Lancaster University Management School, UK
Yuetang Deng, Tencent, China
Vincenzo Deufemia, University of Salerno, Italy
Daniele Di Pompeo, University of L'Aquila, Italy
Themistoklis Diamantopoulos, Aristotle University of Thessaloniki, Greece
Ivan do Carmo Machado, Federal University of Bahia (UFBA), Brazil
Tadashi Dohi, Hiroshima University, Japan
Lydie du Bousquet, Université Grenoble-Alpes (UGA), France
Jorge Edison Lascano, Universidad de las Fuerzas Armadas - ESPE, Ecuador
Holger Eichelberger, University of Hildesheim, Software Systems Engineering, Germany
Simon Eismann, University of Würzburg, Germany
Younes El Amrani, University Mohammed-V Rabat, Morocco
Diana El Rabih, Monty Holding, Beirut, Lebanon
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Romina Eramo, University of L'Aquila, Italy
Farima FarimahiniFarahani, University of California - Irvine, USA
Kleinner Farias, University of Vale do Rio dos Sinos, Brazil
Adel Ferdjoukh, University of Nantes, France
Luis Fernandez-Sanz, Universidad de Alcala, Spain
M. Firdaus Harun, RWTH Aachen University, Germany
Jicheng Fu, University of Central Oklahoma, USA

 5 / 241

Felipe Furtado, CESAR - Recife Center for Advanced Studies an Systems, Brazil
Luiz Eduardo Galvão Martins, Federal University of São Paulo, Brazil
Jose Garcia-Alonso, University of Extremadura, Spain
Michael Gebhart, iteratec GmbH, Germany
Wided Ghardallou, Ecole Nationale d'Ingénieurs de Sousse, Tunisia
J. Paul Gibson, Telecom Sud Paris, France
Pascal Giessler, SYNDIKAT7 GmbH, Germany
Gregor Grambow, AristaFlow GmbH, Germany
Jiaping Gui, University of Southern California, USA
Joe Zhensheng Guo, Siemens AG - Muenchen, Germany
Bidyut Gupta, Southern Illinois University, USA
Konstantin Gusarov, Riga Technical University, Latvia
Nahla Haddar Ouali, Higher Institute of Business Administration of Gafsa, Tunisia
Rachel Harrison, Oxford Brookes University, UK
Shinpei Hayashi, Tokyo Institute of Technology, Japan
Atsuo Hazeyama, Tokyo Gakugei University, Japan
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus, Germany
José R. Hilera, University of Alcalá, Spain
Siv Hilde Houmb, Secure-NOK AS, Norway
Helena Holmström Olsson, Malmö University, Sweden
LiGuo Huang, Southern Methodist University, USA
Jun Iio, Chuo University, Japan
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Shareeful Islam, University of East London, UK
Andrea Janes, Free University of Bozen-Bolzano, Italy
Judit Jász, University of Szeged, Hungary
Kashif Javed, Åbo Akademi University, Finland
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Yasushi Kambayashi, NIT - Nippon Institute of Technology, Japan
Ahmed Kamel, Offutt School of Business | Concordia College, USA
Chia Hung Kao, National Taitung University, Taiwan
Priyanka Karkhanis, Eindhoven University of Technology, Netherlands
Krishna M. Kavi, University of North Texas, USA
Carlos Kavka, ESTECO SpA, Italy
Siffat Ullah Khan, University of Malakand, Pakistan
Hyunju Kim, Wheaton College, USA
Reinhard Klemm, Avaya, USA
Mourad Kmimech, ISIMM | University of Monastir, Tunisia
Takashi Kobayashi, Tokyo Institute of Technology, Japan
Radek Koci, Brno University of Technology, Czech Republic
Mieczyslaw Kokar, Northeastern University, Boston, USA
Christian Kop, Universitaet Klagenfurt, Austria
Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Emil Krsak, University of Žilina, Slovak Republic
Rob Kusters, Eindhoven University of Technology & Open University, The Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA

 6 / 241

Dieter Landes, University of Applied Sciences Coburg, Germany
Jannik Laval, University of Lyon, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Valentina Lenarduzzi, Tampere University of Technology, Finland
Maurizio Leotta, University of Genova, Italy
Zheng Li, University of Concepción, Chile
Panos Linos, Butler University, USA
Peizun Liu, Northeastern University, USA
Yingjun Lyu, University of Southern California, USA
André Magno Costa de Araújo, Federal University of Pernambuco, Brazil
Sajjad Mahmood, King Fahd University of Petroleum and Minerals, Saudi Arabia
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium
Neel Mani, ADAPT Center for Digital Content Technology | Dublin City University, Ireland
Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Alessandro Margara, Politecnico di Milano, Italy
Daniela Marghitu, Auburn University, USA
Beatriz Marín, Universidad Diego Portales, Chile
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Célia Martinie, IRIT, University Toulouse 3 Paul Sabatier, France
Vanessa Matias Leite, Universidade Estadual de Londrina, Brazil
Fuensanta Medina-Dominguez, Carlos III University of Madrid, Spain
Mariem Mefteh, University of Sfax, Tunisia
Jose Merseguer, Universidad de Zaragoza, Spain
Vojtech Merunka, Czech University of Life Sciences in Prague / Czech Technical University in Prague,
Czech Republic
Sanjay Misra, Covenant University, Nigeria
Md Rakib Hossain Misu, University of Dhaka, Bangladesh
Mohamed Wiem Mkaouer, Rochester Institute of Technology, USA
Óscar Mortágua Pereira, Telecommunications Institute | University of Aveiro, Portugal
Mohammad Reza Nami, TUDelft University of Technology, The Netherlands
Marcellin Nkenlifack, University of Dschang, Cameroon
Marc Novakouski, Software Engineering Institute, USA
Roy Oberhauser, Aalen University, Germany
Shinpei Ogata, Shinshu University, Japan
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Flavio Oquendo, IRISA (UMR CNRS) - University of South Brittany, France
Muhammed Maruf Öztürk, Suleyman Demirel University, Turkey
Marcos Palacios, University of Oviedo, Spain
Fabio Palomba, TU Delft, The Netherlands
Mike Papadakis, University of Luxembourg, Luxembourg
Fabiano Pecorelli, University of Salerno, Italy
Beatriz Pérez Valle, University of La Rioja, Spain
Pasqualina Potena, RISE SICS Västerås, Sweden
Rahul Purandare, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), India
Evgeny Pyshkin, University of Aizu, Japan
Rafael Queiroz Gonçalves, Federal University of Santa Catarina, Brazil
Abdallah Qusef, Princess Sumaya University for Technology, Jordan

 7 / 241

Claudia Raibulet, Universita' degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Beckett University, UK
Raman Ramsin, Sharif University of Technology, Iran
Catarina I. Reis, School of Technology and Management - Polytechnic of Leiria, Portugal
Gianna Reggio, DIBRIS - Università di Genova, Italy
Fernando Reinaldo Ribeiro, Polytechnic Institute of Castelo Branco, Portugal
Michele Risi, University of Salerno, Italy
Gabriela Robiolo, Universidad Austral, Argentina
Rodrigo G. C. Rocha, Federal Rural University of Pernambuco - UFRPE, Brazil
Daniel Rodriguez, University of Alcalá, Spain
Colette Rolland, University of Paris 1 Pantheon-Sorbonne, France
Álvaro Rubio-Largo, Universidade NOVA de Lisboa, Portugal
Mehrdad Saadatmand, RISE SICS Västerås, Sweden
Gunter Saake, Otto-von-Guericke-Universitaet, Germany
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Djamel Eddine Saidouni, University Constantine 2 - Abdelhamid Mehri, Algeria
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
María-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Hiroyuki Sato, University of Tokyo, Japan
Sagar Sen, Simula Research Laboratory, Norway
Vesna Sesum-Cavic, Vienna University of Technology, Austria
Istvan Siket, University of Szeged, Hungary
Alberto Sillitti, Innopolis University, Russian Federation
Felipe Silva Ferraz, CESAR School, Brazil
Maria Spichkova, RMIT University, Australia
Fausto Spoto, University of Verona / JuliaSoft Srl, Italy
Sidra Sultana, National University of Sciences and Technology, Pakistan
Mahbubur Syed, Minnesota State University Mankato, USA
Sahar Tahvili, RISE SICS Västerås AB, Sweden
Shigeaki Tanimoto, Chiba Institute of Technology, Japan
Sobhan Yassipour Tehrani, King's College London & Jaguar Land Rover, UK
Valerio Terragni, Università della Svizzera italiana (USI), Lugano, Switzerland
Dhafer Thabet, University of Mannouba, Tunisia
Pierre F. Tiako, Tiako University, USA
Elena Troubitsyna, Abo Akademi University, Finland
Christos Troussas, University of Piraeus, Greece
Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
Masateru Tsunoda, Kindai University, Japan
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences / University of Szeged, Hungary
Vinay Vkulkarni, Tata Consultancy Services, India
Stefan Voget, Continental Automotive GmbH, Germany
Song Wang, University of Waterloo, Canada
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Bingyang Wei, Texas Christian University, USA
Dietmar Winkler, Vienna University of Technology, Austria

 8 / 241

Xusheng Xiao, Case Western Reserve University, USA
Rihito Yaegashi, Kagawa University, Japan
Rohith Yanambaka Venkata, University of North Texas, USA
Guowei Yang, Texas State University, USA
Stoyan Yordanov Garbatov, OutSystems, Portugal
Haibo Yu, Shanghai Jiao Tong University, China
Tingting Yu, University of Kentucky, USA
Saad Zafar, Riphah International University, Islamabad, Pakistan
Michal Žemlička, AŽD Praha / Charles University, Czech Republic
Qiang Zhu, The University of Michigan, Dearborn, USA
Martin Zinner, Technische Universität Dresden, Germany

 9 / 241

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 241

Table of Contents

An Empirical Study of Mutation-Based Test Case Clustering Prioritization and Reduction Technique
Longbo Li, Yanhui Zhou, Yong Yu, Feiyan Zhao, Shenghua Wu, and Zhe Yang

1

A Framework for Robust, Low-Overhead Binary Instrumentation
Amir Majlesi-Kupaei, Danny Kim, Kapil Anand, Aparna Kotha, Khaled Elwazeer, and Rajeev Barua

7

Automatically Checking Conformance on Asynchronous Reactive Systems
Camila Sonoda Gomes and Adilson Luiz Bonifacio

17

An Empirical Evaluation of the Accuracy of NESMA Function Points Estimates
Luigi Lavazza and Geng Liu

24

Metaphor Models in Software Education: An Empirical Study
Evgeny Pyshkin

30

A Practical Approach to Teaching Requirements Engineering in Computing Programs
Anderson Guerra and Julio Furtado

36

Economic Impact of Cloud Computing in the Health System: A Systematic Mapping
Jonathan Santos and Felipe Ferraz

44

SIMON: Semantic Inference Model for Security in Cyber Physical Systems Using Ontologies
Rohith Yanambaka Venkata, Rohan Maheshwari, and Krishna Kavi

49

OpenCL-Generated Optimizing Compiler for FPGA Using ROSE Compiler Infrastructure
Yuichiro Aoki

57

From a Subset of LTL Formula to Buchi Automata
Bilal Kanso and Ali Kansou

61

Towards Component-Based Development of Textual Domain-Specific Languages
Andreas Wortmann

68

An Intermediate Model for the Code Generation from the Two-Hemisphere Model
Konstantins Gusarovs and Oksana Nikiforova

74

Augmenting Fiat Currency with an Integrated Managed Cryptocurrency
Peter Mell

83

Blockchain Use Cases: A Systematic Study 91

 1 / 3 11 / 241

Thiago Lopes Silva, Felipe Silva Ferraz, and Francisco Icaro Ribeiro

Denoising Autoencoder with Dropout based Network Anomaly Detection
Safa Mohamed, Ridha Ejbali, and Mourad Zaied

98

i* (iStar) Security Hierarchy for Cloud Computing
Fiza Saher Faizan, Seemab Latif, and Athar Mohsin Zaidi

104

Implementing a Protocol Native Managed Cryptocurrency
Peter Mell, Aurelien Delaitre, Frederic de Vaulx, and Philippe Dessauw

110

A Joint Encryption-Compression Technique for Images Based on Beta Chaotic Maps and SPIHT Coding
Najet Elkhalil, Rim Zahmoul, Ridha Ejbali, and Mourad Zaied

118

Requirements Traceability in Cyber Physical Systems Using Semantic Inference
Rohith Yanambaka Venkata, Rohan Maheshwari, and Krishna Kavi

123

The Matching Lego(R)-Like Bricks Problem: Including a Use Case Study in the Manufacturing Industry
Martin Zinner, Kim Feldhoff, Rui Song, Andre Gellrich, and Wolfgang E. Nagel

130

Business Intelligence Based Tool Development
Libni Neves, Eric Ferraz, and Alipio Carvalho

141

Training Project Managers to Acquire GSD Soft Skills: A Serious Game
Ruben Marquez, Aurora Vizcaino, and Felix Oscar Garcia

143

Antecedents to Achieve Kanban Optimum Benefits in Software Companies
Muhammad Ovais Ahmad, Anna Rohunen, and Paivi Raulamo-Jurvanen

147

A Critical Review of the Use of Spikes in Agile Software Development
Hussein Al Hashimi and Andrew Gravell

154

Graph-Based Analysis of the Architectural Restructuring Impact on Energy Efficiency
Basma Khil, Adel Khalfallah, and Samir Ben Ahmed

163

On the Realization of Meta-Circular Code Generation: The Case of the Normalized Systems Expanders
Herwig Mannaert, Koen De Cock, and Peter Uhnak

171

An Enhanced Fault Prediction Model for Embedded Software based on Code Churn, Complexity Metrics, and
Static Analysis Results
Safa Omri, Carsten Sinz, and Pascal Montag

177

Incorporating Petri Nets into DEVS Formalism for Precise System Modeling 184

 2 / 3 12 / 241

Radek Koci and Vladimir Janousek

Comparative Evaluation of Input Features Used for Deep Neural Networks to Recognize Semantic Indoor Scene
from Time-Series Images Obtained Using Mobile Robot
Hirokazu Madokoro, Hanwool Woo, and Kazuhito Sato

190

Re-Planning of Bus Timetable Based on Route Search Log to Get on Now
Toshihiko Sasama, Bhattacherjee Rupali, Takao Kawamura, and Kazunori Sugahara

196

Statistical Processing of Delay Time of Public Secondary Traffic and its Application to the Operation Plan
Rupali Bhattacherjee, Toshihiko Sasama, Takao Kawamura, and Kazunori Sugahara

198

Computer Analysis of World Chess Championship Players
Oscar Romero, Lorena Parra, Jose Fernando Cuenca, and Jaime Lloret

200

A Proposal of Descriptive Pattern for Maintainability Requirements
Yuki Sanomachi and Tsuyoshi Nakajima

206

A SysML-based Approach to Requirements Traceability Using BPMN and DMN
Corina Abdelahad, Daniel Riesco, and Carlos Kavka

210

Alignment of Test Driven Development and Relative Correctness-based Development
Marwa Benabdelali and Lamia Labed Jilani

217

Modeling and Verification of Car Parking System
Hadiqa Alamdar Bukhari and Sidra Sultana

223

Powered by TCPDF (www.tcpdf.org)

 3 / 3 13 / 241

An Empirical Study of Mutation-Based Test Case Clustering Prioritization and
Reduction Technique

Longbo Li∗, Yanhui Zhou∗, Yong Yu∗, Feiyan Zhao∗, Shenghua Wu† and Zhe Yang†
∗Department of Computer and Information Science

Southwest University
Chongqing, China

E-mail: {lilongbo iyuyong zfy201809}@email.swu.edu.cn, xiaohui@swu.edu.cn
†Meiyun Zhi Number Technology Co., Ltd.

Guangdong,China
E-mail: {wush18 yangzhe1}@meicloud.com.

Abstract—Regression testing is an important activity to ensure
software quality throughout the software life-cycle. However,
due to the expansion of the software scale, a large number of
test cases are generated in the regression test. In the actual
regression test process, it is impossible for us to execute all the
test cases. In order to save time and improve efficiency, we need
to prioritize and reduce the test cases. In this paper, we propose
a new concept mutation program unit priority that works well
in the prioritization and reduction of test cases. To evaluate our
approach, we designed the experiment and validated it using the
Defects4J data set, which contains the real fault programs. We
experimented with 350 real faults and 550254 developer-written
test cases for Defects4J. The average reduction rate for test
cases is 40%, and the fault detection capability is only reduced
by 1.38%. The results show that the mutation-based test case
prioritization and reduction method improves the effectiveness
of test case prioritization and reduction technique.

Keywords–test case prioritization; regression test; clustering
algorithms.

I. INTRODUCTION

A large number of test cases need to be executed during
the regression test, which makes the regression test process
take a long time. For example, in the era when the application
software version is updated frequently, we urgently hope
that the regression testing can be executed quickly. A recent
study shows that for Apache Geode Test takes 14 hours [1].
Many test case prioritization techniques have been empirically
studied [2][3]. Researchers have created a variety of regression
testing techniques. These include test case selection [4], test
suite minimization [5] and test case prioritization [3].

Most of the existing test cases prioritization technology
mainly depends on the code coverage information, code com-
plexity metrics and expert knowledge. In a lot of empirical
research, based on the code coverage information measurement
was proved to be effective [6]. Using branch, statement, and
mutation programs to study the effectiveness of test case priori-
tization techniques, they found that test case prioritization tech-
niques based on mutation program have the best results [3][6].
We know that the use of hierarchical clustering algorithm
(HCA) to cluster test cases based on code coverage information
has achieved great results in test case prioritization [7]. Thus,
we apply HCA to mutation-based test case prioritization and
reduction.

In this paper, we use HCA to prioritize and reduce test
cases, focusing on mutation program unit priorities and real
fault programs. We believe that the priority of the mutation

program unit in the test case prioritization is different. We
propose the novel concept of the priority of the mutation
program unit and give the calculation method. Based on the
result of the mutation test, we generate the mutation program
unit kill & priority matrix.

To verify the validity of our method, we use the Defects4J
benchmark data set [8], which contains a large number of test
cases written by developers, and Defects4J also contains real
fault programs. The Defects4J data set [8] is widely used by
many researchers in mutation testing, so we use it for our
experiments. Our results show that the mutation-based test case
prioritization and reduction, and use HCA can improve the
effectiveness of test case prioritization and reduction technique.

The empirical research contributions of this paper are as
follows:

• We proposed the novel concept of mutation program
unit priority. For a large number of mutation programs
that has many diverse attributes, and each correspond-
ing mutation program has different priorities.

• Combining prioritization and reduction techniques, we
experimented with 350 real fault programs and 550254
developer-written test cases in Defects4J. The test
cases after prioritization and reduction are 330166.
The average reduction rate for test cases is 40%, and
the fault detection capability only lost by 1.38%.

The rest of the paper is organized as follows. Section II
provides background for mutation-based test case prioritization
and reduction technique. Section III presents a novel definition
of the mutation program unit priority and test case prioritiza-
tion evaluation method. Section IV describes the design of our
empirical evaluation. Section V introduces the results of which
are presented and analysed. Section VI discusses conclusion
and future work.

II. BACKGROUND

In this section, we will introduce the test case prioritization
and test case reduction, and use formally language to describe
the problem of research.

A. Test Case Prioritization
The goal of test case prioritization is to find an ideal test

case execution order that exposes faults as early as possible.
The test case prioritization approach was first mentioned by
[9]. Subsequently, many researchers have carried out related

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 14 / 241

research [2][3][10][11]. The test case prioritization problem
was formally defined by [3].

Definition 1: Test case prioritization problem
Given:
a test suite,TS
the set of permutations of TS, PTS

a function that gives a numerical score for T ′ ∈ PTS,f
Problem:
find T ′ ∈ PTS such that
(∀T ′′)(T ′′ ∈ PTS)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]

In Definition 1, PTS represents all possible orderings of
the given test case in TS, and f represents an evaluation func-
tion that calculates an award value for an ordering T ′ ∈ PTS.
Since we can’t get the fault message during the regression
testing progress, we usually need to consider a surrogate for
fault detection based on the historical information of the test
case. Hoping that early maximization of a certain chosen
surrogate property will result in maximization of earlier fault
detection. In a controlled-regression-testing environment, the
result of prioritization can be evaluated by executing test cases
according to the fault-detection rate [6].

The code coverage information, such as statement coverage
and branch coverage are one of used surrogates in test case
prioritization [3][12]. For example, a test case covering more
statements has higher priority. The mutants are also used
as another surrogate for test case prioritization [13][14]. For
instance, the work in [3] consider the fault expose potential
(FEP)-total approach that prioritize test cases according to the
number of mutants killed by individual test cases, they find
mutation-based test case prioritization techniques work better.
In the process of mutation testing, a large number of mutants
were generated. Donghwan et al. consider that these mutation
programs have diverse attributes [15]. Based on this research,
we propose a novel concept mutation program unit priority.
For more details, we will discuss in Section III.

B. Test Case Reduction
The test case reduction is primarily to remove redundant

test cases from the test case set, which usually do not change
the mutation score in mutation-based test case reduction. For
test case reduction problem, we can’t reduce a test case set to
a minimum set of test cases. The test case set minimization
problem is an NP-complete problem. We try to reduce the test
case set as much as possible without affecting the mutation
score. Mike et al. introduces the relationship between the
mutation score and real faults [16]. They believe that achieving
higher mutation scores improves significantly the fault detec-
tion. Since the redundant mutation program problem is another
area beyond the scope of this paper, we will not explain it in
follow sections.

More formally, we consider the test suite reduction problem
is defined as follows [6]:

Definition 1: Test suite reduction problem
Given:
a test suite, T , a set of test requirements r1, . . . , rn, which

must be satisfied to provide the desired adequate testing of the
program, and subsets of T, T1, . . . , Tn, one associated with

each of the ris such that any one of the test case tj belong to
Ti can be used to achieve requirement ri.

Problem:
Find a representative set, T ′, of test cases from T that

satisfies all ris.
A number of test suite reduction approaches have been

proposed in the literature [17]-[19]. Many researchers let
statement coverage be the kind of test requirement considered,
a reduced test suite that covers the same statements as the
original test suite. Recently, a clustering test case reduction
approach was proposed that reduced test suites only partially
preserve the test requirement of the original test suites [20].
They empirically evaluate this methods that define guidelines
for these to get trade-offs between reductions of in test suite
size and losses of fault-detection capability. They mainly are
concerned with the level of code coverage. In this paper, we
use HCA to prioritize and reduce the test cases. We mainly
focus on the level of program mutation.

III. EMPIRICAL EVALUATION AND MUTATION PROGRAM
UNIT PRIORITY

In this section, we introduce the novel concept of mutation
program unit priority, mutation program unit kill & priority
matrix, test case prioritization evaluation index and HCA.

A. Mutation Program Unit Kill Matrix
In the study of existing mutation-based test case prioriti-

zation problems, all mutation programs are considered to be
equally important in test case prioritization process and no
analysis of the priority of mutants. The minimum mutation
program unit is usually called a mutant. For the mutants
generated by the same mutation operator, we call a large
mutation program unit. Due to the limited space of the paper,
we only discuss the minimum mutation program unit in this
paper. In the future work, we analyze and explain the whole
mutation program unit theory in detail. Recently, The diversity-
aware mutation-based techniques was proposed by [15][21].
They believe that many mutation programs are diverse and
require more test cases to distinguish mutation programs,
which aims to distinguish one mutant’s behaviour from an-
other mutation programs. Obviously, mutation programs have
diverse attributes, and each mutation program has different
priorities. When perform mutation analysis, the test case is
executed into the mutation program unit, it is marked as 1
if the test case kills the mutation program, otherwise it is
marked as 0. For example, Table I show mutation program
unit kill matrix. m0 · · ·m7 show mutation program unit name
and T0 · · ·T4 show test case name.

TABLE I. MUTATION PROGRAM UNIT KILL MATRIX

Test Case Mutation Program Unit (MPU)
Name m0 m1 m2 m3 m4 m5 m6 m7

T0 1 0 1 0 0 1 0 0
T1 1 1 1 0 1 0 0 0
T2 0 1 1 1 1 1 0 0
T3 0 0 1 0 0 0 1 1
T4 0 0 0 0 0 0 0 0

In general, in mutation analysis, we estimate the fault
detection capability of test cases as measured by how many

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 15 / 241

mutation programs are killed. In test case prioritization pro-
cess, we might find such a set of sequences using greedy
algorithm, for instance T2−T1−T0−T3. Because T2 kills the
most mutation programs, it is chosen first. T4 did not kill any
of the mutants, we removed them in the reduction of the test
case. However, we find that m2 is killed by all test case. No
matter how we prioritize it, m2 will be killed when the first
test case is executed. So, only the T3 is in the first executed
in the prioritization, the m6,m7 mutation program units are
killed. In the prioritization process, mutation program units
have different priorities. We should pay attention to mutation
programs that are killed by very few test case. This mutation
program is more difficult to kill.

TABLE II. MUTATION PROGRAM UNIT PRIORITY MATRIX

Test Case Mutation Program Unit(MPU)
Name m0 m1 m2 m3 m4 m5 m6 m7

T0 0.5 0 0 0 0 0.5 0 0
T1 0.5 0.5 0 0 0.5 0 0 0
T2 0 0.5 0 0.75 0.5 0.5 0 0
T3 0 0 0 0 0 0 0.75 0.75

B. Mutation Program Unit Priority
Given a program under test (PUT), after mutation testing,

generated m mutation program units, n test cases, we define an
m×n mutation program unit kill matrix H that represents the
kill information of the mutation program unit. Hij indicates
whether the test case j killed the mutation program unit i.
We formally define this mutation program unit priority weight
Wi(0 < Wi < 1).

Wi = −
∑n

j=1 Hij

n
+ 1 (1)

As for (1) the value of Wi cannot be taken as 0 and 1
because in the prioritization and reduction we removed the
mutation program unit with a value of 0 and 1. We updates
mutation program unit kill matrix, Table II show mutation
program unit priority matrix and m2 is a redundant mutants
by optimizing the weight calculation. Because m2 will must
be killed no matter how we prioritization. For example, we
might find such a set of sequences using greedy algorithm in
test case prioritization, T2 − T3 − T1 − T0. Similarly, in Table
I, we remove T4 from the mutation program unit kill matrix
because it has no ability to kill all mutants.

C. Average Percentage of Fault-Detection
We usually use the Average Percentage of Fault-Detection

(APFD) metric results in test case prioritization [22]. Higher
APFD values confirm faster fault-detection rates. It is simply
and accurately formalized as follows:

APFD = 1− TF1 + · · ·+ TFn

nm
+

1

2n
(2)

where TFi is the first test case position in test case prioriti-
zation among n test cases which detects the ith fault among
m faults. According to mutation program unit priority weight,
we formally define the Average Percentage of Weight Fault-
Detection (APWFD) as follows:

APWFD = 1− W1 × TF1 + · · ·+Wn × TFn∑n
j=1 Wi × n

+
1

2n
(3)

where Wi is a weight as mutation program unit mi. In order to
better help readers understand, we using Table I and II results
to clearly and accurately calculate APFD and APWFD. We use
greedy algorithm to prioritize test case and based on killed the
most mutation program. For example, T2 − T1 − T0 − T3 as
for Table I and APFD is 0.5625. T2 − T3 − T1 − T0 as for
Table II and APWFD is 0.7279. Only from the value of the
result we have at least improved about 16.54%. Because we
do not only consider the most mutants that is killed, but also
consider the mutants that is hard to kill.

D. Hierarchical Clustering Algorithm
The clustering algorithm is an unsupervised learning al-

gorithm that reveals the intrinsic properties and law of data.
We obtain mutation analysis kill information by mutation
analysis tool Major [23] and use Algorithm 1 (shown in Figure
2) generate mutation program unit kill & priority matrix.
Cluster analysis was performed on the generated mutation
program unit kill matrix and priority matrix, and the test
case prioritization and reduction results were evaluated use
APFD and APWFD. After configure data set Defects4J [8], we
firstly checkout our every project program and compile fixed
program. Thus, we use test execution framework and mutation
analysis our fixed program. In Algorithm 1 (shown in Figure
2), T is contain developer-written test case set. The algorithm
takes a developer-written test case set T , a mutation analysis
result set of mutantlog, testMap, killMap, triggerbug as in-
put, and returns a mutation program unit kill & priority matrix.
In Algorithm 1 (shown in Figure 2), killMap represents the
mutation analysis tool kill information. The value of testMap
contain test case ID and name. Matrix information can be
generated by use both information, and test cases that trigger
faults can also be statistically analyzed. But we not conducted
relevant research in this paper.

Figure 1. Hierarchical clustering tree.

Similarly, we choose a HCA, which can well control the
size of clusters after clustering. HCA has achieved great test
case prioritization results in terms of code coverage and expert
knowledge [24][25]. Figure.1 shows the hierarchical clustering

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 16 / 241

tree generated by HCA. The x coordinate represents the name
of the test case, and the y coordinate represents the average
Euclidean distance between test cases. We can easily control
the size of the cluster generated by the HCA, according
to the size of the test case set. Each vertical represents a
cluster. The k is the size of the clusters. We use fast cluster
function and improve prioritization and reduction strategy [26].
Recently, in the clustering prioritization and reduction of test
cases based on code coverage, Carmen et al.[20] studied the
effects of different clustering calculation methods on the test
case prioritization and reduction, and found that clustering
results are obviously different. Based on their research, our
first research question in the experiment explores the impact
of different computational methods on mutation-based test case
prioritization and reduction.

Figure 2. Algorithm for mutation program unit kill & priority matrix.

IV. EXPERIMENTAL DESIGN

In this section, we conduct empirical evaluation and de-
sign experiment that use developer-fixed program, developer-
written tests, and real faults. As for empirical evaluation, we
investigate the following two main research problems:

• RQ1: Is the different distance calculation methods
have different effects on test case prioritization and
reduction?

• RQ2: Is the test case prioritization and reduction
techniques that outperforms in terms of trade-off be-

tween reductions in test suite size and losses in fault-
detection capability?

We use benchmark data sets Defects4J [8] that include
mutation analysis tool Major [23], developer-fixed program,
manually-verified real fault and developer-written test case.
Figure 3 shows the overall flow of our experiment. We will
introduce our experiment in detail.

Figure 3. Experiment setup.

A. Experimental Tool
a) Defects4J database: We mainly use test execution

framework in Defects4J that contains 438 bugs from the
open-source projects. We consider five open-source projects
(JFreeChart, Closure compiler, Apache commons-lang, Joda-
Time and Apache commons-math) and 350 fixed programs.
Because some fixed programs includes seldom developer-
written test cases. Therefore we delete some fixed program. For
example, fixed program Chart-23 only include five developer-
written test cases. One of our goals is to provide a method for
prioritization and reduction for a large number of test cases,
helping to improve the efficiency of test engineers in regression
testing.

b) Major: As for mutation kill information, we use
Major mutation analysis tool for generating and executing
all mutants to the developer-written test case for each fixed-
program. Major includes a set of commonly used muta-
tion operator [27]. For example, Binary operator replacement
(BOR), Unary operator replacement (UOR), Constant value
replacement (CVR), Branch condition manipulation (BCM),
Logical operator replacement, and Statement deletion (STD).
Because different mutation operators produce different muta-
tion programs. Therefore, we applied all the mutation operators
in mutation analysis.

B. Design Review
We configure Defects4J in Ubuntu18.04 LTS (intel i7-7700

cpu, RAM 8G). For more detailed configuration information,
please refer to Defects4J official webpage at [28]. To configure
Defacts4J on the Ubuntu18.04 system, we firstly perform
“checkout” on all the programs, and then compile. If the test
command is executed at this time, the test case written by the
tester included in the test case Defects4J is used. Secondly,
we use Major to perform mutation analysis on all “checkout”
programs. The time of mutation analysis is controlled within
one hour, and the program that exceeds the time is deleted.
Finally, we use algorithm to generate mutation program unit
kill and priority matrix for mutation analysis results, cluster
the mutation program unit kill matrix and priority matrix, and
use APFD and APWFD to evaluate test case prioritization and

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 17 / 241

TABLE III. CALCULATION STRATEGY STATISTICAL
ANALYSIS.

Program
Calculation method

Jaccard Hamming Euclidean Cosine

Chart 20.4816 21.0925 21.0862 20.0210
Closure 127.2672 128.9538 128.9563 123.9185

Lang 52.9445 56.8870 56.8507 47.6511
Math 90.8519 93.7491 93.3974 91.4900
Time 26.4618 26.4767 26.4825 25.5815

Average 0.9085 0.9347 0.9336 0.8819

reduction results. Similarly, we can also use the automatic
generation tools that generate a large number of test cases.
Exploring the impact of different types of test case sets on
test case prioritization and reduction is beyond the scope of
this paper. We can delve into this issue in future research work.

V. RESULT AND ANALYSIS

In this section, we discuss the experiment obtained results
and answer Section IV two questions.

A. RQ1: Is the different distance calculation methods have
different effects on test case prioritization and reduction?

RQ1 explores the impact of different computational s-
trategies on clustering results. Because of different clustering
results have an impact on code coverage-based test case priori-
tization. Carmen et al. used code coverage information to study
different computational strategies for hierarchical clustering
[20]. They point out cluster test case, the use of the cosine
and Jaccard-based dissimilarities seems to be more promising
than the use of the Euclidean and Hamming.

We use mutation-based information to study different com-
putational strategies for hierarchical clustering. We use four
calculation methods(Jaccard, Hamming, Euclidean, Cosine) to
conduct experiments. In order to control the experiment, only
the calculation method is different, and the other experimental
factors are all the same. Figure 4 shows that the x coordinate is
the number of each program, and the y coordinate is the value
of APFD, and four calculation strategies curve trend results
are almost the same on the 350 real fault programs.

Different computing strategies maybe have different clus-
tering effects on mutation-based test case prioritization. We
can conclude that in the mutation-based test case prioritization
in Figure 4, this strategy has no significant different. We
also counted the average of four calculation strategies. Table
III shows that cosine similarity method is lower than the
other three calculation methods. However the difference is
not obvious, the highest to the lowest is only 5.28%. Each
column of data is the sum of real fault programs’ APFD. For
example, the 20.4816 of the Chart program is the sum of
the APFD values of all Chart programs. Our experimental
results show that there is no significant difference between test
case prioritization based on mutation analysis using different
calculation strategies for HCA.

B. RQ2: Is the test case prioritization and reduction tech-
niques that outperforms in terms of trade-off between reduc-
tions in test suite size and losses of fault-detection capability?

RQ2 mainly explores test case reduction and loss of fault
detection capabilities. In order to control the experiment, we

TABLE IV. TEST CASE PRIORITIZATION AND REDUCTION STATISTICAL
ANALYSIS

Program
Analysis index Analysis index

APFD Cluster time(s) Test case APWFD Cluster time(s) Test case

Chart 20.0210 2.0764 5693 18.7334 0.1189 3577
Closure 123.9185 1649.2548 440296 123.1317 758.1702 182155

Lang 47.6511 10.0078 11338 48.4177 1.5700 6480
Math 91.4900 165.7274 22688 88.2791 63.9586 9941
Time 25.5815 122.3370 70239 25.2988 71.4638 17935

Average 0.8819 5.5697 - 0.8681 2.5579 -

use the Cosine dissimilarity distance calculation method. We
use the prioritization and reduction strategy to calculate the
value of APWFD in this paper. We used the value of APFD
in one of the evaluation indicators in the control experiment.

From Table IV, it results that we used the proposed method
to reduce and prioritize 550254 test cases. The number of test
cases after prioritization and reduction is 330166. The average
reduction rate for test cases is 40%. We also analyze the aver-
age reduction rate of each program. For example, the average
fault reduction rate for the Chart, Closure, Lang,Math,
and Time programs are 62.82%,41.37%,57.15%,43.81% and
25.53% respectively. We use test case prioritization and re-
duction methods to make a large number of reductions to test
cases. However the fault detection capability is only reduced
by 1.38%. The average clustering time for each program
is 2.5579s. Clustering time after prioritization and reduction
reduced by 45.92%. This is a very interesting discovery, then
software test engineers can use the test case prioritization and
reduction techniques of clustering method to better manage and
optimize regression testing activity. For example, a corporation
does not have enough time to run all the test cases, and they
still have a better chance of capturing faults.

Our experimental results show that the proposed prioritiza-
tion and reduction strategy has good consequents in terms of
reduction in number, time reduction and fault detection. Test
case prioritization and reduction techniques ideal goal mainly
is a higher test case reduction rate and a lower fault loss rate.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new concept mutation program unit
priority. We use mutation-based test case prioritization and
reduction strategies to prioritize and reduce test cases combine
with mutation program unit priority. In the empirical evalua-
tion, we used four different clustering calculation strategies
to study the effects of different computing strategies on the
results of prioritization test cases. The results show that the
computational strategy has little effect on the results after
clustering. We also present an empirical study comparing test
case prioritization and reduction methods in terms of test case
reduction in number and fault detection capability. Our method
can reduce the number of test cases by 40%, and the loss of
fault detection capability is only 1.38%.

In the future, we will continue to study the impact of
different clustering numbers in test case prioritization and
reduction. Similarly, we also noticed that there is no empirical
analysis of the test cases that triggered the faults in the
prioritization and reduction methods. We will analyze and
explain the whole mutation program unit theory in detail.

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 18 / 241

Figure 4. Calculation strategy.

REFERENCES

[1] Apache Geode Nightly Test Report.(2018).https://builds.apache.org/view/
E-G/view/Geode/job/Geode-release/lastCompletedBuild/testReport/

[2] H. Do, G. Rothermel and A. Kinneer, “Prioritizing JUnit Test Cases: An
Empirical Assessment and Cost-Benefits Analysis,” Empirical software
engineering, vol. 11, no. 1, 2006, pp. 33-70.

[3] S. Elbaum, A. Malishevsky and G. Rothermel, “Prioritizing Test Cases
for Regression Testing,” IEEE Transactions on Software Engineering,
vol. 27, no. 10, 2001, pp. 924-948.

[4] M. J. Harrold, D. Rosenblum, G. Rothermel and E. Weyuker, “Empirical
studies of a prediction model for regression test selection,” IEEE
Transactions on Software Engineering, vol. 27, no. 3, 2001, pp. 248-
263.

[5] J. Jones and M. Harrold, “Test suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on Software
Engingeering, vol. 29, no. 3, 2003, pp. 193-209.

[6] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing,Verification and Reliability,
vol. 22, (2), 2012, pp. 67-120.

[7] R. Carlson, H. Do and A. Denton, “A clustering approach to improving
test case prioritization: An industrial case study,” IEEE International
Conference on Software Maintenance (ICSM), 2011, pp. 382-391.

[8] R. Just, D. Jalali and M.D. Ernst , “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” In
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), 2014, pp. 437-440.

[9] W. Wong, J. Horgan, S. London and A. Mathur, “Effect of test set
minimization on fault detection effectiveness,” Software Practice and
Experience , 28(4), 1998, pp. 347-369.

[10] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in de-
velopment environment,” Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), 2002, pp. 97-106.

[11] H. Do, G. Rothermel and A. Kinneer, “Empirical studies of test case
prioritization in a junit testing environment,” Proceedings of the 15th
International Symposium on Software Reliability Engineering (ISSRE),
2004, pp. 113-124.

[12] L. Zhang, D. Hao, L. Zhang, G. Rothermel and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,”
In Proceedings of the 2013 International Conference on Software
Engineering, 2013, pp. 192-201.

[13] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Transactions
on Software Engineering 2006, 32(9), pp. 733-752.

[14] Y. Lou, D. Hao and L. Zhang, “Mutation-based test-case prioritization
in software evolution,” In Proceedings of the 26th International Sym-
posium on Software Reliability Engineering (ISSRE), 2015, pp. 46-57.

[15] D. Shin, S. Yoo and D.H. Bae, “A Theoretical and Empirical Study of

Diversity-Aware Mutation Adequacy Criterion,” IEEE Transactions on
Software Engineering, vol. 44, (10), 2018, pp. 914-931.

[16] M. Papadakis, D. Shin, S. Yoo and D.H. Bae, “Are mutation scores
correlated with real fault detection? A large scale empirical study on the
relationship between mutants and real faults,” International Conference
on Software Engineering (ICSE), 2018, pp. 537-548.

[17] M. Jean Harrold, R. Gupta and M. Lou Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Transactions on Software
Engineering, 2, 1993, pp. 270-285.

[18] Z. Li, M. Harman and R. M. Hierons, “Search Algorithms for Re-
gression Test Case Prioritization,” IEEE Transactions on Software
Engineering. 33, 2007, pp. 225-237.

[19] L. Zhang, D. Marinov, L. Zhang and S. Khurshid, “An Empirical
Study of JUnit Test-Suite Reduction,” In Proceedings of International
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2011
pp. 170-179.

[20] C. Coviello, S. Romano, G. Scanniello, A. Marchetto, G. Antoniol and
A. Corazza, “Clustering support for inadequate test suite reduction,” In
Proceedings of International Conference on Software Analysis,Volution
and Reengineering, Vol. 00, 2018, pp. 95-105.

[21] D. Shin, S. Yoo, M. Papadakis and D.H. Bae, “Empirical evaluation
of mutation-based test case prioritization techniques,” Software:testing
verification and reliability, Vol. 29, (1-2), 2019, e1695.

[22] S. Elbaum, A. Malishevsky and G. Rothermel, “Test case prioritiza-
tion: A family of empirical studies,” IEEE Transactions on Software
Engineering, 28(2), 2002, pp. 159-182.

[23] R. Just, “The Major mutation framework: Efficient and scalable muta-
tion analysis for Java,” In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), ACM, 2014, pp. 433-436.

[24] R. Carlson, H. Do and A. Denton, “A clustering approach to improving
test case prioritization: An industrial case study,” IEEE International
Conference on Software Maintenance (ICSM), 2011, pp. 382-391.

[25] S. Yoo, M. Harman, P. Tonella and A. Susi, “Clustering test cases to
achieve effective & scalable prioritisation incorporating expert knowl-
edge,” Proceedings of the International Symposium on Software Testing
and Analysis(ISSTA), 2009, pp. 201-211.

[26] D. Mllner, “fastcluster: Fast Hierarchical, Agglomerative Clustering
Routines for R and Python,” Journal of Statistical Software, 53, no.
9, 2013, pp. 1-18.

[27] A. S. Namin, J. H. Andrews and D. J. Murdoch, “Sufficient mutation
operators for measuring test effectiveness,” in Proceedings of the 30th
International Conference on Software Engineering (ICSE), 2008, pp.
351-360.

[28] Defects4J. https://github.com/rjust/defects4j. last accessed on 10/04/19.

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 19 / 241

A Framework for Robust, Low-Overhead Binary Instrumentation

Amir Majlesi-Kupaei
University of Maryland

Collge Park, USA
email: majlesi@umd.edu

Aparna Kotha
SecondWrite LLC
Collge Park, USA

email: akotha@secondwrite.com

Danny Kim
University of Maryland

Collge Park, USA
email: dannykim32@gmail.com

Khaled Elwazeer
Google Inc.

Mountain View, USA
email: kelwazeer@gmail.com

Kapil Anand
Google Inc.

Mountain View, USA
email: kapilanand2@gmail.com

Rajeev Barua
University of Maryland

Collge Park, USA
email: barua@umd.edu

Abstract—We have designed and implemented a binary rewriter
called RL-Bin, which can rewrite binaries correctly with low
overhead. Existing binary rewriters have their challenges: static
rewriters do not reliably work for stripped binaries (i.e., those
without relocation information), and dynamic rewriters suffer
from high base overhead. Because of this high overhead, existing
dynamic rewriters are limited to off-line testing, and cannot be
used in deployment. RL-Bin differentiates itself from other binary
rewriters by having the capability to robustly rewrite stripped
binaries with very low overhead (averaging 1.05x for SPECrate
2017, not including the instrumentation cost, compared to 1.16x
overhead for DynamoRIO). The overhead added by RL-Bin itself
is negligible and it is proportional to the added instrumentation.
Hence, lightweight instrumentation can be added to applications
that are deployed in live systems for monitoring and analysis
purposes.

Keywords–Program Analysis; Binary Instrumentation; Static
and Dynamic Analysis; Testing and Verification; Program Trans-
formation.

I. INTRODUCTION

There are several reasons why it is desirable to instrument
or modify the code that is directly executed in deployment.
The applications of instrumentation range from resource mon-
itoring, application performance monitoring, security policy
enforcement, vulnerability patching, dynamic information flow
tracking, and performance optimization. The code modification
can be applied either at the level of source code or binary code.

Binary code is the code that executes directly on the
hardware using machine code instructions. Binary code can
theoretically be produced from any language, but is typically
produced not only from older languages like C, C++, Fortran,
and COBOL, but is also often produced from popular modern
languages, such as Go, Erlang, Visual Basic, Swift, and
Objective C.

Binary code is widespread because it offers significant
advantages for two types of code: IP-protected code and high-
performance code. First, IP-protected code is code that is sold
by companies to outside parties. Second, high-performance
programs, such as those in the domains of image processing,
financial transactions, machine learning, and scientific codes
are often deployed in binary code to ensure the highest
execution speed. For the aforementioned application areas, it
is often needed to be able to instrument or modify the binary

code when the source code is unavailable, such as for third-
party binaries. To do so, we need a tool named binary rewriter.

A. Criteria and Trade-Offs in Building a Binary Rewriter
There are two equally important and necessary criteria

that a binary rewriter must have: it must be robust, and it
must incur low overhead. First, a binary rewriter must work
for different types of binaries, including those produced by
commercial compilers from a wide variety of languages, and
possibly modified by obfuscation tools. Second, the binary
rewriter must be low overhead. Although the off-line use of
programs, such as in testing and profiling, can tolerate large
overheads, the use of binary rewriters in deployed programs
must not introduce significant overheads; typically, it should
not be more than a few percents [1].

Unfortunately, existing methods cannot modify binary code
in a manner that is both robust and low overhead. To un-
derstand the reason, let us consider that there are two types
of binary rewriters: static vs. dynamic. Static rewriting refers
to approaches which take an executable binary program as
input, and without running it, produce another (rewritten)
binary program as output that has the same functionality as
the input program, but is enhanced in some way, for example
in improving its run-time, memory use, or security. Dynamic
rewriters change the binary code during its execution and
modify the binary code in memory, either in-place or in a
copy of the code memory.

Static rewriters are not robust. Static rewriters can have
very low overhead, but are not robust, meaning that they often
do not work for certain types of binaries. As our related work
section details, 24% of commercial benign programs had dy-
namically generated code and 1% had obfuscated code, which
are the features that static rewriters cannot handle. Several
schemes do not even work for simpler programs with indirect
branches whose targets cannot be statically determined.

Dynamic rewriters have high overhead. In contrast,
dynamic rewriters are robust but have high overhead, usually
ranging from 20% to several hundred percents. Dynamic
rewriters are robust because they discover all code at run-time.
However, they incur high overhead since most of them main-
tain a code cache, where rewritten copies of code blocks are
stored and executed from. As a result of the above drawbacks,
binary rewriters are generally not used in deployment today

 20 / 241

on third-party programs, since for those programs, usually no
guarantees can be made on how they were compiled.

Dynamic rewriters, such as DynamoRIO [2], copy all the
code that executes into another memory region called a code
cache. The code cache is useful because it ensures robustness;
the program still works if a piece of data is mistakenly assumed
to be code and rewritten. The reason is that the code cache
was changed and the original copy of the code segment is still
unchanged.

The overhead of dynamic rewriters is caused by two
factors. First, copying the code into the code cache is expensive
at run-time. Second, and more seriously, the target addresses
of an indirect Control Transfer Instruction (CTI) must be trans-
lated at run-time because the locations of code have changed
to be in the code cache instead. Such indirect jumps or calls
are very common – they mostly arise from return instructions,
function pointer calls, and calls to virtual functions in object-
oriented languages, such as C++. This translation process
is inevitable for DynamoRIO since the original destination
address in the program is different from the address of the
rewritten code inside the code cache.

B. Robust, Low-Overhead Binary Instrumentation
Consequent to the needs above, we developed RL-Bin. It

supports several types of obfuscation, as well as dynamically
generated and self-modifying code. As a result, it is robust
enough to be used for benign third-party applications. Also,
we have designed and implemented several optimizations, so it
has very low overhead. We present the following contributions.
– Design and development of the first low overhead dynamic

binary rewriter that can handle stripped binaries without
relocation or debug information, containing self-modifying
or dynamically-generated code or obfuscation.

– An innovative method that tracks the execution of code
dynamically by anticipating future control-flow to the new
code, and adding instrumentation and breakpoints to process
such new code when discovered.

– Using a novel dynamic method to eliminate the overhead
of breakpoints, once the new code is discovered.

– Using Just-In-Time (JIT) dynamic analysis of the discov-
ered code and traditional data flow analysis concepts, to
find ”Safe” functions and further reduce the overhead by
eliminating redundant checks.

– The above design is unlike other dynamic rewriters that
translate indirect control transfer addresses to their copies
in a code cache.

– The result is the first In-Place dynamic binary rewriter –
which does not use a code cache – that combines the
robustness and coverage of a dynamic rewriter with the low
overhead of a static rewriter.

– Extensive testing and performance comparison with Dy-
namoRIO for SPEC CPU2017 benchmark with over 7
million lines of code in C, C++, and Fortran, compiled with
Microsoft Visual Studio, GCC, and ICC compilers.

– Design and implementation of a ”Debugging System in
Deployment” as a use case of RL-Bin, which enables the
developer to find and patch the errors during execution
without sharing debug information with the end-user.
RL-Bin will find use in implementing a variety of applica-

tions of binary rewriting. For example, researchers have pro-
posed binary rewriting-based methods for securing untrusted

code [3], enforcing control flow integrity [4], implementing
software transactional memory [5], self-randomizing instruc-
tion addresses [6], profiling tools [7], and taint tracking to
prevent sensitive data leaks [8].

The paper is structured as follows: Section II discusses the
capabilities and limitations of RL-Bin. Sections III and IV de-
scribe the base design of RL-Bin and the optimization methods
designed to reduce the overhead. In Section V, we demonstrate
the results of our evaluation of RL-Bin and compare them to
DynamoRIO. Section VI looks into a debugging and patching
system as a use-case of RL-Bin. Section VII describes related
work. Finally, Section VIII looks ahead at future work and
concludes the paper.

II. RL-BIN CAPABILITIES AND LIMITATIONS

In this section, first, we list some of the troublesome
features that may occur in benign programs. These must be
handled correctly since our goal is robust binary rewriting.
Additionally, we briefly go over binaries with features for
which RL-Bin might fail to instrument properly, most of which
are found in malicious applications.

A. Handling Complicating Features
Obfuscation is a technique used to mislead attempts to

reverse-engineer the code. Here, we are primarily concerned
about control-flow obfuscation, which makes it appear that data
is code, or vice-versa. There are publicly available applications
and research methods which will control-flow-obfuscate a bi-
nary application to protect the binary from reverse-engineering,
such as the Binary obfuscation project tool [9], and the work
by Popov et. al [10].

RL-Bin supports two types of obfuscation techniques that
are problematic for binary rewriters: (i) unconditional to con-
ditional branch flow obfuscation, (ii) exception-based obfus-
cation. In the unconditional to conditional branch obfuscation,
an unconditional branch is replaced by a conditional branch,
one of its targets is never taken. Instead, the never-taken path
contains data, rewriting which will break the program. Another
technique is exception-based obfuscation. In this method, a
change of control flow is achieved without a CTI, using
exceptions instead. For example, the program can deliberately
trigger a divide-by-zero exception by using a zero value in
the denominator. The program may also register a custom
exception handler, which can redirect to any arbitrary location
in the program.

Dynamically-Generated Code is common in binary ap-
plications. It is mostly used when executing user scripts or
any script coming from external sources. Another instance of
dynamically-generated code is packed code. Unlike dynamic
rewriters, static rewriters cannot disassemble such dynamically
generated code.

Self-Modifying Code is similar to dynamically generated
code with an important difference: the addresses into which
dynamically generated code are stored may already contain
instructions that have been executed during the program. This
modifies the program’s code at run-time.

B. Limitations of RL-Bin
RL-Bin is capable of analyzing and instrumenting most

of the common commercial binary files which do not have

 21 / 241

relocation information, and may have obfuscated, dynamically-
generated or self-modifying code. However, RL-Bin is not
designed to support adversarial binaries, which can deliberately
use methods to prevent their examination by a binary rewriter
or a debugger. We will go over certain types of behavior in
adversarial binaries that can cause problems for the binary
rewriter.

(i) Verifying the memory image by using a checksum.
Some adversarial binaries compare the checksum on their
memory image against a previously calculated checksum to
make sure that the program is not altered by debuggers. The
goal is not ensuring integrity, but defeating debuggers. In
most commercial binaries, developers know that many users
may use debuggers on the software which will not work with
such binaries. (ii) Disabling the debugger. Binaries can check
the presence of a debugger and can try to disable it. As
mentioned before, commercial binary applications are intended
to support debuggers and binary rewriter can handle them
properly. (iii) Modifying breakpoints inserted by the debugger.
Adversarial binaries attempt to remove breakpoints inserted by
debuggers, which can interfere with the operation of rewriters
and debuggers. This behavior is limited to only adversarial
binaries.

III. BASE DESIGN

In this section, we describe the base unoptimized algorithm
that is used by RL-Bin. This algorithm has very high overhead
(approximately 5x to 10x the run-time of the un-instrumented
program for SPEC CPU2017 benchmarks) but demonstrates
the correctness of the method.

Application

Unexpected
Control Transfer

New
Code

Instrumentation Unit

Trampoline Unit

RL-Bin

Control
Unit

Instrumentation
Routines

Analyzer &
Optimizer Unit

Disassembler
Unit

Figure 1. RL-Bin System Overview

The components of RL-Bin are shown in Figure 1. The
Control Unit keeps the state of the application and manages
other units. The Instrumentation Unit creates and manages
instrumentation routines. The Trampoline Unit is responsible
for efficiently placing trampolines in the original code to
redirect execution to the instrumentation routines.

A. RL-Bin Baseline Algorithm
The main intuition behind RL-Bin is to add instrumentation

at run-time that monitors the discovery of the new code. To
discover code, our method assumes that a block of memory is
code only if we discover an actual control transfer to it during
run-time. Our purely dynamic disassembly method will begin
at the start of a memory block (whose address we call START)
once it is proven to be code and follows non-control-transfer
instructions one after another, which are all discovered to be

code until it reaches a control transfer instruction. Whenever
the method reaches a CTI, if that CTI can have more than one
possible target, the method ensures that some instrumentation
is triggered when the actual target becomes known later during
the same run.

Some terminology: All instructions that change the control-
flow behavior of a program, such as branches, jumps, and calls,
are called Control-Transfer Instructions (CTIs). A direct CTI is
a CTI whose target is specified by an immediate constant in the
instruction. Direct CTIs can be unconditional or conditional.
An indirect CTI is a CTI whose target is specified in a register
or memory location and hence is usually unknown statically.

Here are the steps in RL-Bin’s Disassembly Routine:
1) Add entry point to the list of instructions to be discovered,
let us name it D.
2) Pick an instruction I from list D.
3) Mark the address of instruction I as discovered in the
disassembly table.
4) If instruction I is a non-control-transfer instruction,

4.1. The next instruction must be code as well, so we add
it to list D if has not been disassembled before.

5) If instruction I is an unconditional direct CTI,
5.1. It has only one possible constant target (i.e., it is a direct

jump), so we can infer that the target is code as well, so
we add the target to list D and disassembly continues from
there.

6) If instruction I is a conditional direct branch, (see Figure
2 as an example)

6.1. We cannot assume that its target (T) and fall-through
(F) addresses are both code. As discussed before in Sec-
tion II-A, because of conditional branch obfuscation, only
one of the target or the fall through might be code, but not
necessarily both. Hence we insert hardware breakpoints at
both the target and fall-through addresses (T and F).

6.2. Register a custom exception handler for handling these
hardware breakpoints. Particularly, when either one of them
is executed (say T),
i) It will register that memory location as code in the

disassembly table.
ii) Then it removes hardware breakpoints at both T and

F. (The reason that hardware breakpoints are removed
from a block after it is executed is that in most
ISAs, only a small number of hardware breakpoints are
allowed at a time. In the case of x86, there is a limit
of four hardware breakpoints that can be set at a time.)

iii) Adds trampoline at START (see trampoline (1) in
Figure 2), which will transfer to instrumentation routine
that adds back the hardware breakpoint at the non-
executed address among T and F (say F) (If the code
is executed from START again, we do not need to
disassemble the code from START again, but just insert
the hardware breakpoint at F when at START.)
Note: In the case of x86, if there are more than four
non-executed addresses in the function, extra trampo-
line(s) will be placed in the middle of the function to
remove hardware breakpoints from previous addresses
and insert them on the following addresses.

6.3. Later, as an optimization, if the handler at F also
executes, remove the hardware breakpoint, as well as the
instrumentation at START. This leads to zero overhead in

 22 / 241

jmp L

. . .

cmp eax, 0x01

jne T

sub ebx, 0x04

mov eax, ebx

ret

START:

L:

F:

T:

Trampoline(1)

Direct CTI

Conditional CTI

HW Breakpoint

HW Breakpoint

Trampoline(2)

Indirect CTI

Figure 2. Disassembling a Memory Block

the steady-state after T and F are both proven to be code.
7) If instruction I is an indirect CTI,

7.1. Insert trampolines to an instrumentation routine (see
trampoline (2) in Figure 2), just before the indirect CTI
to the instrumentation routine which,
i) Computes the target upon reaching that point.

ii) Add it to the list D, if it is not disassembled before.
(The target of indirect CTIs needs to be checked every
time because it can change every time the instruction is
executed; hence, our trampoline and instrumentation will
remain in place to check the target of indirect CTIs to
discover new code and handle unexpected control flows.)

8) If D is empty, then exit, otherwise go to Step 2.

The above method works for dynamically-generated code
without a special case, since it tracks the CTI into the
dynamically-generated code just like any other CTI. It also
handles unconditional to conditional branch obfuscation as
described above. However, the method needs additional com-
ponents to handle self-modifying code and exception-based
obfuscation. These will be described in the subsections below.

B. Handling Self-Modifying Code
Self-modifying code is handled as follows.

1) To check whether the code has modified itself, write-protect
the pages that contain code, so any write to these pages will
cause an exception.
2) Register the exception handler to:

2.1. Check the addresses which are being written.
2.2. If they have previously been discovered as code, remove

those entries from the disassembly table. (As a result, the
newly written code will be treated the same as the code
which has never been seen before.)

The above method is very high overhead and it needs to
be optimized. The main overhead comes from the fact that
every write to the code segment will cause an exception. Such
writes will happen if data is stored in the code segment and
is written to by the program. To reduce the overhead, we use
the following scheme. We add instrumentation code around
memory store instructions that trigger the exception for the
first time. The instrumentation will turn off write protection,

check the addresses being written to, and turn back on write
protection after the memory store. In this way, stores to data
locations in the code segment will never trigger an exception
more than once. As a result, only a small portion of memory
store instructions (those that write to the code segment) will
be surrounded by our added instrumentation.

C. Handling Exception-Based Obfuscation
This obfuscation happens when an instruction that is not a

CTI is used to transfer control of the program. As an example,
a divide instruction that deliberately triggers an exception can
be used as a CTI. As a result, the memory location following
the divide instruction may never be executed. It may contain
data and not code. To handle exception-based obfuscation, we
follow the following method.

1) Create a stub for every exception handler that is registered.
When an instruction triggers the exception it will execute our
instrumentation before the actual exception handler.
2) Disassembly routine must stop disassembly at every in-
struction that can cause an exception that has been registered so
far. (In the common case no such exceptions will be registered,
thus the overhead will be minimal.)

2.1. If such an exception causing instruction is found (in
Step 4 of the baseline algorithm), put a hardware breakpoint
on the instruction that immediately follows it.

2.2. After hitting the breakpoint, remove it and start discov-
ering code from that location. (This method ensures that
no data is mistakenly assumed to be code.)
Using the algorithm in this section, more and more code

is discovered during run-time. This method will ensure that
not a single instruction can be executed without first being
observed by our binary rewriter, even if the instruction has
been generated dynamically or through self-modification. Also,
in case there is obfuscation, we would never instrument data
inside the code segment since we instrument only the locations
that contain code that has been executed during run-time.

D. Handling Multi-Threaded Applications
By the advent of multi-core processors, multi-threaded ap-

plications have become very common. As a result, every binary
rewriter must handle such applications. The main issue in
multi-threading is to make sure that the data structures that are
shared between threads are being used correctly. Specifically,
they should not be used by a thread while simultaneously being
updated by another thread. To avoid the problems regarding
concurrent access to RL-Bin data structures, each thread must
acquire the lock before being able to modify RL-Bin internal
data structures. During this modification, no other threads are
allowed to access the same data structure.

IV. OPTIMIZATIONS

This section presents the optimization techniques used in
RL-Bin to reduce the overhead. The effectiveness of each
optimization will be discussed in Subsection V-C.

OP1. Conditional Branches
As was described in Step 6.3 of the baseline algorithm, if at

any point both outcomes of a conditional branch are registered
as code, then the instrumentation and hardware breakpoints
at that branch can both be removed. In the steady-state, the
checks before most direct conditional branches are removed.

 23 / 241

OP2. Predicting the Target of Indirect CTIs
The baseline algorithm in Step 7, instruments every indirect

CTI to compute its target at run-time and register it as
code. This overhead can be reduced by optimization with the
following intuition: indirect CTIs usually transfer the control
to one of a few constant targets. We will replace this check
with a check which takes less time.

As an example, let us assume that function foo() is being
called from three different call sites. So, the return instruction
of the function will return to the instruction after one of these
call sites. First, the target will be checked against the most
frequent call site. If it matched, the indirect CTI can safely
transfer the control flow back to the call site. The same idea
would be done for second and third call sites. In the end, if
none of the previous checks were true, we would refer to the
disassembly table to check whether the target of indirect CTI
has been discovered as code before.

There is a trade-off between overhead and the number of
frequent call sites that need to be checked before referring to
the disassembly table. We use heuristics on the frequency of
each target to determine the optimal number of checks.

OP3. Function Cloning

It is often the case in programs that a small function is
being called frequently from a call site. The intuition is to
remove the check needed before the return instruction (indirect
CTI) to the call site. During Step 7 of the baseline algorithm,
we selectively clone functions to reduce the overhead and
remove the checks needed before their return instructions.

In this method, the function is cloned so that no check is
needed if called from that specific call site. First, the function
is copied to a new location. The call instruction is modified to
a direct jump to the new location. As a result, no return address
will be pushed on the stack. Also, the return instructions in the
function are replaced by direct jumps to the instruction after
the call site.

Again, we face a trade-off here. If we clone every function,
it would lead to excessive code bloat. Thus, we must clone
functions selectively only for the call sites when doing so will
reduce the overhead significantly.

Set I = Instructions in the function

Set C = Set of Safety Conditions(Called Functions)

1 bool Is_Safe(Address Entry_Point)

2 Set W={Entry_Point} //Insts waiting to be checked

3 While(𝑊 ≠ ∅)

4 pick inst from W

5 if(inst ∈ 𝑃) return false

6 if(inst ∈ Call_Instructions)

7 add Dests(inst) to C

8 add Next(inst) to W if(Next(inst) ∉ 𝐼)

9 else add Dests(inst) to W if(Dests(inst) ∉ 𝐼)

10 if(stack_height ≠ value assigned before)

11 return false

12 else

13 assign stack_height of Dests(inst)

14 if (inst is an indirect write)

15 if(Write_Address(inst) = Return_Address)

16 return false

17 remove inst from W and add it to I

18 Let c ∈ 𝐶 , if(Is_Safe(c) = false) return false

19 return true

P1 = Set of indirect branch instructions

jmp dword ptr [eax*4 + 0x0c]

P2 = Set of instructions that modify the
stack pointer to a value that is statically
unknown.

add esp, eax

mov esp, dword ptr [ecx]

Not including

add esp, 0x4

(Added value is constant)

P3 = Set of instructions that write to an
indirect address which may or may not
be the return address of the function

i.e. mov dword ptr [eax], 0x3c

mov dword ptr [esp + ebp*4], eax

Not including

mov dword ptr [esp + 0x4], eax

(Check whether esp+0x4 points to return address)

𝑷 =ራ

𝒊=𝟏

𝟑

𝑷𝒊

Figure 3. The Algorithm to Determine Safety of a Given Function. (None of the instructions in the set P that is defined on the right side, are allowed in a
”Safe” function. Dests(inst) returns the targets of CTIs and for non-CTIs, returns the next instruction.)

 24 / 241

OP4. Optimizing White-Listed Modules
It often happens that applications load dynamically shared

libraries during their execution and then execute functions from
them. In most cases, these DLLs are part of the kernel or they
are part of the standard library provided by the programming
language. It is possible to optimize away the checks needed
for some of these DLLs.

The interaction between the main module of the program
and the shared libraries happens by calling a function exported
by the library. The control will be sent back to the main module
after the execution of the function. The only exception is when
the library performs a callback and calls a function from the
main module. DLLs are analyzed and their callback functions
are discovered. If the behavior of the functions and the callback
values can be determined before execution, then the analyzed
DLL will be white-listed and checks in that module will be
optimized away.

OP5. Detecting ”Safe” Functions
The most common indirect CTIs are return instructions.

The overhead of the checks before return instructions, checks
added during Step 7 of the baseline algorithm, can be further
eliminated when the function has certain properties. A ”Safe”
function, can be proven that it cannot modify its return address,
hence the return instruction always returns to the instruction
after the call site.

We outline in Figure 3 our Just-In-Time (JIT) analysis
algorithms, by which the safety of many functions can be
established before their execution. For such safe functions, the
instrumentation before the return instruction can be removed.
The intuition behind the algorithm is to determine the exact
addresses of the memory locations on the stack that will be
modified by the instructions within the function. If the return
address is not modified, then the function will return to the
original call site.

”Stack Height” for every instruction, is defined to be the
difference between the value of the stack pointer at the entry
point of the function and the value of stack pointer at that
instruction. For example, a push instruction will reduce the
”Stack Height” by four. If the function does not contain any of
the instructions defined in Figure 3 as set P, the ”Stack Height”
of all instructions can be determined before the execution of
the function. If there are more than one control flow paths
from the entry point to a given address, and ”Stack Height” is
not the same between different paths, we declare that function
as not ”Safe” and do not optimize it. This rarely happens in
benign code.

The algorithm will determine the ”Stack Height” of each
instruction and based on the ”Stack Height”, will determine
whether an indirect write rewrites the return address of the
function. We also create a list of functions that are called
from this function and put them in set C. Later on, after
disassembling all instructions in the function, we check the
safety of all the functions in set C. If any of the called functions
are not safe, the current function will be declared not ”Safe”. If
all the aforementioned checks showed that the return address
cannot be modified, the function will be declared ”Safe”. Note
that the algorithm above will be executed only once for each
discovered function, thus there will be no overhead in the
steady-state.

OP6. Using Data-Flow Analysis to Find ”Safe” Functions
OP5 algorithm does not cover some functions, because

writing to global or static data, which is not stored on the
stack, is frequently done through indirect addressing.

If there is a write to an indirect address, we need to make
sure it does not overwrite the return address of the function.
Most of the indirect write instructions that write to the stack
use stack-derived registers as the base register (in x86, these
are esp and ebp registers). So, if the base register is not stack-
derived or it is not a copy of these registers, then it cannot
modify any value which is previously stored on the stack. As
a result, we must ensure the base register is not derived from
the stack pointer.

We define the term PNSD, which is short for ”Provably
Not Stack Derived”. If a register value is PNSD, it means that
it can be proved during run-time analysis that the current value
in the register is not derived from the stack pointer. An indirect
write instruction which uses a PNSD register can never write
to the stack. We use traditional data-flow analysis to identify
all the different definitions that can reach the base register in
the write instruction. If all of the definitions of the base register
are PNSD, then the base register is also PNSD.

As it is demonstrated in Figure 4, we modify the algorithm
in the previous section to check for PNSD variables when there
is an instruction, which stores the value to an indirect address.
Again, note that the analysis above will be done only once for
each discovered function, thus there will be no overhead in the
steady-state.

V. EVALUATION AND RESULTS

We have completed and tested a fully optimized prototype
of the above method. Most of the code is written in C++, while
there are some functions which are written in x86 assembly,
for the sake of optimization. Our experiments are done on a

5 if(inst ∈ 𝑃) return false

5’ if(inst ∈ 𝑃3)

5” if(!Is_PNSD(base register))

5”’ return false

P3 = Set of instructions that write to an
indirect address which may or may not be the
return address of the function.

𝑷 = 𝒊=𝟏ڂ
𝟐 𝑷𝒊

i.e. mov dword ptr [eax + 0x38], 0x3c

Is_PNSD(eax) returns true if register eax is PNSD

Figure 4. Algorithm Modification to Cover Indirect Write Instructions with PNSD Base Register.

 25 / 241

system with Intel Core i7, 3.33GHz CPU with 12 Mb cache
and 24.0 GB DDR3 memory on 64-bit Windows 10 OS. We
chose the Windows Operating System since most commercial
binaries are developed for Windows.

In our experimental setup, we used the SPECrate 2017 Inte-
ger and Floating-Point with their reference data sets. SPECrate
Integer has 10 benchmarks and all of them are included in our
testing. However, we could evaluate 10 out of 13 benchmarks
in SPECrate Floating-Point. The other three benchmarks could
not be compiled for 32-bit x86 Windows machines, thus
fotonik3d r, cactuBSSN r, and cam4 r were excluded from
the set. This is because our current implementation is for 32-
bit Windows binaries; 64-bit binaries can be supported in our
theory but are not implemented yet.

Also, we compiled the binaries with three different com-
pilers; Microsoft Visual Studio, GCC, and ICC. The overhead
reported for each benchmark is the average of the overhead
for binaries compiled with these compilers. In the case that a
benchmark could not be compiled with a particular compiler,
that compiler is not included in the average.

Comparison with DynamoRIO: Among different dynamic
rewriters available, we compared RL-Bin to DynamoRIO. The
reason is that DynamoRIO is designed for efficient binary in-
strumentation. Based on the previous studies [11] [12], Pin and
Dyninst have higher overhead in comparison to DynamoRIO.

A. Performance Without Instrumentation
The goal of RL-Bin is to perform only light instrumentation

efficiently. Although it can be used to perform heavy instru-
mentation, such as basic block counting, no binary rewriter
can deliver low overhead for such instrumentation, because
the added instrumentation itself is heavyweight. Hence such in-
strumentations are not good use-cases for RL-Bin, whose main
motivation is low run-time overhead in deployed code. As a
result, we measured the performance overhead of applications
running under binary rewriter without added instrumentation.
This overhead should be low for use-cases of RL-Bin.

As it is illustrated in Figure 5, RL-Bin outperforms Dy-
namoRIO by a huge margin. In this Figure, A run-time of 100
is the run-time of the original unmodified program without
rewriting. (The overhead shown as 107, means the overhead
added by the rewriter is 7% without any instrumentation.)
In fact, the overhead of DynamoRIO is 1.06x and 1.26x
for SPECrate 2017 Floating-Point (Figure 5 (a)) and Integer
(Figure 5 (b)) benchmarks respectively (1.16x or 16% on
average), whereas the overhead of RL-Bin is 1.015x and
1.09x for the same benchmarks (1.05x or 5% on average).
The reason for higher overhead in Integer benchmarks is the
higher number of indirect CTIs compared to Floating-Point
benchmarks.

B. Performance with Instrumentation
The next experiment measures the overhead added by

the rewriters when instrumenting the application to count
the number of external calls from the application module to
other DLLs. This particular instrumentation is used because
the number of locations that need to be instrumented is
relatively low. Hence, it is a good use-case of RL-Bin to
perform light instrumentation with very low overhead. Figure
6 shows the overhead of RL-Bin ranges from 5% to 130%,
with an average of 25% compared to DynamoRIO which

(a) SPECrate 2017 Floating-Point

1
0

1

1
0

1

1
0

3

1
0

2

1
0

1 1
0

2

1
0

1

1
0

1 1
0

2

1
0

11
0

2

1
0

1

1
0

9

1
0

8

1
0

4

1
0

7

1
0

5

1
0

8

1
0

7

1
0

9

100

105

110

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

)

RL-Bin DynamoRIO

(b) SPECrate 2017 Integer

1
2

0

1
2

8

1
0

1 1
0

7 1
1

1

1
1

0

1
0

7

1
0

3

1
0

2

1
0

3

1
4

9

1
4

5

1
1

1 1
1

6

1
3

9

1
2

6 1
3

2

1
1

7

1
1

2

1
0

8

100

110

120

130

140

150

160

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

)

RL-Bin DynamoRIO

Figure 5. Normalized Run-Time of Rewriters Without Added
Instrumentation for SPECrate 2017.

has 56% average overhead (ranging from 4% to 187%). Our
experiment demonstrates that RL-Bin can be successfully used
to add instrumentation with fairly low overhead compared to
DynamoRIO.

C. Optimization Effectiveness
To show the contribution of each optimization method pro-

posed in Section IV, we measured the overhead of SPECrate
2017 Integer with different optimization levels. Figure 7 shows
the overhead with six different optimization levels. The over-
head is expectedly large (10.25x for perlbench r) without
any optimization. Optimizing conditional branches (OP1) will
bring the average overhead from 7.24x to 2.93x. Adding
target prediction for indirect CTIs will reduce the overhead
of remaining checks, thus the average overhead will be 2.02x
with OP1+OP2. White-listing modules and cloning functions
(OP4 and OP3) will remove lots of the added overhead for
checking the target of indirect CTIs and will bring down the
average overhead to 1.22x. The last set of optimizations (OP5
and OP6) detect safe functions and remove the check before
the return instruction in such functions. Thus, boosting the
overhead to just 1.09x on average for SPECrate 2017 Integer
benchmarks.

D. Instrumentation Robustness in Commercial Applications
Our last experiment is designed to demonstrate that RL-Bin

is robust enough to handle commercial multi-threaded appli-
cations that contain dynamically generated and self-modifying
code, as well as obfuscation. We aimed to show that RL-
Bin fully instruments the binary and it achieves full code
coverage, meaning that no instruction is executed without
being monitored by RL-Bin. The number of dynamically
executed instructions was measured by instrumenting every
basic block of the application to add the size of the basic
block to the total count.

We tested three popular Microsoft Office tools; Word,
PowerPoint, and Excel as well as Adobe Reader, and Apache

 26 / 241

1
0

6

1
0

8

1
1

0

1
0

6

1
1

2

1
2

1

1
1

8

1
1

8

1
0

5

1
0

5

1
6

3

2
3

0

1
2

3

1
2

2 1
3

3

1
2

9

1
3

8

1
0

7 1
2

3

1
2

8

1
0

6

1
0

4

1
4

2

1
2

4

1
2

9

1
2

0

1
2

7

1
2

0 1
4

6

1
4

1

2
4

3 2
8

7

1
3

5 1
4

8

2
4

4

1
8

4 2
0

8

1
6

1

1
3

4

1
2

4

100
120
140
160
180
200
220
240
260
280
300

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

) RL-Bin DynamoRIO

Figure 6. Normalized Run-Time Overhead of Rewriters with Added Instrumentations to Count External Calls for SPECrate 2017

Web Server. In our experiments, in order to have dynamically
generated and self-modifying code, we opened documents
that contained VBA code in Microsoft Office and JavaScript
in Adobe Reader. Apache Web Server heavily uses multi-
threading, so this application would appropriately stress test
the multi-threading capabilities of RL-Bin.

For commercial programs, we did not measure the over-
head, since interaction with users and other uncertain factors,
make them unacceptable as benchmarks for measuring the
overhead, introduced by RL-Bin. Instead, SPEC CPU 2017
was used for measuring overhead, since they are standardized
benchmarks without user interaction, making them suitable for
run-time measurement.

The measurements on the number of dynamic instructions
were done with both RL-Bin and DynamoRIO. The results
showed that the numbers are the same for every application in
the set, thus proving that every single instruction is counted
by RL-Bin and full code coverage is achieved. As a result,
proposed optimization techniques do not result in any loss of
coverage, verifying that RL-Bin instrumentation is robust and
accurate.

VI. A USE CASE: DEBUGGING IN DEPLOYMENT

Making sure that the application is running flawlessly is
one of the most arduous tasks in the software development
process. In practice, it is often the case that programs face run-
time errors, or show unexpected behavior. The main reason
is insufficient data sets to test different scenarios. End-user
systems will have different resources, and configuration. An
error may arise only in certain execution platforms, and never

come up in development tests. As a result, debugging is needed
even after the development process.

Now, consider the following scenario. The developer has
released the software to the end-user, but there is a bug in
the software which only happens in the end-user system.
The developer cannot reproduce the error in the development
environment. There are two existing methods to solve this
problem. First, the program may be executed with the presence
of a debugger to find where the issue happens. However, almost
all commercial binaries are stripped of their debug information
to protect their code from being reverse-engineered. As a
result, this solution is impractical and the developer will not
share debugging information with the user. Another solution is
to generate an error log whenever the application crashes and
send it to the developer. The log file may contain the current
stack and the value of certain attributes of the program. This
may be useful to learn more about the issue, however, it is too
general, the developer will need extra information. In addition,
neither of the methods above would patch the code and solve
the issue. Even if the error is found, the user needs to wait
for the next release of the application which may take a long
time. If the bug is a security concern, it is crucial to patch the
program as soon as possible.

Our solution takes as input debugging information of the
program and any arbitrary instrumentation that the developer
wants to put in the program. We recompile RL-Bin to use the
information of the debug file and generate instrumentation that
will be inserted in the target application. Based on the debug
file, RL-Bin would know where to instrument. The modified

1
0

2
5

6
8

2

5
9

6 7
6

7

7
8

3

8
6

7

6
8

2

6
4

9

6
7

3

5
1

7

1
2

0

1
2

8

1
0

1

1
0

7

1
1

1

1
1

0

1
0

7

1
0

3

1
0

2

1
0

3

100

200

400

800

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
(%

)
(L

o
ga

ri
th

m
ic

 S
ca

le
)

Not Optimized

OP1

OP1+OP2

OP1+OP2+OP4

OP1+OP2+OP3+OP4

Fully Optimized

Figure 7. The Contribution of Optimization Methods in Reducing Overhead of RL-Bin for SPECrate 2017 Integer Without Instrumentation

 27 / 241

version of RL-Bin, the dynamic debugger, will be sent to the
end-user. Added instrumentation will monitor execution and
send requested information to the developer. Thus, enabling
the developer to pinpoint the problem and fix the issue. This
dynamic debugger does not reveal debugging information to
the end-user. Only recompiled RL-Bin is sent to the end-user
system and the debug information file never gets exposed.
Another advantage is that the code can be patched dynamically
when the binary is being executed. This is crucial for certain
service applications which need to be responsive all the time.

As proof of concept, we developed a simple version of
our dynamic debugger. This prototype is capable of parsing
PDB file format which stores debugging information of the
programs compiled with Microsoft Visual Studio. Our de-
bugger will instrument the program to monitor it during its
execution. As an example, instrumentation was added to report
the maximum value of the first argument passed to ten random
functions. (The purpose of our test was to measure the over-
head. The monitored functions and monitoring method depend
on the developer and may vary case by case.) Our test results
showed that the average overhead was just 6.1% for SPECrate
benchmarks, which means that added instrumentation added
little extra overhead in comparison to 5% overhead for binaries
without instrumentation according to Subsection V-A. This low
overhead makes RL-Bin practical for use in deployment.

VII. RELATED WORKS

Binary rewriting is a well-researched field of study and
during the past thirty years, there have been several major
rewriters developed to address the specific needs of the com-
munity. [13] thoroughly covers existing works in full depth.
In this section, we briefly review existing static and dynamic
binary rewriters and compare them against RL-Bin.

RL-Bin [14] represents a very early snapshot of this project
published in a non-archival workshop. The current paper
is extensively different from [14] by providing a more in-
depth analysis, formal definitions of algorithms, more thorough
evaluations and experiments that were not part of the earlier
paper. As a result of these changes, 72% (about seven out of
ten pages) of the material in the current paper is new and never
published before.

In particular, [14] presented the initial version of RL-Bin
which had high overhead, around 2.5 times the overhead of the
current version. The new version has introduced new optimiza-
tion techniques such as indirect branch target prediction, white-
listing external modules, and extending the coverage of safe
functions by defining PNSD variables, all of which have helped
to achieve overhead of less than 5% on average, indicating
that current version can practically be used in deployment. In
addition, the earlier paper did not have methods for handling
exception-based obfuscation, multi-threaded applications, and
self-modifying code. Hence, previously it was only tested
for single-threaded applications not containing self-modifying
code or exception-based obfuscation. The current version has
reached a level of maturity and robustness that can be used for
all benign stripped commercial binaries.

A. Static Binary Rewriters
Currently, lots of static rewriting solutions are available

including [15]–[19]. SecondWrite project [15] aims to recover
compilable source code from binaries, initially output as

LLVM IR, which could then further be compiled into rewritten
executable code. ATOM [16] provides a flexible interface
for code instrumentation which helps in the development
of program analysis tools. Diablo [18] aims to provide a
framework for link-time program transformation with whole
program optimization and instrumentation. Dyninst’s version
2007 [12] is an in-place static binary rewriter aiming to provide
low-overhead instrumentation capability. Pebil [19] is another
static binary rewriter focused on achieving efficient binary
instrumentation by using function-level code relocation for
inserting control structures.

Static rewriters, including all of the above, face significant
limitations due to the lack of run-time information when trying
to disassemble and instrument the binary. The first limitation
is that they cannot disassemble dynamically generated or
self-modifying code. The reason is that these codes are not
available before the execution of the program. This will lead
to incomplete code coverage.

Dynamically generated code is quite common in benign
applications. In a recent study [20], it was observed that 29
out of 120 benign applications contain dynamically generated
code, which is used for supporting the execution of user scripts.
This means that implementations of security policies that use
static binary rewriters would fail for 24% of applications.

The second limitation of static binary rewriting arises from
the fact that some benign programs contain data in their code
segment. Static disassemblers aim to understand the contents
of code segments using two types of disassembly – linear
sweep or recursive traversal. Linear sweep ensures high code
coverage. However, it cannot distinguish between real code
and data in the code segment.

To overcome the problem of data in code segments, another
method of disassembly must be used. This method is recursive
traversal, which only treats a region of the code segment as
code if it can statically prove a control-flow path to it exists.
static control flow paths are only known through direct CTIs.
For indirect CTIs, the targets are not statically known and the
target is only reachable via indirect CTIs.

A third limitation of static binary rewriting is that some
benign programs contain obfuscated code, in which case static
rewriting can break the program. The relevant kind of obfus-
cation is control-flow obfuscation whose goal is to mislead
disassemblers so that they cannot reverse-engineer binaries.

B. Dynamic Binary Rewriters
There are two main types of dynamic binary rewriters: in-

place designs, and code-cache based designs. We will go over
them briefly.

In-place designs, such as BIRD [21] have lower over-
head in comparison to code-cache based designs by avoiding
the high overhead incurred by maintaining the code cache;
however, they fail to support some of the features which
may happen relatively frequently in benign binaries such as
obfuscation, dynamically-generated and self-modifying code.
The reason BIRD does not work for obfuscated code is that it
assumes both the fall through and destination of a conditional
branch are code, which may not be true in obfuscated code.
Further, BIRD does not support self-modifying code. The
reason is that once they disassemble code from a location, they
never change the disassembly even if the code is overwritten.

 28 / 241

Unlike static and in-place dynamic rewriters, code-cache
based dynamic rewriters are robust and can correctly rewrite
all programs. However, existing rewriters have high overhead
that is generally unacceptable for deployment on live systems.
Two of the most popular code-cache based dynamic rewriters
are DynamoRIO [2] and Pin [11] with 1.2x and 1.54x run-
time overhead, respectively, on average for the full SPEC’06
benchmark suite even without any instrumentation inserted.
Dyninst’s version 2011 [22] is another code-cache based de-
sign which has 1.2x overhead for the same benchmark. Vulcan
[23] is another dynamic binary rewriter which has a very
strong API for adding instrumentation; however, it has very
high overhead, around 2x to 3x compared to uninstrumented
binaries.

VIII. CONCLUSION

In this paper, we have developed a novel design for a fully
optimized, low-overhead binary rewriter which is robust like
other dynamic binary rewriters. Due to its low overhead, it
is practical to be used in real-time systems. Our experiments
show that the overhead of DynamoRIO is 1.16x, whereas the
overhead of RL-Bin is 1.05x.

In our future work, we will develop an instrumentation
API for RL-Bin that is going to be both efficient and flexible.
We aim to have a similar set of APIs to existing tools [24],
[25] so that users can adapt to RL-Bin with minimal effort. We
are also exploring other adversarial and obfuscation techniques
against binary rewriters and the methods to circumvent them.
In the near future, we will release RL-Bin’s binary for non-
commercial uses, similar to how Pin [11] is licensed.

REFERENCES

[1] D. Shackleford, “A new era in endpoint protection,” https://go.
crowdstrike.com/rs/281-OBQ-266/images/ReportSANSProductReview.
pdf, 2017, retrieved: October, 2019.

[2] D. L. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2004.

[3] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing untrusted
code via compiler-agnostic binary rewriting,” in Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012, pp.
299–308.

[4] C. Zhang et al., “Practical control flow integrity and randomization
for binary executables,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 559–573.

[5] M. Olszewski, J. Cutler, and J. G. Steffan, “Judostm: A dynamic binary-
rewriting approach to software transactional memory,” in Proceedings
of the 16th International Conference on Parallel Architecture and
Compilation Techniques. IEEE Computer Society, 2007, pp. 365–375.

[6] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[7] A. Roy, S. Hand, and T. Harris, “Hybrid binary rewriting for memory
access instrumentation,” ACM SIGPLAN Notices, vol. 46, no. 7, 2011,
pp. 227–238.

[8] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser:
Protecting sensitive data leaks using application-level taint tracking,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 1, 2011, pp.
142–154.

[9] “Binary obfuscation project tool,” https://www.codeproject.com/
Articles/856846/Binary-Obfuscation, retrieved: October, 2019.

[10] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals.” in USENIX Security Symposium, 2007, pp. 275–290.

[11] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in Acm sigplan notices, vol. 40. ACM,
2005, pp. 190–200.

[12] G. Ravipati, A. R. Bernat, N. Rosenblum, B. P. Miller, and J. K.
Hollingsworth, “Toward the deconstruction of dyninst,” Comput. Sci.
Dept., Univ. Wisconsin, Madison, Tech. Rep., 2007.

[13] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl, “From hack to
elaborate technique—a survey on binary rewriting,” ACM Computing
Surveys (CSUR), vol. 52, no. 3, 2019, p. 49.

[14] A. Majlesi-Kupaei, D. Kim, K. Anand, K. ElWazeer, and R. Barua, “Rl-
bin, robust low-overhead binary rewriter,” in Proceedings of the 2017
Workshop on Forming an Ecosystem Around Software Transformation.
ACM, 2017, pp. 17–22.

[15] K. Anand et al., “A compiler-level intermediate representation based
binary analysis and rewriting system,” in Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, 2013, pp. 295–
308.

[16] A. Eustace and A. Srivastava, “Atom: A flexible interface for build-
ing high performance program analysis tools,” in Proceedings of the
USENIX 1995 Technical Conference Proceedings. USENIX Associ-
ation, 1995, pp. 25–25.

[17] B. Schwarz, S. Debray, G. Andrews, and M. Legendre, “Plto: A link-
time optimizer for the intel ia-32 architecture,” in Proc. 2001 Workshop
on Binary Translation (WBT-2001). Citeseer, 2001.

[18] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere,
“Diablo: a reliable, retargetable and extensible link-time rewriting
framework,” in Signal Processing and Information Technology, 2005.
Proceedings of the Fifth IEEE International Symposium on. IEEE,
2005, pp. 7–12.

[19] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely,
“Pebil: Efficient static binary instrumentation for linux,” in Performance
Analysis of Systems & Software (ISPASS), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 175–183.

[20] D. Kim et al., “Dynodet: Detecting dynamic obfuscation in malware,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2017, pp. 97–118.

[21] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh, “Bird: Binary interpreta-
tion using runtime disassembly,” in Code Generation and Optimization,
2006. CGO 2006. International Symposium on. IEEE, 2006, pp. 12–
pp.

[22] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumenta-
tion,” in Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools. ACM, 2011, pp. 9–16.

[23] A. Edwards, H. Vo, and A. Srivastava, “Vulcan binary transformation
in a distributed environment,” Microsoft Research, Tech. Rep., 2001.

[24] “Intel pin api,” https://software.intel.com/sites/landingpage/pintool/
docs/81205/Pin/html/group API REF.html, retrieved: October, 2019.

[25] B. Buck and J. K. Hollingsworth, “An api for runtime code patching,”
The International Journal of High Performance Computing Applica-
tions, vol. 14, no. 4, 2000, pp. 317–329.

 29 / 241

 30 / 241

 31 / 241

Automatically Checking Conformance on Asynchronous Reactive Systems

Camila Sonoda Gomes

Computing Department
UEL - State University of Londrina

Londrina, Brazil
Email: camilasonoda@uel.br

Adilson Luiz Bonifacio

Computing Department
UEL - State University of Londrina

Londrina, Brazil
Email: bonifacio@uel.br

Abstract—Software testing is an important issue in the software
development process to ensure the quality of products. Formal
methods have been promising on testing reactive systems, where
accuracy is mandatory and any fault can cause severe damage.
Systems of this nature are characterized by receiving messages
from the environment and producing outputs in response. One of
the biggest challenges in model-based testing is the conformance
checking of asynchronous reactive systems. The aim is to verify
if an implementation complies with its respective specification. In
this work, we study conformance checking for reactive systems
specified by Input Output Labeled Transition Systems (IOLTS).
We develop a practical tool to check the conformance relation
between reactive models using the classical ioco relation and a
more general theory based on regular languages. In addition,
we present some testing scenarios in practical applications and
compare them to other tools from the literature using both notions
of conformance.

Keywords–model-based testing; conformance testing; automatic
verification; reactive systems.

I. INTRODUCTION

Automatic testing tools have been proposed to support the
development process of reactive systems that are characterized
by continuous interaction with the environment. In this setting,
systems receive external stimuli and produce outputs, asyn-
chronously, in response. In addition, systems of this nature are
usually critical and require more accuracy in their development
process, especially in the testing activity, where appropriate
formalisms must be used as the basis [1]–[3]. IOLTSs [2]–[5]
are traditional formalisms usually applied to model and test
reactive systems.

In model-based testing, an IOLTS specification can model
desirable and undesirable behaviors of an Implementation
Under Test (IUT). The aim is to find faults in an IUT according
to a certain fault model [1] [6] in order to show if requirements
are satisfied regarding its respective system specification. The
well-established ioco conformance relation [3] requires that
outputs produced by an IUT should also be produced by its re-
spective specification. A more recent and general conformance
relation [1] specifies desirable and undesirable behaviors using
regular languages to define the testing fault model.

In this work, we address the development of an automatic
tool for conformance verification of asynchronous reactive
systems modeled by IOLTSs. We introduce both notions of
conformance in our practical tool to provide a wider appli-
cation range compare to other tools. JTorx [7], for instance,
is a tool from the literature that also implements a con-
formance testing verification process, but only based on the

classical ioco relation. Our tool comprises both the classical
ioco relation and also the more general conformance based
on regular languages. We also run some practical scenarios to
evaluate aspects related to the effectiveness and usability of
both conformance theories and these tools. We show scenarios
where the language-based conformance is able to find faults
which cannot be detected by the classical ioco conformance.

We organize this paper as follows. Section II describes
the conformance verification methods using regular languages
and the ioco relation. The practical tool which implements the
more general method of conformance checking is presented
in Section III. Some applications and a comparative study
are given in Section IV. Section V describes the comparative
analysis of tools. Section VI offers some concluding remarks.

II. CONFORMANCE VERIFICATION

The conformance checking task can determine if an IUT
complies with its specification when both are modeled by
appropriate formalisms. The classical ioco conformance re-
lation [3] [5] establishes the compliance between IUTs and
specifications when they are specified by IOLTS [2]–[5].
An IOLTS is a variation of the Labeled Transition Systems
(LTS) [8]–[11] with the partitioning of input and output labels.

Definition 1: An IOLTS S is given by (S, s0, LI , LU , T)
where: S is the set of states; s0 ∈ S is the initial state; LI is a
set of input labels; LU is a set of output labels; L = LI ∪LU
and LI ∩ LU = ∅; T ⊆ S × (L ∪ {τ}) × S is a finite set of
transitions, where the internal action τ /∈ L; and (S, s0, L, T)
is the underlying LTS associated with S.
A transition (s, l, s′) ∈ T indicates that from the state s ∈ S
with the label l ∈ (L ∪ {τ}) the state s′ ∈ S is reached in an
LTS/IOLTS model. When we have a transition (s, τ, s′) ∈ T
with an internal action, it means that an external observer can
not see the movement from state s to state s′ in the model.

We may also have the notion of quiescent states. If a state
s of an IOLTS has no output x ∈ LU and internal action τ
defined on it, we say that s is quiescent [3]. When a state s is
quiescent we then add a transition (s, δ, s), where δ /∈ Lτ . Note
that we denote L ∪ {τ} by Lτ in order to ease the notation.

In a real scenario of black-box testing where an IUT sends
messages to a tester and receives back responses, quiescence
indicates that an IUT could no longer respond to the tester, or
it has timed out, or even it is simply slow.

We also need to define the semantics of LTS/IOLTS
models. But first, we introduce the notion of paths.

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 32 / 241

Definition 2: ([1]) Let S = (S, s0, L, T) be a LTS and
p, q ∈ S. Let σ = l1, · · · , ln be a word in L?τ . We say that σ
is a path from p to q in S if there are states ri ∈ S, and labels
li ∈ Lτ , 1 ≤ i ≤ n, such that (ri−1, li, ri) ∈ T , with r0 = p
and rn = q. We say that α is an observable path from p to q
in S if we remove the internal actions τ from σ.
A path can also be denoted by s

σ−→ s′, where the behavior
σ ∈ L?τ starts in the state s ∈ S and reaches the state s′ ∈ S.
An observable path σ, from s to s′, is denoted by s

σ
=⇒ s′.

We can also write s σ−→ or s σ
=⇒ when the reached state is not

important.
Paths that start from state s are called paths of s, and the

semantics of an LTS model is given by the paths that start from
their initial state. Now we give the semantics of LTS models.

Definition 3: ([1]). Let S = (S, s0, L, T) be a LTS and
s ∈ S: (1) The set of paths of s is given by tr(s) = {σ|s σ−→}
and the set of observable paths of s is otr(s) = {σ|s σ

=⇒}.
(2) The semantics of S is tr(s0) or tr(S) and the observable
semantics of S is otr(s0) or otr(S).
The semantics of an IOLTS is defined by the semantics of the
underlying LTS.

Conformance checking can be established between IOLTS
models over the ioco relation. When we apply input stimuli to
both a specification and an IUT, if the IUT produces outputs
that are also defined in the specification, we say that the IUT
conforms to the specification. Otherwise, we say that they do
not conform [3].

Definition 4: ([3]). Let S = (S, s0, LI , LU , T) be a spec-
ification and I = (Q, q0, LI , LU , R) be an IUT. We say that
I ioco S if, and only if, out(q0 after σ) ⊆ out(s0 after σ)
for all σ ∈ otr(S), where s after σ = {q|s σ

=⇒ q} for all
s ∈ S and all σ ∈ otr(S), and the function out(V) =

⋃
s∈V
{l ∈

LU |s
l

=⇒}.
The more general conformance relation is established over

regular languages. This approach provides a wider fault cover-
age for both LTS and IOLTS models. Basically, desirable and
undesirable behaviors are specified by regular languages, D
and F , respectively. Given an implementation I, a specification
S, and regular languages D and F , I complies with S
according (D,F), i.e, I confD,F S if, and only if, no
undesirable behavior of F is observed in I and is specified
in S, and all desirable behaviors of D are observed in I and
also are specified in S.

Definition 5: ([1]) Let a set of symbols L, and the
languages D,F ⊆ L? over L. Let S and I, LTS models,
with L as their set of labels, IconfD,F S if, and only if: (1)
σ ∈ otr(I) ∩ F , then σ /∈ otr(S); and (2) σ ∈ otr(I) ∩ D,
then σ ∈ otr(S).

We remark that an ordinary LTS can be checked using the
language-based approach using only the notion of desirable
and undesirable behaviors. In this case, we do not need to
partition the alphabet into input and output labels, as required
by IOLTS models and crucial for ioco relation. The next
proposition states the language-based conformance checking.

Proposition 1: ([1]). Let the specification S and the IUT
I be LTS models over L, and the languages D,F ⊆ L? over
L. We say that I confD,F S if, and only if, otr(I) ∩ [(D ∩

otr(S))∩ (F ∩otr(S))] = ∅, where otr(S) is the complement
of otr(S) given by otr(S) = L? − otr(S).

On the other hand, the next lemma shows that the more
general notion of conformance relation given in Definition 5
restrains the classical ioco conformance relation.

Lemma 1: ([1]). Let a specification S =
(S, s0, LI , LU , T) and an IUT I = (Q, q0, LI , LU , R)
be IOLTS models, we have that I ioco S if, and only if,
I confD,F S when D = otr(S)LU e F = ∅.
Clearly, the ioco relation can be given by the more general
conformance relation using regular languages.

The conformance checking can be obtained using the
automata theory [12] as proposed by Bonifacio and Moura [1].
We transform LTS/IOLTS models into Finite State Automa-
tons (FSAs) and apply union, intersection, and complement
operations over regular languages. An FSA is formally given
by A = (S, s0, L, T, F), where S = (S, s0, L, T) is the
underlying LTS associated with A. Note that the set of final
states in A is defined by all states of S, i.e., F = S. Since
the semantics of an FSA is given by the language it accepts,
a language R ⊆ L? is regular if there is an FSA M such
that L(M) = R, where L is an alphabet [12]. Hence, we
can effectively construct the automatons AD and AF such
that D and F are regular languages and D = L(AD) and
F = L(AF).

The notions of the test case and test suite according to
formal languages are given as follows.

Definition 6: ([1]). Let a set of symbols L, the test suite
T over L is a language, where T ⊆ L?, so that each σ ∈ T is
a test case.
If the test suite is a regular language, then there is an FSA A
that accepts it, such that the final states of A are fault states.
The set of undesirable behaviors, defined by these fault states,
is called by fault model of S [1].

A complete test suite can be obtained from an IOLTS
specification S and a pair of languages (D,F) using the
Proposition 1. The test suite T = [(D∩otr(S))∪(F ∩otr(S))]
is able to identify the absence of desirable behaviors specified
by D and the presence of undesirable behaviors specified by
F in the specification S. We declare that an implementation I
complies with a specification S if there is no test case of the
test suite T that is also a behavior of I [1].

We also provide the determinization of models which is
useful in this method. Therefore, from a deterministic IOLTS
S we can obtain the automaton A1 induced by S that is
also deterministic. We write L(A1) = otr(S). Hence, we can
effectively obtain an FSA A2 such that L(A2) = L(AF) ∩
L(A1) = F ∩ otr(S). Also, consider the FSA B1 obtained
from A1 by reversing its set of final states, that is, a state s is
a final state in B1 if, and only if, s is not a final state in A1.
Clearly, L(B1) = L(A1) = otr(S). We can now effectively get
an FSA B2 such that L(B2) = L(AD)∩L(B1) = D∩otr(S).
Since A2 and B2 are FSAs, we can construct an FSA C such
that L(C) = L(A2) ∪ L(B2), where L(C) = T . We can
conclude that when D and F are regular languages and S
is a deterministic specification, then a complete FSA T can
be constructed such that L(T) = T .

Next proposition states an algorithm with a polynomial
time complexity for the language-based verification.

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 33 / 241

Proposition 2: ([1]) Let S and I be the deterministic
specification and implementation IOLTSs over L with nS and
nI states, respectively. Let also |L| = nL. Let AD and AF be
deterministic FSAs over L with nD and nF states, respectively,
and such that L(AD) = D and L(AF) = F . Then, we can
effectively construct a complete FSA T with (nS + 1)2nDnF
states, and such that L(T) is a complete test suite for S and
(D,F). Moreover, there is an algorithm, with polynomial time
complexity Θ(n2SnInDnFnL) that effectively checks whether
IconfD,FS holds.

Next, we obtain a similar result for ioco using Lemma 1.
Theorem 1: ([1]) Let S and I be deterministic specifi-

cation and implementation IOLTSs over L with nS and nI
states, respectively. Let L = LI ∪ LU , and |L| = nL. Then,
we can effectively construct an algorithm with polynomial time
complexity Θ(nSnInL) that checks whether I ioco S holds.

III. A TESTING TOOL FOR REACTIVE SYSTEMS

In this section, we present the automatic checking con-
formance tool Everest (conformancE Verification on tEsting
ReactivE SysTems) [13]. Our tool supports the more general
notion of conformance based on regular languages and also the
classical ioco relation when testing reactive systems modeled
by LTS/IOLTS. Everest has been developed in Java [14] using
the Swing library [15], providing a yielding and friendly
usability experience through a graphical interface.

Some features provided by the Everest tool are: (i) check
conformance based on regular languages and ioco relation;
(ii) describe desirable and undesirable behaviors using reg-
ular expressions; (iii) specify formal models in Aldebaran
format [16]; (iv) generate test suites when non-conformance
verdicts are obtained; (v) provide state paths, i.e, the sequence
of states induced by a test case over the IUT and specification;
and (vi) allow the graphical representation of the models.

The tool’s architecture is organized into four modules as
depicted in Figure 1. The modules are given by rectangles and

Figure 1. Tool’s Architecture

the data flow between them is denoted by the arrows. The
input data and the output results are represented by ellipses.

The View module implements an intuitive graphi-
cal interface with three different views: configuration;
ioco conformance; and language-based conformance.

The Parser module reads the input data with the de-
scriptions of IUT and specification, and turn them into data
structures to internally represent their respective models. The

Automaton Construction module transforms the LTS/IOLTS
models into their respective finite automatons which, in turn,
are used to construct the fault model together with the automa-
tons obtained by means of regular languages.

The Conformance Verification module provides all neces-
sary operations over regular languages such as union, inter-
section, and complement [12]. This module also constructs
the finite automaton that represents the complete test suite
and comprises both conformance verification techniques. The
conformance checking processes and their essential algorithms
are described in [17].

Everest defines a standard representation of LTS/IOLTS
models over the Aldebaran [18] format as a set of transitions.
Figure 2a presents an example of Aldebaran format and
Figure 2b shows its respective IOLTS model. The header
des(s0, 9, 4) indicates the initial state, the number of transi-
tions and the number of states. The set of transitions follows
the header line by line, where each transition (s, a, q) is defined
such that s is the source state, a is the label associated to the
transition and q is the target state. Input and output labels can
be indicated by the special markers “?” and “!”, respectively.
But we remark that the special markers just ease the graphical
visualization. Everest constructs, internally, a list of input and
output labels even if these labels have the special markers or
they are settled by the sets of input and output, LI and LU ,
respectively (Figure 2b).

des (s0,9,4)

(s0,?a,s1)

(s0,?b,s3)

(s1,?b,s2)

(s1,!x,s2)

(s1,?a,s3)

(s2,?b,s2)

(s2,!x,s3)

(s3,?b,s0)

(s3,?a,s3)

(a) S in Aldebaran format

s0

s3

s1

s2

a

b a b, x

x

b

b

a

(b) IOLTS specification S
Figure 2. An example of Aldebaran file format

In Figure 3, we can observe the configuration view, where
specification and the implementation models are selected, in
the Aldebaran format. When the model type is an LTS, the
parameters Label, Input labels, and Output labels are
omitted. If IOLTS models are given then we need to inform
how the input/output labels are distinguished (field Label),
informing below the Input and Output labels or the special
markers are assumed in the Aldebaran files, as in Figure 3.

Figure 4 presents the interface for ioco conformance verifi-
cation. Note that in both conformance verification views all in-
formation from the configuration view remains visible to ease
the reference. Also, the buttons view model and view IUT
allow the graphical visualization of the implementation and
specification models. The verdict is displayed by clicking the
button V erify. In case of non-conformance, the tool presents a
set of paths induced by the test suite that detects the faults. The
tool also informs incorrectly filled fields in the configuration
view in the text box Warnings.

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 34 / 241

Figure 3. Configuration view

Figure 4. ioco verification view

In Figure 5, we present the language-based conformance
verification view. Desirable and Undesirable behaviors must

Figure 5. Language-based verification view

be specified by regular expressions. When no regular expres-
sion is provided the Kleene closure [12] is assumed over the
alphabet to identify faults when models are not isomorphic.
After the compliance check, the verdict is displayed similarly
to the ioco verification conformance.

IV. PRACTICAL APPLICATION

This section describes some practical testing scenarios
applied to the Everest and JTorx tools. Let S be the IOLTS

specification of Figure 2b and let R and Q be implementa-
tions candidates as depicted in Figures 6a and 6b. Also, let
LI = {a, b} and LU = {x} be the input and output alphabets,
respectively. All models here are deterministic [19] [20] but we
remark that our tool also deals with non-deterministic models.

q0

q3

q1

q2

a

b a b, x

a

b

b,x

a

(a) Implementation R

q0

q3

q1

q2

a

b a b, x

a,x

b

b

a

(b) Implementation Q

Figure 6. IOLTS Models

In the first scenario, we check if IUT R conforms to
specification S. Everest tool has returned a non-conformance
verdict using ioco relation and generated the test suite
{b, aa, ba, aaa, ab, ax, abb, axb}. The subset of test cases
{b, aa, ba, aaa} induces state paths from s0 to s3 in S and
from q0 to q3 in R, where the output x is produced by R but
S does not. Note that s3 in S is a quiescent state whence no
output is defined on it. The subset {ab, ax, abb, axb} induces
state paths to state s2 in S and q2 in R. In this case, the
output δ is produced by IUT R whereas S produces x. That
is, a fault is detected according to ioco relation. Note that both
tools modify the formal models by adding self-loops labeled
with δ [21] on quiescent states.

The same scenario has been also applied to JTorx tool,
resulting in the same verdict, as expected, but it generates
the test suite {b, ax, ab}. Notice that the test suite generated
by JTorx is a subset of the test suite generated by Everest.
That is, Everest shows all test cases and associated state paths
related to each fault according to a transition cover criteria
over the specification, differently from JTorx which does not
apply transition coverage to test suite derivation. Everest also
allows state coverage as criteria to obtain the test suite using
only one path per fault when checking conformance over an
IUT. But, in this case, we reduce not only the number of test
cases, but also the information that might be useful to aid the
tester in the fault mitigation process.

In the second scenario (Figure 5), when checking the IUT
Q against the specification S, the language-based conformance
verification was able to detect a fault that was not detected by
the ioco conformance relation (Figure 4). We have obtained
the fault model using the regular expressions D = (a|b)∗ax
and F = ∅. Language D clearly expresses behaviors that
finish with a stimulus a followed by an output x produced
in response. Since the only complete test suite is given by
[(D ∩ otr(S)) ∪ (F ∩ otr(S))] and F ∩ otr(S) = ∅, so we
check the condition D ∩ otr(S) 6= ∅, i.e., a fault is detected
when behaviors of D are not present in S. Everest then results
in a verdict of non-conformance and produces the test suite
{ababax, abaabax} reaching a fault that is not detected by
JTorx using the ioco relation.

The specification S (Figure 2b) and the candidate imple-
mentation Q (Figure 6b) are IOLTS models which, after being

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 35 / 241

converted into underlying automatons respectively, AS and
AQ, have all their states defined as final states. Figure 7a
displays the complement automaton of the specification.

The ioco conformance verification first obtains the un-
derlying automata, AS and AQ, from the IOLTS models.
The automaton D (Figure 7b) is constructed to obtain the
fault model (Figure 7c) by the intersection of the language
otr(S)Lu, which is captured by D, and complement language
of the specification (Figure 7a). The automaton that represents
the test suite (Figure 7d) is obtained by the intersection
between the fault model and the AQ. Since the resulting
automaton has no final state, the verdict between models is
that I ioco conforms to S.

s0

s3

s1

s2 c

a

b

x

a b, x

x

b

a
b

x

a a, b, x

(a) Automaton AS

s0

s3

s1

s2f

a

b
x

a b, x

x

b

b

a

x

(b) Automaton D

s0s0

s3s3

s1s1

s2s2cf

a

b
x

a b, x

x

b

b

a

x

(c) Fault model automaton

q0s0s0

q3s3s3

q1s1s1

q2s2s2

a

b a b, x

b

x

b

a

(d) Test suite automaton

Figure 7. Automatons: ioco conformance verification

In language-based conformance verification, the underlying
automatons, AS and AQ, are also obtained from the IOLTS
models depicted in Figures 2b and 6b, respectively. From
the regular expression (a|b)∗ax we obtain the automaton
(Figure 8a) that accepts the respective language. Since the
fault model is given by [D ∩ otr(S)] ∪ [(F ∩ otr(S))] and no
undesirable behavior F is defined, then F ∩ otr(S) = ∅, and
the fault behaviors are reduced to D∩ otr(S). The automaton
that represents the fault model is illustrated in Figure 8b.
The automaton that represents the test suite is illustrated in
Figure 8c. Note that this automaton contains a final state,
indicating that the words accepted by the automaton are part
of the test suite that reveals the faults and, consequently, the
non-conformity between the models. The test suite generated
by the Everest tool is {ababax, abaabax}.

Also, we have performed a practical study over a simple
version, but a real scenario, of a vending machine. The
IOLTS specification N of the vending machine is depicted
in Figure 9a. Now consider an IUT P of this vending ma-
chine as given in Figure 9b. The input alphabet is given by
LI = {1, 3, 5} which means input stimuli are received from
the environment. In this case, labels 1, 3, 5 represent coins
provided by users according to the desired drinks. On the other

d0 d1

d2

b

a

a

x

b

(a) Automaton D

s0d0

s1d1

s3d0 s3d1

s2d0

s2d2

cd2

cd1cd0

a

b
a

b

x

a
b

ab

x

b

a

a
b

x

a

b

(b) Fault model automaton

s0d0q0 s1d1q1 s2d2q2

s3d0q3 s3d1q3 cd1q3 s2d0q2

cd0q2 cd1q1 cd0q0 cd0q3cd2q2

a

b a
b

x

b

a a

b

a

ba

b

a
b

a
b

a

x

b

ab

(c) Test suite automaton

Figure 8. Automatons: language-based conformance verification

hand, the output alphabet is defined by LU = {cof, tea}, that
is, the vending machine gives back to the user the requested
drink, a coffee or a tea.

s1

s0

s2

5
1

cof tea

(a) Specification N

q1

q0

q2

5
1,3

cof tea

(b) IUT P

Figure 9. Vending machine

When checking whether N conforms to P using the
language-based method, Everest was able to detect faults
that were not detected by JTorx. The desirable behaviors are
expressed by D = 3cof and the undesirable behaviors are
specified by F = 1(cof |tea). The former expression says that
after a user gives the coin 3 the vending machine is supposed
to give back a coffee. Similarly, the undesirable expression
establishes that after a user gives the coin 1 the vending
machine should return neither a coffee nor a tea.

Everest then results in a non-conformance verdict between
N and P , producing the test suite {1cof, 3cof}. The test case
1cof is generated because N and P specify that after a coin
1 is provided by the user the vending machine must return a
cof which, in turn, is undesirable according to F . The test case
3cof reaches a fault because the desirable behavior requires the

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 36 / 241

vending machine gives back a coffee if a coin 3 is inserted into
the vending machine. However, this property is not specified
on N and the IUT P allows such situation.

V. COMPARATIVE ANALYSIS OF TOOLS

In this section, we perform a comparative analysis between
Everest and JTorx. Both tools implement the conformance
verification between a specification and an IUT based on
ioco theory [3], but only Everest implements the more general
conformance relation based on regular languages. Table I
summarizes the comparative analysis.

TABLE I. COMPARATIVE ANALYSIS

JTorx Everest
Conformance verification
ioco X X
Language-based - X
Restrictions over the models
Support underspecified models X X
Require input-enabledness X∗ -
Support quiescence X X

∗ JTorx adds self-loops with input labels

The classical ioco relation imposes some restrictions and
properties over the models, for instance, underspecified mod-
els [22] are not allowed on IUT models. In contrast, the
language-based conformance relation can deal with specifica-
tion and implementation models that are not input-enabled.
Everest implements the language-based conformance relation
and also the classical ioco relation, which is reduced from the
former. We remark that both relations developed in Everest do
not require any of these restrictions over the formal models
(See Lemma 1). But JTorx requires, for instance, the input
enabledness over the IUT models. To overcome the problem of
underspecified models, JTorx adds self-loops with input labels
that are not defined in the states. However, such changes can
result in unreliable verdicts since transitions are added to the
model, modifying its original behavior. Everest treats under-
specified models with no change and keeping the reliability
over the original behavior of the models.

Another important issue over underspecified models is
quiescence. In this case, Jtorx and Everest add self-loops
labeled by δ on states that no output is specified for both
specification and implementation models.

VI. CONCLUSION

Testing of reactive systems is an important and complex
activity in the development process for systems of this nature.
The complexity of such systems and, consequently, the com-
plexity of the testing task requires high costs and resources in
software development. Therefore, automation and accuracy on
the testing activity have become essential in this process. Sev-
eral studies have addressed the testing of reactive systems [23]
[24] using model-based testing. More precisely, many works
have focused on the conformance checking [1]–[3] between
IUTs and specifications to guarantee more reliability.

In this work, we have developed an automatic tool for
checking conformance on asynchronous reactive systems. We
have implemented not only the classical ioco theory but also
the more general language-based relation for checking confor-
mance between IOLTS models. We observe by the practical

applications that Everest could find faults using the language-
based conformance verification process which was not detected
by JTorx using the classical ioco relation. Everest then gives us
an advantage with a wider range of testing scenarios and a full
fault detection coverage according to a defined fault model.

There are several tools from the literature that implement
conformance checking based on ioco relation and its varia-
tions [18] [20] [22] [25]–[28]. But, we are not aware of any
other tool that implements a different conformance notion,
such as the language-based relation. So, the main contribution
of this work is the design of Everest tool and its more
flexible conformance checking, in addition to its algorithms,
the intuitive graphical interface, the practical applications and
comparative studies.

A new module of Everest tool is already being developed to
provide the test suite generation in a black-box setting. We also
intend to perform more experiments using real-world problems
with Everest and similar tools from the literature. In this way,
we may give a more precise analysis regarding conformance
checking for asynchronous reactive models, usability, and
performance of these tools.

REFERENCES

[1] A. L. Bonifácio and A. V. Moura, “Complete test suites for input/output
systems,” CoRR, vol. abs/1902.10278, 2019, accessed on: 2019-06.
[Online]. Available: http://arxiv.org/abs/1902.10278

[2] A. da Silva Simão and A. Petrenko, “Generating complete and finite
test suite for ioco: Is it possible?” in Proceedings Ninth Workshop
on Model-Based Testing, MBT 2014, Grenoble, France, 6 April
2014., 2014, pp. 56–70, accessed on: 2019-07. [Online]. Available:
https://doi.org/10.4204/EPTCS.141.5

[3] J. Tretmans, Model Based Testing with Labelled Transition Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–38,
accessed on: 2019-07. [Online]. Available: https://doi.org/10.1007/
978-3-540-78917-8 1

[4] B. K. Aichernig and M. Tappler, “Symbolic input-output conformance
checking for model-based mutation testing,” Electronic Notes in
Theoretical Computer Science, vol. 320, 2016, pp. 3 – 19, accessed on:
2019-06. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1571066116000037

[5] J. Tretmans, “Testing concurrent systems: A formal approach,” in
CONCUR’99 Concurrency Theory, J. C. M. Baeten and S. Mauw, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 46–65.

[6] B. K. Aichernig, M. Weiglhofer, and F. Wotawa, “Improving fault-
based conformance testing,” Electronic Notes in Theoretical Computer
Science, vol. 220, no. 1, 2008, pp. 63 – 77, proceedings of the
Fourth Workshop on Model Based Testing (MBT 2008). Accessed on:
2019-08. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S157106610800443X

[7] “JTorX a tool for model-based testing,”
https://fmt.ewi.utwente.nl/redmine/projects/jtorx/wiki/, accessed on:
2018-06.

[8] G. Tretmans, “A formal approach to conformance testing,” Ph.D.
dissertation, University of Twente, 1992.

[9] P. Daca, T. A. Henzinger, W. Krenn, and D. Nickovic, “Compositional
specifications for ioco testing,” in 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation, March
2014, pp. 373–382.

[10] F. Zeng, Z. Chen, Q. Cao, and L. Mao, “Research on method of object-
oriented test cases generation based on uml and lts,” in 2009 First
International Conference on Information Science and Engineering, Dec
2009, pp. 5055–5058.

[11] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado, “Test case
generation by means of uml sequence diagrams and labeled transition
systems,” in 2007 IEEE International Conference on Systems, Man and
Cybernetics, Oct 2007, pp. 1292–1297.

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 37 / 241

[12] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Course
Technology, 2006.

[13] C. Sonoda, “Everest website,” https://everest-tool.github.io/everest-site,
accessed on: 2019-07.

[14] Oracle, “Java se development kit 8,” http://www.oracle.com/
technetwork/pt/java/javase/, accessed on: 2019-07.

[15] ——, “Package javax swing,” https://docs.oracle.com/javase/7/docs/api/
javax/swing/package-summary.html, accessed on: 2019-06.

[16] “AUT manual page,” https://cadp.inria.fr/man/aut.html, accessed on:
2019-08.

[17] C. S. Gomes and A. L. Bonifácio, “Automatically checking
conformance on asynchronous reactive systems,” CoRR, vol.
abs/1905.08914, 2019, accessed on: 2019-08. [Online]. Available:
http://arxiv.org/abs/1905.08914

[18] J. Calamé, “Specification-based test generation with tgv,” Software
Engineering Notes, 2005.

[19] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006.

[20] B. L. Mark Utting, practical model-based testing a tools approach,
1st ed. Elsevier, 2007.

[21] G. Tretmans, Test Generation with Inputs, Outputs and Repetitive
Quiescence, ser. CTIT technical report series. Netherlands: Centre for
Telematics and Information Technology (CTIT), 1996, no. TR-CTIT-
96-26, cTIT Tecnnical Report Series 96-26.

[22] A. Belinfante, “Jtorx: Exploring model-based testing,” Netherlands, 9
2014, iPA Dissertation series no. 2014-09.

[23] B. K. Aichernig, E. Jöbstl, and S. Tiran, “Model-based mutation testing
via symbolic refinement checking,” Science of Computer Programming,
vol. 97, 2015, pp. 383 – 404, special Issue: Selected Papers from
the 12th International Conference on Quality Software (QSIC 2012).
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167642314002329

[24] S. Anand et al., “An orchestrated survey of methodologies for automated
software test case generation,” Journal of Systems and Software, vol. 86,
no. 8, 2013, pp. 1978 – 2001, accessed on: 2019-08. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121213000563

[25] W. Mostowski, E. Poll, J. Schmaltz, J. Tretmans, and R. Wich-
ers Schreur, “Model-Based Testing of Electronic Passports,” in Formal
Methods for Industrial Critical Systems, M. Alpuente, B. Cook, and
C. Joubert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 207–209.

[26] A. Belinfante, L. Frantzen, and C. Schallhart, 14 Tools for Test
Case Generation. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 391–438, accessed on: 2019-06. [Online]. Available:
https://doi.org/10.1007/11498490 18

[27] P. Bhateja, “A tgv-like approach for asynchronous testing,” in
Proceedings of the 7th India Software Engineering Conference, ser.
ISEC ’14. New York, NY, USA: ACM, 2014, pp. 13:1–13:6, accessed
on: 2018-05. [Online]. Available: http://doi.acm.org/10.1145/2590748.
2590761

[28] C. Jard and T. Jéron, “Tgv: theory, principles and algorithms,”
International Journal on Software Tools for Technology Transfer,
vol. 7, no. 4, Aug 2005, pp. 297–315, accessed on: 2019-08. [Online].
Available: https://doi.org/10.1007/s10009-004-0153-x

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 38 / 241

An Empirical Evaluation of the Accuracy of NESMA Function Points Estimates

Luigi Lavazza

Dipartimento di Scienze teoriche e Applicate
Università degli Studi dell’Insubria

21100 Varese, Italy
Email: luigi.lavazza@uninsubria.it

Geng Liu

School of Computer Science and Technology
Hangzhou Dianzi University

Hangzhou, China
Email: liugeng@hdu.edu.cn

Abstract—Functional size measures of software—especially Func-
tion Points—are widely used, because they provide an objective
quantification of software size in the early stages of development,
i.e., as soon as functional requirements have been analyzed and
documented. Unfortunately, in some conditions, performing the
standard Function Point Analysis process may be too long and
expensive. Moreover, functional measures could be needed before
functional requirements have been elicited completely and at the
required detail level. To solve this problem, many methods have
been invented and are being used to estimate functional size based
on incomplete or not fully detailed requirements. Using these
methods involves a trade-off between ease and timeliness on one
side and accuracy on the other side. In fact, estimates are always
affected by some error; knowing the magnitude of estimation
errors that characterize the estimates provided by a given method
is of great importance to people who use size estimates. This paper
reports the results of an empirical study devoted to evaluate
the accuracy of estimates provides by ‘NESMA estimated’ and
‘NESMA indicative’ methods, which are among the best known
and most widely used Function point estimation methods. The
results of the study show that the NESMA estimated method
provides estimates that are accurate enough for practical usage.

Keywords–Function Points; IFPUG; Function point Analy-
sis; Functional Size Measurement; Functional Size Estimation;
NESMA estimated; NESMA indicative; Early Size Estimation.

I. INTRODUCTION

The availability of accurate functional size measures can
help software companies plan, monitor and estimate devel-
opment costs, and control software development processes.
Among the functional size measurement methods that have
been proposed, Function Point Analysis (FPA) [1] is by far the
most popular. The International Function Points User Group
(IFPUG) took charge of maintaining FPA and publishes the
official Function Point counting manual [2].

In some conditions, performing the standard FPA process
may be too long and expensive. Moreover, standard FPA can be
applied only after the completion of the software requirements
elicitation stage, while functional measures could be needed
earlier, i.e, before functional requirements have been elicited
completely and at the required detail level.

Therefore, many methods were invented and used to pro-
vide estimates of functional size measures based on less or
coarser grained information than required by standard FPA.
Among those methods, the NESMA method [3] is the most
popular. Actually, the NESMA method was adopted by IFPUG
as the election method for early estimation of unction Point
size [4].

Inevitably, all the early functional size estimation methods
involve some estimation error. Accordingly, project managers
need to know—at least approximately—the magnitude of the
potential error that affects size estimates. This is especially
true for the NESMA method, since it has been proposed as
the “official estimation method by IFPUG.

Not surprisingly, several researchers and practitioners eval-
uated the accuracy of the proposed functional size estimation
methods (as described in Section III). However, most eval-
uations were based on academic software projects or used
small datasets, hence most evaluations cannot be considered
very reliable, and they are hardly generalizable. In order to
assess the actual value for industry of the NESMA method, it
is necessary to perform an experimental evaluation based on a
large dataset collecting measures from industrial settings.

In this paper, we present the experimental evaluation of
the accuracy of NEMSA estimates, based on a dataset that
includes data from 479 software development projects in the
finance and banking domain. The size of the dataset and the
real-life nature of the data make the evaluation presented here
the most exhaustive and reliable published evaluation of the
NESMA method.

The rest of the paper is organized as follows. Section II
briefly describes FPA and the NESMA functional size estima-
tion measurement method. Section III illustrates the related
work. Section IV describes the empirical study. Section V
discusses the threats to the validity of the study.

Finally, Section VI draws some conclusions and outlines
future work.

II. BACKGROUND

To make the paper easier to read and as self-contained
as possible, in this section we outline the fundamentals of
Function Point Analysis and the NESMA estimation methods.

A. Function Point Analysis
The basic idea of FPA is that the “amount of functionality”

released to the user can be evaluated by taking into account
the data used by the application to provide the required
functions, and the transactions (or processes) through which
the functionality is delivered to the user. Specifically, the
data used by the application are classified into Internal Logic
Files (ILF) and External Logic Files (EIF), the latter being
essentially “read only” for the application being measured.
Transactions are classified into External Input (EI), External

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 39 / 241

Output (EO) and External Queries (EQ), depending on their
main purpose.

According to the counting manual [2], the measurement
process is organized into the following activities: 1) Determin-
ing the type of function point count; 2) Identifying the Count-
ing Scope and Application Boundary; 3) Identifying Data
Functions; 4) Identifying Transaction Functions; 5) Weighting
data and transaction functions. The latter activity requires that
each data and transaction function is analyzed in detail, so that
its “complexity” is determined and the corresponding weight
can be assigned to the function. Activity 5) is relatively time
and effort consuming.

For additional information on Function Point measurement,
please see [2]. Unadjusted Function Points have been recog-
nized as an international standard by ISO [5]. In this paper,
we always refer to unadjusted function points, even when we
do not qualify explicitly measures as unadjusted.

B. The NESMA estimated method
The NESMA method was proposed [3] to get an estimate

of the functional size of a given application without analyzing
data and transactions in detail.

Actually, there are two NESMA estimation methods:
the Indicative NESMA method and the Estimated NESMA
method.

The former estimates size (EstSize) based on the number
of ILF (#ILF) and the number of EIF (#EIF), as follows:

EstSize = #ILF ×WILF +#EIF ×WEIF

where WILF is 25 or 35 and WEIF is 10 or 15, depending
on ILF and EIF being identified based on a conceptual model
in third normal form or not, respectively.

The process of applying the NESMA indicative method
involves only identifying logic data and classifying them as
ILF or EIF. Accordingly, it requires less time and effort than
standard FPA. However, the Indicative NESMA method is
quite rough in its computation: the official NESMA count-
ing manual specifies that errors in functional size with this
approach can be up to 50%.

The Estimated NESMA method requires the identification
and classification of all data and transaction functions, but
does not require the assessment of the complexity of each
function: Data Functions (ILF and EIF) are assumed to be of
low complexity, EI, EQ and EO are assumed to be of average
complexity. Hence, estimated size is computed as follows:

EstSize = 7 #ILF + 5 #EIF + 4 #EI + 5 #EO + 4 #EQ

IFPUG adopted the NESMA estimated method as the official
early function point analysis method [4].

C. Function Point counting and estimation example
In this section, we illustrate IFPUG FP counting and

NESMA estimation using a slightly modified version of the
Warehouse management software (WMS) by Fetcke [6].

The WMS is used by a company that operates several
warehouses, where customers’ goods are stored. Customers
can deposit items into storage locations in the warehouse. After
the items have been kept in the warehouse for some period of
time, they can be retrieved by their owners. The customers get
billed for the storage service.

The Entity/Relationship diagram representing the entities
involved in the WMS is given in Figure 1. The entities and
their attributes are described in Figure 2. Attributes Owner
and Storage_place are references to entities Customer
and Place, respectively.

Figure 1. Entity/Relationship diagram of the WMS [6].

The WMS allows the user to perform several operations,
such as adding a new customer, deposit an item, receive
payment, print the customer item list, and many others.
Here we report the specifications of the Delete_customer
operation, which will be used to illustrate the functional
measurement methods. The Delete_customer operation
removes an instance of Customer from the system’s repos-
itory, given the Name attribute of the customer. Customer
data are removed if the Amount_due attribute is zero and the
customer does not own any stored items. An error message is
displayed, if the record cannot be removed or if there is no
instance of Customer with the given name.

Based on the given specifications, we can measure the size
of Item data file and the Delete customer transaction,
according to IFPUG rules, as follows.
Item is an ILF, since it is managed by the WMS application.
It has just one RET, since the only type of instance for Items
is the one shown in Figure 2. According to the same figure,
Item has 6 attributes, i.e., 6 DETs. Having 1 RET and 6
DETs, Item is a low complexity ILF, hence its size is 7 FP [2].
Delete_customer is an EI, since its main objective con-
sists in updating a data file, namely the Customer. This
transaction reads Item instances and reads and (possibly)
deletes an istance of Customer: accordingly, it references
2 types of files (FTR = 2). In the execution of this transaction,
only two DETs are moved through the boundaries: the Name
given in input to identify the customer to be removed, and the
error message issued if the deletion cannot be performed. As
an EI with 2 FTR and 2 DETs it has low complexity and its
size is 3 FP [2].

We can now compute the estimated size of Item data file
and Delete_customer transaction using NESMA methods.

According to the NESMA estimated method, Item (an
ILF) is assumed to be of low complexity, hence its size is
estimated to be 7 FP, Delete_customer (an EI) is assumed
to be of average complexity, hence its size is estimated to be
4 FP.

Using the NESMA indicative method, we can estimate the

Figure 2. Entities of the WMS [6].

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 40 / 241

size of the whole WMS: Figure 1 shows that a third-normal
fiorm model of data includes 3 ILF and no EIF, hence the
expected size of WMS is 3× 25 = 75 FP.

III. RELATED WORK

NESMA defined the application of FPA in the early phases
of the application life cycle, and recognizes three function
point analysis methods: Detailed function point analysis (cur-
rently corresponding to IFPUG measurement), Estimated func-
tion point analysis, Indicative function point analysis. Using a
database of over 100 developed and implemented applications,
NESMA empirically evaluated the accuracy of the estimated
and indicative FPA approximation methods [10]. The results
showed that: size measures of the high-level function point
analysis and the detailed function point analysis are very
close. Moreover, indicative function point analysis gives a
surprisingly good estimate of the size of several applications.

H. S. van Heeringen described the size accuracyas well as
the difference in measurement effortof the NESMA estimated
and NESMA indicative methods, by measuring 42 projects [3].
The results show that the estimation error of NESMA es-
timated was in the [-6%, +15%] range, with average 1.5%;
the estimation error of NESMA indicative was in the [-15%,
+50%] range with average 16.3%. In both cases the estimation
error was evaluated with respect to the detailed measurement.

Wilkie et al. [11] utilized five commercial projects used in
the research to evaluate the cost-benefit trade-off of size mea-
surement with respect to size estimation; they concluded that
whilst the Indicative NESMA method was insufficiently ac-
curate for the involved commercial organization, the NESMA
Estimated approach was definitely viable.

IFPUG adopted NESMA methods for early “high-level”
size estimation [4]. IFPUG suggested that 1) The High Level
FPA method can be used to size an application early in the
software development life cycle; 2) The High Level FPA
method can also be applied as an alternative to standard FPA
estimate (the outcome is not significantly different, while the
estimation time is considerably shorter); 3) The indicative FPA
method may be used to get a very fast, rough indication of the
size of a project or an application, but it is not suited for
contractual commitments.

Lavazza et Liu [9] used 7 real-time applications and 6
non real-time applications to evaluate the accuracy of the
E&QFP [12] and NESMA with respect to full-fledged Function
Point Analysis. The results showed that the NESMA indica-
tive method yields the greatest errors. On the contrary, the
NESMA estimated method yields size estimates that are close
to the actual size. The NESMA indicative method is generally
outperformed by the other methods. The NESMA estimated
method proved fairly good in estimating both Real-Time and
non Real-Time applications.

Morrow et al. used a dataset of 11 projects to evaluate the
quality of sizing estimates provided by NESMA methods [13].
They also adapted NESMA methods’ general principles to
enhance their accuracy and extent of relevance, and empirically
validated such an adapted approach using commercial software
projects.

The main limitations of the mentioned research are that
most of the research work used small datasets containing data
concerning little projects of not industrial nature. In our paper,

we evaluate measurement accuracy of the NESMA method
with respect to FPA method over a dataset containing data
from 479 industrial projects, of which several are above 10000
FP.

IV. THE EMPIRICAL STUDY

The empirical study was made possible by the availability
of a dataset that includes—for every application—both the
measure in IFPUG UFP and the number of ILF, EIF, EI,
EO and EQ. Using the latter numbers we were able to
compute NESMA estimates, by applying the formulae given
in Section II-B. So, having both the NESMA estimates and the
IFPUG size for every application, we were able to evaluate the
accuracy of estimates.

A. The Dataset

We use a dataset of 479 projects developed and used by
a Chinese financial enterprise. The considered projects are all
new development projects, that delivered applications to be
employed in the financial and banking domain. The measures
in the dataset were all computed by expert professionals.

TABLE I. DESCRIPTIVE STATISTICS OF DATASET.

NESMA indicative
Standard FP NESMA estimated Not Normalized Normalized

Max 82501 87100 87420 61895
Mean 3567 3435 3456 2438
St. Dev. 6725 6694 7258 5120
Median 1135 1122 985 700

Descriptive statistics of the dataset are given in Table I.

B. The Analysis

To assess the obtained estimates, in Figure 3 we plot the
values of the estimates with respect to the actual size measured
according to the standard IFPUG counting manual [2]. In
Figure 3, we also draw the NESMA estimated = UFP line:
if the estimates were perfect, all the points would lie on the
line. As a matter of fact, most points are quite close to the
line, thus indicating that in general the estimates are close to
the actual measures.

To better appreciate the accuracy of estimates, in Figure 4
the situation for projects having size not greater than 20000
UFP is shown. It can be observed that most points are below
the y=x line, thus indicating that the NESMA method tends to
underestimate.

To verify if and to what extent the NESMA method
underestimates the IFPUG size, in Figure 5 a boxplot of
NESMA estimation errors is given (errors are defined as the
standard IFPUG size measure minus the estimate). For the sake
of readability, in Figure 5, errors having magnitude greater
than 1000 UFP are not shows. It can be seen that both the
median and the mean (shown as a blue diamond) are above
the zero error line. Actually, about 75% of the projects are
underestimated. We can thus conclude that—in the considered
dataset—the NESMA method underestimates functional size.

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 41 / 241

Figure 3. Standard IFPUG UFP measures vs. NEMSA estimates.

Figure 4. Standard IFPUG UFP measures vs. NEMSA estimates: zoom on
projects not greater than 20000 UFP.

C. Accuracy Evaluation
It is now necessary to evaluate quantitatively the accuracy

of NESMA estimates. First of all—as suggested by Shep-
perd and McDonell [7] and by Lavazza and Morasca [8]—
we checked whether NESMA estimates perform better than
“baseline” models. Shepperd and MacDonell [7] proposed that
the accuracy of a given estimation method be measured via the
Mean Absolute Residual (MAR): MAR = 1

n

∑
i=1..n |yi−ŷi|.

Shepperd and MacDonell suggest to use random estimation,
based solely on the known (actual) values of previously
measured applications, as a baseline model. Shepperd and
MacDonell observed also that the value of the 5% quantile
of the random estimate MARs can be interpreted like α for
conventional statistical inference, that is, any accuracy value

Figure 5. Boxplot of NEMSA estimation errors (no outliers).

that is better than this threshold has a less than one in twenty
chance of being a random occurrence. Accordingly, the MAR
of a proposed model should be compared with the 5% quantile
of the random estimate MARs, to be reasonably sure that the
model is actually more accurate than the random estimation.

Lavazza and Morasca [8] proposed to use a “constant
model,” where the estimate of the size of the ith application
is given by the mean size of the other applications.

With our dataset, the MAR of the constant model is 3864
UFP, while the 5% quantile of absolute residuals for random
estimates is 4566 UFP. The MAR of NESMA estimates is 246
UFP, much smaller than both baselines. Consequently, we can
state that the NESMA method satisfies the necessary condi-
tions for being considered an acceptable estimation method.

Concerning the accuracy of NESMA estimates, in Figure 6
the distribution of absolute errors is given. The blue diamond
is the mean, i.e, the MAR of the estimates. The median of
absolute residuals is 57 UFP, however the MAR is definitely
greater (246 UFP), because of several large errors.

In general, relatively large estimation errors are deemed
acceptable in very large projects. To help practitioners appre-
ciate the “importance” of errors with respect to the size of
the project, in Figure 7 we give the boxplot representing the
distribution of absolute relative errors (the relative error of an
estimate is the estimation error divided by the actual size).

Figure 7 shows that the great majority of estimate errors
are less than 10%, and in only a few (out of 479) cases, errors
are greater than 25%. Considering that NESMA estimates
are produced without considering the details of functional
requirements, this level of accuracy is likely acceptable by
most practitioners.

D. Analysis of the Indicative Method
The analysis reported above concentrated on the NESMA

Estimated method, since the NESMA Indicative method is
reported to be much less accurate [3],[9].

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 42 / 241

Figure 6. Boxplot of absolute errors.

Figure 7. Boxplot of absolute relative errors.

However, we consider necessary to check if the NESMA
Indicative method is really less accurate than the NESMA
Estimated method. To this end, for each of the 479 project in
the dataset, we computed the estimated size according to the
NESMA Indicative method. Since we had no reliable infor-
mation concerning the normalization of the data models used
to identify ILF and EIF, we applied the NESMA Indicative
method with both the normalized and not normalized weights.

The results we achieved agree with the previously pub-
lished evaluations. Figure 8 shows the distributions of relative
errors of estimates obtained via NESMA Indicative methods
in comparison with the NESMA Estimated method. It is quite
clear that the NESMA Indicative methods is definitely less
accurate than the NESMA Estimated method. This difference
in accuracy is even more evident in Figure 9, where the
absolute residuals of NEMSA methods are shown (outliers are

Figure 8. Distributions of absolute relative estimation errors of the NESMA
methods.

omitted to keep the figure readable).

Figure 9. Distributions of absolute relative estimation errors of the NESMA
methods.

TABLE II. RESULTS WITH DIFFERENT NESMA METHODS

Indicative
Estimated Not Norm. Normalized

Mean AR 264 1989 1817
Median AR 57 386 398
Mean MRE 7.7% 57% 49%
Median MRE 6.3% 51% 48%

The MAR and MMRE obtained with the different NESMA
methods are given in Table II.

V. THREATS TO VALIDITY

Given the type of study we presented, there are two main
threats to validity that need attention.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 43 / 241

First, we should consider the correctness of the given data.
In fact, the data in the analyzed dataset were derived from
the analysis and measurement of functional requirements: both
analysis and measurement could be affected by error, which
would end up in the dataset. Concerning this threat, we are
reasonably sure that the used data are of good quality, since
they were collected by professionals in industrial contexts
where functional size measures are quite important, hence great
attention is posed in the measurement activities. Evan so, we
cannot exclude that some errors are present; however, in such
case most errors are expected to affect both IFPUG measures
and NESMA estimates, in approximately the same way. Hence,
these errors should not be able to affect our results to a large
extent.

Second, we need to consider external validity, i.e., whether
we can generalize the results of our study outside the scope
and context that characterize the considered software projects.
On the one hand, our dataset is much larger than the datasets
usually involved in software engineering empirical studies;
besides, our dataset includes data from fairly large projects
(e.g., over 20000 FP). In this sense, our dataset represents
a large and varied enough sample. On the other hand, all
the considered projects are from the economic, financial and
banking domain, hence we cannot be sure that the results of
our study apply equally well in other domains. In this respect,
readers are reminded that previous studies (e.g., [9]) show
some difference in accuracy when estimates concern real-time
software applications.

VI. CONCLUSIONS

In this paper, we addressed the evaluation of the accu-
racy of functional size estimates that can be achieved via
the NESMA estimation methods. To this end, we compared
functional size measures obtained via the standard IFPUG
Function Point Analysis process, and estimates obtained via
the NESMA indicative and NESMA estimated methods. Both
measures and estimates were computed for a dataset containing
data from 479 software projects. Based on the results of the
analysis, we can draw a few relevant conclusions:

– The NESMA estimated method is definitely more
accurate than the NESMA indicative method.

– The NESMA estimated method provides reasonably
accurate estimates: the mean absolute residual is 264
FP, quite small, considering that the average size of
estimated projects is 3567 FP.

– 75% of applications were estimated by the NESMA
estimated method with errors not greater than (or
extremely close to) 10%.

– The NESMA method tends to underestimate. This can
be dangerous, since at the initial stages of development
one could be induced to believe that the development
process will be shorter and cheaper than actually
required.

Future work includes experimenting with additional esti-
mation methods and investigating whether and how estimation
accuracy can be improved.

ACKNOWLEDGMENT

This work was partly supported by the “Fondo di ricerca
d’Ateneo” funded by the Università degli Studi dell’Insubria,

by Zhejiang Provincial Science Foundation of China under
Grant No. LY19F020046 and LY17F020023, and by the Chi-
nese Scholarship Council under Grant No. 201708330399

REFERENCES
[1] A. J. Albrecht, “Measuring application development productivity,” in

Proceedings of the joint SHARE/GUIDE/IBM application development
symposium, vol. 10, 1979, pp. 83–92.

[2] International Function Point Users Group (IFPUG), “Function point
counting practices manual, release 4.3.1,” 2010.

[3] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement-accuracy versus costs-is it really worth it?” in Software
Measurement European Forum (SMEF 2009), 2009.

[4] A. Timp, “uTip – Early Function Point Analysis and Consistent Cost
Estimating,” 2015, uTip # 03 (version # 1.0 2015/07/01).

[5] International Standardization Organization (ISO), “ISO/IEC 20926:
2003, Software engineering IFPUG 4.1 Unadjusted functional size
measurement method Counting Practices Manual,” 2003.

[6] T. Fetcke, “The warehouse software portfolio: A case study in
functional size measurement,” Département d’informatique, Université
du Quebec à Montréal, Tech. Rep. 1999 20, 1999. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.195.5828&rep=rep1&type=pdf Retrieved: September 2019

[7] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, 2012, pp. 820–827.

[8] L. Lavazza and S. Morasca, “On the evaluation of effort estimation
models,” in Proceedings of the 21st International Conference on Eval-
uation and Assessment in Software Engineering. ACM, 2017, pp.
41–50.

[9] L. Lavazza and G. Liu, “An empirical evaluation of simplified function
point measurement processes,” International Journal on Advances in
Software Volume 6, Number 1 & 2, 2013, 2013, pp. 1–13.

[10] nesma, “Early Function Point Analysis.” [Online]. Avail-
able: https://nesma.org/themes/sizing/function-point-analysis/early-
function-point-counting/ Retrieved: September 2019

[11] F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, and N. Lester,
“The value of software sizing,” Information and Software Technology,
vol. 53, no. 11, 2011, pp. 1236–1249.

[12] L. Santillo, M. Conte, and R. Meli, “Early & quick function point:
sizing more with less,” in 11th IEEE International Software Metrics
Symposium (METRICS’05). IEEE, 2005, pp. 41–41.

[13] P. Morrow, F. G. Wilkie, and I. McChesney, “Function point analysis
using nesma: simplifying the sizing without simplifying the size,”
Software Quality Journal, vol. 22, no. 4, 2014, pp. 611–660.

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 44 / 241

Metaphor Models in Software Education: An Empirical Study

Evgeny Pyshkin
University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu, Fukushima, 965-8580, Japan
Email: pyshe@u-aizu.ac.jp

Abstract—This research contributes to the literature on using
metaphors in computing and software education. We examine the
major theories of metaphors focusing on linguistic, cognitive and
communicational aspects of contemporary discourse on metaphor
and the applicability of these theories to the domain of computing,
software engineering and education. We investigate the specific
characteristics of metaphors used in computer science and soft-
ware systems and introduce a number of use cases demonstrating
how metaphors are used in programming classes while discussing
such topics as code organization, code readability, code aesthetics,
and software project workflow.

Keywords–Metaphor; software engineering; education;
empirical; readability.

I. INTRODUCTION

Exploring metaphors and their use in education received
significant attention in research works in various fields of
knowledge from philosophy and linguistics on one side of the
spectrum to technology and engineering on the other. Conver-
gence of models and approaches used in different subject do-
mains becomes a noticeable trend in present-day technology-
related cross-disciplinary research. In the last decade, we
can cite a number of efforts to put software engineering
and computing discourse into the context of human-centric
paradigm [1], humanities [2], social and cognitive sciences [3].
Investigations on crossings between natural, social and tech-
nology disciplines [4], centricity of computer science in con-
temporary liberal arts education [5], digital disruption chal-
lenges [6], relationsips between digital humanities, digital
society and software study [7] are of much interest for both
humanity and engineering researchers.

In linguistics, metaphors are language constructs refer-
ring to (or reasoning about) the concepts using words and
phrases with the meanings appropriate to different kinds of
concepts [8]. Consider the famous William Shakespeare’s
fragment from the play “As You Like It” [9]: “All the world’s
a stage, And all the men and women merely players: They
have their exits and their entrances.” We find here a direct
metaphor: “world as theater stage” using the connected con-
cepts “players”, “actor’s exit (from the stage)” and “actor’s
entrance (to the stage)”. Persy Bysshe Shelly uses a metaphor
of family to describe the cloud, which is itself a metaphor of
his romantic hero in the poem “The cloud” [10]: “I am the
daughter of Earth and Water, And the nursling of the Sky.”

In poetry, the metaphors of empathy are very common;
here is one more good example from Paul Verlaine’s “L’heure
exquise” (1820), where the lune has voice, the willow has a
silhouette, and the wind (not a willow!) weeps [11] (Table I
shows the original text together with the English direct trans-
lation).

TABLE I. VERLAINE’S METAPHORS

Original French Text English Direct Translation
De chaque branche From every branch
Part une voix A voice goes
Sous la ramé. . . To under the ridge
La silhouette The silhouette
Du saule noir Of the black willow
Où le vent pleure. . . Where the wind weeps. . .

Metaphors are mental phenomena that could be manifested
not only in language, but also in gesture or graphic form;
thus, in every form connected to the metaphor’s (and human
being’s) cognitive nature and the metaphor’s socio-cultural
dimensions [12]. Metaphors do not only assert object sim-
ilarities; paradoxically, they point up the dissimilarities and
contrasts between the objects, and this is equally important
for understanding how metaphors work [13].

Apart from linguistics and philosophy, there are numer-
ous metaphor connotations in technology and engineering.
Carbonelli, Sánchez-Esguevillas, and Carro pointed out the
role of metaphors in understanding the emerging technologies:
“Technologies are not only changing our world in a mate-
rialistic and pragmatic way but they are a primary factor
in defining our conceptual models, influencing the way we
understand and perceive our experience” [14]. Being a new
reality, the technologies are often based on new concepts
requiring metaphors for their understanding, such as:

• “Data as resources” metaphor in Data Science (de-
rived from the earlier resource-based metaphors for
electricity, time, transportation systems, etc.);

• “Software as a construction material” in Software-
defined Anything (connected to the earlier metaphor
of software design as architecture);

• “Home as device container” in Smart Home tech-
nology (closely related to the IoT metaphors).

Kendall mentioned that successful user metaphors have an
impact on the development of successful information systems
and their interfaces: “Invoking a metaphor means opening the
door for a listener to use all previous associations in entering
the subject in different way” [15].

In software engineering, requirement elicitation and initial
system design need good metaphors in order to facilitate
establishing communication between the development team
and project stakeholders, to allow both parties interpreting and
understanding their languages (see Figure 1). We use the term
“languages” in a broader sense, to designate the process of
mapping the conceptual core connected to the subject domain
to the model used on developer’s side.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 45 / 241

Figure 1. Mapping the customer’s domain language to the development
team’s language.

The remaining text is organized as follows. In Section II,
the existing theories of metaphor are introduced at a glance
with respect to their mutual dependencies. Section III is
focused on using the theories of metaphor in education, with
particular emphasis on their applicability to technology disci-
plines. Section III presents our own experience on introducing
metaphors to students attending a programming class.

II. METAPHOR PARADIGMS IN HISTORICAL PERSPECTIVE

It is no exaggeration in saying that modern theories of
metaphor appeal to a number of ancient views, where the
works of Aristotle and Quintilian are the most discussed.
Multiple hypotheses of contemporary linguistics are built on
revealing the insights and finesse of the analysis of ancient
authors [16]. Traditionally, the sources of so-called Compar-
ison Theory are attributed to Aristotle, who introduced a
metaphor as the application (έπιφoρά) of an alien name
by transference either from genus ()γένoς) to species (είδoς),
or from species to genus, or from species to species, or by
analogy [17]. In contrast to many modern studies of metaphor
insisting that Aristotle undervalued metaphor and believed it to
be a solely ornamental language feature, Mahon argued that
Aristotle held a position on the ubiquity of metaphor which
supports current views about the omnipresence of metaphors
in everyday discourse [18]. Wood claimed that the Aristotle’s
definition contributes to the relationships between concepts
and the processes of metaphor application (thus, from the
perspective of software engineering, it is in direction of entity-
relationship modeling) [19].

Quintilian, in turn, used a “process-oriented” approach,
but emphasized the alteration, or mutation, rather than trans-
ferring [20]. Quintilian stated that the alterations arise from
the words used metaphorically, and the involved changes
“concern not merely individual words, but also our thoughts
and the structure of our sentences” [21]. Thus, the Quintilian’s
approach may be considered as a precursor of Cognitive
Theory of Metaphor by Lakoff and Johnson [22].

Richards introduced, and then Black developed the Inter-
action Theory of Metaphor. In contrast to ancient authors
who worked with the transitional concepts of source and
target, Richards introduced the technical concepts of tenor
and vehicle, where the former is the thought being described
in terms of another (metaphorically), while the latter is the
thought, in terms of which the tenor is described [23]. Black
described it in his conceptual book “Models and Metaphors”:
“A memorable metaphor has the power to bring two sepa-
rate domains into cognitive and emotional relation by using
language directly appropriate to the one as a lens to seeing
the other; the implications, suggestions, and supporting values
entwined with the literal use of the metaphorical expression
enable us to see a new subject matter in a new way. [. . .]

the metaphor itself neither needs nor invites explanations
and paraphrase. Metaphorical thought is a distinctive mode
of achieving insight, not to be construed as an ornamental
substitute for plain thought” [24]. Thus, metaphors are linked
to ontological models connected to the tenor and vehicle.

Lakoff created a Contemporary Theory of Metaphor fo-
cused on examination of metaphors as not solely language enti-
ties, but matters of thought and reason: “the locus of metaphor
is not in language at all, but in the way we conceptualize
one mental domain in terms of another. The general theory
of metaphor is given by characterizing such cross-domain
mappings” [25]. Such a conceptualization is delivered via
finding and creating the ontological correspondences between
the target and source domains. There are subject matters that
cannot be comprehended, without using metaphors, even in
everyday conversational language. Many conceptual metaphors
are cross-language metaphors. The famous metaphor “Love as
Journey” can be described in different languages without los-
ing much of its metaphoric contents. This makes this example
extremely successful. Vocabulary related to a journey serves as
a frequent source for metaphors used in different knowledge
areas. In project management, for example, we use milestones
to designate the important project stages, tickets – to name
the tasks assigned to engineers that should be completed by
the deadline, project roadmaps – to name an overview of
the project’s goals and deliverable artifacts presented within
a project timeline, etc.

Steen extended the preceding theories by adding a
third, communicative, dimension. He pointed out that though
Lakoff’s cross-domain mappings may have been required in
the history of language and its understanding, “these map-
ping have become irrelevant to the thought processes of the
contemporary language user, precisely because the metaphor-
ical senses of the words have become equally conventional,
and sometimes even more frequent that the non-metaphorical
ones” [26]. Specifically, in technology disciplines, there are
frequent cases, when the professional language becomes non-
metaphorical, even if many concepts were originally defined
using the metaphor constructions, but which are not presently
considered as a deliberate use of metaphors. There is also
a kind of ontology deformation: when metaphors of files,
folders and directories were used to name the interface
elements in computer systems (first, command-line, and later
– graphical), many people were able to understand the cross-
domain mapping between the abstractions of computer storage
organization and the concrete example of stationery items.
Nowadays, for younger generations, these interface names are
not abstract anymore; some have never seen physical files or
folders. Thus, they use these words without thinking of their
initial metaphorical connotations.

In terms of comparative theory, the source and the target
may change roles. In the early years of Internet technology,
the concept of electronic mail was explained by mapping the
electronic message domain to a traditional letter mail. At that
time, people had to explicitly emphasize the fact of sending an
electronic message, not a traditional one: “e-mail me”, “check
your e-mail”, etc. Nowadays, when most of communications
have been transferred to the domain of computer (e.g., (still)
electronic) systems, this “e” prefix became unnecessary and al-
most disappeared. By saying “mail me”, we rather mean send-
ing an electronic message, not a traditional mail. Colburn and

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 46 / 241

Shute give the following explanation of the above-mentioned
phenomena: “when the target domain becomes so dissimilar to
the source through information enrichment that a metaphorical
name for the target concept ceases to be metaphorical and
becomes a historical artifact” [27]. Because of technology,
there could be even more unobvious cases, when at attempt to
use a particular metaphor in its literal sense may generate a
metaphorical connection “in opposite direction”: nice example
is the 2006 American romantic drama by Alejandro Agresti
“Lake House”, where the heroes used a physical mail box for
operations shifted in time. Such operations are possible and
even normal for electronic communications (nicely working for
the heroes), but seems surrealistic while moved to the physical
(neither electronic or virtual) reality.

III. USING METAPHORS IN EDUCATION

A. From Language Learning to Education in Broad Sense
In language learning, using metaphors is natural part of

introducing new lexical material to learners. Metaphors provide
a convenient approach to enhance and organize the learner’s
vocabulary, as well as to group together the words and syn-
thetic concepts having a metaphorical meaning. Researching a
metaphorical use of language constructions within a particular
topic may enhance the vocabulary related to the mapped topics.
In [28], Lazar gives a number of examples such as using body
vocabulary to describe the locations (in the heart of the city, on
the foot of a mountain) or weather vocabulary to describe the
human relations (a warm welcome, to freeze somebody out).

Even the teaching process itself can be described metaphor-
ically with respect to the teacher’s roles and responsibili-
ties. Clarken introduced 5 (perhaps, not exhaustive) teaching
metaphors: teachers as parents, teachers as gardeners, teach-
ers as prophets, teachers as pearl oysters, and teacher as
physicians [29]. A teacher may operate differently by using
different metaphors in different time; finding an appropriate
teaching model is an important aspect of making the teaching
process efficient and learner-friendly.

B. Metaphors in Computing and Software
Computer science and software metaphors are diverse

and multi-faceted, they actively exploit different theories of
metaphors (including linguistic, cognitive and communication
approaches): they all may be concurrently used and cooperate.

Research on the particularities of technology language
does not concern the corresponding technological or industrial
applications only, but society at large. The aspects of techno-
logical and engineering literacy are important for improving
educational practices in many areas of knowledge: “informed
citizens need an understanding of what technology is, how it
works, how it is created, how it shapes society, and how society
influences technological development” [30]. The language of a
particular technology-sensitive domain (such as software engi-
neering) is not only for the domain professionals anymore: all
members of contemporary society need a better understanding
of this language and its metaphors. What makes software
metaphors particularly complex is that they have connotations
to abstract entities that we could not physically touch or point
to. Johnson describes computer abstractions as “based not on
nature but rather on artificial world created by humans” [31].

Software architecture exploits the construction metaphor
with the list of relevant terms such as process building,

architectural pattern, etc. In turn, an appropriate metaphor
may improve the process of designing and describing software
architectures. The architectures could not be designed only
by a group of software engineers, they need more experts.
That is why Smolander defined four metaphors referring to
the different meanings of architecture, its description and
stakeholder environment [32]:

• Architecture as blueprint describing the high-level
implementation of the system;

• Architecture as literature describing the project doc-
umentation;

• Architecture as language describing the common
understanding about the system structure and commu-
nication between different stakeholders;

• Architecture as decision describing the decisions
about the system structure, the required resources and
development strategies.

In education, metaphors help to introduce the unknown
by using concrete examples explaining abstract things [29].
However, understanding of what is concrete and what is
abstract differs between disciplines. Abstraction in computer
science is not the same as in mathematics and linguistics [27]:
computer scientists (rightfully) believe that an application
control stack is a concrete entity, and its complexity can be
explained better with using the inferential structures of abstract
domains (like queuing). However, for others, the concept of
memory stack seems to be a complete abstraction.

Software works with many abstract concepts, which are
largely metaphorical. According to Boyd, software can be
considered as a special case of fiction literature, that is why
it is essentially metaphorical [33]. The approaches we use
to describe the data entities and control structures, memory
organization and program workflow, structural patterns and
architecture designs actively exploit various metaphors. Some
of such metaphors are listed in Table II.

Interestingly, introducing a metaphor to a software domain
may lead to further extension of these metaphor within the
bag of concepts specific for software design. Figure 2 provides
an illustration: a design pattern, describing the object-oriented
structure of instance creators, used a metaphor of factory
borrowed from the domain of industrial technology.

Figure 2. Synthesis of extended metaphor.

A Factory Method is for creation instances. It doesn’t have
compile-time dependencies on the object’s type. In turn, for a
given set of related interfaces, an Abstract Factory provides
a way to create objects that implement those interfaces for a
matched set of concrete classes (for example, while supporting
changing platform’s look and feel by selecting an alternative
set of widgets as shown in Figure 3).

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 47 / 241

TABLE II. EXAMPLES OF SOFTWARE METAPHORS

Domain Examples

Program objects

Scope
Assignment
Lifetime
Location

Control structures and program workflow

Selection
Loop
Thread
Lazy computation

Modular structure
Library
Package

Interface design

Menu
Palette
Folder
File

Storage containers

Array
Map
List
Queue
Tree

Structural and design patterns

Factory method
Bridge
Observer
Visitor

Design process
Waterfall
Evolution
Agile

Software analysis
Bad smell
Refactoring
Test mutation

Project flow
Maturing
Degradation
Evolving

Figure 3. Abstract factory and “Look and Feel” Metaphor.

Indeed, “Abstract factory” could hardly be imagined in real
world, however, in computer architectures, it provides a con-
crete (not abstract!) model of class structure representing the
object creation subsystem of extensible and interchangeable
sets of multiple object types that should function in a way that
is independent on the specific types they are working with.

IV. USING METAPHORS IN THE PROGRAMMING CLASS:
STUDY OF EXPERIENCE

Metaphors in education are helpful for many reasons. First,
to link students’ knowledge to newly introduced concepts and
models [34] (experience-based metaphors). Second, to name
new concepts in a way we can understand them by using
similarity between the source and target domains (comparative
metaphors). Finally, they can exploit the ontology mapping
(ontological and interactive metaphors).

A. Software Code Organization Metaphors
Tomi and Mikko Difva introduced a number of metaphors

used in the programming class for beginners that help to
understand the different views on code structuring [35]. They
defined nine metaphors: machine, organism, brain, flux and
transformation, culture, political system, psychic prison,
instrument of domination, and carnival. For example, the
Machine metaphor is used to introduce a code as a sequence
of commands, thus, referring an imperative programming
paradigm; the Organism metaphor is used to introduce a code
as a collection of interacting objects, thus, referring to object-
oriented models, etc. Such metaphors may be very helpful in
discussion on why the different views on system organization
are required, and how a particular development process reflects
a particular software development approach. Their suggestions
are very interesting, but probably need further adjustments.
For example, a sequential process probably needs another
metaphor, not “Machine”, since the contemporary understand-
ing of this concept is more complex: Frank, Roerhrig and
Pring define a machine as a system of intelligence combining
software, hardware and user input. Such a machine is aimed
not only at performing a series of control commands, but at
improving on its own over time [36].

B. Form and Contents as a Readability Metaphor
In my programming class, I sometimes organize an exercise

entitled “The Form inside the Work”, which is about discussing
visual metaphors for introducing multi-faceted software con-
cepts. In particular, we discuss how the code readability
concept may be metaphorically expressed and analyzed using
the famous artwork masterpieces (see the example of using
Van Eyck’s “Annunciation” for such an exercise in [37]).

As pointed out by Oosterman et al. in [38], artworks
(compared to the photography or textual artifacts) provide less
and often inconsistent visual information being an abstract,
symbolic or allegorical (often metaphorical) interpretation
of reality; therefore, their exact reading and annotation is
a challenging problem. Nonetheless, the artworks are still
readable, though such readings might naturally give various
interpretations. Similarly to literary works, manner and matter
are mutually dependent in visual works [39]: structures used
by a creator in an artwork (the form) provide the ways making
possible the reproduction of creator’s intentions, metaphors and
messages (the contents) in the beholder’s mind. This repro-
duction implements the artist’s program approximately, thus,
giving space for many interpretations that can be considered
as co-creation acts [40].

Let me illustrate this idea by using the iconic Rembrandt’s
chez-d-oeuvre “The Night Watch”. Rembrandt Harmenszoon
van Rijn’s “The Night Watch” (“Militia Company of District II
under the Command of Captain Frans Banninck Cocq”, 1642,

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 48 / 241

Amsterdam Museum on permanent loan to the Rijksmuseum,
Amsterdam, Netherlands) is an exceptional example of huge
multi-layer composition portraying a military group. Full of
metaphoric symbolism, this masterpiece provides an excellent
case to learn “painting reading”. Figure 4 graphically demon-
strates a possible interpretation.

Figure 4. Possible reading links inside “The Night Watch” by Rembrandt.

As noted by Oliveira in [41], the canvas has visible mul-
tilayer structure. “Departing” from the two central characters
(representing a cooperation between Protestant and Catholic
parties), an eye may follow different ways, but the most
likely directions are implicitly embedded inside the picture:
a trained soldier close to the captain in the second layer
(Figure 4, link 2) demonstrating his shooting skills by cutting
the strip of a spear (link 3). The strip virtually points to the
drummer (link 4) calling of arms. Close to the drummer, just
behind the Catholic lieutenant, we see an aged volunteer and
a distressed dog (links 4). From the “drummer’s group” the
eye moves to the left part of the composition (links 6) with
an experienced soldier, making a compositional balance with
the less experienced volunteer on the right side. Moving up to
the back stage layer, a beholder’s attention is caught by the
figure of the man (link 7) holding the national flag (link 8).
The flag colors call up the similar colors of the military baton
held by the Catholic lieutenant (dashed line). In turn, the light-
colored figure of the lieutenant is symbolically linked to the
bright woman’s figure (link 9), being one of the most discussed
character of this painting work (Oliveira suggests she is a
symbolic interpretation of the motherland).

Of course, the above presented rendition is not the only
possible way to rediscover rich symbolism of Rembrandt’s
masterpiece, which has much more symbolic allusions and
enigmatic elements (their detailed analysis is naturally out of
scope of this paper). Nevertheless, it clearly shows that the
possibilities are somehow “programmed” by the author, though
the exact links are not represented. This consideration needs
to go back to Aristotle’s Poetics, where the cognitive mean-
ingfulness of metaphor was emphasized: metaphors require an
act of recognition and interpretation from the recipient [17].

In the case of software programs, it is commonly agreed

that the code graphics, organization and legibility can be
considered as essential aesthetic properties [42]. Meanwhile,
the aesthetic values are connected to the quality properties, as
it is nicely pointed out by Edmonds: “if the resulting code is
like spaghetti [. . .], it is not highly rated even if it performs its
functions perfectly” [43]. That is why the exercise described
here can be considered as a small effort to compensate for
relatively minor attention to the problems of understanding
programming style and readability in software engineering
curricula. Learning parallels between software engineering and
art education give interesting insights to improving developers’
culture (where, by the way, “culture” can be understood both
literally and metaphorically).

In the research presented in [44], the authors describe the
empirical code annotation study. They come to a conclusion,
which is in partial contradiction to common practices in
programming teaching: the source code comments (being an
explicit way to explain the meaning of commented solution)
affect the notion of code readability only moderately. Although
the comments provide the very direct way of communication
between the software writer and its reader, the code readability
may be increased mostly because of improving the code
organization and the used models (i. e., the code properties
which do not provide a direct communication intent), and not
because of increasing the number of detailed comments.

V. CONCLUSION

On the basis of analysis of linguistics and cognitive science
original sources, this study examines the diversity and multi-
facetedness of the metaphor concept and its important role in
technology and engineering areas. Since the particular focus of
this research is on software education, we address a number of
practical cases of using metaphors in the programming class by
including a brief review of architectural software metaphors,
metaphors of code organization, code readability and code
aesthetics metaphors.

The above-mentioned cases do not exhaust the rich pos-
sibilities of using and exploring metaphors in class-time
teaching scenarios. Hence, I expect that further extension of
this study in cooperation with the experts from both liberal
arts and technology domains might be of significant interest
for teaching and research communities. Based on the wide
contemporary discourse, we need more systematic analysis of
metaphors used in software engineering, in order to classify
the published approaches and to make them better visible
and shareable among the members of academic community.
Learning metaphors is connected to the development of soft
skills, which are nowadays considered an important aspect
of software engineering education. However, the evaluation
whether the use of metaphors significantly improve the learn-
ing process still remains an open issue; the empirical analysis
of benefits and potential results isn’t trivial.

There are many important aspects, which, being out of
scope of this paper, requires much attention. These aspects
include software visualization and visual metaphors, metaphors
of software architectures and design pattern metaphors, soft-
ware code transformation and restructuring metaphors (such as
code smells and refactoring), cooperation and mutual depen-
dencies of different theories of metaphor in their application
to technology domains, and transition of metaphors introduced
in technology domains back to the non-technology areas.

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 49 / 241

ACKNOWLEDGEMENT

I would like to thank Professor John Blake from the Center
for Language Research of the University of Aizu who kindly
read the earlier versions of this study and made very valuable
comments.

Many thanks to the anonymous IARIA reviewers for their
very constructive suggestions on making more focused and
compact concretization of basic ideas described in the initial
submission.

The work is supported by the University of Aizu Research
Funding.

REFERENCES
[1] M. Niemelä et al., “Human-driven design: a human-driven approach to

the design of technology,” in IFIP International Conference on Human
Choice and Computers. Springer, 2014, pp. 78–91.

[2] G. C. Murphy, “Human-centric software engineering,” in Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 251–254.

[3] E. Pyshkin, “Liberal arts in a digitally transformed world: Revisiting
a case of software development education,” in Proceedings of the
13th Central & Eastern European Software Engineering Conference in
Russia, ser. CEE-SECR ’17. New York, NY, USA: ACM, 2017, pp.
23:1–23:7.

[4] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285–
311.

[5] D. Baldwin and A. Brady, “Guest editors’ introduction: Computer
science in the liberal arts,” Trans. Comput. Educ., vol. 10, no. 1, Mar.
2010, pp. 1:1–1:5.

[6] V. Davidovski, “Exponential innovation through digital transformation,”
in Proceedings of the 3rd International Conference on Applications in
Information Technology, ser. ICAIT’2018. New York, NY, USA: ACM,
2018, pp. 3–5.

[7] F. Frabetti, “Have the humanities always been digital? For an under-
standing of the digital humanities in the context of originary technicity,”
in Understanding digital humanities. Springer, 2012, pp. 161–171.

[8] J. H. Martin and D. Jurafsky, Speech and language processing: An
introduction to natural language processing, computational linguistics,
and speech recognition. Pearson/Prentice Hall Upper Saddle River,
2009.

[9] W. Shakespeare, As You Like It. Edward Blount and William and
Isaac Jaggard, London, 1623.

[10] P. B. Shelley, The Cloud. Charles and James Ollier, London, 1820.
[11] P. Verlaine, L’heure exquise. Creuzevault, 1936.
[12] L. Cameron, “Operationalising ’metaphor’ for applied linguistic re-

search,” Researching and applying metaphor, 1999, pp. 3–28.
[13] R. M. Weaver and R. S. Beal, A rhetoric and handbook. Holt, Rinehart

and Winston, 1967.
[14] J. Carbonell, A. Sánchez-Esguevillas, and B. Carro, “The role of

metaphors in the development of technologies. The case of the artificial
intelligence,” Futures, vol. 84, 2016, pp. 145–153.

[15] J. E. Kendall and K. E. Kendall, “Metaphors and their meaning for
information systems development,” European Journal of Information
Systems, vol. 3, no. 1, 1994, pp. 37–47.

[16] M. Armisen-Marchetti, “Histoire des notions rhétoriques de métaphore
et de comparaison, des origines à quintilien,” Bulletin de l’association
Guillaume Budé, vol. 49, no. 4, 1990, pp. 333–344.

[17] S. H. Butcher, The poetics of Aristotle edited with Critical Notes and
a Translation. Macmillan, 1902.

[18] J. E. Mahon, “Getting your sources right,” Researching and applying
metaphor, 1999, pp. 69–80.

[19] M. S. Wood, “Aristotle and the question of metaphor,” Ph.D. disserta-
tion, Université d’Ottawa/University of Ottawa, 2015.

[20] A. Novokhatko, “The linguistic treatment of metaphor in quintilian,”
Pallas, vol. 103, 2017, pp. 311–318.

[21] H. E. Butler et al., The Institutio Oratoria of Quintilian. Harvard
University Press, 1922, vol. 4.

[22] G. Lakoff and M. Johnson, “Metaphors we live by,” Chicago, IL:
University of, 1980.

[23] I. A. Richards and J. Constable, The philosophy of rhetoric. Oxford
University Press New York, 1965, vol. 94.

[24] M. Black, “Models and metaphors: Studies in language and philosophy.”
1962.

[25] G. Lakoff, “The contemporary theory of metaphor,” 1993,
retrieved: Sep, 2019. [Online]. Available: https://escholarship.org/
uc/item/54g7j6zh

[26] G. J. Steen, “The contemporary theory of metaphor – now new
and improved!” Review of Cognitive Linguistics. Published under the
auspices of the Spanish Cognitive Linguistics Association, vol. 9, no. 1,
2011, pp. 26–64.

[27] T. R. Colburn and G. M. Shute, “Metaphor in computer science,”
Journal of Applied Logic, vol. 6, no. 4, 2008, pp. 526–533.

[28] G. Lazar, “Exploring metaphors in the classroom,” Teaching English,
2006.

[29] R. H. Clarken, “Five metaphors for educators,” 1997.
[30] J. Krupczak et al., “Defining engineering and technological literacy,”

Philosophical and Educational Perspectives in Engineering and Tech-
nological Literacy 3, 2012, p. 8.

[31] G. J. Johnson, “Of metaphor and difficulty of computer discourse,”
Communications of the ACM, vol. 37, no. 12, 1994, pp. 97–103.

[32] K. Smolander, “Four metaphors of architecture in software organiza-
tions: finding out the meaning of architecture in practice,” in Pro-
ceedings International Symposium on Empirical Software Engineering.
IEEE, 2002, pp. 211–221.

[33] N. Boyd, “Software metaphors,” 2003, retrieved: Sep,
2019. [Online]. Available: https://pdfs.semanticscholar.org/deee/
512ab8b7a3753fda248fe99780e3470e6881.pdf

[34] I. N. Umar and T. H. Hui, “Learning style, metaphor and pair program-
ming: Do they influence performance?” Procedia-Social and Behavioral
Sciences, vol. 46, 2012, pp. 5603–5609.

[35] T. Dufva and M. Dufva, “Metaphors of codestructuring and broadening
the discussion on teaching children to code,” Thinking Skills and
Creativity, vol. 22, 2016, pp. 97–110.

[36] M. Frank, P. Roehrig, and B. Pring, What to do when machines do
everything: How to get ahead in a world of AI, algorithms, bots, and
Big Data. John Wiley & Sons, 2017.

[37] E. Pyshkin, “Designing human-centric applications: Transdisciplinary
connections with examples,” in Cybernetics (CYBCONF), 2017 3rd
IEEE International Conference on. IEEE, 2017, pp. 1–6.

[38] J. Oosterman, J. Yang, A. Bozzon, L. Aroyo, and G.-J. Houben, “On
the impact of knowledge extraction and aggregation on crowdsourced
annotation of visual artworks,” Computer Networks, vol. 90, 2015, pp.
133–149.

[39] J. G. McElroy, “Matter and manner in literary composition.” Modern
Language Notes, 1888, pp. 29–33.

[40] D. Likhachev, “Neskolko mysley o netochnosti iskusstva i stilistich-
eskikh napravleniyakh,” in Philologica. Issledovaniya po yazyku i
literature, 1973, pp. 394–401, (Some ideas about uncertainty of arts
and stylistic trends – In Russian).

[41] P. M. Oliveira, “The Dutch company,” retrieved: Aug, 2019.
[Online]. Available: https://www.academia.edu/8579003/ Eng The
Dutch Company

[42] S. Gruner, “Problems for a philosophy of software engineering,” Minds
and Machines, vol. 21, no. 2, 2011, pp. 275–299.

[43] E. Edmonds, “The art of programming or programs as art,” Frontiers
in Artifical Intelligence and Applications, vol. 161, 2007, p. 119.

[44] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, 2009, pp.
546–558.

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 50 / 241

A Practical Approach to Teaching Requirements Engineering in Computing
Programs

Anderson dos Santos Guerra
Department of Exact and Technological Sciences

Federal University of Amapá
Macapá, Amapá, Brazil, email:

and.guerra@outlook.com

Julio Cezar Costa Furtado
Department of Exact and Technological Sciences

Federal University of Amapá
Macapá, Amapá, Brazil, email:

furtado@unifap.br

Abstract—This paper aims to contribute to the teaching of
Requirements Engineering with a proposal of teaching
approach that makes use of student-focused strategies for the
development of skills expected by the industry. For this, the
work presents the methodology used to create the approach
through the identification of the skills expected by a
requirement engineer. The results obtained through an
experiment are presented, and it shows that the students were
more motivated to research and to learn.

Keywords-Software Engineering; Requirements
Engineering; Software Engineering Education; Teaching
Methodology.

I. INTRODUCTION

Based on study done by Menon et al. [11], although
requirements engineering is an area of great importance and
helps to avoid failure in systems development, its teaching
still does not reach the expected performance of the industry.
This occurs often because traditional teaching is used instead
of dynamic teaching that prioritizes group activities and the
use of creativity to solve problems.

Several researches [10][13][19] reports on the existing
lack of qualified professionals to work in the software
development industry, and one of the important factors that
influences the quality of the professionals is education. This
may indicate that the shortage of qualified professionals may
be related to the required skills of a requirements engineer
not being properly developed during education, making it
difficult for the software industry to achieve the skilled
workforce. A newly graduated professional will only
effectively obtain the necessary knowledge when acting in
the market. In this context, the objective of this work is to
present a teaching approach to requirements engineering for
computer courses that can prepare participants to understand
how requirements engineering works in a real environment.
For this, the Capability Maturity Model Integration for
Development (CMMI-DEV) model [15] was used, which,
among its good practices, offers recommendations for the
Requirements Engineering process. Through the CMMI-
DEV was created a list of skills expected by a professional in
the area of requirements engineering, through this list were
developed activities and dynamics used in the methodology
for teaching Requirements Engineering.

In addition to this introduction, the article is structured as
follows: Section 2 presents a review of the definitions of
software engineering, requirements engineering and the

education landscape of these two items; Section 3 talks about
the teaching approach created, from the methodology used to
elaborate to the activities used; Section 4 shows the survey
created and presented to the students at the end of the course;
in Section 5 the analysis of the answers obtained in the
survey is made; Section 6 concludes the article.

II. BIBLIOGRAPHIC REVIEW

This session discusses a literature review of the concepts
used to create the teaching approach, starting with
Requirements Engineering and followed by Software
Engineering Education.

A. Requirements Engineering

The area of Requirements Engineering has a great
importance in the development of software because it offers
a series of concepts that formalize an adequate elicitation and
validation of requirements, ensuring that a certain system can
adequately satisfy the needs of the client, reducing so the
margin for errors, as well as costs that could be unnecessary
and saving time [16].

One of the problems encountered in relation to
requirements engineering is the communication barrier
between developers and clients [18]. It is necessary to move
away from traditional teaching and use more didactic means
for teaching requirements engineering, such as Role Playing,
which improve the use of communication in projects. The
ACM / IEEE [1] states that the curriculum in the area of
Software Engineering requires that the classroom training
goes beyond the expository.

Since communication between stakeholder and
developers may be flawed by several factors, such as the
very difference of technical knowledge between the two
parties, another problem that occurs is the flaw in the
requirements documentation process, research [11] shows
that this problem is caused by the lack of preparation of the
professionals in the moment of action in activities involving
the engineering of requirements.

B. Software Engineering Education

In order to find an opinion of professionals in Software
Engineering in relation to an area that is approached in the
courses of Computer Science, a research was made and
there is a lack of attention to some topics of Software
Engineering during a class [19], and these topics are taught
insufficiently, highlighting the following: project

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 51 / 241

management, software quality assurance, requirements
management, and requirements development.

Professionals in the field learn more about these topics at
work than in the period of academic training [9]. Regarding
the teaching strategy, the curriculum in the area of Software
Engineering [1] emphasizes that there is a need to go
beyond the expository classroom format. It is important to
consider the variation of teaching and learning techniques.

The quality of the software engineering professionals is
directly related to the quality of the education they have had,
although there are other factors that may contribute to this
[13]. The most common approaches to teaching software
engineering include lectures, lab classes, with a greater
focus on the teacher, as shown in the Table 1 [14].

TABLE I. COMPARISON BETWEEN TEACHER-FOCUSED CLASSES
AND STUDENT-FOCUSED CLASSES

Characteristics Teacher-focused Student-focused
Teacher's role Main provider of

information;
Specialist; Academic
performance
evaluator.

Facilitator; provides
information to help in
understanding the
information.

Learning climate Individualistic. Collective; Focus on
group cohesion.

Guidance Based on the teacher's
experience and
knowledge.

Based on students'
experience and
knowledge.

Study program Defined by the
teacher.

Negotiated between
teacher and students.

Teaching
Objective

Defined by the
teacher; default result.

Defined by the
students; Different
results for each
student.

Knowledge
Acquisition

Focus on acquisition;
Focus on
memorization.

Focus on the use and
absorption of
knowledge focusing
on real problems.

Teaching methods Didactic, Great
participation of the
teacher.

Methods involving
student participation
(dynamic techniques)

Focus on education Educação individual. Collective education
Evaluation Performed by Teacher,

Traditional Use of
Tests and Grades

Students are also
responsible for
assessing

Research done in [14] states that there are teacher-
centered approaches to teaching and student-centered
approaches, each with its own peculiarities. The more
expository the class, the greater its tendency to be focused
on the teacher. However, the more dynamism and
practicality in the class, the greater the focus on the student

III. AN APPROACH TO TEACHING REQUIREMENTS

ENGINEERING

This session explains how the teaching approach was
created, from defining the methodology that was used to the
practices that were used throughout the approach.

A. Methodology

In order to define the content to be taught by the
approach, it was necessary to first identify which

competences are expected by a professional working in the
area, so that the teaching approach can focus on the
acquisition and improvement of these skills by participating
students. The CMMI-DEV model was used as a reference,
since its processes are used as a basis in several areas [15].

The CMMI-DEV model contains a set of guides that
covers content for the development of products and services.
CMMI for Development includes practices that encompass
process management, project management, systems
engineering, hardware engineering, software engineering,
and other processes used to assist in the development and
maintenance of products [15].

A total of 10 competencies were identified for a
professional to be able to act in the area of ER in a manner
satisfactory to the industry. In CMMI-DEV, Requirements
Engineering is seen in the Requirements Development
process (in level 3 of the model) and in the Requirements
Management area (in level 2 of the model), in Table 2 it is
possible to observe the skills and abilities.

TABLE II. EXPECTED SKILLS OF A REQUIREMENT ENGINEERING
PROFESSIONAL, BASED ON CMMI-DEV

Skills CMMI-DEV
Elicit stakeholder needs and expectations for all
phases of the product life cycle

RD SG 1 SP 1.1

Turn stakeholder needs and expectations into
customer requirements

RD SG 1 SP 1.2

Establish and maintain product requirements,
which are based on customer requirements.

RD SG 2 SP 2.1

Identify interface requirements RD SG 2 SP 2.3
Establish and maintain a definition of required
features and quality attributes.

RD SG 3 SP 3.2

Analyze requirements to ensure they are
necessary and sufficient

RD SG 3 SP 3.3

Validate requirements to ensure that the resulting
product will perform as intended in the end user
environment

RD SG 3 SP 3.5

Develop understanding of requirements through
who provides the requirement

REQM SP 1.1

Get commitment to requirements from project
participants

REQM SP 1.2

Manage changes in requirements throughout the
project

REQM SP 1.3

Maintain bidirectional tracking on requirements REQM SP 1.4
Ensure project plans stay in line with
requirements

REQM SP 1.5

The study from [13] was used as a basis for choosing the
methods and resources used in this methodology, with the
aim of developing the joint adoption of these items, through
an iterative cycle that attends the different learning profiles.
The teaching model created by Portela [13] is supported by
the learning cycle of Kolb [8] and the iterative teaching
methodology proposed by Gary et al. [4]. Based on this, the
model is aligned primarily in the reading of articles and
reports of experiences, practical case discussions, use of
simulators and games, besides the execution of projects and
reflection by the student about the content that was learned
and the exercises that were performed. The course was
designed to be run over a semester as an optional topic in the
Computer Science course for students who had already taken
the basic discipline of Software Engineering, so that they

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 52 / 241

already had the necessary basics. The discipline had a
workload of 60h, used by means of 4h weekly.

Table 3 lists the planning of the discipline, where it is
possible to observe: the programmatic content, attending the
competences planned for the discipline; the teaching
strategy, established according to the level of learning that
has been estimated for the topic and the expected outcomes;
the expected results, what the student can do after the study
of the unit; and the level of learning, using a terminology
based on Bloom's [20] taxonomy, which consists of
knowledge, understanding and application, in which:
Knowing means remembering the material that was
previously taught; Understanding refers to understanding the
information and meaning of the material that has been
taught; and Apply, indicates knowing how to use the
material learned in new situations.

The first two topics in the discipline agenda, introduction
to requirements engineering and requirements discovery, are
based primarily on the CMMI-DEV Requirements
Development process, while the third topic is mainly based
on CMMI-DEV Requirements Management process.

TABLE III. DISCIPLINE AGENDA

Content Teaching Strategy Expected results
1. Introduction to Requirements Engineering

1.1. Course
Presentation

Card dynamics for
product creation.

The student should be
aware of the yearnings,
stress and difficulty of
project execution when
requirements are
incorrectly collected.

1.2. The
Importance of
Requirements
Engineering

Reading and class
discussion of the
support material.

The student should be
able to know the
importance of the
Requirements Engineer
for software product
quality.

Game: Quantum
Software

1.3. The
Requirements
Engineering
Process

Reading and class
discussion of the
support material.

The student should
know the steps, roles
and activities involved
in the requirements
engineering process.

Game: A Ilha dos
Requisitos

2. Requirements Discovery

2.1. Activities
involved

Reading and class
discussion of the
support material.

The student should be
able to understand the
relationships between
the activities developed
in the requirements
discovery.

Requirements
Discovery Dynamics

2.2. Main
difficulties

Reading and class
discussion of the
support material.

The student must
understand the main
difficulties of
requirements discovery
and be able to develop
ways to mitigate these
problems.

Seminar on the
difficulties
encountered in the
previous dynamics

2.3. Techniques

Reading and class
discussion of the
support material.

The student should be
able to understand the
various requirements
discovery techniques.

GameMaker
Dynamics

3. Specification and Documentation

Content Teaching Strategy Expected results

3.1. Requirement
Types

Reading and class
discussion of the
support material.

The student must know
and identify the types of
requirements.

3.2. Ways to
document
requirements

Reading and class
discussion of the
support material.

The student should be
able to understand the
various requirements
documentation
techniques.

GameMaker
Dynamics
Continuation

4. Final project

4.1. Practical
project

Customer Interview
Dynamics

The student must be
able to apply the
knowledge gained
throughout the course
and perform the entire
requirements
engineering process
(with teacher
supervision)

B. Practices Used

1) Card Dynamics: The dynamics of the cards for
product creation are as follows: the class is divided into
groups, each group must create the same product based on
the requirements requested by the client (the teacher).
Throughout the class the client adds or removes a
requirement, forcing the groups to make the necessary
adjustments to the prototype. In this way, it is possible to
provide participants with an initial view of the volatility of
the requirements, of the difficulties caused by poor
collection of these requirements and the consequences of
this throughout a project. The dynamics of the cards were
designed to be executed in 45 minutes, with the level of
learning classified in knowing;

2) Game: Software Quantum: Quantum Software [7] is
a game created to run on the web and simulates the
requirements engineering process. It was created with the
intention of offering a model that is simple and easy to learn
in a few minutes, but at the same time has the ability to
convey the main ideas contained in Requirements
Engineering. The game does not necessarily cover all the
dynamic aspects of software projects, but focuses on the
tension between developing a system correctly and
developing the right system for the customer [7]. The
dynamics with the use of Quantum Software was designed
to be executed in 45 minutes, with the level of learning
classified in knowing.

3) Game: Ilha dos Requisitos: The game Ilha dos
Requisitos [17] has a story in which the protagonist suffers
an accident on a trip and ends up on an unknown island. The
main objective of the game is to help the protagonist escape
from the island along with members of the Nerds tribe
before the island is destroyed by a volcano. Throughout the
game are presented seven challenges that help the player to
better understand the concepts and the requirements
engineering process. Throughout the challenges the player
can receive immediate feedback of his actions as tips to

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 53 / 241

remember concepts that are related to requirements
engineering and results that were obtained at the end of each
challenge. A feature of the game is that it seeks to engage
the participant in a situation analogous to situations that
could be solved through practices related to Requirements
Engineering. The challenges are Requirements Engineering
Process: the player must order the phases of the
requirements engineering process; Validation of
requirements: it is necessary to take the requirements to the
client so that they are validated before the actual execution
of the project; Role of the requirements analyst: the player
must correctly identify the skills of a requirements analyst;
Analysis of the problem: it is necessary to distinguish
between the problems and their possible solutions;
Requirements specification: the player must perform the
classification of requirements between functional or non-
functional; Classification of requirements: it is necessary to
classify the requirements presented as functional or non-
functional; Requirements Management: The player must
order the process of changing the listed requirements and
identify the activities that are part of the requirements
management. The dynamics with the Game Ilha dos
Requisitos was designed to be executed in 30 minutes, with
the level of learning classified in knowing.

4) GameMaker Dynamics: GameMaker is a proprietary
tool used for game development. The use of GameMaker is
based on the teaching of Software Engineering through
Game Design [6], which has a fun factor that can engage
students to participate more actively in teaching. To perform
the activity, the students were instructed so that the
classroom teacher is the client and the students would be
part of a development team, the client requested
requirements to be implemented in the product (the game
that was being created in the GameMaker tool) , throughout
the activity the participants were able to experiment with a
collection of requirements and its implementation in the
product under development, as well as to experience the
difficulties caused by communication failures and
consequently in the collection of requirements. The
dynamics with the use of GameMaker was designed to be
executed in two 50-minute classes, with the level of learning
ranked in understanding

5) Practical project: In the Practical Project, the
participants created "companies" that were supposed to
interview an external customer to create a product, with
weekly meetings and prototype presentations to verify that
the project was in line with the client's needs. the
requirements engineering process and all the good practices
that have been learned throughout the course. The client was
the coordinating secretary of the Computer Science course
where the main problem that the groups needed to solve was
the systematization of the selective process of an extension
project. At the end of the project, the groups presented the
final software for the client, developed from the

requirements, which made the choice of what best served
their needs and was put to use by the extension project. The
practical project was planned to run over four weeks, with
the apprenticeship level.

IV. RESULTS

For the evaluation of the teaching methodology it was
used a survey, the target population is characterized by
students of computer courses that have subjects related to
Software Engineering, the specific group attends the fourth
semester of Computer Science in a public institution of
teaching. Regarding the design of data collection, it can be
considered crosscutting, since the participants inform data
related to their past experiences.

The survey used quantitative and qualitative data about
the students who participated in the experiment, regarding
their individual information and preferences. Thus, for the
data collection, a questionnaire was used consisting of
objective and subjective questions.

Responses were received from 22 students, all in the
undergraduate degree in Computer Science at the Federal
University of Amapá, the participants were in the fourth
semester of the course and already had a base due to the
discipline of Software Engineering that had previously been
studied.

A. The Survey Questions

The study aims to answer two research questions:
 Research Question 1 (RQ1): Was a teaching

approach used during the course appropriate to the
relevance of content and teaching methods?

 Research Question 2 (RQ2): What are the strengths
and weaknesses of the teaching approach used?

Based on the references cited in the previous section, the
survey questions were defined. Table 4 shows the questions
created for the participants of the experiment in order to
assess whether the teaching approach used during the course
was adequate in relation to the relevance of the content and
teaching methods.

TABLE IV. RESEARCH QUESTION 1

Questions Answer Options
RQ1.1. The content covered by
the course was sufficient to
understand how Requirements
Engineering works in an
organization.

Answer performed by the likert
scale:

 Strongly disagree

 Partially Disagree

 Neutral

 Partially agree

 Totally agree

RQ1.2. The approach chosen for
the discipline had a good
integration of theory and practice.
RQ1.3. The dynamics / practices
were performed in a timely
manner.
RQ1.4. The dynamics / practices
had an appropriate level of
complexity.
RQ1.5. The dynamics / practices
developed did not restrict
students' creativity to think about
their own solutions.
RQ1.6. The dynamics / practices

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 54 / 241

made the learning process fun and
challenging
RQ1.7. Throughout the course,
the teaching approach kept me
motivated to learn
Formulation:
Frequency of distribution of each group variable RQ1

V. RESULT AND ANALYSIS

In this section, there will be presented the data obtained
in the survey that was answered by the academic
participants of the discipline proposal.

Regarding the adequacy of the approach to software
engineering education (RQ1), relative to RQ1.1 (The
content covered by the discipline was sufficient to
understand how Requirements Engineering works in an
organization), participants responded with a 63.7% approval
rate. As to the verification if the approach used in the
discipline had a good integration of theory with practice
(RQ1.2), 86.3% of the students who participated in the
approach responded positively. Taking into account RQ1.3
(The dynamics / practices were carried out in a timely
manner), the result was a positive response of 77.3%.

As for RQ1.4 (Dynamics / practices had an adequate
level of complexity), 77.3% of respondents gave a positive
answer to the question. Regarding RQ1.5 (The dynamics /
practices developed did not restrict the students' creativity to
think about their own solutions), the question had 63.7%
positive answers. Considering RQ1.6 (The dynamics /
practices made the learning process fun and challenging),
the question is 86.4% approved. Based on RQ1.7
(Throughout the course, the teaching approach kept me
motivated to learn), the question had a total of 81.9%
positivity

A. About teaching approaches

In terms of teaching, 77.3% of respondents said they feel
motivated to learn more about Software Engineering
content. Regarding the teaching approach, 81.9% of the
participants state in full or in part that they felt motivated to
learn more about requirements engineering due to the
dynamics used in class, it is possible to observe the response
graph in Figure 1.

Figure 1. I am motivated to learn more about requirements engineering

This shows that the dynamics adopted throughout the
course motivate students to learn more about the content.
Added to this, another important fact is that 86.4% of
students fully or partially agree that the dynamics / practices
have made the learning process fun and challenging, as
shown in Figure 2 with the response data.

Figure 2. The dynamics / practices made the learning process fun and
challenging

From these results, it was possible to show that students
prefer more practical teaching approaches that motivate
them to practice the content of software engineering, besides
the incentive through practices, it is also noticed that
through this approach the students can fix a concepts in this
area, in addition to fostering learning and participation, as
seen in the results of teaching strategies highlighted by
[3][13][14]. The dynamics along with the hands-on
activities reflect the interest of students who are more
motivated to learn more about the subject. This reveals that
the Requirements Engineering discipline is much more
understood from practical situations than from the
conventional teaching mode with only theoretical classes.

Still analyzing the data concerning the teaching approach
chosen for the course, it is possible to observe in Figure 3
that 86.3% of the participants totally or partially agreed that
the approach chosen for the course had a good integration of
theory and practice. This further corroborates how more
practical approaches are most effective in the students'
learning process in the software engineering discipline.

Figure 3. The approach chosen for the discipline had a good integration of
theory and practice.

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 55 / 241

Turning to the analysis of the data obtained through the
survey, it is noteworthy that 78.3% of the course
participants totally or partially agree that the content taught
in the course was relevant, the answer graph can be seen in
Figure 4. This is explained by the fact that students, through
requirements engineering dynamics and practices, have
really understood the real relevance of content. Because
they had to work in a reality-simulating environment, they
were able to see how crucial this phase is and what it has on
the entire development of software, with students better
understanding requirements engineering concepts in a
number of ways. practical classes significantly lower than
theoretical classes, a result similar to that obtained by
[3][13], in the teaching strategy that involves the use of
recreational activities and games in general.

Figure 4. The content taught in the course was relevant.

From this deeper understanding of the content,
participants were more aware of how requirements
engineering is important in an organizational setting. This
was evident when participants were asked if the content
covered by the course was sufficient to understand how
Requirements Engineering works in an organization, and the
answer was that 63.7% of participants fully or partially
agreed with this statement while only a total of 9 % disagree
with the statement in some way, the remaining 27.3% goes
to those who were neutral about the statement, as shown in
Figure 5, showing that as much as the experiment used
practices that resembled the operation of software
engineering In one organization, a considerable number of
participants could not confirm this similarity as they did not
have the experience of working in the area. Although not
such a high percentage, it is still a satisfactory percentage
given that understanding how an organizational
environment works is not a simple task and also takes some
time.

Figure 5. The content covered by the course was sufficient to understand
how Requirements Engineering works in an organization.

Figure 6 demonstrates participants' satisfaction by
comparing two statements: (i) I am motivated to learn more
about requirements engineering; (ii) the dynamics / practices
have made the learning process fun and challenging. It can
be seen that most students considered the activities
appropriate and were motivated to delve deeper into the
requirements engineering area.

Figure 6. Relationship between learning motivation and learning process to
be fun

The main finding with regard to the negative points was
not about the approach itself, but about the short time given
to the practical activities and theory, given that the
experiment lasted one semester. When asked if the
dynamics / practices were performed in a timely manner,
77.3% agreed totally or partially with this finding. Even
with the short course period being short, the pass rate is still
quite satisfactory. Figure 7 shows the response data.

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 56 / 241

Figure 7. The dynamics / practices were performed in a timely manner.

Another point analyzed by the survey regarding the
teaching approach shows us that 77.3% of the participants
totally or partially agreed that the dynamics / practices had
an adequate level of complexity, this is an important factor,
since most students already had had some contact with the
subject, mainly through the software engineering discipline,
in Figure 8 it is possible to observe the answers given by the
students.

Figure 8. The dynamics / practices had an appropriate level of complexity.

Based on the survey, 63.7% of the participants of this
experiment totally or partially agreed that the dynamics /
practices developed did not restrict students' creativity to
think about their own solutions, which was another very
positive point of the approach adopted, as participants could
make use of their own ideas for solving some data problems,
data relating to this issue can be viewed in Figure 9.

Figure 9. The dynamics / practices developed did not restrict students'
creativity to think about their own solutions.

B. About teaching approaches

One of the main things about conducting an experiment is
knowing how valid its results are. The priority order of the
validation types is performed through the objectives that the
experiment has. The order of importance of validity applied
is: internal, external, construction and conclusion.

1) Internal Validity: Internal validity is used to define
whether the relationship between the treatment itself and the
result obtained is causal rather than the result of a factor that
has not been measured or cannot be controlled. In this
experiment, some threats to internal validity can be
described as the effect of maturation or even
instrumentation. Regarding maturation, it may have
occurred through studies and learning activities that were
not planned in the scope of the experiment, through the
participant's own initiative to search for more content. To
alleviate this factor, the students were instructed not to look
for questions that were not within the planned activities for
the experiment. However there is no way to confirm that the
instructions have been properly followed.

2) External Validity: Through external evaluation,
conditions are defined that limit the ability to generalize the
results obtained to other populations in other contexts. The
context of the experiment was academic, so the overall
results should be limited by the academic context. Another
limiting factor in this regard is that the experiment was
conducted with a small sample of participants and, to date,
has not been replicated in other populations, groups or
universities. The teaching approach used tried to insert the
student into the practical application of the concepts learned,
however the practical activities were based on simplified
real scenarios, so there is no guarantee that the skills
obtained will be reflected in a real development
environment.

3) Construction Validity: Construction validity
considers the relationship between theory and observation,
that is, it verifies whether the treatment reflects the cause
satisfactorily and the result reflects the effect satisfactorily.
During the evaluation of the construction validity, human
factors and aspects relevant to the design of the experiment
should be highlighted. Thus, it is not possible to state that
the participants learned to use this new knowledge in a
different context from the one used in the experiment.

4) Validity of Completion: The validity of completion is
the ability to reach a correct conclusion about the
relationship between treatment and the outcome of the
experiment. During the evaluation of this quality it is
necessary to take into account concepts such as: the
reliability of the measurements; the reliability of the
treatment implementation and the choice of the statistical
test. Even when grouping all the data, the sample remains
small, making it impossible to demonstrate any valid
statistical relationship.

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 57 / 241

VI. CONCLUSION

This research aimed to analyze the strengths of a student-
centered approach to teaching Requirements Engineering.
Through a list of competencies obtained using the CMMI-
DEV, an approach was created that seeks to achieve the
competencies listed satisfactorily, making use of practical
activities, dynamics, games and projects, so that at the end of
the discipline, the student get a sense of how the
requirements engineering process works in an organization.

According to the data obtained by the survey, it was
shown that the approach taken in the short course tends to be
effective. In addition to the theory, practical aspects of the
discipline were approached, allowing the participants a great
understanding and a better contact with the Requirements
Engineering area. There is an interest of the students in
practical and dynamic activities [3][13]. This behavior can
also be verified through the results of the survey applied after
the short course, because besides the interactions, the
participants also felt motivated to study more the topics
covered.

Although the results of the approach are significant,
further research is needed to assess the actual learning gain
that has been achieved by the proposal compared to other
models used for teaching Requirements Engineering.

REFERENCES

[1] ACM/IEEE, Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer
Science, New York, EUA, 2013.

[2] J. Carver, L. Jaccheri, S. Morasca, and Shull, F. “Issues in
Using Students in Empirical Studies in Software Engineering
Education”, Proceedings of the 9th Interna-tional Software
Metrics Symposium, IEEE, 2003.

[3] J. C. Furtado and S. R. B. Oliveira, Evaluating Students’
Perception of their Learn-ing in a Student-Centered Software
Engineering Course – A Experimental Study, In: 13th
International Conference on Software Technologies, Porto,
Portugal, 2018.

[4] K. Gary, T. Lindquist, S. Bansal, and A. Ghazarian, “A
Project Spine for Software Engineering Curricular Design”,
Proceedings of 26th Conference on Software Engineering
Education and Training, 2013.

[5] C. Ghezzi and D. Mandrioli, “The challenges of Software
Engineering Education”, Proceedings of the 27th international
conference on Software engineering, St. Louis, MO, USA,
pages 637-638, May, 2005.

[6] K. Claypool and M. Claypool., “Teaching software
engineering through game design”, In Proceedings of the 10th
annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE '05). ACM, New York,
NY, USA, 123-127, 2005.

[7] E. Knauss, K. Schneider, and K. Stapel, “A Game for Taking
Requirements Engineer-ing More Seriously”. In Proceedings
of the 2008 Third International Workshop on Multimedia and
Enjoyable Requirements Engineering - Beyond Mere
Descriptions and with More Fun and Games (MERE '08).
IEEE Computer Society, Washington, DC, USA, 22-26,
2008.

[8] D. Kolb. “Experiential Learning: Experience as the Source of
Learning and De-velopment”, NJ: Prendice-Hall, 1984

[9] T. C. Lethbridge, “What Knowledge is Important to a
Software Professional”, Journal IEEE Computer Society
Press Los Alamitos, CA, USA, pages 44-50, Volume 33 Issue
5, May, 2000.

[10] T. C. Lethbridge, J. Diaz-Herrera, R. Leblanc, and J.
Thompson, “Improving software practice through education:
Challenges and future trends”, Proceedings of the Conference
Future of Software Engineering, Minneapolis, 2007.

[11] R. N. Menon, R. B. Ahmad, and S. S. Salim, “Problems in
requirement Engineering education: a survey”, Proceedings of
the 8th International Conference on Frontiers of Information
Technology, 2010.

[12] P. Naur, B. Randel, “Software Engineering: Report of a
Conference Sponsored by the NATO Science Committee,
Garmisch, Germany, 7-11 Oct, 1968, Brussels, Scientific
Affairs Division, NATO”, 1969.

[13] C. Portela, “Um modelo iterativo para o ensino de engenharia
de software baseado em abordagens focadas no aluno e
práticas de capacitação da indústria”, Centro de Informática,
Universidade Federal de Pernambuco, Recife, 2017.

[14] R. Prikladnicki, A. Albuquerque, C. G. Wangenheim, and R.
Cabral, “Ensino de Engenharia de Software: Desafios,
Estratégias de Ensino e Lições Aprendidas”, 2009.

[15] SEI, CMMI® for Development, version 1.3, CMU/SEI-2010-
TR-033 ESC-TR-2010-033. Software Engineering Institute-
SEI, Carnegie Mellon University: 561, 2010.

[16] I. Sommerville, Engenharia de Software, 9ª ed., Pearson
Education do Brasil, 2011.

[17] M. Thiry, A. Zoucas, and R. Gonçalves, “Promovendo a
Aprendizagem de Engenharia de Requisitos de Software
Através de um Jogo Educativo”. Simpósio Brasileiro de
Informática na Educação, Brasil, 2010.

[18] D. Zowgui and S. Paryanim, “Teaching requirements
engineering through role playing: lessons learnt”,
Proceedings. 11th IEEE International Requirements
Engineering Conference, Monterey Bay, CA, USA, 2003.

[19] C. G. Wangenheim and D. A. Silva, “Qual conhecimento de
engenharia de software é importante para um profissional de
software?”, 2009, Fórum de Educação em Engenharia de
Software, Fortaleza.

[20] B. S. Bloom, Taxonomy of Educational Objectives: The
Classification of Educational Goals, Handbook I, Cognitive
Domain: Longmans, 1956.

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 58 / 241

Economic Impact of Cloud Computing in the Health System: A Systematic Mapping

 Jonathan Santos¹ and Felipe Ferraz¹ ²

¹CESAR School, ²CESAR - Recife Center for Advanced Studies and Systems

Recife, Brazil

{jcas,fsf}@cesar.school, fsf@cesar.org.br

Abstract- Cloud computing has become one of the most widely

used technologies today, bringing positive impacts to its

adopters and changing the way many areas work, impacting

their solutions in the market. The healthcare system can enjoy

the same benefits brought by the adoption of this technology,

improving its infrastructure, reducing its costs tremendously

and speeding up processes. With that in mind, what are the

economic impacts of adopting cloud computing on healthcare

environments? This paper conducts a systematic mapping in

order to depict the economic and other impacts of cloud

computing in the healthcare system and solutions, analyzing

aspects that go beyond the technological issues.

Keywords - Cloud computing; economic impacts; health;

challenges.

I. INTRODUCTION

Cloud computing is one of the most impactful

technologies of recent times. Not surprisingly, large

companies are embracing this infrastructure paradigm with

significant economic gains. Highly discussed technologies

such as blockchain, conversational platforms, and artificial

intelligence have in common the use or need for cloud

computing [1].

According to the National Institute of Standards and

Technology (NIST), Cloud computing is a model for

enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources that

can be rapidly provisioned and released with minimal

management effort or service provider interaction.

Comparing with the traditional Information Technology (IT)

model, cloud computing presents a fundamental change in

the way IT services are developed, deployed, maintained

and paid for.

As global population increases, life expectancy rises, and

living standards improve, causes of death across the world

are changing [2]. Heart disease and cancer are the leading

causes of death. The health system, like any other, needs

continuous and systematic innovation to deliver high

quality, safe and cost-effective services. A well-adopted

cloud gives a lot of advantages to the organization such as

easy and pervasive access to data and applications, increases

cost-effectiveness [3].

The purpose of this article is to study the economic

impacts of the use of cloud computing in the health area.

This work is organized as follows: first, in Section 2, basic

concepts related to cloud computing and the methodology

used will be presented together with the objectives of the

study. Then, in Section 3 the methods, processes, and

protocols applied in the elaboration of systematic mapping

will be described. Finally, in Section 4, we will present the

results obtained, conclusions and plans for future work.

II. APPLIED PROTOCOL

Based on the guidelines for developing systematic

software engineering reviews in software engineering

described by Kitchenham [4], a new methodology for

revision was created. The purpose of this review is to

identify primary studies that focus on the use and benefits of

cloud computing adoption based on the following question:

 What is the economic impact on cloud computing

adoption in health/healthcare environments?

This main question intends to focus not only on the

technological impacts of using cloud computing, but also to

conduct research on related, but not limited, topics such as

economics, time-saving, improved treatment, and other non-

technological factors. However, it is expected that, during

the analysis features, such as security, privacy, complexity,

and others, appear as factors that may limit the adoption and

use of cloud computing.

 From this central question, secondary questions were

created to help in understanding and comprehension of the

problem:

1. What areas of health can benefit from using Cloud

Computing?

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 59 / 241

2. What is the economic impact of Cloud Computing

on disease control and treatment?

3. What are the main challenges and opportunities for

using cloud computing in health environments?

A. Inclusion and Exclusion Criteria

For this review, we considered studies that depict

information and data related to cloud computing adoption,

usage, positive and negative impacts. This review limited

the examined studies to the ones published starting from

year 2015.

 Were also excluded:

 Studies whose focus was only on technical aspects;

 Studies not published in the English language;

 Studies that were unavailable online;

 Studies not based on research and that are not full

papers;

 Call for works, prefaces, conference annals,

handouts, summaries, panels, interviews, and news reports.

B. Search Strategies

The databases considered in the study is on the list below:

 ACM Digital Library;

 IEEE Xplore;

 Science Direct;

Combinations of terms were created to guarantee that

relevant information would not be excluded when querying

different search engines and databases. As a result, four

search strings were created:

1. (Cloud Computing) AND (Economic OR Economy

OR Business OR Benefits) AND (Health);

2. 2. (Cloud Computing) AND (Adoption OR

Migration) AND (Health);

3. (Cloud Computing) AND (Challenges OR

Opportunities) AND (Health);

In the process of extracting information from the databases,

the search strings were used separately on each database.

The searches were performed restricting the years between

2015 and 2019. The results of each search were grouped

together according to the database and were, later, examined

closer in order to identify duplicity.

C. Studies Selection Process

This section describes the selection process from the

beginning: from an initial search using the Search Strategies

described below to the identification of primary studies. In

the first step, the studies that were obtained from the

databases were gathered and added to a management

citation tool, the authors’ choose Mendeley. Next, once the

initial studies were selected, the titles of all works selected

were analyzed to determine its relevance in this systematic

review. In this stage, an initial filter is conducted removing

works that did not present relevant topics for this research.

When the works’ titles were vague or unclear, they were put

aside to be analyzed in the next step. Since the main

intention was to analyze aspects not specifically related to

technology, works that mentioned security or big data, and

others, were selected for further analysis during the abstract

reading. At the end of this stage, 5138 citations were

excluded, thus remaining 142 items for further analysis.

In the third step, all abstracts of the Works found in the

previous one were assessed. Once more, many were

eliminated from the study due to them not conforming to the

scope of cloud computing and topics not related only to

technologies. One of the difficulties found in this step was

related to the quality of the abstract, a portion of the abstract

was not clear about the main topic addressed by the work.

When that happened, the authors did a deeper analysis

reading introduction and conclusion looking for topics and

sentences related to this research. Because of this phase, 103

studies were excluded, thus remaining 39 to be analyzed

more closely. Table 1 presents the amount of studies filtered

in each step

of the selection process.

TABLE I. AMOUNT OF STUDIES FILTERED IN THE SELECTION

PROCESS

 For qualitative and quantitative assessment, seven

questions were used to assist in quality assessment. The

questions are:

1. Does the study examine impacts and/or economic

aspects related to cloud computing adoption in healthy

environments?

2. Does the study present aspects related to solutions

that use cloud computing?

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 60 / 241

3. Does the study present aspects related to challenges

or opportunities in health?

4. Is the study based on research - not merely on

specialist’s opinions?

5. Is the context of the study adequately described?

6. Were the research results adequately explained and

described?

7. Does the study contribute to the research of cloud

and health in any way?

The research process that was developed resulted in 39

primary studies. They were written by 119 institution-

related authors and were published between 2015 and 2019.

As described in the previous Section, each of the primary

studies was evaluated according to 7 quality criteria

regarding the rigor and credibility of the research in addition

to relevance to the topic addressed. Brought together, these

7 criteria provide a measure of reliability for the conclusions

that a particular study can bring to the review. The

classification for each of the criteria used a scale of

positives (1) and negatives (0) and is presented in Table 2.

 TABLE II. EXTRACTION OF QUALITY ANALYSIS OF PRIMARY

STUDIES STUDY

From the primary articles, {5} {6} and {7} scored on all

questions raised, these articles deal with models and cloud

adoption in health/care environments, therefore, are aligned

with the research objectives and realize that the survey, a

priori, brought work that aggregated in the analyzes made.

The qualitative and quantitative assessment analyzed all 39

studies selected as primary studies. Table 2 presents a

portion of the studies and highlights the studies that had 5 or

more points.

III. DISCUSSION

After analyzing and extracting data in the primary

studies, it was possible to identify some aspects related to

cloud computing in health environments with economic

impacts, opportunities, and challenges. According to Ferraz

[3], it is possible to conclude that the adoption of cloud

computing in the development of a new solution or business

has a great impact on the economy of companies and

industries. It is noteworthy that this article does not intend

to study only the impacts related to healthcare. However, it

was observed during the research, a large number of studies

related to this theme and the possible implications on the

use of cloud computing.

A. Economic Health.

Adopting cloud computing can bring health benefits,

both economically and help institutions fight and prevent

disease as quickly as possible. According to the study by

Chang and Zhu [5], in modern and current hospitals, the use

of cloud computing becomes more centralized data

management, making hardware and software maintenance

more convenient. Hospital environments that adopt physical

servers need to invest large amounts in IT, staff responsible

for the infrastructure, maintenance and security of the

machines used. In addition, over time, the model becomes

increasingly obsolete and costly. This is the fundamental

change brought about by the cloud, the virtualization of

resources without the need to maintain an expensive on-site

infrastructure [3].

As seen in [6] biomedicine labs can enjoy positive

financial impacts, significant flexibility and benefits to their

administration by using a cloud architecture. This brings

new solutions that can transform the hospital economy [7],

and business models begin to emerge with a new vision in

their solutions. Because all infrastructure can be abstracted

by the cloud, those involved in creating solutions can be

more focused on the problem to be solved, bringing

innovative solutions that change the way the economy of

these solutions works.

B. Cloud Treatments.

The benefits of cloud computing adoption go far beyond

financial impacts and cost savings. Although the impact of

cloud computing adoption has generated around the

economic sphere, major advances in medicine can be seen

in the use of this and other technologies together.

As can be seen here [8], the authors presents the Disease

Diagnosis and Treatment Recommendation System

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 61 / 241

(DDTRS) which uses big data and cloud computing to

generate diagnoses and treatment recommendations

efficiently and assertively, improving the response time of

diagnosis.

Another medical cloud use [9] promotes blood pressure

monitoring in a patient with hypertension. Since monitoring

is done in real-time, the number of data generated is huge

and requires an IaaS structure framework for management.

The academic field also benefits from using cloud

computing, whether in data storage, infrastructure or

processing power. Complex studies at the forefront of

medicine using the latest theoretical chemistry in the

treatment of cancer [10] generate huge amounts of data and

require enormous computational power for data processing.

Research, such as [11] that simulates electron-nuclear

dynamics of proton cancer therapy reactions, depending on

the system studied, may take months to present the results.

Therefore, cloud computing benefits by lowering its costs as

infrastructure and the use of data science can generate great

insights of the studied subject.

C. Health Cloud Challenges.

Based on the previous Sections and the studies analyzed,

three major sectors and specific areas were identified as

cloud computing and health research challenges and

opportunities. They are security and privacy, chronic disease

and cloud, cancer treatment and prevention. In the first area,

the need to ensure the security, privacy, and authenticity of

the information was identified. Any information that may

lead to the identification of the user by an unauthorized

party during authentication or data processing is a breach of

privacy [12]. Because most data is stored on cloud servers,

which is susceptible to threats and breaches, there is an

imminent need to protect against unauthorized access. There

are many challenges to protecting the privacy of cloud

patient data; some models have been proposed [13][14].

Even so, it is clear, including several studies, that this area is

extremely important for the future of the use of cloud as a

whole not only limited to health.

The second specific area is shown in the development of

solutions for chronic diseases. The emergence of emerging

technologies demonstrates opportunities and challenges

[15]. Most of these technologies have in common the need

to use cloud computing in their development. Therefore,

further studies and innovative solutions can change the way

we treat these diseases in a few years.

Finally, studies and solutions that advance cancer

treatment and diagnosis deserve attention as they can

generate major economic impacts on cancer treatment and

prevention. The American Cancer Society (ACS) estimates

that 606,880 Americans will die of cancer by 2019, or

nearly 1,700 deaths a day. This area generates a huge

amount of data for storage and requires very large data

processing power [11]. The search for cancer prevention

combined with innovative solutions and cloud computing

should be a priority area of study, considering the numbers

presented by ASC. The development of SaaS or IaaS

solutions is a great opportunity for the area.

IV. CONCLUSION

The main objective of this work was to conduct research

that analyzed areas related to cloud computing, specifically

in the health environment, deepening how this technology

impacts health and solutions for this market. To achieve the

objective, a systematic mapping was performed, first

analyzing 5280 articles and deeply analyzing more than 100

articles in order to discuss topics not only related to the

technology itself, but how its adoption impacts the health

area and the economy of its own solutions.

During the analysis phases, it was clear the benefit of

adopting cloud computing and how the combination of

technologies can bring disruptive solutions to the market

and society. Biomedicine labs and research centers also

benefit from adoption, reducing response times for exams or

surveys that require extensive processing and storing data.

 As future work, further analysis of solutions can be

developed, facilitating better technical understanding to

identify more efficient approaches. Further work can be

done to ensure data privacy and security, and how

governments will ensure privacy in public health policies.

REFERENCES

[1] K. Panetta.:Gartner, Top 10 strategic technology trends for

2018. Gartner Top 10 strategic technology trends for 2018, 3 October 2018.

Gartner . https://www.gartner.com/smarterwithgartner/gartner-top-10-

strategic-technology-trends-for-2018

[2] Global Burden of Disease Collaborative Network. Global

Burden of Disease Study 2017 (GBD 2017) Results. Seattle, United States:

Institute for Health Metrics and Evaluation (IHME), 2018.

[3] F. Ferraz, F. Ribeiro, W. Lima, and C. Sampaio, “A Disturbing

Question: What is the Economical Impact of Cloud Computing? A

Systematic Mapping,” IEEE Int. Conf. Cloud Comput. CLOUD, vol. 2018-

July, pp. 853–856, 2018.

[4] B. Kitchenham and S. Charters,“Guidelines for

performingSystematic Literature reviews in Software Engineering Version

2.3,” Engineering, vol. 45, no. 4ve, p. 1051, 2007

[5] C. Chang and Y. Zhu, “A Study on the Application of Cloud

Computing Platform in Hospital Information Construction,” pp. 280–282,

2018

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 62 / 241

[6] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and P.

Reynolds, “Cloud computing: A new business paradigm for biomedical

information sharing,” J. Biomed. Inform., vol. 43, no. 2, pp. 342–353,

2010.

[7] C. Venkatesan, P. Karthigaikumar, and S. Satheeskumaran,

“Mobile cloud computing for ECG telemonitoring and real-time coronary

heart disease risk detection,” Biomed. Signal Process. Control, vol. 44, pp.

138–145, 2018.

[8] J. Chen, K. Li, H. Rong, K. Bilal, N. Yang, and K. Li, “A

disease diagnosis and treatment recommendation system based on big data

mining and cloud computing,” Inf. Sci. (Ny)., vol. 435, pp. 124–149, 2018.

[9] B. Yip et al., “Blood Pressure Management with Data Capturing

in the Cloud among Hypertensive Patients: A Monitoring Platform for

Hypertensive Patients,” Proc. - 2015 IEEE Int. Congr. Big Data, BigData

Congr. 2015, pp. 305–308, 2015.

[10] C. Stopera, T. V. Grimes, P. M. McLaurin, A. Privett, and J.

A. Morales, Some recent developments in the simplest-level electron

nuclear dynamics method. Theory, code implementation, and applications

to chemical dynamics, 1st ed., vol. 66. Elsevier Inc., 2013.

[11] E. Teixeira et al., “Electron nuclear dynamics simulations of

proton cancer therapy reactions: Water radiolysis and proton-and electron-

induced DNA damage in computational prototypes,” Cancers (Basel)., vol.

10, no. 5, 2018.

[12] M. Dawoud and D. T. Altilar, “Cloud-based e-health systems:

Security and privacy challenges and solutions,” 2nd Int. Conf. Comput. Sci.

Eng. UBMK 2017, pp. 861–865, 2017.

[13] M. S. Elsayed and M. A. Azer, “Health Records Privacy Issues

in Cloud Computing,” 1st Int. Conf. Comput. Appl. Inf. Secur. ICCAIS

2018, pp. 1–6, 2018.

[14] H. Wang, “Security and Privacy-preserving Challenges of e-

Health Solutions in Cloud Computing,” IEEE Access, vol. 7, pp. 74361–

74382, 2019.

[15] D. Gu et al., “Discovering and Visualizing Knowledge

Evolution of Chronic Disease Research Driven by Emerging

Technologies,” IEEE Access, vol. 7, pp. 1–1, 2019.

[16] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto,

and R. Buyya, “Big Data computing and clouds: Trends and future

directions,” J. Parallel Distrib. Comput., vol. 79–80, pp. 3–15, 2015.

[17] F. Gao, S. Thiebes, and A. Sunyaev, “Rethinking the meaning

of cloud computing for health care: A taxonomic perspective and future

research directions,” J. Med. Internet Res., vol. 20, no. 7, pp. 1–16, 2018.

[18] F. Gao and A. Sunyaev, “Context matters: A review of the

determinant factors in the decision to adopt cloud computing in

healthcare,” Int. J. Inf. Manage., vol. 48, no. July 2018, pp. 120–138, 2019.

[19] A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun,

“Cancer Statistics, 2007,” CA. Cancer J. Clin., vol. 57, no. 1, pp. 43–66,

2007.

[20] M. Chen et al., “Wearable 2.0: Enabling Human-Cloud

Integration in Next Generation Healthcare Systems,” IEEE Commun.

Mag., vol. 55, no. 1, pp. 54–61, 2017

[21] B. B. Rad, M. E. Rana, and T. Diaby, “Cloud computing

adoption : a short review of issues and challenges,” Int. Conf. E-commerce,

E-bus. E-Government, pp. 51–55, 2017.

[22] K. K. F. Tsoi, Y. H. Kuo, and H. M. Meng, “A Data Capturing

Platform in the Cloud for Behavioral Analysis among Smokers: An

Application Platform for Public Health Research,” Proc. - 2015 IEEE Int.

Congr. Big Data, BigData Congr. 2015, pp. 737–740, 2015.

[23] L. Leong, G. Petri, B. Gill, and M. Dorosh, “Magic Quadrant

for Cloud Infrastructure as a Service, Worldwide,” Gartner, no. August, pp.

1–36, 2017.

[24] D. Chen, and H. Zhao, 2012. Data Security and Privacy

Protection Issues in CC. IEEE International Conference on Computer

Science and Electronics Engineering (ICCSEE).

[25] Z. Tang., X. Wang, J. Li, X. Zhang, and W. Man, 2012. Study

on Data Security of Cloud Computing. IEEE Spring Congress on

Engineering and Technology (S-CET).

[26] R. Asija, and N. Rajarathnam. "A Survey on Security and

Privacy of Healthcare Data." Conference Paper · July (2014).

[27] A. Abbas , K. Bilal , L. Zhang , S.U. Khan , A cloud based

health insurance plan recommendation system: a user centered approach,

Futur. Gener. Comput. Syst. 43–44 (2015) 99–109 .

[28] M.S. Hossain, Cloud-supported cyber-physical localization

framework for patients monitoring, IEEE Syst. J. 11 (2017) 118–127

[29] Q. Wang et al., “Remote analysis of myocardial fiber

information in vivo assisted by cloud computing,” Futur. Gener. Comput.

Syst., vol. 85, pp. 146–159, 2018.

[30] J. Yang, “Cloud computing for storing and analyzing petabytes

of genomic data,” J. Ind. Inf. Integr., no. April, pp. 0–1, 2019.

[31] N. Sultan, “Discovering the potential of cloud computing in

accelerating the search for curing serious illnesses,” Int. J. Inf. Manage.,

vol. 34, no. 2, pp. 221–225, 2014.

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 63 / 241

SIMON: Semantic Inference Model for Security in Cyber Physical Systems using

Ontologies

Rohith Yanambaka Venkata, Rohan Maheshwari and Krishna Kavi
Department of Computer Science and Engineering

University of North Texas
Denton, Texas-76207

Email: {rohithyanambakavenkata,rohanmaheshwari}@my.unt.edu and krishna.kavi@unt.edu

Abstract—Cyber Physical Systems (CPS) are an integration of
computational and physical processes, where embedded cyber
systems monitor and control physical processes. Cyber attacks
largely target components in the cyber domain with the intention
of disrupting the functionality of the components in the physical
domain. In this paper, we present SIMON, an Ontological
design and verification framework that captures the intricate
relationship(s) between cyber and physical components in CPS
by leveraging standard specification Ontologies and extending
the NIST CPS framework. We demonstrate the capabilities of
SIMON using two vehicle to infrastructure (V2I) safety appli-
cations. In addition, we also investigate introducing resiliency
measures that will ensure compliance of physical systems with
their design specifications.

Keywords–CPS Security; Ontology; CPS Privacy, CPS Re-
siliency.

I. INTRODUCTION

CPS systems can be considered as electronic or com-
puter systems that control physical systems. These systems
use sensors to collect information about the physical system
and possibly other situational inputs, process these inputs to
determine appropriate decisions and affect these decisions on
the physical system via actuators. The data collection and
transmission of actions may involve the use of communication
networks. Thus, CPS systems contain sensors, actuators, elec-
tronic/processing components and communication networks,
explosing CPS systems to cyber attacks. These cyber attacks
will likely impact the physical operation of the system and may
also impact the physical world these systems reside in. Thus,
it is essential to understand the inter-relationships between the
functions of the physical systems and the cyber (or electronic)
systems and how an attack on one affects the other.

We advocate the use of Ontologies to model CPS systems
and the relationships between their constituent subsystems.
An Ontology is a formal description of knowledge as a set
of concepts within a domain and the relationships that hold
between them [1]. To enable such a description, we need to
formally specify components such as individuals (instances of
objects), classes, attributes, and relations as well as restrictions,
rules, and axioms. Ontologies not only enable a shareable
and reusable knowledge representation but, can also add new
knowledge about a domain [1]. Our approach extends NIST
CPS framework [2] by differentiating between an abstract
realization and a concrete realization levels. The abstract
level translates the conceptual requirements of CPS systems
(such as functional, timing, trustworthiness requirements) into
responsibilities and roles of system components (such as sen-
sors, actuators, processing elements, communication systems,
computational algorithms). The concrete realization defines

specific products used to implement the abstract responsi-
bilities and functionalities (such as selecting a specific IoT
system, or a communication device). Our Ontologies allow for
common vocabularies to describe concepts and properties of
CPS systems at various levels of the design framework. This
permits for adapting best design practices of one domain to
the design of systems in another domain.

In this paper, we present our preliminary work in vulner-
ability assessment and design validation of CPS systems. Our
prior work on using Ontologies in vulnerability assessment in
cloud systems [3] [4] enables us to extend those Ontologies
to address security concerns in CPS systems. Using the NIST
CPS framework as a basis for SIMON allows for a broad and
integrated view of CPS and positions trustworthiness among
other aspects of CPS design. Furthermore, using standard
Ontologies like SOSA will help streamline the process of
secure CPS design by considering the properties of a CPS
system like sensing and actuation.

The rest of the paper is organized as follows. Section III
describes SIMON, our proposed CPS framework. This section
also describes the various standard Ontologies, as well as
some of our new Ontologies used in our framework. Section
IV includes two case studies to show how SIMON can be
used for the design and validation of CPS systems. We show
some examples of cyber attacks and use reasoners to identify
potential compromise of design goals associated with the
physical system.

II. RELATED WORK

Extensive research has been done in applying Ontologies to
either identify or validate the security posture of CPS or IoT
systems. Mozzaquatro et al. [5] proposed a framework that
employs a model-driven approach to designing secure CPS
systems. While this may be prudential in some domains, it
fails to account for concerns from various stakeholders in a
CPS system. This is addressed by the NIST CPS framework.

Fenz et al. [6] and Settas et al. [7] proposed Ontological
frameworks that are complemented by Bayesian networks to
predict threat probabilities in cloud systems. The key compe-
tencies of these contributions is vulnerability assessment and
threat modeling for cyber systems in the cloud.

SIMON aims to bridge the gap between design validation
using cyber threat data from multiple sources. We believe that
this approach will help in the design of secure CPS systems.

III. THE FRAMEWORK

The proposed framework combines (and extends) existing
standard specification Ontologies such as Semantic Sensor
Networks (SSN), and new ones as required by the domain
of interest. Let us take a closer look at some of the Ontologies
and frameworks used in our research.

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 64 / 241

A. NIST CPS Framework
National Institute of Standards and Technology (NIST) has

developed a framework that provides guidance in designing,
building and verifying complex CPS systems [2]. The frame-
work captures generic functionalities that CPS provide, the
activities and artifacts needed to support conceptualization,
realization and assurance of CPS design [2]. Designing a CPS
system involves:
• Conceptualization - Capturing all activities related to

high-level goals, functional requirements and organization
of CPS as they pertain to what the CPS is supposed to do.
It provides a conceptual model of the CPS system under
consideration.

• Realization - Capturing all activities surrounding the
detailed engineering, design, production, implementation
and operation of the desired systems. However, to fa-
cilitate comparing Ontological models of CPS systems,
we propose bifurcating the overarching realization phase
described in the NIST CPS framework into the following
sub-phases.
◦ Abstract Realization - In this phase, design goals

are broken down into roles and responsibilities and
delegated to subsystems and interfaces. For example,
we may identify that the network communications
needed in the system will be handled by a wireless data
communication application but not provide details on
either the specific hardware device or communication
protocols. We use Ontologies to capture the Abstract
Realization.
◦ Concrete Realization - The roles and responsibilities

identified during the abstract realization phase need
to be implemented by specific products. For exam-
ple, a Cisco ASR1002-10G-HA/K9 is selected as the
wireless data communication application identified in
the Abstract Realization phase. We use Ontologies to
relate the products used for various functions and roles
identified in the Abstract Realization.

• Assurance - The assurance phase deals with obtaining
confidence that the system built in the realization phase
satisfies the model developed in the conceptualization
phase [2]. In our case, we use reasoners to infer and derive
assurances (or violations) of the goals and functional
requirements are met. We use additional Ontologies to
capture cyber threat data so that vulnerabilities, cyber
attacks and possible mitigations can be related to the
products identified in Concrete Realization; we rely on
NIST Common Platform Enumeration (CPE) identities
with specific products for this purpose.

SIMON can be used to modify the CPS design at any of
the various phases to address any design violations discovered
by our reasoners.

Figure 1 describes an abstract view of our framework
for the design and verification of CPS systems, focusing
on security and trustworthiness. We use different Ontologies
in our framework to describe the concepts, properties and
restriction associated with CPS systems at each of the design
phases described in the previous section.

B. Sensor-Observation-Sampling-Actuator Ontology (SOSA)
The Sensor-Observation-Sampling-Actuation Ontology

(SOSA), a subset of the Semantic Sensor Network (SSN)

Ontology presents a conceptualization of all entities, activities
and properties that typically constitute a CPS. SOSA is a
World Wide Web Consortium (W3C) standard specification.

The core structure of SOSA Ontology encompasses all of
the three modeling perspectives; the activities of observing,
sampling, and actuating [8]. Each activity targets a feature of
interest by either changing its state or revealing its properties
by following a designated procedure. All activities are carried
out by an object, also called an agent.

SOSA aims to strike a balance between the expressivity of
the underlying description logic, the ease of use of language
features and the expectations of the target audience, while
accommodating a broad range of domains and applications
[8].

C. Cyber Threat Information Ontology
The activities of observing and sampling must be followed

by communicating the data and processing to interpret the ob-
servations and making decisions on the actions. These actions
are then used to control physical systems through actuation.
The communication and processing subsystem, which is not
directly included in the SOSA ontology can expose the cyber
and physical components of the CPS to security attacks.
Thus, SOSA must be extended to describe the processing
and communication subsystems. This allows us to relate cyber
threat data from multiple sources to obtain insights into the
security posture of a CPS system under consideration. We have
defined an Ontology that captures Cyber Threat Information
(CTI) from three sources:

• The National Vulnerability Database (NVD) - A U.S.
government repository of standards based vulnerability
management data [9].

• Exploit Database - An archive of public exploits and
corresponding vulnerable software, developed for use by
penetration testers and vulnerability researchers [10].

• Metasploit - A framework for developing, testing and
executing software exploits [11].

Our Ontology can easily be extended to capture CTI from
ohter sources. The cyber threat Ontology is underpinned by
the STIX structured language, that enables organizations to
share, store and analyze CTI in a consistent manner, allowing
security communities to better understand what computer-
based attacks they are most likely to see and to anticipate
and/or respond to those attacks more effectively [12]. The
STIX Ontology utilizes twelve core concepts: Attack pattern,
Campaign, Course of Action, Identity, Indicator, Intrusion
Set, Malware, Observed Data, Report, Threat Actor, Tool and
Vulnerability.

Attack Pattern describes ways that threat actors attempt
to compromise targets and Campaign categorizes malicious
activities that occur over a period of time by identifying their
intended targets. Vulnerability describes a flaw in software (or
hardware) that can be exploited by a Threat Actor to breach a
target.

Our objective in defining the CTI Ontology is to unify
information from three sources (described earlier in this sec-
tion) and facilitate logical reasoning about the security of CPS
using Axioms. Axioms are rules that are used by a reasoner to
infer additional information that may be hard to define using a
knowledge representation language. To provide a perspective

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 65 / 241

Figure 1. The SIMON Ontological Framework.

of the complexity of CTI Ontology, it includes 6657 axioms
that describe CTI data. In addition to STIX, the CTI Ontology
also inherits characteristics from two additional Ontologies:

• Cyber Observable Expression (CybOX) - A standard-
ized language for encoding and communicating informa-
tion about cyber observables [12]. Using CybOX lan-
guage, relevant observable events or properties pertaining
to an attack pattern can be captured.

• Common Attack Pattern and Enumeration (CAPEC)
- Provides a dictionary of known patterns of attack
employed by adversaries to exploit known weaknesses in
cyber-enabled capabilities.[13].

Here is a brief look at some of the important characteristics
of our CTI Ontology:

• Attack: This feature is mapped to the Indicator, Ob-
served Data classes in the STIX Ontology and the Obser-
vation, FeatureOfInterest and ObservableProperty classes
in the STIX Ontology. This characterizes a cyber attack
by identifying a pattern, set of adversarial behaviors or
information observed on a system in the network.

• Exploit: Mapped to the Vulnerability and Intrusion set
classes in the STIX Ontology and the Sensor, Actuator
and Sample classes in the SOSA Ontology, the Exploit
feature enumerates a flaw in a platform (Software or
Hardware with a CPE entry in the NVD) that can be
leveraged by an adversary to compromise a CPS system.

• Ramification: Incident response teams often desire to
know the consequences/objectives of potential adversaries
to prioritize responses to cyber attacks. In a similar vein,
threat modeling at the design phase of a CPS system will
equip CPS designers to understand the outcome of cyber

attacks and design more secure or resilient systems. At
present, threat classification is based on the Spoofing,
Tampering, Repudiation, Information disclosure, Denial
of Service and Elevation of Privilege (STRIDE) classifi-
cation model [14], where each type of threat is assigned
its own class. The Ramification feature maps to a class in
the STRIDE based on the nature of the threat. In addition,
it also maps to the ThreatActor, CourseOfAction and Vul-
nerability classes in the STIX Ontology and the Actuation,
Observation, Procedure, FeatureOfInterest, Platform and
ObservableProperty classes in the SOSA Ontology.

Thus, our framework allows users to identify and enumer-
ate cyber threats that affect a CPS system of interest. We rely
on Ontologies because of the following benefits they offer:

• Knowledge Representation: The primary benefit of
using an Ontology is it’s ability to define a semantic
model of data, within the context of an associated domain
knowledge and this can be leveraged to achieve knowl-
edge sharing and more importantly, knowledge reuse,
which is discussed in the next section.

• Modularity: Our framework facilitates modularity by
allowing CPS designers to use domain-specific properties
(Ontologies like SOSA). Users have the option of using
additional vocabulary, in addition to the W3C specifica-
tion to model proprietary systems.

• Extensibility: CPS systems are constantly evolving.
Advances in networking and embedded system technolo-
gies like system-on-chip (SoC) and wireless transceivers
result in the emergence of new CPS applications. The
structure of SIMON, coupled with its modular design
supports integrating or modifying CPS characteristics, and

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 66 / 241

to reason about the security posture of a system.

IV. VEHICLE TO INFRASTRUCTURE (V2I) WIRELESS
DATA INTERFACE ONTOLOGY: A CASE STUDY

As a case study to show the use of our framework, we use
the Red Light Violation Warning (RLVW) safety application
as described in the US Department of Transportation document
[15]. The Red Light Violation Warning (RLVW) application
enables a connected vehicle approaching an instrumented
signalized intersection to receive information from the infras-
tructure regarding the signal timing and the geometry of the
intersection. The application in the vehicle uses its speed and
acceleration profile, along with the signal timing and geometry
information to determine if it appears likely that the vehicle
will enter the intersection in violation of a traffic signal. If the
violation seems likely to occur, a warning can be provided to
the driver.

Figure 2. The RLVW system

Figure 2 depicts the RLVW system. To identify the most
vulnerable areas in this system, it is vital to understand
the flow and origin of data (i.e., sensing and observation
aspects of the system). We have developed an Ontology for
the Vehicle To Infrastructure or Infrastructure To Vehicle
(V2I/I2V) Wireless Data Interface through which all vehicular
and infrastructure data is exchanged. The ontology highlights
the cyber and physical components comprising the wireless
data interface portion of the V2I system and distinguishes
between the physical components that produce the data and
the cyber components that transmit the data. The flow of data
in the ontology has revealed that the Infrastructure Wireless
Data System (IWDS) and the Vehicle Wireless Data System
(VWDS) which are connected through the V2I Wireless Data
Interface are the most vulnerable regions of the entire V2I
CPS because data flows on a completely open network when
traversing through these cyber components. With the source
and destination IP addresses of data packets unprotected, this
can lead to numerous threats from any third party with a
V2X communication handler. Before classifying the immediate
threats that can occur with data flowing on this presumed 5G

open network, the Ontology also describes the various types
and origins of data to understand the impact of a cyber attack.

Accurately modeling a CPS system is vital in identifying
and mitigating security issues. The Ontological framework
described in Section III helps achieving this because it offers
the following features.

• CPS Framework: Perhaps the most important character-
istic that enables comparison between Ontologies is shar-
ing a common underlying framework that ensures simi-
larities in structure. The NIST CPS framework is an ideal
candidate because it addresses cross-cutting concerns that
are crucial to identifying design flaws or vulnerabilities
that could be introduced due to interaction between cyber
components. Ontologies needs to be modeled using the
CPS framework to be compared.

• Cyber Threat Ontology: Using an Ontology that is
optimized for identifying, obtaining and organizing cyber
threat data for CPS systems is invaluable in identifying
potential mitigation measures that will ensure compliance
with design goals of a CPS system.

• Domain-specific Properties: Identifying and expressing
domain-specific properties is imperative in accurately
modeling CPS systems. This helps correctly identify
aspects (such as Functional, Human, Timing, etc.) and
concerns (such as Physical security, Predictability, Disso-
ciability, etc.). These properties contribute to identifying
design flaws/vulnerabilities that are unique to the CPS
system under consideration. For example, the SOSA On-
tology used in this framework helps identify design goals
such as latency and timing requirements that are unique to
sensor networks. This helps identify pertinent mitigation
measures that ensure compliance with the design goals. If
no such measure(s) can be found, a change in the design
of a CPS system may be required.

Sharing a common underlying framework enables
knowledge-reuse by providing a shared conceptualization
of a domain of interest. Therefore, it stands to reason that
Ontologies describing similar CPS systems, sharing the same
semantic structure can be compared to investigate protection
mechanisms that could protect against security threats. With
this in mind, let us consider a CPS model that was developed
using the framework described in Section III.

A. Infrastructure Data Types and Significance

Starting with the Infrastructure, its physical components
consists of the signalized intersection sensor systems that
capture two main types of data [15].

1) SPaT: SPaT data (Signal Phase and Timing) contains in-
formation about the behavior of the traffic controllers regarding
the state of the signal (viz., red, green or yellow), how long
that state will remain, and time until next phase change.

2) Driving Conditions: The physical component of the
infrastructure also produces data that characterizes the envi-
ronmental conditions approaching vehicles may face. This data
consists of weather data, visibility data and road conditions for
the vehicle to incorporate in its decision making computations
to improve precision in judgement as approaching the inter-
section.

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 67 / 241

B. Vehicle Data Types and Significance
The vehicle’s physical components consists of the position

and stability systems, actuators, and telematic sensors that
transmit Differential GPS (DGPS) and Dynamic Telematic
Data (DTD) [15].

1) Differential GPS: DGPS data contains map data of
the vehicle’s position relative to the approaching signalized
intersection. The vehicle data systems transmit DGPS to the
infrastructure in order to alert the traffic controllers of the
instantaneous distance the vehicle is from the intersection.

2) Dynamic Telematic Data: DTD consists of information
regarding the vehicle’s speed, position and reveals how the ve-
hicle is behaving internally. This data is combined with DGPS,
and incoming SPaT data for the vehicles to calculate using DVI
equations and algorithms in order to make precise judgement
of whether the driver should increase or decrease speed to
avoid traffic violations and or accidents at the intersection.

C. Stop Sign Gap Assist (SSGA)
As a reference for investigating the reuse of protection

mechanisms that are currently in place, we use the Stop Sign
Gap Assist (SSGA) system in the Department of Transporta-
tion V2I specifications [15]. The SSGA Infrastructure Applica-
tion component delivers roadside advisory, alert, and warning
messages to the driver, based upon infrastructure-based sensor
systems placed on the major roadway that detect the speed
and location of approaching remote vehicles. It is intended
to improve safety at non-signalized intersections where only
the minor road has posted stop signs [16]. This application
includes both on-board (for connected vehicles) and roadside
signage warning systems (for non-equipped vehicles) [16]. The
application will help drivers on a minor road stopped at an
intersection understand the state of activities associated with
that intersection by providing a warning of unsafe gaps on the
major road. The SSGA application collects all available sensor
information (major road, minor road, and median sensors) data
and computes the dynamic state of the intersection in order to
issue appropriate warnings and alerts [16].

Intuitively, it is easy to recognize the similarities in the
design goals of the RLVW and SSGA applications, the dis-
tinction being that signalized intersections are replaced by a
stop sign in the SSGA system.

The CPS framework ensures that concepts of two Ontolo-
gies being compared are aligned. Comparing the relationship
of each aligned concept with its neighbors in the Ontolo-
gies being compared yields the differences in interpretation.
The abstract realization phase of the framework deals with
identifying, defining and delegating design goals identified
in the conceptualization phase into roles and responsibilities
for system components and interfaces at an abstract level.
This provides a good basis to determine if the conceptualized
concepts and their relationships are aligned.

D. Identifying Security Threats and Protection Mechanisms
In this section, let us consider a few vulnerabilities in the

RLVW system that can be addressed by reusing mitigation
measures employed in a distinctly different CPS system, viz.,
the SSGA application, by comparing their Ontological models.
Now that the baseline for the V2I WDI region is set, we can
analyze the proposed ontology to classify potential threats in
the flow of data.

1) V2X Remote DSRC Interjection Threat: The IWDS and
VWDS communicate through the V2I WDI over a bidirectional
DSRC network [15]. While DSRC provides a robust and low
latency connection for short distance communication [17], its
security protocol only prevents Distributed Denial of Service
(DDoS) attacks from a short distance. Therefore, a third
party with V2X communication handlers can interject data
transmission remotely through Internet Protocol and Domain
Name Service (IP/DNS) Spoofing attacks to reroute outgoing
Differential GPS (DGPS) data and Dynamic Telematic Data
(DTD) from the vehicle. With this data in their possession,
unauthorized V2X handlers can track drivers and read into
vehicle logs which creates privacy issues for the victim.
The NIST Vulnerability Database highlights a similar is-
sue with the configuration cpe:2.3:a:cisco:application-policy-
infrastructure- controller:8.31s6:*:*:*:*:*:*:* [9]. Existence
of this vulnerability suggests that this simple attack is highly
probable if correct mitigation is not in place. A potential
start for resolving this issue may involve ITS developers
implementing a SSL certificate with outgoing data which
requires V2X handlers to have a certain cryptographic key in
order to access the contents of the data packets [18].

The RLVW and SSGA systems share some design goals.
Furthermore, comparing their abstract realization phases re-
veals that they share the same WDI. This is further evidenced
by comparing their concrete realization phases, which reveals
that they use the same DSRC transceiver and network commu-
nication subsystem. It may be worthwhile to compare the two
Ontologies to determine if protection mechanisms employed
in the SSGA application can be reused in the RLVW system.

Figure 3. RLVW Inference.

The CTI Ontology obtains vulnerability information for
components identified in the concrete realization phase us-
ing NIST CPE (Common Platform Enumeration) identi-
fications. In this example, let us consider one vulner-
ability that can be exploited for a privilege escalation
with NIST Common Vulnerability Enumeration(CVE) iden-
tification, CVE 2017-12352, associated with the CISCO
router with cpe:2.3:a:cisco:application-policy-infrastructure-
controller:8.31s6:*:*:*:*:*:*:* [9]. An adversary can exploit
this vulnerability in certain system script files on Cisco Ap-
plication Policy Infrastructure Controllers to gain elevated
privileges and execute arbitrary commands with root privileges
on an affected host operating system [19]. The vulnerability
is due to insufficient validation of user-controlled input that is
supplied to script files of an affected system [19]. A simple fix
would be to install a software update for the application policy
infrastructure controller. However, to demonstrate the capabil-
ities of Ontological modeling and reasoning, we will assume
that no software patches are available for this component.

Figure 3 shows how the CTI Ontology uses semantic
reasoning to link vulnerabilities to the design goals identified
during the conceptualization phase. While an elevation of
privilege attack can lead to catastrophic failure of the affected
system, we will focus on adversaries potentially spoofing their

53Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 68 / 241

identities in this example.
The SSGA system uses Extensible Authentication Protocol

(EAP), a certificate-based authentication scheme to validate the
V2X handler that issues requests for DGPS and DTD data.
This prevents most spoofing attacks.

Figure 4. Comparing the Ontologies

Figure 4 illustrates how the message authentication scheme
used in SSGA is capable of preventing the spoofing attack
identified by the CTI Ontology. However, this scheme intro-
duces latency, which may impact the timing requirement listed
in the conceptualization phase of RLVW. Let us investigate if
message authentication scheme is a viable solution for RLVW.

Figure 5. Testing compliance

As evidenced from Figure 5, the Ontology determines that
the RLVW requirement to warn drivers well in advance of a
red light violation, to provide ample stopping distance may
be violated by the latency that is introduced by the authenti-
cation scheme. Furthermore, the Ontology also infers that the
components used in this system are capable of supporting the
timing requirement as the DSRC transceiver has a range of
120 meters. To address this, the Ontology recommends that
the warning zone be increased from 80 meters before the
intersection to 100 meters, which should provide ample time
for EAP to authenticate the communication. A requirement
needs to be added in the abstract realization phase to include
an authentication scheme that also includes fail-safe measure
if authentication is inconclusive. A domain expert needs to be
consulted to ensure that all design goals are accurately captured
in the SIMON framework.

2) V2X Handler Elevation of Priviledge Threat: Unfortu-
nately, DSRC communication between V2I WDI and VWDS
is not the only insecurity of the WDI region. The perfor-
mance requirements set by the DoT do not mention any
form of security over the functionality of the IWDS and
VWDS [15]. In this section, we investigate the possibility of
improving the resiliency of a CPS system against privilege
escalation attacks by implementing a fail-safe mechanism.
The proposed ontology outlines the path of data through
the Infrastructure Application component (IAC) and platform
(IAP) that reveals no form of encryption on data produced
by the physical components or verification when that data is
transmitted through the cyber components. Therefore, V2X
Handlers with identical communication functionality and IP
address can replace the role of the IWDS in the TCP handshake
and give false acknowledgement to the IAP. V2X Handlers can
then tamper with outbound SPaT and road data which results
in the vehicle application component producing false metrics.
These metrics may result in a red light traffic violation or even
roadside accidents. A similar vulnerability issue is noted with

the configuration cpe:2.3:o:cisco:ios-xe:16.10.1:*:*:*:*:*:*:*
in the NIST Vulnerability Database [9], thus, indicating the
possibility of this threat occurring roadside. A general solution
to this vulnerability can involve ITS developers implementing
an ingress filtering protocol that requires the VWDS to check
incoming data packets for their source headers to ensure it
matches the one of the origin and to reject the packet if it
does not [18].

The SSGA application uses Public Key Infrastructure (PKI)
encryption for communication between the components. This
requires a Certifying Agency (CA) to generate and assign
a public key to each component in the system. The CA is
maintained by the DoT. The messages are authenticated using
Message Authentication Code (MAC). PKI is a comprehensive
security and authentication scheme requiring all entities to
ensure confidentiality, integrity, non-repudiation and end-to-
end monitoring and key life cycle management.

The CTI identifies the configuration of the V2X handler
and maps it to cpe:2.3:o:cisco:ios-xe:16.10.1:*:*:*:*:*:*:*. It
is able to identify vulnerability CVE 2019-1756 that can be
leveraged by adversaries to launch an elevation of privilege
attack to breach the communication channel between the IAC
and IAP. A vulnerability in Cisco IOS XE Software could
allow an authenticated, remote attacker to execute commands
on the underlying Linux shell of an affected device with root
privileges [20]. The vulnerability occurs because the affected
software improperly sanitizes user-supplied input. An attacker
who has valid administrator access to an affected device could
exploit this vulnerability by supplying a username with a
malicious payload in the web UI and subsequently making
a request to a specific endpoint in the web UI. A successful
exploit could allow the attacker to run arbitrary commands as
the root user, allowing complete compromise of the system
[20].

Figure 6. Elevation of Privilege Threat Inference

The potential impact of this vulnerability being exploited
is shown in Figure 6. The framework is able to infer that
the primary design goals of the RLVW application and the
roadside equipment may be violated as a direct result of this
vulnerability.

As discussed in the previous example, SSGA uses message
authentication and EAP. The same measures can be used in
this example to protect the RLVW system. However, we are
interested in identifying possible resiliency measures that can
be employed by the RLVW system to protect against privilege
escalation attack. To identify activities that can be used in the
vehicle to detect spurious data from the infrastructure, let us
consider an autonomous vehicle that is capable of perceiving
the world around it.

We have defined a simple Ontology that models approxi-
mately 3118 attributes of an autonomous vehicle that includes
driving actions like stop and go, a collision warning system, a
lane change detection system and so on The insights provided

54Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 69 / 241

by this Ontology can be used to prevent attacks like those
discussed above by introducing resiliency into the design of
the CPS system. The inference engine compares the RLVW
system against three principles of a fully autonomous vehicle.

• Sensing the world - It is imperative for autonomous
vehicles to possess the ability to perceive the world
around them.

• Conveying intent - Assuming that other autonomous
vehicles are present in the immediate vicinity, conveying
intent such as lane change or impending change in driving
action to other vehicles (and possibly pedestrians) is
required.

• Situational awareness - Assigning a context to the
information obtained by sensing the world is essential in
making an informed decision. Comprehending events in
the environment with respect to time and space is crucial.

Figure 7. Measure to introduce resiliency into the RLVW system

The Ontology limits the inference to the design principle of
sensing the world for the RLVW system as the other principles
do not apply to it. Applying all three principles will negate the
role of the infrastructure elements in this V2I system. To that
end, the insights provided by the Ontology are shown in Figure
7.

While this is only a preliminary design of a specific
region of the V2I CPS, the potential of an Ontology-based
model is shown through the vulnerabilities it can classify. By
describing various components through their roles, data types,
and functionality, the Ontology can reason about new threats
or vulnerabilities upon the addition of an unknown component
to the system. If the properties of the unknown component,
which in this case study is a V2X handler, become known, the
ontology can use reasoners to infer where this new component
may interject by comparing properties of the new component
with existing components in the CPS. When a match is found,
the ontology will classify the new component in a certain
instance of the CPS. This knowledge can be used to implement
new levels of security and mitigation in existing components
to make it difficult for V2X handlers to either interject the
CPS, or play the role of a component in the CPS [21].

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an argument for modeling
CPS using Ontologies. We also presented SIMON, a frame-
work that is based on the NIST CPS framework, but extends it
in several ways. We use Ontologies during each design phase
of the framework to check for compliance and provide recom-
mendations by reusing knowledge. Increased traction in CPS
adoption, their growing complexity, and heterogeneous nature
necessitates accuracy in capturing the relationship between var-
ious components in a CPS. Reasoning about a CPS realization
and validating that the realization does not violate functional as
well trustworthiness goals is essential in improving the security
posture of a CPS system. The SIMON framework can aid
in this process. We have only described the framework at a
very high level and we plan to integrate various Ontologies
and reasoning engines in the near future. Although Ontologies

are used extensively for knowledge representation in domains
such as healthcare and bioinformatics, we aim to leverage their
capabilities to define a domain agnostic framework that can
be extended to various CPS domains by attributing domain-
specific properties (like SOSA). We are also developing tools
for automatically (or semi-automatically) convert CPS designs
using NIST framework to SIMON framwork.

ACKNOWLEDGEMENT

This research is supported in part by the NSF Net-centric
Industry-University Cooperative Research Center at UNT and
the industrial members of the Center.

REFERENCES

[1] “What are ontologies?.” URL: https://ontotext.com/knowledgehub/
fundamentals/what-are-ontologies/ [accessed: 2019-06-11] .

[2] D. A. Wollman, M. A. Weiss, Y. Li-Baboud, E. R. Griffor, and M. J.
Burns, “Framework for cyber-physical systems,” Special Publication
(NIST SP) - 1500-203, 2017.

[3] P. Kamongi, M. Gomathisankaran, and K. Kavi, “Nemesis: Automated
architecture for threat modeling and risk assessment for cloud comput-
ing,” 12 2014.

[4] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal,
“Vulcan: Vulnerability assessment framework for cloud computing,” in
Proceedings of the 2013 IEEE 7th International Conference on Software
Security and Reliability, SERE ’13, (Washington, DC, USA), pp. 218–
226, IEEE Computer Society, 2013.

[5] B. Mozzaquatro, C. Agostinho, D. Goncalves, J. Martins, and R. Jardim-
Goncalves, “An ontology-based cybersecurity framework for the inter-
net of things,” Sensors, vol. 18, p. 3053, Sep 2018.

[6] S. Fenz, “An ontology- and bayesian-based approach for determining
threat probabilities,” in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’11,
(New York, NY, USA), pp. 344–354, ACM, 2011.

[7] D. Settas, A. Cerone, and S. Fenz, “Enhancing ontology-based an-
tipattern detection using bayesian networks,” Expert Systems with
Applications, vol. 39, no. 10, pp. 9041 – 9053, 2012.

[8] K. Janowicz, A. Haller, S. J. D. Cox, D. L. Phuoc, and M. Lefrançois,
“SOSA: A lightweight ontology for sensors, observations, samples, and
actuators,” CoRR, vol. abs/1805.09979, 2018.

[9] “National Vulnerability Database.” URL: https://nvd.nist.gov/ [accessed:
2019-06-11].

[10] “Exploit-DB.” URL: https://www.exploit-db.com [accessed: 2019-06-
20].

[11] “Metasploit-penetration testing framework.” URL:
https://www.metasploit.com/ [accessed: 2019-06-20].

[12] S. Barnum, “Standardizing cyber threat intelligence information with
the structured threat information expression (stix),” MITRE, 2014.

[13] “Common Attack Pattern Enumeration and Classification (CAPEC).”
URL: https://capec.mitre.org/ [accessed: 2019-07-02].

[14] Microsoft Corporation, “The STRIDE threat model.” URL:
https://docs.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20) [accessed: 2019-07-08].

[15] Department of Transportation, “Performance Requirements, Vol. 3,
Red Light Violation Warning (RLVW),” Vehicle-to-Infrastructure (V2I)
Safety Applications, pp. 1–68, 2015.

[16] D. Stephens, J. Schroeder, and R. Klein, “Vehicle-to-infrastructure (v2i)
safety applications - stop sign gap assist (ssga),” FHWA-JPO-16-254,
vol. 7, 2015.

[17] “Dedicated Short Range Communications (DSRC) Service,”
2019. URL: https://www.fcc.gov/wireless/bureau-divisions/mobility-
division/dedicated-short-range-communications-dsrc-service [accessed:
2019-06-11].

[18] “DDoS Glossary,” 2019. URL:
https://www.cloudflare.com/learning/ddos/ glossary/ [accessed: 2019-
06-11].

55Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 70 / 241

[19] Cisco, “Cisco application policy infrastructure controller local command
injection and privilege escalation vulnerability,” 2017. URL: =
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-
sa-20171129-apic [accessed: 2019-07-22].

[20] Cisco, “Cisco ios xe software command injection vul-
nerability,” Cisco security advisory, 2019. URL: =
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-
sa-20190327-iosxe-cmdinject [accessed: 2019-07-22].

[21] R. Y. Venkata and K. Kavi, “An Ontology-Driven Framework for
Security and Resiliency in Cyber Physical Systems,” The Thirteenth
International Conference on Software Engineering Advances, pp. 4–6,
2018.

56Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 71 / 241

OpenCL-Generated Optimizing Compiler

for FPGA Using ROSE Compiler Infrastructure

Yuichiro Aoki

Research and Development Group, Center for Technology Innovation - Digital Technology

Hitachi, Ltd.

1-280, Higashi-Koigakubo, Kokubunji, 185-8601, Tokyo, Japan

e-mail: yuichiro.aoki.jk@hitachi.com

Abstract— Many researchers are investigating deep learning

because it can recognize pedestrians for automatic driving

and/or criminals to prevent crimes on the street. A promising

device for such tasks in deep learning is a Field Programmable

Gate Array (FPGA). However, the conventional manual FPGA

programming and optimizations are complicated and take a

long time. Thus, FPGA development time needs to be

decreased. In this paper, we propose an OpenCL-generated

optimizing compiler based on the ROSE Compiler

Infrastructure. OpenCL is a C-extended programming

language for heterogeneous computing, such as an FPGA and

a Central Processing Unit (CPU). We add simple pragmas to

the C program, and our compiler generates the optimized

OpenCL program for FPGA. The preliminary evaluation using

the deep learning framework Caffe shows that our compiler

decreases to about 1/16 of the conventional development time.

Keywords-FPGA; OpenCL; compiler; parallel programming.

I. INTRODUCTION

Many researchers are investigating deep learning because
it can recognize pedestrians for automatic driving [1][2]
and/or criminals to prevent crimes on the street [3]. However,
deep learning takes a long time to learn data. For example,
training large data may take a week or more. Shortening this
long training time can help make deep learning more
practical and make its hyper-parameters easier to tune.

A Field Programmable Gate Array (FPGA) is a promising

device for deep learning because it does not have unused

circuits to be connected and consumes low power. The

conventional development process of the FPGA involves

the use of Hardware Description Languages (HDLs), such

as Verilog HDL and/or VHDL, which are strongly

hardware-dependent programming languages. Thus,

development steps, such as writing and optimizing the

FPGA programs, incur high cost. To address this problem, a

new programming language called Open Computing

Language (OpenCLTM) [4] has been developed for FPGAs

[5][6].

OpenCL is an extended C-style language that can be used

to write host (Central Processing Unit (CPU)) and device

Figure 1. ROSE compiler infrastructure overview.

(FPGA) programs. Thus, programmers can write and

optimize C-style OpenCL more easily than HDLs. However,

they must write the communications between the host

program and the device program manually. Some examples

are data transfer function calls between a CPU and an FPGA.

Sometimes they have a few hundred lines. In addition,

programmers have to optimize the device program for the

FPGA manually, which is a hard task.
In this paper, we propose an OpenCL-generated

optimizing compiler from the C program with specific
pragmas based on the ROSE Compiler Infrastructure. This
is a preliminary study. However, no other compiler
generates the optimized OpenCL program for FPGA.

The rest of the paper is organized as follows: In Section
II, we review related study. In Section III, we describe
ROSE Compiler Infrastructure. In Section IV, we explain
how to modify ROSE for FPGA. We show the preliminary
evaluation results in Section V. In Section VI, we discuss
OpenCL optimization candidates for FPGAs, followed by
conclusion and future study in Section VII.

II. RELATED WORK

ROSE Compiler Infrastructure [8][9] was developed by

the Lawrence Livermore National Laboratory. Its input is

C/C++ with the original pragmas, and its output is OpenCL.

RoseACC [10] is an extended module of ROSE and can

compile C program with OpenACC pragmas to the OpenCL.

OpenARC Compiler [11][12] is developed by the

Oakridge National Laboratory on the basis of the Cetus

57Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 72 / 241

Parallelizing Compiler [13]. Its input is C/C++ with

OpenACC pragmas, and its output is OpenCL or CUDA.

IPMACC [14] compiles C program with OpenACC

pragmas into the OpenCL program. The status of

optimization implementation is unknown.

Grewe et al. [15] complied C program with OpenMP

pragmas into a multiversion program using OpenMP and

OpenCL. Memory access optimizations, such as register

promotion for CPU are implemented.

MATISSE [16] compiles a MATLAB program with the

original pragmas into OpenCL program. Type inference

optimization and variable shape inference optimization are

implemented.

Habanero-Java [17] compiles an extended Java program

into OpenCL program. To treat Java’s exception handling

functions, two versions of the program are generated.

Gaspard2 [19] compiles UML into OpenCL. The

communication optimization which removes unnecessary

data transfer between CPU and GPU is implemented.

PyOpenCL [20] compiles Python program into OpenCL

program. CU2CL [18] and Swan [21] compiles CUDA

program into OpenCL program. Firepile [7] compiles Scala

program into OpenCL program. They do not optimize the

output OpenCL program.

In addition, the target device of all the compilers

described above is GPU. FPGA-specific code generation and

optimizations are not implemented yet. Our compiler

generates and optimizes the OpenCL device program for

FPGA.

III. ROSE COMPILER INFRASTRUCTURE

In this section, we give an overview of the ROSE
Compiler Infrastructure [8][9]. It is an open-source tool for
analyses and source-to-source program transformations
developed by the Lawrence Livermore National Laboratory.
Its characteristics are as follows:

(i) Its input is C/C++ programs with TileK pragmas.

(ii) ROSE transforms the input program into the

OpenCL host and device program for Graphics

Processing Unit (GPU).

(iii) The generated OpenCL device program is not

optimized.
Figure 1 shows the overview of the ROSE Compiler

Infrastructure. C program with TileK pragmas is inputted to
the ROSE, and it outputs the OpenCL host program and
device program. Gcc compiles the OpenCL host program
and generates a.out. The OpenCL compiler for a GPU
compiles the OpenCL device program and outputs the GPU
program. Then, a.out calls the GPU program.

Figure 2 shows a TileK pragma example. TileK is a ROSE

original pragma manually inserted in front of the target loop.

The target loop is offloaded to the GPU if the pragma exists.

Figure 2. TileK pragma example.

The clause of the pragma, such as data(x[0:N]), means that

the array x[0]...x[N-1] is sent to the GPU just before GPU

offloading and sent back to the CPU just after GPU

offloading.

IV. OUR PROPOSAL TO MODIFY ROSE FOR FPGA

In this section, we point out the problems of the ROSE
Compiler Infrastructure when it is applied to the FPGA, and
propose new functionalities for it. The current ROSE
Compiler Infrastructure is not appropriate for the FPGA.
Among its characteristics described in Section III, (i) and (ii)
indicate that it can output the OpenCL host and device
programs from the input C/C++ program. However, (ii)
states that its target device is a GPU, not an FPGA. In
addition, (iii) shows that the output OpenCL device program
is not optimized. Thus, the current output OpenCL device
program may run on an FPGA but are not optimized for the
FPGA. We thus have to modify the ROSE Compiler
Infrastructure for FPGA.

Figure 3. Modified ROSE compiler infrastructure.

Figure 4. Algorithm of inserting loop unrolling pragma.

58Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 73 / 241

Figure 5. Example of generated loop with unrolling pragma.

First, we create a new environment variable
ROSE_OPENCL_PLATFORM. It uses a device name as a
clause. This environment variable selects appropriate
OpenCL functions for the device. For example, for an FPGA,
the host program calls the clCreateProgramWithBinary
function, instead of clCreateProgramWithSource for GPU.

Second, we add a new FPGA optimization function to the

ROSE. The new optimization is loop unrolling because it

increases the parallelism of the OpenCL device program for

FPGA. Thus, it can decrease the execution time on an FPGA

if the OpenCL compiler for FPGA can utilize the parallelism.

In this case, we automatically insert the loop unrolling

pragma to the innermost loops of the OpenCL device

program for FPGA.

Figure 3 depicts the modified ROSE Compiler

Infrastructure. The ROSE outputs the OpenCL host program

and the optimized OpenCL device program for FPGA. In

addition, a.out calls FPGA, instead of GPU.

Figure 4 shows the loop unrolling algorithm. It traverses

loopnests and find if the loopnest is offloaded by the TileK

pragma. If so, it gets the innermost loop of the loopnest and

inserts the loop unrolling pragma in front of the innermost

loop.
Figure 5 shows an example of the output OpenCL device

program that is inserted in the loop unrolling pragma. Intel
FPGA SDK for OpenCL Compiler [5] and Xilinx SDAccel
Compiler [6] support similar pragmas for FPGA.

V. PRELIMINARY EVALUATION

In this section, we evaluate the validity of our proposal.
First, we interviewed skilled HDL programmers about how
long they take to make the HDL program for FPGA
manually. Second, we manually made an OpenCL host and
device program and measured how long it took. Third, we

Figure 6. Comparison of development time.

used TileK pragma and generated the OpenCL host program
and optimized device program for FPGA automatically.
Thus, we compared the development times among manual
HDL, manual OpenCL, and ROSE-Generated OpenCL.

The example application program is Caffe, a deep
learning framework written in C++ and developed by the
Berkeley Artificial Intelligence Research at the University of
California, Berkeley. It has many layers for deep learning,
and we use the pooling layer for the development time
evaluation because it is one of the most widely used and one
of the most time-consuming layers in deep learning.

Figure 6 compares development times. In manual HDL,
both the investigation of the program (pooling layer) and the
HDL programming for an FPGA take about two months.
Thus, the development takes about four months. In manual
OpenCL, both the investigation and the OpenCL
programming are reduced to one week each. Thus, the
development takes about two weeks. In ROSE-Generated
OpenCL, the investigation takes seven days and TileK
programming and automatic OpenCL generation takes one.
Thus, development time is only about eight days. Thus, the
OpenCL-generated optimizing compiler reduces the
development time of Caffe’s pooling layer for FPGA to 1/16
of the conventional HDL development time.

Caffe’s pooling layer has 6 multiple loop nest. Using our
optimization, the loop unrolling pragma is inserted to the
innermost loop automatically. Thus, the maximum FPGA
pipeline pitch predicted by the FPGA compiler (Altera®
SDK for OpenCLTM v15.0.0) decreases from 487 cycles to 1
cycle. It suggests that the optimized pooling layer may run
much faster on FPGA. Execution time, accuracy, and power
consumption comparison among other devices (CPU, GPU)
will be a future study.

VI. DISCUSSION

In this section, we discuss the OpenCL optimization
candidates for FPGA. Besides the loop unrolling we
implemented, there are several optimization candidates
suitable for FPGA. One is the use of the OpenCL’s vector
type. OpenCL has original vector types, such as float2, float4,
float8, and float16. For example, a variable with type float4
is processed in a group of four in parallel. These types are
useful in parallel processing for FPGA.

Another optimization candidate is to copy the global
memory data to the local memory. An FPGA has two kinds
of memory: global (DRAM) and local (SRAM). The global
memory has large capacity but large latency, whereas the
local memory has small capacity but small latency. In
addition, we have to use the global memory to store the
CPU’s main memory data via a PCI Express(R) between the
CPU and FPGA. If there are multiple global memory
accesses for the same variable, the performance might
degrade. Thus, the global memory data should be copied to
the local memory.

The other optimization candidate is to align the data to
the 4-byte boundary. If the data in FPGA is not aligned to the
4-byte boundary, the OpenCL compiler for FPGA may
generate a low-speed program [5]. Thus, we will insert the
padding to the data to align it to the 4-byte boundary.

59Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 74 / 241

Our loop unrolling in this paper is the first step to

implement the OpenCL optimizations for the FPGA.

VII. CONCLUSION

To reduce the development time of the OpenCL host and

device program, we developed an OpenCL-generated

optimizing compiler on the basis of the ROSE Compiler

Infrastructure.

Our compiler compiles a C/C++ program with TileK

pragmas into the OpenCL host program and the OpenCL

optimized device program with loop unrolling pragmas

automatically. Preliminary evaluation shows that our

compiler decreases the development time of the OpenCL host

and device program to 1/16 of the conventional development

time with manual HDL.

In the future, we will implement other optimizations to our

compiler to generate more optimized OpenCL device

programs for FPGA easily and evaluate the execution time,

accuracy, and power consumption compared to CPU and

GPU.

ACKNOWLEDGMENT

The author thanks Dr. Tsuyoshi Tanaka for his support in
writing this paper.

REFERENCES

[1] Toyota Motor Corporation, “Toyota to Make Additional
Investment in Preferred Networks, Inc.,” Aug. 4, 2017,
[Online]. Available:
https://newsroom.toyota.co.jp/en/detail/18012355, Accessed
on: Sep. 18, 2019.

[2] NVIDIA, “Automotive Innovators Motoring to NVIDIA
DRIVE,” Jan. 4, 2016, [Online]. Available:
http://blogs.nvidia.com/blog/2016/01/04/automotive-nvidia-
drive-px-2/, Accessed on: Sep. 18, 2019.

[3] NTT Communications, “NTT Com's New AI Technology
Identifies Specific Human Motions with High Accuracy,” Oct.
7, 2015, [Online]. Available:
http://www.ntt.com/release/monthNEWS/detail/20151007_4.
html, Accessed on: Sep. 18, 2019.

[4] Khronos Group, “The open standard for parallel programming
of heterogeneous systems,” [Online]. Available:
https://www.khronos.org/opencl/, Accessed on: Sep. 18, 2019.

[5] Intel Corporation, “Intel FPGA SDK for OpenCL, “ [Online].
Available:
https://www.intel.com/content/www/us/en/software/program
mable/sdk-for-opencl/overview.html, Accessed on: Sep. 18,
2019.

[6] Xilinx Inc., “SDAccel Development Environment,” [Online].
Available: https://www.xilinx.com/products/design-
tools/software-zone/sdaccel.html, Accessed on: Sep. 18, 2019

[7] N. Nystrom, D. White, and K. Das, “Firepile: Run-time
Compilation for GPUs in Scala,” In Proc. of the Tenth
International Conference on Generative Programming and
Component Engineering, Portland, OR, USA, pp. 107-115,
2011.

[8] D. Quinlan and C. Liao, “The ROSE Source-to-Source
Compiler Infrastructure,” The Cetus Users and Compiler
Infrastructure Workshop, Galveston Island, Texas, USA, 2011.

[9] Y. Yan, P.-H. Lin, C. Lio, B. R. Supinski, and D. J. Quinlan,
“Supporting Multiple Accelerators in High-Level
Programming Models,” In Proc. the Sixth International
Workshop on Programming Models and Applications for
Multicores and Manycores, San Francisco, CA, USA, pp.170-
180, 2015.

[10] T. Vanderbruggen and J. Cavazos, “Generating OpenCL C
kernels from OpenACC,” The International Workshop on
OpenCL 2013 & 2014, Bristol, United Kingdom, 2014.

[11] S. Lee and J. S. Vetter, “OpenARC: Extensible OpenACC
Compiler Framework for Directive-Based Accelerator
Programming Study,” In Proc. of the First Workshop on
Accelerator Programming using Directives, New Orleans, LA,
USA, pp.1-11, 2014.

[12] S. Lee and J. S. Vetter, “OpenARC: Open Accelerator
Research Compiler for Directive-Based, Efficient
Heterogeneous Computing,” In Proc. the 23rd ACM
Symposium on High-Performance Parallel and Distributed
Computing, Vancouver, BC, Canada, pp.115-120, 2014.

[13] S.-I. Lee, T. A. Johnson, and R. Eigenmann, “Cetus -- An
Extensible Compiler Infrastructure for Source-to-Source
Transformation,” in Proc. the 16th International Workshop on
Languages and Compilers for Parallel Computing, in Lecture
Notes in Computer Science 2958, Springer Verlag, 2003, pp.
539-553.

[14] A. Lashgar, A. Majidi, and A. Baniasadi, “IPMACC:
Translating OpenACC API to OpenCL,” The 3rd
International Workshop on OpenCL, Palo Alto, CA, USA,
2015.

[15] D. Grewe, Z. Wang, and M. F. P. O’Boyle, “Portable
Mapping of Data Parallel Programs to OpenCL for
Heterogeneous Systems,” In Proc. of the 2013 International
Symposium on Code Generation and Optimization, Shenzhen,
China, pp.1-10, 2013.

[16] J. Bispo, L. Reis, and J. M. P. Cardoso, “Multi-Target C Code
Generation from MATLAB(R),” In Proc. the ACM
SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming, Edinburgh, United
Kingdom, pp.95-100, 2014.

[17] A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and V. Sarkar,
“Accelerating Habanero-Java Programs with OpenCL
Generation,” In Proc. the International Conference on
Principles and Practices of Programming on the Java
Platform: virtual machines, languages, and tools, Cracow,
Poland, pp.124-134, 2014.

[18] G. Martinez, M. Gardner, and W.-c. Feng, “CU2CL: A
CUDA-to-OpenCL Translator for Multi- and Many-core
Architectures,” In Proc. the 17th IEEE International
Conference on Parallel and Distributed Systems, Tainan,
Taiwan, pp.300-307, 2011.

[19] A. Wendell O. Rodrigues, F. Guyomarc’h, and J.-L. Dekeyser,
“An MDE Approach for Automatic Code Generation from
UML/MARTE to OpenCL,” Computing in Science &
Engineering, January/February 2013, pp. 46-55, 2013.

[20] A. Klöckner, et al., “PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation,” Parallel
Computing, vol. 38, no. 3, pp. 157-174, 2012.

[21] M. J. Harvey, “Swan: A tool for porting CUDA programs to
OpenCL,” Computer Physics Communications, vol. 184,
issue 4, pp. 1093-1099, 2011.

60Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 75 / 241

From a Subset of LTL Formula to Büchi Automata

Bilal Kanso

Lebanese University
Faculty of sciences (V), Computer Science Department

Email: bilal_kanso@hotmail.com

Ali Kansou

Lebanese University
Faculty of sciences (V), Computer Science Department

Email: ali.kansou@gmail.com

Abstract—We present a fragment of Linear Temporal Logic (LTL)
together with an polynomial translation of formula from this
LTL fragment into equivalent Büchi automata. The translation
is completely implemented based on Java Pluging Framework in
GOAL Tool as a plugin. The implementation is mainly based
on pre-proven theorems such that the transformation works
very efficiently. In particular, it runs in polynomial space in
terms of the length of the given formula. The main application
of this transformation could be in model checking area which
consists in obtaining a Büchi automaton that is equivalent to the
software system specification and another one that is equivalent
to the negation of the property. The intersection of the two
Büchi automata is empty if the model satisfies the property.
Furthermore, the experiments are performed with three sets of
LTL formula, which is commonly used in the literature and the
result shows that our proposed LTL fragment covers most of
them.

Keywords–Linear Temporal Logic; Büchi automata; Model
checking; Compositional modeling.

I. INTRODUCTION

The Linear Temporal Logic (LTL) [1] becomes increas-
ingly one of the most important formalisms to model system
properties which are widely used in different areas such as
model checking [2][3], testing [4][5], reasoning event in time,
etc. It is equivalent to first-order logic over finite and infinite
words. It is well-known that model checking and satisfiability
for LTL are PSPACE-complete and in most all cases the model
checking problem is equivalent to a satisfiability-checking
problem. This justifies why the satisfiability problem for LTL
and its fragments has received so much attention. By way
of illustration, model checking based on LTL formalism is
PSPACE-hard [6][7]. This complexity arises from the transla-
tion step of the negation of a property (described as a LTL
formulæ) into Büchi automata. Indeed, the Büchi automaton
of a property is constructed in exponential space in the length
of this property. This makes verification methods hard or
even impossible to be implemented in practice and makes
the scalability of the LTL model checking limited, which
commonly referred to as the state explosion problem [8].

The question we handled is there some LTL fragments
that are feasible in practice. In this paper, we contribute to
finding a subset of LTL properties that can be converted
polynomially into Büchi automata. A fragment called, FLTL
Logic, is defined and how formula in this fragment can be
transformed into Büchi automata whose the state space size
is linear is shown. This fragment is identified by looking
for natural subclasses of LTL formula for which complexity
decreases and by deep understanding of what makes the
converting into Büchi automata PSPACE-complete. Thanks to

the structure of our fragment FLTL formulæ, the proposed
algorithm can be compositional in the sense that the target
Büchi automaton associated to a given formulæ is obtained
by developing a sub-automaton for each sub-formulæ of the
principal formulæ. Hence, the basic idea for developing the
final automaton for a FLTL formulæ ϕ is that ϕ can be
recursively decomposed into a set of sub-formula, arriving at
sub-formula that can be completely handled. Composition is
then used for assembling different sub-automaton and then
forming larger ones. Such a composition can be seen as an
operation taking sub-automata for sub-formula, as well as the
FLTL operator to provide a new more complex automaton.
Furthermore, we showed by experiments that the fragment
coverage average is 65.531% which is acceptable and slightly
high and the use of such fragments seems promising. The
experiments are based on three common sets of LTL formula
widely used in the literature. For each set, we identify the
formula which can be described in the extension and generate
its equivalent automata using the proposed algorithm.

The rest of this article is organized as follows: Section II
briefly describes Büchi automata. In Section III, we describe
our fragment of LTL logic and the reasons to choose it. In
Section IV, we present for each formulæ in our fragment
LTL, its equivalent Büchi automata. Section V shows the
final algorithm that generates to any formulæ in our fragment
an equivalent Büchi automaton. Section VI represents the
experiments we conducted to compute the coverage average of
our LTL fragment. Section VII presents the related work and
Section VIII presents the conclusion and some future works.

II. BÜCHI AUTOMATA

A Büchi automaton is variant of non-deterministic finite-
state automata on infinite inputs [9]-[10]. A word is accepted
if the automaton goes through some designated ”accept” states
infinitely often while reading it. Formally, a Büchi automaton
is defined by a 5-tuple A = (S, s0, F,Σ, δ) where S is a finite
set of states, s0 ∈ S is the initial state, Σ is a non-empty set of
atomic propositions, F ⊆ S is a finite set of accepting states
and δ : S ×Σ −→ 2S is a transition function. A run of A on
σ = σ(0)σ(1)σ(2) · · · ∈ Σω is an infinite sequence of states
s0s1s2 · · · ∈ Sω starting with the initial state s0 of A such that
∀i, i ≥ 0, si+1 ∈ δ(si, σ(i)). A run s0s1s2 . . . is accepting by
an automaton A if A goes through accepting states (i.e ∈ F)
infinitely often while reading it. The accepted language of a
Büchi automaton A, denoted by, Lω(A) is then defined by
Lω(A) = {σ ∈ Σω | there is an accepting run for σ in A}.
The union of two Büchi automata A1 and A2 is formally
defined as follows:

61Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 76 / 241

Definition 1 (Buchi automata union): Let A1 =
(S1, s10, F1,Σ, δ1) and A2 = (S2, s20, F2,Σ, δ2) be two
Büchi automata. The union A1 ∪ A2 of A1 and A2 is the
Büchi automaton A = (S, s0, F,Σ, δ) defined as follows:

• S = S1 ∪ S2 ∪ {s0}
• s0 ∈ S is the initial state
• F = F1 ∪ F2

• the transition relation δ is defined as follows:

δ(s, p) =


δ1(s, p) if s ∈ S1

δ2(s, p) if s ∈ S2

δ1(s10, p) ∪ δ2(s20, p) if s is the initial
state s0

In Definition 1, we add a new initial (nonaccept) state snew
to the union set of states of both A1 and A2and the transitions
snew

p−→ s if and only if s0
A1

p−→ s and snew
p−→ s if

and only if s0
A2

p−→ s to the union set of transitions of both
A1 and A2.
The construction of the intersection automaton works a little
differently from the finite state automata case. One needs to
check whether both sets of accepting states are visited infinitely
often. Consider two runs r1 and r2 and a word σ where r1

goes through an accept state after σ(0), σ(2), . . . and r2 enters
accept state after σ(0)σ(3) Thus, there is no guarantee that
r1 and r2 will enter accept states simultaneously. To overcome
this problem, we need to identify the accept states of the
intersection of the two automata. To do so, we create two
copies of the intersected state space. In the first copy, we check
for occurrence of the first acceptance set. In the second copy,
we check for occurrence of the second acceptance set. When
a run enters a final state in the first copy, we wait for that
run also enters in an accept state in the second copy. When
this is encountered, we switch back to the first copy and so
on. We repeat jumping back and forth between the two copies
whenever we find an accepting state.

Definition 2 (Buchi automata intersection): Let A1 =
(S1, s10, F1,Σ, δ1) and A2 = (S2, s20, F2,Σ, δ2) be two
Büchi automata. The intersection A1∩A2 of A1 and A2 is the
Büchi automaton A = (S, s0, F,Σ, δ) defined as follows:

• S = S1 × S2 × {1, 2}
• s0 = (s10, s20, 1)

• F = S1 × F2 × {2}
• The transition function δ is defined as follows:

δ((s1, s
′
1, 1), p) =


(s2, s

′
2, 1) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s1 6∈ F1

(s2, s
′
2, 2) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s1 ∈ F1

δ((s1, s
′
1, 2), p) =


(s2, s

′
2, 2) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s′1 6∈ F2

(s2, s
′
2, 1) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s′1 ∈ F2

Theorem 1: Let ψ = ϕ1∨ϕ2 (resp. ψ = ϕ1∧ϕ2) be a LTL
formulæ and Aϕi be the Büchi automaton equivalent to ϕi for
i = 1, 2. Let Aψ be the LTL automaton built according to
Definition 1 (resp. Definition 2). Then, Words(ψ) = Lω(Aψ)
(See Proof in Appendix)

III. FLAT LTL LOGIC

In this section, we introduce our subset of LTL logic that
we call FLTL Logic. This fragment will be used to express
temporal properties and then translate them into Büchi au-
tomata in linear size. The syntax of our FLTL logic adds
to usual boolean propositional operators ¬ (negation) and ∧
(conjunction), some modal operators that describe how the
behavior changes with time. Next: Xϕ requires that the formula
ϕ be true in the next state. Until: ϕ1 U ϕ2 requires that the
formula ϕ1 be true until the formula ϕ2 is true, which is
required to happen. Eventually: ♦ϕ requires that the formula
ϕ be true at some point in the future (starting from the
present) and it is equivalent to ♦ϕ ≡ true U ϕ. Always:
�ϕ requires that the formula ϕ be true at every point in the
future (including the present). Release: ϕ1 R ϕ2 requires that
its second argument ϕ2 always be true, a requirement that is
released as soon as its first argument ϕ1 becomes true. It is
equivalent to ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2).

A. Our fragment LTL logic
Definition 3 (FLTL formulæ): The set of FLTL formulæ

Lf is given by the following grammar:

ϕ:=Θ |�Θ |Θ U ϕ |ϕ R Θ |Xϕ |¬∆ |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2

where Θ is a propositional formula defined by:
Θ:=true |p |¬Θ |Θ1 ∧Θ2 and ∆ is the formula defined

by: ∆:=∆ U Θ |Θ R ∆ |Xϕ |¬∆ with p ∈ Σ.

For the sake of brevity and the lack of space, we only
discuss here why the fragment Θ U ϕ is included within our
LTL fragment to the detriment of both formula ϕ1 U ϕ2 and
ϕ1 U Θ. It is well-known the size of an Büchi automaton A that
recognizes the complement language Lω(A) of the language
accepted Lω(A) by an automaton A is exponential [11], [12].
Suppose we have separately built an automaton A1 for ϕ1 and
an automaton A2 for ϕ2, and let us then try to compositionally
obtain the resulting automaton A for ϕ. According to the until
operator’s semantics, it is required that ϕ holds at the current
moment, if there is some future moment for which ϕ2 holds
and ϕ1 holds at all moments until that future moment. That
means constructing the automaton for ϕ = ϕ1 U ϕ2 firstly
requires constructing of the intersection of A1 and A2. As
stated previously, computing A2 is exponential and therefore,
constructing the Büchi automaton for ϕ U ϕ2 is exponential.
To avoid this kind of formula, we choose the formulæ Θ U ϕ
to be a part of our LTL subset where the construction of the
Büchi automaton associated to it, does not need to complement
any Büchi automaton.

B. Positive Normal Form (FPNF)
As LTL formula, FLTL formula can be transformed into

the so-called Positive Normal form (FPNF). This form is
characterized by the fact that negations only occur adjacent to
atomic propositions. All negation symbols of the given LTL
formula have to be pushed inwards over the temporal operators.

Definition 4 (FPNF): The set of FLTL Positive Normal
Form (FPNF) formulæ LFPNF is given by the following
grammar:

ϕ:=true |p |¬p |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |�Θ |Θ U ϕ |ϕ R Θ |Xϕ

62Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 77 / 241

Each formulæ ϕ ∈ Lf , can be transformed into a for-
mulæ ϕ′ ∈ LFPNF . This is done by pushing negations inside,
near to atomic propositions. To do this, we use the following
transformation rules:

¬true false,¬¬ϕ ϕ,¬(ϕ1 ∧ϕ2) ¬ϕ1 ∨¬ϕ2,¬Xϕ
X¬ϕ,¬(ϕ U Θ) ¬ϕ R ¬Θ,¬(Θ R ϕ) ¬Θ U ¬ϕ.

Theorem 2: For any FLTL formulæ ϕ ∈ Lf , there exists
an equivalent LTL formula ϕ′ ∈ LFPNF |ϕ′| = O(|ϕ|).

C. Semantics

The semantics of FLTL formulæ is defined over infinite
sequences σ : N −→ 2Σ (2Σ is the power set of Σ).
In other words, a model is an infinite sequence A0A1 . . .
of subsets of Σ. The function σ, called interpretation func-
tion, describes how the truth of atomic propositions changes
as time progresses. For every sequence σ, we write σ =
(σ(0), . . . , σ(n), . . .). Thus, σ(i) denotes the state at index
i and σ(i : j) the part of σ containing the sequence of states
between i and j. σ(i...) = AiAi+1Ai+2 . . . denotes the suffix
of a sequence σ = A0A1A2 · · · ∈ (2Σ)ω starting in the (i+1)st
symbol Ai where ω denotes infinity. We also write σ(i) |= ϕ
to denote that ”ϕ is true at time instant i in the model σ”. This
notion is defined inductively, according to the structure of ϕ.

The FLTL formula are interpreted over infinite sequences of
states σ : N −→ 2Σ as follows:

Definition 5 (Semantics of FLTL): Let σ : N −→ 2Σ be
an interpretation function and ϕ ∈ LFLTL. σ satisfies ϕ,
noted σ |= ϕ,is inductively defined over the construction of ϕ
as follows:

• ϕ = true, then σ |= true

• if ϕ = p, then σ |= p iff p ∈ σ(0)

• if ϕ = Xϕ′, then σ |= Xϕ′ iff σ(1) |= ϕ′

• if ϕ = �Θ, then σ |= �Θ iff ∀i ≥ 0, σ(i) |= Θ

• if ϕ = Θ U ϕ , then σ |= Θ U ϕ iff ∃i, i ≥
0, σ(i, . . .) |= ϕ and ∀j, 0 ≤ j < i, σ(j...) |= Θ

• if ϕ = ϕ R Θ , then σ |= ϕ R Θ iff ∃i, i ≥
0, σ(i, . . .) |= ϕ and ∀j, j ≥ 0, σ(j...) |= Θ or ∃i, i ≥
0 (σ(i...) |= ϕ ∧ ∀k, k ≤ i, σ(k...) |= Θ)

• if ϕ = ¬ϕ′ , then σ |= ¬ϕ′ iff σ 6|= ϕ′

• Propositional connectives are handled as usual

The semantics of a FLTL formulæ can be also seen as the
language Words(ϕ) that contains all infinite words over the set
of atomic propositions (i.e. alphabet) 2Σ that satisfy ϕ. Thus,
the language Words(ϕ) for a FLTL formulæ ϕ is formally
defined by Words(ϕ) = {σ ∈ (2Σ)ω | σ |= ϕ}.

Proposition 1: Two FLTL formula ϕ1 and ϕ2 are equiva-
lent, denoted ϕ1 ≡ ϕ2, if Words(ϕ1) =Words(ϕ2).

IV. CONSTRUCTION OF BÜCHI AUTOMATA FOR FLTL
LOGIC

In the sequel, we explain for each subformulæ in our
fragment LTL logic how its equivalent Büchi automaton can
be obtained.

A. Büchi automata for Θ formula
The Büchi automaton associated to a propositional for-

mulæ Θ is obtained by creating two states s0 and s1 and two
transitions tr1 and tr2. s0 is the only initial state while s1 is
the only final state. tr1 is the transition from s0 to s1 labeling
with Θ while the transition tr2 is a loop labeled with true over
the state s2.

Definition 6 (Θ automaton): Let Θ be a propositional for-
mulæ. The automaton AΘ = (SΘ, s

0
Θ, FΘ,Σ, δΘ) associated

to Θ is defined as follows:

• SΘ = {s0, s1}, s0
Θ = s0, FΘ = {s1}

• The transition function δ is defined as follows:

δΘ(s0,Θ) = {s1} and δΘ(s1, true) = {s1}

B. Büchi automata for Θ U ϕ formula
The automaton associated to Θ U ϕ is obtained by adding

a new initial (nonaccept) state snew to the state set of Aϕ, a
loop over the added state snew labeled with the propositional
formula Θ and transitions snew

p−→ s if and only if and
only if s0 p−→ s with s0 is the initial state of Aϕ. All
other transitions of Aϕ, as well as the accept states, remain
unchanged. snew is the single initial state automaton, is not
accept, and has no incoming transitions except the loop one.

Definition 7 (Θ U ϕ automaton): Let Θ be a proposi-
tional formula and ϕ be an LTL flat formulæ. Let Aϕ =
(Sϕ, s

0
ϕ, Fϕ,Σ, δϕ) be the automaton associated to ϕ. The au-

tomaton Aψ = (Sψ, s
0
ψ, Fψ,Σ, δψ) associated to ψ = Θ U ϕ

is defined as follows:

• Sψ = {snew} ∪ Sϕ
• s0

ψ = snew, Fψ = Fϕ

• The transition function δψ is defined as follows:

δψ(s, p) =


δϕ(s, p) if s ∈ Sϕ (Aϕ transitions)

δϕ(s0
ϕ, p) if s = snew

(Connection initial state to Aϕ)

{snew} if s = snew and p = Θ
(Loop over the new initial state)

Example 1: Figure 1 illustrates the composition definition
of Θ U ϕ. Figure 1a shows the Büchi automaton associated
to (♦b) R c. To construct the Büchi automaton associated to
(a U (♦b R c)), we add a new state snew that we consider as
initial state. Then, for each transition outgoing from snew with
label l and goes to state s, we add a transition from snew to
the state s with a label l. Finally, we then add a loop labeled
with the atomic proposition a over the added state.

Theorem 3: Let ψ = Θ U ϕ, Aϕ be the Büchi automaton
equivalent to ϕ and Aψ be the automaton built according to
Definition 7. Then, Words(ψ) = Lω(Aψ).

C. Büchi automata for Xϕ formula
The automaton associated to Xϕ is obtained by adding two

new states snew (neither initial state or accept state) and sinit
(considered as the initial state) to the state set of Aϕ with
the following two transitions (1) add for any transition in Aϕ
which starts from the initial state s0 to a state s, a transition
from snew to s; (2) add a transition from the initial state sinit to
the snew labeled with true. All other transitions of Aϕ remain

63Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 78 / 241

s0 s1

s2 s3

b ∧ c

¬b ∧ c ¬b ∧ c

true

¬b ∧ c

b ∧ c

¬b ∧ c

¬b

b

(a) (♦b) R c

snew

s0 s1

s2 s3

b ∧ c

¬b ∧ c

¬b ∧ c

a

b ∧ c

¬b ∧ c ¬b ∧ c

true

¬b ∧ c

b ∧ c

¬b ∧ c

¬b

b

(b) a U (♦b R c)
Figure 1. Example of composition: Θ U ϕ

unchanged and final states of Aϕ become accept ones of Aψ
and initial state of Aψ become the state sinit.

Definition 8 (Xϕ automaton): Let ϕ be an Flat LTL for-
mulæ. Let Aϕ = (Sϕ, s

0
ϕ, Fϕ,Σ, δϕ) be the automaton equiv-

alent to ϕ. The automaton Aψ = (Sψ, s
0
ψ, Fψ,Σ, δψ) equiva-

lent to ψ = Xϕ is defined as follows:

• Sψ = Sϕ ∪ {snew, sinit}
• s0

ψ = sinit, Fψ = Fϕ

• The transition function δ is defined as follows:

δψ(s, p) =



δϕ(s, p) if s ∈ Sϕ (Aϕ transitions)

δϕ(s0
ϕ, p) if s = snew

(Connection snew to initial state of Aϕ)

{snew} if s = sinit and p = true
(Connection sinit to snew)

Example 2: Figure 2 illustrates the definition of Xϕ. Fig-
ure 2a shows the Büchi automaton associated to the for-
mulæ a U (Xb R c). To construct the Büchi automaton
equivalent to X(a U (Xb R c)), we add a new state snew and
for each transition tr starting from the initial state s0

ϕ to a state
s, a transition from snew to s with the same label. Finally, we
add the state sinit that we consider as initial and we connect
sinit to snew with a transition labeled with the true label.

Theorem 4: Let ψ = Xϕ, Aϕ be the Büchi automaton
equivalent to ϕ and Aψ be the LTL automaton built according
to Definition 8. Then, Words(Xϕ) = Lω(Aψ).

D. Büchi automata for ϕ R Θ formula
The formulæ ϕ R Θ informally means that Θ is true until

ϕ becomes true, or Θ is true forever. Thus, the construction of
a Büchi automaton for ϕ R Θ can be done by construction the
Büchi automaton associated to the fact that Θ is true until ϕ

s0

s1

s2

a

¬b ∧ c

c

true

b

(a) a U (Xb R c)

s0

snewsinit

s1

s2

a ¬b ∧ c
c

true

a c b

true

(b) X(a U (Xb R c))
Figure 2. Example of composition: Xϕ formula

becomes true and the construction of a Büchi automaton asso-
ciated to the fact that Θ is true forever. Finally, make the union
between the two constructed Büchi automata. Consequently, to
build the Büchi automaton for ϕ R Θ, we need to add two new
states si and sf to the set of states of the automaton Aϕ. si
becomes the single initial state of the resulting automaton and
sf is added to set of final states of the resulting automaton.
The following transitions are added to the set of transitions of
the resulting automaton:

• Transitions si
p∧Θ−→ s if and only if and only if

s0 p−→ s where s0 is the initial state of Aϕ.
• A loop over the added state si labeled with the

propositional formula Θ

• A loop over the added state sf labeled with the
propositional formula Θ

• A transition si
Θ−→ sf

All other transitions of Aϕ, as well as the accept states, remain
unchanged.

Definition 9 (ϕ R Θ automaton): Let Θ be a proposi-
tional formula and ϕ be an LTL flat formulæ. Let Aϕ =
(Sϕ, s

0
ϕ, Fϕ,Σ, δϕ) be the automaton associated to ϕ. The au-

tomaton Aψ = (Sψ, s
0
ψ, Fψ,Σ, δψ) associated to ψ = ϕ R Θ

is defined as follows:

• Sψ = {si, sf} ∪ Sϕ
• s0

ψ = si, Fψ = Fϕ ∪ {sf}
• The transition function δ is defined as follows:

δψ(s, p) =



δϕ(s, p) if s ∈ Sϕ (Aϕ transitions)

δϕ(s0
ϕ, p′) if s = si and p = Θ ∧ p′

(Connection si to initial state of Aϕ)

{si, sf} if s = si and p = Θ
(Loop over si or connection si to sf)

{sf} if s = sf and p = Θ
(Loop over sf)

Example 3: Figure 3 illustrates the composition definition
of ϕ R Θ. Figure 3a shows the Büchi automaton associated
to the formulæ c U ♦b. To construct the Büchi automaton
associated to the LTL formulæ ((c U ♦b) R a), we add a
state si that we consider as the only initial state and a state sf
that we consider as a final state. We add a loop labeled with
the atomic proposition a over the two added states. Finally, for
each transition outgoing from the initial state of the automaton
ϕ with label l and goes to state s, we add a transition from
the added state si to the state s with a label l∧a. We also add
a transition labeled with a from the state si to the state sf .

64Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 79 / 241

s0 s2

s1

b

¬b

c true

¬b

b

(a) c U ♦b

si

sf

s0 s2

s1

b

¬b

c

true

¬b

b

b ∧ a

c ∧ a

b ∧ a
a

a

a

(b) (c U ♦b) R a

Figure 3. Example of composition: ϕ R Θ

Theorem 5: Let ψ = ϕ R Θ, Aϕ be the Büchi automaton
equivalent to ϕ and Aψ be the LTL automaton built according
to Definition 9. Then, Words(ϕ R Θ) = Lω(Aψ).

E. Büchi for �Θ formula
The Büchi automaton associated to formulæ �Θ is ob-

tained by creating one state s0 and a loop over s0 labeling
with Θ.

Definition 10 (�ϕ automaton): Let Θ be an propositional
formulæ. The automaton associated to �Θ is defined as
A�Θ = ({s0}, s0, {s0},Prop, δ�Θ) where δ�Θ is defined as
follows: δ�Θ(s0,Θ) = {s0}

V. OUR ALGORITHM AND ITS IMPLEMENTATION

Our algorithm to build Büchi automata from FLTL formula
is compositional in the sense that the final Büchi automaton
is obtained by developing a sub-automaton for each sub-
formulæ of the principal formulæ . Hence, the basic idea
for developing the final automaton for a FLTL formulæ ϕ
is to explore the formulæ ϕ in a preorder traversal. That is
to say, we visit the root operator of ϕ first, then recursively
do a preorder traversal of the left sub-formula, followed by a
recursive preorder traversal of the right formulæ . Algorithm 1
allows us to build a Büchi automaton for a positive FLTL
formula ϕ and uses the following five functions:

• BuchiProp(Θ): takes as input a propositional formula
Θ and returns the automaton as defined in Definition
6 (Section IV);

• BuchiNext(BA): takes as input an Büchi automaton
BA and returns a Büchi automaton defined according
to Definition 8 (Section IV);

• BuchiEventuelly(BA): takes as input an Büchi au-
tomaton BA and returns a Büchi automaton defined
according to Definition 7 (Section IV);

• BuchiBinary(op,BAl,BAr): that takes as input ∧ or
∨ operator and two Büchi automata BAl and BAr
and returns a Büchi automaton defined according to
definitions of ∧ and ∨ given in Section II;

• BuchiUntil(Θ,BA): that takes as input a propositional
formula Θ and a Büchi automaton BA and returns the
automaton as defined in Definition 7 (Section IV);

• BuchiRelease(Θ,BA) that takes as input a proposi-
tional formula Θ and a Büchi automaton BA and
returns the automaton as defined in Definition 9 (Sec-
tion IV).

• BuchiAlways(Θ): takes as input a propositional for-
mula Θ and returns the automaton as defined in
Definition 10 (Section IV);

Algorithm 1: Generating Büchi automata:
GenerateBA(ϕ) for a FLTL formula

Name : GenerateBA
Input: a positive FLTL formulæ ϕ
Output: a Büchi automaton A;

if ϕ instance of U then
return BuchiUntil (Left (ϕ),
GenerateBA (right (ϕ)));

else if ϕ instance of R then
return BuchiRelease (right (ϕ),
GenerateBA (Left (ϕ)));

else if ϕ instance of X then
return BuchiNext (GenerateBA (right

(ϕ)));
else if ϕ instance of � then

return BuchiAlways (ϕ);
else if ϕ instance of ♦ then

return
BuchiEventuelly (GenerateBA (right
(ϕ)));

else if (ϕ instance of ∨) or (ϕ instance of
∧) then

if isPropositionnal (Left (ϕ)) and
isPropositionnal (right (ϕ) then
return BuchiProp (ϕ) ;

else if isPropositionnal (Left (ϕ)) then
return BuchiBinary (BuchiProp (Left

(ϕ)),GenerateBA (right (ϕ)) ;
else if isPropositionnal (right (ϕ)) then

return BuchiBinary (GenerateBA (Left
(ϕ),BuchiProp (right (ϕ))) ;

else
return BuchiBinary (BuchiProp (Left

(ϕ)),BuchiProp (right (ϕ))) ;

The proposed translation algorithm is very efficient where
we can translate any FLTL formula ϕ of length n in time O(n)
with O(n) states. The trick is to eliminate from our translation
each step that could be exponential. As Büchi automata
complementation is exponential [11][12], our transformation
prohibit the use of complement Büchi automata operation and
requires to use only LTL formula with negation pushed to
atomic propsitions.

Theorem 6: For any FLTL formulæ ϕ ∈ Lf , there exists
an Büchi automaton Aϕ with |Aϕ| = O(|ϕ|) and if Aψ
is the Büchi automaton generated by Algorithm 1, then:
Words(ψ) = Lω(Aψ).

We implemented our algorithm within the Graphical Tool
for Omega-Automata and Logics (GOAL) tool that is an
adequate graphical tool for defining and manipulating common
variants of omega-automata, in particular Büchi automata, and
temporal logic formula [13]. GOAL supports the translation
of temporal formula such as Quantified Propositional Tem-
poral Logic (QPTL) into Büchi automata where many well-
known translation algorithms are implemented. It also provides
language equivalence between two Büchi automata, automata

65Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 80 / 241

TABLE I. BENCHMARK FORMULA FOUND IN [14]

Formula ∈ LFLTL

p U (q U �r) yes
p U (q ∧ X(r U s)) yes
p U (q ∧ X(r ∧ (♦(s ∧X(♦(t ∧ X(♦(u ∧ X♦v)))))))) yes
♦(p ∧ X�q) yes
♦(p ∧ X(q ∧ X♦r)) yes
♦(q ∧ X(p U r)) yes
(♦�q) ∨ (♦�p) yes
♦(p ∧ X♦(q ∧ X♦(r ∧ X♦s))) yes
�♦p ∧ �♦q ∧ �♦r ∧ �♦s ∧ �♦t yes
(p U q U r) ∨ (q U r U p) ∨ (r U p U q) yes
�(p → (q U (�r ∨ �s))) no
�(p → (q U r)) no

complementation, automata union, automata intersection and
emptiness algorithms. It has extensions covering common
translation algorithms (e.g., LTL2BA [8], Tableau algorithm,
LTL2AUT, etc.). As the recent implementation of GOAL is
based on the Java Plugin Framework, it can be properly
extended by new plug-ins, providing new functionalities that
are loaded at run-time. We implemented our composition algo-
rithm within an independent plug-in. The automata generated
by our algorithm are simplified by several simplification meth-
ods (e.g., simulation, Delayed simulation, Faired simulation,
reducing unreachable/dead states) by taking advantage from
GOAL tool which implements all these methods.

VI. COVERAGE AVERAGE OF FLTL FRAGMENT

In this section, we present the experiments that we con-
ducted to show the coverage average of our fragment FLTL
formula. Three sets LTL formula which commonly considered
in the literature are performed. The experiments on the one
hand, emphasis the performance of our implementation algo-
rithm and, on the other, demonstrates that a wide range of
LTL formula can be covered by our approach and translating
polynomially and properly using our GOAL plug-in. The
process we applied for each formula ϕ in our experiments
can be summarized as follows:

1) Checking whether ϕ belongs to FLTL fragment by
building the finite syntax tree of ϕ.

2) Using the well-known algorithm LTL2BA to generate
a Büchi automaton equivalent to ϕ (called A1)

3) Using our GOAL plugin to generate the Büchi au-
tomaton A2 according to rules defined in our algo-
rithm (i.e., Algorithm 1)

4) Runing the GOAL Büchi automata equivalence to
check the equivalence between A1 and A2.

The first set contains 12 formula and can be found in [14].
The experiments for this set show that only two formula do
not belong to our grammar as shown in Table I. The coverage
average for this set is then 83.334%.

The second set contains 27 formula and can be found
in [15][16]. The results show that the FLTL fragment fails to
express only 11 formula as shown in Table II. The coverage
average for this set is then 59.259%.

The third set contains 50 formula and can be found in [17].
Indeed, the authors in [17] have proposed a pattern-based
approach which uses specification patterns that, at a higher
abstraction level, capture recurring temporal properties. The
main idea is that a temporal property is a combination of one
pattern and one scope. A scope is the part of the system

TABLE II. BENCHMARK FORMULA FOUND IN [15][16]

Formula ∈ Formula ∈
p U q yes ¬ �(p → X(q R r)) yes
p U (q U r) yes ¬ (�♦p ∨ ♦�q) yes
¬ (p U (q U r)) no ♦p ∧ ♦¬ p yes
�♦p → �♦q yes (�(q ∨ �♦p) ∧ �(r ∨ �♦¬p)) ∨ �q ∨ �r no
¬ (♦♦p ↔♦p) yes (�(q ∨ ♦�p) ∧ �(r ∨ ♦�¬p)) ∨ �q ∨ �r no
¬ (�♦p → �♦q) yes ¬ ((�(q ∨ �♦p) ∧ �(r ∨ �♦¬p)) ∨ �q ∨ �r) yes
¬ (�♦p ↔ �♦q) yes ¬((�(q ∨ ♦�p) ∧ �(r ∨ ♦�¬p)) ∨ �q ∨ �r) yes
p R (p ∨ q) yes �(q ∨ X�p) ∧ �(r ∨ X�¬ p)) no
(Xp U Xq) ∨ ¬ X(p U q) yes �(q ∨ (Xp ∧ X¬ p)) no
(Xp U q) ∨ ¬ X(p U (p ∧ q)) yes (p U p) ∨ (q U p) yes
�(p → ♦q) ∧ ((Xp U q) ∨ ¬ X(p U (p ∧ q)))no ♦p U �q no
�(p → ♦q) ∧ ((Xp U Xq) ∨ ¬ X(p U p)) no �p U q no
�(p → ♦q) no �(♦p ∧ ♦q) yes
(Xq ∧ r) R X(((s U p) R r) U (s R r)) no

TABLE III. COVERAGE DWYER’S PATTERNS/SCOPES BY OUR LTL
FRAGMENT

Scope/Pattern Globally Before r After q Between q After q
and r until r

Absence yes yes yes yes yes
Universality yes yes yes yes no
Existence no no yes yes yes
Precedence yes yes yes no yes
Response yes yes no no no
s, t precedes p yes yes yes no no
p precedes s, t yes yes yes no no
p responds s t no yes no no no
s, t responds p no yes no no no
s, t without z responds to pno yes no no no

execution path over which a pattern holds. For more details
about patterns and scopes can be found in [17]. They proved
that the patterns dramatically simplify the specification of
temporal properties, with a fairly complete coverage where
they collected hundreds of specifications and they observed
that 92% of them fall into this small set of patterns/scopes.
A translational semantics have been proposed to Dwyer’s
properties by mapping each pattern/scope combination to a
corresponding LTL formula. As Dwyer’s and al. propose 5
scopes and 10 patterns, the total number of involved LTL
formula is then 50. The results of the comparison are given in
Table III and show that our LTL fragment covers 27 formula
from 50 formula associating by Dwyer to scopes/patterns. The
coverage average for this set is then 54%.

The covering average of each set is accepted and slightly
high. This shows that our fragment covers more than 65.531%,
which is considered very good enough due to the importance
of LTL formalism in modeling area. Such a result could be
a promising direction to explore LTL-based model checking
techniques in which system properties are first expressed in
LTL formula then converted into Büchi automata.

VII. RELATED WORK

Translation from LTL formula to Büchi automata has been
extensively studied in the literature. Authors in [1][18] con-
structed Büchi automata whoses states are sets of subformula
of the considered LTL formula. This translation is of order
2O(n) where n is the length of the LTL formula in input. [19]
proposed to build Büchi automata by a bottom-up traversal
through the syntax tree of the considered LTL formula. This
translation has been proved in order of 2O(nlog(n)). [20]
presented an efficient translation by means of alternating ω-
automata. The translation from LTL formula to alternating ω
automata is linear in terms of the length of the considered
LTL formula, but the translation of the resulting alternating ω-
automaton to the target Büchi automata is exponential. [21]-

66Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 81 / 241

[22] proposed on-the-fly translation of so-called generalized
Büchi automata (Büchi automata with multiple acceptance
conditions) which then linearly converted into Büchi automata.

There are several fragments of LTL that have been pro-
posed in the literature. [3] has proved that converting any
formula in which the only allowed modality is the until
operator U or the only allowed modality is X or ♦ to
Büchi automata is PSPACE. The formula that uses only the
♦ operator is coNP-Complete. The formula that uses only
the X operator is coNP-Complete [23]. The formula that uses
only the ♦ operator in the form �♦ is co-NPComplete [24].
In [23], the authors used the term Flat LTL to express formula
that use the U operator whose the left-hand side does not
contain any temporal combinator, but the right-side can contain
only formula with the U operator (or its negation). Translation
from this fragement to Büchi automata has been proved
NP-Complete. Several simple cases with a lower worst-case
complexity are handled in [23][24].

VIII. CONCLUSION AND FUTURE WORK

This paper presented a compositional algorithm for gener-
ating Büchi automata from a fragment of LTL logic. First, we
proposed the grammar of this fragment and then built for each
formulæ ϕ, its equivalent Büchi automata. Second, we showed
theoretically how to compositionnally build from Büchi au-
tomata associated to each sub-formulæ, the Büchi automaton
of the target formulæ. Third, we implemented our approach
in GOAL tool as a plugin and showed the complexity and the
correctness of our Büchi automata generation method. Fourth,
we demonstrated the interest of our method by computing
coverage average of the fragment FLTL using three sets of
well-known LTL formulas as benchmarks.

Several research lines can be continued from the present
work. First, some temporal operators such as always, precedes
or since are not considered in this paper, as an immediate
perspective, we will study how to include these operators in
our LTL fragment. Second, it will be interesting to study
whether our fragment LTL is minimalist and whether there
is possibility to more expand it by identifying what makes it
smallest. A good direction for this point is to study whether
there is a subset of Dwyer’s pattern/scope from which all other
patterns/scopes can be deduced. Third, it would be interesting
to connect the proposed language to usual model checking
tools.

ACKNOWLEDGMENT

This project has been jointly funded with the support of the
National Council for Scientific Research in Lebanon CNRS-L
and Lebanese University.

REFERENCES

[1] O. Lichtenstein and A. Pnueli, “Checking that finite state concurrent
programs satisfy their linear specification,” in Proceedings of the 12th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. New York, NY, USA: ACM, 1985, pp. 97–107.

[2] C. Baier and J. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[3] A. Sistla and E. Clarke, “The complexity of propositional linear
temporal logics,” J. ACM, vol. 32, no. 3, july 1985, pp. 733–749.

[4] R. Hierons and al., “Using formal specifications to support testing,”
ACM Comput. Surv., vol. 41, February 2009, pp. 9:1–9:76.

[5] S. Gnesi, D. Latella, M. Massink, V. Moruzzi, and I. Pisa, “Formal test-
case generation for UML statecharts,” in Proc. 9th IEEE Int. Conf. on
Engineering of Complex Computer Systems. IEEE Computer Society,
2004, pp. 75–84.

[6] E. Clarke, O. Grumberg, and K. Hamaguchi, “Another look at LTL
model checking,” in Formal methods in system design. Springer-
Verlag, 1994, pp. 415–427.

[7] M. Vardi, “Branching vs. linear time: Final showdown,” in Proceedings
of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. London: Springer, 2001, pp.
1–22.

[8] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01), ser. LNCS, vol. 2102. Paris, France: Springer,
jully 2001, pp. 53–65.

[9] V. King, O. Kupferman, and M. Vardi, On the Complexity of Parity
Word Automata. Springer Berlin Heidelberg, 2001, pp. 276–286.

[10] E. A. Emerson, “Handbook of theoretical computer science (vol. b),”
J. van Leeuwen, Ed. Cambridge, MA, USA: MIT Press, 1990, ch.
Temporal and Modal Logic, pp. 995–1072.

[11] S. Safra, “On the complexity of omega-automata,” in 29th Annual
Symposium on Foundations of Computer Science, White Plains, New
York, USA, 24-26 October 1988, 1988, pp. 319–327.

[12] A. Sistla, M. Vardi, and P. Wolper, “The complementation problem
for büchi automata with applications to temporal logic,” in Automata,
Languages and Programming. Springer Berlin Heidelberg, 1985, pp.
465–474.

[13] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan,
“Goal: A graphical tool for manipulating büchi automata and temporal
formulae,” in Tools and Algorithms for the Construction and Analysis
of Systems. Springer Berlin Heidelberg, 2007, pp. 466–471.

[14] K. E. and G. Holzmann, “Optimizing Büchi automata.” Springer, 2000,
pp. 153–167.

[15] M. Daniele, F. Giunchiglia, and M. Vardi, “Improved automata gener-
ation for linear temporal logic,” in In 11th International Conference on
Computer Aided Verification, ser. CAV ’99. London, UK: Springer,
1999, pp. 249–260.

[16] F. Somenzi and R. Bloem, “Efficient büchi automata from ltl formulae,”
in Computer Aided Verification, E. A. Emerson and A. P. Sistla, Eds.
Berlin, Heidelberg: Springer, 2000, pp. 248–263.

[17] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifi-
cations for finite-state verification,” in Proceedings of the 21st Interna-
tional Conference on Software Programming, 1999, pp. 411–420.

[18] P. Wolper, “On the relation of programs and computations to models
of temporal logic,” in Temporal Logic in Specification, B. Banieqbal,
H. Barringer, and A. Pnueli, Eds. Springer Berlin Heidelberg, 1989,
pp. 75–123.

[19] G. G. de Jong, “An automata theoretic approach to temporal logic,” in
Computer Aided Verification, K. G. Larsen and A. Skou, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 477–487.

[20] M. Y. Vardi, An automata-theoretic approach to linear temporal logic.
Berlin, Heidelberg: Springer, 1996, pp. 238–266.

[21] J.-M. Couvreur, “On-the-fly verification of linear temporal logic,” in
FM’99 — Formal Methods, J. M. Wing, J. Woodcock, and J. Davies,
Eds. Springer, 1999, pp. 253–271.

[22] S. Schwoon and J. Esparza, “A note on on-the-fly verification algo-
rithms,” in Tools and Algorithms for the Construction and Analysis
of Systems, N. Halbwachs and L. D. Zuck, Eds. Springer Berlin
Heidelberg, 2005, pp. 174–190.

[23] S. Demri and P. Schnoebelen, “The complexity of propositional linear
temporal logics in simple cases,” Information and Computation, vol.
174, no. 1, 2002, pp. 84 – 103.

[24] E. A. Emerson and C.-L. Lei, “Modalities for model checking: branch-
ing time logic strikes back,” Science of Computer Programming, vol. 8,
no. 3, 1987, pp. 275 – 306.

67Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 82 / 241

Towards Component-Based Development of Textual Domain-Specific Languages

Andreas Wortmann

Software Engineering
RWTH Aachen University

Aachen, Germany
http://www.se-rwth.de/

Abstract—Software-intensive systems are developed with the
help of experts of different domains. This requires reifying their
domain expertise in software, which raises the need for Domain-
Specific Languages (DSLs) to bridge the gap between the problem
space of the experts’ experience and software development. Devel-
oping suitable DSLs still is prohibitively complex due to the lack
of pervasive concepts for DSL reuse. Existing concepts either give
rise to a conceptual gap between their abstractions and language
definition constituents or are tied to specific technological spaces.
To mitigates this, we present a novel conceptual model for the
systematic reuse of textual DSLs. This technology-independent
model promotes modularity and reusability based on language
families that exhibit specific reuse interfaces. To realize these
concepts, we conceived an extensible modelling infrastructure
that supports the engineering of reusable textual DSLs using the
MontiCore language workbench. This enables systematic reuse
of textual DSLs for compatible technological spaces from which
DSL engineers in many domains can greatly benefit.

Index Terms—Software Language Engineering, Textual Lan-
guages, Language Components

I. INTRODUCTION

Society increasingly depends on systems developed by ex-
perts from various domains using their own Domain-Specific
Languages (DSLs) [1]. DSLs have become innovation drivers
in many disciplines, including automotive, avionics, civil en-
gineering, Industry 4.0, robotics, and software engineering
itself. This, e.g., led to the engineering of over 120 DSLs
for software architectures [2] used in different domains and
various technological spaces [3]. All of these need to be
developed, maintained, and evolved on their own, which is
costly, error-prone, and hinders progress in the multi-domain
engineering of modern software-intensive systems.

Research in Software Language Engineering (SLE) [4] in-
vestigates the efficient and reliable engineering, maintenance,
deployment, use, and evolution of DSLs to support software
engineers and domain experts in efficiently developing future
systems. Despite attempts to a systematic SLE, many DSLs
are engineered ad-hoc, for very specific challenges, and very
limited purposes only [5]. Hence, research has produced a mul-
titude of solutions to facilitate creating DSLs. These include on
metamodels [6], grammars [7], or abstract data types [8], inter-
preters [9] or code generators [10], and well-formedness rules
defined in metalanguages [8] or programming languages [11].
For these, the SLE community has proposed various reuse
techniques, based on experiences from general software reuse

(e.g., polymorphic [12] and parametric [13] reuse, composi-
tion [7] or variability [14]). Although these techniques address
a wide range of scenarios, most support specific parts of DSL
definitions (e.g., abstract syntax or code generators) only and
are limited to specific technological spaces. This complicates
the engineering and customization of real-world DSLs for
different usage scenarios, which ultimately hinders systems
engineering by domain experts.

To mitigate this, we present the COLD4TXT conceptual
model for component-based language development of tex-
tual DSLs that implement behavior with code generators
(txtDSLs). In this model, language components with explicit
interfaces of required and provided grammar rules, well-
formedness rules, and code generators are the principal el-
ements of reuse. Feature models arrange these components,
according to their required and provided extension points, in
language families. Thus selecting features governs how the
language components are composed. Based on this model,
we present a systematic method to describe and resolve the
component’s variability, as well as their customization.

As the technical realizations of composing grammars, well-
formedness rules, and code generators have been presented
already [10], [15], this contribution illustrates their conceptual
framework consisting of:

1) The COLD4TXT conceptual model for reusable txtDSL
components featuring explicit interfaces of required and
provided elements.

2) A systematic method for engineering languages based on
reusable txtDSL components.

3) A realization of both with the MontiCore language engi-
neering workbench.

With these, reusing language components in different language
families can greatly facilitate engineering DSLs.

In the following, Section II motivates our method by
example. Afterwards, Section III presents txtDSL language
components and Section IV our method to reuse theses for
efficient txtDSL engineering. Ultimately, Section V debates
observations, Section VI discusses related work, and Sec-
tion VII concludes.

II. EXAMPLE

Consider using Architecture Description Languages
(ADLs) [2] – DSLs for the specification of software

68Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 83 / 241

BaseADL

Components Connectors Reconfiguration

Static Modes
Asm/Gar

Contracts

Generic

Port Types

Shared

Memory

ROS

based

Automata
Grammar

Contract Automata
Well-formedness
Rules

Contract Automata
Transformations

Component
Modes Grammar

Component Modes
Well-formedness
Rules

Component Modes
Transformations

Invariants

realizes realizes

Expression
Grammar

Expression Well-
formedness Rules

Expression
Transformations

realizes

family CorpADL

cmp ContractAutomata cmp ComponentModescmp Expressions

Fig. 1. A language family comprising features of language components that
can fulfill the requirements of all three departments.

architectures – for the different departments of a large
corporation. In each of these departments, some developers
occasionally, maybe once a week, (re-)model parts of a
specific software architecture (e.g., of a train, a factory, or
a mobile service robot). Instead of learning overly generic
ADLs and operating with complex modeling guidelines that
describe how to properly model with these, modelers of each
department should be able to use their specific terminology
and learn only the modeling elements required for their
specific application.

Hence, while in general, these ADLs require some notion
of components, ports, and connectors, each department has
domain-specific requirements for the ADLs to be used:

• Department A (trains) requires components that support
dynamic reconfiguration via components modes [16] to
enable switching components related to country-specific
technology when the train crosses a border.

• Department B (smart factories) demands components
with assumption/guarantee contracts [17] that facilitate
correct integration of new components when the factory
reconfigures.

• Department C (robotics) demands novel connectors that
support bridging architecture models with the robot op-
erating system (ROS) [18].

Developing a general ADL that captures all of these concepts
is not feasible as it complicates modeling in departments
where only some of these modeling elements are required.
Alternatively developing three specific ADLs – each with
their specific infrastructure (e.g., parsers, model checkers, code
generators) – independently is costly and inefficient.

Instead, building suitable language components and com-
bining these as required can significantly reduce the effort
of fulfilling the departments’ requirements. For our example,

consider the language family of Figure 1: this family contains
the language features required by the different departments
and each feature is implemented by a language component
comprising a combination of grammar, well-formedness rules,
and code generators. By developing independent language
components that implement the different features and by lever-
aging variability modeling techniques, the configuration of the
base ADL for the different departments only requires selecting
the appropriate language components and (semi-)automatically
integrating these. If no appropriate features are available,
developing and integrating novel language components and
integrating these into existing language families reduces the
effort of building a suitable ADL.

Our method to engineer and reuse language components
considers both, planned variability and opportunistic reuse, and
supports semi-automated composition of language component
constituents in the technological space of the MontiCore [11]
language workbench.

III. COLD4TXT LANGUAGE COMPONENTS

The conceptual model of COLD is a vision of language
reuse that requires concretization. For txtDSLs, we have de-
veloped the COLD4TXT variant of COLD which realizes vari-
ability, explains how resolving variability affects the language
components, how variability and customizability interact, how
variability, customizability, the language facets’ artifacts relate,
and provides modeling techniques to realize this. At its core,
COLD4TXT resolves variability and customizability through
the additive composition of language components according
to their explicitly provided and required extension points.

To enable this, COLD4TXT differs from COLD: In
COLD4TXT, language families and language components
replace language concerns and language facets of COLD,
respectively: The language concerns of COLD provide both
variability and customizability. This entails that they pro-
vide the complete customizability of their intrinsic language
product line and express this towards the user despite only
a small subset of customization options being available in
the language product derived from the product line (namely
these provided by the features selected for the product). In
contrast, customizability should express means for tailoring
languages that are not resolved by variability. Therefore, the
language component comprising the derived language product
provides customizability options instead. Moreover, to enable
the proper composition of language components based on a
feature selection, the COLD4TXT language components yield
interfaces themselves. These interfaces guide and restrict their
use in the variation interface’s feature model and enable com-
posing two language components (semi-)automatically, with
only the implementation of adapters for generator composition
requiring manual interaction [10]. To explain the effects of
resolving variability and customizability in COLD4TXT, a
language component consists of a

• one language component interface,
• one customization interface,

69Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 84 / 241

• up to one grammar artifact,
• arbitrary many well-formedness rule artifacts, and
• arbitrary many code generator artifacts.

The language component interfaces explicitly provide or
require language grammar productions, well-formedness rules,
or code generators. Also, they may yield constraints between
these (e.g., representing whether an extension point is optional
or mandatory, or to express that selecting a provided code
generator entails selecting a grammar production as well).
The provided extension points for grammar rules identify
productions of the contained CFG that are meant for reuse
(e.g., expressions of an imperative modeling language, method
signatures of a class diagram language, etc.). The required
extension points for grammar productions explicate produc-
tions that demand (optional or mandatory) extension for the
contained syntax to be completed.

Specifying required well-formedness rules within the inter-
face either demands complete specifications of the required
well-formedness rules behavior (i.e., their implementation) or
demands conditions under which an independently provided
well-formedness rule is suitable for the required rule (i.e.,
some form of acceptance tests). The former entails having
a specification that is precise enough to become a imple-
mentation automatically and the latter testing rarely would
be complete. Hence, we decided to consider the set of well-
formedness rules of a language component as its extension
point. Thus, a language component can provide arbitrary
many well-formedness rules that may or may not be used by
other components, but it cannot (yet) describe that it requires
additional well-formedness rules. Specifying the semantics of
required well-formedness rules is subject to ongoing work. For
code generators, language components leverage the notions of
producer interface and product interface as introduced in [10].
Hence, language components may provide and require exten-
sion points that declare exactly one producer interface and one
product interface. The customization interfaces of language
interfaces comprise parameters of well-formedness rules and
generators that are not meant to be resolved through the closed
variation of language families but enable open customization
instead. Such customization could be the numbers of initial
states supported in models of a language component for
an automaton DSL or the path a generator should produce
artifacts in.

The language interfaces ground their required and provided
extension points in the artifacts of their language components
as illustrated in Figure 2. Here, the red concepts (solid lines)
represent the language components and the yellow concepts
(dashed lines) highlight their customization interface parts.
The language components are part of language families. Aside
from at least one language component, a language family
contains a variation interface comprising a single feature
model and a mapping that relates features to language compo-
nent interfaces. By transitivity of language interface extension
points, this also identifies one language component per feature.
The feature model of the variation interface is developed by a

Language

Family

Language

Component

Interface

Customization

Parameter

Feature

Model

FeatureTo

Component

Mapping

Variation

Interface

Feature

Constraint

Customization

Interface

Feature

Feature

Group

Language

Component

has-

many

has-

many

has-

many

has-

many

has-

many

has-

many

Fig. 2. Conceptual model for txtDSL reuse focusing on language families
and their variation interfaces.

language family CorpADL {

components

MontiArc, ContractAutomata, ComplexPortTypes, Expressions;

variation interface root BaseADL {

mandatory Components {

optional AsmGarContracts { optional Invariants; }

optional GenericPortTypes;

}

// additional features relations

}

root feature BaseADL uses MontiArc;

abstract feature Components;

feature AsmGarContracts uses ContractAutomata {

binds production Automaton to Components.ArcElement;

binds generator Automaton2Java to Components.BehaviorGenerator;

binds wfrs NonHierarchical;

}

feature Invariants uses Expressions {

binds production Expression to AsmGarContracts.Expr.

binds Expression.All;

binds generator Expressions2POJO to AsmGarContracts.Guard2Java;

}

// additional features definitions

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

variation
interface

available language components

feature definition

feature to component mappings

Fig. 3. Textual model of the CorpADL language family of Figure 1.

language family designer that intends to derive similar DSLs
of joint buildings blocks. As such, the designer models the
selection of a specific child feature implementing the extension
points of its parent feature and specifies constraints between
features in the Feature2ComponentMappting.

The language components are composed based on the ar-
rangement of language components in the variation interfaces’
feature model. From this, a new language component compris-
ing their (possibly composed) artifacts together with a derived
interface are synthesized. If there are required extension points
not fulfilled by the selected features, these become part of the
new component’s interface.

COLD4TXT is realized as a language engineering frame-
work using the MontiCore language workbench. To this end,
we have developed modeling languages for language families,
language components, feature configurations, and customiza-
tion configurations as well as a toolchain that supports resolv-
ing variability and customizability.

The language family CorpADL of our example (cf. Fig-
ure 1) can be represented as illustrated in Figure 3. This
family describes which language components it comprises
(ll. 2-3), its variation interface in terms of a feature model
(ll. 4-10), and defines its features (ll. 11-24). A feature either
is a root feature (at most one), an abstract feature solely for
grouping other features (such as the feature Component),

70Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 85 / 241

language component ContractAutomata {

grammar mc.automata.ca.ContractAutomata;

provides production ConractAutomatonMain;

provides AsmAutomaton for production AssumptionAutomaton;

provides GarAutomaton for production GuaranteeAutomaton;

requires mandatory Expr for production IGuardExpression;

provides generator Automaton2Java for ContractAutomatonMain {

producer IAutomatonGen;

product IAutomatonPairRealization;

}

requires generator Guard2Java for IGuardExpression {

producer IGuardExpressionGenerator;

product IGuardExpression

}

provides wfrs Hierarchical {

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.hierarchical.*;

}

provides wfrs NonHierarchical {

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.NoHierarchy;

}

parameters {

int max for mc.automata.cocos.NumHierarchyLevels.initialize;

String prefix for IAutomatonGen.generate;

}

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

provided
grammar
productions

required grammar productionprovided generator

required generator

provided sets of
well-formedness
rules

customization parameters

Fig. 4. Model of the ContractAutomata component of Figure 1.

language component Expressions {

grammar mc.basic.expressions.Expressions;

provides production Expression;

provides wfrs All { mc.basic.expressions.*; }

provides transformation Expressions2POJO for Expression {

producer IExpressionJavaGenerator;

product IExpression;

}

}

01

02

03

04

05

06

07

08

09

10

Fig. 5. Model of the Expression component of Figure 1.

or is realized by a language component. Each feature of the
latter kind defines how the provided extension points of its
language component are mapped to the required extension
points of its parent feature. For instance, selecting the feature
Invariants entails that (1) its production Expression
will be embedded [15] into the extension point Expr of
the language component AsmGarContracts (l. 21); (2) its
well-formedness rules provided via the extension point All
will be reused (l. 22); and (3) its code generator provided via
the extension point Expressions2POJO will be embedded
into the code generator Guard2Java of language component
AsmGarContracts (l. 23). The well-formedness rules of
the language family ensure that these mappings are valid w.r.t.
the language components illustrated in Figure 4 and Figure 5.

IV. DERIVING LANGUAGES

Modeling language families with COLD4TXT first demands
its instantiation for a specific technological space by providing
modules for (1) analysing the compatibility of COLD4TXT
models with the referenced technology space artifacts and
(2) composing these artifacts according to COLD4TXT spec-
ifications as depicted in Figure 6. The former modules, for
instance, check whether a well-formedness rule provided by

a language component exists or whether a grammar produc-
tion declared as an extension point indeed is an interface
production. The latter modules take composition instructions
(the binding mappings) and related artifacts, and compose
these accordingly. For MontiCore, these modules are provided.
Language engineers than can use this instance of COLD4TXT
to engineer language components. Language family developers
can reuse these in different contexts through arranging these
in the variation interfaces. Language family users select the
desired language features matching their requirements and use
the COLD4TXT instance to synthesize a suitable language
component. If this language component is incomplete w.r.t. its
mandatory required extension points or parameters, it cannot
be used as a DSL yet. In this case, the language family user
has to specify the missing customization configuration, before
a fully configured language component and the artifacts for a
DSL in the corresponding technological space are derived.

For MontiCore, these artifacts are a synthesized CFG, the
union of the selected well-formedness rules, and a code
generator composed along its producer and product interfaces.
These artifacts can be processed by MontiCore to produce a
DSL that is completely independent of language families and
language components. Moreover, the (possibly incomplete)
language components derived from resolving variability and
customizability can be used as parts of other language families
again, which facilitates their reuse.

Based on a feature configuration, the COLD4TXT frame-
work composes the language components associated with
the selected features pairwise and top-down. The result-
ing component yields the provided extension points of the
parent and child components. For each mandatorily re-
quired extension point (e.g., Expr of language component
ContractAutomata), if an implementation is defined by
the binding mappings in the variation interface’s feature
model, then this extension point becomes optional and is
copied to the interface of the new component as well. The
sets of well-formedness rules from the parent component and
the ones from the selected provided extension point of the
child component are merged and provided as a new extension
point in the new component. For the CFGs, COLD4TXT
expects the responsible modules of the specific technology
space to produce combined CFGs and adapters between the
participating code generators accordingly.

For instance, selecting the features “Asm/Gar Contracts”
and “Invariants” depicted in Figure 1 with the variation
interface specified in Figure 3 entails combining the lan-
guage components ContractAutomata (Figure 4) and
Expressions (Figure 5) accordingly. The resulting lan-
guage component is given in Figure 7. This component uses a
synthesized CFG featuring contract automata and expressions
(l. 2), the union of selected well-formedness rules, and the
composed code generators. Its interface reduces the cardinality
of the required grammar extension point Expr to optional
(l. 7), adds the provided extension point Expression (l. 8),
as well as the code generator for expressions (ll. 14-17)

71Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 86 / 241

COLD4TXT

Infrastructure

MontiCore

Analyses

CorpADL

:Language

Family

AsmGar

Contracts

:ComponentGenericPort

Types

:Component

ROS

Connectors

:Component

Invariants

:Component

conforms
Language

Family

:MCDSL

COLD4TXT

conceptual framework

COLD4TXT realization as

MontiCore languages

COLD4TXT instance, using

MontiCore analyses and syntheses

CorpADL language family in

MontiCore’s technological space

Configuration of the CorpADL language

family through its interfaces

Department

B

:Component

DepartmentB

:CustomizationCo

nfiguration

configures

composition operator

COLD4TXT

well-formedness rules

re
a

li
ze

MontiCore

Syntheses

⊕

COLD4TXT conceptual model

DepartmentB

:Feature

Configuration

technology

space expert

language

component

developers

language

family

user

language

family

engineer

⊕

Language

Component

:MCDSL

DepartmentB

:MCDSL

Fig. 6. After tailoring CORE4TXT for a specific technological space, developers can engineer language components to be used by language family
developers to facilitate creating DSLs.

language component ContractAutomataWithExpresssions {

grammar mc.automata.ca.ContractAutomataWithExpressions;

provides production ConractAutomatonMain;

provides AsmAutomaton of production AssumptionAutomaton;

provides GarAutomaton of production GuaranteeAutomaton;

requires optional Expr for production IGuardExpression;

provides production Expression;

provides transformation Automaton2Java for ContractAutomatonMain {

producer IAutomatonGen;

product IAutomatonPairRealization;

}

provides transformation Expressions2POJO for Expression {

producer IExpressionJavaGenerator;

product IExpression;

}

provides wfrs All {

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.NoHierarchy;

mc.basic.expressions.*;

}

parameters {

int max for mc.automata.cocos.NumHierarchyLevels.initialize;

String prefix for IAutomatonGen.generate;

}

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

became optionaladded

synthesized
grammar

added

synthesized set of well-
formedness rules

Fig. 7. Language component synthesized as result from selecting the
features “Asm/Gar Contracts” and “Invariants” of Figure 3.

from the Expressions language component of Figure 5,
and provides a new set of well-formedness rules (ll. 19-
23). As this component does not require further extension,
specifying values for its parameters enables MontiCore to
derive a complete DSL from it.

V. DISCUSSION

In contrast to the purely conceptual models of DSL
reuse [19], [20], COLD4TXT supports capturing all DSL defi-
nition constituents at a sufficient level of abstraction to support
the precise explanation of the effects of composing these,

binding their variability, and resolving their customizability
on its own.

The conceptual model of COLD4TXT aims to be inde-
pendent of technological spaces as long as these enable to
(1) identify grammar extension points; (2) compose grammars,
sets of well-formedness rules, and code generators without
eliminating the extension points in the process; (3) describe
code generators and the generated products in terms of their
interfaces; (4) identify parameters of well-formedness rules
and code generators in an object-oriented fashion. While
these are strong assumptions, we currently investigate applying
COLD4TXT and its realization within the technological spaces
of Neverlang [7] and Xtext [21]. Moreover, it currently only
supports embedding in the sense of [10], whereas there are
various other composition operators for txtDSLs. Whether and
how supporting these is possible, also is ongoing research.

In the future, we aim to extend the notion of language
components to feature additional constituents (e.g., model-
to-model transformations or editor fragments), support other
forms of composition (e.g., coordination or aggregation), and
make the constraints of required well-formedness rule exten-
sions more explicit.

VI. RELATED WORK

Research on Language product lines (LPLs) [15], [22],
[23] is scattered across different kinds of DSL definition con-
stituents and technological spaces. And while we developed a
notion of LPLs for the technological space of MontiCore [15]
in particular, there currently is no actionable understanding
of the variability of complete txtDSLs (i.e., encompassing all
four kinds of constituents). Moreover, (closed) variation rarely
is connected with (open) customization to systematically reuse

72Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 87 / 241

DSLs in general. There are only a few solutions that consider
either txtDSL variation or customization across different kinds
of DSL definition constituents. These include a few language
workbenches [24], such as Argyle [23], Neverlang [7], or the
combination of SDF and FeatureHouse [22].

In Argyle [23], DSLs are constructed from language assets
that resemble concerns and comprise syntax, data types, and
code generation templates. A feature model arranges assets
according to their dependencies, which demands their white-
box apriori composition that hinders the reuse of facets.
In contrast, COLD4TXT will be based on our exploratory
work [15] that makes extension points of concerns explicit and
supports the black box composition of their artifacts through
the generation of suitable adapters between these.

SDF and FeatureHouse realize variability based on compo-
sitional language modules containing grammar rules, typing
rules, and evaluation rules [22]. It also focuses on the white-
box composition of artifacts and interpretation. Similar partial
solutions towards variation or customization of selected kinds
of DSL definition constituents are available from a variety
of language workbenches. For instance, ableC [25] is an
extensible C language that leverages attribute grammars to
reuse syntax and semantics, MPS [21] enables reuse of projec-
tional languages with views and model transformations, and
Spoofax [8] supports reuse of textual, interpreted languages.
All of these concepts for (partial) DSL reuse focus on specific
technological spaces. and lack support for integrated reuse
across variation and customization.

VII. CONCLUSION

We have presented the novel COLD4TXT conceptual frame-
work to facilitate reusing textual DSLs through systematic
variability and customizability. In COLD4TXT, language fam-
ilies capture txtDSL variability as feature models and realize
it via composition of language components according to
their interfaces. Composing language components yields new
language components that may demand further extension or
customization before these can be translated into complete
DSLs for specific contexts. Making the interfaces of language
components explicit enables reusing these in different lan-
guage families. This facilitates engineering textual DSLs for
different contexts and fosters the application of DSLs.

REFERENCES

[1] M. Voelter, B. Kolb, K. Birken, F. Tomassetti, P. Alff, L. Wiart,
A. Wortmann, and A. Nordmann, “Using language workbenches and
domain-specific languages for safety-critical software development,”
Software & Systems Modeling, pp. 1–24, 2018.

[2] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
Industry Needs from Architectural Languages: A Survey,” IEEE Trans-
actions on Software Engineering, vol. 39, no. 6, pp. 869–891, 2013.

[3] I. Kurtev, J. Bézivin, and M. Aksit, “Technological spaces: An initial
appraisal,” CoopIS, DOA, vol. 2002, 2002.

[4] K. Hölldobler, B. Rumpe, and A. Wortmann, “Software Language En-
gineering in the Large: Towards Composing and Deriving Languages,”
Computer Languages, Systems & Structures, vol. 54, pp. 386–405, 2018.

[5] J. Whittle, J. Hutchinson, and M. Rouncefield, “The State of Practice in
Model-Driven Engineering,” Software, IEEE, vol. 31, no. 3, pp. 79–85,
2014.

[6] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Modeling,
vol. 5, no. 4, pp. 369–385, 2006.

[7] E. Vacchi and W. Cazzola, “Neverlang: A framework for feature-oriented
language development,” Computer Languages, Systems & Structures,
vol. 43, pp. 1–40, 2015.

[8] G. H. Wachsmuth, G. D. P. Konat, and E. Visser, “Language Design
with the Spoofax Language Workbench,” IEEE Software, vol. 31, no. 5,
pp. 35–43, 2014.

[9] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry, “Sup-
porting efficient and advanced omniscient debugging for xDSMLs,” in
Proceedings of the 2015 ACM SIGPLAN International Conference on
Software Language Engineering. ACM, 2015, pp. 137–148.

[10] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann,
“Modeling Language Variability with Reusable Language Components,”
in International Conference on Systems and Software Product Line
(SPLC’18). ACM, 9 2018.

[11] K. Hölldobler and B. Rumpe, MontiCore 5 Language
Workbench Edition 2017, ser. Aachener Informatik-Berichte,
Software Engineering, Band 32. Shaker Verlag, Decem-
ber 2017. [Online]. Available: http://www.se-rwth.de/phdtheses/
MontiCore-5-Language-Workbench-Edition-2017.pdf

[12] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel,
“Safe model polymorphism for flexible modeling,” Computer Lan-
guages, Systems & Structures, vol. 49, pp. 176–195, 2017.

[13] J. de Lara and E. Guerra, “Generic Meta-modelling with Concepts,
Templates and Mixin Layers,” in Model Driven Engineering Languages
and Systems, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 16–30.

[14] T. Kühn, W. Cazzola, and D. M. Olivares, “Choosy and picky: configura-
tion of language product lines,” in Proceedings of the 19th International
Conference on Software Product Line. ACM, 2015, pp. 71–80.

[15] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann,
“Systematic composition of independent language features,” Journal of
Systems and Software, vol. 152, pp. 50–69, 2019.

[16] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, 2012.

[17] M. Broy and K. Stølen, Specification and development of interactive
systems: focus on streams, interfaces, and refinement. Springer Science
& Business Media, 2012.

[18] K. Adam, K. Hölldobler, B. Rumpe, and A. Wortmann, “Modeling
Robotics Software Architectures with Modular Model Transformations,”
Journal of Software Engineering for Robotics (JOSER), vol. 8, no. 1,
pp. 3–16, 2017.

[19] T. Clark, M. v. d. Brand, B. Combemale, and B. Rumpe, “Conceptual
Model of the Globalization for Domain-Specific Languages,” in Glob-
alizing Domain-Specific Languages, ser. LNCS 9400. Springer, 2015,
pp. 7–20.

[20] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse,
W. Cazzola, P. Collet, T. Degueule, R. Heinrich, J.-M. Jézéquel,
M. Leduc, T. Mayerhofer, S. Mosser, M. Schöttle, M. Strittmatter,
and A. Wortmann, “Concern-oriented language development (COLD):
Fostering reuse in language engineering,” Computer Languages, Systems
& Structures, vol. 54, pp. 139–155, 2018.

[21] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth, {DSL} Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org,
2013. [Online]. Available: http://www.dslbook.org

[22] J. Liebig, R. Daniel, and S. Apel, “Feature-oriented language families:
a case study,” in VaMoS, 2013.

[23] C. Huang, A. Osaka, Y. Kamei, and N. Ubayashi, “Automated DSL
construction based on software product lines,” in 2015 3rd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD). IEEE, 2015, pp. 1–8.

[24] S. Erdweg, T. Van Der Storm, M. Völter, L. Tratt, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, and Others,
“Evaluating and comparing language workbenches: Existing results and
benchmarks for the future,” Computer Languages, Systems & Structures,
vol. 44, pp. 24–47, 2015.

[25] T. Kaminski, L. Kramer, T. Carlson, and E. Van Wyk, “Reliable and
automatic composition of language extensions to C: the ableC exten-
sible language framework,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, p. 98, 2017.

73Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 88 / 241

An Intermediate Model for Code Generation from the Two-Hemisphere Model

Konstantins Gusarovs, Oksana Nikiforova

Department of Applied Computer Science

Riga Technical University

Riga, Latvia

email:{konstantins.gusarovs, oksana.nikiforova}@rtu.lv

Abstract—Nowadays, models are widely used in software

engineering. By using different types of models, it is possible to

present business requirements, system architecture, test

strategies, etc. It is also possible to use models as an input to an

automated or semi-automated method that will produce other

types of artifacts – other models, statistics, or even software

code specified in a programming language. The authors of the

present paper work in the area of Model-Driven Software

Development (MDSD) by constantly improving the so-called

two-hemisphere model that can be used for system modelling

and later transformed into several types of artifacts, including

Unified Modelling Language diagrams. The goal of the paper

is to define an intermediate representation (or model) that can

be used for code generation. The present research is the

extended and expanded version of the authors’ previous work.

Keywords - two-hemisphere model; model transformation;

code generation; model-driven software development.

I. INTRODUCTION

Model-Driven Software Development (MDSD) is one of
the advanced approaches to the software development
process that is still being developed and adopted by several
researchers and enterprises. It seems that nowadays it is
possible to distinguish two main groups of MDSD users:
those treating models as an analytical tool that can help in
better understanding of a problem domain, requirements, etc.
[1], as well as those who see models as a high level
executable ones that can be further used to produce a
programming language code on a target platform [1]. This
task can be achieved by using model transformation and
code generation techniques, which can be done in an
automatic [2] or a semi-automatic way.

The authors of the current paper also treat models as a
source for producing the software definition in a chosen
programming language and for a chosen platform. While
several researchers undertake their efforts to produce a
software code from the Unified Modelling Language (UML)
[3] defined diagrams (for example, [2][4][5]), the current
research is based on another approach to code generation,
which is called the two-hemisphere model that has been
developed by the authors [6]-[8].

The role of models in Software Development is still
unclear, and it can be explained by the fact that MDSD is
still at high level of vision [9], and while UML is de-facto
industry standard [5], it can be hard for a business analyst,
who is not a software engineer, to develop a set of UML

diagrams. Even more, most UML diagrams describe the
architecture of the system that conforms to object-oriented
principles. As an example, the UML class diagram defines a
set of classes that form the system, and the UML sequence
diagram defines how use cases can be implemented using
this set of classes, while the UML communication diagram
defines relations between classes from a communication
perspective – how classes (or their instances) interact with
each other, and what information is passed, etc. It is possible
to see that this set of diagrams used as a system analysis
model basically corresponds to the core elements of code
written in object-oriented programming language.

Nowadays, it is possible to find multiple tools that can be
used to transform the system analysis model into the code.
The main condition for code generation is that the model
should contain both aspects of the system (i.e., static and
dynamic), and both should be supported in code generation.
Despite several limitations in code generation, which are
mainly limitations of the tools rather than the transformation
abilities [10], a lot of studies performed since 1980s
demonstrate different sets of transformation rules for code
generation from UML and mention exactly the dynamic
aspect as the primary problem in code generation [11].
Therefore, the authors indicate that by creating a set of UML
diagrams, one basically carries out the coding work. In
addition, one also has to overcome the difficulties caused by
UML usage. As the two-hemisphere model provides an
ability to generate UML diagrams, which is enough for code
generation, the authors of the paper assume that the two-
hemisphere model already contains all the necessary
information to get all the required constructions specified in
the programming language. That is why in the present
research the authors move further away from complex
models specified in UML and use their own model. The
research also attempts not to focus on the static aspects of the
system, i.e., data structures and domain models, but rather on
defining the dynamic capabilities of the system by the so-
called intermediate model, which, in general, is like the
adoption of the two-hemisphere model for the task of code
generation.

The goal of the paper is to define an intermediate artifact
that will serve as a “bridge” between the initial model (two-
hemipshere model) and the target model (source code).
Although UML can be used to cover this area, and there are
the methods to generate UML diagrams from the two-
hemisphere model, the authors would like to mention once

74Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 89 / 241

again that most UML diagrams cover object-oriented
architecture. This raises a need for the intermediate model
that is target-architecture-agnostic and can be used to
describe both static and dynamic aspects of the system. This
model should also serve as a source model for the code
generator, which means, it should cover necessary elements
of the source code.

The paper is structured as follows. Section II gives an
insight into related work. Section III provides a high-level
overview of the two-hemisphere model. Section IV discusses
the target model, which in this case is a code written in some
programming language. Section V describes what is required
to define the data structures for the system being built.
Section VI covers the definitions that can be used for
describing the capabilities of the dynamic system. Section
VII provides examples of various applications of the
proposed intermediate model along with the analysis of the
respective applications. A short demonstration of
intermediate model application is presented in Section VIII.
Finally, Section IX concludes the paper, as well as provides
an insight into the future research to be conducted in this
area.

II. RELATED WORK

Having defined requirements for the intermediate model,
the authors performed an analysis of the existing approaches
to code generation in the MDSD area. Full analysis of the
published articles is an area for a separate research itself;
therefore, in this article the authors provide a brief overview
of related studies.

The first example under consideration is [12]. Its authors
propose an extensible intermediate model for code
generation from UML sequence diagrams. The article
describes metamodel and its possible extensions. The authors
claim that their model can be used with different target
languages; however, such languages must be object-oriented.

Another example is [13], where the author develops an
intermediate model, called Hierarchical Syntax Char (HSC),
which is used for the UML activity diagram conversion to
the source code. Here, the author has chosen the Java
programming language [14] as a target model. The HSC
developed by the author once again recognizes the necessity
for the object-oriented target language.

Authors of [15] also target object-oriented languages in
their research. Even more, the approach described in [15]
also defines the architecture of generated code by listing
specific components of the system to be generated. Again, an
intermediate model is developed to support multiple target
platforms.

It is possible to find more studies in this area; however, it
seems that they mostly aim at improving the code generation
techniques from different types of UML diagrams. For
example, studies [2][4][5] focus on code generation from
UML diagrams, targeting at object-oriented languages. It
should be noted that researchers usually target the object-
oriented languages, which could probably be explained by
the use of UML, since it already defines basic components of
an object-oriented system. This, in turn, leads to limited
coverage of target languages that do not support an object-

oriented paradigm by the existing methods. Examples of
such languages are provided in Section V of this paper. The
authors consider that the current state of code generation
from models is somehow limited to support only one
paradigm, and, therefore, propose the intermediate model
described in the paper.

III. THE TWO-HEMISPHERE MODEL: A HIGH-LEVEL

OVERVIEW

One of the MDSD tasks is transformation from the
source model to the target model. The task itself describes a
need for at least two models – one that is defined in the
beginning and is called the source model. This is an initial
artifact that can be produced, for example, by a business
analyst, while performing a requirement analysis. Another
one is a target model, which can be almost everything,
starting with the set of UML diagrams and ending with the
software code defined in some programming language.

The authors of the present paper define the two-
hemisphere model [6] as a source artifact. The model itself
was first introduced in 2004 with the goal of describing the
business requirements with as minimal set of diagrams as
possible for an object-oriented system analysis. It introduces
an idea of joining both static and dynamic aspects of the
system in the model that consists of two diagram types.
Later, several improvements were introduced to it, enriching
the model and precising its elements in [7] and [8], and
working on the supporting tool in [16]. The notation of the
two-hemisphere model is presented in Figure 1.

Figure 1. Two-Hemispher model notation.

The two-hemisphere model contains two diagrams:

• Concept model (labeled G2) is a set of concepts
or datatypes used throughout the system or a
given use case. Each concept has at least its
name and a set of 0-n attributes. Each attribute
consists of a name and data type, where data
type might be a primitive value, such as a
number, string literal, boolean type, etc., another
concept or array/collection of the
aforementioned. The notation of the concept
model is similar to the one used for Entity-
Relationship (ER) diagram [17], but

75Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 90 / 241

relationships among concepts is not used as far
as they are not meaningful at this level of
abstraction and are generated automatically at
the level of UML class diagram.

• Process model (labeled G1) is based upon the
notation of Data Flow Diagram (DFD) [18] and
is composed of two types of elements –
processes and data flows. Processes show units
of work inside the system. Data flows, in turn,
interconnect processes, both defining the
sequence of process execution and the data each
process receives and produces. Here, data might
be 0-n of the same data types, concept attribute
use. Thus, the data flow might carry no data at
all or a complex set of data. This way both
diagrams are interconnected, i.e., concepts
appear as the data flow content.

It is possible to see that the definition of the two-
hemisphere model does not require specific software
engineering knowledge – basically to create it, one has to
analyze what business processes take place in the system
being built, what data they consume and produce, and in
which order it might be executed. Moreover, the two-
hemisphere model can be obtained directly from the business
domain, where business processes and data flows are
somehow or other structured and supported in the form of
the model specified in the analogical notation for business
issues. Thus, the authors of the paper see this model as a
great candidate for the MDSD source model, since the model
only describes how the system works, rather than how the
system should be built.

After the choice of the source model is performed, it is
necessary to define what type of artifact is targeted. Little
information on the chosen target model is provided in the
next section. This model is nothing else, but the software
code written in the chosen programming language, in other
words, computer program.

IV. COMPUTER PROGRAM: DEFINITION

In order to define the concept of computer program, the
authors would like to mention several definitions from
ISO/IEC 2382:2015 standard [19] and analyze what is
required to transform the source model to it.

First, it is necessary to define what a computer program
is at a glance. In ISO/IEC 2382:2105, it is defined as a
“syntactic unit that conforms to the rules of a particular
programming language and that is composed of declarations
and statements or instructions needed to solve a certain
function, task, or problem”. By analyzing this definition, it is
possible to see that a computer program should consist of the
two main parts:

• Declarations that are used to describe data
structures and variables that are used to solve
the given task.

• Statements or instructions needed for the given
task or problem solution. It is also possible to
further analyze the standard and conclude that
these elements are used to compose the

algorithm – “finite ordered set of well-defined
rules for the solution of a problem”.

By combining and analyzing these definitions and
common knowledge about software engineering, it is
possible to define the target model that consists of the two
main parts:

• Data structure and variable definitions – to
cover the static aspect of the system in
development.

• Sequence of instructions or statements that use
former part to cover the dynamic aspect of the
developed system.

Again, it is possible to see that the chosen source model
already provides an insight into these two aspects with the
concept model being focused on the data structure definition
and the process model describing the dynamic capabilities of
the system, i.e., how data are transformed during the system
operation, and in which order processes are invoked
performing these transformations.

Thus, to transform the two-hemisphere model into the
computer program, it would be necessary to transform every
element (or a set of elements) of it to the appropriate element
(or a set of elements) of the target model and to preserve the
linkage between them based on the specific algorithm
defined by the authors.

V. CONVERTING CONCEPTS TO DATA STRUCTURES

Data structures describe the static aspect of the system
that is being analyzed and built. According to [19], data
structure can be defined as “physical or logical relationship
among units of data and the data themselves”. This definition
can be linked to the concept model of the two-hemisphere
model: by representing data types in form of units of data
and defining the necessary relationship by utilizing already
defined concepts, it is possible to extract all the necessary
information to the form required for code generation.

In order to be programming language-agnostic, it is
necessary to analyze how data structures might be
represented in different programming languages and what
information is shared between these representations.

The first case is object-oriented programming languages
– here, it is possible to define data structure as a class with
appropriate attributes. Each attribute can be described by its
name and data type.

Some programming languages, for example,
ECMAScript [20], are sometimes called object-based. While
the latest ECMAScript standard allows for the definition of
classes, it is also possible to use the so-called prototypes for
the object blueprint definition. Prototype here is an object
that has a set of fields and methods that can be used by all
the other objects that are referencing this prototype. In a way,
this is like the class in stricter object-oriented languages;
however, prototypes usually do not support inheritance. In
case of the static aspect description, a prototype should
contain a set of fields, where each field has a name and data
type.

Next, there are programming languages that are not
object-oriented, for example, C programming language [21],
where data structures are commonly represented with a

76Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 91 / 241

struct syntax construction. Structure in C language can be
viewed as a “weak class” – it is a set of data that consists of
fields that are like class attributes. Each of them has a name
and data type. However, structures in C language do not
have methods (it is possible to reference the function via the
pointer, which is a field of structure; however, it still will be
a field, but not a method).

Other non-object-oriented programming languages, such
as Erlang [22], can have different ways of representing the
data structures. For example, in Erlang it is possible to define
it as a record, which is similar to structure in C language

and consists of fields of given types, or it is also possible to
define it as a tuple, which can be viewed similar to the array.
In case of record, each element has a name and can have a
data type. In case of tuple, a name is omitted and replaced by
an index; a data type, in turn, can be preserved.

Even using low-level assembly languages, it is usually
possible to define the data structures. For example, one of the
modern assemblers – flat assembler [23] – provides a way of
defining the so-called structures consisting of a field, where
each of them has a name and data type definition.

To sum up, it is possible to see that most programming
languages require a data structure to have its own type (or
name) and a set of fields/attributes, each of them having its
own name and data type. Even considering some exclusions,
such as Erlang tuples, where names are not preserved, it is
possible to define an intermediate representation of a data
structure that can be later used to generate a code in different
programming languages.

This intermediate representation is provided in (1). Here,
the data structure definition is described by its name and a
set of attributes, each having its name and data type.
Basically, one can notice that such a representation
corresponds to the concept definition in a concept model of
the two-hemisphere model. Thus, obtaining the data structure
information from the source model is a simple task.

()

Data structure information is the first part of the proposed

intermediate model that can be used for code generation. The
second part is the information that can be used for describing
the behavioral capabilities of the code. Definition of such a
model is provided in the subsequent section.

VI. DEFINITIONS OF SYSTEM BEHAVIOR

System behavior in the two-hemisphere model is
described with the help of the process model that provides
the information on the processes that are executed inside the
analyzed system, the data exchanged by these processes, and
the sequence of execution. In order to convert this
information to the code defined in a programming language,
it is necessary to define a model that is capable of the
programming language code description and can represent
such a code.

One of the ways to represent the target model, i.e.,
programming language syntax constructions, is to use
Abstract Syntax Tree (AST) [24]. This approach is widely
used in the compilers, which translate textual representation
of the code into ASTs and then build the machine instruction
set out of them. Thus, AST is one of the possible
intermediate models that can be used for code generation.

As mentioned above, AST is used to generate the
machine instruction set that, in turn, can be represented in a
way of the so-called Assembly Language [25], which is
human readable representation of the machine instructions.
Obviously, it is possible to use a similar approach when
defining the dynamic part of the intermediate code
representation. However, assembly languages for the modern
processors can contain a lot of instructions, for example,
x86-64 instruction set consists of ~1000 instructions [26],
which would make the intermediate model complex to define
correctly, while easy to transform to the appropriate code.

Yet another option to analyze is to look at cross-platform
languages, such as Java [14] and .NET [27]. These languages
are compiled into the so-called bytecode that can be defined
as a “lightweight assembly”. Bytecode provides an
alternative to more complex assembly languages by defining
a reduced instruction set, for example, Java Virtual Machine
(JVM) bytecode consists of ~200 instructions [28].

It is possible to use these representations to define the
logic encapsulated in the process model and describe the
dynamic aspect of the system under analysis. Though, at
first, the use of AST seems to be a correct approach, the
authors would like to note that ASTs usually define the
syntax of a particular language. Therefore, AST defined for
the Java language [14] will probably not be suitable for
language such as Erlang [22], since the syntaxes of two are
different. However, it might be used for code generation in
JavaScript [20] or C [21].

Thus, the authors propose defining the intermediate
model by using ideas that define the bytecode – use a
reduced set of instructions in order to accomplish the task. It
is necessary to define such instructions in a way that they can
be used to cover the maximum number of possible target
languages.

For this purpose, it is necessary to analyze the two-
hemisphere model once again. It is possible to see that the
dynamic aspect of the system under analysis is described by
processes, each of which might accept and produce data
flows. Data flows, in turn, can carry data in form of concepts
or primitives. Therefore, the main logical element here is
process. Processes can be turned into methods, functions,
predicates, etc., depending on the chosen target language.
Common characteristic of these targets is that they can have
inputs and outputs, which correlate well with the process
consuming and producing data flows.

Therefore, it is possible to define an intermediate
representation of the process: it should have an identifier (it,
for example, can be a name), a set of consumed data, which
can be empty, and a set of produced data, which can also be
empty. Transformation to such representation from the target
model is straightforward – it is necessary to use the process
name and collect all the possible data elements from the

77Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 92 / 241

incoming and outgoing data flows to define the
representation shown in (2).

()

In this representation, each process is transformed into a

three-element tuple that consists of name, inputs and outputs.
Both inputs and outputs are defined as sets of name-type
tuples, where a name is a logical name of the input/output,
i.e., parameter name, and a type is a data structure, primitive
or array/collection of former types mixed in any way.

Such a representation allows for a wide range of possible
target languages – it does not define whether the target
language element is a class method or a free function, or any
other kind of data processing primitive. It does not enforce a
way on how parameters are passed – there are languages, for
example, C# [27] or Python [29] that can allow returning
multiple data structures from the function/method.
Otherwise, it is possible to combine the outputs into a special
data structure to guarantee a single returned item.

The authors propose calling this representation a “logical
unit”, since it corresponds to a single process being executed
inside a system; however, its target representation may vary.

In order to define the interaction between the logical
units, it is necessary to analyze what might happen inside the
system and how processes might interact with each other.

The simplest case is sequential invocation of processes,
which takes the data produced by the first processes and
passes it to the next one in the logical chain. To cover this
case, it is necessary to define storage units for data process
exchange – when doing further transformation, these
definitions can become local or global variables, virtual or
physical machine registers, etc. It is also necessary to be able
to invoke any logical unit by passing its parameters to it and
storing its result.

Next case is branching – branching in programming
languages can be represented by various syntax
constructions, starting with if..else, switch and ending

with loops that, in turn, may contain premature exit
conditions. It is also necessary to note that loops can be
defined in several ways – a loop may have its condition
checked before the next iteration execution, or after it.
Despite different ways of branching, it is possible to analyze
lower-level languages, such as assembly language [25], and
different byte code implementations (for example, JVM [28]
bytecode and .NET [27] intermediate language) to see that it
should be possible to implement the necessary branching
support by using several definitions. It should be possible to
define labels, which can mark different states (or points) in
the execution flows and instructions that would allow
passing the control to these labels, i.e., branching
instructions. Branching, in turn, can be conditional and non-
conditional. In the first case, when the execution flow
reaches an appropriate instruction, the so-called jump is
performed to the appropriate label, which means a change in

the next executed instruction. Conditional branching requires
first performing the condition check and then, depending on
the result of this check, performing or not performing the
“jump”.

By analyzing the possible logical unit execution flows,
one can see that these two cases are enough to cover all the
possible process execution sequences in the initial model.
Thus, it is possible to define additional elements that are
described further to be generated for the intermediate model.

First of these elements is label definition instruction. It is
shown in (3). Here, the label is defined by its name, which
can be any kind of symbolic identifier – numeric or textual.

Label<Name> ()

Next elements are branching instructions that are used

with the labels. The first branching instruction is non-
conditional branching that is shown in (4).

Jump<Label> ()

Non-conditional jump transfers the execution to the label

defined in it, so it can be defined by a jump instruction
followed by a label to be “jumped” to.

Next two instructions are conditional branching
instructions, and they are presented in (5). Both instructions
are similar, with only difference in the situation when
branching should happen – when the condition is met or is
not met.

JumpIf<Var, Label>

JumpIfNot<Var, Label> ()

These instructions require the boolean type variable to be

checked. This variable is defined via its name, which will be
discussed later. Otherwise, both instructions contain labels to
be “jumped” to, depending on the value of this variable.

It is possible to see that conditions here are not the part of
the branching instruction; instead branching instructions use
variables that contain the result of the condition check. This
means the necessity for the condition checking instruction,
which is given in (6).

Check<Var, Condition> ()

This instruction has two parameters – a variable to store

the condition check result and the condition to be checked.
Here, the condition is a free-text phrase or a sentence.

It is possible to see that condition checking requires a
variable to store the result, which later will be used by a
conditional branching instruction. Therefore, it is necessary
to be able to define the variable, which is supported by
variable definition instruction presented in (7).

Var<Name, Type> ()

This instruction has two arguments – the name of

variable and its type, which is the same as for data structures.

78Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 93 / 241

Last necessary instruction is the process invocation
instruction. It is presented in (8).

Invoke<Process, Inputs, Outputs> ()

Here, the instruction has three parameters defined in it –

the name of the process to be executed, its inputs, which are
an array of appropriate variable names, and its outputs
defined in the same way.

As it will be shown in the next section, these instructions
are enough to define all the types of branching and possible
execution flows, at least in the context of code generation
from the two-hemisphere model.

VII. EXAMPLES OF THE PROPOSED MODEL APPLICATIONS

In order to prove that the developed model is feasible and
can be used for code generation, the authors propose
analyzing several examples of its application.

The first example is sequential invocation of processes.
In case of the Java [14] programming language, such a code
can be written in a form shown in Figure 2.

Figure 2. Sequential process invocation in Java.

Here, method f1 is invoked with arguments a and b, its
invocation result is stored in variable c, and then used to

invoke method f2. It is possible to define such an invocation

sequence in the proposed intermediate model notation,
which, in turn, is shown in Figure 3.

Figure 3. Sequential process invocation in the proposed model.

One can realize that the proposed model corresponds to
the Java code, and it is possible to perform transformations
from one to another.

Next example is presented in Figure 4. Here, several
branching definitions are given – first, there is simple
branching with only single condition check, which defines if
method f1 should be executed. Next, there is more complex

if..else branching, and finally – branching using switch.
The same branching instructions are presented in Figure

5. Again, by studying both representations, it is possible to
see their equality and ability to transform from one to
another.

Figure 4. Branching in Java.

Figure 5. Branching in the intermediate model.

if (a == b) {

 f1();

}

if (c < d) {

 f2();

} else if (c == d) {

 f3();

} else {

 f4();

}

switch (e) {

 case 1:

 f5();

 break;

 case 2:

 f6();

 break;

 default:

 f7();

}

Check<Cond1, "a == b">

JumpIfNot<Cond1, L1>

Invoke<f1, [], []>

Label<L1>

Check<Cond2, "c < d">

Check<Cond3, "c == d">

JumpIfNot<Cond2, L2>

Invoke<f2, [], []>

Jump<L4>

Label<L2>

JumpIfNot<Cond3, L3>

Invoke<f3, [], []>

Jump<L4>

Label<L3>

Invoke<f4, [], []>

Label<L4>

Check<Cond4, "e == 1">

JumpIfNot<Cond4, L5>

Invoke<f5, [], []>

Jump<L7>

Label<L5>

Check<Cond5, "e == 2">

JumpIfNot<Cond5, L6>

Jump<L7>

Invoke<f6, [], []>

Label<L6>

Invoke<f7, [], []>

Label<L7>

Invoke<f1, [a, b], [c]>

Invoke<f2, [c], [d]>

c = f1(a, b);

d = f2(c);

79Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 94 / 241

Last situation to be covered by the proposed intermediate
model is loops in the code. To show that these cases can also
be covered, the authors propose considering the Java code
provided in Figure 6. The appropriate intermediate model
representation is given in Figure 7.

Here, three types of loops are presented. The first loop is
for loop, which repeats for a given amount of time. This is

controlled via a local loop variable i. The second loop is a
loop with precondition, while the last one is a loop with post-
condition. The second loop also involves possible premature
exit via checking local variable c value.

It is possible once again to see that all the necessary cases
are covered by the intermediate model with a single
exception of incrementing the loop variable value in case of
the loop with fixed iteration count. This, however, can be
improved by adding additional instructions to the model. It is
also worth noting that the two-hemisphere model notation
does not allow defining such loops now, so this case is not
covered fully.

Figure 6. Loops in Java.

It is possible to see that the proposed intermediate model
allows covering all the possible cases that might be
encountered in the initial model, as well as presents a solid
way to enable code generation in various programming
languages.

VIII. AN EXAMPLE OF THE PROPOSED MODEL

APPLICATION

In order to demonstrate how the proposed model can be
used in conjunction with the two-hemisphere model, the
authors refer to the diagram first presented in [30]. Due to
the fact that the research described here is still underway, the
authors do not present a full system. Instead, the authors
demonstrate only part of it that was used to evaluate the
approach. As in the original work, only a process diagram is
analyzed here. It is presented in Figure 8.

Figure 7. Loops in the intermediate model.

Figure 8. Example of the two-hemisphere model.

Here, the model describes a booking process in the hotel
that starts with receiving a booking request with room
preference details. After that there are two options: either
room that fits the request is found or not (for example, due to
the fact that rooms do not meet the criteria, or non-
availability of the rooms in the given dates). If no room is
found, a user is advised to revise the information and submit
a new request. At this point, a user can also cancel the
booking. If a room is found and request can be served, a user
is asked to provide additional information, which is used to
create the booking and store it in the database. Here, all

Label<L1>

Check<Cond1, "i < 5">

JumpIfNot<Cond1, L2>

Invoke<f1, [], []>

Jump<L1>

Label<L2>

Label<L3>

Check<Cond2, "a < b">

JumpIfNot<Cond2, L4>

Check<Cond3, "c > 0">

JumpIf<Cond3, L4>

Invoke<f2, [], []>

Jump<L3>

Label<L4>

Label<L5>

Invoke<f3, [], []>

Check<Cond4, "e > 1">

JumpIfNot<Cond4, L6>

Jump<L5>

Label<L6>

for (int i = 1; i < 5; i++) {

 f1();

}

while (a < b) {

 if (c > 0) {

 break;

 }

 f2();

}

do {

 f3();

} (while e > 1);

80Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 95 / 241

elements are marked with identifiers – processes are marked
P1…P8, dataflows – D1…D8. These identifiers are later
used in the intermediate model that is presented in Figure 9.
Here, it is possible to see how the intermediate model would
look after transformation of the initial process model. It is
also possible to see that additional information is required to
produce it – such as conditions for branching.

Figure 9. Example of the intermediate model.

It is also possible to trace the intermediate model back to
the initial one and see that processes are invoked in the same
sequence as defined by the initial business process analysis.
This task could also be automated – it is possible to create a
graph of all the possible branching and compare it with the
initial model in order to check, if the defined process
invocation sequence is preserved. Such a graph definition
would allow verifying the correctness of the generated
model. However, the algorithm to define such a verification
graph is out of scope of this paper. However, it should be
noted that it has already been developed and currently is
under testing.

IX. CONCLUSIONS AND FUTURE WORK

Previous research conducted by the authors on the use of
the two-hemisphere model for generation of different types
of UML diagrams, such as use case, sequence,
communication, state or class diagrams, has demonstrated
that the two-hemisphere model contains quite enough
information to obtain the static elements of the system
analysis model, as well as dynamic ones. The received UML
model, according to the main statement of MDSD, provides
an ability to generate a code as well. So far, as we have a
transformation chain: the two-hemisphere model → UML

diagrams → code, the authors can assume that the direct
transformation, i.e., the two-hemisphere model → code is
also feasible. In this paper, the authors have presented the
intermediate model that can be used to enable direct code
generation from the two-hemisphere model. The proposed
model allows for code generation in different programming
languages – object-oriented, object-based, procedural, etc.

While this paper describes how the model should look
like and what artifacts it consists of, it is also necessary to
define algorithms for transformation of the initial model to
the intermediate one. This is the first part of future work. It
might also be necessary to enrich the model itself to cover
more cases, as well as develop algorithms for transforming
this model into an actual code. This is also part of future
research in this area.

Since the intermediate model described here is still being
developed and the research about its definition and
application is still being carried out, the authors define the
evaluation of the proposed approach and additional
validation of the achieved results as another part of future
work. The goal is to test this model with a completely
developed system and identify the possible gaps and
improvement areas.

So far, the goal has been to develop the intermediate
model as a basis for code generation. The proposed model
covers both static and dynamic aspects of the system and
should be compatible not only with the two-hemisphere
model, but also with other types of the source model, since
the model itself is simple enough to be generated from any
type of initial data. The authors also consider the proposed
model to be useful for code generation in different
programming languages, since it does not enforce any
paradigm to be applied and can be used to generate data
structures and invocation flows of different types.

REFERENCES

[1] B. Perisic, “Model Driven Software Development – State of
the Art and Perspectives”, Invited Paper, INFOTEH 2014,
Proceedings Vol. 13, pp. 1237-1248, 2014.

[2] F. Daniel and M. Matera, “Model-Driven Software
Development,” in Mashups. Data Centric Systems and
Applications, 1st ed., Berlin: Springer-Verlag Berlin
Heidelberg, pp. 71-93, 2014.

[3] OMG® Unified Modeling Language® (OMG UML®), OMG
[Online]. Available: https://www.omg.org/spec/UML/
[retrieved: September, 2019]

[4] M. K. Shiferaw and A. K. Jena, “Code Generator for Model-
Driven Software Development Using UML Models” 2018
Second International Conference on Electronics,
Communication and Aerospace Technology (ICECA), pp.
1671-1678, 2018.

[5] H. D. Gurad and V. S. Mahalle, “An Approach to Code
Generation from UML Diagrams”, IJESRT - International
Journal of Engineering Sciences & Research Technology, pp.
421-423, 2014.

[6] O. Nikiforova and M. Kirikova, “Two-hemisphere model
Driven Approach: Engineering Based Software
Development”, Scientific Proceedings of CAiSE 2004 (the
16th International Conference on Advanced Information
Systems Engineering), pp. 219-233, 2004.

[7] O. Nikiforova, “Two Hemisphere Model Driven Approach for
Generation of UML Class Diagram in the Context of MDA”,

Invoke<P1, [], [D1]>

Label<L1>

Invoke<P2, [D1, D7], [D2, D5]>

Check<Rejected,

"booking is rejected">

JumpIfNot<Rejected, L2>

Invoke<P4, [D5], [D6]>

Invoke<P5, [D6], [D7, D8]>

Check<Canceled, "User canceled">

JumpIf<Canceled, L3>

Jump<L1>

Label<L2>

Invoke<P3, [D2], [D3]>

Invoke<P6, [D3], [D4]>

Invoke<P7, [D4], []>

Jump<L4>

Label<L3>

Invoke<P8, [D8], []>

Label<L4>

81Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 96 / 241

e-Informatica Software Engineering Journal - Volume 3, Issue
1, pp. 59-72, 2009.

[8] O. Nikiforova, “System Modeling in UML with Two-
Hemisphere Model Driven Approach”, Proceedings of The
50th Scientific Conference of Riga Technical University,
Computer Science, Applied Computer Systems, pp. 37-44,
2010

[9] A. Noureen, A. Amjad, and F. Azam, “Model Driven
Architecture - Issues, Challenges and Future Directions,”
JSW, vol. 11, No. 9, pp. 924-933, 2016.

[10] J. Sejans and O. Nikiforova, “Practical Experiments with
Code Generation from the UML Class Diagram”, Proceedings
of MDA&MDSD 2011, 3rd International Workshop on
Model Driven Architecture and Modeling Driven Software
Development In conjunction with the 6th International
Conference on Evaluation of Novel Approaches to Software
Engineering, pp. 57-67, 2011.

[11] O. Nikiforova, “Object Interaction as a Central Component of
Object-Oriented System Analysis”, Proceedings of the 2nd
International Workshop „Model Driven Architecture and
Modeling Theory Driven Development” (MDA&MTDD
2010), pp. 3-12, 2010.

[12] E. B. Omar, B. Brahim, and G. Taoufiq, “Automatic code
generation by model transformation from sequence diagram
of system’s internal behavior”, International Journal of
Computer and Information Technology Vol. 01 Issue 02, pp.
129-146, 2012.

[13] Z. Wang, “A JAVA Code Generation Method based on
XUML”, IOP Conference Series: Materials Science and
Engineering, pp 1-8, 2019.

[14] Java | Oracle [Online]. Available: https://java.com/ [retrieved:
September, 2019]

[15] A. Lasbahani, M. Chhiba, and A. Tabyaoui, “A UML Profile
for Security and Code Generation”, International Journal of
Electrical and Computer Engineering (IJECE), pp 5278-5291,
2018.

[16] O. Nikiforova, U. Sukovskis, and K. Gusarovs, “Application
of the Two-Hemisphere Model Supported by BrainTool:
Football Game Simulation”, Proceedings of the 4th
Symposium on Computer Languages, Implementations and
Tools, organized within the International Conference of
Numerical Analysis and Applied Mathematics (ICNAAM
2014), pp. 1-4, 2014

[17] P. Chen, “The Entity-Relationship Model - Toward a Unified
View of Data”, ACM Transactions on Database Systems, pp.
9-36, 1976.

[18] W. Stevens, G. Myers, and L. Constantine, "Structured
Design". IBM Systems Journal. 1974, vol.13, no.2, pp.115-
139, 1974.

[19] ISO/IEC 2382:2015 Information technology -- Vocabulary.
[Online]. Available from:
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en
[retrieved: September, 2019]

[20] Standard ECMA-262 [Online]. Available: https://www.ecma-
international.org/publications/standards/Ecma-262.htm
[retrieved: September, 2019]

[21] D. M. Ritchie and B. W. Kernighan, The C Programming
Language, Second Edition. - USA: Prentice Hall, 1988.

[22] Erlang Programming Language [Online]. Available:
https://www.erlang.org/ [retrieved: September, 2019]

[23] flat assembler [Online]. Available: https://flatassembler.net/
[retrieved: September, 2019]

[24] D. Grune and C.J.H Jacobs, Parsing Techniques – a Practical
Guide. - USA: Prentice Hall, 1988.

[25] D. Salomon, Assemblers and Loaders. - USA: Prentice Hall,
1993.

[26] Intel® 64 and IA-32 Architectures Software Developer
Manuals | Intel® Software [Online]. Available:
https://software.intel.com/en-us/articles/intel-sdm [retrieved:
September, 2019]

[27] .NET | Free. Cross-platform. Open Source. [Online].
Available: https://www.microsoft.com/net/ [retrieved:
September, 2019]

[28] The Java® Virtual Machine Specification [Online].
Available:
https://docs.oracle.com/javase/specs/jvms/se12/html/index.ht
ml [retrieved: September, 2019]

[29] Welcome to Python.org [Online]. Available:
https://www.python.org/ [retrieved: September, 2019]

[30] K. Gusarovs and O. Nikiforova, “Workflow Generation from
the Two-Hemisphere Model”, Applied Computer Systems,
Vol.22, pp. 36-46, 2017.

82Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 97 / 241

Augmenting Fiat Currency with an Integrated
Managed Cryptocurrency

Peter Mell
National Institute of Standards and Technology

Gaithersburg MD, USA
peter.mell@nist.gov

Abstract—In this work, we investigate how the governance
features of a managed currency (e.g., a fiat currency) can be
built into a cryptocurrency in order to leverage potential benefits
found in the use of blockchain technology and smart contracts.
The resulting managed cryptocurrency can increase transparency
and integrity, while potentially enabling the emergence of novel
monetary instruments. It has similarities to cash in that it
enables the general public to immediately transfer funds to a
recipient without intermediary systems being involved. However,
our system is account-based, unlike circulating bank notes that
are self-contained. Our design would allow one to satisfy know
your customer laws and be subject to law enforcement actions
following legal due process (e.g., account freezing and fund
seizure), while mitigating counterparty risk with checks and
balances. Funds can thus be transferred only between approved
and authenticated users. Our system has on-chain governance
capabilities using smart contracts deployed on a dedicated,
permissioned blockchain that has different sets of control mech-
anisms for who can read data, write data, and publish blocks.
To enable the governance features, only authorized identity
proofed entities can submit transactions. To enable privacy, only
the block publishers can read the blockchain; the publishers
maintain dedicated nodes that provide access controlled partial
visibility of the blockchain data. Being permissioned, we can
use a simple consensus protocol with no transaction fees. A
separate security layer prevents denial of service and a balance
of power mechanism prevents any small group of entities from
having undue control. While permissioned, we ensure that no one
entity controls the blockchain data or block publishing capability
through a voting system with publicly visible election outcomes.

Index Terms—Blockchain, Cryptocurrency, Digital Cash, Fiat
Currency, Smart Contract

I. INTRODUCTION

Bitcoin is a protocol for a permissionless distributed ledger
that was designed to provide non-reversible transactions with
direct account-to-account fund transfers where no third party
needs to be trusted [1]. It leveraged blockchain technology
to enable a form of non-sovereign digital currency that was
previously not possible. It and subsequent cryptocurrencies
introduced smart contracts and new kinds of decentralized
governance models that have significant organizational and
political implications (e.g., having no relationship with any
government). With respect to these systems, [2] points out
that cryptocurrencies can enable users to remain anonymous,
can have permissionless access, and thus usually do not sup-
port know your customer (KYC) and anti-money laundering
(AML) laws at the protocol level by design. In this work, we

investigate how to leverage some of the novel benefits provided
by blockchain technology and smart contracts to enable a new
form of managed cryptocurrency that has built-in support for
KYC and AML laws with system governance mechanisms
along with a balance of power structure. Note that we are not
suggesting that such a cryptocurrency should necessarily be
issued, as that decision involves policy and economic factors
outside of the scope of this work. Instead, we are proposing
a technical architecture that could lead towards the technical
ability to do so.

We investigate how the governance features of a managed
currency (e.g., a fiat currency) can be built into a cryptocur-
rency in order to leverage potential benefits found in the use
of blockchain technology and smart contracts. It is designed to
be compatible with and augment a partner managed currency,
the users being able to freely exchange one for the other. The
resulting managed cryptocurrency can increase transparency
and integrity, while potentially enabling the emergence of
novel monetary instruments. It has similarities to cash in that
it enables the general public to immediately transfer funds to
a recipient without intermediary systems being involved and
the associated counterparty risks (a single transaction to the
system transfers funds). This is accomplished through a dis-
tributed multi-party managed cryptocurrency system providing
guarantees similar to Bitcoin style cryptocurrencies. However
unlike circulating bank notes, our system is account-based and
all recipients are identity proofed and authorized. Our design
thus supports the satisfaction of KYC and AML laws at the
protocol level. Entities distinct from the platform and currency
managers can register as identity providers, ensuring fund
transfers only to identity proofed and authenticated recipients
while maintaining openness to the private sector and com-
petition. Accounts would also be subject to law enforcement
actions following legal due process to include the freezing of
accounts and fund seizure.

Our system has on-chain governance capabilities us-
ing smart contracts deployed on a dedicated, permissioned
blockchain that has different sets of control mechanisms for
who can read data, write data, and publish blocks. To enable
the cryptocurrency to have built-in governance roles along with
KYC/AML checks, only authorized identity proofed entities
can submit transactions. To support user privacy features, only
the miners (referred to henceforth as validators) can read

83Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 98 / 241

the blockchain. Validators then maintain dedicated nodes that
provide access controlled partial visibility of blockchain data
to users (e.g., their account balance, transaction history, and
system management transactions). Being permissioned, we can
use a lightweight consensus protocol. The protocol could be
as simple as the dirty round robin used in Multichain [3]. The
use of a security layer that prevents denial of service attacks
(which works since all accounts must be pre-authorized and
can easily be filtered) can enable a no transaction fee system
where the validators are paid by the currency issuer to maintain
the currency. Lastly, the architecture contains a balance of
power mechanism to prevent any small group of entities from
having undue control over the blockchain data or publication
of new blocks. While it is a permissioned system, there is not
a single entity that decides which accounts can publish blocks.
Instead, the existing group of validators vote to determine
changes to validator eligibility, with the outcomes being made
publicly visible. No one entity controls the blockchain data or
block publishing capability.

We implemented our architecture using smart contracts
written with the Solidity programming language and made
the code open source under a public domain license. It has
functions for fund tracking, fiat-to-cryptocurrency fund conver-
sion, transaction logging, account creation, voting scenarios,
a bootstrapping mode, role assignment, and the ability of
accounts to take special actions given their roles (e.g., law
enforcement account freezing and central bank fund creation).
A set of initial parameters are used to bootstrap the initial
governance options but afterwards a voting system is used for
multiple accounts with various roles to collectively manage
different aspects of the cryptocurrency.

Research economists seem divided about the effectiveness
of central bank issued cryptocurrencies. Some, like in [4],
point out the potential economic viability of such assets.
Others are more critical: [2] for instance states that there is
a ‘non-case’ for a central bank cryptocurrency; their rationale
for this was based on perceived immutable features of cryp-
tocurrencies that would make them useless as alternatives to
digital currency. In this work, we want to show that these fea-
tures, considered immutable, can be altered through changing
technical fundamentals about how a cryptocurrency blockchain
works; this could enable sovereign cryptocurrencies with fiat
currency style governance. Non-sovereign cryptocurrencies
started the discussion on how to use blockchain to make
the global financial system more stable and distributed; we
hope that our work on sovereign cryptocurrencies will further
facilitate that discussion.

The remainder of this paper is organized as follows. Section
II discusses the foundational technology that underlies the
design of our cryptocurrency platform. Section III presents
our cryptocurrency architecture while section IV explains the
account roles within that architecture. Section V discusses how
to instantiate our cryptocurrency to integrate it with a fiat cur-
rency. Section VI analyzes the security model of our approach
and Section VII discusses our implementation. Section VIII
summarizes related efforts and section IX concludes.

II. FOUNDATIONAL TECHNOLOGY

Our managed cryptocurrency leverages existing approaches
and borrows concepts from other technologies. This includes
the cryptocurrency role system, on-chain governance of valida-
tor nodes, on-chain voting, and the decoupling of the validation
and execution of transactions.

Our managed currency relies upon each cryptocurrency
account being assigned a set of roles; these roles enable
the management and use of the currency. Assigning roles to
cryptocurrency accounts was initially introduced in [5].

On-chain governance is used to manage the set of validators
through the assignment of ‘validator’ roles to accounts, those
allowed to participate in a consensus algorithm to publish
blocks. This concept of on-chain validator governance can
be found in the Proof of Authority (PoA) consensus model.
Here, block creation is distributed among different allowed
nodes over time while offering Byzantine fault tolerance. PoA
with smart contract based validator governance is implemented
in the Ethereum client Parity (through the Aura consensus
algorithm [6]) and by POA Network [7]. Another example of
a PoA implementation can be found in the Microsoft Azure
Blockchain system [8].

To manage the set of validators as well as other system
functions, our managed cryptocurrency smart contracts must
implement voting mechanisms which add or remove roles,
as well as to approve or disapprove system security actions
such as fund transfer reversals. Various standards and projects
provide blockchain technology for decentralized voting [9];
the Ethereum standard EIP-1202 [10] offers for example an
interface for implementing voting within smart contracts. As
another example, the open-source project Aragon [11], built
on Ethereum, allows token holders to cast a vote on protocol
upgrades by signing a specific transaction. The Delegated
Proof of Stake (DPoS) consensus algorithm, used for instance
in BitShares [12], is another illustration of an on-chain voting
structure. In BitShares, users vote by staking tokens into an-
other account (called ’delegate’); the delegate account is then
allowed to execute certain actions on behalf of its stakeholders
(such as producing blocks and voting on protocol upgrades).

Lastly, our cryptocurrency introduces the concept of a
’Security Gateway’. A list of gateways linked to their as-
sociated validators, maintained at the smart contract level,
are charged with pre-processing incoming transactions. This
decouples the execution and validation of transactions. The
Hyperledger Fabric, a permissioned blockchain, also has a
similar decoupling [13]. Note that any mention of commercial
products in this paper is for information only; it does not imply
recommendation or endorsement.

III. CRYPTOCURRENCY ARCHITECTURE

A cryptocurrency platform providing the benefits described
in Section I and leveraging technology from Section II can
be built using the following architecture. Figure 1 shows the
overall architecture from the perspective of a single validator.

84Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 99 / 241

Fig. 1. Interactions of an Individual Validator

A. Platform Architecture

The architecture requires a permissioned smart contract
cryptocurrency platform, such as PoA-based Ethereum. It
should be configured to not charge transaction fees or gas
for sending transactions to the smart contracts. The native
cryptocurrency mechanisms of the platform will not be used
and instead the cryptocurrency will be stored within the smart
contracts (similar to token based ERC-20 [14] compliant smart
contract currencies but running on a dedicated platform).
Without gas and transaction fees, validators will be rewarded
either off-chain or will participate through being inherently
motivated to support the cryptocurrency. This is tractable
because our use of a lightweight consensus model makes the
execution of a validator node less expensive (it is done this way
currently by other permissioned blockchain platforms such as
Hyperledger Fabric).

The set of smart contracts will be fixed to a small set used to
maintain the cryptocurrency. Being a permissioned system, the
block publishing software must determine which validators are
allowed to participate in the publication of new blocks. This
set of permitted validators is managed at the smart contract
layer and can be retrieved from the blockchain. In this way
our architecture marries what are usually isolated governance
layers, the protocol layer which manages the validator node
permissions and the smart contract layer which executes code
on behalf of system users.

B. Security Gateway

Also managed at the smart contract layer is the list of
gateways that each validator maintains to accept proposed
transactions from the users of the system. These security
gateways pre-process incoming transactions to ascertain their
validity. Transactions must be properly formatted and are only
accepted from accounts that have roles. Security gateways
also keep track of the rate of transactions issued by each
account. Accounts with an unusually high rate can be throttled
as a form of denial of service protection and to prevent any
particular account from taking too large a percentage of system
resources. It is possible to white list accounts that have a valid
reason to issue a high throughput of transactions.

C. Visibility Gateway

A final platform level resource managed and made visible
at the smart contract layer is the set of visibility gateways.
Each validator independently maintains a set of such gateways
to provide controlled blockchain read access for the account
holders. The read access capabilities will be encoded as smart
contract view functions (a view function is one that provides
read only access and is highly efficient as it is executed locally
and not propagated among validators nor included within a
block like a normal transaction). However, unlike with typical
view function responses, for security reasons (discussed in
section VI) the responses will be signed by the associated
validator account. The full blockchain is kept private by the
validators and user read access is only available through the
visibility gateways.

D. Smart Contracts

The smart contract layer, besides managing the authorized
platform level resources listed previously, implements the
managed cryptocurrency. The smart contracts maintain the
list of authorized accounts, the roles granted to each account
with associated features, and the balance in each account.
We use the account/balance model as opposed to the unspent
transaction output (UTXO) model (e.g., in Bitcoin) to avoid
the unnecessary complexity (found in [5]) of having to label
each unspent transaction with roles. The roles define a set
of permissions that enable certain accounts to manage the
cryptocurrency and are discussed in the following section.

E. Digital Wallets

Identity proofing results in the participants’ identifiers being
added to a global on-chain registry controlled by the account
providers. As described in [15], the identifiers can be held
in custodial, semi-custodial, or non-custodial digital wallets
that can be integrated into existing applications, browsers, and
operating systems.

IV. MANAGED CRYPTOCURRENCY ROLES

The management features and integration with an associated
fiat currency are enabled through accounts with various roles.
This account and role capability is instantiated on top of the

85Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 100 / 241

previously described platform and implemented within the
fixed set of smart contracts. Section V will describe how these
roles can be used in real world systems.

A. Platform Managers
An account with the platform manager role sets the policy

for the cryptocurrency system and creates accounts and assigns
them non-user roles. Policy can be set to be permanent,
temporary, or have a timed expiration. Permanent policies
cannot be changed once set (assuming the integrity of the
blockchain itself is not compromised). They may be used to
instantiate a particular architecture that the cryptocurrency will
adopt. Alternately, they may be used to provide confidence to
the user base that certain features or settings are guaranteed
even though the cryptocurrency is managed by a set of
privileged entities. Temporary policies can be changed at any
time by a currency manager. Timed expiration policies are
considered permanent until a published time at which they
become temporary. The system may be set up with only one
platform manager, a group of accounts that must vote to
make changes, or a hierarchical system where higher priority
managers can override policies from lower level managers (as
in [5]). This latter design can be used as a security feature in
case a currency manager account was compromised; higher
priority accounts whose keys are stored in physical vaults
could be used to override the compromised account and restore
the system.

The policies available to be set can include en-
abling/disabling features within other roles, setting blockchain
parameters such as the size and frequency of blocks, adjusting
any fees charged (if any), and setting parameters on how voting
will be performed (since the system requires groups to vote
to perform certain actions).

During the bootstrapping phase for the cryptocurrency,
within some fixed number of blocks, the platform manager
defines the initial set of validators. Once the bootstrapping
phase is over, the accounts with the platform manager role may
not modify the validator roles (thus limiting their authority and
creating a balance of power).

B. Account Providers
An account with an account provider role has been autho-

rized by the platform manager(s) to manage user accounts.
They identity proof users off-chain, receive a list of the
users not yet authorized accounts, and add the user role to
those accounts to authorize them. It is important that the
users demonstrate ownership of each provided account through
proving possession of the associated private key. Each account
provider then keeps an internal record of which users are
associated with which accounts; this record is not published
or shared. This allows KYC and AML laws to be supported at
the account provider level (rather than at the entire platform
level), which may enhance security and user privacy.

C. System Security
An account with the system security role has the ability

to control other accounts for system security purposes. Such

accounts can freeze and unfreeze other accounts. They can
also move funds between accounts to confiscate funds or
reverse transactions. In the latter case we note that the relevant
accounts simply need to be debited and credited funds due
to our system being account-based (as opposed to following
Bitcoin’s UTXO model). We also note that since all accounts
are identity proofed, system security actions can take place
off-chain using existing legal frameworks.

To limit unauthorized actions, policy can be set by the
platform manager requiring an on-chain voting mechanism for
certain system security transactions. In addition, the platform
manager(s) can limit or disable any of the powers of the system
security role through policy settings.

D. Users
An account with the user role is one that can be used to

receive, store, and send value in the form of tokens maintained
by the smart contracts. A single user may have multiple
accounts and may use multiple account providers to do so
(note that every account must be identity proofed by an
account provider).

Each account is labelled within the smart contract with its
associated public key. A user maintains use of an account
through possession of the associated private key (possibly
stored on a hardware token for greater security). If a user loses
a private key or suspects that their private key has been stolen,
they need a way to retake possession of the account. This is
accomplished by swapping out the account’s original public
key with a new one within the smart contract. When creating
their account, users can choose what method they prefer to
enable this action; there are at least three options. They can
trust their account provider to do this for them and simply re-
identity proof to their account provider. They could authorize
a set of other accounts to validate the public key swap (using
accounts they own or accounts of trusted individuals). Or they
could require the involvement of system security along with
their account provider, necessitating re-identity proofing with
both entities.

E. Currency Managers
An account with the currency manager role has the ability

to control the money supply through direct actions or ongoing
policy. This includes fund creation, deletion, and the provision
of interest. The currency manager accounts vote to set mon-
etary policy or initiate an action (for example the creation of
funds to be lent to other entities).

F. Validators
An account with the validator role is an account that rep-

resents an authorized block publisher. Validator accounts vote
to add/remove the validator role to/from other accounts. Other
than block publishing, the validators manage their respective
security and visibility gateways. On their visibility gateways,
they make visible all cryptocurrency management transactions
to provide full transparency to all users.

Each validator account posts on the smart contract the
Internet Protocol (IP) addresses of their security and visibility

86Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 101 / 241

gateways. The visibility gateways then make the security
and visibility gateway addresses visible to all users and the
validation server addresses visible to other accounts with the
validator role. This latter publication facilitates the peer-to-
peer permissioned networking between validators used for
transaction propagation and block publication.

Each validator account publishes on the blockchain a pub-
licly visible special public key associated with the signed
responses from its visibility gateways. This key is different
from the public key for the validator account itself. It also
publicly publishes contact information (e.g., an email address)
for reporting any problems. This is essential for security
reasons discussed in Section VI.

V. INTEGRATION WITH FIAT CURRENCIES

The architecture presented in sections III and IV is designed
to be integrated with a fiat currency and traditional bank
deposits. A government administration could instantiate the
cryptocurrency and act as the platform manager. The directors
of the government’s independent central bank could act as the
currency managers. The government law enforcement agencies
could act in the system security role. This creates a balance
of power where no one organization ‘controls’ the blockchain.
To further promote this, government entities separate from the
administration can act as the validators (e.g., a set of states).
The national standards body can define the specification for the
supporting cryptocurrency software and independent laborato-
ries can test compliance of that software. Note that multiple
developers should be used, especially for the validator soft-
ware, for security purposes and the code should be developed
open source and made available publicly. This way a single
developer cannot maliciously or unintentionally violate the
specification and enable non-protocol compliant blocks to be
published and accepted.

Financial institutions (e.g., commercial banks, cryptocur-
rency exchanges, and other fintech companies) could be made
account providers, among other entities, since they already
must identity proof their customers. They would keep their
mapping of identity proofed users to account numbers private
and only reveal select information to fulfill a court order
(thus supporting KYC and AML laws while still maintaining
user privacy). They can modify their banking software to
simultaneously show users their bank deposit balances and
cryptocurrency balances (since they established each user’s
accounts). The financial institution itself would not have
access to the user’s cryptocurrency balance and transactions
but their banking application, on behalf of the user, could
retrieve this information from the visibility gateways. These
applications could then enable the conversion of bank deposits
to cryptocurrency and vice versa (also often referred as on-
ramp/off-ramp). The application could send cryptocurrency
to the financial institution and have the institution deposit
traditional money into the user’s bank accounts (and vice
versa). The application could also transfer funds between the
user’s different cryptocurrency accounts using a bank owned
account as an intermediary to hide any linkage between the

user’s accounts from appearing on the blockchain. Note that
the financial institution obtains cryptocurrency through its
existing fiat accounts with the central bank: the institution
sends the central bank fiat currency and the central bank sends
it cryptocurrency. If users are allowed to interact directly with
the central bank, users can perform this operation themselves.

The central bank, as the currency manager, unifies the fiat
and cryptocurrency by enabling the exchange between both.
The cryptocurrency could be maintained as a separate line
item on the central bank balance sheet. The central bank can
create and destroy both currencies and thus can implement a
cryptocurrency monetary policy in a similar fashion as when
managing solely its fiat currency. Note that offering two forms
of currency, with different characteristics and risk profiles, can
have significant economic implications that are out of scope
for this paper.

VI. SECURITY ANALYSIS

In this section we analyze the security and functionality pro-
vided by our architecture using the three traditional computer
security pillars of confidentiality, integrity, and availability.

A. Confidentiality

Our architecture provides accounts/transactions that are
pseudonymous for the validators and confidential to the rest
of the users. We note that there is a possibility of user
confidentiality being lifted when necessary to support KYC
and AML laws (e.g., through a court order for validators
to reveal transactions and the respective account providers
to divulge account ownership). Users choose which account
provider they trust to know which accounts they own. The
account provider keeps this private unless required to reveal
it. Furthermore, the account provider can distribute user funds
between the user’s accounts such that there is no linkage on
the blockchain between the multiple accounts from the same
user.

The transactions on the blockchain are kept private and only
shared within the set of validators. The visibility gateways
only reveal blockchain transactions to the parties involved in
those transactions. A downside of this is that it would appear
then that accounts with the platform manager, system security,
and currency manager roles can issue transactions without
oversight. However, the validators are independent entities that
make these transactions publicly visible through their visibility
gateways. This offers transparency for all management trans-
actions but confidentiality for user fund transfers.

The IP addresses of the validating servers are stored on the
blockchain but the visibility gateways make this information
visible only to the validator accounts. Thus, the validation
servers themselves are kept confidential. If this information
was leaked, a single transaction could be used to update a
revealed server to a new IP address (to discourage denial of
service (DoS) attacks). The security gateways and visibility
gateways’ addresses are made public. The visibility gateways
operate independently with only a copy of the blockchain and
thus can be replicated at scale to counter possible DoS attacks.

87Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 102 / 241

Likewise, a validator may have multiple security gateways to
provide load balancing and DoS protection.

B. Integrity

The use of a group of independent validators ensures the
integrity of the newly published blocks. No validator will
accept a block from another validator that does not follow
the established protocol. Each block and the transactions
therein must be of the proper form and have the necessary
digital signatures. As is the norm with blockchains, each block
contains a hash of the previous block to enable detection of
any changes with previously published blocks. However unlike
public blockchain systems, the users themselves cannot verify
the retained integrity of the blockchain and so another mech-
anism must exist to hold individual validators accountable.

For this, user software will query multiple visibility gate-
ways when retrieving user blockchain data. Any discrepancy
between the visibility gateways owned by different validators
reveals a problem with one of the validators. An exception
is for very recent transactions that have not yet been posted
by all validators and thus there should thus be an agreed-
upon time delay before taking any action. In the case of a
discrepancy, an event transaction is triggered and sent to all
validators to describe the discrepancy. As long as at least one
validator is honest, the discrepancy will be published. Note
that this is considered a ‘management’ type transaction and
thus is made publicly visible to all users. Note that since the
visibility gateways sign their responses, the user can prove
that multiple visibility gateways provided different answers.
As long as a majority of the validators remain honest, the
honest ones can vote out any validators that provide incorrect
results.

If a set of the validators decide to overtly violate the
cryptocurrency protocol (e.g., to change a permanent policy
or take control away from the platform or currency man-
agers), this will fork the blockchain as happens with other
cryptocurrency systems. The non-violating validators would
inform participating parties using off-chain methods and, like
other cryptocurrency forks, the resolution would take place
off-chain. Given that the cryptocurrency will be tied to a
fiat currency, investigations and legal action may be taken
against the violating validators. Note that only if 100 percent
of the validators collude can they make changes without being
noticed. Also, note that our cryptocurrency leverages the fact
that it is a sovereign currency, existing within an off-chain
legal framework.

C. Availability

There are two types of availability that need to be con-
sidered: the availability of the cryptocurrency system as a
whole and the availability of a particular account to conduct
transactions.

The cryptocurrency platform itself has robust availability
because it is a distributed system with no central point of fail-
ure. Many of the validation servers may fail, even the majority
of them, and the system can still continue to function. Note

that individual validation servers can be run efficiently due
to the use of a lightweight consensus algorithm, permitted by
the permissioned blockchain configuration. Also, each security
and visibility gateway can be implemented as a cluster of
servers to reduce susceptibility to DoS attacks and individual
server failures.

Individual accounts are not dependent upon a particular
validator and user applications should issue transactions to
multiple systems simultaneously (this includes both write
transactions to the security gateways and read transactions
to the visibility gateways). Using multiple security gateways
ensures that no validator could decide to unilaterally block a
particular account (note that account ownership is pseudony-
mous to the validators making this less likely). Using multiple
visibility gateways, as discussed above, addresses integrity
concerns.

VII. IMPLEMENTATION

We implemented our managed cryptocurrency as smart
contracts using the Solidity programming language. It
is available as open source software on Github at
https://github.com/usnistgov/managed token under a public
domain license. In this proof-of-concept prototype, we imple-
mented the core functions of the managed cryptocurrency. This
includes fund tracking, fiat to cryptocurrency fund conversion,
transaction logging, account creation, voting scenarios, boot-
strapping mode, role assignment, and the ability of accounts
to take special actions given their roles (e.g., law enforcement
account freezing and central bank fund creation). Certain
aspects are simplified, such as monetary policy options, as our
goal was not to create a production system but to demonstrate
that this managed architecture approach is feasible. We tested
our code by deploying it to a local Ethereum test environment.

A couple of money creation schemes are provided in our
system as examples. Schemes are provided to vote and carry
out money creation in arbitrary accounts (following a top-
down approach) as well as in all user accounts in the form of
interests (following a bottom-up approach). Furthermore, these
schemes can be either push-based or pull-based. In the push-
based model, the money creation function creates funds in the
recipient(s) account without any action being required from the
recipient(s). In the pull-based model, the currency managers
set rules through a single transaction to give the right to the
recipient(s) to create their own funds according to this set of
rules. This can provide scalability gains as users do not have to
claim their allowance right away, and instead, may wait until
they need it without any risk of not receiving it. In the case of
periodic funds creation (e.g. interests, dividends), a user might
be able to skip claiming funds between period X and period
X + Y, and then, withdraw funds at period X + Y + 1 for all
of the periods between X and X + Y + 1 combined. Finally,
a set of view functions allows one to selectively control the
visibility of monetary creation and other on-chain fund data,
both at the user level and at the currency management level
(e.g., global supply indicators).

88Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 103 / 241

Note that our implementation did not cover the off-chain
aspects of our cryptocurrency architecture. In particular, we
did not build the security or visibility gateways (although we
did write the smart contract view functions to support the
latter). We also did not modify the Ethereum mining software
to only publish blocks in collaboration with the validators
specified by the smart contracts (but we did implement the
smart contract code to enable a set of validators to use the
on-chain data to manage themselves).

VIII. RELATED WORK

Most of the existing work related to managed cryptocurren-
cies consists in studies and pilots on blockchain-based central
bank digital currencies (CBDC), as well as research and
development of protocols for stablecoins, algorithmic currency
management, and privacy-preserving KYC/AML checks.

The literature distinguishes two main categories of CBDCs:
wholesale and retail. As explained by the Bank for Inter-
national Settlements (BIS) in their money taxonomy [16], a
wholesale CBDC is only available to financial institutions
and mainly intended for inter-bank transactions whereas a
retail CBDC is globally accessible and usable by the general
public. Our managed cryptocurrency architecture is geared
towards retail CBDCs, although it could also be launched as
a wholesale CBDC, at least initially.

We have developed our architecture to change how cryp-
tocurrencies usually work to enable support for retail CBDCs.
As stated earlier, this does not mean that we are necessarily
claiming that one should be created; we are simply providing
some of the technical capability to do so. That said, the subject
of state or central bank issued cryptocurrencies has been one
of considerable interest. A BIS poll in 2018 showed that
more than 70 percent of central banks worldwide were already
engaged in CBDC work [17]. Some central banks, such as the
central bank of Canada (project Jasper [18]), the Monetary
Authority of Singapore (project Ubin [19]), or the Bank
of Thailand [20] have focused their research on wholesale
CBDC. Also, the European Central Bank and the Bank of
Japan are conducting joint research on wholesale CBDCs with
Project Stella [21]. Others, such as the Ecuadorian Central
Bank (’Dinero Electronico’ [22]), the People’s Bank of China
[23], and the Government of Venezuela (Petro [24]) aim at
developing a CBDC for retail use. It should be noted, however,
that many central bank efforts do not use (nor plan to use in the
future) distributed ledger technologies (DLT); for example the
Sveriges Riksbank from Sweden [25] stated that they currently
deemed DLT too inefficient for use in a retail CBDC. An
example of a non-DLT retail electronic currency is the e-Peso
[26]. This is a pilot from the Central Bank of Uruguay that
was launched as complement to physical cash but relied on a
central registry for ownership recording.

Aside from efforts from governments and central banks,
several other blockchain-based research projects have entered
the field of managed cryptocurrencies. For example, RScoin
[27] provides a cryptocurrency framework using a UTXO
model where generation of the monetary supply is controlled

by a central authority and transaction processing is handled by
dedicated institutions, called ‘mintettes’; ultimately, the central
authority handles the creation and posting of new blocks. Our
system differs from this approach in that currency managers
do not influence the block creation process nor benefit from
special viewing rights over the content of the blockchain.
Another example of a managed cryptocurrency system can be
found in Fedcoin [28], which builds upon RScoin’s framework
by providing a Node.js implementation, KYC rules that enable
a central bank to blacklist users, and improved anonymity
features. However, unlike our proposal, it does not natively
offer the ability for accounts to be assigned roles; this leaves
the central bank as the sole entity involved in the identity
provider, management, and system security functions (e.g.,
identity-proofing new accounts, freezing unlawful users, and
coin production).

‘Decentralized Finance’ projects, many of which are cur-
rently built with smart contracts deployed on the public
Ethereum blockchain or as second layer solutions atop Bitcoin,
are also being developed for stablecoins and decentralized
currency management where money supply is governed algo-
rithmically (such as Dai [29]). In our system, unlike reserve-
backed stablecoins (such as Libra [30], USD Coin [31],
and J.P. Morgan Coin [32]) that are pegged one-to-one with
the asset(s) that they represent, there is a built-in currency
manager role that can develop monetary instruments and vote
for monetary policies to increase and decrease the currency
supply. Since it is programmable, novel, potentially more
flexible monetary instruments may be implemented.

From a security point of view, efforts are being made to offer
security standards, toolsets, and services for cryptocurrencies.
For example, EIP-1080 [33] is an Ethereum standard that
offers an interface geared towards charge back and theft
prevention/resolution for ERC-20 tokens [14]. Also, more
loosely related is that the Enterprise Ethereum Alliance (EEA)
Legal Industry Working Group [34] intends to standardize law-
compliant smart contract designs.

Our system provides user privacy through use of a permis-
sioned blockchain that supports roles with different responsi-
bilities and data visibility (e.g., block publishers cannot see ac-
count owners’ identities). However, cash transactions offer an
ideal for anonymity and attempts to achieve this ideal for elec-
tronic currencies have been the subject of much research. The
development of some privacy-preserving technologies, such as
zero-knowledge protocols, has assisted in this objective. For
example, Chaum introduced eCash [35] in 1983, one of the
first attempts at anonymizing electronic money transactions
via the use of blind signatures; Zcash [36] is an example
of cryptocurrency that relies on a type of zero-knowledge
proof called zk-SNARKs for keeping transactions private; and
ChainAnchor [37] offers a method based on the ‘Enhanced
Privacy ID’ zero-knowledge protocol for controlling access to
a permissioned blockchain while allowing users to transact
pseudonymously and maintain transaction unlinkability.

89Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 104 / 241

IX. CONCLUSION

Most cryptocurrencies and cryptocurrency research efforts
focus on providing cryptocurrencies with strong anonymity
and privacy guarantees in a robust distributed system that is
not owned or managed by any single entity or group. We do
not dispute the importance of such efforts and the emergence
of the associated new social constructs, but point out that
research in managed cryptocurrencies integrated with our
current institutions has been sorely lacking. This is unfortunate
as all people live under the laws of their respective countries
and it is thus important to research cryptocurrencies that can
explicitly support those laws.

In recent years, central banks have been interested in this
area, but some of their researchers have discounted cryptocur-
rency solutions because the foundational technology appears
incompatible with central bank goals, especially the support
for KYC and AML laws. In this work, we showed how the
foundational elements of a cryptocurrency can be rethought to
support central bank goals and to explicitly support the laws
that apply to electronic fiat currencies. We hope to convince
the reader that this type of approach is technically feasible and
that cryptocurrencies can be developed that integrate with an
associated fiat currency and explicitly support the laws of the
respective government.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] A. Berentsen and F. Schar, “The case for central bank electronic money
and the non-case for central bank cryptocurrencies,” 2018. [Online].
Available: https://doi.org/10.20955/r.2018.97-106

[3] G. Greenspan, “Multichain private blockchain,” White paper, 2015.
[Online]. Available: https://www.multichain.com/download/MultiChain-
White-Paper.pdf

[4] J. Barrdear and M. Kumhof, “The macroeconomics of
central bank issued digital currencies,” 2016. [Online].
Available: https://www.bankofengland.co.uk/working-paper/2016/the-
macroeconomics-of-central-bank-issued-digital-currencies

[5] P. Mell, “Managed blockchain based cryptocurrencies with consensus
enforced rules and transparency,” in 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp. 1287–1296.

[6] Parity, “Parity tech documentation - validator sets webpage,” Retrieved
on 2 July 2019 from https://wiki.parity.io/Validator-Set.htmlreporting-
contract.

[7] P. Network, “Proof of authority: consensus model with identity at stake,”
2017. [Online]. Available: https://medium.com/poa-network/proof-of-
authority-consensus-model-with-identity-at-stake-d5bd15463256

[8] Microsoft, “Ethereum proof-of-authority consortium,”
2019. [Online]. Available: https://docs.microsoft.com/en-
us/azure/blockchain/templates/ethereum-poa-deployment

[9] Anonymous, “Governing decentralization: How on-chain vot-
ing protocols operate and vary,” 2018. [Online]. Avail-
able: https://cointelegraph.com/news/governing-decentralization-how-
on-chain-voting-protocols-operate-and-vary

[10] E. EIP-1202, “Voting standard,” 2018. [Online]. Available:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1202.md

[11] Aragon, “Aragon website,” Retrieved on 10 June 2019 from
https://aragon.org/.

[12] Bitshares, “Bitshares website,” Retrieved on 3 July 2019 from
https://bitshares.org/.

[13] M. Vukolić, “Rethinking permissioned blockchains,” in Proceedings of
the ACM Workshop on Blockchain, Cryptocurrencies and Contracts.
ACM, 2017, pp. 3–7.

[14] F. Vogelsteller and V. Buterin, “Erc-20 token standard,” 2015. [Online].
Available: https://eips.ethereum.org/EIPS/eip-20

[15] L. Lesavre, P. Varin, P. Mell, M. Davidson, and J. Shook, “A taxonomic
approach to understanding emerging blockchain identity management
systems (draft),” National Institute of Standards and Technology, Tech.
Rep., 2019.

[16] M. L. Bech and R. Garratt, “Central bank cryptocurrencies,” BIS
Quarterly Review September, 2017.

[17] C. Barontini and H. Holden, “Proceeding with caution-a survey on
central bank digital currency,” Proceeding with Caution-A Survey on
Central Bank Digital Currency (January 8, 2019). BIS Paper, no. 101,
2019.

[18] B. of Canada, “Fintech experiments and projects,” Retrieved on
26 June 2019 from https://www.bankofcanada.ca/research/digital-
currencies-and-fintech/fintech-experiments-and-projects/.

[19] M. A. of Singapore, “Project ubin: Central bank digital money us-
ing distributed ledger technology,” Retrieved on 25 June 2019 from
https://www.mas.gov.sg/schemes-and-initiatives/Project-Ubin.

[20] B. of Thailand, “Public vs private blockchain
in a nutshell,” 2019. [Online]. Available:
https://www.bot.or.th/Thai/PressandSpeeches/Press/News2562/n562e.pdf

[21] E. C. B. . B. O. Japan, “Boj/ecb joint research project
on distributed ledger technology,” 2018. [Online]. Available:
https://www.boj.or.jp/en/announcements/release 2019/rel190604a.htm

[22] J. Campuzano, G. Cruz, and G. Jr. Y Maza Iñiguez, “El fracaso del
dinero electrónico en ecuador,” vol. 7, pp. 82–101, 08 2018.

[23] W. Knight, “Mit technology review - china’s central bank has
begun cautiously testing a digital currency,” 2017. [Online].
Available: https://www.technologyreview.com/s/608088/chinas-central-
bank-has-begun-cautiously-testing-a-digital-currency

[24] G. of Venezuela, “Petro webpage,” Retrieved on 28 June 2019 from
https://www.petro.gob.ve/eng/home.html.

[25] S. Riksbank, “E-krona webpage,” Retrieved on 26 June 2019 from
https://www.riksbank.se/en-gb/payments–cash/e-krona/, 2019.

[26] I. M. Fund, “Uruguay : 2018 article iv consultation-press release; staff
report; and statement by the executive director for republic of uruguay,”
2019. [Online]. Available: https://bit.ly/2SkS7pE

[27] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
arXiv preprint arXiv:1505.06895, 2015.

[28] S. Gupta, P. Lauppe, and S. Ravishankar, “Fedcoin: A blockchain-
backed central bank cryptocurrency,” 2017. [Online]. Available:
https://zoo.cs.yale.edu/classes/cs490/16-17b/gupta.sahil.sg687

[29] Maker, “Dai website,” Retrieved on 18 June 2019 from
https://makerdao.com/en/dai/.

[30] Libra, “Libra white paper,” 2019. [On-
line]. Available: https://libra.org/en-US/wp-
content/uploads/sites/23/2019/06/LibraWhitePaper en US.pdf

[31] Coinbase, “Usdc webpage,” Retrieved on 18 June 2019 from
https://www.coinbase.com/usdc.

[32] J. Morgan, “J.p. morgan creates digital coin for payments,” 2019.
[Online]. Available: https://www.jpmorgan.com/global/news/digital-
coin-payments

[33] E. EIP-1080, “Recoverable token,” 2018. [Online]. Available:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1080.md

[34] E. E. Alliance, “Eea legal industry working group press release,”
2017. [Online]. Available: https://entethalliance.org/ethereum-enterprise-
alliance-legal-industry-working-group-press-release-2/

[35] D. Chaum, “Blind signatures for untraceable payments,” in Advances in
cryptology. Springer, 1983, pp. 199–203.

[36] E. C. Company, “Zcash webpage,” Retrieved on 20 June 2019 from
https://z.cash/.

[37] T. Hardjono, N. Smith, and A. S. Pentland, “Anonymous
identities for permissioned blockchains,” 2014. [Online]. Available:
https://petertodd.org/assets/2016-04-21/MIT-ChainAnchor-DRAFT.pdf

90Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 105 / 241

Blockchain Use Cases: A Systematic Study

Thiago Lopes da Silva
Professional Master Program

CESAR School
Recife, Brazil

e-mail: tls@cesar.org.br

Felipe Silva Ferraz
Professional Master Program

CESAR School
Recife, Brazil

e-mail: fsf@cesar.school

Francisco Icaro Ribeiro
Professional Master Program

CESAR School
Recife, Brazil

e-mail: finr@cesar.school

Abstract—The emergent blockchain technology has become
even more widely used in various areas, apart from financing,
where bitcoin is already a great success. Fully secure, highly
available and with many consensus algorithms on the network,
the use of this technology, as well as any emergent one, offers
challenges and opportunities that need to be explored. This
paper proposes a systematic mapping of challenges,
opportunities and common problems in many areas.

Keywords-blockchain; Systematic Mapping; Challenges;
Smart Contracts

I. INTRODUCTION

From a survey developed by Mettler [1], it was identified
that until 2025, about 10% the Gross National Product will
be provided from the use of blockchain technology. That was
an important data to encourage big companies to invest more
than half billion dollars in 2015, in search for new
approaches and challenges to using this technology. The
great interest in blockchain is due to the fact that it
withstands a safe and distributed network with inviolable
lodgers, as well as the fact that there is no authorized dealer
[2] that interferes in the result and data control.

Blockchain technology has been drawing attention in the
market because of its good acceptance with cryptocurrency,
such as bitcoin. It is an electronic payment system peer-to-
peer in which the algorithm proof-to-work is used to ensure
an irreversible transaction history [2]. Several areas, such as
healthcare [34][39], IoT [5][10], chain of supplies [16][17],
energy [6] and public sector [18][41] are developing cases of
use with blockchain technology to create new business
opportunity, decrease of costs, audit data, integrate with
stakeholders basis, improve generation process and increase
security of transmitted data.

However, with the adoption of new technologies in
projects, challenges, problems, characteristics and
opportunities appear in the analysis of the pre-project or
during the development through blockchain technology in
projects.

According to Nakamoto [2], blockchain is a public
distributed timestamp server that registers every transaction
that happens and allows data storage, verification and audit
of those. Blockchain consists in an array of blocks composed
of many transactions and every block is linked to another, as
a chained list. The authenticity to each transaction is verified

by a digital signature based in Elliptic Curve Cryptography
(ECC).

Another concept to be considered is the use of smart
contract. They are customized scripts that perform the
necessary logic to provide a complex service, like
management of state and controlling verification of
credentials [26]. It contains the business logics that may
interact with other contracts, make decisions, store data and
send cryptocurrency to another recipient [7].

This paper aims to answer these questionings in the
context of adopting this technology in projects.

This study is divided in 4 sections. In the first one, it will
be explained how the blockchain technology works. In
Section 2, it will be explained how the research protocol will
be developed. In Section 3 a thorough examination will be
carried out from primary studies. Finally, the conclusion will
be in the fourth section.

II. PROTOCOL APPLICATION

Based on Kitchenham’s work [4], a well-defined
outlining protocol stage is necessary to reduce the researcher
bias. The following protocol was divided in stages. In the
first one, it was made a main survey question with secondary
ones, aiming a broader research. The second stage is the
criteria protocol definition for insertion or exclusion of
papers. The third stage is the application of primary studies
selection protocol. The fourth stage will be checklist
generation in order to verify research quality. The fifth and
last stage will be the analysis whether the present research is
relevant.

A. Survey Questions

 How to analyze the viability of blockchain in
projects?

 From the main survey, secondary questions were
formulated with the aim of helping understand the problem.

 Which challenges and opportunities are there with
blockchain solutions?

 Which characteristics are more present in
blockchain solutions?

 Which are the most common problems found in

blockchain projects?

B. Insertion and Exclusion Criteria

In order to reduce researcher bias, it was created a
criterion through a well-defined protocol. For this research,

91Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 106 / 241

only studies which aim to present characteristics and
challenges in the adoption of blockchain technology in
projects will be considered. This systematic mapping will be
limited to verify studies which were published from 2016 on.

The following exclusion criteria were used.
 Studies not published in English.
 Studies which are unavailable online.
 Studies not based on this present research or

unpublished.
 Preface, brochure, interviews and reports.

C. Search Strategy

The following virtual libraries were used:
• IEEE Xplore;
• Sciencedirect;
• ACM DL

Combinations of strings were created to guarantee that
relevant information would not be excluded when querying
different search engines and databases. As a result, three
search strings were created

• ((blockchain AND challenges) OR (blockchain
AND opportunity));

• ((blockchain) AND (solution OR characteristics OR
application));

• ((blockchain) AND issues);

With the creation of search strings in each virtual library,
the option advanced search was used on September 30th,
2018 and some papers published from January 2016 until
2018 were included. The result of each respective digital
library, which were later removed to avoid duplicate of
papers by Mendeley tool, was grouped according to their
respective virtual library as shown in Table 1.

TABLE I. THE AMOUNT OF STUDIES FOUND IN EACH
VIRTUAL LIBRARY

Library Number of articles

IEEE Xplore 1001

Science Direct 104

ACM DL 183

The combination of strings showed a result of 183
research articles from Science Directory Library. In IEEE
Xplorer there, were a total of 1001 research articles. Finally,
the ACM DL Library generated 104 papers as shown in
Table 1.

D. Choice of Studies Process

In this section, the process of choice of primary research
articles will be outlined by using a protocol of insertion and
exclusion.

In the first stage, 1288 research articles were found from
virtual libraries. After the removal of duplicates, there were

906 distinct files left. For this process, Mendeley software
was used along with Zotero.

Within the developed protocol, in the second stage, each
research article was verified whether they were in the context
of the research or not, with the analysis of artefacts titles.

However, certain studies, after a thorough analysis of
titles, could not be conclusive regarding their relevance to
this study. Due to that, a third stage was added: abstract
verification.

In the fourth stage, the introduction and conclusion of the
work were analyzed to verify relevance of the state of art
approached in this paper.

Lastly, a qualitative analysis will be made from the
reading of all articles left, excluding, this way, artefacts that
are not relevant to this research.

After the execution of the stages of the protocol, 1249
studies were removed, and a total of 39 artefacts were
analyzed.

E. Quality Control

In order to evaluate this research quality, it is necessary
the primary studies to be analyzed critically. All in all, a
protocol was developed and executed to minimize the
amount of initial studies. Based on that, a following stage
was deemed necessary, in which, it was made the reading of
the research articles. Six secondary questions were then
created with the purpose of evaluating the credibility and
relevance of each artefact.

The three initial questions were used to investigate how
blockchain technology is generally being used in projects, as
criteria for excluding unrelated artefacts. The other questions
were used to evaluate if the paper approaches themes that
add value to the use of blockchain in projects, as well as if
the paper found does not approach only blockchain.

The questions that will help assess the quality of the
research are:

1. Were the challenges and opportunities of
blockchain technology use clear in the article?

2. Were the characteristics of blockchain technology
well-approached in the research?

3. Were the common problems with the blockchain
approached?

4. Was a survey developed with the user about the
implementation of blockchain project?

5. Was the article not restricted to just discussing
blockchain?

6. Does the paper make an analogy of the use of
blockchain adding value in the final product?

After the analysis and extraction of articles chosen, based
on the protocol, there were a total of 39 files left, which were
approved in the quality control. The process of quality
control will be explained in the next section. It will focus in
remaining 39 artefacts.

III. RESULTS

Based on the execution of the developed protocol, 39
primary studies were selected [2] and [4] – [41]. It was

92Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 107 / 241

identified the use of blockchain in different areas, as
described below.

According to the selected primary studies, it was
observed a higher demand in the use of blockchain
technology in the IoT, healthcare, cryptocurrency,
government, energy and voting, respectively.

In the next section, a quantitative and qualitative analysis
of the primary studies was held.

A. Quantitative Analysis

The research showed a total of 39 primary researches by
126 different authors and they were published from 2016 to
2018. It was identified a total of 229 keywords related to
blockchain.

In regards to frequency of publishing, it had a growth of
interest for blockchain’s. In 2016, it had 2 publishing.
followed by 17 in 2017 and 20 in 2018. The large amount of
publishing across the years show up a huge interessing for
blockchain.

From the primary studies, the interest in blockchain was
identified in the areas of IoT, healthcare, supply chains,
government, big data, design, cloud computing and digital
property.

Among 39 primary articles found, 229 keywords were
found. The most found keywords were: internet of things (7),
bitcoin (5), iot (4), government (4), smart contracts (6),
cryptocurrency (3), iot security (3), cloud computing (3),
trust (3), decentralized iot (2), consensus protocols (2),
blockchain challenges (2), voting (2), food safety (2), data
integration (2), egovernment (2), finance (2), distributed
ledger (2), business (2), voter (1), big data (1), food chain
(1), and smart agriculture (1).

It has been observed with keywords in the research that
the use of blockchain can be applied in diverse areas that go
beyond Nakamoto [1] in cryptocurrency. That is a fact of
relevance to this research.

B. Qualitative Analysis

The result of the qualitative analysis will be displayed in
this section from 39 primary studies, taking into
consideration six criteria, to evaluate the credibility and
quality of the studies. The classification of artefacts will be
either positive (1) or negative (0) and there will be a
reference to the article.

TABLE II. QUALITATIVE ANALYSIS OF PRIMARY STUDIES

Study Q1 Q2 Q3 Q4 Q5 Q6 Total

[5] 1 1 1 1 1 1 6

[6] 1 1 1 1 1 1 6

[7] 1 1 1 1 1 1 6

[8] 1 1 1 1 1 1 6

[9] 1 1 1 1 1 1 6

[10] 1 1 1 0 1 1 5

[11] 1 1 1 0 1 1 5

[1] 1 1 0 1 1 1 5

[12] 1 1 1 0 1 1 5

[13] 1 1 1 0 1 1 5

[14] 1 1 0 1 1 1 5

[15] 1 1 0 1 1 1 5

[16] 1 1 1 0 1 1 5

[17] 1 1 1 0 1 1 5

[18] 1 1 1 0 1 1 5

[19] 1 1 1 0 1 1 5

[20] 1 1 1 0 1 1 5

[21] 0 1 1 1 1 1 5

[22] 1 1 1 0 1 1 5

[23] 0 1 1 0 1 1 4

[24] 1 0 1 0 1 1 4

[25] 1 0 1 0 1 1 4

[26] 1 1 0 0 1 1 4

[27] 0 1 1 0 1 1 4

[28] 1 1 0 0 1 1 4

[29] 1 1 1 0 1 0 4

[3] 1 1 1 0 1 0 4

[30] 1 0 1 0 1 1 4

[31] 0 1 1 0 1 1 4

[32] 1 0 1 0 1 1 4

[33] 0 0 1 0 1 1 3

[34] 0 0 1 0 1 1 3

[35] 1 0 0 0 1 1 3

[36] 1 0 1 0 1 0 3

[37] 0 0 1 0 1 1 3

[38] 0 0 1 0 1 1 3

[39] 1 1 0 0 1 1 3

[40] 1 1 0 0 1 0 3

[41] 1 0 0 0 1 1 3

Total 31 28 30 9 39 35 171

Based on the results as shown in Table 2 it was observed
from the first question, there is, indeed, a great tendency for
blockchain use to generate opportunities and challenges in
many areas. Among the 39 selected articles, 28 described
that the characteristics of the use of blockchain can help in
projects. Analyzing the third question, related to common
problems, the primary articles showed high rate of problems
in the adoption of blockchain in projects. Analyzing the
result of the fourth question, it was observed that the use of
surveys was not relevant as a tool to support decision and
generate new opportunities. The fifth question is focused on
quality assessment, since it analyzes whether the articles are
restricted to describing blockchain only. Thus, the sixth
question is related to verifying whether blockchain adds
value to the final product. In conclusion, from 39 selected
articles, 35 use blockchain as an addition to the final product.

IV. DISCUSSION

The following subjects will be approached in the primary
studies according to the questions used in the quality control
assessment. It will be taken into account the studies

93Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 108 / 241

involving IoT, government and healthcare, once these are the
most recurrent subjects.

1. Which challenges and opportunities are there with
blockchain solution?

In IoT, according to [5], it was identified that the
blockchain network can help in Iot area to keep data safely
and immutable. This way, generating opportunity to track
data that was once generated by different devices. One of the
greatest challenges in integrating data generated by devices
and network is due to the fact that these devices have already
delivered corrupt data. Therefore, it is necessary that the
devices to be tested before is put in the network, besides of
being allotted, in order to avoid physical alteration.

Reyna et al. [5] comments about the value that
blockchain brings, providing a network where information is
traceable, immutable and highly safe. In cases which the data
is provided by devices, blockchain will play an important
role integrating the parts.

Elsden et al. says in his article [21] that the outcome of
the survey resulted in the use of blockchain in IoT, as a way
of keeping the devices interoperable and safe for sharing and
exchanging messages.

To the author Smith, the safety in IoT with integration in
blockchain networks is challenging due to the limitations in
processing, being necessary a smaller precision in the
algorithm proof-of-state, used on the network. This
approach can generate attacks in blocks with bigger
reputation, generating new blocks with invalid data.

As opportunity, Kahn and Salah [10] defend that
blockchain technology, based on smart contracts, can be used
to manage, control and, the most important, keep IoT devices
safe. Another point raised is the possibility of using a public
key of 160-bit form blockchain generated by Elliptic Curve
Digital Signature algorithm (EDCSA) instead of 128 bits
from IPV6. blockchain can generate and allocate addresses
offline for around 1.46 1048 IoT devices., removing needs∗
of an entity internet Assigned Numbers Authority (IANA)
central authorizer of devices.

In article [26] it reports that the possible use of
blockchain in the network can track millions of connected
devices, process transactions and coordinate devices,
allowing connection peer-to-peer to send messages and
allowing blockchain to control the devices connected
through smart contracts.

Regarding healthcare, Jiang et al. [39] verified that great
part of the products developed that used blockchain recorded
only data generated in EMR (electronic medical records),
ignoring data from PHD (personal healthcare data). In the
article [13] the author debates the necessity of not
manipulating data generated from EHRS (electronic health
records). It can entail manipulation of data, and
consequently, problems to patients.

The use of blockchain, along with smart contracts, will
help keep the integrity, safety and immutability of network
data. This way, a greater collaboration among hospitals and
clinics will help save 93 billion dollars in 5 years’ time in the
USA from the safe mass data sent from blockchain [13].

According to Mettler [1] the possibility to create a shared
infrastructure among researchers and doctors comes from
data generated by patients using blockchain. This will allow
further analysis of wasted resources, operational problems
and improvement of user service. The author comments
about the challenges in patient’s data privacy, and about the
possibility to create a new platform, where users would be in
control of their data.

At last, there is an opportunity for the user to be
compensated for allowing access to their data in the
blockchain. Alhadhrami [36] exposes that the data privacy in
the blockchain network is a challenge due to public data.
Therefore, it is necessary to take some precautions in the
moment of sending data to the network. In article [26] it
comment about the opportunity of using public blockchain as
a way of centralizing data from patients with the challenge of
patronizing the data inserted.

In government, Antipova [32] describes the opportunity
of using blockchain to help audit data, removing the need for
a centralizing entity and avoid fraud, since these transactions
in the network are inviolable.

There are challenges in the area of public blockchain.
The need for attention in anonymous transaction in the
network, deems necessary the supervision of a third-party
with the intention to avoid possible alterations in the result
and audit. Batubara [41] comments that there are challenges
in the adoption of blockchain in e-governments. She
mentions the creation of new governmental models, as well
as acceptance, since the creation of a platform needs the
cooperation of multiple institution and stakeholders.

As seen in [12] it portrays the opportunity to use
blockchain as an integration tool among different
governmental database. In article [18] it is mentioned that the
use of blockchain in governmental solutions will help reduce
costs, frauds payment error and the transparency of shared
data between government and citizens.

2. Which characteristics are more present in blockchain
solutions?

In the IoT area, Karafiloski and Mishev [26] describe the
use of blockchain smart contracts along with smart lockers
connected to the network, to create a renting system without
the need of a third party. The network consensus is the tax
agent. Khain and Salah [10] argue that the data transmitted
from the devices to blockchain will always be encrypted and
signed by the sender. That guarantees authentication and
integrity of the data sent.

Another feature is the possibility of audit transmitted data
form devices in the network and smart contracts, as a
decentralized authenticator with simple logic rules and multi-
party. That would have minor complexity to the devices, if
we compare the traditional authorization protocol in which
Role Based Access Management, OAuth 2.0, OpenId, IMA
DM and OMA Lightweight M2M are used.

According to Alketbi et al. [18] the change from a
centralized architecture to a distributed P2P will remove
flaws, throughput and raise in scalability of the system.
Blockchain will favor in setup management of devices,
storage of sensitive data and to enable micro payment.

94Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 109 / 241

Regarding healthcare, Alketbi et al. [18] sees the use of
blockchain as a facilitator for sharing files among users and
doctors, insurance agencies and others, with privacy in focus,
and smart contracts, so that the user is in control of the data.
Shae and Tsai [13] argue about the need of not manipulating
the data in clinical trials in order to avoid health problems in
the patients. In this article, blockchain is described as a
solution to this problem, since the data in the network are
safe, transparent, available in real time and inviolable.
Consequently, contributing to a greater precision in the
report.

The research articles [26] and [34] describe the need of
choice in which the used data must be sent to the blockchain
network. It is proposed the insertion of user metadata, such
as visitor ID, provider ID and payer ID with a linkage to an
external database.

In government area, Antipova [32] exposes the need for
government standardization of database in the blockchain, to
maximize compatibility, interoperability, repeatability and
quality.

The possibility to audit the data inside the blockchain
network in real time is a very important characteristic that
will help the government to identify fraud swiftly.

According to [12] using blockchain in government area
will help unify different public service base to allow user
improve their data understanding through authorized smart
contracts. Olnes e Jansen [9] analyzed that digital ID
management, safe records maintenance of digital files are
more adequate cases for government inside the blockchain.

From T. D. Smith’s survey result [11], it was found the
use of Ethereum as a widely used platform.

3. Which characteristics are more present in blockchain
solutions?

In IoT, Karafiloski and A. Mishev describe [26] that the
limitation in processing devices and mining timing
transactions will limit the number of devices to do that in the
network. Billions of devices in the network can lead to a
crash. In their research article, Khan and Salah [10] report
that even if blockchain provides a robust safety to IoT, there
is still a mechanism problem of consensus, upon mining
hashing power which can be compromised, allowing the
invader to be the network owner. Equally, private key
generated in the network are dynamically limited, allowing
the attacker to compromise some account in the network.

In healthcare, the articles [34][11] relate the issue of
keeping all the healthcare database in the network due to its
high operational costs and the possible security breach in
public blockchain encrypting. Shae and Tsai [13] mention
that data coming from clinical trials sent to blockchain can
entail problems in final reports, since they are shown and
updated in real time.

In government, Hou [12] comment that the use of
blockchain in governmental solutions involve the integration
with various systems, different organizations and problems
with time and expenses that hinder solution. The use of
blockchain as a way of keeping long term unused data, since
it guarantees data reliability. The author defends that data
should be recorded in blockchain as well as in third-party. In

the article [18] summons that blockchain can be attacked by
Dos(Denial of Service) causing and impact in processing
legitimate pending transactions to miners leading to slowness
in the network.

Olnes and Jansen [9] created a survey with the main
people in the public sector in 2018, observing emerging
technologies: Robotics, Blockchains, Artificial Intelligence
and Virtual Reality. As a result, the majority answered that
blockchain is immature and not ready to be used in the
public.

4. How to analyze the viability of blockchain use in
projects?

From this present research, it has been observed that
there are challenges and problems in adopting an emergent
technology such as blockchain. Once the viability of using
blockchain in projects, some characteristics must be
observed according to some points below.

Safety:
• In projects which there is the need of keeping

sensitive data in the network, some precautions
should be taken to avoid data to be read by others
[36]. It is necessary the adoption of a routine of
cryptography before the data is involved in the
network.

• A. Reyna et al. [5] mentions that recorded data in
the network are inalterable, which gives more
security in projects that require reliability. The case
described is in IoT.

• For solutions which require the need for integration
among many parts involved, A. Reyna et al. [5]
mentions that the network will help keep data
integrity, if there is the necessity for every
transaction to be signed by the sender.

 Data Integration:
• A. Reyna et al. [5] observes that blockchain will

help with the integration of data provided by
different devices safely, once all data is signed by
the sender. This will help with more critical projects
which need data integration, transparently and
safely.

Auditing:
• For projects in which there is the need for

assessment in real time. Antipova [32] describes
that blockchain network will help avoid fraud and
increase transparency of data, due to the fact that
every transaction is public and inalterable.

 Data availability:
• In projects which require high availability of data,

Nakamoto [2] describes that blockchain will help
keep high availability of data connected via peer-to-
peer with respective duplicate in blockchain
network

 Removal of Centralizing Entity:
• Kshetri and Voas [3] write that the removal of a

centralizing entity will help create in not
manipulating of results, as well as in controlling
data. This will help projects to remove a

95Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 110 / 241

centralizing entity in controlling data, as well as not
manipulating data.

 Smart Contract:
• Khan and Salah [10] defend that blockchain based

in smart contracts can be used to manage, control,
and the most important, to keep IoT devices safe.
This matter, raised by the author, can help projects
to create smart contracts as self-manageable micro
services with business rules in the blockchain
network.

 Data Uniformity:
• Karafiloski and Mishev [26] mention the

opportunity of using blockchain network as a
centralizer of public data from patient, creating a
standardization of data inserted and this project
usually involves stakeholders. It is necessary that
the parts involved create a protocol of data before
sending the transaction to the blockchain network.

 Limitations:
• For Smith [11] in IoT, the integration with

blockchain network is challenging due to the fact
that devices have limited processing, being
necessary a smaller precision in the consensus
proof-of-state used by network. That can result in a
massive attack on account of the consensus being
reduced. This limitation is taken into consideration
in projects which there is the need for mining of
micro processed transactions or devices with
limited processing.

V. CONCLUSION AND FUTURE WORK

This paper aimed to identify opportunities, problems and
challenges in the use of the emergent blockchain technology
in many areas. It has been found 906 initial studies, with a
total of 39 primary artefacts left.

To assure quality of the evaluated primary research
articles, a protocol was developed composed by four stages,
resulting in a great interest for using blockchain in areas such
as healthcare, IoT and government. In each area, there is the
interest of assuring safety of data, integration of data and
scalability of services through blockchain.

Regarding viability of blockchain use in many areas that
do not involve finance, there are still problems and
challenges in diverse areas that have been presented. It is
necessary a deeper research per area in order to mitigate risks
in the adoption of and emergent technology in small and big
projects.

This works presents a important summarization of
blockchains aspects such as problems, challenges and
opportunities of technology adoption in projects and it adds
important set of information for the area, as for now, the
amount of works presenting consolidated ideas related to
blockchain are not common and are important in a theme
that can be explored in a variety of ways.

As a future work, guidelines are to be created to provid
projects and engineers with means to better choose the
adoption of blockchain technology in several areas.

REFERENCES

[1] M. Mettler, “Blockchain technology in healthcare: The revolution
starts here,” 2016 IEEE 18th International Conference on e-Health
Networking, Applications and Services, Healthcom 2016, pp. 16–18,
2016.

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
Www.Bitcoin.Org, p. 9, 2008.

[3] N. Kshetri and J. Voas, “Blockchain-Enabled E-Voting,” IEEE Softw.,
vol. 35, no. 4, pp. 95–99, 2018.

[4] B. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature reviews in Software Engineering Version 2.3,”
Proc. Est. Acad. Sci. Eng., vol. 45, no. 4ve, p. 1051, 2007.

[5] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain
and its integration with IoT. Challenges and opportunities,” Future
Gener. Comput. Syst., vol. 88, pp. 173–190, Nov. 2018.

[6] Andoni et al., “Blockchain technology in the energy sector: A
systematic review of challenges and opportunities,” Renewable
Sustainable Energy Rev., vol. 100, pp. 143–174, Feb. 2019.

[7] V. Brilliantova and T. W. Thurner, “Blockchain and the future of
energy,” Technol. Soc., Nov. 2018.

[8] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba,
“Blockchain technology innovations,” in 2017 IEEE Technology
Engineering Management Conference (TEMSCON), 2017, pp. 137–
141.

[9] S. Olnes and A. Jansen, “Blockchain Technology As Infrastructure in
Public Sector: An Analytical Framework,” in Proceedings of the 19th
Annual International Conference on Digital Government Research:
Governance in the Data Age, 2018, pp. 77:1–77:10.

[10] M. A. Khan and K. Salah, “IoT security: Review, blockchain
solutions, and open challenges,” Future Gener. Comput. Syst., vol.
82, pp. 395–411, May 2018.

[11] T. D. Smith, “The blockchain litmus test,” in 2017 IEEE International
Conference on Big Data (Big Data), 2017, pp. 2299–2308.

[12] H. Hou, “The application of blockchain technology in E-government
in China,” in 2017 26th International Conference on Computer
Communications and Networks, ICCCN 2017, 2017.

[13] Z. Shae and J. J. P. Tsai, “On the Design of a Blockchain Platform for
Clinical Trial and Precision Medicine,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems
(ICDCS), 2017, pp. 1972–1980.

[14] P. Tasatanattakool and C. Techapanupreeda, “Blockchain: Challenges
and applications,” in 2018 International Conference on Information
Networking (ICOIN), 2018, pp. 473–475.

[15] F. Wessling, C. Ehmke, M. Hesenius, and V. Gruhn, “How Much
Blockchain Do You Need? Towards a Concept for Building Hybrid
DApp Architectures,” 2018 IEEE/ACM 1st International Workshop
on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pp. 44–47, 2018.

[16] F. Tian, “An agri-food supply chain traceability system for China
based on RFID amp;amp; blockchain technology,” in 2016 13th
International Conference on Service Systems and Service
Management (ICSSSM), 2016, pp. 1–6.

[17] D. Tse, B. Zhang, Y. Yang, C. Cheng, and H. Mu, “Blockchain
application in food supply information security,” in 2017 IEEE
International Conference on Industrial Engineering and Engineering
Management (IEEM), 2017, pp. 1357–1361.

[18] A. Alketbi, Q. Nasir, and M. A. Talib, “Blockchain for government
services — Use cases, security benefits and challenges,” in 2018 15th
Learning and Technology Conference (L T), 2018, pp. 112–119.

[19] T. Aste, P. Tasca, and T. Di Matteo, “Blockchain Technologies: The
Foreseeable Impact on Society and Industry,” Computer , vol. 50, no.
9, pp. 18–28, 2017.

96Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 111 / 241

[20] L. Mertz, “(Block) Chain Reaction: A Blockchain Revolution Sweeps
into Health Care, Offering the Possibility for a Much-Needed Data
Solution,” IEEE Pulse, vol. 9, no. 3, pp. 4–7, 2018.

[21] C. Elsden, A. Manohar, J. Briggs, M. Harding, C. Speed, and J. Vines,
“Making Sense of Blockchain Applications: A Typology for HCI,” in
Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, 2018, pp. 458:1–458:14.

[22] J. Lin, Z. Shen, A. Zhang, and Y. Chai, “Blockchain and IoT Based
Food Traceability for Smart Agriculture,” in Proceedings of the 3rd
International Conference on Crowd Science and Engineering, 2018,
pp. 3:1–3:6.

[23] J. F. Galvez, J. C. Mejuto, and J. Simal-Gandara, “Future challenges
on the use of blockchain for food traceability analysis,” Trends
Analyt. Chem., vol. 107, pp. 222–232, Oct. 2018.

[24] C. Xie, Y. Sun, and H. Luo, “Secured Data Storage Scheme Based on
Block Chain for Agricultural Products Tracking,” Proceedings - 2017
3rd International Conference on Big Data Computing and
Communications, BigCom 2017, pp. 45–50, 2017.

[25] N. Fotiou and G. C. Polyzos, “Smart Contracts for the Internet of
Things: Opportunities and Challenges,” in 2018 European Conference
on Networks and Communications (EuCNC), 2018, pp. 256–260.

[26] E. Karafiloski and A. Mishev, “Blockchain solutions for big data
challenges: A literature review,” in IEEE EUROCON 2017 -17th
International Conference on Smart Technologies, 2017, pp. 763–768.

[27] C. F. Liao, S. W. Bao, C. J. Cheng, and K. Chen, “On design issues
and architectural styles for blockchain-driven IoT services,” 2017
IEEE International Conference on Consumer Electronics - Taiwan,
ICCE-TW 2017, pp. 351–352, 2017.

[28] B. A. Tama, B. J. Kweka, Y. Park, and K. Rhee, “A critical review of
blockchain and its current applications,” in 2017 International
Conference on Electrical Engineering and Computer Science
(ICECOS), 2017, pp. 109–113.

[29] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-oriented
software engineering: Challenges and new directions,” Proceedings -
2017 IEEE/ACM 39th International Conference on Software
Engineering Companion, ICSE-C 2017, pp. 169–171, 2017.

[30] D. K. Tosh, S. Shetty, X. Liang, C. Kamhoua, and L. Njilla,
“Consensus protocols for blockchain-based data provenance:
Challenges and opportunities,” in 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference,
UEMCON 2017, 2018, vol. 2018-Janua, pp. 469–474.

[31] T. Moura and A. Gomes, “Blockchain Voting and its effects on
Election Transparency and Voter Confidence,” pp. 574–575, 2017.

[32] T. Antipova, “Using blockchain technology for government auditing,”
Iberian Conference on Information Systems and Technologies, CISTI,
vol. 2018-June, pp. 1–6, 2018.

[33] I. Makhdoom, M. Abolhasan, H. Abbas, and W. Ni, “Blockchain’s
adoption in IoT: The challenges, and a way forward,” Journal of
Network and Computer Applications, vol. 125, pp. 251–279, Jan.
2019.

[34] P. Zhang, M. A. Walker, J. White, D. C. Schmidt, and G. Lenz,
“Metrics for assessing blockchain-based healthcare decentralized
apps,” in 2017 IEEE 19th International Conference on e-Health
Networking, Applications and Services (Healthcom), 2017, pp. 1–4.

[35] N. Rifi, E. Rachkidi, N. Agoulmine, and N. C. Taher, “Towards using
blockchain technology for eHealth data access management,” in 2017
Fourth International Conference on Advances in Biomedical
Engineering (ICABME), 2017, pp. 1–4.

[36] Z. Alhadhrami, S. Alghfeli, M. Alghfeli, J. A. Abedlla, and K. Shuaib,
“Introducing blockchains for healthcare,” in 2017 International
Conference on Electrical and Computing Technologies and
Applications (ICECTA), 2017, pp. 1–4.

[37] N. Fabiano, “Internet of things and blockchain: legal issues and
privacy. The challenge for a privacy standard,” in Proceedings - 2017
IEEE International Conference on Internet of Things, IEEE Green
Computing and Communications, IEEE Cyber, Physical and Social
Computing, IEEE Smart Data, iThings-GreenCom-CPSCom-
SmartData 2017, 2018, vol. 2018-Janua, pp. 727–734.

[38] S. R. Niya, S. S. Jha, T. Bocek, and B. Stiller, “Design and
implementation of an automated and decentralized pollution
monitoring system with blockchains, smart contracts, and
LoRaWAN,” IEEE/IFIP Network Operations and Management
Symposium: Cognitive Management in a Cyber World, NOMS 2018,
pp. 1–4, 2018.

[39] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “BlocHIE: A
BLOCkchain-Based Platform for Healthcare Information Exchange,”
in 2018 IEEE International Conference on Smart Computing
(SMARTCOMP), 2018, pp. 49–56.

[40] M. Foth, “The Promise of Blockchain Technology for Interaction
Design,” in Proceedings of the 29th Australian Conference on
Computer-Human Interaction, 2017, pp. 513–517.

[41] F. R. Batubara, J. Ubacht, and M. Janssen, “Challenges of blockchain
technology adoption for e-government: A systematic literature
review,” in ACM International Conference Proceeding Series, 2018.

97Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 112 / 241

Denoising Autoencoder with Dropout based Network Anomaly Detection

Safa Mohamed

Research Team in intelligent Machines

National Engineering School of Gabes Tunisia

Omar Ibn El Khattab, Avenue Zrig 6072

e-mail: safamohamed280@yahoo.fr

Ridha Ejbali, Mourad Zaied

Research Team in intelligent Machines

National Engineering School of Gabes Tunisia

Omar Ibn El Khattab, Avenue Zrig 6072

e-mail: ridha_ejbali@ieee.org, mourad.zaied@ieee.org

Abstract—A Network Intrusion Detection System (NIDS) plays

an important role in ensuring information security. It helps

system administrators identify and detect malicious activities

in their companies. Many techniques have been devised by

researchers to achieve reliable detection of anomalies. It is thus

a challenging task to determine a network anomaly more

accurately. To solve this problem, we propose a Denoising-

Autoencoder (DAE) with a Dropout based network anomaly

detection method because it forces the extraction of intrinsic

features so as to increase the detection accuracy. A popular

NSL-KDD dataset is used for the training and evaluation of

our approach. The performance of our approach takes into

consideration different metrics such accuracy, precision, recall,

f-measure values and the detection rate. Experimental results

show that our approach performs better than other detection

methods, especially when we use a single hidden layer with 8

neurons.

Keywords-Anomaly detection; NIDS; Denoising

Autoencoder; NSL-KDD.

I. INTRODUCTION

 The advent of networks offers immense services to
users. Because these services are subject to several attacks
and security mechanisms, it is necessary to protect them.
Intrusion detection is one major research problem in network
security, aiming at identifying unusual access or attacks to
secure internal networks. In fact, an intrusion refers to any
unauthorized access or misuse of information resources.

There are various systems designed to block attacks. We
particularly cite the Network Intrusion Detection System
(NIDS). A NIDS is security tools that, like other measures
such as antivirus software, firewalls and access control
schemes, are intended to strengthen the security of
information and communication systems. It monitors and
analyzes the network traffic entering into or exiting from the
network devices of a company and raises alarms if an
intrusion is observed [1].

Based on the methods of intrusion detection, NIDS can
be classified into 2 types: Signature based NIDS (SNIDS)
and Anomaly detection based NIDS (ADNIDS) [2].

The SNIDS, e.g. Snort (www.snort.org), is used to
identify attacks in a form of signature or pattern. It uses the
known pattern to detect attacks; the main disadvantage is that
it fails to identify any unknown attacks to the network or
system. In contrast, ADNIDS determines a normal network
activity like the sort of bandwidth generally used, the

protocols used, the ports and devices that generally connect
to each other and alert the administrator or user when an
anomalous (not normal) traffic is detected and it requires an
understanding of what “normal” is [2]. However, they have
the disadvantage of having high false positive rates, which
can make the detector useless in practical areas. Analyzing
and detecting anomalies is important because it reveals
useful information about the characteristics of the generation
process data.

Many NIDSs perform a feature selection task to extract a
subset of relevant features from the traffic. Dimensionality
reduction based anomaly detection method is one of the
popular detection methods. It is based on the assumption that
the features of normal data are correlated with each other [3].
In this respect, Principal Component Analysis (PCA) based
methods belong to this method of detecting anomalies [4].
However, PCA is a linear transformation, which fails to
capture the non-linear correlations between features [5].

With an increasing amount of features, the data have
supplementary complicated nonlinear structures. As a
solution to this weakness, Kernel Principal Component
Analysis (KPCA) is used to generalize PCA to nonlinear
dimensionality using techniques of kernel methods [6].

Recently, the Autoencoder (AE) is a novel
dimensionality reduction method that uses unsupervised
neural networks. It can find the optimal subspace, which
captures the non-linear correlations between features [1]. For
this reason, we propose a Denoising Autoencoder with
Dropout based network anomaly detection of an extension of
the basic AE and represent a stochastic version of it used to
perform dimensionality reduction and force the extraction of
intrinsic features. We use the NSL-KDD [7] dataset, with a
separate training and testing set to evaluate their
performances.

The rest of this paper is organized as follows: Section 2
presents the context of our work. In Section 3, we present
our approach or methodologies. In Section 4, we present the
evaluation and analyze the results. Section 5 concludes and
suggests future works to be adopted later.

II. LITERATURE REVIEWS

 Anomaly detection is applied in traffic detection, Card
fraud detection, abnormal crowd behavior detection and
network intrusion detection [8]. The widely-used anomaly
detection methods can be divided into the following
categories: Classification based methods, nearest neighbor-

98Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 113 / 241

based methods, Clustering based methods, Statistic based
methods and Dimensionality Reduction based methods
[3][8].

Classification based methods learn a model from labeled
data and then classify testing data into one of the classes
using the learnt model. Nearest neighbor based methods
show that normal data have relatively more neighbors than
the anomalous data requiring a distance measurement to
evaluate the resemblance between a testing sample and its
neighborhoods. Clustering based methods group
homogenous data into one cluster and suppose the outliers
far away from their closest cluster center. Statistics based
methods shape well a statistical model using the given
training data and then apply a statistical inference to decide
whether an unseen instance is an outlier or not.
Dimensionality reduction based methods utilize the
reconstruction error to classify the anomalies. PCA are an
effective preprocessing method before anomaly detection
[9].

Lakhina et al. [10] proposed a new hybrid algorithm;
Principal Component Analysis Neural Network Algorithm
(PCANNA) is used to reduce the number of computer
resources, both memory and CPU time required to detect
attacks. Ibraheem et al. [11] presented an intrusion detection
model based on PCA and MLP to recognize an attack from
normal connections. Ikram et al. [12] developed an intrusion
detection model by using PCA as the dimensionality
reduction technique and SVM as the classifier. Elkhadir et al.
[6] compared the performance between (PCA) and (KPCA)
in order to construct robust IDS with the highest anomaly
detection rate. Experimental results showed that KPCA are
more efficient than PCA. Paula et al. [13] proved that the AE
can detect delicate anomalies and linear PCA fails to detect
without corrupting the quality of the detecting performance.
Sakurada et al. [4] proposed a comparison between the use of
AE, PCA and KPCA in the anomaly detection task.
Experimental results showed that AE is the most efficient
and it can increase their accuracy by extending them to DAE.

For improved dimensionality reduction and better
detection rate, we propose to use DAE with a Dropout that
makes more objective and principled anomaly score than the
reconstruction error of PCA and KPCA based method.

III. PROPOSED METHODOLOGIES

In this section, we present the different steps followed to
reach our approach.

A. AE to DEA

AE is a specific type of feedforward neural networks
where the input is the same as the output. AE aims to learn a
compressed representation of data with minimum
reconstruction loss [14]. It consists of 3 components:
encoder, code and decoder [15]. The encoder compresses the
input and produces the code; the decoder then reconstructs
the input only by using this code (see Figure 1).

Keeping the code layer forced our AE to learn an
intelligent representation of the samples. There is another
way to force the AE to learn useful features. It is adding
random noise to its inputs and making it recover the original

noise-free data. This way the autoencoder can’t simply copy
the input to its output because the input also contains random
noise. We order it to subtract the noise and produce the
underlying meaningful data. This is called a DAE [9] (see
Figure 2).

Figure 1. Autoencoder.

Figure 2. Denoising Autoencoder.

B. DEA with Dropout- Based Anomaly Detection

 “Dropout” is a technique that aims to discourage brittle
co- adoptions of hidden unit feature detectors. It can also be
interpreted as a way of regularizing a neural network by
adding noise to its hidden units [16]. The choice of which
units to drop is random. In the simplest case, each unit is
retained with a fixed probability p independent of other units,
where p can be chosen using a validation set or can simply
be set at 0.5 [17]. In our method, the Dropout (noise) is
applied to the input layer of the Denoising Autoencoder.

We propose using a DEA with Dropout based anomaly
detection method for only intrusion detection that is a
deviation base anomaly detection method whose training
here only contains instances for the normal instances of
traffic without labeling. It uses the reconstruction error as the
anomaly score. Our NSL-KDD dataset used consists of
different steps such as the Numericalization and
Normalization. These two steps were performed for both
NSL-KDD train and test datasets. Later, the train dataset is
used to train the DEA with Dropout. Our method is tested
with test dataset and the results were analyzed (see Figure 3).
The detailed development process is provided in the
following sub-section.

Input

layer

Code

Output
layer

Input

layer
Noise Noisy

Input Code

Output

layer

99Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 114 / 241

Figure 3. Denoising Autoencoder with Dropout-based anomaly detection

method.

C. NSL-KDD Dataset

NSL-KDD is an improved and reduced version of the
KDD Cup 99 dataset. The KDD Cup dataset was prepared
using the network traffic captured by 1998 DARPA IDS
evaluation program [13]. It is continuously an index which
is used to compare the NIDS models in common researches
[7]. In the latest literature, all the researchers use the NSL-
KDD as the benchmark dataset [18]. It includes 125,973
network traffic samples in the KDDTrain+ Dataset and
22,554 network traffic samples in the KDDTest+ Dataset. In
each record, there are 41 attributes unfolding different
features of the flow and a label is assigned to each sample
either as an attack type or as a normal type. The features
include 10 basic features (1- 10), 12 content features (11 -
22), and 18 traffic features (23 -.41) as shown in (Table I).

Apart from normal data, records for 39 different attack
types exist in NSL-KDD dataset. All these attack types were
grouped into four attack classes:

 DOS (Denial of Service): an attacker tries to
prevent legitimate users from using a service.

 Probe: an attacker tries to find information about the
target host.

 U2R (User to Root): an attacker has local account
on victim’s host and tries to gain the root privileges

 R2L (Remote to Local): an attacker does not have
local account on the victim host and try to obtain it.

The summary of the attack classes and their attack types
is given in (Table II).

TABLE I. FEATURES IN NSL-KDD [19]

TABLE II. ATTACK TYPES IN NSL –KDD DATASET [20]

D. Pre-processing

Before proceeding to experimental work, the NSL-KDD
data sets first went through a data preprocessing operation
and attribute a type of conversion by following the steps
described in the following part:

1) Numericalization: The features 2, 3 and 4 namely the
protocol_ type, service and flag were non-numerical. The
input value of the Denoising AE should be a numeric matrix.
We must convert these features into numeric form in the
train and test data set. ‘tcp’,’udp’and ‘icmp’and its numeric
values are encoded as binary vectors (1, 0, 0), (0, 1, 0) and
(0, 0, 1). Similarly, the feature ‘service’ has 70 types of
attributes, and the feature ‘flag’ has 11 types of attributes.
Continuing in this way, we obtain a 41 dimensional feature
map into 122 dimensional features after transformation.

Type

Features

Nominal

2,3,4

Binary

7,12,14,15,21,22

Numeric

1,5,6,9,10,11,13,16,17,18,19,20,23,24,25,26,27,28,
29,30,31,

32, 33,34,35,36,37,38,39,40,41

Attack
Class

Training Set

Testing Set

DOS

Back, Land,
Neptune, Pod, Smurf, ,

Teardrop

Back, Land, Neptune, Pod,
Smurf Teardrop, mailbomb,

Apache 2, Udpstorm,
Processtable, Worm

R2L

Guess_Password,
Ftp_write, Imap, Phf,

Multihop, Waremaster,

Warezclient, Spy

Guess_Password, Ftp_write,
Imap, Phf, Multihop,

Waremaster, Spy, Xlock,
Xsnoop, Snmpguess,

Snmpgetattack, Httptunnel,

Sendfmail, Named

U2R

Buffer_overflow,
Loadmodule, Perl,

Rotkit

Buffer_overflow,
Loadmodule, Rotkit, Perl,

Sqlattack, Xterm, Ps

PROBE

Satan, Ipsweep,
Nmap, Portsweep

Satan, Ipsweep, Nmap,
Portsweep, Mscan, Saint

NSL- KDD Dataset

Pre-processing

Numericalization

Normalization

DEA with Dropout training and

validation with normal traffic (sample)

 DEA with Dropout testing with attacks

those are not available in training sample

Detection results

100Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 115 / 241

2) Normalization: The values obtained after the

operation of the numericalization are very varied and

constitute a big interval. Some attributes take great values

(1, 5 and 6) (duration, src_bytes, dst_bytes) while others

take only small values. To help them accord to same

features, we apply the logarithmic scaling method. Finally,

the value of every feature is mapped to the [0, 1] using min-

max where max denotes the maximum value and min

denotes minimum value for each feature.





E. Methodology

In this approach, we implemented a DEA with Dropout
on the inputs. It consists of an input layer of 122 neurons due
to the fact that the number of features for each sample is 122
followed by a Dropout layer with a fixed probability p= 0.5
and a single hidden layer with different number of neurons
such as (8, 16, 24 and 32) units so the hidden representation
of the autoencoder has a compression ratio of 122 to (8, 16,
24 o and 32) forcing it to learn interesting patterns and
relations.
Finally, there is an output layer of 122 units; the activation of
both the hidden layer and the output layer is the “Relu”
function.

The training set has 125973 rows, but the DEA was
trained using only the samples labeled “Normal” to capture
the nature of normal behavior , and this was accomplished by
training the model to minimize the mean squared error
between its output and its input. We use 67343 samples
labeled “Normal” with 60608 are used for training. The
model is trained for 20 epochs using an Adam optimizer with
a batch size of 150. Furthermore, we held out 6735 for
validation that refer to 10% of the normal training samples to
validate the model.

IV. EVALUATION AND RESULT ANALYSIS

The model performs anomaly detection by calculating the
reconstruction error of samples since the model was trained
using normal data samples. Only the reconstruction error of
samples that represent attacks should be relatively high
compared to the reconstruction error of normal data samples.
This intuition allows us to detect attacks by setting a
threshold for the reconstruction error. If a data sample has a
reconstruction error higher than the preset threshold then the
sample is classified as an attack. Otherwise, it’s classified as
normal traffic.

A. Evaluation Based on Training and Data Validation

For the choice of a threshold, two values can be helpful
to guide the process. Concerning the model loss over the
training data and over the validation data, we found by
experiment that a choice around these values produces
acceptable results. For our experiments, we use the model
loss over the training data as a threshold.

In Table III, we present the val_loss for 3 epochs using a
single hidden layer with different neurons.

TABLE III. VAL_ LOSS IN 3 EPOCHS

Single

hidden

layer

Epoch 1/20

Epoch 2/20

Epoch 3/20

32

neurons

loss: 0.0334

val_loss:

0.014

loss: 0.0128

val_loss:

0.0094

loss: 0.0102

val_loss:

0.0077

24

neurons

loss: 0.0316
val_loss:

0.0133

loss: 0.0124
val_loss:

0.0091

loss: 0.0101
val_loss:

0.0075

16

neurons

loss: 0.0335

val_loss:

0.0160

loss: 0.0139

val_loss:

0.0103

loss: 0.0096

val_loss:

0.0073

8

neurons

loss: 0.0339
val_loss:

0.0184

loss: 0.0160
val_loss:

0.0127

loss: 0.0129
val_loss:

0.0107

B. Evaluation Based on Test Data

In the section, we evaluate the performance over the test
dataset which includes 22543 rows, 37 different attacks and
one normal label that refers to 12832 for normal samples and
9711 for attack samples. The calculated losses are a helper
function that accepts the original features and the predicted
features and relies on the reconstruction loss of each data
sample. Afterwards, each data sample is classified according
to its reconstruction error and the preset threshold.
The nature of this approach is purely for anomaly detection.
We evaluate the performance of DEA based anomaly
detection on the following metrics

 Accuracy (A): Defined as the percentage of correctly
classified records over the total number of records.

 A=

 (2)

 Recall (R): Defined as the % ratio of number of true
positives records divided by the sum of true positives
and false negatives (FN) classified records.

 (3)

 Precision (P): Defined as the % ratio of the number
of true positives (TP) records divided by the sum of
true positives (TP) and false positives (FP)
classified.

 (4)

101Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 116 / 241

 F-measure (F): The harmonic average F combines
recall and precision in a number between 0 and 1.

 (5)

TABLE IV. EVALUATION METRICS

Single

hidden

layer

Accuracy

Recall

Precision

F-

measure

32

neurons

89.13%

94.07%

87.72%

90.78%

24

neurons

89.65%

95.66%

87.36%

91.32%

16

neurons

89.90%

96.61%

87.07%

91.59%

8

neurons

90.32%

95.04%

88.12%

91.85%

From Table IV, we can see that our results have

demonstrated that our approach offers high levels of
accuracy, recall, precision and F-measure especially when
we use a little number of neurons (8 neurons) in a hidden
layer. In addition, in the 4 metrics, our method is evaluated
according to a Detection rate (see Table V).

TABLE V. DETECTION RATE

Single

hidden

layer

Normal

DOS

R2L

U2R

PROBE

32

neurons

17.40%

92.48%

93.72%

77.61%

99.95%

24

neurons

18.29%

93.07%

99.11%

100%

99.87%

16

neurons

18.95%

94.60%

99.26%

98.50%

99.91%

8 neurons

22.27%

95.80%

98.85%

100%

99.91%

Table V illustrates the detection rate for every type of

attacks (DOS, U2R, R2L and PROBE) and normal data. The
process of detecting anomalies using our Denoising
autoencoder with dropout method produced a high detection
rate. We can see that for testing data, U2R attack is detected
with a rate of 100% using 8 and 24 neurons in a hidden layer.
Also, we can note that DOS and PROBE attacks are highly
detected with a rate of 95.80% (8 neurons) and 99.95 %.(32
neurons). R2L is also well identified as attacks with 99.26%
(16 neurons). In contrast, the normal data are not well
detected with a maximum rate of 22.27%.
These detection rates were better that the results produced by
Elkhadir et al. [6] when using PCA and KPCA for detection
of anomalous connection in NSL- KDD dataset (see Table
VI).

TABLE VI. ATTACK’S DETECTION RATE OF PCA AND KPCA [6]

Method DOS R2L U2R PROBE

PCA 90.35% 93.6% 87.2% 85.15%

KPCA 90.2% 92.6% 87.25% 85.45%

Finally, according to the 5 metrics previously mentioned

to evaluate the performance of DEA based anomaly
detection; the best result is obtained when we used a single
hidden layer with 8 neurons.

V. CONCLUSION AND FUTURE WORK

 In this approach, we attempted to develop a Denoising
Autoencoder with Dropout-based network anomaly detection
method for improving intrusion detection. This method was
trained only using normal traffic. The strength of this
approach is its simplicity. It consists of only a single hidden
layer with different neurons making it very easy to train. In
terms of detection rates, our approach outperforms many
methods in the existing literature.
In future work, we can build and evaluate a model with
many hidden layers.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial
support of this work by grants from General Direction of
Scientific Research (DGRST), Tunisia, under the ARUB
program.

REFERENCES

[1] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning

approach for network intrusion detection system,”
In Proceedings of the 9th EAI International Conference on
Bio-inspired Information and Communications Technologies
(formerly BIONETICS), (ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering), pp. 21-26, 2016.

[2] B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady, “ Multiple
self-organizing maps for intrusion detection,” In Proceedings
of the 23rd national information systems security conference,
pp. 16-19, 2000.

[3] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-
based network anomaly detection,” Wireless
Telecommunications Symposium (WTS), pp. 1-5, 2018.

[4] M. Sakurada and T. Yairi, ”Anomaly detection using
autoencoders with nonlinear dimensionality
reduction,” Proceedings of the MLSDA 2014 2nd Workshop
on Machine Learning for Sensory Data Analysis, ACM, 2014.

[5] S. Heni, R. Ejbali, M. Zaied, and C. B. Amar, “A Neural
Principal Component Analysis for text based documents
keywords extraction,”3rd International Conference on Next
Generation Networks and Services (NGNS), pp. 112-115,
2011.

[6] Z. Elkhadir, K. Chougdali, and M. Benattou, “Intrusion
Detection System Using PCA and Kernel PCA Methods,”
IAENG International Journal of Computer Science, 2016.

[7] S. Revathi, and A. Malathi, “A detailed analysis on NSL-
KDD dataset using various machine learning techniques for
intrusion detection,” International Journal of Engineering

102Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 117 / 241

Research & Technology (IJERT), vol. 2, no 12, pp. 1848-
1853, 2013.

[8] D. Hou, Y. Cong, G. Sun, J. Liu, and X.Xu, “Anomaly
detection via adaptive greedy model,” Neurocomputing, vol.
330, pp. 369-379, 2019.

[9] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A.
Manzagol, ”Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion,” vol.11, no Dec, pp. 3371-3408, 2010.

[10] S. Lakhina, S. Joseph, and B. Verma, “Feature Reduction
Using Principal Component Analysis for Effective Anomaly–
Based Intrusion Detection on NSL-KDD,” International
Journal of Engineering Science and Technology ,Vol. 2(6),
pp.1790-1799, 2010.

[11] N. B. Ibraheem , M. M. Jawhar, and H. M. Osman, “Principle
Components Analysis and Multi Layer Perceptron Based
Intrusion Detection System,” AL-Rafidain Journal of
Computer Sciences and Mathematics, vol. 10, no 1, pp.127-
135, 2013

[12] S.T Ikram and A. K. Cherukuri, “Improving accuracy of
intrusion detection model using PCA and optimized SVM,”
Journal of computing and information technology, vol. 24, no
2, pp. 133-148, 2016.

[13] E. L. Paula, M. Ladeira, R. N. Carvalho, and T.Marzagao,
“Deep learning anomaly detection as support fraud
investigation in brazilian exports and anti-money laundering,”
In 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 954-960, 2016.

[14] M. Gnouma, A. Ladjailia, R. Ejbali, and M. Zaied, “Stacked
.sparse autoencoder and history of binary motion image for

human activity recognition,” Multimedia Tools and
Applications, vol. 78, no 2, pp .2157-2179, 2019.

[15] S. Said et al. ,”Deep wavelet network for image
classification,” IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2016.

[16] A. ElAdel, R. Ejbali, M. Zaied, and C. B. Amar, “Fast deep
neural network based on intelligent dropout and layer
skipping,” IEEE International Joint Conference on Neural
Networks (IJCNN), pp. 897-902, 2017.

[17] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep
neural networks for LVCSR using rectified linear units and
dropout,” IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 8610-8613, 2013D.
Kornack and P. Rakic, “Cell Proliferation without
Neurogenesis in Adult Primate Neocortex,” Science, vol. 294,
Dec. 2001, pp. 2127-2130, doi:10.1126/science.1065467.

[18] Y. Ding and Y. Zhai, “Intrusion Detection System for NSL-
KDD Dataset Using Convolutional Neural Networks,”
In Proceedings of the 2018 2nd International Conference on
Computer Science and Artificial Intelligence, pp. 81-85,
2018.

[19] C.YIN, Y. Zhu, J. Fei, and X. He, “A deep learning approach
for intrusion detection using recurrent neural networks, “ Ieee
Access, vol. 5, pp. 21954-219, 2017.

[20] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and
M.Ghogho,”Deep learning approach for network intrusion
detection in software defined networking,” IEEE International
Conference on Wireless Networks and Mobile
Communications (WINCOM), 2016.

103Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 118 / 241

i* (iStar) Security Hierarchy for Cloud Computing

Fiza Saher Faizan
National University of Sciences

and Technology (NUST),
Islamabad, Pakistan

fiza.saher@yahoo.com

Seemab Latif
National University of Sciences

and Technology (NUST),
Islamabad, Pakistan

seemab.latif@seecs.edu.pk

Rabia Latif
College of Computer and

Information Sciences, Prince
Sultan University, Saudi Arabia

rlatif@psu.edu.sa

Abstract— The world is advancing with the Cloud Computing
technology. The aim of Cloud Computing is to provide
improved usage of distributed resources like networks, servers,
storage applications, and services. With the advancement,
there are some risks involved as well. Whenever a cloud-system
is being developed, an entity should be there, which looks-after
security threats that may arise for the system. This entity is
proposed in this research work and named as “Guard”. A
framework is proposed, which can elicit functional
requirements, as well as security requirements of the system.
Online-banking case study is used to verify the proposed
framework. To accomplish the task, a survey is also conducted
and then results are analyzed from survey to propose a
framework. The evaluation result of the proposed framework
shows that the system will be protected from multiple security
risks of cloud computing.

Keywords- Requirement Engineering; Cloud Computing;
iStar.

I. INTRODUCTION
Banking is the term that is used everywhere nowadays.

With the huge involvement of banking in the period of
technology, the think-tankers of every bank are trying to
cope with the technology to beat their competitors.
Therefore, moving towards cloud computing is the new era
in the field of banking i.e., online-banking, as well as a great
challenge for financial institutions because there are many
issues that need to be resolved in cloud computing such as
security issues [1].

Security is a major concern in the field of cloud
computing [2]. Security leads towards the loss of cloud
customer’s trust on cloud providers as Forrester Research
Consultants did survey of 11 merchant companies offering
cloud services concluded that most cloud customers or
stakeholder’s needs do not meet with the result of the cloud
service provider, which causes the loss of customer or
stakeholder trust [3][4]. Therefore, if good requirement
engineering is performed when transforming the traditional
system to the cloud system then security issues can be
predicted and resolved during development [5][6].

This paper proposes a framework to identify security
issues that can be faced by the developers of the cloud
system. The rest of this paper is organized as follows.
Section II describes the literature review. Section III
describes the research methodology. Section IV presents

proposed iStar Security hierarchy. Section V presents results
and analysis. And finally research is concluded in Section VI
with the future work.

II. LITERATURE REVIEW
According to the Cloud Security Alliance (CSA) reports,

security is the major concern in cloud computing [8][9][10].
Figure 1 shows the statistics of these reports.

Useof
Planning$
toUse
25%$

Flexible$
Scalability$
15%$

Availabilit
y$

16%$

Cost$
Reduction$
14%$

Security$
Concern$
30%$

Figure 1: Statistics on Spotlight Reports by CSA

By keeping these reports in view, those techniques are

considered in the literature review, which falls in the
following four factors:

1) Focused on functional requirements
2) Focused on non-functional requirements
3) Elicits security requirements
4) Inconsistency in technique, which means that

technique, persists only for the defined domain.

Therefore, 11 requirements engineering techniques/

methodologies are identified during the literature review and
hence they are compared with each other using the above-
mentioned factors. This comparative analysis is shown in
Table 1.

 119 / 241

TABLE I: COMPARATIVE ANALYSIS OF REQUIREMENT
ENGINEERING TECHNIQUES FOR CLOUD COMPUTING

Frameworks/Techniques 1 2 3 4
Crowd-Centric RE [11] ! " " "
UML based Structure [12] ! ! ! "
Improved RE Framework [6] ! " " "
Fuzzy Galois Lattice [13] ! " " "
i* (iStar) [14] ! " " !
Security Requirement Engineering and
Mechanism [15] " ! ! !

Cloud Framework [16] ! " " "
Security Requirement Elicitation
Technique [17] " ! ! "

Cloud Framework [18] " ! ! "
Modeling Non-functional Requirements
Technique [19] " ! " !

RE for Developing Business Process
Model Technique [5] ! " " !

It is concluded from the literature review that

requirement engineering has a very significant role in
gathering security requirements for cloud-based systems. For
instance, a framework and/or technique is required to elicit
security requirements. Traditional requirement engineering
techniques are not adequate to elicit the security
requirements of cloud-based systems [4]. Hence, this
research work is conducted to develop a framework used to
elicit the security requirements of cloud-based systems.

III. RESEARCH METHODOLOGY
This research work is based on qualitative research

methodology that includes descriptive and case study
research methodologies.

To accomplish this research work, a literature review has
been conducted to identify all RE techniques and methods
used in cloud system development. This literature review is
based on the methodology described by Kitchenham [7].
From the literature review, research questions are identified
and according to the identified research questions, existing
techniques are analyzed to accomplish this research work.
After analyzing techniques, an on-ground survey has been
performed in which multiple banks are involved to gather the
information. The results of the survey are then merged into
i* hierarchy and hence the proposed framework is obtained.

The proposed framework has been implemented in a case
study. The existing RE techniques and the proposed
framework are compared with respect to the factors, which
will be discussed in the Section 5. These factors are
considered according to domain area of research i.e.,
requirement elicitation technique to resolve security issues in
the cloud-based system, which may arise after the execution
of the system.

IV. ISECURITY HIERARCHY
The proposed framework is grounded on two techniques

i* Hierarchy and Security Requirement Elicitation and
Assessment Mechanism (SecREAM) [14][15]. SecREAM is
used to find the security threats, which can weaken the cloud
system that is being developed for banking. The results are
then merged into i* hierarchy, which shows the elicitation of

functional, as well as security requirements for online
banking. Figure 2 shows the main i* Security Hierarchy. In
i* hierarchy three layers are involved as shown in Figure 2.
According to the case study, banks and cloud providers are
the main actors of the hierarchy, and a guard is the new actor
introduced in this research work and plays a vital role
because the purpose of this actor is to locate security
requirements with functional requirements at each layer.

On the layer of directors, the goal of Guard is to provide
security to online banking. On the manager layer, its goal is
to provide security requirements to the bank operational
manager and cloud provider manager, as well as an actor
working parallel to it at the administration layer. At this
layer, the guard finds the assets of the system then finds what
security parameters belong to these assets. Afterward, it
generates misuse cases against parameters and stores them in
the security pool so that the system would be secure. Table 2
gives indicated requirements by these parameters, and these
are the result of SecREAM.

TABLE II: PARAMETERS AND SECURITY REQUIREMENTS

Parameters Security Requirements

Authentication How do account details access?
How do account is protected from unauthorized
access?

Authorization The customer views his account details.
What things he has allowed?
What if he tries to view other things?

Availability How much downtime is allowed for the system?
When the downtime prolongs then what system
should do?

Maintainability Does a system backup it’s data?
When the last up-gradation of account details has
been done?
Which architecture is provided by the service
provider?

Configurability How did an online-banking service provide to the
customers either through mobile applications or
web services?

Scalability Does the system allow upgrading to meet
technological changes?

Integrity Does data encrypt?
Who will decrypt the data and how?
Is digital signature allowed customers to add on
their account?

With respect to the case study, the assets of online

banking are data storage and data processing and their
parameters are authentications, authorization, availability,
maintainability, configuration, scalability, and integrity.
Forouzan says that these are the security parameters of any
system, which may be targeted by an attacker hence security
requirements are derived from these parameters [20]. Figure
3 illustrates the working of Guard at the manager's layer. On
the administrator layer, its goal is to provide security
parameters to the respective actors to be deployed. The
working of an actor guard at the administration layer is
elaborated in Figure 4. It analyzes what security parameters
according to the requirements are deployed on the system
and then fetches new security parameters from the pool to be
deployed.

 120 / 241

Figure 3: i* Hierarchy “Strategic Rationale of Guard at Manager Layer”

Figure 4: i* Hierarchy “Strategic Rationale of Guard at Administration

Layer”

i* hierarchy is goal-oriented and SecREAM is asset-based
methodology when combine they can elicit requirements
more deeply. SecREAM declares that an asset of the online-
banking system is data storage with security parameters
mentioned in Table 2. i* evaluate these parameters according
to the goal of an actor Guard. For example, at the manager’s
layer Guard finds that authentication is the most critical
security parameter for data storage then it identifies misuse
cases for authentication like “How do account details access?
and How to do account is protected from unauthorized
access?”. Similarly, for scalability “Does system allow to

upgrade to meet technological changes?”. At the layer of
administration, the Guard assures that “How the system will
behave when a fake person access data with authentic
information?” and “What security measures are taken for
software viruses when system upgraded?

V. RESULTS AND ANALYSIS
By comparing CSA report discussed in Section 2 and

security parameters gathered in Table 2, it can be derived
that those security issues can be targeted during the initial
stage of system development i.e., requirements elicitation.
Table 3 shows security threats that are targeted by security
parameters to resolve security issues that might be faced
after the execution of the system.

TABLE III: PARAMETERS AND TARGETED SECURITY

THREATS

Hence, the proposed framework secures the system from

data loss, account hijacking, denial of services, inside attacks
and shared technology issues.

The comparison has been taken between existing
techniques, discussed in the Section 2, and the proposed
framework with respect to the following factors that are
derived based on the research area.

F1. The technique is a traditional methodology.
F2. The technique is used for cloud-based systems.
F3. The technique is focused on functional

requirements for cloud systems.
F4. The technique is focused on non-functional

requirements for cloud systems.
F5. The technique is specifically proposed to elicit

security requirements for cloud computing.

These factors are recorded as following and then

recorded in Table 4:

1) ! (Yes), score points = 1, if paper considered the

factor.
2) " (No), score points = 0, if paper does not consider

the factor.

Parameters Security Threat
Authentication Verification and Permission issues
Authorization Usage and Data Protection from Leakage
Availability Denial of Service
Maintainability Veracity (Accuracy), privacy and backups
Configurability Web Browsers, Protocols, Remote connections
Scalability Technological issues
Integrity Malicious attacks

 121 / 241

TABLE IV: COMPARISON OF FRAMEWORKS
Sr. Techniques F1 F2 F3 F4 F5 SP

T1
Crowd Centric
Requirement
Engineering

! ! " " " 2

T2 UML based Structure ! ! ! " " 3

T3 Improved RE
Framework for Cloud " ! ! " " 2

T4
Requirement
Elicitation Cloud
Framework

! ! ! " " 3

T5

Software Security RE
and Management as
an Emerging cloud
Service

" ! ! " ! 3

T6 Proposed Framework ! ! ! " ! 4

Hence, it is derived that a traditional technique can be
modified to elicit requirements for cloud-based systems. The
proposed framework focused on functional and non-
functional requirements specifically security requirements. In
Figure 5, statistics shows that Techniques 1 and 4 satisfy two
factors and hence secure 2 score points whereas Techniques
2, 3 and 5 satisfy three factors and hence secure 3 score
points. The proposed framework satisfies four factors and
hence secure 4 score points, which are the highest score in
comparison. The proposed framework also satisfies the
factor F4 to some extent because security issues categorized
as a non-functional requirement.

Figure 5: Statistics of Comparison

VI. CONCLUSION AND FUTURE WORK

The proposed framework is based on i* hierarchy and
SecREAM and named as “i* Security Hierarchy”, which
helps to elicit functional requirements with the most
demanding requirement i.e., security requirements. An
online-banking case study is used to manipulate this work.
This framework elicits both functional and non-functional
requirements as security is in the non-functional
requirements category. The proposed framework
concentrates on the requirement elicitation process; hence, it
is not involved in all processes of requirement engineering.

The proposed framework also proves the flexibility of based
techniques.

In the future, the proposed work will be applied to
different domains and make it appropriate to involve all
processes of requirement engineering, which are (i)
requirement analysis, (ii) requirement prioritization and (iii)
requirement specification.

REFERENCES
[1] N. Ikram, S. Siddique, and N. F. Khan, “Security

Requirement Elicitation Techniques: The Comparison of
Misuse Cases and Issue-Based Information Systems”, pp. 36-
43, IEEE 2014.

[2] A. Alshammari, S. Alhaidari, A. Alharbi, and M. Zohdy,
“Security Threats and Challenges in Cloud Computing”,
International Conference on Cyber Security and Cloud
Computing, pp. 46-51, IEEE 2017.

[3] Forrester, TechRadar for infrastructure & operations
professionals, Cloud Computing, Forrester, 2009.

[4] H. Schrodl, and S. Wind, “Requirements Engineering for
Cloud Computing”, Journal of Communication and Computer
Vol. 8 pp. 707-715, 2011.

[5] M. Nosrati, "Exact requirements engineering for developing
business process models," 2017 3th International Conference
on Web Research (ICWR), 2017, pp. 140-147.

[6] M. E. Rana, J. Dauren, and S. Kumaran, "An improved
Requirements Engineering framework for cloud based
application development," 2015 IEEE Student Conference on
Research and Development (SCOReD), 2015, pp. 702-709.

[7] B. A. Kitchenham, “Guidelines for performing Systematic
Literature Reviews in Software Engineering”, 2007.

[8] H. Schulze, “Cloud Security”, Spotlight Report powered by
Cloud Passage Information Security Community on LinkedIn,
2015.

[9] H. Schulze, “Cloud Security”, Spotlight Report powered by
Cloud Passage Information Security Community on LinkedIn,
2016.

[10] H. Schulze, “Cloud Security”, Spotlight Report powered by
Cloud Passage Information Security Community on LinkedIn,
2017.

[11] R. Snijders, F. Dalpiaz, M. Hosseini, A. M. Shahri, and R.
Ali, “Crowd-Centric Requirements Engineering”, IEEE/ACM
International Conference on Utility and Cloud Computing,
2014, pp. 614-615.

[12] M. Ficco, F. Palmieri, and A. Castiglione, “Modeling Security
Requirements for Cloud-based System Development”, Special
issue Paper, 2014, pp. 2107-2124.

[13] I. T. Koitz, and M. Glinz, "A Fuzzy Galois Lattices Approach
to Requirements Elicitation for Cloud Services," in IEEE
Transactions on Services Computing, vol. 11, no. 5, pp. 768-
781, 1 Sept.-Oct. 2018.

[14] Sandfreni, N. R. Oktadini, and K. Surendra, “Requirement
Engineering for Cloud Computing Using i* (iStar) Hierarchy
Method”, International Journal of Information Science and
Applications, 2015, pp. pp 885-890.

[15] R. Goel, M. C. Govil, and G. Singh, “Security Requirements
Elicitation and Assessment Mechanism (SecREAM)”, IEEE

 122 / 241

International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2015, pp. 1862-
1866.

[16] J. Vijayashree, P. U. Ivy, and J. Jayashree, “Requirement
Elicitation Framework for Cloud Applications”, International
Journal of Engineering Research and General Science, Vol. 3,
Issue 1, 2015, pp. 729-733.

[17] M. Ramachandran, “Software Security Requirements
Management as an Emerging Cloud Computing Service”,
International Journal of Information Management, 2016, vol.
36, pp 580-590.

[18] S. A. Aljawarneh, A. Alawneh, and R. Jaradat, “Cloud
Security Engineering: Early Stages of SDLC”, International
Journal of Future Generation Computer Science, 2016, pp.
385-392.

[19] S. Devata, and A. Olmsted, “Modeling Non-Functional
Requirements in Cloud Hosted Application Software
Engineering”, International Conference on Cloud Computing,
GRIDs, and Virtualization, 2016, pp. 47-50.

[20] S. Harbajanka, and P. Saxena, “Survey Paper on Trust
Management and Security Issues in Cloud Computing”, IEEE
Symposium on Colossal Data Analysis and Networking
(CDAN), 2016, pp. 1-3.

 123 / 241

Figure 2: i* Hierarchy “Strategic Dependency of Actors with Guard

 124 / 241

Implementing a Protocol Native Managed Cryptocurrency

Peter Mell
National Institute

of Standards and Technology
Gaithersburg MD, USA

peter.mell@nist.gov

Aurelien Delaitre
Prometheus Computing
New Market MD, USA

aurelien.delaitre@nist.gov

Frederic de Vaulx
Prometheus Computing
New Market MD, USA

frederic.devaulx@nist.gov

Philippe Dessauw
Prometheus Computing
New Market MD, USA

philippe.dessauw@nist.gov

Abstract—Previous work presented a theoretical model based
on the implicit Bitcoin specification for how an entity might
issue a protocol native cryptocurrency that mimics features of
fiat currencies. Protocol native means that it is built into the
blockchain platform itself and is not simply a token running
on another platform. Novel to this work were mechanisms by
which the issuing entity could manage the cryptocurrency but
where their power was limited and transparency was enforced
by the cryptocurrency being implemented using a publicly mined
blockchain. In this work we demonstrate the feasibility of this the-
oretical model by implementing such a managed cryptocurrency
architecture through forking the Bitcoin code base. We discovered
that the theoretical model contains several vulnerabilities and
security issues that needed to be mitigated. It also contains
architectural features that presented significant implementation
challenges; some aspects of the proposed changes to the Bitcoin
specification were not practical or even workable. In this work
we describe how we mitigated the security vulnerabilities and
overcame the architectural hurdles to build a working prototype.

Index Terms—Fiat Currency, Cryptocurrency, Bitcoin

I. INTRODUCTION

The United States National Institute of Standards and Tech-
nology developed an architecture for a managed cryptocur-
rency that has many of the features of electronic fiat currencies
and includes a governing entity [1]. It is intended to combine
the strengths of both fiat currencies and cryptocurrencies. In
doing this, it deviates from the goals of most cryptocurrencies
by introducing concepts such as central banking, law enforce-
ment, and identity proofed accounts. It also deviates from
a government controlled fiat currency world in denying the
currency administrator absolute power over financial controls.
It enables a currency administrator to enact policy to create a
specific cryptocurrency instance from the architecture, usually
with immutable configurations that even the administrator
cannot violate. This can promote public trust in the currency
since the limits to the administrator’s power are immutably
recorded on the associated blockchain. The architecture uses
a public permissionless blockchain approach whereby the ad-
ministrator’s actions are completely transparent. Furthermore,
a public set of miners maintaining the blockchain can prevent
the administrator from performing unauthorized actions. At
the same time, the cryptocurrency is designed to prevent the
public miners from taking control from the administrator or
from preventing the administrator’s transactions from being
processed. This architecture thus creates a ‘balance of power’
between the administrator and the public miners. Additional

features include adding role attributes to cryptocurrency ac-
counts that represent fiat currency entities (e.g., commercial
banks, central banks, and law enforcement) such that there is
created a tree based hierarchy of nodes with roles for all users
of the cryptocurrency.

A major limitation to the approach is that it was pre-
sented only as a theoretical architecture. It demonstrated what
might be possible to create through modest forks to existing
cryptocurrencies, specifically using Bitcoin [2] [3] [4] as
an example. The empirical work was limited to proposing
changes to the implicit Bitcoin specifications in [5] and [6]
to add the features necessary for this ‘balance of power’
managed cryptocurrency approach. No code was developed
and no implementation was tested. The ability of [1] to modify
the Bitcoin specification to add the needed features indicated
that a managed cryptocurrency might be able to be built
through a modest fork of an existing cryptocurrency, but it
lacked a proof-of-concept prototype built as a protocol native
implementation.

In this work, we set out to build such a prototype as an
applied research endeavor. We tested whether or not such a
managed cryptocurrency system could be built through modest
modifications to the code base of an existing cryptocurrency. In
this way we explored how to create a protocol native managed
cryptocurrency built into the blockchain platform itself and
explore the advantages of this approach. This was non-trivial
as we did not simply create a token on top of another
cryptocurrency. We also wanted to see if this could be done
efficiently, with only a modest amount of programming effort
(we scoped using half a person year, in part due to resource
constraints). We chose to use Bitcoin since [1] described
their theoretical model through proposing changes to Bitcoin.
We wanted to discover the complexity of modifying Bitcoin
to require identity proofing of accounts, establish accounts
with roles, enable law enforcement functions, enable central
banking functions, and create and visualize a hierarchy tree
of accounts that specifies the scope of control of the various
management and law enforcement nodes.

An unattributed quote says that ‘theory is when you know
everything but nothing works.’ Yogi Berra said, ‘in theory
there is no difference between theory and practice. But, in
practice, there is.’ We found these statements to be true
with regard to our implementation of the theoretical work.
We discovered that the theoretical model contains several

110Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 125 / 241

vulnerabilities and security issues that needed to be mitigated.
It also contains architectural features that presented significant
implementation challenges; some aspects of the proposed
changes to the Bitcoin specification were not practical or even
workable. We thus had to augment the material in [1] in order
to achieve a functional and secure system, especially in areas
such as preserving the balance of power, law enforcement
powers, management node powers, bootstrapping the system,
and the needed movement of accounts within the node hi-
erarchy (e.g., when an account holder changes their account
manager). We also encountered difficulties using the Bitcoin
code base which necessitated design changes not foreseen in
[1]. However, in the end we discovered that it was possible to
modestly modify Bitcoin to implement this ‘balance of power’
managed cryptocurrency approach and to do it with a relatively
low amount of programming effort.

In summary, we showed that the theoretical architecture
provided by [1] works and can be implemented efficiently.
However, we had to change, refine, and augment the original
design in order to make it function. This paper describes
these changes and the final prototype implementation which
we have made publicly available on GitHub (any mention of
commercial products is for information only; it does not imply
recommendation or endorsement). Note that due to resource
constraints, our prototype is not a full implementation. The
largest limitation is that the cryptocurrency policy configura-
tion is static, while the full design in [1] permits dynamic
policy changes. While not all features were implemented, the
core functionality was enabled to provide confidence that the
system could be efficiently constructed.

The rest of this paper is organized as follows. Section II
presents the theoretical architecture from [1] and discusses
relevant Bitcoin architectural features. Section III discusses
the vulnerabilities and security issues we discovered in the
architecture. Section IV discusses the architectural hurdles that
we had to overcome. Section V outlines how we created our
prototype system and Section VI presents the related work.
Section VII discusses our future plans for the system and
Section VIII concludes.

II. THEORETICAL ARCHITECTURE

The research in [1] provides an architecture that can be
instantiated into a cryptocurrency instance through specifying
a specific policy configuration. The policy parameters en-
able or disable feature sets while specifying parameters for
cryptocurrency operation. The financially related parameters
are just examples of what could be (e.g., limits on money
production) and are not intended to be exhaustive given that
the identification of financial controls is a related but separate
research area. In this architecture, anyone can create an
account, but an account cannot do anything unless it is granted
one or more roles. The initial block on the blockchain has a
‘genesis transaction’ that grants roles to the root administrator
account and all future role assignments spring from this initial
root account. The root account grants roles to other accounts,
and those accounts in turn may grant roles to accounts. This

Fig. 1. Example Managed Cryptocurrency Hierarchy (from [1])

sets up a hierarchy of accounts in a tree structure with the root
account (or node) being the most authoritative.

The initial root node is given all possible roles so that it can
propagate these roles to other accounts. Of particular import
is the ’M’ currency manager role that enables an account to
give its roles to other accounts (or withdraw granted roles)
and to modify cryptocurrency policy. Other roles include ‘U’
user, ‘A’ account manager, ‘C’ central banker, and ‘L’ law
enforcement. Their abilities are summarized in [1] as follows:

• ‘The U role enables an account to receive and spend
coins. An account for which the U role has been removed
has its funds frozen.

• The A role enables a node to create accounts with the
U role (and only the U role). It may also remove the U
label for its descendants.

• The C role enables the creation of new coins (apart from
the block mining rewards).

• The L role enables an account to forcibly move funds
between accounts, to remove the U label, and to restore
a previously removed U label. However, these actions can
only be performed against nodes with the same or greater
distance from the root.’

Note that in this model the currency administrator controls
the root manager node and thus controls the privileges of all
other nodes participating in the system. It can thus ensure that
the A nodes perform identity proofing of U nodes (if desired).
This can enable law enforcement, at least with a court order, to
identify individuals within the system. This goes counter to the
trend in cryptocurrencies where privacy and non-traceability
are key objectives. An example node hierarchy tree with role
assignments is shown in Figure 1.

There are three types of transactions that enable accounts
with roles to perform their functions: coin transfer mode, role
change mode, and policy change mode. A large portion of [1]
specifies how to modify the nValue field in Bitcoin (which
normally specifies the amount of coin to transfer) to enable
the role and policy change functionality while still enabling
coin transfer (but now only between accounts with the U role).

Lastly, there are two possible security models. There is
an independent mining model where the miners are truly
independent from the currency administrator, but they could
then as a group deny the inclusion of management transactions

111Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 126 / 241

(i.e., role changes and policy changes). This would be similar
to a 51 % attack [7] being launched against Bitcoin. To prevent
this there is also a dependent mining model where the miners
must include a certain number of management transactions
every so many blocks. This can prevent a large group of
miners from being able to revolt and exclude management
transactions as with the independent mining model. However,
it shifts the balance of power slightly towards the currency
administrator by allowing them to convey a small financial
advantage to preferred miners. This risk can be arbitrarily
diminished through making certain permanent policy settings.

The theoretical architecture defined in [1] proposed mod-
ifying Bitcoin for its implementation. The original Bitcoin
whitepaper is available at [2] while detailed explanations can
be found in [3], [4], and [5]. Of import to this work is that
Bitcoin transfers coins using transactions. The coins are not
stored in user accounts but are linked to the transactions
themselves. Thus, each transaction has one or more inputs
(Vin fields) that bring unspent coins into the transaction and
one or more outputs (Vout fields) that declare who can next
spend those coin outputs. As shown in Figure 2, a Vin field
from some transaction x brings in an unspent Vout field from
some transaction y. Figure 3 shows the format of a Bitcoin
transaction.

III. DISCOVERED VULNERABILITIES
AND SECURITY ISSUES

We discovered vulnerabilities and security issues in the
theoretical architecture that needed to be mitigated in order to
implement the prototype system. The vulnerabilities enabled
violations of the balance of power, replay attacks, and attacks
against miners. The security issues included improper scoping
of manager and law enforcement powers as well as insecure
bootstrapping for establishing cryptocurrency policy.

A. Preserving the Balance of Power

The research in [1] contains a ‘dependent mining model’
where the manager can specify that x number of management
transactions must be included within each interval of y blocks.
One can set x and y through issuing policy transactions. The
idea is that this model forces the miners to periodically include
management transactions.

However, we have discovered a vulnerability in which the
manager can use this feature to take over the blockchain.
The manager can initially set y to be high and wait for
the community to fully adopt and use the cryptocurrency.
Once a significant amount of value has been invested in the
cryptocurrency, the manager can issue a policy transaction
changing y to be very low. The manager then could, for
example, require management transactions to be issued with
every block and only send those management transactions to
miners whom they favor or control. The miners receiving those
transactions would then not propagate them to other miners,
preventing the other miners from mining any blocks (since
per policy all blocks would have to contain a management
transaction). This way, only miners that the manager favored

or controlled could publish blocks and the manager could
effectively take over the blockchain with effects similar to that
of a 51 % attack [8].

Our mitigation is to simply limit how tightly a manager can
set y. If the specification and developed code reject policy
transactions that set y values below some threshold, then the
manager is prevented from using this method to take control
of the blockchain. The manager could also voluntarily set a
minimum threshold for these values using permanent policy
transactions issued by the root manager node in order to create
public confidence in the cryptocurrency. Even with minimums
set, it should be noted that the manager can still implement this
attack periodically, favoring their own miners every y blocks if
they refuse to issue management transactions in the intervening
blocks. This would give a periodic financial advantage to
manager favored miners but would be highly visible to the
community and would not result in the manager controlling
the blockchain. To minimize the impact of this residual attack
possibility, y should be required to be high enough to make
the financial advantage minuscule. An alternative is to use the
independent mining model discussed in II, but this opens up
the possibility for the miners to revolt against the manager.

B. Preventing Replay Attacks

The research in [1] modifies the Bitcoin transactions to
support roles because the architecture requires that all trans-
actions include roles. They are brought into the transaction
using a modified Vin field; in Bitcoin Vin fields are only used
to bring coin into a transaction. Both uses of the Vin field
use the same cryptographic protections and one would assume
that they would inherit the same security properties. However,
this is not the case and it results in a vulnerability in the
architecture.

Since roles are spent like coins but never get used up (since
you don’t lose a role through using it), they can be spent an
infinite number of times. This means that transactions that use
a role might be able to be replayed. For the typical transactions
also transferring coin (e.g., to pay a transaction fee), this is
not a problem as the replayed transaction will be rejected
because the coin would already have been spent. However,
if the transaction does not involve coin it could be replayed.
This might happen if the manager owns miners servers and
issues management transactions without transaction fees with
the intention that their miners will publish them. In this case,
there would be no barriers to performing a replay attack. This
might result in a situation where law enforcement unlocks
an account but can never securely lock it again because the
original unlocking transaction can be replayed by anyone.

There are several possible solutions. One approach is to
require that all transactions pay some transaction fee while
requiring transaction signatures to sign the entire transaction.
In our attempt to modify Bitcoin as little as possible, our
approach was to change the theoretical model to truly spend
roles as if they were coin; once spent they can’t be spent
again. However, whenever we spend a role by including it in
a Vin field we also re-create the same role in one of the Vout

112Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 127 / 241

Fig. 2. Bitcoin Vin[] Field Reference to a Previous Transaction (copied from [5]).

Fig. 3. Bitcoin Transaction Format for Sending Bitcoin (BTC), copied from [5].

113Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 128 / 241

fields. The effect is that an account keeps a role when it is
spent but the transaction containing the active version of their
role can change. Probably the most elegant approach would
be to implement the architecture using a cryptocurrency with
an accounts based model so that roles are not stored within
transactions, but instead within a record associated with each
account (discussed more below).

C. Preventing Managers from Attacking Miners

In [1] all accounts must have the U role for them to receive
or spend coin. The purpose is to force all participants in the
cryptocurrency to be identity proofed by an account manager
in order to receive the U role. This in turn supports ‘know
your customer’ laws, which have been a challenge for most
cryptocurrencies [9]. However, this also creates a vulnerability.
The manager could keep track of the accounts receiving block
rewards and remove the U role from those accounts (thus
freezing the funds). The public miners would then have no
financial incentive to mine and then the manager’s own mining
servers could take over the majority of mining. This would
give the manager the ability to launch a 51 % attack [8] and
to a large degree control the blockchain.

Our solution is to enable miners to deposit block rewards
into any account, regardless of whether or not it has been
registered in the system or has any roles. Also, we handle
the coin from these coinbase transactions (the mining reward
transactions) specially such that it can be sent without the
owning account needing the U role. This prevents the cur-
rency administrator from freezing the mining reward coinbase
funds. However, once coinbase coin is sent away from the
original account it becomes normal coin subject to the normal
requirements (it can’t be spent without the associated account
having the U role).

D. Scoping Law Enforcement Powers

In [1] law enforcement powers are both too limited and
too relaxed. They are too limited in that law enforcement
can only lock accounts through removing the U label. Law
enforcement nodes can’t prevent an account using its other
roles (M, C, A, or L). This is a major issue in the event that an
account is stolen. On the other hand, law enforcement powers
are too relaxed in that law enforcement nodes can effect
any node higher in the account hierarchy tree regardless of
whether or not it is on the same branch. This effectively gives
law enforcement nodes a global reach (which is especially
problematic if a law enforcement node is compromised).

Our solution is to reflect account locking not through the
removal of the U role but by setting a locked flag. We use
one of the unused bits in the nValue field for role change
mode to set this flag. If the flag is set it temporarily disables
all roles, not just the U role. This stops all activity by the
targeted account, giving law enforcement the powers it needs
to freeze stolen accounts. At the same time, we put additional
restrictions on law enforcement nodes by only giving them
authority over nodes farther from the root on the same branch
of the node hierarchy tree. More precisely, we define the scope

of control of a law enforcement node by traversing backwards
until the first node is found with the manager role and then
by performing a breadth first search to reveal all nodes within
scope. This enables law enforcement nodes to ‘hang’ off of
manager nodes in the tree (they don’t have to be inline on
each branch).

E. Management Node Powers

In [1] management nodes also had powers that were too
relaxed. They were required to have any role that they would
want to grant. This resulted in management nodes having
powers that they had no intention of using. Also, their scope
of control was the same as law enforcement giving each M
node low down in the hierarchy tree an almost global reach.

Our solution was to limit their scope to nodes reachable by
breadth first search and to limit management nodes to only
having the M role. However, in our approach management
nodes can add any role to other nodes. This gives more
power to a manager node (which might be seen as decreasing
security) but it limits that power to a more narrow scope
creating what we believe is a rational compromise.

F. Policy Bootstrapping

In [1], it is not stated how the initial policy is defined
for an instantiated cryptocurrency. It is implied that some
configuration file, apart from the blockchain, must exist that
provides the original parameter settings. These settings may or
may not then be subsequently overridden through policy trans-
actions on the blockchain. The result may be that some policy
is defined on the blockchain and some through an original
configuration file. Given that the configuration file wouldn’t
have the same cryptographic protections as blockchain trans-
actions, the distributor of the node software for maintaining
the blockchain could conceivably change policy using software
updates through modifying the configuration file.

Our solution is to eliminate the need for the unsecured initial
configuration file. We do this by specifying that all policy is
initially defined as permissive as possible. We then require that
all policy parameters be defined explicitly on the blockchain
within the first x blocks (as defined in the full node software
distribution). Thus early in the blockchain, ideally prior to it
being released publicly, the manager will have to explicitly
record all possible policy parameters within cryptographically
secured blocks.

We also discovered that the original root management node
should not be used to set the initial policy (except for policy
settings intended to be permanent). This is because, per [1],
management nodes closer to the root are more authoritative;
any root manager node policy decisions will prevent any other
management node from changing that policy. Also, the root
management node account ideally should never be used after
the initial few blocks and its keys should be physically stored
in a vault to eliminate the possibility of it being compromised.
Thus, if the root node is used to set policy it should only be
used to set permanent policy that, by design, will never be
changed.

114Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 129 / 241

IV. ARCHITECTURAL CHALLENGES

Apart from mitigating vulnerabilities in the original de-
sign, we encountered several architectural challenges where
it was not practical or even possible to directly implement
the theoretical architecture. In this section we describe the
primary challenges, how we modified the theoretical design
to overcome them, and how we implemented those changes.

A. Dual Signature Requirements for Coin Transfer Transac-
tions

In [1] an account must have the U role to both spend and
receive coin. It specifies that these roles must be brought into
each coin transfer transaction using two separate Vin fields.
However, this requires both the sender and receiver to sign the
transaction which would require off blockchain coordination
and some unspecified infrastructure to support this.

This could be resolved by including the coin transfer
recipient only in the Vout field (not the Vin) and requiring full
nodes to check the U role on the account listed in the Vout
field (without explicitly bringing it into the transaction using
a Vin field), at the cost of additional tracking overhead. Our
mitigation was to only require the U role for spending coin.
Any account then can receive coin, but may not be able to
spend it. This results in only a single account needing to sign
coin transfer transactions and eliminates additional overhead.

B. Node Movement

In [1] there is no mention of how accounts can change
position within the node hierarchy graph once they have been
created. This is necessary, for example, for users that want
to use different account managers. Besides moving nodes,
edges in the graph may need to be moved in order to cut out
compromised nodes but leave the rest of the node hierarchy
intact.

To implement the needed functionality, we created the idea
that if a node adds roles to an account that has no roles, this
creates an edge in the node hierarchy graph from the node
adding the roles to the node representing the account gaining
the roles. If an edge already existed to the node gaining the
roles (which would happen if an account received roles and
then deleted them), the prior edge will be deleted in order to
preserve the required tree structure.

To prepare a node to be moved, the relevant account can
unilaterally remove its own roles or else a manager whose
scope covers the node can remove the roles. Using this
paradigm, nodes can be moved around the node hierarchy
tree. It also doesn’t require explicitly coding edge creation and
deletion within the modified Bitcoin protocol, which would
have been unnecessarily complicated. A drawback is that node
movement requires a two step process: one transaction to
remove roles and another to add them back in (thus removing
the old edge and creating the new edge). In our future work
we will design a format where a single transaction does this
atomically. Complicating this may be the need for dually
signed transactions to prevent security violations (which we
are trying to avoid, see section IV-A). Our current two step

approach ensures that the role removal, node movement, and
edge addition only happens through transactions issued by
nodes authorized to perform those activities.

C. Determining Transaction Types

The theoretical architecture in [1] uses the most significant
bits of an nValue field to determine the type of transaction
being processed: role change, policy change, or coin transfer.
The nValue fields, in the original Bitcoin, specify the amount
of coin to be spent. Using the leftmost bits as control bits is
conceivably risky because a bug in the code might interpret the
leftmost control bits as value bits for moving or create large
amounts of coin. More problematic though is that the Bitcoin
implementation uses the leftmost bit of the nValue field as a
signed bit.

For these reasons, we chose to deviate from [1] and not
use the leftmost bits of the nValue field to determine the type
of transaction. Instead, we determined the type of transaction
using the transaction version number; this then determines how
the nValue fields within a transaction are handled. We created
three transaction version numbers, each of which correspond
to the three different modes for evaluating nValue fields (role
change, policy change, and coin transfer). Lastly, we also
changed to using the nValue low order bits for specifying roles
and policy change types in case those nValue fields ever got
interpreted as coin transfer fields through some bug or attack.
This would then limit the damage done by having fewer coin
inadvertently transferred or created.

D. Transaction Fees

Since we determine transaction type (role change, policy
change, or coin transfer) through the transaction version num-
ber, it means that the mode of all the nValue fields in the
Vout fields are determined by that number. However, it is
usually necessary to pay a transaction fee for most transactions
and there is usually change that must be sent back to the
sender. This is not possible then for the role and policy change
transactions because the nValue fields of the Vout fields change
roles/policies; they don’t send coin as in the original Bitcoin
specification. We solved this simply by specifying which Vout
field is always the change sent back to the originator of the
transaction (which may be 0 coin on occasion).

V. DEVELOPED PROTOTYPE

Our prototype was developed publicly through Github
and is available within the project ‘usnistgov/managed-
cryptocurrencies-bitcoin’. We built our prototype through fork-
ing and modifying the C++ Bitcoin codebase available on
Github at ‘bitcoin/bitcoin’.

For flexibility, efficiency, and portability we ran our modi-
fied bitcoin peer-to-peer network for development and testing
on a local virtualized environment. For our testing, we thus had
a single virtual machine (VM) executing the entire distributed
Bitcoin network. We used the Vagrant virtual machine man-
ager with Virtualbox as the VM provider. Within the VM, we
used the Docker Engine to run a set of containers to represent

115Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 130 / 241

the nodes on the modified Bitcoin network. This enabled
us to simultaneously run five Bitcoin miners within a single
VM to maintain our test blockchain. Note that we artificially
reduced the mining difficulty to enable quick block production
for testing and demonstration purposes. Lastly, we used the
GraphViz library to enable us to visualize the node hierarchy
tree. To make access control decisions for role and policy
change transactions, it was inefficient to look up individual
node roles using the tree. Thus, we separately maintained an
associative array mapping node names to a list of their roles.
The tree was only necessary for determining the scope of
control of one node over others (e.g., for the law enforcement
and manager nodes).

An example output tree is shown in Figure 4. Within each
node in parenthesis is listed the roles activated for that node
and its state (locked or unlocked). The labels are deciphered as
follows: M-manager, C-central banker, L-law enforcement, U-
registered user, A-account manager, D-disabled account) Node
0 is the root node created in the genesis block. It should
normally never be used directly for security reasons and so
Node 1 was created as the ‘active’ manager. Node 3 is the
central banker; it could have hung off of Node 1 but it was
useful for our example to have it as a child under Node 0. Node
2 is law enforcement with the scope of all that is reachable
from Node 1 (all nodes except 0, 3, and 11). Nodes 4 and 5
are account managers. Node 6 is a user account that has been
disabled by law enforcement. Nodes 7, 8, and 10 are ordinary
users. Node 9 is a node who has had all its roles removed
(either done by Node 9 itself, its account manager Node 5,
or one of the manager nodes 0 or 1). This might have been
done because Node 9 was compromised or because it is being
prepared to move to another part of the tree under a different
account manager. Node 11 is a node that has been active in the
cryptocurrency but has no roles and has never had any roles
(due to their being no edge to it). It represents an account
created by a miner to store coinbase coins, that can be spent
without needing any roles.

VI. RELATED WORK

To our knowledge, [1] is the only work proposing a man-
aged cryptocurrency that has a balance of power where the
public can hold the manager accountable. There have been
many government cryptocurrencies proposed but these differ
in that they are often not managed, don’t use roles, or don’t
have a balance of power.

Multichain [10] is a system that might appear to be similar
in that it contains management features. However, Multichain
enables a permissioned chain where what is managed is
which entities have the privilege of mining. This is opposite
of our prototype that enables open mining. That said, we
may explore modifying Multichain to implement [1] while
leveraging a permissioned chain whose membership is defined
by the current members (not the manager).

There are many government cryptocurrencies proposed and
in development (for example [11], more citations are in [1]).
However, none of these have yet come to fruition except the

Venezuelan Petro [12], which to our knowledge is the only
existing government issued cryptocurrency.

There is research proposing a Fedcoin [13], a cryptocur-
rency that would support central banks with a permissioned
blockchain that complies with ‘know your customer’ laws [9].
It is based on RS—Coin [14], one of many cryptocurrencies
advertised to support central and commercial banks with
international transaction handling. Others argue that central
banks don’t need a cryptocurrency, but instead a new form
of electronic money [15]. There are also concerns with the
amount of power a government could leverage through creat-
ing a Fedcoin [16].

VII. FUTURE WORK

There are two major changes to be made in future iterations
of the implementation: using an account model and better
handling of compromised nodes.

A. Using an Account Model

Bitcoin uses an unspent transaction output (UTXO) model.
Coin is not stored within user accounts but within the transac-
tions themselves. All transactions have outputs (representing
coin) and any unspent output may be spent by another transac-
tion. Who may spend a given output is determined by a script
that usually specifies the public key of a particular account.
There is no single data structure on the blockchain that shows
the coin associated with a particular account.

This works well for Bitcoin, but immediately became awk-
ward for the implementation of our managed cryptocurrency
prototype. In the theoretical architecture, accounts have roles
that specify their privileges in the system and these roles are
specified in nValue fields. Without a central data structure for
each account, the roles had to be treated like coin and be spent
repeatedly as an account used those roles. In our system, an
account’s roles are transaction outputs and the active copy (the
one that hasn’t yet been spent) is temporarily in one particular
transaction. We simplified this, compared to the theoretical
architecture, by requiring that any role additions and removals
repeat the remaining roles. Thus, all of an account’s roles are
always designated within a single transaction, not spread out
among many transactions as would have occurred through a
direct implementation of the theoretical architecture.

Our future approach will be to implement the system
through forking cryptocurrency code that uses an account
model instead of an UTXO model. This is possible because the
theoretical architecture is not tied to any particular cryptocur-
rency. A likely candidate replacement cryptocurrency would
be Ethereum due to its maturity, but this choice would bring
in the added complexity of a codebase that supports smart
contracts. A mature Bitcoin-like cryptocurrency without smart
contract capabilities that uses an account model might be better
suited.

B. Handling Compromised Nodes

In section III-D we expand the law enforcement powers to
disable all the roles of an account to handle the case where

116Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 131 / 241

Fig. 4. Example Output Showing a Node Hierarchy.

a node is compromised (in [1] only the ability to send and
receive coin was disabled). However, this does not allow the
compromised node to be recovered. To do this, we propose
that all nodes should have two sets of cryptographic key pairs.
The first set is used for the daily signing of transactions for
the associated account. The second set is stored offline and is
used only to replace the first set. This enables account owners
to unilaterally re-establish control over their accounts without
having to involve a manager node (one with the M or A role).
However, it will require the development and implementation
of a new transaction type to enable this resetting of the first
key pair.

VIII. CONCLUSION

The theoretical managed cryptocurrency architecture pro-
posed in [1] can be efficiently developed from an existing
cryptocurrency codebase and deployed (despite the many
implementation issues that had to be overcome). An important
result of this is that we have shown that the novel balance
of power concept, whereby a manager and public miners
jointly control a cryptocurrency, is a feasible mechanism
to be explored for future cryptocurrencies. Another result
of our work is to show the practicability of adding roles
to cryptocurrency accounts and the capabilities that can be
achieved through these roles (in particular for mimicking fiat
currency mechanisms). Lastly, we note that building such a
protocol native managed cryptocurrency within a blockchain
platform itself was non-trivial but we showed that it could be
accomplished with only a modest cost in programming effort.

In summary, we have shown that the theoretical system
in [1] can be implemented in such a way as to not just
leverage many of the strengths of modern cryptocurrencies,
but also leverage the capabilities of traditional fiat currencies.
While this goes against the goals and directions of most
cryptocurrency efforts which are promoting greater privacy
and autonomy from managing institutions, this result may be
useful for large institutions (e.g., governments) investigating
future electronic currency approaches. We do not necessarily
believe that the architecture in [1] provides the answer for

such a use case, but it and our applied research in this work
may open up new research directions to better support large
institutions issuing their own managed cryptocurrencies.

REFERENCES

[1] P. Mell, “Managed blockchain based cryptocurrencies with consensus
enforced rules and transparency,” in 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp. 1287–1296.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 104–121.

[4] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton University Press, 2016.

[5] K. Okupski, “Bitcoin developer reference,” 2016. [Online]. Available:
https://lopp.net/pdf/Bitcoin Developer Reference.pdf

[6] “bitcoinwiki protocol documentation,” accessed: 2017-12-29. [Online].
Available: https://en.bitcoin.it/wiki/Protocol documentation

[7] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is
current research on blockchain technology? a systematic review,” PloS
one, vol. 11, no. 10, p. e0163477, 2016.

[8] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to betterhow to make
bitcoin a better currency,” in International Conference on Financial
Cryptography and Data Security. Springer, 2012, pp. 399–414.

[9] M. Staples, S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A. Tran,
I. Weber, X. Xu, and J. Zhu, “Risks and opportunities for systems
using blockchain and smart contracts,” 2017. [Online]. Available:
https://publications.csiro.au/rpr/download?pid=csiro:EP175103dsid=DS2

[10] G. Greenspan, “Multichain private blockchainwhite paper,” 2015.
[Online]. Available: https://www.multichain.com/download/MultiChain-
White-Paper.pdf

[11] L. Coleman. An inside look at chinas government controlled
cryptocurrency project. [Online]. Available: https://www.ccn.com/an-
inside-look-at-chinas-government-controlled-cryptocurrency-project

[12] D. B. Alexandra Ulmer, “Enter the ’petro’: Venezuela to launch oil-
backed cryptocurrency,” Reuters, Dec. 2017.

[13] S. Gupta, P. Lauppe, and S. Ravishankar, “A blockchain-
backed central bank cryptocurrency,” 2017. [Online]. Available:
https://zoo.cs.yale.edu/classes/cs490/16-17b/gupta.sahil.sg687

[14] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
arXiv preprint arXiv:1505.06895, 2015.

[15] A. Berentsen and F. Schar, “The case for central bank electronic money
and the non-case for central bank cryptocurrencies,” 2018. [Online].
Available: https://doi.org/10.20955/r.2018.97-106

[16] T. Aube. The terrifying future of fedcoin. [Online]. Available:
https://hackernoon.com/the-terrifying-future-of-fedcoin-ddcbef2b9592

117Copyright (c) The Government of USA, 2019. Used by permission to IARIA. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 132 / 241

A Joint Encryption-Compression Technique for Images Based on Beta Chaotic Maps

and SPIHT Coding

Najet Elkhalil ∗, Rim Zahmoul†, Ridha Ejbali‡, and Mourad Zaied§
∗ †‡§ Research Team in Intelligent Machines, National Engineering School of Gabes,

6072 Gabes, Tunisia
Email: najet.elkhalil@ieee.org rima.zahmoul@gmail.com ridha ejbali@ieee.org mourad.zaied@ieee.org

Abstract—In this paper, we propose a new joint compression-
encryption system based on Discrete Wavelet Technique (DWT)
and Set Partitioning in Hierarchical Trees (SPIHT) coding for the
compression part, and the chaotic standard system (Beta Chaotic
Map) for the encryption process. Through the experimental
results, the system proposed in this paper has an excellent
statistical and cryptographic properties: it resists against common
cryptanalytic attacks and provides high picture quality of the
reconstructed image.

Keywords–joint compression-encryption; SPIHT coding;
Chaotic systems; Beta Chaotic Map.

I. INTRODUCTION

Recently, information storage and security have received a
lot of attention. In image processing, for proving security to
an image, several cryptography techniques are proposed. How-
ever, most of the Encryption techniques mask some quantity of
knowledge to the source image that invariably will increase the
dimensions of images, therefore, its storage and transmission
time, and from that comes the necessity of data compression.

In literature, researchers try to propose new methods that
guarantee the strength of the encryption process and preserve
the quality of the compressed image. Arunkumar and Prabu [1]
proposed a combination of the Rivest-Shamir-Adleman (RSA)
encryption method and the lossless compression technique us-
ing SPIHT coding. This combination allows partial data access
on the part of the decoder so it produces a better efficiency and
less computational complexities. Ou et al. [2] developed an Im-
age Compression Encryption Scheme using DWT, orthogonal
wavelet family type Haar and Significance-Linked Connected
Component Analysis encoder. For the encryption process, the
AAdvanced Enceyption Standard (AES) method is used. The
test results show that the reconstructed image has a high
quality, and the method used for the encryption is efficient.
Xiang et al. [3] proposed a Joint compression and selective
encryption based on SPIHT (JCSE-SPIHT). The basic idea of
the proposed approach is embedding encryption into SPIHT
algorithm. The simulation results show that the proposed
method has a high immunity against inherent attacks. To
overcome the security issues in some previous works, we have
proposed a novel joint Encryption-Compression algorithm.

This paper is organized as follows: Section 2 presented
previous related works. In Section 3 DWT and SPIHT coding
are described in detail. In Section 4 Beta chaotic map and the
encryption process were detailed. Performance and security
analysis are given in section 5. Finally, a brief conclusion is
drawn in Section 6.

II. RELATED WORKS

In order to achieve better security level, chaos theory was
frequently used in image cryptography combined with different
compression algorithms. In what follows, some of those works
were reviewed. Hamdi et al. [4] proposed a new selective
encryption-compression scheme based on SPHIT coding and
Chiricov Standard Maps. This scheme aims to integrate the
encryption part into the compression one, so simultaneously
they obtain an encrypted-compressed image. The approach
was divided into three steps: The first step was generating
three keys for the encryption process using the Chirikov
Standard Map algorithm. The next step was to perform a DWT
transformation. The third step is permutation after SPIHT
coding. The Simulation results obtained in this approach
are 99.91% the NPCR average and 33.51% UACI average.
Gupta and Silakari [5] presented a chaos-based compression
and encryption scheme using a cascading 3D cat map and
standard map. The image is first compressed using curvelet
transformation and then encrypted using the chaos 3D cat map.
The simulation results show that the PSNR values are over
30dB, the NPCR average is over 99% and the UACI average is
below 33%. Goel et al. [6] proposed a compression technique
using Discrete Cosine Transform (DCT) and Huffman coding
and symmetric cryptosystem technique using the Logistic Map.
The experimental results of the proposed method. Also, the
method has a high sensitivity key.

All this researches used chaotic maps and several com-
pression techniques. We adopt this approach to create our new
algorithm for joint image encryption-compression technique.
Our scheme allows to improve image compression quality and
security against different attacks.

III. COMPRESSION PART

To achieve better compression result, we combined the
DWT and the SPIHT coding algorithm.

A. Discrete Wavelet Transform
The wavelet-based compression technique was created to

beat the disadvantages of the discrete cosine transform [7]. The
uses of DWT have become very popular within the image and
video compression and it is a replacement standard for JPEG
2000 images compression [8][9]. The DWT transforms the
plain text images into frequency bands, known as sub-bands
LL, HL, LH and HH using filters. For one level decomposition,
the DWT represents the image in the form of four sub-bands of
lower resolution, one represents the approximation image and
the three others show the details of the image with horizontal,
vertical, and diagonal orientations as shown in the first part in

118Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 133 / 241

Figure 1, the other parts in the Figure show examples of other
level decomposition.

Figure 1. Wavelet Level Decomposition.

B. SPIHT Coding

Once the wavelet transform decomposition is done, several
quantization algorithms are used. We decide to work with
SPIHT coding because it is an efficient and computationally
very fast technique for image compression [10]. The result
of the SPIHT coding is an embedded bitstream from which
the most effective images are reconstructed. The algorithm of
SPIHT coding is defined by steps throughout every state is
outlined by a bit-plane that contains an indication of wavelet
coefficients that are quantified by the structure in a hierarchical
tree. Every coefficient in all spatial orientation tree are then
increasingly coded from the Most Significant Bit-plane (MSB)
to the Least Significant Bit-plane (LSB), beginning with the
coefficients possessing the highest magnitudes within the low-
est pyramid levels [11][12]. In every bit-plane SPIHT coding
computes a threshold Tp and assign it to one or more of the
tree lists bellow:

• List of insignificant pixels (LIP): It contains all
the coefficients that have a smaller magnitude than
Tp(thresholds).

• List of significant pixels (LSP): It is a list of coeffi-
cients of pixels that have a grater magnitude than the
Tp.

• List of insignificant sets(LIS): It contains groups (set)
of coefficients that are defined by tree structures and
they have magnitudes greater than Tp.

The steps of SPIHT coding are mentioned below:

1) Step 1: Initialization
First of all, initialize the threshold Tp and order
coefficients in LL sub-band to LIP, all the trees are
moved to LIS and the LSP is empty.

2) Step 2: Sorting Pass
This step aims to encode the important coefficient of
the current bit. There are two main steps:

a) Step1: verify the contained coefficients in
List of significant pixels to check if they are
significant coefficients:
• If they are important, then output 1 and

the sign bit of the wavelet coefficients
are represented by 1 and 0 (positive or
negative), and then remove the wavelet
coefficient from LIP and add to the LSP.

• If they are not important we do not need
to remove them from the LIP and the
output then will be”0”.

b) Step 2: Verify all the important set in the LIS.
3) Step 3: Refinement Pass

The aim is output but not the improving position of
important factor that was generated in the process of
scanning. For all coefficient (i,j) in LSP, if (i,j) is not
added in the scanning step, then |i, j|of the coefficient
will be transmitted.

4) Step 4: Update the threshold
Updating the threshold by decrements n by 1 and
(back to step 2). Variable n defines the maximum
number of bits needed to represent the largest coeffi-
cient in the spatial orientation tree : n = |log2cmax|
,cmax is the higher value of coefficient.

IV. ENCRYPTION PART

In this section, we will detail the chaotic encryption and
clarify the steps of the Beta chaotic encryption.

A. Chaotic Encryption
We called Chaotic maps all nonlinear maps that display

chaotic behavior, they generate pseudo-random sequences,
which are used during the encryption process [13]. Many
fundamental concepts in chaos theory, such as mixing and
sensitivity to initial conditions and parameters are the same in
cryptography. The only difference is that encryption operations
are defined on limited sets of integers while chaos is defined
on real numbers.

B. Beta Chaotic Encryption
In the recent years, chaotic maps have been used in dif-

ferent ways in cryptography, they have attracted the attention
of many researchers and have been widely used in diverse
applications [14][15], especially those related to security, in
which they have shown excellent performance. The Chaotic
system proposed, in the design of our new image compression-
encryption algorithm, is based on the Beta Chaotic Map. The
Beta Chaotic Maps discovered by professor Mourad Zaied,
are inspired from the Beta function it is polynomial mapping
and it reflects an example of how complex, chaotic behavior
can appear from a simple non-linear dynamical equation [16]-
[20]. It is chosen for its efficiency in front of different attacks
and it is very suitable with the chosen image compression
technique. The steps below describe the encryption process of
our scheme:

• Step 1: Resizing the image
In this step, we resize the chosen image into square
dimension.

• Step 2: Generating the chaotic sequences

119Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 134 / 241

After making many combinations of Beta chaotic
maps, generate two completely different pseudo-
random sequences, the sensitivity of the beta chaotic
maps to the simple variation of the initial condition
gives us the possibility to generate several random
sequences.

• Step 3: Permutation stage
In this step, we shuffle the plaintext images rows and
columns using the Beta random sequences (Q1 and
Q2) generated in the previous step.

• Step 4: Substitution stage
At this point, dividing the resulting matrix into four
blocks of equal size. After that, translating each one
to a random matrix W where each matrix will be
transformed using the functions (1) (2) (3) (4)given
below:

fN (d) = T (d)modG (1)

fR(d) = T
⌊
(
√
d)
⌋
modG (2)

fS(d) = T (d2)modG (3)

fD(d) = T (2d)modG (4)

And the matrix function is given bellow:

W =

 fN (B1,1) fR(B1,2) fD(B1,3) fS(B1,4)
fS(B2,1) fD(B2,2) fR(B2,3) fN (B2,4)
fD(B3,1) fN (B3,2) fS(B3,3) fR(B3,4)
fR(B4,1) fS(B4,2) fN (B4,3) fD(B4,4)


(5)

Function T: is a truncation of a decimal to form an integer
for every number of the resulting matrix W. G: is the image
type, (G=256) and (G=2) for respectively 8-bit gray image
and binary image. Here we got a new random integer matrix
I. So, we can now determine the encrypted image C using the
following equation:

C = (P + I)modG

And the decrypted image P by:

P = (C − I)modG

• Step 5: Diffusion stage
The main idea of the diffusion stage is to disappear the
redundancy in the statics and the information containing in the
original image in the encrypted one. It is done by changing
each pixel in the original image over the finite field GF(28).

To resume, the steps of our encryption-compression algo-
rithm are presented in the flowchart Figure 2:

V. SIMULATIONS RESULTS AND COMPARISONS

In this section, different tests are made to evaluate the
simulation results: statistical tests: histogram analysis and
security tests against a differential attack including calculus
of the number of pixel change rate (NPCR) and the unified
average changing intensity (UACI). Figures 3 and 4 represent
the simulation experiment on Cameraman and Airplane image.

Figure 2. proposed scheme flowchart

Figure 3. Images of simulation experiment on Cameraman: Cameraman
original image, Cameraman compressed-encrypted image, cameraman

decrypted image.

Figure 4. Images of simulation experiment on Airplane: Airplane original
image, Airplane compressed-encrypted image, Airplane decrypted image.

120Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 135 / 241

A. Histogram Analysis
To avoid the access of data from attackers, it is very

important to make sure that the encrypted and the original
images are totally different and do not have any statistical
similarities. We analyzed the histograms of many cyphered
images also as their original images as shown in Figures 5 and
6. The histograms are totally different. The histogram of the

Figure 5. Histograms of experimental image Cameraman:Original image,
Compressed-Encrypted image, The decrypted image.

Figure 6. Histograms of experimental image Airplane: Original image,
Compressed-Encrypted image, The decrypted image.

original image has massive spikes and its tilted. However, the
histogram of the ciphered image is uniform, very flat, and bears
no statistical resemblance to the plaintext image. Therefore,
by comparison, the histograms of each encrypted-compressed
and decrypted images, we tend to conclude that the encrypted
images are random-like. Also, it does not give any chance to
use any statistical attack on the proposed image encryption
scheme.

B. NPCR And UACI Tests
In order to test the fact of one-pixel change on the original

and the encrypted image, two measures can be done: Number
of Pixels Change Rate (NPCR) and Unified Average Changing
Intensity (UACI). The NPCR measures the percentage of
different pixel numbers between the plaintext image and the
cipher image however the UACI measures the average intensity
of differences between them [21]. We obtained NPCR and
UACI for a large variety of images by using our proposed
algorithm and other algorithms, their testing results are shown
in Tables 1,2 and 3. Also, we compared the NPCR and UACI
of the proposed scheme and also the schemes in [4][22] in
Table 2 and 3.

C. Mean Square Error
Mean Square Error (MSE) is the cumulative squared error

between the encrypted and the original image. It is one of the
error metrics used to evaluate the efficiency of various image
encryption techniques. It is defined by the equation below:

MSE =
1

MN

M∑
y=1

N∑
x=1

[I(x, y)− I ′(x, y)]2

Where I(x, y) is the original image pixel, I(x, y) is the
encrypted image pixel and M and N are the size of the original
or the encrypted one. Our experimental results are shown in
Table 4. In case of image encryption, MSE should be as high
as possible which means more immunity to attacks.

D. Peak Signal To Noise Ratio Analysis
PSNR (Peak Signal to Noise Ratio) of encrypted image

and original image is computed as in Table 4. It is defined by:

PSNR = 1010

[
R2

MSE

]
TABLE I. NPCR AND UACI OF ENCRYPTED IMAGES USING OUR SCHEME.

Image name NPCR UACI
Lena (512x512) 99.5666 33.3384
Lena(256x256) 99.6368 33.3886

House 99.5910 33.4736
Boat(522x512) 99.6322 33.3720

Barbara 99.6368 33.5151
Lake 99.6337 33.3384

TABLE II. THE UACI OF ENCRYPTED IMAGES FOR OUR APPROACH AND
ALGORITHMS IN [4,22].

Image name UACI (our approach) Ref[4] Ref[22]
Lena (512x512) 33.33 33.51 33.36
Lena(256x256) 33.38 33.69 -
House 33.47 33.96 -
Boat(522x512) 33.37 33.73 -
Barbara 33.51 33.49 -
Lake 33.33 33.49 -

TABLE III. THE NPCR OF ENCRYPTED IMAGES FOR OUR APPROACH AND
ALGORITHMS IN [4,22].

Image name NPCR (our approach) Ref[4] Ref[22]
Lena (512x512) 99.56 99.91 99.61
Lena(256x256) 99.63 99.88 -
House 99.59 98.99 -
Boat(522x512) 99.63 99.61 -
Barbara 99.63 99.36 -
Lake 99.63 99.02 -

TABLE IV. MSE AND PSNR OF ENCRYPTED IMAGES USING OUR
SCHEME.

Image name MSE PSNR
Lena (512x512) 10610.07 7.87
Lena(256x256) 11870.38 7.39
House 6986.46 9.69
Boat(522x512) 7648.06 9.30
Barbara 9645.17 8.29
Lake 9190.15 8.50

The high value of MSE and the low value of PSNR cause
the resulting encrypted image more randomness.

VI. CONCLUSION

In this paper, we have proposed a high level secure system
of image joint compression-encryption based on SPIHT coding
and Beta Chaotic Map. As regards to diverse evaluation
metrics, some performance and security analysis has been per-
formed on our scheme. The results of the differential analysis
indicate that the proposed encryption-compression algorithm is
highly sensitive to small changes in original images. Therefore,
it is very resistive against the differential attacks.

121Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 136 / 241

ACKNOWLEDGMENT

The authors would like to acknowledge the financial sup-
port of this work by grants from General Direction of Scientific
Research (DGRST), Tunisia, under the ARUB program.

REFERENCES

[1] M. Arunkumar and S. Prabu, “Implementation of Encrypted Image
Compression using Resolution Progressive Compression Scheme,” Inter-
national Journal of Computer Science and Mobile Computing (IJCSMC),
vol. 3, no. 6, pp. 585590, 2014.

[2] S.-C. Ou, H.-Y. Chung, and W.-T. Sung, “Improving the compression
and encryption of images using FPGA-based cryptosystems,” Multimedia
Tools and Applications, vol. 28, no. 1, pp. 522, Jan. 2006.

[3] T. Xiang, J. Qu, and D. Xiao, “Joint SPIHT Compression and Selective
Encryption,” Applied Soft Computing, vol. 21, pp. 159170, Aug. 2014.

[4] M. Hamdi, R. Rhouma, and S. Belghith, “A Selective Compression
Encryption of Images Based on SPIHT Coding and Chirikov Standard
Map,” Signal Processing, vol. 131, pp. 514526, Feb. 2017.

[5] K. Gupta and S. Silakari, “Novel Approach for Fast Compressed Hybrid
Color Image Cryptosystem,” Advances in Engineering Software, vol. 49,
no. 1, pp. 2942, Jul. 2012.

[6] N. Goel, B. Raman, and I. Gupta, “Chaos Based Joint Compression
and Encryption Framework for End-to-End Communication Systems,”
Advances in Multimedia, vol. 2014, pp. 110, 2014.

[7] Z. Xiong, K. Ramchandran, M.T. Ochad, and Ya-Qin Zhang, “A Compar-
ative Study of DC And Wavelet-Based Image Coding,” IEEE Transactions
on Circuits and System for Video Technology, vol. 9, no. 5, 1999.

[8] S. Grgic, K. Kers and M. Grgic, “Image Compression Using Wavelet,”
IEEE Transactions, ISIE99-Bled, Slovenia.

[9] M. Zaied, S. Said, O. Jemai, and C. Ben Amar, “A novel approach for
face recognition based on fast learning algorithm and wavelet network
theory,” International Journal of Wavelets Multiresolution and Information
Processing, 2011.

[10] E. Christophe, C. Mailhes, and P. Duhamel, “Hyperspectral image
compression: adapting SPIHT and EZW to anisotropic 3-D wavelet
coding,” Image Processing: IEEE Transactions on, vol. 17, no. 12, pp.
2334-2346, 2008.

[11] A. Said and W.A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees, Circuits and Systems for
Video Technology,” IEEE Transactions on, vol. 6, no. 3, pp. 243-250,
1996.

[12] AG. Kadam and N. Pingle, “overview of spiht based image compression
algorithm,”: ijesrt,international journal of engineering sciences research
technology, February, 2018.

[13] Y. Wang, et al., “A colour image encryption,algorithm using 4-pixel
Feistel structure and multiple chaotic systems,” Nonlinear Dynamics. vol.
81, no. 1, pp. 151-168.

[14] X. Wang, W. Zhang, W. Guo, and J. Zhang, “Secure chaotic system with
application to chaotic ciphers,”Inform. Sci. vol. 221, no. 7, pp.555-570,
2013.

[15] W. Xu, Z. Geng, Q. Zhu, and X. Gu, “A piecewise linear chaotic map
and sequential quadratic programming based robust hybrid particle swarm
optimization,” Inform. Sci. vol. 218, pp. 85-102, 2013.

[16] R. Zahmoul, R. Ejbali, and M. Zaied, “Image encryption based on new
Beta chaotic maps,” Optics and Lasers in Engineering vol. 96, pp. 39-49.

[17] R. Zahmoul and M. Zaied, “Toward new family beta maps for chaotic
image encryption,” 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC).

[18] M. Zaied, C. Ben Amar and A.M. Alimi, “Award a New Wavelet
Based Beta Function,”Second International Conference on Signal,System,
Decision and information technology IEEE, SSD03, pp. 185-191, Sousse-
Tunisia Mars 2003.

[19] R. Zahmoul, A. Abbes, R. Ejbali, and M. Zaied, “A watermarking
scheme based on DCT, SVD and BCM,” International Joint Conference:
12th International Conference on Computational Intelligence in Security
for Information Systems (CISIS 2019) and 10th International Conference
on EUropean Transnational Education (ICEUTE 2019)Optics and Lasers
in Engineering, pp. 97-104, 2019.

[20] H. Souden, R. Ejbali, and M. Zaied, “Beta Chaotic Map Based Image
Steganography,” IEleventh International Conference on Machine Vision,
(ICMV) , v. 11041, pp. 1104-1113, 2018.

[21] W. Yue, JP. Noonan, and S. Agaian, “NPCR and UACI randomness
tests for image encryption,”Cyber J: Multidiscip J Sci Technol J Sel Areas
Telecommun (JSAT) 2011:318.

[22] C. Fu, J.J. Chen, H. Zou, W.H. Meng, Y.F. Zhan and Y.W. Yu, “A
chaos-based digital image encryption scheme with an improved diffusion
strategy,” Optics Express. vol. 20, no.3, pp. 2363-2378, 2012.

122Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 137 / 241

Requirements Traceability in Cyber Physical Systems using Semantic Inference

Rohith Yanambaka Venkata, Rohan Maheshwari and Krishna Kavi

Department of Computer Science and Engineering
University of North Texas

Denton, Texas-76207
Email: {rohithyanambakavenkata,rohanmaheshwari}@my.unt.edu and krishna.kavi@unt.edu

Abstract—The distinguishing feature of Cyber Physical Systems
(CPS) is the coupling of computational and physical systems,
where embedded cyber systems monitor and control physical
processes. CPS is responsible for an important role in critical
infrastructure, and everyday life. They include smart networked
systems with embedded sensors, processors and actuators that
sense and interact with the physical world and support real-
time, guaranteed performance in safety-critical applications. The
cyber-physical nature, coupled with safety-critical application
greatly increases the attack surface and the impact of cyber at-
tacks. Understanding the interaction between various subsystems
in a CPS is vital in evaluating its security posture and identifying
the measures to mitigate threats. To that end, the ability to
trace a CPS design from the requirements elicitation phase to
the implementation phase, otherwise known as requirements
traceability may prove to be invaluable. This paper presents
an Ontological approach to requirements traceability in CPS
by building upon our previous work on defining the Semantic
Inference Model for Security in CPS using Ontologies (SIMON),
a design framework for CPS systems.

Keywords–CPS Security; Ontology; CPS Privacy, CPS Re-
siliency.

I. INTRODUCTION

CPS systems are increasingly benefiting from the expand-
ing IoT network as they are implemented in the infrastructure.
Their role in Industrial Control Systems puts upon a heavy
load of data transmission between their cyber and physical
components [1]. They face an increasingly difficult challenge
across domains as the relationship with the infrastructure
heightens in complexity. Independently, cyber and physical
systems have developed a resiliency towards outsider threats
since the structure of these systems have not required adaption
[2]. However, the rapid integration of these systems as a single
unit has brought upon changes in architecture that implies
vulnerabilities [3].

In an age where the relationship between cyber and physi-
cal systems are conflating to create new applications of IoT, the
ramifications of security threats are more severe than before.
The intertwining of existing communication and information
technologies with physical systems such as power plants,
healthcare systems, and transportation has increased the au-
tonomous capability to the infrastructure. The implementation
of software in these domains has resulted in increased risk
of unauthorized access to these newly integrated systems.
Consequently, cyber attacks are more severe when the gained
privileges cover access to a larger system.

Cyber and physical systems follow a framework that
characterizes the path that data takes from a physical to
application layer. When considering the amalgamation of these
two systems, it can be inferred that new transmission phases
will be implemented in order for CPS systems to communicate
internally. Therefore, the encryption protocols over the current

stages will not cover the introduced vulnerabilities in the layers
connecting the cyber and physical components of a system.
Therefore, data traveling between these respective planes will
be vulnerability to outside attacks and manipulation. The
outcome of which can compromise the functionality of the
additional components now involved.

Vulnerabilities in CPS systems increase the amount of
possible access nodes in both the cyber and physical sub
domains. As new components are added in the CPS domain to
bridge the cyber and physical components, the region of attack
becomes unclear and difficult to mitigate. In fact, because
CPS systems require connectivity and reliability on a larger
scale than sub domain systems such as the internet, their
security protocols contain a higher level of complexity [3]. The
increased attack surface calls for threats to be identified in two
categories: Infrastructure Security and Information Security.
In order to do so, it is important to develop a new framework
that can account for threats and vulnerabilities in the increased
connection points, data transmission phases, and components
involved in CPS systems.

With a plethora of functional requirements, data paths, and
components involved in CPS networks, Ontologies provide a
reliable technique to visualizing these concerns. Ontologies
are a system of components that are connected through the
semantic web. Relationships between components and their
functionality are described using logical axioms, taxonomies,
and other classification tools. These relationships along with
objective ruling systems and characteristics of CPS compo-
nents allow Ontologies to reason about possible vulnerabilities
as well the attack path taken to compromise the system. When
considering a new CPS domain, Ontologies provide a system-
atic methodology to understanding the internal communication
systems as well as identifying and classifying security threats.

In this paper, we propose a role application framework in
which we dissect security threats and vulnerabilities relative to
the layer they are violating. In our previous work [4], we pre-
sented a semantic inference framework that supplemented the
NIST CPS framework [5] divided CPS engineering into three
layers as follows: Conceptualization, Abstract Realization, and
Concrete Realization [4].

In the Conceptualization Phase, we will organize design
goals and top priority functional requirements that describe
the CPS system’s overarching goals. This way, it will be
apparent how individual threats impact the capabilities of the
CPS system.

Moving into the Abstract Realization Phase, the supporting
functional requirements will be denoted in the order they assist
the execution of the design goals. Each requirement will be
broken down into roles and responsibilities that are to be met
by the CPS components. In addition to listing the objectives
of the requirements, there will also be security properties that

123Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 138 / 241

define the level of resiliency required to ensure reliability in
the component. This process will occur recursively until all
components are assigned roles. At this stage, we can proceed
into the next layer.

In the Concrete Realization Phase, the components or-
ganized in the Abstract Realization Phase will be divided
into the individual hardware and software components that
allow for functionality of the CPS component. The technical
identification and mitigation of security threats in the CPS
domain will occur here. Once an issue is located in the CPS
system, the traceability of the requirements and all linked
quantities can be used to identify where a change in the system
needs to be made.

The rest of the paper is organized as follows. Section
II outlines the structure of the Semantic Inference Model
for Security in Cyber Physical Systems using Ontologies
(SIMON) framework. In addition, the main contribution of this
paper, the role allocation Ontology is also discussed in this
section. Section III demonstrates the capabilities of the role
allocation framework using the Red Light Violation Warning
System (RLVW) as a case study.

II. SIMON FRAMEWORK

In a companion paper in this conference, we presented the
SIMON framework [4] that combines (and extends) existing
standard specification Ontologies, such as Semantic Sensor
Networks (SSN), and new ones as required by the domain
of interest. For the sake of completeness, we will replicate
some key aspects of SIMON in this paper. First, we will
review some of the Ontologies and frameworks used in our
research and then, present a role allocation procedure that
enables requirements traceability.

A. NIST CPS Framework
National Institute of Standards and Technology (NIST) has

developed a framework that provides guidance in designing,
building, verifying, and analyzing complex CPS systems [5].
The framework captures generic functionalities that CPS pro-
vide, the activities and artifacts needed to support conceptual-
ization, realization and assurance of CPS design [5]. Designing
a CPS system involves:

• Conceptualization - Capturing all activities related to
high-level goals, functional requirements and organization
of CPS as they pertain to what a CPS should be and what
they are supposed to do. It provides a conceptual model
of the CPS system under consideration.

• Realization - Capturing all activities surrounding the
detailed engineering, design, production, implementation
and operation of the desired systems. However, to fa-
cilitate comparing Ontological models of CPS systems,
we propose bifurcating the overarching realization phase
described in the NIST CPS framework into the following
sub-phases.
◦ Abstract Realization - In this phase, design goals

are broken down into roles and responsibilities and
delegated to subsystems and interfaces. No implemen-
tation details pertaining to products (components and
sub-components) are identified. For example, we may
identify that the network communications needed in the
system will be handled by a wireless data communi-
cation application but not provide details on either the

specific hardware device or communication protocols.
We use Ontologies to capture the Abstract Realization.

◦ Concrete Realization - The roles and responsibilities
identified during the abstract realization phase need to
be implemented by specific products. For example, a
Cisco ASR1002-10G-HA/K9 will be used as an edge
router that functions as the wireless data communica-
tion application identified in the Abstract Realization
phase. We use Ontologies to relate the products used
for various functions and roles identified in the Abstract
Realization.

• Assurance - The assurance phase deals with obtaining
confidence that the CPS built in the realization phase
satisfies the model developed in the conceptualization
phase [5]. This includes evaluating claims, argumenta-
tion and gathering evidence required to address impor-
tant requirements of design, policy, law and regulation
[5]. In our case, we use reasoners to infer and derive
assurances (or violations) of the goals and functional
requirements are met. We use additional Ontologies to
capture cyber threat data so that vulnerabilities, cyber
attacks and possible mitigative measures can be related to
the products identified in Concrete Realization; we rely
on NIST Common Platform Enumeration (CPE) identities
with specific products for this purpose.

B. Role Allocation
Requirements traceability is an essential property in identi-

fying changes/modifications to components that will improve
the security posture of a CPS system. Delegating the over-
arching design goals from the conceptualization phase into
roles and responsibilities for entities identified in either of the
realization phases will help achieve this property.

The abstract realization phase involves identifying
application-level components, sans the implementation details.
Each system identified in this phase can be used to define a role
that defines a set of conceptualized functional requirements for
the underlying sub-systems to realize. In addition, each role
may define a set of security requirements to be fulfilled. In
the concrete realization phase, a detailed example is presented
in Section III.

The trustworthiness requirements as described by the NIST
CPS Framework can be categorized as:

• Privacy: Privacy requirements address concerns pertain-
ing to the prevention of entities gaining access to data
stored in, created by or transiting through a CPS system
or its components [5].

• Reliability: Address concerns related to the ability of a
CPS to deliver stable and predictable performance in the
expected conditions [5].

• Resilience: Address concerns related to the ability of a
CPS to withstand instability, unexpected conditions, and
gracefully return to predictable, but possibly degraded
performance [5].

• Security: Concerns related to the ability of the CPS
to ensure that all of its processes, mechanisms, both
physical and cyber, and services are afforded internal
or external protection from unintended and unauthorized
access, change, damage, destruction, or use [5]. Security
can best be described through three lenses:

124Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 139 / 241

◦ Confidentiality: Preserving authorized restrictions on
access and disclosure.
◦ Integrity: Guarding against improper modification or

destruction of system, and includes ensuring non-
repudiation and authenticity
◦ Availability: Ensuring timely and reliable access to and

use of a system.

SIMON can be used to modify the CPS design at any of the
various phases to address any design violations discovered by
our reasoners. We use different Ontologies in our framework
to describe the concepts, properties and restriction associated
with CPS systems at each of the design phases described in
the next section.

C. Sensor-Observation-Sampling-Actuator Ontology (SOSA)
The Sensor-Observation-Sampling-Actuation Ontology

(SOSA), a subset of the Semantic Sensor Network (SSN)
Ontology presents a conceptualization of all entities, activities
and properties that typically constitute a CPS. SOSA is a
World Wide Web Consortium (W3C) standard specification
that provides a formal, general-purpose framework for
modeling the interactions between various entities involved in
the functions of observation, sampling and actuation in SSNs
[6].

The core structure of SOSA Ontology design pattern en-
compasses all of the three modeling perspectives; the activities
of observing, sampling, and actuating [6]. Each activity targets
a feature of interest by either changing its state or revealing its
properties by following a designated procedure. All activities
are carried out by an object, also called an agent.

D. Cyber Threat Information Ontology
The SOSA Ontology outlined in the previous section helps

capture the intricacies of the coupling between the cyber and
physical elements in CPS systems. The activities of observing
and sampling must be followed by communicating the data and
processing to interpret the observations and making decisions
on the actions. These actions are then used to control physical
systems through actuation. The communication and process-
ing subsystem, which is not directly included in the SOSA
ontology can expose the cyber and physical components of
the CPS to security attacks. Thus, SOSA must be extended to
describe the processing and communication subsystems. This
allows us to relate cyber threat data from multiple sources
to obtain insights into the security posture of a CPS system
under consideration. We have defined an Ontology that obtains
and contextualizes Cyber Threat Information (CTI) from three
sources:

• The National Vulnerability Database (NVD) - A U.S.
government repository of standards based vulnerability
management data [7].

• Exploit Database - An archive of public exploits and
corresponding vulnerable software, developed for use by
penetration testers and vulnerability researchers [8].

• Metasploit - A framework for developing, testing and
executing software exploits [9].

The cyber threat Ontology is underpinned by the STIX
structured language, that enables organizations to share, store
and analyze CTI in a consistent manner, allowing security
communities to better understand what computer-based attacks

they are most likely to see and to anticipate and/or respond to
those attacks faster and more effectively [10].

Our objective in defining the CTI Ontology is to unify
information from three sources (described earlier in this sec-
tion) and facilitate logical reasoning about the security of CPS
using Axioms. Axioms are rules that are used by a reasoner to
infer additional information that may be hard to define using a
knowledge representation language. To provide a perspective
of the complexity of CTI Ontology, it includes 6657 axioms
that describe CTI data. In addition to STIX, the CTI Ontology
also inherits characteristics from two additional Ontologies:
• Cyber Observable Expression (CybOX) - A standard-

ized language for encoding and communicating informa-
tion about cyber observables [10]. Using CybOX lan-
guage, relevant observable events or properties pertaining
to an attack pattern can be captured.

• Common Attack Pattern and Enumeration (CAPEC)
- Provides a dictionary of known patterns of attack
employed by adversaries to exploit known weaknesses in
cyber-enabled capabilities.[11].

III. CASE STUDY: RED LIGHT VIOLATION WARNING
SYSTEM (RLVW)

Figure 1. The RLVW system

As a case study to show the use of our framework, we use
the Red Light Violation Warning (RLVW) safety application
as described in the US Department of Transportation document
[12]. The RLVW application enables a connected vehicle
approaching an instrumented signalized intersection to receive
information from the infrastructure regarding the signal timing
and the geometry of the intersection. The application in the
vehicle uses its speed and acceleration profile, along with
the signal timing and geometry information to determine if
it appears likely that the vehicle will enter the intersection
in violation of a traffic signal. If the violation seems likely to

125Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 140 / 241

occur, a warning can be provided to the driver. Figure 1 shows
an overview of the RLVW system.

The SIMON framework describes three layers of threat
identification by classifying design goals, subsystems that sup-
port those goals, and hardware/software that enable functional-
ity of the subsystems. The number of nodes used in this model
can demonstrate the complexity of CPS. The more nodes
and edges established in this system, the more intermediate
layers are formed between the CPS Model layers. In doing
so, more vulnerabilities are introduced into the system due to
larger access points throughout the CPS. To mitigate this, it is
desirable to assign roles and responsibilities to components in
the abstract and concrete realization phases based on functional
and security requirements. Such an approach will provide re-
quirements traceability, which will aid in increasing resiliency
by reducing the attack surface.

Figure 2. The V2I Wireless Data Systems Network

A. Conceptualization Phase
The design goal of the Vehicle to Infrastructure (V2I)

Wireless Data Interface (WDI) system is to communicate rel-
evant data between the Infrastructure and Vehicle application
components through their respective WDI and Application
Platforms (APs). The V2I WDI incorporates algorithms and
data exchanged to perform calculations to recognize high-
risk situations in advance. This inference results in issuing
driver alerts and warnings through specific protocols. The
most primitive and fundamental goal of the V2I WDI is to
calculate and communicate Signal, Phase and Timing (SPaT)
information to the vehicle with support of driving advisories
and warnings [12]. The system is also responsible for maintain-
ing authenticity of transmitted data through security measures.
Corrupted data can result in compromising driver safety and
their informations privacy. The three primary design goals of
the V2I WDI system are:
• Verify Incoming Data (VID): Since the system serves as

a bridge between the vehicle and infrastructure domains,
its main design goal revolves around transmitted data
between both components. Therefore, a key requirement
of this system is to verify the authenticity of incoming
data from either side of the system to avoid Phishing and
other instances of fraudulent data transfer. This should

be accomplished through ingress filtering protocols set in
place to verify packet source headers and IP addresses.

• Verify Outbound Data (VOD): The WDI system is also
responsible for generating advisories and alerts tailored
to each nearby vehicle. With this in mind, a supporting
requirement for this design goal must be to implement
Secure Socket Layer (SSL) protocols or an alternative
cryptographic key to ensure outbound data is not tam-
pered with before reaching its destination.

• Data Routing to Proximate Vehicles (DRPV): Because
this system is involved with establishing multiple connec-
tions between the infrastructure and vehicles, there is no
generic set of messages purposed for all vehicles. Each
advisory is calculated using metrics provided by each
vehicle, thus creating a functional requirement to ensure
that each message is sent to the appropriate vehicle.
Failure of this requirement can serve fatal if metrics
are sent to the incorrect vehicle which results in traffic
violations or accidents.

B. Abstract Realization Phase
The functional requirements listed in the conceptualization

phase are purposed to describe the theoretical capabilities of
a CPS. When moving into the application layer components
that quantitatively satisfy the aspirational properties of the V2I
WDI System, it is important to categorize each component
into the respective requirement it resolves. This way, in the
assurance phase, it can be tested how well the design goal of
each component meets its dedicated functional requirement.
Each component in the abstract realization phase will be
assigned its own role.

Since the V2I WDI system is only a portion of the entire
V2I domain, its design goal only covers data transmission.
Therefore, only the transmission capabilities and roles of the
categorized components will be discussed. Additionally, it
is important to note that the sub components of both the
infrastructure and vehicle contain similar components with
only slightly varying goals. When working with Cyber Phys-
ical Systems, the cyber and physical aspect of this CPS can
be made resilient independently. However, the current issue
that Intelligent transportation system (ITS) developers face
is maintaining that level of security when combining both
sides of the system. This is because the integration of optimal
designs when forming the system can lose the resiliency of
both the cyber and physical aspects. So to understand these
challenges, we form a general hierarchy of the V2I WDI
network that maps each component to the requirement it fulfils
[12]. This will unravel the group of threats associated at each
layer of the system. Figure 2 shows an overview of the V2I
wireless data interconnect.

1) VID Associated Components:

• Infrastructure Wireless Data Systems (IWDS): The In-
frastructure Wireless Data Interface (IWDI) is responsible
for sending and receiving data to/from nearby vehicles
via the V2I Wireless Data Interface (VWDI). Its main
design goal is to validate passing data by making sure
position accuracy of incoming vehicles is up to the DoT
standards. Additionally, the system calculates SPaT and
Differential Global Positioning System (DGPS) metrics
to be deployed to nearby vehicles via the IWDI.

126Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 141 / 241

The IWDI role helps realize all activities related to
communication with vehicles equipped with a VWDI.
In other words, all three conceptual design goals are
supported by the IWDI role. The conceptual design goals
mandate the security, privacy, resiliency requirements be
associated with the IWDI role.

• Infrastructure Application Platform (IAP): The IAP
is the computational platform which hosts the Infrastruc-
ture Application Component and provides the necessary
hardware and software interfaces enabling communication
with Infrastructure Wireless Data Systems, Infrastructure
Data Systems, Roadside Signage System, Traffic Signal
Controller, and Local/Back Office User Systems. Its main
design goal is to channel all data gathered by sensors
and physical systems to the cyber components. It can
be considered the bridge between the cyber and physical
components of the infrastructure side of the CPS, thus
making it one of the least resilient and most vulnerable
parts of the CPS.
The IAP role is perhaps one of the most important in the
RLVW system. It facilitates the interaction between the
constituent systems in the infrastructure and the vehicle.
It is apparent from the conceptual goals that the IAP role
must meet the security, privacy, resiliency and reliability
requirements.

• Vehicle Wireless Data Systems (VWDS): Receives
messages from the Vehicle Application Component
through the Vehicle Application Platform, formats and
processes messages to be received by infrastructure com-
ponents. This system also transmits data from the Vehicle
Wireless Data Interface to the deeper hardware of the
vehicle. This system also obtains GPS location and time.
It may include a processor for GPS differential correction.
Its main design goal is to convey information from the
capture point at the Vehicle Wireless Data Interface to the
internal components below and vice versa.
The VWDS role is essential in ensuring communication
between the sensors in the infrastructure space and the
innards of VDWI. Hence, it must support the security and
resiliency requirements outlined in the previous section.

• Vehicle Application Platform (VAP): The Vehicle
Application Platform is the computational platform which
hosts the Vehicle Application Component and provides
the necessary hardware and software interfaces enabling
communication with Vehicle Wireless Data Systems, Ve-
hicle Data Systems, and the Driver Warning Systems. Its
main design goal is to channel all data gathered by vehicle
sensors, actuators, and On-Board Diagnostics (OBD) data
to the vehicular cyber components for processing and
calculations. It can be considered the bridge between
the cyber and physical components of this side of the
CPS, thus making it one of the least resilient and most
vulnerable parts of the CPS.
The VAP role is equivalent to the IAP role previously
discussed. Since they are very similar in the conceptual
goals they support, it stands to reason that the VAP role
should support security, privacy, resiliency and reliability
requirements.

2) VOD Associated Components:

• Infrastructure Wireless Data Interface: The IWDI is
responsible for sending and receiving to nearby vehicles
via the V2I Wireless Data Interface. Its main design goal
is to refresh data transmission frequency at a configurable
pace. It is also required to be equipped with countermea-
sures in case of corrupt or tampered data transmission. In
these cases, it should issue warning messages to nearby
vehicles to terminate data transmission and calculations
using any information that comes from the Infrastructure.
IWDI defines the functional requirements pertaining to
communication with VWDI. The functional requirements
of IWDI dictate that it should support security and re-
siliency.

• Vehicle Wireless Data Interface: The VWDI is re-
sponsible for sending and receiving to nearby Industrial
Control Systems such via the V2I Wireless Data Interface.
Its main design goal is to validate incoming data and
request new packets from the infrastructure at a config-
urable frequency. It is also required to correct map and
DGPS data for the infrastructure application component
to produce the most precise RLVW metrics. In the case
of inaccurate or corrupt data, the VWDI is required to
terminate data transmission and issue alerts to the driver
information interface
VWDI is the vehicle-side equivalent of IWDI. So, Intu-
itively, this role should support the same security require-
ments as IWDI, which would be security and privacy.

3) DRPV Associated Components:

• V2I Wireless Data Interface: Acts as a bridge for
data transmission between the entire Infrastructure and
Vehicle components. It receives raw data from the Infras-
tructure and vehicle components. This communication is
functional over a bi-directional Dedicated Short Range
Communication (DSRC) network. Therefore, its security
protocol is effective within 1000 meters of any attacker.
Beyond that, connectivity is loose and vulnerable. Its main
design goal relative to the RLVW application is to ensure
secure data transmission between approaching vehicles
and signalized intersections.
It is evident from the description of this application that
it sustains all three design goals of the RLVW system.
Its vital importance means that this role should support
privacy, reliability, resilience and security.

C. Concrete Realization Phase
Now that the baseline for the design goals and support-

ing components are established, we can identify technical
aspects of the identified components to understand how these
functional requirements are met. Mapping the hardware and
software to their respective components will help unravel the
classification of security threats since it is at this phase where
the core data transmission occurs. Up until now, the above
layers cover high-level understandings of the V2I WDI System.
Now, we will classify core hardware and software that is
generalized for both sides of the system to understand the
mechanics behind V2I data transmission.

• DSRC On Board Unit (OBU): The DSRC OBU is
the dedicated communication device installed on V2X
connected vehicles. This hardware is responsible for

127Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 142 / 241

establishing and receiving SPaT and Roadside data at
a configurable frequency between 5.8 GHz -5.9 GHz.
It utilizes the widely adaptive ThreadX RTOS operating
system designed specifically for Internet of Things (IoT)
applications. The DSRC OBU assists in enabling the
capabilities of the Vehicle Wireless Data Interface [13].
The OBU resides in vehicles and is responsible for
implementing the VWDS, VAP and VWDI roles from the
abstract realization phase. All of the security requirements
associated with each constituent abstract-level component
is required to be supported by the OBU. However, mul-
tiple roles/responsibilities may be fulfilled by a single
realization. For example, using an encrypted communi-
cation channel will fulfill both privacy and confidentiality
requirements mandated by the roles that this component
supports.

• DSRC Roadside Unit (RSU): The RSU unit performs
identical functions but on the other end of the V2I
wireless network. It is responsible for receiving SPaT and
Roadside data from the infrastructure technical systems,
verifying the data, and transmitting it upon data request
from nearby vehicles. The RSU unit enables the capa-
bilities of the V2I Wireless Data Interface, acting as the
cyber bridge between the Vehicle and Infrastructure cyber
components.
The RSU is responsible for supporting the roles of IWDS,
IAP, and IWDI. The security requirements associated with
each of the three roles need to be supported by the RSU.

• Wireless Sensor Network (WSN): The WSN is the sen-
sor network on the infrastructure side that captures road
conditions data, Infrastructure based vehicle detection,
Road conditions, Speed data, Visibility data, and weather
data. It utilizes sensors and actuators for the detection
aspect of the hardware and standard transceivers, anten-
nas, and receivers for the communication aspect of the
hardware [14]. The Infrastructure Wireless Data Systems
are supported by this WSN network, acting as the source
of raw data that is formatted and processed into metrics
by the Data Systems.

The WSN resides in the intersection between infrastructure
and vehicle subsystems and facilitates communication between
the IWDI and VWDI systems. It is required to support the
security requirements associated with these two roles.

D. Assurance Phase

The assurance phase deals with obtaining confidence that
the CPS system built in the concrete realization phase satisfies
the models described in the abstract realization and conceptu-
alization phases. Validating the concrete CPS system involves
ensuring that it meets the functional and security requirements
associated with the roles that each component supports. Figure
3 illustrates the hierarchy of role allocation in SIMON.

Evaluating the security posture of a CPS system requires
current CTI data from multiple sources. To that end, SIMON’s
CTI Ontology discussed in sectionII-D provides pertinent
information.

Let us consider the example of an OBU running ThreadX
RTOS. The OBU is responsible for sustaining the VWDS, VAP
and VWDI roles, which necessitate the support of privacy,

Figure 3. Role allocation hierarchy

security and resiliency requirements. CTI is able to formu-
late a CPE identifier for this system using information ob-
tained from the NVD. CPE:2.3:o:marvell:88w8997 firmware:-
:*:*:*:*:*:*:* identifies the ThreadX-based firmware on a Mar-
vell Avastar WiFi device. The Common Vulnerability Scoring
System (CVSS) metrics from the NVD for this CPE indicate
that the attack vector for a threat that exploits this vulnerability
would be adjacent, which means that any infected devices in
a local network could potentially compromise other devices
in the network. Furthermore, the high severity score from
the CVSS metrics indicates that a an attack that leverages
this vulnerability could be catastrophic. If the system were
to be affected by CVE-2019-6496 [15], an adversary may
be able to launch a denial of service attack on the OBU.
The vulnerability allows remote attackers to execute arbitrary
code or cause a denial of service (block pool overflow) via
malformed WiFi packets during identification of available
WiFi networks. Exploitation of the WiFi device can lead to
exploitation of the host application processor in some cases,
but this depends on several factors including host OS hardening
and the availability of DMA.

To understand the impact of this vulnerability on the
CPS system, the requirements traceability property offered by
SIMON must be leveraged. This would show how the impact
of a potential exploitation of this vulnerability would propagate
up the three stages of design processes. Figure 5 shows various
inferences that the reasoner makes in providing the insights
presented below.

128Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 143 / 241

• In the concrete realization phase, a vulnerability in the
OBU would violate the functional requirements of both
the DSRC roadside unit and the OBU. It is desirable to
implement mitigative measures in the concrete realization
phase because it wouldn’t require a complete overhaul or
re-engineering of systems previously implemented.

• In the abstract realization phase, all the roles fulfilled by
the OBU and DSRC transceiver, VWDS, VAP, VWDI,
IWDS, IAP, IWDI are violated. The corresponding se-
curity requirements pertaining to availability are affected.
CVE-2019-6496, being a vulnerability exploited for DoS,
confidentiality and integrity requirements may not be
impacted.

• In the conceptualization phase, all three requirements
(VOD, VID and DRPV) are affected by the unavailability
of the OBU. thereby impacting the primary design goal of
the RLVW system, which is to prevent roadway fatalities
by ensuring date transmission between the infrastructure
and vehicles.

Figure 4. DoS attack on the OBU

A DoS attack on the OBU would violate the availability
requirement for all three roles supported by the OBU (VWDS,
VAP and VWDI), thereby violating the DRPV design principle
of the CPS system. Figure 4 shows the how the design goals
of the RLVW system will be affected by such an attack on the
OBU. The knowledge reuse property of SIMON can be used to
compare various CPS systems to identify mitigative measures
from other domains that can be reused in the CPS system
under consideration. We have presented multiple examples in
our prior work [4]. These insights would be invaluable to CPS
system designers.

Figure 5. DoS attack inference

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented an extension to our previ-
ous work on CPS design validation using semantic inference.
Reasoning about a CPS realization and validating that the
realization does not violate functional as well trustworthiness
goals is essential in improving the security posture of a CPS
system. Currently, the SIMON framework is not capable of
automatically translating design goals into Ontological models.
However, we are exploring the possibility of extending our
work to support this function in the future.

We demonstrated that the role allocation ontology is ca-
pable of delegating the functional and security requirements
among subsystems at various design stages of a CPS system.
It offers requirements traceability to understand the impact of
a security threat in CPS. An RLVW system was used a case
study to demonstrate the role allocation ontology’s capabilities.
In the future, we intend to investigate other CPS domains.

ACKNOWLEDGEMENT

This research is supported in part by the NSF Net-centric
Industry-University Cooperative Research Center at UNT and
the industrial members of the Center.

REFERENCES

[1] A. A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry,
“Challenges for Securing Cyber Physical Systems,” Center for Hybrid
and Embedded Software Systems, pp. 1–3, 2009.

[2] F. AlDosari, “Security and Privacy Challenges in Cyber-Physical Sys-
tems,” Scientific Research Publishing, pp. 4–6, 2017.

[3] B. Li and L. Zhang, “Security analysis of cyber-physical system,” AIP
Conference Proceedings, pp. 1–4, 2017.

[4] R. Y. Venkata, R. Maheshwari, and K. Kavi, “SIMON: Semantic
Inference Model for Security in CPS using Ontologies,” ICSEA, pp. 1–
2, 2019.

[5] D. A. Wollman, M. A. Weiss, Y. Li-Baboud, E. R. Griffor, and M. J.
Burns, “Framework for cyber-physical systems,” Special Publication
(NIST SP) - 1500-203, 2017.

[6] K. Janowicz, A. Haller, S. J. D. Cox, D. L. Phuoc, and M. Lefrançois,
“SOSA: A lightweight ontology for sensors, observations, samples, and
actuators,” CoRR, vol. abs/1805.09979, 2018.

[7] “National vulnerability database.” URL: https://nvd.nist.gov/ [accessed:
2019-06-11].

[8] “Exploit-DB.” URL: https://www.exploit-db.com [accessed: 2019-06-
20].

[9] “Metasploit-penetration testing framework.” URL:
https://www.metasploit.com/ [accessed: 2019-06-20].

[10] S. Barnum, “Standardizing cyber threat intelligence information with
the structured threat information expression (stix),” 2014.

[11] “Common Attack Pattern Enumeration and Classification (CAPEC).”
URL: https://capec.mitre.org/ [accessed: 2019-07-02].

[12] Department of Transportation, “Performance Requirements, Vol. 3,
Red Light Violation Warning (RLVW),” Vehicle-to-Infrastructure (V2I)
Safety Applications, pp. 1–68, 2015.

[13] “Vehicle to Infrastructure interaction (V2I),” 2019. URL:
http://www.mogi.bme.hu/TAMOP/jarmurendszerekiranyitasaangol/math−
ch09.html[accessed : 2019− 09− 19].

[14] D. Snchez-lvarez, M. Linaje, and F.-J. Rodrguez-Prez, “A Framework
to Design the Computational Load Distribution of Wireless Sensor
Networks in Power Consumption Constrained Environments,” Sen-
sors(Basel), pp. 2–5, 2018.

[15] “National Vulnerability Database.” URL:
https://nvd.nist.gov/vuln/detail/CVE-2019-6496 [accessed: 2019-
06-11].

129Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 144 / 241

The Matching Lego(R)-Like Bricks Problem:
Including a Use Case Study in the Manufacturing Industry

Martin Zinner∗, Kim Feldhoff∗, Rui Song†, André Gellrich†, Wolfgang E. Nagel∗
∗ Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

E-mail: {martin.zinner1, kim.feldhoff, wolfgang.nagel}@tu-dresden.de
† Technical Information Systems
Technische Universität Dresden

Dresden, Germany
E-mail: {rui.song, andre.gellrich}@tu-dresden.de

Abstract—We formulate and transform a real-world combinato-
rial problem into a constraint satisfaction problem: choose a
restricted set of containers from a warehouse, such that the
elements contained in the containers satisfy some restrictions and
compatibility criteria. We set up a formal, mathematical model,
describe the combinatorial problem and define a (nonlinear)
system of equations, which describes the equivalent constraint
satisfaction problem. Next, we use the framework provided
by the Apache Commons Mathematics Library in order to
implement a solution based on genetic algorithms. We carry out
performance tests and show that a general approach, having
business logic solely in the definition of the fitness function,
can deliver satisfactory results for a real-world use-case in the
manufacturing industry.

Keywords–Constraint satisfaction problem; Combinatorial prob-
lem; Genetic algorithm; Crossover; Mutation.

I. INTRODUCTION

We formulate a new real-world combinatorial problem, the
motivation for our study. Initially, we describe succinctly the
real-world problem as it has been identified at a semiconductor
company and present the general strategy to solve it. In order
to avoid the technical difficulties related to the industrial
application, we present the equivalent problem based on
LEGO R© bricks. To conclude this chapter, we present the outline
of the paper.

A. Motivation

Some time ago we were facing a strategic problem at a
big semiconductor company. The company produces Integrated
Circuits (ICs), also termed chips, assembles them to modules
on a circuit board according to guidelines and specifications,
and ships the modules as the final product to the customer.
The ICs are stored in bins before the last technological process
(cleaning) is performed.

The difficulties arise due to technical limitations of the tool
that assembles the ICs to modules. The tool can handle at most
five bins at once. This means in particular, that the ICs required
to fulfill an order from the customer have to be in not more
than five bins. Once the bins have been identified, the modules
are assembled and shipped to the customer. If it is not possible
to identify five bins in connection with a customer order, then
either cost-intensive methods (rearranging the content of some
bins) or time-intensive methods (waiting some days till the

production process delivers new ICs) have to be applied. Hence,
identifying the bins necessary to fulfill an order is crucial for
the economic success of the company.

B. Current State and Challenge

There has been a selection algorithm in place, based
primarily on heuristics and inside knowledge regarding the
patterns of the specifications of the modules. Although the
existing selection algorithm delivered satisfactory results in
most of the cases, it runs for days in some cases and is not
flexible enough, in particular, it cannot handle slight deviations
from the existing specification patterns.

To circumvent the above inconvenient, the main aim of
our study is to determine alternative selection methods, which
always deliver satisfactory results within an acceptable time
frame, and which are easy adaptable to meet future requirements.
Our main objective is to identify and formalize the industrial
problem as a mathematical model and to transform the occurring
Combinatorial Problem (CP) into a Constrained Satisfaction
Problem (CSP). The exact method using MATLAB did not
deliver results within a satisfactory time frame. A suitable
heuristic method – including Simulated Annealing (SA), Ant
Colony Optimization (ACO), Genetic Algorithms (GA), etc. –
to solve the CSP within the requirements had to be identified
and appropriate algorithms had to be developed, which satisfy
both the accuracy and performance demands.

If the general task is to find optimal solution to a set of
constraints, we speak about Constrained Optimization Problem
(COP). The primarily purpose of the industrial problem is to
find a satisfactory solution, since from the technical perspective
undercutting the requirements of the specifications does not
lead to better quality. However, a straightforward extensions
of the CSP towards COP is mentioned later.

C. Problem Description

The following example is artificial, it does not occur in real
life in this manner, although it is very close to it. It is used to
best describe the problem without burden the reader with the
technical details of a concrete “real life” example. Later on,
we will present a “real life” example from the industry and
specify the respective mappings between the two models.

We describe the problem succinctly by using an analogy
of building structures out of LEGO R©-like pieces (bricks).

130Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 145 / 241

LEGO R©-like pieces (also termed blocks or bricks) can be
assembled to build sophisticated structures (in the following
termed objects) like buildings, etc. Figure 1 shows how two
bricks can be pooled together. The manufacturer of the bricks

Figure 1: Illustration how two bricks, one of them a corner brick, can
be pooled together.

wants to facilitate and simplify the assembling of the bricks to
the final objects as well as to cut manufacturing costs and es-
tablishes a two phases strategy when designing the layout plans
of the final objects. The final object is parsed into components
(termed modules or assemblies) in a straightforward way, such
that these modules can also be reused to assemble other objects.
This strategy of representing the final object as a composition of
modules is very similar to the construction of buildings out of
prefabricated structural components, i.e., modules. This way, by
using a modular approach, the description and the design plans
of quite sophisticated objects can be kept relatively simple and
manageable and the complexity and the difficulty of building
the final object is delegated to the assembly of the modules.
Hence, the building specification of the final object is split into
two guidelines, one regarding how to assemble the required
modules, one regarding how to put together the modules to
form the final object.

Each brick has numerical and non-numerical characteristics.
A non-numerical attribute is, for example, a unique ID which
characterizes the bricks like shape, approximate dimensions,
number and the arrangement of the inner tubes, etc. Another
non-numerical attribute is the color of the bricks, etc. There are
very tight requirements in order to be able to assemble two or
more bricks. In order to cut costs the technological process to
manufacture the bricks is kept simple and cost-effective to the
detriment of interchangeability. Thus, the pieces are measured
after the production process and the measurement values are
persisted in adequate storage systems.

In order to be able to assemble the bricks, they have to
fit together, i.e., some measurement values (see Figure 2 for
an example) have to fulfill some constraints. The respective

Figure 2: Exemplification of the measurements of a brick.

measurement values must match in order that the bricks can
be assembled. For example, putting four bricks together, side
by side and on top of each other, strict restrictions concerning
perpendicularity and planarity tolerance, have to be satisfied,
such that for example, the overall maximum planarity error is

0.05 mm and the maximum perpendicularity error is 0.1 angular
degree. Unfortunately, these restrictions can only be evaluated
when all the measurement values of the bricks chosen to
build the module are at the builder’s disposal. Corresponding
calculation prescription are available.

Once, the modules have been assembled, the object can
be put together out of the pre-assembled modules with no
limitations. Furthermore, all the modules are interchangeable
with similar ones.

The manufacturing of the bricks is continuous, the bricks
are packed into bins after the measuring process occurred and
stowed in a warehouse. The ID, the non-numerical attributes
and the numerical measurement values are stored in a database
and associated to the bin ID. This way, the manufacturer
knows exactly the content of each bin. In order to keep the
manufacturing costs low, the bins are never repacked, after a
bin is full and in the warehouse.

The assembly plan for a particular structure (for example
as in Figure 3) is not univocal, i.e., the number and the type of
the bricks to build the envisaged structure is not unequivocally
specified, the assembly plan contains more alternatives. Since

Figure 3: A frame with window as an example for a module.

the manufacturer provides detail information in digital form
regarding each brick contained in the bins offered for sale, a
computer program could easily verify that a house as given
in Figure 4 could be built up from a particular set of bins.
Unfortunately, identifying the set of bins necessary to build an

Figure 4: House as exemplification of an order composed of modules.

object (for example the house as in Figure 4) turns out to be a
very hard task to accomplish. In order to keep costs down, the
number of the bins to be purchased, has to be limited to the
necessary ones.

Let us suppose that the order can be assembled out of 5
bins, and the manufacturer offers 1000 bins for sale on his
home page. Regrettably, the computer program can only verify
if a particular set of five bins contains the bricks necessary
to build the house. The brute force method to verify each set
of 5 bins out of 1000 does not deliver a practical solution as
elementary combinatorics show. Thus, other methods have to
be applied.

131Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 146 / 241

D. Outline

The remainder of the paper is structured as follows:
Section II gives an overview about existing work related to
the described problem. Section III introduces the mathematical
model and describes how the combinatorial problem can be
transformed into a constrained satisfaction problem. Section IV
applies the proposed selection algorithm based on genetic algo-
rithms to an industrial use case and shows the performance of
an implemented solution which is based on genetic algorithms.
A short investigation regarding multi-objective optimization is
considered in Section V, whereas Section VI concludes this
paper and sketches the future work.

II. RELATED WORK

Generally speaking, combinatorial optimization problems
are considered as being difficult [1] [2], which stimulated
the development of effective approximate methods for their
solutions. Combinatorial optimization problems appear in a
multitude of real world applications, such as routing, as-
signment, scheduling, cutting and packing, network design,
protein alignment, and in many fields of utmost economic,
industrial, and scientific importance. The techniques for solving
combinatorial optimization problems can be exact and heuristics.
Exact algorithms guarantee optimal solutions, but the execution
time often increases dramatically with the size of the underlying
data, such that only small size of instances can be exactly solved.
For all other cases, optimality is sacrificed for solvability in a
limited amount of time [3].

The concept of a constraint satisfaction problem has also
been formulated in the nineteen seventies by researchers in
the artificial intelligence. Characteristic CSPs are the n queens
problem, the zebra puzzle, the full adder circuit, the crossword
puzzle, qualitative temporal reasoning, etc. Typical examples of
constrained optimization problems are the knapsack problem
and the coins problem [4]. Further examples of combinatorial
optimization problems [5] are: bin packing, the traveling
salesman problem, job scheduling, network routing, vehicle
routing problem, multiprocessor scheduling, etc.

For the last decades, the development of theory and methods
of computational intelligence regarding problems of combina-
torial optimization was of interest of researchers. Nowadays, a
class of evolutionary methods [6]–[9] is of particular interest,
like simulated annealing, ant colony optimization, taboo search,
particle swarm optimization, to which genetic algorithms
belong [10]–[13]. Recent publications in this direction [14]–[20]
prove the efficacy of applying genetic and other evolutionary
algorithms in solving combinatorial optimization problems.

A genetic algorithm is an adaptive search technique based
on the principles and mechanism of natural selection and of the
survival of the fittest from the natural evolution. The genetic
algorithms evolved from Holland’s study [21] of adaptation in
artificial and natural systems [5].

Typical examples of using evolutionary algorithms are the
genetic algorithm approach to solve the hospital physician
scheduling problem and an ant colony optimization based ap-
proach to solve the split delivery vehicle routing problem [22].

The report [23] offers an approach to use genetic algo-
rithms to solve combinatorial optimization problems on a

set of euclidean combinatorial configuration. The euclidean
combinatorial configuration is a mapping of a finite abstract set
into the euclidean space using the euclidean metric. The class
of handled problems includes a problem of balancing masses
of rotating parts, occurred in turbine construction, power plant
engineering, etc.

III. THE FORMAL MODEL

In the following, we will formalize the description of the
combinatorial problem by introducing a mathematical model.
This way, we use the advantages of the rigor of a formal
approach over the inaccuracy and the incompleteness of natural
languages. First, we introduce and tighten our notation, then
we present the formal definition of the constraints which are
considered in our formal model and which are the major
components in the definition of the fitness function used
to control and steer the genetic algorithm. Concluding, the
combinatorial problem is defined as a constraint satisfaction
problem.

A. Notation

Let V be an arbitrary set. We notate by P(V) the power
set of V, i.e., the set of all subsets of V, including the empty
set and V itself. We notate by card(V) the cardinality of V.
We use a calligraphic font to denote index sets, such that the
index set of V is notated by I V .

The finite sets of bricks, bins, (non-numerical type of)
attributes, (numerical type of) and measurements are denoted
as follows:

S := {si | i ∈ I S and si is a brick (stone)},
B := {bi | i ∈ I B and bi is a bin (carton)},
A := {Ai | i ∈ I A and Ai is an attribute},
M := {M i | i ∈ I M and M i is a measurement}.

Let i ∈ I A , j ∈ I M , and k ∈ I S . We denote by aik the value
of the attribute Ai of the brick sk and by mj

k the value of
the measurement M j at the brick sk. We denote the list of
assembly units (modules) by

U := {U i | i ∈ I U and U i is an assembly unit (module)}.

The construction (guideline) plan for a module U ∈ U
contains

a) the (three dimensional) design plan description, i.e., the
position of each brick within the module,

b) the non-numerical attribute values for each brick and

c) prescriptions regarding the measurement values.

Analogously, by

O := {Oi | i ∈ I O and Oi is an object}
we denote the list of objects for which there exists construction
plans.

The non-numerical attributes values of the selected bricks
have to match the corresponding values in the guideline plan.

We denote by

R := {Ri | i ∈ I R and Ri is a requirement (specification)}
the list of the requirements (specifications) of the objects.

132Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 147 / 241

B. Transformation of the CP into a CSP

Let O ∈ O an order. Then, according to the specifications,
there exists (proxy) modules M̂ l1 , M̂ l2 , . . . , M̂ lk , such that O
is an ordered list of modules, i.e., O = (M̂ l1 , M̂ l2 , . . . , M̂ lk).
The term proxy is used to denote an abstract entity ac-
cording to the specifications. Analogously, each module
M̂ i with i ∈ {l1, l2, . . . , lk} is an ordered list of proxy bricks
(stones), i.e., M̂ i = (ŝi1 , ŝi2 , . . . , ŝim). Hence, each module
can be represented by an ordered list of proxy bricks, i.e.,
O = (ŝk1 , ŝk2 , . . . , ŝkn). This representation will be used later
to define the individuals within the context of the genetic
algorithms.

Let O = (ŝk1 , ŝk2 , . . . , ŝkn) be a module. We say that
the ordered list (sk1

, sk2
, . . . , skn

) with si ∈ S ∀i ∈
{k1, k2, . . . , kn} is an assignment (embodiment) of O. This
means especially that the abstract unit of the specification is
materialized within the production process. We set

E := {Ei | i ∈ I E and Ei is an assignment (embodiment)}.

Let R ∈ R be a requirement (specification) of a specific
module U ∈ U and let {ŝ1, ŝ2, . . . , ŝn} be the proxy bricks
of the specification. The design plan of the specification
provides the three-dimensional assembly plan of the proxy
bricks. Additionally, the specifications provide information
regarding the restriction the bricks have to fulfill in order to be
eligible. For each j ∈ {1, 2, . . . , n} the specifications contain
the values {âij | i ∈ I A} of the attributes A := {Ai | i ∈ I A}
at the proxy brick ŝj . We use the symbol âij to denote the
value of the attribute ai of the proxy (placeholder) brick ŝj .

This means especially, that the brick sj can substitute the
proxy brick ŝj if the values of the corresponding attributes
coincide, i.e., aij = âij for all i ∈ I A .

More formally, the attributes must satisfy certain constraints:

CA : A×S→ {yes,no},
{sij | i ∈ I A , j ∈ I S} 7→ CA(a

i
j).

CA(a
i
j) = yes if the attribute constraint is satisfied for the

brick sj i.e., aij = âij , else CA(a
i
j) = no.

On the other side, the (numerical) measurement values must
also satisfy certain constraints (restrictions). For example, the
standard deviation of the respective measurement values for
some bricks of a specific module should not surpass some
given limits. Formally, CM can be represented as:

CM : M× U→ {yes,no},
{mi

j | i ∈ I M , j ∈ I U} 7→ CM (mi
j).

CM (mi
j) = yes if the constraint is satisfied for the bricks

belonging to the module U j , else CM (mi
j) = no.

In order to be able to reduce the constraints to brick level,
i.e., to be able to decide whether the constraint is satisfied
for a specific brick or not, we use the restriction CS

M of CM

namely CS
M := CM

S
such that CS

M (sij) = yes if sj ∈ U j and
CM (mi

j) = yes ; else CS
M (mi

j) = no. Let U ∈ U be a module.
The above means especially, that the measurement constraint on
brick level is satisfied for s ∈ U if the measurement constraint
is satisfied (on module level) for U .

Since the measurement values do not really characterize
the modules (they must only fulfill the requirements regarding
the constraints), we introduce equivalence classes on the set of
modules. Two modules belong to the same class if

a) they have both the same design plan,

b) the component bricks fulfill the same (non-numerical)
attributes and

c) the prescriptions regarding the measurement values are
satisfied for both modules.

Accordingly, two modules belonging to the same equiva-
lence class are interchangeable.

Hence, all the bricks needed for a module must be selected
in order to be able to finally decide if the constraints are
satisfied or not.

As already mentioned, each object O ∈ O should be
assembled out of bricks contained in a reduced number of
bins. We set MaxBO for the maximum number of bins as
mentioned above.

Let i ∈ I B , j ∈ I O , let {si1 , si2 , . . . , sik} be the content of
the bin bi and let {sj1 , sj2 , . . . , sjl} be an assignment of Oj ∈
O. We set bji := 1 if {si1 , si2 , . . . , sik}∩{sj1 , sj2 , . . . , sjl} 6= ∅
else 0. This means especially, that bji := 1 if the bin contains
bricks belonging to the respective assignment of Oj .

Analogously, the constraints regarding the bins (cartons)
can be regarded formally as:

CB : P(B)×O→ {yes,no},
{B ∈ P(B), Oj ∈ O} 7→ CB(B, Oj).

Let I an index set, such that B = {bi|i ∈ I}. Then CB(B, Oj) =
yes if ∑

i∈I
bji ≤ MaxBOj

,

i.e., the bricks of the order Oj are contained in no more than
MaxBOj

bins. Additionally, CB(B, Oj) = no if the above
condition is not satisfied.

Similar to the measurement constraint CM , we reduce CB

to brick level. Let S := {si1 , si2 , . . . , sik} be an assignment of
Oi. Let B = {bl1 , bl2 , . . . , bln} be a set of bins, such that each
bin contains at least one s ∈ S and there is no brick s ∈ S which
is not contained in one of the bins of the set B. In this sense, B
is minimal regarding the assignment S. Then, for the restriction
CS

B on S of CM we have CS
B(s) = yes if CB(B, Oi) = yes ,

i.e., all the bricks of the assignment S are stored in no more
than MaxBOj

bins. Additionally, CS,U
B (s) = no if CB(B, Oi)

is not satisfied.

Until now, we considered the constraints related to the
architecture of the object, i.e., related to the attributes of
a particular brick, the measurement values of the bricks
belonging to a module, and the restrictions regarding the bins
which contain the bricks. We can condense the constraints
mentioned above, such that they relate only to bricks. This
means especially, that the measurement constraint are satisfied
for a brick, if there is a group of bricks (module, or order), such

133Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 148 / 241

that the given measurement constraint is satisfied as described
above. We set accordingly:

C := {Ci | i ∈ I C and Ci is a distinct constraint}

the list of distinct constraints.

The constraints can be considered as a function. Please
recall that I S is the index set of S.

C : S× I C → {yes,no},
{sik | i ∈ I C , k ∈ I S} 7→ C(sik).

Please consider, that the above representation can be
misinterpreted, such that the constraint is exclusively a property
of the respected brick. This is not the case, for example the
measurement constraints fulfilled or not for the bricks assigned
to a module. Hence, if one brick is changed, then the constraints
of all the bricks belonging to a module can be invalidated.

We define now formally the weights, (i.e., w is a weight if
w > 0) which are necessary to be able to model the importance
of the constraints within the genetic algorithm. We set

W := {wi | i ∈ I C and wi is a weight}

the list of weights. This means especially, that each constraint
has an associated weight.

The fitness function [24] characterizes the quality of an
assignment of an order, such that a value closer to 1 means a
better quality. It plays an important role in the decision, whether
an assignment fulfills the specifications or not.

The purpose of the following function inv is purely
technical, it is used to switch the values of the boolean values
1 and 0 to be used in the definition of an example of the fitness
function, i.e., inv : {yes,no} → {0, 1} such that inv(yes) = 0
and inv(no) = 1.

Please find below an example for the fitness function. Let
I S ⊂ I S and let wi ∈W for all i ∈ I C . Then:

F : E× I C → (0, 1],

{sik | i ∈ I C , k ∈ I S} 7→ 1

1 +
∑

i∈I C ,k∈I S

wi · inv(C(sik))
. (1)

Problem formulation (Combinatorial problem)
Let O ∈ O a given object and let n ∈ N.

Choose n bins from the warehouse, such that the
object can be assembled out of the bricks contained
in these bins according to the existing construction
plans.

The construction plan for an object O ∈ O specifies the
lists of (non equivocally determined) modules, including the
design plan, such that the object can be build out of these
modules. Hence, it can be unambiguously decided, whether
the n cartons contain the necessary bricks to assemble them
to modules, which can be put together to form the required
object. Let us suppose that n � card(C), i.e., the number
of bins in the warehouse exceeds the number of bins to be
chosen by orders of magnitude. The difficulties of solving the
problem in a straightforward way lie in the very large number

of possibilities to combine n bins out of card(B). Therefore,
other strategies have to be used.

To summarize: the specification of an object (for example
a house composed of bricks), contains very strict requirements
regarding the components. The assembly plan specifies the
strict order in which the bricks have to be assembled. Hence,
the bricks must satisfy some attributes (like shape, type, color,
etc., in order to satisfy the requirements of the construction
plans. Moreover, some bricks have to fit together (for example
the window frame) so they can be assembled in the order
given by the construction plans. If the above requirements are
satisfied for all the units (modules), the object can be assembled.
Furthermore, the selected bricks have to be selected from a
restricted number of bins (cartons). The latter makes the task
so difficult.

From a formal point of view, the associated constraint
satisfaction problem of the combinatorial problem can now be
formulated:

Problem formulation (Constraint satisfaction problem)
Let O ∈ O be an order with the representation
O = (ŝ1, ŝ2, . . . , ŝk). Set wi = 1 for all i ∈ I C .

Find an index set {l1, l2, . . . , lk} ⊂ I S such that
(sl1 , sl2 , . . . , slk) is an assignment of O, having
F ((sl1 , sl2 , . . . , slk)) = 1.

IV. USE CASE: AN EXCERPT

In the following, we present a real-life use case [25] we
came across at an international semiconductor company. We
describe the problem by using the specific terminology in
the semiconductor industry, utilizing them with care and only
when it is inevitable and undeniable necessary. We describe the
fundamentals of the genetic algorithms and show the way it is
used to solve our problem. Finally, we conclude by presenting
some performance tests.

A. Problem Description

The company manufactures integrated circuits (ICs, also
termed chips), which are subsequently assembled on circuits
boards to salable entities, termed modules. In order to keep
production cost low, the specification of the ICs do not impose
very tight constraints on the attributes of the ICs, such that
the same IC can be used for different types of modules. On
the contrary, the specification regarding the modules are very
stringent, in order that the module should be fully functional
at the customer side. As soon as the ICs are manufactured, a
good dozen of electrical properties are measured and persisted
in a data repository.

Usually, four to six ICs are assembled on the module.
The specification of the modules contains the design (i.e.,
number and positioning) of the ICs on the integrated circuit
board, the type of the IC (article, number of pins, etc.), and
several constrains regarding the interaction of the ICs of the
module. In order for the module to be fully functional, the
corresponding measurement values of the ICs have to be in a
narrow range. For example, for a specific measurement, the
values of the voltage of the ICs have to be between 2.1 volt and
2.5 volt in order that the IC is not scrapped and can be used
for further processing. Unfortunately, not all the ICs having

134Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 149 / 241

the corresponding measurement value in the range as described
above, can be assembled to a module. The values differ too
much from each other, and the module will not work properly
at the customer side. To circumvent this impediment further
constraints are needed. These constraints apply on all ICs of
the module or just on a subset of it. For example, an often
used constraint is limiting the standard deviation of the voltage
to 0.1 within one module.

The ordering unit (termed work order) contains the de-
scription of the modules, the customer expects to be shipped
together at once. There are no additional constraints on the ICs
regarding the work order.

As soon as the manufacturing process of the ICs has been
finished, the ICs are packed in boxes. That way the cleaning
of the ICs can be performed and the ICs can be assembled to
modules. The boxes are then transferred to the warehouse.

The difficulties of the semiconductor company to honor each
the order in general are also due to technological restrictions,
since the tool that assembles the ICs can handle at most five
boxes, i.e., all the ICs necessary to fulfill a work order should
be located in five boxes. Due to the fact that the work orders
always contain the same number of ICs, independent of the
specification of the modules, the minimal number of boxes
which are needed to meet the requirement of the work order is
four with 9 percent surplus of ICs. If we rephrase the above
in a more concise form, the challenge is: Find five boxes in
the warehouse, such that it contains the ICs needed to fulfill
the requirements for a work order.

B. Used Methods

Simple combinatorics show that the brute force method,
i.e., go through all the possibilities and check if the selected
boxes fulfill the requirements, is not implementable for practical
systems. Fortunately, there is an implementation in place for
the selection strategy, based on heuristics, local optimum, and
inside knowledge of the pattern of the modules. This way, we
have a very good way to compare the results of the genetic
algorithm with alternative solutions. Regretfully, our attempt to
deliver exact solutions on the problem using MATLAB were
not crowned by success due to the large amount of data and to
the restricted computing power of the machines we used. The
disadvantages of the already existing solution for the selection
strategy were partly also the issues that made it possible to set
up such a solution:

a) the unpredictability that the selection strategy delivers
a solution within the expected time frame;

b) the inflexibility to even minor changes in the design and
specifications of the modules, thus, the unpredictability
that the software can be used in the future;

c) heavy maintenance efforts due to the sophisticated and
architecture and implementation;

d) lack of the proprietary knowledge and documentation
of the implementation on the low level side;

e) impossibility to reuse the existing code with reasonable
efforts for further development and enhancements.

The concepts of the genetic methods are straightforward
and easy to understand. The main idea is that we start with

an initial population of individuals, and as time goes by, the
genes of the descendants are improved, such that at least one
individual satisfies the expectations. The individual incorporates
the requirements of the problem. The expectation in the end
is that these requirements are finally satisfied. Each individual
owns genes, part of it is inherited by his descendants.

We define the individuals as an abstraction of the work order,
such that each gene of the individual is the abstraction for an
IC of the warehouse. Accordingly, the individual satisfies the
requirements if the ICs can be assembled to modules, such that
the corresponding work order is fulfilled. The initial population
is randomly generated out of the ICs in the warehouse. The
criterion, which determines to what degree the individual fulfills
the requirement of the associated work order, is the fitness
function. The fitness function takes values between 0 and 1, a
greater value means that the individual is more close to fulfill
the specification of the work order. To achieve a value of 1 is
the ultimate goal. It means that the corresponding individual
satisfies the requirements to fulfill the associated work order.
Hence, the definition of the fitness function is one of the most
sensible parts of the genetic algorithms and the setup of this
function should be considered very carefully.

Actually, the strategy of the genetic algorithm resembles
very much to the evolution of the mankind. People marry,
have children by passing their genes to them, divorce and
remarry again, have children, and so on and so forth. The
expectation is that the descendants have more “advantageous
genes”, regardless of how the term “advantageous genes” is
defined.

Establishing the fitness function is one of the most important
strategical decision to be taken when setting up the genetic
algorithm. In our case, there are a few constraints (more than
one) which affect the quality of the individuals. Implementations
which try to find a Pareto optimal state [26], [27] (i.e., a
state from which it is impossible to make an individual better,
without making at least one individual worse) use strategies as
tournament selection [28] or the improved Pareto domination
tournament [27].

As already mentioned, the starting population is selected
aleatorically. Once, the first generation is constituted, the prepa-
rations to generate the next generation are met. Unfortunately,
the Apache Commons Mathematics Library does not support
multi-objective optimization problems, hence our algorithms
cannot use the strategy of the Niched Pareto Genetic Algorithm
(NPGA) [27].

Instead, for each individual, the fitness function is calculated
such that the suitability to fulfill the expectations, is evaluated
for each individual. The higher the computed value is, the
better fitted are the individuals. Let us suppose, that the initial
population is composed of 500 individuals. We use some of the
concepts provided by Apache Commons Mathematics Library
in our implementation, among others the elitism rate, which
specifies the percentage of the individuals with the highest
fitness value to be taken over / cloned to the new generation.
We use an elitism rate of 10 percent, i.e., the 50 best individuals
will be taken without any changes of the genes to the new
generation.

The population of each generation remains constant in time.
In order to choose the remaining 450 individuals (parents)

135Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 150 / 241

to generate the next generation, we use the tournament
selection [28] including the implementation of the Apache
Commons Mathematics Library. The tournament strategy can
be configured by the arity of the tournament strategy, which
specifies the number of individuals who take part in the
tournament. For our purpose, five individuals in the tournament
proved to be efficient. Accordingly, five individuals are selected
randomly out of the total population of 500 individuals to take
part in the tournament. Out of the individuals taking part in
the tournament, the fittest individual is selected as a parent
for the new generation. This way, 500 parents are selected out
of a population of 500 individuals. These parents are paired
aleatorically and they always have two descendants. This way,
the next generation is created. Accordingly, the size of each
generation remains constant.

We use two major strategies in order to improve the
quality of the genes of the descendants, the crossover strategy
described in [29] and the mutation strategy. Generally speaking,
during the crossover phase, the two descendants receive the
partly interchanged genes of their parents. Additionally, some
particular genes can suffer mutations. The general strategy to
generate the descendants is based on random decisions.

We describe in brief the creation strategy of the new
generation. Some parameters are freely configurable, in order
to assure best performance. Thus, the crossover rate, i.e., the
threshold of the probability that a crossover is performed, has to
be set in advance. Then, a crossover is performed if a randomly
generated number is less than the crossover rate. Same is true
regarding the mutation rate.

The crossover policy is quite straightforward. The position
and length of the genes to be crossed over are randomly
generated and the two descendants have receive the inter-
changed genes of their parents. In our case, this policy has
been improved, such that by in the end, the number of the bins
of at least one descendant is using, is lower than (or if this is
not possible equal to) the number of the bins of their parents.
This way, the reduction of the number of bins an individual is
using, is enforced by the crossover policy itself.

The mutation policy is also very intuitive. In addition to
the mutation rate, which defines in the end, whether mutation
is applied after the crossover phase or not, the exchange rate
indicates whether a slot (IC) is to be renewed. Analogously,
the mutation policy can be configured such that the number of
bins the descendant is using is reduced or in worst case, kept
constant.

C. Performance Results

The benchmarks were performed on a Intel R© CoreTM i5-
6500 CPU (quad core CPU 3.2 GHz, 16 GB RAM) running
on Windows 10 and Eclipse 3.7.0 using Java SE Runtime
Environment 1.6.0_22. The genetic algorithm was implemented
using the Apache Common Library, version 3.0. The test data
is a subset of the production environment and contained 5518
ICs in 261 boxes, having 28 measurements on average. The
restricted test data is a subset of the production environment and
contained 27,590 ICs in 1,305 boxes. Due to the incomplete
set of production data, only the two most critical modules
are considered for selection. After taking into account the
attributes corresponding to the specifications of the two modules

regarding the ICs (article, number of pins, etc.) only eleven
boxes contain ICs to be considered for the selection process.
We term pre-selection the method to restrict the number of
boxes by excluding those boxes which do not contain selectable
elements. In this way, the search area can be drastically reduced
and thus, the performance of the selection algorithm can be
substantially improved.

We use a generation size of 500 individuals, an elitism
rate of 10 percent and an arity value of 5. The number of
generation is limited to 1000 and the runtime of the selection
algorithm is limited to 300 seconds. The other parameters
like the crossover rate and the mutation rate are configured
on a case by case basis. Regarding the fitness function, the
following configuration parameters have proved themselves as
good choice: attribute weight = 1; measurement weight = 2;
bin weight = 5. This means especially, that fulfilling the bin
constraints is the most difficult one. In summary, we use the

TABLE I: SETTINGS OF CONFIGURATION PARAMETERS.

Configuration parameter Value

Population limit 500 individuals
Generation limit 1000 generations
Crossover policy Bin reduction
Crossover rate 78 %
Mutation rate 13 %
Runtime limit 300 seconds

configuration parameters given in Table I for the performance
tests.

The prediction of the results of the selection algorithm is
hardly possible, since we use random strategies to generate the
initial population, to select the parents for the next generation,
to determine the crossover and mutation policy. Moreover,
parameters like the elitism rate and the arity have to be
configured. Hence, the interaction between many factors that
can influence the success and performance of the selection
algorithm is not obvious.

It is not the aim of this study to deliver the possible
best solution in an acceptable time frame and to improve
the performance of the algorithm. Instead, our objective is
to deliver an acceptable solution, i.e., a solution that fulfills
the required constraints, for the industry to a crucial problem
regarding their production problems. For example, there is no
technological benefit of tightening the measurement constraints;
the bin constraint was set up in such a way that seeking a
lower value is not possible due to the fixed number of ICs of
a work order and to the maximal capacity of the bins. Hence,
the acceptable solution is also the best possible solution.

Nevertheless, we tried to improve the selection algorithm
by testing the influence of the parameters, we find out to be
decisive. This was also the case for the parameters of the fitness
function as described above.

As already mentioned, we have an algorithm in place, which
can find

a) a suboptimal solution in a heuristic way,

b) determine exactly whether the group of bins contain
ICs which satisfies the specification of a particular work
order.

136Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 151 / 241

Figure 5 shows that the selection algorithm using pre-
selection delivers the expected results, finding individuals
having 19 modules. The success rate, i.e., the probability
that the selection algorithm reaches with an individual the
given number of modules, is over 60 percent and thus, high
enough for practical systems. The pre-selection strategy is
very straightforward and easy to implement. Thus, no practical
system would renounce to it. Nevertheless, when neglecting
the benefit of reducing the search space by using pre-selection,
the results of the genetic algorithm are not always as promising
as with pre-selection. In order to evaluate worst-case scenarios,
we used work that posed a lot of difficulties to select with
the heuristic algorithm in place. As illustrated in Figure 5, the

Figure 5: Success rate and time used depending on the number of
modules with and without pre-selection.

success rate to select 19 modules as in the previous case, is at
60 percent. This means especially, that the successful run of
the genetic algorithm heavily depends on the random numbers
that were generated.

Figure 6: Success rate and time used when selecting the random
recombination crossover policy or the bins reduction policy.

Figure 6 shows the difference between the random recom-
bination crossover policy and the bins reduction policy. The
boxes reduction crossover policy tries to reduce the number
of boxes of the new individuals by focusing on the common
bins of the parents. As a conclusion, using business logic over
general approach, the general approach is as expected slower
and has a lower success rate. This is the price to pay for using
a more general solution over a customized one.

Figures 7 and 8 show the influence of the crossover rate and

Figure 7: Time used depending on the crossover rate and the
mutation rate.

Figure 8: Success rate depending on the crossover rate and the
mutation rate.

the mutation rate to the success rate and the wall clock time.
As not obvious at first glance, a smaller crossover rate and a
higher mutation rate gives better values for the success rate.
Keeping the crossover rate and the mutation rate low, better
run time performance is achieved. Generally speaking, high
mutation rate can destroy the structure of good chromosomes,
if used randomly [30]. The above remark does not hold in our
case, since we do not exchange ICs randomly, but according
to our strategy to minimize the number of bins.

Figure 9: Logarithmic representation of the values of the fitness
function depending on the number of generations (50 attempts).

137Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 152 / 241

The tendency of the convergence of the fitness function is
visualized in Figure 9. The graph shows that in the end all
50 threads converge after some generations, but only a subset
to the envisaged value. Recall that the maximum value of the
fitness function is per definition equal to 1, the higher the value
of the fitness function, the better the solution. The values of
the fitness functions are discrete, {1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . .}.

V. RESUMING ON MULTI-OBJECTIVE OPTIMIZATION

Our preferred implementation framework is Apache Com-
mons Mathematics Library, version 3.0 [31]. However, a
very similar combinatorial grouping problem, the Bin Packing
Problem (BPP) is investigated [32], by using the off the shelf
jMetal framework [33]. The (one-dimensional) BPP [34] is
defined as follows: given an unlimited number of bins with an
integer capacity c > 0 each, a set of n items, N = {1, 2, ..., n},
and an integer weight wi, 0 < wi ≤ c for each item i ∈ N
assign each item to one bin, such that the total weight of the
items in each bin does not exceed c and the number of bins
used is minimized.

Luo et al. [32] extends the base implementation of jMetal
to problems with dynamic variables. This was necessary, since
the number of the genes in chromosomes is fixed in the
base implementation of jMetal. However, the number of the
genes in the specific implementation of the chromosomes for
BPP – termed group based representation – is fluctuating;
they vary in length depending on how many bins are used in
every solution. Accordingly, the adopted implementation of
BPP includes specific adaptations and enhancements of the
basic primitives of jMetal, including those for chromosomes,
crossover and mutation. The need for dynamic variables is
justified by difficulties to use other solutions due to the fitness
function.

In order to evaluate the performance of their algorithms –
termed GABP –, Luo et al. [32] use public bench data as well
as self-created big data sets. The performance of GABP does
not differ very much from some of the known implementation
of BPP. The main benefit of GABP is the implementation in
a generic framework. However, the problem described in this
article, the Matching Lego(R)-Like Bricks Problem (MLBP) is
new to our knowledge, we are now aware of any implementation
of a similar problem. The nearest problem to the MLBP seems
to be BPP.

It seems that Luo et al. [32] used the fitness function as
given below (termed cost function) [35] for their group-based
encoding scheme:

fBPP =
1

Nu
·
Nu∑
i=1

(fill i
c

)k
(2)

with Nu being the number of bins used, fill i the sum of sizes of
the objects in the bin i, c the bin capacity, and k a constant, k >
1. In other words, the cost function to maximize is the average
over all bins used, of the k-th power of the bin’s utilization
of it’s capacity. The authors state that experiments show that
k = 2 gives good results. As Falkenauer and Delchambre [35]
point out that one of the major purpose of the fitness function
is to guide the algorithm in the search.

Although, both BPP and MLBP yield a reduction of the
number of bins, the fitness function of the algorithms are

different. The strategy at BPP is to pack the bins as full as
possible, i.e., a bad use of the capacity of the bins leads to
the necessity of supplementary bins [35]. On the contrary, the
suggestion for the fitness function for MLBP is given by the
need to fulfill the constraints.

By comparing the formula (1) for the fitness function of
MLBP with the formula (2) as above, it is obvious that both
formulas are very similar, both are expected to be maximized,
contain summation over parameters of the respective problems
and the possibility to optimize the execution time of the
respective algorithms through clever setting of constants. In
this respect, both MLBP and BPP substantially benefit from an
ingeniously designed fitness function to ensure fast convergence
towards the optimization goals [35].

Although, in concept MLBP is merely a constraint satisfac-
tion problem, the implementation as described in this article,
can be easily adapted to simulate an optimization problem.
Within the current algorithm, the number of required bins is
fixed. This assumption is perfectly reasonable from an industrial
perspective, since the number of the objects in the bins is more
or less the same and as the number of objects needed for a
work order is known, the minimal number of bins necessary to
fulfill the work order is thus determined. Besides, the maximum
number of bins that can be accessed by a machine is fixed,
less beans means just a vacant working place. However, by
setting the bin constraints to a lower value, – while keeping the
other constraints unchanged – and by modifying the exit criteria
accordingly, the algorithm will loop – delivering better solutions
according to the guidelines of the fitness function – until the
new exit criteria are met. Thus, a local extremum relating
to the fitness function is found. The local extremum is not
automatically a solution to the constraint satisfaction problem,
this has to be validated. The exit criteria only ensure that
the best local value of the fitness function and corresponding
physical entities are found. In this respect, the MLBP and BPP
are closely related problems.

There are other systems, which provide frameworks of evo-
lutionary algorithms, such as EvA2, OPT4j, ECJ, MOEAT, for
a discussion and bibliography see [35]. Moreover, a remarkable
attempt to obtain a deeper understanding of the structure of the
BPP by using Principal Component Analysis and repercussions
on the performance of the heuristic approaches to solve them,
was undertaken [36].

The aim of jMetal was to set up a Java-based framework
in order to develop meta heuristics for solving Multi-objective
Optimization Problems (MOP). jMetal provides a rich set of
Java classes as base components, which can be reused for the
implementation of generic operators, thus making a comparison
of different meta heuristics possible [37] [38].

Unfortunately, the Apache Commons Mathematics Library
deployed in our use case, does not support multi-objective
optimization mechanisms. This means especially, that multi-
objective optimization have to be simulated by single-objective
optimization. For example, optimization criteria for MLBP
are a) reducing the number of bins, b) fulfillment of the
measurement constraints, c) fulfillment of the attribute con-
straints. These criteria are independent of each other and ideally
within the multi-objective optimization they can be optimized
independently, such that an improvement of a criterion does

138Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 153 / 241

not lead to a degradation of another one. For practical purposes,
the fitness function, see formula (1), can be used for simulating
multi-objective optimization by choosing adequate weight
function. Thus, by choosing the values w = 5 for the criterion
(a), w = 2 for criterion (b) and w = 1 for criterion (c) we
achieve fast convergence and hence reduced execution time,
but for example by improving criterion (a) we cannot avoid
the degradation of criterion (b) or (c). By using frameworks
which support multi-objective mechanism, better convergence
of the genetic algorithm is expected.

The jMetal project was started in 2006 [37] and since
then it underwent significant improvements and major re-
leases [39], such that the redesigned jMetal should be useful to
researchers of the multi-objective optimization community, such
as evolutionary algorithm, evolution strategies, scatter search,
particle swarm optimization, ant colony optimization, etc., [40].
Improvements regarding a new package for automatic tuning
of algorithm parameter settings have been introduced [41] in
order to facilitate accurate Pareto front approximations.

In addition, jMetal in conjunction with Spark – which is
becoming a dominant technology in the Big Data context –
have been used to solve Big Data Optimization problems by
setting up a software platform. Accordingly, a dynamic bi-
objective instance of the Traveling Salesman Problem based
on near real-time traffic data from New York City has been
solved [42] [43].

VI. CONCLUSION AND FUTURE WORK

The main challenge, which led to the results of this paper,
was to investigate whether a real-life combinatorial problem,
which popped up at a semiconductor company, can be solved
within a reasonable time. Moreover, the solution should be
flexible, such that the solution is not restricted to the existing
specification of the modules.

We established an abstract formal model, such that the
implementation of the use case is fully functional within the
boundaries of this model. In this sense, new constraints can
be added to the existing ones, no inside knowledge regarding
the structure of the module is needed, as it is the case for the
heuristic algorithm in place.

We set up a genetic algorithmic approach based on the
Apache Commons Mathematics Library, implemented it and
validated the results. Some decisive policies like the crossover
and mutation policy have been additionally implemented and
new optimizations like the bin reduction crossover policy have
been set up to improve the convergence of the genetic algorithm.
The performance results were satisfactory for an industrial
application.

The current implementation does not combine good genes
(taking into account all the constraints, like measurement, etc.)
of the parents. Instead, the crossover strategy is based on
random decisions. Additional research is necessary in this
direction to find a good balance between a more general
suitability (random decisions) and good convergence (adjusted
crossover policy). For the time being, only the fitness function
contains proprietary information regarding the production
process, any other decision is aleatoric.

The implemented basic framework is very flexible, it
has many configuration possibilities like the elitism rate and
the arity. As a consequence of the random variables, many
convergence tests with various configuration assignment have to
be performed, in order to ensure satisfying results. Furthermore,
of crucial importance for the successful completion of the
algorithm is the design of the fitness function, especially the
values of the weights.

The convergence tests show that not every execution will
succeed to find the best solution delivered, this is due to the
random numbers used through out the genetic algorithm. This
is exemplified by the success rate. Thus, the selection algorithm
based on genetic strategies always delivers local maxima, which
may substantially differ from the global one. Our attempt to
find the optimal solution using MATLAB for a reduced set of
ICs failed due to the long execution time.

As already mentioned, the fitness function plays an out-
standing role during the selection of the best candidates for
the next generation. This means especially, that two candidates
having the same value of their fitness function are considered of
the same quality. This assertion is not accurate enough, due to
the use of three different weights, whose interdependence can
hardly be anticipated. Each weight represents the significance
of one aspect of the quality of a candidate. To circumvent
this dilemma, Pareto optimality [27] can be used to solve the
challenge of the multi-objective function. In this case, a new
framework [37] is needed, since Apache Commons Mathematics
Library does not support multi-objective mechanism. Genetic
algorithms, if configured properly, can be used to solve our
constraint satisfaction problem. The delivered solution may
substantially differ from the optimal one.

The current problem is not defined as an optimization
problem, the constraints of a work order are either satisfied or
not. Accordingly, two different solutions of the same work order,
which satisfy the constraints, are of the same quality. However,
the genetic algorithm is based internally on an optimization
process – the higher the value of the fitness function, the better
the solution. The constraints are used as exit criterion for the
genetic algorithm. In this way, the optimization is stopped
arbitrarily, considering that a better solution is out of scope.

Moreover, during the production process multiple work
orders have to be honored simultaneously. The current strategy
at the semiconductor company adopted a sequential one. We
can reformulate the problem as an optimization problem: Given
a list of work orders, find the maximum number of work orders
that can be satisfied simultaneously.

The elapsed time till the genetic algorithm of MLBP
converges is in range of seconds, by all means satisfactory
for the investigated industrial application. As expected, not all
the execution threads converge to the same solution, and not all
the threads find an optimal solution, as shown in some cases
less than 60 percent. Therefore, starting a bunch of threads
within the genetic algorithm increases the chance towards better
solutions.

ACKNOWLEDGMENT

We acknowledge the assistance and helpful comments of
the anonymous referees.

139Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 154 / 241

REFERENCES

[1] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, ser. Algorithms and Combinatorics. Springer Berlin
Heidelberg, 2018.

[2] P. M. Pardalos, D.-Z. Du, and R. L. Graham, Handbook of Combinatorial
Optimization. Springer, 2013.

[3] J. Puchinger and G. Raidl, “Combining Metaheuristics and Exact
Algorithms in Combinatorial Optimization: A Survey and Classification,”
Lecture Notes in Computer Science, vol. 3562, 06 2005, pp. 41–53, doi:
10.1007/11499305_5.

[4] Krzysztof Apt, Principles of Constraint Programming. Cambridge
University Press, 2003, Retrieved: October 2019. [Online]. Available:
https://doi.org/10.1017/CBO9780511615320

[5] A. L. Corcoran, Using LibGA to Develop Genetic Algorithms for Solving
Combinatorial Optimization Problems. The Application Handbook of
Genetic Algorithms, Volume I, Lance Chambers, editor, pages 143-172
CRC Press, 1995.

[6] E. Andrés-Pérez et al., Evolutionary and Deterministic Methods for
Design Optimization and Control With Applications to Industrial and
Societal Problems. Springer, 2018, vol. 49.

[7] D. Greiner et al., Advances in Evolutionary and Deterministic Methods
for Design, Optimization and Control in Engineering and Sciences.
Springer, 2015, vol. 1, no. 1.

[8] D. Simon, Evolutionary Optimization Algorithms. John Wiley & Sons,
2013.

[9] A. Pétrowski and S. Ben-Hamida, Evolutionary Algorithms. John Wiley
& Sons, 2017.

[10] O. Kramer, Genetic Algorithm Essentials. Springer, 2017, vol. 679.
[11] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary Computation

1: Basic Algorithms and Operators. CRC press, 2018.
[12] R. K. Belew, Adaptive Individuals in Evolving Populations: Models and

Algorithms. Routledge, 2018.
[13] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary Computation 2

: Advanced Algorithms and Operators. CRC Press, 2000, Textbook -
308 Pages.

[14] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, “Metaheuristic
Research: a Comprehensive Survey,” Artificial Intelligence Review, 2018,
pp. 1–43.

[15] T. Jiang and C. Zhang, “Application of Grey Wolf Optimization for
Solving Combinatorial Problems: Job Shop and Flexible Job Shop
Scheduling Cases,” IEEE Access, vol. 6, 2018, pp. 26 231–26 240.

[16] H. Zhang, Y. Liu, and J. Zhou, “Balanced-Evolution Genetic Algorithm
for Combinatorial Optimization Problems: the General Outline and Im-
plementation of Balanced-Evolution Strategy Based on Linear Diversity
Index,” Natural Computing, vol. 17, no. 3, 2018, pp. 611–639.

[17] X. Li, L. Gao, Q. Pan, L. Wan, and K.-M. Chao, “An Effective Hybrid
Genetic Algorithm and Variable Neighborhood Search for Integrated
Process Planning and Scheduling in a Packaging Machine Workshop,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.

[18] I. Jackson, J. Tolujevs, and T. Reggelin, “The Combination of Discrete-
Event Simulation and Genetic Algorithm for Solving the Stochastic
Multi-Product Inventory Optimization Problem,” Transport and Telecom-
munication Journal, vol. 19, no. 3, 2018, pp. 233–243.

[19] J. C. Bansal, P. K. Singh, and N. R. Pal, Evolutionary and Swarm
Intelligence Algorithms. Springer, 2019.

[20] G. Raidl, J. Puchinger, and C. Blum, “Metaheuristic hybrids,” Handbook
of Metaheuristics, Vol. 146 of International Series in Operations Research
and Management Science, 09 2010, pp. 469–496, doi: 10.1007/978-1-
4419-1665-5_16.

[21] J. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor. 2nd Edition, MIT Press, 1992.

[22] G. P. Rajappa, “Solving combinatorial optimization problems using
genetic algorithms and ant colony optimization,” 2012, PhD diss.,
University of Tennessee, Retrieved: October 2019. [Online]. Available:
https://trace.tennessee.edu/utk_graddiss/1478

[23] S. Yakovlev, O. Kartashov, and O. Pichugina, “Optimization on
Combinatorial Configurations Using Genetic Algorithms,” in CMIS,
2019, pp. 28–40.

[24] T. Weise, “Global Optimization Algorithms – Theory and Application,”
2009, Retrieved: October 2019. [Online]. Available: http://www.it-
weise.de/projects/book.pdf

[25] Rui Song, “Substrate Binning for Semiconductor Manufacturing,” Mas-
ter’s thesis, Dresden University of Technology, Faculty of Computer
Science, Institute of Applied Computer Science, Chair of Technical
Information Systems, 2013.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, 2002, pp. 182–197.

[27] J. rey Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic
Algorithm for Multiobjective Optimization,” in Proceedings of the first
IEEE conference on evolutionary computation, IEEE world congress on
computational intelligence, vol. 1. Citeseer, 1994, pp. 82–87.

[28] B. L. Miller, D. E. Goldberg et al., “Genetic Algorithms, Tournament
Selection, and the Effects of Noise,” Complex systems, vol. 9, no. 3,
Champaign, IL, USA: Complex Systems Publications, Inc., 1995, pp.
193–212.

[29] R. Poli and W. B. Langdon, “A New Schema Theorem for Genetic
Programming with One-Point Crossover and Point Mutation,” Cognitive
Science Research Papers-University of Birmingham CSRP, 1997.

[30] F.-T. Lin, “Evolutionary Computation Part 2: Genetic Algorithms and
Their Three Applications,” Journal of Taiwan Intelligent Technologies
and Applied Statistics, vol. 3, no. 1, 2005, pp. 29–56.

[31] M. Andersen et al., “Commons Math: The Apache Commons Mathe-
matics Library,” URL http://commons. apache. org/math/, online, 2011,
Retrieved: October 2019.

[32] F. Luo, I. D. Scherson, and J. Fuentes, “A Novel Genetic Algorithm for
Bin Packing Problem in jMetal,” in 2017 IEEE International Conference
on Cognitive Computing (ICCC). IEEE, 2017, pp. 17–23.

[33] J. J. Durillo and A. J. Nebro, “jMetal: A Java Framework for Multi-
Objective Optimization,” Advances in Engineering Software, vol. 42,
no. 10, Elsevier, 2011, pp. 760–771.

[34] K. Fleszar and C. Charalambous, “Average-Weight-Controlled Bin-
Oriented Heuristics for the One-Dimensional Bin-Packing Problem,”
European Journal of Operational Research, vol. 210, no. 2, Elsevier,
2011, pp. 176–184.

[35] E. Falkenauer and A. Delchambre, “A Genetic Algorithm for Bin Packing
and Line Balancing,” in Proceedings 1992 IEEE International Conference
on Robotics and Automation. IEEE, 1992, pp. 1186–1192.

[36] E. López-Camacho, H. Terashima-Marín, G. Ochoa, and S. E. Conant-
Pablos, “Understanding the Structure of Bin Packing Problems Through
Principal Component Analysis,” International Journal of Production
Economics, vol. 145, no. 2, Elsevier, 2013, pp. 488–499.

[37] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba, “jMetal:
A Java Framework for Developing Multi-Objective Optimization Meta-
heuristics,” Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, ETSI Informática, Campus de Teatinos, Tech.
Rep. ITI-2006-10, 2006.

[38] A. J. Nebro and J. J. Durillo, “jMetal 4.3 User Manual,”
Available from Computer Science Department of the University
of Malaga, 2013, Retrieved: October 2019. [Online]. Available:
http://jmetal.sourceforge.net/resources/jMetalUserManual43.pdf

[39] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jMetal Multi-
Objective Optimization Framework,” in Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2015, pp. 1093–1100.

[40] J. J. Durillo, A. J. Nebro, and E. Alba, “The jMetal Framework for Multi-
Objective Optimization: Design and Architecture,” in IEEE Congress
on Evolutionary Computation. IEEE, 2010, pp. 1–8.

[41] A. J. Nebro-Urbaneja et al., “Automatic Configuration of NSGA-II with
jMetal and irace,” ACM, 2019.

[42] J. A. Cordero et al., “Dynamic Multi-Objective Optimization with
jMetal and Spark: a Case Study,” in International Workshop on Machine
Learning, Optimization, and Big Data. Springer, 2016, pp. 106–117.

[43] C. Barba-González, J. García-Nieto, A. J. Nebro, and J. F. A. Montes,
“Multi-objective Big Data Optimization with jMetal and Spark,” in EMO,
2017.

140Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 155 / 241

Business Intelligence Based Tool Development

Libni Almeida Neves

Visual Display Manaus

SIDIA

Manaus, Amazonas

libni.neves@sidia.com

Eric Ferraz

Visual Display Manaus

SIDIA

Manaus, Amazonas

eric.ferraz@samsung.com

Abstract — Software applications, technologies and

methodologies that perform data analysis describes the domain

of Business Intelligence (BI), which is defined as a set of

strategies that involves data analysis and decision-making

processes. In this way, it aims to create an environment where

the company can easily find, evaluate, collaborate, understand

and act from high value information. BI collaborates with

increasing employee awareness of the company, enabling

process disclosure, feedback collection and organizational data

capture to be presented to decision makers a harmonized way.

This project addresses the study of BI for a tool development

to assist in analyzing data at a mobile device factory in its

handset return control. The methodology used in this work

was an exploratory study to collect the requirements for the

development of the tool, in which it was developed and

presented to the users. The tool was well accepted and meets

the main needs for process analysis, however to be more

comprehensive, new features will be added so that the system

provides maturity for decision making and contributes to the

process and its medium and long term strategies.

Keywords-business intelligence; tool; development.

I. INTRODUCTION

Currently, companies daily generate and process a large
volume of data from a variety of business activities and
processes, including procurement, manufacturing, retail,
marketing, sales, and distribution. This data is often
processed by a wide range of applications on the computer
and has a significant importance for business entities for
effective and efficient decision making. However, the main
disadvantage is that they often suffer from the lack of
reliable, accurate and timely information to have a
meaningful purpose for decision makers.

The value of information grows exponentially with the
addition of each domain of data, information or knowledge
properly integrated with it. The raw data cannot provide
relevant and up-to-date information about company
performance to their managers. For competitive companies
that want to be ahead of the competition there is a critical
need for up-to-date decision-making information and to
optimize critical business processes [1].

Business Intelligence (BI) is a system that integrates
multiple sources of information to define strategies of
differentiation and performance of the company. The use of
information should help organizations understand their
strategies and allow the monitoring of organizational

objectives throughout the planning horizon [2]. BI is an
information technology that aims to centralize multiple
sources of information, using large amounts of data, stored in
systems for managing databases with flexibility in access and
structuring of information [3]. Business is a set of activities
that lead to a goal and intelligence is the ability to understand
the relationships between the facts and use that
understanding as a guide that guides the actions towards a
desired goal [5].

BI applications provide reports to decision makers who
want to perform more in-depth strategic analysis from huge
amounts of data that have expanded over a wide range of
time, from various applications and productions [4].

Another aspect to be considered in relation to BI relates
to the use of its tools and processes in the most different
fields. In the modern competitive environment, analyzing
data and predicting market trends in order to improve
organizational performance is an essential business activity
that requires companies in general, and among them retailers,
to process and analyze large quantities of data and turn them
into profits [6].

The present work seeks to develop a BI tool to collect
data, allow analysis and help in decision making in a mobile
device manufacturing company, which has a process of
monitoring the return of defective devices to the factory.

This paper is organized as follows: In Section 2 the
proposed method is presented; Section 3 introduces the tool;
The partial results are described in Section 4. Finally, the
conclusions are summarized in Section 5.

II. METHODOLOGY

For this research, the following steps were executed
(Figure 1):

1. Parallel review of the literature with the exploratory
study to collect the requirements for the software.

2. Development of the initial proposal.
3. Verify if tool is satisfactory to accomplish deployment.

Figure 1. Methodology Overview.

141Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 156 / 241

In order to better understand the need to develop the tool,
an exploratory study about defective device was carried out
in the Quality Department of a mobile device factory. Then,
it was noticed that every month there are a massive data
accumulation generated by manually data comparisons
carried out during the management of the return process of
defective devices in which it starts from the exit of the
products of the store until the return to factory. The data is
analyzed through spreadsheets and manually through paid
software.

 In addition, other characteristics relevant to the
collection of requirements were identified, which allowed the
modeling of the software. It was observed that it is important
to display the main information of the data, such as:

• Regions with higher rate of return;
• Classification of models with higher defect rate;
• Store classification;
• Classification of defects.

III. INITIAL PROPOSAL

For the development of the tool, visits were made to the
company, when information was collected through
interviews on the return process of the mobile devices,
number of devices, time to return to the factory and
periodicity in evaluating the data. During one of the visits, it
was noticed that due to the accumulation of data, the person
in charge of analyzing the data and generating reports spends
a lot of time and effort to do this because they do it
manually, and a management dashboard can be looked at as
an executive tool whose sole purpose it to make information
easier to read.

In the planning stage of this software, it was possible to
determine the scope of work required and the best
technologies for the development, to identify possible
technical problems and to find solutions for them. For the
development of this software was used Python and IDE
PyCharm, consuming the Pandas library. This technology
was selected due the consideration of the license and
information sharing restrictions.

Figure. 2. Software Interface.

The tool has an interface in which the first step is the
insertion of the worksheet (Figure 2). It must have the
Comma-Separated Values (CSV) extension. The software
reads the worksheet and displays the labels (the names of the
first row), so the user selects the data to generate graphs
(Figure 3).

The application sums up the values that have the most

occurrences and displays the top five data (using Pandas

library). These requirements were collected due to the need

of the quality department as a strategy to analyze the

quantity of devices.

Figure 3. Graphs Generated by the Tool.

IV. PARTIAL RESULTS

The proposal was presented to the quality team and
follows the main requirements to display graphs quickly and
intuitively with predefined data. The software reads raw data
and provides fields for the user to select information, making
the tool customizable as needed. Previously, the data analyst
needed to view the entire spreadsheet to collect the data. It
has been set to display four different graphics with different
colors and captions. Up to this work stage, the tool provides
the sum of the data because the quality team needs to
manage the total quantity. However, some improvements
have been suggested, such as the customization of the
graphics in which the user can choose the type of graph to be
displayed. Another suggestion was to relate the columns; for
example, select which models had the most defects and in
which city. Another enhancement option was to add average
calculation, display the top five values and the bottom five.

V. CONCLUSION

This work presented a tool designed to assist in data

analysis in the Quality Department of a mobile device

factory, thus providing the most relevant defect information.

It also provides organized and personalized reading and

visualization of data in graphical format optimizing

information visualization and replacing manual analysis.

For the next stage of this work, new functionalities will be

developed an exploratory and applicability study of the tool

in other departments or different areas.

REFERENCES

[1] K. E. Sveiby, The new organizational wealth: Managing & measuring
knowledge-based assets. Berrett-Koehler Publishers, 1997.

[2] C. Barbieri, Introdução ao Conceito de BI. _. Business Intelligence.
BI–Business Intelligence Modelagem & Tecnologia. Rio de Janeiro:
Axcel Books do Brasil Editora, 2001.

[3] R. A. Khan, and S. M. K Quadri. Business intelligence: an integrated
approach. Business Intelligence Journal, v. 5, n. 1, 2012.

[4] K. C. Laudon, and J. P. Laudon, Sistemas de informação gerenciais.
11ed. São Paulo. Pearson Education do Brasil, 2014.

[5] H. P. Luhn, A business intelligence system. IBM Journal of research
and development, 2(4), pp. 314-319, 1958.

[6] B.S Sahay and J. Ranjan. Real time Business Intelligence in supply
chain analytics. Information Management & Computer Security, 2008.

142Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 157 / 241

Training Project Managers to Acquire GSD Soft Skills: A Serious Game

Rubén Márquez
Alarcos Research Group

University of Castilla-La Mancha
Ciudad Real, Spain

Ruben.Marquez@uclm.es

Aurora Vizcaíno
Alarcos Research Group

University of Castilla-La Mancha
Ciudad Real, Spain

Aurora.Vizcaino@uclm.es

Félix Oscar García
Alarcos Research Group

University of Castilla-La Mancha
Ciudad Real, Spain

Felix.Garcia@uclm.es

Abstract—A good project manager should develop a set of hard
and soft skills if they wish to manage any kind of software
project. However, when the team members are geographically
distributed, several new skills should be taken into account.
Aware of this fact, in this paper we describe the skills and
competences that a manager of Global Software Development
projects should master, and we sketch out a serious game that
can be used to train some of these soft skills, which are grouped
under the 3Cs (Communication, Coordination and Control).
With this approach we place the focus on the project manager
role and seek an immersive and engaging training experience.

Keywords—Global Software Development; Project Management;
Soft Skills; Serious Game.

I. INTRODUCTION

Software engineering is an important area of computing,
which searches for solutions to complex problems; to reach
these solutions, however, it is necessary for software
engineers to master a set of knowledge and skills [1]. In the
field of software engineering, a new development model has
emerged, one which is more offshore than the conventional
model, due to the growth of globalization [2]. This
development model is called Global Software Development
(GSD); it is a term which has come to stay, because it is
growing quickly and can be considered an increasing trend in
work on software projects [3]. GSD can thus be defined as the
development of a software project that involves several work
teams, which may belong to different cities or countries [2].

In terms of GSD, the project tasks are separated, and
delivered as different jobs. This means that managing GSD
project is not a simple task; distance, language and cultural
barriers affect Coordination, Communication and Control,
thereby increasing the complexity of the management [4]. A
variety of problems can therefore occur, such as: strategic and
cultural issues, inadequate communication and lack of
knowledge among workers, as well as project and process
management problems. Future engineers need to be aware of
all these potential difficulties, if they are to be prepared for
the new world of software development [3].

The points above are supported by a number of articles,
which point out that the lack of skills and competences in
project managers is the main cause of much project failure
[5], especially in GSD projects. This is why many companies
explain the need to teach the technical and non-technical
skills required in GSD or co-located projects to recently-
graduated and newly-qualified Project Management (PM)
professionals. Those skills will enable them to manage these

kinds of projects effectively, and produce qualified
professionals with this expert knowledge [5], [6].

In many domains, games are used to teach and train
different aspects of a given field. Educational games simulate
an environment, which help the students to feel motivated,
thus improving the teaching-learning process [5]. Games can
be therefore be justifiably considered to be a way for future
project managers to fill in the gaps in the practical
information they possess [1]. Some examples of serious
games used to teach GSD and PM are [5], [7].

Taking this fact into account, we have been developing
Global Skills Game, a serious game designed to help project
managers to develop some skills that are advisable to have
when managing a GSD project.

The rest of the paper is organized as follows. In Section
II a set of useful soft skills for working in GSD project and in
Section III for working in PM are specified. In Section IV
describe our approach, Global Skills Game along with its
characteristics. Finally, in Section V, the conclusion and
future work are given.

II. SKILLS AND ABILITIES FOR GSD

Anyone who works on a software project must have a set
of skills that work towards the success of the project, since, as
previously stated, many of the failures in software projects are
due to a lack of skills and competences on the part of those
working on the project. In a GSD project in particular, the
members really must possess certain specific skills.

First of all, and according to [3], some of the most useful
skills for software development are being able to speak the
English language, local cooperation and decision making.
Nevertheless, those abilities that provide the greatest benefit
in distributed environments are, in addition to the very
important speak the English language: remote cooperation,
intercultural cooperation and cooperation with clients.

Besides, and according to [6] some skills which must be
provided in training for a GSD are to be aware of all possible
problems, mastering communication protocols (especially
using computers), oral and written communication through a
common language and codes of ethics and time management.

In [8], the authors indicate that the important skills that
should be taught to students of GSD are regular
communication with distributed team members, team
dynamics, working in culturally diverged teams, managing
time and using collaborative technologies.

Moreover, a framework to teach several GSD skills is
described in [9]; the main skills considered are: computer

143Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 158 / 241

mediated communication, iterative development in remote
client-developer relationships and distributed PM.

The competence model specified in [10] indicates what
the general competences for GSD teams are, dividing them
into four groups depending on the roles that are involved in a
GSD team (software engineer, team leader, project manager
and organizational unit manager). The abilities that are
pointed out as being necessary in the training of any software
engineering who is working in GSD are synchronous and
asynchronous communication, identification and
management of requirement, technical problem solution,
share knowledge management, advanced techniques for
distributed communication, self-learning capacity,
international relationship ability, use of communication and
information technologies, ability to work in a global setting
and oral and written communication in English.

III. SKILLS AND ABILITIES FOR PM

Once we have carried out an analysis of GSD, listing the
skills and competences which are needed in this type of
development environment, in this section we are going to
focus on the competences for PM.

First of all, the authors in [11] state that risk is one of the
most important parts of PM. It is thus highlighted that a
distributed software development project manager has to take
into account areas of risk such as time zone, cultural,
geographical and language differences, as well as the
processes of Coordination, Communication and Control.

In addition to these considerations, the research in [12]
offers a range of skills which must be acquired by the project
manager in software development if he or she is to
successfully achieve the project goals. The skills that are
proposed are: communication skills (the project manager
should listen to the team workers, promote trust relationships
and understand the personality differences between its
members, with the aim to improve the work process, reduce
conflict between workers, and strengthen cooperation); team
building skills (the project manager must ensure there are
strong links formed between other team members and other
teams); and problem-solving skills (the project manager has
to visualize and solve complex problems, making decisions
which may have a certain impact on the project cost, quality
and productivity).

Finally, the skills that are proposed in [10] as necessary
for a project manager in a distributed environment are
decision taking (the choice between different alternatives in
different aspects of PM), meeting management (holding
meetings with different workers to talk about PM),
establishment of rules to work with shared data (due to the
fact that data is shared between different work teams, rules
must be established for its use), collecting, analysing and
interpreting information (all the necessary project
documentation must be processed in order to take the right
decisions), positive attitude and capacity for motivating
others (in this way the project workers also have a positive
attitude and their productivity increases), organization and
planning capacity (the project manager has to carry out the
organization and planning of the different tasks of the
project), initiative and leadership (the project manager is the

key component in a distributed project; hence, he or she must
have an attitude of leadership and initiative for decision
taking), interpersonal conflict resolution (since there are
many work teams in a distributed project, it is not uncommon
for different workers to have conflicts, so the project manager
has to solve these by taking the right decision), identification
of competence and CV (the project manager should be able to
know the skills and competences of workers, so as to assign
the workstation correctly, and requirement estimation and
prioritization (the project manager must know the
requirements of the project and carry out the prioritization of
each one according to the needs of the client).

To sum up, the above study (an overview of the soft skills
needed when working in GSD and PM) has helped us to
decide which competences we want to implement in our
serious game.

IV. THE GAME

In the previous sections we have presented a study of the
current literature on the skills needed to work in a distributed
software environment, and on those skills needed to perform
the activities of a project manager.

In this section our serious game is presented, indicating in
detail what it consists of, what particular skills our player will
learn, and how he or she will face with different elements to
advance towards the successful development of a distributed
software project.

Before we start implementing our game, we should first
of all reach a decision about which skills from Section II and
III will be taught and improved by playing it. It should be
noted that the goal of this game is to train individuals for
management of software projects in distributed
environments, so both GSD and PM skills should be
included. Taking that into account, in Table I a set of soft
skills which will be implemented in our game is presented,
indicating in each case whether it is a skill that concerns
Global Software Development (GSD), or Project
Management (PM), or both (BTH); the table also shows how
the soft skill will be implemented, and how the player will be
able to acquire it.

As we can see in the table below, we are going to
introduce several skills into our game; however, there are
many other GSD and PM skills that have been left out for
some reason. These include such skills as those to do with
codes of ethics, since these almost always depend on the
particular kind of the project, companies, and even countries
involved, so their implementation would be too complex.
Another not supported skill is that of establishing rules to
work with shared data; due to like the previous skill, it will
depend on the particular company(ies) involved in the
project. As far as the skills positive attitude, capacity to
motivate others, or initiative and leadership are concerned,
these are considered as very personal skills that will depend
on the disposition of the person involved. Therefore, we are
going to implement some strategies to develop those skills,
or at least to make the player aware of the importance of
having them. However, it can be a challenge for a serious
game to evaluate them.

144Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 159 / 241

TABLE I. SOFT SKILLS IMPLEMENTED IN GLOBAL SKILLS GAME

Soft Skill Type Implementation

Time management GSD

There will be some information in the game about the evolution of the project being managed; this
information will be the current budget, time-to-delivery, and the current progress. The player will thus be
able receive training in how to conduct the time management of the project, since he/she will also be able
to carry out activities designed to optimize the above information.

Intercultural cooperation GSD

Some of the events that will occur will have certain characteristics that are specific to a given culture; in
this way the player will learn how these features affect intercultural cooperation between globally-divided
work teams, and they will be able to try to improve the cultural relationship between the members of the
project.

Cooperation with client GSD

Other events will be directly or indirectly involved with the needs of the client of the project, thus enabling
the player to learn how to cooperate with the customer in such a way that the project meets their
expectations. Furthermore, the player will be able to communicate with the client and request them to
answer any queries that may arise.

Communication skills PM
One of the types of event that will come up in the game will be communication events, in which the player
will learn the characteristics that are involved in the communication between the members of a distributed
software project; these events will train the ability to improve that communication.

Coordination skills PM
Another type of event that will occur in the game will be coordination events, in which the player will
learn the characteristics that are involved in the coordination of the project, and this will train their ability
to carry out different project coordination activities.

Control skills PM
Control events will be another kind of event in the game; in these, the player will learn how to control the
project, and receive training in how to solve a problem, should one occur.

Decision making and problem-
solving

BTH
Throughout the execution of the game different events will appear in which some problem arises; the
player must decide what is the best way to maintain the execution of the project and work out how to solve
the problem.

Once we decided the skills that players will learn and
receive training in by playing our game, we designed and
implemented the game’s graphical interfaces. The first
interface is the general menu of the serious game.

After choosing the context of the game project, the player
will have to configure different game parameters which will
affect the simulation of the game. The parameters with which
the player will be able to interact will be both the general
aspect of the project, such as the number of sites, the country
where the client is located, the common language for
communication between sites, and the specific aspects of
each site. These details include the number of workers, the
country where the site is located, the knowledge of the
common language, or whether the site is the main one or not.
In addition, the player will be able to choose the type of
communication between the different sites and the client.
While the project is being configured by the player, the game
will show a set of important success factors that are involved
in, and characterize, the development of a distributed project,
as collected by [13]; some of these success factors are
“Working time overlap”, “Language difference”, “Cultural
difference”, “Communication” or “Sites number”. Finally,
and by means of the above factors, the game will calculate a
level of difficulty, from low to very high, and will represent
the difficulty that the distributed project has to face with,
taking into account the current configuration of the player.
This screen will enable the player to begin to become familiar
with the aspects and factors involved in a distributed project
and learn from the feedback, as these factors can have an
important influence on the project.

Finally, and once the distributed project that we are going
to simulate is configured, the graphic interface of the game

where the simulation of the game is to take place will appear.
This screen (Figure 1) is divided into two parts; the bottom
strip in which the player, through progress bars, will find
information that will evolve throughout the simulation of the
game. This includes information such as the level of stress,
the remaining budget, the time until the delivery of the project
and the progress of the project. There will also be general
information on the project, such as its difficulty, initial budget
and duration. At the bottom of this screen we can find
information on each of the sites, such as the level of
motivation, communication with other sites, or workload.
Turning now to the upper part of the screen, in which the
graphic game will be found, this will consist of the static map
of an office, along with the character of the player, who will
be able to move about with total freedom.

Figure 1. Global Skills Game Graphic Interface

145Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 160 / 241

The simulation of the game will consist in the dropping
of different objects onto the screen (where the speed of the
drop will depend on the difficulty of the project). These
objects will be a telephone, a note and a magnifying glass,
and each of them will represent an event that has occurred in
the simulation of the project, identifying the particular type
of event according to the 3Cs, Communication, Coordination
and Control, respectively. When an object drops, the player
will be able to interact with it so that the description of the
event and what has happened appears; in this way the player
will be able to train ability in each one of the 3Cs and
understand how each one of these affects the evolution of a
distributed project. In addition, some of the events will have
certain cultural characteristics which will help the player to
understand the intercultural cooperation of a distributed
project and train in how to deal with this. Other events will
have the client of the project as the main actor. This will help
the player to understand cooperation with the client and train
their skill in this area. The events with which the player
interacts will have an impact on the execution of the project,
affecting the budget, duration or even the stress of the player;
this impact may be felt in any of the different sites, and it may
be positive or negative, depending on the particular type of
event. Negative events will consist of problems which the
player as project manager will have to tackle by taking certain
decisions to solve the problems in the best possible way.
These decisions can be made in two ways; either by choosing
a solution from the whole range that is offered (if offered) or
by interacting with the computer and by performing an
activity that solves the problem. The user will be able to use
the computer to carry out different activities to try to improve
the execution of the project; these include tasks such as hiring
and firing personnel, giving extra payments or holding a face-
to-face meeting.

The project simulation will continue until several possible
results occur: the player has overcome the stress level; the
project has run out of budget; the project has not met the
deadline. In those cases, the player has lost the game. If the
project has finished successfully on time and within budget
the player has won the game.

V. CONCLUSION AND FUTURE WORK

This paper presents a study carried to find out what soft
skills a project manager needs to learn when working on a
GSD project. Taking this study as a basis, we then went on to
develop a serious game to train future project managers. The
fact that it is a serious game offers the advantage of its being
much more entertaining than other traditional training
methods.

As future work we will focus on testing our serious game
on students of software engineering, in order to evaluate it.
We will also test it on practitioners, in the quest to make
possible improvements.

ACKNOWLEDGMENTS

This work has been funded by the G3SOFT project
(Consejería de Educación, Cultura y Deportes de la Junta de
Comunidades de Castilla La Mancha, y Fondo Europeo de
Desarrollo Regional FEDER, SBPLY/17/180501/000150)

and by the BIZDEVOPS-GLOBAL project (Ministerio de
Ciencia, Innovación y Universidades, y Fondo Europeo de
Desarrollo Regional FEDER, RTI2018-098309-B-C31).

REFERENCES
[1] M. Kosa, M. Yilmaz, R. V. O’Connor, and P. M. Clarke,

‘Software engineering education and games: A systematic
literature review’, Journal of Universal Computer Science, vol.
22, no. 12, pp. 1558–1574, 2016.

[2] A. Vizcaíno, F. García, I. G. R. De Guzmán, and M. Á. Moraga,
‘Evaluating GSD-aware: A serious game for discovering
global software development challenges’, ACM Transactions
on Computing Education, vol. 19, no. 2, pp. 1–23, 2019.

[3] I. Bosnić, I. Čavrak, and M. Žagar, ‘Assessing the impact of
the distributed software development course on the careers of
young software engineers’, ACM Transactions on Computing
Education, vol. 19, no. 2, pp. 1–27, 2019.

[4] I. Richardson, S. Moore, D. Paulish, V. Casey, and D. Zage,
‘Globalizing software development in the local classroom’,
presented at the Software Engineering Education Conference,
Proceedings, 2007, pp. 64–71.

[5] J. E. N. Lino, M. A. Paludo, F. V. Binder, S. Reinehr, and A.
Malucelli, ‘Project management game 2D (PMG-2D): A
serious game to assist software project managers training’,
presented at the Proceedings - Frontiers in Education
Conference, FIE, 2015, vol. 2014, pp. 1–8.

[6] M. J. Monasor, A. Vizcaíno, and M. Piattini, ‘Training Global
Software Development skills through a simulated
environment’, presented at the ICSOFT 2010 - Proceedings of
the 5th International Conference on Software and Data
Technologies, 2010, vol. 2, pp. 271–274.

[7] J. Noll, A. Butterfield, K. Farrell, T. Mason, M. McGuire, and
R. McKinley, ‘GSD Sim: A Global Software Development
Game’, presented at the Proceedings - International Computer
Software and Applications Conference, 2014, vol. 18-21-
August-2014, pp. 15–20.

[8] M. Paasivaara, C. Lassenius, D. Damian, P. Räty, and A.
Schröter, ‘Teaching students global software engineering skills
using distributed Scrum’, in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 1128–
1137.

[9] D. Damian, A. Hadwin, and B. Al-Ani, ‘Instructional design
and assessment strategies for teaching global software
development: A framework’, presented at the Proceedings -
International Conference on Software Engineering, 2006, vol.
2006, pp. 685–690.

[10] J. Saldaña-Ramos, A. Sanz-Esteban, J. García, and A.
Amescua, ‘Skills and abilities for working in a global software
development team: A competence model’, Journal of
Software: Evolution and Process, vol. 26, no. 3, pp. 329–338,
2014.

[11] J. M. Verner, O. P. Brereton, B. A. Kitchenham, M. Turner,
and M. Niazi, ‘Risks and risk mitigation in global software
development: A tertiary study’, Information and Software
Technology, vol. 56, no. 1, pp. 54–78, 2014.

[12] K. Sutling, Z. Mansor, S. Widyarto, S. Lecthmunan, and N. H.
Arshad, ‘Understanding of Project Manager Competency in
Agile Software Development Project: The Taxonomy’, in
Information Science and Applications, Berlin, Heidelberg,
2015, pp. 859–868.

[13] A. Vizcaíno, F. García, J. C. Villar, M. Piattini, and J. Portillo,
‘Applying Q-methodology to analyse the success factors in
GSD’, Information and Software Technology, vol. 55, no. 7,
pp. 1200–1211, Jul. 2013.

146Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 161 / 241

Antecedents To Achieve Kanban Optimum Benefits In Software Companies

Muhammad Ovais Ahmad
Faculty of Electronics, Telecommunications and

Informatics, Department of Software Engineering, Gdansk
University of Technology, Poland.

Department of Mathematics and Computer
Science, Karlstad University, Sweden

Anna Rohunen
Center for Ubiquitous Computing, University of Oulu,

Oulu, Finland

Päivi Raulamo-Jurvanen
M3S Research Unit, University of Oulu, Finland.

Oulu, Finland
e-mail: firstname.lastname@oulu.fi

Abstract— In 2004, Kanban successfully entered the Agile and
Lean realm. Since then, software companies have been
increasingly using it in software development teams. The goal
of this study is to perform an empirical investigation on
antecedents considered as important for achieving optimum
benefits of Kanban use and to discuss the practical
implications of the findings. We conducted an online survey
with software professionals from the Lean Software
Development LinkedIn community to investigate the
importance of antecedents of using Kanban for achieving
optimum benefits. Our study reveals that subjective norm,
organizational support, ease of use, Kanban use experience
and training are the antecedents for achieving expected
benefits of Kanban. The potential benefits of Kanban use can
only be realized when the key antecedents are not only
identified, but also infused across an organization. When
managing the transition to or using Kanban, practitioners need
to adapt their strategies on the extent of various antecedents, a
few identified in this study.

Keywords- Agile; Lean; Kanban; Software Development.

I. INTRODUCTION

It has been more than ten years since the use of Kanban
in software engineering was suggested. During the last
decade, there has been significant adoption of Kanban in
domains such as aeronautics, healthcare, retail clothing,
human resources, and software development [1]. Kanban
was emerged as part of Toyota Production System. The idea
was to work effectively under pressure and market situation.
Kanban literal meaning is signboard [1].

Toyota, used Kanban due to three reasons: reduction in
information processing cost, rapid and precise acquisition of
facts, and limiting surplus capacity of preceding shops or
stages [10]. In 2004, David Anderson introduced Kanban to
a software development team in Microsoft. “Kanban (capital
K) is an evolutionary change method that utilizes a kanban
(small k) pull system, visualization, and other tools to
catalyse the introduction of Lean ideas… the process is
evolutionary and incremental” [1]. Anderson identified five
key properties, which Boeg called principles: Visualise the
workflow, Limit Work In Progress, Measure and manage
flow, Make process policies explicit, Improve collaboratively
(using models and the scientific method) [1].

The annual State of Agile VersionOne [3] reported that
from “2016 to 2017 the use of Kanban grew from 50% to
65% in software companies”. The most recent systematic
mapping study on applying Kanban in software engineering
reports a variety of benefits with the use of Kanban in their
work [1]. The study distilled various Kanban benefits under
three broad categories [1]:

• Process - Improved visibility and transparency,
Better control of project activities and tasks,
Identification of impediments to flow, Improved
prioritisation of products and tasks.

• People - Improved communication and
collaboration, Improved team motivation, Improved
team building and cohesion, Increased customer
satisfaction.

• Organization - Promotion culture of continuous
learning and strategic alignment.

These benefits are achieved by using Kanban in two
broad knowledge areas: Software engineering process
management and economics [1]. Despite the positive
evidence supporting the success of Kanban in software
organizations, the industry is still facing recurring problems
(with, e.g., customer satisfaction, organizational culture or
poor knowledge management) [1]. To achieve the optimum
benefits of agile and lean approaches there is lack of
sufficient theoretical foundations. However, a few studies
have focused on a set of potential factors that impact
perceived success or ‘acceptance’ of agile practices where
success is measured using outcomes such as quality, time,
and cost [4], agile software solution framework [6] and
assimilation of practices [7]. The existing suggested various
antecedents which contribute to the effective use of Agile
methods (e.g., support from organization, positive change
culture, formal training and developers’ perception about the
difficulty or ease of use regarding method, practice or tool)
[1][8][9][11]-[13].

There is a need for detailed studies on agile software
development to provide credible advice to software
companies regarding its use [13]. Kanban also comes under
the agile realm and is still in its infancy in software
engineering. Currently, there is lack of empirical evidence
regarding Kanban antecedents and use benefits. It is
important to investigate the importance of organizational
support, training, experience, subjective norms, and

147Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 162 / 241

perceived ease of use against Kanban claimed benefits. Such
evidence will help in the generalization of results, and in
confirming or refuting anecdotal evidence. Further, it will
provide practical guidelines that can assist software
practitioners regarding decisions in their selection of
software development approaches. The goal of this study is
to investigate various antecedents considered important for
achieving optimum benefits of Kanban use.

RQ1. What antecedents make software industry achieve
the optimum benefits of Kanban from its use?

To answer RQ1, we conducted a web survey in the
summer of 2017, targeted LinkedIn practitioners’ group:
“Lean Software Development” - one of the largest LinkedIn
communities of professionals whose members are using and
researching Lean and Kanban.

The paper is organized as follows. Section II elaborates
conceptualization of the antecedents. Section III describes
the survey design, while Section IV presents the methods
used for analysing the data. Section V presents the results
before moving to discussion about the findings in Section
VI. Section VII presents the threats to validity and, Section
VIII concludes the paper with recommendations for practice
and researchers.

II. ANTECEDENTS CONCEPTUALIZATION

In general, software and system development
methodologies are adaptable. Senapathi and Srinivasan [11]
claim that agile methods lack a strong theoretical base. The
information systems literature extensively tested models, e.g.,
the diffusion of innovation, planned behaviour, technology
acceptance model and information systems implementation
research [11]. These models generated interest in the agile
research community [7][11]. To investigate software
developers’ acceptance of methodologies, Riemenschneider
et al. [8] compare the existing five theoretical models. Dybå
et al. [12] added the construct of organizational support to the
four constructs presented by Riemenschneider et al. [8] i.e.,
perceived ease of use, perceived compatibility, perceived
usefulness and subjective norms. Similarly, Senapathi and
Srinivasan [11] identify other constructs pertinent to post-
adoptive usage of agile practices, namely relative advantage,
team attitude and technical competence, championing, and
top management support. Ahmad et al. [9] discussed aspects
that Kanban practitioners perceived to be important (i.e.,
organizational support and social influence). We took Dybå et
al. [12] model factor as baseline for our study:

Organizational support is the extent to which change
agents promote or support efforts, as a factor in explaining
an innovation’s (e.g., Kanban as a new working method)
rate of adoption [9]. Coaching and support is a key to the
success of facilitating and sustaining organizational learning
and knowledge creation. Iivari and Huisman [16] identified
that organizational culture contributes in the espousal of
software development methodologies. Kaemar [17] reported

that, diffusion of software process effect could be arbitrated
by perceived organizational usefulness. Therefore, we
believe, Kanban benefits can be achieved by providing
organizational support.

Training, in the form of formal training, of any
methodology is important for its successful implementation.
Chan and Thong [4] exhibit that training has a positive
effect on individuals’ beliefs and perceived compatibility of
an innovation. In Agile methodologies, training and
coaching play an important role in the successful use and
reap of the benefits [4]. In the light of existing studies
[21][22], formal training plays an important role in the use
and successful implementation of any methodology. Thus,
we believe that Kanban benefits can be reaped by providing
formal training.

Experience means individuals with the attitude and
experience to embrace new practices (e.g., Agile) easily and
fast, whereas high level of team experience contributes to
increased productivity [23]. High level of experience,
technical knowledge and self-organizing working style
within a team affect the successful usage of agile practices.
Experience can be considered as a positive or negative
aspect in using agile methods and practices. Salo and
Abrahamsson [24] present that experienced users of agile
methods and practices have positive views about its
usefulness. Laanti et al. [5] found a positive connotation
between the length of agile experience and attitudes towards
its usefulness. Whereas Vijayasarathy and Turk [2] found no
evidence.

Subjective norms refer to a person’s perception that most
people who are important to him/her think he/she should or
should not perform the behaviour in question [8][20]. The
software companies are encouraging their developers to
work collaboratively in teams. To some extent, teamwork
creates social pressure on individuals. Subjective norms are
significant in methodologies acceptance [4][8] while a few
found it insignificant [12][20]. Therefore, we can say that,
the stronger subjective norms, the more likely practitioners
reap Kanban use benefits.

Ease of use can be described as “The degree to which a
person believes that using a particular system would be free
of effort” Davis [19]. It explains whether a method or tool is
easy to use or not, and how they are perceived in relation to
the claimed benefits. According to Kaemar et al. [17] the
perceptions of development methodology challenges are
negatively associated with perceived ease of use.
Riemenschneider et al. [8] in turn, claim that ease of use
construct has insignificant role in the acceptance of software
methodologies. However, other studies recur that ease of
use is a significant determinant of adoption behaviour
[9][12][19]. Therefore, we believe Kanban’s ease to use is
an important aspect in achieving the optimum Kanban
benefits.

 Self-efficacy is about “belief in one's capabilities to
organize and execute the courses of action required to
produce given attainments” [18]. Self-efficacy is to predict

148Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 163 / 241

positive attitude towards a specific job, technology, training
proficiency and job performance [18]. Therefore, we believe
self-efficacy is an important aspect in achieving the optimum
Kanban benefits.

III. SURVEY DESIGN AND DATA COLLECTION

To reach a global population of Kanban practitioners, we
sent out a web survey to “Agile and Lean Software
Development” community of practitioners in LinkedIn. At
the time of the study, the population of “Agile and Lean
Software Development” was about 138,460 software
practitioners.

Prior to the actual survey launch, we piloted and pre-
tested the survey with four relevant field researchers from
University of Oulu and five software professionals from the
software industry. In the light of the feedback, received
from both the researchers and software professionals, we
revised and clarified the questions and wordings of the
statements accordingly. The survey welcome page provided
a clear description of the study purpose and researchers
information. The survey remained open for two months
(June and July 2017) and had three sections:

• Background information, Kanban use experience
and type of Kanban training attended.

• Benefits of using Kanban: We based the questions
on literature [1] and asked the respondents to rate the
significance of each Kanban benefit for their
organization using a five-point Likert-type scale
(from 1 strongly disagree to 5 strongly agree). The
respondent can also explain the obtained Kanban
benefits in more detail, in the form of open-ended
questions.

• Antecedents for achieving optimum Kanban
benefits: Similarly, with the help of literature
[9][20][19], we adapted the questions for the
antecedents. For rating, we used a five-point Likert-
type scale.

IV. DATA ANALYSIS

In our analysis, we divided the respondents into groups
with respect to their reported level of received organizational
support, perception of ease of use, training, subjective norm,
and experience. These groups were compared to find out
whether there are differences in the perceived benefits
between the groups. Such comparison provides insight into
relationships between perceived benefits of Kanban usage
and its antecedents.

Comparisons were conducted through Student's t-test,
Welch's t-test, analysis of variance or Welch's ANOVA,
depending on the number of groups to be compared and
whether the assumption of group-wise variances’
homogeneity was met or not. These tests help to investigate
whether there are statistically significant differences with
respect to the perceived benefits between the groups. We
carried out our analysis with the significance level (α) of
0.05, i.e., we decided whether to reject the null hypotheses

(no differences between the groups) with the risk level of 5
%.

V. RESULTS

The collected data set included 67 responses. Majority of
the respondents were from organizations developing
software (n=45), while the rest were working in IT services
(n=14), telecommunication (n=2) and hardware
manufacturing (n=6).

We categorized all the organizations reported by the
respondents, based on small and medium-sized enterprises.
Most respondents were working in a small organization
(n=30, number of employees between 10–49), the rest
worked in large organizations (n=17, more than 250
employees) and middle size organizations (n=14, number of
employees between 50–249). Only 6 respondents were from
start-up company. Respondents’ main organizational roles
involved first level management (n=20) and development
teams (n=17). Other reported positions were middle
management (n=16) and top-level management (n=7). The
remaining 7 roles were operation & support staff.

Almost all the respondents understood Kanban. The
majority (n=35) of the respondents considered themselves as
advanced beginners using Kanban in a local project.
However, having said that, only 5 respondents purely used it
for distributed projects. Table 1 shows, how the respondents
rated the significance of Kanban use benefits and a few
explained more in open-ended questions.

The top three benefits are improved visibility of work,
reduction in work in progress and improved development
flow; which are the key pillars of Kanban. It was also
highlighted that Kanban helps to “visualize tasks in
progress” and “highlight the bottlenecks” in the flow as
well as has the “ability to analyse outliers within the
standard deviation of cycle or lead time, Kanban allows for
“just-in-time prioritization” and has “moved the team from a
sprint to finish coding to continually deliver excellent
software”.

TABLE I. RESPONDENTS RATE KANBAN BENEFITS

Kanban benefits Average

Improved visibility of work 3.67

Reduction in work in progress 3.15

Improved development flow 3.00

Faster time to delivery 2.88

Improved team collaboration 2.63

Improved understanding of whole value stream 2.58

Improved team communication 2.51

Improved team motivation 2.45

Increased productivity 2.42

Reduced cycle time 2.42

Better meeting of customer needs 2.27

Improved software quality 2.21

Enhance customer satisfaction 2.25

149Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 164 / 241

Table II shows the internal consistency of antecedent
factors using Cronbach’s alpha [15]. The items in each
variable are grouped together for statistical tests. Cronbach
Alphas value for all the items varied between 0.64 and 0.83,
suggesting a relatively high internal consistency, based on
the 0.7 threshold recommended by Nunnally [15].

Cronbach’s alpha was below 0.7 only for OS2 variable
that measured the respondents’ perceived availability of
written instructions on Kanban in their organizations.
However, the overall OS internal consistency is 0.83. With
respect to the SN and PEOU factors, we did not identify any
items whose removal would have increased the internal
consistency [15]. Based on the high internal consistency of
these items, we calculated the sum variables of all items for
each factor and used those for statistical tests in subsequent
stages of the study.

TABLE II. CRONBACH’S ALPHAS

Factors Variables Cronbach’s alpha (α)
Organizational Support
(OS)

OS1 0.83 0.83

OS2 0.64

OS3 0.83

Subjective Norms (SN) SN1 0.79 0.88

SN2 0.79
Perceived Ease of Use
(PEOU)

PEOU1 0.82 0.85

PEOU2 0.82

PEOU3 0.79

PEOU4 0.82

Organizational support: The respondents were divided
into two groups based on the value of the organizational
support sum variable (the mean of separate items):
respondents provided with no support or weak support only
(sum variable value less than 3), and respondents with
moderate or strong support (sum variable value 3 or higher).
Using Student's t-test, a statistically significant difference
was found between the groups (p=0.000) with the means of
the perceived benefits presented in Table III. The PS mean
was higher in the group with moderate or strong support.

TABLE III. MEANS OF PERCEIVED BENEFITS WITH RESPECT TO OS

Group (n=67) Mean of perceived benefits

No support or weak support
(n=53)

2.363

Moderate or strong support
(n=14)

3.699

We analysed the respondents’ organizational position
against the Kanban perceived benefits. The respondents
were divided into three groups based on their organizational
position: management (including top-level management,
middle level management, and first level management),
support (including IT/operations/support staff, and
sales/marketing personnel) and development. Using
ANOVA, a statistically significant difference was found

between the groups (p=0.016) with the means of the
perceived benefits shown in Table IV. The mean for
perceived benefits was lowest in the Development group
and highest in the Management group.

TABLE IV. MEANS OF PERCEIVED BENEFITS WITH RESPECT TO

ORGANISATIONAL POSITION

Group (n=67) Mean of perceived benefits

Management (n=43) 2.890
Support (n=7) 2.388
Development (n=17) 2.118

The result indicates that the respondents with the
organizational position management perceive benefits of
Kanban usage higher than the ones with the organizational
positions development and support. Additionally, we
investigated association between organizational position and
organizational support. In this way, we aimed to find out
whether the support received by the respondents’ varied
among the organizational position groups. Table V shows
cross tabulation of these variables. Based on the calculation
of Pearson’s Chi-Square test of independence, the
differences in organizational support between the
organizational position groups were statistically significant
(χ2=6.019, df=2, p=0.049). The cross tabulation shows, none
of the respondents with the organizational position
development reported that they had received moderate or
strong support.

TABLE V. CROSS TABULATION OF POSITION AND OS

Organizational
support (N=67)

Position
Management Development Support

No support or weak
support provided 31 17 5

Moderate or strong
support provided

12 0 2

Ease of use: The respondents were divided into two
groups based on the value of the perceived ease of use sum
variable: respondents with lower level of perceived ease of
use (sum variable value less than three), and respondents
with higher level of perceived ease of use (sum variable
value three or higher). Using Welch’s two sample t-test, a
statistically significant difference was found between the
groups (p=0.000) with the means of perceived benefits
presented in Table VI. The mean of perceived benefits was
higher in the group with higher perceived ease of use.

TABLE VI. MEANS OF PERCEIVED BENEFITS WITH RESPECT TO PEOU

Group (n=67) Mean of perceived benefits
Lower perceived ease of use (n=41) 2.099

Higher perceived ease of use (n=26) 3.497

Kanban training: The respondents were divided into two
groups based on their Kanban training, i.e., respondents
with no training or self-studying, and respondents with
formal training (including peer mentoring, and education

150Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 165 / 241

with the duration of at least one day). Using Student's t-test,
no statistically significant difference was found between the
groups with respect to their perceived benefits (p=0.854, the
means for the groups with No Kanban training or self-
studying and with Formal Kanban training as 2.620 and
2.665, respectively).

In order to obtain better insight into the dependence of
the perceived benefits on Kanban competence, we
investigated Kanban knowledge against benefits. We divided
respondents into two groups based on their Kanban
knowledge: respondents with lower knowledge (assessed
themselves as advanced beginners), and respondents with
higher knowledge (assessed as competent or experts). Using
Welch's two sample t-test, a statistically significant
difference (p=0.000) was found between the groups with the
means of the perceived benefits. The mean of perceived
benefits was higher in the group with the higher knowledge.

TABLE VII. MEANS OF PERCEIVED BENEFITS WITH RESPECT TO

KANBAN TRAINING

Group (n=67) Mean of perceived benefits
No training or self-studying
(n=35)

2.620

Formal training
(n=32)

2.665

Further, we investigated the association between Kanban
training and Kanban knowledge. Pearson’s Chi-Square test
of independence indicated that there is a statistically
significant association between the variables (χ2=7.81, df=1,
p=0.005). Although our analysis does not indicate a
dependence between Kanban training and perceived
benefits, there still seems to be a relation of some sort
between Kanban competence and perceived benefits. As
expected, respondents’ Kanban knowledge was also
dependent on their length of experience in Kanban usage as
a statistically significant association was observed between
these variables (χ2=24.396, df=2, p=0.000).

TABLE VIII. MEANS OF PERCEIVED BENEFITS WITH RESPECT TO

KANBAN KNOWLEDGE (N=67)

Group Mean of perceived benefits
Lower knowledge
(n=40)

2.170

Higher knowledge
(n=27)

3.341

Subjective norms: The respondents were divided into
two groups based on the value of subjective norms sum
variable: the respondents with lower level of subjective
norms (sum variable value less than three), and the
respondents with higher level of subjective norms of use
(sum variable value three or higher). Using Student's t-test,
a statistically significant difference was found between the
groups (p=0.000) with the means of the perceived benefits
presented in Table IX. The mean of perceived benefits was
higher in the group with higher subjective norms.

TABLE IX. MEANS OF PERCEIVED BENEFITS WITH RESPECT TO

SUBJECTIVE NORMS (N=67)

Group Mean of perceived benefits
Lower subjective norms
(n=43)

2.289

Higher subjective norms
(n=24)

3.274

Kanban experience: The respondents were divided into
three groups based on their Kanban experience: respondents
with short experience (one year or less), moderate
experience (two years or less), long experience (more than
two years; in practice, up to five years). Using ANOVA, a
statistically significant difference (p=0.002) was found
between the groups with the means of the perceived benefits
presented in Table X. Perceived benefits tend to increase
along increased Kanban experience.

TABLE X. MEANS OF PERCEIVED BENEFITS WITH RESPECT TO

KANBAN EXPERIENCE (N=67)

Group Mean of perceived benefits
Short experience
(n=27)

2.35

Moderate experience
(n=24)

2.47

Long experience
(n=16)

3.38

VI. DISCUSSION

A quantitative survey was performed to investigate
antecedents, which help to achieve optimum Kanban use
benefits. The study shows that Kanban practitioners
experienced various benefits which are claimed in the
existing literature, i.e., enhanced visibility of tasks, limit the
work in progress at given time, smoothly develop and
deliver various tasks continuously. For example, the
visibility of various tasks improves team motivation,
communication and collaboration.

The ease of use of any method and tool is important for
achieving positive effects. Ease of use is an important
antecedent for achieving optimum benefits of Kanban. The
ease of use is significant to CASE tool usage [21]. Previous
studies support that learning and using software
development methods or tools does not require much of
mental efforts [6][22][20]. In this study, perceived benefits
seem to depend on ease of use of Kanban. Therefore, it
should be considered that how to make Kanban use easier.
The teams need to be free, in order to select the type of
Kanban board (physical or virtual) [1][9].

When choosing and adopting to use any new tool,
method or process “software professionals can be expected
to be motivated by others who are important to them and
whose opinions they value” [2]. Our findings highlight that
perceived Kanban benefits depend on the level of subjective
norms, and the level of perceived benefits tends to increase
along with the increased subjective norms. The existing
studies support the role of subjective norm in the prediction
of innovation use among individuals [2]. Kanban experience

151Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 166 / 241

has positive relationships with the perceived benefits. The
perceived benefits tend to increase along increased Kanban
experience. This suggests that with the passage of time,
practitioners get experience using Kanban and achieve the
optimum benefits which are claimed in existing literature
[8][20].

The organizational support is a highly significant
antecedent of Kanban perceived benefits. This is also in
accordance with prior studies of Kanban use, development
processes and software engineering methodologies
[1][8][11]. Organizational support should be provided
throughout the departments to make Kanban adoption more
efficient. Management support is important in the decision
of adopting a new technique for eliciting user requirements.
A recent systematic mapping study [1] suggested that
training and allowing teams to experiment with Kanban in a
specific context is a type organizational support. Our
findings regarding the dependence between Kanban training
and perceived benefits are somehow ambiguous. Specific
attention is required, when about the way training is carried
out; in order to provide the personnel with skills that really
promote their Kanban learning and competence. The
organizations provide customized training to various groups
(e.g., development or management) and allow them to
experiment and adopt Kanban principles based on their own
requirements [20]. Studies support that organizational
support (aka. training and consultation), play significant role
in the use of Agile methodologies including Kanban [4][9].

VII. THREATS TO VALIDITY

We followed the guidelines for threats to validity
presented by Runeson and Höst [14]. A common threat to
web surveys is that questions might be misunderstood. To
handle this threat, we piloted the survey with five
researchers and four industry experts. After piloting, we
rephrased a few survey questions to provide more clarity.
Additionally, we designed survey questions using existing
literature. Several questions were used in parallel for
measuring many of the studied variables. As part of internal
validity, a critical point is need to be taken in consideration
that, this study is exploratory in nature and we are not
empirically validating any model. We expect that there
could be many additional factors, which could affect the
actual use of Kanban.

We distributed web survey on LinkedIn, which is prone
to external validity threat (i.e., the general applicability of
the results) as the sample size was relatively small (n=67).
However, the survey was conducted with the global
population of practitioners, instead of a random sample or a
convenience sample (those both considered as weaker data
collection approaches). The respondents were individuals
from various organizations. Therefore, it is difficult for
individuals to answer on behalf of the whole organization.
Further, respondents in diverse positions may have different
opinions and familiarity about the organizational practices.

Thus, different views could affect the reliability of the
results to some degree.

We purposely chose the “Lean Software Development”
LinkedIn community as the population, to get an apt data
sample. As they have an appropriate understanding and
experience of using Kanban. LinkedIn groups and
professionals are considered as good source of data
collection from all seniority levels of researchers and
practitioners [9]. However, the population of this type may
cause positive biasness in the results. It is also possible that
many of the respondents were the ones with high-level
interest in Kanban and open to try new methods in general.

VIII. CONCLUSION

Kanban has many success stories in software
engineering. It is a good tool for visualizing work within
and between teams. It helps team members to avoid
burdening multitasking by limiting to work in progress.
Such actions indirectly enable continuous delivery to the
customers. The goal of this study was to examine the
antecedents of successful Kanban usage to achieve optimum
benefits from it.

Our results exhibit that enabling antecedents (such as
organizational support, experience, training, ease of use, and
subjective norm), play a vital role in the context of software
development innovations’ adoption as well as pertinent in
realizing Kanban benefits. The findings of our study are
aligned with earlier studies [8][11][20] which have
identified the importance of these antecedents with respect
to acceptance and usage of software development methods.
The greater the organizational support the more benefits of
Kanban use are achieved by the practitioners. This is also
reflected in subjective norm and training, which have
correlation with achieving optimum benefits of Kanban. It is
beneficial for companies, when they find their influential
individuals who have adopted Kanban and/or endorse its use.

This study highlights the importance of Kanban training;
however, it is essential to allow Kanban experimentation in
specific context(s). Once a team adopts Kanban to their
work, they will achieve its benefits. The study shows that
management experiences more benefits, therefore the
assumption is that they have more freedom to adopt Kanban
based on their circumstances, needs and nature of work.
Practitioners need to monitor and evaluate realization of the
antecedents which are reported in this study. Constant
evaluation and observing will aid to sustain good Kanban
use and achieve maximum benefits.

In the future, similar studies are required to investigate
these antecedents in more detail. Further studies need to be
carried out to replicate the study, on different teams and
different organizations, to accept or refute the findings and
to help in the generalizability.

152Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 167 / 241

REFERENCES

[1]. M.O. Ahmad, D. Dennehy, K. Conboy, and M. Oivo,
“Kanban in software engineering: A systematic mapping
study”. Journal of Systems and Software, 137, 96-113. 2018.

[2]. L. Vijayasarathy, and D. Turk, “Drivers of agile software
development use: Dialectic interplay between benefits and
hindrances”. J. Info. and Software Tech. 54(2),137-148. 2012.

[3]. VersionOne, The 12th Annual State of Agile Survey Annual
State of Agile Survey. 2018.

[4]. F. K. Y. Chan, and J.Y.L. Thong, “Acceptance of agile
methodologies: a critical review and conceptual framework”.
Decision Support Systems 46, 803–814. 2009.

[5]. M. Laanti, O. Salo, and P. Abrahamsson, “Agile methods
rapidly replacing traditional methods at Nokia: a survey of
opinions on agile transformation”, Information and Software
Technology. 53 (3), 276-290. 2011.

[6]. A. Qumer, & B. Henderson-Sellers, “A framework to support
the evaluation, adoption and improvement of agile methods in
practice”. Journal of Systems and Software 1899–1919. 2008.

[7]. M. Pikkarainen, X. Wang, and K. Conboy, “Agile practices in
use from an innovation assimilation perspective: a multiple
case study”. International Conf. on Information Syst. 2007.

[8]. C. K. Riemenschneider, B. C. Hardgrave, & F.D. Davis,
“Explaining software developer acceptance of methodologies:
a comparison of five theoretical models”. IEEE Transactions
on Software Engineering. 28 (12), 1135-1145. 2002.

[9]. M. O. Ahmad, J. Markkula, and M. Oivo, “Insights into the
perceived benefits of Kanban in software companies:
Practitioners’ views”. In Agile Conference 156-168.

[10]. M. O. Ahmad, J. Markkula, M. Oivo, and P. Kuvaja, ”Usage
of Kanban in software companies: an empirical study on
motivation, benefits and challenges”. International
Conference on Software Engineering Advances. 2015.

[11].M. Senapathi, and A. Srinivasan, “Understanding post-
adoptive agile usage: An exploratory cross-case analysis”.
Journal of Systems and Software, 85(6), 1255-1268. 2012.

[12].T. Dybå, T, N.B. Moe, and E.M. Mikkelsen, “An empirical
investigation on factors affecting software development
acceptance and utilization of Electronic Process Guides”.
International Symposium on Software Metrics. 220–231.

[13].T. Dybå, and T. Dingsøyr, “Empirical studies of agile
software development: a systematic review”, Information and
Software Technology, 50, pp. 833-859. 2004.

[14].P. Runeson, & M. Höst, “Guidelines for conducting and
reporting case study research in software engineering”.
Empirical Softw. Eng. 14(2), 131–164. 2009.

[15].J. C. Nunnally, “Psychometric Theory”. 2nd ed. New York,
NY, USA: McGraw-Hill, 1978, pp. 229- 246. 1989.

[16].J .Iivari, and M. Huisman, “The relationship between
organizational culture & the deployment of systems
development methodologies”. MIS Quarterly, 35-58. 2007.

[17].C.J.Kaemar, D.J.McManus, E. W. Duggan, J.E. Hale, & D.P.
Hale, “Software development methodologies in organizations:
field investigation of use, acceptance, and application”. J.
Information Resources Management, 22 (3), 16-39. 2009.

[18].A. Bandura, “Self efficacy: The exercise of control”. New
York: Freeman. 1997.

[19].F. Davis, “Perceived Usefulness, Perceived Ease of Use, and
User Acceptance of Information Technology”. MIS Quarterly,
vol. 13, no. 3, pp. 318-339. 1989.

[20].B.C. Hardgrave, and R.A. Johnson, “Toward an information
systems development acceptance model: the case of object-

oriented systems development”. IEEE Trans. Eng. Manage.
50(3), 322–336. 2003.

[21].J. Drobka, D. Noftz, and R. Raghu, “Piloting XP on four
mission-critical projects”. IEEE Software, 21 (6). 2004.

[22].T.L. Roberts, & C.T.Hughes, “Obstacles to implementing a
system development methodology”. J. Syst. Manage. 47(2),
36–40. 1996.

[23].L. Williams, L. Layman, and W. Krebs, “Extreme
Programming Evaluation Framework for Object-Oriented
Languages Version 1.4”, NCSU Technical Report. 2004.

[24].O. Salo, and P. Abrahamsson, “Agile methods in European
embedded software development organisations: a survey on
the actual use and usefulness of Extreme Programming and
Scrum”. IET software, 2(1), 58-64. 2008.

153Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 168 / 241

A Critical Review of the Use of Spikes in Agile Software Development

 Abstract – Spikes can be an essential component in the agile
development cycle since they assist teams in both technical and
functional issues in order to obtain the information required to
reduce technical risk, understand requirements or enhance the
accuracy of a story estimate. Spike is a time-boxed activity to
explore and investigate a significant uncertainty and various
technical approaches in order to obtain a demonstrable and
estimable user story. This paper reviews the uses of spikes
through findings in different software development domains to
showcase the implementation of spikes in agile software
development and their impact on the understanding, consistency,
and reliability of the story estimate. The paper provides a critical
review of the use of spikes in various software projects and it
concludes that limited studies have been conducted on the use of
spikes in different software development domains.

 Keywords - Agile; Spikes; Risk management; Uncertainty.

I. INTRODUCTION

Spike usage in agile software development was initially
defined in the Extreme Programming (XP) approach because
spikes represent prototyping, exploration, and investigation,
design, and research activities [14]. At the end of the iteration,
the spikes in agile are demonstrated and estimated as similar
to other stories [26]. Furthermore, they are also responsible for
providing the workflow and protocol that are used by the
Agile Release Trains (ARTs). The ARTs were developed by
Scaled Agile Framework (SAFe). The ARTs are virtual
institutions (between 50-125 people) where all persons
constitute a self-organising team of experts needed to
determine and deliver value by preparing, engaging, and
implementing. ARTs help determine the viability and
feasibility of epic user stories [23]. The major goal of
integrating spikes in agile is to increase the possibility of user
story estimation and to minimise technical problems [26].
Spikes can be defined as a particular type of story for the
purpose of performing several activities such as research,
investigation, exploration, prototyping, and design with the
purpose of reducing or driving out uncertainty or the technical
risk associated either with the user story or with a project facet
[26]. For instance, spikes are required when the agile team
needs to resolve a specific technical problem or when they do
not have enough information for user story estimation [26].

There are two major types of spikes, functional and
technical spikes [26]. Functional spikes are utilised
particularly when there is a significant degree of uncertainty.

This uncertainty is defined in terms of a lack of understanding
of how the system should interact with the user to attain the
required benefit. The best way to evaluate the functional
spikes is to utilize the prototyping levels by using the user
interface mockups, page flows, and the wireframes. However,
the other techniques are also utilized in order to get the
potential feedback from stakeholders or customers. On the
other side, the technical spikes are used for the purpose of
conducting technical approaches with respect to the solution
domain [26].

Spikes are used for driving out risk and uncertainty in agile
software development. There has been a marked shift from
traditional software development towards agile
methodologies. However, it is important to note that spikes are
never really followed in their original forms. Most software
developers agree that there is a need for advanced professional
skills before a spike can be implemented in software
development [26].

At the level of the agile team, spikes are important for
extending the runway and thus prioritising other stories. This
makes software development visible, accountable and
demonstrable at every iteration boundary. This is significant
because spikes are used by system architects, product owners,
and agile tech leaders to determine what needs to happen and
when. Spikes are also important in situations where the story
is too large or complex, or the implementation is poorly
understood. A technical or functional spike can be built to
resolve this impasse. Then based on the result, the stories are
split.

Spikes were invented by XP, and are used to remove risk
and uncertainty in a user story. Spikes may be used for
research, educating the team about new technology, analysing
implied behaviour in a large story before it is split into
manageable parts, or for prototyping to identify significant
risks in a story before committing the user story to some future
time box [26]. However, spikes do not provide direct user
value, and therefore should be adopted with caution and used
carefully in software development. Moreover, it is important
to study the use of spikes because the output from spikes is
used for information rather than the working code that a
typical story will derive. Spikes are important for delivering
sufficient, useful information about the story to the agile team.
They give visibility to the software development effort, are
demonstratable, build collective ownership, and the
responsibility for key decisions taken is shared. Therefore, a

Hussein Al Hashimi1 and Andrew M Gravell 2
1,2 University of Southampton, Southampton, UK

1King Saud University, Riyadh, KSA
email: hah2n17@soton.ac.uk, amg@ecs.soton.ac.uk

154Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 169 / 241

spike story is usually reserved for larger critical unknowns. A
spike is an uncertainty in one or more potential stories; a
problem may arise when the spike and the accompanying story
are planned in the same iteration. This should be avoided
[26][41].

Agile software development is an approach that is
currently being adopted by technological- and interactive-
based software programming languages. In the course of
examining spike usage, this paper begins with a discussion of
relevant background and related works in Section II. In
Section III, the paper focuses on the application of spikes
within the domains of the agile software development
approach. Section IV reflects on the influence of spikes on
quality in agile software development. In Section V, IT-related
security issues are outlined, followed with a discussion about
the identified facts in Section VI alongside recommendation
and potential future work in Section VII.

II. BACKGROUND AND RELATED WORKS

Agile is a philosophy and a method for building and
releasing software products. Agile is a group of software
engineering methodologies made on similar rules and
principles and provides a platform for helping teams, giving a
continuously changing functional and technical environment.
A focus on fast delivery of business value is maintained [29].
As a result, this approach reduces the risks associated with
software development. Agile software development is a
blanket term for a group of processes and techniques based on
the principles and values described within the Agile Manifesto
[5].

A. Agile Methodologies
There are several agile methodologies. The most widely

used agile methodologies are Extreme Programming (XP),
Scrum, Dynamic System Development Methodology
(DSDM), Lean, Crystal, Feature Driven Development (FDD)
and Kanban [29].

XP is a disciplined approach to producing high-quality
software instantly and consistently. Extreme programming
supports high customer engagement, instant feedback loops,
consistent planning, consistent testing and production of
working software at regular intervals and within very short
periods of time. Clients work in partnership with the
development team to define and prioritise user stories [6].

Scrum is a framework in persons which identify and
resolve adaptive problems that are complex, while creatively
and effectively making products that have supreme value. The
Scrum framework is usually a Scrum Team with its affiliated
functions, rules, artifacts and regular events that put them
together with each other [17].

Kanban is a Japanese word and its meaning linked to a
time theory, “just in time” created by Toyota in its
manufacturing process and applied to software development.
The basic concepts of the Kanban method are visualising the
flow of work, reducing work in progress, and enhancing the
flow of work. The Kanban method matches Scrum in many
ways. Both of them are agile, having transparency across the

development, and use pull scheduling. Both of them limit the
amount of work in progress, the Kanban method at task level
and Scrum at sprint level. Both Scrum and the Kanban method
focus on early delivery of the releasable software built and
require splitting the work into pieces, which is divided into
self-organising teams. In both methods, the release plan is also
continually optimised depending on empirical data [28].

B. Roles in Agile

An agile team is a multi-functional team of professionals
with the necessary resources for the development of a
working, properly tested release of a product. In Scrum, the
second most significant role is that of the Scrum Master; this
individual is responsible for the proper execution of the Scrum
methodology as well as removing any potential obstacles that
may be encountered by the development team. Accordingly,
the Scrum Master is a servant-leader for the team and is not
only responsible for promoting and supporting Scrum, but
assisting everyone on the team to understand the Scrum
theory, practices, value and rules [42]. The Scrum master
tracks the project’s progress and each individual’s input and
ensures the conduct of Scrum meetings, planned meetings,
demos, reviews, and retrospective meetings [17]. Another
role—the product owner—drives the product from the
business angle by defining the requirements, evaluating their
priority, and determining the date and contents of that release.
This person takes an active role in planning the iteration and
release meetings as the client’s voice. The product owner also
accepts and evaluates user stories that meet the defined
acceptance criteria and those definitions of done [27]. An agile
team is self-sufficient with five to nine members who have an
average working experience of around 6 to 10 years.
Typically, a team comprises three or four developers, a tester,
a technical lead, a product owner, and a Scrum master. The
agile team uses its expertise to work on tasks and to decide
and plan the scope of work [17].

C. Agile Spikes
Spikes in agile are stories that are estimated only after a

development team completes a time boxed investigation. A
time box is a defined period of time to accomplish a task in
agile. Defined initially in XP, these spikes represent activities
such as prototyping, design, research, investigation, and
exploration. The purpose behind using spikes is to gather the
information needed to better understand the requirement,
lower the project risk, and make the story estimate more
reliable. Spikes also provide a mutually decided workflow and
protocol. At the end of each iteration, spikes are estimated and
demonstrated like any other agile story [26]. Spikes are put
into the team backlog to fit in to the iteration. The output of a
spike is demonstrable, acceptable, and quantified for both the
team and any other stakeholders [26]. Planning a spike and the
resulting story in the same iteration is risky; however, every
user story has uncertainty and risk, so it is necessary for an
agile team to learn how to address uncertainty in each iteration
using spikes [26][37].

155Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 170 / 241

A spike can be described as an investigation that aims to
gather information about a project that would otherwise be
unavailable. This makes the project more predictable and
therefore easier to plan. However, spikes are short in duration,
and as a result, spikes may lead to an outcome that is different
from what was predicted. A Proof of Concept (POC) is similar
to spikes in that it is also an activity that aims to provide more
information to developers prior to planning. The only
difference between the two is that a spike is focused on
discovering complexities, while a POC is used to determine
whether a project is worth undertaking [24]. Similar to spikes,
the POC also runs for a short period of time because of the
deadline that limits it in order to show that the system will
successfully run. A POC is also important because it provides
information that gives assurance that more investment in the
project is not a waste of resources and will lead to positive
results. Lastly, the Minimum Viable Product (MVP) aims to
test the most basic business hypothesis. This makes MVP the
product while Spikes and POCs are tools and techniques used
to create the product. The MVP can also be described as a
prototype or the first functional version of the product, in most
cases, the MVP is used to provide evidence that the product is
viable and that it has the potential to solve the problems that it
was meant to solve. Most importantly, an MVP can be used to
get user opinions and insights about how the product needs to
be improved so that it can be perfected and made ready for
use. When considering spikes, POCs and MVPs in software
development, it is worthwhile to note that the spike is more
related to the principles of agile development than either of the
other terms; it can be considered a reconnaissance mission to
gain a better understanding of a particular aspect of the
software development process [43][44].

D. Agile Risk Management
In the software world, risk is the factor that influences the

project’s success. Due to the many risk factors that can
contribute to the working of software, risk management is
required in software engineering and development [10].

For projects on agile approaches, formal documentation
and meetings are not required for Risk Management. Instead
risk management is split into Scrum roles, artifacts and events.
It can easily eliminate so many risks in the agile projects by
following the principles of agile. These principles significantly
mitigate and eliminate the risks that can lead to project
challenges and future failures [29].

In the Agile methodology, the spike is used for identifying
an issue and providing a short confirmation of an idea to
examine an issue further. Spikes also incorporate testing
distinctive strategies to accomplish a similar outcome, just like
testing to affirm that the ideal outcome is achievable through
the present ventured approach. For instance, a group may play
out a spike to check whether they can code an application in
one language rather than another. A risk-based spike is
completed in light of a known risk or openings for project
risks [30]. The group may discover that using an alternative
programming language can accelerate advancement, or they
may discover that they cannot use the one they originally
wanted to use. These spikes are added to the backlog as
alleviation activities [12].

Risk-based spikes help the agile team eliminate or
minimise major risks. Risk-based spikes are used with
consideration of fast failure, i.e., if any spike fails for every
available approach, the project goes into fast failure, which
costs much less than failing late [12].

III. SPIKES IN AGILE SOFTWARE DEVELOPMENT DOMAINS

In agile development spikes are used by the software teams
for investigating, closing gaps, and reducing risks. In agile
development, the spike is the story that cannot be estimated
specifically when the development team is running the time-
boxed investigation. The result of the spike is the estimate
with respect to the original story. The spike is the “time-
boxed” technical investigation that is responsible for
generating the answers in accordance to some acceptance
criteria on Product Backlog Items (PBIs). These product
backlog items are prioritised in the upcoming sprints [34]. In
addition, spikes originated in extreme programming where
they are considered the special story type that is used
specifically for driving out uncertainty and risky elements in
either a project facet or user story [26]. Table I shows the agile
spike uses in various software domains. It makes evident the
limited information available about spike usage.

A. Agile Development for Big Data
Big data is converting business landscapes as the most

significant technology in academic ecosystems and business
since the dramatic growth of the digital economy and the
Internet. Big data refers to data sets that are too enormous or
complex for traditional data-processing application software to
deal with adequately [12]. According to the Big Data Software
Engineering (BIGDSE) workshop, big data systems pull out
high-value information to enhance decision-making in
Business, science, and society [8]. Performing big data
analytics by using agile development methodologies is fairly
new and needs wary adaptation as big data analytics are
intensely different from “small” data analytics. The
requirements of big data analytics require capabilities beyond
traditional relational data warehouses [12].

In agile development, spikes can play a major role in data
development as it integrates guidelines to make sure that user
stories and data are quantifiable, demonstrable, and
acceptable. Big data represents parallel processing and data
distribution to make sure that data analytics, algorithms,
storage lifecycle are not separated from the big data
technologies. For such a reason, architecture-supported agile
spikes were introduced to make sure that rapid technology
changes and new requirements are addressed effectively [15].

 B. Agile Development for Data warehouse

The traditional data warehouse projects follow the
waterfall development model where they have to complete all
six phases—gathering requirements, designing, developing,
testing, deploying, and stabilising. In this model, both the
technology and business requirements are complex and critical
in nature, and approximately six to nine months are required to
complete the traditional waterfall model to ensure full
implementation. After advances in technology or changes in

156Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 171 / 241

requirements, it becomes difficult and challenging for the
software team to incorporate all the changes without changing
the basic architecture of the software system, resulting in
frustrated development teams and disappointed stakeholders.
On the other side, agile development integrates the solution in
an iterative fashion for which it is also known as the “60%
solution” [32]. The agile approach assists in delivering the
client needs in previous releases with refinements on the
subsequent routine release series. To accommodate this task,
the agile data warehousing approach improves successful
implementation within budget and on time. For data
warehouses, the incorporation of spikes may boost agile
development by increasing efficiency and functionality.

C. Agile Development for Computer Science Education
Just like software project teams use agile spikes to reduce

risks, close gaps, and investigate in software development,
computer science education can benefit by doing the same
while incorporating the techniques of agile development.
When practicing the agile development approach stages,
software development teams can identify and define the
concealed aspects to help determine the steps that need to be
covered for related gaps. Spikes include the production and
development of the working piece of the software project to
address the particular issue. The spike metaphor represents the
very specific complete or end-to-end solution. Software
projects produced this way are either discarded or simply not
used as the final product [38].

In information and communication technology, computer
science education is considered a fundamental platform for
enhancing the programming skills of students [38]. The agile
software development process has a collective nature in which
the software team resolves the typical issues in conventional
software development processes. In the software industry, the
Agile Manifesto is considered the appropriate introduction to
the agile approaches [8][38].

Woodward, Montgomery, Vasa, and Cain [38] suggested
that spikes are not suitable for freshman students in campus
because, at a pre-existing stage, the overhead of the compound
skills (e.g., the software development approaches) with respect
to spikes prevails over the possible potential benefits.

D. Agile Development for Blockchain
The agile methodologies are integrated in adaptive

planning because it provides potential support in continuous
improvement, which allows the life cycle to respond to
changes easily and quickly. These procedures depend on key
principles that are organised in different phases [27]. The
decentralised technologies and blockchain approach together
allow for new possibilities in offering the value of digital and
software products to users. Agile development involves
integration and transition, whereas blockchain offers a wide
variety of possibilities especially when it involves system
designs [19]. This creates a platform of uncertainty when a
company incorporates the new technology; however, the
involvement of spikes may be revoking the level of insecurity.
Agile development involves conducting different tests to
ascertain how different components involved in the
implementation stage would work with software. The

involvement of spikes could verify the uncertainty by
providing information about the risk a company is bound to
encounter through the integration of blockchain and agile
development.

E. Agile User Experience Design (UX)
The agile and user experience (UX) methods can coexist

well only if the management of the organisation supports and
understands user experience work, user experience
practitioners spend time and show leadership in reaching out
to their colleagues, the agile workflows provide flexibility for
accommodating user experience needs, and the product teams
are composed of user experience professionals, where they can
build rapport and respect with the developers [13]. On the
other hand, lean UX is an essential technique that is used in
projects which utilise the agile development method. Lean UX
depends on teamwork; its main aim is to ensure that feedback
is received at the earliest possible time. This makes it possible
to make quick decisions that match the rapid nature of agile
development. Lean UX differs from traditional UX as it
focuses on detailed deliverables; the developer's priority is to
make changes that make the product better at the current time
[45].

 Spikes in agile can be used to incorporate user experience
design work or monitor user research; however, their main
purpose is to handle risk issues in the implementation
solutions. Normal planning in spikes should easily predict and
anticipate design and research events. Spikes should be
responsible for managing risk issues, such as a design task that
needs an enquiry into available technology before it can be
estimated or any uncertainty that occurs and requires user
research to be well defined [9].

F. Agile Development in Cloud Computing
The agile methodology is used in software development to

cope with the issues of traditional project management where
the entire project is preplanned regardless of scope for
changing requirements and the assumption that cost and time
variables are fixed issues. Agile methodology succeeds by
focusing more on collaborative effort to achieve results rather
than a predefined process. It is an iterative effort.

The concern solved by agile methodology is the provision
of a safe framework for the sharing of information. In cloud
computing, there is massive data generation, and through
software development, applications are developed to manage
these data. Therefore, by design, the aspect of information
sharing is considered. The technology provides mechanisms
for easily blocking the interception of information while it is
in transit, courtesy of the inbuilt application security control
capabilities [46]. Effective implementations of the agile
methodology help development teams respond to sprints [39].
With the latest advancements, cloud computing has gained
popularity, and many entrepreneurs and organisations have
adopted cloud hosting services because computing has the
advantage of providing a platform for organisations to manage
their activities more efficiently [21]. By adopting cloud
hosting services, the organisations have been able to respond
to the evolving needs in the information technology sector
accordingly.

157Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 172 / 241

Spike’s Theme Research paper Purpose of Study Conclusion

Risk-based spike

Chen, Kazman, and
Haziyev (2016)

To use spikes for addressing the risks of
a project by breaking down the story
into smaller components

Using an alternate programming language can accelerate
advancement, or reveal that the language chosen cannot be used.
These spikes would be added to the excess as alleviation activities.

Albadarneh (2015)

To use spikes in testing to affirm that the
ideal outcome is achievable

Spikes incorporate testing distinctive strategies to accomplish a
similar outcome, just like testing to affirm that the ideal outcome is
achievable through the present ventured approach.

Spikes in agile
development for
big data

Arndt (2018)
To implement agile approaches on big
data for better handling and mutual
enrichment

Big data analytics and techniques can help improve the software
engineering process.

Chen, Kazman, and
Haziyev (2016)

To effectively implement Agile
approaches on big data projects for
reducing the risk exposure

Existing agile analytics development methods have no architecture
support for big data analytics, but they can help to tame project
complexity, reduce uncertainty, and hence reduce project risk.

Larson and Chang
(2016)

To apply agile methodologies and
principles to BI delivery and explore
how agile has changed with the
evolution of BI

Spikes are applicable as the principles of agile can be implemented
to BI because agile addresses many problems found in BI projects.

Spikes in agile
development for
data warehousing

Rahman, Rutz, and
Akhter (2013)

To follow agile approaches on data
warehousing projects and incorporate all
the changes without changing the basic
architecture of the software system

Agile methodologies are best known for identifying the inefficient
areas for each phase in a data warehousing project. Finding
different ways for reducing redundancy, wasted time, and
inefficiency can be best serviced with system metrics development.

Spikes in agile
development for
computer science
education

Woodward,
Montgomery, Vasa,

and Cain (2013)

To take a potential benefit for computer
science education by incorporating the
techniques of agile development

Spikes are not suitable for fresher students due to the overhead of
compound skills at that early stage.

Bergin, Kussmaul,
Reichlmayr, Caristi,
and Pollice (2005)

To emphasise the formal processes and
detailed documentation that are linked
with compliance for computer science
education

For application of agile in computer science education, students
need to be introduced to agile practices in the right way while
preparing them for all kinds of projects.

Spikes in agile
development for
blockchain

Lenarduzzi, Lunesu,
Marchesi, and
Tonelli (2018)

To incorporate the potential advantage
of the strengths of a blockchain to
augment the vulnerability of the
Agile/Lean approaches

Agile blockchain might be a good way to record the workflow and
to track the enhancements of the product under work as well as the
productivity of developers by using Smart Contracts as a payment
support.

Spikes in agile
development for
UX design

Da Silva, Silveira,
Maurer, and

Hellmann (2012)

To establish a framework for
incorporating agile and user experience.

The framework proposed aims at addressing different aspects of
this integration, providing alternatives to the UX designer inserted
in the agile context.

Spikes in agile
development for
cloud computing

Younas, Jawawi,
Ghani, Fries, and

Kazmi (2018)

To ascertain the methods used in a cloud
computing platform that are appropriate
for agile development using systematic
literature review.

Of the studies in the SLR, the techniques using existing tools were
reported in 35%, simulations in 20%, and applications developed
in 15%.

Kalem, Donko, and
Boskovic (2013)

To illustrate the association between
agile methods for software development
with the cloud computing platform.

Software development with agile methods is compared with
software development with agile methods using cloud computing.
All advantages of the second approach are pointed out.

Spikes in agile
development for
IoT

Cheng, Zhao, Niu,
and Chen (2018)

To showcase service communication of
agile IoT and orchestration platform
using an event-driven service-oriented
architecture (SOA) paradigm

The demo shows that the IoT service communication and
orchestration platform responds quickly to the dynamic changes in
the physical world.

Spikes in agile
development for
security
implementation

Rindell, K.,

Hyrynsalmi, S. and
Leppänen, V.(2017)

To understand benefits and drawbacks
of using agile software methodologies in
security sensitive development
environments.

In order to reduce on overhead costs and uncertainties during agile
software development, proper security engineering planning,
mechanisms and measures should be put in place and incorporated
with various methodologies best suited for implementation, in
order to assist with software development and provide a robust and
secure end product.

Siponen,
Baskerville, and

Kuivalainen (2015)

To incorporate automated techniques to
ensure that secure programming
practices are implemented to ease the
burden by building efficient, effective,
and secure systems

Although several issues of integrating security into agile are
solved, those methods have many limitations. The combination of
related methods can eliminate some weaknesses and improve the
existing methods.

Baca and Carlsson
(2011)

To implement Microsoft SDL
procedures to reduce the drawbacks
associated with agile development

For a reasonable security practice, an organisation should
implement an integrated approach to all processes, including agile
development processes.

Spikes in agile
development for
testing

Hooda and Chhillar
(2015)

Quality assurance of software
applications by carrying out particular
test techniques and optimising the
processes of software testing.

Most software failures happen due to a lack of security and
performance testing. Therefore, a proposed right mix of testing
(functional, performance, and security) can be applied for better
software quality, where the spike considers one of performance
testing.

Hellmann, Sharma,
Ferreira, and

Maurer (2012)

To integrate agile development testing
in the SDLC

An analysis of the tools used for agile testing showed a focus
towards unit and acceptance testing tools.

 TABLE I: AGILE SPIKES IN DIFFERENT DOMAINS

158Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 173 / 241

The use of cloud computing in organisations has brought
changes in the way these organisations run their applications
and store data. Cloud computing helps organisations manage
large volumes of data and provide prompt responses to their
users. Integrating agile spikes into cloud computing may
provide a solution to the problems of quantifying risks and
timing uncertainty [22].

G. Agile Development in Internet of Things (IoT)
In Internet of Things devices, customer responsiveness is

considered the main factor, but with fast-growing technology,
the responsiveness to the customers’ responsiveness is
considered the end solution for all associations. The changing
requirements are potentially supported by agile approaches.
However, the alignment of the agile framework is relevant to
the value stream of the agile process [11]. Additionally,
continuous improvement and the sustainability of practices are
the major inputs needed for scaling through regulations;
competition; and volatility, uncertainty, complexity, and
ambiguity [1]. Furthermore, it is important to consider the
involvement of spikes in agile development as a factor that
can benefit the merge of Internet of Things during software
development. Although agile development aims to deliver a
high-quality product rapidly, the involvement of spikes may
offer a wide possibility to reduce the risk in an agile
development environment for internet of things.

IV. QUALITY IN AGILE SOFTWARE DEVELOPMENT

The agile processes are best known for delivering results in
short time intervals; however, it is important to ensure that
they are meeting the quality requirements of the particular
project as well. Quality is important when it comes to software
development because it determines customer satisfaction. The
same is true in agile software development where the spike is
incorporated in the fulfilment of some fundamental
components involved in unit testing. For instance, testing may
determine whether the assembling life cycle of an agile
environment and its supportive components are complete or
whether the incorporated techniques will provide good quality.

A. Quality Assurance for Agile Software Development
Quality assurance also involves the management of future

risk, and the incorporation of spikes may create a platform on
which to test the riskiness of software usage in the future. Two
major characteristics of agile development are its ability to
handle unstable requirements that are executed throughout the
development life cycle and its ability to deliver a product in
defined budget constraints and shorter time frames. Agility is
related to strategy, release iteration, and continuous and daily
working software. Agile development allows users to develop
software products in small increments or releases, which are
then approved by the customer. The spike solution is the
operational prototype [36].

Software quality assurance is also used to govern the
processes for building the desired quality into software
products. Quality assurance is divided into two main types:
dynamic and static [18]. The organisation, objectives, and
selection of the specific technique depending on the nature and

requirements of the software project. Additionally, the
selection of these methodologies depends on the project
criteria. The static technique includes the examination of
project documentation by groups or individuals via different
tools, such as project inspection of the requirements and
reviewing the code technically. However, the dynamic
technique includes the execution of code and is generally used
in agile development and processes [18].

 Figure 1. Quality Assurance in Agile Methods

In Figure 1, the generalised development life cycle
approach of the agile methodology shows where some of the
agile stages overlap one another. In agile development, some
of the techniques have integrated both the quality assurance
ability and agile functionality, which means the agile
approaches have moved some of the quality assurance
responsibilities to the developers.

In agile development, a small amount of output is sent for
quality assurance in order to get fast feedback. The quality
assurance practices and development practices integrate with
one another to exchange the results quickly that helps in
maintaining the processing speed. This approach enables two-
way communication in agile development [18].

The architectural spike is a fixed variable/time scope PBI
that is incorporated to inform the software team that more
investigation is required for maximising velocity. The
effective implementation of architectural spikes helps the
software team get maximum estimates. The spikes are
composed of a series of investigations that are created to find
the solutions to maximum problems. The architectural spike
technique is integrated to reduce the risks posed by XP
[18][40].

B. Testing in Agile Software Development
In agile software development, testing is considered the

cornerstone as most of the agile practices depend completely
on effective software testing. The effectiveness and efficiency
of the agile methodology help in determining agile software
development outcomes. In agile development, the test plan is

159Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 174 / 241

updated and written for every release. The agile test plan
involves different testing types that are executed in a specific
iteration, such as test results, test environments, infrastructure,
and test data requirements. The general test plan in agile
development includes the following: testing scope, new
functionalities that need to be tested, types or levels of testing
depending on complex features, performance and load testing,
infrastructure consideration, risks or mitigation plan,
resourcing, and milestones and deliverables [20].

 Figure 2. Testing Use over Time

Figure 2 provides a better understanding of how agile
testing techniques are used over time. Interest in Test-Driven
Development (TDD) continued to increase, highlighting its
central role in agile testing. However, on the other side, the
other agile testing use represents the “distinct spikes”. For
instance, there are gaps in performance, publication database
record, acceptance, and graphical user interface (GUI) testing.
This specific point highlights the subfields with respect to
more distinct agile testing fields. For example, in agile
development, the GUI testing was not included from 2006 to
2009; however, database testing interest was shown in the
same time period [16].

Although TDD has been the most used testing method in
recent years, there are other forms of agile testing that are
regarded as more efficient by software developers; many
developers suggest that TDD does not lead to an increase in
quality or faster development [48][50]. Some of the new
techniques include Acceptance Test-Driven Development
(ATDD) and Behaviour-Driven Development (BDD). Even
though these three agile testing methods are related, ATDD is
primarily a communication tool for the three amigos
(customer, developer and tester) to ensure that all
requirements are properly defined. Unlike TDD, ATDD does
not require test automation. Often, the tests that are used in
TDD are derived from ATDD, and while the ATDD test
should be understood by the customer, the TDD test does not

need to be readable by the customer. The BDD goes a step
further by combining practices found in TDD and ATDD. In
BDD, tests are initially written but focused on describing
behaviour rather than tests used in TDD to test a unit of
implementation [47]. Exploratory testing is another agile
testing method in which the test design and test execution
phases occur simultaneously, while in session-based testing,
although similar to exploratory testing, the software is tested
comprehensively and in a more orderly fashion [48].
Furthermore, TDD has continued to mature over the years in
its use and acceptance by software developers because writing
the test first allows you really understand what you want to
code, receive faster feedback, reduces the time spent on
rework and debugging. TDD leads to a greater understanding
of the software being developed. The rise of other testing
methods, albeit similar to TDD, was hinged on the preference
of developers for writing tests after the code was already
written. This preference is reflected in Test Last Development
(TLD) and Iterative Test Last (ITL) [47] [49]. The
Incremental Test-last Development (ITLD) is another closely
related process to TDD. Both testing methods only differ in
the order of activities that are involved in each increment and
follow the same iterative steps, such as decomposing the
specifications into smaller programming tasks, testing, coding
and refactoring. However, while TDD requires the test to be
written before the code, ITLD goes for writing the code first
before the test. When TDD and ITLD were compared via a
simple greenfield task, the difference was not significant. It
was concluded that TDD did not appear to improve external
quality. Furthermore, it was discovered that when TDD was
used for simple tasks it was more productive than ITLD. The
productivity of TDD significantly dropped when applied to
more complex brownfield tasks [50].

V. AGILE IT SECURITY IMPLEMENTATION

 In all software products, there are various potential
vulnerabilities that can cause a lot of damage. Therefore,
software developers are required to develop more efficient and
secure systems by conducting all the phases of the software
development life cycle. Developers must consider and
incorporate all the security aspects in each phase to ensure that
there is no vulnerability. The security is considered the most
important component when developing any software product.
Agile IT security goes beyond safeguarding the software as it
also focuses on efficiency in performing tasks. This is
facilitated by involving spikes, for instance, which boosts the
testing process to abolish uncertainty and inconsistencies,
boosts the software life cycle and ability to function
efficiently, and thus sorts security issues that might arise from
unresolved complexities. Furthermore, the involvement of
spikes covers issues or challenges that may arise as a result of
software developers lacking knowledge regarding futuristic
implications from a particular feature. Lack of knowledge
about the implications of feature can leave developers
unaware of which areas they need to cover to secure the
software. The involvement of spikes covers this uncertainty,
giving a boost to agile IT security [25].

160Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 175 / 241

To reduce the drawbacks associated with agile
development, five-step models are considered the best
solution. In the first phase, all the security activities are
extracted from the existing guidelines and processes, and the
agile activities are defined to measure their level of agility.
The integration problems and security issues related to agile
activities are handled by implementing algorithm techniques
and strategies. This way, the agility reduction tolerance
parameter and its optimum value are taken into consideration
to ensure the system’s security. It is important to include the
latest security advancements in all the stages of the Software
Development Life Cycle (SDLC) to develop an efficient
software system. The Comprehensive Lightweight Application
Security Process (CLASP) and the Microsoft Security
Development Lifecycle (SDL) are considered the two main
processes for improving and enhancing a software product’s
security. However, some disadvantages and advantages have
been compared and analysed in order to identify potential
vulnerable areas. With respect to the agile methodologies, the
Microsoft SDL procedures are implemented [4].

VI. CONCLUSION AND FUTURE WORK

This paper provides a critical review of the use of spikes in
various agile software projects. Spikes has also been
illustrated as playing a critical role in agile software
development by minimising unforeseen risks and uncertainties
in the development cycle. This can be achieved by getting the
agile team to understand the risks involved in the software
development cycle and finding a viable solution that
guarantees the best output in the form of software. However,
there were challenges experienced in gathering relevant data
because there is no sufficient information to back up the
quality and effectiveness of the software produced related to
spikes. This has been warranted by the limited information
available for study, more research and experiments need to be
carried out to ascertain the nature and effectiveness of
software produced since there is varying information.

 Professionals and industry partners will be recruited to
assist in the use of spikes in agile software development
because they will play a critical part in the entire process. In
this regard, some case studies will be used for authentication
purposes and also further research employed in order to
clearly showcase the spikes in agile software development in
the future.

REFERENCES
[1] M. Akem, “Agile and The Internet of Things (IOT)” [Online].

Available: https://www.projecttimes.com/articles/agile-and-the-
internet-of-things-iot.html. [Accessed: 18-AUG-2019].

[2] A. Albadarneh, I. Albadarneh, and A. Qusef, “Risk Management
in Agile Software Development: A Comparative Study,” In
2015 IEEE Jordan Conference on Applied Electrical
Engineering and Computing Technologies (AEECT), pp. 1-6.
IEEE, 2015.

[3] T. Arndt, “Big Data and Software Engineering: Prospects for
Mutual enrichment,” Iran Journal of Computer Science., vol. 1,
no. 1, pp. 3–10, 2018.

[4] D. Baca and B. Carlsson, “Agile Development with Security
Engineering Activities,” In Proceedings of the 2011
International Conference on Software and Systems Process, pp.
149-158. ACM, 2011.

[5] K. Beck, et al, “Manifesto for agile software development.
2001,” [Online]. Available: http://www.agilemanifesto.org/.
[Accessed: 12-SEP-2019].

[6] K. Beck and E. Gamma, Extreme Programming Explained:
Embrace Change. Addison-Wesley Professional, 2000.

[7] J. Bergin, C. Kussmaul, T. Reichlmayr, J. Caristi and G. Pollice,
“Agile Development in Computer Science Education: Practices
and Prognosis,” Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, pp.130-131.
ACM, 2005.

[8] BIGDSE '16, “Proceedings of the 2nd International Workshop
on BIG Data Software Engineering,” [Online]. Available:
https://sse.uni-due.de/bigdse16/. [Accessed: 08-AUG-2019].

[9] D. Brown, Agile User Experience Design: A Practitioner’s
Guide to Making it Work. Newnes, 2012.

[10] B. Boehm, “Risk Management in Agile Software Development:
A Comparative Study,” IEEE Software, vol. 8, no. 1, pp. 32 -
41, 1991.

[11] B. Cheng, S. Zhao, M. Niu and J. Chen, “Agile IoT Service
Communication and Orchestration Platform Using Event Driven
SOA Paradigm,” In IEEE INFOCOM 2018-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS),
pp. 1-2. IEEE, 2018.

[12] H-M. Chen, R. Kazman, S. Haziyev, “Agile Big Data Analytics
Development: An Architecture-Centric Approach,” In 2016 49th
Hawaii International Conference on System Sciences (HICSS),
pp. 5378-5387. IEEE, 2016.

[13] TS. Da Silva, MS. Silveira, F. Maurer and T. Hellmann, “User
Experience Design and Agile Development: From Theory to
Practice,” Journal of Software Engineering and Applications,
vol. 5, no. 10, pp. 743-751, 2012.

[14] A. Fuqua 2016, “What's A Spike, Who Should Enter it, And
How To Word it?” [Online]. Available:
https://www.leadingagile.com/2016/09/whats-a-spike-who-
should-enter-it-how-to-word-it/. [Accessed: 23-SEP-2019].

[15] N. Grady, J. Payne and H. Parker, “Agile Big Data Analytics:
AnalyticsOps for Data Science,” In 2017 IEEE International
Conference on Big Data (Big Data), pp. 2331-2339. IEEE, 2017.

[16] T. Hellmann, A. Sharma, J. Ferreira, and F. Maurer, “Agile
Testing: Past, Present and Future,” In Agile Conference
(AGILE), pp. 55-63. IEEE, 2012.

[17] R. Hoda, J. Noble and S. Marshall, “Self-Organizing Roles on
Agile Software Development Teams,” In IEEE Transactions on
Software Engineering, vol. 39, no. 3, pp. 422-444, 2012.

[18] M. Huo, J. Verner, L. Zhu, M. Babar , “Software quality and
agile methods,” In Proceedings of the 28th Annual International
Computer Software and Applications Conference (COMPSAC),
pp. 520-525. IEEE, 2004.

[19] Ibba 2019, “Agile methodologies and blockchain development,”
[online]. Available:
https://iris.unica.it/handle/11584/260671#.XQx52RZKjIU.
[Accessed: 29-AUG-2019].

[20] M. Isaacs, “What is Agile Testing? Process, Strategy, Test Plan,
Life Cycle Example,” [Online]. Available:
https://www.guru99.com/agile-testing-a-beginner-s-guide.html.
[Accessed: 12-AUG-2019].

[21] N. Jain and S. Dubey, “Agile Development Methodology with
cloud computing,” International Journal of Engineering and
Computer Science, vol. 3, no. 4, pp. 5373-5378, 2014.

[22] S. Kalem, D. Donko and D. Boskovic, “Agile methods for cloud
computing,” In 2013 36th International Convention on

161Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 176 / 241

Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1079-1083. IEEE, 2013.

[23] R. Knaster and D. Leffingwell, SAFe 4.5 Distilled: Applying the
Scaled Agile Framework for Lean Software and Systems
Engineering. Addison-Wesley Professional, 2018.

[24] D. Larson and V. Chang, “A review and future direction of
agile, business intelligence, analytics and data science,”
International Journal of Information Management, vol. 36, no. 5,
pp. 700-710, 2016.

[25] J. Laskowski, Agile IT security implementation methodology.
Packt Publishing Ltd, 2011.

[26] D. Leffingwell, Agile software requirements: lean requirements
practices for teams, programs, and the enterprise. Addison-
Wesley Professional, 2010.

[27] V. Lenarduzzi, M. Lunesu, M. Marchesi and R. Tonelli,
“Blockchain applications for Agile methodologies,” In
Proceedings of the 19th International Conference on Agile
Software Development: Companion, p. 30. ACM, 2018.

[28] G. Matharu, A. Mishra, H. Singh and R. Tonelli, “Empirical
study of agile software development methodologies: A
comparative analysis,” ACM SIGSOFT Software Engineering
Notes, vol. 40, no. 1, pp. 1-6, 2015.

[29] A. Moniruzzaman and S. Hossain “Comparative study on agile
software development methodologies,” Global Journal of
Computer Science and Technology, vol. 13, no. 7, pp. 1-25,
2013.

[30] A. Moran, “Agile Big Data Analytics: AnalyticsOps for Data
Science,” In Agile Risk Management, pp. 33-60. Springer,
Cham, 2014.

[31] I. Perera, “Impact of using agile practice for student software
projects in computer science education,” International Journal of
Education and Development using ICT 5, vol. 5, no. 3, pp. 85-
100, 2015.

[32] N. Rahman, D. Rutz and S. Akhter, “Agile development in data
warehousing,” In Principles and Applications of Business
Intelligence Research, pp. 286-300. IGI Global, 2013.

[33] K. Rindell, S. Hyrynsalmi and V Leppänen, “Case Study of
Agile Security Engineering: Building Identity Management for a
Government Agency,” International Journal of Secure Software
Engineering (IJSSE), vol. 8, no. 1, pp. 43-57, 2017.

[34] K. Schwaber and M. Beedle, Agile software development with
Scrum, vol. 1. Upper Saddle River: Prentice Hall, 2002.

[35] M. Siponen, R. Baskerville and T. Kuivalainen, “Integrating
security into agile development methods,” In Proceedings of the
38th Annual Hawaii International Conference on System
Sciences, pp. 185a-185a. IEEE, 2005.

[36] I. Stamelos and P. Sfetsos, Agile software development quality
assurance. Igi Global, 2007.

[37] Tanner, “Spikes Purpose and Usage,” [Online]. Available:
https://www.spikesandstories.com/spikes-purpose-and-usage/.
[Accessed: 15-SEP-2019].

[38] C. Woodward, J. Montgomery, R. Vasa and A. Cain, "Agile
development spikes applied to computer science education," In
Proceedings of 2013 IEEE International Conference on
Teaching, Assessment and Learning for Engineering (TALE),
pp. 699-704. IEEE, 2013.

[39] M. Younas, I. Ghani, D. Jawawi and M. Khan, "A framework
for agile development in cloud computing environment," Journal
of Internet Computing and Services, vol. 17, no. 5, pp. 67-74,
2016.

[40] S. Ambler, Agile modeling: effective practices for extreme
programming and the unified process. John Wiley & Sons,
2002.

[41] A. Solinski and K. Petersen, "Prioritizing agile benefits and
limitations in relation to practice usage," software quality
journal, vol. 24, no.2. pp.447-482, 2016.

[42] K. Schwaber and J. Sutherland, “Scrum Guide,” [Online].
Available:
https://www.scrumguides.org/docs/scrumguide/v2017/2017-
Scrum-Guide-US.pdf. [Accessed: 30-SEP-2019].

[43] Eric, “How to use (and difference of) Spike vs Proof of Concept
vs MVP,” [Online]. Available:
https://www.agileview.com.au/how-to-use-and-difference-of-
spike-vs-proof-of-concept-vs-mvp/. [Accessed: 30-SEP-2019].

[44] L. Garland, "Spikes, POCs, Prototypes and the MVP," Medium,
2014. [Online]. Available: https://medium.com/studio-
zero/spikes-pocs-prototypes-and-the-mvp-5cdffa1b7367.
[Accessed: 03- OCT- 2019].

[45] The Interaction Design Foundation, "A Simple Introduction to
Lean UX," 2019. [Online]. Available: https://www.interaction-
design.org/literature/article/a-simple-introduction-to-lean-ux.
[Accessed: 02- OCT- 2019].

[46] C. Schmidt, T. Kude, A. Heinzl and S. Mithas, "How Agile
practices influence the performance of software development
teams: The role of shared mental models and backup,"
Association for Information systems. 2014.

[47] L. Alberto, "Analysis of the impact of test-based development
techniques (TDD, BDD, AND ATDD) to the software life
cycle," [Online]. Available:
https://iconline.ipleiria.pt/bitstream/10400.8/3699/1/Dissertation
_2160085_LuisGomez.pdf. [Accessed: 04- OCT- 2019].

[48] L. Cisneros, C. Reis and M. Maximiano, "An Experimental
Evaluation of ITL, TDD and BDD," In ICSEA 2018, The
Thirteenth International Conference on Software Engineering
Advances (pp. 20-24). ICSEA,2018

[49] A. Čaušević, D. Sundmark and S. Punnekkat, "Impact of test
design technique knowledge on test-driven development: A
controlled experiment" In International Conference on Agile
Software Development, pp. 138-152. Springer, 2012.

[50] A. Tosun, et al, "An industry experiment on the effects of test-
driven development on external quality and productivity,"
Empirical Software Engineering, vol. 22, no. 6, pp. 2763-2805,
2017.

[51] I. Hooda and R. Chhillar “Software test process, testing types
and techniques,” International Journal of Computer
Applications, vol. 111, no. 13, pp. 10-14, 2015.

162Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 177 / 241

Graph-Based Analysis of the Architectural Restructuring Impact on Energy Efficiency

Basma khil

Faculty of Mathematical, Physical
and Natural Sciences of Tunis

Tunis, Tunisia
Email: basma.khil@fst.utm.tn

Adel Khalfallah

Higher Institute of Computer Science
Ariana, Tunisia

Email: adel.khalfallah@isi.utm.tn

Samir Ben Ahmed

Faculty of Mathematical, Physical
and Natural Sciences of Tunis

Tunis, Tunisia
Email: samir.benahmed@fst.utm.tn

Abstract—Software design patterns and refactoring are widely
used in software engineering to enhance maintainability, reuse
and productivity. However, recent empirical studies revealed the
high energy overhead in these patterns. Our approach consists
of automatically applying refactoring techniques, detecting and
injecting design patterns during design level for better energy
efficiency without impacting existing coding practices. Regarding
that, refactoring techniques could help to tackle these issues
considering that it is a method of changing the internal design of
the system while preserving the external behavior. In this paper,
we propose a graph transformation for refactoring, design pattern
injection and furthermore rules to compute the total energy
consumption and perform an initial evaluation of the energy
efficiency.

Keywords–Energy-efficiency; Software Architectures; Graph
transformation rules; Energy consumption.

I. INTRODUCTION

Energy consumption has emerged as an important design
constraint in software engineering. Information and Communi-
cation Technology (ICT) [1] and the Internet of Things (IoT)
yield a huge potential increase in energy demand. These kinds
of systems are mostly imposed by a restrict power budget.
This is a problem that now looks to exceed many challenges
and has been enlarged into a mammoth task. It takes into
account the effects of hardware, devices, networks, drivers,
operating systems, and applications on energy consumption.
In this paper, we focus on applications and, particularly, on
how we experiment with the effect of applying transformations
activities at a design level which can be optimized in terms of
energy consumption.

In searching generic transformation units, we worked on
the original definition of standardized transformations such as
the refactoring catalog. Refactoring is proven to improve the
quality of a system. Thus, it can be a potential solution to
increase software maintainability and re-usability. It is proven
that software engineering best practices can improve software
maintainability [1][2]. Hence, investigating refactoring activ-
ities to optimize energy consumption seems more and more
trendy.

Some tentative proved that software engineering best
practices can improve energy efficiency [3][4][5]. Notably,
[6][7][8][9] focused on the impact of refactoring activities on
energy consumption. Nevertheless, the available evidences are
tried and tested in a limited number of refactoring techniques.
Typically, they are applied in a code artifact, Whereas the most
common approach used in software engineering makes a great

emphasis on the use of modeling artifact [1]. Therefore, it
is desirable to master the modeling in software architecture
by working at a relevant level of abstraction. That gives rise
to the idea of managing energy consumption since the phase
architectural design.

The scope of this work lies at the design level. We aim to
explore the effect of transformation activities on energy con-
sumption. In particular, we propose a combinatorial approach
based on graph transformations. Namely, we use metamod-
eling to represent the architectural design artifact, as well as
graph transformation rules to explore the different alternatives
induced by the design decisions and transformations.

The remainder of the paper is organized as follows: Section
2 surveys recent literature to have an overview of how soft-
ware engineering researchers are tackling energy consumption
issues. In Section 3, the current proposal is explained by
a suitable process and with an adequate architectural meta-
model. Sections 4 and 5 state the graph transformation rules.
The first kind of rule embodies transformation activities. the
other kind surveys their effect on energy consumption. In
Section 6, a motivating scenario is presented to illustrate the
proposal with a concrete example. Finally, Section 7 concludes
this paper and gives avenues for future work.

II. RELATED WORK

The literature on the energy efficiency topic shows diver-
gences: According to some works, the energy consumption in
network infrastructure is predominant, whereas, for others, it
is prominent in the terminals. Many experimental approaches
specifically deal with identifying the parts of an application
that mostly affect the total energy consumption [10] and try
to minimize its consumption. For this purpose, some trials
[11][12] optimized code to minimize power consumption.

Luo [13] proposed an ant colony algorithm for task
scheduling to optimizing the energy cost. Liu [14] explored
the non-dominant sorting genetic algorithm to bridge the trade-
off between energy consumption and delay in task scheduling.
However, scheduling tasks using only offline power consump-
tion information cannot generate efficient schedules on account
of the dynamic variation in energy consumption. Thus,[15][16]
proposed a real-time monitoring and management system for
energy consumption. However, there is further evidence that
changes in architectural design tend to have a greater impact
on energy consumption [17].

Other attempts rely on the quantitative evaluation of energy
consumption of software systems at higher levels and in early

163Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 178 / 241

stage in the software development process [18][19][20]. Some
of these works proposed architecture description languages that
support the analysis of power consumption at the design level
[1][12][21]. Other implemented experimental solutions and
tools to evaluate and monitor energy consumption. Seo has per-
formed an energy consumption analysis for specific architec-
tural styles [22] such as client-server. The works [23][24][25]
propose an approach that predicts energy consumption using
linear power models.

Other attempts aimed to evaluate the energy consumption
of the Cloud Computing application and High-Performance
Computing (HPC) systems. Previously discussed approaches
focus on the energy consumption analysis at an architectural-
level. Some of them do not take account of parametric depen-
dencies between software components [24][25] while others
percept the dependency between different energy concerns
[26]. They specify the relationships between energy concerns
under the modeled component. These relationships can then
be used during the analysis phase to see how an energy
concern (communication) can affect other energy concerns (for
example, compression storage).

Recently, certain approaches take advantage of the positive
effect of software engineering best practices on software
quality [1][2]and on energy consumption to tackle trade-off
between productivity and energy efficiency [3][4][6][7][8][9].
Some works prove that software engineering best practices can
improve energy efficiency [3][4]. Others [6][7][8][9] focus on
the impact of refactoring activities on energy consumption.
The searchers experiment that idea in a code application
such as Java, C and Android applications. However, these
evidences are experimented in a limited number of refactoring
techniques. Typically, they are empirical studies applied in a
code artifact. However, it is desirable to work at a relevant
level of abstraction and also manage the Global Software issues
through modeling.

Our approach is involved in this area, it consists of applying
refactoring activities by analyzing modeling artifacts and mon-
itor the changes in energy consumption. That gives rise to the
idea of managing energy consumption at architectural design.
And follow the impact of refactoring on software consumption.
Therefore Graph-based approaches seem very promising, due
to their robust theoretical foundation.

III. MOTIVATION

A major challenge that is currently faced in the design
of applications concerns the optimal use of available energy
resources. In particular, the IoT applications are imposed by the
battery lifetime of the devices. The challenge is derived from
the heterogeneity of the devices, in terms of their hardware
and the provided functionalities. Several works in energy
management are focusing their studies on the hardware side
of computational systems. However, it is tempting to suppose
that only hardware dissipates power, not software. Since energy
consumption is the amount of energy used by devices or a built
environment. The energy consumption varies according to the
kind of device and the time that it remains in the operating
modes. It is, therefore, necessary to think about saving energy,
and that requires a careful choice of electrical appliances.
Recently, the software engineering community started to carry
out researches about estimations of energy consumption in
software applications [12][17]. According to the authors,the

software directs much of the activity of the hardware. There-
fore, the software can have a substantial impact on the power
dissipation of computational systems. They investigated the
mixes of hardware-software designs to minimize energy con-
sumption. However, these approaches were focused on low
levels of software design, such as the number of execution
cycles of a software, optimization of memory addresses. Other
works analyze this issue from a different perspective [27]
where energy management is discussed in higher levels of
abstraction. Such levels are related to software requirement
analysis, design and specification. We intend to approach this
issue in design levels.

IV. PROPOSED APPROACH

The main contributions of this paper are defined as follows.
First, it outlines an approach for modeling and injection of re-
structuring activities such as refactoring and ever more design
patterns by analyzing UML diagrams. Second, a methodical
analysis to assess the relative impact of that restructuring ac-
tivity and expect the total energy consumption induced by the
different components of an IoT application. Following that, we
perform an analysis of the impact of refactoring activities on
energy consumption and performance in software applications.
We aim to take advantage of the formal foundations of graphs
transformation.

A. The proposed method
In the thought of taking advantage of the formal foundation

of graphs, we presented a graph-based transformation to intro-
duce restructuring activities in the design of a new application
or an existing one. Furthermore, we established sets of graph
transformation rules to estimate the total energy consumed.
We presented our graph-based system and then performed an
exploratory analysis of the impact of design transformation on
energy consumption and performance in software applications.
In this area, graph-based approaches seem more promising due
to their robust theoretical foundation. Consequently, graphs are
well-known structures combining rigor with simplicity [28],
which are beneficial in modeling design software systems.

B. Method process
In the exploratory study here reported we investigated

the impact of software architecture restructuring with well-
known transformation techniques on energy consumption. We
consider design transformations activity as a set of graph trans-
formations applied to a graph instance representing a given
model. So, a given transformation recognition is provided by
the mechanism of matching within graphs.

A graph transformation introducing a complex restructur-
ing, such as a design Pattern, is composed of a sequence
of graph transformation units. In searching for a generic
transformation unit, we worked on the original definition of the
refactoring catalog and the Elements Design Patterns (EDPs)
defined by Smith [29]. They represent micro-transformations
whose different combinations lead to the introduction of De-
sign Patterns into models. So we built a library of the possible
instantiations of each transformation such as Refactoring, EDP
and intermediate pattern compositions. In practice, we used
the toolset GROOVE to implement these transformations as
graph transformation rules [11]. Also, we enrich our rule set
by another kind of rules that compute the energy consumed

164Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 179 / 241

under each stage in the entire application tasks. We will
explain later in this article how to investigate the effect of
refactoring transformation in energy efficiency by analyzing
UML diagrams (class diagram) and not only existing code.
Software optimizations and energy computing, in this context,
have been discussed at three levels of granularity (Figure 1):
Type graph, graph transformation rules and instance graph.

Figure 1. Graph transformation system.

We represent our architectural design as a graph, we identify
and represent refactoring activity as graph transformation rules
and then we formalize another cluster of rules to compute the
energy consumption. The following section will detail every
level individually.

V. META MODEL

To analyze the energy consumption of a software system,
we propose the meta-model depicted in Figure 2. It includes
the required artifacts, on the one hand, to describe the software
architecture and on the other hand to assess the expected
energy consumption.

Our model is based on the concepts of component-oriented
architectures (CBSE) and service-oriented architectures (SOA).
To analyze the expected energy consumption of so many alter-
native architectural solutions, we must define the elements of
such a solution. As shown in Figure 2, the architectural aspect
is represented by an architectural style element that includes
a collection of homogeneous and heterogeneous components
(elements and architectural constraints). An architectural el-
ement is composed, in turn, by other architectural elements,
components that interact through connectors.

A component is defined as a set of interacting tasks and
services to fill a role and communicate with the environment
via two interfaces. Typically, connectors define abstractions
that encapsulate the mechanisms of communication, coordi-
nation, and conversion (type, number, frequency, and order
of interactions) between components. The component is also
defined by a predefined set of tasks or roles. A task is a
semantic entity of the basic unit of work (activity or role). It
can be a task of calculation or storage, etc. It can be extended
by others under spots. Sometimes the execution of a task is
heavily dependent on other tasks (for example, remote storage
of data depends on the communication problem). As a result,
this information is defined by a reflexive relationship that
reflects this dependency [30].

Figure 2. Component-oriented architecture as a graph.

To enlarge the scope of the current approach, in particular,
tackling the artifacts involved with the IoT paradigm. the
metamodel encompasses concepts related to a thing.

A Thing is organized into two categories (Figure 3):

• A physical thing is organized into a group of physical
networked things, including devices, sensors, actua-
tors, and even embedded devices.

• A virtual thing is organized into a virtual group
of things in a network, including web services and
programs.

Figure 3. Meta-model of the entities types in IoT.

To analyze the expected energy consumption, it is required to
discriminate the fields that affect the global consumption. They

165Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 180 / 241

are mainly due to several operations such as computational
tasks and data communication.

The Energy consumed by the processing unit is divided
into two parts: the energy induced by computational tasks in
the busy state and the energy consumed in the idle state. The
first one is determined by the supply voltage and the total
capacity switched likewise in the hardware level (sensors and
actuators, etc.) and the software level (by running software
program, services, etc.). The second one corresponds to the
energy consumed when the calculation unit does not carry out
any treatment. The communication energy can be divided into
the reception energy, the energy of the emission and the sleep
mode. This energy is determined by the amount of data to be
communicated and the transmission distance, as well as by the
physical properties of the communication module.

Another part of our meta-model is dedicated to representing
power distribution infrastructure (see Figure 4). Power distri-
bution infrastructure can be organized in a hierarchical manner
[1]. Power distribution units distribute power to racks which
in turn provide power to the connected devices.

Figure 4. hierarchical of power distribution infrastructure.

In order to percept the dependency between different tasks,
we add a reflexive link labeled as ”have dependency”. It
specifies the relationships between energy concerns under the
modeled component. Then, we classified tasks according to
the well-known energy concerns hierarchy and activities more
recurrent in a given application such as Store, Communication,
Data Access, Data collect [31] (see Figure 5). That list will
be augmented once there is new evidence about other energy
hotspots.

There are many variabilities in how to design and im-
plement concerns (e.g., the data could be stored locally or
remotely, compress audio or video files). Additionally, these
concerns could depend on each other. For instance, there
are several concerns related to Communication, such as Data
Access and Store. Due to that dependency, for every energy
consumption concern cannot be analyzed on an isolated basis.
Instead, a whole architecture should be analyzed taking into
account these explicit dependencies modeled.

VI. EXPECTED ENERGY CONSUMPTION BASED-GRAPH
TRANSFORMATION RULES

Commonly, energy calculation is straightforward. The elec-
trical energy is (in kilowatt-hour, kWh), found by multiplying
the power use (in kilowatts, kW) by the number of hours during
which the power is consumed.
Accurate the expected energy consumption characterization

Figure 5. Relevant concerns in IoT applications.

is important in computing platforms, notably IoT based ap-
plications. To extend our approach on a large scale of IoT
applications, we adopt an incremental scheme to quantify total
energy consumption. We consider that the total consumption
is evaluated by the sum of the energy consumption induced by
the different tasks from the collection of the data, sending via
the network until the processing of this data. The total spot is
estimated and summarized over the period of real-time which
is the typical IoT application architecture. Thus, the period T
is outlined by three layers as follow:

• The first is the perception layer: It is defined by
physical objects and sensor devices that collect and
acquire data from the physical world. It consists of
two parts: the detection devices and the wireless sensor
network. The first includes sensor nodes and the Radio
Frequency Identification (RFID) tag. The latter is a
self-organized wireless network consisting of numer-
ous sensor nodes distributed over a large area. These
devices coordinate to monitor the state of the physical
environment (M2M terminal and a sensor gateway).
These devices monitor in a coordinated manner the
state of the physical world. The collected information
is then passed on to the transport layer.

• Transport layer is an intermediate layer: It enables
the transfer of data received from the perception layer
to the application layer through different networks as
wireless or cable networks. There are various tech-
nologies used include infrared, 2G, 3G and Bluetooth,
depending on the sensor devices. The collected data
will be transferred across long distances and over a
large area through different kinds of networks that
employ different technologies and protocols.

• Application Layer: this part focuses on data processing
and providing services for all user types. The trans-
mitted data will be treated and managed by suitable
management systems, Then various services will be
provided to the target users.

Figure 6 displays how energy consumption at the global
process of an IoT application is estimated. It is the sum

166Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 181 / 241

of several contributions represented by different areas, called
layers. A layer, Li, corresponds to the consumption of part of
the system for task i. The energy consumption of the entire
system is the addition of the energy consumption of each task.
It essentially consists of applying estimation for each task of
the system with the order of layers.

Figure 6. Energy consumption induced within IoT architecture.

Based on this assumption the power required can be broken
down into three main blocks: power for data acquisition ap-
pointed as Pacq, power for data processing Pprc and power for
data networking Pnet. Additionally, a tiny fraction is intended
for system management tasks such as rising the system at
periodic wake-ups or running a real-time operating system.
The needs of these management tasks are gathered in this
Psys contribution. The general formula (1) is expressed by
the contribution of these elements together.

Ptot = Pacq + Pprc+ Pnet+ Psys (1)

In order to estimate the power consumption, it is required to
avail Power models. These models correlate energy consump-
tion with measurable metrics. A wide variety of power models
exist [20][32][33]. We establish a set of graph transformation
rules implementing power consumption models as mentioned
in Figure 1. Those rules enable computing energy consumption
in the different layers (Figure 7). For instance, Figure 8
introduce the formula (1) as graph transformation rule.

Figure 7. kinds of graph transformation rules computing energy
consumption.

We start with exploring the energy consumed by the
connected devices (sensor, actuator and computer program).
Although software systems do not consume energy themselves,
they affect the use of the hardware resulting in indirect energy
consumption. Namely, it is required to inquire into the given
software under execution, hardware platform and during a
given time. The energy consumption E is an accumulation of
power dissipation P over time (formula (2)). The energy E is

measured in watts and power P is measured in joules, i.e.

E = P ∗ t (2)

For example, if a given task takes 15 seconds to be achieved
and dissipate 5 watts, it consumes 75 joules of energy.

Figure 8. Computing total power consumption.

The display view of the corresponding rule (Figure 9)
is composed of different kinds of nodes: the node depicted
by a diamond stand for triple of data values. It states a
multiplication operation for a pair of real values 0 and 1
which correspond respectively to power and time interval. The
edge labeled as “mul” specifies the data node representing
the result of the performed operation. Then the result will be
attributed to a node typed as power consumption which is an
element of the adopted meta-model. Note that the ellipses,
typed as real, allow to handle unknown values and the values
will only be established when matching the rule. It ensures
the applicability of that rule in all cases of value. This rule
calculates energy consumption by multiplying the power by
the estimated time for such a task. After computing the energy
consumption in each task alone, it is required to elaborate
a rule that encompasses the total energy induced by a set
of tasks, which collaborate to achieve a particular intent or
service.

Figure 9. Graph transformation rule calculating energy induced by a set of
tasks.

Figure 10 and Figure 11 depict graph transformation rules
modeling Data Acquisition Energy.
Commonly, monitoring applications could be classified into
two categories: regular sensing with a fixed acquisition time
interval, and event-driven sensing characterized by stochastic
distribution. In event-driven sensing, a random event triggers
the acquisition of a collection of samples from the sensor.
Thus, the energy consumption of the acquisition component

167Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 182 / 241

can be established as follow (4)[33].

Eacq =

{
Esmp ∗N (Regular)
Esmp ∗N ′ ∗ Pr(e) (Event)

(3)

Esmp is the energy required to acquire one sample and N is the
number of samples taken during one regular sensing interval.
For event-driven sensing, Pr(e) is the probability of an event
occurring in one sensing interval, and N’ is the number of
samples taken following the occurrence of an event.

Figure 10. Graph transformation rule computing energy consumption of
regular sensing

In our framework, the calculation is carried with graph trans-
formation rules. For instance, the graph transformation rule
(shown in Figure 10) calculates the energy consumed by the
acquisition component during one regular sensing interval.

Figure 11. Graph transformation rule computing energy consumption of
event-driven sensing

Figure 11 computes the energy consumed by the acquisition
component in event-driven sensing.

VII. ELEMENTARY TRANSFORMATIONS BASED GRAPH
TRANSFORMATION RULES

In order to implement our approach, we build a library of
combined graph transformation rules that incorporate restruc-
turing activities and refactoring [34]. We take advantage of the
formal specifications of refactoring techniques presented in the

literature such as the refactoring catalog, EDPs catalog. Entire
EDPs can be found in [29] with full definition and original
explication. Please refer to that base document if necessary.
Some refactoring operations are represented in TABLE I.

TABLE I. ELEMENTARY TRANSFORMATIONS INCLUDING
THEIR ACTORS AND ROLES.

Elementary tackled Role
transformations artifacts
Extract class class source class, new class

field moved fields
method moved methods

Extract interface class source classes, new interface
field moved fields
method moved methods

Inline class class source class, target class
Move field class source class, target class

field moved field
Move method class source class, target class

method moved method
Push down field class superclass, subclasses

field moved field
Push down method class superclass, subclasses

method moved method
Pull up field class subclasses, superclass

field moved field
Pull up method class subclasses, superclass

method moved method
Move class package source package, target package

class moved class

Every restructuring activity is associated with a graph trans-
formation rule implemented using GROOVE, with the same
name and the corresponding components. This part will depict
some of the techniques formalized as graph transformation
rules. Figure 12 represents an elemental transformation as
graph transformation rule. It aims to create a class hierarchy
once two classes have two attributes with the same names and
the same types, and then pull up that attribute to the superclass.
Figure 13 represents another elemental transformation as a
graph transformation rule. It leads to pull up the other attributes
to the superclass.

Figure 12. The transformation”pull up field” represented as graph
transformation rule

Applying some of the elemental transformation techniques
can impact energy consumption whether they can contribute
to the design pattern injection. In particular when applying
the technique ‘Inline Method’ can enhance performance and
support power reduction for a specific application [35]. In
the embedded systems, the ‘Inline Method’ may be useful
(if it is small) since it can yield less code than the method
call preamble and return. Extract Method and Extract Class
can increase the energy consumption of mobile devices due
to the increase of message traffic between the objects [6].

168Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 183 / 241

Figure 13. The transformation”Move field” represented as a graph
transformation rule

Additionally, applying a sequence of elemental transformations
in particular orders could contribute to the injection of design
patterns [36]. Thus, they can enhance energy efficiency corre-
sponding that software engineering best practices can improve
energy efficiency [3][4][5].

VIII. MOTIVATING SCENARIO

We are investigating the validity of our approach in moti-
vating scenarios in the scope of IoT. A focus is made on the use
of IoT in the monitoring and remote control in the solar photo-
voltaic system accurately on the off-grid system installing. It is
customary that this kind of electricity-management system in-
cludes a combination of a photovoltaic module, electric power
converters and Storage devises to handle the intermittency
of power output presented by renewables [37]. Besides, it
contains power-conditioning equipment, including devices to
limit current and voltage to maximize power output and convert
direct-current to alternating current.
Availing the IoT technique, additional smart components en-
able to achieve energy efficiency in PV systems. That technol-
ogy is used at all levels of the network such as production,
distribution and consumption. It allows to:

• Real-time flow control: System-wide sensors instantly
show electrical flows and consumption levels. Op-
erators can then redirect energy flows according to
demand.

• The integration of different types of renewable ener-
gies.

• More responsible management of consumption re-
sources (scheduling): They provide useful information
for the scheduling of household electricity supplies
during the day in case of lack of energy.

IoT based photovoltaic system architecture can be established
by three different layers as clearly depict in Figure 14. The PV
system layer, gateway linkage layer and the remote control
and monitoring layer. Figure 14 clearly depicted the IoT
architecture for photovoltaic systems.

Although the performance and cost of each component
of the PV System are important parameters to be considered
before the design process, it is required to carry out optimizing
in the software held in the system. thus, software design
choice effects heavily global cost and performances. For the
sake of enhancing performances and cost reduction for a
prospective mini-grid architect, we undertake an analysis of
various architectural solutions.

Figure 14. Architecture photovoltaic system based on IoT technology.

Our investigation is ongoing for identifying eligible tasks
that constitute hotspot and undertake transformations and
refactoring techniques. We are availing quality metrics mea-
surement to access the impacts of applying restructuring activ-
ities and to make informed trade-off decisions between costs
and QoS of offered services.

IX. CONCLUSION AND FUTURE WORK

Energy-aware software development is a growing trend
in computing. Indeed, the software developer community is
paying more and more attention to energy-efficiency concerns.
Refactoring can be a potential solution to many of the dis-
cussed challenges as architectural choices and design quality;
it is proven to improve the quality of a system. However, the
impact of design refactoring on energy efficiency has been
scarcely investigated. In the exploratory study here reported, a
graph-based approach is proposed to investigate the impact
of refactoring on energy consumption on the design level,
focusing on how we experiment with the effect of applying
transformations activities at a design level, which can be
optimized in terms of energy consumption. According to the
literature, though refactoring is involved in the area of code re-
engineering successfully there is huge potential for refactoring
at the architectural level.

In further work, it is intended to develop a concept of
following detailed refactoring techniques which include meth-
ods to identify architecture smells and to evaluate its effect
in the consumption energy, apply suitable refactoring and test
applied refactoring to guarantee less energy consumption of
the system.

REFERENCES
[1] G. Procaccianti, H. Fernández, and P. Lago, “Empirical evaluation of

two best practices for energy-efficient software development,” Journal
of Systems and Software, vol. 117, 2016, pp. 185–198, ISSN: 0164-
1212.

[2] F. A. Moghaddam, G. Procaccianti, G. A. Lewis, and P. Lago, “Em-
pirical validation of cyber-foraging architectural tactics for surrogate
provisioning,” Journal of Systems and Software, vol. 138, 2018, pp.
37–51, ISSN: 0164-1212.

[3] A. Hindle, “Green mining: a methodology of relating software change
and configuration to power consumption,” Empirical Software Engi-
neering, vol. 20, no. 2, 2015, pp. 374–409, ISSN: 1382-3256.

[4] A. R. Tonini, L. M. Fischer, J. C. B. de Mattos, and L. B. de Brisolara,
“Analysis and evaluation of the android best practices impact on the
efficiency of mobile applications,” in Proceedings of the 3rd Brazilian
Symposium on Computing Systems Engineering (SBESC) December
4–8, 2013, Niteroi, Rio De Janeiro, Brazil. IEEE, Dec. 2013, pp.
157–158, ISBN: 978-1-4799-3890-2.

169Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 184 / 241

[5] Linares-Vásquez et al., “Mining energy-greedy api usage patterns in
android apps: an empirical study,” in Proceedings of the 11th Working
Conference on Mining Software Repositories(MSR) May 31 – June 01,
2014, Hyderabad, India. ACM, May 2014, pp. 2–11, ISSN: 978-1-
4503-2863-0.

[6] R. Pérez-Castillo and M. Piattini, “Analyzing the harmful effect of god
class refactoring on power consumption,” IEEE software, vol. 31, no. 3,
2014, pp. 48–54, ISSN: 0740-7459.

[7] A. Vetrò, L. Ardito, G. Procaccianti, and M. Morisio, “Definition,
implementation and validation of energy code smells: an exploratory
study on an embedded system,” in Proceedings of the 4th international
conference on Future energy systems (e-Energy) May 21 – 24, 2013,
Berkeley, California, USA. ThinkMind, May 2013, pp. 34–39, ISSN:
978-1-4503-2052-8.

[8] M. Gottschalk, J. Jelschen, and A. Winter, “Saving energy on mo-
bile devices by refactoring.” in Proceedings of the 28th International
Conference on Informatics for Environmental Protection: ICT for
Energy Effieciency, (EnviroInfo) September 10–12, 2014, Oldenburg,
Germany,. BIS-Verlag, Sep. 2014, pp. 437–444, ISBN: 978-3-8142-
2317-9.

[9] A. Rodriguez, M. Longo, and A. Zunino, “Using bad smell-driven code
refactorings in mobile applications to reduce battery usage,” in Simposio
Argentino de Ingenierı́a de Software (ASSE) September 3–4, 2015,
Rosario, Santa Fé, Argentina, Sep. 2015, pp. 56–68, ISSN: 2451-7593.

[10] G. Mouzon and M. B. Yildirim, “A framework to minimise total energy
consumption and total tardiness on a single machine,” International
Journal of Sustainable Engineering.

[11] S. Hasan et al., “Energy profiles of java collections classes,” in Pro-
ceedings of the 38th International Conference on Software Engineering
(ICSE) May 14 – 22, 2016, Austin, Texas. ACM, May 2016, pp.
225–236, ISBN: 978-1-4503-3900-1.

[12] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the en-
ergy consumption of android applications,” in 2014 IEEE International
Conference on Software Maintenance and Evolution (ICSME) Sep 28
– Oct 3, 2014, Victoria, British Columbia, Canada. IEEE, Sep. 2014,
pp. 121–130, ISBN: 978-1-4799-6146-7.

[13] H. Luo, B. Du, G. Q. Huang, H. Chen, and X. Li, “Hybrid flow
shop scheduling considering machine electricity consumption cost,”
International Journal of Production Economics, vol. 146, 2013, pp. 423–
439, ISSN: 0925-5273.

[14] Y. Liu, H. Dong, N. Lohse, S. Petrovic, and N. Gindy, “An investigation
into minimising total energy consumption and total weighted tardiness
in job shops,” Journal of Cleaner Production, vol. 65, 2014, pp. 87–96,
ISSN: 0959-6526.

[15] M. Trejo-Perea et al., “Development of a real time energy monitoring
platform user-friendly for buildings,” Procedia Technology, vol. 7, 2013,
pp. 238–247, ISSN: 1877-7058.

[16] R. Bayindir, E. Irmak, I. Colak, and A. Bektas, “Development of a real
time energy monitoring platform,” International Journal of Electrical
Power & Energy Systems, vol. 33, no. 1, 2011, pp. 137–146, ISSN:
0142-0615.

[17] K. Grosskop and J. Visser, “Identification of application-level energy
optimizations,” Proceeding of ICT for Sustainability (ICT4S), vol. A4,
2013, pp. 101–107, ISBN: 978-3-906031-24-8.

[18] A. Noureddine and A. Rajan, “Optimising energy consumption of
design patterns,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 2 (ICSE) May 16 – 24, 2015,Florence,
Italy. IEEE Press, May 2015, pp. 623–626, ISSN: 1558-1225.

[19] G. Procaccianti, P. Lago, and G. A. Lewis, “Green architectural tactics
for the cloud,” in Proceedings of the 2014 IEEE/IFIP Conference
on Software Architecture (WICSA) April 7–11, 2014, Sydney, NSW,
Australia. IEEE, Apr. 2014, pp. 41–44, ISBN: 978-1-4799-3412-6.

[20] C. Stier, A. Koziolek, H. Groenda, and R. Reussner, “Model-based
energy efficiency analysis of software architectures,” in Proceedings
of the 9th European conference on software architecture (ECSA)
September 7 – 11, 2015, Dubrovnik/Cavtat, Croatia. Springer, Sep.
2015, pp. 221–238, ISBN: 978-3-319-23727-5.

[21] V. De Maio, R. Prodan, S. Benedict, and G. Kecskemeti, “Modelling
energy consumption of network transfers and virtual machine migra-

tion,” Future Generation Computer Systems, vol. 56, 2016, pp. 388–
406, ISSN: 0167-739X.

[22] C. Seo, G. Edwards, S. Malek, and N. Medvidovic, “A framework for
estimating the impact of a distributed software system’s architectural
style on its energy consumption,” in Proceedings of the 7th Working
IEEE/IFIP Conference on Software Architecture (WICSA) February 18
– 21, 2008, Vancouver, BC, Canada. IEEE, Feb. 2008, pp. 277–280,
ISBN: 978-0-7695-3092-5.

[23] A. Brunnert, K. Wischer, and H. Krcmar, “Using architecture-level
performance models as resource profiles for enterprise applications,”
in Proceedings of the 10th international ACM Sigsoft conference on
Quality of software architectures (QoSA) June 30 - July 04, 2014,
Marcq-en-Bareul, France. ACM, Jul. 2014, pp. 53–62, ISBN: 978-
1-4503-2576-9.

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and experience, vol. 41, 2011, pp. 23–50,
ISBN: 978-1-60750-073-5.

[25] K. Kurowski et al., “Dcworms–a tool for simulation of energy efficiency
in distributed computing infrastructures,” Simulation Modelling Practice
and Theory, vol. 39, 2013, pp. 135–151, ISBN: 978-3-642-40516-7.

[26] A. Memari, J. Vornberger, J. M. Gómez, and W. Nebel, “A data
center simulation framework based on an ontological foundation,” in
Proceedings of the 28th International Conference on Informatics for
Environmental Protection: (ICT) for Energy Effieciency, September 10-
12, 2014, Oldenburg, Germany. BIS-Verlag, Sep. 2014, pp. 461–468,
ISBN: 978-3-8142-2317-9.

[27] N. Amsel, Z. Ibrahim, A. Malik, and B. Tomlinson, “Toward sustain-
able software engineering: Nier track,” in Proceedings of the 33RD

international conference on software engineering (ICSE) May 21 – 28,
2011, Honolulu, Hawaii, USA. IEEE, May 2011, pp. 976–979, ISBN:
978-1-4503-0445-0.

[28] E. Biermann et al., “Emf model refactoring based on graph transfor-
mation concepts,” Electronic Communications of the EASST, vol. 3,
2006, ISSN: 1863-2122.

[29] J. M. Smith, Elemental design patterns. Addison-Wesley, Apr. 2012,
ISBN: 978-0321711922.

[30] M. Kim, H. Ahn, and K. P. Kim, “Process-aware internet of things: A
conceptual extension of the internet of things framework and architec-
ture,” KSII Transactions on Internet and Information Systems (TIIS),
vol. 10, 2016, pp. 4008–4022, ISSN: 1976-7277.

[31] N. Gamez, M. Pinto, and L. Fuentes, “Hadas green assistant: designing
energy-efficient applications,” arXiv preprint arXiv:1612.08095, vol.
abs/1612.08095, 2016.

[32] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in Proceedings of the 34th annual interna-
tional symposium on Computer architecture (ISCA) June 9–13, 2007,
San Diego, California, USA, vol. 35. ACM, Jun. 2007, pp. 13–23,
ISSN: 0360–5442.

[33] B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades, “The power of
models: Modeling power consumption for iot devices,” IEEE Sensors
Journal, vol. 15, 2015, pp. 5777–5789, ISSN: 1558-1748.

[34] B. Babic, N. Nesic, and Z. Miljkovic, “A review of automated feature
recognition with rule-based pattern recognition,” Computers in industry,
vol. 59, no. 4, 2008, pp. 321–337, ISSN: 0166-3615.

[35] W. G. da Silva, L. Brisolara, U. B. Corrêa, and L. Carro, “Evaluation
of the impact of code refactoring on embedded software efficiency,”
in Proceedings of the 1st Workshop de Sistemas Embarcados (WESE)
October 28 – 28, 2010, Scottsdale, Arizona, Oct. 2010, pp. 145–150,
ISBN: 978-1-4503-0521-1.

[36] N. Zoubeir, A. Khalfallah, and S. Ahmed, “Graph-based decomposition
of design patterns,” International Journal of Software Engineering and
Its Applications (IJSEIA), vol. 8, 2014, pp. 391–408, ISSN: 1738-9984.

[37] N. M. Kumar, K. Atluri, and S. Palaparthi, “Internet of things (iot) in
photovoltaic systems,” in Proceedings of the National Power Engineer-
ing Conference (NPEC) March 9–10, 2018, Madurai, India. IEEE,
Mar. 2018, pp. 1–4, ISBN: 978-1-5386-3804-0.

170Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 185 / 241

On the Realization of Meta-Circular Code Generation:
The Case of the Normalized Systems Expanders

Herwig Mannaert

Normalized Systems Institute
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Koen De Cock and Peter Uhnak

Research and Development
NSX BVBA, Belgium

Email: koen.de.cock@nsx.normalizedsystems.org

Abstract—The automated generation of source code is a widely
adopted technique to improve the productivity of computer
programming. Normalized Systems Theory (NST) aims to create
software systems exhibiting a proven degree of evolvability. A
software implementation exists to create skeletons of Normalized
Systems (NS) applications, based on automatic code generation.
This paper describes how the NS model representation, and the
corresponding code generation, has been made meta-circular, a
feature that may be crucial to improve the productivity of the
development of software for source code generation. The detailed
architecture of this meta-circular code generation software is
presented, and some preliminary results are discussed.

Keywords–Evolvability; Normalized Systems; Meta-circularity;
Automated programming; Case Study

I. INTRODUCTION

Increasing the productivity in computer programming has
been an important and long-term goal of computer science.
Though many different approaches have been proposed, dis-
cussed, and debated, two of the most fundamental approaches
toward this goal are arguably automated code generation
and homoiconic programming. Increasing the evolvability of
Information Systems (IS) on the other hand, is crucial for the
productivity during the maintenance of information systems.
Although it is even considered as an important attribute de-
termining the survival chances of organizations, it has not yet
received much attention within the IS research area [1]. Nor-
malized Systems Theory (NST) was proposed to provide an ex-
ante proven approach to build evolvable software by leveraging
concepts from systems theory and statistical thermodynamics.
In this paper, we present an integrated approach that combines
both Normalized Systems theory to provide evolvability, and
automated code generation and homoiconic programming to
offer increased productivity.

The remainder of this paper is structured as follows. In
Section III, we briefly discuss two fundamental approaches
to increase the productivity in computer programming: auto-
matic and homoiconic programming. In Section III, we briefly
present NST as a theoretical basis to obtain higher levels of
evolvability in information systems. Section IV discusses the
application of these fundamental concepts to the Normalized
Systems code expansion in general and the Prime Radiant in
particular. Section V elaborates on the declaration of both
the various expanders generating the code artifacts, and the
configuration parameters that control the expansion process.
Finally, we discuss some results in Section VI and present our
conclusion in Section VII.

II. AUTOMATIC AND HOMOICONIC PROGRAMMING

In this section, we briefly discuss two fundamental and
long-standing approaches to increase the programming pro-
ductivity: automatic and homoiconic programming.

A. Automatic or Meta-Programming
The automatic generation of code is nearly as old as

coding or software programming itself. One often makes a
distinction between code generation, the mechanism where a
compiler generates executable code from a traditional high-
level programming language, and automatic programming, the
act of automatically generating source code from a model
or template. In fact, one could argue that both mechanisms
are quite similar, as David Parnas already concluded in 1985
that ”automatic programming has always been a euphemism
for programming in a higher-level language than was then
available to the programmer” [2].

Another term used to designate automatic programming
is generative programming, aiming to write programs ”to
manufacture software components in an automated way” [3],
in the same way as automation in the industrial revolution
has improved the production of traditional artifacts. As this
basically corresponds to an activity at the meta-level, i.e.,
writing software programs that write software programs, this
is also referred to as meta-programming. Essentially, the goal
of automatic programming is and has always been to improve
programmer productivity.

Software development methodologies such as Model-
Driven Engineering (MDE) and Model-Driven Architecture
(MDA), focusing on creating and exploiting conceptual domain
models and ontologies, are also closely related to automatic
programming. In order to come to full fruition, these method-
ologies require the availability of tools for the automatic gen-
eration of code. Currently, these model-driven code generation
tools are often referred to as Low-Code Development Platforms
(LCDP), i.e., software that provides an environment for pro-
grammers to create application software through graphical user
interfaces and configuration instead of traditional computer
programming. As before, the goal remains to increase the
productivity of computer programming, though the realization
of this goal is not always straightforward [4].

B. Homoiconicity or Meta-Circularity
Another technique in computer science aimed at the in-

crease of the abstraction level, and thereby the productivity,

171Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 186 / 241

of computer programming, is homoiconicity. A language is
homoiconic if a program written in it can be manipulated
as data using the language, and thus the program’s internal
representation can be inferred just by reading the program
itself. As the primary representation of programs is also a data
structure in a primitive type of the language itself, reflection
in the language depends on a single, homogeneous structure
instead of several different structures. It is this language feature
that conceptually enables meta-programming to become much
easier. The best known example of an homoiconic program-
ming language is Lisp, but all Von Neumann architecture
systems can implicitly be described as homoiconic. An early
and influential paper describing the design of the homoiconic
language TRAC [5], traces the fundamental concepts back to
an even earlier paper from McIlroy [6].

Related to homoiconicity is the concept of a meta-circular
evaluator (MCE) or meta-circular interpreter (MCI), a term
that was first coined by Reynolds [7]. Such a meta-circular
interpreter, most prominent in the context of Lisp as well, is
an interpreter which defines each feature of the interpreted
language using a similar facility of the interpreter’s host
language. The term meta-circular clearly expresses that there
is a connection or feedback loop between the activity at
meta-level, the internal model of the language, and the actual
activity, writing models in the language.

III. NORMALIZED SYSTEMS THEORY AND EXPANSION

In this section, we introduce NST as a theoretical basis to
obtain higher levels of evolvability in information systems, and
its realization in a code generation or expansion framework.

A. Evolvability and Normalized Systems
The evolvability of information systems (IS) is considered

as an important attribute determining the survival chances of
organizations, although it has not yet received much attention
within the IS research area [1]. Normalized Systems Theory
(NST), theoretically founded on the concept of stability from
systems theory, was proposed to provide an ex-ante proven
approach to build evolvable software [8][9][10]. Systems the-
oretic stability is an essential property of systems, and means
that a bounded input should result in a bounded output. In the
context of information systems, this implies that a bounded set
of changes should only result in a bounded impact to the soft-
ware. Put differently, it is demanded that the impact of changes
to an information system should not be dependent on the size
of the system to which they are applied, but only on the size
of the changes to be performed. Changes causing an impact
dependent on the size of the system are called combinatorial
effects, and are considered to be a major factor limiting the
evolvability of information systems. The theory prescribes a
set of theorems and formally proves that any violation of any
of the following theorems will result in combinatorial effects
(thereby hampering evolvability) [8][9][10]:

• Separation of Concerns
• Action Version Transparency
• Data Version Transparency
• Separation of States

The application of the theorems in practice has shown to
result in very fine-grained modular structures within a software
application. Such structures are, in general, difficult to achieve

by manual programming. Therefore, the theory also proposes a
set of patterns to generate significant parts of software systems
which comply with these theorems. More specifically, NST
proposes five elements that serve as design patterns [9][10]:

• data element
• action element
• workflow element
• connector element
• trigger element

Based on these elements, NST software is generated in a
relatively straightforward way. First, a model of the considered
universe of discussion is defined in terms of a set of data, task
and workflow elements. Next, code generation or automated
programming is used to generate parameterized copies of
the general element design patterns into boiler plate source
code. Due to the simple and deterministic nature of this code
generation mechanism, i.e., instantiating parametrized copies,
it is referred to as NS expansion and the generators creating
the individual coding artifacts are called NS expanders. This
generated code can, in general, be complemented with custom
code or craftings to add non-standard functionality that is not
provided by the expanders themselves, at well specified places
(anchors) within the boiler plate code.

B. Variability Dimensions and Expansion
In applications generated by a Normalized Systems expan-

sion process, we identify four variability dimensions, as visu-
alized in Figure 1. As discussed in [11][12], the combination
of these dimensions compose an actual Normalized Systems
application codebase, and therefore determine how such an
application can evolve throughout time, i.e., how software
created in this way exhibits evolvability.

First, as represented at the upper left of the figure, one
should specify or select the models or mirrors he or she wants
to expand. Such a model is technology agnostic (i.e., defined
without any reference to a particular technology that should
be used) and represented by standard modeling techniques,
such as ERD’s for data elements and DFD’s for task and flow
elements. Such a model can have multiple versions throughout
time (e.g., being updated or complemented) or concurrently
(e.g., choosing between a more extensive or summarized
version). As a consequence, the chosen model represents a
first dimension of variability or evolvability.

Second, the expanders (represented by the big blue icon in
the figure) generate (boiler plate) source code by instantiating
the various class templates or skeletons, taking the specifi-
cations of the model as parameters. For instance, for a data
element Person, a set of java classes PersonBean, PersonAgent,
PersonView, PersonData, etcetera will be generated. This code
can be considered boiler plate code as it provides a set of
standard functionalities for each of the elements within the
model, though they have evolved over time to provide stan-
dard finders, master-detail (waterfall) screens, certain display
options, document upload/download functionality, child rela-
tions, etcetera. The expanders or template skeletons themselves
evolve throughout time, as bugs of the previous version are
solved and additional features (e.g., creation of a status graph)
are provided. Given the fact that the application model is
completely technology agnostic and can be used as argument

172Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 187 / 241

Figure 1. A graphical representation of four variability dimensions within a Normalized Systems application codebase.

for any version of the expanders, these bug fixes and additional
features become available for all versions of all application
models (only a re-expansion or “rejuvenation” is required). As
a consequence, the expanders or template skeletons represent
a second dimension of variability or evolvability.

Third, as represented in the upper right of the figure, one
should specify infrastructural options to select a number of
frameworks or utilities to take care of several generic concerns.
These consist of global options (e.g., determining the build
automation framework), presentation settings (determining the
graphical user interface framework), business logic settings
(determining the database used) and technical infrastructure
(e.g., access control or persistency). This means that, given
a chosen application model version and expander version,
different variants of boiler plate code can be generated, de-
pending on the choices regarding the infrastructural options.
As a consequence, the settings and utility frameworks represent
a third dimension of variability or evolvability.

Fourth, as represented in the lower left of the figure,
“custom code” or craftings can be added to the generated
source code. These craftings enrich (are put upon) the earlier
generated boiler plate code and can be harvested into a separate
repository before regenerating the software application (after
which they can be applied again). This includes extensions
(e.g., additional classes added to the generated code base)
as well as insertions (i.e., additional lines of code added
between the foreseen anchors within the code). Craftings can
have multiple versions throughout time (e.g., being updated or
complemented) or concurrently (e.g., choosing between a more
advanced or simplified version). These craftings should contain
as little technology specific statements within their source code
as possible (apart from the chosen background technology).
Indeed, craftings referring to (for instance) a specific GUI
framework will only be reusable as long as this particular GUI
framework is selected during the generation of the application.
In contrast, craftings performing certain validations but not
containing any EJB specific statements will be able to be
reused when applying other versions or choices regarding such

framework. As a consequence, the custom code or craftings
represent a fourth dimension of variability or evolvability.

In summary, each part in Figure 1 is a variability dimension
in an NST software development context. It is clear that talking
about the “version” of an NST application (as is traditionally
done for software systems) in such context becomes more
refined. Indeed, the eventual software application codebase
(the lower right side of the figure) is the result of a specific
version of an application model, expander version, infras-
tructural options, and a set of craftings [12]. Put differently,
with M , E, I and C referring to the number of available
application model versions, the number of expander versions,
the number of infrastructural option combinations, and crafting
sets respectively, the total set of possible versions V of a
particular NST application becomes equal to:

V = M × E × I × C

Whereas the specific values of M and C are different for every
single application, the values of E and I are dependent on
the current state of the expanders. Remark that the number of
infrastructural option combinations (I) is equally a product:

I = G× P ×B × T

Where G represents the number of available global option
settings, P the number of available presentation settings, B
the number of available business logic settings, and T the
number of available technical infrastructure settings. This
general idea in terms of combinatorics corresponds to the
overall goal of NST: enabling evolvability and variability by
leveraging the law of exponential variation gains by means
of the thorough decoupling of concerns and the facilitation of
their recombination potential [10].

IV. TOWARD META-CIRCULAR EXPANSION CONTROL

In this section, we discuss the application of automatic
programming and homoiconicity to the Normalized Systems
expansion in general and the Prime Radiant in particular.

173Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 188 / 241

A. Phase 1: Standard Code Generation
The original architecture of the Normalized Systems expan-

sion or code generation software is schematically represented
in Figure 2. In the right part of the figure, the generated source

Figure 2. Representation of a basic code generator structure.

code is represented in blue, corresponding to a traditional
multi-tier web application. Based on a Java Enterprise Edition
(JEE) stack [9][12], the generated source code classes are
divided over so-called layers, such as the logic, the control, and
the view layer. On the left, we distinguish the internal structure
of the expanders or the code generators, represented in red.
This corresponds to a very straightforward implementation of
code generators, consisting of:

• model files containing the model parameters.
• reader classes to read the model files.
• model classes to represent the model parameters.
• control classes selecting and invoking the different

expander classes.
• expander classes instantiating the source templates,

using the String Template (ST) library, and feeding
the model parameters to the source templates.

• source templates containing the parametrized code.

B. Phase 2: Generating a Meta-Application
In essence, code generation models or meta-models — and

even all collections of configuration parameters — consist of
various data entities with attributes and relationships. As the
Normalized Systems element definitions are quite straightfor-
ward [9][12], the same is valid for its metamodels. Moreover,
one of the Normalized Systems elements, i.e., the data element,
is basically a data entity with attributes. This means that the
NS meta-models, being data entities with attributes, can be
expressed as regular models. For instance, in the same way
’Person’ and ’Invoice’ can be NS data elements with attributes
and relationships in an information system model, the NS ’data
element’ and ’task element’ of the NS meta-model can be
defined as NS data elements with attributes and relationships
like any other NS model.

As the NS models can be considered a higher-level lan-
guage according to Parnas [2], the single structure of its
model data and meta-model language means that the NS model
language is in fact homoiconic in the sense of [6]. This also

enables us to expand or generate a meta-application, repre-
sented on the left of the figure in dark red, as represented in
Figure 3. This NS meta-application, called the Prime Radiant,

Figure 3. Expansion of a meta-application to define meta-models.

is a multi-tier web application, providing the functionality to
enter, view, modify, and retrieve the various NS models. As
the underlying meta-model is just another NS model, the Prime
Radiant also provides the possibility to view and manipulate
its own model. Therefore, by analogy to the meta-circular
evaluator of Reynolds [7], the Prime Radiant can be considered
as a meta-circular application.

For obvious reasons, the generated reader and model
classes (part of the Prime Radiant on the left of Figure 3)
slightly differ from the reader and model classes that were
originally created during the conception of the expansion or
code generation software (on the right of Figure 3. This means
that, in order to trigger and control the actual expansion classes
to generate the source code, an integration software module
needed to be developed, represented in the middle of Figure 3
as nsx-prime. Though the Prime Radiant meta-application is
auto-generated, and can therefore be regenerated or rejuve-
nated as any NS application, this nsx-prime integration module
needed to be maintained manually.

C. Phase 3: Closing the Expander Meta-Circle
Though the original reader and model classes of the ex-

pander software differed from the generated reader and writer
classes, there is no reason that they should remain so. It
was therefore decided to perform a rewrite of the control
and expander classes of the expander software (right side of
Figure 3), in order to allow for an easier integration with the
auto-generated reader and model classes (left side of Figure 3.
Enabling such a near-seamless integration would not only
eliminate the need for the reader and model classes of the
expander software, it would also reduce the complexity of the
nsx-prime integration component to a significant extent.

Originally, the refactoring was only aimed at the elimina-
tion of the reader and control classes of the original expander
software. However, during the refactoring, it became clear
that it became possible to retire the control and expander
classes of the expander software as well. Indeed, by adopting
a declarative structure to define the expander templates and to
specify the relevant model parameters, both the control classes

174Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 189 / 241

Figure 4. Closing the meta-circle for expanders and meta-application.

(selecting and invoking the expander classes) and the expander
classes (instantiating and feeding the source templates) were
no longer necessary. Moreover, as schematically represented
in Figure 4, the refactoring also eliminated the nsx-prime
integration module. As extensions to the meta-model no longer
require additional coding various expander software classes
(e.g., reader, model, control, and expander classes), nor in the
nsx-prime integration module, one can say that the expander
development meta-circle has been closed, as visualized in
Figure 4. Indeed, expander templates can be introduced by
simply defining them, and extensions to the NS meta-model
simply become available after re-running the expansion or code
generation on this meta-model.

V. DECLARATIVE EXPANSION CONTROL STRUCTURE

In this section, we elaborate on the declaration of both
the various expanders generating the code artifacts, and the
configuration parameters that control the expansion process.

A. Declarative Representation of Expanders
The basic NS expander software currently consists of 181

individual expanders. Every expander is able to instantiate
a specific template into a corresponding artefact, using the
parameters of the model. An example of the definition of such
an individual expander is shown below.

<expander name="DataExpander"
xmlns="http://normalizedsystems.org/expander">
<packageName>expander.jpa.dataElement</packageName>
<layerType name="DATA_LAYER"/>
<technology name="JPA"/>
<sourceType name="SRC"/>
<elementTypeName>DataElement</elementTypeName>
<artifact>$dataElement.name$Data.java</artifact>
<artifactPath>$componentRoot$/$artifactSubFolders$/

$dataElement.packageName</artifactPath>
<isApplicable>true</isApplicable>
<active value="true"/>
<anchors/>
<customAnchors/>

</expander>

Such an expander definition in XML format contains the
following information.

• The identification of the expander, name and package
name, which also identifies in an unambiguous way
the source code template.

• Some technical information, including the tier or layer
of the target artifact in the application, the technology
it depends on, and the source type.

• The name and the complete path in the source tree of
the artifact that will be generated, and the type of NS
element that it belongs to.

• Some control information, stating the model-based
condition to decide whether the expander gets invoked.

• Some information on the anchors delineating sections
of custom code that can be harvested and re-injected.

B. Declarative Mapping of Parameters
The internal structure of an NS element (data, task, flow,

connector, and trigger element) is based on a detailed design
pattern [8][9][10], implemented through a set of source code
templates, each represented by an expander definition. During
the actual expansion or code generation, for every instance of
an NS element, e.g., a data element ’Person’, the set of source
code templates is instantiated, steered by the parameters of the
model. The instantiation of an individual source code template
for an individual instance of an NS element, is schematically
represented in Figure 5, and contains the following aspects.

Figure 5. Expansion of a single artifact.

• The model parameters, represented on the top of
Figure 5, consisting of the attributes of the element
specification, e.g., the data element ’Person’ with its
attributes, and the options and technology settings.
All these parameters are available through the auto-
generated model classes, and may either originate
from the Prime Radiant database, or from XML files.

• An individual source code template, having unique
name that corresponds to the one of the expander
definition as described above. Such a template, rep-
resented in the middle of Figure 5, contains various
parameter-based conditions on the value and/or pres-
ence of specific parts of the source code.

175Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 190 / 241

• An instantiated source file or artifact, represented at
the bottom of Figure 5, where the various conditions
in the source code template have been resolved.

An important design feature is related to the mapping of the
parameters from the model, to the parameters that appear
in the source code templates and are thereby guiding the
instantiation. In order to provide loose coupling between
these two levels of parameters, and to ensure a simple and
straightforward relationship, it was decided to implement this
mapping in a declarative ExpanderMapping XML file. As
the entire NS model is made available as a graph of model
classes, the parameters in the templates can be evaluated
in the NS model using Object-Graph Navigation Language
(OGNL) expressions. These expressions are declared in the
XML mapping file of the expander.

VI. SOME PRELIMINARY RESULTS

The Normalized Systems expander software has been in
development since late 2011. Over the years, it was used by
several organizations to generate, and re-generate on a regular
basis, tens of information systems [11][12]. During these years,
and often on request of these organizations, many additional
features and options were built into the source code templates.
The overall refactoring was triggered by a concern over the
growing size — and therefore complexity — of the control
classes, but also motivated by a desire to leverage the implicit
homoiconicity of the NS model to increase the productivity of
improving and extending the expander software.

The complete refactoring was performed in six months by
two developers. Afterwards, the 181 expanders were cleanly
separated, and the software developers considered the ex-
pander codebase to be much better maintainable. Moreover,
the learning curve for developers to take part in expander
development was widely considered to be very steep, mainly
due to the size and complexity of the control classes. After
the refactoring, nearly all of the approximately 20 application
developers of the company, have stated that the learning curve
is considerably less steep, and that they feel comfortable to add
features and options to the expander software themselves. As
an additional result, we mention the fact that a junior developer
has created in two months a new set of 20 expanders. This
newly developed collection of expanders, targeted mainly at
the development of REST services using Swagger, has already
been successfully used in several projects.

VII. CONCLUSION

The increase of productivity and the improvement of evolv-
ability are goals that have been pursued for a long time in
computer programming. While more research has traditionally
been performed on techniques to enhance productivity, our
research on Normalized Systems has been focusing on the
evolvability of information systems. This paper presented a
strategy to combine both lines of research.

While the technique of automated programming or source
code generation was already incorporated in our work on
Normalized Systems, we have explored in this paper the
technique of homoiconicity or meta-circularity to increase
the productivity of the automatic or meta-programming. A
method was presented to make the representation of the code
generation models homoiconic, resulting in a considerable sim-
plification of the expanders, i.e., the code generation software.

Such a reduction of complexity could lead to a significant
increase in productivity at the level of the development of the
code generation software, and we have presented some very
preliminary results that this is indeed the case.

This paper is believed to make some contributions. First,
we show that it is possible to not only adopt code generation
techniques to improve productivity, but to incorporate meta-
circularity as well to improve the productivity of the code
generation. Moreover, this is demonstrated in a framework
primarily targeted at evolvability. Second, we have presented a
case-based strategy to make a code generation representation
homoiconic, and the corresponding application meta-circular.
Finally, we believe that the simplified structure of the code
generation framework improves the possibilities for collabora-
tion at the level of code generation software.

Next to these contributions, it is clear that this paper is
also subject to a number of limitations. It consists of a single
case of making a code generation application meta-circular.
Moreover, the presented results are very preliminary, and the
achieved collaboration on code generation software is still
limited to nearby colleagues. However, it is our goal to set up a
collaboration of developers on a much wider scale at the level
of code generation software, and to prove that this architecture
can lead to new and much higher levels of productivity for
developing automatic programming.

REFERENCES
[1] R. Agarwal and A. Tiwana, “Editorial—evolvable systems: Through

the looking glass of IS,” Information Systems Research, vol. 26, no. 3,
2015, pp. 473–479.

[2] D. Parnas, “Software aspects of strategic defense systems,” Communi-
cations of the ACM, vol. 28, no. 12, 1985, pp. 1326–1335.

[3] P. Cointe, “Towards generative programming,” Unconventional Pro-
gramming Paradigms. Lecture Notes in Computer Science, vol. 3566,
2005, pp. 86–100.

[4] J. R. Rymer and C. Richardson, “Low-code platforms deliver customer-
facing apps fast, but will they scale up?” Forrester Research, Tech. Rep.,
08 2015.

[5] C. Mooers and L. Deutsch, “Trac, a text-handling language,” in ACM
’65 Proceedings of the 1965 20th National Conference, 1965, pp. 229–
246.

[6] D. McIlroy, “Macro instruction extensions of compiler languages,”
Communications of the ACM, vol. 3, no. 4, 1960, pp. 214–220.

[7] J. Reynolds, “Definitional interpreters for higher-order programming
languages,” Higher-Order and Symbolic Computation, vol. 11, no. 4,
1998, pp. 363–397.

[8] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[9] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[10] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[11] P. De Bruyn, H. Mannaert, and P. Huysmans, “On the variability
dimensions of normalized systems applications: Experiences from an
educational case study,” in Proceedings of the Tenth International
Conference on Pervasive Patterns and Applications (PATTERNS) 2018,
2018, pp. 45–50.

[12] ——, “On the variability dimensions of normalized systems applications
: experiences from four case studies,” International journal on advances
in systems and measurements, vol. 11, no. 3, 1960, pp. 306–314.

176Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 191 / 241

An Enhanced Fault Prediction Model for Embedded Software based on Code Churn,

Complexity Metrics, and Static Analysis Results

Safa Omri

Karlsruhe Institute
of Technology

Germany
Email: safa.omri@kit.edu

Carsten Sinz

Karlsruhe Institute
of Technology

Germany
Email: carsten.sinz@kit.edu

Pascal Montag

Daimler AG
Boeblingen
Germany

Email: pascal.montag@daimler.com

Abstract—Software systems evolve over time because of function-
ality extensions, changes in requirements, optimization of code,
fixes for security and reliability bugs, etc., and it is commonly
known that software quality assurance is thus a continuous issue
and is often extremely time-consuming. Therefore, techniques to
obtain early estimates of fault-proneness can help in increasing
the efficiency and effectiveness of software quality assurance. The
ability to predict which components in a large software system
are most likely to contain the largest numbers of faults in the next
release helps to better manage projects, including early estimation
of possible release delays, and affordably guide corrective actions
to the quality of the software. This paper extends our previous
work, where we demonstrated that the combination of code
complexity metrics together with static analysis results allows
accurate prediction of fault density and to build classifiers
discriminating faulty from non-faulty components. The extension
presented in this paper augments our predictor and classifier
with code churn metrics. We applied our methodology to C++
projects from Daimler’s head unit development. In experiments
to separate fault-prone from non-fault-prone components, our
new approach achieved a classification accuracy of 89%, and
the regressor predicted the fault density with an accuracy of
85.7%. This is an improvement of 7.5% with respect to the
accuracy of fault density prediction, and an improvement of 10%
to the accuracy of fault classification compared to our previous
approach that did not take code churn metrics into account.

Keywords–Software defects mining; static analysis tools; statis-
tical methods; complexity metrics; churn metrics; fault proneness.

I. INTRODUCTION

Software plays an important role in automotive product
development and in embedded systems in general. As such
software is often safety-critical, considerable efforts have to
be put into quality assurance. Increasing the effectiveness
and efficiency of this effort hence becomes more and more
essential.

It is generally acknowledged that software quality assur-
ance is a pressing concern for embedded software development
[1]. Given the size, complexity, time and cost pressure in
automotive development projects, efficiency is of prime im-
portance. Nowadays, quality assurance is overall the most ex-
pensive activity for nearly all software developing companies,
since team members need to spend a significant amount of
their time inspecting the entire software in detail rather than,
for example, implementing new features. If bugs are detected,
the fixing of those consumes further development time.

Numerous research studies have analyzed code churn as a
variable for predicting faults in large software systems [2], [3],
[4]. Code churn is a measure of the quantity of code modifi-
cation occurring within a software component gradually. But
not only code churn is an indicator of problematic code. In our
previous work [5], we investigated whether defects detected by
static analysis tools combined with code complexity metrics
can be used as software quality indicators and employed these
measures to build pre-release fault prediction models. We
showed in a case study from the automotive domain that the
combination of these two measures can be used to predict the
pre-release fault density with an accuracy of 78.3%. We have
also shown that this combination can be used to separate high
and low-quality components with a classification accuracy of
79%.

High churn is typically related to more faults showing up in
code that has actually been changed frequently. And studying
these changes that take place during software evolution via
code churn is also important. We thus make use of code churn
to predict the fault density in software components. We have
mined the version control database of a large software system
to collect code churn variables. We create as well as validate
a collection of relative churn variables as early indicators of
software fault density. Relative churn variables are normalized
values of the numerous measures acquired throughout the
churn procedure [4].

In this article, we develop a prediction model based on
the following hypothesis: the history of code changes between
different releases (code churn) when combined with our two
previous measures can improve the prediction accuracy of
software faults density. Another contribution is to apply our
prediction model to automotive software, where we obtain
improved results compared to our previous approach.

The organization of the paper is as follows. After dis-
cussing the state of the art in Section II, we describe the design
of our approach in Section III. Our results are reported and
discussed in Section IV. Section V concludes and discusses
future work.

II. RELATED WORK

This section discusses the state of the art and the research
results in software fault prediction techniques:

177Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 192 / 241

A. Faults, Bugs and Failures
In this work, we use the term fault to refer to a bug (an

error) in the source code. A bug is a fault in a program which
causes it to behave abruptly. We refer to an observable error
at program run-time as failure. That is, every failure can be
traced back to a fault, but a fault does not necessarily result in a
failure. In recent years, researchers have learned to exploit the
vast amount of data that is contained in software repositories
such as version and bug databases [4], [6], [7], [8]. The key
idea is that one can map problems (in the bug database) to
fixes (in the version database) and thus to those locations in
the code that caused the problem [9], [10], [11]. The focus of
this work is these faults to obtain an early estimate of software
component’s fault-proneness in order to guide software quality
assurance towards inspecting testing the components most
likely to contain faults. Fault-proneness is defined as the
probability of the presence of faults in the software. Past
research on fault-proneness has focused on (i) the definition of
code complexity and testing thoroughness metrics, and (ii) the
definition and experimentation of models relating metrics with
fault-proneness. Moreover, extracting data when mining the
software repositories help to better identify the fault-proneness
of software components.

B. Mining Software Repositories
Mining software repositories allows researchers to analyze

the information produced throughout the software develop-
ment process, such as source code, version control system’s
metadata, as well as issue reports [12], [13], [14]. With such
evaluation, researches can empirically examine, understand,
and also discover valuable and also actionable insights for
software engineering. The extracted data when mining the
software repositories help to understand the impact of code
smells [15], [16], explore exactly how developers are doing
code reviews [17], [18], [19], [20] as well as which testing
practices they comply with [21]. Furthermore, historical infor-
mation extracted from software repositories allows researchers
to predict classes that are more susceptible to defects [11],
[22], [23], [24], and also determining the core developers
of a software team, e.g., to transfer knowledge [25]. Our
basic hypothesis is that while these works used only the
change and historical information from the source code, it is
highly likely that these detected information from software
repositories, combined with code complexity metrics and with
static analysis faults would be a good indicator of the overall
code quality, and help to enhance the fault prediction model
presented in our previous work [5].

C. Fault Prediction
Fault prediction is an active research area in the field of

software engineering. Many techniques and metrics have been
developed to improve fault prediction performance.

Object-oriented metrics were initially suggested by Chi-
damber and Kemerer [26]. Basili et al. [27] and Briand et al.
[28] were among the first to use such metrics to validate and
evaluate fault-proneness. Subramanyam and Krishnan [29] and
Tang et al. [30] showed that these metrics can be used as early
indicators of externally visible software quality. D’Ambros
et al. have compared popular fault prediction approaches for
software systems [31], namely, process metrics [32], previous
faults [33] and source code metrics [27]. Nagappan et al. [34]

presented empirical evidence that code complexity metrics can
predict post-release faults. They found that sets of complexity
metrics are correlated with post-release defects using five
major Microsoft products, including Internet Explorer 6.

Omri et al.’s work [5] builds on the study of Nagappan
et al. [34] and focuses on pre-release faults while taking into
consideration not only the code complexity metrics but also
the faults detected by static analysis tools to build accurate
pre-release fault predictors [5].

Furthermore, faults are closely related to changes made in
the software systems and studying the changes that take place
during software evolution via code churn is also important.
Khoshgoftaar et al. [2] were among the first to use past changes
for bug prediction. Their objective was to classify the modules
as fault-prone or not. Therefore, they identified modules where
debug code churn exceeded a threshold. They showed, by
studying the change history of two consecutive releases of
a large legacy software system of telecommunications, that
a high code churn, i.e., a high amount of lines added and
removed, is a good indicator of fault-prone modules. The
system studied contain over 38,000 procedures in 171 modules.
Ohlsson et al. [35], Graves et al. [3] studied the evolution
of changes in the software systems to understand their re-
lationship with software quality. Based on a study on eight
large-scale open source systems (Eclipse, Postgres, KOFFICE,
gcc, Gimp, JBOSS, JEdit and Python), Zimmermann et al. [8]
mined the version histories and predicted the location of future
changes in systems with an accuracy of 70%. Closely related
to our study is the work performed by Nagappan and Ball [4]
on predicting defect density in software systems using relative
code churn metrics, i.e., code churn weighted by lines of code.
They analyze different code churn measures in isolation, and
show that relative code churn is better than absolute code
churn values to predict defects at statistically significant levels.
Their approach is similar to ours in the sense that we are also
considering relative churn variables to predict fault potential.
However, we focus on predicting fault density on an extended
number of variables including code complexity metrics and the
faults detected by static analysis tools.

To the best of our Knowledge, this work is the first to
combine code churn metrics with code complexity metrics and
with static analysis results to predict software defect density.

III. APPROACH

Our approach, represented in Figure 1, can be summarized
in the following two steps:

A. Data Pre-Proprocessing
First, we collect the data required to train and test the fault

prediction models (the regressor and the classifier) out of a git
versioned software project. Git versioning allows us to capture
the required data for all software releases. The data required
to train our fault prediction models is:

1) Independent variables: The independent variables
are the input variables to the prediction models.
(a) Static analysis faults: we execute static code
analysis on each component for each release. We
define the static analysis fault density of a software
component as the number of faults found by static
analysis tools, per KLOC (thousand lines of code).

178Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 193 / 241

(b) Code complexity metrics: we compute different
code complexity metrics for each of the components
and for each release as describes in Table I. (c)
Code churn metrics: we mine the git repositories
databases to extract several code churn metrics (e.g,
added LOC, removed LOC, etc., see Table I) for each
release.

2) Dependent variable: The dependent variable is the
output that will be predicted by our prediction mod-
els. We mine the git repositories using natural lan-
guage processing techniques to parse and analyze
commit messages mentioning bug fixes keywords
(e.g, bug fix, bug fixing, etc.). Such bug fix commits
are the indicator of the true known fault density of
the software components for each release.

B. Model Training
We train different machine learning models to learn the

fault densities of each software component based on the
independent variables: (a) static analysis faults densities, (b)
code complexity metrics, and (c) code churn metrics.

We split our data into two parts: (1) train data which
accounts for 3 successive releases of all software components,
and (2) test data representing the fourth release (the last
release).

Figure 1. Overview of the fault prediction process

IV. EMPERICAL STUDY

In this section, we present the empirical study that we
performed to investigate the hypotheses stated in Section I.
In this section, we discuss the dataset, the statistical methods
and machine learning algorithms we used, and report on the
results and findings of the experiments. The experiment was
carried out using 70 components of an automotive head unit
control system (Audio, Navigation, Phone, etc.). The size of
the code base analyzed is 28.71 MLOC (2, 871 KLOC). All
repositories use the object oriented language C++.

A. Data Preparation
The goal of this work is to come up with fault predictors

that evaluate our hypothesis and enhance our prediction model
built in our previous study [5]. The data required to build our
fault predictors are:

1) Faults Data: We are interested, in this work, in faults
that have been detected during the development and mentioned
as bugfixes in git commits. For each component, we extracted
all detected bugs through mining the git repositories. The
extracted faults are then used to compute the fault density.

2) Static Analysis Fault Density: Moreover, we executed
static analysis tools on each component and extracted the
identified faults. These faults were then used to compute
the static analysis fault density. We used commercial non-
verifying static analysis tools in this study.

3) Code Complexity Metrics: We compute several code
complexity metrics for each of the components. The code
complexity metrics are represented in Table I. We limit our
study to a set of selected metrics that have shown to provide
significant quality indicators over a long period of time. Code
complexity metrics have been shown to correlate with fault
density in several case studies [28], [29], [30], and they have
been proposed in different case studies to assess software
quality [1], [34].

4) Code Churn Metrics: Software repositories contain his-
toric information regarding the overall development of soft-
ware program systems. Mining software databases is nowa-
days considered one of the most intriguing expanding areas
within software engineering. Different recent works have used
past changes as indicators for faults because faults that are
introduced by recent changes and the more changes are done
to a part of the source code the more likely it will contain
faults[36]. Thus, we mine the software repositories databases
to extract the churn metrics. We use these code churn metrics,
as described in Table I to predict software fault density. This
study builds on our work [5] and goes for faults collected
through mining the git repositories of all software components,
and takes into consideration not only the static faults and the
code complexity metrics but also the code churn metrics to
build accurate fault predictors.

5) Relative Code Churn Metrics: For each of the compo-
nent, we compute a number of relative code churn metrics, as
described in Table I. We show in this paper that using relative
code churn as fault predictor is better than using (absolute)
code churn predictors. Furthermore, combining relative code
churn metrics with code complexity metrics and static analysis
faults can accurately predict the fault density with a high
degree of sensitivity. Our metric suite in this work is able
to discriminate between fault and not fault-prone components
with an accuracy of 89.0 percent.

B. Model Fitting and Regression Analysis
In this section we compare predictive models built using the

different metrics presented in Table I in order to find the best
model for accurate fault prediction. We fit several models to the
absolute code churn data as well as the relative code churn data
separately as predictors, with the fault density as the dependent
variable. We tested our data on the four main regression models
families (Generalized Linear models, Deep Learning Models,
Random Forest Models and Boosted Models). The experiment

179Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 194 / 241

TABLE I. METRICS USED FOR THE STUDY

Metrics Description

Static Analysis Fault Density # faults found by static analysis tools
per KLOC (thousand lines of code).

Code Churn Metrics
Added LOC # lines of code added
Removed LOC # lines of code deleted
Modified Files # files modified
Files count # files compiled to create a software component
Developers # developers

Relative Code Churn Metrics

Added LOC / Relevant LOC

We expect the larger the proportion of
added code to the Relevant LOC,
the higher is the probability of the
presence of faults in the software component.

Removed LOC / Relevant LOC

We expect the larger the proportion of
removed code to the Relevant LOC,
the higher is the probability of the
presence of faults in the software component.

Modified Files / Files count

We expect the larger the proportion of
files in a component that get modified,
the higher is the probability of these
files introducing faults.

Code Complexity Metrics

Relevant LOC # relevant LOCs without comments,
blanks, expansions, etc.

Complexity cyclomatic complexity of a method
Nesting # nesting levels in a method
Statements # statements in a method
Paths # non-cyclic paths in a method
Parameters # function parameters in a method

shows that boosted models are showing the best fitting and
generalized accuracy. This result can be explained by the fact
that the relation between the independent variables is highly
non-linear. The boosted models include RGBoost (also known
as regularized gradient boosting), Distributed Random Forests
(DRF) as well as Gradient Boosting Machines (GBM). We
will shortly explain the model that we used in this study to
predict the fault density. RGBoost is a supervised learning
algorithm that implements a process called boosting to yield
accurate models [37]. Boosting refers to the ensemble learning
technique of building many models sequentially, with each
new model attempting to correct for the deficiencies in the
previous model [38]. In tree boosting, each new model that is
added to the ensemble is a decision tree. RGBoost provides
parallel tree boosting that solves many data science problems
in a fast and accurate way. For many problems, RGBoost
is one of the best gradient boosting machine frameworks
today [37]. Both RGBoost and GBM follows the principle
of gradient boosting. There are, however, differences in mod-
eling details. Specifically, RGBoost uses a more regularized
model formalization to control over-fitting, which gives it
better performance, especially when the correlation between
the independent variables is non-linear. Distributed Random
Forest (DRF) is a powerful classification and regression tool.
When given a set of data, DRF generates a forest of classi-
fication or regression trees, rather than a single classification
or regression tree [39]. As a measure of the regression fits,
we compute R2. R2 measures the variance in the predicted
variable that is accounted by the regression built using the
predictors. As a measure of the unbiased error estimate of the
error variance, we use the mean squared error (MSE). The
regression model fit for absolute code churn metrics has an
R2 value of 0.473, an MSE value of 0.235. Nevertheless,
using the relative code churn metrics as fault predictors shows
a better fit; the R2 value increases to 0.730, the MSE

TABLE II. REGRESSION FITS

RGBoost DRF GBM
R2 MSE R2 MSE R2 MSE

Pr
ed

ic
to

rs

Absolute Code
Churn Metrics
alone

0.473 0.235 0.325 0.337 0.592 0.195

Relative Code
Churn Metrics
alone

0.730 0.113 0.651 0.267 0.694 0.221

Relative Code
Churn Metrics
Combined With
Code Complexity
Metrics
and Static Analysis
Fault Density

0.857 0.015 0.683 0.103 0.784 0.067

decreases to 0.113. We then combined relative code churn
metrics with code complexity metrics and with static analysis
fault density as predictors for the fault density. Table II shows
that when using the combination relative code churn metrics
with code complexity metrics and with static analysis fault
density as fault predictors, we obtain the best fit using the
Regularized Gradient Boosting (RGBoost) model; the R2 value
increases to 0.857, the MSE decreases to 0.015. Therefore,
we conclude that it is more beneficial to combine relative code
churn metrics with code complexity metrics and static analysis
fault density to explain software faults. The validation of the
model goodness is repeated 10 times using the 10-fold cross-
validation technique. A benefit of using ensembles of decision
tree methods like regularized gradient boosting is that they can
automatically provide estimates of feature importance from a
trained predictive model, as presented in Figure 2.

Figure 2. Variable Importances

C. Fault-Proneness Analysis
In order to classify software components into fault-prone

and not fault-prone components, we applied several statistical
classification techniques. The classification techniques include
the same techniques that we considered for the regression;
RGBoost, DRF and GBM. The independent variables for
the classifiers are the relative code churn metrics combined
with the code complexity metrics and the static analysis fault
density. The dependent variable is the result of binarizing (i.e.,
fault-prone vs. not fault-prone) the fault density. A confusion
matrix, as defined in Table III, is used to store the correct
and incorrect decisions made by a classification model. For
instance, if a component is classified as fault-prone when it
is truly fault-prone, the classification is true positive (tp). If
the component is classified as fault-prone when it is actually

180Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 195 / 241

TABLE III. COMPARING OBSERVED AND PREDICTED COMPONENT
CLASSES IN A CONFUSION MATRIX. USED TO COMPUTE

PRECISION AND RECALL VALUES OF CLASSIFICATION MODEL

Observed class
fault prone non-fault prone

Pr
ed

ic
te

d
cl

as
s

fa
ul

tp
ro

ne True negative
(TN)

False negative
(FN)

no
n-

fa
ul

tp
ro

ne

False positive
(FP)

True positive
(TP)

clean (not fault-prone), then the classification is a false positive
(fp). If the file is classified as clean when it is in fact fault-
prone, the classification is a false negative (fn). Finally, if
the issue is classified as clean and it is, in fact, clean, the
classification is true negative (tn). In order to compare the
actual observed and predicted classes for each component, we
categorized each predicted class into four individual categories
as shown in Table III. As evaluation measures, we compute
precision, recall, and F-measure defined as:

• Precision: how many of the components classified by
our classifiers as fault-prone are actually fault-prone.

precision = tp
tp+fp

• Recall: how many fault-prone components our classi-
fiers were able to identify correctly as fault-prone.

recall = tp
tp+fn

• F-measure: measures the weighted harmonic mean of
the precision and recall.

F -measure = 2 ⇤ precision⇤recall
precision+recall

All two measures are values between zero and one. A
precision of one indicates that the classification model does
not report any false positives. A recall of one implies that the
model does not report any false negatives. The F-measure can
be interpreted as a weighted average of the precision and recall,
where an F-measure reaches its best value at one and worst
at zero. Furthermore, we investigate the use of the area under
the receiver operating characteristic (ROC) curve (AUC) as a
performance measure for approach. The area under the ROC
curve (AUC) equals the probability that the classifiers predict a
randomly chosen true positive higher than a randomly chosen
false negative. The larger the AUC, the more accurate is the
classification model. As shown in Figure 3, the classification
model which uses RGBoost as the classifier produced an im-
pressive result with all four performance indicators (Precision,
Recall, F-measure and AUC) being well above 0.9. Using
DRF or GBM achieved very high recall, but at the same
time it appeared to produce many false positives, and thus
their precision is much lower than the precision produced by
RGBoost. All studied classifiers achieved an AUC well above
the 0.5 threshold; 0.89 for RGBoost, 0.6 for DRF and 0.73
for GBM.

D. Threats to Validity
The validity of credibility problems occur when there

are mistakes in measurement. This is negated to an extent

Figure 3. Classification performance of our approach

by the reality that the whole data collection procedure is
automated through the version control systems through mining
the git repositories. Nevertheless, the version control systems
only documents data upon developer check-out or check-in
of files. If a developer made several overlapping edits to
a file in a single check-out/check-in period then a certain
amount of changes will not be visible. Moreover, a developer
may have a file checked out for a very long period of time
throughout which few churns were made. These worries are
reduced somewhat by the cross-check among the measures to
recognize irregular values for any of the measures, as well as
the significant dimension and diversity of our dataset. In our
study, we give proof for utilizing all the relative code churn
metrics rather than a subset of values or principal components.
This study is particular and ought to be improved based upon
further result.

V. CONCLUSION AND FUTURE WORK

In this paper we verified the hypothesis that history of
code changes between different commits and releases (code
churn) when combined with static analysis fault density and
code complexity metrics are a good predictor of pre-release
fault density. Moreover, adding code churn metrics increases
the prediction accuracy.

For future work we plan to further validate our study
by analyzing additional software projects. Attributing fault
density to smaller units of code (e.g., files, functions), we
consider also an interesting direction of research. To achieve
that it might be needed to take additional features of the
source code, such as the abstract syntax tree (AST), control-
and dataflow into account. For this, we also plan to train deep
learning models to predict software faults not only on the
component level, but also on the method level. We also plan
the generalizability of the presented approach on different
open source projects.

ACKNOWLEDGEMENT

We would like to thank Steffen Görzig and Pascal Montag
from Daimler AG for their support and for providing the data
underlying our case study.

REFERENCES
[1] R. Rana, M. Staron, J. Hansson, and M. Nilsson, “Defect prediction

over software life cycle in automotive domain state of the art and
road map for future,” in 2014 9th International Conference on Software
Engineering and Applications (ICSOFT-EA), Aug 2014.

181Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 196 / 241

[2] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan,
“Detection of software modules with high debug code churn in a
very large legacy system,” in Proceedings of the The Seventh Inter-
national Symposium on Software Reliability Engineering, ser. ISSRE
’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 364–.

[3] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Transactions on
Software Engineering, vol. 26, no. 7, July 2000, pp. 653–661.

[4] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New York, NY,
USA: ACM, 2005, pp. 284–292.

[5] S. Omri, P. Montag, and C. Sinz, “Static analysis and code complexity
metrics as early indicators of software defects,” Journal of Software
Engineering and Applications, vol. 11, no. 4, april 2018.

[6] A. Mockus, P. Zhang, and P. L. Li, “Drivers for customer perceived
software quality,” in ICSE 2005, 2005.

[7] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Trans. Softw.
Eng., vol. 31, no. 4, Apr. 2005, pp. 340–355.

[8] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the
26th International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 563–572.

[9] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings of the 25th International
Conference on Software Engineering, ser. ICSE ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 408–418.

[10] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
of the International Conference on Software Maintenance, ser. ICSM
’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 23–.

[11] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 2005 International Workshop on Mining
Software Repositories, ser. MSR ’05. New York, NY, USA: ACM,
2005, pp. 1–5.

[12] K. K. Chaturvedi, V. B. Sing, and P. Singh, “Tools in mining software
repositories,” in Proceedings of the 2013 13th International Conference
on Computational Science and Its Applications, ser. ICCSA ’13. Wash-
ington, DC, USA: IEEE Computer Society, 2013, pp. 89–98.

[13] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, “Metricminer: Supporting
researchers in mining software repositories,” in 2013 IEEE 13th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), Sep. 2013, pp. 142–146.

[14] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v. Deursen, “Mining
software repositories to study co-evolution of production & test code,”
in Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation, ser. ICST ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 220–229.

[15] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are all code smells
harmful? a study of god classes and brain classes in the evolution
of three open source systems,” in Proceedings of the 2010 IEEE
International Conference on Software Maintenance, ser. ICSM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[16] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“The scent of a smell: An extensive comparison between textual and
structural smells,” in Proceedings of the 40th International Conference
on Software Engineering, ser. ICSE ’18. New York, NY, USA: ACM,
2018, pp. 740–740.

[17] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 712–721.

[18] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014,
pp. 202–211.

[19] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they like this?:
Evaluating code contributions with language models,” in Proceedings

of the 12th Working Conference on Mining Software Repositories, ser.
MSR ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 157–167.

[20] P. Thongtanunam, S. Mcintosh, A. E. Hassan, and H. Iida, “Review
participation in modern code review,” Empirical Softw. Engg., vol. 22,
no. 2, Apr. 2017, pp. 768–817.

[21] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli,
“When testing meets code review: Why and how developers review
tests,” in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp.
677–687.

[22] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are popular classes more
defect prone?” in Proceedings of the 13th International Conference
on Fundamental Approaches to Software Engineering, ser. FASE’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 59–73.

[23] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design
flaws on software defects,” in Proceedings of the 2010 10th International
Conference on Quality Software, ser. QSIC ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 23–31.

[24] L. Pascarella, F. Palomba, and A. Bacchelli, “Re-evaluating method-
level bug prediction,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), March
2018, pp. 592–601.

[25] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: The apache server,” in Proceedings of
the 22Nd International Conference on Software Engineering, ser. ICSE
’00. New York, NY, USA: ACM, 2000, pp. 263–272.

[26] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, Jun. 1994.

[27] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw. Eng.,
vol. 22, no. 10, Oct. 1996, pp. 751–761.

[28] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis, “Investigating
quality factors in object-oriented designs: An industrial case study,” in
Proceedings of the 21st International Conference on Software Engineer-
ing, ser. ICSE ’99. New York, NY, USA: ACM, 1999.

[29] R. Subramanyam and M. S. Krishnan, “Empirical analysis of CK
metrics for object-oriented design complexity: Implications for software
defects,” IEEE Trans. Softw. Eng., vol. 29, no. 4, Apr. 2003.

[30] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on
object-oriented metrics,” in Proceedings of the 6th International Sym-
posium on Software Metrics, ser. METRICS ’99. Washington, DC,
USA: IEEE Computer Society, 1999.

[31] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical
Softw. Engg., vol. 17, no. 4-5, Aug. 2012, pp. 531–577.

[32] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th International Conference on
Software Engineering, ser. ICSE ’08. New York, NY, USA: ACM,
2008, pp. 181–190.

[33] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 489–498.

[34] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict com-
ponent failures,” in Proceedings of the 28th International Conference
on Software Engineering, ser. ICSE ’06. New York, NY, USA: ACM,
2006.

[35] M. C. Ohlsson, A. von Mayrhauser, B. McGuire, and C. Wohlin, “Code
decay analysis of legacy software through successive releases,” in 1999
IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403), vol. 5,
March 1999, pp. 69–81 vol.5.

[36] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic
identification of bug-introducing changes,” in Proceedings of the 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 81–90.

[37] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22Nd ACM SIGKDD International Conference

182Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 197 / 241

on Knowledge Discovery and Data Mining, ser. KDD ’16. New York,
NY, USA: ACM, 2016, pp. 785–794.

[38] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, 2000, pp. 1189–1232.

[39] M. Guillame-Bert and O. Teytaud, “Exact distributed training: Random
forest with billions of examples,” ArXiv, vol. abs/1804.06755, 2018.

183Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 198 / 241

Incorporating Petri Nets into DEVS Formalism for Precise System

Modeling

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

email: {koci,janousek}@fit.vutbr.cz

Abstract—Modeling and simulation are part of software de-
velopment because of their ability of system abstraction and
validation. One of the research motivation is oriented towards
more interactivity during system requirements modeling and a
possibility to investigate models under real condition. To achieve
this goal, the system has to be modeled precisely. There is a lot of
suitable paradigms—the paper concentrates especially on Object
Oriented Petri Nets (OOPN) and Discrete-Event Specification
(DEVS) formalisms. OOPN constitute an abstract formalism
allowing a natural description of parallelism, synchronization and
non-determinism. The formalism of DEVS constitutes a basis for
a theory of modeling and simulation and can be considered as a
basic platform for multi-paradigm system design. Therefore, the
formalism of OOPN has been incorporated to the formalism of
DEVS.

Keywords–Object Oriented Petri Nets; DEVS; modeling; simu-
lation; interconnection.

I. INTRODUCTION

Modeling plays an irreplaceable role in the software com-
munity, but its meaning is perceived in different ways. Its
primary task is to better present the domain problem solution,
to facilitate understanding of domain elements and, thus,
simplify the process of system analysis. In this understanding,
the model usually takes the form of static figures, which are
no longer used after analysis and design, eventually they serve
only as a starting point for implementation. However, the
implementation gradually moves away from these models and
the resulting product no longer corresponds to these models.
At this stage, tool-based testing or analysis cannot be provided
because the used models do not have a sufficient level of
precision in the specification of requirements. Some specified
elements need to be verified at a later stage of development,
or it is necessary to implement a prototype on which these
actions can already be performed. Both approaches extend the
time required to properly validate requests.

To model and analyze systems under real conditions during
the process of creating requirements and design, it is desirable
that these formal models can be linked to parts of the imple-
mentation that would be subject to the same way of running
control. In order to accurately determine point the system
diverts from expected behavior, we should be able to stop the
simulation and analyze it. We need to have such formalisms
that allow to control model execution.

The most widespread modeling tool is Unified Modeling
Language (UML) and its variants or adds that refine models
(e.g., Object Constraint Language—OCL [1]) to allow their
simulation (e.g., Executable UML). Generally, these meth-

ods can be called executable modeling [2]. However, the
used formalisms usually lack an inherent relationship between
graphical representation of models and the precise specification
of system behavior. There are approaches that attempt to
describe selected UML models in a fully formal way, such
as Foundational Subset for Executable UML Models (fUML)
[3], [4], which can specify a part of UML models by formal
description. On the other hand, this blurs the advantage of
UML, namely graphic notation.

The concept of model based design and executable mod-
eling is mainly applied to cyber physical systems [5] and is
not very widespread for system design and implementation.
This paper is a follow-up to the work on application of formal
models for specification and design of software systems [6],
[7], which concentrates on DEVS and Petri nets formalisms.
DEVS is a systems specification formalism developed by B.
Zeigler [8]. It constitutes a basis for theory of modeling and
simulation and can be considered as a basic platform for multi-
paradigm modeling and simulation [9]. Object Oriented Petri
Nets (OOPN) constitute a formalism suitable for structure
modeling with graphical notation [10].

If we want to integrate the created models into the real
environment, we must have a suitably adapted interface to
the system in which the considered real environment is im-
plemented. Implementation means its simulation, control of
simulated or real components, communication with a database
or other systems, etc. The formalism of OOPN allow to
incorporate executive code into a model—the code is placed
in transition actions. Such a solution makes it very difficult
to adopt already existing code, complicates the simulation and
analysis of the model and may not be completely conformist
from the designer’s point of view. Another solution is to
select the appropriate interface and delegate code execution
to formalism, which allows direct code incorporation while
adopting a run-time management method. DEVS is such a
formalism, but it becomes less transparent for larger systems
(there is no other form of graphical presentation other than
blocks). Therefore, this paper deals with an incorporation of
OOPN and DEVS formalisms.

The paper is organized as follows. First, we briefly present
formalisms of OOPN and DEVS (Section II). Section III takes
simulation control of both formalisms into account. Section IV
deals with the problem of incorporating OOPN into DEVS-
based framework. The OOPN and DEVS incorporation is
demonstrated on simple example in Section V. At the end,
we discuss results and benefits of presented solution.

184Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 199 / 241

II. USED FORMALISMS

This section briefly introduces formalisms of OOPN and
DEVS that are taken into account in the paper.

A. Formalism of Object Oriented Petri Nets

Formally, an OOPN is a tuple Π =
(Σ,Γ, V AR,CONST, c0, oid0), where Σ is a system
of classes, Γ is a system of objects, V AR is a set of variables,
CONST is a set of constants, c0 is an initial class, and oid0
is the name of an initial object instantiated from c0.

Σ contains sets of structural elements, which constitute
classes. It comprises classes CLASS, net elements (places
P and transitions T), class elements (object nets ONET ,
method nets MNET , synchronous ports SY NC, negative
predicates NPRED), and message selectors MSG. We de-
note NET = ONET ∪MNET .

A class is mainly specified by an object net (an element of
ONET), a set of synchronous ports and negative predicates
(a subset of SY NC and NPRED), a set of method nets (a
subset of MNET), and a set of message selectors (a subset
of MSG) corresponding to its method nets, synchronous
ports, and negative predicates. Object nets describe possible
autonomous activities of objects, while method nets describe
reactions of objects to messages sent to them from the outside.
Synchronous ports are special transitions, which cannot fire
alone but only dynamically fused to some other transitions.

Elements from CLASS and NET describe a structure of
simulation model and have to be instantiated to simulate the
model. For example, the instance of initial class c0 has to be
created with the object identifier oid0. At the same time, there
are created instances of object net. If the message is sent to
the object, an instance of the method net is created.

Let us define Γ as a structure containing sets of object
identifiers OID, and method net instance identifiers MID. We
denote ID = OID ∪MID. Object net is strictly connected
with the class, so that we can identify its instance by object
identifier. We also define universe U as the set of tuples of
constants, classes, and object identifiers. The set of all bindings
of variables used in OOPN is then defined as BIND = {b |
b : VAR −→ U}.

A state of a running OOPN model has the form of marking
of net instances. Marking is represented as the multiset of
token elements. An element of transition marking has a form
of cartesian product ID × T × BIND, where nid ∈ ID
represents the identifier of the method or object net instance,
t ∈ T is a static representation of transition in the net instance
nid, and b ∈ BIND is one element of bound variables. An
element of place marking has a form of cartesian product ID×
P × U , where nid ∈ ID represents the identifier of the net
instance, p ∈ P is a static representation of place in the net
instance nid, and u ∈ U is one element of place content. A
state s is then define as an item of multiset s ∈ [(ID × T ×
BIND) ∪ (ID × P × U)]MS .

Evaluation of transition fireability is based on high-level
Petri net evaluation—a transition is fireable for some binding
of variables, which are present in the arc expressions of its
input arcs and in its guard expression, if there are enough
tokens in the input places with respect to the values of input arc
expressions and if the guard expression for the given binding
evaluates to true.

B. Formalism of DEVS

DEVS is a formalism which can represent any system
whose input/output behavior can be described as sequence of
events. DEVS is specified as a structure

M = (X,S, Y, δint, δext, λ, ta)

where
X is the set of input event values,
S is the set of state values,
Y is the set of output event values,
δint : S −→ S is the internal transition function,
δext : Q×X −→ S is the external transition function,

Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the set of
total states,
e is the time passed since the last transition,

λ : S −→ Y is the output function,
ta : S −→ R+

0,∞ is the time advance function.

At any time, the system is in some state s ∈ S. If no
external event occurs, the system is staying in state s for ta(s)
time. If elapsed time e reaches ta(s), then the value of λ(s)
is propagated to the output and the system state changes to
δint(s). If an external event x ∈ X occurs on the input in time
e ≤ ta(s), then the system changes its state to δext(s, e, x).

This way we can describe atomic models. Atomic models
can be coupled together to form a coupled model CM . The
later model can itself be employed as a component of larger
model. This way the DEVS formalism brings a hierarchical
component architecture. Sets S, X , Y are obviously specified
as structured sets. It allows to use multiple variables for
specification of state and we can use input and output ports for
input and output events specification, as well as for coupling
specification. A lot of extensions and modifications of the
original DEVS has been introduced, such as parallel DEVS
[11] or dynamic structure DEVS [12] and a lot of simulation
frameworks has been developed.

III. SIMULATION CONTROL

This section describes basic concepts of simulation control
for OOPN and DEVS formalisms.

A. DEVS Simulation

DEVS simulation is a structure SIMD = (DM, τD, D),
where DM is a DEVS model, τD ∈ N is a model time of
DEVS simulation, and D is a set of solvers. DEVS model
consists of coupled or atomic subcomponents, each such a
component is controlled by its solver. The simulation of DEVS
model is controlled by special root solver. The simulation
control can be described as shown in Figures 1, 2, and 3.

1 τD ← 0
2 ta← 0
3 while ta 6=∞ do
4 call solver on root model
5 ta← ta from root model
6 if ta 6=∞ then
7 τD ← τD + ta
8 end
9 end

Figure 1. DEVS Root Solver Control

185Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 200 / 241

The root solver (Algorithm 1) works in cycle until the time
advance ta gets infinity. In each step, it calls a solver of root
model and updates the model time τD. If there is no component
which is able to do a step, the ta is set to infinity.

1 DM i is a set of subcomponents of the component i
2 ta =∞
3 foreach m ∈ DM i do
4 call solver on m
5 propagate event values from output ports of m to

connected input ports of subcomponents from
DM i

6 tm ← ta from component m
7 ta← min(ta, tm)
8 end

Figure 2. DEVS Coupled Solver Control

The solver of coupled component (Algorithm 2) goes
through all subcomponents. For each subcomponent, the solver
calls a subcomponent solver and propagates event values from
its output ports to input ports of connected subcomponents. At
the end, the solver sets ta to be a minimum value of ta of all
subcomponents.

1 m is an atomic DEVS model
2 if ta = 0 then
3 execute the output function λ on m
4 execute the internal function δint on m
5 else
6 if an external event x ∈ X occurs then
7 execute the external function δext on m
8 end
9 end

10 ta← ta from component m
Figure 3. DEVS Atomic Solver Control

The solver of atomic component (Algorithm 3) tests two
conditions. If its ta = 0, the output and internal functions
are executed. If ta > 0 (the component waits for the event)
and any external event occurs (an input port contains an event
value), the external function is executed. Finally, a new value
of ta is obtained.

B. OOPN Simulation

To simulate OOPN, we first extend previously
established definitions. The system of objects
Γ = (OID,MID,PID, FTID) is extended to identifiers of
place instances PID and fired transition instances FTID.
We denote ID = OID∪MID∪PID∪FTID. Let define a
relation @ ⊆ ID×CLASS ∪NET ∪P ∪T , which represent
relationships is an instance of. For example, (a, C1) ∈ @
means that a is an instance of the element named C1. We will
write this relation in the form a@C1. If the instance identifier
is not important, we will type only @C1.

OOPN simulation is a structure SIMΓ = (Π, τΓ, CAL),
where Π is the system of OOPN classes and objects, τΓ ∈ N

is a model time, and CAL = {(t, e) | t ∈ N∧ e ∈ FTID}MS

is a calendar represented by multiset of timed events.

The transition t ∈ T can be fireable for any of possible
bindings P(BIND). If the transition t is fired for the binding

b ∈ P(BIND), three possibilities can occur—(a) the fired
transition is completed immediately (it contains simple action),
(b) the fired transition will wait for specified time, or (c)
the fired transition will wait for called method finishing.
The possibilities (b) and (c) imply that the fired transition
ft ∈ FTID is created.

Three kinds of events can occur during the simulation—
fireable transition (it can be fired), fired transition (it can be
complete, i.e., the method called from this transition finished),
and timed fired transition (the transition waits for specified
time). The first and second events are called executable events
and the third one is called timed event.

Let define objeventsΓ : OID → P(T ∪FTID) determin-
ing executable events over all nets of the object, ϑ determining
a least time of event from the calendar, where

ϑ(C) =

{

∞, C = ∅
t, ∃(t, e) ∈ C ∧ ∀(ti, ei) ∈ C : t ≤ ti

and eventsϑ(C) = {e | (t, e) ∈ C ∧ t = ϑ(C)}
determining a set of timed events having least time in the
calendar.

The simulation control is described in Algorithm 4. While
there is possible to do a step (activity = true), the simulator
calls one simulation step.

1 activity ← true
2 while activity = true do
3 call step
4 end

Figure 4. OOPN Simulation Control

The simulation step is described in Algorithm 5. First, it
obtains a set of objects having at least one executable event.
If this set in not empty, the simulator selects an event from
each such an object and fires it. Firing events means that the
transition is fired and completed, or the transition is only fired
(so that the fired transition ft ∈ FTID arises), or the fired
transition is completed. Second, if the set of objects is empty,
the simulator obtains a set of timed events. If this set is not
empty, it sets a model time τΓ to the value of ϑ and releases
all events waiting at the time ϑ. Releasing timed events means
that they are removed from calendar and becomes executable
events. Third, if there is no event in the calendar, the simulation
is finished (activity← false).

IV. EMBEDDING OOPN INTO DEVS

There are several techniques to integrate various for-
malisms. The most common ones are combination, mapping,
and wrapping. The combination derives a new formalism from
already existing ones by their combination, e.g., DEV&DESS
[13] or Hybrid Petri nets [14]. The mapping approach maps
formalisms to supporting one so that just the supporting
formalism is interpreted. The wrapping approach connects sim-
ulators of different formalisms so that each model is interpreted
by its simulator and simulators communicate with each other
by means of a compatible interface. It is advantageous if one
of the formalisms can be use as a control simulator for all other
formalisms. Since DEVS rigorously defines the component
interface, it is very suitable to serve as a basic component

186Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 201 / 241

1 objs = {o ∈ OID | objeventsΓ(o) 6= ∅}
2 if objs 6= ∅ then
3 foreach o ∈ objs do
4 e← select an item from objeventsΓ(o)
5 fire e
6 end
7 else
8 ev = eventsϑ(CAL)
9 if ev 6= ∅ then

10 τΓ ← ϑ(CAL)
11 foreach e ∈ ev do
12 release event e
13 end
14 else
15 activity ← false
16 end
17 end

Figure 5. The OOPN Simulation Step.

platform for multiparadigmatic simulations. Consequently, we
have chosen wrapping to embed the OOPN formalism to the
DEVS formalism.

A. Ports and Places Mapping

Set of input event values X and output event values Y used
in the DEVS formalism can be specified as structured sets. It
allows to use multiple variables for specification of state and
we can use named input and output ports for input and output
events specification, as well as for coupling specification. Let
us have the structured set X = (VX , X1 × X2 × · · · × Xn),
where VX is an ordered set of n variables and X1 × X2 ×
· · · ×Xn denotes a value for each member from the set VX .
We can write the structured set as X = {(v1, v2, . . . , vn)|v1 ∈
X1, . . . , vn ∈ Xn)}. Members v1, v2, . . . , vn are called input
ports for the set X and output ports for the set Y .

DEVS components communicate each other through their
ports—when a new object is placed to the output port of a
component, it is carried to the appropriate input port of the
connected component. The way how to relate DEVS with
OOPN is to map ports and places.

Let MPN = (M,Π,mapinp,mapout) be a DEVS compo-
nent M which wraps an OOPN model Π, c0 ∈ CLASS is an
initial class of the model Π, oid0 ∈ OID is an initial object of
the class c0, VX is an ordered set of input ports of the model
M , and VY is an ordered set of output ports of the model
M . Let define onetΣ : CLASS → ONET determining an
object net of the class, placesΣ : NET → P(P) determining
a set of places of the net, and placeΓ : ID × P → PID
determining an instance of a place in the net. We divide
places of object net of an initial class c0 into two groups

P inp
c0 , P out

c0 ⊆ placesΣ(onetΣ(c0)), where P inp
c0 ∩ P out

c0 = ∅.
Then we can define a mapping of OOPN places into DEVS

ports as bijections mapinp : P inp
c0 → VX and mapout :

P out
c0 → VY .

Informally, if an OOPN model is defined as a DEVS
component, then an object net of initial class defines input
and output places. The initial class is instantiated immediately
the component is created, and the defined places serve as input
or output ports of the component.

B. OOPN Simulation Control Adaptation

In addition to place mapping, the simulation control has to
be adapted too. The OOPN simulator has to define functions
ta, δext, λ, and δint.

After each step, the simulator checks the time of the
next step by the function timeAdvance (t(a)). It tests three
conditions, as shown in Figure 6: (1) if there is at least one
executable object, the advance time is 0; (2) if there is at least
one timed event with activating time t, the time advance is a
difference of t and current model time τΓ; (3) if there is at
least one value in any place which is mapped as output port,
the advance time is 0 (the output function has to be executed
to propagate values from output ports); (3) otherwise, time
advance is infinity.

1 if ∃o ∈ OID : objeventsΓ(o) 6= ∅ then
2 return 0
3 else
4 t = ϑ(CAL)
5 if t 6=∞ then
6 return t− τΓ

7 else

8 if ∃y ∈ VY : map−1out(y) is not empty then
9 return 0

10 else
11 return ∞
12 end
13 end
14 end

Figure 6. timeAdvance ta

The external transition function δext is described in Fugure
7. If the component, which wraps OOPN model, receives
an external event (new data in its input ports), the function
extTransition (δext) is called. It takes values out from input
ports and puts them into mapped places.

1 foreach x ∈ VX do

2 p = map−1inp(x)
3 v ← a value from x
4 if v is not empty then
5 put v into a place placeΓ(oid0, p)
6 end
7 end

Figure 7. extTransition δext

The output function λ is described in Figure 8. If the
component, which wraps OOPN model, has any value to be
put output ports, it takes values from mapped places and puts
them into into appropriate output ports.

The internal function δint is described in Figure 9. It is
modified simulation step from Figure 5. First, the model time
τΓ is not updated directly by OOPN simulator (see the line
10 in Figure 5), but is set to the model time τD of DEVS
root solver (see the line 1 in Figure 9). Second, the liveness
of simulation is not tested by means of the attribute activity,
but the function ta. Third, the simulation cycle is subordinate
to DEVS root solver, so that the simulation control described
in Figure 4 is not in use.

187Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 202 / 241

1 foreach y ∈ VY do

2 p = map−1out(y)
3 v ← a value from placeΓ(oid0, p)
4 if v is not empty then
5 put v into an output port y
6 end
7 end

Figure 8. outputFunction λ

1 τΓ ← τD

2 objs = {o ∈ OID | objeventsΓ(o) 6= ∅}
3 if objs 6= ∅ then
4 foreach o ∈ objs do
5 e← select an item from objeventsΓ(o)
6 fire e
7 end
8 else
9 ev = eventsϑ(CAL)

10 if ev 6= ∅ then
11 foreach e ∈ ev do
12 release event e
13 end
14 end
15 end

Figure 9. intTransition δint

C. Controlling External Events

In the course of simulation, the events arise and are served
inside the model. Nevertheless, DEVS components or OOPN
objects can serve as interfaces to the outer world and the
incidental events from the world can arise. DEVS controlling
uses se-message—a mechanism for a notification of the root
solver about a state event, which serves as a request for internal
transition function. This mechanism is used especially in real-
time simulations.

In addition to internal events (fireable transitions, fired
transitions, and timed fired actions), the simulation of OOPN
distinguishes control event (serving method nets instantiation
and destroying) and external event. Because OOPN objects
can communicate with objects from the outer world, OOPN
is able to work with extended set of classes ECLASS =
CLASS ∪ PCLASS, where PCLASS is a set of classes
of product environment. Then, external event represents a
message called from object o@C, where C /∈ CLASS. If
the message is received, the control event instantiates method
net, consequently, new internal events arise, and a signal for
starting simulation cycle in the case of activity = false is
generated. When the OOPN model is wrapped to DEVS com-
ponent, the signal for simulation cycle is simply substituted
for se-message.

V. DEMONSTRATION OF OOPN EMBEDDING

We demonstrate embedding the OOPN formalism to the
DEVS formalism on a simple example.

A. Model

The model consists of two atomic components D1 and D2.
Each component has one input port inp and one output port

outp (VX = {inp} and VY = {outp}). Component ports are
connected as shown in Figure 10 (on the left).

C0 is_a PN

self hold: 20.

x

inp

outp

x

x

t11

calc: x

x

(#m, x)

return

D1

inp outp

x

y

t12

p11

(#o, x)

10
(#o, y)y

(#m, y)

D2

inp outp

x <= 10

p1

t1

t2

Figure 10. An OOPN-DEVS example.

The DEVS component D2 is atomic component, which
gets a value x at its input port inp, and puts a value x + 1
to its output port outp. Formally, the component D2 defines
following functions:

δext : x← VX(inp)

λ : x 6=∞ =⇒ VY (outp)← x+ 1

δint : x←∞

ta :

{

0, x 6=∞

∞, x =∞

The DEVS component D1 wraps an OOPN model Π
consisting of the class C0 (see the Figure 10 on the right).
The OOPN class has an object net and method net calc :. The
object net consists of places p1, inp, and outp, and transitions
t1 and t2. The class C0 is an initial class c0 of the model Π
and oid0 is an initial object. The input port inp is mapped to
the place inp and the output port outp is mapped to the place
outp.

B. Simulation without External Events

First, we will investigate what happens if the model simula-
tion starts and nobody will call the method calc: as an external
event. Possible states of the object oid0 are shown in Figure
11 in the form of place and fired transition marking—p1(10)
means a place p1 with one token a number 10, @t1(x = 10)
means a fired transition t1 with bound variable x = 10.

Simulation steps of components D1 and resp. D2 are
shown in Figure 12 and 13, respectively. Rows represents com-
ponent’s simulation step, columns contain information about
the step: i is step sequence number (over whole simulation),
τD is model time, s is current state, λ

δext

represents results
of stated functions, δint is a new state after executing the
function δint, event represents an event which has been fired
(transition or fired transition with the binding), and ta is time
advance after this step. Since the event, which has been fired,
is relevant only for OOPN component D1, the column event
is not present for the component D2.

188Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 203 / 241

s object net oid0

s0 p1(10), inp(), outp()

s1 p1(), inp(), outp(),@t1(x = 10)

s2 p1(), inp(), outp(10)

s3 p1(), inp(), outp()

s4 p1(), inp(11), outp()

s5 p1(11), inp(), outp()

Figure 11. List of states of the initial object oid0

There is a special sequence number i = 0 meaning ini-
tialization of components when only δint and ta are executed.
The component D1 fires a transition t1 for bindings x = 10,
switches to a state s1, and its ta is 20, because the fired
transition @t1(x = 10) holds for 20 time units. The component
D2 sets its internal variable x = ∞, stays in a state s0, and
produces ta =∞ because there is no action to be done.

i τD s λ
δext

δint event ta

0 0 s0
none
none

s1 t1(x = 10) 20

1 20 s1
none
none

s2 @t1(x = 10) 0

2 20 s2
Y (outp)←10

none
s3 − ∞

5 20 s3
none

inp←11 s4 − 0

6 20 s4
none
none

s5 t2(y = 11) ∞

Figure 12. Simulation step of the component D1

The next step i = 1 activates the component D1 for a time
20. It fires an event @t1(x = 10), changes to a state s2, and
sets ta = 0 because the event put a value to the place outp
which is mapped to output port—the value has to be added to
mapped output port in next step. Step i = 2 generates a value
10 in the output port outp, switches D1 to a state s3, and sets
ta =∞ because there is no event.

i τD s λ
δext

δint ta

0 0 s0
none
none

d0 ∞

3 20 s0
none
x←10 d1 0

4 20 s1
Y (outp)←11

none
d2 ∞

Figure 13. Simulation step of the component D2

The value is propagated through connection D1.outp →
D2.inp and the external function δext is executed on D2 in
step i = 3. It removes a value from input port inp, puts it
in variable x, and sets ta = 0 because the component has to
process this value in next step. The value is propagated through
connection D2.outp→ D1.inp and the external function δext
is executed on D1 in step i = 5. It removes a value from input
port inp and puts it in the place inp. Step i = 6 carries the

value from place inp to place p1 and sets ta = ∞ because
there is no fireable transition (the condition x <= 10 in C0.t1
is not met).

VI. CONCLUSION

The paper raised a question of modeling systems in real
environments and a need for incorporating executive code into
system models. It also presented the solution based on a com-
bination of Petri nets and DEVS formalisms. The presented
solution makes it possible to associate the formal models
described by High-level Petri nets (not just OOPN) with an
executable code that is incorporated into DEVS formalism
structures. DEVS formalism has the advantage of being an
abstract concept that can be easily adapted to a particular
environment due to the basic structures and principle of the
simulator. In the future, we plan to fully incorporate DEVS
formalism to the implementation of the software modeling tool.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-17-4014 and The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science – LQ1602.

REFERENCES

[1] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
your models ready for MDA. Longman Publishing, 2003.

[2] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of uml models:
a systematic review of research and practice,” Software & Systems
Modeling, vol. 18, no. 3, 2018, pp. 2313–2360.

[3] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation, vol. 1069,
2013.

[4] S. Guermazi, J. Tatibouet, A. Cuccuru, E. Seidewitz, S. Dhouib, and
S. Gérard, “Executable modeling with fuml and alf in papyrus: Tooling
and experiments,” in EXE@MoDELS, 2015.

[5] R. Manione, “A full model-based design environment for the devel-
opment of cyber physical systems,” Design, vol. 3, no. 1, 2019, pp.
1–30.

[6] R. Kočı́ and V. Janoušek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309–315.

[7] R. Kočı́ and V. Janoušek, “Specification of Requirements Using Unified
Modeling Language and Petri Nets,” International Journal on Advances
in Software, vol. 10, no. 12, 2017, pp. 121–131.

[8] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling and Simu-
lation. Academic Press, Inc., London, 2000.

[9] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015, pp. 17:1–17:24.

[10] V. Janoušek and R. Kočı́, “PNtalk: Concurrent Language with MOP,”
in Proceedings of the CS&P’2003 Workshop. Warsaw University,
Warsawa, PL, 2003.

[11] A. Chow and B. Zeigler, “Parallel devs: a parallel, hierarchical, modular,
modeling formalism,” in Proceedings of the 30th conference on Winter
simulation, 1994, pp. 716–722.

[12] F. Barros, B. Zeigler, and P. Fishwick, “Multimodels and dynamic struc-
ture models: An integration of dsde/devs and oopm,” in Proceedings of
the 30th conference on Winter simulation, 1998, pp. 413–420.

[13] B. Zeigler, “Embedding dev&dess in devs: Characteristic behavior of
hybrid models,” in DEVS Integrative M&S Symposium, 2006.

[14] H. Alla and R. David, Discrete, Continuous, and Hybrid Petri Nets.
Springer, 2005.

189Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 204 / 241

Comparative Evaluation of Input Features Used for Deep Neural Networks to Recognize

Semantic Indoor Scene from Time-Series Images Obtained Using Mobile Robot

Hirokazu Madokoro, Hanwool Woo, and Kazuhito Sato

Department of Intelligent Mechatronics
Faculty of Systems Science and Technology

Akita Prefectural University
Yurihonjo City, Akita, Japan

Email: madokoro@akita-pu.ac.jp

Abstract—Human living indoor environments are changing con-
tinuously according to our various lifestyles and activities.
Human-symbiotic robots require advanced capabilities of en-
vironmental understanding and adaptation. For robotic en-
vironmental adaptation, numerous machine-learning-based ap-
proaches have been proposed. Moreover, numerous types of
features such as brightness, edges, texture, etc. have been used
for learning networks. This study was conducted to evaluate
combinations of supervised-learning-based indoor scene recog-
nition methods and their input features. This paper presents a
framework to provide image features of three types according to
learning strategies. The experimentally obtained results evaluate
using two open benchmark datasets revealed suitable combina-
tions of input features including weights obtained from category
maps of Counter Propagation Networks (CNNs) used for Deep
Neural Networks (DNNs). We demonstrate a suitable combination
of features from scene images used for semantic indoor scene
recognition. Particularly, higher recognition accuracy is obtain-
able using original time-series images for learning with CNNs.

Keywords–bags of features; category maps; convolutional neural
networks; counter propagation networks; self-organizing maps; and
semantic indoor scene recognition.

I. INTRODUCTION

Human vision has a gazing mechanism that selects
attention-gathering information from a huge amount of infor-
mation: around 109 bit/s [1]. Treisman et al. defined visual
saliency as a bottom-up target extracting mechanism based on
physiological knowledge and perception with visual feature
attention [2]. Koch et al. [3] proposed Saliency Maps (SMs) as
a conceptual model of visual saliency. Subsequently, Itti et al.
[4] implemented SMs as a computational model for computer-
aided processing of images. Applications using saliency mod-
els have been proposed widely for computer vision, machine
vision, robot vision, collision detection, autopilot, visual per-
ception, and various recognition systems [5]. Using salient
objects as visual landmarks in an environment is regarded
as highly useful for semantic category recognition used as
components that characterize a complex scene [6].

Human living indoor environments are changing continu-
ously according to our various lifestyles and activities. Human-
symbiotic robots must have advanced capabilities of envi-
ronmental understanding and adaptation. Numerous machine-
learning-based approaches have been proposed for the adapta-
tion of robots in general environments [7][8][9]. In our earlier

study, we proposed a supervised-learning-based scene recog-
nition method using category maps [10]. Our experimentally
obtained results revealed that category maps, which visualize
relations among scene features, are beneficial for semantic
scene recognition.

In conventional machine-learning-based methods, suitable
combinational features are extracted in advance. Subsequently,
the number of feature dimensions is set as equal using Bag-of-
Features (BoF) representation methods. Recently, Deep Neural
Networks (DNNs) of various models are fascinating because of
their advanced classification and recognition accomplishments
[11]. We contemplate that improved accuracy is obtainable
for robotic scene recognition using DNNs. However, no scene
recognition result has been reported for DNNs trained using
weights extracted from category maps.

Saliency-based features are used widely for outdoor and
indoor scene classification and for recognition tasks. In one
earlier study of saliency-based object recognition, Shoko-
ufandeha et al. [12] examined an SM Graph (SMG) that
extracts object saliency regions in several scales using wavelet
transformation. Walther et al. [13] produced a biologically
plausible model based on SMs for detecting objects from
natural scenes. They used a Scale-Invariant Feature Transform
(SIFT) [14] descriptor for extracting and describing object
features. For outdoor scene recognition, Agrawal et al. [15]
described a method to specify accurate positions using cost
effective sensors simultaneously combined with GPS. As a
challenging reason for indoor scene recognition, Quattoni et
al. [8] demonstrated that vast indoor scenes are characterized
by objects. It is limited to scenes that are characterized by
spatial properties.

Fornoni et al. [16] explained an image classification method
based on saliency used for indoor semantic scene recognition.
For their method, they used SIFT and Support Vector Ma-
chines (SVMs) [17] as a feature descriptor and as a classifier.
Botterill et al. [18] proposed a real-time detection method of
similar scenes for position estimation used for a mobile robot.
They used low-dimensional codebooks combined with a rapid
descriptor based on Speeded-Up Robust Features (SURF) [19].
Their method achieved not only rapid object extraction and
recognition, but also position estimation in real time for 30
fps, which is an ordinary video frame rate.

For one earlier study using feature descriptors and DNNs,
Sachdeva et al. [20] compared the respective accuracies of

190Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 205 / 241

Figure 1. Whole system structure of our proposed framework including data
flows among several algorithms.

their proposed model using SIFT and of Convolution Neural
Networks (CNNs). They reported that CNNs, which learned
using original images, achieved superior accuracy to those
which learned using SIFT features with BoF. Mundher et al.
[21] proposed a facial expression recognition method using
fully connected CNNs combined with dense SIFT. The ac-
curacy of their method was superior to that achieved using
the conventional method using CNNs trained using original
image features. Both results demonstrated a different tendency
for selecting features from scene images used for learning
data of CNNs. Actually, the main advances in semantic indoor
scene relies on making use of state-of-the-art DNNs. However,
we consider that the limitation of DNN-based approaches
is inarticulate between input image features and recognition
accuracies.

This study was conducted to evaluate combinations of
machine-learning-based semantic indoor scene recognition
methods and their input features. This paper presents a frame-
work for providing image features of three types according
to learning strategies. The experimentally obtained results
evaluated using two open benchmark datasets revealed suitable
combinations of input features including weights obtained
from category maps used for DNNs. We demonstrate a suitable
combination of features from scene images used for learning
data of CNNs.

The rest of the paper is structured as follows. Sections II
and III present our proposed method and an experimental setup
including benchmark datasets and evaluation criteria, respec-
tively. Subsequently, Section IV presets evaluation experimen-
tal results with discussion. Finally, Section V concludes and
highlights future work.

II. PROPOSED METHOD

A. Whole architecture
Our proposed supervised-learning-based semantic indoor

scene recognition method comprises the following six steps:

1) description of Accelerated KAZE (AKAZE) features,
2) selection of salient regions using SM,
3) generation of BoF using Self-Organizing Maps

(SOMs),
4) creation of category maps using Counter Propagation

Networks (CPNs),
5) extraction of category boundaries using U-Matrix,
6) and recognition of semantic scenes using DNNs.

Figure 1 depicts the whole system architecture of our
proposed framework including data flows among the respec-
tive algorithms used for the system. First, local features are

extracted from an original input image Iorg using AKAZE
[23] for feature description. Subsequently, high-saliency or
low-saliency regions are divided using SMs. Herein, Iaka and
Ism respectively denote AKAZE features and an image mask
of SMs. AKAZE features on high saliency regions Ihigh and
those on low saliency regions Ilow are defined as

Ihigh = Iorg ∧ Iaka ∧ Ism, (1)

Ilow = Iorg ∧ Iaka ∧ Ism. (2)

Our method adopts SOMs [24] for BoF. Subsequently,
codebooks are created from Iaka, Ihigh, and Ilow. Letting
Isom a be histogram of SOMs as codebooks, then using Isom
as input features, category maps are created with CPNs [25].
Letting Icpn be weights of CPNs, then category boundaries are
extracted from Icpn using a U-Matrix. For the comparison of
recognition accuracies, Iorg , Isom, or Icpn are used as input
features for CNNs.

B. AKAZE descriptor
For conventional generic object recognition, SIFT [14]

has been used widely for use as an outstanding descriptor
of local features. Actually, SIFT descriptors are robust for
rotation, scale, position, and brightness changes not only from
a static image, but also from dynamic images. Alcantarilla et al.
[22] proposed KAZE using nonlinear scale space as a feature
that exceeded the SIFT performance. Moreover, they proposed
Accelerated-KAZE (AKAZE) [23], which accelerated con-
struction of nonlinear scale spaces of KAZE. In contrast to
SIFT, AKAZE was demonstrated as being approximately three
times faster, although maintaining equivalent performance and
accuracy. Therefore, we use AKAZE, which is suitable for
indoor environments where environmental changes occurred
frequently.

C. SMs
Briefly, the procedures of SMs include the following five

steps. First, a pyramid image is created from Iorg. Second a
Gaussian filter is applied to the pyramid image. Third, images
of the respective components of color phase, brightness, and
direction are created. Fourth, Feature Maps (FMs) are created
as visual features of each component with center-surround and
normalization operations. Finally, SMs are obtained from a
Winner-Take-All (WTA) competition for the linear summation
of FMs.

D. BoF
For this study, we used SOMs to create codebooks. Fig. 2

presents our codebook creation procedure from Iaka as BoF.
The following is the SOM learning algorithm.

Let xp(t) be output from the input layer unit p (1 ≤ p ≤ P)
at time t. As input features, Iaka, Ihigh, and Ilow are given
to xp(t). Let wp,q(t) be a weight from p to mapping layer
unit q (1 ≤ q ≤ Q) at time t. Herein, P and Q respectively
denote the total numbers of input layer units and mapping layer
units. Before learning, wp,q(t) are randomly initialized. Using
the Euclidean distance between xp(t) and wp,q(t), a winner
unit cq(t) is sought for the following.

cq(t) = argmin
1≤q≤Q

√√√√ P∑
p=1

(xp(t)− wp,q(t))2. (3)

191Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 206 / 241

Figure 2. Codebook creation procedure using SOMs from Iaka as BoF.

A neighborhood region ψsom(t) is set from the center of cq
as the following.

ψsom(t) = ⌊ψsom(0) ·Q ·
(
1− t

Zsom

)
+ 0.5⌋, (4)

where Zsom is the maximum learning iteration. Subsequently,
wp,q(t) in ψsom(t) is updated as

wp,q(t+ 1) = wp,q(t) + α(t)(xp(t)− wp,q(t)), (5)

where α(t) is a learning coefficient that is decreasing according
to the learning progress.

After learning, test data are entered to the input layer.
A winner unit is used for voting to create a histogram as
a codebook: Isom. We obtained Isom of two types: a 1-
Dimensional (1D) codebook using a 1D category map and a
2D codebook using a 2D category map. For creating Isom, the
index of the mapping layer is changed to qx and qy.

E. CPNs
We create a category map using CPNs. For learning CPNs,

Isom are entered to the input layer of CPNs as input features.
Let yr(t) be output from the input layer unit r (1 ≤ r ≤ R) at
time t. Let wr,s(t) be a weight from r to Kohonen layer unit
s (1 ≤ s ≤ S) at time t. Herein, R and Q respectively denote
the total numbers of input layer units and Kohonen layer units.
Before learning, wr,s(t) are initialized randomly. Using the
Euclidean distance between yr(t) and wr,s(t), a winner unit
cs(t) is sought for the following.

cs(t) = argmin
1≤s≤S

√√√√ R∑
r=1

(yr(t)− ur,s(t))2. (6)

A neighborhood region ψcpn(t) is set from the center of cs as
the following.

ψcpn(t) = ⌊ψcpn(0) · S ·
(
1− t

Zcpn

)
+ 0.5⌋, (7)

where Zcpn stands for the maximum learning iteration. Subse-
quently, ur,s and vs,k in ψcpn(t) is updated as shown below.

ur,s(t+ 1) = ur,s(t) + β(t)(yr(t)− un,m(t)), (8)

Figure 3. Brightness changes in daytime (upper) and nighttime (lower) with
similar positions.

vs,k(t+ 1) = vs,k(t) + γ(t)(zl(t)− vjn,m(t)), (9)

where β(t) and γ(t) are learning coefficients that decrease
along with learning progress.

As a learning result, ur,s is used for the input to CNNs.
We defined this interface as Icpn.

F. U-Matrix

For this study, we used a 2D Kohonen layer. The unit index
s is extended to sx and sy. Category boundaries are extracted
from ur,sx,sy using U-Matrix. Based on metric distances
between weights, U-Matrix visualizes the spatial distribution
of categories from similarity of neighbor units [26]. On a
2D category map of square grids, a unit has eight neighbor
units except for boundary units. Assuming U as the similarity
calculated using a U-Matrix, then for the component of the
horizontal and vertical directions, Uh± and Uv± are defined
as shown below.

Uh± =

√√√√ R∑
r=1

(ur,sx,sy − ur,sx±1,sy)2, (10)

Uv± =

√√√√ R∑
r=1

(ur,sx,sy − ur,sx,sy±1)2. (11)

For the components of the diagonal directions, Ud± are defined
as the following.

Ud± =
1

2

√√√√ R∑
r=1

(ur,sx,sy±1 − ur,sx±1,sy)2 (12)

+
1

2

√√√√ R∑
r=1

(ur,sx±1,sy − ur,sx,sy±1)2 (13)

G. DNNs

Numerous DNN frameworks are provided. For this study,
we used VGG-16 [28] that composed 13 convolutional layers
and three fully connected layers. As a mechanism to reduce
errors, VGG-16 includes a batch normalization algorithm in
each convolutional layer [27]. For general object position iden-
tification and classification, VGG-16 demonstrated superior
results in large-scale image competitions [28].

192Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 207 / 241

III. EXPERIMENTAL SETUP

A. Benchmark datasets
Quattoni et al. presented large-scale indoor scene recogni-

tion datasets [8]. The database includes 67 indoor categories
that collectively include 15,620 images. Although the numbers
of images vary among the categories, each category has at least
100 images. Images were obtained using a monocular camera.
Therefore, the datasets comprise dispersed images. For a real-
world robotics application, it remains a challenging task for a
mobile robot to move 67 different places [29].

For this study, we used two open benchmark datasets that
comprised time-series images obtained using mobile robots.
The first dataset is KTH-IDOL2 [30], which comprises time-
series images used for indoor robotics navigation and vision-
based position estimation. Indoor scenes are of five categories:
a printer area (PA), a corridor (CR), a one-person office (EO),
a kitchen (KT), and a two-person office (BO). The image
resolution is 320 × 240 pixels. This dataset includes some
object changes because images were obtained at time intervals
of up to six months in the same environment. Moreover, rotated
images were obtained at PA and KT for providing diverse
visual information.

The second dataset includes place recognition datasets [29]
that comprise time-series images obtained using a monocular
camera on a mobile robot. This dataset includes 17 scene
categories: 11 categories at York University and the remaining
6 categories at the Coast Capri Hotel. For this study, the
York University sub-dataset and the Coast Capri Hotel sub-
dataset are abbreviated respectively as YUSD and CHSD. The
respective resolutions of the images are 640 × 480 pixels.

As common features of both datasets, two robots of dif-
ferent heights were used for image data acquisition. We used
images obtained using a higher robot. Both datasets include
diverse image appearances with positional shifts because the
robot moved a previously setting route with manual operation.
Moreover, images are obtained in daytime and nighttime. Fig.
3 shows brightness changes with similar positions. For this
study, we used the both illumination condition images.

B. Evaluation criteria
As evaluation criteria, recognition accuracy R is defined as

R =
Stest

Ntest
× 100, (14)

where Ntest and Stest respectively denote the numbers of
test images and of correct recognition images. For this study,
we used Leave-One-Out Cross-Validation (LOOCV) [31] to
evaluate the capability of generalization.

IV. EVALUATION EXPERIMENT USING CPNS

A. Saliency for recognition
We evaluated the relations between recognition accuracy

and input features of three types: Iaka, Ihigh, and Ilow. Fig. 4
depicts results obtained from a comparison of the recognition
accuracy for KTH-IDOL2. The mean recognition accuracies
of Iaka, Ihigh, and Ilow were, respectively, 67.8%, 59.3%, and
61.2%. The recognition accuracy of Iaka was 8.5 percentage
points higher than that of Ihigh and 6.6 percentage points
higher than that of Ilow. This result revealed that Iaka was
the highest among three feature patterns.

45.9

80.9

52.3

65.5 66.8 67.8

44.7

77.0

44.4 45.2

52.1

59.3

43.6

78.1

39.6

57.8
53.1

61.2

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

BO CR EO KT PA Avg.

A
cc

u
ra

cy
 [

%
]

Category

Iaka Ihigh IlowIhighIaka Ilow

Figure 4. Recognition accuracy in each category for KTH-IDOL2.

93.7

87.0

95.8
98.0

96.3
99.0

89.5

94.0 92.9

85.5

98.5
94.7

90.4

81.4

93.4 93.2

79.8

97.1

82.9
80.5

86.0

71.6

95.5

89.0

80.7

75.0

91.1
93.8

82.1

93.6

73.8

90.3 91.2

82.0

93.5

88.4

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

AR AS CR L2 LR LN PL PR SR WR WP Avg.
A

cc
u

ra
cy

 [
%

]

Category

Iaka Ihigh IlowIhighIaka Ilow

Figure 5. Recognition accuracy in each category for YUSD.

77.2

97.5 96.8 95.1 96.8
93.8 93.3

75.5

96.8

90.3 91.4
93.7

90.3 90.0

71.8

90.4 92.2 92.1
89.5

91.3
88.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

CR HW DR BR CN LB Avg.

A
cc

u
ra

cy
 [

%
]

Category

Iaka Ihigh IlowIhighIaka Ilow

Figure 6. Recognition accuracy in each category for CHSD.

Fig. 5 presents results obtained from a comparison of
the recognition accuracy for YUSD. The mean recognition
accuracies of Iaka, Ihigh, and Ilow were 94.7%, 89.0%, and
88.4%. The recognition accuracy of Iaka was 5.7 percentage
points higher than that of Ihigh and 6.3 percentage points
higher than that of Ilow. This result revealed Iaka as the highest
among three feature patterns.

Fig. 6 presents results obtained for comparison recognition
accuracy for CHSD. The mean recognition accuracies of
Iaka, Ihigh, and Ilow were 93.3%, 90.0%, and 88.0%. The
recognition accuracy of Iaka was 3.3 percentage points higher
than that of Ihigh and 5.5 percentage points higher than that of
Ilow. Results demonstrated that Iaka was the highest among
three feature patterns. We obtained the similar tendency for
input features. Results also demonstrated that saliency-based

193Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 208 / 241

Iaka Ihigh Ilow

BO

CR

EO

KT

PA

Figure 7. Results of category maps for KTH-IDOL2.

WP

WR

SR

PR

PL

LN

LR

L2

CR

AS

AR

Figure 8. Results of category maps for YUSD.

HW

DR

BR

CN

LB

CR

Figure 9. Results of category maps for CHSD.

features dropped recognition accuracy.

B. Category maps
Fig. 7 portrays category maps created from KTH-IDOL2.

Unit color patterns correspond to scene category labels. For
all feature patterns, scene categories were divided into several
independent clusters. Clusters of various shapes and sizes were
mixed on the category maps. Moreover, independent clusters
consisting of a single unit exist in the maps. Particularly, PA,
CR, EO, KT, and CR of Iaka respectively comprised 9, 12,
14, 16, and 15 clusters. The CR clusters are larger than those
of other categories.

Fig. 8 portrays category maps created from YUSD. As
an overall tendency, similar categories are divided into inde-
pendent clusters that depict scene diversity. Comparison with
the result of KTH-IDOL2 reveals that clusters are gathered to
particular locations, with few independent units. Fig. 9 displays
some category maps created from CHSD. Although positions
and sizes differed among categories, the cluster distribution
tendency was similar to those of results presented in Fig. 8. The
experimentally obtained results revealed that category maps
with numerous clusters reflected the complexity of indoor
scenes.

C. Category boundary extraction
For analyzing the category relation, we extracted category

boundaries using U-Matrix, which calculated the similarity
of neighbor units based on the distance of weights between
category map units. For enhancing category boundaries, we
used the representative automatic image thresholding method

Figure 10. Boundary extraction results and category representative images
obtained using U-Matrix.

41.3

58.8

41.9
45.5

62.6

49.8

44.5

81.3

32.1

56.2

50.8

62.2

78.9

95.9

76.6

80.5
82.9

86.5

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

BO CR EO KT PA Avg.

A
cc

u
ra

cy
 [

%
]

Category

CPN-CNN CDB-CNN DIR-CNNIsomIcpn Iorg

Figure 11. Recognition accuracies and comparison results obtained for each
input feature.

reported by Otsu [33]. U-Matrix boundaries are depicted using
temperature colors, with high temperature portrayed as red
according to the distances among weights.

The left panel of Fig. 10 depicts boundary extraction
results for the results depicted in Fig. 7(a). The category
map included three independent regions and several slight
regions. For the three independent regions, we assigned labels
as Boundaries 1–3 according to the order of sizes. The right
panel of Fig. 10 portrays a category map with superimposed
boundary extraction results and category representative images.
Numerous units were labeled to CR in Boundary 1, especially
gathered PA images. In Boundary 3, labels were mixed with
all categories.

D. Evaluation Experiment using CNNs

For this evaluation experiment, we used KTH-IDOL2 alone
because we obtained sufficient recognition accuracies in place
recognition datasets using CPNs.

For learning and validation of CNNs, we used input image
features of three types: Icpn, Isom, and Iaka. Fig. 11 presents
results obtained from comparison of the respective scene
categories. The mean recognition accuracies of Icpn, Isom,
and Iaka with LOOCV were, respectively, 49.8%, 62.2%,
and 86.5%. Comparison of the three results indicates the
following Iaka obtained the highest recognition accuracies
in all categories. Regarding details of respective categories,
recognition accuracies of Isom in BO, CR, and KT were 3.2,
22.5, and 10.7 percentage points higher than those of Icpn. By
contract, recognition accuracies of Icpn in EO and PA were,
respectively, 9.8 and 11.8 percentage points higher than those
of Isom.

194Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 209 / 241

V. CONCLUSION

For semantic indoor scene comprehension when used for
a mobile robot, we evaluated combinations of supervised
machine-learning-based methods and input features using
AKAZE, SMs, SOMs, CPNs, U-Matrix, and DNNs. After
optimizing the parameters and input features, we conducted
two experiments using CPNs and CNNs as a recognizer using
open benchmark datasets comprising time-series images The
experimentally obtained results obtained using CPNs revealed
that the mean recognition accuracy of Iaka was higher than
those of Ihigh and Ilow in all categories. Several clusters
were created on category maps with designated complexity
of scenes. The experimentally obtained results obtained using
CNNs revealed that higher recognition accuracy was obtain-
able using original time-series images for learning.

For our future work, we expect to improve the recognition
accuracy to reduce false recognition around scene-switching
zones. The relation between processing time and recognition
accuracy must be assessed with an assumption of adaptation
to the real environment. Moreover, future studies must assess
recognition when using cameras with spherical lenses. Further-
more, we will implement our proposed framework to a human-
symbiotic robot for the conduct of evaluation experiments in
an actual environment.

REFERENCES
[1] K. Koch et al., “How Much the Eye Tells the Brain,” Current Biology,

vol. 16, pp. 1428–1434, 2006.
[2] A.M. Treisman and G. Gelade, “A Feature-Integration Theory of

Attention,” Cognitive Psychology, vol. 12, no. 1, pp. 97–136, 1980.
[3] C. Koch and S. Ullman, “Shifts in Selective Visual Attention: Towards

the Underlying Neural Circuitry,” Human Neurobiology, vol. 4, no. 4,
pp. 219–227, 1985.

[4] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual
Attention for Rapid Scene Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

[5] A. Borji and L. Itti, “State-of-the-Art in Visual Attention Modeling,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 185–207, 2013.

[6] H. Madokoro, K. Sato, and N. Shimoi, “Semantic Indoor Scene and
Position Recognition Based on Visual Landmarks Obtained from Visual
Saliency without Human Effects,” Robotics, vol. 8, no. 1, pp. 1–24,
2019.

[7] C. Siagian and L. Itti, “Rapid Biologically Inspired Scene Classification
Using Features Shared with Visual Attention,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 29, no. 2, pp. 300–312, 2007.

[8] A. Quattoni and A. Torralba, “Recognizing Indoor Scenes,” Proc.
Computer Vision and Pattern Recognition, pp. 413–420, 2009.

[9] A. Torralba, K.P. Murphy, W.T. Freeman, and M.A. Rubin, “Context-
Based Vision System for Place and Object Recognition,” Proc. IEEE
International Conference Computer Vision, pp. 1023–1029, 2003.

[10] H. Madokoro, Y. Utsumi, and K. Sato, “Unsupervised Indoor Scene
Classification Based on Context for a Mobile Robot (in Japanese),”
Journal of the Robotics Society of Japan, vol. 31, no. 9, pp. 918–927,
2013.
[?] S. Lazebnik, C. Schmid and J. Ponce, “Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Categories,”
Proc. Computer Vision and Pattern Recognition, pp. 2169–2178, 2016.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Advances in Neural Infor-
mation Processing Systems, vol. 25, pp. 1097–1105, 2012.

[12] A. Shokoufandeh, I. Marsic, and S.J. Dickinson, “View-Based Object
Recognition Using Saliency Maps,” Image and Vision Computing, vol.
17, pp. 445–460, 1999.

[13] D. Walthera and C. Koch, “Modeling Attention to Salient Proto-
Objects,” Neural Networks, vol. 19, no. 9, pp. 1395–1407, 2006.

[14] D.G. Lowe, “Object Recognition from Local Scale-Invariant Features,”
Proc. IEEE International Conference Computer Vision, vol. 2, pp.
1150–1157, 1999.

[15] M. Agrawal and K. Konolige, “Real-time Localization in Outdoor
Environments using Stereo Vision and Inexpensive GPS,” Proc. 18th
International Conference on Pattern Recognition, pp. 1063–1068, 2006.

[16] M. Fornoni and B. Caputo, “Indoor Scene Recognition using Task
and Saliency-driven Feature Pooling,” Proc. British Machine Vision
Conference, pp. 1–12, 2012.

[17] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[18] T. Botterill, S. Mills, and R. Green, “Speeded-up Bag-of-Words al-
gorithm for robot localisation through scene recognition,” Proc. 23rd
International Conference Image and Vision Computing, pp. 1–6, 2008.

[19] H. Bay, T. Tuytelaars, and L.V. Gool, “Surf: Speeded Up Robust
Features,” Proc. European Conference on Computer Vision, pp. 404–
417, 2006.

[20] V. Sachdeva et al., “Performance Evaluation of SIFT and Convolutional
Neural Network for Image Retrieval,” (IJACSA) International Journal
of Advanced Computer Science and Applications, vol. 8, no. 12, pp.
518–523, 2017.

[21] M. Al–Shabi, W. P. Cheah, and T. Connie, “Facial Expression Recog-
nition Using a Hybrid CNN–SIFT Aggregator,” Proc. International
Workshop on Multi-disciplinary Trends in Artificial Intelligence, pp.
139–149, 2017.

[22] P.F. Alcantarilla, A. Bartoli, and A.J. Davison, “KAZE Features,”
European Conference on Computer Vision, pp. 214–227, 2012.

[23] P.F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast Explicit Diffusion
for Accelerated Features in Nonlinear Scale Spaces,” British Machine
Vision Conference, pp. 1–12, 2013.

[24] T. Kohonen, “Self-Organized formation of Topologically Correct Fea-
ture Maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[25] R. H. Nielsen, “Counterpropagation networks,” Applied Optics, vol. 26,
pp. 4979–4983, 1987.

[26] A. Ultsch, “Clustering with SOM U C,” Proc. Workshop on Self-
Organizing Maps, pp. 75–82, 2005.

[27] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” Proc. the
32nd International Conference on International Conference on Machine
Learning, vol. 37, pp. 448–456, 2015.

[28] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” Proc. 3rd IAPR Asian Conference
on Pattern Recognition, pp. 730–734, 2015.

[29] R. Sahdev and J.K. Tsotos, “Indoor Place Recognition System for
Localization of Mobile Robots,” Proc. 13th Conference on Computer
and Robot Vision, pp. 53–60, 2016.

[30] J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt, “The KTHIDOL2
Database,” Technical Report CVAP304, KTH Royal Institute of Tech-
nology, CVAP/CAS, 2006.

[31] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection,” Proc. Fourteenth International Joint
Conference on Artificial Intelligence, vol. 2, no. 12, pp. 1137–1143,
1995.

[32] H. Madokoro, N. Shimoi, and K. Sato, “Adaptive Category Mapping
Networks for All- Mode Topological Feature Learning Used for Mobile
Robot Vision,” Proc. 23rd IEEE International Symposium on Robot and
Human Interactive Communication, pp. 678–683, 2014.

[33] N. Otsu, “A Threshold Selection Method From Gray-Level Histograms,”
IEEE Trans. System, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66,
1979.

[34] H. Madokoro and K. Sato, “Visualizing Support Vectors and Topo-
logical Data Mapping for Improved Generalization Capabilities,” Proc.
IEEE World Congress on Computational Intelligence, pp. 4226–4232,
2010.

195Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 210 / 241

Re-Planning of Bus Timetable Based on Route Search Log to Get on Now

Toshihiko Sasama†‡, Bhattacherjee Rupali†, Takao Kawamura†‡, Kazunori Sugahara†‡

†Graduate School of Sustainability Science,

‡Cross-informatics Research Center,

Tottori University

4-101 Tottori City, Tottori 680-8552, Japan

e-mail: sasama@tottori-u.ac.jp, m19j4063h@edu.tottori-u.ac.jp, kawamura@tottori-u.ac.jp, sugahara@tottori-u.ac.jp

Abstract—There are many web services developed for public

transport recently. We developed the "Busnet" in 2006, which

is a path planning system for route buses and trains in Tottori

prefecture, Japan. This system search includes about 8,500 bus

stops and stations and about 1,000 route search requests per

day. These route searches of recent years show that people

used the Busnet for searching "Now". As smartphone users

increased, make plan for tomorrows is in a minority, and route

search results have a lot of waiting time for riding because the

number of bus is small. Then we get the direct data of waiting

time from this search log. In this paper, for reducing these

waiting times, we consider the possibility to propose a plan to

remake bus timetable that mean to shift departure time of each

bus, from analysis of this daily route search log. As a result, to

shift median value of each bus’s waiting times reduced average

of waiting times by 5 minutes, otherwise, results in some

conditions using Genetic Algorithm (GA) are reduced or

increased by few minutes.

Keywords-Busnet; route search; log analysis; optimization;

genetic algorithm.

I. INTRODUCTION

Public transport systems are important for people who do
not have a car, such as children and old people. However, in
rural area, bus services and trains become unprofitable and as
a result some lines are abolished or the number of buses
decreased. This causes inconvenience and no one use buses,
making it further unprofitable. For these reasons, we need to
improve the convenience of using buses and stop the decline
of bus usage.

The “Busnet” is a path planning web service system for
buses and trains in Tottori prefecture, Japan for improving
convenience [1]. It collaborates with bus companies and has
some feature functions. One function is the Global
Positioning System (GPS) tracing [2]. Each bus driver has a
smartphone and enters a route-ID that is specified by each
bus company when starts running on the route. A
smartphone sends latitude and longitude using browser and
JavaScript code to the server, and the Busnet plots real time
bus positions on map web pages. From bus timetable
information and nearest bus stop information, this system
calculates delays of buses every minute and provides this
information to the end users. Other functions are to generate
index for route search to shorten search time, to mount a
touch screen computer terminal in front of the station for
visitors to introduce our service and try it out.

The last function of this system is the web view for
smartphones. In the first place we generate only character
(no-image and no-Cascading Style Sheets (CSS)) Hyper Text
Markup Language (HTML) to access from old mobile
phones. As android phone becomes popular, we generate and
distribute search tools of android application [3][4]. However,
due to performance improvements of smartphones and
development of JavaScript and CSS library, we drop android
only application, and rebuild web pages that can be used on
any computer and mobile Operating System (OS) using
responsive web design. From this system log, most users
access from smartphones, and in many searched requests
“departure time” was set to the current time. This can be
interpreted as meaning users searching on their smartphone
for the next arriving bus, in other words, that is the log of
waiting time to get on. Previously scheduling was based on
indirect data, such as ride number survey or questionnaire. In
this paper, based on these actual usage data, to reduce
waiting time we propose time shift plan of each bus. If one
bus schedule shifts forward to reduce some user's waiting
time, other users will miss the bus and need to wait for the
next bus, and this causes the need to shift the next bus in
order to reduce waiting time of these users. In some cases, it
is better that the previous bus schedule shift backwards so
passengers get on early without changing the schedule of the
following bus. To optimize such complex combinations, we
try to use Genetic Algorithm (GA).

The rest of this paper is organized as follows. Section II
describes the analysis results of the recent route search log.
Section III describes the proposal re-planning of bus
schedule using the result presented in Section II. Finally,
Section IV draws the conclusion and acknowledgement.

II. STATISTICAL DATA OF ROUTE SEARCH LOG

Some results of this system’s log analysis were reported
at academic workshop. From route search log we found
some trends, for example, tourists use it to make plans ahead
of time, and local people use it for daily routine. Moreover,
most users, about 60%, are smartphone users, not desktop
PC and notebook PC. In many cases, about 90%, departure
and destination search parameters are bus stops and some
landmark, which are probably used by tourists. One can set
latitude and longitude as departure or destination in place of
a landmark, however these are rare cases. So, one common
usage for this system users is to check departure time (=
waiting time) using a smartphone while heading to the target

196Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 211 / 241

bus stop. In rural areas, it is normal the number of buses is
1/hour, and the average of waiting time to get on the bus is
about 15 minutes.

III. TIME SHIFT OF BUS SCHEDULE

In some cases, this system shows transfer routes. To
simplify the problem, we consider the first transfer landmark
as destination in this experiment and consider the request
that get on near time from near bus stop.

Fig.1 shows each day’s average waiting time of
2019/9/2(Mon) ~ 9/4(Wed) that is labeled "base". It used
cleaned logs of smartphones access only, searching from
current time ±60 minutes, a bus waiting time of 60 minutes
or less, fixed departure is a bus stop, and destination is a bus
stop without a stopover (it is not a tourist spot, and not a
landmark after transfer). Three columns of Table. 1 show the
number of logs when cleaned under the above conditions.
For example, on 9/2, 867 requests are arrived totally to the
system and the system showed the resultant routes to each
request. 593 requests in total requests are from mobile phone
users and as shown in Colum (3') 474 busses are examined in
this work. These 474 busses are chosen to have same
departure and destination bus stops as the resultant route and
to have around 60 minutes departure time. Here, the length
of the gene in GA search method can be set to 474. A code
number of each gene corresponds shifting departure time of
each bus. By using GA method, the proposed system tried to
find the optimum departure time with the probability of the
existence of multiple users on the same bus is about 50%. It
means half buses can be scheduled thinking only one user in
a plan, and half buses need shared scheduling.

In Fig.1, labeled “median” shows the set shift time to
waiting time’s median value of each bus. When nobody gets
on it, we set shift time to 0. Waiting time’s average is under
6 minutes. It is the best in this figure. Situations of others are
as follows. GA(15): a code range is ±15 minutes, a mutation
rate is 0.1%, a population size is 10, a generation limit is 100,
used alternating swap method and discrete generation model,
and in fitness evaluation, max waiting time limited to 60
minutes, and when no bus exists to get on is evaluated as this
limited max, too. GA(60): same parameters of GA(15) but a
code range is ±60 minutes, a population size 50, and a
generation limit is 500. GA(max): same parameters of
GA(15) but a code range is -1 * max waiting time of that bus
~ 30 minutes. It is better than GA(15) or GA(60). GA(15)
and GA(60) are worse than “base”.

From results of GA(15) and GA(60), changing a
population size and a generation limit are not expected to
have effects. From other results adjusting a code range is
expected to have effects.

IV. CONCLUSION

In this paper, we selected route search log of web service
that a user wants to get on instantly from some bus stop
using a smartphone, and we defined it as real waiting time of
bus users. Based on it, we proposed new service timetable
with shifting departure time according to the GA outputs
which makes users convenient with small waiting times. On

TABLE I. NUMBER OF EXTRACTED LOGS

Date

(1)

Search

count

(2)

Search

from

mobile

(3)

Search

forward in

60min

(Fitness

evaluation)

(3’)

Bus

count

around

time

(Genes

length)

9/2 867 593 242 474

9/3 782 463 207 442

9/4 2097 490 250 461

Figure 1. Waiting time’s average and standard deviation.

one day data sets, these were real and small data sets, the set
shift time to waiting time's median reduced the average to 5
minutes, and GA optimizations were worked in some code
patterns, and were unusable in some cases.

In future work, we need to evaluate large data sets, such as
weeks or months that have transfers, many code patterns,
analysis of complex combination, and other machine
learning optimizations such as neural networks.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Numbers JP17K01256, JP17K06600.

REFERENCES

[1] Nihon Trip LLP, Busnet. [Onnline]. Available from:
http://ikisaki.jp, 2006 [retrieved: 10, 2019]

[2] M. Ito, T. Kawamura, and K. Sugahara, “Development of an
Automatic Vehicle Location System Using Smartphones,”
IEICE Trans. Japan, vol. J96-D, no 10, pp.2327-2339, 2013.

[3] H. Shibata, M. Ito, T. Kawamura, and K. Sugahara,
“Promotion of the Use of Public Transport with Social Media
on a Mobile Application,” Proceedings of the 10th Asia
Pacific Conference on Conputer Human Interaction (APCHI
2012), pp. 743-744, 2013.

[4] M. Taketa, M. Ito, T. Kawamura, and K. Sugahara,
“Development of Optimized User Interface of Public Transit
Navigator for a Smartphone,” International Journal of
Computer, Electrical, Automation, Control and Information
Engineering, vol. 5, no. 11, pp. 1342-1346, 2011.

197Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 212 / 241

Statistical Processing of Delay Time of Public Secondary Traffic

 and its Application to the Operation Plan

Rupali Bhattacherjee
†
, Toshihiko Sasama

†‡
, Takao Kawamura

†‡
 and Kazunori Sugahara

†‡

†
Graduate School of Sustainability Science, Tottori University
‡
Cross-informatics Research Center, Tottori University

4-101 Tottori City, Tottori 680-8552, Japan

email:
†
m19j4063h@edu.tottori-u.ac.jp,

‡
{sasama, kawamura, sugahara}@tottori-u.ac.jp

Abstract— We have developed and maintained a system called

“Busnet” with the aim of contributing to improve the

convenience of using public transportation from the standpoint

of information engineering. The Busnet is a system that enables

route search as its basic function and has a function as a bus

location system that shows the position of the running bus. In

this paper, we report on a system that grasps the bus operation

status by statistically processing the bus location system's log

data of the Busnet combining with the weather conditions such

as snowfall.

Keywords-Busnet; Location log data; Statistical processing.

I. INTRODUCTION

In recent years, the declining birthrate and aging
population in Japan have become a social problem. In
addition, depopulation of local cities is a major issue in close
connection with the declining birthrate and aging population.
Furthermore, the increase in the number of elderly people
living alone is also a problem. These problems are urgent
issues for local cities to take measures, and they become a
major issue related to the survival of the local city itself.
Therefore, although various measures have been taken in
local cities, the present situation is that the results have not
been achieved easily.

Tottori prefecture, where we live, locates in the Chugoku
region of the western end of Honshu, Japan. It is a local city
located about a couple of hours away by railroad from Osaka,
the second largest city in Japan, and is one of the most
decentralized prefectures.

In Tottori prefecture, we are actively working on various
problems that occur with depopulation. Maintenance of
public second transportation, such as route buses is one of
the serious problems for such local cities. As depopulation
progresses, the number of public transportation users
decreases, and it makes difficult to maintain the number of
routes and the busses. When the number of busses decreases,
convenience for users decreases. This causes a continuous
decrease in the number of users. Therefore, the prefecture
provides many subsidies to bus operators and manages to
maintain them, but it is financially difficult.

The development of motorization, such as private cars,
can be cited as a cause of the decrease of the number of
public transportation users. However, traffic accidents
caused by elderly people driving cars have not decreased. It
is difficult to think of a society that relies on the driving of its
own private car, especially in a single living family. From

this point of view, we believe that public transportation
maintenance by local government such as prefectures and
cities is essential to the functioning of an aging society.

II. BUSNET SYSTEM

As a member of a university located in Tottori Prefecture,
we have developed and maintained a system called “Busnet”
with the aim of contributing to the maintenance of such
public transportation from the standpoint of information
engineering. The Busnet is a system that uses route search as
its basic function and has a function as a bus location system
that shows the current locations of the running buses. Several
systems have been developed so far for bus and railway
route search systems, and many systems are available even
today. However, the Busnet system has various functions
based on the characteristics of the route bus and are used by
many general users. The biggest feature of Busnet is not to
show the transfer between bus stops, but to give a route using
public transport between the departure point and the
destination point including walking route. Bus location
function is also one of the biggest features of Busnet. To
realize the bus location function, about 300 smart phones are
equipped in all buses, and by using their GPS functions the
location data of current buses are transferred into a server
computer. The bus position information stored on the server
will be used for various purposes as log data of location
system. In this paper, based on these log data, we analyze
travel situations of the route buses in the past and constructed
a system to estimate the future travel situations depending on
weather information.

III. LOG DATA ANALYSIS OF BUSNET SYSTEM

About 300 smartphones are equipped in all local busses
to realize the bus location function in the Busnet and transmit
their current positions about every 20 seconds. On the server,
location information of latitude and longitude of all bus stops,
route information of each bus, operation timetable, etc., are
stored. From the location information sent from each bus and
the data on the server, it is possible to know which bus has
passed through which bus stop, or the delay status of each
bus.

There are 315 bus routes data and 8178 bus stops data
stored on the Busnet server, and the log data recorded in one
day is about 130 Mbytes. In addition, it is necessary to
respond to changes in bus service routes and changes in bus
stops locations for update of the schedule several times each

198Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 213 / 241

year. This paper is based on three years of data, about 150
Gbytes.

The operation status of the buses is determined by
obtaining the delay time at the bus stop of each bus. Since
travel data from the bus is sent about every 20 seconds, these
are not always sent from the bus stop locations. For this
reason, data pairs before and after the actual bus stop are
extracted from the log data, and the passage time at the bus
stop position is calculated by linear interpolation from the
transmission time and the latitude / longitude value. By
comparing this value with the operation timetable on the
server, the delay status of each bus can be determined.

Figures 1 and 2 show examples of the delay situation
obtained by using proposed system. Figure 1 shows the delay
situation of the all bus stops in the prefecture at 10:00 am on
November 23, 2016 and Figure 2 shows the situation on
February 10, 2017. In these figures, the bus delay time at
each bus stop is indicated by a colored circle. It is green
when the delay time is short and red when it is long, i.e.,
more than 30-minutes delay. Although Figure 1 shows the
delay situation in the absence of snow even in winter, it can
be seen that green circles are displayed at almost all location.
On the other hand, in Figure 2, it can be seen that there are
several delays mainly at bus stops in the mountains area due
to snow. The delay time at each bus stop at a certain time
indicates the delay time of the bus that passed immediately
before the specified time. Considering the bus stops included
in many bus routes, the delay time differs depending on the
travel route of the passed bus. That is, the bus traveling in the
urban area does not have a large delay time, but in the case
of a bus traveling in the mountain area, the delay time tends
to be long. In this system, in consideration of these, it is

devised so that not only specification of date and time but
also specification of bus route etc., can be considered to
obtain past delay situation.

IV. CONCLUSION

This paper reports the construction of a system that

calculates the delay time of a route bus in a specific time

zone at a specific bus stop based on data from the past three

years. By using the results obtained by the proposed method

together with weather information and learning by various

AI methods, it is possible to estimate the delay information

of the future bus. Predicting bus delays based on the weather

at that time provides useful information to the users. In

addition, indicating how much delay has occurred in which

regional bus route during snowfall based on past results is

important information for route managers such as prefecture

road staffs and bus companies. This will give useful

information in deciding which road to manage intensively.

Acknowledgment

This work was supported by JSPS KAKENHI Grant
Numbers JP17K01256, JP17K06600.

REFERENCES

[1] Nihon Trip LLP, Busnet. [Online]. Available from:
http://ikisaki.jp, 2006 [retrieved: 10, 2019]

[2] H. Shibata, M. Ito, T. Kawamura, and K. Sugahara, “Promotion
of the Use of Public Transport with Social Media on a Mobile
Application,” Proceedings of the 10th Asia Pacific
Conference on Conputer Human Interaction (APCHI 2012),
pp. 743-744, 2013.

Figure 1. Bus delay on November 23, 2016 (Not in snow season)

Figure 2. Bus delay on February 10, 2017 (Snowfall time)

199Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 214 / 241

Computer Analysis of World Chess Championship Players

Oscar Romero
Universitat Politecnica de Valencia

Valencia, Spain
E-mail: -oromero@dcom.upv.es

Lorena Parra
Universitat Politecnica de Valencia

Valencia, Spain
E-mail: -loparbo@doctor.upv.es

Jose Fernando Cuenca
Chess24

Madrid, España
E-mail: -Jose.fernando.cuenca@gmail.com

Jaime Lloret
Universitat Politecnica de Valencia

Valencia, Spain
E-mail: -jlloret@dcom.upv.es

Abstract— In some sports, it is difficult to know who has been
the best winner of the world championship. In athletism, it is
not so difficult because world records clearly state which is the
best mark. Nevertheless, in the case of chess, it is challenging to
know who has been the best world chess championship player.
Nowadays, it is well known that many chess engines can beat
the best chess players in the world, so we can use it for
comparison purposes. In this paper, we use one of the best
chess engines, Stockfish 10, in order to know which world
chess championship player is the best of all time. We have
compared their moves during the world championship with the
ones suggested by the chess engine in each game. Results show
how good each one of them was, compared with Stockfish 10,
which player obtained the greatest percentage of best moves
during their games, how the quality of their moves evolved
during the games and the average percentage of best moves
throughout the games.

Keywords-Chess; Computer Analysis; World Chess
Championship.

I. INTRODUCTION

Chess is a strategy board game that involves two players.
It is one of the most popular strategy games played across
the globe. Modern chess is based on the rules adopted in
Spain in the 15th century [1]. It is played on a checkered
board with 64 squares and includes 6 different types of
pieces. Each player starts with 16 pieces and the player who
has the white pieces starts the game by moving first. The
number of game states that can be reached through a legal
play was estimated to be around 1046 [2]. Because of its
complexity, chess has been used as a testbed for most of the
Artificial Intelligence (AI) systems.

It 1947, Alan Turing designed a program to play chess
for the first time in history. Since 1950, different programs
have been developed to play chess. Different strategies have
been applied to improve their results. While in 1960 chess
programs only can beat amateur players, in 1990 those
programs have become powerful and can win chess masters
[3].

In the last decades, chess players have evolved and
improved using chess programs to practice and learn. The
Elo is a method used to calculate the skills of a chess player.

The best players can foresee the development of a game 10
to 15 moves to decide the best strategy [4]. The current
world champion (since 2013), Magnus Carlsen, has an Elo
rating of 2882 [5]. On the other hand, the current versions of
the best chess programs have more than 3400 [6].

In 2006, Guid and Bratko used CRAFTY, a chess
program, to evaluate the quality of chess players regardless
of the game score [7]. They evaluate players of the World
Chess Championships (WCCs). CRAFTY calculates the best
move for each given position and compare the move that did
the players with the best move and assign an average error to
each player. Their results were strongly criticized because
some of the best players as Fischer were placed as weaker
than players who only won the WCC one year. On the other
hand, their results were disputed as the engine used to
calculate the best moves was considered weaker than most of
the analyzed players.

In this paper, we are going to analyze the performance of
all chess players in the WCC, like the work presented by M.
Guid and I. Bratko in 2006, but using a stronger engine. Our
hypothesis is that the results obtained in the past were
skewed by the used engine. Nowadays, computers are more
powerful and probably the best move calculated in the past
will be something different than the best move calculated in
this paper. Therefore, the average error for each player may
be different. We use all the games of the WCC, from 1886 to
2018, and the chess engine is configured with a depth of 28.
A total of 20 computers were used to calculate the average
error of each player and some other parameters. Then, the
results of the average error or each player are compared.
Finally, our results will be compared with the results
obtained in the past to evaluate the ranking of best chess
players according to their average error change.

The remaining of this paper is structured as follows.
Section 2 describes the related work. Section 3 details the
material and methods utilized. The results are shown in
Section 4. Finally, Section 5 presents the conclusion and
future work.

II. RELATED WORK

In this section, we are going to summarize the papers
which deal with the topic of chess, algorithms and AI.

200Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 215 / 241

Guid and Bratko compared the quality of different chess
players of the WCC [7]. They used the CRAFTY program.
CRAFTY evaluated the individual move realized by each
player. They used the games played in the WCC from 1886
to 2006. CRAFTY used a depth of 12 moves in the analyses.
The parameters used to compare the players were the
average error, % of blunders, complexity expected error, %
of best moves and difference between best moves. Their
results showed that Capablanca was the best player and
Fischer was the one with the highest difference between best
moves.

Ribeiro et al. [4] in 2013 used CRAFTY (Elo rating of
2950) to evaluate the white player advantage move-by-move.
They used 73,444 high-level chess matches available in
Portable Game Notation (PGN) Mentor. CRAFTY
calculated de advantage in terms of the number of remaining
pieces and its placement. A positive value indicated that the
white player has an advantage, while the negative value
indicated that is the black player who has the advantage.
Their results included the advantage, mean of advantage and
variance of advantage along with the game in each match.
They compare the data from different periods, 1857-1918,
1919-1949 and 1950-2011 to evaluate the changes in the
chess players. Their results suggested that the opening stage
of a match is becoming longer and pointed out that this
might be related to a collective learning process.

On the other hand, many authors used chess to test and
train AI systems. One example is the work proposed by
Vázquez-Fernández et al. in 2011 [8]. They proposed a
method for tuning the weights of the evaluation function of
chess based on evolutionary programming. They used 10
different players and 6 training games. They used as
“theoretical” values: 100 (pawn (fixed value)), 300 (knight),
330 (bishop), 500 (rook) and 900 (queen). As mobility, a
weight of 10, and bounds of [0,300], was used. After 50
generations, the weight changed to 100 (pawn), 310.89
(knight), 325.32 (bishop), 514.92 (rook), 841.61 (queen) and
5.62 (mobility). Finally, their engine was tested playing 10
games with a human player. It is important to note that, in
this paper, the Elo of the used engine was 1463. The Elo of
the human who played with the engine was 1737.

One year later, Vázquez-Fernández et al. [3] presented
how their engine reaches an Elo ranking of 2425 after
readjusting the weights. Moreover, they used the Hooke-
Jeeves algorithm [9] in order to pursue the adjustment of the
weights according to the best virtual players.

In 2014, Vecek et al. [10] presented a comparison
between different evolutionary algorithms. They proposed to
use Chess Rating System for Evolutionary Algorithms
(CRS4EAs) instead of the typical Null Hypothesis
Significance Testing (NHST). They claimed that NHST was
often misused and misinterpreted. The CRS4EAs was
planned as a tournament in which the algorithms are the
players and the solutions of algorithms as the game outcome.
A total of 15 evolutionary algorithms were tested. The best
evolutionary algorithm according to CRS4EAs was the
jDE/rand/1/bin (it was the second according to NHST).
According to the positions, 9 out of 15 obtained the same
position with both methods. Their results revealed that

CRS4EAs is comparable with NHST, but it is easier to use
and it is less sensitive to outliers.

In recent years, machine learning techniques have been
applied to strategy games, and then, trying to play better than
static algorithms. Alphago Zero was developed to play go, a
simple game, with simple rules, but with many possible
moves. It is an artificial intelligence, based on deep learning
and neuronal networks. After a deep training, it was able to
win the best human player on year 2016. In chess, several
artificial intelligences have been developed. One of the most
important is Leela Chess Zero (LCZero), also based on
neuronal networks. After an intense training, it became the
champion in Top Chess Engine Champion (TCEC) season
15, in May 2019, where Stockfish, one of the best static
algorithms, obtained the second position. Recently, Stockfish
has been improved and it is the current TCEC champion,
season 16, celebrated on October 2019. This time, LCZero
was in second position. Probably both of them will be
improved again, and perhaps they will get an ELO above of
4000 very soon.

III. TEST BENCH AND METHOD

In this work, we have evaluated all players in all world
chess championships, from 1886 to 2018. Today, there are
chess engines that play clearly better than the best human
players. Thus, using one of those chess engines we can
evaluate a human player. For this analysis, we get the score
of each move and compare it with the best move obtained by
the engine to get the human player error. From the
information provided by the chess engine, we can extract
additional information such as if the human selected the first,
second, etc. best move.

A. Test Bench

The chess engine selected for this study is Stockfish 64
bits Version 10, one of the strongest engines in early 2019.
We have created a program, using the Universal Chess
Interface (UCI) protocol to communicate with the chess
engine. The feature of the computers used to perform the test
was intel i5, 8th Gen, at 2.8 GHz. One of the most important
parameters to configure the engine is the depth. We used a
depth of 28 in order to meet the time requirements (2 hours
for 40 minutes plus 1 hour every new 20 moves, or 90
minutes plus 30 seconds every move) for each game taking
into account the computer features. The chess engine and
computer features provide us a good rating, and clearly, this
engine beats the Crafty engine used in [7]. We tested other
depths, like 29 and 30, but the results were similar, although
they needed very much more calculation time. Then, with a
depth of 28 and the used hardware, the average move
evaluation time was 3 minutes per move or 5 hours per
game. There was also the option to set up a fixed time per
move or game, but obviously this would provide different
results in different computers, or even in the same computer,
because the actual time used by the engine would depend on
the load of the computer, that may vary for different reasons

201Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 216 / 241

(status of Operative System, running processes, RAM
memory, etc.).

When our program is analyzing a game, it evaluates the
human player move, and it compares with the best move
given by the engine. Then, the difference will be the error
made by the human, if ever. Also, the program will tell us if
the human-made the best, the second-best, etc. move.

In total, near 1000 games were analyzed, employing
almost 5000 hours by the 20 computers with exactly the
same features, for 10 days.

For the analysis, some situations have been taking into
account. The first moves have been widely studied, and
chess players usually play opening books. The evaluation of
these first moves would not add too much information to this
study. Thus, we decide to start the analysis from move
number 7, that is, we have not evaluated the first 12 moves
(6 from the white and 6 from the black).

Another important decision is when to stop the analysis
of a game. There may be a moment that the evaluation of the
position is high (either positive por white pieces or negative
por black pieces) before the end of the game. Under this
situation, the white player may not play the best move, for
example, because it may take a lot of time to find it, and it
may be enough with a weaker move, fast to calculate, and
good enough to keep the big advantage. We selected the
limit of 2 white pieces (-2 for black pieces). On the other
hand, if white player is losing, even for more than 2 (white
position evaluation lower than -2) we will continue analysing
the game, because the player will try to play the best move,
trying not to lose the game (the same for black pieces with a
score of 2 or more).

In other studies like [7], complexity had been analyzed.
But in this paper, we are focused on the evaluation of each
player, regardless of complexity, present material, or type of
opening, for example. To get good results in all these
situations is part of the skill of the player. In this way,
blunders are also evaluated, when it may cause draw or lose
a game. Not to make blunders is also part of the skill of the
player.

IV. RESULTS

In this section, we have analyzed the average error for
each player (compared with the move suggested by Stockfish
version 10), the percentage of best moves performed during
the game, the evolution of each player along the games (from
past to present), for those that have played more than one
world chess championship, and the average of best moves vs
number of moves.

A. Average error

The average error is the difference between the
evaluation of the human player and the best move provided
by the chess engine. The formula used is

Mean error =
∑����� ���� ���������� – ������ ���� �����������

������ �� �����
 (1)

Figure 1 shows the average errors for all players in all
world championships. As expected from the results in the

last years, Magnus Carlsen is the top one chess player. Other
present players like Caruana and Karjakin show good
performance. Famous players like Kasparov, Karpov, and
Fischer, although not in the top five, show good results, with
an error average lower than 0.11.

Figure 2 shows the comparison of the results from this
study and results from [6], thus, showing the world
champions up to 2006. Results are similar, but the study of
2006 is giving in general higher average error, the mean
average error of players was 0.143 according to the results of
2006 and 0.14 according to results of 2019.

It is interesting to discuss the evaluations for very
important players like Kasparov, Fischer, where the
difference between both studies is almost 30%, and also
Karpov, with a difference of 16%. According to this study,
that is more precise than the previous one, these three players
have a good rating, as they have shown in their tournaments.
On the other hand, players like Lasker and Smyslov had an
over-evaluation in the past, and the new study shows that
they have actually a lower play strength.

Figure 1. Comparison of players in terms of average error.

0,3053

0,2413

0,2360

0,2273

0,2259

0,2240

0,2193

0,1937

0,1871

0,1756

0,1726

0,1667

0,1654

0,1620

0,1581

0,1579

0,1495

0,1474

0,1443

0,1434

0,1347

0,1323

0,1199

0,1164

0,1093

0,1076

0,1074

0,1064

0,1054

0,1036

0,1035

0,1000

0,0988

0,0879

0,0782

0,0768

0,0709

0,0674

0,0000 0,1000 0,2000 0,3000 0,4000

Chigorin

Janowsky

Zukertort

Tarrasch

Marshall

Steinitz

Gunsberg

Bogoljubow

Euwe

Morozevich

Bronstein

Lasker

Smyslov

Keres

Tal

Botvinnik

Reshevsky

Grischuk

Alekhine

Timman

Spassky

Svidler

Petrosian

Kortschnoj

Karpov

Fischer

Capablanca

Topalov

Gelfand

Kamsky

Aronian

Kasparov

Anand

Kramnik

Leko

Karjakin

Caruana

Carlsen

P
la

ye
rs

Average error

202Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 217 / 241

Figure 2. Comparison of average errors calculated in 2006 [7] and 2019.

B. Player evolution along games over the time

The quality of a player may change with time. In this
subsection, we show the evolution of some players along the
time, showing how the average error changes with the games
played along the time. In this section, we have analyzed only
those players who have played the world chess
championship more than one time in order to have enough
games for this analysis.

Figure 3 shows the average error evolution of some
players along with their participation in world
championships. The figure is divided into different periods,
a) presents the data from WCC champions between 2000 and
2018 with the 3 champions of this period (Carlsen, Anand,
and Kramnik). Note that even that the first played WCC by
Anand was in 1996, he is included in this graphic. Carlsen,
see Figure 3 a), although starting with a good average error
in his first WCC, shows a general improvement along with
his participation in four WCCs. Kramik and Anand had their
best result in the second played WCC. The most relevant
issue is that all of them have average errors lower than 0.105
between 2000 and 2018 (the average error of 0.12 of Anand
corresponds to the WCC in 1996), and the variations in their
average errors are minimum (lower than 0.025).

Figure 3 b) represents the average errors of players
between 1980 to 1996 with the 4 champions of this period
(Kasparov, Karpov, Spassky, and Botvínnik). There were
other WCC champions in this period who only played one
WCC and are not included. Kasparov had the best
performance in his first WCC, Karpov, and Spassky had
their best results in the second year and Botvinnik in ninth

WCC. During this period, the average error of the players,
0.12, is higher than in the current period and their variations
of the average error were higher than nowadays. Botvinnik is
the player who had higher variations, his worst results were
found in his fourth WCC.

The last period is represented in Figure 3 c) and
corresponds to the campions of the oldest WCCs (1886 to
1946). During this period, the players had even higher
variations than in the previous periods. The best results of
Alekhine, Capablanca, Lasker, and Steintz were in their first,
second seventh and fifth WCC respectively.

Apparently, there is no general trend that confirms that
the more time a player plays in the WCC, the better he plays
chess.

C. Percentage of “best moves”

Figure 4 shows the percentage of the best move selected
by the players. Famous world champions like Kasparov,
Carlsen, Karpov, and Fischer have similar rate choosing the
best move, but none of them are in the top five. Other
famous players from the past, like Capablanca, Lasker or
Steinitz have 50% or less of rating for selecting the best
move.

Figure 3. Player evolution by championships.

0,2300

0,1777

0,1370

0,1403

0,1492

0,1581

0,1402

0,1334

0,1343

0,1275

0,1383

0,1008

0,1292

0,1058

0,2240

0,1871

0,1667

0,1654

0,1581

0,1579

0,1443

0,1347

0,1199

0,1093

0,1076

0,1074

0,1000

0,0879

0,0000 0,0500 0,1000 0,1500 0,2000 0,2500

Steinitz

Euwe

Lasker

Smyslov

Tal

Botvinnik

Alekhine

Spassky

Petrosian

Karpov

Fischer

Capablanca

Kasparov

Kramnik

Average error

P
la

ye
rs

2019 2006

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

1 2 3 4 5 6

A
ve

ra
g

e
er

ro
r

Chamionship number

a) Carlsen Anand Kramnik

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8 9

A
v
e

ra
g

e
 e

rr
o

r

Chamionship number

b) Kasparov Karpov Botvinnik Spassky

0

0,05

0,1

0,15

0,2

0,25

0,3

1 2 3 4 5 6 7

A
ve

ra
ge

 e
rr

or

Chamionship number

c) Alekhine Capablanca Lasker Steinitz

203Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 218 / 241

Figure 4. Percentage of best move of different players.

Carlsen, who is the current world champion, won 4 WCC
and achieved the highest Elo in history. He has only 54.2%
of best moves. He is placed in the 11th position behind some
players who only played one WCC and never won the
championship as Gelfand, Leko, or Aronian. Nonetheless, it
is important to note that sometimes, the difference between
the first and the second-best move are small and has almost
no impact on the results of the game.

D. Average of blunders

The number of average blunders played by each one of
the analyzed players is presented in Figure 4. For this
analysis, we consider the WCC with only two players. A
move is considered as a blunder when causes that white
player has a score lower than 2 or black player has a score
higher than -2.

While in the previous section, we saw how very famous
players, such as Carlsen, Karpov or Kasparov, appeared in
relative bad positions; when we analyze the data of blunders
the results change, see Figure 5. The most recent WCC
champions: Carlsen, Anand, and Kramnik, appear in the top
seven positions. In their WCCs all of them played few
blunders: 1.3, 5.1 and 5.5 blunders as average in all WCC
respectively. It is relevant that Caruana is the player with the
lowest average. Nonetheless, in the specific WCC that
Caruana and Carlsen played, Carlsen had not played any
blunder.

Figure 5. Comparison of average blunders played.

Some of the most famous champions, such as Kasparov
and Karpov appears in the 9th and 10th position, with 5.5
and 6.1 average blunders per WCC. Meanwhile, other
famous players from the past, like Alekhine, Capablanca,
Lasker or Steinitz are in worse positions 24, 20, 12, and 28,
with more than 10 average blunders in each WCC.

E. Average of “best move” vs “number of move”

Finally, we are going to evaluate the performance in
terms of best move versus played move of different WCC
players along with the game. Since in other section we
pointed that the players were obtaining better performances
in the last evaluated period of the history of WCC, 2000 to
2018, we are going to compare the players with best
performances in this period: Kramik, Anand, Carlsen, and
Caruana. As we may expect due to the time control at move
40, many players make mistakes in moves near move
number 40, for example, in moves from 35 to 39. Then,
along next moves, the quality of moves increases, but only
for a short number of moves. Figure 6 shows how some
players make mistakes again starting around move number
45. Then, we will compare the performance from move
number 7 to move number 45, and from move 7 until the
end.

The situation along a game, like beginning moves,
ending, time left, may affect the capacity of the player to
select the next move. Figure 6 shows if the players have

42,3%

44,8%

45,6%

47,1%

47,4%

48,0%

48,0%

48,3%

49,1%

49,1%

49,2%

49,3%

49,3%

50,0%

50,5%

50,6%

50,8%

51,5%

51,6%

52,1%

53,0%

53,1%

53,3%

53,5%

53,9%

54,0%

54,1%

54,2%

54,5%

55,2%

55,3%

55,9%

55,9%

56,5%

56,8%

57,2%

59,2%

59,9%

0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0%

 Janowsky

 Zukertort

 Bronstein

 Steinitz

 Chigorin

 Gunsberg

 Lasker

 Petrosian

 Keres

 Tarrasch

 Spassky

 Bogoljubow

 Capablanca

 Tal

 Reshevsky

 Smyslov

 Botvinnik

 Alekhine

 Kortschnoj

 Timman

 Morozevich

 Kamsky

 Euwe

 Marshall

 Fischer

 Karpov

 Karjakin

 Carlsen

 Kasparov

 Topalov

 Svidler

 Grischuk

 Leko

 Aronian

 Anand

 Caruana

 Kramnik

 Gelfand

Percentage (%)

Pl
ay

er
s

1,0

1,3

2,0

4,0

5,0

5,2

5,5

5,7

6,1

8,0

8,5

8,5

9,3

10,4

11,0

11,0

11,3

12,0

12,0

12,5

13,5

13,5

14,0

19,5

20,0

24,0

26,0

27,7

32,0

34,0

37,0

37,5

0 10 20 30 40

Caruana

Carlsen

Karjakin

Leko

Gelfand

Anand

Kramnik

Karpov

Kasparov

Botvinnik

Topalov

Tal

Petrosian

Lasker

Spassky

Fischer

Smyslov

Bronstein

Gunsberg

Capablanca

Kortschnoj

Janowsky

Timman

Alekhine

Kamsky

Ewe

Bogolijubow

Steinitz

Marschall

Zukertot

Tarrasch

Chigorin

Average blunders (nº)

P
la

ye
rs

204Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 219 / 241

selected the best move, second, etc, depending on the
number of the move. Carlsen has a good rating, with an
average around of second-best move, an average of 2.15 with
standard deviation of 0.36 for moves 7 to 45. Only for very
long games, he may make a bad selection move, such as in
moves near number 60 or more than 70. Kramnik, also
shows good rating, around second best move, average of
1.96 with standard deviation of 0.40 for moves 7 to 45
although not reaching long games. Anand has an average of
2.11 with standard deviation of 0.39 for moves 7 to 45. His
results are similar to the observed results with Carlsen. On
the other side, Caruana (who only played one WCC and did
not win) is the one who has the highest variability in terms of
best move versus played move, average of 2.09 with a
standard deviation of 0.84 for moves 7 to 45. Thus, the
player who played the best moves more times is Kramnik
followed by Anand, Carlsen, and Caruana.

If we consider the whole game, moves 7 until the end, the
results slightly change and the order of players who had the
best average of best move versus played move is not
maintained. The new order is Kramnik, Anand, Caruana, and
Carlsen. The averages changed and, in most cases, the
averages increased, which means that after long games the
players selected worse moves. However, Kramnik had better
average when we consider the entire game, 1.88. Thus, we
can affirm that Kramnik had better performances in the
endgame than the other players.

V. CONCLUSION AND FUTURE WORK

In this paper, we have compared the performance of
WCC players with is Stockfish 64 bits Version. Our study
was based on the presented results in 2006 [7] and we have
compared our findings with their outputs.

When we compared the average error of different
players, the best player was Magnus Carlsen, the current
WCC champion. Nonetheless, some famous champions such
as Kasparov and Karpov were not in relevant positions
attending to these parameters. Other parameters such as the
percentage of best move and average of blunders were used
to compare players. While percentage of best moves gave
similar punctuations to players with different quality and

Elo, the ranking by average of blunders offered more
accurate results. Finally, we have evaluated the average of
best move versus played move of best players from 2000 to
today.

As future work, we will increase the complexity of our
analysis including other factors as stages. We will also
include statistical analysis in order to add more value to our
results. Moreover, we will analyze the performance of the
players based on their or her physical condition.

REFERENCES
[1] J. L. Cazaux and R. Knowlton, “A World of Chess: Its

Development and Variations Through Centuries and
Civilizations”, McFarland & Company, 2017.

[2] V. Janko and M. Guid, “A program for Progressive chess,”
Theoretical Computer Science, 644, 2016, pp. 76-91.

[3] E. Vázquez-Fernández, C. A. C. Coello, and F. D. S.
Troncoso, “Assessing the positional values of chess pieces by
tuning neural networks' weights with an evolutionary
algorithm;” In 2012 World Automation Congress (WAC
2012), 24-28 June 2012, Puerto Vallarta, Mexico, pp. 1-6.

[4] H. V. Ribeiro, R. S. Mendes, E. K. Lenzi, M. del Castillo-
Mussot, and L. A. Amaral, “Move-by-move dynamics of the
advantage in chess matches reveals population-level learning
of the game,” PLoS One, 8(1), 2013, pp 1-7.

[5] Fide Ranking. Available at:
https://ratings.fide.com/card.phtml?event=1503014. Last
access 11/10/2019

[6] Ranking. of chess programs. Available at:
https://ccrl.chessdom.com/ccrl/4040/. Last access 11/10/2019

[7] M. Guid and I. Bratko, “Computer analysis of world chess
champions,” ICGA Journal, 29(2), 2006, pp.65-73.

[8] E. Vázquez-Fernández, C. A. C. Coello, and F. D. S.
Troncoso, “An evolutionary algorithm for tuning a chess
evaluation function”. IEEE Congress of Evolutionary
Computation (CEC 2011), 5-8 June 2011, New Orleans, USA
pp. 842-848.

[9] O. Tolga Altinoz, A. Egemen Yilmaz, Multiobjective Hooke–
Jeeves algorithm with a stochastic Newton–Raphson-like
step-size method, Expert Systems with Applications, Volume
117, 1 March 2019, pp. 166-175.

[10] N. Veček, M. Mernik, and M. Črepinšek. “A chess rating
system for evolutionary algorithms: A new method for the
comparison and ranking of evolutionary algorithms”
Information Sciences, 277, 2014, pp. 656-679.

Figure 6. Comparison of the best move versus the played move.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

5 15 25 35 45 55 65 75

B
es

t
m

o
ve

Number of move (nº)

Caruana Carlsen Anand Kramnik

205Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 220 / 241

A Proposal of Descriptive Pattern for Maintainability Requirements

Yuki Sanomachi

Shibaura Institute of Technology

Tokyo, Japan

e-mail: ma18051@shibaura-it.ac.jp

Tsuyoshi Nakajima

Shibaura Institute of Technology

Tokyo, Japan

e-mail: tsnaka@shibaura-it.ac.jp

Abstract—To clearly define quality requirements is crucially

important for developing high quality systems and software.

Unlike usability and security requirements, maintainability

requirements often come from developers themselves.

Therefore, their descriptive patterns have not been discussed so

much in spite of their importance. This paper proposes a

descriptive pattern for maintainability requirements based on

the quality requirements framework in the ISO/IEC 25030:2019.

The proposed descriptive pattern covers maintainability

requirements using all the measures in ISO/IEC 25023 and

enables machine checking their correctness and unambiguity.

Keywords-quality requirements; maintainability; SQuaRE;

standardization.

I. INTRODUCTION

Information and Communication Technology (ICT)
systems have been used in various places and situations, and

therefore, their failures can have a large impact on the society.

Therefore, it is required not only to fit them to various needs
and usage scenes, but also to ensure their quality through

careful consideration on social impact [1].

Development of a quality ICT system is required to meet its

quality requirements as well as its functional ones. Quality

requirements cover many views of the target system, among

which quality views related to system behavior, such as

usability and Security. These have been discussed thoroughly

in separate communities to standardize manners to write their

quality requirements.

In contrast, quality views related to the internal structure of

the system, such as maintainability and portability, are not

properly discussed with respect to standardization and the
manner in which they are specified.

In the systems and software engineering field, the reality is

that quality requirements are specified in a variety of manners,

most of which are not properly written without being

separated from functional requirements [2].

ISO/IEC 25000 series (SQuaRE: Systems and software

Quality Requirements and Evaluation) are developed to

provide a framework for quality definition and evaluation,

including quality models and measures, which cover an

exhaustive set of quality views. In addition, ISO/IEC 25030:

2019 [3] in the SQuaRE series provides a framework for
defining quality requirements using the quality models and

measures.

In this paper, we propose a descriptive pattern for

specifying maintainability requirements based on the

specification format defined in ISO/IEC 25030:2019. The

proposed descriptive pattern covers various kinds of

maintainability requirements and enables machine checking

their correctness and unambiguity.
In this paper, Section II describes the related work, and then,

Section III proposes a descriptive pattern for maintainability.

Section IV gives a qualitative evaluation of the proposed

pattern. Section V summarizes this paper and gives future

work.

II. RELATED WORK

 ISO/IEC 25010 [5] defines the product quality model with

eight quality characteristics. Maintainability is one of them,

which provides five sub characteristics: modularity,

reusability, analyzability, modifiability, and testability,

whose definitions are shown in TABLE 1.

TABLE Ⅰ DEFINITIONS OF SUB－CHARACTERISTICS OF

MAINTAINABILITY [5]

Sub-

characteristic
Definition

modularity degree to which a system or computer
program is composed of discrete components
such that a change to one component has
minimal impact on other components

reusability degree to which an asset can be used in more

than one system, or in building other assets

analyzability degree of effectiveness and efficiency with
which it is possible to assess the impact on a
product or system of an intended change to
one or more of its parts, or to diagnose a
product for deficiencies or causes of failures,
or to identify parts to be modified

modifiability degree to which a product or system can be
effectively and efficiently modified without
introducing defects or degrading existing
product quality

testability degree of effectiveness and efficiency with
which test criteria can be established for a
system, product or component and tests can

be performed to determine whether those
criteria have been met

ISO/IEC 25023 [6] product quality measures provides 86

quality measures corresponding to quality sub characteristics,
including 13 measures for maintainability characteristic.

Japan Users Association of Information Systems (JUAS)

published a guideline which defines their own quality

measures other than those of ISO/IEC 25023 [4]. These give

206Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 221 / 241

recommendation on what measures should be used for

maintenance requirements. However, these do not guide how

to define maintenance requirements themselves. Therefore,

there are needs for descriptive patterns to guide it.

ISO / IEC 25030: 2019 [3] provides the following
specification format for specifying quality requirements.

⚫ Target entity: Components of the system

⚫ Selected characteristic: modularity

⚫ Quality goal with conditions:

Reducing the coupling between any two of

components

⚫ Quality measure: (MMo-1-G) coupling of

components

⚫ Target value: 1

⚫ Acceptable range of values: 0,98 – 1,00

It is recommended to use this format for specifying not

only the scope and goal of the quality requirement, but also

quality measures with its target value and acceptable range

of the value.

III. DESCRIPTIVE PATTERN FOR SPECIFYING

MAINTAINABILITY REQUIREMENTS

In this paper, we propose a descriptive pattern for

maintainability requirements with the aim of standardizing
the manner to specify them. We set the following four

requirements for the descriptive pattern:

(1) The descriptive pattern for specifying maintainability

requirements shall cover all types of maintainability

requirements with as few descriptive patterns as

possible.

(2) Maintainability requirement statements conformed to

the pattern shall be natural to readers.

(3) Maintainability requirement statements conformed to

the pattern shall prevent from ambiguities.

(4) The pattern shall enable machine checking

correctness and unambiguity for maintainability
requirement statements.

In order to create the descriptive pattern of the

maintainability requirements, we did the following analysis:

i. Create a table of maintainability measures merging

those from the ISO/IEC 25023 and JUAS guidelines.

ii. Extract what achievement to be measured in the

corresponding quality sub characteristic as the “quality

goal”.

iii. Parameterize the quality measure so that it 2can be
limited to the appropriate level of application. The

parameters include:

・ Scope of the target entity

・ Criteria for the evaluation

・ Context for application (evaluation period,

subjects, etc.)

iv. Create descriptive patterns and try using them to write

requirement statements.

As a result of the above analysis, we propose the following

descriptive pattern for maintainability requirements.

In order to Quality goal, quality measure shall be [greater

| smaller] than Target value.

Quality goal = [improve | increase | suppress | decrease]

Attribute of Target entity] | Outcome of use

The two rows of Quality goal and Quality requirement

statement are added to the original table of quality measures

to be TABLE 2. In TABLE 2, for example, if Quality goal is

“increase the independency of system components,” Quality

measure is “the coupling of components,” and Target value

is “99.0％”,” the quality requirement statement goes to:

In order to increase the independence of system

components, the coupling of components shall be greater

than 99.0％.

IV. EVALUATION

All the maintainability requirements in TABLE 2 can be

specified naturally using the proposed descriptive pattern.

This proves to meet the requirements (1) and (2).

Quality requirement statements conformed to the proposed

descriptive pattern have all the items of the specification

format in ISO/IEC 25030:2019, which is designed to prevent

the quality requirement statements from being ambiguous,

which meets the requirement (3).

SE Suite [7] is a tool for describing, checking, and

evaluating quality in requirement specifications, and consists
of the following three tools:

・ Requirements Quality Analyzer (RQA),

・ Requirements Authoring Tool (RAT)

・ Knowledge Manager (KM)

RQA provides a checking function for general requirement

statements with designated descriptive patterns. We can use

this tool to implement machine checking maintainability
requirements using the proposed description pattern and

vocabularies defined in KM. SE Suite can check the
following points:

・ whether the statement is syntactically correct or not

・ whether terms are defined or not

・ whether relationship between terms are appropriate or

not

・ whether the context of application of the quality

measure is appropriate or not

・ whether the range of the quality measure is appropriate

or not

207Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 222 / 241

 Figure 1 shows an example of checking layers of SE Suite

for the maintainability requirement statement using the

proposed pattern.

Figure Ⅰ Checking layers of SE Suite for the maintainability requirement

statement using the proposed description pattern

By implementing the description pattern proposed with SE

suite, it is mechanically possible to detect errors, omissions,
and ambiguities in the requested sentences.

This shows that the proposed description pattern meets

requirements (4).

V. CONCLUSION AND FUTURE TASKS

In this paper, we proposed a descriptive pattern for

maintainability requirements, which proves to cover various

types of them. Using SE Suite, this pattern enables a variety

of checking for maintainability requirement statements.
The proposed descriptive pattern can be applied to all the

maintainability measures defined in ISO/IEC 25023 and

JUAS, but it may not be limited to them. On the contrary, the

single pattern might not be enough to specify some other

maintainability requirement statements. Therefore, we

should consider quantifying quality attributes, such as target

question metrics (GQM). The proposed pattern should be

examined to write more examples of maintainability

requirements, which strengthen our belief on the proposed

pattern to meet the requirements for it.

ACKNOWLEDGMENT

This research was conducted as a project of "International

standardization for quality model and evaluation of system

and software (Japan Standards Association)" as a part of the

industrial standardization promotion business of Ministry of

Economy, Trade and Industry, FY2019.

REFERENCE
[1] Information-technology Promotion Agency Japan,

” Information system failure status”, 2018, pp. 1–3.

[2] J. Eckhardt, A.Vogelsang, and D. Méndez Fernández, “Are non-

functional requirements really non-functional? an investigation of non-
functional requirements in practice”, Proc. International
Conference on Software Engineering(ICE16), ICE Press, Nov.
2016, PP. 832-842, doi:10.1145/2884781.2884788.

[3] ISO/IEC Software Engineering, ISO/IEC25030 Software
Product Quality Requirements and Evaluation (SQuaRE)
Quality requirements framework, 2019.

[4] JUAS ed, “A guideline for specification of non-functional
requirements (UVC project II)”, 2008, pp. 89–100.

[5] ISO/IEC Software Engineering, ISO/IEC25010 Software
Product Quality Requirements and Evaluation (SQuaRE)
System and software quality models, 2011.

[6] ISO/IEC Software Engineering, ISO/IEC25023 Software
Product Quality Requirements and Evaluation (SQuaRE)
Measurement of External Quality, 2016.

[7] The REUSE Company.Systems Engineering Suite,
https://www.reusecompany.com/systems-engineering-suite,
(accessed 2019-11-17).

208Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 223 / 241

Requirements Quality Analyzer (RQA
Quality sub-

characteristic Quality goal Quality measure Measurement function Quality requirement statement

Modularity Increase the

independence of

system

components.

Coupling of

components

X=A/B

A=Number of components which are implemented with no

impact on others

B = Number of specified components which are required to be

independent

In order to increase the

independence of system

components, the coupling of

components of the system shall be

greater than [target value].

Increase module

cohesion

Cyclomatic

complexity

adequacy

X = 1– A/B

A = Number of software modules which have a cyclomatic

complexity score that exceeds the specified threshold B =

Number of software modules implemented

In order to increase module

cohesion, the cyclomatic complexity

adequacy should be greater than

[target value].

Reusability Increase the

number of

reusable

components (or

modules).

Reusability of

assets

X = A/B

A = Number of assets which are designed and implemented to be

reusable

B = Number of assets in a system

In order to increase the number of

reusable components (or modules),

the reusability of assets
(applicable range, criteria for being

an asset, Criteria for reusability)

shall be greater than [target value].

Improve coding

quality of

modules

Coding rules

conformity

X = A/B

A = Number of software modules conforming to coding rules for

a specific system

B = Number of software modules implemented

In order to improve coding quality

of modules, the coding rules

conformity (scope, coding code)

shall be greater than [target value].

Analyzability Increase the

adequacy of

data used to

trace causes of

the system

failures

System log

completeness

X=A/B

A = Number of logs that are actually recorded in the system

B = Number of logs for which audit trails are required during

operation

In order to increase the adequacy of

data used to trace causes of the

system failures, the system log

completeness shall be greater than

[target value].

Improve the

accuracy and

efficiency of

identifying

causes of the

system failure.

Diagnosis

function

effectiveness

X=A/B

A = Number of diagnostic functions useful for causal analysis

B = Number of diagnostic functions implemented

In order to improve the accuracy

and efficiency of identifying causes

of the system failure, the diagnosis

function effectiveness shall be

smaller than [target value].

Diagnosis

function

sufficiency

X=A/B

A = Number of diagnostic functions implemented

B = Number of diagnostic functions required

In order to improve the accuracy

and the efficiency of identifying

causes of the system failure, the

diagnosis function sufficiency shall

be greater than [target value].

Improve the

readability of

the program.

Program source

comment rate

X=A/B

A = Implemented comment rate

B = Comment rate defined by the organization

To improve the readability of the

program, the program source

comment rate (application range)

shall be more than [target value].

Modifiability Improve the

accuracy and

efficiency of

system

correction.

Modification

correctness

X = 1 – (A/B)

A = Number of modifications that caused an incident or failure

within a defined period after being implemented

B = Number of modifications implemented

In order to increase the accuracy

and efficiency of system correction,

make modification correctness

(target period) less than [target

value].

Modification

capability

X=A/B

A = Number of items actually modified within a specified

duration

B = Number of items required to be modified

In order to improve the accuracy

and efficiency of system correction,

the modification capability shall be

smaller than [target value].

Improve the

appropriateness

of system

modification

management.

Change Content

Documenting

Rate

X=A/B

A = Number of features documented and subject to review

B = Number of functions with program change

In order to improve the

appropriateness of system

modification management, the

change content documentation rate

shall be greater than [target value].

Testability Increase the

sufficiency of

functions to

support test

execution.

Test function

completeness

X=A/B

A = Number of test functions implemented as specified

B = Number of test functions required

In order to increase the sufficiency

of the function to support test

execution, the test function

completeness shall be greater than

[target value].

Increase the

possibility of

independent

testing.

Autonomous

testability

X=A/B

A = Number of tests that can be simulated by stub among the

tests which depend on other systems

B = Number of tests which depend on other systems

In order to increase the possibility

of independent testing, make

autonomous testability more than

[target value].

TABLE Ⅱ PROPOSED DESCRIPTIVE PATTERN FOR MAINTAINABILITY REQUIREMENTS AND ITS APPLICATION TO QUALITY MEASURES

209Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 224 / 241

A SysML-based Approach to Requirements Traceability using BPMN and DMN

Corina Abdelahad and Daniel Riesco

Departamento de informática

Universidad Nacional de San Luis

San Luis, Argentina

e-mail: cabdelah@unsl.edu.ar, driesco@unsl.edu.ar

Carlos Kavka

Research and Development Department

ESTECO SPA

Trieste, Italy

e-mail: kavka@esteco.com

Abstract—Model-based system engineering is a well-established

methodology where the use of models has a central role. One of

its main contributions is to support the documentation of the

requirements and decisions that are taken during the design

process. In particular, requirements traceability, or in other

words, the capability to follow the life-cycle of the requirements,

plays an important role in this methodology. Of course, system

engineers’ work in this area is supported by the use of

standards. One of the most used standards in this domain is

Systems Modeling Language (SysML), which being defined as

an extension of the well-known and widely-used Unified

Modeling Language (UML) standard, supports the definition

and specification of requirements and their relations with the

other components of the whole system. The main goal of this

paper is to present an extension of SysML for requirements

traceability particularly useful in the design of systems where

decision-making activities are essential. The proposed extension

to SysML, defined by following its standard extension

mechanism, supports the association of processes and decision-

making activities to system requirements, greatly improving

their traceability. Processes and decision-making activities are

defined in terms of the widely-used Business Process Model and

Notation (BPMN) and Decision Model and Notation (DMN)

standards, respectively. Our contribution is illustrated by

means of a small case study.

Keywords-SysML; BPMN; DMN; requirements traceability.

I. INTRODUCTION

Abstraction is one of the main tools used by engineers to
deal with complexity, permitting them to focus only on the
information that is considered significant or relevant. Based
on it, Model-Based Systems Engineering (MBSE) is a
successful methodology for the design of complex systems,
which emphasizes the use of models when performing
systems engineering activities [1]. These models, which can
be executable or not, are used to describe the structure and the
behavior of the systems.

With the evolution of systems engineering, the need for a
consistent standard modeling language arose. International
Council on Systems Engineering (INCOSE) together with the
Object Management Group (OMG) [2] defined SysML, a
general-purpose modeling language based on UML, which
can be used for specifying, analyzing, designing, and
verifying complex systems, including hardware, software,
information, personnel, procedures, and facilities [4]. SysML
is based on the so-called four pillars, which give the
possibility to view a system from four different perspectives:

Requirements, Structure, Behavior and Parametrics, each one
of them defined in terms of diagrams [3]. Requirements
modeling [20] is implemented in terms of the requirement
diagram, which allows for capturing, analyzing and
maintaining traceability of requirements in the modeled
system. Structure modeling has a block definition diagram as
the main diagram, representing structural elements (blocks)
with their properties, relationships, and composition.
Behavior modeling has different kinds of behavior diagrams
like activities diagram, state machine, and sequence diagram.
Parametric modeling has a parametric diagram that can be
used to identify the system constraints [4]. In SysML,
requirements can be related to other requirements, as well as
to other model elements via one or more relationships, making
possible the traceability of requirements. Furthermore,
SysML can be integrated into other tools including
spreadsheets and design and simulation software, such as
Matlab or Modelica [19], enabling requirements verification.

The specification of business processes also followed the
same path requiring standards for its definition. In particular,
the Business Process Management Initiative (BPMI) together
with the OMG developed the widely used BPMN notation for
modeling business processes [5]. BPMN defines an abstract
representation for the specification of business processes,
which can include human intervention or not. BPMN couples
an expressive graphical representation with a rigorous
Extensible Markup Language (XML) encoding of processes
and the interactions among them, supporting not only
modeling activities but also process execution by using
appropriate BPMN engines. Since many activities within a
business process involve decision-making, the OMG defined
recently the DMN standard for the elicitation and
representation of decision models, effectively separating
decision logic and control flow logic in business processes [6].
DMN was designed to be usable alongside the standard
BPMN. At present, many companies have adopted BPMN not
only because of its popularity, but because it is strongly
related to DMN. This standard is already receiving adoption
in the industry, with many tools being developed to assist
users in modeling, checking, and applying DMN models.

As the main contribution, this work presents an innovative
approach to enhance requirements traceability in the context
of MBSE, by combining SysML, BPMN and DMN. This
approach can help systems engineers to improve the design of
requirements, to understand and cover their different views,

210Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 225 / 241

improving maintenance and verification activities while
contributing to refine the level of detail of the models.

The rest of this paper is organized as follows: Section II
introduces related work, while Section III summarizes the
basic concepts used in this paper. Section IV addresses the
proposed approach with a case study presented in Section V.
Section VI shows the conclusion.

II. RELATED WORK

Several works in the field of software engineering are
related to the concept of requirements traceability using
SysML. For example, the authors in [7] show how
requirements traceability for mechatronic design can be
achieved using MBSE and SysML. SysML is used for linking
system requirements to the system elements of the different
domain models while guaranteeing the traceability. This paper
presents a case study of a mechatronic system in order to show
this traceability.

In [8], a solution for SysML model verification and
validation in an industrial context is presented. The authors
provide a method and a list of the existing challenges; besides
that, they show experimental results. A case study is
presented, verification rules are in Object Constraint
Language (OCL), while the validation rules are in a formal
text format evaluated by a script. The authors mention that the
verification of these rules ensures a certain degree of
traceability.

In [9], an approach to construct true model-based
requirements in SysML is presented. This approach proposes
that every requirement can be modeled as an input/output
transformation. This proposal uses SysML behavioral and
structural models and diagrams, with specific construction
rules derived from Wymore’s mathematical framework for
MBSE and taxonomies of requirements and interfaces. The
authors consider that this proposal provides several benefits,
including traceability, and improved precision over the use of
natural language.

In [10], the authors propose a model-based approach to
automotive requirements engineering for the general
development of vehicles of passengers. The SysML
requirement element is extended, through stereotype, to
functional and non-functional requirements. The paper
validates the advantages that include classified and modeled
requirements graphically, as well as their relationships that are
explicitly mapped. This article presents a case study that
shows the proposed extension and the performed requirements
traceability.

In [11], the authors propose a model-driven requirement
engineering approach for the embedded software domain.
This approach is based on UML, MARTE and SysML
standard notations, which are integrated in order to improve
requirements specification and traceability. MARTE is used
to allow domain-specific non-functional requirements to
improve the software specification and SysML is combined
with UML/MARTE models to support requirements
management, to follow their changes. The approach is
illustrated by means of a case study.

In [12], the authors propose a metamodel, which
establishes the traceability links among the requirement

model, the solution model and the verification and validation
model for embedded system design. This approach enables
traceability of requirements by considering heterogeneous
languages for modeling and verifying real-time embedded
systems. A case study illustrates the approach with the use of
languages such as SysML, MARTE, SIMULINK, among
others.

However, to the best of our knowledge, no research work
about requirements traceability has considered the decision
requirement, a kind of requirement that involves decision
making. This requirement appears in the decision requirement
diagram, which represents human decision making or
automated decision making within a process. The main
motivation of this work is the need to provide support to
decision requirements, by offering adequate tools to the
system engineers that improve the design and handling of
these types of requirements. Considering this, the approach
presented in this paper is a step forward to support decision
requirements, completing the different system engineering
views by combining of SysML, BPMN and DMN.

III. BASIC CONCEPTS

This section presents the basic concepts on which the
proposed approach is based. Section A introduces traceability
related concepts in SysML, Section B describes the SysML
requirements diagram and block definition diagram used in
the approach. Section C shows some concepts about DMN
and its relationship with BPMN.

A. Traceability in SysML

In [13], INCOSE indicates that “requirements traceability
refers to the ability to describe and follow the life of a
requirement in both a forward and backward direction along
the design stages”. Traceability plays an important role as part
of any MBSE methodology [1]. MBSE emphasizes the use of
models to perform the systems engineering activities, as
mentioned before. In fact, “MBSE is the formalized
application of modeling to support system requirements,
design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing
throughout development and later life cycle phases” [14].

Modeling with SysML allows good traceability because it
defines relationships between requirements and among other
modeling elements [15]. Figure 1 describes the approach in
which SysML accomplishes traceability by means of the 4
pillars presented in Section I. This figure shows the system
model as an interconnected set of model elements. The arrows
that cross the pillars, as seen in Figure 1, illustrate how the
different elements belonging to the different types of diagrams
that participate in the pillars are related, supporting
requirements traceability.

211Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 226 / 241

Figure 1. A system model example in SysML where requirements

traceability is indicated with the connecting arrows (from [3]).

B. SysML Requirements diagram

In SysML, the requirements diagram shows the set of
requirements and the relationship between them. A
requirement specifies a function that must be satisfied or a
condition that a system must achieve. Requirements modeling
provides a bridge among different SysML diagrams because a
requirement can appear on other diagrams to show its
relationship to other modeling elements. The relationships
that allow relating requirements with other requirements or
with other modeling elements are [4]:

 Containment: a relationship which is used to represent
how a compound requirement can be partitioned into
a set of simpler requirements (denoted graphically
with a circle containing a + symbol).

 «deriveReqt»: a relationship which describes that a
requirement is derived from other requirement.

 «satisfy»: a relationship that describes that a design
element satisfies a requirement. Usually, a
requirement is satisfied by a block.

 «verify»: a relationship that connects a test case with
the requirement that is verified by that test case.

 «refine»: a relationship which specifies that a model
element describes the properties of a requirement in
more detail.

 «trace»: a general-purpose relationship between a
requirement and any other model element.

The requirements are related to the blocks through the
relationship «satisfy», as mentioned before. The block
definition diagram captures the relation between blocks, such
as a block hierarchy. Since the activities can be seen as a
block, they can have associations between each other,
including composition associations. Activities in block
definition diagrams appear as regular blocks, except for the
«activity» keyword [4].

SysML enables characterization of any type of
requirements for the system, including user, technical or

others. A modeler can then define relationships between the
specified requirements, providing the opportunity to create
traceability among them. There is also an opportunity to create
traceability from the logical and structural architecture design
to their requirements, one of the most critical activities in
systems engineering [16].

C. BPMN and DMN

The OMG provides the DMN notation for modeling
decisions, which is not only understandable to stakeholders
but it is also designed to be used in conjunction with the
BPMN standard notation [6].

DMN provides constructs to both decision requirements
and decision logic modeling. For decision requirements
modeling, it defines the concept of Decision Requirements
Graph (DRG) depicted with the Decision Requirements
Diagram (DRD). This latter shows how a set of decisions
depends on each other, on input data, and on business
knowledge models. A decision element determines an output
from the inputs, using decision logic, which may reference
one or more business knowledge models. This denotes a
function encapsulating business knowledge, e.g., as business
rules, a decision table, or an analytic model. A decision table
is a representation of decision logic, based on rules that
determine the output depending on the inputs [6]. Decision-
making modeled in DMN may be mapped to BPMN tasks or
activities (Business Rules) within a process modeled with
BPMN. The combined use of both thus provides a graphical
language for describing decision-making, i.e., the BPMN
tasks involving a decision can invoke a DMN decision model.

IV. MBSE AND REQUIREMENTS TRACEABILITY WITH

SYSML

In this section, our contribution of traceability of
requirements using SysML, BPMN, and DMN is detailed.
Section A presents an extension to SysML for BPMN tasks
while Section B describes details on the proposed approach
for requirements traceability.

A. SysML extensions for BPMN tasks

 In order to support the modeling of BPMN tasks in
SysML, the element of SysML block diagram must be
extended through stereotypes. The stereotypes are one of the
extensibility mechanisms of UML, therefore also of SysML,
that enable to extend its vocabulary allowing the creation of
new kinds of building blocks that are derived from existing
ones but specific to a problem [17]. Stereotypes are shown as
text strings surrounded by the symbols “« »” [18]. The
stereotypes change or add semantics to a base SysML
element.

212Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 227 / 241

Figure 2. Extension of the SysML «Activity» stereotype.

Figure 2 shows the proposed extension of the SysML
«Activity» stereotype in order to support all types of BPMN
tasks [4].

This extension consists of the following stereotypes:

 «serviceTask»: represents a task that uses a web
service or an automated application.

 «sendTask»: represents a simple task that is
designed to send a message to an external
participant.

 «receiveTask»: represents a simple task that is
designed to wait for a message to arrive from an
external participant.

 «userTask»: represents a task where a person
performs the task with the assistance of a
software application.

 «manualTask»: represents a task that is expected
to be performed without the aid of any business
process execution engine or any application.

 «scriptTask»: represents a task executed by a
business process engine.

 «businessRuleTask»: represents a task that
involves decision-making.

The business rule task was defined in BPMN as a
placeholder for (business-rule-driven) decisions, being the
natural placeholder for a decision task [6].

B. Requirements Traceability using SysML and BPMN-

DMN

The interaction between the process and the decision
models plays a crucial role because a decision can affect the
process behavior or flow [5]. Therefore, it is important that
decision-making must be considered as a requirement that
should be performed and satisfied.

The approach will be illustrated with an example intended
to carry out the traceability of the requirements through
forward engineering, mainly focusing on those requirements
involved in the decision-making activities, with the aim of
integrating and covering their different views.

As it was mentioned before, the SysML requirement
diagram has several relationships used to connect
requirements. For example, Figure 3 presents a SysML

Figure 3. An example of a requirements diagram.

 requirements diagram labeled "Example Requirements
Diagram", which shows the relationship between
requirements. In particular, it can be observed that the
requirement with id=“2” has a relationship with the
requirement with id=“1.2” through the «deriveReqt» relation.
This relation specifies that the requirement with id=“2” is
derived from the requirement with id=“1.2”.

Requirements can be related to other requirements and to

other modeling elements through a specific set of relationships

as mentioned before. Relationships between requirements and

other modeling elements can appear on various types of

diagrams. Figure 4 presents an example of a «satisfy»

relationship between a SimAct activity and the Req2

requirement which appears in the requirement diagram

presented in Figure 3. The interpretation of this «satisfy»

relationship is that the design of the activity depends on the

requirement, meaning that if the requirement changes, the

design of the activity must be changed.
Once the main requirements have been captured, the

elements responsible to satisfy those requirements are
modeled through a block definition diagram. As previously
mentioned, activities can be seen as a block, except for the
«activity» keyword [4]. This later provides a means for
representing activity decomposition. Figure 5 shows an
example of decomposition of the SimAct activity which was
presented in Figure 4 by using the stereotypes proposed in
Section IV-A. The block definition diagram shown in this
figure indicates that the SimAct is an activity composed of
other activities, including Task 1, DecisionMaking Task and
Task 2, all these activities being of BPMN activity types.

213Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 228 / 241

Figure 4. Example of a «satisfy» relationship between an Activity and a

Requirement.

Figure 5. Block definition diagram with activities as blocks.

Finally, in order to cover the different views of the
requirements, a BPMN model is constructed and associated to
SimAct activity in order to show its behavior, as can be seen
in Figure 6. In this figure, the activities that compose SimAct,
which were modeled in Figure 5, are explicitated in BPMN
format.

To conclude, the decision model related to the business
rule task is built, since when BPMN and DMN are used, the
BPMN tasks (business rule) have a link associated to the
decision model, as mentioned in Section III-C. The
DecisionMaking Task can then be implemented in terms of the

associated decision requirements diagrams and decision
tables.

V. CASE STUDY

To demonstrate our approach, we conducted a case study
that includes the partial modeling of a Biodiesel Distiller and
its requirements management. This case study illustrates how
to carry out the traceability of the requirements through
forward engineering.

Biodiesel is a type of biofuel that is similar to petroleum-
based diesel, which can replace fossil fuel diesel. It is a
sustainable fuel that is produced from fatty acids derived from
animals such as beef fat, pork fat, chicken fat; and vegetable
oils such as corn oil and cooking oil like those from
restaurants that have already been used and disposed of. These
oils are converted to diesel fuel through a chemical process.

Distilled biodiesel is a clean fuel that has been purified
through the process of distillation. Biofuel distillation is a
method that consists of taking a biofuel and removing
particles and impurities within the liquid through an
evaporation and condensation process.

The requirements diagram in Figure 7 illustrates the
breakdown of the Biodiesel Distiller's requirements into a
hierarchy of more refined requirements. This diagram named
"Biodiesel Distiller Requirements Diagram" shows the
relationship between its elements. In particular, it can be
observed that the requirement Initial Statement is partitioned
into a set of simpler requirements: Generate Biodiesel, Heat
Exchanger, Boiler, Biodiesel Properties and Distill Water.

Once the main requirements of Biodiesel Distiller have
been captured, the elements responsible to satisfy them are
modeled through a block definition diagram. As previously
mentioned, activities can be seen as a block and as a set of
requirements that can be related to other requirements and to
other modeling elements through a specific set of
relationships. Figure 8 illustrates how the Generator activity
satisfies the Generate Biodiesel requirement which appears in
the requirement diagram presented in Figure 7, also showing
how the Machine activity is composed.

Figure 6. BPMN diagram of SimAct.

214Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 229 / 241

Figure 7. Requirements diagram: Biodiesel Distiller Requirements

Diagram.

Figure 8. Generator activity satisfies the Generate Biodiesel requirement.

Continuing with the approach, Figure 9 illustrates the
decomposition of the Generator activity by using the
stereotypes proposed in Section IV-A. The block definition
diagram shown in this figure indicates that the Generator is an
activity composed of other activities such as: Choose method
business rule, which involves decision-making, Prepare
reactors activity, Notify user task, Heat Water service task,
Separate materials service task, Decant activity and Washing

Figure 9. Decomposition of the Generator activity.

by decanting service task, all these activities being of BPMN
activity types.

Following the approach presented in this work, a BPMN

model is constructed in order to cover the different views of
the requirements. This model shows the process which is
carried out to generate biodiesel associated with the Generator
activity. Its behavior can be observed in Figure 11.

To conclude, the decision model related to the business
rule task is built. To prepare the reactors, the type of method
to be used must be known and this depends on the type of
material that will be used for the generation of biodiesel. The
materials can be beef fat, pork fat, chicken fat, and vegetable
fat. In the case of study, this decision making is shown in
terms of the decision table as shown in Figure 10.

Figure 10. Decision table to Choose method.

Figure 11. BPMN model of Generator.

215Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 230 / 241

VI. CONCLUSION

Requirements traceability is the capability to follow the
life-cycle of the requirement playing an important role in
model-based system engineering where the use of models has
a central role. SysML is a general-purpose modeling
language, based on UML, which enables traceability because
it defines relationships between requirements and other
modeling elements. The approach presented in this paper has
as the central proposition to consider the decision-making
activities that participate in a process as a decision
requirement and through traceability, reaching its decision
logic. The combination of SysML and BPMN-DMN is
interesting because the use of SysML in the industry grows
day by day. Not less important is the fact that SysML is a well-
defined standard. The combination of all these standards is a
step forward that enhances the modeling of the different views
of the system to be built including also decision requirements.
The approach forces us to define new stereotypes in SysML
to support all types of BPMN tasks. An example and a case
study have been provided to show how traceability of a
decision requirement can be performed by combining SysML
and BPMN-DMN. This approach seeks to integrate and cover
the different views of the decision requirements, helping
systems engineers to improve the design of them.

In future work, we will consider analyzing the link
between the relationships in the requirements diagram and the
DMN decision requirements diagram.

REFERENCES

[1] J. Jacobs and A. C. Simpson, "Towards a process algebra
framework for supporting behavioural consistency and
requirements traceability in SysML, " in Proceedings of the
15th International Conference on Formal Engineering Methods
(ICFEM 2013), ser. Lecture Notes in Computer Science.
Springer, vol. 8144, pp. 266-281, 2013.

[2] OMG https://www.omg.org/ [retrieved: October, 2019]

[3] S. Friedenthal, A. Moore, and R. Steiner, “A Practical Guide to
SysML The Systems Modeling Language”, Burlington:
Morgan Kaufmann/OMG, Elsevier, 2008.

[4] SysML https://www.omg.org/spec/SysML/1.5 [retrieved:
October, 2019]

[5] OMG document number: “Business process model and
notation”. formal/13-12-09
[retrieved: October, 2019]

[6] Decision Model and Notation
https://www.omg.org/spec/DMN/1.2/ [retrieved: October,
2019]

[7] E. J. Vidal and E. R. Villota, “SysML as a Tool for
Requirements Traceability in Mechatronic Design”. In
Proceedings of the 2018 4th International Conference on
Mechatronics and Robotics Engineering. ACM, pp. 146-152,
2018.

[8] R. Baduel, M. Chami, J. M. Bruel, and I. Ober, “SysML
Models Verification and Validation in an Industrial Context:
Challenges and Experimentation”. In European Conference on
Modelling Foundations and Applications. Springer, Cham, pp.
132-146, 2018.

[9] A. Salado and P. Wach, “Constructing True Model-Based
Requirements in SysML”. Systems, vol. 7, no 2, pp. 19, 2019.

[10] K. Gruber, J. Huemer, A. Zimmermann, and R. Maschotta,
"Integrated description of functional and non-functional

requirements for automotive systems design using SysML",
2017 7th IEEE Int. Conf. on System Engineering and
Technology (ICSET), pp. 27-31, Oct 2017.

[11] M. R. S. Marques, E. Siegert, and L. Brisolara, “Integrating
UML, MARTE and SysML to improve requirements
specification and traceability in the embedded domain”. In
2014 12th IEEE International Conference on Industrial
Informatics (INDIN). IEEE, pp 176-181, 2014

[12] H. Dubois, M. A. Peraldi-Frati, and F. Lakhal, “A model for
requirements traceability in a heterogeneous model-based
design process: Application to automotive embedded systems”.
In 2010 15th IEEE International Conference on Engineering of
Complex Computer Systems. IEEE, pp. 233-242. 2010

[13] INCOSE https://www.incose.org/ [retrieved: October, 2019]

[14] T. Weilkiens, “Systems engineering with SysML/UML:
modeling, analysis, design” Elsevier, 2011.

[15] O. C.Z. Gotel and A. C.W. Finkelstein, "An Analysis of the
Requirements Traceability Problem", Proc. IEEE Int. Conf. on
Requirements Engineering, pp. 94-101, April 1994.

[16] http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-
Final-090901.pdf [retrieved: October, 2019]

[17] UML 2.4 “Infrastructure Specification”
https://www.omg.org/spec/UML/2.4.1/ [retrieved: October,
2019]

[18] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified
Modeling Language User Guide” Addison-Wesley. 1999.

[19] Modelica: https://www.modelica.org/ [retrieved: October,
2019]

[20] P. Spoletini and A. Ferrari. “Requirements elicitation: a look at
the future through the lenses of the past”. In 2017 IEEE 25th
International Requirements Engineering Conference (RE).
IEEE. p. 476-477, 2017.

216Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 231 / 241

Alignment of Test Driven Development and Relative Correctness-based Development

Marwa Benabdelali

Université de Tunis
Institut Supérieur de Gestion de Tunis

Bardo, Tunisia, Lab. RIADI-GD
Email: marwa.benabdelali@yahoo.com

Lamia Labed Jilani

Université de Tunis
Institut Supérieur de Gestion de Tunis

Bardo, Tunisia, Lab. RIADI-GD
Email: lamia.labed@isg.rnu.tn

Abstract—Deriving programs by reliability enhancement is the
aim of a program development process based on relative cor-
rectness as presented in previous studies. In fact, it is clear
that nowadays we do not develop programs from scratch but
we exploit existing ones and try to modify and adapt them
according to a given specification. On the other hand, the
practice of agile methods is increasingly widespread in software
development. In this paper, we are interested in the relation
between Test Driven Development and Reliability Enhancement
Development. Test Driven Development as a software engineering
methodology is built upon eXtreme Programming. It emphasizes
a test first approach, which differs from the traditional software
development cycle and produces better software quality. Relative
correctness is a formal model that permits to verify that a
program P is more-correct than a program P′. This is the core
of a development process based on reliability enhancement. We
align the two processes, compare them and show that : 1)Test
Driven Development is an instance of reliability enhancement
development process and 2) Test Driven Development iteration
can be used as a mean to transform a program P to another
program P′ that is more-correct than P according to a given
specification R.

Keywords–Reliability enhancement; Relative correctness; Spec-
ification; Test Driven Development.

I. INTRODUCTION

Software maintenance and evolution are known to require
a lot of effort and, to cope with this, developing reusable assets
turns out to be an interesting approach as it allows to reduce the
time and cost for software development. In this context, Test
Driven Development (TDD) and Relative Correctness-Based
Development (RCBD) aim at managing software quality by
means of incrementally developing assets (i.e., test cases and
specifications) to guarantee that previously added behaviors
still persist after changes and refinements. RCBD [1] proves
its worth as a rigourous theoretical framework that derives
programs by successive correctness enhancing transformations
rather than deriving programs by successive correctness pre-
serving transformations [2][3][4]. Whereas correctness preser-
vation is the prevailing paradigm in programs construction,
correctness enhancement seems to be a promising tentative
for constructing correct and reliable programs and it formally
models a wide range of software activities, as programs repair,
evolution, etc. In this paper, we are specifically working on
TDD and show that is an instance of RCBD. On the other
hand, we use TDD iterations as a means for transforming one
program P into another more correct program according to a
given specification R. Indeed, we discuss that despite the fact

that the program construction process using TDD is different
to that of RCBD, the results obtained by both processes are
the same, where we obtain a sequence of programs that are
respectively more-correct with respect to a specification.

The paper is structured as follows; Section 2 briefly in-
troduces some relational mathematics that we use throughout
the paper to represent specications and programs. Section 3
presents the concept of relative correctness as a formal and
generic model that allows the construction of reliable and
correct programs. Section 4 aligns the TDD process and that
of RCBD. Section 5 presents with an illustrative example the
TDD as a strategy to derive reliable programs by correctness
enhancement. Section 6 summarizes our findings and presents
some perspectives on this work.

II. MATHEMATICAL BACKGROUND

In this paper, we use relational mathematics [5] to
represent specifications and program functions. We represent
sets in a program-like notation by writing variable names
and associated data types (sets of values); if we write S as:
x : X ;y : Y ; then, we mean to let S be the cartesian product S =
X × Y ; elements of S are denoted by s and the X−component
of s is denoted by x(s) and the Y −component of s is denoted
by y(s). When no ambiguity arises, we may write x for x(s),
and x′ for x(s′).

Given a program p that operates on a space called S and
all the elements of S are called the states of p that are usually
denoted in lower case s. We let P be the function of p that is
represented as the set of pairs (s,s′) such that if the program
p starts the execution in state s then, it terminates in state s′.
A relation R on a set S is a subset of the cartesian product S
× S; given a set of pairs (s,s′) in R, we say that state s′ is an
image of state s by R.

Relations on S include the identity relation
I = {(s,s′)|s′ ∈ S}, the empty relation φ = {} and the universal
relation L = S × S. As for operations on relations, they
include the set theoretic operations of intersection (R∩ R′),
difference(R \ R′), complement(R̄), and union(R∪R′). They
also include the converse of a relation R̂ = {(s,s′)|(s′,s) ∈ R},
the product of two relations (R o R′) or (RR′, for short)
={(s,s′)|∃s′′ : (s,s′′) ∈ R∧ (s′′,s′) ∈ R′} and the domain of a
relation dom(R) = {s|∃s′ : (s,s′) ∈ R}.

A relation R is symmetric if and only if R = R̂,
antisymmetric if and only if R∩ R̂⊆ I and asymmetric if and
only if R∩ R̂ = φ. A relation R is transitive if and only if
RR ⊆ R and re f lexive if and only if I ⊆ R. A relation R is
partial ordering if and only if it is re f lexive, antisymmetric,

217Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 232 / 241

and transitive. A relation R is deterministic if and only if
R̂R ⊆ I and total if and only if I ⊆ R̂R. A relation R is a
vector if and only if RL = R. Vectors are used to represent
subsets of S. A relation R re f ines relation R′ (R′ w R or R v
R′) if and only if RL ∩ R′L ∩(R ∪ R′)= R′.

Definition 1. Program P on space S is correct with respect to
a specification R if and only if P re f ines R ((R∩P)L = RL).

Note that RL refers to the domain of the specification R
that represents the initial states for which candidate programs
must behave according to R. And the relation (R∩P)L refers
to the set of initial states on which the behavior of P satisfies
specification R. This set is denoted the competence domain of
P with respect to R.

III. PROGRAM CONSTRUCTION BY RELATIVE
CORRECTNESS

Whereas the traditional approach that preserves correctness
is the dominant paradigm in program construction, the issues
become no longer to develop program from scratch but rather
to achieve a satisfactory reliability threshold with respect
to a given specication. Being in this context, RCBD has
proven its value as an alternative approach to the traditional
refinement-based process of successive correctness-preserving
transformations starting from the specification and culminating
in a correct program (Figure 1). Where in the left side, program
construction is done by correctness preserving transformations
starting from a correct specification until obtaining a correct
program. In the right side, an abort program is transformed
to a more correct program according to a specification R.
Then, series of similar transformations are done to obtain
more and more correct programs (by correctness enhancement
transformations). The process stopped when a correct program
is completely derived.

Figure 1. Program derivation process [1].

The concept of relative correctness was introduced in [1] as
the property of a program to be more correct than another
program with respect to a specification. We say that program
P refines program P if and only if P is more-correct than P
with respect to a specification.

Definition 2. Due to [1] given two programs P0, P1 and a
specification R; we say that P1 is more-correct than P0 if and

only if P1 obeys R for a larger set of inputs than P0. This rela-
tion is denoted by P0 vR P1 which is equivalent to the relation:
(R∩P0)oL⊆ (R∩P1)oL. Also, we say that P1 is strictly more-
correct than P0 with respect to R if and only if P0 @R P1 which
is equivalent to the relation (R∩P0)oL⊂ (R∩P1)oL.

The relation (R∩P0)oL refers to the competence domain
of P0 with respect to R (denoted by CDP0) which is the initial
states on which the behavior of P0 satisfies specification R.
Relative correctness of P1 over P0 with respect to R simply
means that P1 has a larger competence domain than P0.
To illustrate this definition; Let S be the space defined by {0,
1, 2, 3} and let R be the following specification on S:
R= {(0,1),(0,2),(1,2),(1,3),(2,0),(2,2),(3,1),(3,2),(3,3)}.
We consider the following candidate programs:
P0 = {(0,0),(0,1),(0,2),(1,0),(1,1),(2,0),(2,1),(2,3),(3,0)}.
P1 = {(0,0),(0,1),(1,0),(1,2),(1,3),(2,0),(2,3),(3,0)}.
CDP0 = (R∩P0) = {(0,1),(0,2),(2,0)}
(R∩P0)oL = {0,2}×S
CDP1 = (R∩P1) = {(0,1),(1,2),(1,3),(2,0)}
(R∩P1)oL = {0,1,2}×S
Hence P1 is more-correct than P0 with respect to R. And we
say that P0 vR P1.

IV. TEST DRIVEN DEVELOPMENT AS AN INSTANCE OF
RELATIVE CORRECTNESS-BASED DEVELOPMENT

TDD [6] is considered to be one of the most effective
development approaches that is derived from the agile software
development methodology called eXtreme Programming (XP)
[7]. It depends on a short development life cycle where the
developer incrementally writes unit tests before any program
code and is considered as a set of iterations where from one
iteration to another we go from a program P to program P′
that is more correct. TDD process revolves around five steps:
1) Write the first test. 2) Run the test and confirm that it
cannot pass without any implemented code. 3) Write enough
code to make test pass. 4) Run the test on the previous code
and confirm the test pass else the code must be modified
until the test pass. 5) Refactor which means to improve
the code while keeping the same functionalities. The cycle
must be repeated until all the specification functionalities are
implemented and therefore we obtain a correct program that
meets the specification.

TDD and RCBD are both programs derivation approaches.
Despite the fact that their derivation processes are different,
both processes give as a result a sequence of programs that
are respectively more correct with respect to the specification.
So, our aim is to align the TDD process with that of RCBD
and formally validate that TDD is an instance of RCBD.
As shown in Figure 2, using series of test data specifications
∑

n
i=1 Ti, we create a list of programs ∑

n
i=1 Pi such as each Pi

is an upgrade of Pi−1. We assume that the Ti’s have disjoint
domains. Let Ri be the sequence of relations defined for
0≤ i≤ n by:
R0 = φ, for 1≤ i≤ n: Ri = ∪i

k=1 Tk.
By this definition, and by virtue of the hypothesis that the Ti’s
have disjoint domains, for 1≤ i≤ n, we can write: Ri = Ri−1t
Ti.
According to this formula, each step of TDD can be modeled
as an instance of program upgrade. Indeed, if we let P0 be
{abort} and we let Pi be the program derived at phase i by
upgrading Pi−1 with specification Ti , then, we can prove by

218Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 233 / 241

Figure 2. Alignment of Test Driven Development with relative correctness.

induction that for all i, 0≤ i≤ n, Pi is correct with respect to
Ri. The following proposition provides that if we rename Rn as
R and we let Qi be the pre-restriction of Pi to the domain of Ri
, then {Qi} forms a sequence of increasingly correct programs
with respect to R.

Proposition 1. We consider a space S and a non-empty test
data specifications Ti on S, 1≤ i≤ n, for some n≥ 1 such that
TiL ∩ TjL = φ for any i 6= j. We define a set of specifications
{Ri} by:
R0 = φ, for 1≤ i≤ n : Ri = ∪i

k=1 Tk
And we let {Pi}, for 1≤ i≤ n, be a set of programs such that
for all i, Pi is correct with respect to Ri. Further, we let {Qi}
be the set of programs defined by: Qi = Pi ∩ RiL. Then, for
all i, 0 ≤ i ≤ n, Qi+1 is more-correct than Qi with respect to
Rn.

Proof: We rename Rn as R and we resolve to prove that
for all i between 0 and n−1, Qi+1 wR Qi.
To this effect, we must show that the competence domain of
Qi is a subset of that of Qi+1:
(Qi ∩ R)L
= {Definition of Qi}
(Pi ∩ RiL ∩ R)L
= {By construction of R, Ri}
(Pi ∩ Ri)L
= {By definition 1}
RiL
⊂ {By construction of Ri, and hypothesis that Ti 6= φ}
Ri+1L
= {By definition 1}
(Pi+1 ∩ Ri+1)L
= {By construction of R, Ri+1}
(Pi+1 ∩ Ri+1L ∩ R)L
= {Associativity, Commutativity, Definition of
Qi+1}
(Qi+1 ∩ R)L

Therefore, TDD can be seen as an instance of RCBD. How-
ever, the main difference between both development processes
is that in the TDD process the specification is not known in
advance but is built progressively alongside the program.

Test-driven development with the support of relative cor-
rectness offers the possibility to have a formal way for verify-
ing to what extend sufficiently reliable programs are generated.
On the other hand, deriving programs by relative correctness

can use test-driven development iterative steps as a strategy
for transforming one program to another more reliable one.

V. TEST DRIVEN DEVELOPMENT ITERATION AS A
TRANSFORMATION STRATEGY FOR RELATIVE

CORRECTNESS-BASED DEVELOPMENT

Despite that program derivation by relative correctness
is a promising tentative for constructing reliable programs,
we argue that this latter process is not efficient as program
derivation by refinement calculus which is older, matter and
based on set of strong rules and sophisticated guidelines for
program transformations. For that, we tried in [8] to find
some mechanisms and scenarios for program transformation
in the relative correctness- based reliable program construction
approach. The first scenario is domain enlargement in which
we keep the same program functionalities and at each transition
from one program to another, we increase the domain of
the program (dom(P)) with respect to the domain of the
specification (dom(R)). The second scenario is a particular
case in which the program does something else but in some
particular cases, it does what the specification R requires,
so it suffices to generate such program from P to P′. The
third scenario is changing behavior where the behavior of the
program changes depending on the type of input data, hence
the next generated program P′ adds code for a new type of
input in addition to the existing ones in program P. And the
last and fourth scenario is improve program f unctionality
in which from one program to another, we add a little bit
of code to the program compared to his predecessor until
we reach an absolutely correct program with respect to R or
we reach a sufficiency reliability threshold. With these four
scenarios, we can also resort to the reuse-based development
with the reusable programs stored in a repository in which
we start with an abort program that never run successfully and
then, we search in the repository for programs that are more
correct according to the specification R by competence domain
calculations.

Being in the context of program repair and as a tentative
for program derivation mechanism by relative correctness,
the authors in [9] present a generic algorithm that proceeds
by successive removed fault as the relative correctness rises
with each fault removal until reaching a correct program
according to a given specification. This algorithm is based on
the availability of a patch generator and focuses on the patch
validation steps. The algorithm takes as input; a program P on
space S, a test data set T as a subset of S, a specification R
on S, and the domain of the specification R (dom(R)). And
depending on patch generator, it returns as output either an
absolutely correct program P′ with respect to R, or a strictly
more-correct program P′ than P with respect to R or a message
indicate that is impossible to more enhance correctness of P
with respect to R.

Another tentative for program derivation mechanism by
relative correctness is based on mutation testing [10] that
allows gradually repairing an incorrect program by removing
its faults one by one. Indeed, the derivation process starts by a
faulty program P and repeatedly applying muJava to generate
mutants.Then, taking mutants which are found to be strictly
more-correct as base programs and recursively repeating the
process until reached a correct program according to given
specification R. Hence the transition from faulty program P to
these generated mutants represents a fault removal and falls in
the program repair activity.

Remaining in program derivation strategies by relative cor-
rectness, an iteration in the Test Driven Development process
can be a mechanism that guides and defines the derivation of
reliable program by exploring the unit test notion which is

219Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 234 / 241

the center of TDD (development process in table I). Indeed,
we start from an abort program (P0) that never run successful
with respect to R (we reuse programs that dont response to
the specification or we evolve existing programs). We create
a first test (t0), run it on the abort program and confirm its
failure else we rewrite it. then, we create enough code for
P1 to make t0 pass. We create t1 code that must integrate
the t0 code, we run it on P1 and we confirm its failure
else we rewrite it. Then, we create P2 to make t1 pass and
here we check correctness enhancement from P1 to P2 by
ensuring that CDP1 ⊆ CDP2 which means that P2 refines P1.
Therefore, we write P1 vR P2. Note that for P0 and P1 we
may calculate their competence domains but is not necessary
to ensure thatCDP0 ⊆ CDP1 because P0 is an abort program
that never meets the specification R. To create Pn programs,
we need Tn−1 tests. Table I shows a comparison between
the TDD process phases and those of RCBD phases and a
highlight of TDD process contribution to RCBD. Indeed, what
we have done is to draw inspiration from TDD approach to
construct programs using the concept of relative correctness.
To summarize the derivation process, at each transition from

TABLE I. PROGRAM CONSTRUCTION PROCESSES.

Test Driven Develop-
ment process

Relative correctness
process

Relative correctness
process using TDD

1 Write first test. Write an abort pro-
gram.

Create an abort pro-
gram and a first test.

2 Run test and assure its
failure because code
has not yet imple-
mented.

Create the next pro-
gram using a deriva-
tion mechanism.

Run the test on the
abort program and
confirm its failure else
rewrite it.

3 Write enough code to
makes test pass.

Calculate the function
and the competence
domain of the pro-
gram.

Create the first pro-
gram to make the test
pass.

4 Run test on code and
confirm its success
else rewrite the code
until the test pass.

Ensure that CDPi ⊆
CDPi+1 .

Calculate the function
and the competence
domain of the pro-
gram.

5 Refactor. Repeat the cycle from
the second step until
reach correct or reli-
able program accord-
ing to the specifica-
tion.

Create the second test,
run it on the first pro-
gram and confirm its
failure else rewrite it.

6 Repeat the cycle
from the beginning
until reach correct
program according to
the specification.

Create the second pro-
gram to make the
second test pass and
ensure that CDPi ⊆
CDPi+1 .

7 Repeat the cycle from
the third step until
reach correct program
or satisfactory reliabil-
ity threshold.

one program to another we use the notion of test and for each
program created,we must ensure that it refines his predecessor
so we ensure that CDPi ⊆CDPi+1 . When we create a program
to make the test pass, we obtain a part Ri of the specification
R and at the end of the derivation, R is constructed by the
union of all the Ri.

As an illustration of the TDD strategy, we conduct a
simple empirical experimentation using java language and
Junit [11] as a testing frameworks. Junit is the most popular
testing frameworks for Java language used by developers to
implement unit testing. It is based on assertions that test
specific functionality in the code. The choice of this one is
because it is suitable to be used with test driven development
and eXtreme Programming.
What we are going to do is to follow the construction strategy
presented above to derive either correct or reliable programs

according to given specification.
As a hypothesis, we suppose that test cases constitute the

specification that is known in advance in the approach of
deriving programs by relative correctness (see proposition 1).
Let S be the space defined by the integer variable x and the
integer array TAB.
and let R be the following specification on S:
R = {(s,s′)|((∀i : 0≤ i≤N : x′ ≥ TAB[i])∧(∃i : 0≤ i≤N : x′ =
TAB[i]))}.
The specification mandates that x be assigned the largest
integer value in TAB.
For the first step, we create P0 as an abort program, create
a test T0 and run P0 on this test. As a better example of an
abort program would be one that throws an exception or one
that does not exist at all, as is the case in traditional Test
Driven Development. Therefore, its competence domain is the
empty set. Indeed, it does not meet any functionality of the
specification R. We create the test T0 and run it on the abort
program.

T0: import junit.framework.*;
public class TestMax extends TestCase {
public TestMax(String name) {
super(name);}
public void test0() {
assertEquals(200,
Max.maxval(new int[] {200, 50, -2, 80, 0 }));}}

Obviously, the console display the red bar which shows
that the abort program (P0) fails to meet the test T0. To make
the later pass, we need to create enough code for P1:

P1: public class Max {
public static int maxval(int[] tab) {
int max = tab[0];
return max;}}

The function of this program and its competence domain
are given as:
P1 = {(s,s′)|((∀i : 0 ≤ i < N : TAB[0] ≥ TAB[i]) ∧ (x′ =
TAB[0]))}
CDP1 = (R∩P1)oL
= {(s,s′)|(∀i : 0≤ i < N : TAB[0]≥ TAB[i])}.
Indeed, this is the competence domain of P1 with respect to
R: which is the arrays that contain the largest value in index
0.
We run P1 on T0. As shown in Figure 3, the console displays
the green bar which means that the P1 succeeds to to meet
the test T0.We may end the derivation at this stage to obtain
therefore a reliable program according to R but in order to
obtain an absolute correct program we continue the derivation
process.

Figure 3. Green bar T0.

For the next step, We create the test T1 and we run it on the
previous program (P1).
We assume that T0 ⊆ T1.

T1: import junit.framework.*;

220Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 235 / 241

public class TestMax extends TestCase {
public TestMax(String name) {
super(name);}
public void test1() {
assertEquals(200,
Max.maxval(new int[] {200, 50, -2, 80, 0 }));
assertEquals(200,
Max.maxval(new int[] {50, -2, 80, 200, 0}));}}

As the execution result, the console displays the red bar
(Figure 4) which shows that P1 fails to meet the test T1.

Figure 4. Red bar T1.

As we previously did, we create enough code for program P2
to pass the test T1.

P2: public class Max {
public static int maxval(int[] tab) {
int index, max = 0;
for (index = 0; index < tab.length-1; index++){
if (tab[index] > max) {
max = tab[index];}}
return max;}}

The function of this program and its competence domain are
given as:
P2 = {(s,s′)|((∀i : 0 ≤ i < N : x′ ≥ TAB[i])∧ (∃i : 0 ≤ i < N :
x′ = TAB[i]))}
CDP2 = (R∩P2)oL
= {(s,s′)|(∀i : 0≤ i < N : x′ ≥ TAB[i])}.
Indeed, this is the competence domain of P2 with respect to R:
which is the arrays that contain the largest value in any index
except the last index.
We run P2 on T1. The console displays the green bar (Figure 5)
which means that the P2 succeeds to to meet the test T1. We
confirm that CDP1 ⊆CDP2 means that P1 vR P2.

Figure 5. Green bar T1.

At this derivation stage, we may end the derivation, hence we
obtain a reliable program according to the specification R but
we continue the derivation process until we reach an absolute
correct program.
we create a test T2 and we run it on the previous program. We
assume that T1 ⊆ T2.

T2: import junit.framework.*;

public class TestMax extends TestCase {
public TestMax(String name) {
super(name);}
public void test2() {
assertEquals(200,
Max.maxval(new int[] {200, 50, -2, 80, 0 }));
assertEquals(200,
Max.maxval(new int[] {50, -2, 80, 200, 0}));
assertEquals(200,
Max.maxval(new int[] {50, -2, 80, 0, 200}));}}

As a result of running P2 on T2, the console displays the red
bar (Figure 6) which shows that P2 fails to meet the test T2.
indeed, P2 returns the maximum value that exists in any index
expect the last index of tab however, T2 tests on the maximum
value that exist in any index.

Figure 6. Red bar T2.

As a solution to make the previous test pass(T2), we create a
program P3.

P3: public class Max {
public static int maxval(int[] tab) {
int index, max = 0;
for (index = 0; index < tab.length; index++){
if (tab[index] > max) {
max = tab[index];}}
return max;}}

The function of this program and its competence domain are
given as:
P3 = {(s,s′)|((∀i : 0≤ i≤N : x′ ≥ TAB[i])∧(∃i : 0≤ i≤N : x′ =
TAB[i]))}.
CDP3 = (R∩P3)oL = RL = S
The competence domain of P3 is R. Therefore, P3 is correct
according to R. We run P3 on T2. The console displays the
green bar (Figure 7) which means that P3 succeeds to meet
the test T2.

Figure 7. Green bar T1.

At this derivation stage, we obtain a correct program that
meets all the functionalities mandates by the specification

221Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 236 / 241

R. Therefore, we do have: CDP1 ⊆ CDP2 ⊆ CDP3 . Hence
P1vRP2vRP3.

VI. CONCLUSION

TDD has received considerable individual attention since
XPs introduction. Many recent researchers works show that
Test Driven Development gives rise to defect reduction and
quality improvement in academic and professional environ-
ments. On the other hand, RCBD seems to be adequate to do
almost the same thing as Test Driven Development but in a
formal manner. In this work, we showed formally that TDD is
an instance of RCBD and also a TDD iteration (testing, coding,
refactoring) can be an adopted strategy in the transformation
process of Relative Correctness Enhancement. This is also a
way to validate formally each TDD iteration. As near future
work, we are going to test the RCBD on real cases where the
transformation from one program to another is done according
to the TDD iteration strategy.

REFERENCES
[1] N. Diallo, W. Ghardallou, J. Desharnais, and A. Mili, “Program deriva-

tion by correctness enhacements,” in Proceedings 17th International
Workshop on Refinement, Refine@FM 2015, Oslo, Norway, 22nd June
2015., 2015, pp. 57–70, URL: https://doi.org/10.4204/EPTCS.209.5/
[accessed: 2019-08-04].

[2] R.-J. Back, “On the Correctness of Refinement Steps in Program
Development,” Ph.D. dissertation, 1978.

[3] C. Morgan, Programming from specifications, ser.
Spectrum Book. Prentice Hall, 1990, URL:
https://books.google.tn/books?id=95dQAAAAMAAJ/ [accessed:
2019-08-03].

[4] R. Back and J. von Wright, Refinement Calculus a Systematic Intro-
duction. Springer-Verlag New York, 1998.

[5] C. Brink, W. Kahl, and G. Schmidt, Eds., Relational Methods in
Computer Science. Berlin, Heidelberg: Springer-Verlag, 1997.

[6] K. Beck, Test Driven Development. By Example (Addison-Wesley
Signature). Addison-Wesley Longman, Amsterdam, 2002.

[7] K. beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc, 2000.

[8] M. Benabdelali, L. L. Jilani, W. Ghardallou, and A. Mili, “Program-
ming without refining,” in Proceedings 18th Refinement Workshop,
Refine@FM 2018, Oxford, UK, 18th July 2018., 2018, pp. 39–52, URL:
https://doi.org/10.4204/EPTCS.282.4/ [accessed: 2019-08-04].

[9] B. Khaireddine, A. Zakharchenko, and A. Mili, “A Generic Algorithm
for Program Repair,” in 2017 IEEE/ACM 5th International FME Work-
shop on Formal Methods in Software Engineering (FormaliSE), May
2017, pp. 65–71.

[10] N. Diallo, W. Ghardallou, and A. Mili, “Program repair by step-
wise correctness enhancement,” in Proceedings First Workshop on
Pre- and Post-Deployment Verification Techniques, PrePost@IFM
2016, Reykjavı́k, Iceland, 4th June 2016., 2016, pp. 1–15, URL:
https://doi.org/10.4204/EPTCS.208.1/ [accessed: 2019-08-06].

[11] K. Beck, JUnit - pocket guide: quick lookup and advice. O’Reilly
Media, 2009.

222Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 237 / 241

Modeling and Verification of Car Parking System

Hadiqa Alamdar Bukhari

School of Electrical Engineering and Computer Science

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

hbukhari.bese16seecs@seecs.edu.pk

Dr. Sidra Sultana

School of Electrical Engineering and Computer Science

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

sidra.sultana@seecs.edu.pk

Abstract— Formal modeling and verification help in achieving

safety related concerns in real time systems. Car parking

system is modeled and verified in this paper to ensure the non-

collision and the parking of a car which is both time and space

efficient. A detailed simulation of the model is presented and

described.

Keywords-Uppaal; system verification; system modeling; car

parking.

I. INTRODUCTION

Metropolitan cities are dealing with increasing traffic and
in turn an increase in parking garages. With the increase in
the use of automated systems and the introduction of Internet
of Things, more cities are making use of smart car parking
systems to deal with the common problem of finding a
vacant parking space. Smart car parking systems deal with
directing cars to an empty parking spot all the while keeping
a record of which parking spots are free.

Car parking systems are safety critical and need to be
modeled and verified before they are put into use. A single
mistake may lead to damage of a person’s car and waste of
time due to an inefficient system [1]. These systems are
incredibly complex and make use of expensive hardware.
Therefore, it is essential that such systems are properly
modeled, tested and verified on software before they are
implemented on hardware [2]. System verification is of
paramount importance [3] and advancements in technology
have allowed us to optimize and check the safety of a system
on a computer before it is constructed in the real world.

In this paper we modeled the car parking system using
Uppaal model checker. The verified model with the timed
automata can be used to implement a real time car parking
system. We verified the safety, deadlock freeness,
reachability, liveness, mutual exclusion, utility and fairness,
which Uppaal’s inbuilt verification module allowed us to do
easily [4].

Following the introduction, in Section II a literature
review is given where other similar projects are discussed. In
Section III the system overview consisting of a model for car
and a model for lane is described and the timed automata of
these two models are also shown. The details of the Uppaal
model checker and reasons behind why it is used are also
discussed in this section. In Section IV system is verified and
the verification properties are described. Finally, in Section
V the conclusion and further improvements to the system are
detailed.

II. LITERATURE REVIEW

A number of different car parking systems have been
made in the past. In this section we will be discussing a few
of these systems.

In [5], a car parking system is developed where the
presence of a car causes the gates of a parking lot to open
and the number of cars in the parking lot are displayed on an
LCD. Here the authors focused mainly on the hardware
aspects and the modeling and simulation were done on
hardware rather than software.

In [6], a similar system to [5] is developed but the car is
allotted the closest parking spot by judging the distance of
the car from the entrance or exit of the parking lot. The
authors in [7], aim to use an RFID and an infrared sensor
based parking system. Here hardware modules are used to
verify the correctness of the system which can be more
expensive than using a modeling and verification software.
In our project we significantly cut costs by modeling and
verifying our system on the Uppaal model checker instead.

In [8], a web application based car parking system is
made where a camera is used to check the availability of a
parking spot and if a parking spot is free the user is notified.
In [9], the authors have described a mobile application
system that uses infrared sensors to find and allocate a
parking spot.

In the above mentioned works, modeling and verification
of the system was highly dependent on hardware modules.
Hardware is not as reliable however, and it can be very hard
to check all the verification properties on it. We chose to use
Uppaal model checker in our project to ensure that all
verification properties like reliability or deadlock freeness
etc. are fulfilled.

In [10], the authors used Vienna Development Method-
Specification Language (VDM-SL) to develop and verify a
graph-based model. This model is used to find nearest empty
parking spots. This is the most relevant project however, the
simulator which we have used in our project, Uppaal is more
versatile than VDM-SL and can be used to understand the
traces to further correct the model, or to draw conclusions
[11].

III. SYSTEM MODELING

In this section we give a system overview. Details on the
Uppaal model checker are given and the timed automata of
car parking system is detailed.

223Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 238 / 241

A. System Overview

As shown in Fig. 1, we modeled two automata, one for
the car and one for the street on which the car looks for a
parking space.

The cars can move on a street with two lanes and their
sensors query a parallel automaton that models the street
layout. The car looks for a free parking space and if there is
one present on either lane, it moves into the available
parking space and performs parallel reverse parking. After
40 seconds the cars can move out of the parking space and
move forward to the end of the street. The street is 5 meters
long and it has 2 suitable parking spaces in each lane. Two
cars cannot park in the same parking spot at once.

The parallel automata communicate through shared
channels. The cars can park multiple times in the street so
long as there is a parking space available and the end of
street has not been reached. The car can go back to the start
of the street after it exits the street as well.

Figure 1. System state diagram.

B. Uppaal

We used the Uppaal model checker which is an
integrated tool environment that gives us the ability to model
and verify the behaviour of a system [12]. Uppaal is a very
powerful tool since it can handle real time issues and
transitions. Bounded liveness can be expressed and verified
in Uppaal which is something that many model checkers do
not provide. Also, Uppaal has an easy to use interface which
makes it easier to model and execute a system.

Moreover, Uppaal displays the sequence diagram of the
system as it is being executed so every state can be checked
and the user can see of the states are being changed in the
same sequence as intended. There are also a lot of projects
which have been tested by Uppaal which further provided
me with the confidence to use it as the model checker and
verifier for this project [13].

C. Timed Automata

The Uppaal model checker was used to develop and test
the model of a car which enters the parking system. As

shown in Fig. 2, a car has four possible states, start,
find_parking_spot, park and exit_street. A car can alternate
between these four states.

For a car to transition from one state to another it must
first fulfill the transition condition. As the car transitions
from one state to another the position of the car which is
stored in the car_pos variable is incremented. The car_pos
variable helps detect the end of street.

Figure 2. Model for car.

 We also created a model for the lanes on which the cars
can park. Each lane will have two parking spots as shown in
Fig. 2. There are eight possible states in a lane. Similar to
Fig. 1, the transition condition must first be fulfilled to
transition from one state to another. A street_len variable is
incremented whenever a car moves through the street. The
street length is 5 meters.

Figure 3. Model for lane.

224Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 239 / 241

The sequence diagram displayed in Fig. 4 shows the order
in which states are executed and what triggers them. The
states and transitions of the whole system are also displayed.

The sequence diagram can also be used to check the
correctness of the system. In case of a deadlock, we can track
the point at which deadlock occurs and can therefore, correct
it.

Figure 4. Sequence diagram

IV. SYSTEM VERIFICATION

The system was verified using the Uppaal model checker
to ensure the safety, reachability, liveness, utility, deadlock
freeness and fairness of the system.

A. Deadlock freeness

 There are no deadlocks in the system at all.
 A[] not deadlock

 There are no deadlocks when the cars reach the end
of the street.

 A[](deadlock imply (laneOne.end_of_street and
 laneTwo.end_of_street))

B. Safety

 Car one cannot take up 2 parking spaces in lane one
as it would cause no other car to park in lane one and
if a car tries to park in lane one it would crash into
car one.
A[]((laneOne.parking_spot1 and
carOne.parked==true)imply

not(laneOne.parking_spot2 and
carOne.parked==true))

 Car one cannot take up 2 parking spaces in lane two
as it would cause no other car to park in lane two and
if a car tries to park in lane two it would crash into
car one.
A[]((laneTwo.parking_spot1 and
carOne.parked==true)imply
not(laneTwo.parking_spot2 and
carOne.parked==true))

 Car two cannot take up 2 parking spaces in lane one
as it would cause no other car to park in lane one and
if a car tries to park in lane one it would crash into
car two.
A[]((laneOne.parking_spot1 and
carTwo.parked==true)imply
not(laneOne.parking_spot2 and
carTwo.parked==true))

 Car two cannot take up 2 parking spaces in lane two
as it would cause no other car to park in lane two and
if a car tries to park in lane two it would crash into
car two.
A[]((laneTwo.parking_spot1 and
carTwo.parked==true)imply
not(laneTwo.parking_spot2 and
carTwo.parked==true))

C. Reachability

 Car one exits the street infinitely often.
E<> (carOne.exit_street)

 Car two exits the street eventually.
E<> (carTwo.exit_street)

D. Liveness

 Car one or car two or both must always be looking
for a parking space for the system to stay alive.
E<> ((carOne.find_parking_spot and carTwo.park)
or (carTwo.find_parking_spot and carOne.park) or
(carOne.find_parking_spot and
carTwo.find_parking_spot))

E. Mutual exclusion

 Car one cannot be parked in lane one and lane two at
the same time.
A[]((laneOne.parking_spot1 and
carOne.parked==true)imply
not(laneTwo.parking_spot1 and
carOne.parked==true))

 Car two cannot be parked in lane one and lane two at
the same time.
A[]((laneOne.parking_spot1 and
carTwo.parked==true)imply
not(laneTwo.parking_spot1 and
carTwo.parked==true))

 Car one cannot be at the start and the end of the
street at the same time.
A[]((carOne.start and laneOne.start_of_street)imply
not(carOne.start and laneOne.end_of_street))

225Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 240 / 241

 Car two cannot be at the start and the end of the
street at the same time.
A[]((carTwo.start and laneOne.start_of_street)imply
not(carTwo.start and laneOne.end_of_street))

F. Utility

 If carOne enters the street, it eventually parks on the
street.
E<> (carOne.start imply carOne.park)

 If carTwo enters the street then it eventually parks
on the street.
E<> (carTwo.start imply carOne.park)

G. Fairness

 Neither car one nor car two waits for longer than 40
seconds to unpark.
A<> (carOne.wait<=40 and carTwo.wait<=40)

 Cars cannot drive on the street for longer than the
length of the street.
A[] (laneOne.street_len<6 and
laneTwo.street_len<6)

Some of the verified properties are displayed in Fig. 5.

Figure 5. Results of the uppaal model checker

V. CONCLUSION AND FUTURE WORK

In this paper, an effective methodology for the modeling
and verification of the car parking system was shown. The
safety properties were verified using Uppaal and the stability
of the real time automata was checked through the model
checker as well. The car and lane models communicate
effectively through common channel.

Most of the existing smart car parking systems are tested
using hardware simulations which do not always ensure the
correctness of the system. On the other hand, we have made
use of formal modeling and verification techniques to prove
that our model is correct.

For the time being we have developed a simple car
parking system which is implemented in the real world
scenario using the Uppaal model checker. To further
improve our work, the system can be extended to
accommodate a greater number of cars, lanes and parking
spots. Moreover, a module can be added to find out and
direct the car to the closest parking spot.

REFERENCES

[1] M. Jaffar-ur Rehman, F. Jabeen, A. Bertolino and A. Polini,
"Testing software components for integration: a survey of
issues and techniques", Software Testing, Verification and
Reliability, vol. 17, no. 2, pp. 95-133, 2007.

[2] P. Upadhyay, "The Role of Verification and Validation in
System Development Life Cycle", IOSR Journal of Computer
Engineering, vol. 5, no. 1, pp. 17-20, 2012.

[3] M. Latuszynska, “Problems of verification and validation of
computer simulation models”, STUDIA INFORMATICA, pp.
27-40, 2013.

[4] G. Behrmann, A. David, K. Larsen, P. Pettersson and W. Yi,
"Developing UPPAAL over 15 years", Software: Practice and
Experience, vol. 41, no. 2, pp. 133-142, 2011.

[5] M. Ahmed and W. G. Wei, (2014). “Study on Automated Car
Parking System Based on Microcontroller”, International
Journal of Engineering Research & Technology, vol. 3, no. 3,
pp. 256-258, January 2014.

[6] S. Ghosh, S. Prusty and P. B. Natarajan, “Design and
Implementation of Smart Car Parking System Using
LabVIEW”, International Journal of Pure and Applied
Mathematics, vol. 120, pp. 329-338, October 2018.

[7] M. Sabnam, M. Das, P. A. Kashyap, “Automatic Car Parking
System”, ADBU Journal of Engineering Technology, vol. 4,
no. 1, 2016.

[8] A. Ahad, Z. Khan, and S. Ahmad, “Intelligent Parking
System”, World Journal of Engineering and Technology, vol.
4, no. 2, pp. 160-167, May 2016.

[9] J. D. Bachhav1, Mechkul, “Smart Car Parking System”,
International Research Journal of Engineering and
Technology (IRJET), vol. 4, no. 6, pp. 3036-3038, June 2017.

[10] S. Latif, H. Afzaal and N. A. Zafar, "Modelling of Graph-
Based Smart Parking System Using Internet of Things",
International Conference on Frontiers of Information
Technology (FIT), pp. 7-12, 2018.

[11] “Formal Methods in the Teaching Lab Examples, Cases,
Assignments and Projects Enhancing Formal Methods
Education”, Formal Methods Europe Subgroup on Education,
Hamilton, ON, Canada, 2006, pp. 61-62

[12] M. P. Júnior and G. V. Alves, “A Study Towards the
Application of UPPAAL Model Checker”, 3rd Workshop-
School on Theoretical Computer Science, pp. 5-8, September
2015.

[13] A. Hessel, K. Larsen, M. Mikučionis, B. Nielsen, P.
Pettersson and A. Skou, “Testing real-time systems using
UPPAAL”, Formal Methods and Testing. pp. 77-117, January
2018.

226Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 241 / 241

http://www.tcpdf.org

