
ICSEA 2017

The Twelfth International Conference on Software Engineering Advances

ISBN: 978-1-61208-590-6

October 8 - 12, 2017

Athens, Greece

ICSEA 2017 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Radek Koci, Brno University of Technology, Czech Republic

Stephen Clyde, Utah State University, USA

 1 / 267

ICSEA 2017

Forward

The Twelfth International Conference on Software Engineering Advances (ICSEA 2017), held on
October 8 - 12, 2017- Athens, Greece, continued a series of events covering a broad spectrum of
software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Software engineering for service computing (SOA and Cloud)

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile and Lean approaches in software engineering

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving productivity in research on software engineering

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2017 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2017. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

 2 / 267

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2017 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2017 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope Athens provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful historic city.

ICSEA Steering Committee

Herwig Mannaert, University of Antwerp, Belgium
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Abo Akademi University, Finland
Radek Koci, Brno University of Technology, Czech Republic
Stephen W. Clyde, Utah State University, USA
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
Krishna M. Kavi, The University of North Texas, USA
Christian Kop, Universitaet Klagenfurt, Austria
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Bidyut Gupta, Southern Illinois University, USA

ICSEA Industry/Research Advisory Committee

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
J. Paul Gibson, Telecom Sud Paris, France
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Muthu Ramachandran, Leeds Beckett University, UK
Michael Gebhart, iteratec GmbH, Germany

 3 / 267

ICSEA 2017

Committee

ICSEA Steering Committee
Herwig Mannaert, University of Antwerp, Belgium
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Abo Akademi University, Finland
Radek Koci, Brno University of Technology, Czech Republic
Stephen W. Clyde, Utah State University, USA
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
Krishna M. Kavi, The University of North Texas, USA
Christian Kop, Universitaet Klagenfurt, Austria
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Bidyut Gupta, Southern Illinois University, USA

ICSEA Industry/Research Advisory Committee
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
J. Paul Gibson, Telecom Sud Paris, France
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Muthu Ramachandran, Leeds Beckett University, UK
Michael Gebhart, iteratec GmbH, Germany

ICSEA 2017 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM), Malaysia
Muhammad Ovais Ahmad, University of Oulu, Finland
Jacky Akoka, CNAM & IMT, France
Mohammad Alshayeb, King Fahd University of Petroleum and Minerals, Saudi Arabia
Zakarya Alzamil, King Saud University, Saudi Arabia
Vincenzo Ambriola, Università di Pisa, Italy
Daniel Andresen, Kansas State University, USA
Gilbert Babin, HEC Montréal, Canada
Doo-Hwan Bae, School of Computing - KAIST, Korea
Aleksander Bai, Norsk Regnesentral, Norway
Jorge Barreiros, ISEC (Instituto Superior de Engenharia de Coimbra) / NOVA-LINCS, Portugal
Bernhard Bauer, University of Augsburg, Germany
Ateet Bhalla, Independent Consultant, India
Kenneth Boness, University of Reading, UK
Mina Boström Nakicenovic, NetEnt, Stockholm, Sweden
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Luigi Buglione, Engineering Ingegneria Informatica SpA, Italy

 4 / 267

Carlos Henrique Cabral Duarte, Brazilian Development Bank (BNDES), Brazil
Haipeng Cai, Washington State University, Pullman, USA
Gabriel Campeanu, Mälardalen University, Sweden
Ricardo Campos, Polytechnic Institute of Tomar | LIAAD / INESC TEC - INESC Technology and Science,
Porto, Portugal
José Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Everton Cavalcante, Federal University of Rio Grande do Norte, Brazil
Antonin Chazalet, Orange, France
Federico Ciccozzi, Mälardalen University, Sweden
Marta Cimitile, University Unitelma Sapienza of Rome, Italy
Siobhán Clarke, Trinity College Dublin | University of Dublin, Ireland
Stephen W. Clyde, Utah State University, USA
Methanias Colaço Júnior, Federal University of Sergipe, Brazil
Rebeca Cortazar, University of Deusto, Spain
Monica Costa, Politechnic Institute of Castelo Branco, Portugal
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Darren Dalcher, Hertfordshire Business School, UK
Vincenzo Deufemia, University of Salerno, Italy
Themistoklis Diamantopoulos, Aristotle University of Thessaloniki, Greece
Ivan do Carmo Machado, Federal University of Bahia (UFBA), Brazil
Tadashi Dohi, Hiroshima University, Japan
Lydie du Bousquet, Université Grenoble-Alpes (UGA), France
Jorge Edison Lascano, Universidad de las Fuerzas Armadas - ESPE, Ecuador
Holger Eichelberger, University of Hildesheim, Software Systems Engineering, Germany
Younes El Amrani, University Mohammed-V Rabat, Morocco
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Kleinner Farias, University of Vale do Rio dos Sinos, Brazil
Luis Fernandez-Sanz, Universidad de Alcala, Spain
M. Firdaus Harun, RWTH Aachen University, Germany
Mohammed Foughali, INSA Toulouse, France
Jicheng Fu, University of Central Oklahoma, USA
Felipe Furtado, CESAR - Recife Center for Advanced Studies an Systems, Brazil
Luiz Eduardo Galvão Martins, Federal University of São Paulo, Brazil
Jose Garcia-Alonso, University of Extremadura, Spain
Michael Gebhart, iteratec GmbH, Germany
Wided Ghardallou, Faculty of Sciences of Tunis, Tunisia
J. Paul Gibson, Telecom Sud Paris, France
Pascal Giessler, Karlsruhe Institute of Technology, Germany
Gregor Grambow, AristaFlow GmbH, Germany
Bidyut Gupta, Southern Illinois University, USA
Konstantin Gusarov, Riga Technical University, Latvia
Nahla Haddar Ouali, Higher Institute of Business Administration of Gafsa, Tunisia
Rachel Harrison, Oxford Brookes University, UK
Shinpei Hayashi, Tokyo Institute of Technology, Japan
Qiang He, Swinburne University of Technology, Australia
José R. Hilera, University of Alcalá, Spain
Siv Hilde Houmb, Secure-NOK AS, Norway
LiGuo Huang, Southern Methodist University, USA

 5 / 267

Jun Iio, Chuo University, Japan
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Shareeful Islam, University of East London, UK
Judit Jász, University of Szeged, Hungary
Kashif Javed, Åbo Akademi University, Finland
Hermann Kaindl, TU-Wien, Austria
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Herwig Mannaert, University of Antwerp, Belgium
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Ahmed Kamel, Offutt School of Business | Concordia College, USA
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Chia Hung Kao, National Taitung University, Taiwan
Krishna M. Kavi, The University of North Texas, USA
Carlos Kavka, ESTECO SpA, Italy
Reinhard Klemm, Avaya, USA
Mourad Kmimech, ISIMM | University of Monastir, Tunisia
Takashi Kobayashi, Tokyo Institute of Technology, Japan
Radek Koci, Brno University of Technology, Czech Republic
Mieczyslaw Kokar, Northeastern University, Boston, USA
Christian Kop, Universitaet Klagenfurt, Austria
Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Emil Krsak, University of Žilina, Slovak Republic
Rob Kusters, Eindhoven University of Technology & Open University, The Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Dieter Landes, University of Applied Sciences Coburg, Germany
Jannik Laval, University of Lyon, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Valentina Lenarduzzi, Free University of Bolzano-Bozen, Italy
Maurizio Leotta, University of Genova, Italy
Panos Linos, Butler University, USA
Peizun Liu, Northeastern University, USA
André Magno Costa de Araújo, Federal University of Pernambuco, Brazil
Sajjad Mahmood, King Fahd University of Petroleum and Minerals, Saudi Arabia
Nicos Malevris, Athens University of Economics and Business, Greece
Neel Mani, ADAPT Center for Digital Content Technology | Dublin City University, Ireland
Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Alessandro Margara, Politecnico di Milano, Italy
Daniela Marghitu, Auburn University, USA
Beatriz Marín, Universidad Diego Portales, Chile
Célia Martinie, IRIT, University Toulouse 3 Paul Sabatier, France
Vanessa Matias Leite, Universidade Estadual de Londrina, Brazil
Fuensanta Medina-Dominguez, Carlos III University of Madrid, Spain
Jose Merseguer, Universidad de Zaragoza, Spain
Vojtech Merunka, Czech University of Life Sciences in Prague / Czech Technical University in Prague,
Czech Republic
Sanjay Misra, Covenant University, Nigeria
Amir H. Moin, Technical University of Munich, Germany

 6 / 267

Óscar Mortágua Pereira, Telecommunications Institute | University of Aveiro, Portugal
Marcellin Nkenlifack, University of Dschang, Cameroon
Marc Novakouski, Software Engineering Institute, USA
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Flavio Oquendo, IRISA (UMR CNRS) - University of South Brittany, France
Muhammed Maruf Öztürk, Suleyman Demirel University, Turkey
Marcos Palacios, University of Oviedo, Spain
Fabio Palomba, TU Delft, The Netherlands
Päivi Parviainen, VTT, Finland
Beatriz Pérez Valle, University of La Rioja, Spain
Pasqualina Potena, RISE SICS Västerås, Sweden
Rafael Queiroz Gonçalves, Federal University of Santa Catarina, Brazil
Abdallah Qusef, Princess Sumaya University for Technology, Jordan
Claudia Raibulet, Universita' degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Beckett University, UK
Raman Ramsin, Sharif University of Technology, Iran
Gianna Reggio, DIBRIS - Università di Genova, Italy
Fernando Reinaldo Ribeiro, Polytechnic Institute of Castelo Branco, Portugal
Michele Risi, University of Salerno, Italy
Gabriela Robiolo, Universidad Austral, Argentina
Rodrigo G. C. Rocha, Federal Rural University of Pernambuco - UFRPE, Brazil
Daniel Rodriguez, University of Alcalá, Spain
Colette Rolland, University of Paris 1 Pantheon-Sorbonne, France
Sandro Ronaldo Bezerra Oliveira, UFPA - Federal University of Pará, Brazil
Álvaro Rubio-Largo, Universidade NOVA de Lisboa, Portugal /
Mehrdad Saadatmand, RISE SICS Västerås, Sweden
Krzysztof Sacha, Warsaw University of Technology, Poland
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Djamel Eddine Saidouni, University Constantine 2 - Abdelhamid Mehri, Algeria
Sébastien Salva, University Clermont Auvergne (UCA), Limos, France
María-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Hiroyuki Sato, University of Tokyo, Japan
Sagar Sen, Simula Research Laboratory, Norway
Istvan Siket, University of Szeged, Hungary
Maria Spichkova, RMIT University, Australia
Sidra Sultana, National University of Sciences and Technology, Pakistan
Mahbubur Rahman Syed, Minnesota State University, Mankato, USA
Sahar Tahvili, RISE SICS Västerås AB, Sweden
Sobhan Y. Tehrani, King's College London, UK
Dhafer Thabet, University of Mannouba, Tunisia
Pierre F. Tiako, Tiako University, USA
Elena Troubitsyna, Abo Akademi University, Finland
Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
Masateru Tsunoda, Kindai University, Japan
Sylvain Vauttier, LGI2P - Ecole des Mines d'Alès, France
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences / University of Szeged, Hungary

 7 / 267

Vinay Vkulkarni, Tata Consultancy Services, India
Stefan Wagner, University of Stuttgart, Germany
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Stoyan Yordanov Garbatov, OutSystems, Portugal
Haibo Yu, Shanghai Jiao Tong University, China
Saad Zafar, Riphah International University, Islamabad, Pakistan
Michal Žemlička, AŽD Praha / Charles University, Czech Republic
Qiang Zhu, The University of Michigan, Dearborn, USA

 8 / 267

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 267

Table of Contents

A Teaching Method for Software Measurement Process based on Gamification
Lennon Sales Furtado and Sandro Ronaldo Bezerra Oliveira

1

A Harmonization with CMMI-SVC Practices for the Implementation of the ITIL Service Design Coordination
Process
George Hamilton Barbosa Fernandes Ota and Sandro Ronaldo Bezerra Oliveira

9

Automatic Documentation of the Development of Numerical Models for Scientific Applications using Specific
Revision Control
Martin Zinner, Karsten Rink, Rene Jakel, Kim Feldhoff, Richard Grunzke, Thomas Fischer, Rui Song, Marc
Walther, Thomas Jejkal, Olaf Kolditz, and Wolfgang E. Nagel

18

The Blockchain-based Internet of Things Development: Initiatives and Challenges
Sergio Mendonca, Joao Silva Junior, and Fernanda Alencar

28

Authentication and the Internet of Things: A Survey Based on a Systematic Mapping.
Emidio Silva, Wallace Lima, Felipe Ferraz, and Francisco Ribeiro

34

CLIPS:Customized Levels of IoT Privacy and Security
Rohith Yanambaka Venkata and Krishna Kavi

41

Sustainability and Diversity of Open Source Software Communities: Analysis of the Android Open Source Project
Remo Eckert and Andreas Mueller

48

Extracting Executable Architecture From Legacy Code Using Static Reverse Engineering
Rehman Arshad and Kung Kiu Lau

55

Analyse Agile Software Development Teamwork Productivity using Qualitative System Dynamics Approach
Israt Fatema and Kazi Muheymin Sakib

60

Accuracy Evaluation of Model-based COSMIC Functional Size Estimation
Luigi Lavazza

67

Measuring Differences to Compare sets of Models and Improve Diversity in MDE
Adel Ferdjoukh, Florian Galinier, Eric Bourreau, Annie Chateau, and Clementine Nebut

73

Proposal of a Computer Supported Collaborative Work Model for E-Commerce Web Sites Based on a Quality
Guiding Framework
Hedia Jegham and Sonia Ghannouchi

82

Developing Architecture in Volatile Environments - Lessons Learned from a Biobank IT Infrastructure Project 95

 1 / 3 10 / 267

Jarkko Hyysalo, Gavin Harper, Jaakko Sauvola, Anja Keskinarkaus, Ilkka Juuso, Miikka Salminen, and Juha
Partala

Unifying Definitions for Modularization, Abstraction, and Encapsulation as a Step Toward Foundational Multi-
Paradigm Software Engineering Principles
Stephen Clyde and Jorge Edison Lascano

105

iMobile: A Framework to Implement Software Agents for the iOS Platform
Pedro Miranda, Andrew Diniz, and Carlos Lucena

114

Software Architecture Modeling for Legacy Health Information Systems Using Polyglot Persistence and
Archetypes
Andre Araujo, Valeria Times, Marcus Silva, and Carlos Bezerra

122

Evaluating Enterprise Resource Planning Analysis Patterns using Normalized Systems Theory
Ornchanok Chongsombut and Jan Verelst

128

A Survey and Analysis of Reference Architectures for the Internet-of-things
Hongyu Pei Breivold

132

Improving Run-Time Memory Utilization of Component-based Embedded Systems with Non-Critical
Functionality
Gabriel Campeanu and Saad Mubeen

139

From Language-Independent Requirements to Code Based on a Semantic Analysis
Mariem Mefteh, Nadia Bouassida, and Hanene Ben-Abdallah

145

GMAP: A Generic Methodology for Agile Product Line Engineering
Farima Farmahini Farahani and Raman Ramsin

157

A Benchmarking Criteria for the Evaluation of OLAP Tools
Fiaz Majeed

167

A Precondition Calculus for Correct-by-Construction Graph Transformations
Amani Makhlouf, Christian Percebois, and Hanh Nhi Tran

172

FANTASIA: A Tool for Automatically Identifying Inconsistency in AngularJS MVC Applications
Md Rakib Hossain Misu and Kazi Sakib

178

Scope Management on Software Projects - An Updated Approach to Maturity Levels and Services in the Gaia
Scope Framework
Darlan Dalsasso and Rodolfo Miranda de Barros

185

 2 / 3 11 / 267

IoT Caching in Information Centric Networks: A Systematic Mapping
Higgor L. S. Valenc?a, Felipe S. Ferraz, and Francisco I. N. Ribeiro

192

Survey on Microservice Architecture - Security, Privacy and Standardization on Cloud Computing Environment
Luciano Aguiar, Washington Almeida, Raphael Hazin, Anderson Lima, and Felipe Ferraz

199

Function-as-a-Service X Platform-as-a-Service: Towards a Comparative Study on FaaS and PaaS
Lucas Francisco Albuquerque Jr, Felipe Silva Ferraz, Sergio Mario Lins Galdino, and Rodrigo F. A. P. Oliveira

206

Architectural Programming with MontiArcAutomaton
Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann

213

Which API Lifecycle Model is the Best for API Removal Management?
Dung-Feng Yu, Cheng-Ying Chang, Hewijin Christine Jiau, and Kuo-Feng Ssu

219

Evaluating an Application Ontology for Recommending Technically Qualified Distributed Development Teams
Larissa Barbosa and Gledson Elias

225

Validation of Specification Models Based on Petri Nets
Radek Koci and Vladimir Janousek

232

An OO and Functional Framework for Versatile Semantics of Logic-Labelled Finite State Machines
Callum McColl, Vladimir Estivill-Castro, and Rene Hexel

238

A Reusable Adaptation Component Design for Learning-Based Self-Adaptive Systems
Kishan Kumar Ganguly and Kazi Sakib

244

Immersive Coding: A Virtual and Mixed Reality Environment for Programmers
Roy Oberhauser

250

Powered by TCPDF (www.tcpdf.org)

 3 / 3 12 / 267

A Teaching Method for Software Measurement Process based on Gamification

Lennon Sales Furtado, Sandro Ronaldo Bezerra Oliveira
Graduate Program in Computer Science

Federal University of Pará
Belém, Pará, Brazil

e-mail: lennonsfurtado@gmail.com, srbo@ufpa.br

Abstract—The value of an effective measurement program
lies in the ability to control and predict what can be measured.
Thus, the measurement program has the capacity to provide a
basis in decision-making to support the interests of an
organization. This means it is only possible to run an effective
measurement program with a team of software engineers who
are well trained in this area. However, as the literature shows,
there are few computer science courses that include the
teaching of software process measurement in their program.
Even these, generally only discuss the basic theoretical
concepts of this process with little or no measurement in
practice, which discourages the students from’s learning the
measurement process. In this context, according to some
experts in software process improvement, one of the most
widely used approaches to maintaining the motivation and
commitment to improving the program, is the use of
gamification. In light of this, the aim of this paper is to set out
a proposal for teaching the gamification measurement process.
This seeks to improve student motivation and performance in
carrying out tasks related to software measurement, by
incorporating elements from games into the measurement
process, and thus making it more attractive for learning.

Keywords-education; gamification; teaching method;
software engineering; software process measurement.

I. INTRODUCTION
The purpose of the software measurement process is to

collect, store, analyze and report data on developed products
and implemented processes within an organization, in order
to support organizational goals [1]. Moreover, the
importance of an efficient measurement program lies in its
ability to control what can be measured [2]. By being able
to control the metrics of the measurement program, the
organization will be capable of predicting organizational
and marketing behavior [3].

Even though the measurement process is of such
importance to Software Process Improvement (SPI), the
software industry has been reluctant to employ efficient
measurement programs [4][5]. This is because many
software managers and software engineers, including
academics in software engineering and computer science,
seem to have little or no practical knowledge of this subject
[6].

In general, in every software measurement program,
what determines its success is the human factor, because if
there is a lack of commitment to this program, it is unlikely
to achieve the desired results, i.e., the visibility and control
of software metrics to aid in decision-making. In this
context, one of the most widely used methods to maintain

the motivation and commitment of the people involved in a
SPI program is the use of gamification [7].

Gamification by definition is the use of game elements
and game design techniques outside their usual context [8].
This process seeks to improve the commitment, motivation
and performance of a user when carrying out any task, by
incorporating features of games and game mechanics, and
thus, make the task more attractive [9].

By means of this educational tool, this paper seeks to
address the problem of teaching the measurement process
by exploring aspects of gamification. This involves
adopting and evaluating an approach for the use of this tool
as a motivating factor in the teaching of software process
measurement.

In addition to this introductory section, this paper is
divided into the following sections: Section II will cover
factors that explain and identify the question under study.
Section III will outline the problem addressed in this paper
and discuss related work and the limitations of its
approaches. In Section IV, a number of research questions
will be raised that will guide future investigations covered
by this research. In Section V the methods used to answer
the research questions will be examined in detail, and
finally, in Section VI the expected results will be discussed,
together with a report on the progress of the research.

II. A GAP IN THE AREA AND SCOPE OF THE RESEARCH
This section describes the gap in the area and the scope

of the research discussed in this paper.

A. A Gap in the Area
As pointed out by Jones [6], many software managers

and software engineering professionals are unaware of the
key aspects of measurement (planning, preparing, collecting
data and analyzing them for decision-making). One factor in
this problem that must be taken into account is the way the
process of measurement and analysis is taught.

This concern is directly related to the fact that the
measurement process is generally regarded as difficult and
time-consuming [8][10][11][12]. An initial assumption that
must be made when seeking to understand this problem, lies
in the way this discipline is taught [13], since it has been
neglected in the undergraduate curriculum and its
importance is not stressed enough to encourage students to
learn in practice [14]. In addition, another serious factor is
the lack of guidelines on how to implement the practice of
measurement [15][16][17].

In other words, the dynamics of expository lectures,

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 13 / 267

(where students passively construct their knowledge), tend
to be very time-consuming and have inherent weaknesses
with regard to the difficulties of transferring knowledge to
real life situations [18].

Furthermore, the measurement process is only one of
several processes taught in the software quality assurance
disciplines, and because of this, there is little time to show
its practical application. This is the main obstacle to the
establishment of knowledge in the measurement process. It
means that the students clearly have difficulties in applying
software measurement to real-life situations.

In attempting to meet the needs of the students involved
in Software Quality Assurance, this research will set out a
proposal for the gamification of the software measurement
process. This is a way of overcoming the problem of a lack
of opportunity to practice this process in the undergraduate
curriculum, by introducing the concepts of basic measures,
derived measures, indicators, Goal Question Metrics
(GQM) [19] and a Practical Software Measurement (PSM)
program [20].

B. Scope of the Research
 This study will investigate the following: the

conceptual factors involved in the development of the
proposal, and the implementation and evaluation of the
gamification tool for teaching the software measurement
process. In addition, it should be mentioned that this
research has the following objectives:

• To set out a teaching proposal for the software
measurement process by the application of
gamification,

• To analyze the state-of-the-art in the use of
gamification for the teaching of software processes,

• To identify different approaches to the use of
gamification, which can provide the user with
greater ease when learning the discipline of
software measurement,

• To identify the limitations of gamification as a
teaching method,

• To examine the concepts of basic and derived units
of measurement,

• To define the concept of indicators,
• To set out the GQM and PSM paradigms,
• To predict the expected outcomes and practices

contained in the Nationwide Program for Software
Processs Improvement in Brazil (MPS.BR-SW) and
Capability Maturity Model Integration (CMMI-
DEV) programs, which include the measurement
processes,

• To describe the most widely used metrics in the
market, such as metrics for product maintenance,
performance, and reliability,

• To describe the metrics that do not depend on the
programming language,

• To define the concepts of the Organizational
Measurement Plan, GQM Plan and Measurement
Report,

• To evaluate the teaching proposal by comparing it
with traditional teaching methods

Apart from these objectives, this research aims to prove
or refute the following hypothesis: the gamification research
proposal to teach software process measurement is an
appropriate way of motivating students to acquire the
necessary skills for its practical application.

III. PROBLEM STATEMENT AND RELATED WORKS
The research problems can be categorized into three

groups, which are as follows:
• The need to analyze the measurement practices used

in the software industry, i.e., to determine which
activities are really useful for the training of a
software engineering professional,

• The need to analyze the references for a curriculum
and the teaching approaches adopted by teachers in
the area, to identify which measurement practices
are covered,

• To identify the different approaches in the use of
gamification, which provide the user with greater
ease when learning the software measurement
discipline.

A. The Background of the Teaching of Software
Measurement
According to Bass [21], software measurement can be

defined as a quantitative assessment of any aspect of
software processes and products. It allows a better
understanding of these areas and thus helps in planning,
controlling and improving what is produced and how it is
produced.

In summary, the measurement program is designed to
generate information on products, processes and people.
This kind of information serves as a framework for
decision-making, which can guide organizations and their
projects [22]. That is, it is a very important process for
organizations and for programs designed for software
process improvement.

However, organizations often make complaints about
students who enter the job market, usually on the grounds
that they are not prepared to tackle the real problems found
in industry [23]. This is due to the difference between the
industrial environment and academic programs [24]. For a
better understanding of this problem, it is necessary to
check how software measurement is being addressed in
academic courses of computer science, and if organizations
think that students who enter the job market have a
sufficient knowledge of software measurement. These
questions were raised and explored in a study carried out by
[25] and its results are summarized below:

• A survey answered by students and teachers pointed
out that the software engineering course is generally
mandatory in graduate programs, while software
measurement is, in most cases, an optional course,

• All the teachers and students who took part in the
survey indicated that the teaching of software
measurement is mainly given in expository lectures

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 14 / 267

and more than 50% through a case study. In
addition, in some cases, students learn from another
approach, such as applying measurement strategies
in real projects,

• Software measurement courses are usually taught in
graduate programs, although these courses are
mostly optional,

• The level of student learning is usually assessed by
written exams (75%) and by projects (58%).

 To meet the needs of industry, it is necessary to prepare
students for these environments and their real problems.
There are many approaches for this, including in-context
learning, where the student learns to use knowledge in a
context with the same real-world challenges [26]. That is,
the student will learn software process measurement by
measuring actual software, as well as by designing
measurement plans and putting them into effect.

Another approach is the application of teaching by
Problem Based Learning (PBL), which follows the principle
of learning by solving problems or addressing challenges
related to the practice of software measurement.

In addition to these approaches, one of the approaches
found in the literature is the use of serious games for
teaching a subject [18], where the student plays a game as
an educational tool to introduce the theoretical concepts and
simulate the practical application of these concepts As a
result, it can be seen that an important feature in the
teaching of software measurement, is to adopt innovative
approaches in the way the education will be conducted [17].
This is because universities have a myriad of student
profiles with different levels of interest and motivating
factors that will lead them to obtain the desired knowledge
from an educational institution.

Among these new approaches is the use of game
elements in terms of mechanics and dynamics, which are a
motivational factor in teaching or carrying out a task. This
approach is known as gamification and seeks to improve the
commitment, motivation and performance of a user when
learning a subject or carrying out a task [9]. In addition, one
of its great advantages is the familiarity of the students of
this generation with games, because they have grown up
with them and actively play games as both a form of
entertainment and learning.

In summary, the objective of this research is the
development and validation of an educational tool that uses
gamification for the teaching of software measurement.

B. Problem Areas
Despite its importance in industry, in many cases, the

measurement process has failed to yield benefits to
organizations.

Following a survey conducted in Brazil in 2012 by the
American Chamber of Commerce (AMCHAM) [27] with
44 Information Technology (IT) executives, it was found
that 86% of the executives interviewed were not satisfied
with the way the measurement was conducted in their
organizations. Among the main difficulties highlighted were
the following: a) obtaining tangible benefits and producing
a return on measurement activities (41%), b) establishing

performance indicators (30%), c) obtaining information on
the impact of IT on other sectors of the company (18%),
and d) quantifying the efficiency of the processes and
systems (14%).

All the difficulties found arise from the capacity of the
professionals responsible for the measurement process,
since they fail to conduct a process efficiently that covers all
aspects of measurement (measuring, storage, analysis and
reporting).

The problems reported by the industry are just a few of
the symptoms of an aging education in software
measurement. This is corroborated in Jones's paper [28],
which found that there were 28 problems that need to be
addressed while measuring software, the most serious being
the absence of a proper training system for students, to
enable them to enter the world of industry with real
problem-solving skills.

In addition to the problems pointed out by Jones [28],
the literature states that software measurement is a complex
and time-consuming task [8][10][11][12]. Apart from these
problems, software measurement in education faces other
challenges, such as being one issue among the 83 topics
covered by software engineering and the fact that in most
courses, it is treated as an optional subject [25]. Moreover,
there are the problems arising from the dynamics of
expository lectures, where students passively construct their
knowledge, and thus tend to waste a lot of time. There are
also the inherent weaknesses in this methodology with
regard to the difficulties in the transfer of knowledge to
real-life situations [18]. This makes it difficult for the
student to understand the subject in depth, since this is only
possible when a student is motivated and engaged with the
subject. However, it can be achieved by exposing these
students to situations that allow them to participate in
problem-solving activities and tasks related to the issue of
software measurement. Hence, these difficulties provide
opportunities for improvement, and will thus lead to the
maturity of the software measurement process. However,
this process is still regarded as an “immature” field [23],
due to the lack of a consensus on international software
standards for measurement [29] and divergences in the
implementation and interpretation of software metrics with
tools [30]. That is, it is a field of study that needs to undergo
several improvements and also be standardized.

C. Limitations of Related Works
With regard to related works, only those will be

evaluated that provide mechanisms for teaching software
engineering through gamification or serious games.

The closest approach to this research is in the
exploratory study conducted by Gresse von Wangenheim
[18], which employs a serious game (X-MED) for teaching
software measurement. In this work, the student plays the
role of a measurement specialist who has to carry out the
measurement process in a movie rental company. As the
users progress in the game, they must answer some
questions and earn points, so that they can produce a result
that corresponds to the level of learning of the student.

The most significant contributions made by this system

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 15 / 267

are:
• It provides a comprehensive study that covers all the

stages of creating the proposed game,
• It provides a complex theme that can be measured by

a game that simulates a situation which involves a
real application of this process,

• It validates the game proposed by applying it in
undergraduate classes so that it is able to evaluate the
degree of acceptance and benefits of the game in
practice by pre and post questionnaires with the
users.

However, the game devised by Wangenheim did not
show any improvements in teaching measurement when
compared with the traditional teaching method based on
lectures. This can be attributed to some weaknesses in this
work, such as:

• The game makes use of game mechanics and
elements that are not very attractive, for example
mechanics quizzes. The game mechanics and their
related elements are determining factors to motivate
and engage the student,

• The aesthetic appeal and sound of the game are not
attractive; this is a very important factor in
maintaining the user’s interest in the game,

• The game is not suitable for mobile devices. This is a
weakness, as most students are used to making use of
this platform as a means of entertainment. Thus, it is
more likely that students will make use of the game
in their free time.

The works [31][32][33] were also evaluated, which made
use of gamification or serious games for the teaching of
software engineering.

In the work conducted by Bartel [31], which includes a
gamified course for the teaching of design patterns, the
students were encouraged to work as a team. Different tasks
were assigned to each of the students in the team and each
team had to find solutions to the problems raised in the
classroom. On the completion of every task, the students
were awarded a score by their classmates and the teacher. In
this work, the following difficulties were detected:

• The proposal is very simple and limited since it is
basically a quest list,

• Feedback is given by classmates and not by an
automated system, which meant it was based on the
subjective opinions of the students,

• The evaluation of the results of the game was not
compared with the traditional teaching methods to
validate its usefulness.

In the course of the paper [32], which employed a
gamified classroom for teaching extreme programming, the
students who took part, stated in the questionnaires that they
thought the learning experience was good when compared
with the learning experience that involved conventional
lectures.

The participants showed an improvement in learning and
coding performance after they had become used to the
gamification teaching method. Despite this there were a
number of limitations in this paper which are listed below:

• The lack of immediate feedback and transparency in
the data collected, as students were only given an
assessment of their progress at the end of the cycle,

• The experiment undertaken in the paper needs a
special kind of class where students work 8 hours a
day and use gamification as a part of the teaching
method,

• In the paper, few topics are discussed about the
planning of the gamification (e.g. the game elements
and mechanics), only the results of the experiment
are given.

In addition, the study conducted by Chaves [33] included
a serious game, which taught how to design software
processes, and made evaluations of the pre and post
questionnaires that were employed in undergraduate classes
on computer science. The class that took part made a
significant contribution to the efficacy of learning and the
application of acquired knowledge in its results.
Nonetheless, the study had the following drawbacks :

• The constraints imposed by the game can restrict
the creativity of the player, because only the
traced path can be followed,

• The students only memorize the proposed models
rather than learn them,

• There are few levels in the game and hence
a considerable increase in difficulty, which distorts
it.

IV. QUESTIONS, HYPOTHESES AND DISCUSSION
The main goal of our research is to set out a teaching

method based on gamification for software measurement, as
an educational tool for computer courses, and this approach
is based on the results of different kinds of research
methods such as: a survey, a systematic review of the
literature, a literature review of the the curriculum
guidelines and user testing.

In addition, we found many references [6][13][14][21]
that support our initiative and point to the need to approach
software measurement education in a non-traditional way.

The following research questions should be addressed to
understand the needs of students and industry, as well as the
accuracy of the gamification system :

• RQ1. What is the state-of-the-art on software
measurement education when gamification is used
as an educational tool?

• RQ2. How can educators benefit from
gamification in measurement education and
learning?

• RQ3. What are the metrics and indicators that are
most widely used by the software industry?

• RQ4. What are the measurement skills required by
the software industry and which of them were
acquired in the computer courses?

• RQ5. What are the metrics (i.e., metrics for
product maintenance, performance, reliability, and
other features) covered in the computer science
course curriculum?

• RQ6. What are the measurment topics (collecting,

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 16 / 267

storage, analysis and reporting) covered in the
computer science course curriculum?

• RQ7. Can the educational game be considered to
be appropriate in terms of content relevance,
correctness, sufficiency and degree of difficulty,
sequence, teaching methodology and duration in
the context for which it is intended? Is the game
considered to be “engaging”? What are its
strengths and weaknesses?

• RQ8. How does the effectiveness of learning
measurement through gamification compare with
that of using traditional learning, in the pre and
post questionnaries?

These research questions were defined in an attempt to
refute the following null hypothesis:		

• H0. There will be no difference in the pre test and
post test scores between the two groups (the
experimental and control group will have equal
skills) when applying the measurement in pratice.

If the null hypothesis is refuted, we intend to test our
alternative hypothesis:

• H1: There will be a difference in pre and post test
scores between the two groups (the experimental
and control group will not have equal skills) when
the measurement strategy is employed in pratice.

V. RESEARCH METHOD AND PROGRESS
Since this paper forms a part of a doctoral research, we

still do not have sufficient results to effectively answer the
research questions; however, all these questions are
addressed by discussing the research methods used. The
research methods employed to answer the research
questions and test the hypothesis will be outlined in this
Section.

A. Identifying the Diferent Approaches and Benefits of
Gamification for the Teaching of Software Measurement
When answering RQ1 and RQ2, a systematic review of

the literature will be carried out to analyze the results,
methodologies and tools of the works that are aligned with
the subject of gamification and applied to the teaching of
software measurement. This systematic review will entail
adopting a simplified and adjusted approach from the
Kitchenham guidelines [34]. Figure 1 shows the systematic
review protocol; the following questions were raised during
the the systematic review of the literature (SRLQ) with the
aim of finding out about other gamification approaches
applied in the area of software measurement. This review
will also be used to explore the validation methods applied
in other gamification systems and their measurement
elements. It should be noted that we are currently working
on the systematic review of the literature. The research
questions in this review are:

• SRLQ1. Based on ISO 15939 where the software
measurement features were addressed in the
gamification systems?

• SRLQ2. In what contexts (i.e., education, work,
and other areas) were the measurements for
gamification software applied?

• SRLQ3. What were the limitations reported in the
use of gamification for software measurement
education?

• SRLQ4. What research methods were used to
validate the gamification system?

• SRLQ5. What game elements were used in
gamification for teaching software measurement?

• SRLQ6. What game mechanics were used in
gamification for teaching software measurement?

• SRLQ7. What game dynamics were used in
gamification for teaching software measurement?

Figure 1. Systematic Review adapted from [34]

B. Identifying Measurement Strategies included in
Computer Courses and Industry
With regard to the metrics, indicators and strategies

employed in industry, these questions will be investigated in
papers that cover this area such as Costa’s work [35]. In his
work, Costa describes the software measurement process
using the Goal–Question–Indicator–Metric (GQIM)
methodology [40]. This takes the form of a catalog that lists
the following: a) the measurement objectives, b)
information needs, indicators and measurements that are
most widely used in the context of software process
development and c) those identified by a Systematic review
of the literature. In addition, a survey will be conducted
with applied measurement professionals with a view to
answering the RQ3, and thus identifying and giving
prominence to the need for Brazilian industry tobe involved
in the teaching of software measurement process for
undergraduate students.

Moreover, another survey will be carried out to answer
RQ4, but this will be conducted with students who have
already graduated from the Federal University of Pará and
are active in industry. In this way, we will be able to
determine which measurement strategies were acquired in
an academic environment and which are being used in an

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 17 / 267

industrial environment. This will also enable us to fill in any
gaps with regard to the measurement process in the teaching
environment. Both surveys will follow the guidelines
recommended by Kitchenham and Pfleeger [36].

Furthermore, when answering RQ5 and RQ6,
a literature review will be carried out on the curriculum
guidelines of the ACM / IEEE [37] and the SBC [38] to find
out which measurement topics and which metrics they
cover. This should provide evidence that the measurement
activities suggested by the curriculum guidelines meet the
requirements of the software industry.

C. Defining an Approach for Teaching Measurement by
Gamification
After the first six research questions (RQ), have been

answered, they will be assessed in terms of the following
results:

• The set of measurement practices used in the
software industry,

• The recommendations in the curriculum guidelines,
• The current approaches to gamification in teaching

software measurement,
• And, in particular, the gap between industry and the

academic world with regard to what instrumenst
should be used in software measurement.

These results will serve as a framework in the teaching
of software measurement by gamification. In addition to the
application of these answers, this research will make use of
the teaching framework of software measurement found in
Villavicencio’s work [17], where it introduces gamification
concepts into teaching and learning activities. This
framework is based on Bloom's taxonomy on levels of
learning outcomes [41] and adopts a constructivist
approach. The six thinking/learning levels that are defined
in Bloom’s taxonomy are as follows: recognizing /
remembering, understanding, applying knowledge and
techniques, analyzing, evaluating, and forming a synthesis.
The constructivist approach is based on the assumption that
the learners can construct their own knowledge and reach
higher levels of learning through an engagement and active
participation with it. For this reason, the framework
established by Villavicencio is suited to this work since the
involvement and commitment of the students is embodied
in the learning process. This can be achieved by
incorporating the concepts of game elements and mechanics
that can be defined in the area of gamification. The
Framework can be seen in Figure 2.

D. Performing Case Studies to Evaluate the Teaching
Method
After the software measurement process by gamification

has been implemented, this research will make a
comparison of the results obtained from two groups of
students as a means of validating and answering RQ7 and
RQ8. The two groups will be divided into a control group
and an experimental group and comprise Software Quality
at the Federal University of Pará, which has approximately
20 to 30 students per class. The control group will not carry
out teaching through gamification, in contrast with the

experimental group. Thus, the objective results obtained
from each class will be taken note of before RQ8 is
answered. These results will be analyzed on the basis of the
grades achieved at the end of the course, while the
subjective results of the classes will be drawn on to answer
RQ7. This will be undertaken by setting a post test
questionnaire to evaluate the opinion of each student on
gamification as a teaching method. These experiments will
be conducted over a period of 2 semesters and will follow
the guidelines recommended by Wohlin [39]. The
hypotheses will be tested with the aid of the data collected
in the experimental phase, which include descriptive
statistics to analyze the high, low and average grades of
both the control group and experimental group. On the basis
of this, it will be possible to determine if there is any
significant difference between both groups.

Figure 2. A Framework for software measurement teaching [17]

As the aim of the research is to have an effect on
industrial strategies, the survey will have to be conducted in
several stages. These will entail the following: a)
monitoring the knowledge acquired about the people
involved, b) understanding the reality of the students’
professional practice, c) undertaking numerous other
follow-up research studies, d) taking part in the software
development community (SDC) to make use of the
improvements in the results and comtribute to them and e)
making a practical application of the content in numerous
other undergraduate and postgraduate classes.

Finally, it should be emphasized that, to a great extent,
this research relies on the quality and quantity of the results
obtained from each of the research methods, although the
success of each of the methodologies cannot be ensured
without first putting them into practice.

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 18 / 267

VI. CONCLUSION AND SUGGESTIONS FOR FUTURE
WORK

This paper has underlined the importance of software
measurement process, while acknowledging its limitations,
especially those aimed at improving teaching practices. In
addition, this work forms a part of a doctoral research,
which seeks to devise a teaching method of gamification in
software measurement and investigate the teaching and
learning activities resulting from this.

This involved defining the hypotheses and research
questions that will lead to the next stages in this research. In
addition, we outlined the research methods that will be used
for carrying out this research. These include a systematic
review of the literature, surveys, an analysis of curriculum
guidelines and the application of a user test conducted at the
Federal University of Pará by applying pre and post test
questionnaires with students in the subject-area of Software
Quality.

In parallel to writing this paper, a systematic review of
the literature is being carried out to give an overview of the
topic and show the different approaches adopted by the
author, while also seeking to answer RQ1 and RQ2. For this
reason, the next stage that will be followed will be to
conduct a survey to determine the metrics and
measurements that are most needed in industry. After this,
there will be an analysis of the curriculum guidelines to find
out what measurement procedures are needed in the
academic world. Thus, as future works, this research will
show the state-of-the-art on software measurement
education using gamification as an educational tool. It seeks
to show the following: i) how educators can benefit from
gamification in measurement education and learning, ii)
what are the metrics and indicators that are most widely
used by the software industry, iii) what are the measurement
skills required by the software industry, iv) which of them
were acquired in the computer courses, v) what are the
metrics (i.e., metrics for product maintenance, performance,
reliability, and other factors) covered in the computer
science course curriculum, vi) what are the measurement
topics (collecting, storage, analysis and reporting) covered
in the computer science course curriculum and vii) the most
important contribuition - the gamification system to teach
software measurement.

This system will be evaluated to determine whether the
educational game can be regarded as appropriate in terms of
content relevancy, correctness, sufficiency and degree of
difficulty, sequence, teaching method and duration, for the
purposes to which it is intended. There is also a need to
know how the effectiveness of learning measurement with
gamification compares with traditional learning methods.

Finally, after all the research questions have been
answered, the hypotheses will be tested by the data
collected in the experimental phase. This will enable us to
determine if there is any significant difference in the
learning process of software measurement when the
gamification system is applied.

ACKNOWLEDGMENT
The authors would like to thank the Amazon Foundation

for Studies and Research Support (FAPESPA) for awarding
a doctoral scholarship to PPGCC/UFPA and the Dean of
Research and Postgraduate Studies at the Federal University
of Pará (PROPESP/UFPA) by the Qualified Publication
Support Program (PAPQ), for the financial support.

REFERENCES
[1] ISO/IEC, “ISO/IEC 15504-1: Information Technology - Process

Assessment - Part 1: Concepts and Vocabulary”, Geneve, 2004.
[2] T. Demarco, “Controlling software projects”, Yourdon Press

Prentice-Hall, 1982.
[3] N. Fenton and S. L. Pfleeger, “Software Metrics. A rigorous and

practical approach”, PWS Pub, 1997.
[4] M. Kasunic, “The state of software measurement practice: results of

2006 survey”, Technical report CMU/SEI-2006-TR-009, Carnegie
Mellon University/Software Engineering Institute, Pittsburgh,
Pennsylvania, 2006.

[5] C. A. Dekkers and P. A. McQuaid, “The dangers of using software
metrics to (Mis)Manage”, IEEE IT Professional, IEEE Computer
Society, 2002.

[6] C. Jones, “Software Metrics: Good, Bad and Missing”, Computer,
v.27 n.9, p.98-100, 1994.

[7] E. Herranz, R. Colomo-Palacios, A. de Amescua Seco, and M.
Yilmaz, “Gamification as a disruptive factor in software process
improvement initiatives”, Journal of Universal Computer
Science, 20(6), pp. 885–906, 2014.

[8] C. G. Von Wangenheim, C. T. Punter, and A. Anacleto, “Software
Measurement for Small and Medium Enterprises - A Brazilian-
German view on extending the GQM method”, in 7th International
conference on Empirical Assessment in Software Engineering
(EASE), Keele University, Staffordshire, UK, pp. 1-19, 2003.

[9] O. Pedreira, F. Garcia, N. Brisaboa, and M. Piattini, “Gamification in
software engineering, a systematic mapping”, Information and
Software Technology, 57:157–168, 2015.

[10] J. Iversen and O. Ngwenyama, “Problems in measuring effectiveness
in software process improvement: A longitudinal study of
organizational change at Danske Data”, International Journal of
Information Management, vol. 26, pp. 30-43, 2006.

[11] A. Gopal, M. S. Krishnan, T. Mukhopadhyay, and D. R. Goldenson,
“Measurement programs in software development: determinants of
success”, IEEE Transactions on Software Engineering, vol. 28, pp.
863-875, 2002.

[12] M. Díaz-Ley, F. García, and M. Piattini, “Implementing a software
measurement program in small and medium enterprises: a suitable
framework”, Software, IET, vol. 2, pp. 417-436, 2008.

[13] S. Löper and M. Zehle, “Evaluation of software metrics in the design
phase and their implication on CASE tools”, Master Thesis, Blekinge
Institute of Technology, Sweden, 2003.

[14] G. T. Hock and G. L. S. Hui, “A study of the problems and
challenges of applying software metrics in software development
industry”, Proceedings of the M2USIC-MMU International
Symposium on Information and Communication Technologies,
Putrajaya, Malaysia, pp. 8-11, 2004.

[15] M. Díaz-Ley, F. García, and M. Piattini, “MIS-PyME Software
Measurement Maturity Model - Supporting the Definition of
Software Measurement Programs and Capabilty Determination”,
Advances in Software Engineering, vol. 41, pp. 1223-1237, 2010.

[16] J. J. M. Trienekens, R. J. Kusters, M. J. I. M. van Genuchten, and H.
Aerts, “Targets, drivers and metrics in software process
improvement: results of a survey in a multinational organization”,
Software Quality Journal, vol. 15, pp. 135-153, 2007.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 19 / 267

[17] M. Villavicencio and A. Abran, “Towards the Development of a
Framework for Education in Software Measurement”, Joint
Conference of the 23rd International Workshop on Software
Measurement and the 8th International Conference on Software
Process and Product Measurement, pp. 113-119, 2013.

[18] C. G. Von Wangenheim and M. T. D. Kochanski, “Empirical
evaluation of an educational game on software measurement”,
Empirical Software Engineering, v.14 n.4, p.418-452, 2009.

[19] R. Solingen and E. Berghout, “The Goal/Question/Metric Method: a
practical guide for quality improvement of software development. A
Practical Guide for Quality Improvement of Software Development”,
New York, McCraw-Hill Publishers, p. 216, 1999.

[20] J. McGarry et al., “Pratical Software Measurement: Objetive
Information for Decision Makers”, Addison Wesley, Boston, USA,
2002.

[21] C. Jones, “Software Metrics: Good, Bad and Missing”, Computer,
v.27 n.9, p.98-100, 1994.

[22] A. R. Rocha, G. Santos, and M. P. Barcellos, “Software Measurement
and Statistical Process Control”, Publication of the Brazilian Ministry
of Science, Technology and Innovation, 2012.

[23] M. Villavicencio and A. Abran, “Educational Issues in the Teaching
of Software Measurement in Software Engineering Undergraduate
Programs”, in Joint Conference of the 21st Int'l Workshop on
Software Measurement and the 6th Int'l Conference on Software
Process and Product Measurement (IWSM-MENSURA), Nara,
Japan, pp. 239-244, 2011.

[24] M. Villavicencio and A. Abran, “Software Measurement in Software
Engineering Education: A Comparative Analysis”, in International
Conferences on Software Measurement IWSM/MetriKon/Mensura
2010, Stuttgart, Germany, pp. 633-644, 2010.

[25] M. Villavicencio and A. Abran, “Facts and Perceptions Regarding
Software Measurement in Education and in Practice: Preliminary
Results”, Journal of Software Engineering and Applications, vol. 4,
pp. 227-234, 2011.

[26] L. Lindsey and N. Berger, “Experiential approach to instruction”, in
Instructional-Design Theories and Models, vol. III, C. Reigeluth and
A. Carr-Chellman, Eds., New York: Routledge, Taylor & Francis
Group 2009, pp. 117-142. (V1_35), 2009.

[27] AMCHAM, “Only 14% of companies are completely satisfied with
the results of IT measurement systems”, 2012, Available:
http://www.amcham.com.br, retrieved: March 2017.

[28] C. Jones, “Applied Software Measurement: Global Analysis of
Productivity and Quality”, Third ed.: McGraw-Hill Osborne Media,
2008.

[29] A. Abran, “Software metrics and software metrology”, New Jersey:
IEEE Computer Society / Wiley Partnership, 2010.

[30] H. Yazbek, “Metrics Support in Industrial CASE Tools”, Software
Measurement News: Journal of the Software Metrics Community, 40,
2010.

[31] A. Bartel and G. Hagel, “Gamifying the learning of design patterns in
software engineering education”, 2016 IEEE Global Engineering
Education Conference (EDUCON), Abu Dhabi, pp. 74-79, 2016.

[32] B. S. Akpolat and W. Slany, “Enhancing software engineering
student team engagement in a high-intensity extreme programming
course using gamification”, 2014 IEEE 27th Conference on Software
Engineering Education and Training (CSEE&T), Klagenfurt, pp. 149-
153, 2014.

[33] R. O. Chaves, et al., “Experimental Evaluation of a Serious Game for
Teaching Software Process Modeling”, in IEEE Transactions on
Education, vol. 58, no. 4, pp. 289-296, 2015.

[34] B. Kitchenham, “Procedures for performing systematic reviews”,
Keele, UK, Keele University, v. 33, n. 2004, pp. 1–26, 2004.

[35] T. S. A. Costa, “A Methodological Approach to the Implementation
of a Measurement Process based on a Software Tool and a
Measurement Tools Catalogue”, Master’s Thesis, Federal University
of Pará, pp. 74-127, 2016.

[36] B. Kitchenham and S. Pfleeger, “Personal Opinion Surveys”, in
Guide to Advanced Empirical Software Engineering, Springer, 2008.

[37] ACM/IEEE, “Computer science curricula 2013. Curriculum
guidelines for undergraduate degree programs in Computer Science”,
2013.

[38] SBC, “Reference curriculum for undergraduate courses in Bachelor
in Computer Science and Computer Engineering”, 2005.

[39] C. Wohlin et al., “Experimentation in software engineering: an
introduction”, in Kluwer Academic Publishers, Norwell, MA, 2000.

[40] R. E. Park, W. B. Goethert, and W. A. Florac, “Goal-Driven Software
Measurement – A Guidebook”, CMU/SEI-96-HB-002 Handbook.
Software Engineering Institute, Carnegie Mellon University,
Hanscom, MA, pp. 53-59, 1996.

[41] L. Anderson, et al., “A taxonomy for learning, teaching and
assessing. A revision of Bloom's taxonomy of Educational
Objectives”. Addison Wesley Longman Inc, New York, 2001.

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 20 / 267

A Harmonization with CMMI-SVC Practices for the Implementation of the ITIL
Service Design Coordination Process

George Hamilton Barbosa Fernandes Ota, Sandro Ronaldo Bezerra Oliveira
Graduate Program in Computer Science

Federal University of Pará
Belém, Pará, Brazil

e-mail: hamilton.ota@gmail.com, srbo@ufpa.br

Abstract—This paper proposes a strategy for the
harmonization of the Information Technology (IT) service
management framework, the Information Technology
Infrastructure Library (ITIL) framework, and the process
improvement model for service used in the IT industry, called
the Capability Maturity Model for Service (CMMI-SVC). The
focal point of this harmonization lies in the Design
Coordination process included in the ITIL Service Design,
which seeks to ensure that the design consists of appropriate
services and coordinates all the design features involved in
projects, changes, suppliers and support teams. The results of
the harmonization were checked step by step (in a procedure
that included a peer review) with the assistance of a specialist
with a knowledge of the ITIL framework and the CMMI-SVC
model. Hence, the aim of this work is to correlate the structures
for these standards and thus obtain the benefits of being able
to reduce the time and costs through a joint implementation
and also to stimulate the implementation of several models
designed for IT service management. Thus, the main
contribution made by this paper is that it finds a way of
implementing ITIL practices through the adoption of the
organizational process assets included in CMMI-SVC. This
form of implementation was evaluated by specialists with an
expert knowledge of both frameworks and adjustments were
requested before the final version was completed for this work.

Keywords-service management; information technology
services; IT organization; service management model; ITIL;
CMMI-SVC; harmonization.

I. INTRODUCTION

In recent years, both public and private organizations,
(regardless of their size), have increased their demand for IT
services to achieve their strategic goals. This paradigm has
led the IT area to be seen as a strategic partner of businesses
by enabling them to act in a competitive way. As a result of
this change, there is a need to improve standards when
providing these IT services, by employing methodologies to
guide their implementation and management. Since they are
based on best practices, this has enabled companies to
achieve successful results [1].

Several standards of best practice (including proprietary
knowledge, norms, models and frameworks designed for IT
service quality management) are available in the market,
such as the ITIL framework [2], International Organization

for Standardization / International Electrotechnical
Commission (ISO / IEC) 20000 [3], CMMI-SVC [4] and
Control Objectives for Information and Related Technology
(COBIT) [5].

According to the Information Technology Service
Management Forum (itSMF) UK [1], the ITIL framework
offers the following benefits: a) providing value to
customers through IT services, b) integrating a strategy for
services for business and customer needs, and c) measuring,
monitoring, optimizing and reducing the cost of IT services.
Companies such as IBM, Microsoft, HP and HSB are
success stories in the adoption of the ITIL framework and in
the 2011 edition of itSMF. There are 5 stages in the service
lifecycle; each stage has a book of its own, together with 26
processes and 4 functions, which assist in achieving the
purposes and goals of each stage.

In contrast, the CMMI for Services (CMMI-SVC) [4] is
focused on the processes of service companies that are
designed to help these companies know and improve their
IT service processes. According to the CMMI Institute, until
now (2017), their assessment shows that 549 companies
have been using this maturity and capability model.

Many organizations see the need to adopt two or more
IT best practice models or frameworks to improve
efficiency and effectiveness in providing suitable IT
services and thus ensure the organization’s survival and
success in the competitive global market. A set of models or
frameworks (rather than just one) is used because when
implemented in isolation they may not be able to fully cover
all the needs of an organization by improving its IT services.
Regardless of differences in concept and structure, IT best
practice frameworks and models are not in principle
incompatible, which means that they can be combined to
improve the organization's IT service management. Hence
the challenge of implementing IT service management
through more than one standard of best practice, can be
overcome by means of harmonization. This task will help to
establish the similarities and differences between the models
discussed in this paper [6]. The harmonization technique is
widely used and accepted by the regulators as a means of
enhancing the quality of the products and services provided
and managed by the IT organization.

The research question raised in this work is about how
ITIL (the IT service quality framework) and CMMI-SVC

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 21 / 267

(the process quality model) can lead to an organizational
improvement in an integrated way, by making use of the
assets (practices, processes and other features) that these
standards have. In this way, this research is driven by the
need for materials that can guide the implementation process
of the multi-models (ITIL and CMMI-SVC) in companies
through the provision of assets to determine their strengths
and weaknesses. It is also the purpose of this research to
show the relationship between the ITIL framework and the
CMMI-SVC quality model, by harmonizing their
characteristics to show the level of adherence between their
structures and supporting the organizations that wish to
implement the framework and model together. Thus, the
description of the main goal concerns the application of the
practices defined in the quality models for IT service
management.

The scope of the business / scientific problem and its
challenges is revealed by the number of existing models that
are designed to improve the quality of IT services. The
harmonization can help to identify the common features of
these models by providing the area responsible for the
organization’s IT service management with an instrument to
guide the joint implementation of their practices. In this
way, time and costs can be reduced and value delivered to
the customers by means of the IT quality services. Thus, the
best means to solve this problem is to determine how many
of the assets (practices, processes and other factors) that are
needed to support the implementation of different standards,
can be applied together in the area responsible for the
organization’s IT service management.

This paper discusses the details of the harmonization of
the Design Coordination process included in the ITIL
Service Design, together with the process areas of the
CMMI-SVC model. In describing the similarities and
differences between the models, structures and the coverage
criteria, an evaluation has been carried out to validate the
correctness of the harmonization between the model and the
framework. Thus, the purpose of this work is to design an
instrument that can guide the joint implementation of the
practices contained in both standards (ITIL Service Design
and CMMI-SVC), and explain which CMMI-SVC strategies
could be used to implement the ITIL set of practices. This
harmonization does not aim to show the mapping between
the assets but rather the coverage of ITIL obtained from the
implementation of CMMI-SVC.

Several issues need to be addressed in this research,
including how the nature and scope of the problem
investigated are related to the IT service quality and the
improvement of the IT service and process. It also involves
attempting to ensure that the service improvement can take
place during the IT service lifecycle.

The ITIL Service Design lifecycle consists of 8
processes. The choice of the Design Coordination process
for this study, was based on the fact that this process seeks
to ensure that the goals and objectives of the stage are met.
It also provides and maintains a single point of coordination
and control for all the activities and processes at this stage
of the lifecycle.

It is hoped that the results of this research will: a) reduce
the costs of organizations with joint implementation models,
b) overcome the problem of inconsistencies and conflicts
between the adopted standards, and c) reduce the costs
incurred through this type of multi-model implementation.
The difficulty is how to harmonize the ITIL framework with
the CMMI-SVC model, as defined by different
organizations and decide which practices should be
integrated. Finally, this research is constrained by the fact
that it is only focused on one process - Design Coordination
- which is a part of the ITIL Service Design (although the
harmonization of other processes included in the ITIL
Service Design are available at the “SPIDER - Software
Process Improvement: Development and Research Project
SPIDER”) and because only one expert has been invited to
evaluate this harmonization.

The harmonization of ITIL with CMMI-SVC is
significant because both standards include assets for the
implementation of the IT process improvement. This means
that an organization that is interested in this subject can
implement an organizational improvement program with the
good practices of different models. For this reason, it is
clear that an organization that wishes to achieve this level of
improvement, could derive the benefits of being able to
reduce the costs and time of an individual implementation of
each model, even though it could also carry out a joint
implementation. With regard to the Design Coordination
process, it is useful for an organization to move from a
managed maturity level to a defined maturity level where
the processes become standardized, structured and
institutionalized.

This paper is structured as follows. Section II examines
some related work that harmonize the two standards for IT
service management and discusses in detail the fundamental
principles of the two standards selected for this research
study. Section III describes the harmonization between the
Design Coordination process included in the ITIL Service
Design and the practices in the CMMI-SVC process areas,
as well as examining the evaluation undertaken for this
research and the guidelines on how harmonization should be
used. Finally, Section IV concludes the paper with some
final considerations, including the results obtained and the
limitations of this research, followed by some suggestions
for possible future work.

II. RELATED WORKS AND BACKGROUND

This section provides an overview of the concepts of the
CMMI-SVC model and the ITIL framework and some
related works.

A. Related Works

 Bridges and Albuquerque’s work [7] set out a hybrid
model based on equivalences found between the Service
Availability and Continuity Management areas of
Information Technology Services Management (ITSM) and
the guides for service management, such as CMMI for
Services, COBIT, ISO 20000, ITIL and Brazilian Software

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 22 / 267

Process Improvement (MPS.BR). These are concerned with
encouraging the use of a quality improvement model in both
areas (harmonically), with a view to consulting the Database
of a Supplemental Health Operator in Brazil.

In [8], Ali, Soomro and Brohi mapped some ITIL
processes for similar processes in IT standards and best
practices in IT services: COBIT, ISO / IEC 27002-2005,
Six Sigma, The Open Group Architecture Framework
(TOGAF), enhanced Telecom Operations Map (eTOM),
CMMI, Payment Card Industry Data Security Standards
(PCI DSS) and the Common Security Framework (CSF).
This mapping found similarities that enable the
simultaneous implementation of ITIL in conjunction with
these standards and norms in organizations and thus
improve the productivity of business and IT services.
Although this work took account of the harmonization
between ITIL and CMMI, the CMMI model that was used
was CMMI for Development (CMMI-DEV), which is
concerned with software development and not IT process
management, which is the focal point of the good practices
in ITIL and CMMI-SVC used in this paper.

In a study by Pardo et al. [9], an integrated model is
devised that harmonizes multiple approaches related to IT
Governance for the Banking sector, including the
Technology Governance Model for Banking (ITGSM). This
involved six models and norms, namely Basileia II, COBIT
4.1, RISK IT, VAL IT, ISO 27002 and ITIL V.3, and these
were integrated in pairs in an interactive and incremental
way to create the ITGSM model. As a result, benefits were
obtained for banking organizations, on the basis of a system
that harmonized these models and norms.

 Espindola and Audy [10] adopt an evolutionary
approach to integrate quality models, which define a method
that systematically executes a meta-model in Unified
Modeling Language (UML). This is based on the features
included in the mapping table for a quality framework and
several models (CMMI, ISO / IEC 15504, ISO / IEC 20000
and COBIT). As a means of confirming the applicability of
the method, the Reference Model of Brazilian Software
Process Improvement (MR-MPS) quality model was added
to validate if the addition of a model that had not been used
in the development of the meta-model, was able to ratify it.

 Kusumah, Sutikno and Rosmansyah [11] carried out a
case study in an organization called INTRAC, which
introduced the Model Design of Information Security
Governance Assessment with Collaborative Integration of
COBIT 5 and ITIL. This integration was, as far as possible,
aimed at eliminating risks and their effects on the
organizations, in situations where this had previously been
fully ensured through the use of a single standard such as
ISO / IEC 27001:2009 and ISO / IEC 27002:2005.

Finally, Garcia, Oliveira and Salviano [12] show the
mapping between CERTICS (a national Brazilian model)
and CMMI-DEV (an international model), in a situation
where the main purpose of harmonization was to improve
the area of Information Technology Competence

Management of CERTICS. Each stage was evaluated by a
specialist in the CERTICS and CMMI-DEV models, 1) to
ensure the methodology had been formulated correctly, 2) to
ensure the methodology was being employed correctly and
3) to ensure it was appropriate to have this kind of
methodology. The main value of this was the reduction of
time and costs during the implementation and, in particular,
theability to implement several joint projects in the software
development.

Organizations can find a wide range of best practices in
the frameworks and models available which can lead to
improvements in their processes and make their businesses
profitable, by attracting companies and customers in very
different areas. These frameworks and models have some
similarities, strengths and weaknesses. A notable feature of
the related work on the harmonization of these practices is
that they enhance the organizational processes in business,
without the need to employ a large number of quality
models, since they are harmonized. As a result of this
harmonization, the regulatory agencies of these standards,
models and frameworks can find failings in their good
practices and correct them in their quality models.

B. The ITIL Framework

 ITIL is a public framework owned by AXELOS (a joint
venture set up in 2014 by the Government of the United
Kingdom and Capita) and based on best practices i.e.,
“activities or processes that have proven to be successful
when used in many organizations” [2], that are widely
recognized in the world for IT service management (ITSM).
The ITIL Library is made up of a set of 5 books, one for
each stage of the service lifecycle, where IT services
effectively contribute to the best practices that can be
adopted and adapted. It depends on the need and
convenience of each organization to obtain business value.
“Stages of the lifecycle work together as an integrated
system to support the ultimate objective of service
management for business value realization” [2].

The ITIL framework and its 5 service lifecycle stages
consist of a core publication, which provides a set of best
practice guidelines for each stage. This model provides an
insight into the service stages from conception to retirement.
When each stage is examined, a set of processes and
activities can be found for planning each objective in a
sequence. The stages of the lifecycle are as follows:

• ITIL Service Strategy - this formulates IT
strategies and plans that must be appropriately
aligned to the business and determine which
services the provider must offer to meet the needs
of customers or businesses,

• ITIL Service Design - at this stage, the design of
appropriate and innovative IT services, including
their architectures, processes, policies and
documentation, to meet current and future agreed
business requirements,

• ITIL Service Transition, - this aims at transferring

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 23 / 267

a new or changed service to the work environment
in a controlled way,

• ITIL Service Operation - this is responsible for
keeping the service within the work environment in
a good operational condition and ensure that users
and customers are satisfied with the efficient
operation of the service, and

• ITIL Continual Service - this provides
improvements in services and processes to
maintain the value of the service for the customer
and business.

Each stage of the ITIL lifecycle has a set of structured
processes with activities to achieve a particular goal. The
processes start with defined triggers and inputs, which result
in defined outputs [2]. The processes of the ITIL Service
Design domain are:

• Design Coordination, a process that aims at
ensuring that the goals and objectives of the stage
are properly met and controlled by a single point of
coordination and control for all the other processes
and activities within this stage of the service
lifecycle,

• Service Catalog Management, a process
responsible for providing and maintaining a
consistent flow of information with regard to all the
services in operation, as well as the one that is still
being carried out to start the operation,

• Service Level Management, a process that seeks to
ensure that current and planned IT services are
delivered in accordance with the goals established
in the agreements,

• Availability Management, a process that is
designed to guarantee the availability levels for IT
services and in this way efficiently and effectively
meet the requirements for availability and service
level goals agreed with the customer or business,

• Capacity Management, which is responsible for
ensuring that services, service components and the
IT infrastructure have the required capacity and
performance and can operate in a timely and
efficient way, while justifying its costs,

• IT Service Continuity Management, a process
that manages business risks, which have the
potential to cause serious damage to IT services and
can draw up contingency plans and / or redundancy
to mitigate the possible efects of these risks,

• Information Security Management, a process that
seeks to align IT security with business security and
ensure the confidentiality, integrity and availability
of IT assets, information, data and services, as
agreed with the IT service provider, and

• Supplier Management, a process that must be
involved with all stages of the service lifecycle in
ITIL, because in this stage the suppliers are required
to design new and / or updated services and must
comply with their contractual obligations.

Owing to the limited space in scope of this paper, we

decided to select the Design Coordination process of ITIL
Service Design. This process is structured in two categories
[13], each with its respective activities, namely:

• For the overall service design lifecycle stage:
- Define and maintain policies and methods,
- Plan design resources and capabilities,
- Coordinate design activities,
- Manage design risks and issues, and
- Improve service design.

• For each design:
- Plan individual designs,
- Coordinate individual designs,
- Monitor individual designs, and
- Review designs and ensure handover of service

design package.

C. The CMMI-SVC Model

The Capability Maturity Model Integration for Services
(CMMI-SVC) is a maturity model for assessing, defining,
implementing and improving the quality of an
organization’s processes and its ability to manage the
service. This model was created by the Software
Engineering Institute (SEI), and contains 24 Process Areas
(PA), 16 of which are core, 1 is shared and 7 are service-
specific process areas of CMMI-SVC. This model was
designed to meet the need for development and
improvement in the maturity of service practices and hence
make improvements in the performance of the service
provider leading to customer satisfaction [4].

In 2010, the CMMI version 1.3, which brings together
three constellations, was published by SEI: CMMI for
Development (CMMI-DEV), which deals with development
processes, CMMI for Acquisition (CMMI-ACQ), where
processes of acquisition are worked out, as well as
outsourcing of products and / or services, and CMMI for
Services (CMMI-SVC), aimed at improving service
processes.

There is a chapter devoted to describing the components
in the CMMI-SVC model. Understanding these components
is regarded by the model as a critical factor since it seeks to
ensure the use of the information is understood. These
components are grouped into 3 categories:

• Required Components - components considered to
be essential to achieve process improvement in a
particular process area, and comprising Specific and
Generic Goals,

• Expected Components - components that describe
the activities that are needed to achieve a required
component, and are formed of Specific and Generic
Practices, and

• Informative Components - components that help
the model to be understood, and thus have
components such as Subpractices, and Examples of
Work Products.

 The CMMI-SVC consists of process areas (PA) with
specific purposes and goals related to each particular

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 24 / 267

process area, as well as generic goals related to all the
process areas. Specific goals (SG) are also defined that refer
to the unique features of each process area and generic goal
(GG) responsible for defining the characteristics that are
common to all the process areas. For each specific goal, a
set of specific practices (SP) will be outlined, which are
activities that need to be completed to ensure that the goal is
satisfied in each PA.

The three CMMI-SVC process areas considered in this
harmonization are:

• Organizational Process Definition - the purpose
of this is to establish and maintain a usable set of
organizational process assets and work environment
standards. This process area includes the following
specific practices:

o SP 1.1 Establish Standard Processes,
o SP 1.2. Establish Lifecycle Model

Descriptions,
o SP 1.3 Establish Tailoring Criteria and

Guidelines,
o SP 1.4 Establish the Organization’s

Measurement Repository,
o SP 1.5 Establish the Organization’s

Process Asset Library,
o SP 1.6 Establish Work Environment

Standards,
o SP 1.7 Establish Rules and Guidelines for

Teams,
• Organizational Process Focus - the purpose of this

is to plan, implement, and deploy organizational
process improvements based on a thorough
understanding of the current strengths and
weaknesses of the organization’s processes and
process assets. This process area includes the
following specific practices:

o SP 1.1 Establish Organizational Process
Needs,

o SP 1.2 Appraise the Organization’s
Processes,

o SP 1.3 Identify the Organization’s Process
Improvements,

o SP 2.1 Establish Process Action Plans,
o SP 2.2 Implement Process Action Plans,
o SP 3.1 Deploy Organizational Process

Assets,
o SP 3.2 Deploy Standard Processes,
o SP 3.3 Monitor the Implementation,
o SP 3.4 Incorporate Experiences into

Organizational Process Assets,
• Integrated Work Management - the purpose of

this is to establish and manage the work and
involve the stakeholders concerned through an
integrated and defined process that is adapted to the
organization’s set of standard processes. This
process area includes the following practices:

o SP 1.1 Establish the Defined Process,
o SP 1.2 Use Organizational Process Assets

for Planning Work Activities,
o SP 1.3 Establish the Work Environment,
o SP 1.4 Integrate Plans,
o SP 1.5 Manage the Work Using Integrated

Plans,
o SP 1.6 Establish Teams,
o SP 1.7 Contribute to Organizational

Process Assets,
o SP 2.1 Manage Stakeholder Involvement,
o SP 2.2 Manage Dependencies,
o SP 2.3 Resolve Coordination Issues.

The CMMI-SVC model should be consulted for a better
understanding of the purpose of each specific practice [4].
This list of specific practices will be used in the section
describing the harmonization set out in this paper.

III. THE HARMONIZATION BETWEEN THE ITIL FRAMEWORK

AND CMMI-SVC MODEL

Both the ITIL framework and the CMMI-SVC model
share the same goal of providing the IT Managers and
organizations with a set of best practices to manage
information technology services of quality and create value
for the organization’s business area during the service
lifecycle. Although these models have different structures,
similarities can be found in the set of specific requirements
for the IT service management, as shown in Table I.

TABLE I. ELEMENTS THAT CAN INFLUENCE THE ITIL FRAMEWORK

AND CMMI-SVC MODEL

ITIL Elements CMMI-SVC Elements
Process Process Area
Objectives Specific Goals

(SG)
Generic Goals
(GG)

Activity, Methods and
Techniques

Specific Practices
(SP)

Generic Practices
(GP)

Policies, Principles and
Basic Concepts

Subpractices Generic Practice
Elaborations

Triggers, Inputs and
Outputs

Example of Work Products (WP)

 In each service lifecycle, the ITIL framework has a set
of Processes, that are structured by a set of Activities to
achieve a certain objective. Similarly, the CMMI-SVC
model contains a set of Process Areas (PA), where several
Specific and Generic Practices, (component of the PA), are
described and must be implemented.

The Objectives element of the ITIL framework is
equivalent, in certain respects to the Specific Goals and
Generic Goals of CMMI-SVC. This is because they include
a set of characteristics that, must be identified in the
respective Process of the ITIL by the Objectives element
and in the Process Area of CMMI-SVC for the Specific and
Generic Goals before they can be certified by the model in
the organization. Similarly, the Activities, Methods and
Techniques of the ITIL framework include areas that must
be defined to achieve a specific result. This can be
compared to the Specific Practices and Generic Practices of
CMMI-SVC, because this includes the details of how to

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 25 / 267

carry out a practice to meet the goals of the model.
Another similarity that was found refers to the elements

that are designed to provide guidelines for the appropriate
implementation process of the models. The fact that ITIL
framework is present in the Policies, Principles and Basic
Concepts and in the CMMI-SVC model, can be observed in
the Subpractices and Generic Practice Elaborations.

The Triggers, Inputs and Outputs of the ITIL framework
have similar objectives to the Example Work Products of
CMMI-SVC, since these elements must be sought during the
implementation process in each model to ensure that the
requirements have been met correctly.

The integration recommended by this paper refers to the
set of concepts in the ITL framework and the CMMI-SVC
model elements. It also includes the definition of a set of
equivalent technologies that assist in the evaluation and
improvement of IT products and services. In this domain,
there are tools, techniques, procedures, processes, roles,
methodologies, frameworks, languages, standards, patterns,
and so on.

It should be emphasized that the mapping between the
elements contained in the ITIL and CMMI-SVC were
validated through the same correlation in the work [8],
which confirms that the results for the relationship between
the elements defined in Table I is correct.

A. A Conformance Analysis of the Design Coordination
Process

The Design Coordination process in the category of
activities relates to the overall service design lifecycle
stage, where the standard service process that needs to be
adopted is constructed [13]. It includes the following
activities which are mapped in each subsection below.

1) Define and Maintain Policies and Methods

This activity is intended to ensure that a Consistent and
Accurate Design(s) for the Service(s) is produced in
accordance with the required business outcomes. When
made available in the IT Service Operational Environment,
it helps (and continues to help) the organization to achieve
its goals. To do this, this activity requires a Process Area
and Specific Practices (SP) of CMMI-SVC.

In the Organizational Process Definition (OPD) area,
SP.1.1 defines and maintains a set of standard processes that
can be instantiated to address a particular area of the
organization’s business. SP.1.2 attempts to describe the
lifecycle models that are suited to the needs of the
workgroup, the organization, the definitions of the service
standard and the environment. SP.1.3 is concerned with
drawing up the guidelines that will set out the procedure for
the conduct and execution of the defined process. These are
based on the information contained in the set of standard
processes and in the assets of the organizational process.
SP.1.4 aims to design and maintain the Organization
Measurement Repository which provides the necessary
information to understand and interpret the set of common
measurements for products and processes related to the set
of standard processes of the organization. Finally, SP.1.5

designs and implements the organizational process asset
library, where the procedures are specified for the storage,
updating and retrieval of items such as policies, process
descriptions, procedures, development plans, and other
assets, as well as making these items available for use in
workgroups.

The coverage in the Define and Maintain Policies and
Methods activity was complete, because the CMMI-SVC
had met the requirements of this activity.

2) Plan Design Resources and Capabilities

The purpose of this activity is to plan the resources and
capabilities of the Design Coordination process, based on
the information obtained from the Service Portfolio
activities (Service Pipeline) and the Change Management
process of the ITIL Service Transition stage. This is because
this activity requires a Process Area and Specific Practices
of CMMI-SVC to achieve its goals.

In the Organizational Process Definition (OPD) process
area, SP.1.6 aims to establish and maintain a standard work
environment, i.e what resources are required for team work.
SP.1.7 allocates people to work in the process and defines
the assignments of these people.

There was complete coverage for the Plan Design
Resources and Capabilities, because the CMMI-SVC had
met the requirements of this activity.

3) Coordinate Design Activities

This area coordinates all the design activities in projects
and changes, management planning, resources, and conflicts
with suppliers and support teams when necessary. It thus
requires a Process Area and Specific Practices of CMMI-
SVC to achieve its goals.

In the Integrated Work Management (IWM) process area,
the aim of SP.2.2 is to manage the task dependencies
between the activities of the process, since these depend on
the inputs of other activities for their execution and must be
carefully managed to avoid process gaps. Thus, the SP
identifies any critical dependencies and plans the work
schedule, while taking account of these critical variables in
the process.

The coverage of the Coordinate Design Activities was
complete, because the CMMI-SVC had met its
requirements.

4) Manage Design Risks and Issues

This activity is responsible for assessing risks in design,
technical management, managing the risks involved in
design activities, and tackling the number of problems that
might be subsequently traced to poor design. It requires a
Process Area and Specific Practices of CMMI-SVC to
achieve its goals.

In the Integrated Work Management (IWM) process area,
in SP.2.3 the task of management entails the identification,
follow-up (status) and communication of the person
responsible for tackling and solving the problem.

The coverage in the Manage Design Risks and Issues
activity was complete, because the CMMI-SVC had met the

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 26 / 267

requirements of this activity.

5) Improve Service Design

The purpose of this activity is to ensure that there is a
continuous awareness of the goals and objectives of the
service design phase to improve the effectiveness and
efficiency of service design activities and processes. This
activity requires a Process Area and Specific Practices of
CMMI-SVC to achieve its goals.

In the Organizational Process Focus (OPF) process area,
SP.1.1 records the needs and goals of the organizational
process in the context of the business to ensure that it is
fully understood. SP.1.2 evaluates and delivers the results of
the documents needed with regard to methods and
evaluation criteria. These include the following: the CMMI
process model, the International Organization for
Standardization (ISO) or benchmarking. SP.1.3 seeks to
discover if there is a need for improvement in the processes
and process assets of the organization and involves training
for teams, and improvement of the tools used, among other
factors. In SP.2.1 the focus is on how to enable the
organization to establish and maintain plans for
improvement. These are subsequently implemented in
accordance with the organizational needs defined in SP.2.2.
SP.3.1 plans, records and executes the implementation of
the Organizational Process assets and their changes, as well
as determining what resources are needed to support this
implementation and thus ensure its compliance with the
organization’s current goals and objectives. The aim of
SP.3.2 is to implement the organization’s standard
processes, and work groups, by periodically updating them,
and incorporating the latest changes made to the
standardization. This ensures that all the work activities can
benefit other work groups in the process. SP.3.4 attempts to
bring about improvement in the planning and execution of
the organizational process and in particular, the lessons
learned, measurements periodically measured, and records
of improvements in the organizational process activities.

The coverage in the Improve Service Design activity was
complete, because the CMMI-SVC had met the
requirements of this activity.

With regard to Design Coordination Process in the
category of activities relating to each individual design,
each process must be instantiated to allow a service project
to be implemented [13]. This includes the following
activities, which are mapped in each subsection below.

1) Plan Individual Designs

This activity involves carefully planning each individual
project or change to ensure the required business results are
obtained. This activity requires a Process Area and Specific
Practices of CMMI-SVC to achieve its goals.

In the Integrated Work Management (IWM) process area,
SP.1.1 seeks to define and maintain a process in accordance
with its contractual obligations, operational needs,
opportunities and constraints. SP.1.2 uses the tasks and
work products of the process defined for the work as a basis
for planning the work activities. SP.1.3 seeks to plan, design

and implement a work environment, in terms of its
equipment, tools, facilities, operations and manuals. SP.1.4
is concerned with the management of integrated work plans,
and ensuring the controlled participation of human resources
in integrated projects to avoid labor conflicts. The objective
of SP.1.6 is to form the teams that will work in the process.

The coverage in the Plan Individual Designs activity was
complete, because the CMMI-SVC had met its
requirements.

2) Coordinate Individual Designs

This activity is often carried out by a project manager or
someone else with direct responsibility for the project. He /
she is also responsible for making changes in the
coordination of activities and in the instantiation of the
standard process in response to the customer’s demands.
This activity requires a Process Area and Specific Practices
of CMMI-SVC to achieve its goals.

In the Integrated Work Management (IWM) process area,
SP.2.1 undertakes the management and scheduling of the
collaborative activities of the stakeholders (the integrated
work plan has already been defined in SP.1.4). The
coordination of people’s dependencies and the negotiation
of critical issues (contingencies) is carried out in SP 2.2 in
case there is a need to change the agenda and introduce
collaborative schedules for the stakeholders. SP.2.3 is
designed to tackle issues that are important for the
stakeholders. The ability of the appropriate manager to
solve these problems depends on their scale.

The coverage in Coordinate Individual Designs was
complete, because the CMMI-SVC had met the
requirements of this activity.

3) Monitor Individual Designs

The purpose of this activity is to monitor all aspects of
the project to ensure the following: a) the agreed methods
are being adhered to, b) there is no conflict of interest with
other ongoing design projects, c) the website design
milestones are reached, and d) the development of a design
is comprehensive enough to support the required
organizational results. This activity requires a Process Area
and Specific Practices of CMMI-SVC to achieve its goals.

In the Integrated Work Management (IWM) process area,
SP.1.5 focuses on monitoring and controlling work
activities. It is also concerned with work products from the
defined processes, work plans, and other plans that can
affect the work.

The coverage in Monitor Individual Designs activity was
complete, because the CMMI-SVC had met the
requirements of this activity.

4) Review Designs and Ensure Handover of SDPs

 The final review of the individual designs is carried out
to ensure that the standards and conventions are being fully
complied with in the service design package (SDP).
Problems should be documented and there is a need to
determine if alterations are needed in any part of the service
design or if they can be viewed as a part of the service

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 27 / 267

transition plan. This activity requires two Process Areas and
Specific Practices of CMMI-SVC to achieve its goals.

In the Integrated Work Management (IWM) process area,
SP.1.7 establishes the following: a) the contributions made
by the defined process information to the work, b)
organizational process assets and c) proposed
improvements. The processes and product measurements are
stored in the organization’s measurement repository. In the
Organizational Process Focus (OPF) area, the SP.3.4 is
responsible for the improvement of planning and execution
of the process in the organizational process assets. Its
activities depend on what has been found out about its
strengths and weaknesses in the SP.1.7.

The coverage in the Review Designs and Ensure
Handover of SDPs activity was complete, because the
CMMI-SVC had met its requirements.

B. An Evaluation of the Harmonization of Technology
Management

The peer review technique was employed to evaluate the
harmonization that was obtained between the requirements
of the ITIL framework and CMMI-SVC model, as outlined
in the last section. This was overseen by an expert, who has
over 5 years of experience of implementing quality models
in IT (Information Technology) companies. He has a
recognized certification in ITIL and CMMI-SVC, as well as
being a certified SCAMPI High Maturity lead appraiser.
The expert was given the document that contains the
harmonization of ITIL and CMMI-SVC. He carried out the
review in accordance with a set of criteria, which were
defined on the basis of Araújos’s work [6], as shown in
Table II.

TABLE II. CRITERIA DEFINED FOR THE HARMONIZATION

EVALUATION.

Criteria Definition
TH (Technical
High)

Indicates that a problem in a harmonization item
was found and, if not changed, would impair the
system.

TL (Technical
Low)

Indicating that a problem in a harmonization item
was found and a change would be appropriate.

E (Editorial) Indicating that a Portuguese language error was
found or the text can be improved.

Q
(Questioning)

Indicating that there were doubts about the
content.

G (General) Indicates that in general a comment is needed.

When reviewing the harmonization of Design
Coordination process, the expert detected a problem, which
was classified as General (G). It was suggested that an
analysis should be conducted of all the CMMI-SVC specific
and generic practices that have been mapped in the ITIL
process with the aim of determining whether they are listed
and described at the end of the document. If any mapped
practice had not been listed, the expert suggested that it
should be included in the document, as a means of enabling
the purpose e of these practices to be understood.

The specialist found a problem in the 4 ITIL activities,
which was classified as TL. Since in this outcome the

Specific Practice was unnamed, the expert suggested that its
name should be included in the harmonization document.
These problems were caused by the following: a) a lack of a
suitable relationship between some good practices of ITIL
with CMMI-SVC, b) a lack of detail about what level of
coverage was determined after the relationship had been
established between the assets of the two frameworks, c) a
lack of clarity about what each asset represents (i.e., ITIL
and CMMI-SVC), and d) a lack of an explanation for the
relationship between the elements of ITIL and CMMI-SVC.

The expert did not find any problem classified as TH, E
or Q.

After this first peer review the authors of this paper sent
the corrected harmonization to 3 other experts in the field,
who are certified and have more than 7 years of experience
of implementing the two models used in the work. However,
none of these experts suggested any adjustments should be
made, although they showed an interest in the use of this
harmonization for making improvements to the
implementation of the program.

C. How should the Harmonization be used?

The purpose of the harmonization of the ITIL
framework and CMMI-SVC model is to help businesses that
wishing to obtain certifications through multi-model
implementations or even by making evaluations of the two
standards. The use of harmonization can optimize cost-
effectiveness, time and effort because the standards now
have their structures harmonized and interrelated.

It was possible to highlight the differences and
similarities included in the requirements of ITIL and
CMMI-SVC. Hence, it can be seen that although some
requirements of the standards are similar or even
complementary, they are not always able to achieve their
goals in the same way. According to the Association for
Promoting Excellence in Brazilian Software (SOFTEX)
[14], this may occur because of the different requirements
of some of the practices, outcomes and expected results of
the standards.

The harmonization spreadsheets have become an
important support tool for the joint evaluation or
implementation of the standards, because they provide
inputs that allow their frameworks to be adapted /
harmonized and predict their expected results, practices
and outcomes. This can enable the multi-models to be
implemented in companies.

As a result, the company benefits from the
implementation of joint standards, because it will not have
to spend time on separately analyzing the frameworks for
the standards. This means that there is a need to determine
in what way one standard can suit another one, because all
the structures and requirements, (which are the same for all
the standards), have been identified, harmonized and
documented in the spreadsheet used for the standards.

A qualitative criterion for the successful harmonization
in the design coordination process can be defined as a
standard process that is well structured, and is subject to
rules for its adaptation and institutionalization, as well as the

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 28 / 267

fact that it can be integrated with different projects.

IV. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

This research study examined the harmonization of the
Design Coordination process with the ITIL framework by
carrying out the practices defined in the CMMI-SVC
process areas. Its goals were achieved by seeking to
determine the similarities and differences between the
structures of ITIL and CMMI-SVC, and investigating their
degree of harmonization. To avoid misunderstandings and
inconsistencies, an expert in these standards evaluated the
harmonization by means of the peer review technique. The
results of this review were analyzed and changes were
suggested to remove any inconsistencies or failure to
understand the problems detected by the expert.

The lessons learned from this research stem from the
fact that there is both an analytical and comparative domain
between the framework and the object model of this
research. Thus, it is recommended that more than one
person should undertake it so that any conflicts or
uncertainties can be discussed and addressed by a peer
review.

A limitation of this study is that the harmonization was
not evaluated in a public / private company or organization,
but only assessed by peer review. However, an assessment
of the harmonization of a public company is now being
completed in Brazil and its processes are in accordance with
the practices of maturity level 3 of CMMI-SVC. As a result,
it will be possible to determine if the harmonization had a
positive or negative influence on a multi-model
implementation. A further limitation is the fact that the peer
review was only conducted by a single expert, which means
that there can only be a limited view of the results obtained
from the research. However, this expert has extensive
experience with the implementation of the CMMI-SVC
model and the ITIL framework, and this should reduce the
risk of bias in the results obtained from the review.

In a future work, we intend to continue to expand this
research and apply it to other organizations, so that the
positive and negative aspects of the use of harmonization
can be quantified through a multi-model implementation
(ITIL framework with CMMI-SVC). Another future study
could involve defining the complete cycle of harmonization
based on the results of Araújo's research [6] and the CMMI
guide [4].

So far, it has not been possible to finalize the case study,
although it is worth drawing attention to the benefits of
multi-model implementation. These include, the reduction
of costs and time needed to comply with the expected results
and practices of the ITIL framework and the CMMI-SVC,
as well as the creation of a unified and standardized system
to achieve the two standards. Finally, there is the advantage
of being able to standardize the technical language that is
used among them to define the process of IT service
management.

ACKNOWLEDGMENT

The authors would like to thank the Dean of Research
and Postgraduate Studies at the Federal University of Pará
(PROPESP/UFPA) by the Qualified Publication Support
Program (PAPQ), for the financial support.

REFERENCES

[1] ItSMF UK, “An Introductory Overview of ITIL® 2011”, IT Serv.
Manag. Forum UK, London, 2011.

[2] OGC, "ITIL Service Strategy", London: The Stationery Office, 2011.

[3] ISO/IEC, “ISO/IEC 20000- 1:2011 Information technology — Service
Management — Part 2: Guidance on the application of service
management systems”, Geneva, 2011.

[4] SEI, "CMMI® for Services", Version 1.3, no. November. 2010.

[5] Isaca, “COBIT 5: A Business Framework for the Governance and
Management of Enterprise IT”, 2013.

[6] L. L. Araújo, “Mapping between MPS.SW and MPT.BR and
CERTICS", Dissertação de Mestrado, COPPE/UFRJ, Brazil, 2014.

[7] L. Pontes and A. Albuquerque, “Managing Database Services: An
Approach Based in Information Technology Services Availabilty and
Continuity Management”, J. Inf. Syst. Eng. Manag., vol. 1, pp. 1–5,
2017.

[8] S. M. Ali, T. R. Soomro, and M. N. Brohi, “Mapping Information
Technology Infrastructure Library With Other Information Standards
And Best Practices”, J. Comput. Sci. 9(9), vol. 9, no. 9, pp. 1190–
1196, 2013.

[9] C. Pardo et al., “Integrating Multiple Models for Definition of IT
Governance Model for Banking ITGSM”, Int. Bus. Manag., vol. 10,
pp. 4644–4652, 2016.

[10] R. S. de Espindola and J. L. N. Audy, “An Evolutionary Approach for
Quality Models Integration”, in Proceedings of the 11th International
Conference on Enterprise Information, 2009, pp. 231–236, doi:
10.5220/0002008202310236.

[11] P. Kusumah, S. Sutikno, and Y. Rosmansyah, “Model design of
information security governance assessment with collaborative
integration of COBIT 5 and ITIL (case study: INTRAC)”, Proc. - 2014
Int. Conf. ICT Smart Soc. “Smart Syst. Platf. Dev. City Soc.
GoeSmart 2014, ICISS 2014, 2014, pp. 1–6, doi:
10.1109/ICTSS.2014.7013193.

[12] F. W. S. Garcia, S. R. B. Oliveira, and C. F. Salviano, “CERTICS - A
Harmonization with CMMI-DEV Practices for Implementation of
Technology Management Competence Area”, in ICSEA 2016 : The
Eleventh International Conference on Software Engineering
Advances, , no. c, pp. 10–15, 2016.

[13] OGC, "ITIL Service Design". London: The Stationery Office, 2011.

[14] SOFTEX, “MPS . BR - Brazilian Software Process Improvement
Assessment Guide:2016”, Brazil, 2016.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 29 / 267

Automatic Documentation of the Development of Numerical Models for Scientific

Applications using Specific Revision Control

Martin Zinner∗, Karsten Rink†, René Jäkel∗, Kim Feldhoff∗, Richard Grunzke∗,
Thomas Fischer†, Rui Song‡, Marc Walther†§, Thomas Jejkal¶, Olaf Kolditz†‖, Wolfgang E. Nagel∗

∗ Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden

Dresden, Germany
E-mail: martin.zinner1@mailbox.tu-dresden.de, {rene.jaekel, kim.feldhoff}@tu-dresden.de,

{richard.grunzke, wolfgang.nagel}@tu-dresden.de
† Department of Environmental Informatics

Helmholtz Centre for Environmental Research (UFZ)
Leipzig, Germany

E-mail: {karsten.rink, thomas.fischer, marc.walther, olaf.kolditz}@ufz.de
‡ Technical Information Systems
Technische Universität Dresden

Dresden, Germany
E-mail: rui.song@tu-dresden.de

§ Professorship of Contaminant Hydrology
Technische Universität Dresden

Dresden, Germany
E-mail: marc.walther@tu-dresden.de

¶ Institute for Data Processing and Electronics
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
E-mail: thomas.jejkal@kit.edu

‖ Professorship Applied Environmental System Analysis
Technische Universität Dresden

Dresden, Germany
E-mail: olaf.kolditz@ufz.de

Abstract—As software becomes increasingly complex, automatic
documentation of the development is becoming ever more impor-
tant. In this paper, we present a novel, general strategy to build a
revision control system of the development of numerical models
for scientific applications. We set up a formal methodology of the
strategy and show the consistency, correctness, and usefulness of
the presented strategy to automatically generate a documentation
for the evolution of the model.

Keywords–Software development; Automatic generation of doc-
umentation; Revision control; Backup and Restore; Metadata;
Improvement of research environment; Support of research process.

I. INTRODUCTION

In scientific applications, dedicated software packages are
used to create numerical models for the simulation of physical
phenomena, in particular environmental phenomena, such as
flooding, groundwater recharge or reactive transport using
innovative numerical methods. Such simulations are crucial

for solving major challenges in coming years, including the
prediction of possible effects of climate change [1] [2], the
development of water management schemes for (semi) arid re-
gions [3] [4] or the reduction of groundwater contamination [5]
[6].

The modeling process is usually a complete workflow,
starting with data acquisition and integration to set up a model,
simulate (multiple) processes, and as well as the analysis, and
visualization of calculated results. Unfortunately, the modeling
process itself in general is not transparent and traceable and
often poorly documented. A typical model – conceived as
a set of parameter files – is developed over many weeks or
months and usually a large number of revisions are necessary
for updating and refining the model, such that the simulation
represents the natural process as realistically and plausibly as
possible.

In this paper, we address this challenge, specifically,
we present a revision control system, which in addition to
the backup/restore functionality tracks the changes in each

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 30 / 267

modeling step, thus generating an internal documentation of
the evolution of the model.

The structure of the paper is as follows: In Section II, we de-
fine the environment and set up the terminology; in Section III,
we give a short overview over the state of art and detail some
differences of our approach, both in concept and realization;
in Section IV, we demonstrate our novel strategy, which is
used for the revision control system to generate the implicit
documentation of the evolution of the model; in Section V,
we augment the classical pseudo code presentation of the
algorithms to a formal, mathematical description of our selective
backup strategy and show the consistency and correctness of
the backup and restore functionalities. We present the software
implementing the formal description and its application to a
use case of the UFZ in Section VI. Finally, we conclude our
work and give an outlook for future research and development
in Section VII.

II. MAIN CHALLENGES AND OBJECTIVES

The basic concept for the simulation is the model. It
is developed over several modeling steps, named revisions,
compare Figure 1. After each revision, a simulation is performed
(see Figure 2). The first setup of the model is often used to get
an overview over existing data and to detect potential problems.
Further revisions try to solve these problems by adding data,
mesh refinements, new parametrizations, etc.

The framework for revision control for scientific appli-
cations is being implemented at the Helmholz-Centre for
Environmental Research (UFZ) [7] using Karlsruhe Institute
of Technology Data Manager (KIT DM) [8] as a software
framework for building up repositories for research data.

The Metadata Management for Applied Sciences (MASi) [9]
research data management service is currently being prepared
for production at the Center for Information Services and
High Performance Computing (ZIH) at Technische Universität
Dresden. It utilizes the advanced KIT DM framework to
enable a service that enables the metadata-driven management
of research data from arbitrary communities. This includes
automating as many processes as possible including metadata
generation and data pre-processing.

The current solution, utilized at UFZ, is fully file based and
it is usually stored locally on the laptop of each scientist. The

Figure 1. Model development over revisions

number of parameter files is up to several hundreds, with each
file up to several megabytes. The changes from one modeling
step to the next can be a) minor, e.g., one parameter value

Figure 2. Revision and simulation as part of the model development process

changed in a single input file; b) major, e.g., both geometry
and the grid are modified.

The main deficiencies of the current solution at UFZ are:

1) Overview is lost (especially after handling the model
for a long time),

2) difficult to trace which parameter has been changed
when and why,

3) no implicit or explicit documentation of the changes,

4) each user stores the data on his laptop at his own
discretion,

5) data is lost if hard disk crashes and there is no backup,

6) joint working on the same model is laborious.

The benefits of the new framework will include those of a
classical revision control system (like Git [10], or Apache
Subversion [11]), especially:

1) Uniform, central, and consistent storage of the individual
modeling steps a) each scientist will be able to view the
simulation data he is entitled to b) backup functionality
if the data is lost,

2) possibility to track and analyze / evaluate the changes,

3) data is still available if the PhD student leaves the
company,

4) shared access of the latest development of the model.

We define by a revision the state of the components already
persisted and accessible by a unique identifier. Thus, the content
of the components of a revision cannot be altered any more. The
current set of the components, which can be actively changed
is called the working set.

The main objectives we focus on, to achieve our scope, are:

1) Central persistent storage of the model to include all the
modeling steps and the management of the revisions.

2) Design and development of a metadata repository
regarding a) revision control and b) the changes of the
parameter files between subsequent revisions. Addition-
ally, information regarding parameter values, simulation
software, etc. can be persisted.

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 31 / 267

3) An efficient and disk space saving strategy, such that a
specific parameter file is stored only if its content has
been modified.

4) Generation of an internal documentation of the model
development, such that it can be easily understood and
reconstructed.

It is out of scope of this research to persistently store the
results of the simulation. If necessary, it can be generated
again or a direct storage strategy could be used. Storing the
results of the simulation together with the parameter files would
leverage our sophisticated storage strategy, since the size of
the parameter files is in the range of megabytes, where the size
of the simulation files is in the range of gigabytes. The storage
of the simulation results is only meaningful if it takes too long
to newly generate the results.

Figure 3. Tree structure of the development of the model

The model development is stored in a tree structure, such
that each node (revision) has a unique link to its predecessor,
see Figure 3. The tree structure is necessary to be able to
identify modeling steps where the results of the simulation are
not promising, and thus this revision is not pursued further
(termed abandoned). In this case, the development of the model
is continued from a previous revision (termed active), thus
performing a rollback on the evolution of the model and creating
a new branch in the version control tree structure.

Usually, metadata is defined as data about data. Metadata
files can be generated automatically or they can be set up
manually. The flow configuration file is the main metadata file
and it is generated automatically during the evolution process
of the model and contains the basic information regarding the
revision control system, which is necessary to generate the
internal documentation of the evolution of the model, i.e.,

a) model name;

b) predecessors and the current revision;

c) cryptographic hash value and status of the parameter
files;

d) parameter change information in condensed form, etc.

The main metadata file sustains the possibility to automatically
capture, track, analyze, and evaluate the changes in each
modeling step.

Additionally, users can define their own metadata files,
which can be created for the whole case study or for a specific
revision and could contain additional information regarding
a) name of the project; b) model area; c) modeled process;
d) software used, including the version; e) contact person; f)

source reference regarding the applied methods and data used;
g) utilization rights, etc.

Besides documentation, metadata also allows for easy
identification of the uploaded data. Search for specific values
(e.g., model name, author, etc.) over all metadata elements can
be performed for example by using ElasticSearch [12].

III. RELATED WORK

The concept of revision control systems (RCS) is not new
(see Tichy [13]). The task of the RCS as defined by Tichy is
version control, i.e., keeping software systems consisting of
many versions and configurations well organized. The concept
of a revision is similar to our approach, an ancestral tree is
used for storing revisions. The major difference is that – as
set up by Tichy – each object (like a file) has his own revision
tree, whereas we follow an overarching concept, such that files
may remain unchanged between revisions. Furthermore, the
evolvement of the revision is linear, but it can use side branches,
for example one for the productive version and one for the
development [13].

Löh et al. [14] present a formal model to reason about
version control, in particular modeling repositories as a multiset
of patches. Patches abstract over the data on which they operate,
making the framework equally suited for version control from
highly-structured XML to blobs of bits. The mathematical
definition of patches and repositories enable Löh et al. to
reason about complicated issues, such as conflicts and conflicts
resolution. The main application field that Löh et al. targets
is the distributed (software) development with its challenges
regarding the complex operations on the repositories, such
as merging branches or resolving conflicts. They introduce a
precise, mathematical description of the version control system
to accurately predict when conflicts may arise and how they
may be resolved.
Our mathematical model is not based on the work of Löh et al.,
it has been developed from scratch to enable the characterization
of the selective backup strategy.
The possibility to use metadata, such as the patch’s author,
time of creation, or some form of documentation is shortly
discussed in [14]. Details are left to the designers of a specific
revision control system. Also the concept of reverting changes,
i.e., the ability to return to a previous version by undoing a
modification that later turns out to be undesired, is discussed
from a theoretical point of view.

As stated in [15] there are some basic goals of a versioning
system, such that:

1) People are able to work simultaneously, not serially.
2) When people are working at the same time, their

changes do not conflict with each other.

These two goals do not apply in our case. Formally, users can
work simultaneously, making changes independently, but for a
simulation they need all the parameter files. The classical use
case, such that a programmer changes the internal specification
of a module without changing the external interface is not
applicable in our case, each change in a parameter file leads to
different simulation results. Unfortunately, the usual versioning
systems do not support our advanced requirements regarding

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 32 / 267

usage of metadata and enhanced automatic documentation
generation of the evolution of the model.

The automatic generation of documentation has also been
the scope of intense academic and industrial research. It has
been recognized that the importance of good documentation
is critical for user acceptance [16]. Jesus describes in [17] a
paradigm for automatic documentation generation based on
a set of rules that, applied to the models obtained as result
of the analysis and design phases, gives an hypertext network
describing those models. On the contrary, our approach has the
advantage that the algorithm that is used for the selective backup
strategy also delivers the data for the automatic documentation.
PLANDoc [18] documents the activity – of planning engineers
– by taking as input a trace of the engineer’s interaction
with a network planning tool. Similarly, in [19] Alida, an
approach for fully automatic documentation of data analysis
procedures, is presented. During analysis, all operations on data
are registered. Subsequently, these data are made explicit in
XML graph representation, yielding a suitable base for visual
and analytic inspection. The high level approach in Alida –
using the information generated during the production process
to automatically create the documentation – is similar to ours.

IV. SELECTIVE BACKUP STRATEGY

The aim of our revision control system is to provide an
enhanced backup strategy, termed selective backup strategy,
such that only the components of the working set that have
been modified are considered for backup, see Figure 4. This is
an enhancement of the usual incremental backup strategies –
such that a particular modification of a file is stored only once
– in order to provide the framework to generate the metadata
regarding the modifications and accordingly to generate the
implicit documentation of the model.

Figure 4. Selective backup strategy. Uploaded files at first and second revision.

A correspondent selective restore strategy is used, i.e., the
latest versions of all components are downloaded, such that at
the end the recent version of the model is assembled out of
the historical backups.

A. Backup

Only part of the current working set is uploaded into the
data repository, and the uploaded information cannot be altered

or removed later. According to our selective backup strategy a)
for the first revision: all components are uploaded (see Figure 4
left side); b) for the subsequent revisions: only the components
that have been modified are uploaded (see Figure 4 right side).

B. Restore

It will be possible to download all relevant information
regarding a specific revision (including parameter files and
metadata files). This requires identifying and downloading
the full set of components necessary to run a simulation.
The required information is stored in the main metadata file
during the backup process. Hence, the main metadata file
stores information regarding all files that have been uploaded
including the unique identification of the uploaded object and
the cryptographic hash values of the respective files.

1) Full Restore: The full restore should be applied if files
have been lost, or the development of the model is intended
to be pursued by other users, etc. The full restore retrieves
the whole set of parameter files, such that a simulation can be
done on the restored system.

2) Revision Restore: This functionality restores the files
corresponding to a (previous) revision and permits to continue
the simulation corresponding from that revision. This method
enables the tree structure of the revision history. The corre-
sponding information is retrieved from/written to the main
metadata file.

C. Flow Configuration

We present now some implementation details. The relevant
information for the functioning of the selective backup and the
corresponding restore strategy is stored / updated automatically
– using XML – in the flow configuration file.

This file stores general information as: a) short name of
the model; b) the number of the last revision; c) the object id
under which the files belonging to that revision were uploaded;
d) additional information in order to identify the project,
the revision, etc. A simple example is given in Figure 5.
Additionally, general information regarding the revision history

1 <GeneralConfiguration>
2 <ModelShortName>cube_1e0_neumann</ModelShortName>
3 <LastRevisionNr>25</LastRevisionNr>
4 <LastDigitalObjectID>3ccafed6-cf0d-486d-bbe3-

edff4159f6c5</LastDigitalObjectID>
5 <LastNotes>cube_1e0_neumann / Incr. / It.Nr.: 25 /

Standard Incremental Upload</LastNotes>
6 </GeneralConfiguration>

Figure 5. Excerpt 1 of example configuration file

such as: a) the revision number; b) the object id of the uploaded
object; c) the predecessor (parent revision); the total number
of files versus the number of files, which have been changed
and in consequence uploaded, etc., as given in Figure 6. File
and revision specific information are also tracked, such that
for each file the revision where the file has been changed and
the corresponding cryptographic values are tracked. This way,
it is ensured that a specific state of a file is stored only once
and that the revision under which this file has been stored can
unambiguously be identified, see Figure 7 for an example.

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 33 / 267

1 <Revision>
2 <RevisionNr>7</RevisionNr>
3 <DigitalObjectID>8ce20b42-c15f-427c-ac1a-d575295f5412</

DigitalObjectID>
4 <ParentRevisionNr>3</ParentRevisionNr>
5 <TotalNrFiles>20</TotalNrFiles>
6 <NrFilesUploaded>1</NrFilesUploaded>
7 <Notes>cube_1e0_neumann / Incr. / It.Nr.: 2 / For Testing

Upload and Download</Notes>
8 </Revision>

Figure 6. Excerpt 2 of example configuration file

1 <FileCharacteristics>
2 <FileName>cube_1x1x1.gml</FileName>
3 <FileLastRevision>43</FileLastRevision>
4 <FileHistory>
5 <FileRevision>
6 <StorageRevisionNr>1</StorageRevisionNr>
7 <StorageDigitalObjectID>8aac5970-a366-49ce-a052

-6c8f82ced85c</Storage\-Digital\-ObjectID>
8 <FileSize>1622</FileSize>
9 <FileCreationTime>2016-08-18T08:25:33Z</

FileCreationTime>
10 <FileLastAccessTime>2016-08-23T15:59:55Z</

FileLastAccessTime>
11 <FileLastModifiedTime>2016-08-18T08:25:33Z</

FileLastModifiedTime>
12 <FileCryptoIDMD5>66

a9800e8b02d85001cdd13930b85ea3</
FileCryptoIDMD5>

13 <FileCryptoIDSHA1>5
c942ba146b41e38262f23ed350e214c757d8803</
FileCrypto\-IDSHA1>

14 </FileRevision>

Figure 7. Excerpt 3 of example configuration file

D. Accurate versioning

Based on the architecture of they system, the selective
backup strategy corresponds to a centralized revision control
system, i.e., there is a central revision number – in our case
the modeling step –, such that the version of each file is tied
to this central revision number. In contrast, revision control
systems like Git [10] are decentralized, i.e., generally, users
maintain the versioning of their part, without affecting the
overall release number. In our case, this centralized approach
is of crucial importance, since small changes in one parameter
file can substantially affect the outcome of the simulation. The
selective backup strategy enables a paradigm change in the
theory and practice of (centralized) revision control systems, it
enables an accurate tracking of the changes during each revision
on file level including the identification of the effective version
of each file. This means especially that in contrast to Git and
SVN [11], during revision change, each file is compared to
previous versions and either assigned a new version number or –
if possible – reassigned a previous one. Such a distinction is not
absolutely necessary, for example during software development
(main application field for Git and SVN), but it is of crucial
importance for pursuing the exact model development.

We illustrate now the selective backup strategy by means
of the example as delineated in Table I. Let {F1,F2,F3, . . . ,Fn}
be files comprising a numerical model and {R1,R2,R3, . . . ,Rm}
the revisions to adjust the model for a successful simulation of
a process. According to the architecture we use, the number of
revisions is greater than the number of the files involved, i.e.,
n < m. We number the versions of a specific file continuously

R1 R2 R3 R4 R5 R6 . . . Rm

F1 V R1
1 V R2

2 V R3
3 V R3

3 V R3
3 V

R6
4 . . . V

Rmk1
m1

F2 V R1
1 V R2

2 V R3
3 V R4

4 V R2
2 V

R6
5 . . . V

Rmk2
m2

F3 V R1
1 V R1

1 V R3
2 V R3

3 V R1
1 V

R6
4 . . . V

Rmk3
m3

...
...

...
...

...
...

...
...

Fn V R1
1 V R1

1 V R1
1 V R1

1 V
R5
2 V

R5
2 . . . V

Rmkn
mn

Table I. Example for the selective backup strategy.

in the order they were generated, starting with 1. We notate
by an upper index the revision during which the version was
generated, i.e., for the file F1 the version V R6

4 represents the
fourth version generated during revision R6. Not all files are
necessarily updated with a revision. For instance, file F1 is
unchanged during revisions R4, R5, thus the model keeps using
the file version V R3

3 . In contrast, file F2 is modified in each
revision. However, during revision R5, the file is reverted to a
previous state such that its version is equal to V R2

2 and, instead
of storing a duplicate, the previous copy of the file is used.

Using revision systems like Git or SVN, a new version of
the file F2 would be created. Instead, our algorithm, using the
selective backup strategy, verifies if a version with new content
has been created or the respective content has already been
used before.

The use of the selective backup strategy is not restricted to
the model development for scientific application, but can be
applied everywhere where a centralized revision control system
is used. Its intended target are applications, which need to track
the effective version of the files, potentially related to revision
numbers.

V. THE FORMAL MODEL

We introduce a mathematical model in order to use the
advantages of the rigor of a formal approach over the inaccuracy
and the incompleteness of natural languages. We augment
the classical pseudo code presentation of the algorithms to a
formal, mathematical description and show the consistency and
correctness of the backup and restore functionalities.

A. Notations

We use a calligraphic font to denote the index sets. We
denote by C := {Ci | i ∈ C and Ci is a component} the finite
set of the components, i.e., the disjunct union of the parameter
files and the metadata files. Let S be an arbitrary set. We
notate by P(S) the power set of S, i.e., the set of all subsets
of S, including the empty set and S itself. By card(S) we
notate the cardinality of S. Let n ∈ N and let f : X → X be
a function. Finally, we denote by f n : X → X the function
obtained by composing f with itself n times, i.e., f 0 := idX
and f n+1 := f n ◦ f .

B. Introducing Components and Revisions

Some components – at least one, but not necessary all
– are modified, then a simulation is performed. We call this
state of the components a revision. Each revision is backed
up to a persistent storage. We have in a natural way a total

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 34 / 267

ordering < on the set of the revisions considering the order
they were generated. We denote by R the ordered set of the
revisions, i.e., R := {Ri | i∈R and Ri is a revision}. Let m :=
card(R) be the number of revisions. In order to keep the
notations straightforward we set R := {1,2,3, ...,m}, such that
∀i ∈ R \ {m} : Ri < Ri+1. We denote by C(i)

k the component
Ck having the state at revision Ri, therefore, we denote by
Ri := {C(i)

k | k ∈ C } the set of the components having the state
corresponding to revision Ri.

We denote by R the matrix of the evolution of the model,
hence R := {C(i)

k | k ∈ C and i ∈R}. Therefore, R contains
the history of the content changes of the components during
the evolution process of the model.

Let HASH be the set of all the hash values. We define the
content of a component Ck ∈ C corresponding to a revision Ri
formally as the function:

Definition V.1 (Content of components) We set

CONT: R→ HASH,

C(i)
k 7→ CONT(C(i)

k) := hash value of C(i)
k .

Remark V.1 Let k ∈ C , let i, j ∈R, such that i 6= j. In order
to track the change process during the evolution process of the
model, we are interested only in comparing the content of the
same component at different revisions (i.e., the content of C(i)

k
versus the content of C(j)

k). �

Definition V.2 (Origin of a revision) Let R,Q ∈ R. We say
that Q is the origin of R, notated by Q = ORIGIN(R), if and
only if the revision R has been obtained by direct modification
of the content of the components having the state at revision
Q. For formal reasons we define ORIGIN(R1) := R1.

Remark V.2 Let R ∈R arbitrarily chosen. Then there exists
a unique Q ∈R, such that Q = ORIGIN(R). This is a direct
consequence of the definition above (see Definition V.2). �

Let m = card(R), such that m≥ 1. We define the predecessor
and the successor of a revision formally as:

Definition V.3 (Predecessor of a revision) We set

PRED: R→R,

R 7→ PRED(R) := ORIGIN(R).

Definition V.4 (Successor of a revision) We set

SUCC : R→P(R),

R 7→ SUCC(R) := {Q ∈R | R = ORIGIN(Q)}.

Remark V.3 ∀R ∈ R ⇒ PRED(R) is unequivocally deter-
mined (see Remark V.2), in contrast, there exists to a revision
R ∈R a subset J of R, such that SUCC(R) = {R j | j ∈ J}. �

Unfortunately, the structure of the evolution of the model is
not linear. If for any reason the evolution of the model is in
impasse, then the development of the model is not continued
from the latest revision, but a previous revision is taken as a
starting point. The revision, which led to the impasse is not
pursued any more (i.e., it is abandoned). On the other side,
a revision is active if it is part of the successful completion

of the model. Formally, we define the status of a revision as
follows:

Definition V.5 (Status of a revision) Let m := card(R) the
number of revisions. We set

STATUS: R→{active,abandoned},

R 7→ STATUS(R) :=


active if ∃n≥ 0 :

R = PREDn(Rm),

abandoned otherwise.

Informally, the predecessor of a component C(i)
k is the com-

ponent C(j)
k , such that R j was the latest revision where the

component Ck has been changed. Formally, we model the
successor and predecessor of a component Ck during the
revision process as a function.

Let i ∈ R and k ∈ C arbitrarily chosen. Set A(i,k) :=
max{l ∈R : l < i and CONT(C(i)

k) 6= CONT(C(l)
k)} then

Definition V.6 (Predecessor of a component) We set

PRED: R→R,

C(i)
k 7→ PRED(C(i)

k) :=


C(i)

k if (i = 1),
C(A(i,k))

k if (i > 1)
and A(i,k) exists,

C(1)
k otherwise.

Definition V.7 (Successor of a component) We set

SUCC: R→P(R),

C(i)
k 7→ SUCC(C(i)

k) := {C(j)
k ∈R |C(i)

k = PRED(C(j)
k)}.

Remark V.4 The predecessor of C(i)
k is uniquely determined.

This follows directly from the definition above. In contrast, the
successor of C(i)

k is not necessary unique, but there exists a
unique R j ∈R, such that C(j)

k ∈ SUCC(R(i)
k) and STATUS(R j)

is active. Similar considerations also hold for revisions. �

Proposition V.1 (Existence and uniqueness) Let R ∈ R,
such that STATUS(R) = active. If SUCC(R) 6= ∅ then
there exists a unique Q ∈ R, such that Q ∈ SUCC(R) and
STATUS(Q) = active.

Hint The existence and the uniqueness follows directly from
the definition of the status of a revision (see Definition V.5)
and the uniqueness of the predecessor (see Remark V.3). �

We are now able to formulate our strategy to generate the
successive revisions.

Lemma V.1 (Linearity) Let m= card(R). Then there exists a
unique subset R

′
of R with R

′
={R1,Ri1 ,Ri2 ,Ri3 , ...,Ril ,Rm},

such that Ri1 ∈ SUCC(R1) and ∀ik : i1 ≤ ik < il ⇒ Ri(k+1) ∈
SUCC(Rik) and Rm ∈ SUCC(Ril) and ∀R ∈R

′
: STATUS(R) =

active and ∀R ∈R \R ′ : STATUS(R) = abandoned.

Hint It is a direct consequence of the uniqueness of active
successors (see Proposition V.1). �

Corollary V.1 The sequence of the active revisions is linear.
�

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 35 / 267

Let i ∈ R arbitrarily chosen, a component can have at the
revision Ri two statuses modified and preserved, the value
modified means that the component has been modified during
the revision Ri, in contrast preserved means that the component
remained unchanged at revision Ri. More formally, we define
the function:

Definition V.8 (Status of a component) We set

STATUS : R→{modified, preserved},

C(i)
k 7→ STATUS(C(i)

k) :=


modified if (i = 1),
modified if condition 2 holds,
preserved otherwise.

with condition 2: ∀ j ∈ R with 1 ≤ j < i : CONT(C(i)
k) 6=

CONT(C(j)
k).

Remark V.5 From a formal point of view, all components
corresponding to the first revision are considered modified. For
the subsequent revisions only the components whose content
has been altered are considered modified. �

C. Backing up a revision

Based on the values of the STATUS function, we define
the upload strategy. We are interested to upload only those
components, which have been modified since the latest revision
and the current state has not been uploaded previously.

Definition V.9 (Upload of a component) We set

UPLOAD: R→{yes, no},

C(i)
k 7→ UPLOAD(C(i)

k) :=
{

yes if condition 1 holds,
no otherwise.

with condition 1: STATUS(C(i)
k) = modified.

Remark V.6 This means especially that C(i)
k will be uploaded

if and only if it has been modified and its content is different
from the content of all its predecessors. �

We will define now a function in order to model the backup
process of an entire revision. As we will see, only those
components will be backed up at a specific revision Ri, which
have been modified at this revision.

Definition V.10 (Backup of a revision) We set

BACKUP: R→R,

Ri 7→ BACKUP(Ri)

:= {C(i)
k | k ∈ C , such that UPLOAD(C(i)

k) = yes}.

Remark V.7 This means especially that the components that
have not been changed at revision Ri are not included in the
backup of the revision Ri, this is the quintessence of the selective
backup strategy. �

In order to be able to model the download and restore
process, we need to do some additional analysis. Those opposite
functions cannot be defined straightforwardly as the reverse
function of BACKUP and UPLOAD, since after the restore is
fulfilled, all the relevant components must be available, not
only those persisted at the corresponding revision.

In order to have all the relevant information for the
restore process, we build during the evolution of the model
a matrix (INF(i)

k)k∈C ,i∈R, such that this matrix contains the
information relevant for the download and restore operations.
This information contains the content of the components, such
that comparisons can be done and relate it to the previous
backups.

Hence, the matrix (INF(i)
k)k∈C ,i∈R contains at least the

information regarding the revision at which the component was
physically stored, such that it can be retrieved from there and
additional information regarding the content (hash value) of
the components.

Formally, we define (INF(i)
k)k∈C ,i∈R as a function:

Definition V.11 (Component upload meta inf) We set

INF: R×C →R×HASH,
(i,k) 7→ INF(i,k) := (j,v)

if
(

C(i)
k ∈ BACKUP(R j) and CONT(C(i)

k) = v
)
.

Remark V.8 This means especially that a component C(i)
k

having the hash value = v has been backed up at revision R j

and j ∈R is the lowest index number, such that CONT(C(i)
k) =

CONT(C(j)
k). �

D. Restoring a revision

We define now the opposite function to UPLOAD as follows:

Definition V.12 (Download of a component) We set

DOWNLOAD: R→R,

C(i)
k 7→ DOWNLOAD(C(i)

k) :=C(j)
k

if (UPLOAD(C(j)
k) = yes

and CONT(C(j)
k) = CONT(C(i)

k)).

Remark V.9 DOWNLOAD(C(i)
k) =C(j)

k means especially that
the component Ck was uploaded at the revision R j. �

We define the restore function having the opposite functionality
to the backup function. The main difference to the usual
restore strategy is that restoring the components backed up
at revision Ri is not enough, since usually only a subset of the
components are backed up at a specific revision. To circumvent
this impediment, the revisions at which those components have
been physically uploaded are identified and are restored from
those locations. When the restore operation is completed, then,
the complete set of components necessary for a simulation is
available.

Formally as a function:

Definition V.13 (Restore of a revision) We set

RESTORE: R→P(R),

Ri 7→ RESTORE(Ri) :=

{C(j)
k | k ∈ C , such that DOWNLOAD(C(i)

k) =C(j)
k }.

Remark V.10 This means especially that the latest version of
the components are restored. �

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 36 / 267

We are now able to formulate the Lemma regarding the
uniqueness of the upload, i.e., a new state of a component
Ck during the revision process is backed up only once.

Lemma V.2 (Uniqueness of the upload) Let k ∈ C and v ∈
HASH be arbitrarily chosen. If ∃ j ∈R : CONT(C(j)

k) = v then
there exists a unique i ∈ R, such that UPLOAD(C(i)

k) = yes
and CONT(C(i)

k) = v.

Hint Set i := min{l ∈R |CONT(C(l)
k) = v}. Then according to

the definition of the status of a component (see Definition V.8)
STATUS(C(l)

k)=modified holds true. The result follows from the
definition of the upload of the components (see Definition V.9).
�

We can formulate now the main Lemma, which states that we
have no spurious downloads.

Lemma V.3 (Accuracy and completeness) Let k ∈ C be ar-
bitrarily chosen. We have:

a)∀i, j ∈R : DOWNLOAD(C(i)
k) =C(j)

k

⇒
(
UPLOAD(C(j)

k) = yes

and CONT(C(j)
k) = CONT(C(i)

k)
)
,

b)∀i ∈R ∃ j ∈R : (j ≤ i),

such that C(j)
k ∈ DOWNLOAD(C(i)

k).

Remark V.11 The property in a) means that we have no
false downloads, i.e., each downloaded component has been
uploaded some time ago. It follows from the definition of the
download of a component (see Definition V.12). The property
in b) means especially that the download is complete, i.e., the
latest version of each component is downloaded. It is a direct
consequence of the uniqueness of the upload (see Lemma V.2).
�

Corollary V.2 (Complementarity) The two functions
RESTORE and BACKUP are complementary, i.e.,

∀k ∈ C ,∀i ∈R :
(

C(i)
k ∈ RESTORE(Ri)

)
⇔
(
∃ j ∈R : C(j)

k ∈ BACKUP(R j)

and CONT(C(i)
k) = CONT(C(j)

k)
)
.

�

VI. IMPLEMENTATION AND APPLICATION TO UFZ

We developed and tested AGEDRE (Automatic GEneration
of Documentation using REvision control) as a prototype at
UFZ and validated our theoretical concepts. We used a client /
server environment at the ZIH of the Technische Universität
Dresden, implementing our client in Java from scratch. On the
server side, we used KIT DM [8] as the repository.

AGEDRE is a command line utility, offering the basic
functionality required for a revision control system and a
sophisticated error handling to deal with the complexity of the
selective backup strategy on the client side and of KIT DM on
the server side. In order to persist the data, AGEDRE offers two
primitives, FullUpload as a primitive for a complete upload
of all data related to a project and Upload as a selective

backup strategy to store only modified files. Accordingly,
the opposite primitives to retrieve the data are Download,
DownloadRevision and DownloadFile. The primitive
Download is only formally the counterpart of Upload, it
retrieves the latest version of each file, which has been uploaded,
i.e., the files of the latest revision. As mentioned, the user
needs the latest version of all parameter and metadata files
in order to be able to perform the simulation. In contrast,
the primitive DownloadRevision is used to continue the
modeling process from an older revision, it restores the files
into the working directory, thus overwriting the latest revision.
The latest revision is backed up to the file system, in order to
avoid loss of data in case of inadvertent use of this primitive.
The primitive DownloadFile has been introduced in order
to restore the latest backed up version of a file, if it has been
accidentally deleted or has been corrupted.

The project file (see Figure 8 for an example) is
the leading file regarding the configuration of a sim-
ulation. It contains the names of the additional pa-
rameter files (namely cube_1x1x1_hex_1e0.vtu and
cube_1x1x1.gml) and the configuration parameters for the
simulation. Hence, each project file corresponds to a model

1 <OpenGeoSysProject>
2 <mesh>cube_1x1x1_hex_1e0.vtu</mesh>
3 <geometry>cube_1x1x1.gml</geometry>
4

5 <processes>
6 <process>
7 <name>GW23</name>
8 <type>GROUNDWATER_FLOW</type>
9 <process_variable>pressure</process_variable>

10 <hydraulic_conductivity>K</hydraulic_conductivity
>

11 <linear_solver>
12 <lis>-i cg -p jacobi -tol 1e-16 -maxiter 10000

</lis>
13 <eigen>
14 <solver_type>CG</solver_type>
15 <precon_type>jacobi</precon_type>
16 <max_iteration_step>10000</

max_iteration_step>
17 <error_tolerance>1e-16</error_tolerance>

Figure 8. Excerpt of example project file cube_1e0_neumann.prj

1 <points>
2 <point id="0" x="0" y="0" z="0"/>
3 <point id="1" x="0" y="0" z="1"/>
4 <point id="2" x="0" y="1" z="1"/>
5 <point id="3" x="0" y="1" z="0"/>
6 </points>
7

8 <surfaces>
9 <surface id="0" name="left">

10 <element p1="0" p2="1" p3="2"/>
11 <element p1="0" p2="3" p3="2"/>
12 </surface>
13 <surface id="1" name="right">
14 <element p1="4" p2="6" p3="5"/>
15 <element p1="4" p2="6" p3="7"/>
16 </surface>

Figure 9. Excerpt of example geometry file cube_1x1x1.gml

and accordingly, the development of the model comprises
modifications of the project file and the corresponding parameter
files.

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 37 / 267

When the primitive Upload is called for a project file for
the first time, the corresponding dynamic flow configuration
file is initialized. For an example of a flow configuration
file, see the excerpts in Figures 5–7. The revision number
is set to one and the cryptographic MD5 and SHA-1 hashes
of each file are calculated and stored in the dynamic flow
configuration file. While SHA-1 is practically collision free and
it is also used by Git for integrity purposes [20], alternatively,
SHA-512 could be used for enhanced security [21] [22]. For
subsequent uses of the Upload-primitive, the cryptographic
values of the parameter and metadata files are compared to
the respective values stored – for previous revisions – in the
flow configuration file. If the cryptographic values of file F is
different of all the previous cryptographical values of file F ,
then the content of F is considered modified and it is backed
up within the current revision. Otherwise, F is not part of the
current revision. A corresponding entry is made in the dynamic
flow configuration file regarding the revision under which the
file – having the given content – has been backed up. Hence, the
file cube_1x1x1.gml has the cryptographic values stored
at revision 1 (see Figure 7). If the file cube_1x1x1.gml
has, for example, not been altered at revision 2 then no similar
entry is performed in the dynamic flow configuration file.

When starting the primitive Download – i.e., downloading
the files corresponding to the latest revision – then the
relevant information regarding the physical storage place of
the latest version of each file – i.e., <StorageDigitalObjectID>
– is retrieved from the dynamic flow configuration file, by
considering the latest entry for each file (see Figure 7). Hence,
all the related files can be accessed on the repository and
retrieved accordingly.

The use case at UFZ is not designed for concurrent use,
where users are confronted with conflicts and their resolution,
as it is the case for the software development environment. In
contrast, at UFZ simultaneous work is strictly related to the
model development process. The model is developed in steps,
small changes in a few parameter files can have tremendous
impact on the model. Hence, members of a team can download
the latest revision, can work simultaneously improving the next
step, can compare the changes of the parameter files and the
simulation results, but eventually, the members of the team have
to agree on the best outcome for the next step, thus uploading it
as the next revision. Alternatively, they can agree on abandoning
the current revision by continuing the model development from
an older revision. The team members have to download the
revision, they agreed upon, and continue developing the model
from there.

In addition to the dynamic flow configuration file – upon
whose content they do not have direct influence – users can
define and set up their own metadata files. These metadata
files can contain additional – high-level or aggregated –
information regarding the model development and can be
used for additional documentation or for identifying model
or revision characteristics. The metadata files are also very
important to enable the differentiated security policy at UFZ,
such that users can access the metadata files – for example by
using ElasticSearch [12] – if they have the appropriate rights
on the file system. In contrast, users can access simulation
data (parameter files) according to their rights on the repository
system KIT DM. Thus, metadata for projects is accessible for

all members within the UFZ, while sensible data can only be
accessed by a small number of researchers related to the project.
All files of the examples can be found at [23].

VII. CONCLUSION AND FUTURE WORK

Irrespective of the fact that creating documentation is
a very challenging task and that writing documentation is
considered by most of the developers as an extra-effort rather
than a commendation, it is rather impossible providing precise,
exact, accurate, uniform and consistent documentation for
developers and users requirements. Therefore, formalized
automated documentation methods are necessary to develop.

The main advantage of the automatic generation of the
documentation of the modeling process is the accuracy of
the documentation, since there is no discrepancy between the
actual generation of the model (developer’s perspective) and
the corresponding documentation (user’s perspective). This way,
we have circumvented the dilemma of writing exact manual
documentation and have contributed to the paradigm change
towards design and implementation of automatic documentation
assuring accuracy and exactness.

Since our formal model is independent of the use case at
UFZ, our approach has a generic character and it can be applied
to all domains where numerical models are developed.

Currently, there is little comfort for the user who employs
the framework. In the current implementation, the executable
is started in the command line, also the flow configuration file,
which contains the documentation for tracking the evolution
of the model is in XML-format. Accordingly, additional
research is necessary to define and implement corresponding
GUI to assure the expected readability of the document by
extracting and visualizing the appropriate information. In order
to build meaningful user interfaces, an intense dialog between
developers and users is essential [24].

Additionally, further research is necessary to generate a high
level form documentation of the changes in the parameter files.
For example, when running stochastic simulations (e.g. Monte
Carlo approach [25]) if parameters are changed in many places,
then appropriate mechanism should be set up assuring the
consistency of the changes and the appropriate documentation.

We think that by studying the automatically generated
documentation regarding the development of the modeling
workflows – especially those steps, which did not lead to a
successful completion of the simulation – there is an increased
possibility of knowledge extraction (by using machine learning
strategies or similar techniques), such that the generation of
the modeling workflows can be dramatically improved and the
number of modeling steps can be considerably reduced.

ACKNOWLEDGMENT

This work was supported in parts by the German Federal
Ministry of Education and Research (BMBF, 01IS14014A-
D) by funding the competence center for Big Data “ScaDS
Dresden/Leipzig”. This work was also supported in parts by
the German Research Foundation (DFG) via the MASi project
(NA 711/9-1, STO 397/4-1). We are also thankful to Dr. Nico
Hoffmann (Technische Universität Dresden) for his valuable
advices and comments during the developing and writing
process.

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 38 / 267

REFERENCES

[1] Intergovernmental Panel on Climate Change, Climate Change 2014 –
Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge
University Press, 2014.

[2] C. J. Vörösmarty et al., “Global threats to human water security and
river biodiversity,” Nature, vol. 467, 2010, pp. 555–561.

[3] J. Grundmann, N. Schütze, G. H. Schmitz, and S. Al-Shaqsi, “Towards
an integrated arid zone water management using simulation-based
optimisation,” Environ Earth Sci, vol. 65, no. 5, 2012, pp. 1381–1394.

[4] H. Hötzl, P. Möller, and E. Rosenthal, The Water of the Jordan Valley.
Springer, 2009.

[5] M. Walther, J.-O. Delfs, J. Grundmann, O. Kolditz, and R. Liedl,
“Saltwater intrusion modeling: Verification and application to an
agricultural coastal arid region in Oman,” Journal of Computational
and Applied Mathematics, vol. 236, no. 18, 2012, pp. 4798–4809,
fEMTEC 2011: 3rd International Conference on Computational Methods
in Engineering and Science, May 9–13, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377042712000659

[6] C. Liu, Q. Wang, C. Zou, Y. Hayashi, and T. Yasunari, “Recent trends
in nitrogen flows with urbanization in the shanghai megacity and the
effects on the water environment,” Environmental Science and Pollution
Research, vol. 22, no. 5, Mar 2015, pp. 3431–3440. [Online]. Available:
https://doi.org/10.1007/s11356-014-3825-4

[7] Helmholtz Centre for Environmental Research – UFZ, “Homepage of
Helmholtz Centre for Environmental Research,” https://www.ufz.de/
index.php?en=34216, retrieved: July 2017.

[8] Karlsruhe Institute of Technology – KIT, “KIT Data Manager,” http:
//datamanager.kit.edu/index.php/kit-data-manager, retrieved: July 2017.

[9] R. Grunzke et al., “Towards a metadata-driven multi-community research
data management service,” PeerJ PrePrints, vol. 5, 2017, p. e2831.
[Online]. Available: https://doi.org/10.7287/peerj.preprints.2831v1

[10] S. Chacon and B. Straub, Git and Other Systems. Berkeley, CA:
Apress, 2014, pp. 307–356. [Online]. Available: http://dx.doi.org/10.
1007/978-1-4842-0076-6_9

[11] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick, Version
control with subversion - the standard in open source version
control. O’Reilly, 2008, retrieved: July 2017. [Online]. Available:
http://www.oreilly.de/catalog/9780596510336/index.html

[12] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2015.

[13] W. F. Tichy, “Rcs – a system for version control,” Software: Practice
and Experience, vol. 15, no. 7, 1985, pp. 637–654. [Online]. Available:
http://dx.doi.org/10.1002/spe.4380150703

[14] A. Löh, W. Swierstra, and D. Leijen, “A Principled Approach to Version
Control,” http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.
8649, retrieved: July 2017.

[15] E. Sink, Version Control by Example, 1st ed. PYOW Sports Marketing,
2011.

[16] C. L. Paris, Automatic documentation generation: Including examples.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 12–25.
[Online]. Available: http://dx.doi.org/10.1007/BFb0034794

[17] R. Swan and J. Allan, “Automatic generation of overview timelines,” in
Proceedings of the 23rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser. SIGIR ’00.
New York, NY, USA: ACM, 2000, pp. 49–56. [Online]. Available:
http://doi.acm.org/10.1145/345508.345546

[18] K. McKeown, K. Kukich, and J. Shaw, “Practical issues in automatic
documentation generation,” in Proceedings of the Fourth Conference on
Applied Natural Language Processing, ser. ANLC ’94. Stroudsburg,
PA, USA: Association for Computational Linguistics, 1994, pp. 7–14.
[Online]. Available: http://dx.doi.org/10.3115/974358.974361

[19] B. Möller, O. Greß, and S. Posch, “Knowing what happened - automatic
documentation of image analysis processes,” in Computer Vision
Systems - 8th International Conference, ICVS 2011, Sophia Antipolis,
France, September 20-22, 2011. Proceedings, 2011, pp. 1–10. [Online].
Available: https://doi.org/10.1007/978-3-642-23968-7_1

[20] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov,
“The first collision for full sha-1,” Cryptology ePrint Archive, Report
2017/190, 2017, http://eprint.iacr.org/2017/190.

[21] C. Dobraunig, M. Eichlseder, and F. Mendel, Analysis of SHA-
512/224 and SHA-512/256. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 612–630. [Online]. Available: https://doi.org/10.
1007/978-3-662-48800-3_25

[22] M. Szydlo and Y. L. Yin, Collision-Resistant Usage of MD5
and SHA-1 Via Message Preprocessing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 99–114. [Online]. Available:
https://doi.org/10.1007/11605805_7

[23] D. Y. Naumov et al., “ufz/ogs-data: Initial zenodo release,” Aug. 2017.
[Online]. Available: https://doi.org/10.5281/zenodo.840660

[24] C. Helbig, L. Bilke, H.-S. Bauer, M. Böttinger, and O. Kolditz,
“Meva - an interactive visualization application for validation of
multifaceted meteorological data with multiple 3d devices,” PLOS
ONE, vol. 10, no. 4, 04 2015, pp. 1–24. [Online]. Available:
https://doi.org/10.1371/journal.pone.0123811

[25] E. Jang et al., “Identifying the influential aquifer heterogeneity factor
on nitrate reduction processes by numerical simulation,” Advances in
Water Resources, vol. 99, no. Complete, 2017, pp. 38–52.

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 39 / 267

The Blockchain-based Internet of Things Development: Initiatives and Challenges

Sergio F. T. de O. Mendonca1,2, Joao F. da Silva Junior1 and Fernanda M. R. de Alencar1

1Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Recife, Brazil
2Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns, Brazil

e-mail: sergio.mendonca@ufpe.br, joao.fsilva2@ufpe.br, fmra@ufpe.br

Abstract—The Internet was originally built based on trust.
After several leaks of information, new risks and challenges
are introduced. In recent years, we have used even more new
devices based on the Internet. Among the main concerns reported
on the literature, we need some special attention to trust,
protection of data and privacy. In this scenario, a new paradigm
has emerged, some information security based on transparency
instead of current models of information security on closed
and obscure approaches. Some initiatives have been emerging
with Blockchain methods and technologies. In this paper, we
propose to build an initial view of the model, as a result of
our preliminary investigations, described in the Methodology as
systematic mapping. The initial results allowed the perception of
the initial requirements involved and open problems. We report
on some frameworks, models, approaches, and other Blockchain-
based Internet of Things (IoT) initiatives. We also evaluate the
adherence of each paper to ten IoT key requirements. This work
contributes to the new and still developing body of knowledge in
the areas of security, privacy and trust. Our findings are useful
not only for future studies in the Academy but also for companies
from various sectors present in the Internet ecosystem. They
can benefit from the consolidated knowledge and use it to guide
the definition of their development processes geared to the new
paradigms of the IoT.

Keywords—Blockchain; Internet of Things; IoT; Ontology; Pri-
vacy; Security.

I. INTRODUCTION

The Internet of Things (IoT) is an application domain that
integrates different technological and social fields. Despite the
diversity of research on IoT, its definition remains fuzzy [1].
With the increase in demand and production of the new devices
based on the IoT paradigms, trust and privacy can be even
harder for the engineering field. Security flaws in the IoT
might lead, for instance, to malicious attacks on secrecy and
authentication, silent attacks on service integrity, or attacks
on network availability, such as the Denial of Service (DoS).
However, privacy and anonymity, on the other hand, are no
less severe issues and must be integrated into the design to
give users control over their privacy.

In this respect, a new approach has arisen in the security
and transparency of information, which takes the place of
current models of information security and is based on closed
and obscure approaches. Some initiatives have come up with
Blockchain methods and technologies [2].

Among the problems of building devices (or embedded sys-
tems) based on the IoT paradigm, we can highlight the absence
of formalism, language or modeling architecture that enables
the unified development and integration among the various

disciplines of the Semantic Web Stack. We are faced with
certain difficulties; in addition to complexity and scalability,
there are also time latency problems (currently 10 minutes
in the Bitcoin network) and the number of confirmations that
must be required for transactions, contradicting IoT concep-
tions regarding real-time processing [1]. The transactions in
the Bitcoin network are visible to all nodes. That presents
some difficulties (i.e., transactions carried out only for a few
nodes of the network), when we need devices for controlled
environments [3].

In this context, it is fundamental to comprehend how the
traditional software development could be adapted or evolved
to support those new Blockchain-based IoT requirements.
What consolidated knowledge is, which factors influence on
device development are.

To achieve the goal of this study, we are conducting a
systematic mapping of critical factors in IoT paradigms-based,
embedded systems building. In this research, we are looking
for answers to the following questions: i) has Blockchain-
based IoT been constructed to stand on development pro-
cesses? Also, ii) which Blockchain-based IoTs character-
istics, principles or requirements have been considered in
Blockchain-based IoT development processes? These research
questions will be answered in Section IV.

The main objective of this research is to understand
Blockchain-based IoT domains as well as best practices in the
field, and to present the latest research about the construction
of devices (or things). In addition, this effort contributes to
the very new and still growing knowledge regarding security,
privacy and trust (areas still very undeveloped) of the IoT.
This study is useful not only for future studies in academia
but also for companies from various sectors operating in the
Internet ecosystem. These companies can benefit from the
consolidated knowledge and use it to guide the definition of
their development processes geared to the new paradigms of
the IoT.

The remainder of this paper is organized as follows. In
Section II, a briefing about the state of the art is presented.
Section III presents the planning, conduction, and reporting
of the Systematic Mapping. Section IV presents the prelim-
inary studies results. Section V presents current trends and
challenges; and in Section VI, conclusions and future work
are discussed.

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 40 / 267

II. STATE OF THE ART

In this section, we present initial concepts for the under-
standing of this paper. The IoT and the Blockchain and its
ontology overviews are briefly presented below.

A. The Internet of Things overview

The IoT consists of a global network of billions of uniquely
identifiable and addressable objects, embedded with sensors,
actuators, and controllers. Those are connected to the Internet
in wireless mode [4]. The IoT is a “dynamic global network
infrastructure that can self-configure using standards and using
interoperability protocols where things (physical and virtual)
have identities, attributes, and uniqueness, feature intelligent
interfaces, and it can be seamlessly integrated into the net-
work” [2].

The IEEE presents IoT as an application domain that
incorporates different technological and social fields. IEEE
described the phrase Internet of Thing as a network of items
each embedded with sensors which are connected to the
Internet [5]. It is a (non-approved) description of the Internet
of Things. However, this statement is treating just one of the
physical aspects of Internet of Things [6].

B. The Blockchain overview

The Blockchain is a universal digital ledger that works at
the core of decentralized financial systems, such as Bitcoin
and many other decentralized systems. The blockchain keeps
a record of all transaction made by each participant. Cryp-
tography is used to verify operations and keep information
on the blockchain private. Several participants verify each
transaction, providing highly redundant verification and are
rewarded for the computational work required.

The Blockchain technology has the ability to make the
organizations that use it transparent, democratic, decentralized,
secure, and efficient. The Blockchain can be used to access
to financial services, it presents the primary advantages of the
traditional correspondent banking system: i) consistent process
standards; ii) more long-range global reconnaissance.

C. The Blockchain Ontology

A first effort to standardize this technology is the BLONDIE
(Blockchain Ontology with Dynamic Extensibility) ontology.
This OWL ontology can be used to express in RDF different
fields of the structures of Ethereum or Bitcoin. It can also
be extended to cover other Blockchain technologies. In addi-
tion, BLONDIE being OWL has the ability to make explicit
knowledge available [3].

Ugarte [3] says that an ideal scenario would be that everyone
would use only the original Bitcoin technology, or forks
with minimum modifications. The protocol itself is already
standardized and well-defined, but since Bitcoin presents many
limitations and was not designed for other functionalities
besides financial transactions, it is not a realistic scenario.

Currently, the interoperability between Blockchain tech-
nologies is one of the most discussed issues in the Blockchain
world and this is where we must focus our efforts on. The
devices would be able to communicate to each other directly
to update software, manage bugs, and monitor energy usage.

III. METHODOLOGY

The research methodology was divided into four steps. In
this paper, we will present only Step #2 (Systematic Mapping)
of this Doctoral research, as shown in Fig. 1, and described
in detail as follows.

Figure 1. Scientific methodology steps. Adapted from [7].

A. Step 2—Systematic Mapping

The systematic mapping study was deemed warranted after
an initial foray into the discussed topic. Before starting a
systematic mapping, we came across a very broad question.
To obtain an overview of this research topic and identify
evidence to provide the best positions on the issues of research,
we have established a systematic mapping [8],], as shown
a summarization in Fig. 2. The authors still saying that the
systematic mapping allows:

• Mapping the evidence of a domain at a high level of
granularity;

• The identification of clusters and void of evidence to
enable future systematic reviews; and

• Discover areas to conduct new primary studies.

B. Blockchain-based Internet of Things: a Systematic Map-
ping

1) Protocol: We have conducted this study based on the
conscious guidelines and procedures. This protocol specifies
the basis for the study research questions, search strategy,
selection criteria, and data extraction and synthesis. The pro-
tocol was mainly developed by one of the researchers and
reviewed by two of the senior researchers aiming to mitigate
any bias [8].

Search string. The standard version of search string was
designed to include variations and synonym terms related to

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 41 / 267

Figure 2. Systematic Literature Mapping. Adapted from [8]

“Internet of Things”, “Blockchain” and their “Development
Processes”.

(((model OR framework OR architecture OR process OR
method OR approach OR design OR procedure) AND (develop-
ment)) AND ((internet of things OR iot OR internet of everything
OR web of things OR smarter planet))) AND (blockchain)

Search strategy. We selected the following search engines:
ACM Digital Library, IEEE Xplorer, ISI Web of Science Sci-
ence Direct, Scopus, Engineering Village. We have considered
opinion of experts, gray literature, and related works of the
included studies.

Inclusion and exclusion criteria. The studies were selected
according to the inclusion and exclusion criteria described
below. In order to select suitable studies to answer our research
questions, we established the following Inclusion (IC) and
Exclusion Criteria (EC):

• IC1. The study discusses Blockchain-based IoT develop-
ment processes.

• IC2. The study addresses Blockchain-based IoT charac-
teristics, requirements, problems or activities related to
Blockchain-based IoT development processes.

• EC1. The study is not related to Blockchain-based IoT.
• EC2. The study does not discuss any Blockchain-based

IoT development process.
• EC3. The complete study is not available.

2) Conduction of the Research: Once the protocol had
been agreed, the review review itself can be initialized. How-
ever, as noted previously, researchers were expected to try each
of the steps described in this section when they construct their
research protocol [8].

The author [9] recommends the adoption of effective criteria
for inclusion and exclusion of relevant studies to answer
the research questions. Some of the criteria are essential for
the collection of a rigorous and defensible set of data for
evaluation.

Therefore, we applied the inclusion and exclusion criteria
involved in the analysis of the parameters 1) title and keywords
check out, it was applied one 2) summary of the analysis in the

work identified in the previous phase, if there are questions,
reading the introduction and conclusion; and 3) the complete
reading of the paper.

IV. PRELIMINARY STUDIES RESULTS

The results are reported in the systematic mapping as
follows.

Table I shows the selection of studies by database (source
studies). The initial search resulted in 25 works. In the
first analysis, we excluded 2 items, 23 papers remaining. In
the second selection, applying the criteria of inclusion and
exclusion in the reading of the summary, the number of articles
was reduced to 21. Upon complete reading of each of the
other items, two papers, which had the same content or similar
(duplicate), were found, resulting in their exclusion, leaving at
the end 17 papers with strong and relevant indications to the
area of investigation.

TABLE I. PRIMARY STUDIES INCLUEDED FOR SEARCH
STRATEGY.

Source Studies Retrieved Duplicated First Phase Second Phase Included

ACM Digital Library 6 - 6 5 5
IEEE Xplore 1 1 - - -
ISI Web of Science 1 1 - - -
Science Direct 3 - 1 - -
Engineering Village 2 - 2 2 2
Manually 5 - 5 5 4
Snowballing 7 - 7 7 6

Total 25 2 21 19 17

Based on the analysis of the 17 primary studies included, we
have addressed the Research Questions (RQ). In this section,
we will be addressing these Questions.

RQ1. Has Blockchain-based IoT been constructed to stand
on development processes?

We have identified 17 initiatives of Blockchain-based IoT
development as shown the Table I. Three of these initiatives
are classified by the authors as Frameworks, four as Models,
six as Approaches, and four as Other Initiatives. For the
other studies, we created the classification Other Initiatives
to Blockchain-based IoT Development, which includes single
initiative of methodology, description, [re]engineering, ontol-
ogy, or simulation platform for Blockchain-based IoT.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 42 / 267

TABLE II. LIST OF INCLUDED PRIMARY STUDIES.

Study ID Included Study Source

S1 [10] ACM
S2 [11] ACM
S3 [12] ACM
S4 [13] ACM
S5 [6] IEEE
S6 [14] IEEE
S7 [15] Snowballing
S8 [4] Manually
S9 [16] Snowballing
S10 [17] Manually
S11 [5] Manually
S12 [18] Manually
S13 [19] Manually
S14 [20] Snowballing
S15 [21] Snowballing
S16 [22] Snowballing
S17 [23] Snowballing

RQ2. Which Blockchain-based IoT’s characteristics, prin-
ciples or requirements have been considered in Blockchain-
based IoT development processes?

We reported on some frameworks, models, approaches, and
other Blockchain-based IoT initiatives that reflect adherence to
well-known development processes to build an initial Body of
Knowledge. We detected key requirements in the IoT and we
determined whether they were functional and non-functional
requirements. Authors of the primary studies classified their
works as follows: four as Frameworks, four as Models, two
as Methods, and three as Approaches. We classified four
papers as Other Initiatives addressed in initial descriptions or
superficial studies.

Uckelmann, Harrison and Michahelles described key re-
quirements (kR) that need to be considered in the IoT, as seen
in Table III.

We summarized the domain type: six as generic, eight as
specific, and three as non-specific. We then identified essential
characteristics, processes, modeling phases, tasks and prod-
ucts. Most of these works (16) emphasized domain analysis,
but just seven these presented a domain design, into three
discussed architecture design and only two presented a detailed
and comprehensive design. These papers addressed the product
modeling: ten as a domain model, five as an architectural
model, and one as agent model. The community still has
no better support for the design, architecture, integration and
testing processes to build Blockchain-based IoT.

Considering the IoT key requirements by [19], Table III
depicts 100% of all studies addressed the kR1 (meet key
societal needs for the IoT including open governance, security,
privacy and trustworthiness). This was followed by 70.6%
which addressed both kR2 (bridge the gap between B2B,
business-to-consumer (B2C) and machine-to-machine (M2M)
requirements through a generic and open IoT infrastructure)
and kR3 (design an open, scalable, flexible and sustainable in-
frastructure for the IoT). Requirement kR4 (develop migration
paths for disruptive technological developments to the IoT)
is covered by 64.7% and kR5 (excite and enable businesses
and people to contribute to the IoT) is covered by 58.8%,
followed by 52.9% for both kR6 (enable businesses across

different industries to develop high added value products and
services) and kR8 (provide an open solution for sharing costs,
benefits and revenue generation in the IoT). The other IoT key
requirements did not achieve at least 50%.

We have also evaluated the adherence of each paper. In
this analysis, the papers are evaluated against the ten IoT
key requirements described in Table III. We highlight the
importance of the studies S1, S8, S14, S15 and S16. They
discuss some main activities or artifacts or modeling of design,
but they did not explicitly address these activities or artifacts
or modeling design in their propositions. However, they did
mention some essential IoT characteristics and processes. On
the other hand, we considered that studies S2, S3, S4, S5, S6,
S7, S9, S10, S11, S12, S13 and S17 covered 50% or less and
therefore did not explicitly address all of the IoT fundamental
processes.

V. CURRENT TRENDS AND CHALLENGES

The main trends and challenges discussed by the authors of
the included papers about Blockchain-based IoT are described
in this section.

One author [4] says that security flaws in the IoT may lead,
for instance, to malicious attacks on secrecy and authentica-
tion, silent attacks on service integrity, or attacks on network
availability such as the DoS. Privacy and anonymity, on the
other hand, are no less serious issues. IoT devices are natural
“collectors and distributors of information”, so they represent
a unique challenge to individual privacy.

In particular, the challenges include the ubiquitous interac-
tion of users with smart objects and groups of things, as well
as the uncontrolled concentration of such data on platforms
lacking in transparency, perhaps systematically exposing users
to several threats, such as identification, localization, moni-
toring, tracking, surveillance, manipulation, profiling, targeted
advertising, data linkage, and even social engineering.

The authors in [16] investigated which are the main factors
affecting the levels of integrity, anonymity, and adaptability
of the blockchain. They should further analyze what are the
security properties provided by the Proof of Work, which up
to now is one of the key factors allowing for the achievement
of distributed consensus.

The Ethereum platform supports a feature to encode rules
or scripts for processing transactions through smart contracts.
The authors in [10] investigated the security of running smart
contracts based on Ethereum in an open distributed network.
According to the authors [10][11]there are several new security
problems. These bugs suggest subtle gaps in the understanding
of the distributed semantics of the underlying platform. Those
authors propose ways to enhance the operational semantics to
make contracts less vulnerable through a symbolic execution
tool called Oyente.

Blockchain has recently attracted the interest of stakeholders
from the most varied sectors, from finance and health-care to
utilities, real estate, and the government sector. That explosion

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 43 / 267

TABLE III. IoT KEY REQUIREMENTS ADHERENCE OF THE INCLUDED STUDIES.

Key Requirements

Frameworks Models Methods Approaches Other Initiatives

S
2

S
14

S
15

S
16

S
1

S
5

S
6

S
11

S
4

S
7

S
3

S
9

S
10

S
17

S
8

S
12

S
13

%

1. Meet key societal needs for the Internet of Things in-
cluding open governance, security, privacy and trust-
worthiness.

x x x x x x x x x x x x x x x x x 100,0

2. Bridge the gap between B2B, business-to-consumer
(B2C) and machine-to-machine (M2M) requirements
through a generic and open Internet of Things infra-
structure.

x x x x x x x x x x x x 70,6

3. Design an open, scalable, flexible and sustainable in-
frastructure for the Internet of Things.

 x x x x x x x x x x x x 70,6

4. Develop migration paths for disruptive technological
developments to the Internet of Things.

 x x x x x x x x x x x 64,7

5. Excite and enable businesses and people to contrib-
ute to the Internet of Things.

x x x x x x x x x x 58,8

6. Enable businesses across different industries to de-
velop high added value products and services.

 x x x x x x x x x 52,9

7. Encourage new market entrants, such as third party
service and information providers, to enter the Internet
of Things.

 x x x x x 29,4

8. Provide an open solution for sharing costs, benefits
and revenue generation in the Internet of Things.

x x x x x x x x x 52,9

9. Public initiatives to support the usage of the Internet
of Things for social relevant topics.

 x x 11,8

10. Enable people to seamlessly identify things to ac-
cess as well as contribute related information.

 x x x x 23,5

Total adherence 40
,0

10
0,

0

90
,0

80
,0

60
,0

50
,0

50
,0

50
,0

50
,0

50
,0

30
,0

40
,0

50
,0

40
,0

70
,0

20
,0

40
,0

of interest in Blockchain-based applications has happened
because we need applications that can run only through a
trusted intermediary. And, with the adoption of Blockchain
strategies, we can operate without the need for a central
authority [17].

The authors in [24] also say we can then create some
knowledge basis by defining individual instances of these
classes, filling in specific slot value information and additional
slot restrictions.

A. Threats to Validity

We have detected some threats to validity in this Systematic
Mapping:

• The specic group of interest: This Systematic Mapping
used a specic group of search engines considered the most
relevant. However, some primary studies may be missing.
To mitigate this threat, we adopted the opinion of experts
and snowballing.

• The choice of primary studies: The classication of
the authors was the only evaluation criterion to select
each study, restricted to IoT and Blockchain. No other
nomenclature was considered.

• Placebo effects or courtesy bias or inadequate survey
instrument: Anything that seemed to be real research,
containing results without errors.

• Number of reviewers: SM was conducted by one re-
searcher. We considered adopting the support of experts.

• Study not available: Six primary studies were not avail-
able.

• Data extraction doubts: Some information was not
clearly available and it was very difcult to interpret.
Discussions with experts were considered.

VI. CONCLUDING REMARKS AND FUTURE WORK

We conducted a Systematic Mapping to investigate which
primary development processes have been used in, and which
factors have been influencing Blockchain-based IoT building.
The ultimate goal of our research is to present the current
panorama about best practices outlined in the literature to
develop an initial Blockchain-based ontology model for IoT
projects. The Blockchain-based IoT research area is so new
and most of the papers and publications (such as a book, a
technical report and others works) are concentrated in the last
ve years (i.e., 17 of the studies that were considered, and seen
in Table II).

We reported on some frameworks, models, approaches, and
other Blockchain-based IoT initiatives that present adherence
to well-known development processes and endeavor to build
an initial body of knowledge. We detected key requirements on
the IoT and, we sorted them by functional and non-functional
requirements. We also evaluated the adherence of each paper.
In this analysis, the papers are evaluated against the ten IoT
key requirements.

Thus, the main contribution of this paper is the under-
standing of the realm of Blockchain-based IoT development,
and we aim to establish best practices in the construction
of devices (or things) that inspire more condence in their
use (or transactions). These are the essential requirements for
building a Blockchain-based IoT, and we have identified as

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 44 / 267

well as characteristics, processes, former initiatives and current
challenges of Blockchain-based IoT.

Our future work will address the main characteristics,
models and tasks to integrate existing approaches and scalable
blockchains, and in designing an architecture for IoT appli-
cations which addresses integrity, trust and security issues.
Moreover, we will concentrate on building an initial body of
knowledge about Blockchain-based IoT devices. We intend to
conduct semistructured interviews with specialists to evaluate
the original understanding.

REFERENCES

[1] M. Atzori, “Blockchain Technology and Decentralized Governance:
Is the State Still Necessary?” SSRN Electronic Journal, pp. 1–
37, 2015. [Online]. Available: papers.ssrn.comhttp://www.ssrn.com/
abstract=2709713

[2] M. Pilkington, “Blockchain technology: Principles and applications,”
pp. 1–39, Sep. 2015. [Online]. Available: http://papers.ssrn.com/
abstract=2662660

[3] H. Ugarte. (2016, Nov.) Semantic blockchain: Semantic web on/with the
blockchain. [Online]. Available: https://semanticblocks.wordpress.com/

[4] M. Atzori, “Blockchain-based architectures for the internet of things:
A survey,” Oct. 2016. [Online]. Available: https://ssrn.com/abstract=
2846810

[5] S. H. Hashemi, F. Faghri, P. Rausch, and R. H. Campbell, “World of
empowered iot users,” in 2016 IEEE First International Conference on
Internet-of-Things Design and Implementation (IoTDI), April 2016, pp.
13–24.

[6] Y. Zhang and J. Wen, “The iot electric business model: Using blockchain
technology for the internet of things,” Peer-to-Peer Networking and
Applications, vol. 10, no. 4, pp. 983–994, Apr. 2016. [Online].
Available: http://dx.doi.org/10.1007/s12083-016-0456-1

[7] A. C. Dias-Neto, R. O. Spnola, and G. H. Travassos, “Developing
software technologies through experimentation: experiences from the
battlefield,” in XIII Ibero-American Conference on Software Engineer-
ing. XIII Congreso Iberoamericano en Software Engineering, May
2010.

[8] B. A. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University, Keele, Newcastle ST5 5BG, UK, techreport 2.3,
Jul. 2007. [Online]. Available: https://pdfs.semanticscholar.org/e62d/
bbbbe70cabcde3335765009e94ed2b9883d5.pdf

[9] T. Meline, “Selecting studies for systematic review: Inclusion and
exclusion criteria,” Contemporary issues in communication science and
disorders, vol. 33, pp. 21–27, Mar. 2006.

[10] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[11] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying
incentives in the consensus computer,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 706–719.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813659

[12] P. Vigna and M. J. Casey, The Age of Cryptocurrency: How Bitcoin
and Digital Money Are Challenging the Global Economic Order. New
York, NY, USA: St. Martin’s Press, Inc., Jan. 2015.

[13] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation
of clients in bitcoin p2p network,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 15–29. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660379

[14] Y. Zhang and J. Wen, “An iot electric business model based on
the protocol of bitcoin,” in 2015 18th International Conference on
Intelligence in Next Generation Networks, Feb 2015, pp. 184–191.

[15] T. Hardjono and N. Smith, “Cloud-based commissioning of constrained
devices using permissioned blockchains,” in Proceedings of the 2Nd
ACM International Workshop on IoT Privacy, Trust, and Security, ser.
IoTPTS ’16. New York, NY, USA: ACM, 2016, pp. 29–36. [Online].
Available: http://doi.acm.org/10.1145/2899007.2899012

[16] M. Conoscenti, A. Vetr, and J. C. D. Martin, “Blockchain for the
internet of things: A systematic literature review,” in 2016 IEEE/ACS
13th International Conference of Computer Systems and Applications
(AICCSA), Nov 2016, pp. 1–6.

[17] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[18] S. Huckle, R. Bhattacharya, M. White, and N. Beloff, “Internet
of things, blockchain and shared economy applications,” Procedia
Computer Science, vol. 98, no. Supplement C, pp. 461 – 466,
2016, the 7th International Conference on Emerging Ubiquitous
Systems and Pervasive Networks (EUSPN 2016)/The 6th International
Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH-2016)/Affiliated
Workshops. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050916322190

[19] D. Uckelmann, M. Harrison, and F. Michahelles, An Architectural
Approach Towards the Future Internet of Things. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 1–24. [Online]. Available:
https://doi.org/10.1007/978-3-642-19157-2 1

[20] S. Panikkar, S. Nair, P. Brody, and V. Pureswaran, “Adept: An iot
practitioner perspective,” IBM, techreport, 2015.

[21] A. Norta, Creation of Smart-Contracting Collaborations for
Decentralized Autonomous Organizations. Cham: Springer
International Publishing, 2015, pp. 3–17. [Online]. Available:
https://doi.org/10.1007/978-3-319-21915-8 1

[22] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentral-
ized computation platform with guaranteed privacy,” arXiv preprint
arXiv:1506.03471, 2015.

[23] G. Zyskind, O. Nathan, and A. . Pentland, “Decentralizing privacy:
Using blockchain to protect personal data,” in 2015 IEEE Security and
Privacy Workshops, May 2015, pp. 180–184.

[24] N. F. Noy and D. L. McGuinness. (2001, Feb.) Ontology development
101: A guide to creating your first ontology. [Online]. Avail-
able: http://liris.cnrs.fr/amille/enseignements/Ecole Centrale/What%
20is%20an%20ontology%20and%20why%20we%20need%20it.htm

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 45 / 267

Authentication and the Internet of Things:
A Survey Based on a Systematic Mapping.

Emidio de Oliveira e Silva
CESAR - Recife Center for Advanced Studies and

Systems
Recife, Brazil

eos@cesar.org.br

Wallace Thierre Souza de Lima
CESAR - Recife Center for Advanced Studies and

Systems
Recife, Brazil

wtsl@cesar.org.br

Felipe Silva Ferraz
CESAR - Recife Center for Advanced Studies and

Systems
Recife, Brazil

fsf@cesar.org.br

Francisco Icaro do Nascimento Ribeiro
CESAR - Recife Center for Advanced Studies and

Systems
Recife, Brazil

finr@cesar.org.br

Abstract—The term Internet of Things (IoT) is used to
describe many objects connected and communicating with
each other. In this scenario, where different things share
information in distinct environments, some security problems
become evident. Among those issues, authentication is an
important technique for ensuring a reliable and secure
communication between objects in an IoT environment. This
paper has mapped the current state of the authentication use in
an IoT environment, highlighting the challenges and the main
techniques used in authentication solutions.

Keywords- internet of things; authentication; authorization;
systematic mapping;

I. INTRODUCTION
Nowadays it is natural to face a scenario in which smart

objects are connected to the Internet, exchanging data and
information, interacting with users and other devices. It is
possible to notice these objects in several different areas,
such as, healthcare monitoring, telecommunication,
vehicular automation, traffic, elderly and children care, etc.
[1]. This group of connected objects is denominated IoT.

According to Gartner institute, it is expected that 8.4
billion smart devices will be connected and in use by the
end of 2017. It is also estimated that a number close to 20.4
billion devices will be connected by the end of 2020. This
demonstrates a growing investment in the new business
niche involving IoT solutions. Still, in the same article, it is
presented that companies are expected to invest around US$
1.7 trillion in IoT applications by the end of 2017 and reach
US$ 3 trillion by 2020 [2].

IoT is not just a machine-to-machine network or a
network, with smart and physical objects, that contains
embedded technology to sense/interact with their internal
state or external environment. IoT defines an ecosystem that
includes things, communication, applications, data analysis,
business opportunity and innovation [3]. In this context, IoT
will enable a broad variety of new ways to interact in
citizens cotidianum, connecting smart objects, interacting in

different environments, using different protocols and
combining a natural heterogeneous environment through a
set of different approaches [4]. This way, many companies
develop platforms to explore and facilitate internet solutions
of things like the KNoT, a meta platform that focuses on
implementing the integration between existing hardware and
software IoT platform [5].

In this complex heterogeneous structure of IoT
environments, in which connected solutions are already part
of people and companies practices, manipulating and storing
information, many security issues can be highlighted. Data
privacy, device identification, authentication, authorization
and software vulnerability are some of these concerns, that
must be addressed while IoT are still in its early stages of
development [4][6][7].

In order to provide trust of the information, that the
confidentiality, integrity and availability of the information
are not violated, security mechanisms must be considered.
In terms of information security, authentication is a property
of a system that is related to an actor being able to provide a
set of information to prove that he is indeed who it claims to
be.

In the context of IoT, authentication is related to any
claim of an object, from a system, another object or user,
and it validates if the claimer is who it affirms it is.

Authentication is important not only to authenticate a
user, but also to manage credentials as a whole, ensuring
that those who do not have permissions are blocked from
accessing. Since IoT is a new and challenging area, this
work will focus in a research about what has been studied
and built in terms of authentication in IoT.

In order to provide a broad overview about
authentication in an IoT environment and also identify
opportunities, challenges and other matters on this topic,
this paper conducts a systematic mapping. A systematic
mapping aims to identify the quantity, type of research and
results available within a specific area. It also aims to verify
the evolution and state of the art in that area [8]. This work

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 46 / 267

is divided, as follows: in Section 2, the methodology used to
perform this research will be described, along with the
protocol, methods, and the processes used in this mapping
review. Section 3 presents the results and summarizes the
main points about the subject addressed. Finally, in the last
section, conclusions and future works will be presented.

II. APPLIED PROTOCOL
Based upon the guidelines for the development of

systematic reviews in software engineering described by
Kitchenham et al. [8] and the analysis of the review model
by Dybå and Dingsøyr [9], a new methodology for revision
was created. Our review methodology is composed of six
steps: (1) development of the protocol, (2) identification of
inclusion and exclusion criteria, (3) search for relevant
studies, (4) critical assessment, (5) extraction of data, and
(6) synthesis. The steps applied to the study contained
herein are presented below:

The objective of this review is to identify primary
studies that focus on the use of authentication techniques
that aims to solve IoT security problems. The following
question helps identifying primary studies.

● How important are authentication techniques on IoT

environments and what are the challenges, concerns,
and expectations about these techniques?

From this central question and after an internal debate

between the authors, other secondary questions were
developed to help comprehending the problem:

1. What are the main challenges about authentication

in an IoT environment?
2. What are the main authentication methods or

techniques used in an internet environment of
things?

3. What are the advantages, benefits and challenges in
the use of techniques that use RFID as an
authentication artifact?

A. Inclusion and Exclusion Criteria
For this review, studies that aim to analyze the use of

authentication techniques to improve security in IoT
environments were considered. Since this field of research is
recent, this review limited the examined studies to the ones
published starting from the year of 2015, due to the great
emergence of relevant studies as of this year.

The following works were also excluded:
● Studies not published in the English language;
● Studies that were unavailable online;
● Studies not based on research or that are

incomplete;
● Call for works, prefaces, conference annals,

handouts, summaries, panels, interviews and news
reports.

B. Search Strategies
The databases considered in the study were:
● ACM Digital Library;
● IEEE Xplore;
● SpringerLink;
Some terms were defined and combined based on the

proposed questions. As a result, a set of five strings were
defined and used to conduct the search in the databases.

((IOT or internet of things) and security) and
authentication);

(((IOT or internet of things) and authentication) and
challenges);

(((IOT or internet of things) and authentication) and
techniques);

(((IOT or internet of things) and authentication) and
methods);

(((IOT or internet of things) and authentication) and
RFID);

In the process of extracting information from the
databases, the search strings were used separately on each
database. The searches were performed between March
2017 and April 2017. The results of each search were
grouped together according to the database and were, later,
examined closer in order to identify duplicity. Table 1
shows the amount of studies found on each database.

TABLE I. AMOUNT OF STUDIES FOUND ON EACH DATABASE

Database Amount of studies
ACM Digital Library 112
IEEE Xplore 417
SpringerLink 1366

C. Studies Selection Process
This section describes the selection process from the

beginning: from the initial search using the Search
Strategies previously described to the identification of
primary studies.

At the first step, an analysis was realized to remove all
duplicated articles from the set of studies obtained. After
removal, 1208 non-duplicated works remained, they were
added to Mendeley’s citation management tool.

In a second phase, the titles of all works selected in the
previous step were analyzed to determine its relevance in
this systematic mapping. At this stage, many works that did
not mention using authentication into IoT, authentication
techniques or methods were eliminated.

Due to the use of terms related to authentication in IoT
environment, many works depicting about cloud
authentication, biometric authentication and biological
identification were found. In those cases, all works whose
titles did not conform to the scope of the review were
eliminated. In other cases, when the works titles were vague
or unclear, they were put aside to be analyzed in the next
step. At the end of this stage, 553 citations were excluded,
thus remaining 205 items for further analysis.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 47 / 267

In the third step, all abstracts of the filtered works were
closely examined, showing an enormous quality variation.
Once again, many studies were eliminated due to their non
conformity to the scope of authentication being used to
solve privacy and security issues in IoT environments.
Others had no abstracts or had abstracts that did not clearly
presented what the article was about. In the end, a total of
99 papers were selected.

Table 2 presents the amount of studies filtered in each
step of selection process.

TABLE II. AMOUNT OF STUDIES FILTERED IN EACH STEP OF SELECTION
PROCESS

Engine Returned Studies Title Abstract
ACM 69 34 7
IEEE 298 112 40
Springer Link 391 59 10
Total 758 205 57

D. Quality Assessment
In this assessment stage, the works were submitted to a

critical analysis. In this stage, the complete studies were
analyzed, instead of only the titles or abstracts. After this,
the last studies that were considered uninteresting for the
review were eliminated resulting in the final set of works.
After the quality assessment, relevance grades were
attributed to the remaining works. The relevance grades are
going to be useful in the next stage. Six questions, based on
Kitchenham et al. [8], were used to guide quality
assessment. Those questions determine the credibility, rigor
and relevance of the article to be analyzed. Out of the six,
the first is the most important due to its capability to
determine if the work is addressed to the review subject.
The five remaining questions are useful in determining the
quality of the work, so they were used to classify the works
according to the quality. The questions were:

1. Does the study analyze the benefits of using

authentication in an IoT environment?

2. Is the study based on research - not merely on
specialists’ opinions?

3. Are the objectives of the study clearly stated?

4. Is the context of the study adequately described?

5. Was the research project adequate to reach the

research objectives?

6. Were the research results adequately validated?

After a deep analysis at the quality assessment stage, 49

of the remaining 57 studies were selected to the stage of
data extraction and synthesis and were, thus, considered as
the primary studies. The quality assessment process will be

presented in detail in the result section along with the
assessment of the 49 remaining studies.

III. RESULTS
In total, 49 primary studies were identified, each one

dealing with a wide array of research topics and using a
wide set of exploration models for different scenarios.

After evaluating the primary studies, the works revealed
patterns related with authentication and identification in IoT
environment. Several studies had a theoretical essence
centered on the proposal of an authentication mechanism,
using it in two or more steps. Many of the solutions
analyzed use the authentication scheme applying elliptic
curve cryptosystem (ECC), which is a public key
cryptography method, that uses points on an elliptic curve to
derive a 163-bit public key, equivalent in strength to a 1024-
bit RSA key and XOR operations. In further studies,
authentication occurs through devices that use Radio-
Frequency Identification (RFID). RFID is one of the most
important technologies used in IoT area, as it can store
sensitive data, communicate with other objects wirelessly
and identify/track objects automatically in user
identification.

A. Quantitative Analysis
The developed research process resulted in 49 primary

studies. They were written by 193 authors linked to
institutions based on different countries, distributed on four
continents, and were published between 2015 and 2017. In
total, the authors identified 225 different keywords in their
work. In many works, the authors approach different ways
to make authentication, with two or three steps or using
RFID. To emphasize this affirmation, Figure 1 presents a
word cloud generated with all works titles.

Figure 1. Word cloud from the primary studies.

The most common keywords used in the remaining

works with their respective frequency were: authentication
(10), Internet of things (8), security (3), privacy (3), wireless
sensor networks (3), techniques (1), methods (1), RFID (1).
The first three keywords - authentication, internet of things
and security - reflect precisely the theme of the research

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 48 / 267

contained herein.

B. Qualitative Analysis
As described in the quality assessment, each one of the

primary studies was assessed according to six quality
criteria related to rigor and credibility, as well as to
relevance. If considered as a whole, these six criteria
provide a good measure to the conclusions that a particular
study can bring to the mapping. The classification for each
criteria used a scale of positives and negatives.

In Table 3, columns ‘q1’ to ‘q6’ represent the 6 criteria
defined by the questions used on the quality assessment:
Focus in Authentication, Research, Clearly, Context,
Project, and Validation.

For each criteria, '1' represents the positive answer and
'0' the negative one.

TABLE III. QUALITATIVE TABLE

Study q1 q2 q3 q4 q5 q6 Total

[1] 1 1 1 1 1 1 6

[2] 1 1 1 1 1 0 5

[3] 1 1 1 1 1 0 5

[6] 1 1 1 1 1 0 5

[10] 1 1 1 1 0 0 4

[11] 1 1 1 1 1 0 5

[13] 1 1 1 1 1 1 6

[14] 1 1 1 1 0 0 4

[15] 1 1 1 1 1 0 5

[16] 1 1 1 1 1 0 5

[17] 1 1 1 1 1 0 5

[18] 1 1 1 1 1 1 6

[19] 1 1 1 1 0 0 4

[20] 1 1 1 1 1 0 5

[21] 1 1 1 1 1 1 6

[22] 1 1 1 1 1 1 6

[23] 1 1 1 1 1 0 5

[24] 1 1 1 0 1 1 5

[25] 1 1 1 1 1 1 6

[25] 1 1 1 1 1 0 5

[28] 0 1 1 1 0 0 3

[30] 1 1 1 1 1 0 5

[31] 0 1 1 1 1 1 5

[32] 1 1 1 1 1 1 6

[33] 1 1 1 1 0 0 4

[34] 1 1 1 1 1 1 6

[35] 1 1 1 1 1 0 5

[36] 1 1 1 1 1 0 5

[37] 1 1 1 1 1 0 5

[38] 1 1 1 1 0 0 4

[39] 0 1 1 1 1 0 4

[40] 1 1 1 1 1 0 5

[41] 0 1 1 1 0 0 3

[42] 1 0 1 1 1 0 4

[43] 1 0 1 0 1 1 4

[44] 1 1 1 1 1 0 5

[45] 1 1 1 1 1 1 6

[46] 1 1 1 1 1 1 6

[47] 1 1 1 1 1 0 5

[48] 1 1 1 1 1 0 5

[49] 1 1 1 1 1 0 5

[50] 1 1 1 1 1 0 5

[51] 1 1 1 1 1 0 5

[52] 0 0 1 1 1 1 4

[53] 1 1 1 1 1 1 6

[54] 0 1 1 0 0 0 2

[55] 1 1 1 1 0 0 4

[56] 1 1 1 1 1 1 6

[57] 1 1 1 1 1 0 5

Table 3 presented the quantitative analyses; based

on that, it is possible to check that the following works were
marked with higher scores: [1], [2], [3], [6], [11], [13], [15],
[16], [17], [18], [20], [21], [22], [23], [24], [25], [27], [30],
[31], [32], [34], [35], [36], [37], [40], [44], [45], [46], [47],
[48], [49], [50], [51], [53], [55], [56] and [57]. These will
serve as a base to the following section, in which discussion
about the main topics will be conducted.

Some studies were analyzed [28], [31], [39], [41], [52]
and [54] did not have positive result in the first question
("Q1"). However, the articles provided information on the
context of the work and contributed, in some way, to the
research.

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 49 / 267

IV. DISCUSSION
After analysis and data extraction, steps performed on

the primary studies, it was possible to identify some aspects
related with authentication in IoT application environments.

First, it is possible to conclude that security in IoT
environment is a very recent field of research since the
majority studies used in this article have been published
after 2015. Secondly, it was possible to conclude that in
many applications, different ways are used to make
authentication. In some cases, when using two or more
authentication steps, it is possible to work with digital and
iris recognition or RFID for identification.

In these works, it was possible to identify the importance
of creating an efficient mechanism against the most
common internet attacks such as MitM, replay, forward
secrecy and DoS. Therefore, in order to get this efficiency,
many works used elliptic curve cryptosystem (ECC)
scheme.

A. What are the main challenges regarding
authentication in an IoT environments?

There are challenges that need to be addressed in IoT
authentication. The first challenge is to reduce the energy
cost on the authentication process; for example, elliptic
curve cryptography (ECC) is an authentication protocol,
which uses implicit certificate aiming to reduce energy
consumption and computation overhead [11] in wireless
sensor networks for distributed IoT Applications.

The second challenge [12] introduced is to deploy
authentication protocols adapted to the IoT environment.
Different network architectures are based on different IoT
notions and need to deploy authentication schemes to secure
communications [13].

Another challenge is to design an authentication scheme
identifying the users in their respective devices without
maintaining permanent contact between those parts [14].

The last challenge is to achieve cross network security in
machine to machine communications issues like diverse
channels, interfaces, and context environments of
heterogeneous networks [15] need to be addressed.

B. What are the main authentication methods or

techniques used in the internet of things?

Similar to the current internet applications, there are
many mechanisms to provide authentication in an IoT
platform. In this way, one possible solution is to use three
factors for authentication which includes, ID, password and
fingerprint [2]. In other words, Mbarek et al. [16] explains
three methods used in authentication. The first method
consists in a signature-based mechanism, this signature
could be an ID or an elliptic curve signature, for example.
The advantage of this authentication method is that it
provides fast messaging authentication, with sender
repudiation [16]. The second method ensures immediate

messaging authentication and inherits security of different
signatures, such as Winternitz, which is a one-time signature
that are proven to be existentially unforgeable under
adaptive chosen message attacks. The third method
implements a lightweight symmetric primitives, like the
ones used in µTESLA context, where the authentication key
is secret for a time interval and will be disclosed after a
certain period of time [16].

Other technique that can be used in IoT architecture is
identification of neighbor nodes and a data aggregation to
authenticate group members that uses an authentication
scheme in wireless sensor network (WSN) using elliptic
curve cryptosystem (ECC) and XOR operation [17].

Another paper cites RFID authentication due to its strong
requirements and the ability to ensure secure
communication between RFID tags and the server [18]. In
the next question this subject will be more discussed.

Other uncommon mechanism used to improve security is
presented in the second step of the authentication process.
First, the user enters with his/hers username and password.
If the verification is completed successfully, the second step
of authentication is started by allowing the user to enter a
registered and predefined sequence of events, such as menu
or mouse activity, on a fake server screen [1].

One of the most secure mechanism of authentication is
cited in [19]. It is the One Time Password (OTP) technique
developed with elliptic curves cryptography (ECC). It is the
most efficient and secure compared to the existing methods
like the Key Distribution Center (KDC). This method does
not store the device's private and public keys, it only stores
their IDs.

Finally, the most popular method used to secure
authentication is the two step verification. It sends a
verification code to a mobile phone or uses a smart card for
generating keys on the devices directly [19].

C. What are the advantage, benefits and challenges in

the use of techniques that use RFID as an
authentication artifact?

Radio-Frequency IDentification (RFID) is one of the
most important technologies used in the IoT, as it can store
sensitive data, communicate and identify objects [18]. The
RFID system is composed of three components: RFID tag,
reader and a trusted back-end server [19].

Zeadally et al. [18] show that the RFID has advantages if
compared to the traditional barcode reader. It can be applied
to objects with rough surfaces, provide both read/write
capabilities, it requires no line-of-sight contact with RFID
readers, it is able to read multiple RFID tags
simultaneously, and provides strong authentication to the
user data [21].

To reduce communication and computation overheads,
the RFID reader uses a scheme that enables to resist various
common attacks such as the MitM, replay, forward secrecy,
and DoS [22]. ECC-based RFID authentication schemes

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 50 / 267

have attracted a lot of attention, Zeadally et al. [18] argue
that the PKC-based RFID authentication schemes are
necessary for secure communication in RFID systems
because many security attributes cannot be implemented.
However, elliptic curve cryptosystem (ECC) is more
suitable because it can provide similar security level but
with a shorter key size and has low computational
requirements [18].

V. CONCLUSION
The purpose of this review was to identify primary

studies that focus on the use of authentication, with its
challenges and opportunities. In the searching phase, 1208
studies were found, out of which 49 were classified as
primary studies after the selection and the quality criteria
were applied. Many of the studies found in the first steps did
not focus on IoT authentication solutions. Such works
focused only in cloud computing and techniques that deal
just with data privacy were not selected to compose the
search.

In the analysis performed on the group of selected
articles, theoretical and practical solutions that described
techniques and methods of authentication were found. The
vast majority of the studies were validated in a more
superficial and theoretical way, highlighting their strengths
and their advantages.

This systematic review has found different ways to
perform authentication in IoT environments and, among
them, the use of ECC was present in majority of articles
aiming to ensure security with low power consumption.

This work also showed the main challenges of applying
authentication in an IoT environment. The low energy
storage capacity of connected devices can be highlighted as
one of the main concerns. In the process of solving this
major challenge, a large number of authentication solutions
use elliptic curve cryptography (ECC) that provides security
with low processing power, adding more efficiency in
authentication algorithms.

Regarding the future work, a comparison between light
authentication solutions based on elliptic curve
cryptography is proposed. A more detailed analysis about
elliptic curve cryptography can be performed in order to
validate if the use of the technique satisfies the challenges of
security and low power consumption in an IoT environment.

ACKNOWLEDGMENT
This work was developed under the Professional Master

of Software Engineer’s program of the Educational branch
of CESAR, a Brazilian innovation center.

REFERENCES
[1] M. Saadeh, A. Sleit, M. Qatawneh, and W. Almobaideen, C.

Conference, “Authentication Techniques for the Internet of Things: A
Survey,” 2016.

[2] “Gartner,”http://www.gartner.com/newsroom/id/3598917, accessed:
2017-05-02.

[3] K. Gupta, “Internet of Things: Security Challenges for Next
Generation Networks,” no. Iciccs, pp. 315–318, 2016.

[4] M. Weber, “Security challenges of the Internet of Things,” pp. 638–
643, 2016.

[5] “Knot: the open source meta platform for iot,”
https://www.knot.cesar. org.br/, retrieved: August, 2017.

[6] O. O. Bamasag and K. Youcef-toumi, “Towards Continuous
Authentication in Internet of Things Based on Secret Sharing
Scheme.”

[7] O. Bamasag, “Efficient Multicast Authentication in Internet of
Things,” pp. 429–435, 2016.

[8] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” 2007.

[9] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Inf. Softw. Technol., vol. 50, no.
9–10, Aug. 2008, pp. 833–859.

[10] S. Lin and C. Wen, “Energy-Efficient Device-Based Node
Authentication Protocol for the Internet of Things,” no. 1, pp. 1–2,
2016.

[11] H. Khemissa, D. Tandjaoui, T. Information, T. Houari, and B.
Algiers, “A Lightweight Authentication Scheme for E-health
applications in the context of Internet of Things,” 2015.

[12] H. Khemissa and D. Tandjaoui, “A Novel Lightweight Authentication
Scheme for heterogeneous Wireless Sensor Networks in the context
of Internet of Things ∗†,” 2016.

[13] N. W. Interfaces, “Continuous Authentication and Authorization for
the Internet of Things,” 2017.

[14] “ECC Based Self-Certified Key Management Scheme for Mutual
Authentication in Internet of Things,” pp. 3–8, 2016.

[15] S. Arasteh, S. F. Aghili, and H. Mala, “A New Lightweight
Authentication and Key agreement Protocol For Internet of Things,”
pp. 52–59, 2016.

[16] B. Mbarek, A. Meddeb, W. Ben Jaballah, and M. Mosbah, “A Secure
Authentication Mechanism for Resource Constrained Devices,” pp.
1–7, 2015.

[17] Y. Park and Y. Park, “A Selective Group Authentication Scheme for
IoT-Based Medical Information System,” pp. 1–8, 2017.

[18] S. Zeadally, “An Analysis of RFID Authentication Schemes for
Internet of Things in Healthcare Environment Using Elliptic Curve
Cryptography,” vol. 4662, no. c, 2014.

[19] O. Salman, S. Abdallah, I. H. Elhajj, A. Chehab, and A. Kayssi,
“Identity-based authentication scheme for the Internet of Things,”
Proc. - IEEE Symp. Comput. Commun., vol. 2016–Augus, pp. 1109–
1111, 2016.

[20] P. Ghosh, “A Privacy Preserving Mutual Authentication Protocol for
RFID based Automated Toll Collection System,” 2016.

[21] S. M. Sujatha, “Design and Implementation of IoT Testbed with
Three Factor Authentication.”

[22] Y. Huang and J. Jiang, “Ultralightweight RFID Reader-Tag Mutual
Authentication Revisited,” 2015.

[23] J. Huang, W. Juang, C. Fan, Y. Tseng, and H. Kikuchi, “Lightweight
Authentication Scheme with Dynamic Group Members in IoT
Environments,” pp. 88–93, 2016.

[24] S. Janbabaei, H. Gharaee, and N. Mohammadzadeh, “Lightweight,
Anonymous and Mutual Authentication in IoT Infrastructure,” pp.
162–166, 2016.

[25] M. B. Tamboli, “Secure and Efficient CoAP Based Authentication
and Access Control for Internet of Things (IoT),” pp. 1245–1250,
2016.

[26] T. Marktscheffel et al., “QR Code Based Mutual Authentication
Protocol for Internet of Things,” 2016.

[27] L. Feng, X. Yao, and C. Engineering, “RFID System Mutual
Authentication Protocols Based on ECC,” pp. 1645–1650, 2015.

[28] E. Song, “Enabling RFID technology for healthcare: application,

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 51 / 267

architecture, and challenges,” 2014.
[29] J. Shen, H. Tan, Y. Zhang, X. Sun, and Y. Xiang, “A new lightweight

RFID grouping authentication protocol for multiple tags in mobile
environment,” 2017.

[30] S. Peter, “Multi-level Authentication System for Smart Home-
Security Analysis and Implementation.”

[31] B. Tank, H. Upadhyay, and H. Patel, “A Survey on IoT Privacy
Issues and Mitigation Techniques,” pp. 9–12, 2016.

[32] C. Author, “Study of Authentication with IoT Testbed,” 2015.
[33] A. H. Moon, I. Technology, U. Iqbal, I. Technology, and G. M. Bhat,

“Light Weight Authentication framework for WSN,” pp. 3099–3105,
2016.

[34] M. Komar, S. Edelev, and Y. Koucheryavy, “Handheld Wireless
Authentication Key and Secure Documents Storage for the Internet of
Everything.”

[35] Wei-Tsung Su, Wei-Ming Wong and Wei-Cheng Chen, “A survey of
performance improvement by group-based authentication in IoT”
Applied System Innovation (ICASI), 2016 IEEE International
Conference on Applied System Innovation, 2016.

[36] A. Cherkaoui, L. Bossuet, L. Seitz, G. Selander, and R. Borgaonkar,
“New Paradigms for Access Control in Constrained Environments.”

[37] J. K. Zao, D. A. Ha, and K. T. Nguyen, “Efficient Authentication of
Resource-Constrained IoT Devices based on ECQV Implicit
Certificates and Datagram Transport Layer Security Protocol,” pp.
173–179.

[38] C. Camichel, U. M. R. Cnrs, and A. Thomas, “Evaluation of RAIN
RFID authentication schemes,” 2016.

[39] H. Zhang and T. Zhang, “Short Paper: ‘A Peer to Peer Security
Protocol for the Internet of Things,’” pp. 154–156, 2015.

[40] I. Computing, M. Barbareschi, P. Bagnasco, and A. Mazzeo,
“Authenticating IoT Devices With Physically Unclonable Functions
Models,” 2015.

[41] H. Luo, G. Wen, J. Su, and Z. Huang, “SLAP: Succinct and
Lightweight Authentication Protocol for low-cost RFID system,”
Wirel. Networks, 2016.

[42] N. Singh, “Improved Authentication Scheme Using Password
Enabled Persuasive Cued Click Points,” pp. 1394–1398, 2015.

[43] A. V Kamath, K. Kataoka, N. Vijayvergiya, G. B. Reddy, and S.
Phatale, “SAFE: Software-defined Authentication FramEwork.”

[44] S. Emerson, Y. Choi, D. Hwang, K. Kim, and K. Kim, “An OAuth
based Authentication Mechanism for IoT Networks,” pp. 1072–1074,
2015.

[45] S. Patel and D. R. Patel, “Energy Efficient Integrated Authentication
and Access Control Mechanisms for Internet of Things,” pp. 304–
309, 2016.

[46] M. A. Crossman and H. Liu, “Two-Factor Authentication through
Near Field Communication,” 2016.

[47] Y. Sharaf-dabbagh and W. Saad, “On the Authentication of Devices
in the Internet of Things,” pp. 1–3, 2016.

[48] P. H. Griffin, “Security for Ambient Assisted Living: Multi-factor
Authentication in the Internet of Things,” 2015.

[49] Y. Essadraoui, “Wireless sensor node’s authentication scheme based
on Multivariate Quadratic Quasigroups,” 2015.

[50] M. P. Pawlowski et al., “Towards a Lightweight Authentication and
Authorization Framework for Smart Objects ∗,” vol. 8716, no. c, pp.
1–14, 2015.

[51] W. Xi et al., “Instant and Robust Authentication and Key Agreement
among Mobile Devices,” pp. 616–627.

[52] S. Kumari, M. Karuppiah, A. K. Das, X. Li, F. Wu, and N. Kumar,
“A secure authentication scheme based on elliptic curve cryptography
for IoT and cloud servers,” J. Supercomput., 2017.

[53] C. Shen, H. Li, G. Sahin, and H. Choi, “Low-Complexity Scalable
Authentication Algorithm with Imperfect Shared Keys for Internet of

Things,” pp. 3–8, 2016.
[54] M. Schukat, “Peer to Peer Authentication for Small Embedded

Systems,” pp. 68–72, 2014.
[55] I. Technology et al., “Digital Memories Based Mobile User

Authentication for IoT,” 2015.
[56] O. Bamasag, “Efficient Multicast Authentication in Internet of

Things,” pp. 429–435, 2016.
[57] T. Markmann, T. C. Schmidt, and M. Wählisch, “Federated End-to-

End Authentication for the Constrained Internet of Things Using IBC
and ECC,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5,
pp. 603–604, 2015.

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 52 / 267

CLIPS: Customized Levels of IoT Privacy and Security

Rohith Yanambaka Venkata, Krishna Kavi

Computer Systems Research Lab
Dept. of Computer Science and Engineering

University of North Texas
Denton, Texas 76207, USA

Email: RohithYanambakaVenkata@my.unt.edu, Krishna.Kavi@unt.edu

Abstract—Internet of Things (IoT) refers to systems that can
be attached to the Internet and thus can be accessed and
controlled remotely. Such devices are essential for creating ”smart
things” like smart homes, smart grids, etc. IoT has achieved
unprecedented success. It offers an interconnected network where
devices (in the consumer space) can all communicate with each
other. However, many IoT devices only add security features as an
afterthought. This has been a contributing factor in many of the
recently reported attacks and warnings of potential attacks such
as those aimed at gaining control of autonomous cars. Many IoT
devices are compact and feature limited computing resources,
which often limits their ability to perform complex operations
such as encryption or other security and privacy checks. With
capabilities of devices in IoT varying greatly, a one-size-fits-all
approach to security can prove to be inadequate. We firmly
believe that safety and privacy should both be easy to use, present
little inconvenience for users of non-critical systems, yet be as
strong as possible to minimize breaches in critical systems. In
this paper, we propose a novel architecture that caters to device-
specific security policies in IoT environments with varying levels
of functionalities and criticality of services they offer. This would
ensure that the best possible security profiles for IoT are enforced.
We use a smart home environment to illustrate the architecture.

Keywords–Internet of Things (IoT); Software Defined Network-
ing (SDN); IoT Security.

I. INTRODUCTION

Internet of Things (IoT) refers to systems that can be
attached to the Internet and thus can be accessed and controlled
remotely. Such devices are essential for building ”smart things”
like smart homes, smart grids, etc. The proliferation of IoT has
been undeniably progressive and uninhibited.

The total investment in IoT is predicted to touch the $5
trillion mark in the next five years [1]. More specifically, a
recent market study shows that the market with the fastest
growing adoption rate is smart homes [2] with the market
predicted to generate $ 2.5 billion [2]. Consumers are choosing
to invest in IoT for convenient and comfortable lives [3].
Devices such as refrigerators, light bulbs and thermostats can
be controlled remotely, which can also result in power savings
and reduced operational costs [3].

With an industry as diverse and prevalent as smart homes,
security is paramount. Users like to be assured that the devices
they invested in are safe and cannot be attacked. Providing this
assurance, however, is not an easy task.

Securing network infrastructure often entails shutting ser-
vices down. For example, a widely accepted response to a
denial of service attack (DoS) is to shut down network services.

Ideally, securing the devices in a network should go a long way
toward ensuring the security of the network itself. Frequently,
companies enforce a uniform policy model (specific to a de-
partment or section). This compromises flexibility and control.
With a traditional networking model, control over the network
topology is limited. By leveraging Software Defined Network-
ing (SDN), fine-grained control over the network topology is
possible. A diverse network comprised of devices with varied
capabilities would be constrained by the device with the least
computational or networking abilities. For example, if one of
the security requirements is end-to-end network encryption, a
non-IP addressable device with minimal computational power
may be unable to enfforce such a requirement. We firmly
believe that security and privacy should both be easy to use,
present little inconvenience to users of non-critical systems,
yet be as robust as possible to minimize breaches.

A device-specific and user-selectable approach that caters
to the need of all devices in IoT is required. Security policies,
tailored to the network and computing capabilities of those
devices will result in a good IoT security posture. Otherwise,
users will either object to the privacy/security requirements or
undermine the security with default or weak security configu-
rations.

We propose a device-specific approach to security using
SDN that addresses the needs of individual classes/categories
of devices that are trying to access the LAN or WAN network
in a smart home. Such an approach to security provides
flexibility and control over device and network security.

The main contribution of this paper is an SDN administered
security framework that caters to device-specific protection
needs in IoT environments with varying levels of function-
alities and criticality of the services they offer.

This paper is organized as follows. We present our ar-
chitecture for enforcing device-specific security policies for
IoT devices in Section II. In Section III, we describe the
topology detailing the various threat protection and avoidance
schemes that are implemented in the architecture. We detail the
countermeasures in place against some of the most important
attacks targeting IoT in Section IV. Section V contains some
related work that is aligned with this research. Section VI
describes the configuration and set up of a prototype, followed
by conclusions.

II. ARCHITECTURE OVERVIEW

For the purpose of this paper, we use a smart home as an
example environment and illustrate how our architecture can

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 53 / 267

implement device-specific security and privacy policies. We
will describe individual components in this Section.

Comply to Connect (C2C) network access control

Access granted (Fully compliant devices)
Quarantine	VLAN

Partially	Non-compliant	
devices	will	be	subject	to	
remediationAccess Blocked:

Partially/Completely
Non-Compliant devices

Class	1 Class	2 Class	N

Figure 1. CLIPS architecture.

Figure 1 shows a high-level view of the proposed ar-
chitecture which consists of a single standalone device that
replaces a wireless router. The device hosts a secure trusted
environment to which the IoT devices connect to communicate
with each other, i.e., Machine to Machine (M2M) or to access
the Internet. The functions offered by our device are two-fold:

• Provide networking functionality using SDN.
• Provide a secure environment for device communica-

tion (M2M and access to the Internet).

A. Untrusted external networks
An untrusted network is one which provides no information

regarding data safety, the authenticity/identity of the commu-
nicating device, or the communication link itself. This is the
most common source for attacks on devices. We need to have
mechanisms in place in the smart home network to detect and
handle any attacks. The only sensible approach is to monitor
and filter traffic at the device itself. This is generally achieved
by configuring firewalls and intrusion detection systems to
monitor network traffic. Additional protection schemes are
discussed in Section III.

B. Trusted environment
A trusted environment is one where there is a good degree

of confidence in the integrity and confidentiality of the network
components (see Figure 2). The first level of defense in the
trusted environment is a set of Intrusion Detection Systems
(IDS) such as Snort and a firewall service. The final objective
is to enforce device (device class) specific security policies.
Kerberos provides all the authentication needs for network
communication. Additional policies are discussed later in this
Section.

1) Security policy manager: Device-specific security poli-
cies are stored in Linux containers which are assigned to each
category of IoT devices that may be present in a smart home
network. Once the device has been identified and grouped, the

Internet

Device Specific Security Function Containers

Security Policy Manager

Container 1 Container 2 Container N…

Kerberos
Server

Daemon
Process

IDS and Firewall
Services

SDN Controller

Open vSwitch

SiteWhere IoT Framework

Trusted
Environment Kerberos encryption

service

Figure 2. A closer look at the trusted environment.

corresponding container is invoked and the SDN controller
initiates a daemon process that runs in the background. This
daemon process is then tasked with invoking one of the
many device-class specific security function containers that are
either suspended or powered down. Powering down containers
minimizes the chances of corrupting the code of the container.
The container, once invoked, retrieves the required security
policies for the identified device. These rules are downloaded
onto the SDN controller via the northbound interfaces and the
security function container goes back to the suspended state or
powers down. The communication link between the container
and the SDN controller is encrypted.

The reason for the security policies residing in containers
and not configured into the SDN controller is to minimize
exposure of the policies to adversaries. When these policies
are configured onto the controller, the attackers may find an
exploit (in the source code) and gain access to the rules. If,
however, they were to reside in a sand-boxed environment, it
would make things much harder for them to be accessed, since
the policies are exposed to attacks only when the container
enforcing these polices is active.

2) IoT arbitrator: An IoT arbitrator resides in the trusted
environment and its responsibilities are to host the virtual
switch that the SDN controller communicates with (an SDN
controller can only communicate with switches and not the
devices themselves) and to host an IoT framework for low-
powered devices (constrained devices that are not IP accessi-
ble) to communicate with each other.

An IoT environment may be an amalgam of devices that
communicate using a variety of network protocols, each using
different MTUs (Maximum Transmission Unit). Hence, a
broker needs to mediate the communication between devices.
An example of an IoT framework is SiteWhere [4]. It provides
a framework to obtain, store, process and migrate data among
IoT devices, which happens through the MQTT (Message
Queue Telemetry Transport) protocol.

3) Open vSwitch: Once the policies for a specific class
of devices are downloaded onto the SDN controller, they
have to be conveyed to the respective switch. The SDN
controller maintains flow tables and controls the topology of
its assigned network. The controller contacts the OVS switch
(Open vSwitch) to which the devices in question are connected.

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 54 / 267

The appropriate flow table entries are made in the switch
and additional security policies are downloaded. Once this
is complete, the security policies that were downloaded onto
the SDN controller are wiped clean (to prevent attackers from
gaining access). The switch uses this newfound information to
forward the packets accordingly. Each class of devices will
have a designated IoT Arbitrator. In essence, the container
that hosts an IoT agent is only invoked when a device first
connects to the CLIPS security administrator and goes back
to the suspended state or powers off when no device of the
designated class is connected.

III. TOPOLOGY

Securing the Internet of Things is a complex process. A
one-size-fits-all approach is impractical given that IoT encom-
passes a wide variety of devices with varying capabilities.
Hence, a device (or device class) specific approach is needed.

A. Comply to Connect (C2C)

Comply to Connect (C2C) is described as a standards-based
approach to securing devices that connect to a network [5].
C2C consists of a pre-defined set of standards and security
profiles that a device must meet before its is permitted to access
the network. For example, an Android device trying to access
the network may be required to run OS version 6.0 with the
latest security patches before it can connect to the network.

Our implementation of C2C performs a series of checks on
the device trying to access the network. Some of the parameters
collected include the version of the OS, version of the kernel
currently running, security patches installed, ports currently
open, etc. Additional checks such as deep packet inspection
are performed to ensure that the device is secure and can
access the network. Each ’class’ of devices has a set of security
requirements which can be enforced by C2C. For example, all
mobile devices (such as tablets, smart phones, smart watches)
are expected to support network encryption and two-factor
authentication. Devices are first identified by the certificates
issued by an internal certification agent controlled by C2C.

If one or more checks fail, the devices are provided limited
access until security definitions are updated. If the devices are
deemed unfit to access the network until a major upgrade is
performed, they are quarantined in a VLAN.

Most of the vulnerabilities listed by OWASP for IoT
devices [6] can be prevented or addressed by C2C. At the top
of the list is Insecure Web Interface [6] which includes lack of
encryption. Use of plain text for storing passwords could lead
to issues such as cross-site scripting to inject malicious code
[6].

IoT devices are often targeted for DDoS attacks. A famous
example is the attack on Dyn’s DNS systems that brought
down popular services like Netflix and Facebook [7]. A ma-
jority of the vulnerabilities can be prevented by ensuring that
the recommended software/firmware and security patches are
installed and by ensuring that the encryption and authentication
schemes used are sufficiently strong. We intend to achieve
this through C2C. A brief description of the protection offered
against some other IoT attacks is discussed in Section IV.

B. Leveraging SDN to secure the IoT
SDN is one of the most important advances in networking

in recent history. It has accelerated the rate of connected
devices [7]. We intend to leverage SDN to ensure network
security. Every class of devices has a pre-defined set of
security rules that are stored in Linux containers assigned to
them. When a device is first granted access to the network
by C2C, the appropriate container is started, corresponding
security rules present in the container are downloaded onto the
SDN controller via the Northbound API and the container is
placed in a suspended state to restrict visibility to the external
network.

The secondary objective of the containers is to perform
arbitration functions between the devices and the SDN con-
troller, which includes hosting an Open vSwitch with which
the controller communicates. Not all security policies need to
be exposed to the devices themselves. For example, consider a
security policy requiring webcams to be placed under a NAT
for a secure (encrypted) network segment created specifically
for webcams. All the device needs to know is that the network
connection must be encrypted. Since the NAT functionality is
handled by the controller and does not rely on native support
from the device, it need not be advertised. The devices may
remain ignorant of the network topology.

With device manufacturers unwilling to offer security con-
figuration options for devices, ensuring security by enforcing
protection schemes at the devices themselves can be chal-
lenging. In fact, this is listed as number 8 in OWASP’s Top
10 Vulnerabilities in the IoT report [6]. We aim to address
this issue by employing an arbitration agent that mediates
operations between the controller and a device.

C. Integrity measurement using RADIUM

Other
Services

SDN
Controller

IoT
Arbitrator

Security
Function
Container

R.A.D.I.U.M
Integrity

Measuring
Service

[R.A.D.I.U.M] Access Control Policy Module

CPU TPM

Measure Integrity

Trusted Hypervisor

Trusted Hardware

Extended
Measurement

Ve
rif

ie
d

La
un

ch

Verified
Launch

Trusted Environment

A
synchronous R

oot of Trust
for M

easurem
ent

Figure 3. Integrity measurement using RADIUM.

RADIUM (Race-free On-demand Integrity Measurement
Architecture) is, as the name suggests, an architecture that
measures trustworthiness by providing on demand measure-
ment (of integrity and trustworthiness) of software compo-
nents. Figure 3 demonstrates this process. To ensure that
the measured components are trustworthy, they have to be
compared against some the integrity measurement in known
”good” state (such as when the component was first developed
or a trusted patch was made). This architecture was created
using research conducted at the University of North Texas [8].

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 55 / 267

RADIUM establishes a chain of trust between software
and the underlying hardware. This is achieved as follows. The
hardware is tasked with measuring the firmware, the firmware
is tasked with measuring the system software and the system
software measures the application [8]. One way to establish
the chain of trust is through Dynamic Root of Trust for
Measurement (DRTM). The idea is to create a secure, isolated
and measured environment for software to be executed (called
measured launch environment MLE) [8].

To initiate a virtualized environment, a hypervisor is the
primary component to be invoked. It is done so during the
system boot using DRTM. The bootloader is responsible for
invoking a DRTM MLE using a set of special instructions to
prepare an isolated execution environment [8]. The hypervisor
is then measured and compared to a previously known ”good”
value which is stored in the trusted platform module (TPM).
If everything checks out, the hypervisor is deemed trustworthy
and executed. The hypervisor then takes control of the platform
[8].

For the hypervisor to be mindful of the existence of a
measuring service, registration needs to take place. During
registration process, it is the responsibility of the measuring
service to provide all the ACPM rules for its own functioning
to the hypervisor. Also, the hypervisor measures the measuring
service itself and saves its ”good” value for future compar-
isons. The measuring service is encrypted and the key is stored
in the TPM.

Any virtual machine, that has to run on the hypervisor
needs to be registered with the hypervisor before executing.
During this registration, a set of policy rules are provided to
the hypervisor, which contain the ID of the measuring service
that can access the target virtual machine with the appropriate
permissions. The hypervisor registers the ID of the target
virtual machine and it will be invoked after it’s registration.

The simplest method to measure integrity is to store the
hash codes of the entire binary (for each software) in a
container. RADIUM is configured to compute hash codes at
regular intervals. The computed hash code is then compared
against the stored hash code. If everything checks out, RA-
DIUM measuring service goes back to a suspended state (or
is powered down) and is only invoked when a measurement is
again necessary. If there is a mismatch between the measured
and stored hashes, however, the application is run on an Intel
SGX enclave, which functions as a sandbox. The integrity of
the measuring service itself is ensured by the TPM that is
present along with the CPU.

All the containers that are invoked in the trusted environ-
ment run on a single hypervisor. This makes it a lot easier to
ensure their integrity and trustworthiness.

IV. IOT VULNERABILITIES AND ATTACK VECTORS

In this Section, we attempt to identify attack vectors for
IoT and describe our approach to addressing them. Nawir et.
al do a good job of tabulating and describing the taxonomy of
attacks targeting IoT [9].

1) Distributed Denial of Service (DDoS): On 21 October
2016, a large scale DDoS attack on Dyn’s DNS systems
resulted in popular services such as Netflix, Facebook and
Google becoming inaccessible [10]. The attack was perpetrated
using Mirai botnet that infected thousands of devices around

the world. Some 100,000 devices bombarded Dyn’s systems
with network traffic at 1.2 Tbps which is a new record [11].
The attackers used a simple brute force attack to infect var-
ious DVR players, smart televisions, refrigerators and CCTV
cameras using the default passwords that the products were
shipped with. The objective in this case was evident; to utilize
the popularity of IoT, the lack of sophistication or technical
literacy on the part of end users to infiltrate IoT devices to
sabotage networks.

We intend to address this issue by protecting devices
against brute force attacks by screening them through the C2C
architecture discussed in Section III-A. Assuring that they
are running the latest software with the appropriate security
patches installed will safeguard against a majority of the
vulnerabilities.

Ultimately, we intend to create a hierarchical and dis-
tributed SDN network segment that shares the network load.
This should add an additional layer of security against DDoS
attacks.

2) Ransomware attacks: The summer of 2017 saw the
emergence of the dreaded WannaCry ransomware which tar-
geted windows machines. The attack used an exploit in the
SMB transactions. When it gains access to a machine, the
worm encrypts the file system. The attackers then offer to
unlock the system in exchange for a ransom. Some 400,000
devices were affected around the world [12]. What is interest-
ing to note is that almost 98% of the devices affected by this
attack were running an outdated version of Windows 7.

An attack such as this would be catastrophic for IoT,
especially for business-critical systems or devices in the health
care domain, as evident from the ransomware attack on a
children’s hospital in Boston [13] where some personally
identifying patient records were deleted.

Our architecture has several safeguards in place to prevent
such attacks:

• C2C ensures that devices are running the latest soft-
ware and have the latest security patches installed.
Most ransomware attacks use an open port to inject
the encryption program. Oftentimes, the vulnerability
is already patched by the manufacturer of the product.
Hence, safeguarding against such attacks is a simple
matter of updating the software and security patches
on the devices.

• The RADIUM architecture ensures integrity of the
application.

• Anomaly detection ensures that suspicious activity on
the network will either invoke shutdown or contain-
ment protocols.

3) Man-in-the-Middle Attacks: Man-in-the-Middle attacks
involve an adversary impersonating a legitimate communica-
tion node in a network. A successful impersonation will result
in sensitive/confidential data being shared with the adversary
which leads to a breach or gaining access to a device. Li et. al
describe an approach using fog nodes that mediate between
servers and clients [14]. One of the countermeasures they
proposed was to modify package types in OpenFlow [14].

We intend to use RADIUM to establish a chain of trust
between software applications and the underlying hardware.
This ensures that a device is properly identified, authenticated

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 56 / 267

and monitored at all times in a network. Applications are run
in secure containers called Enclaves, which an illegitimate user
would be unable to access because each process would have
its own trusted environment with integrity being measured by
RADIUM.

4) Spoofing Attacks: An adversary may be able to mas-
querade as a legitimate user/entity in a network by spoofing
IP addresses, ARP entries or MAC addresses. Preventing such
attacks is easier than detecting them. Xiao et. al proposed a
method of identifying spoofing using reinforcement learning
in wireless networks [15]. The spoofing detection algorithm
aims to identify spoofing attacks using Q learning [15].

We intend to prevent spoofing attacks by employing a few
protection schemes:

• We aim to prevent IP spoofing by employing packet
filtering that is usually achieved by configuring a
firewall and IDPS (Intrusion Detection and Prevention
System). We use the signature matching algorithm
proposed by Meng et. al [16], but we replace the pre-
filtering of packets with access control through the
C2C architecture. The challenge is to ensure that these
systems are properly configured, so we follow Cisco’s
guide to best firewall configuration practices [17].

• We employ encryption during device authentication
and communication to overcome vulnerabilities aris-
ing as a result of the design of the TCP suite.

• We are exploring the advantages offered by IPv6 in
securing network communication.

• Preventing MAC spoofing may be somewhat challeng-
ing in a Smart home because most embedded devices
with limited capabilities are not IP addressable and
do not possess a MAC address. Consequently, the
arbitration agent has to spoof MAC addresses for
such devices. Our approach to preventing malicious
spoofing does not rely on authenticating by MAC
addresses. Rather, device certificates that are validated
by an internal certification authority are used by the
C2C architecture to control and moderate access to
the network.

We have focused on some of the most important vulnerabilities
in IoT for a Smart home setting to highlight the capabilities
of our proposed architecture. We have not considered physical
side channel attacks because we have assumed that the users
have suitable measures in place to ensure that no unauthorized
person may gain physical access to devices in such a setting.

V. RELATED WORK

Flaunzac et al. proposed a distributed SDN architecture
aimed at preventing DDoS attacks [18]. The objective is to
authenticate network devices and ensure that only services that
the authenticated user is permitted to access are allowed. A
distributed SDN architecture contains border controllers that
negotiate security policies with neighboring domains [18]. Our
proposed architecture can help counter some of the shortcom-
ings of Flaunzac’s approach.

• The definition of security policies is optimized to the
network domain in which the devices reside and not
to the devices themselves. This may not be the ideal
approach to securing a diverse set of devices with

varying capabilities. This is not an ideal approach
because this architecture can be subject to TOCTOU
(Time of Check to Time of Use) attacks. We intend
to prevent these using RADIUM.

• Integrity measurement is not implemented in the archi-
tecture which exposes it to man-in-the-middle attacks.
We have a robust integrity measurement architecture
in place to address this.

• It may be unsafe to expose security policies by
defining them at the border controller. Instead, we
package them into Linux containers that are always in
a suspended state and are only started when required.

• There is no pre-screening of devices before they
connect to the network. A major portion of the vulner-
abilities that exist are a result of outdated software and
security patches which, when updated, will mitigate
those risks.

Agarwal et. al proposed an architecture using edge comput-
ing [19] that is very similar to the one proposed by Flaunzac
et al [18]. The idea is to compartmentalize networks into
zones with each zone being controlled by a gateway controller.
Security is enforced by authenticating a device and collecting
TCP (Transmission Control Protocol) dumps to perform Deep
Packet Inspection [19]. An analysis of the packets determines
if a device is safe to be granted permission to proceed to the
next hop in the flow entry [19]. The process continues at every
hop. Our proposed architecture employs a C2C architecture
that performs pre-screening of devices and recommends fixes
which should address a majority of the vulnerabilities. Deep
packet inspection and authentication of devices is a subset
of all security policies we enforce through our proposed
architecture.

Most of the solutions we reviewed focus on enforcing
network security by controlling the flow table in SDN. The
solution proposed by Bull et al. is also a similar approach
[20]. The idea is for a controller to detect malicious activity
by constantly monitoring network flow in an SDN network.
If a suspicious activity is detected, the data is forwarded to a
quarantine zone where further processing of the packet occurs
[20]. This is somewhat similar to other anomaly detection
schemes employed by Brocade and Rackspace [20].

VI. PROTOTYPE

A proof of concept prototype of CLIPS was developed in
the Computer Systems Research Lab (CSRL) at the University
of North Texas. The test environment contains the following
components.

• A Netgear W3800 running OpenWRT functions as
a data plane. The control plane (routing brains) of
the router has been disabled by creating a virtual
bridge using Open vSwitch which renders the device
incapable of performing routing operations.

• The Open vSwitch is connected to a Floodlight SDN
controller running on a Linux machine. The controller
interfaces with the virtual switch using OpenFlow. All
networking operations are performed by the controller
and communicated to the switch.

The router, functioning as a wireless access point, helps deploy
a local network to host the CLIPS architecture. The wireless
SDN network is set up using the WiFISDN project [21].

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 57 / 267

Ideally, from a security standpoint, direct communication
between devices (bypassing the SDN controller) should not
be permitted, but the only way to achieve this is by disabling
machine to machine M2M communication. This can prove to
be counter-productive because the objective of this research
is to secure the network without placing heavy restrictions on
normal use of services.

To work around this issue, we enabled wireless isolation,
which prevents devices on the same network from communi-
cating with each other [21]. This forces additional processing
of network packets. Additional OpenFlow rules are required
to permit communication. Hence, security policies can be
designed around wireless isolation. For example, eliminate
communication between a refrigerator and a light bulb to keep
non-essential communication to a minimum. This reduces the
attack vector for DDoS attacks and enables simpler network
analysis and anomaly detection.

Before a device connects to the CLIPS network, the user
is expected to register it and install the required certificates.
In this prototype, we have designed security policies for a
microwave oven and a refrigerator using SiteWhere [4]. For a
refrigerator to first connect to a network, the user is expected
to authenticate it using a password. The bandwidth of the com-
munication channel for a refrigerator is limited using the QoS
parameters of Floodlight and no communication is permitted
with a microwave oven. On the other hand, when a microwave
oven first connects to the network, an authentication code is
sent to a registered phone number. This code, in addition to a
password, will serve as the authentication token. A microwave
is permitted to communicate with a refrigerator and it is
offered the lowest bandwidth in the network due to potential
ramifications from its exploit.

The prototype demonstrated that this approach to security
offers flexibility and control over the entire network topology.
In addition, the architecture does not place unreasonable re-
quirements on a novice user and has proved to be fairly user
friendly. We are currently working on identifying, designing
and deploying appropriate security policies in similar IoT
environments.

VII. CONCLUSION

In this paper, we have outlined the issues of a generic
approach to IoT security. As more devices with unique features
and capabilities become increasingly popular, tailored security
policies must be adopted.

We have argued for a more meticulous, fine-grained ap-
proach to securing IoT devices by leveraging SDN. We have
proposed a novel architecture where devices are evaluated to
certify that they are competent to access the network, classified
into categories based on security policy requirements, and con-
tinuously monitored for suspicious behavior. We are currently
in the process of evaluating the performance and feasability of
the proposed architecture in a real world setting by deploying
it in various IoT environments.

We have demonstrated and validated the idea using a Net-
gear W3800 running OpenWRT and OpenVSwitch connected
to an SDN network hosted by a Floodlight controller. We found
that such an approach greatly enhances the security of a home
network and ensures that such devices cannot be exploited by
DDoS attacks. The focus of our approach has been a balanced

one in regards to convenience and security. As illustrated, an
overly aggressive approach could prove to be detrimental and a
highly accommodating one could leave devices open to attacks.
The challenge is to find the right balance and we would like to
believe that we have found such an approach for IoT security.

ACKNOWLEDGMENT

The authors would like to acknowledge the editorial contri-
butions of Mr. David Struble, former Senior Software Technol-
ogist at Raytheon’s Net-Centric Systems Division. This work is
supported in part by the NSF Net-Centric and Cloud Software
and Sytems Industry/University Cooperative Research Center
and its industrial members, including Lockheed Martin Missile
and Fire Control and Ashum Corp.

REFERENCES

[1] “The Internet of Things 2017 Report: How the IoT is
Improving Lives to Transform the World,” 2017, URL:
http://www.businessinsider.com/the-internet-of-things-2017-report-
2017-1 [accessed: 2017-05-04].

[2] “The 10 Most Popular Internet of Things Applications Right Now,”
2015, URL: https://iot-analytics.com/10-internet-of-things-applications/
[accessed: 2017-06-23].

[3] “How IoT & Smart Home Automation Will Change the Way We
Live,” 2016, URL: http://www.businessinsider.com/internet-of-things-
smart-home-automation-2016-8 [accessed: 2017-05-21].

[4] “Sitewhere IoT Framework,” 2017, URL: http://www.sitewhere.org/
[accessed:2017-06-16].

[5] “Comply to Connect Solution Overview,” 2012, URL :
https://trustedcomputinggroup.org/comply-connect-solution-overview/
[accessed:2017-06-10].

[6] “The Open Web Application Security Project,” 2017, URL:
https://www.owasp.org/index.php/ [accessed: 2017-03-20].

[7] “DDoS attack that disrupted internet was largest
of its kind in history, experts say,” 2016, URL:
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-
dyn-mirai-botnet [accessed: 2017-03-26].

[8] S. Kotikela, M. Gomathisankaran, T. Shah and G. Taban, “Race free on
demand integrity measurement architecture,” International Conference
on Privacy Security Risks and Trust (PASSAT) ASE., 2014.

[9] M. Nawir and A. Amir and N. Yaakob and O. B. Lynn, “Internet
of Things (IoT): Taxonomy of security attacks,,” in 3rd International
Conference on Electronic Design (ICED), August 2016, pp. 321–326.

[10] “Dyn Analysis Summary Of Friday October 21 Attack,” 2016,
URL: https://dyn.com/blog/dyn-analysis-summary-of-friday-october-
21-attack/ [accessed: 2017-05-13].

[11] “Lessons From the Dyn DDoS Attack,” 2016, URL:
https://securityintelligence.com/lessons-from-the-dyn-ddos-attack/
[accessed: 2017-06-2].

[12] “WannaCry Ransomware Statistics: The Numbers Behind the Out-
break,” 2017, URL: https://blog.barkly.com/wannacry-ransomware-
statistics-2017 [accessed: 2017-05-06].

[13] “Children’s Clinic Hit by Ransomware,” 2016, URL:
http://www.healthcareitnews.com/news/childrens-clinic-hit-ransomware
[accessed: 2017-03-22].

[14] C. Li, Z. Qin, E. Novak and Q. Li, “Securing sdn infrastructure of
iot-fog network from mitm attacks,” IEEE Internet of Things Journal,
vol. PP, no. 99, 2017, pp. 1–1.

[15] L. Xiao and Y. Li and G. Han and G. Liu and W. Zhuang, “Phy-layer
spoofing detection with reinforcement learning in wireless networks,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 12, December
2016, pp. 10 037–10 047.

[16] W. Meng, W. Li and L. F. Kwok, “Towards effective trust-based packet
filtering in collaborative network environments,” IEEE Transactions on
Network and Service Management, vol. 14, no. 1, March 2017, pp.
233–245.

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 58 / 267

[17] “Cisco Firewall Best Practices Guide,” 2017, URL:
http://www.cisco.com/c/en/us/about/security-center/firewall-best-
practices.html [accessed: 2017-06-13].

[18] O. Flauzac and C. Gonzlez and A. Hachani and F. Nolot, “SDN Based
Architecture for IoT and Improvement of the Security,” in 2015 IEEE
29th International Conference on Advanced Information Networking
and Applications Workshops, March 2015, pp. 688–693.

[19] C. Aggarwal and K. Srivastava, “Securing IOT devices using SDN and
edge computing,” in 2nd International Conference on Next Generation
Computing Technologies (NGCT), October 2016, pp. 877–882.

[20] P. Bull, R. Austin, E. Popov, M. Sharma and R. Watson, “Flow
Based Security for IoT Devices Using an SDN Gateway,” in IEEE
4th International Conference on Future Internet of Things and Cloud
(FiCloud), August 2016, pp. 157–163.

[21] “Software-Defined Wi-Fi Networks with Wireless Isolation,” 2017,
URL: https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-
Fi+Networks+with+Wireless+Isolation [accessed: 2017-04-12].

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 59 / 267

Sustainability and Diversity of Open Source Software Communities:
Analysis of the Android Open Source Project

Remo Eckert, Andreas Mueller
University of Bern

Institute of Information Systems
Bern, Switzerland

e-mail: remo.eckert@iwi.unibe.ch, andreas.mueller@students.unibe.ch

Abstract — Open Source Software (OSS) projects rely on the
efforts of thousands of software developers. The sustainability
and diversity of these communities are two important factors
for the long-term viability of OSS communities. This paper
reviews the research on OSS sustainability and diversity.
Drawing on the findings of measures on sustainability and
diversity, we applied a number of the established metrics to the
Android Open Source Project and found that over a third of
all contributions originate from Google. Surprisingly, in 2015
we saw a decrease in the total number of contributors within
the Android project. Findings from our analysis highlight the
importance of sustainability and diversity for the development
of OSS.

Keywords-Open Source Software; Sustainability; Diversity;
Android.

I. INTRODUCTION
Companies need to preserve their systems and digital

assets for a considerable time. In such scenarios, problems
would arise if the commercial vendor of adopted proprietary
software were to leave the market or stop its development
[1]. Popular OSS projects attract thousands of individuals
and firms who collectively contribute to the software. OSS
has seen a considerable increase in attention over the last
few years. The success of various OSS projects such as
Linux and Apache is now widely recognized. OSS has
become a strategic asset for various firms who even choose
to dedicate development resources to OSS projects [2].
Similarly, in the context of OSS development, if a dominant
player leaves or stops its contributions to the project, this
may influence the success of the OSS. Therefore, both for
companies and for the individuals contributing to OSS
projects, the stability and long-term success of the projects
are key.

In many ICT sectors, OSS has been found to be relevant
when it comes to sustainability [1]. According to
Gamalielsson and Lundell [3], a primary factor for the
success of any OSS project lies in the sustainability of the
community. There are many aspects of OSS projects that
can affect community sustainability, such as project
management, incentives for contributors or the license of the
project [4].

Building on diversity literature, Daniel et al. [5] show
that diversity influences two critical outcomes of OSS
projects - the community engagement and market success.
Another recent study on social diversity by Aué et al. [6]
investigated the relationship between project growth and the
social diversity of OSS projects on GitHub. They found a
statistically significant link between project rating and
gender and geographical diversity. Drawing on
measurements found in the literature on sustainability and
diversity, this paper analyzes the sustainability and diversity
of the Android Open Source Project (AOSP).

Section II presents our research questions. In Section III,
previous research on OSS sustainability and diversity is
shown. An overview of the AOSP and the OSS
sustainability and diversity measures applied to the AOSP
are outlined in Section IV. The discussion follows in
Section V.

II. RESEARCH QUESTIONS
According to Chengalur-Smith et al. [7], sustainability is

defined as “the ability of an organism or an ecosystem to
maintain its activity and productivity over time.” However,
this definition of sustainability is a vague concept. Our aim
is to find measurements on OSS community sustainability.
RQ1 deals with the sustainability of OSS communities and
is as following:

• RQ1: How can sustainability of OSS
communities be measured?

In their study, Daniel et al. [5] investigated whether
different types of diversity influence the success of OSS.
They found that projects in later stages benefit more from
diversity than projects in earlier stages. RQ2 deals with the
diversity of OSS communities and is as follows:

• RQ2: How can diversity of OSS communities be
measured?

The goal of this paper is to show measurements of OSS
community sustainability and diversity found in the
literature, then apply and discuss them in the context of a
well-known OSS project. This is why we chose the AOSP
community.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 60 / 267

III. LITERATURE REVIEW
This section analyzes existing work in the context of OSS

sustainability and OSS diversity.

A. OSS Sustainabiliy
Gamalielsson and Lundell [3] underline how the

sustainability of communities is one of the most important
factors for the long-term sustainability of OSS itself. They
highlight the significance of governance for sustainability,
which is also identified by O’Mahony and Becky [8].

Ghapanchi [9] provides an overview of prior research on
OSS development sustainability and summarizes the various
drivers of OSS projects, such as: developer and user
attraction, development base, project age, having developers
with higher levels of different skills, project status &
activity, having a nonmarket sponsor and having a copyleft
license. He investigated the impact of a project’s capabilities
on its development sustainability and found that OSS
projects are more likely to succeed if they are able to:
process a higher percentage of suggested features, quickly
remove identified defects and release the software them at a
faster rate.

Chengalur-Smith et al. [7] tested software projects
empirically in terms of their activity and contribution
patterns. They used a model of project sustainability based
on organizational ecology, termed Structural Equation
Modelling. As a contribution to research, they provide a
table of measurements, comprising indicators and
descriptions. They derive the following statement as a
conclusion: “Sustainability requires certain levels of
activity to be maintained over a long period of time” [7].

Farmer and Norman [10] made a case study review on
OSS sustainability in which they describe and analyze seven
successful OSS projects. They define sustainability of OSS
at two levels: Sustainability I with a more innovative early
product stage and Sustainability II which is product and
service oriented.

It is Wilson [11] and Gonzalez-Barahona [12] who
provide a framework for how to measure OSS
sustainability. Both have published their approaches on OSS
sustainability measures on the Internet; neither has been
published in a journal to date. Wilson [11] provides five key
indicators as informal criteria for evaluating the
sustainability of an OSS community. The key indicators are
code contribution activity, release history, user community,
longevity and ecosystems. Beginning with code contribution
activity, contributions can be tracked and the community
activity visualized through tables and charts. In combination
with a release history, interesting insights about governance
issues can be found. The user community is the core of the
software project. Wilson [11] brings out its essence
“Software isn’t sustainable without users“. When it comes
to longevity, projects pass through different phases: From
creation through intense activity into a stable productive
stage and then, finally, dying or becoming forked or
replaced by a new project. The last key indicators shift the

focus of the ecosystem onto developers and users of a
project. Companies will engage or initialize an OSS project
and provide their own software engineers, financial
resources and other services to the project [11].Furthermore,
Kilamo et al. [13] show the increasing trend for companies
to release their proprietary software as OSS.

Finally, Gonzalez-Barahona [12] provides a group
classification on OSS starting with the fundamental question
for empirical research on OSS communities - which metrics
should be used. His article classifies five metrics for
sustainable OSS: activity, size, performance, demographics
and diversity.

B. OSS Diversity
In their study, Daniel et al. [5] investigated whether

different types of diversity influence OSS success in terms
of community engagement and market success. They
understand separation diversity to be the differences in
position or opinion within the community. Variety diversity
captures the range of information that members bring into
the community. Disparity diversity specifies the power and
resource differences within the communities. To measure
community engagement, they calculate the contributions to
the project, and to determine market success they evaluate
the attention the project receives from users. In general,
their empirical results show that diversity has both positive
and negative effects on OSS project success. They found
that projects in later stages benefit more from disparity and
separation diversity than projects in earlier stages. If a
project reaches later stages of development, it increases in
size and complexity and attracts more users with more
varied needs. If the project is dealing with more external
stakeholders, it benefits from having more disparity and
separation diversity within its own developers. Other
findings are the positive effect of cultural separation
diversity on market success where cultural separation has a
negative effect on community engagement.

Vasilescu et al. [14] applied a regression analysis to
GitHub data to study how gender and tenure diversity
relates to team productivity and turnover. They explain why
diversity attributes may be different in online groups (e.g.,
OSS communities) than for offline groups and identify four
factors. Firstly, geographic and cultural dispersion is
common in OSS and contributors rarely meet face-to-face.
Secondly, OSS teams are fluid and rather task-focused.
Thirdly, OSS teams are comprised mainly of volunteers and
have a high turnover. Fourthly, often a small group of
developers in OSS develop the majority of the software.
They found that gender and tenure diversity are significant
and positive predictors of productivity.

Vasilescu et al. [15] performed a user survey of software
teams working on GitHub. They analyzed how teamwork
and individual attributes were perceived by developers. One
of their findings is that developers have embraced the
inherent diversity from GitHub teams and, for the most part,
benefit from it. Another positive effect is at the team level,

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 61 / 267

where diversity can provide new ideas, perspectives, skills,
and approaches to problem-solving.

In another study, Vasilescu et al. [16] gathered
information on alias resolution, location data and gender
inference techniques from a large dataset of GitHub
projects. For the gender inference techniques, they applied
an approach including heuristics (e.g., Russian surnames
ending in -ova are female) and female/male frequency name
lists for different countries.

Another recent study on social diversity from Aué et al.
[6] investigated the relationship between project growth and
social diversity of OSS projects on GitHub. They found a
statistically significant correlation between project rating
and gender and geographical diversity.

Alfaro [17] focuses on nationality diversity in global
software development. Despite not including OSS, his
research involves aspects relevant to OSS diversity. He
states that global teams are diverse by nature since
individuals come from different countries and cultural
backgrounds, which is a general characteristic of many OSS
projects. One of his findings is the positive effect between
nationality diversity on team performance. In addition, he
explains how teams with low temporal dispersion have
performed better compared to teams with high temporal
dispersion, independent of their degree of nationality
diversity.

Diamant and Daniel [18] investigated developer’s
learning and the culture context in OSS projects. Their
results show that diversity exposes developers to different
work styles, problem-solving approaches and development
techniques which offer opportunities for learning.

IV. THE CASE OF THE ANDROID OPEN SOURCE PROJECT
Android dominates the market for Mobile Operating

Systems [19]. Google, under the holding Alphabet Inc.
enjoys increasing economic supremacy and influence on
Android. However, there are numerous other companies,
non-profit organizations (NPO) and individuals who
contribute to the project. The AOSP consists of an
ecosystem of sub-projects and activities with numerous
protagonists. There is a whole industry behind it: NPOs like,
for instance, the Linux Foundation; several original
equipment manufacturers such as Garmin and Huawei; as
well as service companies such as eBay and Accenture [20].

Data gathering: To answer the two research questions,
we cloned the AOSP repositories and extracted the commit
history from the AOSP as described by Shihab et al. [21].
The commit history was cloned and converted to 1,144
XML files and consists of 14,150,546 data entries. The
1,144 XML files were merged into one large dataset which
comprises the following information: author date, author e-
mail, author name, committer e-mail, committer name,
committer date, project, subject and commit hash codes. The
author is the person who originally wrote the patch, whereas
the committer is the person who applied the patch.

Data cleansing: Some entries were invalid due to data
errors, missing content or unreasonable dates: for example,
commits with a timestamp before the launch of the Android
project, such as 1st January 1970 or, alternatively, dating
from 25th April 2037. By choosing a start date of 2005-
01.01, 132,527 (0.94%) observations were excluded from
the dataset. The Android repositories were cloned on 2016-
12-21. As the data for the full month December 2016 was
not complete, choosing 2016-11-30 as the end date for the
dataset meant that 9,639 (0.07%) observations were not
included in the dataset. Finally, seven repositories are
outside the chosen period. The final dataset consists of
14,008,380 observations from 1,135 repositories.

Single Commit Hash: An analysis of the dataset
indicated how several commit entries contained exactly the
same XML tags, such as alias, e-mail, date for authors and
committers, subject and hash codes. The only difference
was in the sub-project name. An investigation of the commit
hash code’s purpose and how it is generated, confirms that it
is a unique identifier. The commit hash code is generated by
an algorithm based on the commits content. If a change is
part of several sub-projects, relevant titles and their commits
will be cloned several times. In conclusion, it is
questionable whether the overall number of commits for the
whole AOSP is an appropriate community activity measure
when an indefinite number of commits are cloned several
times.

If the whole dataset of 14,008,380 observations is
adjusted for the single commit hashes, the adjusted dataset
retains 3,085,901 observations. This leads to the question:
Which dataset is the correct one? This depends on what one
wants to measure. If the overall activity of the AOSP is to
be measured, then the 3,085,901 observations are more
appropriate because work conducted on the code base is not
overestimated through cloning the commit several times. On
the contrary: if questions relating to individual committers’
involvement in different sub-projects and activity in sub-
projects is to be answered, then the 14,008,380 observations
are appropriate.

A. Android Community Sustainability
To answer the first research question, this paper applies

approaches and metrics from literature relating to OSS
community sustainability.

Firstly, Gonzalez-Barahona [12] used five metrics to
track an OSS community: activity, size, performance,
demographics and diversity. Secondly, Wilson [11]
suggested key indicators such as code activity, releases, user
community, longevity and ecosystem to evaluate OSS
community sustainability. To merge both approaches into a
common basis and to start the investigation on the AOSP
community development, this paper uses elements of
community activity, size and demographics to answer RQ1.
 Activity: Starting with activity, Gonzalez-Barahona [12]
proposes this measure as a first view of how active a
community is and recommends tracking the number of

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 62 / 267

commits over time. As Wilson [11] describes, for a project
to be sustainable, it must have contributors, and its codebase
needs to be evolving.
 Similar to Wilson [11], Figure 1 shows the time stamp of
each commit over all Android sub-projects clustered into
quarterly periods. As discussed, to relate the issue to cloned
commits, the data in Figure 1 is adjusted to contain only one
single commit hash.

Figure 1. Commits per quarter (author perspective).

 In general, Figure 1 indicates an increasing pattern of
commits over time. To identify Google’s share in overall
commit activity, a second time series for commits
originating from Google is included, using the e-mail
domain part. As Figure 1 shows, Google’s share of the
AOSP is significant. A surprising finding is the
commencement of Google’s activity in early 2009, despite
Google having already acquired Android Inc. in 2005. One
possible explanation for this is that Android Inc. core
developers may have switched to Google e-mail domains in
early 2009.
 Disregarding the drop in activity from summer 2016, the
data curve for the AOSP indicates steadily increasing
activity. This is the intuitive expectation of a successful
project since, according to Wilson [11], it is “…a good sign
as it indicates that the project is picking up developers…”.
A possible explanation for the decrease after summer 2016
could be that there is a time delay from the author code
commit Git push until it is applied in the master branch. The
following two explanations are proposed: A first possible
reason for the delay could lie in the Android development
process. The Gerrit process flow chart for the AOSP
illustrates the different steps necessary for a change to be
applied, a process that could result in a delay. It takes a
certain amount of time until a proposed code change from
an author, via his commit, is processed, tested, reviewed,
potentially modified and finally submitted to the public
depot for future synchronizations [22]. Secondly, the most
compelling evidence comes from the AOSP web page
which suggests that a reason for the delay could come from
the next generation of Android, which would first be

developed privately and then released to the public domain
at a later stage [23].
 Size: According to Gonzalez-Barahona [12], project size
includes aspects of the number of people participating and
the number of contributors in an OSS project. He
specifically highlights the importance of active contributors
because they lead the community and often deliver a major
portion of the source code. Table I shows the 10 most active
Android sub-projects, including their number of commits,
authors and committers. As Table I shows, the AOSP
attracts thousands of different authors.

TABLE I. 10 MOST ACTIVE ANDROID SUB-PROJECTS.

Sub-Project #Commits #Authors #Committers

1
platform_external_linux-
kselftest 616,038 15,731 581

2 kernel_hikey-linaro 567,369 15,001 576

3
platform_hardware_bsp_
kernel_common_v4.4 564,251 14,814 546

4 kernel_msm 563,484 14,777 571

5
platform_hardware_bsp_
kernel_common_v4.1 521,866 13,910 524

6
platform_hardware_bsp_
kernel_imagination_v4.1 521,401 13,858 551

7 kernel_common 483,913 13,026 541
8 kernel_goldfish 483,913 13,026 541
9 kernel_mediatek 483,913 13,026 541

10
platform_hardware_bsp_
kernel_freescale_picoimx 440,446 12,196 527

 To understand the calculated figures and to compare them
with the size of other OSS projects, we referred to the
highest ranking projects on OpenHub.net which provides
descriptive information about OSS projects, including the
number of commits and different authors. Only Chromium
with 578,455 commits and 5,406 authors almost reaches this
level, but is in fact a Google-driven project too. Of the non-
Google OSS, Mozilla Firefox with 343,841 commits and
4,813 authors reaches a comparable scale in the top-ranked
AOSP sub-projects.
 Demographics: Gamalielsson and Lundell [3]
accentuated how important it is for an OSS project with
long life-cycles to recruit new and retain current
contributors to its community. An instrument to visualize
this attribute on an OSS project is the aging chart proposed
by Gonzalez-Barahona [12].
 The main components of the aging chart are two
graphical bar categories, which indicate the attracted and
retained developers over time. Figure 2 shows the aging
chart for the AOSP community. The attracted bar (red color)
summarizes the new developers who contributed for the first
time in that particular year. Unlike the aging chart proposed
by Gonzalez-Barahona, a third bar is included to summarize
the lost developers (blue color). This additional bar makes
the representation more intuitive, as the retained developers
(green color) can be estimated visually. In the Aging Chart
shown in Figure 2, a developer is still considered as active

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 63 / 267

even if the developer made a break in some following years
after the first contribution and then contributed again.

Figure 2. Aging chart of the AOSP.

 The AOSP from 2005 onwards indicates a rapidly
increasing trend in attracting new developers, which peaks
in 2014, which is in general a good sign for the AOSP.
Nevertheless, the number of developers leaving the project
is also increasing and exceeds the number of new attracted
developers in 2015. As indicated through the retained bars,
the absolute peak of the AOSP developers is reached in
2014 and then starts to decline. 2016 is not representative,
since the data set does not include the entire year.
Furthermore, another fuzziness which influences 2016 data
is the delay on reported commits from announcement until
release on the Android repositories, as discussed. It seems
that the AOSP reached its peak in 2014. It would be
interesting to investigate for the coming years whether the
AOSP manages to retain a stable amount of developers.

B. Android Community Diversity
To answer the second research question, this paper

applies approaches and metrics from literature relating to
OSS community diversity.
 Wilson [11] described the importance of the ecosystem,
taking into consideration the diversity between the
companies that engage with a project. Likewise, Gonzalez-
Barahona [12] questions what will happen if a major
contributor leaves the project. Considering the composition
of the AOSP in which a major firm such as Google takes on
a significant role in the dispersion and enhancement of OSS,
major contributors shall be identified.
 To determine whether a contributor had a commercial,
independent or educational background, an approach
comparable to Heppler et al. [24] working with the domain-
part of the e-mail address was used. The entries were
manually selected and classified based on the number of
contributions. If the domain-part included “.edu”, for
example, we labelled the entity as Education; “.org”
specified an organization. Companies were manually
identified through their company domain, such as “google.”,
“Samsung.” or “ibm.”. Overall, 197 entities were manually
selected.

 A total of 300,142 (9.8%) observations remain
unidentified and will not be further disentangled, because
the effort increases disproportionately for every fraction
additionally identified. The search field controls the
accuracy of the identified entities. More specific terms
increase the accuracy but lower the possibility of identified
entities. For instance, by choosing “intel” instead of “intel.”
more entries can be identified. It was decided on a case to
case basis whether more specific or open terms were used to
identify an entity.
 Tables II and III list the top 15 entities and the number of
commits from an author and committer perspective.

TABLE II. TOP 15 IDENTIFIED AUTHORS.

Entity Branch #Commits %
1 Google Firm 1,189,998 38.6
2 Individual Gmail Individual 200,155 6.49
3 Jet Brains Firm 145,140 4.7
4 Android Firm 122,551 3.97
5 Intel Firm 94,278 3.06
6 Linux Foundation Organization 87,274 2.83
7 RedHat Firm 74,110 2.4
8 Apple Firm 73,855 2.39
9 Chromium Organization 52,933 1.72
10 not provided Individual 31,804 1.03
11 Gentoo Organization 29,079 0.94
12 Suse Firm 24,930 0.81
13 Samsung Firm 24,621 0.8
14 IBM Firm 23,415 0.76
15 Linaro Organization 22,279 0.72

TABLE III. TOP 15 IDENTIFIED COMMITTERS.

Entity Branch #Commits %
1 Google Firm 833,857 27.02
2 Android Firm 546,935 17.72
3 Linux Foundation Organization 267,127 8.66
4 Jet Brains Firm 145,381 4.71
5 Individual Gmail Individual 140,068 4.54
6 RedHat Firm 81,361 2.64
7 Intel Firm 78,278 2.54
8 Apple Firm 70,496 2.28
9 Suse Firm 49,317 1.6
10 Chromium Organization 42,110 1.36
11 not provided Individual 32,499 1.05
12 Gentoo Organization 28,792 0.93
13 Linaro Organization 25,718 0.83
14 Go Lang Individual 25,539 0.83
15 Kitware Firm 23,706 0.77

 The results demonstrate Google’s dominant position with
38.6% of all identified commits. Other major contributors
came from companies such as Intel, Apple, Samsung and
IBM. Top ranked firms such as Suse and RedHat sell OSS
services and distribute their own Linux distribution. Other
top contributors are Jet Brains, Gentoo and Linaro. An
interesting observation was that the Linux Foundation made
a contribution to the AOSP that, at 8.66% was higher on the
committer side than on the author side (2.83%). In other
words, the Linux Foundation was more focused on
reviewing and applying changes than in bringing in new
ones.

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 64 / 267

 Gini coefficient: The Gini coefficient is a measure to
determine inequality. The Gini coefficient is often used to
express a status criterion because it describes heterogeneity
and is the most frequently used measure of inequality [25].
In our case, the Gini coefficient is used to portray the
inequality in the distribution of contributions by authors.
The Gini coefficient indicates how unequal contributions are
distributed among the authors. A Gini coefficient of zero
expresses equality, whereas a coefficient of one expresses
inequality. Using the Gini coefficient for the AOSP allows
comparison to other OSS or, in an extended perspective, to
other applications in general. Figure 3 shows the Lorenz
curve of the AOSP.

Figure 3. Lorenz curve for the AOSP.

 The Gini coefficient of 0.87 for the AOSP is close to one,
which describes a strongly unequal distribution. The main
reason for this is Google’s relative large share (38.6%) in
the overall number of commits. However, an unequal
distribution of commit activity in OSS projects is not
uncommon [26].

V. DISCUSSION
This paper contributes to the literature on OSS

community sustainability and diversity in two ways: First, it
provides a broad literature review on OSS measurements of
diversity and sustainability; and, second, it applies a number
of these measures to the AOSP. Both the literature on OSS
community sustainability and on diversity highlight the
importance of the OSS ecosystem for the development of
OSS.
 According to Gamalielsson and Lundell [3], a primary
factor for the success of any OSS projects is the
sustainability of their community. Sustainability of OSS
communities can be measured in various different ways, as
our literature review shows. When it comes to diversity,
there are effects on the long-term viability on OSS, since
diversity influences the OSS success in terms of community
engagement and market success, as Daniel et al. [5] show.
 In our paper, we examine these two concepts with special
regard to the AOSP project. As we have demonstrated, the
AOSP ecosystem has grown steadily since 2005. The AOSP

has been able to maintain a high level of activity over a
prolonged period of time. As the aging chart indicates, the
AOSP attracted new developers and kept them within the
project between 2005 and 2014. However, in 2015, there is
a surprising result: the number of lost developers is higher
than the number of new developers attracted. Because the
dataset for 2016 is incomplete, we are unable to determine
whether this is the same for 2016. If Google is not able to
attract and retain developers for the AOSP, the sustainability
of the project may be decreasing. A project’s ability to
attract developers and active user resources was found to
have a positive effect on project sustainability [7].
Google’s dominant position within the AOSP cannot be
overlooked. The overall size of the AOSP is vast and is
separated into several sub-projects, each of which is
comparable in size and activity to other complete OSS
projects, such as Mozilla Firefox.
 Although hundreds of different firms, organizations and
individuals were identified, at 38.6% of all commits,
Google’s share is tremendous. Moreover, the Gini
coefficient of 0.87 for the AOSP shows that the distribution
is highly unequal. Google’s dominant role poses risks for
the AOSP if Google were to leave the project or decrease its
investments in it.
 Communities with a small number of major contributors
are more dependent on those contributors than are
communities with several major contributors. Diversity is
therefore important for the resilience of an OSS community.
The more diverse a community in terms of the different
individuals and organizations contributing to the project, the
less dependent it is on a single contributor and the more
resilient it will be. However, having a major contributor for
an OSS project can boost its development.
 It would be beneficial for future research to analyze the
implications on the project success when core contributors
leave the project. The relationship between core contributors
and project success could bring some interesting insights on
the sustainability and diversity of OSS communities.

ACKNOLEDGEMENTS
 The authors thank Michael Single for his constructive
suggestions and comments on this research.

REFERENCES
[1] B. Lundell, B. Lings, and A. Syberfeldt, “Practitioner
perceptions of Open Source software in the embedded systems
area,” Journal of Systems and Software, vol. 84, no. 9, pp. 1540–
1549, Sep. 2011.
[2] G. von Krogh and S. Spaeth, “The open source software
phenomenon: Characteristics that promote research,” The Journal
of Strategic Information Systems, vol. 16, no. 3, pp. 236–253,
2007.
[3] J. Gamalielsson and B. Lundell, “Sustainability of Open Source
software communities beyond a fork: How and why has the
LibreOffice project evolved?,” Journal of Systems and Software,
vol. 89, pp. 128–145, 2014.

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 65 / 267

[4] A. Bonaccorsi and C. Rossi, “Comparing motivations of
individual programmers and firms to take part in the open source
movement: From community to business,” Knowledge, Technology
& Policy, vol. 18, no. 4, pp. 40–64, 2006.
[5] S. Daniel, R. Agarwal, and K. J. Stewart, “The Effects of
Diversity in Global, Distributed Collectives: A Study of Open
Source Project Success,” Information Systems Research, vol. 24,
no. 2, pp. 312–333, Jun. 2013.
[6] J. Aué, M. Haisma, K. F. Tómasdóttir, and A. Bacchelli,
“Social Diversity and Growth Levels of Open Source Software
Projects on GitHub,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, 2016, p. 41.
[7] I. Chengalur-Smith, A. Sidorova, and S. Daniel, “Sustainability
of free/libre open source projects: A longitudinal study,” Journal
of the Association for Information Systems, vol. 11, no. 11, p. 657,
2010.
[8] S. O’Mahony and B. A. Bechky, “Boundary organizations:
Enabling collaboration among unexpected allies,” Administrative
Science Quarterly, vol. 53, no. 3, pp. 422–459, 2008.
[9] A. H. Ghapanchi, “Predicting software future sustainability: A
longitudinal perspective,” Information Systems, vol. 49, pp. 40–51,
2015.
[10] J. Farmer and J. Norman, “A case study review of open source
sustainability models.” JISC University of Oxford, 2007.
[11] S. Wilson, “How to evaluate the sustainability of an open
source project,” 11-Dec-2013. [Online]. Available: http://oss-
watch.ac.uk/resources/evaluatingsustainability. [Retrieved: August
2017].
[12] G.-B. Jesus M., “Top 5 open source community metrics to
track,” 2015. [Online]. Available:
https://opensource.com/business/15/12/top-5-open-source-
community-metrics-track. [Retrieved: August 2017].
[13] T. Kilamo, I. Hammouda, T. Mikkonen, and T. Aaltonen,
“From proprietary to open source—Growing an open source
ecosystem,” Journal of Systems and Software, vol. 85, no. 7, pp.
1467–1478, 2012.
[14] B. Vasilescu et al., “Gender and Tenure Diversity in GitHub
Teams,” in Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, 2015, pp. 3789–3798.
[15] B. Vasilescu, V. Filkov, and A. Serebrenik, “Perceptions of
Diversity on Git Hub: A User Survey,” in Cooperative and Human
Aspects of Software Engineering (CHASE), 2015, pp. 50–56.

[16] B. Vasilescu, A. Serebrenik, and V. Filkov, “A data set for
social diversity studies of GitHub teams,” in Proceedings of the
12th Working Conference on Mining Software Repositories, 2015,
pp. 514–517.
[17] I. Alfaro, “Nationality diversity and performance in global
software development teams: The role of temporal dispersion and
leadership,” in International Conference on Information Systems
(ICIS), 2010, pp. 116–134.
[18] E. I. Diamant and S. L. Daniel, “Learning in Open-Source
Software (OSS) Development: How Organizational and National
Culture Impact Developers’ Learning.,” in International
Conference on Information Systems (ICIS), 2010, pp. 66–76.
[19] International Data Corporation (IDC), “Smartphone OS
Market Share 2016 Q3,” 2016. [Online]. Available:
http://www.idc.com/promo/smartphone-market-share/os.
[Retrieved: August 2017].
[20] Open Handset Alliance, 2017. [Online]. Available:
http://www.openhandsetalliance.com. [Retrieved: August 2017].
[21] E. Shihab, Y. Kamei, and P. Bhattacharya, “Mining challenge
2012: The android platform,” in Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories, 2012, pp.
112–115.
[22] A. Hoog, Android Forensics: Investigation, Analysis, and
Mobile Security for Google Android. Elsevier, 2011.
[23] Android Source, “Codelines, Branches, and Releases |
Android Open Source Project,” 2017. [Online]. Available:
https://source.android.com/source/code-lines.html. [Retrieved:
August 2017].
[24] L. Heppler, R. Eckert, and M. Stuermer, “Who cares about my
feature request?,” in IFIP International Conference on Open
Source Systems, 2016, pp. 85–96.
[25] P. M. Blau, “A macrosociological theory of social structure,”
American journal of sociology, vol. 83, no. 1, pp. 26–54, 1977.
[26] M. Goeminne and T. Mens, “Evidence for the pareto principle
in open source software activity,” in the Joint Porceedings of the
1st International workshop on Model Driven Software
Maintenance and 5th International Workshop on Software Quality
and Maintainability, 2011, pp. 74–82.

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 66 / 267

Extracting Executable Architecture From Legacy Code Using Static Reverse
Engineering

Rehman Arshad,Kung-Kiu-Lau
School of Computer Science, University of Manchester

Kilburn Building, Oxford Road, Manchester, United Kingdom
e-mail: rehman.arshad, kung-kiu.lau @manchester.ac.uk

Abstract—Static reverse engineering techniques are based on struc-
tural information of the code. They work by building a model of abstrac-
tion that considers control structures in the code in order to extract some
high-level notation. So far, most of these techniques produce abstraction
models or feature locations but not the executable architecture that can
transform the legacy code into modern paradigm of programming. Few
approaches that extract architectural notation either require the code
to be in component based orientation or lack automation. This paper
presents an ongoing research that can extract executable architecture as
X-MAN (component model) components from legacy code. An executable
architecture contains structural and behavioural aspects of the system in
an analysed manner. The extracted components can be integrated with
other systems due to re-usability of the X-MAN component model. This
approach neither requires the source code to be in component based
orientation nor it lacks automation.

Keywords—Reverse Engineering; Static Analysis; Component Based
Development; Abstract Syntax Tree.

I. INTRODUCTION

Reverse Engineering techniques are classified into Static, Tex-
tual, Dynamic and Hybrid [1]. Static techniques are based on
structural information of the code. They work by building a model
of states of the program and then determine all possible routes of
the program at each step. Such model is called static abstraction
model and it requires a fair consideration between preciseness and
granularity [2]. As these techniques consider all control flows, they
provide the maximum recall; this recall comes at the price of false
positive results.

Reverse engineering is mostly used to extract high level abstrac-
tion models or semantics from the source code [1]. Such extraction is
useful for documentation, variability management, etc., but it cannot
provide an executable architecture after extraction. ”An executable
architecture is a dynamic simulation of an architecture model. It
captures both structural and behavioural aspects of the architecture
in a form that can be visualised and analysed in a time dependent
manner” [3]. A reverse engineering approach that can provide ex-
ecutable architecture can transform the source code into a specific
notation that can be used in further implementation. In order to get
an executable architecture from the source code, a technique has
to consider every line of code by following the abstraction model
of analysis. Textual techniques are mostly used for bug localisation
or finding feature locations in the source code [4] and dynamic
techniques can only produce results based on the execution trace
[5]. Extracting an architecture is different form extracting high level
abstraction models because an architecture has to show that every
functionality exists in the original source code. Therefore, due to
some important characteristics like maximum recall and minimum
loss of information, static reverse engineering is the best analysis
technique to consider for extracting an executable architecture from
the legacy systems [2].

This paper presents an ongoing research on the extraction of
executable architecture from legacy systems. The proposed technique
is called Reverse Engineering X-MAN (RX-MAN). RX-MAN uses
static reverse engineering to extract X-MAN components [6] from
the legacy code.

The remainder of this paper is organised as follows: Section
II includes related work in the domain of static reverse engineering.
Section III includes the basics of X-MAN component model. Section
IV explains the proposed research methodology. Section V shows
a simple evaluation and Section VI includes conclusion and future
work.

II. RELATED WORK

Static reverse engineering techniques can be classified by sev-
eral parameters and [1] [7] [8] are some of the detailed surveys in the
domain of static reverse engineering. Most of the static approaches
are used for finding feature locations in the legacy systems. Some
of the most well-known techniques are RecoVar [9], FLPV [10],
Dependency Graph [11], Concern Graph [12], Automatic Generation
[13], Language Independent Approach [14], Concern Identification
[15] and Semi-Automatic Approach [16]. Out of the above-mentioned
techniques, RecoVar [9] produces variability model from the source
code. FLPV [10] generates code as set of optional and mandatory.
Dependency Graph [11], Concern Graph [12] and Concern Identifica-
tion [15] produce high level abstraction of code as graphs. Language
Independent Approach [14] produces feature model from the source
code. Automatic Generation [13] and Semi-Automatic Approach [16]
generate a tool based view that helps in understanding the source
code. All these techniques produce results in the form of high level
abstraction that can help in understanding the legacy systems. Such
outputs can help in analysing the system but cannot reuse the legacy
code to transform it into executable architecture. Such architecture
can be reused to build modern systems or can be extended to existing
systems, e.g., X-MAN components can be re-composed to form
family of systems and same components can be used across many
systems due to modularity and separation of concerns in X-MAN
component model. Such architectural output can also help against
system erosion with time [17].

There are few approaches with aim to extract architecture from
the source code. One of them is JAVACompExt [17] by Anquetil et al.
It is a heuristic based approach that extracts Architecture Description
Language (ADL) components along with the communication and ser-
vices among them. This approach however requires the source code
to be written with ”componentization” in mind. Componentization is
the process of atomizing resources into separate reusable packages
that can be easily recombined [18]. Another approach by Antoun et
al. [19] re-engineers the JAVA code into Arch JAVA [20], though the
process lacks automation. The approach by Chouambe et al. [21]
produces composite components but the source system has to be
implemented in component based notation. The presented approach
in this paper is different from the above approaches because:

• It is automated.
• It does not require the source code to be in component notation.
• Unlike those approaches that are focused on architecture re-

trieval, our approach aims for component creation by source
code transformation.

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 67 / 267

III. X-MAN COMPONENT MODEL

A component is defined by its unit of composition and com-
position mechanism, [22] e.g., in ADL, composition takes place via
ports and unit of composition is an architectural unit defined as a
class with provided and required services. X-MAN is different from
other well-known component models because it separates control and
computation unlike ADL based component models in which control
and data cannot be separated and transmitted via ports together, e.g.,
Koala [23].

X-MAN components are defined by computation units (unit of
composition) and connectors (composition mechanism). There are
two types of components in X-MAN: atomic and composite. Atomic
components have a computation unit and an invocation connector
(composition mechanism) that acts as an interface of that component.
Composite components can consist of set of atomic or composite
components that are connected by composition connectors (composi-
tion mechanism). Composition connector of a composite component
can be: (i) Sequencer, or (ii) Selector. A sequencer provides sequenc-
ing of atomic/composite components in a composite component and
a selector provides conditional branching. All X-MAN components
preserve encapsulation. Atomic components do this by encapsulate
computation unit and composite do so by encapsulate computation
units and composition connectors. It means composite components
also preserve encapsulation of their nested components, which pro-
vides a hierarchy of encapsulated components. That is why X-MAN
component model is hierarchical in nature. Further details of X-MAN
component model have been discussed in [22]. Basic semantics of X-
MAN component model are presented in Figure 1. Each component
can have a set of services. A service is exposed functionality of a
component that is used to send and receive data elements, needed for
execution, e.g., A Bank component can have Deposit, Withdraw and
CheckBalance services with BalanceInformation and AccountNumber
as send/receive data elements.

IC

CU

IC

CU

IC

CU

Atomic Component Composition Connector Composite Component

Fig. 1. X-MAN Component Model.

IV. RX-MAN: A STATIC REVERSE ENGINEERING APPROACH

Figure 2 shows the methodology of RX-MAN. Java has been
selected as the language of source code to be analysed. The source
code to be reverse engineered can be: (i) A single application system
(ii) Just a set of classes, e.g., any library or SDK that cannot be
executed on its own.

In case of single application system, output will be a one
big X-MAN system that will show the whole functionality of the
source code with the benefits of modularity and hierarchy of X-
MAN component model. Control structures in the source code will
be transformed as composition connectors. In case of the source code
which is just a SDK or a set of classes, the output will be X-MAN
atomic components. These components can be deposited to X-MAN
repository and can be recomposed for further implementation. The
brief overview of the whole process is as follows:

1) AST Tree Generation: Abstract Syntax Tree (AST) is a
powerful parser in JAVA. In this step, the source code is transformed
into AST nodes. Each node is mapped to its respective sub nodes,
e.g., each package node is mapped to its class nodes, each class node
is mapped to its method nodes and each method node is mapped to its

parameters, return node, function type node etc. Detailed algorithm
is not given due to its voluminous details.

2) Parsing the Nodes: AST allows the code re-writing in order
to implement small changes in the code. However, AST re-writing
is not powerful and convenient enough to transform the system
into some other complex notation. Therefore, an intermediate data
structure has been used to extract information from the nodes to
preserve it in a meaningful notation. In this step, invocations of all
methods are indexed and mapped against each other.

Algorithm 1 METHOD ALLOCATION
Require: PackageClassList, MethodClassList, utilityComponentList

while i < MethodClassList do
if Mi.Visited← False then

Get Invocations of Mi
if Mi.invocations is NULL then

Mi.getPackageName
if Mi.PackageName already exists then

AddU(PackageName,Mi)
Mi.visited← T RUE

else
Create U(PackageName)
AddU(U,Mi)
Mi.visited← T RUE

end if
else

ExtractEachInvocation(Mi)
end if

end if
end while

Fig. 3. Component-Method Allocation.

3) Static Abstract Model of Abstraction: This step shows the
first cycle of reverse engineering. This step maps the rules to create
X-MAN atomic components and then assign methods to components
based on the rules of allocation. One important parameter that has to
be defined is size of the component. Size of the components should be
realistic. If an approach extracts 10 components from the source code
with only 7 classes then it does not justify the use of components.
Similarly, one big component that represents 50 classes is not ideal
either. There are two ways in which the component size can be
defined in our tool: (i) Package Based Restriction (ii) Number of
methods in each computation unit. Depending on the source code, a
reasonable restriction can be applied to limit the number of methods
in each computation unit. The package based restriction is compatible
with JAVA because packages are usually created and designed to
differentiate specific set of tasks. Package based restriction does not
mean that a method M1 in class C1 of package P1 always belongs to
the component of P1. It means that the maximum number of extracted
components cannot exceed the total number of packages in the code,
where the minimum number of components that can be extracted is
1. Method M1 can belong to any component depending on the rules
of algorithm of allocation.

Algorithm 1 shows the start of allocation. MethodClassList has
all the methods we have extracted from AST nodes and stored in our
data structures. Similarly, PackageClassList has all the classes against
their packages. Additional information like method parameters, return
types and method invocation list can also be retrieved by using a
HashMap against each index of these lists. Invocation list of each
method will be matched and the methods with zero invocations
will be considered as utility components. Such methods are not
invoking any other method, it means they are mostly conducting
simple tasks for other methods but do not require anything from
any other method in the source code. Such methods will be placed

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 68 / 267

• USE	CASE	STUDIES	TO	
EMPIRICALLY	EVLAUATE	SOURCE	
CODE	VS	COMPONENTS

• USE	CDO	API	TO	DEPOSIT	
COMPONENTS	IN	CDO	
REPOSITORY

• SEMANTIC	MAPPING	FROM	
ABSTRAT	MODEL	OUTPUT	TO	X-
MAN	METAMODEL	TO	FORM	
ATOMIC	COMPONENTS

• FIRST	CYCLE	OF	REVERSE	
ENGINEERING	FOR	ALLOCATING	
METHOD	INVOCATIONS	BASED	
ON	THEIR	PACKAGE/PRIVACY	

• EXTRACT	ALL	METHOD	
INVOCATIONS

• USE	INTERMEDIATE	DATA	
STRUCTURE	TO	STORE	METHOD	
INVOCATIONS

• TRAVERSE	THROUGH	ALL	
CLASSES	IN	SOURCE	CODE	TO	
EXTRACT	NODES	FOR	ALL	
CLASSES,	METHODS	AND	
VARIABLES

AST	TREE	GENERATION PARSING	THE	NODES
STATIC	ABSTRACT	

MODEL	OF	
EXTRACTION

MAPPING	TO	X-MAN	
META	MODEL

API	TO	DEPOSIT	THE	
COMPONENTS	IN	CDO

EMPIRICAL	
EVALUATION	ON	CASE	

STUDIES

CONTINOUS	REFINEMENT	
OF	ABSTRACTION	MODEL

Source	
Code

• REGEX	TO	PARSE	THORUGH	
CONTROL	STATEMENTS	IN	
ORDER	TO	MAP	CONTROL	TO	
COMPOSITION	CONNECTORS

MODEL	OF	ABSTRACTION	
FOR	COMPOSITE	

COMPONENTS	AND	SINGLE	
SYSTEM	EXTRACTION

Fig. 2. RX-MAN Methodology.

Algorithm 2 Extract Each Invocation
Require: Mi,index

while Mi.invocationList! = Empty do
if Mi.PackageName == Mi.invocationList(index).packageName then

if C.PackageName← FALSE then
CreateComponent(PackageName)

end if
CheckDuplication(Mi,Mi.invocationList(index),PackageName)
if Duplication == FALSE then

ADD (Mi,Mi.invocationList(index),PackageName)
end if
ExtractEachInvocation(Mi.invocationList(index),index)

else
if Mi.invocationList(index).package← FALSE then

CreateComponent(PackageName)
end if
CheckDuplication(Mi,Mi.invocationList(index),PackageName)
if Duplication == FALSE then

CheckPrivateMemberAccess(Mi.invocationList(index))
if CheckPrivateMemberAccess← FASLE then

ADD (Mi,Mi.invocationList(index),PackageName)
else

SetAllocation(Mi.invocationList(index).PackageName)
end if
ExtractEachInvocation(Mi.invocationList(index),index)

end if
end if

end while

Fig. 4. Methods Invocations Extraction.

in utility components. Each X-MAN component will have its own
utility component in which all such methods will be placed. This
approach will help in reducing the coupling in the original source
code. Method createU creates a utility component if a utility function
belongs to a X-MAN component and method AddU adds a utility
function in a utility component if it already exists. All other methods
will be considered to place in X-MAN atomic components and their
invocations will be extracted for further allocations.

In algorithm 2, for each method, its invocation list is extracted
and compared with it. If the method Mi and its invoked method
belongs to same package, then a component with that package name
is created and both methods will be placed in computation unit
along with their imports and class variables they use. If both belong
to different packages, then a privacy check will be conducted by
function CheckPrivateMemberAccess. If the method being invoked
accesses the private variables or calls private functions in that package
in its invocation list, then that method cannot be placed with method
Mi. In that case, the invoked method will be placed in a newly created
component (if does not already exist) along with the private methods
it is accessing (SetAllocation() in Algorithm 2). Same process will be
applied to all the invoked methods in the invocation list of Mi. Several
factors have to be considered before placing a method at appropriate

location, e.g., its access to global variables, usage of its local variables
in other private methods etc. Function Duplication checks whether the
method being invoked is already part of the component. At the end
of this cycle, each method will be placed in appropriate component
in a notation which will be mapped to X-MAN meta model. A user
can select any combination of the public methods in a computation
unit as a service for that component. For Number of methods in each
computation unit approach, rules will be applied based on the number
of methods in each computation unit and not on the package based
allocation.

4) Mapping to X-MAN MetaModel: Extracted results are
mapped to X-MAN meta-model. This step also involves the X-
MAN validation to make sure only valid X-MAN components can
be deposited. Validation involves the semantic checks against X-
MAN meta-model in order to check that there is no violation against
the semantics of X-MAN component model. X-MAN meta-model is
presented here [24].

5) Single System Extraction: For single application systems,
second cycle of reverse engineering is needed in order to extract
composite components and composition mechanism among them. So
far, we have considered if-else, While, For and Switch statements
as candidates of composition connectors. They can appear in any
combination hence each possible scenario should be mapped to X-
MAN semantics. Few examples of such mapping are shown in Figure
5. This part of research is theoretically completed but still under
development in our tool.

A

B

;

A B

1

2 3

4

5

(i)	A;B
Sequencer

B

C?

A B

1

2 3

4

5

(ii)	If	C	then	A	
else	B

Selector

C ~C

C?

A

C ~C

B

C?

A B
2 3

2

3

(iii)	If	C	then	A	else	B;
While	D	do	E

C ~C

C?

A

C ~C

D?

E
D ~D

;

While	D

E

Computation Control	ConnectorControl	Flow

1 4
5

6 7

N

0 N+1

Fig. 5. Control Structures VS X-MAN Equivalent.

6) CDO Repository: CDO is a framework with development
time model repository. It is implemented along with EMF (Eclipse
Modelling Framework) in implementation of X-MAN tool. Every
extracted component can be deposited, retrieved and recomposed
according to needs.

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 69 / 267

TABLE I. RX-MAN INITIAL RESULTS

Application Classes X-MAN Com-
ponents

Component To
Class Size %

JabRef 35 8 4.3%
TeamMates 51 4 12.7%
EverNote 27 4 6.75%

V. EVALUATION

So far, we have applied our approach to extract atomic X-
MAN components on the variety of JAVA based projects. These
results are output of the first cycle of reverse engineering, whereas
second cycle implementation is in development. Three most notable
application we have used are Jabref [25], Evernote-sdk and Team-
mates. Jabref is a well-known database management tool and widely
used by researchers along with latex. TeamMates is a free online
tool for managing peer evaluations and Evernote is a famous cross
platform app. All are open source JAVA based projects.

Table I shows the results of R-XMAN. The result is quite
diverse and depends on the nature of the code. In case of Jabref,
we got 8 components out of 35 classes (it means each component
has average size equal to 4.3 classes of the original source code)
and in case of Team-mates, we got 4 components out of 51 classes.
We have only used that part of the code which is related to model
and middle layer of the applications. In case of Evernote-sdk, we
got 4 components out of 27 classes. Figure 6 shows R-XMAN tool
with extracted components of JabRef. The main panel shows two

Fig. 6. RX-MAN Tool.

of the extracted components composed by sequencer. Sequencer will
execute Route 0 before the route 1 hence UTIL component will be
executed before ADAPTER component. registerMacEvents and toList
are services of these components.

An important point to consider here is that the X-MAN is
a model for computation, not a model for resource allocation. Of
course, we can study resource and memory problems for X-MAN
systems but major thing to consider here is that the components will
be stored only once, but reused many times. Therefore, we need less
memory overall.

VI. CONCLUSION AND FUTURE WORK

RX-MAN is a static reverse engineering approach that can
extract executable architecture from source code as X-MAN com-
ponents. So far, we have implemented the first cycle of reverse
engineering. Comprehensive evaluation of the methodology demands
the completion of second cycle of reverse engineering in order
to compare the extracted system with original source code. The
approach has been applied on several small examples, but significant
case studies are needed for further evaluation. We have picked

Qualitus Corpus [26] for evaluation. Qualitus Corpus is a well-
known collection of JAVA systems for empirical studies and three
systems will be selected for evaluation. Further future work includes
the integration of reverse engineering with software product lines in
order to achieve product line architecture from legacy systems.

Overall, there are the following benefits for selecting X-MAN
over other component models as an output notation of reverse
engineering:

• Separation of control (composition connectors) and computation
(computation unit).

• Ability to compose in both design and deployment phase of
component life cycle. One can deposit, retrieve, re-compose and
tailor X-MAN components according to needs where it is not
possible with ADL based component models.

• No required services like ADL based component models due to
exogenous composition.

REFERENCES

[1] K.-K. Lau and R. Arshad, A Concise Classification of Reverse Engi-
neering Approaches for Software Product Lines. 4 2016.

[2] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA 2003: ICSE Workshop on Dynamic Analysis, pp. 24–27, Citeseer,
2003.

[3] P. Helle and P. Levier, “From integrated architecture to integrated
executable architecture,” in Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE), 2010 19th IEEE International
Workshop on, pp. 148–153, IEEE, 2010.

[4] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in
Program Comprehension, 2007. ICPC’07. 15th IEEE International
Conference on, pp. 37–48, IEEE, 2007.

[5] A. D. Eisenberg and K. De Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” in Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, pp. 337–346,
IEEE, 2005.

[6] K.-K. Lau, L. Safie, P. Stepan, and C. Tran, “A component model
that is both control-driven and data-driven,” in Proceedings of the 14th
international ACM Sigsoft symposium on Component based software
engineering, pp. 41–50, ACM, 2011.

[7] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[8] M. L. Nelson, “A survey of reverse engineering and program compre-
hension,” arXiv preprint cs/0503068, 2005.

[9] B. Zhang and M. Becker, “Recovar: A solution framework towards
reverse engineering variability,” in Product Line Approaches in Software
Engineering (PLEASE), 2013 4th International Workshop on, pp. 45–48,
IEEE, 2013.

[10] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of
product variants,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, pp. 145–154, IEEE, 2012.

[11] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph.,” in IWPC, pp. 241–247, Citeseer, 2000.

[12] M. P. Robillard and G. C. Murphy, “Concern graphs: finding and describ-
ing concerns using structural program dependencies,” in Proceedings of
the 24th international conference on Software engineering, pp. 406–416,
ACM, 2002.

[13] M. P. Robillard, “Automatic generation of suggestions for program
investigation,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 11–20, ACM, 2005.

[14] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. Le Traon, “Towards
a language-independent approach for reverse-engineering of software
product lines,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing, pp. 1064–1071, ACM, 2014.

[15] M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” in Software Maintenance and Reengineering, 2009. CSMR’09.
13th European Conference on, pp. 109–118, IEEE, 2009.

[16] M. T. Valente, V. Borges, and L. Passos, “A semi-automatic approach
for extracting software product lines,” Software Engineering, IEEE
Transactions on, vol. 38, no. 4, pp. 737–754, 2012.

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 70 / 267

[17] N. Anquetil, J.-C. Royer, P. Andre, G. Ardourel, P. Hnetynka, T. Poch,
D. Petrascu, and V. Petrascu, “Javacompext: Extracting architectural ele-
ments from java source code,” in Reverse Engineering, 2009. WCRE’09.
16th Working Conference on, pp. 317–318, IEEE, 2009.

[18] “What do we mean by componentization (for knowledge)? – open
knowledge international blog,” April 2007. (Accessed on 07/31/2017).

[19] M. Abi-Antoun, J. Aldrich, and W. Coelho, “A case study in re-
engineering to enforce architectural control flow and data sharing,”
Journal of Systems and Software, vol. 80, no. 2, pp. 240–264, 2007.

[20] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting software
architecture to implementation,” in Proceedings of the 24th international
conference on Software engineering, pp. 187–197, ACM, 2002.

[21] L. Chouambe, B. Klatt, and K. Krogmann, “Reverse engineering
software-models of component-based systems,” in Software Maintenance
and Reengineering, 2008. CSMR 2008. 12th European Conference on,
pp. 93–102, IEEE, 2008.

[22] K.-K. Lau, L. Safie, P. ˇ Stˇ epán, and C. Tran, “A component model that
is both control-driven and data-driven,” in Proc. 14th Int. ACM SIGSOFT
Symp. on Component-based Software Engineering, LNCS 6092, pp. 41–
50, ACM, 2011.

[23] T. Asikainen, T. Soininen, and T. Männistö, “A Koala-Based Approach
for Modelling and Deploying Configurable Software Product Families,”
in Software Product-Family Engineering, pp. 225–249, Springer, 2004.

[24] K.-K. Lau and C. M. Tran, “X-man: An mde tool for component-
based system development,” in Software Engineering and Advanced
Applications (SEAA), 2012 38th EUROMICRO Conference on, pp. 158–
165, IEEE, 2012.

[25] M. Alver, N. Batada, M. Baylac, K. Brix, G. Gardey, C. D’Haese,
R. Nagel, C. Oezbeck, E. Reitmayr, A. Rudert, et al., “Jabref reference
manager,” 2003.

[26] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The qualitas corpus: A curated collection of java code for
empirical studies,” in Software Engineering Conference (APSEC), 2010
17th Asia Pacific, pp. 336–345, IEEE, 2010.

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 71 / 267

Analyse Agile Software Development Teamwork Productivity using Qualitative

System Dynamics Approach

Israt Fatema

Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

email: mph001@iit.du.ac.bd

Kazi Muheymin Us Sakib

Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

email: sakib@iit.du.ac.bd

Abstract—A highly productive team throughout an agile

software development process is very instrumental in achieving

project success. This research presents a system dynamics (SD)

based approach to model agile software development

teamwork productivity by analyzing productivity influence

factors. Identification of main factors influencing productivity

and how they impact agile teamwork are carried out through

interviews, survey and literature review. A study has been

conducted on seventeen software companies in Bangladesh.

From the perspective of agile team members, the four most

perceived factors impacting on their productivity are team

effectiveness, team management, motivation and customer

satisfaction. Lack of management support is found to be the

most mentioned reason for failed agile project. The findings

from these sources are compiled into a Causal Loop Diagram

(CLD) for qualitative analysis of the teamwork productivity

influencing factors. The resulting qualitative model is expected

to provide more insight into the agile teamwork dynamics and

establish a basis for a further quantitative modelling. Using the

proposed model, the project manager may find the origin of a

decrease in productivity, evaluate management strategies along

with their effects on teamwork productivity. The future step

will be the dynamic simulation of the teamwork productivity

model based on the qualitative model in this paper.

Keywords-agile teamwork productivity; influence factors;

qualitative system dynamics; team effectiveness.

I. INTRODUCTION

The objective of any software company is to be efficient
and achieve maximum team productivity by being cost
effective and reducing development time. A highly
productive team is the most important factor in achieving
project success at different stages of an agile software
development. For efficient management and a better control
over the agile project team, it is important to understand the
team dynamics and effects related to agile practices that
influence the development team’s productivity.

Research has been largely carried out to identify factors
that contribute and influence productivity in traditional
software development. There are four main factors generally
discussed [1]: the product being developed (characterization
of the specific software), people (team members,
capabilities, experience, motivation), project (management
and resourcing) and processes (tools and software methods).

However, agile teamwork productivity is a function of
various controllable and uncontrollable factors [2]. The
relationships between some of these factors and productivity
may change under new software engineering practice and
culture [3]. The factors change over time as expectations
change. The software industry is also different from country
to country as are the resource availability, the laws which
govern it and the developer’s cost [4]. In addition, actual
productivity measurement becomes more difficult when
agile software developers perform knowledge-related tasks
(e.g., creating, storing, sorting, retrieving, applying and
acquiring knowledge) where the product is usually
intangible, rarely has single way of doing it, and it is
difficult to quantify [2]. Since knowledge is complex and
hard to evaluate, it is difficult to interpret the productivity of
the agile team member’s simply by source line of code
(SLOC) or function points produced per unit of time/cost
[3].

Despite the increasing acceptance of the agile methods,
insufficient research has been empirical on the effect of
software development productivity [5]. A better knowledge
of the factors and the mediators that influence agile
teamwork productivity could help determine where
management efforts would be focused to improve
productivity. Agile team members also should learn to
interpret and manage productivity factors regularly as they
are self-managed. The researchers have highlighted the
value of team learning to help organization achieving team
effectiveness, better ways to solve problem and increased
productivity.

Since the agile project team is the most dynamic element
in the software development sector, improving team
productivity has become a target for software companies in
everywhere. The aim of this study is to analyse and
understand the complex interdependences and underlying
structures at the team’s perception level, which influence
agile teamwork productivity over time. This paper
determines the major factors impacting teamwork
productivity in Bangladeshi software companies through a
survey and interviews that have been conducted with agile
teams to rank the most influential ones among them. The
major factors are to be modelled using a qualitative SD
approach. This conceptual model will be used to examine
the internal dynamics existed within the team and the

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 72 / 267

organizational resources that are used to support them. The
future contribution of this research shall provide a strategic
(quantitative) model that tells the project manager in
advance about the degree of impact these factors will have
on teamwork and may identify the origin of a decrease in
productivity. Therefore, the agile teamwork productivity
may be improved by implementation of management
strategies. The scope of this empirical findings considers the
Bangladeshi software companies as a case study, which can
in turn make the research results beneficial to these
companies. However, it is thought that other countries will
follow a similar affect to those identified here and its results
could be generalized by following the proposed model.

The remainder of this paper is organized as follows.
Section II includes a literature review, section III presents
the research method and design. Section IV describes the
survey results and Section V explores the structure of the
qualitative SD model. Section VI describes some limitations
of this work. Finally, Section VII describes the conclusion
and future work.

II. LITERATURE REVIEW

There are several studies that attempted to assess the
impact of some of the influencing factors on agile teamwork
productivity. Only Melo et.al [2] analysed the major factors
influencing agile teamwork productivity using the team’s
perception as one potential dimension to understand their
overall productivity. Through perceptions, they found that
team management is the most influencing factor on agile
team productivity. SD technique has been applied in
software engineering fields for modelling purposes, which is
important for the organization and the project. There are few
researches [6][7][8] that attempted to evaluate the impact of
some of the influencing factors on productivity separately
using SD. However, the complex inter-related structure of
all the major factors effecting the teamwork productivity
was not considered by the previous works. Abdel-Ahmed
[7] investigated the effect of various management policies
on development cycle time, quality and effort. His works
however adopt the waterfall method which limits their
applicability in recent software project and more
importantly, does not focus on the agile principles.

 In addition, evaluation of individual productivity may
not affect the productivity of other team members [9]. These
ideas provide a motivation to study teams’ productivity, not
individuals. A number of studies exist on teamwork in agile
software development on a range of topics relevant to
composition of team [10], task-effective norms in teams
[11], team member’s motivation [12], and the importance of
a team vision. Yet others have focused on team’s
communication [10], decision making [13] and self-
management [10].

Another stream of research has focused on team
performance in agile software development to analyse the
teamwork. Team performance refers to evaluation of the
results of the teamwork. Moe et al. used two team
performance models to explain teamwork in a project
adopting Scrum: The Salas et al. model [14] and the
Dickenson McIntyre model [15]. Melo et al. used the ‘Input

Process Output’ model to identify team productivity factors
in a multiple case studies. Dingsoyr et al. [16] described
agile software development as a sociotechnical system
comprised of human (socio) and technical entities.
Technological interventions do not increase sociotechnical
system effectiveness if they are not supported by social
(self-managing team and group) components of the system.
Such team interactions are one of the important parts in
software development. Thus, recent focus on agile software
development has increased interest in analysing self-
managing agile teams and how to effectively make team
productive [16]. Boehm [17] reported in his productivity
estimation model, Constructive Cost Model (COCOMO),
that productivity of a software development project is
mostly affected by the development team and their team
management. Scacchi [18] also identified that poorly
managed or organized project’s productivity was mostly
lower than those projects which were well managed.
Throughout the literature review, it has been observed that
there is a lack of well-established dynamic theory about
agile teamwork. This study seeks to fill this gap by
developing an integrated model, which represents the inter-
related structure of productivity influence factors and how
they impact (positively or negatively) agile teamwork’s
productivity. In order to do so, this study applies a system
dynamics approach, which can study complex system by
exploring underlying relationships and connections between
the components of a system that normally are not discovered
by the input-output-process type of models used in
organizational studies.

III. RESEARCH METHODOLOGY

The methodological approach of this research is based
on the system dynamics (SD), as a modelling and simulation
methodology enables to model complex system considering
all the influencing factors [19]. There are many modelling
techniques developed and used so far, according to the
modelling goal and perspective. However, system dynamics
modelling chosen for this research because it provides a
systematic method for description, exploration and analysis
about the dynamic behavior of complex systems [18]. SD
methodology has been applied by many researchers [19][20]
[24][25] for studying and managing complex feedback
system, where feedback is understood as a closed sequence
of causal relationships. The concept of a feedback loop
reveals that any actor in a system will eventually be affected
by its own action.

A number of diagramming tools are used in SD to
capture the structure of systems, including causal
scale/influence diagrams, stock and flows. Each causal link
is assigned a polarity, either positive or negative to represent
a causal relationship between two factors. It indicates how
the dependent variable changes when the independent
variable changes. The important loops are highlighted by a
loop identifier, which shows whether the loop is a ‘+’
(reinforcing) or ‘-’ (balancing) feedback [18].

61Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 73 / 267

A. Identification of different factors affecting agile

teamwork productivity

Data collection: The model developed for this work is
based on data collected from the software companies in
Bangladesh. There are three important objectives of
collecting information; to determine what factors affected
productivity of agile team members, to determine how these
factors impacting project productivity in the team’s
perception and to determine the significance of the factors.
Identification of the factors was initially carried out through
an intensive literature review. A set of semi-structured
interviews and face-to-face discussions were also conducted
with twelve key project members from four software
companies including project managers, scrum masters,
developers, project owners, and considering also different
experience profiles.

Using the factors identified in this first step, a
questionnaire [26] was developed. In an attempt to identify
the perceived influencing factors and their impact on agile
team members, the survey questionnaire was distributed to a
total of seventeen software companies in Bangladesh. The
company selection criteria for this preliminary study were:
companies using agile methods for at least 1 year,
developing software for both offshore and local market, and
top listed companies in Bangladesh.

Data were collected throughout a period of three months
in 2017 (January-March). In order to ensure the quality of
data, team members were all self-selected by their
organization based on their work roles as members of
existing agile teams. Therefore, participants responded to
survey questionnaires were already aware of agile team
environment and mostly experienced. The filled-in
questionnaires were then analysed to identify factors, which
have major influences on agile teamwork productivity.
Currently, more software companies are being requested to
participate in this survey, as the plan is to collect more than
100 responses from different agile teams.

B. Selection of factors for inclusion in the model

Data analysis: Factors affecting agile teamwork
productivity are rarely independent of the others, but a set of
factors interacting with each other to build the final result
[7]. The important factors identified in literature and
interviews were taken as a starting point for the system
approach in this research. In total, 38 factors were chosen
for analysis even though not all of them are presented in this
paper. In order to create a system model to analyse the
teamwork productivity, it is required to determine the
importance of the individual factors, their correlation with
one another and their effects on productivity itself. The agile
team members were asked to fill in the questionnaire to
indicate the strength (high, medium or low) of the factors
that they perceived influenced their productivity [25].

The procedure followed to extract the agile team
member’s perception of the influence factors affecting their
productivity can be summarized in the following steps:

1. Convert the qualitative scale to a quantitative one.
The qualitative scale of high, medium or low was converted
to a number scale of 3, 2, and 1, respectively.

TABLE I. ARITHMETIC MEAN OF QUESTIONNAIRE RESULTS FROM

FREQUENCY ANALYSIS

SL

Factor

Me-

an

SL

Factor

Me-

an
1 Culture 2.23 20 What is the

staff turnover

rate in the
project

1.82

2 Staffing 2.76 21 Reuse 2.17
3 Size of team 2.29 22 What is the

software
reuse level in

the project

2.00

4 Project
complexity

2.23 23 Goals 2.29

5 Team

Leadership

2.52

24
Intra group

wage

inequality

1.94

6 Mutual

performance

monitoring

2.41 25 Team

measurement

2.17

7 Backup
Behaviour

2.41 26 Self-
management

2.17

8 Team

orientation

2.52 27 Task variety

and
Innovation

2.41

9 Adaptability 2.35 28 External

Dependencies

2.17

10 Feedback 2.70 29 Tools usage 2.29
11 Mutual trust 2.76 30 Programming

language

2.05

12 Coordination 2.70 31 Schedule

pressure

2.29

13 Communication 2.82 32 Impact of Pair

programming

on
productivity

2.11

14 Staff are

appreciated for

working long
hours

1.76 33 Resource

constraints

2.41

15 Staff are

rewarded (then
or later) for

working long

hours

2.11 34 Project

Management

2.58

16 Adequate
technical

training for

team

2.41 35 Motivation 2.58

17 Adequate team

skills training

for team

2.35 36 External

project factors

2.41

18 Team member

turnover

1.64 37 Dealing with

cultural

differences
among

offshore

organizations

2.17

19 Key personnel
stayed

throughout the

project

2.23 38 Working
environment

2.35

2. Find the total score of each factor for frequency
analysis. Then, the arithmetic mean of the total counts was
calculated to eliminate the factors below the average (Table.
1) mean.

62Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 74 / 267

IV. SURVEY RESULTS

Characteristics of the sample software companies can be
found in Table II. Fig. 1 presents the agile practices adopted
by the participating software companies and it shows daily
stand up meeting mostly used by all of them. Fig. 2 shows
that lack of management support (e.g., resource constraint,
team design choice and motivation) is the main reason for
failure in agile projects.

In most of the interviews, the team members could not
define productivity as their performance measurement. Most
of them mentioned that team management has their own
ways of measuring productivity. Although at the end of the
project, the management assessed their productivity on the
basis of timeliness and quantity. At the same time, ten
interviewees and survey respondents (Fig. 3) also mentioned
customer satisfaction as a criterion for measuring or
perceiving productivity. Customer satisfaction is very
important to software development companies in
Bangladesh as a rising market for outsourced software
destination. According the product owner interview, dealing
with cultural differences among offshore organisation
influences teamwork productivity. Two main reasons behind
this are time and culture differences.

TABLE II. CHARACTERISTICS OF PARTICIPATING SOFTWARE COMPANIES

Characteristic Category Number %

Main team
assignment

Development
project

10 58.82

 Maintenance

project

7 41.17

Team role Project manager 4 23.52

 Developer 6 35.29

 Software
engineer

3 17.65

 Team lead 2 11.77

 Quality
assurance

engineer

2 11.77

Experience in

agile practice

1-2 years 8 47.8

 2-5 years 7 41.2

 More than 5

years

2 11.8

Development
method

Scrum 17 100

Size of the

company

(person)

30-50

50-100

100-150

150-200

200-250

250-300
More than 300

2

1

5

6

1

1
1

12

6

29

35

6

6
6

Figure 1. Agile practices adopted in software companies

Figure 2. Main reasons for failure in agile projects

Figure 3. Criterion for measuring or perceiving productivity

Figure 4. Agile team perceived productivity influence factors

63Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 75 / 267

Sometimes it becomes difficult to keep contact with the
offshore client on urgent issues due to time difference
between places. Moreover, offshore client’s expectations are
different, both in terms of their general culture and their
views on life and work. Project developed within western
cultures are different from eastern cultures. For example,
daily traffic condition consumes most of the working time
in Bangladesh, which makes the developers less motivated.
Since, staff are not rewarded enough for working long
hours. However, schedule pressure can be easily dealt with
overtime working because it costs less in Bangladesh.

Five interviewees (project leads and managers) also
mentioned that culture is a big barrier for working in an
agile team. This factor affects communication between team
members. In addition, sometimes language barrier hinders
communication. Transitioning from individual work to self-
management team requires a reorientation not only by
developers but also by management. This changeover takes
time and resources. For this reason, these project managers
prefer freshers as a team member. Their software companies
like to groom up with training than changing mind set up of
the team members. Besides that, self-management and
adaptability are considered key for agile development. But
these two factors have less influence (Table. 1) on agile
teamwork productivity and mostly depends on competent
project management.

Fig. 4 provides highlights of the most influencing
productivity factors that are perceived by the agile team
members. This study results show that agile teamwork is
highly dependent on team effectiveness. Project manager is
usually a technical lead and many management decisions
are made by the top management since the majority of the
projects are outsourced projects. Their offshore clients’
satisfaction (external factors dependency) is very important
to them. Team leadership and team orientation are very
important for teamwork motivation. The factors impacting
on agile teamwork productivity mentioned by the team
members suggested that feedback, team orientation,
communication, coordination and mutual trust improve team
effectiveness. Eventually, this will enable team to learn how
to effectively manage relation within team in order to
become more productive.

V. QUALITATIVE MODELLING OF AGILE SOFTWARE

 DEVELOPMENT TEAMWORK PRODUCTIVITY

Each factor that affects agile teamwork productivity is
itself affected by other factors [9]. Some factors may be the
result of the same cause [19]. Fig. 5 presents the overall
conceptual model of agile teamwork productivity. It shows
all the influence factor’s affect found in this study. It can be
seen in Fig. 5 that the arrows between every two variables
differ in sign (positive or negative) to express direct or
indirect cause-effect relationships between the two variables
they connect.

Distinct from previous studies [7][24] this model
represents the team dynamics which is a collection of “soft
factors” [23] and effects related to agile methods that
influence the teamwork’s productivity. The soft factors that

can affect the software development teamwork productivity
include motivation, team management efficiency, customer
satisfaction, skillfulness and team effectiveness
(communication, coordination, adaptability, feedback,
leadership, team orientation, mutual trust, monitoring,
backup-behavior, self-management). Teams require a
complex mixture of factors that include organizational
support, individual skills and also teamwork skills [10] to
work effectively. This study also found these are the most
influential productivity factors from the agile team’s
perspective. Within the model (see Fig. 5), it is shown that
team effectiveness is influenced by team management,
motivation, team design, skillfulness, resource constraint,
communication and coordination. Team effectiveness can be
improved by team learning processes which include
activities such as feedback, mutual performance monitoring
and back-up behavior. These learning activities are likely to
create a positive change and to influence the productivity.
On the other hand, motivation influenced by team
management, reward, goal, salary, working environment,
morale and external factor (customer satisfaction).

Fig. 5 illustrates that motivation is positively related to
team effectiveness. A motivated team is much more likely
to be involved with the learning oriented activities to
develop better interpersonal relations and that eventually
will increase the team effectiveness. On the other hand,
lack of team management skill negatively influences
teamwork productivity. It mainly refers to team design
choice and resource constraint. Another factor that
influences skillfulness is pair programming; however, this
factor is not encouraged in Bangladeshi software
companies. Management does not want to engage two
resources for single work due to increase in expenses. It is
mostly practiced by the developers when they need
assistance to complete a difficult work.

Getting the right person with suitable skills and
knowledge for an agile team is a difficult job for the
software companies in Bangladesh. Staffing (right person
selected) happened to be as one of the most important
factors impacting teamwork productivity, as Table I and
Fig. 4 show. Consequently, team design choice became a
significant influencing factor for agile teamwork
productivity (Fig. 5). It affects the amount of knowledge
that team members must apply to improve the team
effectiveness (Fig. 5).

VI. LIMITATIONS OF THE STUDY

There are a number of limitations to this study. First, this
study was limited to 17 respondents and 12 interviewees
from 17 software companies only. It was challenging to get
access to more software companies due to time constraint.
Respondents were carefully chosen from different roles
within the agile team in order to get different perspectives of
productivity in the context of Bangladesh software Industry.

Another limitation of this study is the agile team
members’ perceptions used as a response. However, with
survey, this study relies on what the respondents provided to
the researcher. It is possible that the respondents’ perception

64Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 76 / 267

Team Productivity

Motivation

+

Team

Management
Reward

Culture

Team size

Coordination

Communication

Mutual trust

Leadership

Goal

Feedback

External Factor

WorkingEnvironment
Resource

constraint

Team

Effectiveness

Adaptibility

Task Variation

Turnover

+

++ +

+

+
-

Market salary

rates

Fair wage

-

unable to adjust to

the team

-

Team design

choice

Team diversity

Team collocation

Full time

allocation

+
+
+

+

Team Morale

Change in scope

Skillfulness

Training

Learning factor

Programming

language

Tools usageExternal

dependency

-

+

Mutual performance

monitoring

Project

Complexitiy

Self management

Rework

Customer

satisfaction

Product backlog

Undisovered

rework

Work completed

-

Desired workforce

Hiring rate

Discrepancy

Training rate

Experienced

workforce

Work quality

+

Actual work force

+

+

-
+

+
+

+
Team Orientation

Back-up behavior

+

+
+

+

+

+

+

+

+

+

+
+

+

+ +
+

+
+

+

Pair programming

+

Reuse

+

Overwork
Exhaustion+

-

-

Time available

Error geneation

rate

+

+

+
-

-
+

error detection and

correction rate

+

+

+

-

+

+

Change in

Technology

Market condition

+
+

CONCEPTUAL MODEL OF AGILE TEAMWORK PRODUCTIVITY

Schedule pressure

Estimated time to

complete

+

+

+
+

Organization

growth

+

New project

+

+

+

+

-

-

-

-

<Turnover>

-

+

Figure 5. Overall conceptual model of Agile teamwork productivity

may change and be different after the end of the project. To
minimise the impact of this effect, the survey and
interviewees’ responses were compared for factors selection
to include in the model. The questionnaire used for this
study had been used successfully in other research [9][22]
and was developed after a detailed literature review. Some
of the questions were included in the survey after getting
knowledge about the working conditions of software
companies in Bangladesh from the interview sessions.

Finally, this conceptual model certainly has its
limitations and is not complete because it only focuses on
the influence factors. The multiple feedback processes and
delays are not incorporated in this model.

VII. CONCLUSION AND FUTURE WORK

Teamwork productivity determines the overall project
performance in an agile software development process.
Therefore, researchers have gained increasing interest in
studying agile teams’ productivity. Agile team members
should be taught to interpret and manage productivity
factors regularly as they are self-managed.

The researchers concluded that productivity
improvement programs would become effective only if all
the variables are simultaneously controlled and monitored.
One effective solution to improve productivity is to look
into the factors influencing productivity and also have a
dynamic strategical model that tells the project manager in
advance the degree of impact that these factors will have on
team productivity. In order to achieve that, the main factors

65Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 77 / 267

that affect teamwork productivity were determined. The
findings of this stage are the main influencing factors which
are team effectiveness, team management, motivation and
customer satisfaction. Lack of agile team management
support was found to be the most mentioned reason for
failed agile project. Most followed agile method was
SCRUM for all the respondents. Among agile practices,
daily stand-up meeting and continuous integration were the
most cited practices impacting teamwork productivity.
Customer satisfaction was found as main criterion for
measuring or perceiving productivity by the interviewees
and survey respondents.

As a future work, the soft factors are to be quantified to
incorporate in system dynamics model. The proposed
system dynamics model will provide more strategic insights
and understanding about the effectiveness of different
managerial policies based on non-straight forward cause-
effect relationships hidden in the system. Furthermore, this
qualitative CLD will be used as a basis for a stock and flow
model development of the quantitative SD method. Further
research need to be conducted to validate the conceptual
model against a real-world agile software development
project.

REFERENCES

[1] A. Trendowicz and J. Münch, “Factors Influencing Software
Development Productivity—State‐of‐the‐Art and Industrial
Experiences,” Advances in computers, vol. 77, pp. 185-241, Dec. 2009.

[2] C. D. O. Melo, D. S. Cruzes, F. Kon, and R. Conradi, “Interpretative
case studies on agile team productivity and management,”
Information and Software Technology, vol. 55, pp.412-427,
Feb.2013.

[3] K. Petersen, “Measuring and predicting software productivity: A
systematic map and review,” Information and Software Technology,
vol. 53, pp.317-343, Apr.2011.

[4] Y. Ramírez and D. Nembhard, “Measuring knowledge worker
productivity: A taxonomy,” Journal of Intellectual Capital, vol. 5, no.
4, Dec. 2004, pp. 602–628.

[5] C. D. O. Melo, D. S. Cruzes, F. Kon, and R. Conradi, “Agile team
perceptions of productivity factors,” In Agile Conference (AGILE),
IEEE, 2011, pp. 57-66.

[6] X. Kong, L. Liu, and D. Lowe, “Modeling an agile web maintenance
process using system dynamics,” In 11th ANZSYS/Managing the
Complex V conference, ISCE Publishing, Christchurch, NZ. Dec.
2005.

[7] T.K. Abdel‐Hamid and S. Madnick, “Software productivity: potential,
actual, and perceived,”. System Dynamics Review, 5(2), pp. 93-113,
June. 1989.

[8] J. M. Lyneis and D. N. Ford, “System dynamics applied to project
management: a survey, assessment, and directions for future
research,” System Dynamics Review, vol. 23, no. 2‐3, pp. 157-189,
Jun. 2007.

[9] C.O. Melo, “Productivity of agile teams: an empirical evaluation of
factors and monitoring processes,” Ph.D. dissertation, Universidade
de São Paulo, 2015.

[10] T. Dingsøyr and Y. Lindsjørn, “Team performance in agile
development teams: findings from 18 focus groups,” International

Conference on Agile Software Development, Springer Berlin
Heidelberg, June. 2013, pp. 46-60.

[11] A. Teh, E. Baniassad, D. V. Rooy, and C. Boughton, “Social
Psychology and Software Teams: Establishing Task-
Effective Group Norms,” IEEE Software, vol. 29, no.4, pp.53–58, Jul.
2012.

[12] B. Tessem and F. Maurer, “Job Satisfaction and Motivation in a
Large Agile Team,” In International Conference on Extreme
Programming and Agile Processes in Software Engineering, Springer
Heidelberg, vol. 4536, pp. 54–61., 2007.

[13] N. B. Moe, A. Aurum, and T. Dybå, “Challenges of shared decision
making: A multiple case study of agile software development,”
Information and Software Technology, vol. 54, pp.853–865, Aug.
2012.

[14] N. B. Moe and T. Dingsøyr, “Scrum and team effectiveness: Theory
and practice,” International Conference on Agile Processes and
Extreme Programming in Software Engineering, Springer Berlin
Heidelberg, Jun. 2008, pp. 11-20.

[15] N. B. Moe, T. Dingsøyr, and T. Dybå, “A teamwork model for
understanding an agile team: A case study of a Scrum project,”
Information and Software Technology, vol. 52, pp. 480-491, May.
2010.

[16] T. Dingsøyr and T. Dybå, “Team effectiveness in software
development: Human and cooperative aspects in team effectiveness
models and priorities for future studies,” Proceedings of the 5th
International Workshop on Co-operative and Human Aspects of
Software Engineering. IEEE Press, 2012, pp. 27-29.

[17] B. Barry, “Software Engineering Economics,” New York, vol. 197,
NY: Prentice-Hall, 1981.

[18] W. Scacchi, “Understanding and improving Software Productivity,”
Advances in Software engineering and Knowledge engineering, 2005.

[19] F. Nasirzadeh and P. Nojedehi, “Dynamic modelling of labour
productivity in construction projects,” International Journal of Project
Management, vol. 31, no. 6, Aug. 2013, pp. 903-911.

[20] A. Rodrigues and J. Bowers, “The role of system dynamics in project
management,” International Journal of Project Management, vol. 14,
no. 4, Aug. 1996, pp. 213-220.

[21] B. Barry, “Centre for Systems and Software Engineering,” Oct. 2012.
[Online] Available
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html.
[retrieved: August, 2017].

[22] J. M. Verner, M. A. Babar, N. Cerpa, T. Hall, and S. Beecham,
“Factors that motivate software engineering teams: A four country
empirical study,”. Journal of Systems and Software, vol. 92, June.
2014, pp. 115-127.

[23] V. Lalsing, S. Kishnah, and P. Sameerchand, “People factors in agile
software development and project management,” International
Journal of Software Engineering & Applications, vol. 3, pp. 117,
Jan.2012.

[24] L. L. R. Rodrigues, N. Dharmaraj, and B. R. Shrinivasa Rao, “System
dynamics approach for change management in new product
development,” Management Research News, vol. 29, no. 6, Aug.
2006, pp. 512-523.

[25] M. J. Mawdesley and S. Al-Jibouri, “Modelling construction project

productivity using systems dynamics approach,” International Journal
of Productivity and Performance Management, vol. 59, no.1, Dec.
2009, pp. 18-36.

[26] I. Fatema, “Agile teamwork productivity influence factors,” Jan.
2017. [Online] Available https://goo.gl/forms/I5xGdQGqFMk9he5f2.
[retrieved: August, 2017].

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 78 / 267

Accuracy Evaluation of Model-based COSMIC Functional Size Estimation

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria

Varese (Italy)
Email: luigi.lavazza@uninsubria.it

Abstract—Functional Size Measurement is widely used, especially
to quantify the size of applications in the early stages of
development, when effort estimates are needed. However, the
measurement process is often too long or too expensive, or
it requires more knowledge than available when development
effort estimates are due. To overcome these problems, early
size estimation methods have been proposed, to get approximate
estimates of functional measures. In general, early estimation
methods adopt measurement processes that are simplified with
respect to the standard process, in that one or more phases
are skipped. So, the idea is that you get estimates affected by
some estimation error, instead of accurate measures performed
following the standard measurement process, but at a fraction
of the cost and time required for standard measurement. In
this paper, we consider some methods that have been proposed
for estimating the COSMIC (Common Software Measurement
International Consortium) size of software during the modeling
stage. We apply the most recent methodologies for estimation
accuracy, to evaluate whether early model-based estimation is
accurate enough for practical usage.

Keywords–Functional size measurement; COSMIC Function
Points; Measurement process; Functional size estimation; Accuracy
estimation.

I. INTRODUCTION

Functional Size Measurement (FSM) is widely used.
Among the reasons for the success of FSM is that it can
provide measures of size in the early stages of software
development, when they are most needed for cost estimation.
However, FSM requires that the functional requirements of
the application to be measured are available in a complete and
quite detailed form. Often, this is not possible in the very early
stages of development. Therefore, to get measures even when
requirements are still incomplete or still defined at a coarse
level of detail, estimation models have been proposed. There
are different types of FSM and many estimation methods.
Here, we concentrate on the COSMIC FSM [1] –one of the
most widely used methods– and on model-based COSMIC size
estimation [2].

When applying a size estimation method, we expect that
the method –being applied to incomplete or not thoroughly de-
tailed software specifications– requires less time and effort than
the standard measurement process. However, we also expect
that the size estimates so obtained contain some estimation
error. In general, we are ready to accept a relatively small
estimation error in exchange of being able to get size estimates
without having to apply the standard measurement process. On
the contrary, an excessively large estimation error would defeat
the very reason for measuring. Hence, we are interested in

knowing the likely accuracy of measure estimates. To this end,
we need reliable methods to evaluate the accuracy of estimates.

Unfortunately, it has been shown that the most popular
estimate accuracy statistic, the Mean Magnitude of Relative
Errors (MMRE) is flawed, in that it is a biased estimator
of central tendency of the residuals of a prediction system
because it is an asymmetric measure [3][4][5]. So, MMRE and
similar indicators are not suitable for providing practitioners
who are potentially interested in applying estimate methods
with reliable information upon which they can base informed
decisions.

Luckily, sound estimate evaluation methods have been pro-
posed recently (as described in Section III). It is thus possible
to apply such new methods to size estimation methods.

The main purpose of this paper is the evaluation of
the actual accuracy of model-based COSMIC size estimation
method: to this end, we use the new sound evaluation meth-
ods (described in Section III), together with more traditional
statistical tools.

It should be noted that the paper does not aim at intro-
ducing new COSMIC size estimation methods, rather the goal
of the paper is (re)evaluating the accuracy of the formerly [2]
proposed ones. However, by applying these new evaluation
methods, as a side effect we also get some indications on their
expressiveness.

The paper is structured as follows. Section II briefly
illustrates the COSMIC FSM, and the model-based simpli-
fied COSMIC measurement method. Section III illustrates
the methods used for evaluating the accuracy of estimates.
Section IV describes the application of the accuracy evaluation
methods to model-based simplified COSMIC measurement,
while Section V illustrates and discusses the results of the
analysis. Section VI accounts for related work. Finally, Sec-
tion VII draws conclusions and briefly sketches future work.

II. COSMIC FUNCTIONAL SIZE MEASUREMENT AND
MODEL-BASED COSMIC ESTIMATION

COSMIC measurement is based on the analysis of the
specification of functional user requirements (FUR). The FUR
can be described in various ways, including the Unified
Modeling Language (UML): functional size measurement of
UML models was widely studied [6][7][8], also when FUR
concern real-time applications [9]. During the initial stage
of development, UML models are built, progressively in-
corporating more knowledge concerning the software to be
developed: this results in progressively more complete and
detailed specifications. More specifically, the UML modeling

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 79 / 267

process can be seen as organized in the phases described in
Figure 1. The more complete and detailed the UML model,
the more elements needed for COSMIC measurement become
available. Figure 1 shows the relationship between the UML
diagrams that are made available by each modeling phase
and the COSMIC measurement elements. During the initial
UML modeling phases –i.e., before the complete and detailed
FUR specifications are available– it is often the case that size
measures are needed anyway. In such cases –not being possible
to measure the COSMIC size of the application– we can think
of estimating the COSMIC size, based on the information that
is present in the available UML diagrams.

Figure 1. UML modeling process and COSMIC measurement process
phases.

Specifically, del Bianco et al. proposed a few families of
statistical models that can be used to estimate COSMIC size
based on information derived from UML diagrams [2]. These
models are described in Table I.

A first family of COSMIC size estimation models requires
only the knowledge of the number of functional processes
(FPr’s). These models have form ECFP = f(#FPr) where ECFP
is the estimated size in CFP (COSMIC Function Points), and
#FPr is the number of functional processes. As shown in
Figure 1, the statistical model can be built after the completion
of phase a), when class or component diagrams properly
specifying the user interfaces are delivered.

Another family of COSMIC size estimation models re-
quires also that the number of Data Groups (#DG) is known.
These models can be built after phase b), when UML diagrams
fully describing the involved classes are delivered. The models
found by del Bianco et al. involve the parameter AvDGperFPr,
namely the average number of data groups per functional
process, which requires that both the functional process and
the data groups (i.e., classes in UML diagrams) are known.

Figure 1 shows that potentially one could use also the
knowledge of the number of data groups involved in each
functional process, which is available after phase c). However,
no statistically significant models of this type were found.

Finally, we observe that after phase d), i.e., when the
complete UML models of FUR are available, the standard
COSMIC measurement process is applicable, and proper
COSMIC measures –instead of estimates– can be achieved.

It is expected that models based on more information are
more accurate than models based on less information.

TABLE I. COSMIC SIZE ESTIMATION MODELS.

Name Formula
avg1 ECFP = 7.3 #FPr
reg1 ECFP = −16.5 + 6.698 #FPr
avg2 ECFP = AvDGperFPr 1.8 #FPr
reg2 ECFP = −64.6 + 7.63 #FPr + 9.71 AvDGperFPr
log2 ECFP = 1.588 #FPr1.00357 AvDGperFPr1.0312

In [2], the accuracy of the models given in Table I was
evaluated based on the traditional indicators MMRE –the Mean
Magnitude of Relative Errors– and Pred(25) –the fraction of
applications for which the absolute relative estimation error is
less than 0.25. The evaluation of accuracy performed in [2]
indicated that models using both #FPr and AvDGperFPr (that
is, models avg2, reg2 and log2) are more accurate than models
based only on #FPr (that is, models avg1 and reg1). However,
it has been shown that indicators based on the magnitude
of relative errors are biased [10]. Hence, we repeat here
(in Section IV) the analysis of accuracy using more reliable
methods (described in Section III).

III. A METHOD FOR EVALUATING THE ACCURACY OF
ESTIMATES

The method we use for evaluating the accuracy of a given
model’s estimates involves two activities: 1) comparing the
model’s estimates with “baseline” estimates, and 2) evaluating
the size effect. The former activity –described in Section III-A–
is aimed at verifying that the given model’s estimates are
“good enough:” if they are less accurate than the estimates
provided by the baseline, the given models does not yield any
improvement, at least as far as accuracy is concerned, and can
be rejected. The second activity –described in Section III-B–
verifies whether the given model provides an increase in
accuracy that is large enough to make the given model a
desirable alternative with respect to the baseline.

A. Baselines

Let us suppose that in n previous projects we measured the
value of interest (in our case, the size of applications, measured
in CFP). Accordingly, we have a set Y = {yi} (with i ∈ [1, n])
of observations (where yi is the actual size of the ith project,
expressed in CFP).

A new estimation method P is proposed: for the n known
projects, method P yields n estimates ŷi with i ∈ [1, n], and
we need to evaluate the accuracy of these estimates.

The most popular way of evaluating estimation accuracy
is the MMRE, the mean of the magnitude of absolute errors,
which is defined as

MMRE =
1

n

∑
i=1..n

|yi − ŷi|
yi

(1)

MMRE has been shown to be a biased estimator of central
tendency of the residuals of a prediction system, because it
is an asymmetric measure [3], [4], [5]. In practice, MMRE is
biased towards prediction systems that under-estimate [10].

Shepperd and MacDonell [10] proposed that the accuracy
of a given estimation method P is compared to the accuracy
of a reference estimation method P0. The indicator to be used

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 80 / 267

is the Mean Absolute Residual (MAR), which, unlike MMRE,
is not biased:

MAR =
1

n

∑
i=1..n

|yi − ŷi|) (2)

So we have MARP (the MAR of the proposed method) and
MARP0 (the MAR of the reference method). Based on the
MAR values, Shepperd and MacDonell propose to compute a
Standardized Accuracy measure (SA) for estimation method
P :

SA = 1− MARP

MARP0
(3)

Values of SA close to 1 indicate that P outperforms P0,
values close to zero indicate that P ’s accuracy is similar to
P0’s accuracy, negative values indicate that P is worse than
P0, hence it should be rejected.

As a referenced model, Shepperd and MacDonell suggest
to use random estimation, based on the known (actual) values
of previously measured projects. A random estimation ŷi is
obtained by picking at random yj , with j 6= i. Of course, in
this way there are n−1 possible estimates for yi, so to compute
the MAR of rnd we need to average all these possible values.
Shepperd and MacDonell suggest to make a large number of
random estimates (typically, 1000), and then take the mean
MARrnd. Langdon et al. showed that it is not necessary to
make 1000 guesses, since the average of the random estimates
can be computed exactly [11].

So, a first evaluation consists in computing

SA = 1− MARP

MARrnd

. (4)

Achieving a value substantially greater than zero is clearly
a sort of necessary condition that the estimation method P
must satisfy, otherwise we could simply guess (instead of
estimating using P) and get similarly accurate estimates.

Lavazza and Morasca [12] observed that the comparison
with random estimation is not very effective in supporting
the evidence that P is a good estimation model. Instead, they
proposed to use a “constant model” (CM), where the estimate
of the size of the ith project is given by the average of the
sizes of the other projects, that is

ŷi =
1

n− 1

∑
j∈Y−{yi}

yj (5)

So, we can compute the MARCM of these estimates, and
then compute SA, but this time comparing P with CM :

SA = 1− MARP

MARCM
. (6)

Again, we require that SA is substantially greater than zero,
to deem P acceptable.

Finally, note that SA can be used to compare a method
P against any other model P1 used as a reference method,
simply by computing

SA = 1− MARP

MARP1
. (7)

B. Size Effect
Suppose that we have two estimation methods P1 and P2,

and MARP2 < MARP1 (hence, SA = 1 − MARP2

MARP1
> 0).

We can conclude that P2 is more accurate than P1. Anyway,
suppose that we are using P1 and we are considering the
possibility of switching to using P2, which involves some
effort, because P2 requires some activity or data or programs
that P1 does not require. We would like to know if the
improvement that P2 offers in terms of accuracy is possibly
so inconsequential as to not be worth the effort.

To judge the effect size, Shepperd and MacDonell suggest
using Glass’s ∆ [13] or Hedges’s g, which might be preferred
when the sample size is small [14]. The effect size –which
is scale-free– can be interpreted in terms of the categories
proposed by Cohen [15] of small (≈ 0.2), medium (≈ 0.5)
and large (≈ 0.8).

IV. EXPERIMENTAL EVALUATION

The five size estimation models given in Table I were
applied to the projects in the dataset that was used to derive
the models [2]. The MAR for each model was then computed.
Similarly, the data from the same dataset were used to compute
MARrnd and MARCM , as described in Section III. The
values of the methods’ MAR are given in Table II.

Note that here we do not explicitly compute SA. Instead,
we give the values of MAR needed for the computation. The
reason is that with 7 methods there are 21 possible comparison
among methods, hence 21 values of SA. Listing all these SA
values could create confusion, while to compare two methods’
accuracies, we just need to compare their SA’s: the model
featuring the smaller SA is likely the best.

TABLE II. MEAN ABSOLUTE RESIDUALS OF MODELS.

Name Formula MAR
rnd – 146
CM – 114
avg1 ECFP = 7.3 #FPr 56
reg1 ECFP = −16.5 + 6.698 #FPr 48
avg2 ECFP = AvDGperFPr1.8 #FPr 28
reg2 ECFP = −64.6 + 7.63 #FPr + 9.71 AvDGperFPr 40
log2 ECFP = 1.588 #FPr1.00357 AvDGperFPr1.0312 25

Table II provides a first piece of evidence: model-based
COSMIC size estimation are definitely more accurate than both
the random and constant models.

Table II also confirms that the constant model is always
more accurate than the random model, as demonstrated by
Lavazza and Morasca [12]. For this reason, in the remainder
of the paper the random model is no longer used.

To establish if the estimations of one method were sig-
nificantly better than the estimations provided by another
method, we tested the statistical significance of the absolute
errors achieved with the two estimation methods [3]. Namely,
we compared the absolute residuals provided by every pair
of methods via Wilcoxon Sign Rank Test. To check for
statistical significance we used the Wilcoxon Signed Rank
Test [16] because it is a safe test to apply to both non-normally
distributed (as are often MAR distributions) and normally
distributed populations.

The results are given in Table III, where in each cell the
sign “>” (respectively, “<”, “=”) indicates that the absolute

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 81 / 267

residuals of the model on the cell’s row are larger (resp.,
smaller, equal) than the absolute residuals of the model on
the cell’s column.

TABLE III. COMPARISON OF ABSOLUTE RESIDUALS USING WILCOXON
SIGN RANK TEST.

CM avg1 reg1 avg2 reg2 log2
CM > > > > >
avg1 < > > > >
reg1 < < = > >
avg2 < < = = >
reg2 < < < = =
log2 < < < < =

The results provided by Wilcoxon Sign Rank Test confirm
the indications provided by MAR and SA in that the constant
model is outperformed by all other models and that avg1
is outperformed by all other model-based size estimation
methods. However, Wilcoxon Sign Rank Test provides further
insights with respect to MAR and SA:

• There is no sufficient evidence to conclude that log2
is better than reg2 (this fact could be guessed, based
on the fact that MARlog2 and MARreg2 are quite
close).

• Similarly, there is no evidence that reg2 (which has
MARreg2 = 40) is actually more accurate than reg1
(which has MARreg1 = 48).

• Somewhat surprisingly, there is no evidence that avg2
(which has MARavg2 = 28) is actually more accurate
than reg2 (which has MARreg2 = 40).

The latter result is especially interesting, in that by just looking
at the MAR values we could have concluded that avg2 is more
accurate than reg2, while –according to Wilcoxon Sign Rank
Test– there is no statistically significant evidence of this fact.
The explanation of why MAR can be somewhat misleading
in this case is given in Figure 2, where the boxplots of the
absolute residuals of models avg2 and reg2 are given: it is easy
to see that the distributions are similar, but reg2 has a greater
MAR because of three applications, whose size estimation
error is quite large.

Figure 2. Absolute residuals of models avg2 and reg2.

Now, as recommended by Shepperd and MacDonell (see
Section III-B) we evaluate the size effect. To this end, we

computed Hedges’s g for all model pairs. The results are given
in Table IV.

TABLE IV. EFFECT SIZE (HEDGES’S g).

CM avg1 reg1 avg2 reg2 log2
CM – 0.75 0.82 1.30 0.98 1.36
avg1 -0.75 – 0.12 0.58 0.27 0.66
reg1 -0.82 -0.12 – 0.38 0.13 0.44
avg2 -1.30 -0.58 -0.38 – -0.26 0.12
reg2 -0.98 -0.27 -0.13 0.26 – 0.33
log2 -1.36 -0.66 -0.44 -0.12 -0.33 –

It is easy to see that all model-based size estimation meth-
ods appear definitely preferable with respect to the constant
model. Models avg2 and log2 appear preferable to the other
model-based estimation methods, with log2 only marginally
better than avg2.

The indications provided by Hedges’s g are also consistent
with the indications obtained from Wilcoxon Sign Rank Test,
e.g., according to Hedges’s g avg2 is only marginally better
than reg2.

V. DISCUSSION OF RESULTS

With reference to Figure 1, at the end of phase a), we
know the number of Functional Processes (#FPr), thus models
avg1 and reg1 are applicable. At the end of phase b), the other
models are also applicable.

According to the analysis of experimental data, we have
that the models that are applicable at the end of phase b) are
–to different extents– more accurate than the models that are
applicable at the end of phase a). This was expected, since
by progressing from phase a) to phase b), more information
concerning the application is made available through UML
models, thus we can exploit this information to achieve more
accurate size estimates. However, having reliable empirical
evidence that progressing trough application modeling phases
enable the construction of progressively more accurate models
of the functional size is quite important. It also indicates that
collecting measures of COSMIC elements (especially #FPr
and #DG, hence AvDGperFPr) and building several statistical
models of COSMIC size is useful to get a progressively more
accurate notion of the size of the application being built.
Actually, the size effect indicators (see Table IV) suggest that
the models available at the end of phase b) allow only for a
medium-small improvement over the best model available at
the end of phase a), especially as far as reg1 is concerned.
However, to achieve this moderate improvement, all you have
to do is counting the data group (i.e., classes in UML models):
since this counting is very easy (it can even be automated)
building more accurate models at the end of phase b) is not
only possible, but most probably always convenient.

Like in any empirical study, we have to deal with some
threats to the validity of our analysis.

We see no construction issues with our analysis, since all
the used techniques are statistically sound; in fact, they have
been proposed to correct the problems with previous indicators,
such as MMRE.

The main problem we face is probably the generalizabil-
ity of results. In fact, our results derive from the analysis
of a dataset that collects data from only 21 projects. It is
possible that other datasets could support somewhat different

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 82 / 267

conclusions. However, the fact that our dataset includes several
industrial projects, and that the size of the dataset is not
excessively small (especially in the context of empirical soft-
ware engineering studies) supports the hypothesis the results
presented here are sufficiently representative in general. Also,
the logical coherence of the results –namely the fact that the
more information is available from UML models, the more
accurate is size estimation– supports the hypothesis the results
presented here are valid.

VI. RELATED WORK

The accuracy evaluation techniques used in this paper are
being increasingly used by researchers that need to evaluate
the accuracy of new effort estimation proposals. For instance,
Sarro et al. used the Mean Absolute Error and the Standardized
Accuracy to assess the accuracy of a bi-objective effort esti-
mation algorithm that combines confidence interval analysis
and assessment of mean absolute error [17]. To establish if
the estimations of one method were significantly better than
the estimations provided by another method, they tested the
statistical significance of the absolute errors achieved with
different estimation methods via the Wilcoxon Signed Rank
Test, as we did in Section IV.

The techniques used here are becoming quite popular, but
there are also several alternative proposal, actually too many
to be mentioned here. As an example of an alternative to SA,
Tofallis proposed to use the logarithm of the accuracy ratio:
log prediction

actual [18]. As an example of an alternative to Hedges’s
g, Vargha and Delaney proposed the A12 statistic, a non-
parametric effect size measure: given a performance measure
M, A12 indicates the probability that running algorithm A
yields higher M values than running another algorithm B [19].
Finally, a quite different but interesting proposal is StatREC, a
Graphical User Interface statistical toolkit designed to provide
a variety of graphical tools and statistical hypothesis tests to
facilitate strategies for an intelligent decision-making [20].

Concerning the assessment of accuracy of functional size
estimation methods, to the best of the author’s knowledge, very
little work has been done. In general, some evaluation is done
when a method is proposed, as in [21], where the NESMA
estimated method is proposed and its accuracy is evaluated
on the training set. A noticeable exception is [22], where
several early estimation methods for Function Point measures
are evaluated via an empirical study.

VII. CONCLUSION

In this paper, the accuracy of a set of model-based methods
to estimate the COSMIC size of software applications has been
evaluated. The relevance of the paper is based on two factors:

• For practitioners (as well as for researchers) knowing
the accuracy that can be achieved via size estimation
methods is very important. Consider for instance that
the application of the considered size estimation meth-
ods could provide the most important piece of infor-
mation upon which the cost of software is estimated.

• To evaluate the accuracy of estimates, you need re-
liable indicators. Traditional indicators like MMRE
have been proved to be biased. So, finding and testing
more reliable indicators is necessary. Consider for
instance a new estimation technique proposed by

some researchers: how can they confidently claim that
their new technique is good, and possibly even better
than existing techniques? They need reliable accuracy
evaluation techniques and indicators.

According to our empirical study, we can recommend that the
accuracy of estimates be evaluated by

• Computing the mean of absolute residuals (MAR) of
all the models to be tested.

• For any estimation method, doing better than the
baseline models (the constant model and the random
model) is a must. Hence, one should always test
models against the constant model. In addition, one
should also evaluate new estimation methods against
the currently used estimation technique, to see it the
change is worthwhile.

• Using Wilcoxon Sign Rank Test is advisable, since
it can give statistically significant indications that are
particularly informative when two methods’ MAR
values are close.

• Also looking at the boxplots of absolute residuals can
help, especially when a few outliers affect the MAR
at a great extent (as in Figure 2).

• Finally, assessing the effect size using Hedges’s g (or
similar indicators) is useful to assess the extent of the
improvement that a new technique can guarantee over
another one.

When evaluating the accuracy of model-based COSMIC
size estimation methods, we got easily quite representative
indications via the MAR, as shown in Table II. By means
of more sophisticated statistical tools –such as the Wilcoxon
Sign Rank Test and Hedges’s g– we achieved indications that
are slightly more informative, e.g., that there is no statistically
significant evidence that the log 2 model is more accurate than
the reg2 model.

As a final observation, we note that the analyses reported
in this paper were carried out quite easily via simple R [23]
programs. So, practitioner and researchers that need to evaluate
estimation accuracy can invest a small amount of effort to
program a few hundred lines of R code that will make the
analysis reported here totally automatic.

Future work includes:

• Further evaluating model-based COSMIC size estima-
tion methods via additional evaluation methods and
against additional datasets.

• Experimenting the accuracy evaluation methods used
in this paper with other estimation techniques and
using other datasets.

ACKNOWLEDGMENT

The work presented here has been partly supported by the
“Fondo di Ricerca d’Ateneo” of the Università degli Studi
dell’Insubria.

REFERENCES

[1] The COSMIC consortium, Functional Size Measurement Method Ver-
sion 4.0.1 Measurement Manual (The COSMIC Implementation Guide
for ISO/IEC 19761:2011), 2015.

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 83 / 267

[2] V. Del Bianco, L. Lavazza, G. Liu, S. Morasca, and A. Z. Abualkishik,
“Model-based early and rapid estimation of cosmic functional size–
an experimental evaluation,” Information and Software Technology,
vol. 56, no. 10, 2014, pp. 1253–1267.

[3] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,
“What accuracy statistics really measure,” IEE Proceedings-Software,
vol. 148, no. 3, 2001, pp. 81–85.

[4] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation
study of the model evaluation criterion MMRE,” IEEE Transactions on
Software Engineering, vol. 29, no. 11, 2003, pp. 985–995.

[5] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in
comparative studies of software prediction models,” IEEE Transactions
on Software Engineering, vol. 31, no. 5, 2005, pp. 380–391.

[6] K. Berg, T. Dekkers, and R. Oudshoorn, “Functional size measurement
applied to UML-based user requirements,” 2005, pp. 69–80.

[7] L. A. Lavazza, V. Del Bianco, and C. Garavaglia, “Model-based
functional size measurement,” in Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and
measurement. ACM, 2008, pp. 100–109.

[8] A. Živkovič, I. Rozman, and M. Heričko, “Automated software size
estimation based on function points using UML models,” Information
and Software Technology, vol. 47, no. 13, 2005, pp. 881–890.

[9] L. Lavazza and V. Del Bianco, “A case study in COSMIC functional
size measurement: The rice cooker revisited,” Software Process and
Product Measurement, 2009, pp. 101–121.

[10] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, 2012, pp. 820–827.

[11] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman, “Exact mean
absolute error of baseline predictor, MARP0,” Information and Software
Technology, vol. 73, 2016, pp. 16–18.

[12] L. Lavazza and S. Morasca, “On the evaluation of effort estimation
models,” in Proceedings of the 21st International Conference on Eval-
uation and Assessment in Software Engineering. ACM, 2017, pp.
41–50.

[13] R. Rosenthal, H. Cooper, and L. Hedges, “Parametric measures of effect
size,” The handbook of research synthesis, 1994, pp. 231–244.

[14] P. D. Ellis, The essential guide to effect sizes: Statistical power,
meta-analysis, and the interpretation of research results. Cambridge
University Press, 2010.

[15] J. Cohen, “A power primer.” Psychological bulletin, vol. 112, no. 1,
1992, pp. 155–159.

[16] ——, Statistical power analysis for the behavioral sciences. Hillsdale,
NJ: Lawrence Earlbaum Associates, 1988.

[17] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software
effort estimation,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016, pp. 619–630.

[18] C. Tofallis, “A better measure of relative prediction accuracy for model
selection and model estimation,” Journal of the Operational Research
Society, vol. 66, no. 8, 2015, pp. 1352–1362.

[19] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, 2000, pp. 101–
132.

[20] N. Mittas, I. Mamalikidis, and L. Angelis, “A framework for comparing
multiple cost estimation methods using an automated visualization
toolkit,” Information and Software Technology, vol. 57, 2015, pp. 310–
328.

[21] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement-accuracy versus costs-is it really worth it?” in Software
Measurement European Forum (SMEF), 2009.

[22] L. Lavazza and G. Liu, “An empirical evaluation of simplified function
point measurement processes,” International Journal on Advances in
Software, vol. 6, no. 1 & 2, 2013, pp. 1–13.

[23] R Core Team, R: A language and environment for statistical computing.
R Foundation for Statistical Computing, 2014.

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 84 / 267

Measuring Differences To Compare Sets Of Models
And Improve Diversity In MDE

Adel Ferdjoukh∗, Florian Galinier‡, Eric Bourreau†, Annie Chateau† and Clémentine Nebut†

∗Atlanmod, University of Nantes, Inria and LS2N, France
email: adel.ferdjoukh@univ-nantes.fr

†Lirmm, CNRS and University of Montpellier, France

‡IRIT, University Paul Sabatier, Toulouse. France

Abstract—Owning sets of models is crucial in many fields, so as to
validate concepts or to test algorithms that handle models, model
transformations. Since such models are not always available,
generators can be used to automatically generate sets of models.
Unfortunately, the generated models are very close to each others
in term of graph structure and element naming is poorly diverse.
Usually, they cover very badly the solutions’ space. In this paper,
we propose novel measures to estimate differences between two
models and we provide solutions to handle a whole set of models
and perform several operations on its models: comparing them,
selecting the most diverse and representative and graphically
view the diversity. Implementations presented in this paper are
gathered in a tool named COMODI. We applied these model
comparison measures in order to improve diversity in MDE using
a genetic algorithm.

Keywords–Model Driven Engineering; Comparing sets of mod-
els; Diversity of Models.

I. INTRODUCTION & MOTIVATIONS

The increasing use of programs handling models, such as
model transformations makes the need for model benchmarks
more and more important. Elements of the benchmarks are
models which need to be, at the same time, as representative
as possible of their domain-specific modelling language, and
as diverse as possible in order to chase the potentially rare
but annoying cases where programs show a bad behaviour.
The difficulty of finding real test data that fulfil both re-
quirements, and in sufficient quantity to ensure statistical
representativeness, leads to consider automated generation of
sets of diverse models. Many approaches and tools can be used
in this purpose: ferdjoukh et al. [1], Sen et al. [2], Cabot et
al. [3], Gogolla et al. [4].

One of the main issues when attempting to produce dif-
ferent and diverse models, is to state in what extent, and
according to which criteria, the models are actually ”different”
and ”diverse”. The most natural way to formalize this notion
is to define and use metrics comparing models and measuring
their differences.

Determining model differences is an important task in
Model Driven Engineering. It is used for instance in repos-
itories for model versioning. Identifying differences between
models is also crucial for software evolution and maintain-
ability. However, comparing models is a difficult task since

it relies on model matching. This latter can be reduced to
graph isomorphism that is an NP-hard problem [5]. Kolovos
et al. [5] draw up an overview of this issue and give some
well-known algorithms and tools for model comparison. Most
of these approaches compare only two models between them
and find their common elements. This is insufficient for the
problem of diversity improving because differences have to be
measured and a whole set of models has to be considered.

In this work, we propose a distance-based approach to
measure model differences and we provide solutions to handle
sets of models in order to compare them and to extract the most
representative models. A human readable-graphical viewing is
also given to estimate the diversity of a set of models.

In this paper, we consider models which are conform to
meta-models, according to the Ecore/EMF formalization [6].
Model generation is performed using G RIMM [1] [7], which is
based on the Constraint Programming paradigm [8]. Basically,
G RIMM reads a meta-model and translates all elements of
the meta-model into a Constraint Satisfaction Problem (CSP).
A CSP solver is then used to solve the obtained constraint
network, leading to one or more models which are conform
to this meta-model, and meeting a given set of additional
parameters describing the characteristic of desired models. The
relevancy of the produced models is managed through the use
of domain-specific probability distributions, given by the user,
and extend the G RIMM tool to G RRIMM tool [9]. Schema on
Figure 1 shows the steps for model generation using G RRIMM
tool. Constraint Programming provides a deterministic behav-
ior for the generation, it is then difficult to encode diversity
directly in the heart of the tool. Other model generation tools
can be coupled with our approach. For example, during our
experiment we also used models that have been generated
using PRAMANA tool (Sen et al. [2]).

Our contributions are: (1) novel metrics measuring model
differences using distances coming from different fields (data
mining, code correction algorithms and graph) and adapted to
Model Driven Engineering (MDE) (2) solutions to handle a
whole set of models in order to compare them, to extract the
most representative models inside it and to give a graphical
viewing for the concept of diversity in MDE (3) A tool imple-
menting these two previous contributions (4) an application of
these distance metrics in improving diversity in MDE using a

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 85 / 267

Meta-model

OCL

Distribution
of links

Distribution
of attributes

Probability
sampler

CSP
generator

Model
builder

CSP
solver

G RRIMM
G RIMM

Conforming
models

E

T

S

: input

: treatment

: output

Figure 1. Steps for model generation using G RIMM/G RRIMM tool.

genetic algorithm.

The rest of the paper is structured as follows. Section II
details the considered model comparison metrics. Section III
details the solutions for handling a set of models (comparison,
selection of representative model and graphical viewing). The
tool implementing these contributions is described in section
IV. An application of our method to the problem of improving
diversity in MDE is shown in Section V. Section VI relates
about previous work. Section VII concludes the paper.

II. MEASURING MODEL DIFFERENCES

Brun and Pierantonio state in [10] that the complex
problem of determining model differences can be separated
into three steps: calculation (finding an algorithm to compare
two models), representation (result of the computation being
represented in manipulable form) and visualization (result of
the computation being human-viewable).

Our comparison method aims to provide solutions to com-
pare not only two models between them but a whole set of
models or sets of models. The rest of this section describes
in details the calculation algorithms we choose to measure
model differences. Since our method aims to compare sets of
models, we took care to find the quickest algorithms. Because
chosen comparison algorithms are called hundreds of time to
manipulate one set containing dozens of models.

As a proof of concept, we consider here four different
distances to express the pairwise dissimilarity between models.
As stated in [11], there is intrinsically a difficulty for model
metrics to capture the semantics of models. However, formaliz-
ing metrics over the graph structure of models is easy, and they
propose ten metrics using a multidimensional graph, where the
multidimensionality intends to partially take care of semantics
on references. They explore the ability of those metrics to
characterize different domains using models. In our work, we
focus on the ability of distances to seclude models inside a
set of models. Thus, we have selected very various distances,
essentially of 2 different area: distances on words (from data
mining and natural language processing) and distances on
graphs (from semantic web and graph theory). Word distances
have the very advantage of a quick computation, whereas
graph distances are closer to the graph structure of models.
As already said, an interesting feature is the fact that all those
distances are, in purpose, not domain-specific, not especially
coming from MDE, but adapted to the latter.

A. Words distances for models

We define two distances for models based on distances on
words: the hamming distance and the cosine distance. The first
one is really close to syntax and count the number of difference
between two vectors. The second one is normalized and
intends to capture the multidimensional divergence between
two vectors representing geometrical positions.

1) From models to words: We define the vectorial represen-
tation of a model as the vector collecting links and attributes’
values of each class instance, as illustrated on the model of Fig-
ure 2. At the left-hand-side of the figure is an example of meta-
model. At the right-hand-side of the figure are two models
conform to this meta-model, and their vectorial representation.
The obtained vector from a model m is composed of successive
sections of data on each instance of m, when data is available.
Each section of data is organized as follows: first data on links,
then data on attributes. When there is no such data for a given
instance, it is not represented. In the example of Figure 2,
instances of B, which have no references and no attributes,
as imposed by the meta-model, are not directly represented in
the vectors. However, they appear through the links attached to
instances of A. An attribute is represented by its value. A link
from an instance i to an instance j is represented by the number
of the referenced instance j. Each instance of a given meta-
class mc, are represented by sections of identical size. Indeed,
all the instances of mc have the same number of attributes.
The number of links may vary from an instance to another, but
a size corresponding to maximal cardinality is systematically
attributed. This cardinality is either found in the meta-model
or given in the generation parameters. When the actual number
of links is smaller than the maximal number of links, 0 values
are inserted.

2) Hamming distance for models: Hamming distance com-
pares two vectors. It was introduced by Richard Hamming in
1952 [12] and was originally used for fault detection and code
correction. Hamming distance counts the number of differing
coefficients between two vectors.

The models to compare are transformed into vectors, then
we compare the coefficients of vectors to find the distance
between both models:

a = (5, 4, 0, 2, 4, 3, 6, 1)

b = (6, 5, 3, 3, 4, 7, 0, 1)

d(a,b) = 1+ 1+ 1+ 1+ 0+ 1+ 1+ 0

= 6
8

Richard Hamming’s original distance formula is not able
to detect permutations of links, which leads to artificially
higher values than expected. In our version, we sort the vectors
such as to check if each link exists in the other vector. In
the previous example, the final distance then equals to 5

8 .
The complexity is linear in the size of models, due to the
vectorization step. Notice also that this distance implies that
vectors have equal sizes. This is guaranteed by the way we
build those vectors.

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 86 / 267

Meta-model a = (

instance a1︷ ︸︸ ︷
5,4,0,︸ ︷︷ ︸

links

2,︸︷︷︸
attributes

instance a2︷ ︸︸ ︷
4,3,6,︸ ︷︷ ︸

links

1︸︷︷︸
attributes

) b = (

instance a1︷ ︸︸ ︷
6,5,3,︸ ︷︷ ︸

links

3,︸︷︷︸
attributes

instance a2︷ ︸︸ ︷
4,7,0,︸ ︷︷ ︸

links

1︸︷︷︸
attributes

)

Figure 2. Two small models and their vectorial representation.

3) Cosine distance: Cosine similarity is a geometric mea-
sure of similarity between two vectors, ranging from -1 to
1: two similar vectors have a similarity that equals 1 and
two diametrically opposite vectors have a cosine similarity of
−1. Cosine similarity of two vectors a and b is given by the
following formula:

CS(a,b) =
a.b

||a||.||b||
=

n
∑

i=1
ai.bi√

n
∑

i=1
a2

i .

√
n
∑

i=1
b2

i

After a vectorization of models, cosine similarity is then
used to compute a normalized cosine distance over two vec-
tors [13]:

CD(a,b) =
1−CS(a,b)

2

Again, the time complexity of the computation is linear in
the size of models.

4) Levenshtein distance for models: Levenshtein distance
[14] (named after Vladimir Levenshtein) is a string metric
used to compare two sequences of characters. To summarise
the original idea, a comparison algorithm counts the minimal
number of single-character edits needed to jump from a
first string to a second one. There exist three character edit
operations: addition, deletion and substitution.

Our customized Levenshtein distance is based on the
vectorial representation of a model. Each character in original
distance is replaced by a class instance of the model. So,
we count the minimal cost of class instance edit operations
(addition, deletion or substitution) to jump from the first model
to the second one.

First, a vectorial representation of a model is created
according to the class diagram given in Figure 3. Then, we
determine the cost of each one of the three edit operations
over instanceOfClass objects. instanceCost method gives
the cost to add or to delete an instanceOfClass. It counts
the number of edges and the number of attributes of this
instance. substituCost method gives the cost to substitute
an instance by another one. To determine the substitution cost,
we count the number of common links and attributes. Thus,
two instanceOfClass are exactly equal if they have the same

Figure 3. Class diagram for instanceOfClass and Link to build a vectorial
representation of a model.

type, their links have the same type and all their attributes have
the same values.

Finally, Levenshtein algorithm [14] is applied and a metric
of comparison is computed. Our comparison metric gives the
percentage of common elements between two models.

B. Centrality distance for models

Centrality is a real function that associates a value to each
node of a graph [15]. This value indicates how much a node
is central in this graph, according to a chosen criterion. For
example, in a tree, the highest value of centrality is given to
the root of the tree, whereas the smallest values are associated
to the leaves. A centrality function C is defined by:

C : E→ R+

v 7→C(v)

Many usual centrality functions exist. The simplest one, the
degree centrality, associates to each node its degree. Among
the well-known centrality functions, we can cite: betweenness
centrality, closeness centrality, harmonic centrality, etc.

In this paper, we propose a novel centrality function
adapted for MDE and based on eigenvector centrality. This
centrality was also used in the first published version of
PageRank algorithm of the Google search engine [16]. In
PageRank, eigenvector centrality is used to rank the web pages
taken as nodes of the same graph.

1) From models to graphs: Centrality functions are defined
on graphs, and models could be considered as labelled and
typed graphs. Our graph representation of models is obtained
as follows:

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 87 / 267

TABLE I. NODES TRANSFORMATION RULES.

Model element Graph element

TABLE II. EDGES TRANSFORMATION RULES.

Model element Graph element

• Create a node for each class instance (central nodes).

• Create a node for each attribute (leaf nodes).

• Create an edge from each class instance to its at-
tributes.

• Create an edge for each simple reference between two
class instances.

• Create two edges if two class instances are related by
two opposite references.

• Create an edge for each composition link.

Tables I and II summarize and illustrate these transforma-
tions rules. Real numbers c, r and t represent the weights
assigned to composition links, reference links and attributes.

2) Centrality measure: Our centrality is inspired from
pagerank centrality and adapted to models, taking into ac-
count class instances and their attributes, links between classes
(input and output) and types of link between two classes
(simple references, two opposite references or compositions).
For a given node v of the graph, we denote by N(v) the set
of its neighbors. The following function gives the centrality of
each node v:

C(v) = ∑
u∈N+(v)

C(u)
deg(u)

×w(v,u).

w(v,u) gives the weight of the link between node v and
u, determined by the kind of link between them (attribute,
reference or composition). The weight of a link can be given
by the user or deduced from domain-based quality metrics.
For instance, Kollmann and Gogolla [17] described a method
for creating weighted graphs for UML diagrams using object-
oriented metrics.

3) Centrality vector: The centrality vector C contains the
values of centrality for each node. The previous centrality func-
tion induces the creation of a system of n variables equations:
C(vi) = c1C(v1)+ c2C(v2)+ . . .+ ciC(vi)+ . . .+ cnC(vn).

To compute the centrality vector C we must find the
eigenvector of a matrix A whose values are the coefficients of
the previous equations: C = AC, where A is built as follows:

Ai j =


0 if (vi,v j) /∈ Graph,
w(vi,v j)

N(vi)
otherwise.

After building matrix A, we use the classical algorithm of
power iteration (also known as Richard Von Mises method
[18]) to compute the centrality vector C.

The result centrality vector has a high dimension (see
example on Figure 4). To reduce this dimension therefore
improve the computation’s efficiency, we group its coefficients
according to the classes of the meta-model. Then the dimen-
sion equals to the number of classes in the meta-model.

4) Centrality distance: Roy et al. proved in [19] that a
centrality measure can be used to create a graph distance. Here,
the centrality vectors CA and CB of two models A and B are
compared using any mathematical norm: d(A,B) = ||CA−CB||.

C. Discussion

We use in previous paragraphs representations of models
which could be discussed. Indeed, there are potentially many
ways to vectorize models, and we choose one highly com-
patible with our tool. Since CSP generation already provides
a list of classes attributes and links, we simply used this
representation as entry for the metrics. Again, transforming
models into graphs and trees may be done through several
ways. We arbitrarily choose one way that seemed to capture
the graph structure. Our goal here, was to test different and
diversified manners to represent a model and proposed some
distance between them, not to make an exhaustive comparison
study between quality of representation versus metrics. This
study will be done in future works.

III. HANDLING SETS OF MODELS

In this section, we propose an automated process for
handling model sets. The purpose is to provide solutions
for comparing models belonging to a set, selecting the most
representative models in a set and bringing a graphical view
of the concept of diversity in a model set.

This process helps a user in choosing a reasonable amount
of models to perform his experiments (e.g., testing a model
transformation). Moreover, using our approach, the chosen

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 88 / 267

Meta-model

Figure 4. Centrality vector computed for an example model and its equivalent graph.

model set aims to achieve a good coverage of the meta-model’s
solutions space.

If there are no available models, a first set of models is
generated using G RRIMM tool [9]. These generated models
are conform to an input meta-model and respect its OCL
constraints. When probability distributions related to domain-
specific metrics are added to the process, intra-model diversity
is improved. Our goal is to check the coverage of the meta-
model’s solutions space. In other words, we want to help a user
to answer these questions: (1) how to quantify the inter-model
diversity ? (2) Are all these models useful and representative
? (3) Which one of my model sets is the most diverse ?

A. Comparison of model sets

Distance metrics proposed in Section II compare two
models. To compare a set of models, we have to compute pair-
wise distances between models inside the set. A symmetrical
distance matrix is then created and used to quantify the inter-
model diversity. It is noticeable that, thanks to the modularity
of the approach, this step can be replaced by any kind of
dataset production. For instance, if the user already has a set
of models, it is possible to use it instead of the generated one.
Moreover, another distance metric can be used instead of the
metrics we propose.

B. Selecting most representative models

Our idea is that when a user owns a certain number of
models (real ones or generated ones), there are some of them
which are representative. Only these models should be used in
some kind of tests (e.g., robustness or performance). Most of
other models are close to these representative models.

We use Hierarchical Matrix clustering techniques to select
the most representative models among a set of models. The
distance matrix is clustered and our tool chooses a certain num-
ber of models. In our tool, we use the hierarchical clustering
algorithm [20], implemented in the R software (hclust, stats
package, version 3.4.0) [21]. This algorithm starts by finding
a tree of clusters for the selected distance matrix as shown
in Figure 5. Then, the user has to give a threshold value in
order to find the appropriate value. This value depends on
the diversity the user wants. For example, if the user wants
models sharing only 10% of common elements, then 90% is
the appropriate threshold value. This value depends also on the
used metric. Thus, Levenshtein distance compares the names
of elements and the values of attributes, leading to choose
a smaller threshold value (for the same model set) than for

centrality distance which compares only the graph structure of
the models.

Using the clusters tree and the threshold value, it is easy
to derive the clusters, by cutting the tree at the appropriate
height (Figure 5). The most representative models are chosen
by arbitrarily picking up one model per cluster. For instance,
3 different clusters are found using the tree of clusters in
Figure 5. Clone detection can also be performed using our
approach by choosing the appropriate threshold value. Indeed,
if threshold equals to 0, clusters will contain only clones.

TABLE III. AN EXAMPLE OF DISTANCE MATRIX (HAMMING) FOR
10 MODELS.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m1 0 12 27 27 27 26 46 44 45 39

m2 12 0 27 26 27 27 45 45 43 40

m3 27 27 0 18 17 16 46 45 46 39

m4 27 26 18 0 18 18 45 44 45 40

m5 27 27 17 18 0 18 45 43 44 38

m6 26 27 16 18 18 0 45 44 46 40

m7 46 45 46 45 45 45 0 36 36 41

m8 44 45 45 44 43 44 36 0 34 37

m9 45 43 46 45 44 46 36 34 0 39

m10 39 40 39 40 38 40 41 37 39 0

m
7

m
8

m
9

m
10

m
1

m
2

m
5

m
4

m
3

m
6

10
15

20
25

30
35

40
45

D
is

ta
nc

e

threshold = 80%

Figure 5. Clustering tree computed form matrix in Table III.

C. Graphical view of diversity

Estimating diversity of model sets is interesting for model
users. It may give an estimation on the number of models

77Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 89 / 267

needed for their tests or experiments and they can use this
diversity measure to compare between two sets of models.

When the number of models in a set is small, diversity can
be done manually by checking the distance matrix. Unfortu-
nately, it becomes infeasible when the set contains more than
an handful of models. We propose a human-readable graphical
representation of diversity and solutions’ space coverage for a
set of models.

m1m2

m3

m4
m5

m6

m7

m8

m9

m10

Figure 6. Voronoi diagram for 10 models compared using Hamming distance.

Our tool creates Voronoi tessellations [22] of the distance
matrix in order to assist users in estimating the diversity or
in comparing two model sets. A Voronoi diagram is a 2D
representation of elements according to a comparison criterion,
here distances metrics between models. It faithfully reproduces
the coverage of meta-model’s solutions space by the set of
models. Figure 6 shows the Voronoi diagram created for the
matrix in Table III. The three clusters found in the previous
step are highlighted by red lines. We use the Voronoi functions
of R software (available in package tripack, v1.3-8).

IV. TOOLING

This section details the tooling implementing our con-
tributions. All the algorithms and tools are in free
access and available on our web pages: http://adel-
ferdjoukh.ovh/index.php/research/.

Our tool for comparing models and handling model sets
is called COunting MOdel DIfferences (COMODI). It consists
in two different parts. The first one, written in java, is used
to measure differences between two models using the above
4 metrics. The second part, written in bash and R, provides
algorithms for handling model sets (comparison, diversity
estimation and clustering).

A. Comparing two models

It is possible to measure the differences between two
models using COMODI. For that you just need to give as input
two models and their ecore meta-model. Out tool supports two
different formats: dot model files produced by G RIMM and xmi
model files. COMODI supports all xmi files produced by EMF
of generated by G RIMM, EMF2CSP or PRAMANA tools.

The first step is to parse the input models into the ap-
propriate representation (graph or vector). Then, the above
distance algorithms are applied. COMODI outputs different
model comparison metrics in command line mode. Process
of COMODI is described in Figure 7.

Meta-model

Model 1

Model 2

Xmi or dot parsers

Levenshtein distance

Hamming distance

Cosine distance

Centrality distance

Figure 7. Comparing two models using COMODI tool.

B. Handling a set of models

Our tool is also able to handle sets of models and produce
distance matrices, perform clustering and plot diagrams and
give some statistics. The input of the tool is a folder containing
the models to compare and their ecore meta-model. The
supported formats for models are the same as described above
(xmi and dot).

Meta-model

xmi or
dot models

Parsing models
1

Measuring differences
2

Representative Model selection
3

7

8 9

10

1 2

5 4

3 6

10
15

20
25

30
35

40
45

threshold=80%

Diversity Graphical view
4

m1m2

m3

m4

m5
m6

m7

m8

m9

m10

Figure 8. Handling a set of models using COMODI tool.

After parsing all the models into the appropriate repre-
sentation for each metric, distance matrices are produced by
pairwise comparison of models. R scripts are called to perform
hierarchical clustering on these matrices. This allows us to
select the most representative models of that folder. Voronoi
diagrams are plotted and can be used to estimate the coverage
of the folder and to compare the diversity of two folders.
COMODI prints also some simple statistics on models: closest
models, most different models, etc. These steps are shown in
figure 8.

V. APPLICATION: IMPROVING DIVERSITY

The main contributions of this paper - distances between
models, representative model selection to improve diversity -
were used in a work in bioinformatics (named scaffolding).
A genetic approach is paired with G RRIMM model generation
tool to improve the diversity of a set of automatically generated
models. Figure 9 shows how we start from a G RIMM model set
(left) with few difference between them, to G RRIMM (center)
with a better distribution due to the probability sampler, to
something very relevant by using a genetic approach (right)
based on these model distances in order to improve diversity.

We want to address the following question: do proposed
distances and process of automated models selection help to

78Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 90 / 267

Figure 9. Diversity improving process. Black circles are the most representative models of the set.

Figure 10. The meta-model of Scaffold graphs.

improve the diversity and the coverage of generated models.
We chose one meta-model (Figure 10) modeling a type of
graphs involved in the production of whole genomes from
new-generation sequencing data [23]. Hereinafter we give the
experimental protocol:

• Generate 100 initial models conforming to the scaffold
graph meta-model using G RRIMM tool [9].

• Model the problem of improving diversity using ge-
netic algorithms (GA). Our modeling in GA can be
found in [24].

• Run 500 times the genetic algorithm. At each step,
use model distances and automatic model selection to
choose only the best models for the next step.

• View final results in terms of model distances and
meta-model coverage using Voronoi diagrams.

The whole process induces the creation of up to 50,000
different models. Each following figures required about 3h CP
to be computed.

The curves on Figure 11 show the evolution of hamming
and cosine distance while the genetic algorithm is running
(minimum, maximum and mean distance over the population
at each generation). We can observe that both cosine distance
and hamming distance help to improve diversity of generated
models. The quick convergence of both curves (around 100
iterations of GA) is a good way to check the efficiency of both
models distances. We observe that the worst case in the final
population is better than the best case in the initial population,
thus we reached a diversity level that we did not obtained in
the initial population obtained with G RRIMM.

We introduce several improvements to describe the fitness
function used in genetic selection [24] and improve median
value for final population from 0.7 up to 0.9 for Hamming and
from 0.11 to 0.15 for maximum with Cosinus distance. Figure
12 compares the models produced by the different distances.

Red (resp. blue) dotplots represent the distribution of distances
on the final population computed using Hamming distance
(resp. Cosine distance). On the left, models are compared
using Hamming distance, on the right, they are compared using
Cosine distance. We remark that different distances do not
produce the same final models. We can observe that the best
selected models for Hamming distance obtain lower scores
when compared using Cosine distance, and vice versa. Other
experimental results show that our four model distances can
be used in a multi-objective genetic algorithm since they treat
different constructions of the meta-model. Results are better
on the final model set in terms of diversity and coverage, than
when only one kind of distance is used.

Figure 13 shows two Voronoi diagrams of 100 models. The
first one is computed on the initial set of models, the second
on the set of models generated after the 500th iteration of
the genetic algorithm. We kept the same scale to visualize
the introduced seclusion. Here we can see the insufficient
solutions’ space coverage of the first Voronoi diagram. After
running the multi-objective genetic algorithm, we observe a
better coverage of the space. At the end of the process, we
obtain 100 very distinct models.

VI. RELATED WORK

This section draws a state of the art of the topics related
to the work we presented in our paper. So, we give the most
important techniques for the comparison of models and the
approaches that select models to measure and improve the
diversity in MDE.

A. Model comparison

The challenging problem of model comparison was widely
studied, many techniques and algorithms were proposed for it.
Two literature studies are proposed in [5] and [25]. Among
all the techniques, we describe here the techniques that are
close to the model distance algorithms we propose, in both
comparison and objective.

Falleri et al. [26] propose a meta-model matching approach
based on similarity flooding algorithm [27]. The goal of this
approach is to detect mappings between very close meta-
models to turn compatible models which are conform to these
meta-models. The comparison algorithm detects two close
meta-models. A transformation is then generated to make the
models of the first meta-model conform to the second one.
However, in such kind of work, the similarity between models
cannot be detected without using the names of elements:

79Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 91 / 267

0 100 200 300 400 5000

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Genetic Algorithm step

C
os

in
e

di
st

an
ce

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

Genetic Algorithm step

H
am

m
in

g
di

st
an

ce

Figure 11. Minimum, average and maximum hamming and cosine distance while running the genetic algorithm.

Figure 12. Comparison of best selected models pairwise distances distributions.

Figure 13. Solutions’ space coverage of the initial set of models (left)
compared to the last iteration (500th) of the genetic algorithm (right).

lexical similarities are propagated through the structure to
detect matchings. Our approach is more structural.

Voigt and Heinze present in [28] a meta-model matching
approach. The objective is very close to the previous approach.
However, the authors propose a comparison algorithm that is
based on graph edit distance. They claim that it is a way
to compare the structure of the models and not only their
semantics as most of techniques do.

B. Model selection

Cadavid et al. [29] present a technique for searching the
boundaries of the modeling space, using a meta-heuristic
method, simulated annealing. They try to maximize cov-
erage of the domain structure by generated models, while
maintaining diversity (dissimilarity of models). In this work,

the dissimilarity is based on the over-coverage of modeling
space, counting the number of fragments of models which
are covered more than once by the generated models in the
set. In our work, the objective is not to search the boundaries
of the search space but to select representative and diverse
elements in the whole search space. More recently, Batot
et al. [30] proposed a generic framework based on a multi-
objective genetic algorithm (NSGA-II) to select models sets.
The objectives are given in terms of coverage and minimality
of the set. The framework can be specialized adding coverage
criterion, or modifying the minimality criterion. This work of
Batot et al confirms the efficiency of genetic algorithms for
model generation purposes. Our work is in the same vein but
focuses on diversity.

Hao Wu [31] proposes an approach based on SMT (Sat-
isfiability Modulo Theory) to generate diverse sets of models.
It relies on two techniques for coverage oriented meta-model
instance generation. The first one realizes the coverage criteria
defined for UML class diagrams, while the second generates
instances satisfying graph-based criteria.

Previous approaches guarantee the diversity relying only on
the generation process. No post-process checking is performed
on generated model sets to eliminate possible redundancies or
to provide a human-readable graphical view of the set.

VII. CONCLUSION

Counting model differences is a recurrent problem in
Model Driven Engineering, mainly when sets of models have
to be compared. This paper tackles the issue of comparing two
models using several kinds of distance metrics inspired from
distances on words and distances on graphs. An approach and
a tool are proposed to handle sets of models. Distance metrics

80Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 92 / 267

are applied to those sets. Pair of models are compared and a
matrix is produced. We use hierarchical clustering algorithms
to gather the closest models and put them in subsets. Our tool,
COMODI, is also able to choose the most representative models
of a set and give some statistics on a set of models. Human
readable graphical views are also generated to help users in
doing that selection manually.

The first application of our contributions is improving
diversity when generating models. Sets of non-diverse models
are automatically generated. COMODI is coupled to a genetic
algorithm to improve the diversity of this first set of models.

The problematic of handling sets of models and the notion
of distance is also involved in many other works related to
testing model transformations. All these issues are interesting
applications to the contributions of this paper. For example,
Mottu et al. in [32] describe a method for discovering model
transformations pre-conditions by generating test models. A
first set of test models is automatically generated and used to
execute a model transformation. Excerpts of models that make
the model transformation failing are extracted. An expert then
tries manually and iteratively to discover pre-conditions using
these excerpts. Our common work aims to help the expert by
reducing the number of models excerpts and the number of
iterations to discover most of pre-conditions. A set of models
excerpts is handled using COMODI and clusters of close models
are generated. Using our method, the expert can find many pre-
conditions in one iteration and using less model excerpts.

Future work will consist in performing large experiments
involving and comparing other kinds of distances, and to
measure to what extend the way models are encoded into other
structures (e.g., words or trees) affects the results. We remark
that metrics and distances have also very different effects on
the evolution of the models set, and intend to further investigate
and characterize this phenomenon.

REFERENCES

[1] A. Ferdjoukh, A.-E. Baert, A. Chateau, R. Coletta, and C. Nebut, “A
CSP Approach for Metamodel Instantiation,” in IEEE ICTAI, 2013, pp.
1044–1051.

[2] S. Sen, B. Baudry, and J.-M. Mottu, “Automatic Model Generation
Strategies for Model Transformation Testing,” in ICMT, International
Conference on Model Transformation, 2009, pp. 148–164.

[3] C. A. González Pérez, F. Buettner, R. Clarisó, and J. Cabot,
“EMFtoCSP: A Tool for the Lightweight Verification of EMF Models,”
in FormSERA, Formal Methods in Software Engineering, 2012, pp.
44–50.

[4] F. Hilken, M. Gogolla, L. Burgueño, and A. Vallecillo, “Testing
models and model transformations using classifying terms,” Software
& Systems Modeling, 2016, pp. 1–28.

[5] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different
models for model matching: An analysis of approaches to support model
differencing,” in CVSM@ICSE, 2009, pp. 1–6.

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2009.

[7] A. Ferdjoukh, A.-E. Baert, E. Bourreau, A. Chateau, and C. Nebut, “In-
stantiation of Meta-models Constrained with OCL: a CSP Approach,”
in MODELSWARD, 2015, pp. 213–222.

[8] F. Rossi, P. Van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier Science Publishers, 2006.

[9] A. Ferdjoukh, E. Bourreau, A. Chateau, and C. Nebut, “A Model-Driven
Approach to Generate Relevant and Realistic Datasets,” in SEKE, 2016,
pp. 105–109.

[10] C. Brun and A. Pierantonio, “Model differences in the eclipse modeling
framework,” UPGRADE, The European Journal for the Informatics
Professional, vol. 9, no. 2, 2008, pp. 29–34.

[11] G. Szárnyas, Z. Kovári, Á. Salánki, and D. Varró, “Towards the char-
acterization of realistic models: evaluation of multidisciplinary graph
metrics,” in MODELS, 2016, pp. 87–94.

[12] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System technical journal, vol. 29, no. 2, 1950, pp. 147–160.

[13] A. Singhal, “Modern information retrieval: A brief overview,” IEEE
Data Engineering Bulletin, vol. 24, no. 4, 2001, pp. 35–43.

[14] V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966,
pp. 707–710.

[15] G. Kishi, “On centrality functions of a graph,” in Graph Theory and
Algorithms. Springer, 1981, pp. 45–52.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

[17] R. Kollmann and M. Gogolla, “Metric-based selective representation of
uml diagrams,” in CSMR. IEEE, 2002, pp. 89–98.

[18] R. von Mises and H. Pollaczek-Geiringer, “Praktische verfahren der
gleichungsauflösung.” ZAMM-Journal of Applied Mathematics and
Mechanics, vol. 9, no. 2, 1929, pp. 152–164.

[19] M. Roy, S. Schmid, and G. Trédan, “Modeling and measuring Graph
Similarity: the Case for Centrality Distance,” in FOMC, 2014, pp. 47–
52.

[20] F. Murtagh, “Multidimensional clustering algorithms,” Compstat Lec-
tures, Vienna: Physika Verlag, 1985, 1985.

[21] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, 2008.

[22] F. Aurenhammer, “Voronoi diagrams a survey of a fundamental
geometric data structure,” CSUR, ACM Computing Surveys, vol. 23,
no. 3, 1991, pp. 345–405.

[23] M. Weller, A. Chateau, and R. Giroudeau, “Exact approaches for
scaffolding,” BMC Bioinformatics, vol. 16, no. 14, 2015, pp. 1471–
2105.

[24] F. Galinier, E. Bourreau, A. Chateau, A. Ferdjoukh, and C. Nebut,
“Genetic Algorithm to Improve Diversity in MDE,” in META, 2016,
pp. 170–173.

[25] Voigt, Konrad, “Structural Graph-based Metamodel Matching,” Ph.D.
dissertation, Dresden University, 2011.

[26] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut, “Metamodel
matching for automatic model transformation generation,” in MODELS,
2008, pp. 326–340.

[27] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding:
A versatile graph matching algorithm and its application to schema
matching,” in ICDE, 2002, pp. 117–128.

[28] K. Voigt and T. Heinze, “Metamodel matching based on planar graph
edit distance,” in Theory and Practice of Model Transformations, 2010,
pp. 245–259.

[29] J. Cadavid, B. Baudry, and H. Sahraoui, “Searching the Boundaries
of a Modeling Space to Test Metamodels,” in IEEE ICST, 2012, pp.
131–140.

[30] E. Batot and H. Sahraoui, “A Generic Framework for Model-set
Selection for the Unification of Testing and Learning MDE Tasks,”
in MODELS, 2016, pp. 374–384.

[31] H. Wu, “An SMT-based Approach for Generating Coverage Oriented
Metamodel Instances,” IJISMD, International Journal of Information
System Modeling and Design, vol. 7, no. 3, 2016, pp. 23–50.

[32] J.-M. Mottu, S. Sen, J. Cadavid, and B. Baudry, “Discovering model
transformation pre-conditions using automatically generated test mod-
els,” in ISSRE, 2015, pp. 88–99.

81Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 93 / 267

Proposal of a Computer Supported Collaborative Work Model for E-Commerce
Web Sites Based on a Quality Guiding Framework

Hédia Jegham
ISITCom University of Sousse

Sousse Tunisia
e-mail: jegham_hedia@yahoo.fr

Sonia Ghannouchi
ISG Sousse University of Sousse

Sousse Tunisia
e-mail: sonia.ayachi@isgs.rnu.tn

Abstract—The exponential growth of e-commerce practices
around the world is about to transform drastically traditional
commerce by its infrastructure potential, the measurement of
its intensity and its effects on the emergence of an information
society. The study of the quality of e-commerce web sites is
then prevalent; it is based on a review of literature in several
fields: management, web-marketing, software engineering and
Computer Supported Collaborative Work. The paper has a
dual purpose, to propose at first a framework to guide the
quality of e-commerce web sites and then to validate it by
designing and developing a Computer Supported
Collaborative Work. The framework was based on e-
commerce web site’s life cycle and Deming’s wheel in addition
to a quality measurement scale named e-ComDecaQual as it is
in ten areas: ergonomics, features, content structure and
information richness, compatibility, security, accessibility,
referencing-positioning and e-reputation, adherence to
regulations, compliance with standards, and sustainable
development.

Keywords-e-commerce; quality; dimension; measurement scale;

CSCW.

I. INTRODUCTION

The World Wide Web, being a giant of information and
communication technology, allows millions of Internet
users to engage in business transactions that literally
transcribe reality and even surpass it by imposing new
practices and by building creative horizons towards new
uses and new business models. The United Nations
Economic and Social Council [42] considers that
Information and Communication Technologies (ICTs),
characterized as universal technologies, have a great
capacity to enhance development by increasing:

• Efficiency of economic and social processes;
• Efficiency of cooperation between different

stakeholders;
• The volume and range of information available to

individuals, businesses and governments.
In the e-commerce domain in particular, we are indeed

witnessing a frenetic development of applications constantly
enriched with new services, new forms of navigation, and
new features of interfaces ranging from flash animations
that apply quick-views, various zooms on product store,
specialized research, price comparisons, virtual visits and
virtual fitting by augmented reality. On certain sites, the
user becomes "prosumer". "Prosumer" is a new marketing
concept; it is a diminutive, shortcut and concatenation of
two words producer and consumer [15]. Consumer becomes
"prosumer" by participating in the design of his own product

or service as it is possible on "freeyourshirt" site [69]; the
examples are multiple. The "prosumer" chooses his location,
product, then the colour, the size, the picture or design or
text to be printed on thus he becomes producer of his
individualized product.

There is much material for the study of the quality of e-
commerce web sites (E-CWS), which can play a major role
in improving the turnover of e-commerce by increasing
traffic. The quality of merchant sites can play a key role in
attracting customers, gaining their trust and increasing their
satisfaction, in retaining them and generating competitive
success. We will therefore base the foundation of a
framework using a measuring scale that emphasizes the
quality of an E-CWS. This quality guidance framework
would constitute an infrastructure of a Computer Supported
for Cooperative Work (CSCW).

This paper is structured into six sections. In Section 2,
the subject is framed in its context and explained by a set of
questions. In Section 3, a review of the literature is exposed
and dispatched on the specialties that gave serious
consideration to the subject, namely management, software
engineering, web-marketing scholars and practitioners.
Section 4 gives a synthesis of literature and classifies
quality domains to prepare Section 5, which is reserved for
the design of quality guidance framework for e-commerce
web sites. In Section 6, a validation aspect of quality
guidance Framework is offered by Computer Supported
Cooperative Work.

II. GENERAL CONTEXT AND RESEARCH QUESTIONS

Several factors come into play to boost or to slow down
the flowering rate of e-commerce and consequently
economy. Among these factors we can cite the degree of
adherence to technological progress, comprehensive
requirement engineering for a project as E-CWS, legislation
in force in a country, rigorous compliance with standards.
Adopting a framework for enhancing E-CWS’ quality must
be considered as part of a quality strategy. During the
resolution of this issue the study sought to respond these
questions:

• How do companies that practice e-commerce
guarantee their evolution and their sustainability
despite their competitors?

• Are there precedent means for improving E-CWS’
quality? What are the main guidelines or quality
domains for E-CWS? How these domains are
refined and how can they be measured?

• How do quality dimensions of E-CWS help satisfy
the customer?

82Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 94 / 267

• How to prove and verify such a framework for E-
CWS’ quality?

As the study seeks to formalize a framework of quality
for E-CWS, several examinations of theoretical foundations
about quality were made as a review of literature in different
domains such as in general management, in merchant web
practices, in software engineering and in web technologies.
The objective guided by a firm desire for a continuous
improvement of quality is firstly to identify relevant
dimensions and items of E-CWS’ quality, in order to
propose them a set of control tools. In a second step, by
dispatching the quality control tools on the various jobs
profiles, which intervene throughout the life cycle of E-
CWS, we end up formalizing a quality framework for E-
CWS. In a third step, because of an intensive collaborative
work between team members, CSCW was checked to learn
how it is possible to concretize the framework in it.

III. LITERATURE REVIEW

According to John Ruskin, "Quality is never an
accident; it is always the result of an intelligent effort" [70].
Considering that we are dealing with e-commerce quality
we need to come back to former disciplines’ contributions
as management, web-marketing and software engineering.
These ones will be introduced in following sub-sections.

A. Quality in management

The quality has blossomed in the United States through
the works of Shewart and Deming, but it has also flourished
in Japan, and its pioneers are Ishikawa et al. [23][47].
Quality is a constantly evolving and predictive foundation
closely linked to developments in the industrial sectors. It is
marked by economic movements and the history of
companies, in particular globalization and the gathering of
international markets. It focuses on an ultimate goal of
customer satisfaction, delivering quality products and
services. The company must deploy a continuous quest to
identify and define customer needs and expectations in
order to improve itself, and improve the quality of its
products and services. Giordano [25] defines quality as "the
set of sensory and sensorial impressions, as well as clues
that appeal and attract attention from the first glance,
interpreted by the consumer as a promise of quality that
gives him trust, and satisfies him during the use". Yu and
his collaborators propose that perceived quality is a
subjective judgment constructed in the mind of the user and
it is him who determines its value [67].

According to the quality management researcher
Ishikawa [47], it can only be defined in terms of whoever
does it; for the worker: quality means "being proud of his
work". For the manager of the company: quality means "the
realization of the requested production". For the manager of
the methods: "the quality is the respect of the
specifications". For the marketing director: "quality is the
best fit of the product to the expectations of the public". As
maintained by Chikli [5], "Quality is not the only goal to
hold a diploma or a certification, the aim is to improve the
company continuously so that it is more in step with the
demands of the market". Literature detects the addition of

other terms, which are embedded to quality in order to
imply various meanings: Quality inspection, quality control,
quality insurance and total quality management. All the
tools and means used to achieve a quality level must be
replicated on all internal and external processes that
contribute to the manufacturing of the product or the design
of the service. In this way, if quality is the act of satisfying
the customer, total quality concerns the whole company,
with its environment relations.

This induces that quality has different views and it is
oriented to satisfy customer. It concerns every worker and it
must be replicated all over a firm’s functions and aspects.

B. Quality in software engineering

From a computer science perspective, according to
Burdet [63], the quality of software raises the problem of
confusion due to the overuse of the reference framework for
a given specialty. This fact runs counter the achievement of
satisfaction, which is the first quality challenge. Indeed, the
programmer will be interested in the possibility of code
reuse; the system engineer will be interested in the
performance and the optimized use of resources; the
maintenance specialist will more aim at the predisposition
of the software to modification, improvement and evolution.
"The ability of a set of intrinsic characteristics to meet
requirements" is the definition that was adopted by ISO
9000 for quality software. It dismisses all subjective and
personal vision; it reveals its strong link to demands or
requirements engineering. Kano distinguishes between
explicit and implicit or latent requirements [71]. The
satisfaction levels of the clients are combined in the Kano
diagram and are analysed in this way: The quality of
software is therefore its ability to satisfy expressed but also
tacit demands. The Kano diagram presented on an
orthonormal frame includes a diagonal line that goes
through the origin and represents the expressed
functionalities; they are formulated by the client who feels
more satisfied as they are more controlled. On the other
hand, if the functionalities include any defect, they lead to a
fall in proportional satisfaction. The Kano diagram [71] also
includes two hyperbolas: the one at the bottom of the
diagonal represents the obvious and basic functionality to
talk first about product and neutral satisfaction. The smallest
defect in these functions is disastrous (personal data
security, payment security and product delivered not
conforming to the representation on the site). The hyperbola
at the top is that of the attractive and unpredictable features
that are part of the provocation of the client’s latent needs
and the creation of expectations. With a minimum of these
functions, the customer can be exalted. These are value-
adding functions and an opportunity for innovation. This
can be noticed in virtual testing interfaces on some E-CWS
or in the interfaces completing the design of customizable
products. Keeping up with a highly competitive conjecture,
which includes taking possession of ICT implies that it is no
longer worth to conform to the quality of the explicit
requirements or the basic ones for software. One should
rather look for attractive features to be distinguished.

83Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 95 / 267

Consistent with software engineering, it should also be
pointed out that quality is governed by two model families,
the models of certification and those of maturity and
improvement [52]. As examples of the first family of
models, we can quote the ISO 9000 certification, the France
Telecom TQE and the DOD 2167A certification. In the
second family whose purpose is to measure the ability of
engineering company to develop and maintain quality
software, we can enumerate the Software-Capability
Maturity Model (SW-CMM), Trillium (from Bell Canada
for Telecommunications) and the Software Process
Improvement and Capability Determination (SPICE) project
launched in 1993 with the objective of establishing a
normative model for the evaluation of software
development processes in the organizations concerned [52].
Without pretending to reach the scale of such projects that
require great human and material investments, it is in the
second family that we place our attempt to propose a
framework and a CSCW to enhance E-CWS’ quality.

C. Quality according to Web-marketing scholars and
practitioners

Several studies have been carried out to find domains
that greatly influence the perceived quality of E-CWS. Parts
of them have confirmed the importance of certain domains
without constructing scales. Some other contributions have
resulted in formal scales for measuring e-commerce service
quality. Practically all the studies are based on the same
research methodology: considering client satisfaction by
making assumptions, formulating each hypothesis with a set
of questions that can have qualitative and measurable
answers according to Lickert scale. The hypothesis is used
to verify the importance of an aspect of perceived quality.
This would insinuate a quality dimension. The different
questions that define a hypothesis transcribe some detail that
corresponds to a quality item. Results of the questionnaires
administered to a public of respondents lead to various
statistical models confirming or invalidating hypotheses.
They also yield indicators for the degree of correlation of
quality items. The scale’s coherence is high if the responses
to the elements are correlated with each other and with the
total score of the scale. The scale’s coherence is doubtful if
the scores of several elements are in contradiction with the
total score. Researchers resort to calculate the Cronbach
alpha as a method to estimate the internal coherence of their
scales [17].

Among the recurring fixed hypotheses that led to quality
dimensions and that can be named, we can mention the
quality of design or ergonomics, information richness,
reliability, ease of use, responsiveness, security, service,
efficiency, privacy. Domains found in literature are
organized separately based on whether they emanate from
simple studies or from famous scales or further more if they
are introduced by practitioners. In the following passages
we list them in descending order of number of authors who
cited them.

In studies that did not officialise scales, most quoted
domain was quality of design, number of researchers

included it in their surveys [1][13][27][31][33]-
[36][39][43][48][49][50][54][55][57].

Second, scholars dealt with variety and quality of
information in their studies such as[1][12][13][27][29]-
[31][34][36][43][48][49][54][55][57]. Security domain is in
third place as well as reliability and reactivity. These
scholars took security into account [12]
[13][27][31][34][39][43][48][49][54][57][64]. Then ease of
use was quoted by [13][35]-
[36][43][48][50][54][55][64][65]. A quality criterion called
customization was evoked by [33][34][39][43][48][50][55].
Performance (or quoted by some ones efficiency) was cited
by [13][31][39][46][54][56]. Privacy was quoted by
[13][46][49][56]. We found also reputation quoted by
[39][46][57][64][65]. Feeling quoted by
[12][31][39][46][50][55].

Despite the fact that Paschaloudis’s study [46] does not
fall directly within the domain of e-commerce and even if it
does not bring a new scale, we consider it for several
reasons: It is a solid exploratory study based on the seven
dimensions of the most famous scales. The study resulted in
487 valid responses on a volume of 800 questionnaires, a
factor and correlation analysis followed by a series of
regression analysis. Its interest lies in the fact of bringing
back a double proof, one first proof confirming the
reliability and consistency of the two scales mentioned
above. One second proof confirms the strong and positive
correlation between them and the perception of the quality
of the banking sites and thus follows the possibility of their
applicability and reusability in other fields.

To be complete, other to lesser degrees of citations were
found in literature are quality of service, access, ease of
contact, customer loyalty, interactivity, structure, trust,
incitement, ease of ordering, ease of terms, ease of
responding, speed of delivery, customer support,
community for e-reputation, storage capacity,
maintainability and web store policies.

As came first, the study was also extensively interested
in proper quality scales. The scale WebqualTM proposed by
Loiacono [37][38] is in 12 domains : (1) accommodation of
information to the task, (2) trust, (3) response time, (4)
attractiveness of design, (5) intuitiveness, (6) visual
attraction, (7) creativity, (8) empathy, (9) integrated
communication, (10) interactivity, (11) business process and
(12) availability. SiteQual accredited by Yoo [66], has 4
domains (1) ease of use of the site, (2) site design, (3) speed
of the order process and (4) security. WebQual scale
belongs to Barnes [7] and contains 3 quality domains (1)
quality of interactivity and service (trust, empathy), (2) site
usability (design), (3) quality of the information presented
on the site.

PIRQUAL of Francis [24] encloses 6 quality domains
(1) online store features, (2) design of the product sheet, (3)
conditions of sale, (4) conformity of delivered products, (5)
customer service, (6) security.

e-ServQual the most famous and former scale coined by
Zeithaml [68]and Parasuraman [44] as cited by Buttle [11]
is based on 11 domains : (1) reliability, (2) liability, (3)
access, (4) flexibility, (5) navigational facility, (6)

84Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 96 / 267

efficiency, (7) insurance / trust, (8) security, (9) knowledge
of prices, (10) aesthetics, (11) customization. eTailQscale
is the work of Wolfinbarger [62] based on 4 domains (1)
reliability and compliance with commitments, (2) site
design, (3) security / privacy, (4) services provided to
consumers. E-S-QUAL and E-RES-QUAL is a double
scale considered as the most famous scale set up by
Parasuraman [45], E-S-QUAL contains (1) efficiency of the
site, (2) compliance with commitments, (3) system
availability, (4) respect for the privacy of users and E-RES-
QUAL contains (1) reactivity, (2) compensation and (3)
contact.

NetQu@l conceived by Bressolles in 2006 [10], is
composed by (1) quality and quantity of the information
presented on the site, (2) ease of use of the site, (3) design
or the graphic style of the site, (4) reliability and
compliance, (5) security and privacy of personal data, (6)
offer proposed on the site, (7) interactivity and
customization. eTransQual formalized by Bauer and co-
authors [8] who recognize that a quality scale should
integrate functional elements and hedonic ones. Their scale
accommodates (1) features and design, (2) enjoyment
(Pleasure), (3) business process, (4) reliability and (5)
reactivity (responsiveness). PeSQ is the measurement tool
of Cristobal [16] who analysed seriously what leads to user
satisfaction levels? And what leads to loyalty? It is based on
(1) website design, (2) customer service, (3) insurance and
order management. The scale E-SELFQUAL proposed by
Ding [18] was refined in 4 domains so thus: (1) Perceived
control: you know what to expect in following steps, you
know how long it takes to complete the transaction, and you
know information will be provided in each page. (2) Service
convenience: convenience for registration, convenience for
changing items in the basket, convenience to update your
order. (3) Customer service: customer service is easy to
access, customer service is responsive, and customer service
shows a sincere interest in solving problems. (4) Service
fulfilment: you get what you ordered, the order is delivered
as promised, the final price reflects the true value, and the
product was presented accurately on the site.

D. Quality according to practitioners

Some other quality criteria were gathered from
practitioners’ experience. According to Malassingne [40],
web quality is the best way to produce content and web
services. This encompasses the end result, but also the way
to do it. It is determined on the basis of identified
objectives, which make it possible to orient the choices and
to measure the continuous improvement with regard to these
objectives. The web quality is managed using all the
disciplines of the web pages’ design and realization. The set
is to ensure the best possible user experience while
optimizing the realization processes [40]. The same
reference quoted Lafon who started from the definition of
the web’s god-father Tim Berners Lee: "Put the Web and its
services at the disposal of all individuals, whatever their
hardware or software, their network infrastructure, their
native tongue, their culture, their geographical location, or

their physical or mental abilities". Lafon quickly realized
that what comes out of the Tim Berners Lee’s definition is
the importance of practicing web quality. In its approach, it
fits perfectly with the precursors, those of the management
field: To deploy quality measures on all the professions of
the web useful during the process of any website’s design
and construction. Lafon bases his method on seven quality
domains: (1) compliance with standards, (2) accessibility,
(3) performance, (4) security, (5) functionalities (or
features), (6) ergonomics and (7) referencing [40].

Sloïm, a purely quality control manager defines web
quality as "The ability of an online service to meet implicit
or explicit requirements". He emphasizes the difference
between Web Quality and Web Quality Management. The
latter is a "Set of coordinated activities whose objective is to
evaluate, improve and guarantee web quality" [40].

The same reference talked about Taillandier who dealt
with W3C standards and accessibility in the digital world to
achieve quality. He gives this definition: "Quality is pre-
eminently an ideal to be achieved and not an end in itself"
[40]. The challenge is to arrive at taking into account and to
cohabit for the best all disciplines supposed to intervene in a
modern web production chain – (1) user experience, (2)
information architecture, (3) ergonomics, accessibility, (4)
web design, (5) performance, (6) mobility, and (7) security
– all of them according to the project specific constraints. In
conformity with Google's guidelines, there are seven high-
quality criteria [4]: (1) the site must have good content, (2)
no technical error, (3) positive reputation, (4) website must
reveal reliability, high level of expertise in addition to some
authority, (5) site must rotate design around its features, (6)
the site must provide useful information about the site, and
(7) the site must offer sufficient quantities of relevant and
satisfactory information.

IV. SYNTHESIS OF LITERATURE AND CLASSIFICATION OF

QUALITY DOMAINS

As outcomes of literature review, many apprenticeships
are won: Quality is a continuing occupation and labour.
Quality Management is a set of coordinated activities whose
objective is to evaluate, improve and guarantee web quality.
Quality must be considered according to the job profile.
Quality must be deployed in minute details of domains. E-
CWS must rotate design around its features. Great control of
programming technologies allows offering expressed and
attractive features. Nearly thirty domains have been
identified, a great part of them are dealing with customer
relationship and customer satisfaction that should be
transposed on web sites by features.

Every domain contains a set of items. In an effort to
draw up an almost exhaustive list of quality domains,
terminology has been first brought closer and unified. Table
1 shows a decreasing classification of quality domains in
terms of citation in the literature and according to
practitioners’ recommendations.

85Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 97 / 267

V.DESIGN OF QUALITY GUIDANCE FRAMEWORK FOR E-
COMMERCE WEB SITES

In the development of a quality framework for E-CWS,
steps that were followed are described in these sub-sections.

A. Research methodology

 The quality of a diagnosis depends on the model’s
quality; the model describes the organization’s vital aspects
[19]. In order to design a model for quality guidance
framework, an ad-hoc approach was adopted. It is described
as follows:

1) Step 1 Gathering domains and items
• Collect the maximum of E-CWS’ quality domains

cited by scholars and some practitioners.
• Collect items for each domain.
• Move certain domains closer and unify them as they

have common sense, 30 domains were retained.
Prepare a matrix: with authors on lines and quality
domains on columns.

• Add a mark at the crossing if the author talks about
the quality domain in his study.

• Sum marks for each quality domain to calculate
relevance degree for a given quality domain
according to literature.

• Sort totals by domains as shows Table 1
Three separate matrixes have been produced, depending

on whether the work proceeds from exploratory studies by
researchers (Researchers' domains) or whether they are
quality measurement instruments formalized on formal
scales (Researchers’ formal scales) or from the
recommendations of practitioners (Practitioner domains).
The overall frequency of each of the thirty domains was
calculated, sorted and combined in Table 1.

2) Step 2 Structuring domains in a scale
• Highlight the best domains that meet certain

conditions: those that occupy the best ranks, those
that correspond to the criteria of software quality
according to software engineering, those for which

we are able to find control tools and those that are
easily placed on E-CWS’ life cycle. Indeed, what we
are interested in, are domains that are currently
possible to control by tools and those completely
under the control of the team members (designers,
developers, salesmen and web-marketers).

• Structure domains with low rates as sub-domains or
domain items of high domains as depicted in Figure
1.

• As a first outcome we selected the seven first
domains as follows: Ergonomics, i.e., Design,
Features, Content structure and Information
Richness, Security, Compatibility, Accessibility and
Referencing SEO e-reputation.

3) Step 3 Enriching the scale
• As a contribution, three domains were added. They

were not sufficiently dealt with until then, but they
were actually with imminent importance in e-
commerce field according to a number of scholars:

Quality Domain and its rank Rate
Quality Domain and

its rank
Rate Quality Domain and its rank Rate

1- Design /Ergonomics 26 11-Privacy 7 21-Maintainability 2.5

2- Information variety 22 12-Access 6.5 22-Customer support 2

3- Reliability 17 13-Insurance 5.33 23-Customer loyalty/Fidelity 2

4-Security 17 14-Feeling 4.5 24-Incitement 2

5- Ease of use 16 15-Trust 4.16 25-Ease of terms 1

6- Reactivity 14.33 16- Ease of ordering 4 26-Ease of responding 1

7- Service quality 12.33 17-Structure 3.5 27-Speed of delivery 1

8- Performance/Efficiency 11.5 18-Interactivity 3 28-Community for e-reputation 1

9- Reputation 10.33 19-Web store policies 3 29-Storage capacity 1

10- Customization 9 20- Ease of contact 2.5 30-Low prices 0

Figure 1. E-ComDecaQual Scale Composition.

TABLE I. QUALITY DOMAINS’ RATE ACCORDING TO SCHOLARS AND PRACTITIONERS

86Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 98 / 267

E-commerce regulation [6][32][53], Respect of
standards [3][26][60] and Sustainable
development[9][14][20].

• Establishing a new quality scale based on ten
domains hence the name E-ComDecaQual Figure 1.

4) Step 4 Associating control tools to job profiles
• Search for tools and test them to control the quality

of domains’ items.
• Assign one or more quality domain to one or more

job profiles.
• Locate quality domains on E-CWS life cycle as a

first view of the framework, see Figure2.
E-CWS’s quality is quality perceived by the customer.

Thus, it mainly revolves around the customer’s satisfaction.
To reach customer’s satisfaction, we concentrate on all job
profiles that intervene and operate during E-CWS’s life
cycle from its birth as a project until its decline. The process
of designing, developing and exploiting an E-CWS is no
more than conducting its life cycle while arranging,
combining and calculating sequential and parallel steps with
various profiles of jobs. In the schematic representation of
this point of view, we distribute the quality domains of e-
ComDecaQual scale on different stages. The role of this
framework view is to highlight job profiles and to ensure
staff satisfaction according to quality’s predecessors; the
managers.

5) Step 5 Integration in PDCA wheel
• Distribute quality domains on Deming’s PDCA

wheel as another view of the framework and to
emphasize the continuous and evolving quality
undertaking as shows Figure 3.

Being aware that improvement must be continuous to
strengthen the efficiency of any project [63], the quality
guidance framework was built around the PDCA model of
Deming and then map the E-CWS life cycle on it. Deming
distinguishes three types of quality [2]:

The quality of the design / redesign: it begins from the
expression of consumer needs and prototyping. That’s what
we planned in the Act of the first round of the wheel Figure
3. The company must adopt the predictive attitude and have
a long-term vision of the needs and behaviours of
consumers. It also must continuously operate adaptations of
production and the commercial apparatus, that’s what we
planned for further rounds of the wheel.

Compliance quality is measured by the company's
ability to conform to and then to exceed the basic product
specifications. It is based on a managerial and
organizational willpower that leads all processes involved in
delivering the product / service to do so with a zero-defect
goal. These are possible due to regular turns of the wheel
and aiming for attractive features, see Figure3.

Quality of performance: it observes, through sales
analysis, how the product is perceived on the market and
perceives the use that the customer makes. It is through use
that his consciously expressed and unconscious expectations
are revealed. The quality of performance will influence the
quality of re-design to spin the wheel of continuous

improvement [2]. That’s what we expressed by the e-
commerce life cycle and implication of all actors.

B. A model abstraction for e-ComDecaQual

An overview of the semantics described throughout this
study is now possible by an object data model. UML allows
practicing an abstraction of the static vision for the quality
guidance framework and its e-ComDecaQual scale by
means of a class diagram, see Figure 4. The domains class is
at the moment instantiated to the ten domains identified in
the e-ComDecaQual scale, but it is scalable and dynamic to
accommodate other domains with their possible structuring
items and tools since the E-CWS are in perpetual
relationship with technological progress. The tracking of
including a quality domain is taken into account by
monitoring the publications, dates and authors who brought
back the proof and the demonstration in the manner of the
present study. The domains class is in full aggregation with
itself to present the possibility that a domain could be
divided into sub-domains for a better dispatching of items
and their measurement tools like ergonomics, which allow
studying behavioural and structural sub-domains. The
functional domain is also subdivided into common or
standard functionalities, e-commerce functionalities and
collaborative or community functionalities [59].

Sub-domains can have a different meaning, which is
rather a technical structuring such as user tests, statistical
analysis and eye-traking [59]. Each domain or sub-domain
is a collection of items. The model even allows multi
domain patterns (structuration or imbrication). Most items
are measurable by tools. Tools are known to be specialised
in one domain. E-commerce compliance with law and
sustainability do not have classic control tools at present,
they are related to datamining tools. As dealt with in the
Deming’s wheel, in Figure 3, E-CWS are inventoried and

Figure 2. E-commerce Site’s Life Cycle and Quality Domains.

87Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 99 / 267

they are subject to periodic quality control by a tool that
measures the quality of items’ set, therefore of a particular
domain or sub-domain. The control is requested by a
member of the team specialized in a domain, it could be a
content editor, a developer or integrator, a web designer or
computer graphics designer. The quality project manager or
the administrator coordinates their jobs. A tool naturally
returns a comprehensible report deciphered for a domain
specialist. The report is taken into account for the Check and
the Act. The report is recorded and archived in the domain
quality repository.

The inheritance between the team member and the
quality administrator designates that the population
concerned is entirely either team members or quality
administrator and that a member could combine two
different roles, which is in general the case of the project
manager who may have another specialty. Quality tools are
selected and proposed by the specialists of a domain. A
team member chooses to control E-CWS domain quality
from this validated set of tools. The quality reports are
ordered and dated; the PDCA wheel runs continuously.

VI. VALIDATION OF QUALITY GUIDANCE FRAMEWORK

BY A COMPUTER SUPPORTED COLLABORATIVEWORK

As a guidance framework named e-ComDecaQual to
foster the quality of E-CWS based on two axes and a
measurement scale was specified in a first part of the
present study, it made it possible to ascertain that it is
closely related to domains specialities, but with great regard,
it was also recognized that quality implicates a high
collaboration, cooperation, coordination and communication
between group of actors working together around an e-

commerce project, e.g., various reports monitoring tools
often address several domains for instance ergonomic
tools, features, content structure and information richness
– Thus the second part of the study is to validate the
earlier specified quality guidance framework by adapting
a CSCW.

In the following section, conceptual specification
based on computer-based technologies is presented from
two points of view, from 3C specification (Collaboration,
Cooperation, and Communication) and then from
functional specification to give finally an overall view.

A. Preliminary

At present it is a clear fact that among most visited
websites, we find social networks as Facebook and
Google Hangout, collaborative document editors as
Google docs, online games, which are part of
collaborative applications. According to Teruel et al. [58],
there is a collaborative trend for modern software
nevertheless, despite the possibility to adopt exhaustive
methodologies to design them, these methodologies have
a great deficiency, and they do not seriously treat
Requirement Engineering stage. This lack comes from the
complexity of dispatching user requirements on CSCW’s
conventional tasks (3C: Collaborating, Cooperating, and
Communicating), which in turn is subject to the degree of

users’ awareness [58]. Consequently, to avoid these
weaknesses, a special consideration will be taken while
designing e-ComDecaQual’s CSCW. Before that, there is a
need to clarify the ambiguity between groupware and
CSCW.

By focusing on how computer networking technologies
can support collaborative control quality activities, great
polemic was felt to firmly settle on a similar or a
distinguished definition for CSCW and groupware.
According to Whitaker [61], it is in 1984 that Greif and
Cashman coined the label Computer-Supported Cooperative
Work (CSCW) as a marketing tag for a vision of integrated
office IT support. He also presents the first definition
introduced by Bannon and Schmidt in 1989 [61]: "...A
shorthand way of referring to a set of concerns about
supporting multiple individuals working together with
computer systems". But the definition of Eseryel et al. [22]
seems to be more close to context of quality: "CSCW
systems are collaborative environments that support
dispersed working groups so as to improve quality and
productivity".

CSCW is also known as a multi-disciplinary research
field bearing upon tools, techniques, task orientation and
workflows that are networked and/or distributed. It is
belonging to an emergent phenomenon that deals with
Technological Support for Work Group Collaboration,
Collaborative Systems, Workgroup Computing, Group
Decision Support Systems (GDSS), Interpersonal
Computing, Augmented Knowledge Workshops,
Coordination Technology, Computer-Assisted
Communications (CAC), Computer-Mediated
Communication (CMC) and Flexible Interactive Technolo-

Figure 3. PDCA Cycle of Continuous Improvement of an e-Commerce

Web Site.

88Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 100 / 267

Figure 4. e-ComDecaQual Framework Abstraction by a Class Diagram.

gies for Multi-Person Tasks. According to Whitaker too
[61], in 1978 the word Groupware was conceived by
Johnson-Lenz and Johnson-Lenz to mean:"
Intentional GROUP processes and procedures to achieve
specific purposes plus softWARE tools designed to support
and facilitate the group's work".

"A groupware makes the user aware that he is part of a
group, while most other software seeks to hide and protect
users from each other ... Groupware ... is software that
accentuates the multiple user environment, coordinating
and orchestrating things so that users can “see” each other,
yet do not conflict with each other", a definition of Kevin J.
Lynch brought back by Griffiths [51].

At the end, we are perfectly at ease with claiming that
groupware refers to computer-based systems to assist
interacting groups whereas Computer Supported
Cooperative Work (CSCW) focuses on the study of how
groups work and how implement technology to boost their
interaction and collaboration in addition to studying their
psychological, social, and organizational effects [21][41].

B. Collaboration, Cooperation, and Communication (3C)
specification of e-ComDecaQual’s CSCW

Dealing with CSCW implies several kinds of
interactions: Collaboration, Cooperation, Coordination,
Contribution, and Communication. For each one, there is a
battery of supporting tools and techniques such as e-mails,
discussion forums, chat-rooms, videoconferences, and posts
announcements for communication. Distributed learning
environment besides web-based tool kit, facilitate the
sharing, and organization of ideas for collaboration. Control
access to different documents, granting rights and
prioritization for coordination and control is also made
possible.

The collaborative and cooperative approaches can be
considered as two poles rather than two distinct
apprehensions; one evolves from cooperation to
collaboration. In order to grasp their differences, it is
necessary to observe the nuances relating to the autonomy
and the degree of control as well as the means used to
achieve the goal and to carry out the task and to clearly
differentiate the level of interdependency between the
participants.

Cooperative and collaborative groups work towards a
common or shared goal. It is in the way of sharing work that
difference is most visible. Indeed, the way to achieve the
goal through cooperation is based on the distribution of
tasks and responsibilities within the group to achieve the
goal cooperatively. This corresponds to the nature of work
to lead an e-commerce website project in its entirety and in
full respect of its life cycle.

On the other hand collaboration requires individual
responsibility to achieve the goal, which corresponds to the
intrinsic responsibility of a specialist member of one domain
of the e-ComDecaQual scale: Member or team of graphic
designer, member or group of developers, member or group
of marketers etc. In the way of carrying out common task,
there are other dependencies: The maturity of groups,
interactions between members and the way every one
considers the goal [28].

Collaboration implies a shared vision of a very high
level with a derisory importance for the division of tasks.
On the other hand, coordination requires a high control level
of the subdivisions of the tasks with moderate look for a
shared vision. Cooperation is between the two.

The ability to collaborate involves a gradual prior
appropriation of other abilities, such as cooperation,
coordination, contribution and communication.

89Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 101 / 267

The model of the e-ComDecaQual scale with the PDCA
axis has clearly emphasized the involvement of a member
specialized in a domain. This detail is made explicit in
Figure 5 and its legend in Table 2.

C. Functional specification of e-ComDecaQual’s CSCW

The proposal for quality guiding framework of E-CWS’
is being concretized and validates by developing a CSCW
structured around ten domains scale named e-ComDecaQual
and which offers a range of tools broken down according to
the items of each domain. Some tools can be measuring
instruments for several domains. Domains as well as their
tools are specific to the various job profiles of the team
around the E-CWS. The CSCW allows creation of domains,
their possible structuring in sub-domains and the
arrangement of items in various domains / sub-domains. It
allows assignment of tools to check items. CSCW allows
registration of team members and their association to job
profiles.

It allows collaborative work between them supervised by
a Quality Control Administrator who could have the
function of project manager. Team members exchange
messages with the administrator and receive notifications.

The E-CWS either under construction, or operating, are
registered by their URLs and their specifications or user
requirements (Plan) in order to ensure their quality control
by rotating (Do) each time a quality domain controlling tool
and by getting back a report (Check). As an e-commerce
web site advances his life cycle, a domain or sub-domain is
monitored. E-ComDecaQual groupware centralizes the
reports in a repository by allowing their versioning (Act).
The repository is a capitalization of know-how in the
various quality domains and an experience accumulation of
all domains.

The CSCW functional aspects are represented according
to the formalism of UML’s Use Case Diagram
(UCD).Figure 6(a) shows the overall functionality supported
by the groupware and offered to the main actor: The Quality
Control Manager or Administrator. Figure 6(b) shows the
functional aspects permitted for any job profile carried out
by any team member. It is naturally allowed for the
administrator. Figure 6(c) details the features related to

quality reports management and related to the global
repository for e-commerce web site, which leads to the
accumulation of domains know-how. Figure 6(d) shows
what is involved in managing the e-ComDecaQual quality
repository framework.

An overall view of the work is conjugated in Figure7; it
shows the goals of the research, it recalls the quality
guidance framework stand on two axes (life cycle and
PDCA cycle) and a scale, it summarizes the details of the
measurement tool e-ComDecaQual based on ten quality
domains, and it evokes the most important kind of
interactions between actors.

VII. CONCLUSION

Although e-commerce web sites’ quality is progressively
attracting researchers’ attention, existing scientific literature
is mainly focused on identifying quality dimensions from
Internet users’ viewpoint. This has not been taken in a
comprehensive approach taking into account the work force
around it. It pays no deep attention to total quality
management for an E-CWS. It therefore did not focus on
quality domain constituents’ census and their structuring, no
longer on the identification of instruments and tools for

Legend

Admin

QC
Quality Control Administrator /Project Manager 2 2- Direct communication between team member with the same

profile: Computer-Mediated communication (CMC)

TM A Team Member : can have different or same speciality with
another TM

2’ 2’- Coordinate

Art Art: Artefact of work of domain and its items 3 3- Collaboration: Working using platforms, APIs, languages,

design tools, frameworks etc…

GA Global Artefact 4

4- Control quality with dedicated tools, retrieving control

report and feedback with shared work objects (versioning

Domain quality report) (feedback mistakes weaknesses and

warnings)

QDR QDR: Quality Domain Repository. To be verified 5 5- Cooperate

GR GR: Global Repository: to be verified and to feed through for
communication of awareness.

6

6- Knowledge management by gathering and collecting final

quality control reports to constitute the Global Repository

1 1- Understanding: meeting and decision support systems for

common understanding

Figure 5. 3C Network of e-ComDecaQual’s CSCW

TABLE II. 3C SPECIFICATION OF E-COMDECAQUAL’S CSCW

90Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 102 / 267

(d) Use Case Diagram Management of the Quality Repository(c) Use Case Diagram Management of e-ComDecaQual scale.

Figure 6. Functional Specification of e-ComDecaQual’s CSCW.

quality measurement and control. Almost all studies are
based on working hypotheses and surveys to produce
mathematical and statistical models without proposing any
quality approach. This work attempted to fill the gap by
proposing a quality guiding framework based on a model
and axes. One axis was to dispatch quality domains on E-
CWS’s life cycle, another axis for continuous quality by
Deming’s wheel in addition to a measurement scale named
e-ComDecaQual. The quality guidance framework was after
that, validated by conceiving a CSCW. Immediate work
requires the development of a detailed CSCW architecture,

but the research has established the basis for a number of
other future works, such as proving the scale e-
ComDecaQual by an exploratory study on a representative
sample. Managing the quality repository leads first to an
aspect of knowledge management that can enrich the
functionality of the CSCW. The repository requires a
serious work on formatting, unifying and aggregating
quality tool reports. The study also opens the opportunity
for further refinements such as proposing quality
Frameworks and CSCW for other e-commerce business
models such as B2B, e-Gov and intermediation models.

(a) Use Case Diagram e-ComDecaQual Groupware System Overview. (b) Use Case Diagram Work of a Member with a Job Profile

91Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 103 / 267

Figure 7. CSCW Model for E-Commerce Web Sites Based on Quality Guiding Framework

REFERENCES

[1] M. Aladwani and P. C. Palvia, “Developing and validating
an instrument for measuring user-perceived web quality”.
Information & management, vol. 39, no. 6, pp. 467-476,
2002.

[2] A. Jouandeau, “Contribution to the modeling of customer
satisfaction by the fuzzy logic”. Available
from:http://theses.insa-
lyon.fr/publication/2004ISAL0063/these.pdf 8 octobre 2004.
Retrieved: August, 2017.

[3] M. Alshamari, “Accessibility Evaluation of Arabic E-
Commerce Web Sites Using Automated Tools”. Journal of
Software Engineering and Applications, vol. 9, no 09, pp.
439, 2016.

[4] A. Voget, “Official: Google's definition of a high quality
website”. Available from:
http://newsletter.seoprofiler.com/newsletter709.htm 24
novembre 2015. Retrieved: June, 2017.

[5] B. Chikli, “Memory: The process of continuous
improvement within an IT services company”. Available
from: http://fr.slideshare.net/baptistechikli/la-dmarche-
damlioration-continue-au-sein-dune-ssii?qid=0b3c0151-
326f-49a8-8695
fb96d319306b&v=default&b=&from_search=205 juillet
2012. Retrieved: May, 2017.

[6] C. E. Barnat, “Computer Law Course 2014/2015”.University
of Manouba Higher School of Digital Economy. Available
from:http://chemsjuris-dr-e-
com.blogspot.com/2012/11/cours-de-droit-du-commerce-
electronique.html. Retrieved: May, 2017.

[7] S. J. Barnes and R. T. Vidgen, (2001,) “Assessing the Quality
of Auction Web Sites”. System Sciences. Proceedings of the
34th Annual Hawaii International Conference on. IEEE,
2001, pp. 10.

[8] H. H. Bauer, T. Falk, and M. Hammerschmidt, “eTransQual:
A Transaction Process-based Approach for Capturing
Service Quality in Online Shopping”. Journal of Business
Research, vol. 59, no. 7, pp. 866-875, 2006.

[9] L. B. Chevalier, F. De Coninck, and B. Motte-Baumvol
(2014). “The peri-urban sustainability of the automotive

sector in relation to online purchasing practices of
households”. 51st colloquium of the Association of Regional
Science of French Language: Metropolisation, cohesion and
performance: what future for our territories?, In ASRDLF
2014.

[10] G. Bressolles, “Electronic Quality of Service: NetQu @ 1
Proposal of a Measurement Scale Applied to Merchant Sites
and Moderator Effects”. Research and Applications in
Marketing (French Edition),vol. 21, no. 3, pp. 19–45, 2006.
Available from :www.jstor.org/stable/40572002.

[11] F. Buttle, “SERVQUAL: Review, Critique, Research
Agenda”. European Journal of Marketing, Vol. 30 No. 1, pp.
8-32, 1996.

[12] M. Cao, Q. Zhang, and J. Seydel, (2005), “B2C e-Commerce
Web Site Quality: an Empirical Examination”. Industrial
Management & Data Systems, vol. 105, no 5, p. 645-661,
2005.

[13] C. Hamadi, “The perceived quality of Internet banking and
its impact on customer satisfaction and commitment”.
Doctoral dissertation, Toulouse 1, 2007.

[14] C. Larre and C. Magdelaine, “The Internet consumes more
and more energy: how to avoid saturation?”. Available
from: http://www.notre-planete.info/actualites/4328-
consommation-energie-web-saturation 27 août 2015.
Retrieved: May, 2017.

[15] B. Cova and P. Ezan. “The consumer-collaborator: activities,
expectations and impacts. The case of Warhammer
passionate”. Acts JRMB 2008.

[16] E. Cristobal, C. Flavián, and M. Guinalíu, “Perceived e-
service quality (PeSQ) Measurement validation and effects
on consumer satisfaction and web site loyalty”. Managing
service quality: An international journal, vol. 17, no 3, p.
317-340, 2007.

[17] L.J. Cronbach, “Coefficient alpha and the internal structure
of tests”. Psychometrika 1951, vol. 16, no 3, p. 297-334, doi:
10.1007/BF02310555.

[18] D. X. Ding, P. J. H. Hu, and O. R. L. Sheng, “e-SELFQUAL
A scale for measuring online self-service quality”. Journal
of Business Research, May 2011, vol. 64, no 5, pp. 508-515.

92Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 104 / 267

[19] D. Proulx, “Management of public organizations”. 2nd
edition reviewed and corrected. Theory and applications
Press edition of University of Quebec, 2010.

[20] D. Desbois, C. Gossart, N. Jullien, and J. B.
Zimmermann, “Sustainable development in the face of ICT”.
No. hal-00609295, 2011.

[21] C. Ellis and J. Wainer, “10 Groupware and Computer
Supported Cooperative Work”. Multiagent Systems: a
modern approach to distributed artificial intelligence, pp.
425, 1999.

[22] D. Eseryel, R. Ganesan, and G. S. Edmonds, (2002).
“Review of computer-supported collaborative work
systems”. Educational Technology &Society, vol. 5, no 2,
pp. 130-136, 2002.

[23] F. Elgamouz, M. Firni, and A. Ismaili, “Management de la
qualité dans les entreprises marocaines”. Université Moulay
Ismail de Meknès - Licence en sciences économiques et
gestion. Available
from:http://www.memoireonline.com/11/12/6506/m_Manag
ement-de-la-qualite-dans-les-entreprises-
marocaines1.html#fn1, 2009. Retrieved: May, 2017.

[24] J. E. Francis and L. White, “PIRQUAL: A scale for
measuring customer expectations and perceptions of quality
in Internet retailing”. K. Evans & L. Scheer (Eds.), pp. 263-
270, 2002.

[25] J.L. Giordano, The perceived quality approach. Groupe
Eyrolles 2006, ISBN : 2-7081-3493-0. 380 p.

[26] G. Davis, G. Olsen, and J. Zeldman,“Working together for
standards The Web Standards Project”. Available from:
http://www.webstandards.org/learn/faq/#p2. Retrieved: July,
2017.

[27] H. Djajadikerta and T. Trireksani, “Measuring University
Web Site Quality: A Development of a User Perceived
Instrument and its Initial Implementation to Web sites of
Accounting Departments in New Zealand’s Universities”.
School of Accounting, Finance and Economics & FIMARC
Working Paper Series, September 2006, pp. 1-23.

[28] F. Henri and K. Lundgren-Cayrol, “Cooperative Learning vs.
Collaborative Learning”. Available
from:http://www.ticeduforum.ci/henri-lundgren-cayrol-
apprentissage-cooperatif-vs-apprentissage-collaboratif/.
Retrieved: August, 2017.

[29] D. L. Hoffman and T. P. Novak, “Marketing in hypermedia
computer-mediated environments: Conceptual
foundations”. The Journal of Marketing 1996, pp. 50-68.

[30] D. L. Hoffman, W. D. Kalsbeek, and T. P. Novak, “Internet
and Web use in the US”. Communications of the ACM, vol.
39, no 12, pp. 36-46, 1996.

[31] S. Janda, P. J. Trocchia, and K. P. Gwinner, “Consumer
perceptions of Internet retail service quality”. International
Journal of Service Industry Management, vol. 13, no 5, p.p.
412-431, 2002.

[32] Official Journal of Republic of Tunisia, no 64, 11 August
2000.

[33] G. G. Lee and H. F. Lin, “Customer perceptions of e-service
quality in online shopping”. International Journal of Retail &
Distribution Management, vol. 33, no 2, p.p. 161-176, 2005.

[34] H. Li and R. Suomi, “A proposed scale for measuring e-
service quality”. International Journal of u-and e-Service,
Science and Technology, vol. 2, no 1, p.p. 1-10, 2009.

[35] C. Liu and K. P. Arnett, (2000). “Exploring the factors
associated with Web site success in the context of electronic
commerce”. Information & management, vol. 38, no 1, p.p.
23-33, 2000.

[36] C. Liu, K. P. Arnett, and C. Litecky, “Design Quality of
Websites for Electronic Commerce: Fortune 1000
Webmasters' Evaluations”. Electronic Markets, vol. 10, no 2,
p.p. 120-129, 2000.

[37] E.T. Loiacono, “WebQual: A Website Quality Instrument”.
Doctoral Dissertation: University of Georgia, 2000, ISBN: 0-
599-90483-6.

[38] E. T. Loiacono, R. T. Watson, and D. L. Goodhue,
“WebQual: An instrument for consumer evaluation of web
sites”. International Journal of Electronic Commerce, vol. 11,
no 3, p.p. 51-87, 2007.

[39] C. N. Madu, and A. A. Madu, “Dimensions of e-
quality”. International Journal of Quality & reliability
management, vol. 19, no 3, p. 246-258, 2002.

[40] D. Malassingne, “What is the web quality?”. Available
from:http://w3qualite.net/metier/qu-est-ce-que-la-qualite-
web 11 octobre 2011. Retrieved: July, 2017.

[41] M. -G. Park and M. H. Kim,”Chapter XI.6 Knowledge
Workforce Development for Computer-Supported
Collaborative Work Environments. From the book
“International Handbook of Education for the Changing
World of Work: bridging academic and vocational learning”.
By Rupert Maclean; David N Wilson. Springer ; Bonn :
UNESCO UNEVOC, International Centre for Technical and
Vocational Education and Training, cop. 2009 Available
from: https://link.springer.com/chapter/10.1007/978-1-4020-
5281-1_129. Retrieved: July, 2017.

[42] United Nations, Economic and Social Council. Information
and communication technologies for equitable economic and
social development, Geneva, 2014, p.p.4.

[43] J. Ojasalo, “E-service quality: a conceptual
model”. International Journal of Arts and Sciences, vol. 3, no
7, p.p. 127-143, 2010.

[44] A. Parasuraman, V. A.Zeithaml, and L. L. Berry,
“Alternative scales for measuring service quality: a
comparative assessment based on psychometric and
diagnostic criteria”. Handbuch Dienstleistungsmanagement,
Gabler Verlag, pp.449-482, 1998.

[45] A. Parasuraman, V. A. Zeithaml, and A. Malhotra, “ES-
QUAL a multiple-item scale for assessing electronic service
quality”. Journal of service research, vol. 7, no 3, p.p. 213-
233, 2005.

[46] D. Paschaloudis and M. Tsourela, (2015). Using ES-QUAL
to Measure Internet Service Quality of EBanking Web Sites
in Greece. The Journal of Internet Banking and
Commerce, vol. 19, no 2, p.p. 1-17, 2015.

[47] R. Abdelkader, “Le management de la qualité totale. La
qualité totale : les outils du développement de la performance
des entreprises”. Available from :
http://www.iefpedia.com/france/wp-
content/uploads/2011/07/Le-management-de-la-
qualit%C3%A9-totale-La-qualit%C3%A9-totale-les-outils-
du-d%C3%A9veloppement-de-la-performance-des-
entreprises-RACHEDI-ABDELKADER1.pdf. Retrieved:
May, 2017.

[48] M. K. Mphil, “Information Technology in Malaysia: E-
service quality and Uptake of Internet banking”. Journal of
Internet Banking and Commerce, vol. 13, no 2, p.p. 1, 2008.

[49] C. Ranganathan, and S. Ganapathy, (2002). “Key dimensions
of business-to-consumer web sites”. Information &
Management, vol. 39, no6, p. 457-465, 2002.

[50] D. Ribbink, A. C. Van Riel, V. Liljander, and S. Streukens,
“Comfort your online customer: quality, trust and loyalty on
the internet”. Managing Service Quality: An International
Journal, vol. 14, no 6, p.p. 446-456.

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 105 / 267

[51] R. Griffiths, “Computer Supported Co-operative Work
(CSCW) and Groupware”. Available
from:http://www.it.bton.ac.uk/staff/rng/teaching/notes/CSC
Wgroupware.html. Retrieved: August, 2017.

[52] E. Ringenbach and A. Ajraou, “Presentation: Quality
Assurance - Software Engineering”. January 2000
Available
from:http://users.polytech.unice.fr/~hugues/GL/SPICE/index
.htm. Retrieved: August, 2017.

[53] R. V. Gola, E-commerce law Practical guide to e-commerce.
Gualino Editor, fev 2013; Collection : Guides Pro, ISBN
: 978-2-297-02478-5

[54] J. Santos, “E-service quality: a model of virtual service
quality dimensions”. Managing Service Quality: An
International Journal, vol. 13, no 3, p.p. 233-246,2003.

[55] S. S. Srinivasan, R. Anderson, and K. Ponnavolu, “Customer
loyalty in e-commerce: an exploration of its antecedents and
consequence”s. Journal of retailing, vol. 78, no 1, p. 41-50,
2002.

[56] Q. Sun, C. Wang, and H. Cao, “Applying ES-QUAL scale to
analysis the factors affecting consumers to use internet
banking services”. In Services Science, Management and
Engineering, 2009. SSME'09. IITA International Conference
on (pp. 242-245). IEEE, 2009.

[57] S. I. Swaid, and R. T. Wigand, “Measuring the quality of e-
service: scale development and initial validation”. Journal of
Electronic Commerce Research, vol. 10, no 1, p.p. 13, 2009.

[58] M. A. Teruel, E. Navarro, V. López‐Jaquero, F. Montero,
and P. González, “A comprehensive framework for
modeling requirements of CSCW systems”. Journal of
Software: Evolution and Process, vol. 29, no 5, 2017.

[59] V. Hiard, Website Auditing, ENI Edition, June 2016.

[60] W3C, Web Accessibility Evaluation Tools List. Available
from: http://www.w3.org/WAI/ER/tools/. Retrieved:
January 2016.

[61] R. Whitaker, “Computer Supported Cooperative Work
(CSCW) and Groupware Overview, Definitions, and

Distinctions”. Available from:
http://www.enolagaia.com/UMUArchive/CSCW.html#I.
Retrieved:August 2017.

[62] M.F. Wolfinbarger and M.C. Gilly, “ETAILQ:
Dimensionalizing, measuring and predicting e- tailing
quality”. Journal of Retailing, vol. 79, no 3, p.p. 183-198,
2003.

[63] X. Burdet under the leadership of Ph. Duguedil, Impact of
computer decisions Introduction to informatics for the non-
computerized decision-maker, Chapter 11, PPUR
Polytechnic and Academic Romandy Press, 2005.

[64] Z. Yang, M. Jun, and R. T. Peterson, “Measuring customer
perceived online service quality: scale development and
managerial implications”. International Journal of Operations
& Production Management, vol. 24, no 11, p.p. 1149-1174,
2004.

[65] Z. Yang, S. Cai, Z. Zhou, and N. Zhou, “Development and
validation of an instrument to measure user perceived service
quality of information presenting web portals”. Information
& Management, vol.42, no 4, p.p. 575-589, 2005.

[66] B. Yoo and N. Donthu, “Developing a Scale to Measure the
Perceived Quality of an Internet Shopping Site
(SITEQUAL)”, Quarterly Journal of Electronic Commerce,
vol. 2, no 1, p.p. 31-45, 2001.

[67] S. Yu, L. Al-Jadir, and S. Spaccapietra, “Matching user's
Semantics with Data Semantics in Location-Based Services”.
In: 1st Workshop on Semantics in Mobile Environments
(SME 05), 2005.

[68] V. A. Zeithaml, L. L.Berry, and A. Parasuraman, “The
behavioral consequences of service quality”. The Journal of
Marketing, p.p. 31-46, 1996.

[69] http://www.freeyourshirt.com/. Retrieved: August, 2017.

[70] http://evene.lefigaro.fr/citations/john-ruskin. Retrieved:
August, 2017.

[71] http://people.ucalgary.ca/~design/engg251/First%20Year%2
0Files/kano.pdf . Retrieved: August, 2017.

94Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 106 / 267

Developing Architecture in Volatile Environments
Lessons Learned from a Biobank IT Infrastructure Project

Jarkko Hyysalo, Gavin Harper, Jaakko Sauvola, Anja Keskinarkaus, Ilkka Juuso, Miikka Salminen, Juha Partala
Faculty of Information Technology and Electrical Engineering

University of Oulu
Oulu, Finland

e-mail: jarkko.hyysalo@oulu.fi, gavin.harper@oulu.fi, jaakko.sauvola@oulu.fi, anjakes@ee.oulu.fi, ilkka.juuso@ee.oulu.fi,
miikka.salminen@ee.oulu.fi, juha.partala@ee.oulu.fi

Abstract—The architecture specifies how the system should be
designed and built. Several architecture frameworks exist for
implementing the architectural design process. However,
shortcomings are identified in current architectural design
processes, especially concerning volatile domains like
healthcare. We claim that an iterative architectural design
process is required, where the technical concerns are separated
from the non-technical ones. Furthermore, a strong guiding
vision is required. Based on our experiences from a biobank IT
infrastructure process, we present a Continuous Renewability
architectural design process that is modular, interoperable,
controlled and abstracted, thus being capable of handling
complex systems with severe uncertainties.

Keywords- Architecture; design; lessons learned; post-
mortem; process.

I. INTRODUCTION
Software systems are becoming ever more complex.

Consequently, software and systems development has
become increasingly challenging and intellectually
demanding [1][2]. Therefore, it has been proposed that
coherent and comprehensive modelling approaches be
applied. Subsequently many approaches are developed in the
field of systems architecture modelling [3].

Defining the architecture is an activity that specifies how
a system is to be designed and implemented. Several
architectural frameworks are available providing guidance
on how to enact the architectural design process. However,
in domains that are not established or stable, there exist
variables that may cause changes and unexpected events that
require non-routine solutions. The wider the scope of the
project and the more stakeholders that are involved, the more
difficult the architecture definition is [3].

Moreover, if the development problem is not well
structured, it becomes increasingly more challenging to
address and communicate [4]. Healthcare is one such domain
that is constantly evolving. There exist several stakeholders
from different domains, various laws and regulations are in
effect, some of which are still emerging, e.g., General Data
Protection Regulation [5], services and service models are
still being refined. It is then easy to see the inherent volatility
within this particular domain. Hence, we claim that an
incremental and iterative process is necessary, where the

outcome is built gradually. These facilitates observations of
the evolution of the design and implementation over time,
and to better understand its requirements and potential–
gradually gathering feedback and incorporating it into the
development. However, not only design and implementation,
but also system use and renewability has to be acknowledged
in the architecture.

Furthermore, there is a need to have a strong guiding
vision towards which the architecture development efforts
can be compared to. In order to define such a process, we
propose the following research question: What form of
architectural design process is suitable for volatile
environments? To address our research question, we used a
post-mortem analysis to study the process of building a
biobank IT infrastructure. As a result, we propose a
Continuous Renewability approach to architectural design
process.

The remainder of the paper is organised as follows.
Section II studies the background. Section III presents the
research approach. Section IV presents the architectural
design process and the empirical experiences from healthcare
domain. Section V evaluates our approach. Section VI
discusses the results and implications. Section VII
summarises this work.

This paper is an extended version of [6] including, e.g.,
more detailed literature study, extended description of the
proposed approach, and evaluation of the approach.

II. BACKGROUND AND RELATED WORK
The healthcare domain is one example of domains that

are constantly evolving by means of new technological
innovations, new requirements for efficiency and cost and
new regulations being introduced. There also exists the
continued interaction and dependency on legacy systems and
data formats. The design reality of healthcare IT architecture
is sketched in Figure 1.

Figure 1. Design reality of healthcare IT architecture.

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 107 / 267

Legacy systems and data formats that are widely utilised
in the medical domain create challenges by means of
potentially isolated and non-interoperable systems. In
particular, legacy issues arising from the use of existing data
formats, processes, applications and service-level agreements
(SLA) increase the level of complexity involved in designing
a unified technical solution. Thus, there exists a need for
migration and renewal strategies in addition to strategies that
enable complying with the legacy systems.

Architectural design is heavily guided by requirements
regarding efficiency and cost. Emerging technologies may
provide better and more efficient solutions to current
challenges, public-private partnerships (PPP) funded by a
partnership of government and a number of private sector
companies and new principles like 4P medicine, referring to
preventive, predictive, personalised, and participatory
medicine [7]. 4P medicine is also sometimes referred to as
personalised or precision medicine. It can be seen as the
tailoring of medical treatment to the individual
characteristics, needs, and preferences of a patient during all
stages of care, including prevention, diagnosis, treatment,
and follow-up. It will also include enhancing the awareness
about lifestyles and preventive lifestyle changes. The goal is
to enhance the health outcomes with integration of evidence-
based medicine and precision diagnostics into clinical
practice.

Through this holistic approach, in combination with
several divergent stakeholders and new technologies, it is
easy to see that the design environment may become
fragmented and volatile. Furthermore, the healthcare sector
is examining new strategies and business models, such as
PPP, where the strategic and business drivers are diverse.
The gradual evolution of legacy systems towards new
solutions must enable the continuing use of existing systems
integrated into the current environment. This may potentially
result in a complex environment with combination of both
legacy systems and applications with brand new solutions
[8]. The ongoing evolution through changing legislation,
regulations and improvements in medical practices creates an
environment that is constantly changing.

Various architectural frameworks have been proposed to
address the different design realities, including standards,
such as ISO/IEC/IEEE 42010. In addition a general model
for architectural design is presented in [9]. Architectural
frameworks have been analysed extensively [1][10][11], and
a recurring theme across the frameworks is that each
describes the role of the architecture in the product
development process as a “systematic analysis and design of
related information to provide model for guiding the actual
development of information systems” [10]. The architectural
design process is a one that guides the definition of a given
system architecture, however, there is no general solution for
the representation of a system’s architecture [10]. Many
architecture frameworks discuss the architecture creation
process yet few focus on the process [11]. The value of the
processes is shown in the literature and it has been suggested
that processes ensure that activities in an organisation are
performed consistently and reliably [12]. The architectural
design process should provide a structured approach to

architecture activities in the product development process
[10]. Furthermore, it is also important to acknowledge the
phases of system in use and renewability. Thus, architecture
should cover: 1) design, 2) implementation, 3) deployment,
4) usage, and 5) renewability. The lack of proper planning
for items usage and renewability can often lead to problems
for customers, because evolution and renewability is
expensive or impossible, system use may be restricted, and
new processes are not supported. Maintenance can also
suffer if developers only do design, implementation, and
deployment.

Several frameworks exist for modelling architecture.
While different frameworks have different content and target
a different audience [11], they aim to provide structure and
systematic processes for systems design [10]. Examples of
well known and established architecture frameworks are the
Zachman Framework for Enterprise Architecture [13], 4+1
View Model of Architecture [14], Federal Enterprise
Architecture Framework (FEAF) [15], Reference Model for
Open Distributed Computing (RM-ODP) [16], The Open
Group Architectural Framework (TOGAF) [17], DoD
Architecture Framework by the US Department of Defense
(DoDAF) [18], and a general model of software architectural
design by Hofmeister et al [9].

While each architecture framework is suitable for
different environments, they may result in similar outcomes
based on their architecture goals and viewpoints. Viewpoints
are an important feature of architecture frameworks as they
represent the goals and focal points that the architecture
framework emphasises like business, information, software
and technical architectures. The analysis revealed that only
three of the frameworks, FEAF, TOGAF and DoDAF,
provided explicit support for the architectural design process,
RM-ODP provided partial support, ZF and 4+1 View
provided no support. ZF and TOGAF have a focus on
enterprise architecture, 4+1 View and RM-ODP on software
systems (typically distributed), FEAF is primarily a
framework for architecture planning and DoDAF focuses on
enterprise architecture related to defence operations and
business operations and processes. It is thus typically quite
domain specific. The general model by Hofmeister et al. is
based on synthesis of several existing approaches.
[3][9][10][11]

Evaluations of architecture frameworks are presented,
e.g., in [3][9][11]. While there are pros and cons for each
method, common deficiencies in the architecture frameworks
can be identified [10]: 1) The level of details required in
models is not specified enough, 2) Rationales are not
considered in models, thus no verification is possible, 3)
Non-functional requirements are not considered in all
frameworks, 4) Software configuration is not considered in
all frameworks.

There are also more recent approaches to systems design
that aim at tackling the challenges of modern development
environments. Palladio Component Model (PCM) is one
such approach; among other benefits it enables the analysis
of different architectural design alternatives (i.e.,
optimisation) and aims to address the challenges during the
early development stages, thus avoiding costly redesigns

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 108 / 267

[19]. Software architecture optimisation has also been
studied to help the search for optimal architectural design,
e.g., Aleti et al. [20] performed an extensive systematic
literature review focusing on software architecture
optimisation.

Even with software architecture optimisation efforts,
architectural design still involves complex trade-off analyses
that may require expertise in several domains or the
environment may be more variable and dynamic than current
process can support. It is even possible that not all
stakeholders are known or they may not already know what
the intent for the product to accomplish. Thus, such
uncertainty may exist that the guiding vision for the product
is impossible to be fully defined during the early stages of
development. Instead, it is suggested that it is built
incrementally.

In conclusion, there is a need for an architectural design
process that addresses the identified shortcomings, including:
volatile environments, the availability of specific details,
design rationales, non-functional requirements, and software
configurations.

III. RESEARCH APPROACH
The results are based on experiences gathered during a

biobank IT infrastructure development project. The research
consisted of studying several organisations related to
biobank activities. The purpose of this was to define
architecture for a biobank and implement a functional
infrastructure. Managing the large number of stakeholders
and constantly changing environment requires carefully
considered architecture approach, thus creating the need and
basis for this work.

During the project several challenges were identified. A
post-mortem analysis was conducted to analyse these
findings and to identify the shortcomings and improvements
for the architectural design process. A post-mortem analysis
is a study method that may be used to gather empirical
knowledge. The benefits of a post-mortem analysis include
revealing findings more frequently than other methods, such
as project completion reports. It is beneficial to conduct post-
mortem analyses after important milestones and events in
addition to the end of a project. Post-mortem analysis can be
used as a project-based learning technique [21][22]. In
addition to finding the impediments of the development
process, post-mortem analyses may be used to improve
methods and practises [23]. During this research project, a
post-mortem analysis was used to study our development
process to facilitate identifying potential sources for
improvement or optimisation.

Our post-mortem analysis follows the general iterative
post-mortem analysis proposed by Birk et al. [21], as shown
in Figure 2.

Figure 2. General post-mortem analysis process [21].

TABLE I. VARIOUS STAKEHOLDERS IN BIOBANK DOMAIN

Stakeholder Input
Valvira (National Supervisory
Authority for Welfare and Health)

- Biobank permission
- Supervision

Sample donor, person - Consent
- Samples

KELA (The Social Insurance
Institution of Finland)

- Information systems service

THL (National Institute for Health
and Welfare in Finland)

- Architecture
- BBMRI-ERIC: Obligations

BBMRI (Biobanking and
BioMolecular resources Research
Infrastructure)

- Common methods

Registry - Source data
Service provider - Service
Health care units - Sample and data

- Support services
Research - Sample and data
National ethical board (TUKIJA) - Reports
STM (The Ministry of Health and
Social Affairs)

- National biobank overall
 architecture

Our research started with an initial preparation stage

where we carefully identified the key participants involved
with our effort and selected viable methods and procedures.

Project history was examined with the key participants
involved in the project (primarily project managers and
system architects) and project documents were studied. Then
our goal for the post-mortem analysis was determined–to
understand the needs for the architectural design process as
well as identify potential sources for improvement and
optimisation.

Data collection involved gathering relevant project
experiences from team members and key stakeholders (Table
I). Participants of our data collection as well as data analysis
session were project managers (1), system architects (2) and
developers (2). A decision was made to conduct a
lightweight post-mortem analysis. KJ sessions [24] with
thematic analysis [25][26] were utilised to gather and
organise ideas and data.

In the analysis phase, findings and ideas were organised
into groups based on their relationships. Post-It notes were
used to record the ideas and findings and related notes were
then grouped together. Based on our results, we present
Continuous Renewability architectural design process. Table
I presents the key stakeholders that participated in the
definition of the biobank. The organisations were chosen as
they could each provide potential data related to the research
question. Experts and managers from different organisational
levels were involved. Examples of input by the sources are
also presented.

IV. EXAMINING THE ARCHITECTURAL DESIGN PROCESS

A. Preparation
In the planning phase, project results were studied. These

results included meeting memorandums, requirements,
company materials and the results produced. The focus of
the post-mortem analysis was decided to be to understand
and improve the current processes, to find out what
challenges regarding to architectural design process exist and
where we succeeded. Post-mortem analysis participants were

97Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 109 / 267

informed of the procedures and schedules were agreed upon
and the goal of the post-mortem analysis was determined. A
lightweight post-mortem analysis was selected as it fits the
project size best [27].

B. Data Collection and Data Analysis
In this step, a summary of project history was explored

with key members of the project to better understand the
history of the project. Then we gathered the relevant project
experience, and participants were asked to provide their
views on the development process and practises. The views
were documented using KJ sessions.

Participants were given a set of Post-It notes and they
were asked to write down one issue on each note including
both challenges and successes. Each note was then attached
to a whiteboard and the person was asked to explain why the
issue is important. When all the notes were on the
whiteboard, they were discussed thoroughly and then they
were organised into thematic groups and each group was
named, see Table II. Grouping the findings revealed nine
themes. These groups indicate the main challenges or needs
that were encountered in the development of the biobank IT-
infrastructure. These challenges are issues that may often be
met in the architecture development in volatile environments.

Data analysis was done in the same session as data
collection.

TABLE II. SUMMARY OF THE MOST IMPORTANT FINDINGS

Theme Finding
Abstraction + Abstracting the system design is useful
Change and
uncertainty

- Changing requirements, components and
environment
- Unclear responsibilities
- Ongoing efforts that affect the work disruptively

Communication - Understanding stakeholders from other domains is
challenging
- Various general communication issues are met
- Unclear stakeholders complicates the
communication
- Critical information not available
+ Constant communication within the development
team was useful
+ Common vision and shared understanding within
the development team was helpful
+ Building trust between the stakeholders enabled
the communication channels to be build

Controlled + Planning and decision-making built within the
process

Guiding vision + First architecture draft providing a guideline
+ Defining the basic data flows before trying to
integrate with the hospital systems

Interoperability - Numerous interfaces to existing systems
- Vast number of systems and applications,
including legacy systems

Iterative
approach

+ Iterative process builds the outcome gradually

Modularity + Following system architecture principles allowing
for modular system

Separation of
concerns

- Non-technological issues complicating
technological issues (politics, rigid processes, etc.)
- Complex operational environment requires
examination of the system from different views
+ Identifying new separation opportunities in
existing architecture enabled development of isolated
domains

After the views and ideas were recorded, they were
discussed in detail. A root-cause analysis was conducted to
find out why those items occurred. Identifying root causes of
the identified issues included consideration of how general
these issues are and whom they concern.

Analysis suggests that the most important issue affecting
the architectural design was change and uncertainty in
addition to communication issues and complexity in the
system and environment. Together these hindered
development efforts and may potentially affect quite severely
the quality of the product. However, we also found ways to
tackle these issues. For example, applying good
communication practices, iterative development and having a
guiding vision are all suggested.

In summary, our architectural design process was
iterative in nature. This allowed us to build a shared
understanding of the work to be done, to shape the goals, and
to react to numerous changes and uncertainties as well as the
knowledge gaps between different stakeholders. The work
started with a stakeholder analysis to find the relevant
stakeholders and their viewpoints regarding biobank IT
infrastructure. The key problem in gathering stakeholder
views was their wide array of potential wishes and then
implementing them on a technical level. Several stakeholders
were not technically oriented in their background, thus they
did not know the technical restrictions that may exist in such
an environment.

Similarly from both a legal perspective and a
technological perspective, the various stakeholders had
difficulty grasping adequately other domains than their own.
Especially challenging were the legal issues regarding
sensitive and personally identifiable information. Getting the
stakeholder views and mapping them to a technical level in
addition to ensuring compliance with laws and regulations is
time consuming since there needs to be a consensus amongst
the stakeholders. Multiple requirements were identified
ranging from very abstract to very concrete. Based on this
analysis we were able to come up with an architectural
design process for volatile environments.

C. Experiences
Here we summarise our experiences from the

architectural design process conducted in order to build a
biobank IT infrastructure. The aim is to provide hands-on
experience on architectural design process and to provide
guidance on how to define architectures for systems that
exist in volatile environments, and as with many other
frameworks to control the complexity of development by
abstracting the system design and modelling the intended
system at different abstraction levels.

We suggest an iterative approach in the form of
Continuous Renewability, where the work is done iteratively
and incrementally with feedback loops throughout the
process improving communication. At each level, there are
discussions about what is required, and what is already
available. Frequently, comparisons to previous levels are
done. As the process progresses, the need for changes and
their associated effects grows smaller.

98Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 110 / 267

Figure 3. Four levels of abstraction for describing software architectures.

Different approaches can be used, as there are different
needs, requirements, environments, etc. In our case,
Continuous Renewability approach was required. Biobank
data does not become old or obsolete. Instead, the amount of
data grows over time. Similarly, the architectural design
must be continuous to account for changes and new events
and to have scalability and potential for upgrade while still
keeping the whole system interoperable.

In the Continuous Renewability model, four levels of
abstraction are identified each representing a distinctive view
of the architecture from enterprise level to technical details
of the system/software architecture, see Figure 3. Each level
implements the level above with more detailed technologies
and descriptions. Each level is also a phase in our
architectural design process. Moreover, each level
corresponds to a set of stakeholders, and together the
different views form the complete architecture specification.

1) Strategic architecture is the starting point providing
the overall description of the development problem, defining
business views, business processes and rules, and
performance goals. It also defines the conceptual architecture
that connects the architecture effort with the visions,
organisational strategies, business drivers and goals in
addition to processes and functional perspectives.

One of the main contributions is to communicate the
vision and define the rationale–why things are required.
External input can come from multiple sources including but
not limited to various communities, laws and regulations.

At this level, a strategic architecture is defined with the
following output: A semantic model defining the
relationships of business entities and business processes.
Most of the external requirements and customer feedback
come through this level as this level is typically closest to the
customer interface of an organisation. It must have a solid
understanding of customer requirements and it should
communicate these requirements in addition to their rationale
to internal stakeholders. A strategic architecture is also
influenced by the business strategies and other high-level
visions. Furthermore, it also receives feedback in an iterative
manner from the whole architecture development cycle. It
was noted that frequently this strategy consumes a
disproportionate amount of time and effort, as it must be
strictly representative of reality in order to provide a good
basis for further actions.

2) Logical architecture defines the functions and
various resources or components of the system including
their relations and how information flows throughout the
system. Furthermore, this level defines the qualities of the
system, i.e., gives the measurements on how to achieve the

business goals specified at the strategic level. External input
is the inventories of available building blocks for the system.

The results from level 1 are further examined and
developed in level 2, where the logical architecture is
defined. The output of level 2 provides a logical data model
that defines the relationships of data entities.

3) Technical architecture implements the logical level
and provides a foundation by defining the technical
architecture including technology platforms, information
system environments, hardware, software, network
components, interfaces, platforms, etc. External input comes
from sources including standards, non-functional
requirements (NFR) (like redundancy, security, availability,
scalability and interoperability). The output of level 3 is to
provide a technical architecture that defines the physical data
model and a technological architecture.

4) Implementation architecture focuses on details, such
as hardware and software, operating systems and middleware
in addition to interoperability and data definitions. External
input comes from sources including configuration
documents, technical constraints and application
requirements. The output of level 4 is an implementation
architecture that defines the implementation details, such as
components, applications and software and hardware
configurations. This implementation architecture takes into
account all the technical constraints. Furthermore, it also has
to communicate back to level 1, e.g., the weight of legacy
(like data formats and applications), which will affect
planning, system interoperability, business decisions, etc.
The weight of legacy is a critical factor in system design in
the healthcare domain where there may not exist alternatives
that are readily available to replace existing systems.

If changes are made at any level, it may have an effect on
any other level. The Master Architecture is defined to guide
the development effort, structure and scope of the process.
This is illustrated in Figure 4.

The Master Architecture maintains the up-to-date
specification in addition to a specification document
produced for each level. Defining the Master Architecture
can start from the current architecture or current standards
and infrastructures.

Figure 4. Continuous Renewability architectural design process.

99Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 111 / 267

First, a high level architecture is used which will then be
further specified as the architectural design process
progresses. The Master Architecture may also illustrate a set
of use-case scenarios that can be referred to at each level to
understand requirements of the system to be designed.

The model has to account for 1) reality, 2)
methodologies, 3) design models, and 4) design
functionalities.

Each phase has to correspond to the Master Architecture
to verify the feasibility and progress of the development
towards the set criteria. For example, phase 1 relates to
synchronisation of costs and trade-offs, phase 2 to quality
aspects, phase 3 to NFR’s and phase 4 to Functional
Requirements (FR). Similarly, the produced documents and
items are verified against the Master Architecture.

The resulting architecture from this process is available at
[28].

V. EVALUATION
Our Continuous Renewability approach is an

amalgamation of several best practices found in other
approaches and design methods. Table III presents a
comparison of several commonly used approaches with our
approach, and consider how they address the challenges and
needs encountered in the architecture development in volatile
environments. The themes captured in post-mortem analysis
provide a good starting point for identifying requirements for
architecture development in volatile environments. These
themes are also recognised in the literature. The approaches
are evaluated towards the identified requirements. The
evaluation is literature based. Each approach is checked if
they fulfil the requirement fully, partially or not at all. The
Continuous Renewability approach (CR in the Table III) is
built to address the identified requirements fully.

It should be noted, however, that DoDAF is limited in
scope and it does not address the relevant views for
implementing the system as a software architecture as well
as the other approaches [29].

Abstraction is one of the requirements for architecture
description languages [30], furthermore, abstraction is
necessary to enable the examination of architecture from
different perspectives. Zachman, FEAF and DoDAF address
the abstraction requirement, while TOGAF has very limited
views [31]. Abstraction is addressed in 4+1 at least partially
with different views.

Changes and uncertainty. In real life, work has many
variables, changes and unexpected events are met, vast

amounts of data must be handled, and innovative solutions
are needed [12][32][33]. Readiness for changes is necessary
to adapt to future situations [9], furthermore, uncertainty and
changes are also often met during the development work.
Flexibility minimise the impact of changes. Change and
uncertainty is addressed in Zachman, DoDAF and
Hofmeister. FEAF accommodates changes at least partially
through flexibility of methods, work products and tools [30].
TOGAF has a flexible process and accommodates changes
and promotes change management [10][34]. RM-ODP does
not consider the future needs or evolution of the architecture
[10]. 4+1 does not address system evolution [10].

Communication is a mediating factor in coordinating
and controlling the collaborative work. Software
development requires a vast amount of communication,
especially when dealing with complex infrastructures. These
issues have been reported to decrease both the frequency and
quality of communication, and ultimately, productivity. To
mitigate these issues, tools, processes, and methodologies are
required. [35][36]

Communication is addressed in Zachman (through
abstraction, simplification and common vocabulary) and
Hofmeister, but not explicitly. FEAF provides a common
language and facilitates communication [34]. DoDAF
address communication at least partially through extensive
documentation [10]. 4+1 address communication
requirement fully. RM-ODP provides a framework for
defining the languages for the viewpoints to be used as a
dictionary for architecture description [29].

Controlled refers to rigid processes and best practices
that the architectural design process is based on. It also
overlaps with the guiding vision, as control also comes from
the ability to evaluate constantly the results towards set
targets, ensuring the correct architectural decisions [9].

FEAF (partially) and TOGAF (fully) provides process
support [10][31][34]. FEAF measures success [34], while
TOGAF lacks the continuous evaluation or validation. 4+1
provides partial support through the validation of the
architectural design, while DoDAF defines the process and
evaluation [10][31][34] and Hofmeister provide full support
for controllability. RM-ODP does not describe the
architectural design process [10].

Guiding vision provides a common goal to guide the
development and harmonise the practices. Guiding vision
also acts as a baseline towards which the development can be
verified.

TABLE III. COMPARISON OF APPROACHES (0=NO SUPPORT, 1=PARTIAL SUPPORT, 2=FULL SUPPORT)

Requirement Zachman FEAF RM-ODP TOGAF DoDAF 4+1 Hofmeister CR
Abstraction 2 2 1 2 2 1 1 2
Change & Uncertainty 2 1 0 2 2 0 2 2
Communication 1 2 1 0 1 2 1 2
Controlled 0 1 0 1 2 1 2 2
Guiding vision 0 1 0 2 2 2 2 2
Interoperable 0 2 2 2 2 0 0 2
Iterative 0 1 0 1 2 2 2 2
Modular 0 1 1 0 0 2 0 2
Separation of concerns 1 2 1 0 1 1 2 2

100Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 112 / 267

Evaluation is ensuring that the architectural decisions are
the correct ones [9]. DoDAF provides description of the
intended product, with guidance and rules for consistency
[18]. TOGAF and 4+1 guides the organisation with an
architectural vision. In FEAF each segment has a guiding
vision [34].

Interoperability is one of the drivers that contribute to
the success of the product and it is necessary to address
interoperability already in the architectural design [39].

FEAF, RM-ODP, TOGAF and DoDAF explicitly
promote interoperability [10].

Iterative development is emphasised in [9], it was also
revealed as one of the success factors in our post-mortem
analysis. FEAF, TOGAF and 4+1 are iterative, however,
FEAF and TOGAF do not explicitly propose iterations after
each phase, but only after the whole process [9][34]. DoDAF
is iterative [18].

Modularity is recognised as a crucial attribute in
software architecture [40][41]. FEAF uses autonomous
partitions to manage complexity [34]. 4+1 supports
modularity to promote ease of development, software
management and reuse as well as addressing environmental
constraints [10].

Separation of concerns provides several benefits, such
as reduced complexity, improved reusability and simpler
evolution [37][38]. Zachman, RM-ODP, DoDAF and 4+1
partially address this requirement through views. Hofmeister
address the complexity and separation of concerns. FEAF
address this, as it is built on segments and enterprise
services, which can be seen as views to development [34].

VI. DISCUSSION
Volatile environments present many non-trivial

challenges for architectural design and specification. A post-
mortem analysis was conducted on a biobank IT
infrastructure project to understand the architecture based on
real problems and attempted solutions. A post-mortem
analysis is a tool that can be used to learn from the
experiences of previous iterations or completed projects. It
can also be used to improve and adapt current software
development processes [22]. Here, our aim was to learn from
our experiences and then suggest improvements for
architectural design processes, especially for volatile
environments.

Our Continuous Renewability approach to architecture is
a) modular, b) interoperable, c) controlled and d) abstracted.
This way we can handle complex systems with significant
inherent uncertainties. The design philosophy is that when
designing the architecture, the requirements were separated
into technical and non-technical requirements whereby the
non-technical requirements included requirements
specialised to the biobank domain, like sample management
and identification and table structures. These are
requirements that do not affect the design of data flow, as we
only need to know that the data exists and will be in some
form that can be trivially read from, written to and
transmitted securely over an encrypted socket-based
connection directly to the next stage. The specific content of
the data is largely irrelevant in most cases.

Incremental and iterative development is suggested as it
allows observing the outcome and improving it as new
information becomes available. Our proposal is a Continuous
Renewability architecture model, which is intended to be
general, such that it does not mandate how each level should
be modelled. This allows several architectural styles and
notations to be utilised. More important is that all the
necessary views to a development are addressed.
Furthermore, our architecture is modular to allow flexibility
and extendibility. Modularity allows the reconstruction of
any part of the system, such that an area-of-effect can
potentially be localised to just those components directly
connected to the modified region. In the case of the biobank,
the system has been designed such that successive system
component regions typically form a directional data flow
through standardised and well-defined interfaces.
Interoperability is similarly achieved through the
specification of interfaces defining various domains with
utilisation of open-standard communication protocols.
Controllability comes from the rigorous process and from the
Master Architecture that guides the development and verifies
the outputs against the set targets. Architecture should also
be highly abstracted. For example, there exist requirements
that are irrelevant when designing a data flow because we
only require knowledge that a given data exists and will be in
some form that we can work with. The specific content of
the data is largely irrelevant in most cases. This is highly
beneficial in an evolving healthcare environment whereby
the specific content of a data set in addition may frequently
be in a state of flux while the laws and regulations
surrounding the data set are interpreted. Increasing or
decreasing the level of abstraction as required allows the
examination of the system from different perspectives. The
separation of technical concerns from non-technical concerns
allows us to adapt to future needs, as the design is not relying
on specific technologies or solutions.

In volatile environments, constant comparison to the
Master Architecture is required. It allows for the verification
of compliance for all the relevant inputs and design choices,
even if those vary during development. The Master
Architecture provides the goals towards which the effort is
pushed as well as the guidelines that determine how those
goals should be reached. Structure for the process is also
provided. Design rationales guide the overall work and are
kept up-to-date by continuous communication with the
stakeholders who see the system being defined
incrementally. Continuous communication also helps
building trust between the stakeholders. This allows them to
understand the rationale for design and implementation
decisions better throughout the process as a consequence of
context being more localised. Input is verified at each level
and every iteration. Additionally, the Master architecture is
updated accordingly. Comparing the results to the Master
Architecture enables a constant feasibility analysis, and
enables corrective actions if necessary.

We suggest an approach to architecture whereby domains
are the fundamental units and the communication pathways
between the domains indicate connectivity between domains.
The internal structure of a given domain remains unspecified

101Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 113 / 267

in the highest level of abstraction. It is only specialised once
the requirements for that domain are exhibiting some form of
stability. For example, we can consider the anonymising
encoding service of the biobank not as a part of the
architecture, but as a specialisation of a domain for a specific
task. Thus, if for example, the law changes or it turns out it
was misinterpreted, the specialised components of the
domain may be updated or replaced with minimal impact to
the architecture assuming the new specialisation utilises the
existing connection path and communicates using
compatible data storage and communication formats. It then
follows that any connected domains from which it receives
from or transmits to must be able to accept that
communication readily.

This is accomplished by initially designing the system at
a high of abstraction, modelling the transformations that
occur in a domain as a function with an argument type T that
maps to some other type U where T, U may have some
structure or may represent a collection of different data
types. It is also important to note that type identifiers, such as
T or U are arbitrarily chosen and the label communicates
only the preservation, or lack thereof, of the structure of the
input data. The labelling of an input and output type is
defined such that if the input and output types of a domain
are identical as is the case in a mapping from T to T then the
transformation that occurs is said to be structure preserving
such that the output contains an identical structure to the
input type. An example of this could be structured tabular
data with given column headings. If the transformation does
not modify this table structure, instead only reading the
contents or modifying the table contents then it is said to be
structure preserving. It is then possible once a directed graph
of each transformation is obtained to perform algebra upon
this graph. Such operations may include the simplification of
the structure through composing transformations or
identifying potential incompatibilities between domains
through type mismatches. Each domain in the architecture is
constructed from many transformations composed in such a
manner that the functionality of a domain may be mapped as
the composition of many functions.

In practise, many concepts may not map naturally to this
model. Examples include data storage on disc and databases.
In such cases, it is possible to map these as either state
machines or simply as entities in the data flow that label a
particular complex process. As requirements stabilise and
become readily available, the intent is for an architecture
defined in this abstract manner to reduce down to a
traditional architecture specification.

Designing the system this way allows us to largely
disregard the shifting external environment and design a
system around the modelled data flow rather than the
specific form of the transformations until such time that
information exhibits stability. It is only required that
information regarding what transformations are required
exists. This way, the architecture is largely resilient against
variation in both non-functional and many non-technical
requirements as each domain is intended to be entirely self-
contained with all state being local to that domain and any
information that enters the domain is passed directly to it and

the given output from a domain depends only upon
information contained within that domain.

We propose that architecture specifies the interfaces to
the various domains and utilise open standard protocols for
communication. It is specified that all data be retained so any
variation in requirements downstream can be trivially
propagated through the signal chain or the entire data set can
be rebuilt at any time if a failure occurs somewhere.
Similarly, by defining the interfaces between domains, it is
possible to enforce properties, such as strong and guaranteed
cryptography on communications and storage in addition to
simple topology modifications due to a standardised
interface between domains. While this requires additional
work in the implementation stage, by communicating
through a unified routing system, it ensures that future
software replacing legacy or unsuitable components may
develop against a known, open communication protocol
removing the possibility that proprietary vendor
communication methods hamper third-party inclusion into
the architecture. There are many benefits of this approach, as
shown in Table IV.

With this in mind, we believe that this approach is not
limited to a single field (pathology, genetics or similar) and
does not depend on a single company. This is a general
model that can apply to any domain of any size.

TABLE IV. BENEFITS

- Since the creation of abstract domains is largely trivial and the
communication between those domains follows open standards, each
domain is fully knowable and may be audited. The system may then
easily adapt by localising changes to only the affected domains.
- Adapting to future needs is made viable using this architecture, as it
doesn't matter whether the software used to power a particular domain is
open source or proprietary as long as it conforms to the open standard
data storage formats and communication protocols, it can be replaced or
upgraded.
- There is much less chance of a given software company creating a
monopoly in the business domain by providing a large monolithic
system that is proprietary and does not allow (or limits) the ability for
third-parties to build upon or interface with it.
- There is opportunity for innovation because anyone can develop
candidate solutions for domain specialisation without needing to invest
effort in satisfying criteria regarding licensing other vendor APIs. It also
allows for larger scale international collaboration.
- The organisation is free to choose any software, open source or
proprietary to specialise each domain. We specify in our prototype
biobank implementation architecture open source software because for
our purposes existing solutions exist for many of the domain
specialisations and it is possible to implement new functionality upon
the existing code bases with relative ease. However, the client remains
free to choose the software solutions they deem adequate. The only
requirement is that the communication between domains follows open
protocols with implementations provided either by an existing library or
directly as part of the core infrastructure.
- It has a potential to be cheaper to maintain. For example, if there is a
decision to go for an entirely open source system, not only does there
not typically exist a license cost, there may exist multiple potential
options regarding which organisation to hire for supporting and
maintaining the system. That way they can receive quotes and optimise
expenditure based on the value each quote offers.
- Since rigid software design processes may stagnate and impede
innovation. By having a modular system, any organisation may be
required to innovate whether it is by feature set or cost as there may not
exist a possibility to implant a system at the project's inception and rely
on the difficulty of switching to a competing product as a source of
longevity in the deployed infrastructure.

102Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 114 / 267

This is where the novelty and innovativeness of this
approach lies. We suggest a system design method that is
resilient to changing requirements and constraints and is
dependent only upon technological requirements, one that
can adapt and grow to any scale and is both modular and
knowable.

There do, however exist limitations to this approach. In
this case, there is limited access to end-users as only a
limited number of healthcare professionals were directly
participating in the process.

We had to rely on application and service providers, who
served as an intermediary between the researchers and the
end-users. However, the application and service providers
are established and well known in their domain and have a
strong knowledge of the needs and requirements. We can
thus rely on their experience for making informed decisions.

The results should interest both academics and
practitioners as they provide an experience report on a
generalised architectural design process for volatile
environments. This is a method for designing a system in
such a way that it bypasses many non-technical issues by
separating the technical concerns from the non-technical
concerns through modular design. The study also lays the
groundwork for further scholarly inquiry, including
validating the findings in practice.

VII. CONCLUSION AND FUTURE WORK
This paper presented lessons learned from a biobank IT

infrastructure project. A post-mortem analysis was
conducted for biobank IT infrastructure process, where
several challenges are encountered. Further challenges were
presented by the strict requirements for privacy and
anonymity as well as rigid processes involved with the
patient data. We have identified several challenges and
solution proposals.

Table V shows the overview of proposed solutions and
summarises how the challenges may be addressed.

By following these proposals the resulting architecture
will be a) modular, b) interoperable, c) controlled and d)
abstracted. It is also suitable for volatile environments, thus
addressing our research question.

Continuous Renewability approach is general by
definition and should be easily adapted to other domains.
However, the practical generalisability of our results is
limited until the process is used in other domains. It is
important to note that the viability of this approach will need
to be verified through controlled experiment and observation.
Though, the generalisability is one of our main design
philosophies guiding the development, hence we believe that
generalisability issues are likely to be negligible. This model
should be refined as feedback from applications is received.

TABLE V. OVERVIEW OF PROPOSED SOLUTIONS

- Changing requirements, components and environments are tackled
with iterative process that builds shared understanding, shape the goals
and allow reacting to changes. Furthermore, Continuous Renewability
approach enables constant feedback and mitigates the effects of changes
as the process progresses.
- Several communications related issues are tackled with iterative
process, as it allow stakeholders to see the system grow, and their
understanding improves along with the system. Improved
communication practices also are necessary, starting from the planning
to create a common vision on what to build and continuing through the
whole development cycle. Constant communication also builds trust
between the stakeholders.
- The Master Architecture provides the scope and guidance for the
development work. First architecture draft is defined to provide a
guideline for development. Then the basic data flows are defined.
Master Architecture provides a checkpoint towards which the design can
be verified, while designing the system around data flows mitigates the
complexity as well as the effects of changing external environment.
- An iterative approach was adopted to build the outcome gradually.
With the modular system architecture and abstracted systems design it
allows for updating the design with minimal effort and minimal impact
to other parts of the system. Abstraction and separation of concerns
allows for adaptable design that accommodates the future needs and is
scalable. It also is not reliant on certain technologies or solutions.
- Separation of non-technological issues from technological issues
simplifies the design, as it isolates, e.g., the effects of politics and rigid
processes from the technological concerns.
- The separation of the architecture into isolated domains connected
through a common interface can serve to restrict the propagation of
errors through the system in the event of component failure or
modification. This in turn has the potential to offer greater flexibility and
expansion of the system to meet future needs.
- Interfaces between the domains and to existing systems utilise the
open-standard communication protocols. This ensures interoperability,
as the components can be changed according to future needs.

REFERENCES
[1] P. Robillard, “The Role of Knowledge in Software

Development,” Communications of the ACM 42(1), pp. 87-92,
1999.

[2] F. O. Bjørnson and T. Dingsøyr, “Knowledge Management in
Software Engineering: a Systematic Review of Studied
Concepts, Findings, and Research Methods Used,”
Information and Software Technology, vol. 50, pp. 1055-
1068, 2008.

[3] S. Leist and G. Zellner, “Evaluation of current architecture
frameworks.” In Proceedings of the 2006 ACM symposium on
applied computing, pp. 1546-1553, 2006.

[4] J. C. Brancheau, L Schuster, and S. T. March, “Building and
implementing an information architecture,” ACM SIGMIS
Database 20(2), pp. 9-17, 1989.

[5] European Union, “General Data Protection Regulation
2016/679.” 2016 URL http://eur-
lex.europa.eu/eli/reg/2016/679/oj, 2017.07.19

[6] J. Hyysalo et al., “Defining an Architecture for Evolving
Environments.” In Proceedings of SAC 2017. In Press.

[7] C. Auffray, D. Charron, and L. Hood, “Predictive, preventive,
personalized and participatory medicine: back to the future,”
Genome Med 2(8), p. 57, 2010.

[8] F. M. Ferrara, “The standard ‘healthcare information systems
architecture and the DHE middleware,” International Journal
of Medical Informatics 52(1), pp. 39-51, 1998.

[9] C. Hofmeister et al., “A general model of software
architecture design derived from five industrial approaches”
Journal of Systems and Software, 80(1), pp. 106-126, 2007.

103Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 115 / 267

[10] A. Tang, J. Han, and P. Chen, “A comparative analysis of
architecture frameworks.” In 11th Asia-Pacific Software
Engineering Conference, 2004, pp. 640-647, 2004.

[11] U. Franke et al., “EAF2-a framework for categorizing
enterprise architecture frameworks.” In 10th ACIS
International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed
Computing, 2009, pp. 327-332, 2009.

[12] P. Mangan and S. Sadiq, “On Building Workflow Models for
Flexible Processes.” In Proceedings of the 13th Australasian
Database Conference, pp. 103-109, 2002.

[13] J. Zachman, “A framework for Information Architecture,”
IBM Systems Journal 38(2&3), pp. 454-470, 1987.

[14] P. Kruchten, “The 4+1 View Model of Architecture,” IEEE
Software 12(6), pp. 42-50, 1995.

[15] FEA, “Federal Enterprise Architecture Framework version 2.”
2013 URL
https://obamawhitehouse.archives.gov/sites/default/files/omb/
assets/egov_docs/fea_v2.pdf, 2017.05.04

[16] J. Putman, “Architecting with RM-ODP,” Prentice Hall, NJ,
2001.

[17] The Open Group, “The Open Group Architecture Framework
(Version 9.1 “Enterprise Edition”).” 2003 URL
http://www.opengroup.org/architecture/togaf/#download,
2017.05.04

[18] Department of Defense, “Department of Defense Architecture
Framework Version 2.02 - Vol 1 Definition & Guideline and
Vol 2 Product Descriptions.” 2010 URL
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoD
AF_v2-02_web.pdf, 2017.05.04

[19] R. Reussner et al., The Palladio component model. Technical
report, Karlsruhe Institute of Technology, 2007

[20] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I.
Meedeniya, “Software architecture optimization methods: A
systematic literature review,” IEEE Transactions on Software
Engineering, 39(5), pp. 658-683, 2013.

[21] A. Birk, T. Dingsoyr, and T. Stalhane, “Postmortem: Never
leave a project without it,” IEEE Software 19(3), pp. 43-45,
2002.

[22] M. Myllyaho, O. Salo, J. Kääriäinen, J. Hyysalo, and J.
Koskela, “A review of small and large post-mortem analysis
methods.” In Proceedings of the ICSSEA, pp. 1-8, 2004.

[23] B. Collier, T. DeMarco, and P. Fearey, “A defined process for
project postmortem review,” IEEE Software 13(4), pp. 65-72,
1996.

[24] R. Scupin, “The KJ Method: a technique for analyzing data
derived from Japanese ethnology,” Human Organization, vol.
56, pp. 233-237, 1997.

[25] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative research in psychology 3(2), pp. 77-
101, 2006.

[26] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering.” In International
Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 275-284, 2011.

[27] T. Dingsøyr and N. B. Moe, “Augmenting experience reports
with lightweight postmortem reviews.” In Product Focused
Software Process Improvement, pp. 167-181, 2001.

[28] J. Hyysalo, A. Keskinarkaus, G. Harper, and J. Sauvola,
“Architecture Enabling Service-oriented Digital Biobanks.” In
Proceedings of the 50th Hawaii International Conference on
System Sciences (HICSS-50), January 4-7, 2017, Hawaii, pp.
3469-3478, 2017.

[29] N. May, “A survey of software architecture viewpoint
models.” In Proceedings of the Sixth Australasian Workshop
on Software and System Architectures, pp. 13-24, 2005.

[30] N. Medvidovic and R. N. Taylor, “A classification and
comparison framework for software architecture description
languages,” IEEE Transactions on software engineering,
26(1), pp, 70-93, 2000.

[31] L. Urbaczewski and S. Mrdalj, “A comparison of enterprise
architecture frameworks,” Issues in Information Systems,
7(2), pp. 18-23, 2006.

[32] M. M. Kwan and P. R. Balasubramanian, “Dynamic
Workflow Management: A Framework for Modeling
Workflows.” In Proceedings of the 30th Hawaii International
Conference on System Sciences (HICSS-30), pp. 367-376,
1997.

[33] M. Klein and C. Dellarocas, “A Knowledge-Based Approach
to Handling Exceptions in Workflow Systems,” Computer
Supported Cooperative Work 9, pp. 399-412, 2000.

[34] R. Sessions, “Comparison of the top four enterprise
architecture methodologies.” 2007 URL
https://msdn.microsoft.com/en-us/library/bb466232.aspx,
2017.05.04.

[35] M. Jiménez, M. Piattini, and A. Vizcaíno, “Challenges and
improvements in distributed software development: A
systematic review,” Advances in Software Engineering, 2009
(3), pp 1-16, 2009.

[36] E. Carmel and R. Agarwal, “Tactical approaches for
alleviating distance in global software development,” IEEE
Software 18(2), pp. 22–29, 2001.

[37] D. Soni, R. L. Nord, and C. Hofmeister, “Software
architecture in industrial applications.” In Proceedings of the
17th International Conference on Software Engineering
(ICSE 1995), pp. 196-196, 1995.

[38] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr, “N
degrees of separation: multi-dimensional separation of
concerns.” In Proceedings of the 21st international
conference on Software engineering, pp. 107-119, 1999.

[39] D. Garlan and D. E. Perry, “Introduction to the special issue
on software architecture,” IEEE Transactions on Software
Engineering 21(4), pp. 269-274, 1995.

[40] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The
structure and value of modularity in software design.” In
ACM SIGSOFT Software Engineering Notes 26(5), pp. 99-
108, 2001.

[41] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant'Anna,
“From retrospect to prospect: Assessing modularity and
stability from software architecture.” In Proceedings of the
Joint Working Conference on Software Architecture &
European Conference on Software Architecture
(WICSA/ECSA 2009), pp. 269-272, 2009.

104Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 116 / 267

Unifying Definitions for Modularity, Abstraction, and Encapsulation as a Step
Toward Foundational Multi-Paradigm Software Engineering Principles

Stephen W. Clyde
Computer Science Department

Utah State University
Logan, Utah, USA

email: stephen.clyde@usu.edu

Jorge Edison Lascano
Departamento de Ciencias de la Computación

Universidad de las Fuerzas Armadas ESPE
Sangolquí, Ecuador

email: edison_lascano@yahoo.com

Abstract—The concepts of modularity, abstraction, and
encapsulation have been an integral part of software
engineering for over four decades. However, their definitions
and application vary between software development paradigms.
In some cases, conflicting definitions exist for a single paradigm.
This paper first defines the concept of a principle for software-
engineering, in general, and then provides a template for
documenting principles so they can be easily referenced and
taught. Next, it proposes initial unified definitions for
modularity, abstraction, and encapsulation that are applicable
to multiple programming paradigms. It then shows that these
unified definitions for modularity, abstraction, and
encapsulation are non-redundant but complimentary of each
other. Finally, it discusses future work for refining and
validating these unified definitions through a series of empirical
studies.

Keywords-software engineering principles; modularity;
encapsulation; abstraction.

I. INTRODUCTION
Ideally, software engineers aim to build quality products

on time and within budget [1, p. 8], where a quality product is
one that supports the required functionality and has
appropriate levels of understandability, testability,
maintainability, efficiency, reliability, security, extensibility,
openness, interoperability, reusability, and other desirable
characteristics. On the surface, different programming
paradigms appear to embrace different principles for helping
developers achieve these characteristics. However, there are
more commonalities than dissimilarities among these
principles and developers would benefit from more general,
unified definitions, especially as mixed-paradigm software
development becomes more prevalent.

Object orientation (OO), which is currently the most
common paradigm, places considerable importance on
encapsulation and abstraction [2][3], but it also advocates
modularity with low coupling and high cohesion [2][4].
Structural programming emphasizes modularization, but can
be make use of control abstraction, certain kinds of data
abstraction, and encapsulation. Functional programming (FP)
emphasizes modularity and encapsulation using pure
functions that have no side-effects [5][6], but also benefits
from control abstraction. Logic programming (LP)
emphasizes behavior (rule) and data (predicate) abstraction,
but can leverage modularity and encapsulation. LP also takes

advantage of control abstraction by hiding nearly all the
underlying inference algorithm.

The modularity, abstraction, and encapsulation (MAE)
principles are beneficial to virtually every programming
paradigm. Unfortunately, there are no generally accepted
definitions for the MAE principles or agreement on their
application and potential benefits.

One problem is that software-engineering publications
typically focus on a single paradigm, and if they define
principles, do so using concepts and terms specific to that
paradigm. Also, pressure to push the state-of-art forward and
publish innovations encourages authors to reinvent or recast
principles instead of adapting or generalizing existing work.

A lack of general, unifying definitions has led to
overlapping and sometimes conflicting ideas about design
principles. Consider for example, the SOLID principles [7]-
[10], which are five design principles popular in object
orientation (OO). Their definitions, which are specific to OO,
have significant similarities with early work on the MAE
principles, but differ in some subtle ways. Specifically, the
first SOLID principle, called the Single Responsibility
Principle (SRP), overlaps with the original notation of
modularity for high cohesion but only deals with it at a class
level [2, p. 54][11]. Similarly, the Open/Closed Principle
overlaps with modularity for minimal coupling [2, p. 54], at
least at a class-level. The five SOLID principles also overlap
with themselves. For example, the Interface Segregation
Principle can be re-cast as an application of SRP in the context
of interface abstractions.

Literature about design principles is sparser for some
paradigms than others. For example, there is relatively little
written about design principles for FP and LP compared to OO
and SP. This does not mean, that design principles are less
important in these paradigms, but that developers are expected
to carry them over from more mainstream paradigms, like OO
and SP.

Problems caused by the lack of unified definitions for
design principles is becoming more serious as new paradigms
continue to emerge and programming languages evolve to
support multiple paradigms. Java, C#, JavaScript, and C++,
for example, now support mixed-paradigm approaches, where
developers can use constructs from OO, FP, Aspect
Orientation (AO), and Generic Programming (GP), and more,
together within the same system [5][12].

105Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 117 / 267

This paper makes three initial contributions towards
addressing this problem. First, Section II clarifies the purpose
of software-engineering principles, in general, and
distinguishes them from “best practices”, idioms, and
patterns. Section II also purposes a template for documenting
principles that allows a principle’s definition to go beyond just
communicating the underlying concepts. Specifically, it
provides a basis for assessing of adherence to the principle and
a foundation for teaching the principle to programmers. Next,
using this template, Sections III-V propose drafts of
paradigm-independent definitions for the MAE principles.
There are undoubtedly other paradigm-independent design
principles besides the MAE, but these three are a good starting
point because of their non-redundant yet complimentary
relationships with each other. An explanation of these two
relationships is given in Section VI and as another
contribution of this paper.

The work presented here is not about inventing or
reinventing the concepts of modularity, abstraction, or
encapsulation. Instead, it aims to synthesize existing
knowledge into a simple, accessible form for software
developers and software-engineering education. Although this
paper presents three contributions towards meeting this
objective, it is just the first step that provides 1) a starting point
for formulating research questions related to software quality
across multiple paradigms, 2) a foundation for designing and
conducting empirical studies, and 3) a basis for eventually
defining metrics for systematically assessing quality in mixed-
paradigm software systems. Section VII discusses these
follow-on efforts in more detail, in addition to providing a
summary of the contributions of this paper.

II. DESIGN PRINCIPLES
Before considering the MAE principles in detail and

presenting unified definitions for them, it is necessary to first
establish the meaning and purpose of software design
principles and distinguish them from desirable characteristics,
metrics, processes, best practices, patterns, idioms, and
artifacts. This is important to reduce potential confusion,
because existing literature uses a term, like “abstraction” to
represent more than one of these ideas. For example, some
authors define abstraction as the process or practice of
isolating and distinguishing common features among objects
[13]-[15]. Others define abstraction as software artifacts that
specify conceptual boundaries between objects or types of
objects [2, p. 38][16]. In this paper, we will define abstraction
as a principle, and not as a process or artifact.

The Merriam-Webster and Oxford dictionaries define a
principle as 1) a truth or proposition that supports reasoning,
2) a rule or code of conduct, or 3) an ingredient that imparts a
characteristic quality (e.g., desirable characteristic) [17][18].
We specialize these definitions for software as follows: a
software design principle is 1) a truth or proposition that
supports reasoning about the desirable characteristics of a
software system, 2) a rule for creating software with certain
desirable characteristics, or 3) an aspect of software design
that imparts certain desirable characteristics. In other words, a
principle is a foundational concept (truth, proposition, rule,
etc.) that leads to and supports reasoning about desirable

characteristics, such as maintainability, efficiency, openness,
reusability, etc.

If some concept, P, is a good principle for achieving a set
of desirable characteristics Q, then the degree to which a
software engineer adheres to P should predicate the degree to
which Q is present in the software artifacts. In other words,
the presence of Q is the goal or purpose of P. Ideally, the
presence of Q in artifacts should be detectable or measurable
through metrics based on the P [19][20]. However, creating
valid and reliable metrics for measuring desirable qualities has
proven to be challenging. We believe that one reason for this
is that the principles upon which they are supposed to be based
are not yet sufficiently defined and details about their
relationships to desirable characteristics are still lacking.

Best practices are procedures or techniques that help
developers adhere to principles without having to consider the
details of a situation at a theoretical level. For example,
consider the practices of “prefer aggregation over inheritance”
and “program to an interface or abstract” [21][22]. By
knowing and using these practices, a developer can improve
modularity, abstraction, and encapsulation, without having to
analyze in detail all the alternatives in terms of their resultant
desirable characteristics. Unfortunately, best practices like
these two tend to be specific to a programming paradigm or
language.

Patterns also help developers achieve desirable
characteristics; they exemplify principles by providing proven
solutions to reoccurring problems in specific contexts [23].
Similarly, an idiom can help developers adhere to a principle
by providing a solution for expressing a certain algorithm or
data structure in a specific programming language [24].

Although software design principles are themselves not
desirable characteristics, practices, patterns, idioms, or
artifacts, they are at the heart of software engineering and their
definitions should give developers the means to 1) reason
about design decisions, 2) assess whether or how well a design
either conforms to a principle, and 3) balance choices between
conflicting objectives and design alternatives. The latter is
important because software engineers must often make
choices that weaken one desirable characteristic in favor of
strengthening another. For example, a developer may have to
sacrifice some extensibility in favor of efficiency.

Table I shows a template for capturing the definition of a
software design principle in a way that accomplishes the three
objectives listed above. As with practices, patterns, and
idioms, a principle’s name must accurately express the nature
of the concept, because that name will become part of a
vocabulary. The essence of a principle’s definition is a short
statement that aims to covey the fundamental concept at level
that is understandable for most programmers and can be
taught to beginning programmers. The essence should
highlight the principles relationship to hoped-for desirable
characteristics.

The next element of the template is a section that describes
practices for following the principle and criteria that can be
used to determine if a software system or component adheres
to the principles. Like the essence, the practices and criteria
need to be paradigm-agnostic and written a level that is
understandable for most programmers.

106Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 118 / 267

The next element is a section that describes costs or other
factors associated with following the principle that can help
developers decide when to violate a principle, in lieu of some
other conflicting objective. It may also include notes about the
consequences of not meeting following the suggested
practices or meeting the adherence criteria.

The last two elements of the template are optional, but
serve to help developers apply a principle for a specific
paradigm and to teach the principle to new programmers.
Naturally, the knowledge captured in these two elements will
be paradigm specific and could refer to a wide range of
artifacts, like source code, build scripts, hyper-text, style
sheets, and configuration files.

III. MODULARITY
Over the last 50 years, many respected authors have

addressed the topic of modularity or modularization, which is
the process of trying to achieve good modularity. One of the
first was David Parnas, who, in 1972, outlined criteria for
decomposing software into modules such that individual
design decisions could be hidden in specific components [25].
His landmark paper set the stage for other research on using
modularization to manage complexity [26]-[28].

These early works illuminated an important facet of good
modularity, namely that a decision design, particularly one
that is likely to change, should be isolated in one software
component. We call this rule for modularity “localization of
design decisions”. By itself, this rule does not prescribe where
the implementation of design decision should be placed, just
that it should not be replicated or spread across multiple
components. Failure to follow this rule leads to the “Duplicate
Code” smell [29], which in turn can reduce maintainability.

Two other propositions or rules that are frequently
associated with modularity are low coupling and high
cohesion [4][30]-[32]. Low coupling exists when each
component of a system is free of unnecessary dependencies
(explicit or implied) on other components. Although coupling
was first defined for SP, other definitions have been created
for OO and AO [30][33]. It has even been applied to LP [34].
Cohesion is the degree to which the elements of one
component relate to each other or the component’s primary
responsibility [31]. Ideally, each component should have a
single responsibility, as advocated by SRP [7]. Like coupling,

definitions for cohesion have been proposed in multiple
paradigms [35]-[37].

Grady Booch said that the objective of modularization is
“to build modules that are cohesive (by grouping logically
related abstractions) and loosely coupled (by minimizing the
dependencies among modules)” [2, p. 54]. It is widely
believed that achieving low coupling and high cohesion
results in software programs that are more understandable,
testable, maintainable, reliable, secure, extensible, and
reusable. It is also believed that they will avoid common code
smells, like Long Method, Large Class, Long Parameter List,
Feature Envy, and Inappropriate Intimacy [29][38].

Another facet of modularity deals with how far away from
some component, C, a developer must look to reason about
the functionality of C, particularly in preparation for making
corrections or extensions. The component C has modular
reasoning if a developer only needs to examine its
implementation, public abstraction (e.g., its interface), and the
public abstractions of referenced components [39]. Extended
modular reasoning is a looser form of modularity, where
developers also need to examine the internal details of
referenced components [39]. Global reasoning is the loosest
form of modularity, where developers may need to examine
some other component in the system to reason about C [39].
A system comprised primarily of components with modular
reasoning or extended modular reasoning is considered better
than those with lots of components that require global
reasoning. Some paradigms try to minimize global reasoning
by introducing constructs that encourage the localization of
certain design decisions, e.g., interfaces for responsibilities in
OO and aspects for crosscutting concerns in AO.

Below is a definition for modularity, following the
template given in Section II. This definition addresses the
issues discussed above and is applicable to multiple
programming paradigms. Due to the space limitations of this
paper, the paradigm notes are limited and detailed examples
are not show.

A. Essence
Modularity exists in a software system when it is

comprised of loosely coupled and cohesive components that
isolate each significant or changeable design decision in one
component and ensure that related ideas are as close as
possible. Modularity can improve understandability,
testability maintainability, reliability, security, extensibility,
and reuse. It can also help with collaboration during the
software development process by outlining loosely coupled
work units [2, p. 54].

B. Practices and Criteria
1) Localization of design decisions: Design decisions are

identified and prioritized by significance and likelihood for
future change. In a system with localization of design
decisions, every significant or changeable decision is
implemented in one component.

2) High cohesion: When making design decisions, a
developer considers all the responsibilities of a given
component and tries to ensure that there is just one or that
responsibilities are all closely related. In a system with high

TABLE I. PRINCIPLE-DEFINITION TEMPLATE

Name The name of the principle
Essence A statement of the truth, proposition, or rule

embodied in the principle and its relationship
to hoped-for desirable characteristics

Practices and
Criteria

Processes or criteria that, if followed, should
help the developer adhere to the principle and
lead to the hoped-for desirable characteristics

Tradeoffs Factors that can help a developer decision
when to go against a principle, in lieu of a
conflicting objective. These factors may include
the consequences of not meeting the criteria or
common tradeoffs

Paradigm Notes Notes about applying the principle in various
paradigms

Examples Good and poor examples in different
paradigms

107Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 119 / 267

cohesion, every component has one primary responsibility or
reason to change. Component’s primary responsibility may be
a high level, when the component is an aggregate or when it
directs behaviors in other components.

3) Low coupling: When making design decisions, a
developer aims to minimize the degree and number of
dependencies (explicit or hidden) between components. In a
system with low coupling, the components are free of hidden
dependent and unnecessary explicit dependencies. Also,
explicit dependencies are directly visible in the code, e.g.,
data-type references and function calls.

4) Modular reasoning: Developers should give
preference to decompositions with modular reasoning over
extended modular reasoning, and to extended modular
reasoning over global reasoning. A system has modular
reasoning if developers can understand the details of a
component by examining only its implementation, public
abstraction, and the public abstractions of referenced
components.

C. Tradeoffs
Localization of design decisions and high cohesion can

lead to many fine grain components. Although these help with
testability, extensibility, and reuse, it can sometimes hinder
readability. One common solution is to package small, related
components into aggregation components.

Although modularity by itself will not guarantee
understandability, testability maintainability, reliability,
security, extensibility, and reuse, the lack modularity will
compromise these desirable characteristics. Adherence or
violation of the modularity principles typically affects
multiple components. For example, if a design decision is not
localized, then it can comprise the maintainability of every
component that deals with that design decision.

D. Paradigm Notes
Only snippets of the paradigm notes from the full principle

definition are shown here.
For OO, packages, classes, and methods are the primary

types of components that developers need to work with when
modularizing, but they may also consider other types of
artifacts like build scripts, configuration files, and style sheets.
Composite components, like packages, often have multiple
responsibilities, but those responsibilities should be cohesive
as described above in practices and criteria section.

For FP, the components are primarily functions, but could
also include other artifacts like build scripts. By definition, a
pure function in FP only depends on values that are passed in
as input parameters, so developers can minimize coupling by
ensuring that a function’s parameters represent nothing than
exactly what the function needs.

For LP, the components are primarily predicates, rules,
and facts. Modularity is achieved by doing three things. First,
developers must ensure every predicate represents a single
idea or responsibility. In other words, every predicate should
be highly cohesive. Second, every interesting or potentially
changeable decision decisions need to be localized. This is
done by defining a predicate and set of rules for each design
decision.

IV. ABSTRACTION
From a process perspective, abstraction is the act of

bringing certain details to the forefront while suppressing all
others. John Guttag said that “the essence of abstractions is
preserving information that is relevant in a given context, and
forgetting information that is irrelevant in that context” [40].
This is something that most humans learn naturally as part of
their cognitive and social development, in conjunction with
learning to think conceptually and symbolically [41].

Nevertheless, it is interesting that a significant percentage
of computer science students, and by extension software
engineers, struggle with creating good software abstractions
[15]. Perhaps, this is because creating good software
abstractions are much harder to create than everyday
abstractions. Software abstraction requires developers to sift
through large and diverse collections of details about legacy
systems, current and future requirements, existing and
emerging technologies, tool-stack idiosyncrasies, work
allocation nuances, and more, and then determine the most
salient and distinguishing concepts. Fittingly, Abbott et al.
described an abstraction as the “reification and
conceptualization of a distinction” [13].

From an artifact perspective, every software component
has an abstraction, independent of whether the developer
thought about or declared it explicitly. A component’s
abstraction is everything about the component that is visible
externally. Examples of common elements that contribute to
component abstractions include descriptive or identifying
labels like function names, class names, predicate names, and
CSS style names; the public data members and methods of
classes; the parameters of a function or method; meta-data
annotations; and much more. None of these elements alone
can represent a complete abstraction for the component to
which they belong. A component’s full abstraction consists of
everything that other components might explicitly or
implicitly depend on. Ideally, a full abstraction should be
programmatically declared or documented, so it is readily
accessible to developers and other components. However, this
is rarely the case. Instead, components typically end up with
leaky abstractions [42]. One reason for this is that developers
often do not take the time to document all external discernable
characteristics, like performance properties and side effects.
Other sources of leaky abstractions are incomplete thinking,
design errors, and implementation bugs that do not
immediately contradict required functionality or exhibit
damaging characteristics. Overtime, other components can
come to depend on those erroneous characteristics. Then,
when the original problems are corrected, all the components
that depended on the erroneous characteristics fail.

Another potential problem is too much abstraction. This
occurs when a component’s abstraction does not expose all
elements that others need to use or the abstraction does not
provide sufficient parameterization for the elements that need
to be customizable. These kinds of problem lead to lack of
flexibility, which in turn leads to sloppy hacks that can
compromise the overall quality of a system.

Below is a simple definition for the abstraction principle
that can help developers capture and communicate meaningful

108Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 120 / 267

abstractions without leakage or over abstraction. The
definition is sufficiently broad to cover control, function,
behavior, and data abstraction. Note that the abstraction
principle by itself does not address the placement or
organization of design decisions, i.e., the decomposition of a
system into components. The modularity principle guides
decomposition and refactoring. Instead, the abstraction
principle focuses on exposing and communicating the right
aspects of a component, namely those that others will need to
depend on.

A. Essence
For each component, there is an explicit and clear

declaration of the component’s accessible features or
functionality. Depending on the paradigm and programming
language, this declaration may be part of the source code, meta
data, or documentation. The exposed features and
functionality should be no more and no less than what other
components may need or depend on.

Adherence to the abstraction principle can improve
understandability, testability, maintainability, and reusability.
It can also allow developers to follow modularity more
effectively, because it will bring to light weakness with
localization of design decisions, unnecessary coupling, and
low cohesion.

B. Practices and Criteria
1) Meaningful labels and identifiers: A system has

meaningful labels and identifiers, when each one expresses
the essence and distinguishing aspect(s) of its associated
component or element.

2) Context-aware labels and identifiers: This exists when
the label or identifier for a component does not contain
redundant information that can be inferred from the
component’s context or scope. For example, a method called
GetFirstName in a Person class makes for better abstraction
than GetPersonFirstName, because the context of person can
be derived from the class name.

3) Abstraction completeness: Whenever possible, all
externally visible characteristics for a component are
explicitly declared as part of the component’s definition,
implementation, or meta data. When that is not possible,
documentation must explain these characteristics clearly and
concisely, and the closer document is to the component’s
implementation, the better.

4) Abstraction sufficiency: This exists when all the
elements of a component that should be visible to outside
components are exposed through the component’s
abstraction.

C. Tradeoffs
Not following the practices and criteria listed above can

result in the loss of the hoped-for desirable characteristics in
portion to the degree and amount of non-adherence.

D. Paradigm Notes
Only snippets from the notes for LP are shown here to give

the reader a sense of what this part of the full definition
contains.) As mentioned, the primary components in LP are

predicates, rules, and facts. The abstractions for these
components expose the “logic” of system while hiding most
of its control aspects, namely the process for drawing
conclusions or deductions. Predicates represent relations
from the problem domain or design decision. Given a
predicate, all the rules with the predicate in their heads and
facts stated with that predicate form another kind of higher
level abstraction in LP. One of these abstractions exposes all
that is known about a relation or decision.

The abstraction for a predicate is comprised of a name and
some number of parameters. A developer should choose a
name that expresses the predicate’s essence clearly, concisely,
and accurately. Doing so not only improves understandability
from an abstraction perspective, it helps with modular
reasoning, which in turn contributes to better modularity.
Facts and rules are typically given labels in LP, but can be
grouped together into higher level packages to form higher
level abstractions.

V. ENCAPSULATION
Encapsulation is typically equated with OO, but it is not

unique to OO nor did it originate with OO. In fact, many old
devices, like mechanical clocks from the middle ages, are good
examples of encapsulation. All their implementation details,
e.g., the time keeping mechanisms, are hidden behind a clock
face in a sealed container.

In English, encapsulation means to enclose something
inside a capsule or container [43]. In other words, it involves
two things: the thing is being enclosed and the enclosure. In
physical systems, like a train station that needs a clock, the
choices for enclosures are relatively limited compared to those
available in software systems, where developers have total
control over the system’s decomposition. As described in
Section III, modularity can guide a developer in making good
choices for the components, i.e., enclosures, such that each has
a cohesive purpose and is loosely coupled to others.
Abstraction, as discussed in Section IV, can help developers
communicate the essence of component and expose only
external characteristics. The principle of encapsulation can
then help developers isolate or hide the internal characteristics
of a component so others do not accidently become dependent
on them.

Unfortunately, the close relationship among encapsulation,
abstraction, and modularity has led to some ambiguity in use
of these terms. This is particularly true for encapsulation. The
various definitions for encapsulation in software engineering
literature can be grouped into three categories. The first
category includes definition that equate encapsulation to the
bundling of data with operations on that data to create Abstract
Data Types [44][45]. These definitions take either a process or
artifact perspective, but typically lack a proposition, rule, or
practice that qualify them as principle definitions. Also, these
definitions sometimes overshadow or ignore modularity and its
associated criteria like localization of design decisions, low
coupling, high cohesion, and modular reasoning.

The second category includes definitions that represent
encapsulation as a process or technique for hiding decisions
behind logical barriers, preventing outsiders from modifying or
even viewing the implementation details of components. This

109Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 121 / 267

category of encapsulation definitions stems from work on
information hiding, which is the dual of abstraction. It has
given rise to access-restricting language constructs, such as the
private and protected modifiers in class-based languages.
Although definitions of this category are valuable by
themselves, they do not capture encapsulation’s full potential.

In the third category, definitions explain encapsulation as a
process for organizing components so the implementation
details of one component can be modified without causing a
ripple effect to other components [46]. These definitions focus
on the minimization of inter-component dependencies, i.e.,
coupling. By themselves, these definitions miss other
important aspects of encapsulation and blur it with
modularization.

There are many documented “best practices” that experts
believe can help programmers achieve good encapsulations.
For example, in C#, experts believe that the use of auto-
implemented properties is much better than public data
members because they provide for stronger barrier between the
abstraction and implementation details [47]. Unfortunately,
such “best practices” tend to be language or paradigm specific.

As mentioned earlier, a design principle must be a truth,
proposition, rule, or practice that yields desirable qualities.
Below is a definition for encapsulation that aims to comply
with this requirement for principles and can guide a developer
achieve good encapsulation, independent developer’s
adherence to the principles of modularity and abstraction.

A. Essence
Ensure that the private implementation details (i.e., the

internal characteristics) of a component are insulated so they
cannot be accessed or modified by other components. Doing
so will lead to better testability, maintainability, and
reliability. It will also help with a clear separation of concerns
and avoid accidental coupling.

B. Practices and Criteria
1) Conceptual barriers: For each component, a developer

should identify the internal structures, behaviors, procedures,
and definitions of that component and ensure that they are
protected behind conceptual barriers. More specifically,
developers should try to identify the minimum required scope
for each internal element. For example, in OO, if a data
member is only used within the scope invocations for a single
method, then that data member should be refactored to a local
variable of the method.

2) Programmatic barriers: Developers should ensure that
the modifiability and visibility of every internal element is
programmatically restricted to the desired scope. Developers
should leverage the available features of the chosen
programming language, whenever possible.

3) Usage barriers: If there are internal elements that
cannot be isolated programmatically, then document
appropriate rules for correct usage of the component, so
developers can avoid accidental violations of the intended
encapsulation.

C. Tradeoffs
Failure to protect a component’s internal characteristics

from other components opens the doors for abstraction
leakage and hidden dependencies, which can damage
testability, maintainability, and reliability in surreptitious
ways. In cases where programmers are tempted to weaken the
encapsulation of some element in a component, like make a
data member in a class definition public, they could at least
document the intended usage to minimize the formation of
accidental hidden dependencies.

D. Paradigm Notes
Only a few snippets of the full paradigm notes are shown

here. The mechanisms for achieving encapsulation vary
greatly among paradigms and programming languages. For
FP in compiled languages, functions can be strongly
encapsulated behind their declarations. This is true even for
anonymous function. But, for interpretative languages that
support FP, functions are just other forms of data and the
decisions they encapsulate may be externally visible and
modifiable. In those cases, developers need to document
what others may and may not access or change.

For OO and typed languages, developers can restrict the
scope for each element to the smallest scope within which the
element is used. Data members, for example, are typically
private and made accessible only through methods. Some
languages provide convenience short hands for getter and
setter methods to help programming adhere to this best
practice. Only methods that need to be used by other
components should be public. Also, developers can use
package-level scoping to restrict access to public classes or
method that are only needed within a package.

VI. THE NON-REDUNDANCY AND COMPLIMENTARY
NATURE OF THE MAE PRINCIPLES

To be effective for multiple paradigms and for the long-
term advancement of software engineering, it is important for
general principles to be non-redundant with each other in two
ways: 1) no general principle can be a special case of or
subsumed by another principle or combination of principles
and 2) developers should be able to choose to follow one
principle but not the others.

The case for MAE principles meeting the first is condition
is relatively straight forward. The essence of modularity deals
with the decomposition of a system into components. Neither
of the other two principles prescribe guidelines for organizing
a system into modules. So, modularity cannot be subsumed by
abstraction or encapsulation, and conversely. Abstraction and
encapsulation both apply to individual components, which
from an artifact perspective, can be thought of as “abstractions”
and “encapsulations.” However, abstraction and encapsulation
from a principle perspective are fundamentally different from
each other. In fact, from a principle perspective, they are
approximate duals of each other. Abstraction guides a
developer in exposing just the right elements of a component
so it is easy to understand and use. Encapsulation guides a
developer in hiding internal design decisions so other
components cannot intentionally or accidentally depend on

110Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 122 / 267

them. Abstraction cannot be recast or explained as a special
type, variation, or subpart of encapsulation. Similarly,
encapsulation cannot be fully explained in terms of just
abstraction.

 The satisfaction of the second condition for non-
redundancy can be shown using a simple example plus three
variations, where each one illustrates adherence to one
principle but not the others. The example, shown in Figure 1,
consists of two classes: Line and Point, where the Point class
represents movable points in a 2D coordinate space and the
Line class represents lines comprised of two points and that
know how to compute their own lengths. Fig. 1 shows an
implementation that of this simple system that has good
modularity, abstraction, and encapsulation according to the
definition given in Sections III-V.

In the first variation (see Fig. 2), the designs decisions are
still localized, the classes still have low coupling and high
cohesion, and they support modular reasoning. In other words,
the system’s decomposition has good modularity. However,
the system has poor abstraction or encapsulation, caused
unnecessary exposure of the internal design decisions and by
poor identifiers, which are either do not communicate the true
essence of the elements. Of course, there could be other ways
that the abstraction and encapsulation could be degraded, but

the purpose of this example is to simply show that modularity
can exist without abstraction and encapsulation.

In the second variation (see Fig. 3), the Line and Point
classes have good abstractions, but lack modularity and
encapsulation. Specifically, the class definition expose the
functionality that other components need to use, with sufficient
flexibility. However, the decision for calculating the distance
between two points is not localized, which goes against the
modularity principle, and the data members in both classes are
public, which violates the intended encapsulation.

A third variation with good encapsulation but poor
modularity and abstraction would be an implementation that
had the poor names, i.e., poor abstraction, from the first
variation plus the lack of localization of decision designs, i.e.,
poor modularity, from the second variation.

These three variations show that it is possible for a
developer to apply each of the three MAE principles,
independently of each other. In fact, there may be some special
circumstances where this is exactly what a developer needs to
do to meet external requirements or adjust for limitations of a
programming language or framework. However, such cases
should be rare.

Although the MAE principles are non-redundant, they
complement each other nicely. In other words, adherence to
one encourages, but does not require, adherence to the others.
Specifically, adhering to modularity will set the stage for
adherence both abstraction and encapsulation, because
modularity brings to light what the components need to know
about each other and which the design decisions need to be

public class Line {
 private Point point1;
 private Point point2;

 public Line(Point point1, Point point2) {
 this.point1 = point1;
 this.point2 = point2;
 }

 public double ComputeLength() { /* .. */ }
}

public class Point {
 private double x, y;

 public Point(double x, double y) {
 this.x = x; this.y = y; }

 public double getX() { return x; }
 public void moveX(double deltaX) { x += deltaX;}
 public double getY() { return y; }
 public void moveY(double deltaY) { y += deltaY;}
}

Figure 1. A simple example implementation with good modularity,
abstraction, and encapsulation.

public class Line {
 public XY point1;
 public XY point2;
 public Line(XY point1, XY point2) { /* … / }
 public double Calc() { /* Compute length … */ }
}

public class XY {
 public double x, y;
 public XY(double x, double y) { /* … / }
}

Figure 2. A simple example implement with good modularity, but poor
abstraction and encapsulation.

public class Line {
 public Point point1;
 public Point point2;

 public Line(Point point1, Point point2) {/* … */}

 public double ComputeLength()
 {
 return Math.sqrt(Math.pow(point2.getX() –
 point1.getX(), 2) +
 Math.pow(point2.getY() –
 point1.getY(), 2));
 }
}

public class Point {
 public double x, y;

 public Point(double x, double y) { /* … *. }

 public double getX() { return x; }
 public void moveX(double deltaX) { x += deltaX;}
 public double getY() { return y; }
 public void moveY(double deltaY) { y += deltaY;}

 public double ComputeDistance(Point otherPoint)
 {
 return Math.sqrt(Math.pow(otherPoint.x - x, 2) +
 Math.pow(otherPoint.x - y, 2));
 }
}
Figure 3. A simple example implementation with good abstraction, but

poor modularity and encapsulation.

111Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 123 / 267

encapsulated. Likewise, abstraction can lead to better
understanding of the inter-component couplings and therefore
better modularization. Also, elements that are not part of a
component’s abstraction are candidates for encapsulation.
Finally, doing encapsulation will act as a double check and
balance for both modularization and abstraction.

VII. SUMMARY AND FUTURE WORK
This paper has explained the purpose of design principles,

in general, and provided a template for establishing working
definitions that can help with teaching the principles to
software developers, assessing adherence, and pursuing
research questions. This paper then provided an overview of
existing ideas related to modularity, abstraction, and
encapsulation and unifying them into initial paradigm-
independent definitions. Finally, it showed that these principles
are non-redundant and complimentary, in the sense that no
combination of two could replace the third and that adherence
to one encourage adherence to the others.

The work reported in this paper is just one step forward in
a larger effort. Our next step is to formulate research questions
related the application of MAE principles in mixed-paradigm
environments and then setup concrete empirical studies to
explore those questions. Below is a sampling of the research
questions that we hope to pursue soon:

• When using OO together with LP, what kinds of

functionality or responsibility are best handled using LP?
• When using OO with LP, FP, or GP, is it best to design

the overall architecture using an OO approach and
encapsulate specific responsibilities in LP-based, FP-
based, or GP-based components? If so, why and what
kinds of components are best suited for LP, FP, and GP?

• What kinds of responsibilities are best encapsulated in
aspects when using AO with OO?

• When using FP with OO, how can developer know if
high-order functions are following the MAE principles?

After exploring these and other research questions, we

believe that another important step would be to explore
metrics for systematically assessing quality in mixed-
paradigm software systems. The details of any given metric
may end up being platform dependent. However, if there were
a suite of metrics based on a unified principle definition, then
the metrics might yield measurements that are comparable
across software components, even when those components are
implemented with different languages or paradigms.

Finally, our plans for future work include investigations
into other design principles beyond MAE. For example, we
hope to unify definitions for classification and generalization/
specialization. Although these principles are heavily used in
OO, they can apply to other paradigms as well.

Overall, the effort to unify principle definitions is important
as programming languages continue to expand to support
multi-paradigm software development. This effort will require
input from many different sources and involve a wide range of
subfields within software engineering. To this end, we
welcome and encourage collaboration from all who are

interested in creating a stronger foundation for software
methods, teaching software engineering, improving
development tools, or assessing software quality.

REFERENCES
[1] I. Sommerville, Software Engineering, 10 edition. Boston:

Pearson, 2015.
[2] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J.

Conallen, and K. A. Houston, Object-Oriented Analysis and
Design with Applications, 3 edition. Upper Saddle River, NJ:
Addison-Wesley Professional, 2007.

[3] “Abstraction (software engineering),” Wikipedia. 06-Jun-
2017.

[4] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using
Cohesion and Coupling for Software Remodularization: Is It
Enough?,” ACM Trans Softw Eng Methodol, vol. 25, no. 3,
pp. 24:1–24:28, Jun. 2016.

[5] “Functional programming,” Wikipedia. 03-Jun-2017.
[6] “Purely functional programming,” Wikipedia. 10-Apr-2017.
[7] R. C. Martin, “The Principles of OOD,” PrinciplesOfOod,

2005. [Online]. Available:
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.
[Accessed: 07-Jun-2017].

[8] R. C. Martin, “Getting a SOLID start. - Clean Coder,” 2009.
[Online]. Available:
https://sites.google.com/site/unclebobconsultingllc/getting-a-
solid-start. [Accessed: 07-Jun-2017].

[9] S. Metz, “SOLID Object-Oriented Design - GORUCO 2009.”
[Online]. Available: http://confreaks.tv/videos/goruco2009-
solid-object-oriented-design. [Accessed: 07-Jun-2017].

[10] R. C. Martin, Agile Software Development, Principles,
Patterns, and Practices, International ed edition. Harlow:
Pearson Education Limited, 2013.

[11] T. DeMarco and P. J. Plauger, Structured Analysis and
System Specification, 1 edition. Englewood Cliffs, N.J:
Prentice Hall, 1979.

[12] “Comparison of multi-paradigm programming languages,”
Wikipedia. 22-Mar-2017.

[13] R. Abbott and C. Sun, “Abstraction Abstracted,” in
Proceedings of the 2Nd International Workshop on The Role
of Abstraction in Software Engineering, New York, NY,
USA, 2008, pp. 23–30.

[14] “abstraction | cognitive process,” Encyclopedia Britannica.
[Online]. Available:
https://www.britannica.com/topic/abstraction. [Accessed: 06-
Sep-2017].

[15] J. Kramer, “Is Abstraction the Key to Computing?,” Commun
ACM, vol. 50, no. 4, pp. 36–42, Apr. 2007.

[16] W. R. Cook, “On Understanding Data Abstraction,
Revisited,” in Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems
Languages and Applications, New York, NY, USA, 2009, pp.
557–572.

[17] “Definition of PRINCIPLE.” [Online]. Available:
https://www.merriam-webster.com/dictionary/principle.
[Accessed: 07-Jun-2017].

[18] “principle - definition of principle in English | Oxford
Dictionaries,” Oxford Dictionaries | English. [Online].
Available:
https://en.oxforddictionaries.com/definition/principle.
[Accessed: 07-Jun-2017].

112Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 124 / 267

[19] V. R. Basili, G. Calderia, and H. D. Rombach, “The Goal
Question Metric Approach,” in Encyclopedia of Software
Engineering, vol. 2, John Wiley & Sons Ltd, 1994, pp. 528–
532.

[20] C. N. Sant’Anna, A. F. Garcia, C. von F. G. Chavez, C. J. de
L. Lucena, and A. von Staa, “On the reuse and maintenance
of aspect-oriented software: An assessment framework,” in
Proc. 17th Brazilian Symposium on Software Engineering,
Manaus, Brazil, 2003.

[21] “GOF Advice: Favor Aggregation over Inheritance | Net
Objectives.” [Online]. Available:
http://www.netobjectives.com/competencies/favor-
aggregation-over-inheritance. [Accessed: 06-Sep-2017].

[22] E. Freeman, B. Bates, K. Sierra, and E. Robson, Head First
Design Patterns: A Brain-Friendly Guide, 1st edition.
Sebastopol, CA: O’Reilly Media, 2004.

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch,
Design Patterns: Elements of Reusable Object-Oriented
Software, 1 edition. Reading, Mass: Addison-Wesley
Professional, 1994.

[24] A. J. Perlis and S. Rugaber, “Programming with Idioms in
APL,” in Proceedings of the International Conference on
APL: Part 1, New York, NY, USA, 1979, pp. 232–235.

[25] D. L. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Commun ACM, vol. 15, no. 12, pp.
1053–1058, Dec. 1972.

[26] G. J. Myers, Composite/Structured Design. New York: Van
Nostrand Reinhold, 1978.

[27] B. H. Liskov, “A Design Methodology for Reliable Software
Systems,” in Proceedings of the December 5-7, 1972, Fall
Joint Computer Conference, Part I, New York, NY, USA,
1972, pp. 191–199.

[28] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The Modular
Structure of Complex Systems,” IEEE Trans. Softw. Eng.,
vol. SE-11, no. 3, pp. 259–266, Mar. 1985.

[29] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, and E.
Gamma, Refactoring: Improving the Design of Existing Code,
1 edition. Reading, MA: Addison-Wesley Professional, 1999.

[30] Y. Press and L. L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design, 1 edition. Englewood Cliffs, N.J: Prentice
Hall, 1979.

[31] W. P. Stevens, G. J. Myers, and L. L. Constantine,
“Structured Design,” IBM Syst J, vol. 13, no. 2, pp. 115–139,
Jun. 1974.

[32] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Trans Softw Eng, vol. 20, no.
6, pp. 476–493, Jun. 1994.

[33] M. H. Samadzadeh and S. J. Khan, “Stability, Coupling, and
Cohesion of Object-oriented Software Systems,” in
Proceedings of the 22Nd Annual ACM Computer Science
Conference on Scaling Up : Meeting the Challenge of
Complexity in Real-world Computing Applications: Meeting
the Challenge of Complexity in Real-world Computing
Applications, New York, NY, USA, 1994, pp. 312–319.

[34] S. Kramer and H. Kaindl, “Coupling and Cohesion Metrics
for Knowledge-based Systems Using Frames and Rules,”
ACM Trans Softw Eng Methodol, vol. 13, no. 3, pp. 332–358,
Jul. 2004.

[35] G. Gui and P. D. Scott, “Coupling and Cohesion Measures for
Evaluation of Component Reusability,” in Proceedings of the

2006 International Workshop on Mining Software
Repositories, New York, NY, USA, 2006, pp. 18–21.

[36] A. Kumar, R. Kumar, and P. S. Grover, “Towards a Unified
Framework for Cohesion Measurement in Aspect-Oriented
Systems,” in Proceedings of 19th Australian Conference on
Software Engineering, Australia, 2008, pp. 57–65.

[37] B. C. da Silva, C. Sant’Anna, and C. Chavez, “Concern-based
Cohesion As Change Proneness Indicator: An Initial
Empirical Study,” in Proceedings of the 2Nd International
Workshop on Emerging Trends in Software Metrics, New
York, NY, USA, 2011, pp. 52–58.

[38] “Code Smells,” Code Smells. [Online]. Available:
https://sourcemaking.com/smells. [Accessed: 08-Jun-2017].

[39] G. Kiczales and M. Mezini, “Aspect-oriented Programming
and Modular Reasoning,” in Proceedings of the 27th
International Conference on Software Engineering, New
York, NY, USA, 2005, pp. 49–58.

[40] J. Guttag, Introduction to Computation and Programming
Using Python. The MIT Press, 2013.

[41] J. Piaget and B. Inhelder, The Psychology Of The Child, 2
edition. New York: Basic Books, 1969.

[42] “The Law of Leaky Abstractions,” Joel on Software, 11-Nov-
2002. [Online]. Available:
https://www.joelonsoftware.com/2002/11/11/the-law-of-
leaky-abstractions/. [Accessed: 18-May-2017].

[43] “Definition of ENCAPSULATE.” [Online]. Available:
https://www.merriam-webster.com/dictionary/encapsulate.
[Accessed: 10-Jun-2017].

[44] “Encapsulation (computer programming),” Wikipedia. 08-
Jun-2017.

[45] “Abstract data type,” Wikipedia. 10-Jun-2017.
[46] “Encapsulation & Modularity.” [Online]. Available:

https://atomicobject.com/resources/oo-
programming/encapsulation-modularity. [Accessed: 10-Jun-
2017].

[47] B. Wagner, “Auto-Implemented Properties (C# Programming
Guide).” [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/classes-and-structs/auto-
implemented-properties. [Accessed: 10-Jun-2017].

113Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 125 / 267

iMobile: A Framework to Implement Software Agents for the iOS Platform

Pedro Augusto da Silva e Souza Miranda, Andrew Diniz da Costa, Carlos José Pereira de Lucena

Laboratório de Engenharia de Software – LES
Pontifícia Universidade Católica do Rio de Janeiro

Rio de Janeiro, Brazil
email: pedro.augusto@les.inf.puc-rio.br, email: andrew@les.inf.puc-rio.br, email: lucena@inf.puc-rio.br

Abstract—Appropriate implementation of software agents
for the iOS platform able to represent their main features, such
as distribution, autonomy and pro-activity, is still an open issue.
Therefore, this paper proposes the iMobile Framework that
allows the creation of software agents for applications (apps)
made for iPhone and iPad devices. A developed scenario
demonstrates the applicability of the proposed framework,
where an app allows registration of issues identified in some
company. The main goal of the software agents is to speed up
the process of contacting people, as quickly as possible, to solve
critical issues.

Keywords-mobile computing; software agent; framework; iOS
platform.

I. INTRODUCTION

Currently, the development of complex apps for mobile
platforms (e.g., iOS and Android), which have autonomous,
pro-active and distributed entities, is common. Taking this
scenario into consideration, the use of software agents
[2][3][4][16][39][40] is expected.

In the literature, there are several proposals
[1][5][6][15][17][18][29][30] that help the development of
software agents. However, few solutions are directed to
mobile environments, such as agents being executed in
smartphones and tablets. Even with the exponential evolution
of hardware used for manufacturing, mobile device memory,
processing and disk drive space are still concerns. In most
cases, an important reason is that a mobile operating system
(OS) has very restricted policies regarding what an application
may or may not do with its memory, processor and disk drive.
This situation is different from desktop applications, where
services may run in the background until the user stops the
application, or when the OS is shut down.

One of the best-known mobile-oriented frameworks is
JADE-Leap [5]. It is an extension of the Java Agent
Development Framework (JADE) framework [6], but with a
limited feature set. JADE already offers support to the
implementation of autonomous and pro-active agents. Such
limitation of features by JADE-Leap was defined to avoid
performance issues when ran on tablets or smartphones.
Furthermore, JADE-Leap was developed in Java [9] and it
may not be used on the iOS platform.

In 2014, Apple presented a new programming language
for the iOS platform, called Swift. It came to replace the
Objective-C, the language used for many years to develop the
iOS apps. Thereafter, in 2015, a library called GameplayKit
[35] was presented to offer the collection of foundational tools
and technologies for building games. One of the facilities
provided was to simulate characters of a game to react based

on high-level goals and to react to their surroundings.
GameplayKit used the agent term to represent these
characters, however, it did not reproduce all characteristics
that represent software agents [2][3][4], such as sociability.

According to [31], Swift is a programming language that
quickly became one of the fastest growing languages in
history. Swift has been an open source since 2015. It was
widely adopted by developers and now is one of the top 10
most-searched languages on the internet [32].

Considering the growth of this language and the
complexity of developing iOS apps, approaches that help to
improve software agents for the iOS platform are expected.
Then, based on this context, this paper presents the iMobile, a
practical development framework. It allows the creation of
software agents for the iOS platform using native resources,
such as the Bonjour API [20], which helps the discovery of
devices and services published on networks. Consequently,
the agents’ development for the iOS environment will be
easier and faster with iMobile.

This paper is organized as follows: Section II describes the
related works that helped to identify which information could
and should be represented in an agent framework for the iOS
platform. In Section III, the proposed iMobile framework is
explained in detail. In Section IV, a use case scenario that
extends the iMobile framework and uses agents to speed up
the process of contacting people, as quickly as possible, in
order to solve critical issues in a company, is presented.
Finally, in Section V, the conclusions and future works are
presented.

II. RELATED WORKS

In order to propose a framework that could help to create
software agents to the iOS platform, several frameworks
offered in the literature, that allow the agents’ development,
were studied. The main works that greatly influenced our
proposal are presented below.

As mentioned in Section I, JADE-Leap [5] is an extension
of the JADE Framework [6]. It allows the use of software
agents in a variety of mobile platforms, such as Android and
MIDP (Mobile Information Device Profile) [12]. In the JADE
framework, agents inhabit containers and every JADE agent
application must have a main container, in which all
secondary agents on the system are registered. Containers are
Java processes that provide the JADE run-time and all the
necessary services for hosting and executing agents [13].

From the JADE framework, you may create software
agents that are able to trade messages with each other, change
behaviors and migrate to another container. JADE agents are

114Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 126 / 267

Foundation for Intelligent Physical Agents (FIPA) compliant
[14], which means that they obey certain structures when they
are trading messages. These messages, called Agent
Communication Language (ACL), meet FIPA’s ACL
standards. The ACL message standard considers a protocol
that allows message exchanges between agents, even if they
are in different systems. Each ACL message has, at least, one
receiver, one language and one ontology, which are the
message context and the message content itself. More details
about that standard can be seen at [28].

JADE LEAP extends all these JADE features for a mobile
environment using the same concept of containers. In other
words, JADE LEAP, just as JADE, forces the user to have a
fixed IP server in order to make its agents communicate with
each other. Then, for years, JADE and JADE LEAP were
useful and mature agents’ frameworks, besides being excellent
standards to begin understanding how to work with software
agents. However, they were created from the Java language
and cannot be used for the iOS platform.

Another known solution analyzed was the Jadex
framework [15]. The JADE framework was developed from
the Java language and it implements the Belief, Desire and
Intent (BDI) concept [16] for the software agents. BDI stands
for:(i) Belief, (ii) Desire and (iii) Intention. Belief represents
the group of information that an agent has concerning its
environment and itself. Desire represents the agent’s wishes
and directly influences its actions to achieve its goals.
Intention represents the selected desire to be achieved by the
agent. Therefore, the intention is the momentary state of the
agent until the plan has been executed and its results analyzed.

It was very important to learn about JADE, Jadex and
implementing examples of both frameworks (for instance,
examples with until 30 agents simultaneously executing) to
better understand how a multi-agent software works and how
agents communicate between themselves.

BDI4JADE [18] is another framework that, as the name
implies, extends the JADE framework. BDI4JADE allows
JADE developers to design multi-agents systems with agents
that implement BDI architecture. The main motivation for the
BDI4JADE creation is because the JADE framework is not
Domain Specific Language (DSL), in other words, it is not
dependent like JADEX and JACK [17] on another agent
framework. The work in [18] informs that BDI4JADE, even
though based on general purpose programming languages,
limits the integration with up-to-date, available technologies
and the use of advanced features of the underlying
programming language. Therefore, BDI4JADE agents are
called BDI agents. These agents have a reasoning cycle. The
algorithm used for the implementation of BDI4JADE
reasoning cycle is presented by the work in [18]. The
reasoning cycle contains six main procedures, that involve
revising agent’s beliefs and desire management and
generation, removing agent’s undesired desires and agents’
intentions generation (selected desires within all desires and
the unselected ones are still desires, but not intentions) and

updating intentions status (working, finished, fail, etc.). For
more details of the framework, please see [16] and [18].

All the proposals mentioned are known frameworks in the
community and they allow the development of software
agents. However, none of these approaches allow the creation
of agents for the iOS platform. Moreover, considering such a
platform, to have a framework that could use native resources
would bring a set of advantages that have not been properly
exploited, such as better performance, easier understanding to
develop from the language used, in order to create new iOS
apps, and the reuse of known libraries that help to represent
agents’ concepts (e.g., communication among agents,
distribution, etc.).

In Table I, the main features of the iMobile Framework, in
comparison with other known software agent frameworks, are
presented. It is important to notice that iMobile was created to
offer support to the iOS platform and, in addition, the
framework followed recommendations offered by FIPA, such
as providing services of yellow pages to meet agents. It is also
relevant to mention that since the iMobile framework uses
Bonjour Networking services to solve network
communication between agents, there is no need for a main
container like the JADE framework. Agent services are
published in the same DNS-Zone [42]. For local network
communication, a DNS-Zone is not necessary.

TABLE I. COMPARISON OF IMOBILE WITH OTHER AGENT

FRAMEWORKS

Features
Agent Frameworks

iMob
ile

JADE/JA
DE Leap

JA
DEX

Offering multiple agent’s
behaviors

Yes Yes
Ye

s
Offering distributed

agents
Yes Yes

Ye
s

Allowing the
communication between one
or more agents

Yes Yes
Ye

s

Representing the BDI
concept

No No
Ye

s

Offering iOS support Yes No No

Offering services of
yellow pages

Yes Yes
Ye

s

III. IMOBILE FRAMEWORK

This section presents the iMobile Framework that allows
the development of software agents for the iOS platform. The
iMobile agents are able to manage the gathering and to
exchange and display information from a given iOS app.
Furthermore, the framework helps to discover agents that are
on the same network to identify rendered services and to
exchange messages.

115Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 127 / 267

Figure 1. Use case scenario to apply the iMobile framework.

Figure 1 shows an example that illustrates the main idea
behind how iMobile may be used. In this image, there are
three iPhones connected to some network (Network X or
Y). Each iPhone has an iMobile agent that may exchange
messages with agents on the same or a different network.
For each network, there is a database with all services
offered for agents connected on the same network. Then, to
discover such available services, it is not necessary to
directly exchange messages with other agents. To discover
and publish services and exchange messages among agents,
iMobile uses an API [21] offered by Apple and which is
explained in detail on the next subsection. Therefore, the
overall communication is performed and it is not necessary
to create containers and platforms as it is to other
frameworks, such as JADE, JADE-Leap and JADEX.

In order to present how the iMobile framework was
created, an overview of the architecture is demonstrated in
subsection A. Then, in subsection B, the hot-spots and
frozen-spots [36] are explained in detail. In subsection C, a
guiding step to instantiate the framework is described.

A. Architecture Overview

Figure 2 presents the framework’s class diagram. It is
possible to realize that a software agent (Agent class) may
execute a set of behaviors (Behavior class). Two different
types of behaviors are offered by the framework: Cyclic
Behavior (CyclicBehavior class) and One-Shot Behavior
(OneShotBehavior class). The first one is a type of action
that executes in loop. On the other hand, the second
executes an action only once.

At any time, an agent may send or receive some
message (AgentMessage class) from some agent.
AgentMessage implements the NSCoding protocol [24],
which is already offered by Apple, to allow the serialization
of messages to be sent to other agents.

iMobile allows that agents, on the same network, may
exchange messages among themselves faster, aiming to
offer a polite communication solution. The technology that
helps this improved communication is the Bonjour API. It
is a solution created by Apple for the iOS platform and
which is a zero-configuration network solution [21], that
has a very important role on the design of this framework.
Zero-configuration means that you may publish services on
a network without the need of any network troubleshooting.

In order to use the Bonjour API, iMobile offers the
BonjourServer class, which is used by the agent to look for
services offered by agents (from the NSNetServiceBrowser
class) to publish its services (from the NSNetService class)
and to send and receive messages to/from other agents
(from the NSNetService class). BonjourServer applies the
Façade design pattern [37][40] to offer all the necessary
methods to agents to perform these actions. In addition,
iMobile offers a protection against object substitution
attacks, because AgentMessage class implement the
NSSecureCoding protocol [42]. If developers desire to
provide some additional treatment of the data (e.g.,
performing cryptography), they may use some native
library that is available at [43].

116Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 128 / 267

B. Hot-spots and Frozen-spots

Below, the hot-spots defined by iMobile and registered
by using the stereotype <<hot-spot>>, in Figure 2, are
explained in detail.

Representing a software agent (Agent Class): There

are two ways of developing an agent: (i) creating an
instance of the Agent class, and (ii) defining a new class that
extends the Agent class to represent the desired agent. Each
agent has a name, may offer a set of services and may
execute a set of behaviors.

Figure 2. Class diagram of the iMobile framework.

Behaviors executed by agents (Behavior Class): Such

class represents the behavior of an agent. Behaviors are
actions that agents may execute on an application. This class
has a method called action that, when executed, initiates the
agent's behavior. Their subclasses should have it
implemented.

Behavior executed once (OneShotBehavior Class): It

represents a generic behavior offered by the framework that
is executed only once. When its execution is finished, such
behavior is removed from the agent’s behaviors list.

Behavior executed in cycle (CyclicBehavior Class):

Another generic behavior offered by the framework. This
behavior is executed in a loop with a predetermined timer
to wait between the loops.

Next, iMobile’s frozen-spots are explained below.

Manager to use the Bonjour API (BonjourServer

Class): This class was created to access a set of features
offered by Bonjour API: (i) publication of services provided
by agents, (ii) search of services offered by other agents,
(iii) message sending and receiving to/from agents.

BonjourServer uses BSD Sockets [23] to create a listening
socket for the agent, which allows the agent to receive
messages from other agents and filter out unwanted
messages.

Messages that are sent and received by agents

(AgentMessage Class): Such class represents the
communication protocol between agents. Most properties
of the AgentMessage class are basic agent information as
name, current service, service type, sender, receiver, data
and content. The content property accepts any type of object
to be sent to another agent. These objects, that are stored in
luggage, should be instances of classes that implement the
NSCoding protocol in order to send it through the network.

C. Using iMobile

These are the main steps that should be performed to use
the iMobile framework:

1. Defining which agents will be used in the solution
to be developed. Agents may be either created
from instantiated objects using the Agent class, or
from other classes that extend such class;

2. Creating behaviors that will be executed by the
agent. For instance, such behaviors may request
services and send messages to other agents;

3. Defining which services each agent will be able to
offer;

4. Defining which type of service the agent will
search. It is necessary for the creation of each
agent to inform these service types.

IV. USE SCENARIO: ISSUE TRACK

Daily, it is common for companies to raise issues and
some of them have high priority. When such issues are
quickly solved, a lot of damage may be avoided, such as
losing money. According to [33][34], one of the top reasons
for closing companies is the bad management of how issues
are handled.

Taking this context into consideration, we implemented
an iOS app with software agents that help speed up the
process of contacting people, as quickly as possible, to solve
critical issues. First, we explain the main solution idea.
Secondly, we present in detail how the proposed app
extended the iMobile framework.

A. Main Idea

The implemented multi-agent app allows users to
register issues that occur within a company. When a
registered issue is critical and the deadline is short (e.g.,
maximum of two more days), a software agent verifies if
another user connected on the same network may solve it.
Considering that all employees use the app (iPhone was the
device used) and each one informs his/her data (e.g., name
and services that perform), a software agent is created for
them.

117Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 129 / 267

Figure 3. Issue track scenario.

The afore mentioned scenario is illustrated in Figure 3.
Notice that six agents are registered. At a given time, two
agents are not connected to the company network. Probably,
the reason is that these registered employees are not in the
company.

As the iMobile framework was extended to create this
app, Bonjour API was inherited. Therefore, it is possible to
verify which services are registered and which agents offer
them. For instance, it considers that a Robert agent (see
Figure 3) needs someone to solve a critical issue related to
infrastructure with deadline for tomorrow. Hence, it is
important to locate a person that may solve it as soon as
possible.

In order to identify an infrastructure employee, the
Robert agent uses Bonjour to look for such employee (step
1 illustrated in Figure 3). Thereafter, Robert sends a
message to the Tony agent, which offers infrastructure
services and is connected to the same network (step 2).
When Tony receives that message, a notification is created
on his smartphone for the employee (user app) confirm that
he/she will take it. Upon performing such confirmation,
Tony sends a message to Robert (step 3). When Robert
receives this message, a notification is presented to Robert’s
user. Subsequently, when the issue is solved, Tony informs
Robert about its resolution (step 4).

When no agent is found (from the step 1), an email is
sent to those that could solve the registered issue
(considering that they are not in the company). In addition,

to allow the messages receiving from agents, at any time,
when a person arrives at the company, he/she receives a
notification requesting them to open the app. Then, even if
the app is not in use, at a given time, but has been opened in
the background, the agent will be able to receive messages
and perform some executions.

B. Extending the iMobile Framework

In Figure 4, a class diagram, with the main classes made
to extend the iMobile framework and to create the issue
track app, is presented. The yellow classes are the new
developed entities, while the others are offered from
iMobile. Below, these new classes are explained in detail.

App User (User class): When an employee of the company
uses the app for the first time, a set of data should be
informed to him/her: name, date of birth, email and
cellphone. Part of these data is taken to create a software
agent that will represent the employee.

Agent app (IssueAgent class): This class represents the
responsible agent for executing the following activities: (i)
publishing which services are offered in its creation, based
on the data informed by app user, (ii) requesting the
resolution of critical issues to other agents, and (iii) taking
or not taking it to solve these issues. Each iPhone has one
IssueAgent created to represent the app user.

118Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 130 / 267

Figure 4. Class diagram of the Issue track scenario.

Registered issue (Issue class): It represents a registered
issue that needs to be solved. An issue has the following
data: an identification represented by an integer number,
title, its description, priority (critical, high, medium, low),
deadline that such issue needs to be solved and the service
type related to the problem.

Service offered in the company (Service class): This class
represents all the service types performed in the considered
company. Some examples of services are the following:
infrastructure, back-end development, front-end
development, prototyping and user experience. Then, each
instance of Service has a name and a description giving an
overview of its goal.

Management to persist data (DAO class): This class is
responsible for taking and saving data in a database used by
the app. In Figure 4, the main methods offered by class are
presented.

Company information (Company class): It applies the
Singleton pattern [37] and takes into consideration all of the
company’s data. Thus, it is possible to access the company
name and description, besides its issues, app user and
registered services.

Behavior which informs that an issue needs to be solved
(InformIssueToSolveBehavior class): This class
represents the behavior executed by an IssueAgent, that
requests the treatment of some issue by other agents. In
order to decide if such a request will be sent, the agent
verifies the priority of the registered issue and its deadline.
The criteria adopted by the agent to send a request is when
an issue has: (i) critical priority, or (ii) high priority with
deadline of two more days. Hence, according to the
company, critical scenarios were taken into consideration to
include an additional way to contact employees that may
solve these issues.

Behavior to inform that an agent took an issue to be
solved (NotifyIssueWasTakenBehavior class): This
behavior is executed by agents that received a request to
solve a given issue. Such agent informs the requester if it
could or could not take that issue. The reasons why an agent
may or may not accept to solve a problem are presented
below.

119Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 131 / 267

Reasons to accept an issue:

• Employee is free to take an issue;

• Employee is working to solve an issue with
medium or low priority.

Reasons to not accept an issue:

• Employee is solving an issue with critical or
high priority and a short deadline (maximum of
two more days);

• Employee is not connected to the company
network.

When no agent accepts the requested issue, an email is

sent to all employees that offer the necessary service to
solve it.

Behavior that informs the result of an issue

resolution (NotifyResultResolutionIssueBehavior class):
Behavior executed by an agent that accepted to solve a
given issue. From this behavior, the agent notifies the result
of its resolution to the requester: solved or not with
additional information reported by the employee.

V. CONCLUSION

This paper presents the iMobile framework created from
the Swift language for the iOS platform. With iMobile,
developers will be able to speed up the creation of software
agents for the iOS. This framework used the Bonjour API
in order to help identifying which agents are or are not on
the same network and to allow the communication between
them. Bonjour is a solution that does not require the
creation of containers to enable agents to exchange
messages, as do JADE and JADEX. Before proposing
iMobile, known frameworks, that help in the development
of software agents, were studied to identify how a mobile
framework for the iOS platform could be created and
offered.

In order to demonstrate the use of the proposed
framework, we have used it to help solving issues that
occur in companies. Agents are responsible for identifying
these issues’ priorities and deadlines, in order to contact
employees that are in the company, and to quickly solve
them. This scenario illustrates the use of iMobile agents
exchanging messages from Bonjour and executing a set of
defined behaviors.

Nowadays, we have two master students of Informatics
at PUC-Rio who used the proposed framework. Moreover,
a set of ten people, with previous experience developing
multi-agent systems, watched a presentation of the iMobile
related to its idea, architecture and examples of case
studies. From this, we have decided to organize an
interview with such people to receive feedbacks of the
framework. One of them was that the framework was easy
to be extended to create iOS apps. In addition, they gave a
set of information that allowed us to achieve the version
presented in this paper, such as (i) offering better names for
some created classes and methods, and (ii) continuing to

offer a short number of classes to create a multi-agent
system to the iOS platform.

Currently, we are in the process of analyzing how we
may include other important concepts related to the multi-
agent paradigm in the framework, such as: offering ways
to develop self-adaptive agents, including the concept of
Belief-Desire-Intention (BDI) in the framework, bringing
more cognition to the agents and providing ways to test the
created agents. These three ideas are known research lines
investigated in other works. However, considering the
mobile scenario, several issues are open and deserve more
attention.

REFERENCES

[1] G. Butler, Object-Oriented Frameworks, Available at:
http://users.encs.concordia.ca/~gregb/home/PDF/ecoop-tutorial.pdf,
[retrieved: June, 2017].

[2] N. R. Jennings and M. Wooldridge, “A Methodology for
Agent-Oriented Analysis and Design”, In Proc. Of the third annual
conference on Autonomous Agents (AAMAS 1999), Seattle, WA, USA,
pp. 69-76, 1999.

[3] M. Wooldridge and N. R. Jennings and D. Kinny “The Gaia
Methodology for Agent-Oriented Analysis and Design”, Autonomous
Agents and Multi-Agent Systems, vol. 3, issue 3, Sep. 2000, pp. 285-312,
doi: 10.1023/A:1010071910869.

[4] G. Boella, L. Sauro, and L. van der Torre. “Power and
Dependence Relations In Groups of Agents”, In Proceedings of the
conference on intelligent agent technology, (IAT 2004), Beijing, China,
China, Sep. 2004, doi: 10.1109/IAT.2004.1342951.

[5] JADE Leap. Available at: http://jade.tilab.com//, [retrieved:
June, 2017].

[6] JADE Framework. Available at: http://jade.tilab.com//,
[retrieved: June, 2017].

[7] Android. Available at: www.android.com/, [retrieved: June,
2017].

[8] IOS, Available at: https://www.apple.com/ios/, [retrieved:
June, 2017].

[9] Java. Available at: http://www.java.com/pt_BR/, [retrieved:
June, 2017].

[10] Mobile Application Lifecycle. Available at:
https://developer.apple.com/library/content/documentation/iPhone/Conc
eptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCyc
le.html, [retrieved: June, 2017].

[11] I. Podnar, M. Hauswirth, and M. Jazayeri. Mobile Push:
“Delivering content to mobile users”, In Proceedings of International
Conference on Distributed Computing Systems Workshops, (ICDCS
2002), IEEE, Nov. 2002, pp. 563-568, doi:
10.1109/ICDCSW.2002.1030826.

[12] G. Eric. What is Java 2 Micro Edition, Available at:
http://www.developer.com/ws/j2me/article.php/1378921/What-is-Java-
2-Micro-Edition.htm, [retrieved: July, 2017].

[13] Y. Weihong and Y. Chen, “The Development of Jade Agent
for the Android Mobile Phones”, Proceedings of the 2012 International
Conference on Information Technology and Software Engineering,
(ICITSE 2012), Springer Press, Nov. 2012, pp. 215-222, doi:
10.1007/978-3-642-34531-9_23.

[14] FIPA. Available at: www.fipa.org/, [retrieved: June, 2017].

[15] JADEX. Available at: https://www.activecomponents.org/,
[retrieved: June, 2017].

[16] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory
and practice”, The Knowledge Engineering Review (KER 1995),
Cambridge Press, July 2009, pp. 115–152, doi:
10.1017/S0269888900008122.

120Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 132 / 267

[17] JACK. Available at: http://aosgrp.com/products/jack/,
[retrieved: June, 2017].

[18] I. Nunes, C. J. P. Lucena, and M. Luck, “BDI4JADE: a BDI
layer on top of JADE, Monografias em Ciência da Computação”, PUC-
Rio, No. 15/10, Nov. 2010.

[19] R. P. Bonasso, R. J. Firby, E. Gat and et. al, “Experiences with
an architecture for intelligent reactive agents”, Journal of Experimental &
Theoretical Artificial Intelligence (TAI 1997), Taylor&Francis, Nov.
2010, vol. 9, issue 2-3, pp. 237-256, doi: 10.1080/095281397147103.

[20] Bonjour API. Available at:
https://www.apple.com/support/bonjour/, [retrieved: June, 2017].

[21] D. H. Steinberg and S. Cheshire. Zero Configuration
Networking: The Definitive Guide, O’Reilly Media, p. 53, 2005.

[22] NSThread. Available at:
https://developer.apple.com/reference/foundation/thread, [retrieved:
June, 2017].

[23] GCD. Available at: https://developer.apple.com/reference/dispatch,
[retrieved: June, 2017].

[23] J. Frost. BSD Sockets: A Quick And Dirty Primer, 1991.

[25] NSCoding. Available at:
https://developer.apple.com/reference/foundation/nscoding, [retrieved:
June, 2017].

[26] NSObject. Available at:
https://developer.apple.com/reference/objectivec/nsobject, [retrieved:
June, 2017].

[27] UIApplication. Available at:
https://developer.apple.com/reference/uikit/uiapplication, [retrieved:
June, 2017].

[28] UIDevice. Available at:
https://developer.apple.com/reference/uikit/uidevice, [retrieved: June,
2017].

[29] ACL Message. Available at:
http://www.fipa.org/specs/fipa00061/, [retrieved: June, 2017].

[30] A. S. Tanenbaum and V. S. Maarten, Distributed systems:
principles and paradigms. New Jersey: Pearson Education. Inc, 2007.
p.669

[31] B. A. De Maria, V. T. Silva, C. J. P. Lucena, and R. Choren,
"VisualAgent: A Software Development Environment for Multi-Agent
Systems", In Proc. of the 19th Brazilian Symposium on Software
Engineering (SBES 2005), Tool Track, Uberlândia, MG, Brazil, 2005.

[32] Swift Language. Svailable at: https://swift.org, [retrieved:
June, 2017].

[33] PYPL PopularitY of Programming Language. Available at:
https://pypl.github.io/PYPL.html, [retrieved: June, 2017].

[34] Top Reasons Businesses Close Down. Available at:
http://smallbusiness.chron.com/top-reasons-businesses-close-down-
20466.html, [retrieved: June, 2017].

[35] Common Reasons for Closing a Company. Available at:
http://www.closeaeuropeancompany.com/common-reasons-for-closing-
a-company.html, [retrieved: June, 2017].

[36] GameplayKit. Available at:
https://developer.apple.com/library/content/documentation/General/Con
ceptual/GameplayKit_Guide/, [retrieved: June, 2017].

[37] M. E. Fayad, D. C. Schmidt and R. E. Johnson, Building
Application Frameworks: Object-Oriented Foundations of Framework
Design (Hardcover),Wiley publisher, first edition ISBN-10: 0471248754,
1999.

[38] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software, 1994.

[39] M. Ivanovic and Z. Budimac, “Software Agents: state-of-the-
art and possible applications”, In Proceedigns of the 13th International
Conference on Computer Systems and Technologies, (CompSysTech
2012), ACM Digital Library, June 2012, pp. 11-22, doi:
10.1145/2383276.2383279.

[40] M. Żytniewski and A. Sołtysik, A., Sołtysik-Piorunkiewicz
and B. Kopka, “Modelling of Software Agents in Knowledge-Based
Organisations. Analysis of Proposed Research Tools”, Springer, Sep.
2015, pp. 91-108, 2015.

[41] J. T. C. Tan and T. Inamura, “Extending chatterbot system into
multimodal interaction framework with embodied contextual
understanding”, In International Conference on Human-Robot Interaction
(HRI) (ACM/IEEE 2012), IEEE Press, Mar. 2012, pp. 251-252, doi:
10.1145/2157689.2157780.

[42] DNS Zone, Available at: http://www.dns-sd.org/, [retrieved:
July 2017].

[42] NSSecureCoding, Available at:
https://developer.apple.com/documentation/foundation/nssecurecoding,
[retrieved: July 2017].

[43] Crypto Swift, Available at:
http://cocoadocs.org/docsets/CryptoSwift/0.5.2, [retrieved: July 2017].

121Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 133 / 267

Software Architecture Modeling for Legacy Health Information Systems Using

Polyglot Persistence and Archetypes

André Magno Costa de Araújo1,*, Valéria Cesário Times1

and Marcus Urbano da Silva1
1 Center for Informatics, Federal University of Pernambuco,

Recife, Brazil

e-mail:{amca,vct,mus}@cin.ufpe.br

Carlos Andrew Costa Bezerra2
2 Software Engineering Department, Recife Center for

Advanced Studies and Systems, CESAR

Recife, Brazil

e-mail: andrew@r2asistemas.com.br

Abstract— Electronic Health Record (EHR) data management

in a Health Information System (HIS) has traditionally been

done using a single database model. Due to the heterogeneity of

such data, this practice increases the complexity in HIS

development. This article presents a software architecture for a

legacy HIS, which improves data management by using polyglot

persistence to decentralize data storage into heterogeneous

databases (i.e., relational and NoSQL). In addition, we have

developed a tool to dynamically create NoSQL data schemas

and Graphical User Interfaces (GUI) using a health informatics

standard called archetype. The tool aims to build new

functionalities in a legacy HIS using archetype-based EHR

specifications imported and customized by the health

professionals, thus reducing their dependence on a software

team. We validated the proposed solution in a local institution,

modeling a new software architecture, creating a NoSQL data

schema for heterogeneous data storage and GUIs using

archetypes.

Keywords-Archetypes; Database related software; Software

Architecture; E-health related software.

I. INTRODUCTION

Health information systems (HIS) are normally built

using a single data model to store the various data types (i.e.,

structured and unstructured data) that make up the Electronic

Health Record (EHR) [1]. The variety of data types is

justified by the large number of subsystems in the HIS, such

as the text from a medical prescription, hierarchical data of a

laboratory exam or images used in diagnostic.
 Because data heterogeneity often requires the

development of solutions that go beyond the capability of a
given database model [2], the use of a single data model is
limiting at best. For example, representing hierarchical data
structures in a relational database requires complex data
retrieval sentences that can compromise the performance of
an application. In addition, the creation of programming
routines to ensure data referential integrity in NoSQL models
increases the complexity in HIS development.

Another recurring problem in HIS development is the

lack of uniformity in data modeling for attributes that define

the EHR and terminologies that give a semantic meaning to

clinical data [3][4]. In this context, it is common for software

companies to use their own standards when modeling EHR

requirements, which in turn hinders data exchange between

health applications [5].

To address the issues posed by the use of a single data

model and the heterogeneity of EHR data, the concepts of

polyglot persistence and archetypes are used in this paper.

Polyglot persistence is the use of different data models to deal

with different storage needs [6], such as the use of a relational

database to store structured data and NoSQL for unstructured

and frequently changing data. An archetype is a health

informatics standard proposed by the openEHR foundation to

standardize EHR data attributes, terminologies and

constraints [7]. Among other advantages, it allows health

professionals to specify EHR requirements and seamlessly

share data with other health sectors and organizations [8].
This paper specifies a software architecture for a legacy

HIS applying the concept of polyglot persistence to improve
data management in the healthcare sector. In addition, we
have developed a tool to dynamically create NoSQL data
schemas and Graphical User Interfaces (GUI) using
archetypes. The tool aims to build new functionalities in a
legacy HIS using archetype-based EHR specifications made
by health professionals, thus reducing their dependence on a
software team. To validate the solution proposed herein, we
modeled a new software architecture for a legacy HIS and
evaluated its dynamic generation of NoSQL data schemas and
GUIs.

The sections of this article are organized as follows:
Section II contextualizes the basic concepts used in this work,
while Section III presents and discusses the proposed software
architecture for health applications. Section IV demonstrates
the generation of data schemas and GUI using the proposed
tool, while the final considerations and future work are found
in Section V.

II. BASIC CONCEPTS AND RELATED WORKS

This section contextualizes the basic concepts used in the

development of this work and provides an analysis of main

related works.

A. Archetypes

The openEHR software architecture for HIS aims to

develop an open and interoperable computational platform

for the healthcare sector [9]. It separates generic EHR

structural information and patients’ demographics from the

constraints and standards associated with clinical data. An

archetype consists of a computational expression based on a

reference model and is represented by domain constraints and

terminologies [9] (e.g., data attributes of a blood test).

122Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 134 / 267

Templates are structures used to group archetypes and allow

their use in a particular context of application. They are often

associated with a graphical user interface.

Dual modeling is the separation of information and

knowledge in HIS architecture. In the proposed approach, the

components responsible for modeling EHR clinical and

demographic data are specified through data structures

composed of data types, constraints and terminologies.
In an archetype, the specification of data attributes is

achieved through data entry builders named generic data
structures. Such structures allow the representation of EHR
heterogeneous data through the following types:
ITEM_SINGLE, ITEM_LIST, ITEM_TREE and
ITEM_TABLE.

ITEM_SINGLE models a single data attribute, such as a
patient’s weight, height and age. ITEM_LIST groups a set of
attributes in a list, such as a patient’s address. ITEM_TREE
specifies a hierarchical data structure that is logically
represented as a tree. It can be used, for instance, to model a
patient’s physical or neurological evaluations. Finally,
ITEM_TABLE models data elements by using columns for
field definition and rows for field value, respectively. Each
attribute of a structure is characterized by a type of data and
can have a related set of associated domain restrictions and
terminologies. The terminologies give semantic meaning to
clinical data and can be represented as a set of health terms
defined by a professional.

B. Polyglot Persistence

Polyglot Persistence is the use of different data storage

approaches to deal with different storage types and needs [6].

The core idea is to store structured data through a relational

approach, while semi-structured or unstructured data is stored

in NoSQL data models. Figure 1 shows how the different

types of healthcare data can be stored using polyglot

persistence.

Figure 1. Example of multi-model storage in the healthcare sector.

As shown in Figure 1, polyglot persistence offers different

data models such as Relational, Key-value store, Document

store and Graph Store, among others.

A relational database is a set of tables containing data

arranged in predefined categories. Each table contains one or

more data categories in columns. Each row contains a unique

instance of data for the categories defined by the columns

[10].

NoSQL data models differ from more traditional

approaches and offer better support for non-conventional

data storage and flexibility when creating or altering a data

schema [11]. The key-value store saves information in a table

with rows, keys for description and a value field. The

document store creates document sets which are collections

of fields to be displayed as a single element, a list or nested

documents. A graph store uses nodes, relationships and

properties to store information. The node represents the

vertices in a graph, the relationships, its edges and the

properties, the attributes.

C. Related Works and Motivation

Polyglot persistence has been applied in a variety of
applications, such as IBM’s auto scaling PaaS architecture
[12], source-code-based data schema identification tools [13]
and the re-engineering of legacy systems for heterogeneous
databases [6]. To minimize the rigidity caused by relational
data schema and provide support to the continuous data
requirement changes which commonly occur in legacy HIS,
Prasad and Sha [14] specify an architecture and a HIS
prototype that allows polyglot persistence and improves
health data management in a legacy application. Similarly,
Kaur and Rani [6] specify a polyglot storage architecture to
store structured data in a relational database (PostgreSQL),
while two NoSQL databases (MongoDB and Neo4j) store
semi-structured data such as laboratorial exams and medicine
prescriptions. Nevertheless, neither solutions use archetypes
to standardize EHR data attributes and terminologies.

Recent studies based on openEHR specifications include

EHR construction using and customizing archetypes [15],

Computer-Aided Software Engineering (CASE) development

tools for data schema creation [16] and a study on

development patterns for healthcare computing [17].

However, the use openEHR archetypes to build

heterogeneous data schema, store and standardize EHR data

is an open issue found in the state-of-art.

III. PROPOSED SOLUTION

This section discusses the main problems found in legacy
HIS management, describes the proposed software
architecture using polyglot persistence and how GUIs and
data schemas are dynamically generated using archetypes.

A. Legagy Health Information System

Before implementing the proposed solution, we carried

out field observation in a local health institution located in

northeastern Brazil, where patient care activities are registered

in a HIS, including hospitalization, prescription records and

laboratory exams. To maintain and develop new HIS

functionalities, the institution has a team of eight

programmers.

123Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 135 / 267

Analyzing HIS implementations carried out in the last 12

months, we found that most requests were related to patient

care functions such as prescription, medical history, test

results, reports, etc. Meanwhile, structured data such as

supply requests, financial and management requirements had

suffered few alterations in the same period.

As shown in Figure 2, the legacy HIS architecture is

known as Three-Tier. The client layer is responsible for

designing the GUI of each feature, while the business logic

layer groups and organizes all the application source code.

The database access layer contains the classes that perform

data persistence in the DBMS. For application development

and maintenance, the following technologies are used: Oracle

11g relational database for data storage and Microsoft

Asp.Net C# for GUI generation and source code

implementation.

Figure 2. Legacy software architecture

The software architecture illustrated in Figure 2

represents the reality of several HISs in Brazil. In this

scenario, two important problems arise: EHR data

heterogeneity is represented in single data model and the

reliance on a team of programmers for development and

maintenance.

B. Modeling a New Software Architecture

The main motivation for the proposed solution is to

improve data management by providing a software

architecture which uses polyglot persistence to store EHR

data in heterogeneous databases and openEHR archetypes to

dynamically build HIS features.

Considering the scenario described in Section III-A, we

used the following approach in designing the proposed

software architecture; structured data which is rarely altered

is stored in a relational database, while constantly changing

data which requires a flexible data schema is stored in a

NoSQL database (Figure 3). We developed a tool capable of

reading archetypes to generate new functionalities because

their very purpose is to enable health professionals to specify

EHR requirements, thus minimizing their dependence on

programmers.

Figure 3. A new software architecture using polyglot Ppersistence and

archetypes

As shown in Figure 3, we maintained the three-tier

architecture (client, business logic and database) but

decentralized EHR storage using two database models

(relational and NoSQL). Through a REST API, we extracted

data attributes, terminologies and constraints from archetypes

and generated GUIs and data schemas at runtime. Because

the GUIs generated by our tool use the same web-based

technology as the legacy HIS, we inserted the GUIs into the

HIS using frames.

Figure 4. Main features of the developed tool

Figure 4 shows the main functionalities of the tool

proposed in this article, while Figure 5 depicts a use case with

124Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 136 / 267

the following features: i) archetype reading, ii) archetype

element selection for GUI and data schema generation, and

iii) GUI integration into the legacy application.

Figure 5. Use case of the developed tool

The developed tool allows one to import and map the

archetypes that will be used to generate GUI and data schema.

When importing an archetype, the tool enable the user to

choose which elements will be part of the data schema and

manage the GUI elements by adding, removing or disabling

fields. Such elements can be modified at a later time. In this

case, the tool will automatically extend the database schema

created.

C. Graphical User Interface and Data Schema Generation

The Generator component shown in Figure 3 extracts

from the imported archetype the attributes that define the

EHR, the health care terminologies and vocabulary that give

a semantic meaning to the clinical data, as well as constraints

specified in the attributes.

Figure 6. A REST API Example

With the extracted elements, the REST API executes the

following tasks: i) transform data attributes (i.e., text, ordinal,

boolean, count, quantity, date and time) into data entry fields

in the GUI, ii) use constraints extracted from archetypes as

data entry validation mechanisms (e.g., range of values, data

type constraints), and iii) provide the terminologies extracted

from archetypes to give a semantic meaning to their

respective GUI fields. As the Slot type does not represent a

data entry attribute in an archetype, the tool did not consider

this data type to generate GUI. Figure 6 shows in JSON

format the elements extracted from archetypes in the REST

API.

Using the extracted elements from archetypes, the NoSQL

data schema generation is performed as follows: A routine

creates a document database and a set of collections to

separately store the data attributes, terminologies and

constraints. It then inserts archetype elements in their

respective collections.

A loop scans the list of archetype elements and adds the

code, description and data type in the attribute collection. To

maintain the relationship between elements, attribute

reference and constraint description codes are stored in the

constraint collection. Finally, in case the data attribute has

one or more terminologies, the attribute reference code is

stored in its collection along with the list of terminologies

found.

IV. RESULTS

In this section, we show GUI and data schema generation

using archetypes. The tool was installed on Microsoft’s

Azure cloud solution and an ArangoDB database was used to

generate the data schema exemplified in this evaluation. Both

archetypes used in this example are shown in Figure 7 and

are available in the openEHR repository [18].

Figure 7. Family history Archetype

125Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 137 / 267

The family history archetype models information about

significant health-related problems in genetic and non-

genetic family members, both alive and deceased. The blood

pressure archetype describes systemic arterial blood pressure

from any measurement method or physical location.

In order to generate the GUIs and data schema, we import

the two archetypes. The GUI generated from the family

history archetype can be seen in Figure 8.

Figure 8. GUI generated from the family history archetype

The tool uses the same elements extracted from the

archetype (i.e., data attributes, terminologies, and

constraints) to generate both the NoSQL data schema and the

GUI. In addition, each generated GUI provides resources for

the end user to insert, update, delete, and query data.

Figure 9. Data schema generated using the family history archetype

Figure 9 shows a data set stored in the database created

by the tool. The data entered in the GUI is stored into the

database by a REST API. GUI components can be enabled

or disabled even when the GUI is in use in the HIS, triggering

the data schema to dynamically change.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented a software architecture to

improve Electronic Health Record data management in a

legacy Health Information System using polyglot persistence

to decentralize its data storage into two database models (i.e.,

relational and NoSQL). Using a developed tool, we extract

attributes, terminologies and constraints from archetypes and

use them to generate a Graphical User Interface and data

schemas at runtime. The use of archetypes allows users to

create new HIS functionalities without the need of a software

development team.

In this paper, we limited the scope of research to data

schema and GUIs generation. A forthcoming work will

address privacy, performance and security issues by

presenting an algorithm to encrypt EHR data on a cloud

service or local storage. In addition, we intend to implement

a Health Level 7 (HL7) messages system to exchange data

between health applications.

ACKNOWLEDGMENT

This work was partially supported by Fundação de

Amparo à Ciência e Tecnologia do Estado de Pernambuco

(FACEPE), under the grants APQ-0173-1.03/15 and IBPG-

0809-1.03/13.

REFERENCES

[1] V. Dinu and P. Nadkarni, “Guidelines for the Effective Use of
Entity-Attribute-Value Modeling for Biomedical Databases,”
International Journal of Medical Informatics, pp. 769-779,
2007.

[2] C. C. Martínez, T. M. Menárguez, B. J. T. Fernández, and J. A.
Maldonado, “A model-driven approach for representing
clinical archetypes for Semantic Web environments,” Journal
of Biomedical Informatics, pp.150–164, 2009.

[3] S. Garde, E. Hovenga, J. Buck, and P. Knaup, “Expressing
clinical data sets with openEHR archetypes: A solid basis for
ubiquitous computing,” International Journal of Medical
Informatics, pp. 334–341, 2007.

[4] B. Bernd, “Advances and Secure Architectural EHR
Approaches,” International Journal of Medical informatics, pp.
185-190, 2006.

[5] K. Bernstein , R. M. Bruun, S. Vingtoft, S. K. Andersen, and
C. Nøhr, “ Modelling and implementing electronic health
records in Denmark,” International Journal of Medical
Informatic, pp. 213-220, 2005.

[6] K. Kaur and R. Rani, “Managing Data in Healthcare
Information Systems: Many Models, One Solution,” IEEE
Computer Society, pp. 52-59, 2015.

[7] J. Buck, S. Garde, C. D. Kohl, and G. P. Knaup, “Towards a
comprehensive electronic patient record to support an
innovative individual care concept for premature infants using
the openEHR approach,” International Journal of Medical
Informatics, pp. 521-531, 2009.

[8] L. Lezcano, A. S. Miguel, and S. C. Rodríguez, “ Integrating
reasoning and clinical archetypes using OWL ontologies and

126Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 138 / 267

SWRL rules,” Journal of Biomedical Informatics, pp.1-11,
2010.

[9] T. Beale, “Archetypes: Constraint-based domain models for
future-proof information systems, ” Eleventh OOPSLA
Workshop on Behavioral Semantics: Serving the Customer, pp.
16-32, 2002

[10] R. Elmasri and S.B. Navathe, Fundamentals of Database
Systems, Addison-Wesley, 6 ed., 1994.

[11] K. k. Lee, W. Tangb, and K. Choia, “Alternatives to relational
database: Comparison of NoSQL and XML approaches for
clinical data storage,” Computer Methods and Programs in
Biomedicine, pp. 99-109, 2013.

[12] S. R. Seelam, P. Dettori, P. Westerink, and B. B. Yang,
“Polyglot Application Auto Scaling Service for Platform As A
Service Cloud,” IEEE International Conference on Cloud
Engineering, pp. 84-91, 2015.

[13] M. Ellison, R. Calinescu, and R. Paige, “Re-engineering the
Database Layer of Legacy Applications for Scalable Cloud
Deployment,” IEEE/ACM 7th International Conference on
Utility and Cloud Computing, pp. 976-979, 2014.

[14] S. Prasad and N. Sha, “NextGen Data Persistence Pattern in
Healthcare: Polyglot Persistence,” Fourth International
Conference on Computing, Communications and Networking
Technologies, pp. 1-8, 2013.

[15] M. B. Späth and J. Grimson, “Applying the archetype
approach to the database of a biobank information management
system,” International Journal of Medical Informatics, pp. 1-
22, 2010.

[16] D. Georg, C. Judith, and R. Christoph, “Towards plug-and-play
integration of archetypes into legacy electronic health record
systems: the ArchiMed experience,” BMC Medical
Informatics and Decision Making, pp. 1-12, 2013.

[17] E. Marco, A.Thomas, R. Jorg, D. Asuman, and L. Gokce, “A
Survey and Analysis of Electronic Healthcare Record
Standards,” ACM Computing Surveys, pp. 277–315, 2005.

[18] Clinical Knowledge Manager. Available from:
http://openehr.org/ckm/ 2017.08.10.

127Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 139 / 267

Evaluating Enterprise Resource Planning Analysis Patterns using Normalized

Systems Theory

Ornchanok Chongsombut and Jan Verelst

Department of Management Information Systems

University of Antwerp

Antwerp, Belgium

e-mail: ornchanok.chongsombut, jan.verelst@uantwerp.be

Abstract— A dramatically increasing competition in business

environment has brought a new characteristic of enterprise

information systems called “evolvability”. Its on-going changes

significantly impact the way information systems are being

analysed and designed in practice. Based on Normalized

Systems theory, information systems should be designed in 1-1

modular structure to be free from so-called combinatorial

effects. Combinatorial effects are one of the biggest obstacles to

implementing evolvability of information systems.

Combinatorial effects actually occur when a change has a

ripple effect on the information system size. Hence,

information systems should be designed to minimize

combinatorial effects in order to enhance the evolvability of

software. Moreover, Normalized Systems theory provides an

important practical way of developing evolvable information

systems, even huge application systems for organizations. The

purpose of the paper is to present an analysis of the analysis

patterns of the well-known Microsoft Dynamics CRM 2016

adhering to the design patterns of Normalized Systems theory.

Additionally, the paper shows the evaluation of the Enterprise

Resource Planning (ERP) analysis patterns from an

evolvability point of view and demonstrate both conformance

with Normalized Systems theory and violations against it.

Keywords- Normalized Systems; Evolvability; ERP; Analysis

Patterns; Microsoft Dynamics CRM

I. INTRODUCTION

At present, one of the most challenging aspects of
designing enterprise information systems is evolvability.
Currently, organizations are faced with rapid changes in
business environments such as markets, stakeholders,
technologies, and so on. Consequently, a high level of
evolvability is becoming a highly important issue for
software engineering [1][2].

In order to sustain its growth, an organization must deal
effectively with all stake-holders. Moreover, the
organization should have an information system that collects
as much data as possible related to the organization and
provides accurate and valuable information about these
stakeholders. The information system should be designed to
retrieve information in a timely manner for effective decision
making and to enhance the overall performance of business
operations. Accordingly, ERP systems have become the most
important part of enterprises’ information systems. Thus, the
ERP is generally considered as an integrated business
process package [3][4]. However, ERP systems are costly

and time-consuming to develop. Moreover, ERP systems
have extremely complicated structures, and therefore, they
are not easy to implement. Due to both the complexity of
ERP systems and organizations' requirement for customized
solutions to serve their business objectives, ERP systems
should be evolvable. Furthermore, organizations need to be
able to respond effectively to their business environment
changes in order to maintain a competitive advantage [2][5].

There are a number of products in the ERP market
available as both open source and commercial packages. In
fact, businesses usually choose standard ERP solutions such
as Microsoft Dynamics, SAP, Oracle, Siebel, and PeopleSoft
[3]. However, the functionalities of all ERP packages can be
changed to meet changing business processes. Therefore, the
evolvability of ERP customized solutions has been becoming
important in developing ERP systems in order to reduce the
cost of maintenance. Here, evolvability means software
should be easy to change over time [2][5]-[9].

Based on the stability concept from system theory, a
bounded input function should result in bounded output

functions, even as T→∞ . Stability has been applied to

Normalized Systems theory, which clarifies how to develop
information systems to maximize evolvability [2][5]-[7][9]-
[11]. Certainly, information systems should be designed to
be able to cope with a set of anticipated changes to increase
the level of evolvability. According to the Law of Increasing
proposed by Lehman [12], information systems change as
time goes by and their structure becomes increasingly
complex. It implies that information systems are also faced
with the ever increasing size and complexity of their
structure and functionality [2][7]. To approach these issues,
modularity has been suggested dividing a complicated
system into subsystems and coping with the evolvability
requirement by allowing the modules to change
independently [2][7][13]. However, coupling between
modules is the biggest obstacle to evolvable information
systems. Coupling relates to the possibility of a change in
one module affecting another module. Regarding
Normalized Systems theory, a practical guideline for
devising evolvable modularity has been provided
[2][7][11][13]. Indeed, Normalized Systems theory aims to
facilitate the development of highly evolvable information
systems [2][5][6][9]-[11][13][14]. To ensure the evolvability
of information systems that adhere to Normalized Systems
theory, it has been argued that information systems should be
developed without combinatorial effects. Combinatorial

128Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 140 / 267

effects occur when the impact of a change depends on the
size of the information system; in other words, they have a
ripple effect on the entire information systems. To increase
the evolvability of information systems, these combinatorial
effects should be minimized. To simplify the way to
eliminate combinatorial effects, four theorems and five
elements have been established in Normalized Systems
theory (this will be discussed fully in Section 2). To date, a
number of studies have already been done on Normalized
Systems theory and implemented in several software projects
[2][5][6][8][9][11][13]-[17]. Nevertheless, the analysis
pattern of ERP packages applying Normalized Systems
theory has a number of limitations applying Normalized
Systems theory.

In the paper, we analysed the partial analysis patterns of
the well-known Microsoft Dynamics CRM 2016 adhering to
the design patterns of Normalized Systems theory.
Additionally, the paper evaluates the ERP analysis patterns
from an evolvability point of view and demonstrates
conformance with Normalized Systems theory and violations
against it.

The remainder of the paper is structured as follows. We
start in Section 2 with some works related to our study. In
Section 3, the Normalized Systems theory is discussed,
emphasizing the design patterns of Normalized Systems
theory. In Section 4, the partial analysis patterns of ERP
package are analysed, by focusing on conformance and
possible violations with respect to Normalized Systems
theory. Finally, we provide the final conclusions, limitations
and suggestions for future research.

II. RELATED WORK

In this section, some related works on creating evolvable
IT artefacts based on Normalized Systems theory and the
evaluation of ERPs’ reference model will be discussed
briefly.

A. Creating Evolvable IT Artefacts Adhering to

Normalized Systems Theory

Normalized Systems theory has recently proposed a
framework for developing evolvable modularity [18]. To
create the evolvability of information systems, they should
not only support current requirements, but also future
requirements [9]. Normalized Systems theory suggested that
evolvable information systems should be free from
combinatorial effects [2][11]. Oorts et al., showed how the
Normalized Systems theory could be applied to develop
evolvable software and presented the practical advantages of
Normalized Systems theory using a case study [16][19].
Additionally, Op’t Land et al., conducted the research to
evaluate the possibilities of developing information systems
based on Normalized Systems theory. This consequence was
consistent with previous findings [2][16][19][20]. They
argued that the total development and maintenance time
were significantly reduced from other application
developments by using NS expander [2][16][19][20].

The conformance and violations to Normalized Systems
principles of IT artefacts such as source code, business
processes workflow and so on have been investigated [18].

Similarly, Vanhoof et al., analysed GAAP Reporting in
Accounting area to list both conformance with Normalized
Systems theory and violations against its principle [8].
Furthermore, Normalized Systems theory has suggested that
its theorems and elements lead to high evolvability of
information systems [2][5][6][8][9][14][16][18]-[20].

B. The Evaluation of ERP Packages

The well-known SAP Reference Model was analysed
adhering to Normalized Systems theory principles. Some
indications were found that seem to reflect Normalized
Systems theorems. Moreover, there were some processes of
the SAP Reference Model seem to be unrelated to the
Normalized Systems theory principles [6]. Mendling et al.,
stated that there are some error probabilities in enterprise
models [21][23]. Additionally, they are usually concealed.
Therefore, they evaluated the SAP Reference Model using a
verification tool based on Petri net to explore the errors in
SAP [21]. The 600 processes of SAP Reference Model were
analysed. Consequently, several errors in SAP Reference
Model were found [21][23].

III. NORMALIZED SYSTEMS THEORY

Normalized Systems theory provides a practical way of
developing evolvable information systems through the so-
called pattern expansion of software elements [19].

A. Normalized Systems Theorems

To guarantee high evolvability of information systems,
Normalized Systems theory proposes four theorems [10].
Furthermore, how the four Normalized Systems theorems are
manifested in a practical way is shown in Table I.

TABLE I. NORMALIZED SYSTEMS FOUR THEOREMS IN PRACTICE [18]

Normalized Systems

Theorems

The practical way of developing

information systems
Separation of Concerns • Multi-tier architectures

separating presentation logic,

application or business logic,

database logic, etcetera

Data Version Transparency • Polymorphism in object-
orientation

• Wrapper functions

Action Version Transparency • XML-based technology (e.g.,

for web services)

• Information hiding in object-

orientation

Separation of States • Asynchronous communication
systems

• Stateful workflow systems

B. Normalized Systems Elements

Five expandable elements were proposed to ensure the
evolvability of Normalized Systems applications. The
internal structure of these five elements is described by
Normalized Systems design patterns such as data elements,
action elements, work-flow elements, connector elements,
trigger elements [6][19][16].

129Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 141 / 267

IV. ANALYSING THE PARTIAL ANALYSIS PATTERNS OF

THE ERP PACKAGE

In this section, we examine the Microsoft Dynamics
CRM 2016 from an evolvability point of view and
demonstrate both conformance with Normalized Systems
theory and violations against it.

A. Indications towards of conformance with Normalized

Systems principles

Here, our aim is to examine conformance between the
model of Microsoft Dynamics CRM and Normalized
Systems principles.

Based on the Normalized Systems theorems, most of the
model of Microsoft Dynamics CRM seem to be related to the
Normalized Systems principles. Firstly, the Microsoft
Dynamics CRM architecture has a Multitier architecture.
Moreover, the Microsoft Dynamics CRM implements cross-
cutting concerns, for example, Reporting (Dashboards,
Charts, Excel and SRS), Security model that focuses on
access rights to the entities in the system [6]-[8]. For first and
second points straightforwardly follow from the Separation
of Concerns theorem.

According to the Data version transparency theorem, data
entities can be modified (insert, delete, update) without
affecting the calling actions [9]. In Microsoft Dynamics
CRM, the information hiding has been applied to develop the
software. Properties cannot be directly accessed, but can be
read or written by using provided method. Additionally,
Microsoft Dynamics CRM has been implemented using
XML based technology that leads to conformance with the
Data Version Transparency theorem.

Following the Action Version Transparency theorem, this
theorem implies an action can be modified without affecting
the calling actions. First, Microsoft Dynamics CRM is
usually implemented through wrapper functions through the
use of polymorphism in C#.NET or VB.NET. Second, the
Microsoft Dynamics CRM implements cross-cutting
concerns as explained above. Therefore, the developing of
Microsoft Dynamics CRM relates the Action version
transparency theorem.

The Microsoft Dynamics CRM relies on asynchronous
service to improve overall system performance and
scalability [10]. Combinatorial effects can be avoided
through asynchronous processing.

B. Indications towards violation of Normalized Systems

principles

When analysing the analysis patterns of Microsoft
Dynamics CRM, some indications towards violation of the
Normalized Systems principles might be noticed. Microsoft
Dynamics CRM addresses challenge of customer
management, therefore, this module was analysed in point of
evolvability. The entities are used to model and manage
business data in this module. In programing, an entity is
represented by a class, such as the Account class generated
from the Account entity.

Figure 1. The partial ER diagram of Microsoft Dynamics CRM

Fig. 1 illustrates an ER diagram consisting of ten entities.

We have noticed the attribute duplication of address details
in many Classes such as Account, Contact, Address, Lead,
LeadAddress, Quote, Invoice, and Order. Attribute
duplication seems contradictory to Normalized Systems
theorem, Separation of Concern. According to the
assumption of unlimited systems evolution, software can be
changed over time. Therefore, the eventual impact might
become related to the overall system size and lead to a
combinatorial effect.

V. CONCLUSION

In this paper, we analyse the analysis patterns of ERP
package, Microsoft Dynamics CRM, to explore conformance
with Normalized Systems theory and violations against it.
While the interpretation of the analysis patterns of ERP
package shows some conformance towards Normalized
Systems theory, it also presents some analysis patterns
towards violations of Normalized Systems principles. The
finding is found the developing well-known commercial
ERP package seem to relate Normalized Systems theory both
four theorems and five elements [2][18]. On the other hand, a
few points seem to contradict Normalized Systems

130Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 142 / 267

principles. Similarly, the finding of Mendling et al., there are
some error probabilities in enterprise models. Moreover, they
are usually concealed [21]-[23]. This paper makes first
contribution towards presenting the possibility of ERP
evaluation adhering to Normalized Systems theory in the
context of evolvability. Second, the paper contributes to the
ERP development applying Normalized Systems theory to
achieve the evolvability.

The limitations of our study need to be acknowledged.
First, we only analysed partial analysis patterns of one ERP
package. We could not perform reverse-engineering and
explore more source code of commercial ERP software
packages to look at combinatorial effects. As part of future
research, we will redesign and rebuild the existing data
model of existing ERP software packages based on NS
theory. In practice, we will rebuild existing ERP packages
using the Normalized Systems expander to obtain high
evolvability [2][16][19].

REFERENCES

[1] S. Kelly and C. Holland, “The ERP Systems Development Approach
to Achieving an Adaptive Enterprise: The Impact of Enterprise
Process Model-ling Tools,” in Systems engineering for business
process change: new directions. Springer London, pp. 241-252, 2002.

[2] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol 42, no. 1, pp. 89-116, 2012.

[3] K. Ganesh et al., “Enterprise Resource Planning: Fundamentals of
Design and Implementation,” Springer, 2014.

[4] E. Shehab, M. Thomassin, and M. Badawy, “Towards a Cost
Modelling Framework for Outsourcing ERP Systems,” in Improving
Complex Systems Today: Proceedings of the 18th ISPE International
Conference on Concur-rent Engineering, D.D. Frey, S. Fukuda, and
G. Rock, Editors, Springer London: London, pp. 401-408, 2011.

[5] P. Huysmans and J. Verelst, “Towards an Engineering-Based
Research Approach for Enterprise Architecture: Lessons Learned
from Normalized Systems theory,” in Advanced Information Systems
Engineering Workshops: CAiSE 2013 International Workshops,
Valencia, Spain, June 17-21, 2013. Proceedings, X. Franch and P.
Soffer, Editors, Springer Berlin Heidel-berg: Berlin, Heidelberg, pp.
58-72, 2013.

[6] P. De Bruyn et al., “Towards Applying Normalized Systems theory
Implications to Enterprise Process Reference Models,” in Advances
in Enterprise Engineering VI: Second Enterprise Engineering
Working Conference, EEWC 2012, Delft, The Netherlands, May 7-8,
2012. Proceedings, A. Albani, D. Aveiro, and J. Barjis, Editors,
Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 31-45, 2012.

[7] P. Huysmans et al., “Positioning the Normalized Systems theory in a
Design Theory Framework,” in Business Modeling and Software
Design: Second International Symposium, BMSD 2012, Geneva,
Switzerland, July 4-6, 2012, Revised Selected Papers, B. Shishkov,
Editor, Springer Berlin Heidel-berg: Berlin, Heidelberg, pp. 43-63,
2013.

[8] E. Vanhoof et al., “Building an Evolvable Prototype for a Multiple
GAAP Accounting Information System,” in Advances in Enterprise
Engineering X: 6th Enterprise Engineering Working Conference,

EEWC 2016, Funchal, Madeira Island, Portugal, May 30-June 3
2016, Proceedings, D. Aveiro, R. Pergl, and D. Gouveia, Editors,
Springer International Publishing: Cham, pp. 71-85, 2016.

[9] J. Verelst et al., “Identifying Combinatorial Effects in Requirements
Engineering,” in Advances in Enterprise Engineering VII: Third
Enterprise Engineering Working Conference, EEWC 2013,
Luxembourg, May 13-14, 2013. Proceedings, H.A. Proper, D. Aveiro,
and K. Gaaloul, Editors, Springer Berlin Heidelberg: Berlin,
Heidelberg, pp. 88-102, 2013.

[10] P. De Bruyn, “Towards Designing Enterprises for Evolvability Based
on Fundamental Engineering Concepts,” in On the Move to
Meaningful Internet Systems: OTM 2011 Workshops: Confederated
International Workshops and Posters: EI2N+NSF ICE,
ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and
VADER 2011, Hersonissos, Crete, Greece, October 17-21, 2011.
Proceedings, R. Meersman, T. Dillon, and P. Herrero, Ed-itors,
Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 11-20, 2011.

[11] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability based on
systems theoretic stability,” Science of Computer Programming, vol.
76, no. 12, pp. 1210-1222, 2011.

[12] MM. Lehman, “Laws of software evolution revisited,” in European
Workshop on Software Process Technology, Springer, 1996.

[13] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Universiteit Antwerpen, 2011.

[14] P. Huysmans et al., “Aligning the Normalized Systems theory
Constructs of Enterprise Ontology and Normalized Systems,” in
Advances in Enterprise Engineering IV: 6th International Workshop,
CIAO! 2010, held at DESRIST 2010, St. Gallen, Switzerland, June 4-
5, 2010. Proceedings, A. Albani and J.L.G. Dietz, Editors, Springer
Berlin Heidelberg: Berlin, Heidelberg, pp. 1-15, 2010.

[15] M.R. Krouwel and M. Op’t Land, “Combining DEMO and
Normalized Systems for developing agile enterprise information
systems,” in Enterprise Engineering Working Conference, Springer,
2011.

[16] G. Oorts et al., “Easily evolving software using normalized system
theory-a case study,” Proceedings of ICSEA, pp. 322-327, 2014.

[17] K. Ven et al., “Experiences with the automatic discovery of violations
to the normalized systems design theorems,” International Journal on
Advances in Software, vol. 4, no 1 & 2, 2011, 2011.

[18] P. De Bruyn, D. Geert, and H. Mannaert, “Aligning the Normalized
Systems Theorems with Existing Heuristic Software Engineering
Knowledge,” The Seventh International Conference on Software
Engineering Advances, pp. 84-89, 2012.

[19] G. Oorts et al., “Building evolvable software using Normalized
Systems theory: A case study. in System Sciences (HICSS),” 2014
47th Hawaii International Conference, IEEE, 2014.

[20] Op’t Land et al., “Exploring normalized systems potential for dutch
mod’s agility,” in Working Conference on Practice-Driven Research
on Enterprise Transformation, Springer, 2011.

[21] J Mendling et al., “Faulty EPCs in the SAP reference model,” in
International Conference on Business Process Management, Springer,
2006.

[22] J Mendling et al., “Errors in the SAP reference model,” BPTrends,
vol. 4, no. 6, pp. 1-5, 2006.

[23] J Mendling et al., “Detection and prediction of errors in EPCs of the
SAP reference model,” Data & Knowledge Engineering, vol. 64, no.
1, pp. 312-329, 2008.

131Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 143 / 267

A Survey and Analysis of Reference Architectures for the Internet-of-things

Hongyu Pei Breivold

Industrial Internet-of-things
ABB Corporate Research

Västerås, Sweden
hongyu.pei-breivold@se.abb.com

Abstract—Increased connectivity and emerging autonomous

cloud and Internet-of-things (IoT) technologies are motivating

the transformation of the traditional product-focused

development to cloud-based solutions and service-oriented

business model in many companies. In line with this, several

reference architectures for the Internet-of-things have been

developed. Although some of these reference architectures

have continued their development tracks in parallel and have

different focus, they also have similarities in many

perspectives, which may result in confusion in understanding

and applying appropriate reference architectures for specific

use cases. The aim of this study is therefore to survey these

existing Internet-of-things reference architectures, clarify their

characteristics, and analyze them from a variety of

perspectives, including technology, process, quality and key

system concerns, business and people. We also present several

other relevant activities and initiatives related to the Internet-

of-things.

Keywords-reference architecture; industrial internet-of-

things; smart industry; industrial automation

I. INTRODUCTION

The German Federal Ministry of Education and Research
defines Industrie4.0 [1] as the flexibility to enable machines
and plants to adapt their behavior to changing orders and
operating conditions through self-optimization and
reconfiguration. Consequently, future smart factories require
systems to have the ability to perceive information, derive
findings and change their behavior accordingly, and store
knowledge gained from experiences. Many organizations
start to see the potential opportunities of the Internet-of-
things and its impacts on providing solutions that could offer
operational advantages [2]. In line with this, there are several
research initiatives and EU-funded research activities on
Internet-of-things, covering various aspects, such as
communication, hardware technology, identification and
network discovery, security, interoperability, standardization,
etc. Some examples are IERC – European Research Cluster
on the Internet of Things [3], Industrial Internet Consortium
[4], Industri4.0 [5], and the creation of the Alliance for
Internet of Things Innovation (AIOTI) [6] by the European
Commission [7], which initiates the development and future
deployment of the Internet-of-things technology in Europe.
There has also been a number of EU-funded research
activities in Internet-of-things implementation and adoption,
addressing various domains and use cases in smart cities,

smart energy and smart grid, healthcare, food and water
tracking, logistics and retail, and transportation [8].

Successful adoption of cloud computing and Internet-of-
things requires guidance around planning and integrating
relevant technologies into the existing services and
applications. Both industry and academia that want to
implement cloud-based solutions seek for more information
about best practices for migrating and adopting cloud
computing and Internet-of-things concepts. According to [9],
“Defining a cloud reference architecture is an essential step
towards achieving higher levels of cloud maturity. Cloud
reference architecture addresses the concerns of the key
stakeholders by defining the architecture capabilities and
roadmap aligned with the business goals and architecture
vision”. Study [10] holds similar viewpoints. According to
[10], in order to effectively build cloud-based enterprise
solutions, there is a need for the definition of a systematic
architecture that provides templates and guidelines and can
be used as a reference for the architects or software engineers
within the software development lifecycle. Therefore, several
reference architectures have been developed and evolved.
According to [11], a reference architecture incorporates the
vision and strategy for the future. With high level of
abstraction, a reference architecture provides a common
structure and guidance for dealing with core aspects of
developing, using and analyzing systems and solutions that
can be tailored to different use cases and specific needs from
multiple organizations.

Although some of the reference architectures in this
survey have continued their development tracks in parallel
and have different focus, they also have similarities in many
perspectives, which may result in confusion in understanding
and applying appropriate reference architectures for specific
use cases. In this paper, we present a survey of the existing
reference architectures for the Internet-of-things, clarify the
characteristics of these reference architectures, and analyze
them from a variety of perspectives, including technology,
process, quality and key system concerns, business and
people.

The remainder of the paper is structured as follows.
Section II presents an overview of the existing reference
architectures for the Internet-of-things. Section III describes
some relevant organized Internet-of-things initiatives and
activities. Section IV gives a comparison of the surveyed
reference architectures from different perspectives, including
technology, process, quality and key system concerns,

132Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 144 / 267

business and people, and discusses the findings from this
study, and Section V concludes the paper.

II. REFERENCE ARCHITECTURES FOR THE INTERNET OF

THINGS

This section presents some well-known reference
architectures for the Internet-of-things.

A. Reference Architecture Model for Industrie 4.0

(RAMI4.0)

RAMI 4.0 [12] is a reference architecture for smart
factories. It was initiated in Germany, and is driven by major
companies in industry sectors. RAMI 4.0 addresses the
Industrie4.0 [5] problem space from three dimensions, i.e., it
is hierarchically structured to manage both vertical
integration within the factory, as well as horizontal
integration extending beyond individual factory locations, in
combination with lifecycle and value streams of
manufacturing applications for all the factories and all the
parties involved, from engineering through component
suppliers to the customers. This reference architecture aims
to address four aspects, including horizontal integration
through value networks, vertical integration within a factory,
lifecycle management and end-to-end engineering, and
human beings orchestrating the value stream. In RAMI4.0,
the term Industrie4.0 is used to stand for the fourth industrial
revolution in the organization and control of the entire value
stream along the life cycle of a product. All relevant
information is available in real-time through the networking
of all instances, e.g., people, objects and systems involved in
value creation. By connecting these instances, the value
stream are derived from data at all times to create dynamic,
self-organized, cross-organizational, real-time optimized
value networks based on a range of criteria, such as costs,
availability and consumption of resources.

B. Industrial Internet Reference Architecture (IIRA)

IIRA [13] is a standard-based reference architecture
developed by the Industrial Internet Consortium [4] for
industrial internet systems, which are large end-to-end
systems integrating industrial control systems with enterprise
systems, business processes and analytics solutions. In this
context, the term industrial internet is used to represent
Internet-of-things, machines, computers and people, enabling
intelligent industrial operations using advanced data
analytics for transformational business outcomes. It
embodies the convergence of the global industrial
ecosystem, advanced computing and manufacturing,
pervasive sensing and ubiquitous network connectivity.

This reference architecture is based on ISO/IEC/IEEE
42010:2011 [14] and adopts the general concepts in the
specification, such as concern, stakeholder, and viewpoint.
The term concern refers to any topic of interest pertaining to
the system. The various concerns of an industrial internet
system are classified as four viewpoints, i.e., business, usage,
functional and implementation. The business viewpoint
addresses the concerns of the identification of stakeholders
and their business vision, values and objectives. The usage
viewpoint addresses the concerns of expected system usage

and capabilities. The functional viewpoint focuses on the
functional components in an industrial internet system, their
interrelation and structure, the interfaces and interactions
between them and with external environment. The
implementation viewpoint focuses on the technologies
needed to implement functional components, communication
schemes and lifecycle procedures. Some key system
characteristics addressed in IIRA to ensure the core functions
of industrial systems over time include safety, security and
resilience.

C. IoT Architectural Reference Model (IoT-ARM)

IoT-ARM [15], developed within the European project
IoT-A, is an architectural reference model that aims to
connect vertically closed systems, architectures and
application areas for creating open systems and integrated
environments and platforms. In this model, Internet-of-things
is treated as an umbrella term for interconnected
technologies, devices, objects and services. This reference
model consists of several sub-models, of which a primary
and mandatory model is the IoT domain model, describing
all the concepts and their relations that are relevant in the
Internet-of-things, such as devices, IoT services, and virtual
entities. All the other models, such as the IoT information
model, functional model, communication model, IoT trust,
security and privacy model, together with the IoT reference
architecture are based on the concepts introduced in the
domain model. The IoT reference architecture adopts the
definition of architectural views and perspectives from [16],
though excludes use case specific views to ensure IoT-
specific needs and application-independence in the reference
architecture. The key architectural views of the Internet-of-
things reference architecture include IoT functional view,
IoT information view, IoT deployment and operational view.
The architectural perspectives of the Internet-of-things
reference architecture tackle non-functional requirements,
including evolution and interoperability, availability and
resilience, trust, security and privacy, and performance and
scalability.

D. IEEE Standard for an Architectural Framework for

Internet of Things (P2413)

The P2413 standard [17] provides an architectural
framework that aims to capture the commonalities,
interactions and relationships across multiple domains and
common architecture elements. It includes descriptions of
various Internet-of-things domains, definitions of IoT
domain abstractions, and identification of commonalities
between different IoT domains. It also provides a blueprint
for data abstraction and trust that includes protection,
security, privacy, and safety. Similar to the Industrial
Internet Reference Architecture, P2413 leverages existing
applicable standards and follows the recommendations for
architecture descriptions defined in ISO/IEC/IEEE 42010
[14]. According to [17], this standard provides a reference
architecture that builds upon the reference model. The
reference architecture covers the definition of basic
architectural building blocks and their ability to be integrated
into multi-tiered systems. The reference architecture also

133Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 145 / 267

addresses how to document and mitigate architecture
divergence. In this standard, things, apps and services can be
integrated into what would be abstracted as a “thing”.
Information exchange could be horizontal or vertical, or
both.

E. Arrowhead Framework

The Arrowhead framework [18] was developed within an
European research project in automation, which aims to
facilitate collaborative automation by networked devices for
five business domains, i.e., production (manufacturing,
process, and energy), smart buildings and infrastructures,
electro-mobility, energy production and virtual markets of
energy. This framework is based on service-oriented
architecture to enable the Industrial Internet-of-things. The
loosely coupled and discovery properties of service-oriented
architecture improve the interoperability between devices
and the integration of services provided by these devices.
The concept of local clouds with well-defined isolation from
the open Internet is used to support some key requirements
of automation systems, such as real-time, security and safety,
scalability and engineering simplicity. The dynamic
characteristic of Internet of things is key in this framework.
On the one hand, things come and go, and they may have
limited bandwidth or energy supply. On the other hand, the
integration of IoT systems needs to be dynamic based on the
demand and availability. There are three core components in
the local cloud services, i.e., service registry, authorization,
and orchestration. In order to be Arrowhead compliant, the
applications within the network should register the services
they provide within the service registry component. The
authorization component manages the access rules for
specific services, and the orchestration component manages
connection rules for specific services to allow dynamic
reconfiguration of the service consumer and service provider
endpoints [19].

F. WSO2 IoT Reference Architecture

Based on the projects deployed with customers to support
Internet-of-things capabilities, the company WSO2 has
proposed a reference architecture [20] that aims to support
integration between systems and devices. Their definition of
the Internet-of-things is the set of devices and systems that
interconnect real-world sensors and actuators to the Internet.
The WSO2 reference architecture consists of five layers, i.e.,
(i) device layer, in which each device has a unique identifier
and is directly or indirectly attached to the Internet; (ii)
communication layer, which supports the connectivity of the
devices with multiple protocols for communication between
the devices and the cloud; (iii) aggregation/bus layer, which
aggregates communications from multiple devices, brokers
communications to a specific device, and transform between
various protocols; (iv) event processing and analytics layer;
which processes and acts upon the events from the bus, and
perform data storage; and (v) client/external communication
layer, which enables users to communicate and interact with
devices and obtain views into analytics and event processing.
Besides these vertical layers, there are also two cross-cutting
layers: (i) device manager, which communicates with and

remotely manages devices, and maintain the list of device
identities; and (ii) identity and access management for access
control.

G. Microsoft Azure IoT Reference Architecture

The Azure Internet-of-things reference architecture [21]
is built upon Microsoft Azure platform to connect, store,
analyze and operationalize device data to provide deep
business insights. This architecture consists of core platforms
services and application-level components to facilitate
processing needs across three main areas of IoT solutions,
i.e., (1) device connectivity; (2) data processing, analytics
and management; and (3) presentation and business
connectivity. The guiding principles for the architecture
include software and hardware heterogeneity to manage
diverse scenarios, devices and standards, security and
privacy, as well as hyper-scale deployments. The goal of the
reference architecture is to connect sensors, devices, and
intelligent operations using Microsoft Azure services. The
key architecture components to reach this goal include (1)
device connectivity, which manages different device
connectivity options for IoT solutions; (2) device identity
store, which manages all device identity information and
allows for device authentication and management; (3) device
registry store, which handles discovery and reference
metadata related to provisioned devices; (4) device
provisioning, which allows the system to be aware of the
device capabilities and conditions; (5) device state store,
which handles operational data related to the devices; (6)
data flow and stream processing; (7) solution UX for
graphical visualization of device data and analysis results;
(8) App backend, which implements required business logic
of an IoT solution; (9) business systems integration; and (10)
at-rest data analytics.

H. Internet-of-everything Reference Model

The Internet-of-everything reference model [22] is
developed by the Architecture Committee of the IoT World
Forum hosted by Cisco. This model defines standard
terminology and functionality for understanding and
developing Internet-of-things solutions, which connect
people, process, data and things to enable intelligent
interactions between them to achieve relevant and valuable
business opportunities. This reference model is composed of
seven levels, including (1) physical devices and controllers
that control multiple devices; (2) connectivity for reliable
and timely information transmission between devices and the
network, across networks, and between the network and low-
level information processing level; (3) edge/fog computing
that bridges information technology and operational
technology, i.e., performing high-volume data analysis and
transformation of network data flows into information
suitable for storage and higher level processing; (4) data
accumulation that converts event-based data generated by the
devices to query-based data consumption for applications to
access data when necessary; (5) data abstraction that renders
data and its storage to enable developing simple and
performance-enhanced applications; (6) applications that
vary from control application to mobile application or

134Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 146 / 267

business intelligence and analytics; and (7) collaboration and
processes that involve people and business processes to
empower smooth communication and collaboration between
people.

I. Intel IoT Platform Reference Architecture

Intel has defined a system architecture specification
(SAS), which is a reference architecture for Internet-of-
things, i.e., for connecting products and services so that they
can be aware of each other and surrounding systems in their
ecosystems [23]. There are two versions of reference
architectures: version 1.0 for connecting the unconnected,
using an IoT gateway to securely connect and manage legacy
devices that are lack of intelligence and Internet
connectivity; version 2.0 for smart and connected things,
addressing security and integration capabilities that are
essential for real-time and closed-loop control of the data
shared between smart things and the cloud. Similar to the
Internet-of-things reference architecture proposed by IoT
World Forum Architecture Committee, version 2.0 also
facilitates the integration of operational technology and
information technology. The Intel Internet-of-things
reference architecture is a layered architectural framework,
comprising of (1) communications and connectivity layer,
which enables multi-protocol data communication between
devices at the edge and between endpoint devices/gateways,
the network, and the data center; (2) data layer with analytics
distributed across the cloud, gateways, and smart endpoint
devices for optimized time-critical or computation-intensive
applications; (3) management layer for realizing automated
discovery and provisioning of endpoint devices; (4) control
layer; (5) application layer; and (6) business layer utilizing
the application layer to access other layers in the solution.
There is a vertical security layer as well which handles
protection and security management across all layers,
spanning endpoint devices, the network, and the cloud.

III. OTHER INTERNET OF THINGS ACTIVITIES

In addition to the reference architectures presented in the
previous section, there are also several other projects,
activities and initiatives dedicated in the architecture context
for the Internet-of-things.

A. IoT European Research Cluster (IERC)

The objective of IERC initiative [3] is to define a
common vision of Internet-of-things technology and address
IoT technology research challenges with respect to
connected objects, the Web of Things, and the future of the
Internet capabilities at the European level, and facilitate
knowledge sharing in the view of global development.
According to IERC, Internet-of-things is a dynamic global
network infrastructure with self-configuring capabilities
based on standard and interoperable communication
protocols where physical and virtual things have identities,
physical attributes, and virtual personalities and use
intelligent interfaces, and are seamlessly integrated into the
information network. To facilitate the vision of Internet-of-
things business ecosystems implementing smart technologies
to drive innovation, a wide range of research and application

projects have been set up within the IERC initiative,
investigating aspects related to (i) devising disruptive
business models, transforming traditional business model to
data-driven models where all actors in the value chain are
closely interconnected; (ii) trust evaluation and management
in Internet-of-things, concerning provision of reliable
information and maximizing security, privacy and safety;
(iii) the impact and consequences of the fast-paced
technology development enabling connected things, services,
data and people on society with respect to legal
considerations, regulations and policies, such as personal
data protection, data ownership; (iv) standards and IoT
platforms that support open and dynamic interaction across
both dimensions of horizontal IoT domains and vertical
application domains, and overcome the fragmentation of
closed systems, architectures, and applications. A tightly
related Internet-of-things activity to IERC is the Alliance for
Internet of Things Innovation (AIOTI) [6], which was
initiated by the European Commission to address the
challenges of Internet-of-things technology and application
deployment, including standardization, interoperability and
policy issues that are of common interest among various IoT
players.

B. Smart Applicances (SMART)

SMART is an EU-funded study [24] with focus on
semantic assets for smart appliance (i.e., devices used in
households capable of communicating with each other and
being controlled via Internet) interoperability. It provides a
standardized framework for the smart appliances reference
ontology, of which recurring concepts can be used and
extended in several domains in addition to residential
environments.

C. Architecture and Interfaces for Web-oriented

Automation System (WOAS)

The project WOAS [25] is funded by the German Federal
Ministry of Economics and Technology as an industrial joint
research project with ten German automation companies
involved. The aim of this project is to research a new
architecture for automation systems based on cloud-based
web technologies. The proposed architecture is referred to as
a Web-Oriented Automation System (WOAS). A WOAS
comprises a system kernel and a configurable number of
automation services that implement and realize the required
automation functions. The automation service is realized
according to the concept of I40 component [12]. The
connection of the automation service with distributed
automation devices in the network is implemented via
standard industrial interfaces and is also based on the
concept of I40 component.

D. Reference Architecture for IoT-based Smart Factory

A research study [26] presents a reference architecture
for smart factories and defines the main characteristics of
such factories with a focus on sustainable energy
management perspective. According to this study, Internet of
things relies on both smart objects and smart networks. It is a
system in which the physical items are enriched with

135Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 147 / 267

embedded electronics, such as RFID tags and sensors, and
are connected to the Internet. This reference architecture
builds upon the interactive relations between smart factories
and customers, which allow smart factories to collect and
analyze data from products and processes for improved
perception of customers’ needs and behaviors, as well as
better products and services. There are several sets of
technologies and perspectives in this reference architecture,
including smart machines, smart devices, smart
manufacturing processes, smart engineering, manufacturing
IT, smart logistics, big data and cloud computing, smart
suppliers (i.e., building sustainable relations with suppliers),
smart customers’ behavior, and smart grid infrastructure for
energy management.

IV. ANALYSIS AND DISCUSSIONS

The reference architectures described in section II have
similarity in technical concepts and architectural principles,
but there are also differences in their respective technology
approaches and implementations. Therefore, we group
particular characteristics that have similar concerns to
describe the same or related aspects of these reference
architectures. The aspects in the comparison that we are
going to address include (i) technology perspective,
addressing key concepts and principles used; (ii) process
perspective, addressing the coverage of guidelines and
process steps involved when using the reference architecture
to generate concrete architectures or migrate existing
solutions using the reference architecture; (iii) quality and
key system concerns perspective, addressing main quality
attributes and system characteristics that a specific reference
architecture focuses on; and (iv) business and people
perspective, addressing the coverage of value stream aspect
and users-centered perspective in a specific reference
architecture. Table I summarizes a comparison of the
surveyed reference architectures

The inclusion of the reference architectures in this survey
is based on a mapping study [27] and various research
initiatives and activities within the Internet-of-things area,
and covers therefore a collection of the existing reference
architectures available, which is much more complete than
the analysis provided in [28], which analyzes only the IoT
architectural reference model and the architecture proposed
by WSO2.

From surveying the existing reference architectures for
Internet-of-things, we have found out several driving forces
of the development of these reference architectures, such as
(i) increasing complexity and size of the systems due to the
tremendous amount of connected heterogeneous devices
both within and across domains; (ii) increased need for
shorter time-to-market and rapid development; (iii) new
collaborative solutions that require integrated and
coordinated information management to ensure improved
effectiveness and optimized production processes or process
chains in a single plant or across plants; (iv) increasing need
to achieve interoperability and compliance between different
devices and systems; (v) increased focus on optimizing the
assets in a single physical plant, as well as optimizing
operations across asset types, fleets, customers and partners

involved in the Internet-of-things value chain for value co-
creation. Many of these driving forces are also in line with
the identified objectives of reference architectures as
described in [11].

According to [11], reference architectures should address
technical architecture, business architecture and customer
context. From surveying the reference architectures, we have
found that business architecture and customer context are
often missing. Most of the architectures provide technical
solutions, design patterns and tactics. For instance, some
commonly used architecture patterns among these surveyed
reference architectures include multitier architecture pattern
using edge tier, platform tier and enterprise tier, edge-to-
cloud architecture pattern, multi-tier data storage architecture
pattern, distributed analytics architecture pattern, gateway or
edge connectivity and management architecture pattern.
However, the business models and lifecycle considerations
in the business architecture are often missing. In the
surveyed architectures, RAMI4.0 and IIRA are two reference
architectures that explicitly include business architectures. A
main characteristics of RAMI4.0 is the combination of
lifecycle and value stream with a hierarchically structured
approach. IIRA explicitly defines business viewpoint to
address business vision, value proposition and objectives.
Similar to business architectures, the customer context that
addresses the processes and user considerations in the
customer enterprises are often missing as well.

Another important aspect of a reference architecture is to
provide practices and guidance for generating new concrete
architectures [11]. Some reference architectures explicitly
address this issue. For instance, in IIRA, the implementation
viewpoint explicitly addresses the technical representation,
the technologies and system components required to
implement the activities and functions required when
generating concrete architectures. Another example is IoT-
ARM, which provides best practices and guidance for
generating concrete architectures from IoT-ARM. It can also
be used to devise system roadmaps that lead to minimum
changes between two product generations while
guaranteeing system capability and features. Another use of
the reference architecture is benchmarking during functional
components review process. One example is P2413, which
supports system benchmarking, safety and security
assessment.

For practitioners in industry, coping with typical
characteristics of legacy systems [29] and addressing legacy
issues is one important aspect in a reference architecture.
Among the surveyed reference architectures, Arrowhead is
one example that addresses explicitly the migration of ISA-
95 systems to service-based collaborative automation
systems in the cloud.

V. CONCLUSIONS

In this paper, we have surveyed well-known existing
reference architectures, activities and initiatives for the
Internet-of-things. To better understand and apply
appropriate reference architectures for specific use cases, we
have made a comparison of these reference architectures
from different perspectives, including technology, process,

136Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 148 / 267

quality and key system concerns, business and people. We
also discuss the driving forces of these reference
architectures, how they address technical, business and
customer context, and how they address the generation of
concrete architectures, as well as the legacy migration
perspective. Although it is difficult to find information on
examples of solutions or concrete products implementing
each architecture described, we believe that our analysis and
discussions would assist practitioners in their choice of
reference architectures, and in the meanwhile provide input
to further improvement of these reference architectures.

ACKNOWLEDGMENT

Special acknowledgement to the Swedish Foundation for
Strategic Research through the project “Internet-of-things
and Cloud for Intelligent Manufacturing” (SM16-0025).

REFERENCES

[1] The Economist Intelligence Unit, “The Internet of Things

Business Index: A Quiet Revolution Gathers Pace,” 2013.

[2] Industrial Internet Insights Report for 2015, Accenture .

[3] European Research Cluster on the Internet of Things,
http://www.internet-of-things-research.eu/, retrieved in
August 2017.

[4] Industrial Internet Consortium,
http://www.industrialinternetconsortium.org/

[5] Industri 4.0, http://www.plattform-i40.de/, retrieved in August
2017.

[6] https://www.aioti.eu/, retrieved in August 2017.

[7] European Commission Internet-of-things,
http://ec.europa.eu/digital-agenda/en/internet-things, retrieved
in August 2017.

[8] E. Borgia, “The Internet of things vision: key features,
applications and open issues”, Journal of Computer
Communications, 2014.

[9] An Oracle White Paper, “Cloud reference architecture”,
Oracle Enterprise Transformation Solutions Series, 2012.

[10] J. Liu, L.J. Zhang, B. Hu, and K. He, “CCRA: Cloud
computing reference architecture”, IEEE International
Conference on Services Computing (SCC), 2012.

[11] R. Cloutler, G. Muller, D. Verma, R. Nilchiani, E. Hole, and
M. Bone, “The concept of reference architectures”, Systems
Engineering, vol.13, 2010.

[12] RAMI 4.0, https://www.zvei.org/en/subjects/industry-4-0/the-
reference-architectural-model-rami-40-and-the-industrie-40-
component/, retrieved in August 2017.

[13] IIRA, http://www.iiconsortium.org/, retrieved in August 2017.

[14] ISO/IEC/IEEE 42010:2011 Systems and software engineering
– architecture description,
https://www.iso.org/standard/50508.html

[15] A. Bassi et al, Enabling things to talk – designing IoT
solutions with the IoT architectural reference model, ISBN
978-3-642-40402-3, Springer, 2013.

[16] E. Woods, and R. Nick, “The system context architectural
viewpoint”, Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on Software
Architecture, WICSA/ECSA, 2009.

[17] IEEE P2413, http://grouper.ieee.org/groups/2413/, IEEE
Standards Association

[18] Arrowhead Framework, http://www.arrowhead.eu/, retrieved
in August 2017.

[19] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey
of commercial frameworks for the Internet of things”, IEEE
Conference on Emerging Technologies and Factory
Automation, 2015.

[20] P. Fremantle, “A reference architecture for the Internet of
things”, WSO2 White Paper, version 0.9.0, 2015.

[21] https://azure.microsoft.com/en-au/updates/microsoft-azure-
iot-reference-architecture-available/, retrieved in August
2017.

[22] https://www.iotwf.com/resources, retrieved in August 2017.

[23] http://www.intel.com/content/www/us/en/internet-of-
things/white-papers/iot-platform-reference-architecture-
paper.html, retrieved in August 2017.

[24] https://sites.google.com/site/smartappliancesproject/home,
retrieved in August 2017.

[25] R. Langmann, and L. Meyer, “Automation services from the
cloud”, IEEE International Conference on Remote
Engineering and Virtual Instrumentation, 2014.

[26] F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in
Industry 4.0: a review of the concept and of energy
management approached in production based on the Internet
of things paradigm”, IEEE International Conference on
Industrial Engineering and Engineering Management, 2014.

[27] H. Pei-Breivold, “Internet-of-things and Cloud computing for
smart industry: a systematic mapping study”, to be published
at the International Conference on Enterprise Systems, 2017.

[28] E. Cavalcante, M.P. Alves, and T. Batista, “An analysis of
reference architectures for the Internet of things”,
International Workshop on Exploring Component-based
Techniques for Constructing Reference Architectures, 2015.

[29] S. Demeyer, S. Ducasse, and O. M. Nierstrasz, Object-
Oriented Reengineering Patterns, ISBN 978-3-9523341-2-6,
Morgan Kaufmann, 2003.

137Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 149 / 267

TABLE I. A COMPARISON OF REFERENCE ARCHITECTURES FOR INTERNET OF THINGS

Reference

Architectures

Technology Process Quality and Key System

Concerns

Business and People

RAMI4.0 A key concept is I4.0
component. Service-oriented
and layered architecture.
Follow and extend IEC62264
and IEC61512 standards.
Permit encapsulation of
functionalities. Standards
compliant.

Address product lifecycle
management dimension,
horizontal integration
across factories and
vertical integration within
factory. Allow step by step
migration to I4.0
components.

Address security for
functionality and data,
functional safety and
safety measures. The
I4.0 component possesses
the quality of service
properties necessary for
specific applications.

Address people
orchestrating the value
stream, and value stream
dimension throughout
product lifecycle and
across factories.

IIRA Key concepts include concern,
stakeholder, and viewpoint.
Based on ISO/IEC/IEEE
42010:2011.
Standard-based open
architecture.

Integration of information
technologies and
operational technologies.

Address safety, security,
trust and privacy,
resilience, integrability,
interoperability and
composability,
connectivity.

Business viewpoint to
address business vision,
value proposition and
objectives.

IoT-ARM Key concepts include aspect-
oriented programming, model-
driven engineering, views and
perspectives. Evolution and
interoperability are the main
drivers for the reference
model and architecture.

Provide guidelines and
process steps on how to
generate concrete
architectures, perform IoT
threat analysis, and derive
design choices and tactics
based on qualitative
requirements.

Address evolution and
interoperability,
performance and
scalability, trust, security,
privacy, availability and
resilience.

Business goals, cost and
benefit analysis are used in
the architecture generation
process. Specification of
an IoT business process
model to make use cases
IoT-ARM compliant.

P2413 Key concepts include concern,
stakeholder, and viewpoint.
Based on ISO/IEC/IEEE
42010:2011 standard.

Provide guidelines for
cross-domain interaction,
documenting and
migrating architecture
divergence.

Address system
interoperability, functional
compatibility, protection,
security, privacy and
safety.

People perspective is
reflected in the process of
identifying stakeholders
and their concerns.

Arrowhead Key concepts include local
cloud, global cloud.
Automation cloud integration
based on service-oriented
architecture. Information
centric.

Provide maturity levels of
legacy system migration to
cloud, engineering tools
for development, and test
support of cloud
automation systems.

Address service
interoperability and
integrability, security,
latency, scalability,
dynamic/continuous
engineering.

Not explicit

WSO2 Influenced by open-source
projects and technologies

Not explicit Address connectivity and
communications, device
management, data
collection, analysis and
actuation, scalability,
security, and integration.

Not explicit

Azure IoT Key principles include
heterogeneity, security, hyper-
scale deployments, and
flexibility. Data concepts
include device and data
model, data streams, and
device interaction.

A vendor-specific solution
architecture

Not explicit Business systems
integration layer and
solution UX are two
architecture components
relevant to business and
people.

Internet-of-

everything

A key concept is edge-ware.
Multilevel model for IoT;

Integration of information
technologies and
operational technologies;
enablement of legacy
applications.

Address interoperability,
security, and legacy
compatibility.

Application layer covering
business intelligence and
analytics. Collaboration
and processes layer
explicitly involves people
and processes.

Intel IoT Building blocks include
things, networks, and cloud.

Integration of information
technologies and
operational technologies.

Address data and device
connectivity, security, and
interoperability.

Value proposition by
smart decision making
based on data analytics.

138Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 150 / 267

Improving Run-Time Memory Utilization of Component-based Embedded Systems

with Non-Critical Functionality

Gabriel Campeanu and Saad Mubeen
Mälardalen Real-Time Research Center

Mälardalen University, Västerås, Sweden
Email: {gabriel.campeanu, saad.mubeen}@mdh.se

Abstract—Many contemporary embedded systems have to deal
with huge amount of data, coming from the interaction with the
environment, due to their data-intensive applications. However,
due to some inherent properties of these systems, such as limited
energy and resources (compute and storage), it is important that
the resources should be used in an efficient way. For example,
camera sensors of a robot may provide low-resolution frames for
positioning itself in an open environment, and high-resolution
frames to analyze detected objects. Component-based software
development techniques and models have proven to be efficient
for the development of these systems. Many component models
used in the industry (e.g., Rubus, IEC 61131) allocate, at the
system initialization, enough resources to satisfy the demands of
the system’s critical functionality. These resources are retained by
the critical functionality even when they are not fully utilized. In
this paper, we introduce a method that, when possible, distributes
the unused memory of the critical functionality to the non-critical
functionality in order to improve its performance. The method
uses a monitoring solution that checks the memory utilization,
and triggers the memory distribution whenever possible. As a
proof of concept, we realize the proposed method in an industrial
component model. As an evaluation, we use an underwater robot
case study to evaluate the feasibility of the proposed solution.

Keywords–embedded system; component-based software devel-
opment; model-based development; resource utilization; monitor.

I. INTRODUCTION
Embedded systems are found in almost all electronic

products that are available today. These systems find their
applications in a vast range of systems, i.e., from small-
sized devices, such as watches and telephones to large-sized
systems, such as cars and airplanes. Many modern embedded
systems process huge amount of data that is originated from
their interaction with the environment. One example is the
Google autonomous car that processes around 750 MB data
per second [1]. The reduced computation power and sequen-
tial execution of software that characterize many embedded
systems can represent a challenge to deliver the performance
level required by the systems when processing huge amount
of data.

Graphics Processing Units (GPUs) represent a solution
to deliver the required performance level when the system
deals with processing huge amount of data. Characterized by
a parallel execution model, the GPU can process multiple data
in parallel. An aspect of the GPU is that it cannot function
without a CPU; considered as the brain of the system, the
CPU triggers all GPU-related activities (e.g., parallel execution
of functions). The latest technological developments allow
the combination of CPUs and GPUs on the same embedded
boards, resulting in various heterogeneous platforms, such as

NVIDIA Jetson [2] and AMD R-464L [3].
Due to the specifics of embedded systems, such as limited

compute and memory resources, the amount of data captured
from the environment can significantly impact the management
of the system resources while delivering the required perfor-
mance. One way to optimize the resource usage is to collect
variable stream-size of data from the sensors depending upon
different environment situations. For example, camera sensors
(e.g., ProcImage500-Eagle [4]) with configurable resolutions
may provide: i) frames with high resolution, and ii) frames
with low resolution. While the high resolution frames require
larger memory footprints and more computation power (and
energy) to be processed (on GPUs), the low resolution frames
are delivered with faster frame rate, occupy less memory
and require lower computation power for GPU processing.
Depending on the environment circumstances, cameras may
provide high or low quality frames. For example, a robot fitted
with such a camera may use low resolution data frames to
examine its position. On the other hand, the robot may use
high resolution frames to inspect the target objects in a detailed
manner.

The system resources (e.g., memory and computation
power) in many embedded systems are shared between the
critical (with real-time requirements) and non-critical function-
ality. The goal in the case of the critical functionality is to meet
all the timing requirements. Whereas, the best-effort service is
targeted in the case of the non-critical functionality. Hence,
the system needs to ensure that all the required resources
are always available to the critical part of the application.
For example, a vision system of a robot represents critical
functionality. This system is designed in such a way that it
is always guaranteed enough resources to process the high-
resolution frames. Even when the cameras provide lower-
resolution frames, the system still occupies the same amount of
resources as if it were processing the high-resolution frames.
As a result, the system resources are wasted when the critical
functionality does not need them. In our point of view, the non-
critical functionality can benefit from these resources in the
intervals where they are not used by the critical functionality.
For example, when the robot utilizes lower resolution frames,
a logger system (non-critical functionality) would benefit from
extra memory (not being used by the vision system) to save
more information about the system activities.

In order to deal with the complexity, among other chal-
lenges, the software for embedded systems is developed us-
ing the principles of Component-Based Software Engineering
(CBSE) and Model-Based Engineering [5] [6]. Using these
principles, models are used throughout the development pro-
cess and the software is constructed by connecting reusable

139Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 151 / 267

software units, called the software components. CBSE and
MBD have been successfully adopted by the industry through
component models, such as AUTOSAR [7], Rubus Component
Model (RCM) [8] and IEC 61131 [9]. The existing component
models that can be used to build stream-of-event applications
(e.g., RCM, AUTOSAR, IEC 61131 and ProCom[10]), face
a challenge to deal with (streaming) data that can change its
memory footprint on-the-fly. For example, RCM defines that its
components use the same fixed memory footprint throughout
the execution of the application. In order to ensure the required
resources to the critical functionality, resources are assigned to
each RCM software component, with respect to its worst-case
resource demand for the entire system execution. Therefore,
RCM and similar component models (discussed above) do not
support any mechanism to release the resources when they are
not required (by the critical part of the system).

This paper provides an automatic method to compute
the unused resources of the critical part of the system, and
distribute them to the (non-critical) parts of the system. This
is achieved by using a monitoring solution that monitors the
critical part of the system and detects when it changes its
resource requirements. After detection, the monitoring solu-
tion triggers our proposed method that calculates the unused
memory, based on the actual resource usage of the critical
system. This information is passed to the (non-critical) part of
the system that can benefit from utilizing the freed resources.

The rest of the paper is organized as follows. Section II
describes the background and related work. Section III formu-
lates the problem and describes it with the help of a case study.
The overview of our solution is described in Section IV and its
realization is presented in Section V. Section VI discusses the
implementation of the solution. The evaluation of our method
applied to the case study is discussed in Section VII. Finally,
Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK
GPUs were developed in 90s and were employed only in

graphic-based applications. By time, due to the increase in
their computation power and ease of use, GPUs have been
utilized in different type of applications, becoming the general-
purpose processing units referred to as GPGPUs [11]. For
example, cryptography applications [12] and Monte Carlo
simulations [13] have GPU-based solutions. Equipped with
a parallel architecture, the GPU may employ thousands of
computation threads at a time through its multiple cores.
Compared to the traditional CPU, the GPU delivers an im-
proved performance with respect to processing multiple data
in parallel. For example, simulation of bio-molecular systems
have achieved 20 times speed-up on GPU [14].

One of the GPU characteristics is that it cannot function
without the help of a CPU. The CPU is considered as the
brain of the system that triggers all the activities related to
GPU, such as the execution of functionality onto GPU. The
latest technological developments allow various vendors, such
as NVIDIA, Intel, AMD and Samsung to combine CPUs and
GPUs on the same embedded board. For example, there are
boards known as System-on-Chips (SoCs) that merge together
CPUs and GPUs onto the same physical chip, such as NVIDIA
Jetson TK1 [2] and Samsung Exynos 8 [15].

Regarding embedded systems that contain GPUs, there
are model- and component-based software engineering ex-
tensions to facilitate the development of CPU-GPU applica-

tions [16] [17]. Component models follow various interaction
styles that are suitable for different types of applications [18].
We mention the request-response and sender-receiver interac-
tion styles that are utilized in AUTOSAR component model
when developing automotive applications. Another style uti-
lized by e.g., Rubus and IEC 61131 component models, is
the pipe-and-filter interaction style. This particular style is
characteristic to streaming of event-type of applications and
allows an easy mapping between the flow of system actions and
control specifications, characteristic to real-time and safety-
critical applications.

There exist different methods to increase the memory
utilization, which are presented in various surveys [19]. We
mention a solution to reduce the actual allocated space for
temporary arrays by using a mapping of different array parts
into the same physical memory [20]. Another method proposes
scratch pad memories to reduce the power consumption and
improve performance [21]. These solutions are applicable at a
very low level of abstraction and are not suitable to be merged
with our approach, which is applicable at the implementation
abstraction level where the software architecture of the appli-
cation is modeled.

Regarding monitors, many works utilize them for different
purposes, such as data-flow monitoring solutions to simulate
large CPU-GPU systems [22], and GPU monitors for balancing
the bandwidth usage [23]. An interesting work conducted by
Haban et al. [24] introduced software monitors to help schedul-
ing activities. The authors described the low overhead of the
monitoring solutions, which degrade the CPU performance
with less than 0.1%. In our work, we use the same type of
monitors analyzed by Haban (i.e., software monitors) that have
a low impact over the system performance.

III. PROBLEM
One way to reduce resource and energy usage of em-

bedded systems is to decrease the data produced by sensors
with respect to e.g., environment conditions. For example, a
robot may require low-resolution frames to process open-space
environments but may utilize high-resolution frames when
analyzing close ups of detected objects. Therefore, the robot
cameras may be set to provide, on-the-fly, frames with different
resolutions based on e.g., distance to tracked objects.

Due to the rules that existing component models apply
for the construction of software components, the size of
a component’s input data is fixed during the execution of
the system. One way to ensure the guaranteed execution of
the system is to allocate the system resources to software
components, at the design time, to deal with the maximum
footprint of data produced by sensors. For example, if a
camera produces frames with 1280 x 1024 pixels, the software
components that process the camera feedback utilize memory
corresponding to the camera’s frames. Even when the camera
produces lower quality frames (e.g., 640 x 480 pixels) with a
lower memory footprint, the software components are set to
utilize the memory footprint characteristic to 1280 x 1024 pixel
frames, resulting in under-utilization of the system memory.

We use a case study as a running example to discuss
the problem in detail. The case study is centered around an
underwater robot that autonomously navigates under water,
fulfilling various missions (e.g., tracking red buoys) [25]. The
robot contains a CPU-GPU embedded board that is connected
to various sensors (e.g., cameras) and actuators (e.g., thrusters).

140Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 152 / 267

Sensor
Camera1

Camera1

Sensor
Camera2

Camera2

Merge
and

Enhance

Sync

Convert
Grayscale

Edge
Detection

Object
Detection

Legend:
Rubus component Data port

Trigger portSync Synchronisation
element

Control flow

Data flow

Vision
Manager

…

Compress Logger

Figure 1. Component-based Rubus vision system of the underwater robot.

Sensors provide a continuous flow of environment data that is
processed by the GPU on-the-fly.

A simplified component-based software architecture of the
robot’s vision system is depicted in Figure 1. The software
architecture, realized using RCM, contains nine software com-
ponents. The Camera1 and Camera2 software components are
connected to the physical sensors and convert the received
data into readable frames. The MergeAndEnhance software
component reduces the noise and merges the two frames using
the GPU. The resulted frame is converted into a gray-scale
frame by ConvertGrayscale software component (on the GPU),
which is forwarded to EdgeDetection software component
that produces a black-and-white frame with detected edges.
The ObjectDetection software component identifies the target
object from the received frame and forwards the result to
the system manager that takes appropriate actions, such as
grabbing the detected objects.

When the robot navigates underwater, the cameras are set to
produce 640 x 480 pixel frames to track points for positioning
itself. Due to the particularities of the water, sometime being
muddy or the underwater vision being influenced by the
weather conditions (e.g., cloudy, sunny), there is no need for
high-resolution frames as the visibility is reduced. Figure 1
presents 640 x 480 pixel frames that contain several objects.
While one of the missions is to track and touch buoys, the
robot navigates to the detected objects. When the robot is close
(e.g., 1 meter away) to the detected object, it requires high-
resolution frames to observe and refine the details needed for
the distinction between similar type of objects. In this case,
cameras produce 1280 x 960 pixel frames.

Following the specifications of RCM, each software com-
ponent is equipped with a constructor and a destructor. The
constructor is executed once, before the system execution,
while the destructor is executed when the system is properly
switched off or reset. The constructor has the role to allocate
resources needed by the component, such as memory required
by the internal behavior and output data ports. As it is executed
only once, the constructor allocates a fixed memory size for

the duration of entire execution life of the component. For the
presented vision system, the constructor of each component
reserves memory to handle e.g., input data of maximum size. In
our running case system, the constructor of Camera1 allocates
memory space that holds 1280 x 960 pixel frames. When
sensors provide frames with lower resolution and memory
footprint, Camera1 has reserved the same amount of memory
(corresponding to 1280 x 960 pixel frames) from which it uses
only a part, resulting in under utilization of the memory.

Another part of the underwater robot is the logger system
that is composed of two software components, i.e., Compress
and Logger. This part of the software architecture has a non-
critical functionality. The purpose of this non-critical part is to
compress and record various information of the robot during
the underwater journey. Due to the limited memory (RAM),
Compress and Logger software components save the resulted
frames (onto RAM) from ObjectDetector software component.
These frames are copied from the RAM to a flash memory by
a specific service of the operating system. If more memory was
available to the logger system, it would have also saved the un-
altered (original) frames from the MergeAndEnhance software
component. This would improve various system activities e.g.,
checking the (correct) functionality of the vision system by
comparing the original and processed frames. Moreover, the
logger system may benefit from extra memory by delivering
other system information (e.g., energy usage and temperature)
that improves the debugging activity of the robot.

IV. GENERIC SOLUTION
In order to improve the resource utilization of non-critical

parts of the embedded systems, we introduce an automatic
method that, during run-time, provides information on the
additional available resources that can be used by the non-
critical parts. Figure 2 presents the overview design of our
proposed method and its interactions with the critical and non-
critical parts of embedded system.

Our method uses a monitoring solution that periodically
checks (e.g., every execution) the memory usage of the critical
system. Step (arrow) 1 from Figure 2 expresses the examina-

141Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 153 / 267

Critical
System

EvaluatorMonitor Non-Critical
System

1

2

4

3

exchange data

Figure 2. Overview design of the proposed method.

tion of the critical system by the monitoring solution. During
step 2, the monitor sends the actual memory usage to the
evaluator. Based on the the received information, the evaluator
has two following two options.
• If the critical system uses as much memory as its max-

imum (worst case) requirement, the evaluator informs
the non-critical system to use its default memory
allocated memory (step 3).

• If the critical system uses less memory than its max-
imum requirement, the evaluator computes the size
of the unused memory and distributes it to the non-
critical system (step 4).

V. REALIZATION
This section describes the realization details of our method

using the vision system case study. The first part of the section
introduces groundwork details on the functionality of the
component model, while the second part presents the overall
realization of our method.

A. Component Model Functionality
Each component is characterized by a constructor and a de-

structor. The constructor is executed once, at the initialization
of the system, and allocates as much memory as the component
requires. The destructor, executing once when the system
is properly switched off, has the purpose to deallocate the
memory. Figure 3 shows two connected software component
from the vision system. In order to simplify the figure, we
remove some of the (triggering) connections to the component.
Camera1 sends a frame to MergeAndEnhance component.
Initially, the constructor of Camera1 allocates memory space
to accommodate frames of maximum size (i.e., 1280 x 960
pixels). When the robot changes its mode (e.g., for saving its
energy) and its physical cameras send lower size frame (i.e.,
640 x 480 pixels), Camera1 uses only a part of the memory,
which was allocated by its constructor.

To send large data (i.e., larger than a scalar), components
need to use pointers, as follows. The output port of Camera1
is basically a struct that contains a pointer variable and two
scalars, characteristics to 2D images. The port may cover other
types of data, such as 3D images by including additional
information, such as a third scalar. The pointer indicates to
the memory address that it is at the beginning of the data
to be transferred, and the two scalars (i.e., height and width)
describe the size of the frame. In this way, Camera1 passes the
information (of the pointer and scalars) about the data (from
RAM) to be transferred to the MergeAndEnhance component.
We can see in the figure that the transferred data is a frame
of 640 x 480 pixels, which means that there is some unused
memory. Using this information (i.e., size), the Evaluator

Camera1

Merge
And

Enhance

 *ptr
height
width

*ptr
height
iwidth

Camera2

reserved frame memory
*ptr min_size

RAM

width*height = 1280 x 960 pixels

width*height = 640 x 480 pixels

max_size

Figure 3. Data transferring between two components.

component calculates the total unused memory of the vision
system and inform the Logger system to use it.

B. Vision System Realization
The vision system is composed of four parts and realized

as follows.
a) The Critical System. The critical system contains the

functionality that has the highest priority in the system. In our
case, it produces and processes the frames, and takes decisions
based on the findings. There are seven software components
included in this part of the system as illustrated in Figure 4.

b) The Monitor. We realize the monitor as a service that
is regularly performed by the operating system. The service
checks the settings of the camera sensors and produces a value
that corresponds to the frame sizes produced by the cameras,
i.e., 1024 or 640.

c) The Evaluator. The evaluator is realized as a regular
software component that receives its input information from
the monitoring service. Because it decides the distribution
of the resource memory utilized by the critical system, the
priority of the Evaluator component is set to the highest
level. Based on this value, the Evaluator component decides if
the non-critical system can use more resources and produces
the data that reflects this decision. For simplicity, the output
result is a boolean variable; the output value 1 means that
the non-critical system may use more resources than initially
allocated, and 0 the opposite. The Evaluator component (i.e.,
its constructor, behavior function and destructor) is entirely
automatically generated through our solution.

d) The non-critical system. The part of the system that
handles the logging functionality represents the non-critical
system. It has a lower priority than the critical system and
evaluator software component. It contains two software com-
ponents, i.e., Compress and Logger that communicate with the
Evaluator through an additional port. Based on the (boolean)
data received via the additional port, the two non-critical
components use one or two frames in their computations.

VI. IMPLEMENTATION
The solution presented in this paper does not interfere with

the development and execution of the critical system. It is con-

142Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 154 / 267

Vision
Manager

Sensor
Camera1

Camera1

Sensor
Camera2

Camera2

Merge
And

Enhance

Sync

Convert
Grayscale

Edge
Detection

Object
Detection

Vision
Manager

…

Evaluator

const

Compress Logger

Critical System

Non-Critical System

Evaluator

sync

Figure 4. Realization of the proposed method applied on the vision system.

structed by the developer. For the monitoring solution, we use
a service provided by the OS. The evaluator is implemented
as a regular component with an input and output data port.
Through the input port, it receives data from the monitoring
solution, while the output port provides a boolean data. At this
stage of our solution, the functionality is simple and decides,
based on the input value, if the non-critical system can have
access to more resources or not. Although the functionality is
simple and can be easily merged to the non-critical system, we
opt for the separation-of-concerns principle, which is essential
in the model- and component-based software development.
Moreover, the evaluator functionality can be increased to adapt
for more complex systems.

1 if(<InPort3.Name>==1)
2 {
3 cl_mem frame2_out = clCreateBuffer(context, CL_MEM_READ_WRITE,

3*(<OutPort2.Name>->width)*(<OutPort2.Name>->height) *
sizeof(unsigned char), NULL, NULL);

4
5 /* initialize parameters */
6 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&

<InPort2.Name>->ptr);
7 clSetKernelArg(kernel, 1, sizeof(int), (void *)&<InPort2.Name>->

width);
8 clSetKernelArg(kernel, 2, sizeof(int),(void *)&<InPort2.Name>->

height);
9 clSetKernelArg(kernel, 4, sizeof(cl_mem), (void *)&frame2_out);

10
11 /* execute functionality on the second frame */
12 clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL,

global_size, local_size, 0, NULL, NULL);
13 }

Figure 5. Generated part of the behavior function.

The non-critical system is mostly constructed by the devel-
oper, where our approach introduces some elements that are
automatically generated. Initially, the non-critical system uses
resources to process one frame; the constructors of Compress
and Logger components allocate memory for one frame to be
used in their functionality. In order to enforce a larger memory
usage, the two components need to allocate more memory
to hold the result from processing the second frame. As the
constructor is executed once at the system initialization stage,
we automatically allocate memory inside the components’
behavior function.

Figure 5 illustrates the code generated inside the behavior
function of each software component from the non-critical

system. We assume that each port has a name. For simplicity,
all the components from the non-critical system have an input
port with a boolean value (i.e., 1 and 0) that is connected
to the Evaluator component. Line 1 checks the value sent
from the Evaluator, where 1 means that the component can
use additional memory to process the second frame. In line
3, memory is allocated to hold the result from processing the
second frame. Specific to the GPU functionality implemented
using the OpenCL syntax, parameters that correspond to the
second frame specifications, are set in lines 6-9. Finally, the
same functionality that processes the first frame is applied to
the second frame, in line 12.

VII. EVALUATION
As our approach introduces additional elements to the

system, this section focuses on the evaluation of overhead
incurred due to the proposed solution. There are two parts
that influence the overall overhead, i.e., the memory footprint
and the execution time.

The memory footprint refers to the generated Evaluator
component and the generated part of each behavior function
of the non-critical system (see Figure 5). The Evaluator
component consists of a constructor, behavior function, and
a destructor. Moreover, it has specification of its interface
(i.e., ports) in a separate header file. The memory footprint
of all of its code takes approximately 14 KB. We need to also
add the memory size occupied by the generated parts of the
Compress and Logger components, which result in a total of 15
KB. We consider that the memory footprint overhead resulted
from our approach is manageable for an embedded systems
with GPUs, compared to traditional (CPU-based) embedded
systems. The CPU-GPU embedded systems are characterized
by a reasonable high amount of memory (i.e., order of tens
of Megabyte) due to the computation power that requires high
memory specifications.

Regarding the execution time, the generated Evaluator
component may negatively affect the execution time of the
critical system. In this regard, we conducted an experiment
to compare the performance with and without our approach.
The system on which we executed the experiments contains
an embedded board AMD Accelerated Processing Unit with
a Kabini architecture (i.e., CPU-GPU SoC). We used two
input images, i.e., one with 640 ∗ 480 pixels and the other
with 1280 ∗ 960 pixels. For each set of images, we executed

143Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 155 / 267

two cases, one with and the other without our solution. Each
case was executed 100 times and we calculated its average
execution time.

640 x 480 pixels 1280 x 960 pixels

E
nd

-to
-e

nd
 e

xe
cu

tio
n

tim
e

(m
s)

0
10
0

20
0

30
0

40
0

50
0

60
0

without proposed method
with proposed method

370 376

446 452

Figure 6. Usage of the proposed method in the vision system execution.

The results of the experiments are shown in Figure 6. A
slight increase (1.3 to 1.6%) in the execution time can be
observed when our solution is applied. The results indicate
that the performance of the non-critical part of these systems
can be significantly improved with our method at the very
small execution time overhead.

VIII. CONCLUSION
Modern embedded systems deal with huge amount of

data that is originated from their interaction with the envi-
ronment. GPUs have emerged as a feasible option, from the
performance perspective, for processing the huge data inputs.
However, with GPU-based solutions the resource utilization
remains high, which is an important aspect when dealing
with resource-constrained embedded systems. In this paper,
we have presented a method that improves the resource uti-
lization for non-critical parts of CPU-GPU-based embedded
systems. Whenever the critical part of the system does not
fully utilize its required memory due to various reasons, such
as reducing energy consumption, our method distributes the
unused memory to the non-critical part of the system that
can use the resources to improve its performance. As a proof
of concept, we have realized the method in a state-of-the-
practice model, namely the Rubus Component Model. We
have also demonstrated the usability of the method using the
underwater robot case study. The evaluation results indicate
that the performance of the non-critical part of CPU-GPU-
based embedded systems can be significantly improved with
our method at the very small execution time overhead of
approximately 1.5%.

ACKNOWLEDGMENTS
The work in this paper has been supported by the RALF3

project - (IIS11-0060) through the Swedish Foundation for
Strategic Research (SSF).

REFERENCES
[1] Google. Waymo - Google Self-Driving Car Project. https://waymo.com/.

Retrieved: July, 2016.
[2] NVIDIA, “NVIDIA Jetson TK1,” http://www.nvidia.com/object/

jetson-tk1-embedded-dev-kit.html, retrieved: July, 2017.

[3] AMD, “Embedded R-Series Family of Processors,” http://www.amd.
com/en-us/products/embedded/processors/r-series, retrieved: July, 2017.

[4] See Fast Technologies. High Speed Camera ProcImage500-Eagle. http:
//www.seefastechnologies.com/procimage-eng1-pi500-eagle.html. Re-
trieved: July, 2016.

[5] I. Crnkovic and M. P. H. Larsson, Building reliable component-based
software systems. Artech House, 2002.

[6] T. A. Henzinger and J. Sifakis, “The embedded systems design chal-
lenge,” in International Symposium on Formal Methods. Springer,
2006, pp. 1–15.

[7] “AUTOSAR - Technical Overview,” http://www.autosar.org, retrieved:
July, 2017.

[8] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, and
K.-L. Lundback, “The rubus component model for resource constrained
real-time systems,” in Industrial Embedded Systems, 2008. SIES 2008.
International Symposium on. IEEE, 2008, pp. 177–183.

[9] I. Application, “Implementation of IEC 61131-3,” Geneva: IEC, 1995.
[10] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A

Component Model for Control-Intensive Distributed Embedded Sys-
tems,” in 11th International Symposium on Component Based Software
Engineering (CBSE), vol. 8. Springer, October 2008, pp. 310–317.

[11] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5,
2008, pp. 879–899.

[12] S. A. Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” in IEEE International Conference
on Signal Processing and Communications. ICSPC 2007.

[13] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model,” Journal of
Computational Physics, vol. 228, no. 12, 2009, pp. 4468 – 4477.

[14] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, and L. G.
Trabuco, “Accelerating molecular modeling applications with graphics
processors,” Journal of computational chemistry, 2007.

[15] Samsung, “Exynos 8 Octa,” http://www.samsung.com/semiconductor/
minisite/Exynos/w/solution/mod ap/8890/, retrieved: July, 2017.

[16] G. Campeanu, J. Carlson, and S. Sentilles, “Component allocation
optimization for heterogeneous cpu-gpu embedded systems,” in Soft-
ware Engineering and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on. IEEE, 2014, pp. 229–236.

[17] G. Campeanu, J. Carlson, S. Sentilles, and S. Mubeen, “Extending the
Rubus component model with GPU-aware components,” in Component-
Based Software Engineering (CBSE), 2016 19th International ACM
SIGSOFT Symposium on. IEEE, 2016, pp. 59–68.

[18] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-
fication framework for software component models,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, 2011, pp. 593–615.

[19] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and mem-
ory optimization techniques for embedded systems,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 6, no. 2,
2001, pp. 149–206.

[20] M. A. Miranda, F. V. Catthoor, M. Janssen, and H. J. De Man,
“High-level address optimization and synthesis techniques for data-
transfer-intensive applications,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 6, no. 4, 1998, pp. 677–686.

[21] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in Proceedings of the tenth international sympo-
sium on Hardware/software codesign. ACM, 2002, pp. 73–78.

[22] B. R. Bilel, N. Navid, and M. S. M. Bouksiaa, “Hybrid CPU-GPU
distributed framework for large scale mobile networks simulation,” in
Proceedings of the 2012 IEEE/ACM 16th International Symposium on
Distributed Simulation and Real Time Applications. IEEE Computer
Society, 2012, pp. 44–53.

[23] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-aware mem-
ory controller for dynamically balancing GPU and CPU bandwidth use
in an MPSoC,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 850–855.

[24] D. Haban and K. G. Shin, “Application of real-time monitoring to
scheduling tasks with random execution times,” IEEE Transactions on
software engineering, vol. 16, no. 12, 1990, pp. 1374–1389.

[25] C. Ahlberg, L. Asplund, G. Campeanu, F. Ciccozzi, F. Ekstrand,
M. Ekstrom, J. Feljan, A. Gustavsson, S. Sentilles, I. Svogor et al.,
“The Black Pearl: An autonomous underwater vehicle,” 2013.

144Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 156 / 267

From Language-Independent Requirements to Code Based on a Semantic Analysis

Mariem Mefteh

IT department, Mir@cl Laboratory
ENIS, Sfax University

Sfax, Tunisia.
Email: Mariem.Mefteh.Ch@gmail.com

Nadia Bouassida

IT department, Mir@cl Laboratory
ISIMS, Sfax University

Sfax, Tunisia.
Email: Nadia.Bouassida@isimsf.rnu.tn

Hanêne Ben-Abdallah

Faculty of computing and Information
Technology, King Abdulaziz University,

Jeddah, KSA
Email: HBenAbdallah@kau.edu.sa

Abstract—This paper presents a new approach, which allows
building Java codes from language-independent requirements.
In other terms, it does not require any manual transformation
of the requirements into the syntax of a specific programming
language. To handle these challenges, our approach relies on a
set of English-based mapping rules to generate a semantic repre-
sentation of the input requirements. This semantic representation
is used to produce the source code via existing code generators,
such as Pegasus f. Indeed, our approach extracts the Pegasus
code from the semantic representation. This code is refined by
eliminating the redundancy among the code elements’ names
thanks to the Term Frequency/Inverse Document Frequency
(TF/IDF) method and the Density-based spatial clustering of
applications with noise (DBSCAN) algorithm. Finally, Pegasus f
transforms automatically the resulting Pegasus code to Java. The
proposed approach is implemented through the Code Recovery
tool (CodeRec-tool), which accepts the English and the French
languages in its actual version. The simplicity and the usefulness
of our approach have been evaluated using measurements and
based on experts’ feedback.

Keywords–Natural Language Processing; Semantics; Require-
ments; Naturalistic programming; Syntactic/Semantic grammar.

I. INTRODUCTION
All programming languages are progressing. Programmers,

working within a company, are forced to update always their
knowledge to recover this progress and to be able to use
them. This leads to a significant waste of time in acquiring
the programming languages’ instructions and syntax. However,
if programmers were able to express their program ideas in
natural language, they would not have to transform them into
programming language structures anymore. Programmers are
obliged to transform their thoughts into the existing program-
ming languages. Thus, it would be useful if we resort to the
development of new ones, which are completely different from
what exist. In fact, ideas are almost the same if we express
them in several languages. It would be valid as long as the
language, in which they are expressed, exists and is understood
by people.

Referring to Knöll et al. [1], current programming tech-
niques suffer from four main problems, namely: (i) the mental
problem, which reflects the obligation of program ideas’ ad-
justment to the conditions of a specific programming language
(like restructuring them in the form of classes, methods and at-
tributes in the object-oriented languages); (ii) the programming
language problem, which reflects the mandatory implementa-
tion of the same program ideas and algorithms but in many
ways depending on each programming language conditions;
(iii) the natural language problem, i.e. the fact that people

from different countries and working together are obliged to
document and comment developed software in a well-known
language, especially in English, which is less productive than
using their mother tongue (they can make errors when using
a non-native language if they could not use it correctly); (iv)
the technical problem causing the waste of developers’ time,
spent for implementing and debugging the programs although
ideas are unique. In fact, they still have to deal with minor
issues like choosing the right character set and doing number
conversions, instead of facing the really challenging tasks of
programming: describing, modeling and enhancing the actual
idea of a program [2]. These problems incur time loss and
productivity decrease for software development companies.

To leverage the aforementioned problems, the project Pe-
gasus [3] was elaborated as a new, naturalistic programming
language. Naturalistic Programming means writing computer
programs with the help of a natural language [1]. Pegasus
accepts instructions written in a semi-natural language, and it
produces the respective program accordingly. Besides Pegasus,
several works were proposed to generate code from instruc-
tions written in a natural language, cf. [4]–[7]. The majority
of these works is either semi-automated, or accepts inputs
that are not written in a purely natural language. Similar to
Pegasus, most of them require that the input instructions are
in a particularly structured English format.

In this paper, we aim to address the gap between how
we think and how we shall resort to operational details to
explain the same ideas in several natural languages. To do so,
we take advantage of the high stage of advancement achieved
in Pegasus and the version Pegasus f of code generator [8].
We extend this project with a new approach that lets Pegasus f
accept instructions written in any and purely natural language.
This approach transforms the language-independent input re-
quirements into a formal, semantic representation within the
semantic model. This latter is based on a set of mappings,
called mapping rules, that maintain the semantics among the
input sentences. The semantic model was initially proposed in
[9] [10]. In this paper, we enhance it with new features, useful
for treating language-independent requirements. In addition,
we apply the enhanced semantic model to different languages,
like English and French, in order to show the applicability
of our program generation approach, independently of the
language used for the requirements specification.

To implement our approach, we created the CodeRec-tool,
which automates all its steps. More specifically, we used the
linguistic development environment NOOJ [11]. Indeed, we
transformed the mapping rules into a NOOJ syntactic/semantic

145Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 157 / 267

grammar for each supported natural language (English and
French for the actual version of CodeRec-tool). The appli-
cation of this grammar on input requirements generates their
representation in the semantic model. This representation is
then transformed into a Pegasus code that is finally converted
automatically to a Java code using the Pegasus f generator.

The remainder of this paper is organized as follows: In
Section II, we overview existing approaches for informa-
tion extraction from texts and source code generation from
requirements. In Section III, we present our approach for
synthesizing source code (in Java) from requirements written
in different languages. Our approach is illustrated through the
Library management case study [3]. Section IV overviews the
implementation of our approach. In Section V, we present and
discuss the results of an experimental evaluation of our ap-
proach. Finally, Section VI summarizes the paper and presents
an overview of our future works.

II. RELATED WORK
This section deals with the state of the art on (i) information

extraction from texts, and (ii) source code generation from
textual requirements.

A. Works for Information Extraction from Texts
There is a large body of the literature that treats the problem

of information extraction from texts. For instance, Glavas
et al. [12] proposed the event graphs for structuring event
based information from text; their system performs anchor
(i.e., a word that conveys the core meaning of an event, e.g.,
“killed” or “bombing”) extraction, argument (i.e., protagonists
and circumstances of events, e.g., “agent”, “time”, “location”)
extraction, and relation extraction (i.e., temporal relation ex-
traction and event coreference resolution). This system treats
only the events, i.e., the situations that happen. Thus, we
cannot rely on this work because extracting source code from
natural language requirements necessitates exploiting various
naturalistic entities, not only events; naturalistic types are
types for programming, which are inspired by natural-language
notions [3].

On the other hand, many works focused on the Frame Se-
mantics and the FrameNet project [13]–[17]. The Framework
Semantics is based on lexicons. A lexicon contains entries,
which are composed of: (a) some conventional dictionary-type
data, mainly for the sake of human readers, (b) FORMULAS
that capture the morphosyntactic ways in which elements of the
semantic frame can be realized within the phrases or sentences
built up around the word, (c) links to semantically ANNO-
TATED EXAMPLE SENTENCES, which illustrate each of
the potential realization patterns identified in the formula, and
(d) links to the FRAME DATABASE and to other machine-
readable resources such as WordNet and COMLEX [17]. The
Framework Semantics assumes that the lexicon is made of
a background knowledge, whose structure is represented by
“frames”; The definition of a frame implies: (i) the discovery
of participants, i.e., the frame elements and are defined as
their unique semantic roles to the situation, (ii) the mandatory
participants of a frame called core frame elements, and (iii)
the optional participants, called peripheral frame elements [13]
[15]. The model of frame semantics has attracted the attention
of a number of linguists interested in the lexicon of a specialty
field [18]. Besides, it was applied to the field of football (e.g.,
[19]), biomedicine (e.g., [20]), law (e.g., [21]) and environment
(e.g., [18]).

Nobody can deny the importance of these works, in gen-
eral, and the frame semantics approach, in particular. However,
they are relevant for specific domains and frames, namely those
which are already defined by them, unlike our approach, which
is applicable regardless of the studied domain. Besides, the
information of the type of a sentence (e.g., a definition, a
statement, an assignment, etc.) cannot be determined by the
frame semantics approach, although this fact is required for a
relevant code extraction method. In this context, the semantic
model is one of the best solutions for us while it gives adequate
and precise information, relevant for the code derivation task
thanks to the naturalistic entities that it relies on (see Section
III-A).

B. Works for Source Code Generation from Textual Require-
ments

Several works propose to generate source codes from
requirements. For example, Franců et al. [6] propose a frame-
work including a generator that produces an implementation
in the form of methods. The major limitation of this work
is the necessity of a manual processing to build a domain
model, required by the generator. On the other hand, Smialek
et al. [22] [7], Nowakowski et al. [23] and Kalnins et al. [24]
propose approaches that transform the requirements, in par-
ticular behavior scenarios written in a semi-natural language,
into UML models and the final Java code. These approaches
are based on a special Requirements Specification Language
(RSL) to express the use case scenarios of a system. The
major limit of these approaches is that the use case scenarios
must be pre-processed and written in a semi-natural language,
according to the SVO grammar (i.e., in Subject+Verb+Object);
this means that there is no use of “naturalistic” types like links,
references, etc. For instance, a conditional sentence in RSL
must be preceded by “=> cond:” in order to be treated.

On the other hand, Liu et al. [4] developed a tool, called
Metaphor, that accepts program ideas written in English with
the form of a story, and that generates the corresponding pro-
gram template in Python; Metaphor mines nouns to program
objects, verbs to functions and adjectives to properties. In
their work, Cozzie et al. [25] proposed the Macho system;
this uses a natural language parser that parses descriptions
written in natural language into a simple program, by asking
the programmer to provide one or more examples of correct
input and output as unit tests. Özcan et al. [26] developed
an intelligent natural language interface based on the Turkish
language to create Java class skeleton and listing the class and
its members; Turkish sentences are converted into instances of
schemata representing classes and their members. These above
works use simple mapping models that map nouns to objects
and arguments, verbs to methods and adjectives to attributes.
However, the semantics of a natural language sentence should
not be exploited using only these types of mapping models.
There are other facts that should be taken into account.

On the other hand, Gvero et al. [5] proposed a system that
accepts free-form queries containing a mixture of English and
Java, and it produces Java code expressions that take the query
into account and respect syntax, types, and scoping rules of
Java, as well as statistical usage patterns. This system focuses
only on API-related queries, and not any type of instructions.

Overall, the majority of the existing approaches treat only
requirements written in one single language (English in most
cases). In contrast, ours accepts requirements written, theoret-

146Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 158 / 267

ically, in any natural language. Moreover, it does not require
a manual transformation of the requirements into the syntax
of a specific language. These two merits rely on the concept
of semantic model, which we introduce in Section III-A.
Moreover, our approach relies on this model as a solution
to hold (almost) all the semantics of the input requirements
written in a purely natural language.

III. OUR APPROACH FOR SOURCE CODE
EXTRACTION FROM REQUIREMENTS

In this section, we describe our approach, which is com-
posed of three main tasks: (i) extraction of the semantic model
representation from input requirements written, theoretically,
in any and in purely natural language, (ii) conversion of
the resulting representation into a Pegasus code, and (iii)
refinement and transformation of the Pegasus code to Java.
Figure 1 shows the functional structure of our approach.

As illustrated in Figure 1, the proposed approach first
applies the semantic model on the input language-independent
requirements in order to extract their semantic representation
as English-mapping rules (step 1 in Figure 1). Then, our ap-
proach applies some transformation rules to extract the Pegasus
code corresponding to the extracted mapping rules (step 2 in
Figure 1). Afterward, our approach refines the Pegasus code by
eliminating the redundancy among the code elements’ names
(step 3 in Figure 1). The resulting Pegasus code is finally
used as an input to the Pegasus f generator to get the target
Java code (step 4 in Figure 1). Note that our approach does
not extract directly the Pegasus code from the input texts
for two reasons: (i) Pegasus f accepts Pegasus codes written
only in the English language; our approach treats multilin-
gual texts and extracts the corresponding Pegasus codes in
English; (ii) Pegasus codes contain instructions written in a
controlled natural language (i.e., following a specific syntax);
our approach treats quite complex and ambiguous texts, from
which it extracts relevant information useful for building the
target Pegasus codes. These challenges are handled thanks to
the semantic model, which can be considered as a transition
model between the language-independent requirements and the
Pegasus f inputs (i.e., Pegasus codes).

In the remainder of this section, we detail the process
followed by our approach, which we illustrate through the
library management case study [3]. We choose this example
because it contains ambiguous sentences’ structures, proving
the potential of our approach in extracting relevant information
leading to good Java codes. The following texts (1 and 2)
belong to our case study, where the first is written in the
English language, and the second is in French.

1- “A library consists of several rooms containing shelves,
on which stand books. A book has a three-letter key, which
corresponds to the three initial letters of the surname of its first
author. The books are ordered in the library by this key. If a
visitor lends a book, then a new loan card is created. Besides, it

Figure 1. Functional structure of our approach

is added to the card index box. Moreover, the book, as well as
the name, the address and the telephone number of the visitor,
are noted on the loan card. In addition, the actual date is put
down; now the book is not lendable anymore. If a visitant
returns a book, then the loan card belonging to the book and
the visitor is thrown away; now the book is lendable again.”.

2- “Une bibliothèque se compose de plusieurs salles, con-
tenant des étagères, sur lesquelles les livres se positionnent. Un
livre a une clé de trois lettres, qui correspond aux trois lettres
initiales du nom de famille de son premier auteur. Les livres
sont ordonnés dans la bibliothèque par cette clé. Si un visiteur
prête un livre, alors une nouvelle carte de prêt est créée. En
outre, elle est ajoutée à la boı̂te d’index de la carte. De plus, le
livre, ainsi que le nom, l’adresse et le numéro de téléphone du
visiteur, sont notés sur la carte de prêt. Outre, la date actuelle
est déposée; maintenant, le livre n’est plus prêtable. Si un
visiteur retourne un livre, la carte de prêt appartenant au livre
et au visiteur est rejetée; maintenant, le livre devient prêtable.”

A. Requirements Representation within the Semantic Model
In this section, we present the semantic model, which

treats, in particular, the semantic nature of a sentence, as well
as its constituents. In this context, Mitch Kapor states that
”the critical thing in developing software is not the program,
it’s the design. It is translating understanding of user needs
into something that can be realized as a computer program”
[27]. In this sight, we proposed the semantic model as a first
step towards representing formally raw ideas (i.e., following
the way in which we think) independently of the used natural
language and without resorting to operational details (like
creating variables, defining their types, methods signatures,
etc.). In fact, an idea would be represented always in the
same notational way, no matter in which language it was
originally expressed. For instance, the following sentences
“A loan card is a card” (in English), “Une carte de prêt
est une carte” (in French), “Eine Darlehenskarte ist eine
Karte” (in German) and “Una carta di prestito è una carta”
(in Italian) have equivalent meanings: the hierarchy (i.e.,
generalization/specialization) relationship between the objects
“loan card” and “card”. In this context, the semantic model
analyzes the semantics among these sentences and represents
them by one common representation. Originally [9] [10], the
semantic model didn’t handle all the characteristics of the
natural language, so as to treat any type of sentences. In this
paper, we explain in details this model’s features. Furthermore,
we accomplish it by new entities in order to be more useful
for treating language-independent requirements.

The semantic model is based on many naturalistic entities,
whose notation is inspired from [8], namely concepts, prop-
erties, actions, statements, sentences, references, compression,
quantities and ordinalities. In addition, it supports the different
types of loops, which are frequently used in natural language.
Figure 2 shows the semantic model metamodel; it presents the
semantic information that should be extracted from a language-
independent instruction. More specifically, our approach relies
on this metamodel to build the mapping rules; they represent
a text, written in any natural language, in a formal and unique
way. They are relevant to all natural languages. In other words,
a sentence written in different languages will have the same
representation as a mapping rule in English. In this section, we
will present each mapping rule by using the EBNF notation
[28] as follows: unquoted words denote a non-terminal symbol;

147Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 159 / 267

Figure 2. The semantic model metamodel

quoted words denote a terminal symbol, i.e., a symbol, which
should be mentioned obligatory; the content of [] is optional;
the content of {} denote symbols repeated zero or more times;
the content of {}- denote symbols repeated one or more times;
the character “=” denotes a definition; the semicolon denotes
a rule terminator; the character “|” allows getting a choice
from multiple options. In addition, some mapping rules contain
the words “type” and “something”. A “type” denotes the
naturalistic entity. It can be a concept, a property, a quantity,
statements preceded by a possessive pronoun, or a combination
of these constituent [8]; and “something” stands for the most
general type (it corresponds to the class “Object” in Java).

1) Quantification and Ordinality: Natural languages offer
an elaborated system of quantification (e.g., “two books”,
“several books”, etc.) over instances. Besides, ordinal numbers
are used for counting, e.g., “first”, “second”, “third”, etc. These
two concepts are represented by the following mapping rule:

Quantity/Ordinality =
"(quantity/ordinality," value ")";

2) Naturalistic References: Referencing is an integral part
of natural languages. For example, we say “A book has a three-
letter key, which corresponds to the three initial letters of the
surname of its first author”; the words “which” and “its” are
references, respectively, to “three-letter key” and “book”. The
semantic model accepts several references’ types, such as:

- Explicit reference: it allows retrieving a subset of in-
stances from a broader set of instances using the keyword “the”
in English, e.g., “the card”. It is represented in the semantic
model by the following mapping rule:

Explicit reference =
"(reference, explicit," type ")";

- Symbol self reference: it represents a symbol, which refers
to a concept, e.g., “the button ’Loan”’; in this example “Loan”
is a symbol that describes the concept “button”. This reference
is represented in the semantic model by the following mapping
rule:

Symbol self reference =

"(reference, symbol self," type, symbol ")";

- Possessive pronoun reference: it represents possessive
pronouns in combination with a type, e.g., “its author”. It is
represented in the semantic model by the following mapping
rule:

Possessive pronoun reference =
"(reference, possessive pronoun," type ")";

- Relative reference: it is characterized by the use of relative
pronouns like “which”, “who”, “whose”, “with”, etc. It is
represented in the semantic model by the following mapping
rule:

Relative reference = "(reference,
relative," ["possessive," type] ")";

- Attribute/relation reference: it resolves expressions like
“the type of the message”. In fact, this type of expressions
contains two other references. The first one placed before the
word “of” is called a “filter reference”. The second one, which
is placed after the word “of”, is called a “collection reference”
[8]. The collection reference can be any reference; however the
filter reference can be either an explicit or an ordinal reference.
It can also consist simply of a concept. The attribute/relation
reference is represented in the semantic model by the following
mapping rule:

Attribute/relation reference = "(reference,
attribute/relation," collection reference,

filter reference ")";

For example, considering the sentence “The books have a
three-letter key, which corresponds to the three initial letters
of the surname of its first author” from our case study; it is
represented in the semantic model with the following mapping
rule:

[...] (reference, attribute/relation,
(reference, possessive pronoun,
(author, (quantity/ordinality, first)),
(reference, attribute/relation,
(reference, explicit, surname), (letter,
(quantity/ordinality, three), initial))))

148Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 160 / 267

3) Concepts: A concept is any “thing” from the real
world, being abstract or concrete, e.g., “Book”, “Student”,
“Amount”, etc. It is the homologue of an object in object-
oriented programming languages. Concepts can contain or
be contained in other concepts. This fact corresponds to the
“concept possession relation”. Likewise, concepts can be sub-
concepts of other ones. This fact represents the “concept
hierarchy relation”. When we use a natural language, we do
not create new instances explicitly like in existing program-
ming languages. This process is done implicitly using some
words like “take”, or by talking about non-existing things like
“There are some books on the shelves”. The semantic model
proposes the following mapping rule to represent the concept
initialization (with its eventual properties) formally:

Concept initialization =
"(initialization," concept ")";

In some cases, we may find a quoted string, which is not
related to any concept. Thus, the semantic model treats it as a
symbol with the following mapping rule:

Symbol definition= "(symbol," the_string ")";

Another type of concepts is the “anonymous concept”;
it must be always contained into a concept and it describes
different situations of this latter, using properties. For instance,
let us consider the sentence “the type of a book can be science
fiction, drama, action, romance, mystery or horror”; we note
that the concept “type” is anonymous, belonging to the concept
“book”, and supporting the values “science fiction”, “drama”,
“action”, “romance”, “mystery” and “horror”, which serve to
describe the concept “book”. We also note that an anonymous
concept should contain neither other concepts, nor actions.
Otherwise, it would be a simple concept. The anonymous
concept is represented by the following mapping rule within
the semantic model:

Anonymous concept definition = "(anonymous
concept," concept "," {value}- ")";

For instance, considering the above example, it is repre-
sented in the semantic model with the following mapping rule:

(anonymous concept,
(reference, attribute/relation,
(book, (quantity/ordinality, abstract)),
(reference, explicit, type)),
(adjunctive, science fiction, drama, action,
romance, mystery, horror))

where “adjunctive” is a type of compression (see section
III-A6).

4) Properties: Properties describe concepts. There are sev-
eral types of properties among which the type “simple” is
the most used in the requirements. A simple property can be
either the case or not, e.g., “short”, “lendable”, etc. It can
be expressed by an adjective like “The shelve is empty”. A
simple property is defined by assignment. It can be assigned
in two ways: (i) directly, using the predicate “to be”, “can
be”, “equal”, etc., which implies that there is a relationship
between a concept and possibly several properties; or (ii) by
initialization of a new instance. The semantic model represents
these two mechanisms by the following mapping rules:

Property assignment = "(property assignment,"
concept "," {property}- ")";

Property concept relation definition =
"(property concept relation," concept ","
{property}- ")";

For example, considering the sentences “Let the book
be borrowable” (in English) and “Lassen Sie das Buch sein
ausleihbar” (in German); they are represented by the same
mapping rule, as follows:

(property assignment,
(reference explicit, book), borrowable)

5) Statements: A statement is a declarative clause that is
either true or false. We often use statements to express a
relationship between different instances. The semantic model
defines five types of statements, namely: Concept hierarchy
relation and Concept possession relation statements, Predicate
statement, Property statement and Instance type relation state-
ment.

a) Concept hierarchy and possession relation state-
ments:: The two types of concept relations, “concept posses-
sion relation” and “concept hierarchy relation”, may appear
both in concept definitions and in statements. These statements
are respectively represented in the semantic model as the
following mapping rules:

Concept possession relation = "(definition/
statement, concept possession relation,
(possessor," possessor_concept "),
(possessed," possessed concept "))";

Concept hierarchy relation =
"(definition/statement, concept hierarchy
relation, (super-concept,"
general_concept "), (sub-concept,"
specialized_concept "))";

Note that the word “negation” is put when the statement
(whatever is its type) is in the negative form. For instance,
the clauses “A book has a three-letter key” (in English) and
“Un livre a une clé de trois lettres” (in French) from our
case study convey to one common representation within the
semantic model, as follows:

(statement, concept possession relation,
(possessor,
(book, (quantity/ordinality, abstract))),

(possessed, (key, (quantity/ordinality,
abstract), three-letter)))

b) Predicate statement:: This type of statements deals
with predicates. A predicate refers to a verb. It belongs to
a class (state or action). The difference between a state and
a property is that this latter is unchangeable, whereas the
state can change depending on the time, the location, etc. A
predicate requires a number of arguments, which correspond
to specific “semantic roles”. The semantic model treats, in
particular, the following semantic roles (where some of them
are introduced by the semantic model): (i) Agent: the entity
that performs the action; (ii) Object: the entity that under-
goes the action; (iii) Comparassant: designates the compared
element as a part of a comparison; (iv) Comparator: desig-
nates the comparing element as a part of a comparison; (v)
Possessor: something that has or contains someone/something;
(vi) Possessed: something that is owned or in the disposal of
someone/something; (vii) Sub-concept: a specialized concept
in a hierarchical relationship; (viii) Super-concept: the gener-
alized concept in a hierarchical relationship; (ix) Origin: the
place from where an action is done; (x) Destination: the place
towards which the action is directed; (xi) Location: the place
or space of a predicate expressed by an action or a state; (xii)
Time: indicates the date or the period when an action or a state
is done; (xiii) Manner: describes the way of doing something.
The predicate statements are represented in the semantic model
with the following mapping rule:

149Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 161 / 267

Predicate statement = "(statement,
(" predicate_class "," predicate "),"
{"(" semantic_role "," parameter ")"}- ")";

For instance, considering the sentence: “Les livres sont
ordonnés dans la bibliothèque par cette clé” (in French) from
our case study; our approach generates the following English-
mapping rule:

(statement, (action, order), (object,
(reference, explicit, (book, multiple))),

(location, (reference, explicit, library)),
(manner, (reference, explicit, key)))

c) Property statement: : This type of statements fo-
cuses on properties. It is represented by the following mapping
rule:

Property statement =
"(statement, property," ["negation,"]
["comparative"|"superlative",] property_name
","{"(" semantic_role "," instance ")"}- ")";

For example, considering the sentences “A book has a
three-letter key, which corresponds to the three initial letters
of the surname of its first author” (in English) and “Un livre a
une clé de trois lettres, qui correspond aux trois lettres initiales
du nom de famille de son premier auteur” (in French) from
our case study; our approach generates the same mapping rule
for them:

[...]
(statement, property, (reference, relative),
(reference, attribute/relation,
(reference, possessive pronoun,
(author, (quantity/ordinality, first)),

(reference, attribute/relation,
(reference, explicit, surname),
(letter, (quantity/ordinality, three),
initial)))))

d) Instance type relation statement:: This type of state-
ments takes interest in relationships between instances and
their properties. It is represented in the semantic model with
the following rule:

Instance type relation statement =
"(statement, instance type relation,"
["negation,"] something "," type ")";

For example, considering the sentence: “If the type of the
book is not drama...”; our approach generates the following
mapping rule:

(condition, (statement, instance type,
negation, (reference, attribute/relation,
(reference, explicit, book),
(reference, explicit, type)), drama)

6) Compression: Compression means grouping different
syntactic structures together by some special words like “and”,
“or”, etc. We distinguish four types of compression: copulative
(using conjunctions like “and”, “added to”, “as well as”...),
adjunctive (using conjunctions like “or”), contravalent (using
conjunctions like “either.. or..”, “whether.. or..”) and exclusion
(using conjunctions like “neither.. nor..”). The compression is
represented in the semantic model following this rule:

Sentence = "(" ("copulative"|"adjunctive"|
"contravalent"|"exclusion") ","

{something}- ")";

We will present an example of the compression in the
following section.

7) Sentences: A sentence is composed of clauses linked by
conjunctions (assembling links). A link belongs to a semantic
class among the following ones: (i) Temporal: links two ex-
pressions in time; (ii) Condition: uses conditional conjunctions
like “if”, “in case of”; (iii) Contrary: the opposite of condition
using conjunctions like “if not”, “otherwise”, “else”; (iv) Final:
expresses something happening as a result; (v) Cause: refers to
a situation which is the cause of another situation; (vi) Illative:
expresses something inferred from another statement or fact;
(vii) Loop: represents five types of loops, namely: “for”,
“while”, “do...while”, “foreach” and “switch”. The following
mapping rule represents the link relation (excluding loops)
within the semantic model:

Sentence =
"(" link_semantic_class "," something ")";

For instance, the mapping rule corresponding to the sen-
tence “If a visitant returns a book, then the loan card belonging
to the book and the visitor is thrown away” is the following:

(condition, (statement, (action, return),
(agent,
(visitant, (quantity/ordinality, abstract))),

(object,
(book, (quantity/ordinality, abstract)))),

(statement, (action, throw away),
(object, (reference, explicit,
(loan card,
(statement, possession concept relation,
(possessor, (copulative,
(reference, explicit, book),
(reference, explicit, visitor))),

(possessed, (reference, relative))))))))

Concerning the loops links, the following mapping rules
represent them:

Loop-do/while = "(loop," ("do"|"while") ","
statement "," {something_result}- ")";

Loop-for = "(loop, for," counter_start_value
"," counter_end_value "," step ","
{something_result}- ")";

Loop-foreach = "(loop, foreach," concept ","
statement "," {something_result}- ")";

Loop-switch = "(loop, switch," variable_name ","
{ value "," {something_result}- }- ")";

In summary, our approach works on requirements written
in different languages, even the Asiatic ones, thanks to the
semantic model. We refer the reader to our reference [29]
for an example of our approach application on requirements,
which are written in English, French, Spanish and Chinese
languages.

B. Converting the Semantic Model Representation to a Pega-
sus Code

The resulting mapping rules can be transformed into the
input of existing code generators, such as Pegasus f. This
latter accepts requirements written in the Pegasus naturalistic
programming language syntax, in English. Besides, it produces
the corresponding Java code automatically. In this context, our
approach transforms the mapping rules into the corresponding
Pegasus code, based on some transformation rules. Due to

150Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 162 / 267

space limitation, we will present only some of them (we
suppose that the resulting Pegasus code is stored in the file
“pegasus code.peg”):

Rule 1: For each concept, Conc, involved within a map-
ping rule, a declaration of Conc as a Pegasus concept is added
to the file “pegasus code.peg” following this syntax:
"concept: " Conc "{}"

We have to mention that our approach recognizes
some keywords within the concepts’ names (as well as
the properties’ and the actions’ names). Therefore, it does
not create the corresponding objects. For instance, our
approach admits that each concept name, which contains at
least one of the following words {“text”, “string”, “word”,
“letter”, “paragraph”, “line”, “verse”, “number”, “integer”,
“float”, “sum”, “fraction”, “numeral”, “amount”, “period”,
“menu”, “menu-item”, “button”, “form”, “option”, etc.} do
not correspond to a Pegasus concept. Indeed, Pegasus f can
recognize, automatically, the predefined Java types and GUI
components, and thus, it does not require the creation of the
corresponding Pegasus concepts.

Rule 2: For each property, Prop, in relation with a
concept, Conc, a declaration of Prop is added to the Pegasus
concept Conc in the file “pegasus code.peg” according to the
following syntax:
"concept: " Conc "{ property:" Prop "; }"

In fact, a Pegasus property declaration does not require
the declaration of its type; this latter is deduced automatically
by Pegasus f.

Rule 3: Every concept possession relation within a
mapping rule, involving a possessor concept, cpossessor, and
a possessed concept, cpossessed, leads to the declaration of
a Pegasus property cpossessed within the concept cpossessor
following this syntax:
"concept:" c_possessor "{

property:" c_possessed ";}"

Rule 4: Every concept hierarchy relation within a mapping
rule, involving a sub concept, csub, and a super concept,
csuper, leads to the declaration of the two Pegasus concepts
csub and csuper, where the first extends the second, by
following this syntax:
"concept: " c_sub "extends" c_super "{}"

Rule 5: Each concept initialization within a mapping
rule, involving a concept, Conc, and a property, Prop,
is transformed to a Pegasus instruction according to the
following syntax:
"let" Conc "be" Prop ";"

Rule 6: A copulative compression is transformed into a
Pegasus syntax as follows:

- For each type, typ, involved within the compression,
create a copy of the current mapping rule, in which the
copulative compression clause is replaced by typ.

- Replace the current mapping rule by the new copies of
mapping rules and treat them by applying the transformation
rules adequate for them.

Rule 7: For each symbol self reference within a mapping

rule, which involves a type corresponding to a concept, Conc,
a Pegasus property called “label” is created within Conc. In
fact, the involved symbol serves as a label to this concept.

We have to note that the concepts and the properties names
convey to the standard notations, i.e., the units composing
a noun are separated by putting the first letter of each term
capitalized. After applying the transformation rules, we obtain
the Pegasus code corresponding to the mapping rules of the
input text. For example, our approach generates the following
Pegasus code for our case study by applying the guidelines of
the above rules on the extracted mapping rules:

concept: Library{ property:rooms;}
concept: Room{ property: shelves;}
concept: Shelve{}
concept: Book{

property: key;
property: author;
property: isLendable;
property: loanCard;
action: to stand in (shelve){}
(key) is ((three initial letters)
of ((surname) of (first author)));}

concept: Author{
property: isFirst;
property: surname;}

concept: LoanCard{}
concept: Visitor{

property: name;
property: address;
property: telephoneNumber;
property: loanCard;
action: to lend (book){}
action: to return (book){}}

concept: Visitant{ action: to return (book){}}
[...]
(three-letter key) is ((three initial letters)
of ((surname) of (first author)));
order (books) in (library) by (key)!
statement:{

take (loan card)!
add (loan card) to (card index box)!
note (book) in (loan card)!
note ((name) of (visitor)) in (loan card)!
note ((address) of (visitor)) in
(loan card)!

note ((telephone number) of (visitor)) in
(loan card)!

put down (actual date);
NOT((book) is lendable now);

} : if (visitor) lend (book);
statement:{

throw away (loan card)!
(book) is lendable now;

} : if (visitor) return (book);

Hence, this example shows that our approach is capable
of generating a structured Pegasus code from quite complex
and ambiguous input texts (containing sentences in the passive
form with too much references), which are written in different
languages.
C. Pegasus Code Refinement

The input textual requirements may use synonymous words
to describe the same concept. For instance, in our case study,
the input text uses the words “visitor” and “visitant”, which
are semantically synonyms. They are however represented in

151Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 163 / 267

the Pegasus code by two concepts, “Visitant” and “Visitor”,
even though they are equivalent (see the generated Pegasus
code in the previous section). To avoid such code redundancy
and unify the names of Pegasus concepts, properties and
actions belonging to the same concept, our approach uses
an unsupervised classification of the names within the group
of concepts names; this classification starts by getting the
grammatical units from these names, by splitting these latter
according to the capitalized letters used in them.

We choose the TF/IDF method [30], which relies on the
calculation of the cosine similarity measure. This method is
composed of queries and documents; our approach considers
that a query consists of the units composing a Pegasus concept
name, and a document is made up of the association of these
latter, added to their synonyms extracted from WordNet [31];
WordNet is used only for the classification task, independently
from the mapping rules synthesis process. TF/IDF begins
by computing the weight of each grammatical unit, which
composes a query qj and belongs to a document di. The weight
of each unit is calculated thanks to the following equation:

wij = tfi,j × idfi,j = tfi,j × log(
m

D(i)
) (1)

where: wij is the weight of the grammatical unit i in the
document j; tfi,j is the frequency of the unit i in the document
j; m is the total number of documents in the collection (i.e.,
the selected group of concepts, in this step); and D(i) is the
number of documents where the unit i occurs. After that, our
approach computes the cosine similarity, Sim(di, q), between
a document di and a query q, using the following equation:

Sim(di, q) ≈ cos(
−→
di ,−→q) =

∑
tj∈U wij × wqj√∑

tj∈U w2
qj ×

∑
tj∈U w2

ij

(2)
where: wij is the weight of the grammatical unit in di;
wqj is the weight of the unit uj in q; and U is the set of
grammatical units composing all the documents. Thus, our
approach computes the cosine matrix (where the rows are
the documents and the columns are the queries) according to
equation 2. After performing this calculation, our approach
applies the DBSCAN algorithm [32] on the cosine matrix,
in order to group the concepts names into semantic classes.
Then, it selects a name for each class. After that, it refines the
generated Pegasus code by replacing the existing concepts’
names by the selected semantic class names and merging the
content of the initial similar concepts into the resulting concept
names. These same steps are then applied for each group of
actions and of properties that belong to the same Pegasus
concept. To conclude, our approach generates a refined Pegasus
code, which is then transformed automatically to Java using
the Pegasus f generator.

In the following section, we will present an implementation
of our approach with the CodeRec-tool.

IV. IMPLEMENTATION OF OUR APPROACH
To implement our approach, we developed a tool, named

CodeRec-tool (Code Recovery tool), which allows generating
a Pegasus code, as an input to the Pegasus f generator, by
starting from requirements written in different and in purely
natural languages. Actually, this tool accepts the French and
the English languages. However, it can be extended by inte-
grating other languages.

This tool is composed of three modules: (i) the first module
treats an input text and generates the corresponding mapping
rules, which are then stored in a TXT file; (ii) the second
module converts the mapping rules from the TXT file into a
Pegasus code, which is stored in a PEG file, (iii) the third
module refines the PEG file’s content and uses it as an input
to the Pegasus f generator, which executes automatically the
Pegasus code and generates the corresponding JAVA code.

Concerning the implementation of the mapping rules, we
used the NOOJ environment [11] (our results are not com-
pletely dependent from the use of NOOJ; in fact, relying on
this environment in the implementation of CodeRec-tool is
just a choice.). NOOJ is a linguistic development environment
that includes tools to create and maintain dictionaries, mor-
phological and syntactic grammars. Dictionaries and grammars
are applied to texts in order to locate morphological, lexical
and syntactic patterns and tag simple and compound words
[11]. Our main goal is to synthesize the different mapping
rules that match each instruction of the input text to its
formal representation within the semantic model in the English
language. To this end, our tool does not follow a specific
algorithm for the synthesis task, in contrast, it relies on gram-
mars. Indeed, the mapping rules synthesis task is performed
by developing a “syntactic/semantic grammar” that treats one
specific language. In other words, in practice, we have to build
a syntactic/semantic grammar for each natural language to be
treated by our tool in order to generate the mapping rules of
an input text written in that language.

Taking into account a text written in a language, L,
different from English, our tool starts by exploiting this text
by using the corresponding developed grammar, as well as the
predefined NOOJ dictionary (available in [11]) appropriate to
L. Then, our tool generates the corresponding mapping rules.
However, these latter contain terms belonging to the language
L. To solve the problem of the mapping rules translation to
the English language, CodeRec-tool uses the Google Translate
API [33] in order to transform the components of the generated
mapping rules (i.e., the names of concepts, properties, states,
actions, etc.) into English.

CodeRec-tool accepts the English and the French lan-
guages. To this end, we developed a NOOJ syntactic/semantic
grammar for each language, including the syntactic and the
semantic information of each language; these grammars allow
to synthesize mapping rules in English, in cooperation with the
predefined NOOJ dictionaries for the English and the French
languages, as well as the Google Translate API. We refer the
reader to our previous work [10] for a detailed example on
the application of our NOOJ syntactic/semantic grammar on
an input sentence.

Considering our case study, CodeRec-tool generates the
corresponding mapping rules, which it stores in the file “Li-
brary management MRs.txt”. After that, it treats this file con-
tent, in order to extract the corresponding Pegasus code, which
is stored in the file “Library management Pegasus.peg”. In-
deed, CodeRec-tool implements the transformation rules from
the semantic model representation to the pegasus syntax (see
Section III-B).

The “Library management Pegasus.peg” file is then re-
fined and used as an input to the Pegasus f generator, which
produces the corresponding Java code; it generates, in partic-
ular, the following extract of Java code:

152Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 164 / 267

public class Book{
/*** Attributes declaration ***/
private Key key;
private Author author;
private boolean isLendable;
private LoanCard loanCard;
/*** Constructors ***/
public Book(){
this.key=new Key();
this.author=new Author();
this.isLendable=false;
this.loanCard=new LoanCard(); }

public Book(Author author,
boolean isLendable, LoanCard loanCard){

this.author=author;
this.key=this.author.surname.substring(0,3);
this.isLendable=isLendable;
this.loanCard=loanCard; }

/*** Methods declaration ***/
public void stand(Shelve shelve){}
/*** Getters and setters ***/
public Key getKey(){return this.key;}
public void setKey(Key key){
this.key=key;} [...] }

[...] }
We have to mention that our approach, and thus our tool,

are able to generate, automatically, Java packages, as well.
For example, let us consider the following sentence “The
visitor selects the button ‘Lend”’; CodeRec-tool generates the
following mapping rule and the corresponding Pegasus code:

Mapping rule

(statement, (action, select),
(agent, (reference, explicit, visitor)),
(object, (reference, symbol self, button,
"Lend")))

Pegasus code

[...] (visitor) select (button "Lend");

Using this latter Pegasus code as an input to the Pegasus f
generator, CodeRec-tool generates, namely, the following Java
code:

import java.awt.*;
import java.swing.*;
[...]
public class BookLending extends JFrame

implements ActionListener{
JButton button1=new JButton("Lend");
button1.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)
{[...]}});

[...] }

V. EVALUATION
To evaluate our approach and our tool, we adopted the

process proposed by Wohlin et al. [34], which decomposes
the evaluation into different parts, like goal, task, subjects,
preparation, conduction and evaluation.

Goal: The overall objectives of our evaluation is to show
the ability of our approach, and thus tool, in deriving useful
Pegasus codes (implicitly good Java codes) from input re-
quirements, written in purely and in several natural languages
(English and French for its current version), and to examine
the conformity degree between our Pegasus codes and those
built by Pegasus experts. We rely on Pegasus experts in our

evaluation, instead of Java programmers because the main
outputs of our approach are Pegasus codes. Indeed, producing
good Pegasus code leads, implicitly, to the generation of good
Java codes.

Subject and Preparation: While a use case scenario
contains useful description of a system behavior, from which
we can deduce an important amount of source code, we decide
to rely of the use case scenarios belonging to five different
domains, and which are given to two Pegasus experts (two
natural language processing PhD students from our laboratory,
who are familiar to Pegasus programs), as follows:

- 16 use case scenarios belonging to a Health complaint
application [35]; this latter allows citizens to report complaints
(food, animal and special complaints) via internet.

- A well developed scenario of the use case “Withdraw
cash” belonging to a banking system [36].

- 28 use case scenarios belonging to the Go-phone system
[37]; this latter is based on a hypothetical context of the mobile
phone company “Go-Phone” Inc and it has clone based Go-
phone products, such as “S”, “L”, “Elegance”, “Com”...

- 9 use case scenarios belonging to a crisis management
system [38]; this latter treats crisis, which can range from
major to catastrophic affecting many segments of society.

- Use case scenario of the game of war cards [39], which
involves two players where the one who has no more cards at
the end of the game is the looser.

- 5 use case scenarios belonging to Emptio [40], which is
a mobile phone application for selfservice shopping.

Task: We asked the Pegasus experts to give us the correct
Pegasus codes corresponding to the adopted subjects.

Conduction: We compare the experts’ Pegasus codes to
the corresponding ones generated by our tool by using the
precision and recall metrics in terms of Pegasus concepts (pC,
rC), properties (pP , rP) and actions (pA, rA). For example
these measures are calculated as follows for the concepts:

pC =
number of true concepts

number of found concepts
× 100 (3)

rC =
number of true concepts

number of real concepts
× 100 (4)

Moreover, we decide to use two other metrics taken from
the standard ISO 25020, in order to measure:

- The completeness (Com) degree of our results according
to the input requirements, which are also treated by the Pegasus
experts; for example, it is measured, in terms of concepts, as
follows:

Comc = 1−number of unfound pertinent concepts

number of pertinent concepts
×100

(5)
- The correctness (Cor) of our results according to the

input requirements, which are also treated by the Pegasus
experts; for instance, it is computed, in terms of concepts, as
follows:

Corc =
number concepts adequately implemented

number of pertinent concepts
× 100

(6)
We have to mention that the correctness measure is only

computed for the Pegasus concepts and the actions because it
deals with their internal implementation. Besides, the number
of concepts/actions adequately implemented means that the

153Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 165 / 267

TABLE I. EVALUATION

Average Precision Recall Complet. Correct.
Concepts 73,78% 91,60% 90,43% 80,13%
Properties 81,59% 82,66% 78,41% -
Actions 70,22% 82,41% 76,78% 83,02%

majority of their implementations are pertinent according to
the experts’ implementations.

Table I shows the resulting averages of the adopted mea-
surements in terms of Pegasus concepts, properties and actions.

Evaluation: Table I shows the high average values of the
adopted metrics, which exceed 73,78% in all cases. More
specifically, the precision (respectively recall) values in terms
of concepts range from 67,86% to 80% (respectively from
84,62% to 96%). Similarly, we note high average values of
completeness and correctness, reaching respectively 90,43%
and 83,02%. For example, in the case of the Go-phone
system, we obtained the highest values of precision in terms
of concepts (80%), with a completeness rate 91,67% and
correctness of 87,5%. This fact means that our tool generates
a good number of true positives (TP, i.e., the number of
pertinent concepts generated by our tool), which equals 24, vs.
a low number of false positives (FP, i.e., the number of none-
pertinent concepts, not found by the experts and which are
generated by our tool), which equals 6. Moreover, the recall
value in terms of concepts for the Go-phone system equals
92,31%, reflecting that our tool generates the majority of
pertinent concepts. The high values of completeness (91,67%)
and correctness (87,5%) confirm this fact. Consequently, we
deduce that the code generated by our tool is of a high quality
and helps the developers in the programming task by saving
their time, and thus money for the companies.

We have to mention that the false positives generated by
our tool and decreasing the precision values in some cases (like
the case of the Withdraw cash scenario, which equals 67,86%
with 38 TPs and 18 FPs) are caused by the fact that our tool
generates a Pegasus concept for each met concept within a
mapping rule, except for some concepts whose names can be
recognized by our tool and for which this latter does not pro-
duce a corresponding Pegasus concept (see Rule 1 in Section
III-B). For instance, concerning the Emptio application, our
tool generates, in particular, the concept “URL”. In contrast,
the Pegasus experts realize that this concept corresponds to
a simple string and puts it as a Pegasus property within the
Pegasus concept “Application”. This fact is due to the full
automation of our approach. However, we believe that the
extra-generated concepts do not really matter because they will
be removed by the developer, later. Indeed, the completeness
(82,81%) and the correctness (81,82%) in terms of concepts
for the Emptio application confirm the utility of the Pegasus
concepts generated by our tool.

On the other hand, the precision values in terms of prop-
erties range from 75% to 96%. For example, in the case of
the Health complaint system, our tool generates 42 TPs, vs.
12 FPs; in fact, the use case scenarios of this system treat
each “type” of a “query” on its own. Thus, our tool generates
four properties corresponding to four queries’ types: “onSpe-
cialities”, “onHealthUnits”, “onDiseases” and “onComplaint”
within the concept “Query”. In fact, the input scenarios do
not contain any information allowing our tool to recognize,

automatically, the nature of the property “type”. However, the
expert realizes that these properties correspond to only one
property “type”, which corresponds to an anonymous concept
with four possible values: “onSpecialities”, “onHealthUnits”,
“onDiseases” and “onComplaint” within the Pegasus concept
“Query”. In contrary, the important value of recall (80,77%)
and completeness (76,19%) confirm that our tool generated
a good number of pertinent properties, regardless of some
exceptions caused by the full automation of our approach.

Finally, the precision in terms of actions are relatively
low in comparison with the concepts and the properties ones.
More specifically, the precision in terms of actions for the
Game of war equals 66,66%. This result is justified by the
fact that our tool generates an action definition for each met
action predicate within a mapping rule, especially for the
human manual actions, which should not be implemented. For
example, our tool generates the Pegasus actions “show(cards)”,
“select(card,pile)” and “select(menu-item)”, although they cor-
respond to simple mouse clicks on buttons or items done by
a human actor. However, the experts do not create Pegasus
actions for them because they know that they will be treated
automatically by Pegasus f, which will implement the corre-
sponding treatment within their methods “addActionListener”.
We believe that this fact does not really matter while we
get a good correctness value for the Game of war (83,33%)
and which implies the good quality of the generated actions’
implementations.

Threats to validity. One external threat of our approach
consists of the Pegsaus project, in particular the version
Pegasus f of code generator; it has not yet been finished
totally; there are still some small improvements to integrate in
this project, such as treating the ellipses. However, the current
version of Pegasus f is powerful and it generates good results,
shown in our evaluation. Besides, although our approach is
original and treats an original topic thanks to its ability to
work on any natural language, it is rather theoretic. In fact,
on the practical level, we have to possess a huge number of
rich dictionaries in order to parse an input instruction and
deduce the corresponding mapping rule. However, the NOOJ
project is always processing and many dictionaries for many
languages are integrated each year. On the other hand, our tool
presents an internal threat: a grammar should be created for
each integrated language in order to synthesize the mapping
rules. However, we believe that this is not a problem while the
creation of this grammar is done only one time, then it becomes
ready to treat the input instructions in that language. Another
internal concern consists of the generation of an important
number of concepts and actions (and thus Java classes and
methods). However, we believe that this concern does not
really matter because the unnecessary classes and methods
generated by our approach will be latter removed by the pro-
grammer when revising the generated version of source codes.
Another threat against our approach is its dependance from
the input requirements. More specifically, the more complete
input requirements are, the better results we get. In fact, the
evaluation of our approach showed interesting results in terms
of the adopted measurement values (i.e. precision, recall, F-
measure...) because we have got good inputs in terms of use
case scenarios. However, these values would decrease in case
of a lack of information within the input requirements.

154Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 166 / 267

VI. CONCLUSION AND FUTURE WORK
This paper presented a new, original approach for extracting
source code from requirements written, theoretically, in any
and purely natural language. Firstly, the proposed approach
takes the textual descriptions (requirements) and translates
them into the semantic model by extracting the corresponding
mapping rules. This model gives our approach the advantage
of using semantic information to explore and interpret the
syntax and the semantics of the requirements. Moreover, our
approach allows the translation of the mapping rules to English
in case where their contents are in a language different from
English. Secondly, our approach deduces a refined Pegasus
code corresponding to the mapping rules based on some
transformation rules. Finally, Pegasus f translates this code
into Java. Thus, the developers will save time because they
are not obliged to create the initial classes of the system
(including the constructors, the attributes, the getters and the
setters, as well as at least the methods signatures) or to import
the required packages. Our approach is implemented by the
CodeRec-tool, which automates its steps.

In contrast to the existing approaches, our approach is very
simple; it does not necessitate any pre-study on a particular
language to be used. In fact, it accepts language-independent
descriptions, understandable even by a non-IT person. In
addition, another power of our approach is its ability to be
used with many code generators, not necessarily Pegasus f.

We think that the future programming techniques will
follow the same direction in which a human thinks. It is our
belief that the naturalistic programming will have a prominent
place in the future of programming languages. The research
that we presented in this paper constitutes a contribution in
programming using any and purely natural language thanks to
the semantic model.

In our future works, we aim to conduct an evaluation
on a larger set of products to confirm the presented results.
Another practical extension of the herein presented work is
the application of our approach on other code generators, such
as the ReDSeeDS tool, which extracts a Java code, following
a Model/View/Controller architecture, from use case scenarios
written in the RSL language.

REFERENCES
[1] R. Knöll and M. Mezini, “Pegasus: First steps toward a naturalistic

programming language,” in Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and
Applications. New York, NY, USA: ACM, 2006, pp. 542–559.

[2] L. Khaylov, “Implementation of the naturalistic programming language
pegasus,” Master’s thesis, Darmstadt University of Technology, Ger-
many, 2009.

[3] R. Knöll. Pegasus project. [Online]. Available: http://www.pegasus-
project.org/en/Welcome.html [retrieved: August, 2017] (2006)

[4] H. Liu and H. Lieberman, “Metafor: Visualizing stories as code,” in
Proceedings of International Conference on Intelligent User Interfaces.
New York, NY, USA: ACM, 2005, pp. 305–307.

[5] T. Gvero and V. Kuncak, “Synthesizing java expressions from free-form
queries,” in Proceedings of ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions. New York, NY, USA: ACM, 2015, pp. 416–432.

[6] J. Franců and P. Hnětynka, Automated generation of implementation
from textual system requirements. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 34–47.

[7] M. Smialek and W. Nowakowski, Introducing requirements-driven
modelling. Switzerland: Springer International Publishing, 2015, ch.
From Requirements to Java in a Snap, pp. 1–30.

[8] R. Knöll, V. Gasiunas, and M. Mezini, “Naturalistic types,” in Pro-
ceedings of SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. New York, NY, USA:
ACM, 2011, pp. 33–48.

[9] M. Mefteh, N. Bouassida, and H. Ben-Abdallah, “Feature model ex-
traction from documented uml use case diagrams,” Ada User Journal,
vol. 35, no. 2, 2014, pp. 108–117.

[10] ——, “Mining feature models from functional requirements,” Computer
journal, vol. 59, no. 7, 2016, pp. 1–21.

[11] M. Silberztein, Formalizing natural languages: The NooJ approach.
John Wiley Sons, Inc., 2016.

[12] G. Glavas and J. Snajder, “Construction and evaluation of event graphs,”
Natural Language Engineering, vol. 21, no. 4, 2015, pp. 607–652.

[13] C. J. Fillmore, “Frame semantics and the nature of language,” in Origins
and evolution of language and speech, S. Harnad, Ed. Academy of
Sciences, 1976, pp. 155–202.

[14] C. J. Fillmore and B. T. Atkins, Towards a frame-based lexicon: The
semantics of RISK and its neighbors. Hillsdale: Lawrence Erlbaum
Associates, 1992, pp. 75–102.

[15] C. J. Fillmore and B. Collin, A frames approach to semantic analysis.
Oxford: Oxford University Press, 2010, pp. 313–339.

[16] J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, C. R. Johnson,
and J. Scheffczyk. Framenet II: Extended theory and practice.
[Online]. Available: http://framenet.icsi.berkeley.edu [retrieved: July,
2017] (2010)

[17] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley FrameNet
project,” in Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on
Computational Linguistics - Volume 1, ser. ACL ’98. Stroudsburg,
PA, USA: Association for Computational Linguistics, 1998, pp. 86–90.
[Online]. Available: http://dx.doi.org/10.3115/980845.980860

[18] Marie-Claude L’Homme, “Terminologie de l’environnement et
sémantique des cadres,” Congrès Mondial de Linguistique Franaise,
SHS Web of Conferences, vol. 27, 2016, pp. 1–14.

[19] T. Schmidt, “The kicktionary a multilingual lexical resource of football
language,” in Multilingual FrameNets in computational lexicography :
methods and applications, H. C. Boas, Ed., 2009.

[20] A. Dolbey, M. Ellsworth, and J. Scheffczyk, “Bioframenet: A domain-
specific framenet extension with links to biomedical ontologies,” in In
Proceedings of the Biomedical Ontology in Action Workshop at KR-
MED, 2006, pp. 87–94.

[21] J. Pimentel, “Description de verbes juridiques au moyen de la
sémantique des cadres,” in Terminologie and Ontologie : Théories et
applications, 2010, pp. 26–27.

[22] M. Smialek, W. Nowakowski, N. Jarzebowski, and A. Ambroziewicz,
“From use cases and their relationships to code,” in International
Workshop on Model-Driven Requirements Engineering, Chicago, IL,
USA, September 24, 2012, pp. 9–18.

[23] W. Nowakowski, M. Smialek, A. Ambroziewicz, and T. Straszak,
“Requirements-level language and tools for capturing software system
essence,” Comput. Sci. Inf. Syst., vol. 10, no. 4, 2013, pp. 1499–1524.

[24] A. Kalnins, et al., Handbook of research on innovations in systems and
software engineering. IGI Global, 2014, ch. Developing Software with
Domain-Driven Model Reuse.

[25] A. Cozzie and S. T. King, “Macho: Writing programs with natural
language and examples,” University of Illinois at Urbana-Champaign,
Tech. Rep., 2012.

[26] E. Özcan, S. E. Seker, and Z. I. Karadeniz, “Generating java class
skeleton using a natural language interface,” in Natural Language
Understanding and Cognitive Science, Porto, Portugal, April 2004,
2004, pp. 126–134.

[27] M. Kapor. Brainy quote. [Online]. Available:
http://www.brainyquote.com/quotes/quotes/m/mitchkapor690403.html
[retrieved: August, 2017] (1950)

[28] R. S. Scowen, “Extended BNF - A generic base standard,” in Pro-
ceedings of the 1993 Software Engineering Standards Symposium
(SESS’93), Aug. 1993.

[29] M. Mefteh. Requirements analysis with the semantic model. [On-

155Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 167 / 267

line]. Available: http://spl-nlp-with-semanticmodel.com/translation.html
[retrieved: August, 2017] (2017)

[30] J. Ramos, “Using TF-IDF to determine word relevance in document
queries,” Department of Computer Science, Rutgers University, 23515
BPO Way, Piscataway, NJ, 08855e, Tech. Rep., 2003.

[31] G. A. Miller. Wordnet. [Online]. Available:
https://wordnet.princeton.edu/ [retrieved: August, 2017] (2015)

[32] M. Ester, H. peter Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the International Conference on Knowledge Discovery
and Data Mining. AAAI Press, 1996, pp. 226–231.

[33] J. Trimble. et al., Google translate API. [Online]. Available:
https://www.programmableweb.com/api/google-translate [retrieved: Au-
gust, 2017] (2011)

[34] C. Wohlin, M. Höst, and K. Henningsson, Empirical research methods
in web and software engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 409–430.

[35] L. P. Tizzei, C. M. F. Rubira, J. Lee, A. Garcia,
and M. Barros. Health complaint system. [Online]. Available:
http://www.ic.unicamp.br/ tizzei/phc/jss2013/ [retrieved: August, 2017]
(2013)

[36] K. Bittner and I. Spence, Use case modeling. Pearson Education Inc.,
2002, pp. 301–330.

[37] D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dörr, and
K. Schmid, “Gophone - a software product line in the mobile phone
domain,” No. 025.04/E, Version 1.0, Fraunhofer IESE, Tech. Rep., 2004.

[38] J. Kienzle, N. Guelfi, and S. Mustafiz, Crisis management systems: A
case study for aspect-oriented modeling. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 1–22.

[39] G. Blank. Game of war. [Online]. Available:
http://www.cse.lehigh.edu/ glennb/csc10/WarDesign.htm [retrieved:
June, 2017] (2010)

[40] C. R. van der Burg, T. Kirke, and A. Rokic, “Emptio - a mobile
phone application for selfservice,” Master’s thesis, Aalborg University,
Germany, 2011.

156Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 168 / 267

GMAP: A Generic Methodology for Agile Product Line Engineering

Farima Farmahini Farahani, Raman Ramsin

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

e-mail: farimafarahani@ce.sharif.edu, ramsin@sharif.edu

Abstract—Agile Product Line Engineering (APLE) is a

relatively novel approach that has emerged as the result of the

combination of two successful software development

approaches: Software Product Line Engineering and Agile

Software Development. The main goal of this combined

approach is to cover the weaknesses of each of these two

approaches while maximizing the advantages of both. We

propose the Generic Methodology for Agile Product Line

Engineering (GMAP), which can be instantiated to produce a

bespoke, concrete methodology for any specific project

situation. GMAP is generic in that its process covers the main

activities of existing APLE methodologies, while refraining from

enforcing any specific and concrete method or technique for

performing the activities. GMAP has been produced by

studying existing APLE methodologies, identifying their

strengths and weaknesses, abstracting them into a high-level

framework, and finally instantiating this abstract framework so

as to address the shortcomings of existing methodologies.

Keywords—Software Development Methodology; Software

Product Line; Agile Method; Agile Product Line Engineering.

I. INTRODUCTION

Product Line Engineering (PLE) and Agile Software
Development are two successful approaches in the software
industry. Both approaches focus on developing high-quality
software systems, reducing development costs, managing
changes in requirements, and reducing time to market. These
common goals have motivated researchers to investigate ways
for merging them. This new combined approach, called Agile
Product Line Engineering (APLE) [1], would help us use the
positive features of the individual approaches while
maximizing their benefits. Another potential advantage is
synergy: each approach can cover the other’s weaknesses.

Several methods have so far been introduced in the APLE
context. From among these methods, those that have proposed
a distinct process for this combined approach can be referred
to as APLE methodologies. We have previously studied and
analyzed existing APLE methodologies by using a criteria-
based approach [2]. The results of this evaluation showed that
despite the benefits that they provide, they are all afflicted
with certain problems; for instance, none of them has
prescribed a full-lifecycle approach that explains the details of
the activities, work-products, and roles. Hence, developing a
new APLE methodology that addresses the deficiencies of
existing methodologies, while preserving their positive
features, is of great potential value. We therefore propose the

Generic Methodology for Agile PLE (GMAP) as a high-level
full-lifecycle APLE methodology that provides these features
and can be instantiated to yield concrete APLE methodologies
for different project situations. To this aim, we first evaluated
existing methodologies using a criteria-based approach to
identify their positive and negative traits. The evaluation
criteria and the results of evaluation have been extensively
discussed in [2]. We have used the criteria defined in [2] as
the requirements for constructing GMAP; this ensures that
GMAP possesses the main characteristics of PLE and Agile
Development, makes use of the positive features of previous
APLE methodologies, and addresses their weaknesses.

GMAP was developed in two steps: We first produced a
high-level APLE process framework through applying
abstraction to existing methodologies; GMAP was then
defined by instantiating this abstract framework and
improving the resulting instance to satisfy the requirements of
the target methodology. GMAP satisfies the high-level
requirements, but is kept independent of specific techniques
and practices so that it can be instantiated based on the finer-
grained requirements of a specific project. GMAP was
evaluated in two ways: 1) by instantiation to a concrete
methodology in order to demonstrate that it has the potential
to be instantiated into a concrete and applicable methodology,
and 2) by applying a subset of the criteria presented in [2] in
order to show that GMAP can indeed be considered an
improvement to the status quo; the reason for using a subset
of the criteria is that some of the criteria are not applicable due
to the abstractness of GMAP. The evaluation results show that
GMAP does indeed address the weaknesses of existing
methodologies; for example, the need for a full-lifecycle
APLE process, providing specifications for activities, work-
products, and roles, has been adequately addressed in GMAP.

The rest of this paper is structured as follows: Section II
discusses the related research; Section III presents the
proposed abstract framework for APLE methods; Section IV
describes GMAP; Section V presents the evaluation results;
and Section VI discusses the conclusions and suggests ways
for furthering this research.

II. RELATED RESEARCH

Prominent APLE methodologies and their important
features are depicted in Table I; this table has been adapted
from our previous research, reported in [2], which presents an
extensive review of these methodologies.

157Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 169 / 267

TABLE I. PROMINENT APLE METHODOLOGIES (ADAPTED FROM [2])

 Feature

Methodology

Brief introduction Year Basis

(Agile

or

PLE)

Reuse approach PLE process

coverage (DE,

AE)

CDD [4] Uses FDD [5] to combine PLE and agility. 2005 Agile N/A DE (Partially)

de Souza & Vilain [6] Merging the generic PLE process with the Framework of Agile Practices. 2013 PLE Proactive, Reactive DE (Partially), AE

RiPLE-SC [7] An agile process for PL Scoping in RiPLE methodology. 2011 PLE N/A DE (Partially)

Diaz et al. [3] Utilizes Scrum [5] to define an APLE method. 2011 Agile Reflexive DE (Partially), AE

EPLSP [8] A full-lifecycle methodology that utilizes AUP [9] for product development;

thus, agility is limited to this particular activity.

2011 PLE Reactive DE, AE

A-Pro-PD [10] A generic agile framework for product derivation. 2012 PLE Proactive, Reactive AE

Ghanam & Maurer
2008 [11]

Aims at agile organizations building several similar systems in a domain. Core
assets are derived from the products in a bottom-up fashion.

2008 Agile Reactive DE (Partially), AE
(Partially)

Ghanam et al. [12] An agile approach for variability management in which variability analysis is

only performed when a new requirement arises.

2010 Agile Reactive DE (Partially)

Ghanam & Maurer
2009 [13]

An acceptance-test-based approach for product derivation in PLE; core assets
are retrieved (from a repository) based on acceptance tests.

2009 Agile Reactive AE

da Silva [14] An agile process for PL scoping. 2012 PLE N/A DE (Partially)

Carbon et al. [15] The result of incorporating agile practices into PULSE’s product-instantiation. 2006 PLE Reactive AE

Noor et al. [16] An agile method for PL scoping that utilizes Collaboration Engineering
patterns to promote collaboration among stakeholders.

2008 PLE N/A DE (Partially)

SPLICE [17] Incorporates Scrum [5] practices with core activities of PLE. 2014 PLE Reactive DE, AE (Partially)

The review reported in [2] shows that none of the
methodologies possess all the features expected in an APLE
methodology, including: full coverage of the PLE lifecycle,
definition of work-units, roles, and work-products, attention
to umbrella activities, management of expected/unexpected
changes, configurability, support for learning, active user
involvement, and team management. Three reuse approaches
have been observed in these methodologies: Proactive
(predicting and building the core assets at the beginning of the
development process), Reactive (extracting the core assets
from previously built products), and Reflexive (predicting the
core assets at the beginning of each iteration) [3].

III. PROPOSED ABSTRACT FRAMEWORK FOR APLE

METHODOLOGIES

The first step in building the target methodology is to
produce an abstract framework for APLE methodologies,
which is the result of applying abstraction to the activities
prescribed in the methodologies reviewed (listed in Table I);
this framework will be introduced in this section.

A. Description

Figure 1 shows the proposed framework. As it covers the
activities of the reviewed methodologies in an abstract
manner, these methodologies can be regarded as its instances.
The white block arrows between DE and AE indicate that any
transition between the internal stages of these sub-processes is
possible; however, the transitions allowed in existing
methodologies are shown with ordinary black arrows. The
liberal attitude of the framework towards transitions promotes
abstractness and allows the framework to be instantiated into
any desired APLE methodology. The white arrow from DE to
AE denotes the Proactive approach of reuse, the white arrow
from AE to DE denotes the Reactive approach, and the
combination of these arrows denotes the Reflexive approach.
The activities that belong to some (but not all) of the reviewed
methodologies will be referred to as “non-common”.

1) Domain Engineering (DE) Sub-process
DE consists of Scoping and Core Assets Development.

a) Scoping

The PL’s scope is determined in the following stages:

 Pre-Scoping: Business goals are identified; non-
common activities are: understanding the operational
and organizational context of the organization,
analyzing stakeholders and target markets, and
building a business case.

 Domains Selection: PL domains are selected from
among the candidate domains.

 Products and Requirements Selection: The domains’
requirements and products are identified.

 Prioritization: Requirements and products are
prioritized and selected.

b) Core Assets Development (CAD)

Core assets are built through the following stages:

 Requirements Analysis: The requirements of the PL
products are defined in a more fine-grained form, with
the commonalities and variabilities specified.

 Core Assets Design: Components and PL architecture
are designed. Non-common activities are: Detailed
design, and documentation of design decisions.

 Planning: Implementation units are prioritized and
assigned to iterations.

 Core Assets Implementation: Implementation units
are built, and the required tests are developed.

 Core Assets Validation and Incorporation in the
Repository: Implemented units are integrated with
other parts, and are incorporated in the repository.

2) Application Engineering (AE) Sub-process
PL products are built and deployed in two phases: Product

Development and Transition.

a) Product Development

This phase is the pivotal part of AE. Its stages are:

158Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 170 / 267

 Requirements Definition: The product requirements
document is produced, and the core assets are elicited.

 Planning: Implementation units are assigned to
iterations.

 Design and Implementation: The PL architecture is
instantiated and the product architecture is developed;
detailed design is then performed for the product-
specific parts (as a non-common activity). Next,
product-specific parts are developed and integrated
with instantiated core assets to form the final product.

 Increment Validation: The implemented increment is
validated against the iteration requirements.

b) Transition

System Validation and Installation is performed. As a non-
common activity, training material is produced and a short
document of the system is developed for the user.

3) Maintenance Sub-process
In the Support phase, bug fixes and new requirements are

supplied to the AE team (and to the DE team, if necessary).

B. Realization of the framework in APLE methodologies

Table II shows how the framework’s constituent activities
correspond to the activities of existing APLE methodologies,
thus validating the proposed framework as to its coverage of
existing APLE methodologies.

IV. PROPOSED GENERIC APLE METHODOLOGY (GMAP)

As discussed in [17], the criteria for evaluating
methodologies in a given context can serve as the
requirements for constructing a target methodology in that
context; we have therefore used the criteria defined in [2] as
the requirements for constructing GMAP. GMAP is an
instance of the proposed APLE framework, and its activities
and tasks are abstractions of the activities and tasks prescribed
in existing APLE methodologies, composed so that the
requirements of the target APLE methodology are satisfied;
also, certain activities have been added from existing Agile
and PLE methodologies. As GMAP is generic and abstract, it
only provides general guidelines and does not enforce any
concrete methods or techniques. Thus, it has a high degree of
configurability and should be instantiated prior to application;
typically, the instantiation process includes the following
activities: Decision as to optional activities; addition of
project-specific tasks; removing, merging, or decomposing
the tasks; determination of concrete methods, practices, and
guidelines for performing the tasks; selection from among the
methods available for performing the tasks; and changing the
roles involved in an activity or task. The process of GMAP
and its roles are presented throughout the rest of this section.

A. Roles

GMAP roles have been determined through integrating the
roles typically found in agile methodologies with the generic
PLE roles defined in [18] and the roles observed in the APLE
methodologies reviewed in [2]. The roles are explained below:

 Senior Manager: Responsibilities include managing
the APLE project, and providing expertise on
organizational/business goals and the market.

 Product Manager: Responsibilities are: managing PL
products and planning for the development of current
and future systems, providing expertise on business
goals and the PL’s target market, and maintaining the
PL Scope Document [18].

 Core Assets Manager: Duties include performing
maintenance and configuration management on the
core assets, and helping with their extraction [18].

 Senior Developer: This role is performed by
experienced developers familiar with the
organization’s products. Responsibilities include
conducting project management, leading teams, and
carrying out analysis and design activities during
CAD and AE; scoping and code development will
also be included if necessary. Responsibilities are
equivalent to the collective responsibilities of
Domain/Application (D/A) Requirements Engineer,
D/A Architect, and D/A Developer roles of [18].

 Developer: Responsibilities are working in CAD and
AE teams, and performing analysis, design,
implementation, and test under the supervision of
Senior Developers. Responsibilities are equivalent to
the combined responsibilities of D/A Requirements
Engineer, D/A Architect, D/A Developer, and D/A
Tester of [18]. We recommend that the people in
charge of this role be moved between CAD and AE
so that their knowledge is shared (akin to the “Move
People Around” practice of XP [5]). A number of
Developers are also involved in Scoping.

 Customer: This role is performed by representatives
of the customer organizations who know the system’s
requirements and act as domain experts.

 Support Team Member: This role performs support
and maintenance activities on instances of the PL.

B. Process

The process of GMAP is shown in Figure 2. It consists of
three sub-processes: DE (consisting of Scoping and CAD),
AE, and Maintenance. AE and the two internal phases of DE
are run in an iterative-incremental manner. This methodology
is applicable under two scenarios: Scenario-1 aims at
organizations that have previously developed a number of
similar systems. In this case, Scoping is first performed,
followed by CAD and AE; after the first run of the CAD phase
(so that the CAD team is formed and the reference architecture
is built), CAD and AE can be run in tandem. Scenario-2 is
aimed at organizations that have not built any similar systems,
but are planning to build a PL while the products are being
developed. In this case, the organization first develops a
predefined number of systems (at least two [11]) using the AE
sub-process of GMAP; Scoping is then performed for these
systems, followed by CAD and AE. The two scenarios show
that the methodology can cover the proactive approach of
reuse as well as the reactive approach based on the target
organization’s needs. In both scenarios, if a new product is to
be built in an available domain, core assets are retrieved from
the product by requesting for PL extension, and the PL Scope
is updated accordingly. If a new product in a new domain is to
be built, scoping should precede CAD.

159Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 171 / 267

Figure 1. Proposed Abstract Framework for APLE Methodologies

TABLE II. REALIZATION OF PROPOSED FRAMEWORK IN REVIEWED APLE METHODOLOGIES

Stage in Framework Corresponding phases in APLE methodologies

D
o
m

a
in

 E
n

g
in

ee
ri

n
g

S
co

p
in

g

Pre-Scoping
Pre-scoping in RiPLE-SC [7]; Define pre-scoping (Partially) in da Silva [14], Select business goals and marketing strategies in

SPLICE [17].

Domains

Selection

Identify and agree on relevant domains in Noor et al. [16]; Define pre-scoping (Partially) in da Silva [14]; Domain scoping in RiPLE-

SC [7].

Products &
Requirements

Selection

Define features for each domain, Discuss, analyze, and agree on products, Define products in terms of features in Noor et al. [16];
Product scoping in RiPLE-SC [7]; Define features, Define pre-scoping (partially) in da Silva [14], Identify products, Identify major

features, Build initial product map in SPLICE [17].

Prioritization
Release scope in da Silva [14]; Prioritize product map in Noor et al. [16]; Assets scoping in RiPLE-SC [7], Prioritize major features

in SPLICE [17].

C
o
re

 A
ss

et
s

D
ev

el
o
p
m

en
t

Requirements

Analysis

Develop an overall model (Partially), Build a features list in CDD [4]; Domain analysis in de Souza & Vilain [6]; Pregame (Partially)

in Diaz et al. [3]; Evaluation and extraction (Partially) in Ghanam & Maurer 2008 [11]; Eliciting new requirements (Partially),

Variability analysis, Updating the variability profile in Ghanam et al [12]; Analyze commonality and variability in da Silva [14];
Core assets development (Partially) in EPLSP [8], Sub-features definition, Commonality and variability analysis in SPLICE [17].

Core Assets

Design

Develop an overall model (Partially), Design SPL architecture, Build a components list, Design by components in CDD [4]; Domain

design, Develop system increment (DE) (Partially) in de Souza & Vilain [6]; Architecture evolution in Ghanam & Maurer 2008 [11];

Sprint-domain engineering (Partially) in Diaz et al. [3]; Refactoring the architecture in Ghanam et al [12]; Core assets development
(Partially) in EPLSP [8].

Planning

Plan by components in CDD [4]; Iteration definition in de Souza & Vilain [6]; SPL release definition (Partially); Sprint planning

(Partially) in Diaz et al. [3]; Select features for implementation (Partially) in da Silva [14]; Eliciting new requirements (Partially) in
Ghanam et al [12], Release planning, Sprint planning in SPLICE [17].

Core Assets

Implementation

Build by components (Partially) in CDD [4]; Develop system increment (DE) (Partially) in de Souza & Vilain [6]; Refactoring in

Ghanam & Maurer 2008 [11]; Select features for implementation (Partially) in da Silva [14]; Sprint-domain engineering (Partially)

in Diaz et al. [3]; Realizing the new requirements in Ghanam et al [12]; Core assets development (Partially) in EPLSP [8], Sub-
features implementation, Sub-features testing (Partially) in SPLICE [17].

Core Assets

Validation &

Incorporation in
the Repository

Running the tests in Ghanam et al [12]; Build by components (Partially) in CDD [4]; Develop system increment (DE) (Partially),

Validate increment in de Souza & Vilain [6]; Managing core assets in Ghanam & Maurer 2008 [11]; Review and retrospective
(Partially) in Diaz et al. [3]; Core assets development (Partially) in EPLSP [8], Sub-features testing (Partially), Sprint review and

retrospective in SPLICE [17].

A
p

p
li

ca
ti

o
n

 E
n

g
in

ee
ri

n
g

P
ro

d
u

ct
 D

ev
el

o
p
m

en
t

Requirements

Definition

Definition of requirements in de Souza & Vilain [6]; Preparing for derivation (Partially) in A-Pro-PD [10]; Select acceptance tests,
Execute acceptance tests, Extract code (Partially) in Ghanam & Maurer 2009 [13]; Plan for a product line instance, Instantiate and

validate product line model in Carbon et al. [15]; Pregame (Partially), SPL release definition (Partially) in Diaz et al. [3]; Evaluation

and extraction (Partially) in Ghanam & Maurer 2008 [11]; Product Development (Partially) in EPLSP [8].

Planning Assign requirements to iterations in de Souza & Vilain [6]; Preparing for derivation (Partially) in A-Pro-PD [10]; SPL release
definition (Partially), Sprint planning (Partially) in Diaz et al. [3].

Design and

Implementation

Instantiate & validate reference architecture, Construct product in Carbon et al. [15]; Develop system increment (AE) in de Souza

& Vilain [6]; Product configuration, Product development & testing (Partially) in A-Pro-PD [10]; Core asset incorporation in
Ghanam & Maurer 2008 [11]; Extract code (Partially), Verify & build (Partially) in Ghanam & Maurer 2009 [13]; Sprint-application

engineering in Diaz et al. [3]; Product Development (Partially) in EPLSP [8], Products derivation (Partially) in SPLICE [17].

Increment

Validation

Validate increment, Integrate increment in de Souza & Vilain [6]; Review and retrospective (Partially) in Diaz et al. [3]; Verify and

build (Partially) in Ghanam & Maurer 2009 [13]; Product development and testing (Partially) in A-Pro-PD [10].

T
ra

n
si

ti
o
n

System

Validation &

Installation

Validate system in de Souza & Vilain [6]; Product development and testing (Partially) in A-Pro-PD [10]; Deliver system in Carbon

et al. [15].

Maintenance Support Product release in EPLSP [8].

Scoping Core Assets Development

Pre-Scoping

Products and

Requirements Selection
Prioritization

Requirements Analysis

Core Assets Design Planning

Core Assets

Implementation

Core Assets Validation &

Incorporation in the

Repository

DE

Domains Selection

Requirements Definition Planning

Design & Implementation Increment Validation

System Validation &

Installation

Transition

Product Development

Maintenance

Support

AE

160Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 172 / 267

Figure 2. Process of GMAP

GMAP is described throughout the rest of this section by
using a process-centered approach [5]: the focus is on
describing the high-level phases, intermediate-level stages,
and bottom-level tasks of the methodology; the roles involved
and the work-products produced are seen as secondary to
these process constituents.

1) Domain Engineering (DE) Sub-process
DE aims at building the PL infrastructure. AE team

members are the main customers of DE, as they use the core
assets developed in DE.

a) Scoping

The PL scope is defined in this phase. It continues in an
iterative-incremental manner until the PL scope becomes
stable enough for the core assets to be built based on it. The
PL scope is then completed while new PL products are being
developed. The constituent stages are explained below.

1) Initiation
The preliminary activities for identifying the PL scope are

performed in three sub-stages:
Forming Scoping Team: The Scoping Team is formed by

analyzing the experiences and skills required; team members
include the product manager, a number of senior developers
and developers, and selected customer representatives [7].

Feasibility Analysis: This stage is performed by the senior
manager, product manager and senior developers of the
scoping team. The results of analyzing the risks and
constraints and estimating the required resources are recorded
in the PL Vision. Finally, feasibility study is performed based
on the PL Vision, and a Go/No-Go decision is made.

Identification and Planning: Organizational factors are
identified by the senior manager, product manager, and senior

developers of the scoping team; the organization’s structure
and its processes are explored and documented in the PL
Vision. The product manager and the senior developers then
determine an overall plan for the scoping phase.

2) Pre-Scoping
This stage, performed by the senior manager, product

manager, and senior developers of the scoping team, consists
of three sub-stages:

Planning: The iteration plan is elicited based on the
overall plan.

Identifying Goals: Business and organizational goals are
recorded in the PL Vision.

Analyzing the Market: The PL Vision is completed by
studying the markets related to the candidate domains (as to
their characteristics and success factors).

3) Domain Selection
The scoping team determines the target domains of the PL

in two sub-stages, which are typically performed in tandem:
Studying Relevant Domains: The relevant domains are

explored by the team members.
Selecting Domains: Domains are analyzed based on

certain parameters that verify the potential of each domain for
inclusion in the PL; domains are then selected based on this
analysis and the parameters important to the organization.

4) Selecting Requirements and Products
The scoping team selects the PL products and

requirements; sub-stages are as follows:
Defining Domains Requirements: The requirements of the

selected domains are elicited. Requirements are then reviewed
in order to resolve redundancies and ambiguities.

Feasibility
Analysis

Studying Relevant
Domains

Selecting Domains

Selecting
Products

Defining Domains
Requirements

Building PL
Scope

Prioritizing PL
Scope

Initiation Domain Selection Selecting Requirements and Products
Scoping
Domain Engineering

Initializing

Core Assets Development

Planning

Pre-Iteration

Designing Building

Implementation

Reviewing

Post-Iteration

Application Engineering
Maintenance

Death

Support

Pre-Scoping

Planning

Identifying Goals

Analyzing the
Market

AssigningPlanningForming CAD Team(s(

Defining RequirementsFounding

Feasibility AnalysisPre-

Implementation

Preparation for Build

Overall Planning

Pre-Construction

AssigningPlanning

Pre-Iteration

Designing

Implementation

Post-Iteration

Building

Construction

Pre-Construction

Modeling the Requirements

Acquiring Knowledge

Identification
and Planning

Preparing for the Build

Forming Scoping Team

Addition to

Repository

Transitioning
Reviewing and

Revising

161Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 173 / 267

Selecting Products: Candidate products are defined for
each domain based on domain requirements. Candidate
products are then prioritized based on the parameters defined
in the instantiated methodology, and PL products are selected.

Building PL Scope: The PL Scope is completed by relating
products with requirements. Then, the customers review and
validate the PL scope.

Prioritizing PL Scope: Reusable parts that will be
implemented in the CAD phase are identified. We recommend
two methods for this purpose: 1) The method used in [7] and
[19], in which the goals are operationalized with the aim of
defining certain metrics (the GQM method is typically used);
prioritization is then conducted based on the derived metrics;
and 2) The method used in [14] and [16], in which each
stakeholder prioritizes the products and their requirements;
stakeholders then discuss the priorities, reach a consensus, and
select the core asset requirements.

b) Core Assets Development (CAD)

Reusable core assets are developed based on the results of
scoping. Constituent stages include the following:

1) Initializing
This stage sets the stage for building the core assets. Sub-

stages are as follows:
Forming CAD Team(s): Each CAD team is led by a senior

developer, and is made up of several experienced developers.
Developers are selected based on the knowledge, skills, and
experience levels required.

Planning: Requirements prioritization is first conducted
with the help of the product manager. Next, the overall plan is
elicited and a subset of the requirements is selected for the
next release. Also, a date for the next release and a duration
for CAD iterations are determined.

2) Pre-Construction
The requirements of the next release are defined in a more

detailed fashion, and the PL architecture is designed. Sub-
stages are as follows:

Acquiring Knowledge (Optional): If the team requires
more information on the requirements, knowledge acquisition
is performed with the help of the product manager.

Modeling the Requirements: Requirements are modeled
by specifying their commonalities and variabilities;
requirements can be modeled in several formats: use-cases
[20], acceptance tests [11], feature diagrams [21][22], features
(as in the FDD methodology) [4][5], and a textual feature-
based format [12]. The dependencies among the requirements
are also identified, which can affect the selection of the
requirements [22] and their implementation sequence.

Preparing for the Build: The architecture is designed, and
architecture-level variabilities are specified; the architecture is
then evaluated [4]. A list of implementation units is then
produced, which can be based on the requirements [3],
components [4][6], or any other relevant concept.

3) Pre-Iteration
An iteration plan is developed in the following sub-stages:
Planning: Prioritization is applied to the implementation

units. Iteration planning is then performed, and a number of
units are selected for the current iteration.

Assigning: If more than one team is involved, assigning to
teams is performed. Assigning to developers is then conducted
inside each team; this can be done in two ways: 1) the senior
developer in each team assigns the units to the developers [4];
or 2) the developers choose what they intend to implement
(common in self-organizing teams [23][24]).

4) Implementation
Detailed design and implementation is performed on the

iteration’s implementation units, in the following sub-stages:
Designing: Documents are studied and domain experts are

interviewed in order to enrich the team’s knowledge of the
implementation units; these tasks are executed in tandem with
other tasks of this stage, and may result in changes to the
requirements model. Detailed design is then conducted,
resulting in the design model. Finally, model notes [4] are
added to document the design alternatives, and the reasons
behind the design decisions.

Building: Test design is first conducted to produce test-
cases for the current iteration’s implementation units. Coding
and refactoring are then performed [6]. Testing is performed
continuously throughout this stage. Code inspection is the
final task, which can be done in two ways: 1) the senior
developer of each team inspects the code [4], or 2) the
developers inspect one another’s code [6].

5) Post-Iteration
The activities required for concluding the iteration are

performed. Sub-stages are as follows:
Reviewing: Testing is performed with the cooperation of

AE team members, and acceptance tests are run on the
implemented units. A review meeting is then held to conduct
regular review activities. The requirements model,
implementation units list, and architecture (and if necessary,
the PL scope document) are updated. The team and the
product manager then discuss the AE team’s requests for
extending the PL scope (implementing product-specific parts
as core assets); if they decide to implement certain parts as
core assets, the PL models are changed as required.

Addition to Repository: Core assets are added to the
repository (as directed by the core assets manager) for the
implemented units and their corresponding requirements and
tests.

2) Application Engineering (AE) Sub-process
This sub-process’s goal is to build the target products by

reusing the core assets built in the CAD phase. An important
undertaking in this sub-process is to send requests to the CAD
team for extending the PL scope. Three approaches are
recommended for this purpose: 1) Request-In-Advance:
requests are sent prior to starting the development of the
product [15] (before forming the implementation units list, as
the result may affect this list), and also at the beginning of each
iteration (due to possible changes in requirements); the tasks
corresponding to this approach reside in the Pre-
Implementation and Planning sub-stages; 2) Request-During-
Implementation: requests are sent when product development
is underway in the Building sub-stage [10]; and 3) Request-In-
Retrospect: requests are sent at the end of each iteration (for
the units implemented in the iteration); this approach is
implemented in the Reviewing and Revising sub-stage. AE
phases are explained throughout the rest of this subsection.

162Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 174 / 267

a) Pre-Construction

The activities required for launching a new product
development project are performed. The only stage of this
phase is explained below.

1) Preparation for Build
This stage mainly focuses on analysis activities. Sub-

stages are as follows:
Founding: AE teams are formed, with the same structure

as in CAD.
Defining Requirements: The AE team elicits the

requirements and builds the product’s Requirements Model.
Two methods are recommended for this task: 1) the
requirements available in the core assets repository are
provided to the customer, who then selects a subset of them
according to his/her requirements [13] (we recommend
interviewing the customer for eliciting the requirements that
are not present in the core assets); and 2) the customer
expresses his/her requirements from scratch [3], and the team
matches these requirements with the core assets requirements.
The product manager and the AE teams’ senior developers
then compare the product’s requirements to the PL scope to
decide whether this product is an instance of the PL; if it is,
the product’s information is added to the PL scope, and the
AE team and the core assets manager extract the core assets
related to the product.

Feasibility Analysis: This stage is only performed if the
project requires certain resources that are not needed for other
PL instances, or if certain risks or constraints are involved.
The senior manager and the AE teams’ senior developers
cooperate in this stage. Analyzing the risks and constraints is
first performed, followed by estimating the required resources
(based on the amount of core assets that can be used in
developing the product); the results of both tasks are recorded
in the Project Vision. Finally, feasibility study is performed.

Overall Planning: The overall project plan is produced;
again, the amount of core assets usable in developing the
product is a crucial factor.

Pre-Implementation: Extension of the PL is requested if
the “Request-In-Advance” approach is selected; if the DE
team approves the implementation of product-specific
requirements as core assets, it develops new core assets. The
next task is designing the product architecture: if a PL
architecture is available, it is instantiated; if not, a product-
specific architecture is developed. Finally, a list of
implementation units is produced.

b) Construction

This phase is executed in an iterative-incremental manner.
The constituent stages are explained below.

1) Pre-Iteration
This stage is the starting point for development iterations.

Sub-stages are as follows:
Planning: The first task, requesting for PL extension, will

be performed if “Request-In-Advance” has been chosen. After
prioritizing the implementation units, iteration planning is
conducted. If any bug-fixes or new requirements are received
from the Support Team, they are checked; if they are related
to AE, they are added to the iteration plan; if not, they are
relegated to the CAD team.

Assigning: Implementation units are assigned to
developers (as in CAD).

2) Implementation
AE teams build the product by reusing the core assets.

Sub-stages are as follows:
Designing: If the team needs to complete its knowledge of

the requirements, customer interviews are conducted. This
task is performed in tandem with detailed design, which is
performed by instantiating the Domain Design Model (if
available) and adding the product-specific parts.

Building: Test design is performed, and the tests in the
core assets base are reused. If suitable core assets are
available, a partial configuration of the product [10] is
produced by assembling them. Product-specific parts are then
built, either by adding the product-specific parts to the partial
product configuration, or by building the product from
scratch; if “Request-During-Implementation” is selected,
requests for extending the PL Scope are sent to the CAD team
during this task: if the product-specific parts are to be built as
core assets, the CAD team designs their interfaces, based on
which the AE team develops the product in parallel with the
actual implementation of the assets by the CAD team [10].
Code refactoring is then applied [6]. Testing is performed
continuously, and can be augmented with code inspection.

3) Post-Iteration
The AE team conducts review activities for finishing the

iteration. Sub-stages are as follows:
Reviewing and Revising: Testing is conducted and

acceptance tests are run on the implemented units (customer
involvement is crucial). The next task is holding a review
meeting, in which feedback on the usage of the assets is also
recorded and conveyed to the CAD team [15]. The
requirements, architecture, PL scope document, and
implementation units are then updated. For new or changed
requirements, relevant core assets are elicited with the help of
the core assets manager. PL extension is requested if
“Request-In-Retrospect” is selected. Finally, if there is a
product-specific requirement that has recently been
implemented as a core asset (as the result of a request for PL
extension), the product is re-instantiated so that it includes this
requirement as a core asset. The core assets manager ensures
that the re-instantiation is done completely.

Transitioning: After the support team is trained, it
prepares the training documents. The software product is
deployed into the user environment, and conversion is
applied. System testing is then conducted, and users are
trained.

3) Maintenance Sub-Process
This sub-process spans maintenance and post-mortem

activities in the phases explained below.

a) Support

Bug-fixes and new requirements are sent to the AE team.
The AE team sends the requests related to the core assets to
the CAD team: after applying the changes, the products that
include the changed assets are tested and re-instantiated so
that the changes are committed. Maintenance is performed via
repeating the development iterations.

163Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 175 / 267

b) Death

This phase is carried out when a system is not
maintainable anymore. Post-project activities are performed:
the support team and the senior manager perform the legal,
financial, and social activities related to closing the project.
Post-mortem activities are then conducted, and the lessons
learnt from the project are recorded for use in future projects.

V. EVALUATION

GMAP has been evaluated through two different
approaches, as explained in the following subsections.

A. Criteria-based Evaluation

As mentioned before, we have used the criteria introduced
in [2] as a basis for developing GMAP; in other words, these
criteria have helped us identify the deficiencies and the
strengths of previous APLE methodologies, which were then
used for constructing GMAP. These criteria can also be used
for evaluating GMAP to show that it does indeed address the
deficiencies of previous methodologies. The results of
evaluation based on criteria related to PLE characteristics are
presented in Table III, the results of evaluation based on a set
of general methodology-evaluation criteria are illustrated in
Table IV, and the results of evaluation based on criteria related
to agility characteristics are given in Table V. In all these
tables, results are presented for a set of existing methodologies
as well as GMAP, so that the results can be compared. In order
to produce the results, we searched each methodology for
mechanisms that satisfied each criterion. It should be noted
that due to lack of space, we have only included the major
criteria introduced in [2]. In these tables, “N/A” denotes “Not
relevant to the context or properties of the methodology”.

B. Evaluation by Instantiating the Proposed Method

To show that GMAP has the capability to be instantiated
into a concrete and practicable APLE methodology, we have
built a concrete method by instantiating GMAP. The concrete
methodology was developed through a PLE project at a major
Iranian utilities company. The Customer Management (CM)
system used by this company, specializing in purification and
distribution of water throughout the country, was the target of
this project. The first author worked for three months at this
company to help in performing the activities of the concrete
methodology, and also in producing its work products. The
project served as an effective testbed for improving and
validating the methodology in the field.

The company’s CM system (operated in most Iranian
cities) has certain features common to all the cities. In
addition, each city demands its own specific features. This
system has long been deemed suitable for development as a
product line; however, it has not yet been implemented as
such. The main problem is that the commonalities and

variabilities among the systems of different cities have not
been managed systematically; instead, a common system
encompassing the features needed in all the cities has been
developed. This has spawned other problems as well: 1) many
unusable parts exist for each city; developers try to fix this
problem at the code level, but this solution itself has resulted
in unreadable code; and 2) a nontrivial modification in the
system propagates throughout the whole system. These
problems have motivated the company’s CM system
supervisor to consider the systematic development of a
software product line. Since the PL and its instances need to
be developed rapidly, it was concluded that an APLE
approach would work best for the company. At the beginning
of this project, the first version of the concrete methodology
was developed by instantiating GMAP based on the project’s
initial requirements. The concrete methodology was then used
at the company, and was gradually configured to better fit the
company’s needs. At the end of the project, the CM system’s
manager reported that the concrete methodology had indeed
been capable of addressing their problems.

VI. CONCLUSION AND FUTURE WORK

APLE is a new paradigm that has emerged as the result of
the need for managing changes in requirements, reducing
time-to-market, promoting product quality, and decreasing
development costs in software organizations. This approach
can be applied to real projects only if adequate guidelines are
provided on the activities, people, and work-products
involved in the project. A software development methodology
can satisfy this need; thus, several attempts have been made to
propose practical APLE methodologies. After studying and
analyzing these methodologies, we have sensed the need for
an APLE methodology that possesses the strengths of existing
APLE methodologies while addressing their weaknesses. To
this aim, we have defined GMAP, a generic APLE
methodology that spans the activities defined in all the studied
APLE methodologies and also possesses the desirable features
of PLE and agility. This methodology is abstract enough to be
instantiated to produce a concrete bespoke methodology.
Although adequately abstract, it is detailed to the task level,
and provides suggestions as to ways for applying the tasks.
The results of criteria-based evaluation of GMAP show that it
satisfies the targeted APLE requirements and is indeed
superior to existing APLE methodologies.

We aim to continue this work by reporting on the GMAP
instance (concrete methodology) that was mentioned in
Section V, and also by exploring the potentials of GMAP in
addressing diverse APLE requirements. The research can be
furthered by applying GMAP to a variety of project situations
with different characteristics.

164Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 176 / 267

TABLE III. RESULTS OF EVALUATION BASED ON CRITERIA RELATED TO PLE CHARACTERISTICS

Criterion Possible Values

C
D

D
 [

4
]

d
e

S
o

u
za

 &
 V

il
a

in

[6
]

R
iP

L
E

-S
C

 [
7

]

D
ía

z
et

 a
l.

 [
3

]

A
-P

ro
-P

D

[1

0
]

G
h

a
n

a
m

 &
 M

a
u

re
r

2
0
0
8

 [
1
1

]

G
h

a
n

a
m

 &
 M

a
u

re
r

2
0
0
9

 [
1
3

]

G
h

a
n

a
m

 e
t

a
l.

 [
1

2
]

d
a

 S
il

v
a
 [

1
4
]

C
a

rb
o

n
 e

t
a
l.

 [
1
5

]

N
o

o
r

et
 a

l.
 [

1
6

]

G
M

A
P

Presence of PL-Specific Activities

Coverage of DE Activities

“S”: Scoping; “A”: Reference architecture;

“CA”: Core assets development.

A-

CA
A-CA S

A-

CA
N/A A-CA N/A

A-

CA
S N/A S

S- A-

CA

Coverage of AE Activities

“R”: Matching product requirements & core

requirements; “A”: Reference architecture

instantiation; “CA”: Core assets selection;
“V”: Binding of variation points to variants;

“P”: product-specific parts development.

N/A R-CA N/A

A-

CA-
V

CA-

P

R-

CA

R-

CA- P
N/A N/A

R-A-

CA-

V-P
N/A

R-A-

CA-V-

P

Product Line Characteristics

Extensibility of PL Scope Yes/No N/A Y Y Y Y Y Y Y Y Y Y Y

Production and Adherence to
Reference Architecture

1: Not produced; 2: Produced, but not
adhered to; 3: Produced, and adhered to.

2 2 N/A 3 1 1 1 3 N/A 3 N/A 3

Techniques for Performing PL-Specific Activities

Prescription of Specific Method for

Identifying Core Assets &
Commonalities/Variabilities (C/V)

Yes/No

N N Y N N/A Y N/A Y Y N/A Y Y

Prescription of Specific Method for

Documenting C/V

Yes/No
Y Y Y Y N/A Y N/A Y Y N/A N Y

TABLE IV. RESULTS OF EVALUATION BASED ON GENERAL CRITERIA FOR EVALUATING METHODOLOGIES

Criterion Possible Values

C
D

D
 [

4
]

d
e

S
o

u
za

 &
 V

il
a

in
 [

6
]

R
iP

L
E

-S
C

 [
7

]

D
ía

z
et

 a
l.

 [
3

]

A
-P

ro
-P

D

[1

0
]

G
h

a
n

a
m

 &
 M

a
u

re
r

2
0
0
8

 [
1
1

]

G
h

a
n

a
m

 &
 M

a
u

re
r

2
0
0
9

 [
1
3

]

G
h

a
n

a
m

 e
t

a
l.

 [
1

2
]

d
a

 S
il

v
a
 [

1
4
]

C
a

rb
o

n
 e

t
a
l.

 [
1
5

]

N
o

o
r

et
 a

l.
 [

1
6

]

G
M

A
P

Lifecycle

Coverage of Generic Lifecycle Phases “D”: Definition; “C”: Construction;

“M”: Maintenance
D-C D-C D

D-

C
D-C D-C D-C

D-

C
D C D

D-C-

M

Coverage of Design Activities Yes/No Y Y N/A Y N N N N N/A Y N/A Y

People

Definition of Roles and Their

Responsibilities

1: No; 2: Roles yes, responsibilities

no; 3: Roles and responsibilities

defined.

3 1 3 1 1 1 1 1 1 1 3 3

Usability

W
el

l-
d

ef
in

ed
n

es
s

Completeness of Methodology

Definition

“L”: Lifecycle; “A”: Activities;

“R”: Roles; “P”: Products;

“RL”: Rules;
“TP”: Techniques/Practices;

“U”: Umbrella Activities;
“ML”: Modeling Language. L

-A
-T

P
-R

-P
-U

-R
L

-

M
L

L
-A

 (
P

ar
ti

al
)-

P
T

-

P
-U

 (
P

ar
ti

al
)-

R
L

L
-A

-P
T

-R
-P

-U

(P
ar

ti
al

)-
R

L

L
-A

-P
-U

 (
P

ar
ti

al
)

L
-A

-P
T

-U

(P
ar

ti
al

)-
P

L
-A

-P
T

-P

L
-A

-P
T

-P

L
-A

-P
T

-P

L
-A

-P
T

-U

(P
ar

ti
al

)-
P

L
-A

-P
T

-U
 (

P
ar

ti
al

)-
P

L
-A

-P
T

-R
-U

(P
ar

ti
al

)-
P

L
--

T
P

-R
-P

-U
-R

L

Management of Definition

Complexity

Yes/No
Y Y Y N N N N N N N N Y

Attention to Detail in Definitions of

Phases/Tasks

Details provided for: 1: none;

2: some of the phases/tasks; 3: all

the phases/tasks

3 2 3 1 1 2 3 3 2 2 3 3

P
ro

ce
ss

M
an

ip
u

la
ti

o
n

Configurability of Process (at the
start of the project)

1: No; 2: Possible, but not addressed
explicitly; 3: Explicitly addressed 2 2 1 1 2 1 1 1 1 2 2 3

Flexibility of Process (while running

the project)

1: No; 2: Possible, but not addressed

explicitly; 3: Explicitly addressed 2 2 1 1 1 1 1 1 1 1 2 3

165Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 177 / 267

TABLE V. RESULTS OF EVALUATION BASED ON CRITERIA RELATED TO AGILITY CHARACTERISTICS

Criterion Possible Values

C
D

D
 [

4
]

d
e
 S

o
u

z
a
 &

V
il

a
in

 [
6

]

R
iP

L
E

-S
C

 [
7

]

D
ía

z
e
t

a
l.

 [
3

]

A
-P

r
o

-P
D

[1

0
]

G
h

a
n

a
m

 &

M
a

u
r
er

 2
0

0
8

 [
1

1
]

G
h

a
n

a
m

 &

M
a

u
r
er

 2
0

0
9

 [
1

3
]

G
h

a
n

a
m

 e
t

a
l.

[1
2

]

d
a

 S
il

v
a

 [
1
4

]

C
a

r
b

o
n

 e
t

a
l.

 [
1

5
]

N
o

o
r
 e

t
a
l.

 [
1

6
]

G
M

A
P

Attention to Customer

Support for Active User Involvement Yes/No Y N Y Y Y N Y Y Y Y Y Y

Support for Continuous Customer Feedback Yes/No N N Y Y Y N Y Y N Y N Y

Teams

Support for Self-Organizing Teams 1: Not discussed; 2: No; 3: Yes. 2 3 1 1 1 1 1 1 1 1 3 3

Support for Face-to-Face Conversation Yes/No N Y Y Y N Y N N Y Y Y Y

Product

Support for Continuous Integration Yes/No Y Y N/A N Y N Y Y N/A Y N/A Y

Process

Support for Iterative-Incremental Development Yes/No Y Y Y Y Y Y Y Y Y Y Y Y

Prescription of Common Agile Practices Yes/No Y Y N N Y Y Y Y Y Y Y Y

D
eg

re
e

o
f

A
g
il

it
y

Support for Rapid Development of Products 1: No; 2: To some extent; 3: Yes. 2 3 2 3 3 2 3 3 2 2 2 3

Support for Leanness Factors Yes/No Y Y N Y N N N Y N N Y Y

Support for Learning (from previous

iterations/projects)

1: No; 2: Yes, implicitly; 3: Yes,

explicitly.
2 3 1 1 1 1 1 1 2 2 1 Y

Support for Responsiveness (provision of

process feedback)

Yes/No
Y Y Y Y Y N N Y Y Y Y Y

REFERENCES

[1] G. K. Hanssen and T. E. Fægri, “Process fusion: An industrial
case study on agile software product line engineering,” Journal
of Systems and Software, vol. 81, no. 6, pp. 843–854, 2008.

[2] F. Farmahini Farahani and R. Ramsin, “Methodologies for
Agile Product Line Engineering: A Survey and Evaluation,”
Proc. International Conference on Intelligent Software
Methodologies, Tools, and Techniques, 2014, pp. 545–564.

[3] J. Díaz Fernández, J. Pérez Benedí, A. Yagüe Panadero, and J.
Garbajosa Sopeña, “Tailoring the Scrum Development Process
to Address Agile Product Line Engineering,” Proc. Jornadas de
Ingeniería del Software y base de Datos, 2011.

[4] X. Wang, “Towards an Agile Method for Building Software
Product Lines,” M.Sc. Thesis, University of York, UK, 2005.

[5] R. Ramsin and R. F. Paige, “Process-centered Review of Object
Oriented Software Development Methodologies,” ACM
Computing Surveys, vol. 40, no. 1, p. 3:1–89, 2008.

[6] D. S. de Souza and P. Vilain, “Selecting Agile Practices for
Developing Software Product Lines,” Proc. International
Conference on Software Engineering & Knowledge
Engineering, 2013, pp. 220–225.

[7] M. Balbino, E. S. de Almeida, and S. R. de Lemos Meira, “An
Agile Scoping Process for Software Product Lines,” Proc.
International Conference on Software Engineering &
Knowledge Engineering, 2011, pp. 717–722.

[8] A. Abouzekry and R. Hassan, “Software Product Line Agility,”
Proc. International Conference on Software Engineering
Advances, 2011, pp. 1–7.

[9] “The Agile Unified Process (AUP(.” [Online]. Available:
http://www.ambysoft.com/unifiedprocess/agileUP.html.
[Retrieved: August-2017].

[10] P. O’Leary, F. McCaffery, S. Thiel, and I. Richardson, “An
agile process model for product derivation in software product
line engineering,” Journal of Software: Evolution and Process,
vol. 24, no. 5, pp. 561–571, 2012.

[11] Y. Ghanam and F. Maurer, “An Iterative Model for Agile
Product Line Engineering,” Proc. International Software
Product Line Conference, 2008, pp. 377–384.

[12] Y. Ghanam, D. Andreychuk, and F. Maurer, “Reactive
Variability Management in Agile Software Development,”
Proc. Agile Conference, 2010, pp. 27–34.

[13] Y. Ghanam and F. Maurer, “Extreme product line engineering:
Managing variability and traceability via executable
specifications,” Proc. Agile Conference, 2009, pp. 41–48.

[14] I. F. da Silva, “An agile approach for software product lines
scoping,” Proc. International Software Product Line
Conference, 2012, pp. 225–228.

[15] R. Carbon, M. Lindvall, D. Muthig, and P. Costa, “Integrating
product line engineering and agile methods: Flexible design up-
front vs. incremental design,” Proc. International Workshop on
Agile Product Line Engineering, 2006, pp. 1–8.

[16] M. A. Noor, R. Rabiser, and P. Grünbacher, “Agile product line
planning: A collaborative approach and a case study,” Journal
of Systems and Software, vol. 81, no. 6, pp. 868–882, 2008.

[17] T. Vale et al., “SPLICE: A Lightweight Software Product Line
Development Process for Small and Medium Size Projects,”
Proc. Brazilian Symposium on Software Components,
Architectures and Reuse, 2014, pp. 42–52.

[18] F. van der Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action - The Best Industrial Practice in
Product Line Engineering. Springer, 2007.

[19] J. M. DeBaud and K. Schmid, “A systematic approach to derive
the scope of software product lines,” Proc. International
Conference on Software Engineering, 1999, pp. 34–43.

[20] H. Gomaa, Designing software product lines with UML: From
use cases to pattern-based software architecture. Addison-
Wesley, 2005.

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Carnegie Mellon University, 1990.

[22] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product
line engineering,” IEEE Software, vol. 19, no. 4, pp. 58–65,
2002.

[23] K. Schwaber and M. Beedle, Agile Software Development with
Scrum. Prentice Hall, 2001.

[24] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change, 2nd edition. Addison-Wesley, 2004.

166Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 178 / 267

A Benchmarking Criteria for the Evaluation of OLAP Tools

Fiaz Majeed
Department of Information Technology, University of Gujrat,

Gujrat, Pakistan.
Email: fiaz.majeed@uog.edu.pk

Abstract— Generating queries on Online Analytical Processing
(OLAP) tools for complex analysis is a difficult assignment for
the novice users. To compose accurate OLAP queries for
fulfilling demand, technical knowledge about schema and the
data is required. This deficiency can be covered by providing
an easy design for OLAP tool for the purpose of querying. In
this paper, a scheme is proposed for comparison of the OLAP
tools to identify easy and standardized aspects. For this
purpose, seven parameters have been used which are interface,
query, drill-down options, roll-up options, aggregation
function support, data access and performance. For
experimental analysis, two tools SQL Server and
MicroStrategy Express have been evaluated based on the
proposed parameters. The benefits and drawbacks of the
standardization of tools for non-technical users have been
identified.

Keywords-OLAP tool; evaluation criteria; parameters;
benchmark; standardize.

I. INTRODUCTION

The Online Analytical Processing (OLAP) comprises a
relational or multidimensional database intended to deliver
fast retrieval of multidimensional analysis and pre-
summarized data. The OLAP contains three fundamental
operations for results presentation including drill-down,
slicing & dicing, and roll-up. The drill-down operation
provides navigation towards details (upper to lower levels).
For example, the user may be interested to view the detail of
region’s sale in the form of individual products. By contrast,
roll-up operation consolidates the results (lower to upper
levels). For instance, individual products can be roll-up to
region’s sale. Further, slice and dice operation is used to
select data from the OLAP cube. The OLAP tools provide
these and many other functionalities. Most popular tools
include MicroStrategy Express, SQL Server, SAP business
object, Oracle, QlickView and Pentaho Business Intelligence
(BI).

To explore information by diverse angles, OLAP tools
are utilized extensively and vendors related to them claim
excellent performance. A number of tools are available
which have distinct characteristics. All tools have a different
way of responsiveness, the design of the interface, input
query and performance. To the best of our knowledge, there
is no benchmark to design an OLAP tool available. The users
face a problem in the selection of an appropriate tool due to
lacking standard. They cannot easily understand which
OLAP tool is suitable for their requirement. In other words, a
standard OLAP tool is needed to support novice users.

In this paper, a method has been formulated to identify
standardized aspects for the comparison of the OLAP tools.
For this purpose, seven parameters have been proposed
which are the interface, query, drill-down, roll-up,
aggregation function support, data access and performance.
This is the list of parameters available in all of the existing
tools. We have performed a comparative analysis of two
OLAP tools: SQL Server and MicroStrategy Express. The
experiments have been performed using the dataset
AdventureWorksDW. The comparison exhibits basically the
opportunities for non-technical users.

The paper is arranged as follows: detailed literature
survey is furnished in Section II. The assessment parameters
are introduced in Section III, while an experimental
evaluation has been incorporated in Section IV. Finally,
conclusions and future directions are given in Section V.

II. RELATED WORK

The OLAP supports for multi-dimensional complex
analysis on data warehouses for decision making [1]. To
compare OLAP tools, several features should be considered.
The features to evaluate the usefulness of OLAP are ease of
use, user-friendly, easy learning and easy to get information.
Seven features are used to measure the OLAP tool, which is:
visualizations, summarization, Navigation, query function,
Sophisticated analysis, Dimensionality, and performance [2].
An important feature that makes the design of OLAP tool
user friendly and easy to use is the interface. Visualization is
an important aspect of interface design.

A. Interface

Visualizations of statistical data need to present
relationship among data. Existing tools show isolated graphs
and do not provide support for the relationship in different
reports. A visual language named as CoDe is used to present
relationship among data in tabular form. The visualization is
performed in four phases: CoDe Modeling, OLAP operation
pattern definition, OLAP Operation and Report Visualization
[3]. Thus, graphs are an integral part of the interface so big
process graph refers to process-related partly unstructured
execution and heterogeneous data of large hybrid collections.
A set of methods and a framework are given for initiating
OLAP analytics which is called P-OLAP. The P-OLAP
introduces analytics over process execution data based on the
scalable graph. It is the extension of traditional OLAP
analytics [4].

Key Performance Indicators (KPI) are manually
integrated into scorecards and dashboards used by the
decision makers. Due to this, KPIs are not related to their

167Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 179 / 267

business objectives and strategy. To make the KPIs dynamic,
the modeling language Object Constraint Language (OCL) is
used to represent OLAP actions, which are then translated to
Multi-Dimensional eXpressions (MDX) query to be
executed on OLAP engine [5]. As OLAP tools visualize
results in the form of aggregations, drill-down up to
maximum detail is also the important feature of the interface.
Thus, the user may drill-down data to the maximum level
where maximum measures are to be returned. In such a case,
pivot table may not visualize data with full precision [6].

B. Aggregations

The aggregation operations are key to OLAP BI tools.
The OLAP tools perform several operations including roll-
up, drill-down slice and dice, ranking, selection and
computed attributes [1]. The OLAP operation “shrink”
balances data precision with the size of data cube via pivot
table. It combines similar data in a single slice (f-slice) for
the purpose of shrinking [6]. An aggregation operator has
been built for the text embedded in the tweets content based
on the Formal Concept Analysis (FCA) theory [7].

C. Performance

The selection of an appropriate server type plays a role in
the performance of query processing. The OLAP servers
generate aggregations for efficient query processing based on
dimensions. The servers are categorized as ROLAP,
MOLAP and Hybrid of ROLAP and MOLAP [1]. MOLAP
presents data in multi-dimensional arrays format while
ROLAP provides query processing on Relational databases
[2]. Near real-time BI reduces the time of acquisition of data
in operational sources and analyses on that data. Event
processing on streaming data is an application of near real-
time BI. Additionally, MapReduce paradigm can search in
schema-less input files in comparison to parallel database
approach. For enhanced BI performance, private clouds
provide more security. Currently, BI is being switched to
mobile devices as such devices are pervasive [8].

There are several advanced OLAP domains, which have
emerged recently. The Skalla system has been built, which
translates GMDJ operator into local site level plans. The
Packet header, flow level traffic statistics, and router
statistics can be analyzed effectively using OLAP. Heavy
traffic cannot be loaded into a central data warehouse, thus
local data warehouses on each site should be implemented to
avoid loss of data and for efficient execution of OLAP
queries. The Skalla performs optimization to minimize
synchronization traffic and local level executions [9]. The
tweet streams available in unstructured form are organized in
an OLAP cube for analytics using Time-Aware Fuzzy
Formal Concept Analysis theory. The microblog
summarization algorithm is introduced and it provides the
subset of the tweet that best represents the OLAP cube data
for the analytic purpose. The definition of the multi-
dimensional data model for the storage of tweet data streams
for enabling OLAP analysis is performed [7]. The AOLAP
maintains data stream’s aggregations by providing OLAP
queries in the form of approximate answers and maintains
them in smaller space on the primary memory. In the OLAP

cube, data summaries are stored related to each materialized
node which is performed by the proposed Piece-wise Linear
Approximation (PLA). To minimize overall querying error,
lattice nodes based optimization technique is proposed [10].

Based on the literature, it is clear that there is no
benchmark available to compare the existing tools. There is a
need to develop such a benchmark to standardize the design
and working of each tool to facilitate non-technical users.

III. ASSESSMENT PARAMETERS OF OLAP TOOLS

The evaluation criteria for OLAP tools contain seven
parameters which include interface, query, drill-down
options, roll-up options, aggregation function support, data
access and performance. The parameters are depicted in
Figure 1.

Figure 1. Evaluation criteria for the OLAP tools

For instance, User A wants to analyze his company’s
revenue with the revenue of his competitive companies. He
wants to choose a BI tool for this purpose, which can provide
him with a point and click environment to fulfill his demand.
He selects SQL Server to input a query, but it requires
training. Here the problem is that there should be a standard
available based on which each tool can be designed. Each
tool should provide similar easy query input mechanism for
novice users.

The OLAP tools can be compared based on following
seven parameters:

A. Interface

The interface is a fundamental source of communication
between the user and the system. If interface design is
adequate, the user can effortlessly interact with the system.
The interface is evaluated based on following features:
Design: The aspects of design that are necessary to be
considered are user understandability, first look impact of
front page, the size of everything which is shown, colors
effect, formal things to be used in designing, formatting of
text and objects, number of formats to display the results,
support of graphical results, and user understandability
about results.

168Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 180 / 267

User-friendly: The user-friendly feature of the interface can
be compared based on the sequence of steps understandable
by the user, user understanding, how the response is shown
at any step, and support with help and documentation.
Understandability at each step during any task, make no
confusion for the user, and user understandability at first
look.
Type: The interface is graphical or query based. The
graphical user interface is easy to use for novice users
whereas a query based interface is preferable for expert
users. Hybrid approach (a mixture of graphical and query
based) provide an advantage to both types of the users.
User type: There are commonly two types of users for
OLAP tools are available 1) novice user and 2) expert user.
Interface comparison of different tools can be performed
according to the facilities provided for each type of users
such as the use of interface at first time and support
available for the new user.
Visualizations: The interfaces are divided into three
categories which are text-based, visualization-based and
voice-based. The visualization-based interfaces provide
analysis in the form of plots, trees, and charts. The
comparison can be made based on easy to interpretable
results, understanding at first glance, a large volume of data
summarized in simple graphs.
Interactive: By this feature, user interaction at the front end
of the tool is measured. At how many levels, the user can
perform the task in an interactive way. The user finds a
correct answer of the query and he may correct query on the
basis of feedback provided by the system.
Complexity: The interface should have the capability to take
input complex query in its simplest form. It should visualize
complex OLAP analytics results in easy formats which may
be the mixture of text, visualizations and voice. Many
OLAP tools display simplified results on dashboards.

B. Query

The query is evaluated based on following features:

Format: It defines the format of query writing. There are
four common formats of query input that are Command-
based, Menu-based, Natural language-based, and Wizard-
based. The easiest formats for query input considered for
novice users are Menu-based, Natural language-based, and
Wizard-based.
Procedure: It is categorized as query input procedure and
results display procedure. The steps of query input are
simple and natural as commonly input on web or other
parallel interfaces. It should be according to previous
familiar interfaces. The display of results is converged to the
ease of understanding of results. The results must be
focused for the less technical users.
Drill-down options: The comparison can be made based on
summarization level of drill-down e.g. detailed level. How
drill-down facility is provided either point and clicking way
or another indirect way. If a user reaches to the detailed

level of drill-down, how much a tool provides backtracking
to roll-up levels?
Expertise required: This feature defines the type of users
utilizing the tool. How much time is required for a particular
user to achieve expertise of using the tool? For instance, the
novice user may get expertise after 10 sessions span one-
hour long.
Training required: Did any type of training requirements to
use the tool? Further, if training is required then what level
of training is demanded to learn and use the tool
proficiently. Which training options are available? Few
tools provide a manual for training while a professional
training is necessary to utilize other tools.

C. Drill-down options

Support: According to support feature, the tools are
compared based on whether drill-down support is available
to navigate the results. Most of the tools provide this feature
available in their interface whereas few of the tools do not
provide drill-down options.
Options: How much depth and breadth level of navigation
are provided? The tool provides drill-down support in one of
the visualizations such as graphs, charts, tables or a mixture
of them. Does drill-down performed on pre-built
aggregations or run-time aggregations may be generated
upon requirement?
Point and click: How drill-down facility is provided both
point and clicking way or another indirect way? Does the
tool expand a summarized value in the tree format or show
detailed data in another format? If the user reaches to the
detailed level of drill-down, how much a tool provides
backtracking to roll-up levels?
Grouping different way: Is the grouping of data provided
at run-time? How many attributes can be added in a group?
Which grouping functions are supported by the tool?
Complexity: How drill-down results are presented to the
user? Whether complex results are presented in simplest
graphical formats? Does track of drill-down is given in
some tree-like format to memorize the forward and
backward tracking and switching to any other level of
hierarchy?

D. Roll-up options

Support: In this feature, the tools are compared based on
whether roll-up support is available to navigate the results.
Most of the tools provide this feature available in their
interface whereas few of the tools do not provide roll-up
options.
Options: How much depth and breadth level of navigation
are provided? The tool provides roll-up support in one of the
visualizations such as graphs, charts and tables or the
mixture of them. Does roll-up performed on pre-built
aggregations or run-time aggregations may be generated
upon requirement.
Point and click: How roll-up facility is provided either
point and clicking way or another indirect way? Does the

169Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 181 / 267

tool collapse a detailed value in the tree format or show
summarized data in another format? If a user reaches the
upper level of roll-up, how much a tool provides
backtracking to drill-down levels?
Grouping different way: Does grouping of data is
provided at run-time? How many attributes can be added in
a group? Which grouping functions are supported by the
tool?
Dimensions selection: How many dimensions can be
selected at a time for grouping the data? How many
dimensions can be used by default?

E. Aggregation function support

The OLAP servers use Materialized Views (MVs). If a
particular MV is not found, then minimal MVs are further
roll-up to generate required summarization level. The OLAP
servers maintain data aggregated with several aggregation
functions. At query processing time, the system selects
desired MVs, aggregated data computed with the use of
particular aggregation function. Furthermore, user query
specifies the aggregation level with grouping attributes.
These maintain aggregated data in specific structures to
efficiently retrieve the results. The structures are relational
and multi-dimensional etc. The tools can be compared based
on aggregation functions supported by these tools.

F. Data access

In this, tools are analyzed by data type supported by
them. The support of a number of fact tables, dimensions and
measures are also verified.

G. Performance

The performance is measured by analyzing the response
time by input queries on the tools.

IV. EXPERIMENTAL EVALUATION

For experimental analysis, two OLAP tools SQL Server
and MicroStrategy Express have been taken. These tools are
evaluated with respect to interface, query, drill-down
options, roll-up options, aggregation function support, data
access and performance.

SQL Server helps to build secure, reliable and scalable
enterprise applications for the organizations. It also supports
to deploy and maintain the applications. It provides
analytical services to build data warehouses and the OLAP
applications. It supports relational, multi-dimensional and
hybrid data manipulations and provides facilities for
complex analysis. The OLAP analytics has been
successfully provided to the organizations using the SQL
Server.

MicroStrategy Express facilitates secure and twenty times
faster access to business data. There is no expert help
needed, no data modeling, and no SQL scripts required. Get
business insights quickly with interactive dashboards, pixel-
perfect documents, and data visualizations.

A. Comparison of Tools

We analyzed these tools with respect to an interface,
query writing, drill-down options, roll-up options,
aggregation function support, data access and performance
point of view. A survey has been conducted for the
evaluation of both tools from 150 users. We are able to get
different ideas of users about query-ability, performance, and
interface point of view based on the questionnaire. The
survey is comprised of three types of users which are
categorized based on their level of expertise:

• Novice user
• Average user
• Professional user

Different type of user gave response according to their
understanding. The professional user analyzes the tools
according to their own needs. Average users analyze the
tools according to their views and novice user analyzes the
tools according to their understanding. The results gained for
interface parameter are given in Table 1. The score is
calculated in the range between 0 and 1. The response of
each user is taken and the score is normalized within the
specified range for each feature.

TABLE 1. RESULTS FOR THE INTERFACE PARAMETER

Ser.

Features SQL Server Micro Strategy
Express

01 Design Good(0.64) Very Good(0.81)
02 User-friendly Yes(0.63) Yes(0.83)
03 Type GUI (Desktop)(0.9) GUI (Web)(0.7)
04 User type Known User(0.50) Novice(0.77)
05 Graph support Yes(0.5) Yes(0.83)
06 Understanding Yes(0.64) Yes(0.82)
07 Interactive Yes(0.73) Yes(0.88)
08 Complexity Yes(0.83) No(0.63)
09 Ease of query

input
Yes(0.73) Yes(0.73)

10 Format of result Grid(0.8) Multiple
format(0.9)

Similarly, the survey results have been calculated for
each parameter. Based on the average score for both OLAP
tools, the comparative analysis is depicted in Figure 2. It
presents the comparative analysis of both tools based on
seven parameters. According to this, both tools show
following results:
Interface design: There are better features in MicroStrategy
Express with respect to the interface. The design is more
understandable, user friendly and simple of the
MicroStrategy Express. Further, it is easy for novice users
and having availability of additional options for
visualizations.
Query: According to query parameter, SQL Server
outperforms but requires training and expertise to use it.
Whereas, from the structural point of view MicroStrategy
Express is easier in query input.

170Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 182 / 267

Figure 2. Comparison results of SQL Server and MicroStrategy Express

Drill-Down: SQL Server performs well for drill-down
parameter and provides better options in comparison to the
MicroStrategy Express. The SQL Server has point and click
environment having descriptions in detailed level while
MicroStrategy Express gives initial level drill-down options.
Roll-up: SQL Server provides additional roll-up options.
For further aggregations, it delivers complete choices.
Overall, SQL Server is best with respect to the roll-up
options.
Aggregation function support: The average score of the
MicroStrategy Express is 0.87 which is 0.03 better than the
SQL Server. It replies quickly in the calculation of the
aggregation functions.
Data access: From all point of views, this parameter is
considered best in SQL Server. SQL Server supports the
additional quantity of measures, data volume and
dimensions. One of the deficiencies of the MicroStrategy
Express is that it supports only excel-based datasets.
Performance: Performance is calculated based on response
time in seconds. The MicroStrategy Express outperforms in
comparison to the SQL Server.

V. CONCLUSIONS AND FUTURE WORK

In this paper, criteria for the evaluation of tools have
been proposed. Seven parameters include an interface, query
writing, drill-down options, roll-up options, aggregation
function support, data access and performance. For
experimental evaluation, comparative analysis of two tools
i.e., MicroStrategy Express and SQL Server has been
performed. The results show that MicroStrategy Express
outperforms in interface and aggregation method whereas
input query is easy in comparison to the SQL Server. The
SQL Server is more attractive along drill-down options, roll-
up options and data access. The MicroStrategy Express only
supports to excel-based datasets and does not compatible
with the large databases. Similarly, any tool can be assessed
based on seven parameters and variation in them can be
eliminated for standardization purpose. As future work, it is
required to implement a standardized tool for non-technical
users for training purpose. After getting training of such a
tool, the user will be able to use any OLAP tool.

REFERENCES

[1] S. Chaudhuri and U. Dayal, “An Overview of Data
Warehouse and OLAP Technology,” Sigmod Rec., vol.
26, no. 1, pp. 65–74, 1997.

[2] N. Gorla, “Features to consider in a data warehousing
system,” Communications of the ACM, vol. 46, no. 11, pp.
111–115, 2003.

[3] M. Risi, M. I. Sessa, M. Tucci, and G. Tortora, “CoDe
modeling of graph composition for data warehouse report
visualization,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 3, pp. 563–576, 2014.

[4] S. B. B. Benatallah and H. R. Motahari-nezhad, “Scalable
graph-based OLAP analytics over process,” Distributed
and Parallel Databases, pp. 379–423, 2014.

[5] A. Maté, J. Trujillo, and J. Mylopoulos, “Specification
and derivation of key performance indicators for business
analytics: A semantic approach,” Data Knowl. Eng., pp.
30–49, 2016.

[6] M. Golfarelli, S. Graziani, and S. Rizzi, “Data &
Knowledge Engineering Shrink : An OLAP operation for
balancing precision and size of pivot tables,” DATAK, vol.
93, pp. 19–41, 2014.

[7] A. Cuzzocrea, C. De Maio, and G. Fenza, “OLAP
Analysis of Multidimensional Tweet Streams for
Supporting Advanced Analytics,” pp. 992–999, 2016.

[8] S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview
of business intelligence technology,” Commun. ACM, vol.
54, no. 8, p. 88-98, 2011.

[9] M. Akinde and T. Johnson, “Efficient OLAP Query
Processing in Distributed Data Warehouses Michael B ¨,”
Data Eng., vol. 32, no. 4, pp. 6382–6382, 2002.

[10] S. A. S. B and H. Kitagawa, “Approximate OLAP on
Sustained Data Streams,” vol. 1, pp. 102–118, 2017.

171Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 183 / 267

A Precondition Calculus for
Correct-by-Construction Graph Transformations

Amani Makhlouf, Christian Percebois, Hanh Nhi Tran

IRIT, University of Toulouse
Toulouse, France

Email: {Amani.Makhlouf | Christian.Percebois | Hanh-Nhi.Tran}@irit.fr

Abstract—We aim at assisting developers to write, in a Hoare
style, provably correct graph transformations expressed in the
ALCQ Description Logic. Given a postcondition and a transfor-
mation rule, we compute the weakest precondition for developers.
However, the size and quality of this formula may be complex
and hard to grasp. We seek to reduce the weakest precondition’s
complexness by a static analysis based on an alias calculus. The
refined precondition is presented to the developer in terms of
alternative formulae, each one specifying a potential matching
of the source graph. The developer chooses then the formulae
that correspond to his intention to obtain finally a correct-by-
construction Hoare triple.

Keywords–Graph transformation; Description Logics; weakest
precondition calculus; static analysis; alias calculus.

I. INTRODUCTION

All approaches applying production rules to a graph require
to implement a binary relation between a source graph and a
target graph. In the theory of algebraic graph transformations,
Habel and Pennemann [1] defined nested graph conditions as a
graphical and logical formalism to specify graph constraints by
explicitly making use of graphs and graph morphisms. Nested
conditions have the same expressive power as Courcelle’s
first-order graph logic [1][2][3]. However, they need to be
derived into specific inference rules in order to be proved
in a specific theorem-prover that suits them [4][5]. Moreover,
this transformation requires the proof of a sound and complete
proof system for reasoning in the proposed logic.

Another way to express and reason about graph properties
is to directly encode graphs in terms of some existing logic
[6]. This solution leads to consider connections between graph
constraints and first-order graph formulae. Adopting this ap-
proach, we define graphs axiomatically by ALCQ Description
Logic (DL) predicates [7] and manipulate them with specific
statements. In this way, we designed a non-standard imperative
programming language named Small-tALC dedicated to trans-
form labeled directed graphs. Note that ALC is prototypical
for DLs.

Despite the above differences from algebraic graph trans-
formations, we point out the common idea to use satisfiability
solvers to prove rules’correctness. This technique requires to
assign a predicate transformer to a rule in order to compute
the rule’s weakest precondition. The setup is rather traditional:
given a Hoare triple {P}S{Q}, we compute the weakest
(liberal) precondition wp(S,Q) of the rule transformation
statements S with respect to the postcondition Q, and then
verify the implication P ⇒ wp(S,Q). The correctness of

the rule is proved by a dedicated tableau reasoning, which is
sound, complete and which results in a counter-example when
a failure occurs.

Since writing complete and correct specifications may not
be easy for novice developers, we aim to assist them in
achieving provably correct transformations [8]. In this context,
we propose a static analysis of the weakest precondition based
on an alias calculus in order to suggest precondition formulae
that are easier to understand but still ensuring the correctness
of the Hoare-triple. The result is presented to developers in
a disjunctive normal form. Each conjunction of positive and
negative literals specifies a potential matching of the source
graph. By letting developers choose a conjunction as a premise
that reflects the rule’s intention, our approach can filter and
reduce some combinatorial issues.

In this paper, Section II first defines logic-based formulae to
annotate pre- and postconditions of a transformation rule. This
choice yields manageable proof obligations in a Hoare’s style
for rules’correctness. Then, we introduce in Section III Small-
tALC atomic statements that manipulate graph structures. Each
statement is characterized by a weakest precondition with re-
spect to a given postcondition. On the basis of an alias calculus
that is presented in Section IV, we show in Section V how to
reduce some combinatorial issues while ensuring the program
correctness by finely analyzing the weakest precondition. An
illustrative example is presented in Section VI. We finally give
some discussions on related work in Section VII and wrap
up the paper with a conclusion and possible improvements in
Section VIII.

II. LOGIC-BASED CONDITIONS

Slightly diverged from the standard approach, we choose
a set-theoretic approach for our transformation system [9].
The basic idea is to specify sets of nodes and edges of
a subgraph using a fragment of first-order logic. It turns
out that replacing graph patterns by graph formulae yields
manageable proof obligations for rules’correctness in a Hoare
style {P}S{Q} [6]. A precondition formula P designates
a subgraph matching a substructure that should exist in the
source graph. The postcondition Q requires the existence of
the subgraph represented by Q in the target graph. For instance,
consider a rule requiring that: (1) x must be a node (individual)
not connected by the relation (role) R to a node y; (2) y
is of class (concept) C; (3) x is linked to at most three
successors (qualified number of restrictions) of class C via

172Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 184 / 267

R. This precondition can be expressed by the logic formula
x ¬R y ∧ y : C ∧ x : (≤ 3 R C).

At this point, readers familiar with Description Logics
(DLs) may recognize a DL formula. Labeled directed graphs
can be directly modeled by entities of DLs, a family of logics
for modeling and reasoning about relationships in a domain
of interest [10]. Most DLs are decidable fragments of first-
order logic. They are organized around three kinds of entities:
individuals, roles and concepts. Individuals are constants in
the domain, roles are binary relations between individuals
and concepts are sets of individuals. Applied to our graphs,
individuals are nodes labeled with concepts and roles are
edges. Accordingly, pre- and post-assertions are interpreted
as graphs by using unary predicates for nodes and binary
predicates for edges. The correctness of a graph transformation
rule is checked by assigning to each of its statements a
predicate transformer in order to compute the corresponding
weakest precondition.

To design our own experimental graph transformation
language, we chose the ALCQ logic, an extension of the
standard DL Attributive Language with Complements (ALC)
[11], which allows qualifying number restrictions on concepts
(Q). ALCQ is based on a three-tier framework: concepts, facts
and formulae. The concept level enables to determine classes
of individuals (Ø, C,¬C,C1 ∪ C2 and C1 ∩ C2). The fact
level makes assertions about individuals owned by a concept
(i : C, i : ¬C, i : (≤ n R C) and i : (≥ n R C)), or
involved in a role (i R j and i ¬R j). The third level is about
formulae defined by a Boolean combination of ALCQ facts
(f,¬f, f1 ∧ f2 and f1 ∨ f2).

Figure 1 depicts a model (graph) satisfying the previous
precondition x ¬R y ∧ y : C ∧ x : (≤ 3 R C). In this
graph, the white circles designate the nodes variables x and
y manipulated by the formula. Nodes variables refer (by a
dotted edge) to real nodes represented by black circles. The
« » node outlines a concept labeled with C. Note that the
subgraph having two anonymous nodes each one outfitted with
an incoming edge from x and an outgoing edge to the concept
C is a model which checks the fact x : (≤ 3 R C).

Figure 1. Model satisfying the precondition
x ¬R y ∧ y : C ∧ x : (≤ 3 R C)

Our formulae contain free variables that assign references
to nodes in a graph. Equality and inequality assertions can be
used to define constraints on the value of these variables. If x
and y are node variables, x = y means that x and y refer to
the same node and x 6= y means that x and y are distinct. The
inequality relationship enforces injective graph morphisms.

III. THE SMALL-TALC LANGUAGE

TheALCQ formulae presented in the previous section have
been plugged into our Small-tALC imperative language and

used in atomic transformation actions on nodes (individuals)
and edges (roles), as well as in traditional control-flow con-
structs as loops (while) and conditions (if...then...else...). In
the transformation code, statements manipulate node variables
which are bound to the host graph’s nodes during the trans-
formation’s execution.

We have defined five atomic Small-tALC statements ac-
cording to the following grammar where i and j are node
variables, C is a concept name, R is a role name, F is an
ALCQ formula and v is a list of node variables:

atomic_statement ::=
add(i : C) (node labeling)
| delete(i : C) (node unlabeling)
| add(i R j) (edge labeling)
| delete(i R j) (edge unlabeling)
| select v with F (assignment)

The first four statements modify the graph structure by
changing the labeling of nodes and edges. Note that since we
consider a set-theoretic approach, the statements add(i : C)
and add(i R j) have no effects if i belongs to the set C
and (i, j) to R respectively. Hence, no parallel edges with the
same label are allowed. An original construct is the select
statement that non-deterministically binds node variables to
nodes in the subgraph that satisfies a logic formula. This
assignment is used to handle the selection of specific nodes
where the transformations are requested to occur. For instance,
select i with i : C selects a node labeled with C. If the
selection is satisfied the execution continues normally with the
value of the node variable i. Otherwise, the execution meets
an error situation.

A Small-tALC program consists of a sequence of trans-
formation rules. A rule is structured into three parts: a pre-
condition, the transformation code (a sequence of statements)
and a postcondition. We illustrate in Figure 2 an example of
a transformation rule written in Small-tALC. The rule first
selects a node n of concept A that is R-linked to a. Then, it
deletes this link and removes a from the concept A.

pre: (a : A) ∧ a : (≥ 3 R A);
select n with (a R n) ∧ (n : A)
delete(a R n);
delete(a : A);
post: (a : ¬A) ∧ a : (≥ 2 R A);

Figure 2. Example of a Small-tALC rule

We aim at using a Hoare-like calculus to prove that Small-
tALC graph programs are correct. This verification process
is based on a weakest (liberal) precondition (wp) calculus
[12]. Each Small-tALC statement S is assigned to a predicate
transformer yielding an ALCQ formula wp(S,Q) assuming
the postcondition Q. The correctness of a program prg with
respect to Q is established by proving that the given precon-
dition P implies the weakest precondition: every model that
satisfies P also satisfies wp(prg,Q). Weakest preconditions of
Small-tALC statements are given in Figure 3.

The weakest precondition calculus computes predicates
which are not closed under substitutions with respect to

173Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 185 / 267

wp(add (i : C), Q) = Q[C + i/C]
wp(delete (i : C), Q) = Q[C − i/C]
wp(add (i R j), Q) = Q[R+ (i, j)/R]
wp(delete (i R j), Q) = Q[R− (i, j)/R]
wp(select v with F,Q) = ∀v(F ⇒ Q)

Figure 3. Small-tALC weakest preconditions

ALCQ. To resolve this situation, substitutions are consid-
ered as constructors and should be eliminated. For instance,
wp(add(i : C), x : C) = x : C [C + i/C] = x : (C + i) = x :
C ∨ x = i.

The conventional precondition calculus presented above
does not take into account particular situations of a transforma-
tion program and thus may result in a complex precondition.
In the following sections, we look at how the precondition’s
formula can be improved to be more specific and simple on
the basis of an alias calculus.

IV. ALIAS CALCULUS

The principle of alias calculus was proposed by Bertrand
Meyer in order to decide whether two reference expressions
appearing in a program might, during some execution, have the
same value, meaning that the associated references are attached
to the same object [13].

Since our rewriting system allows non-injective mor-
phisms, two or more node variables may reference to the same
node in a graph. On the other hand, a node variable can be
assigned to a random node of the graph. This is one reason why
a Small-tALC formula can be represented by several graph
patterns. For example, Figure 4 shows two potential models
satisfying the formula x : C ∧ i R j. In Figure 4a, i and j
refer to the same node. In 4b, i and j are different but i and
x are combined.

(a) i = j, i 6= x (b) i 6= j, i = x

Figure 4. Example of models satisfying the formula x : C ∧ i R j

In this regard, for a transformation program, we apply an
alias calculus to determine the node variables that can never
refer to the same node. Discerning such specific circumstances
helps to discard later unsatisfied subformulae of the weakest
precondition. Thus, our method consists in assigning to each
node variable x, a set of other node variables that may reference
to the same node in the graph as x. We identify four atomic
conditions in which two individuals x and y can never refer to
the same node in the graph:

• x 6= y

• ∃C /x : C ∧ y : ¬C
• ∃R.∃z /x R z ∧ y ¬R z

• ∃R.∃z /z R x ∧ z ¬R y

The first case (x 6= y) states that x and y are naturally
distinct so they can never be assigned to the same node. The
second one asserts that x and y belong to two complement
subsets C and ¬C. The same applies to the last two cases
where the nodes connected by R and ¬R refer to two disjoint
subsets R and ¬R.

For each of the above four conditions, x and y are said
to be non-possibly equivalent nodes. We note this relation by
x 6' y. As a result we assert that x 6' y ⇒ x 6= y. However, no
conclusion can be drawn from the possibly equivalent relation
x ' y.

Consider, as a simple example, the following formula that
is presented in the disjunctive normal form: (x = y∧x R y)∨
(x : C ∧ x ¬R y), and suppose that a static analysis deduces
from the code that x and y are non-possibly equivalent, which
means that x 6= y. As a result, the initial formula can be
reduced to x : C∧x ¬R y because the first conjunction x = y∧
x R y can never be true in this case. In the section that follows,
we show how this calculus helps in reducing the complexness
of the weakest precondition.

V. PRECONDITION EXTRACTION

To formally verify the correctness of a Small-tALC graph
transformation, besides the code, the program’s pre- and post-
conditions must be properly specified. This task may not be
easy for novice developers, so a suggestion of a valid precon-
dition that corresponds to a given code and a postcondition
would be useful to them.

Since the computed weakest precondition is often very
complex and hard to comprehend, we propose a finer static
analysis on the basis of the alias calculus of the program to
achieve a simpler precondition. The resulting precondition P
is presented in a disjunctive normal form (DNF) where each
conjunction of P can be considered as a valid precondition
on its own. The analysis consists first in converting the
postcondition Q to DNF i.e., Q = ∨Qi where Qi = ∧qj is a
conjunction of facts, then calculating for each statement and
for each conjunction Qi the weakest precondition. This process
maintains correctness because wp(S,Q1) ∨ wp(S,Q2) ⇒
wp(S,Q1 ∨ Q2). In each and every step, the formula of the
wp(S,Qi) may be filtered by discarding subformulae accord-
ing to the identified non-possibly equivalent node variables. A
precondition P is obtained such that P ⇒ wp(prg,Q), which
makes the transformation program prg correct. This process
is applied to add and delete statements as detailed in Section
V-1. Regarding the select statement, wp is reduced differently
as presented later in Section V-2.

1) add and delete statements:
Let us consider first the add(i : C) statement. Its weakest
precondition with respect to the postcondition x : C is x :
C ∨x = i, which means that either the node x was already of
concept C before adding i to C, or x and i are equal. Knowing
that x and i are non-possibly equivalent, it can be stated that
x 6= i, and so the weakest precondition can be reduced to the
first subformula x : C of the disjunction.

A more glaring example is reducing the weakest pre-
condition of the add(i R j) statement with respect to the
postcondition Q = x : (≤ n R C) which indicates that
there are at most n edges labeled R outgoing from the node
x to nodes of concept C. Adding an R-edge between i and

174Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 186 / 267

TABLE I. WEAKEST PRECONDITION’S FILTERING FOR THE add(i : C) STATEMENT

Statement Identified fact wp Condition Precondition

add(i : C)

x : C x : C ∨ x = i x 6' i x : C

x : ¬C x : ¬C ∧ x 6= i x 6' i x : ¬C

x : (≤ n R C)

(x R i ∧ i : ¬C ∧ x : (≤ (n− 1) R C))

∨ (x ¬R i ∧ x : (≤ n R C))

∨ (i : C ∧ x : (≤ n R C))

∨ (x : (≤ (n− 1) R C))

x ¬R i x : (≤ n R C)

TABLE II. WEAKEST PRECONDITION’S FILTERING FOR THE add(i R j) STATEMENT

Statement Identified fact wp Condition Precondition

add(i R j)

x R y (x = i ∧ y = j) ∨ x R y x 6' i ∨ y 6' j x R y

x ¬R y (x 6= i ∨ y 6= j) ∧ (x ¬R y) x 6' i ∨ y 6' j x ¬R y

x : (≤ n R C)

(x = i ∧ j : C ∧ i ¬R j ∧ x : (≤ (n− 1) R C))

∨ (x 6= i ∧ x : (≤ n R C))

∨ (j : ¬C ∧ x : (≤ n R C))

∨ (i R j ∧ x : (≤ n R C))

∨ (x : (≤ (n− 1) R C))

x 6' i ∨ j : ¬C x : (≤ n R C)

j may have a direct impact on Q regarding the concept of j,
the existence of a relation between i and j and the equality
between i and x. Hence, wp(add(i R j), x : (≤ n R C)) =

(x = i ∧ j : C ∧ i ¬R j ∧ x : (≤ (n− 1) R C))

∨ (x 6= i ∧ x : (≤ n R C))

∨ (j : ¬C ∧ x : (≤ n R C))

∨ (i R j ∧ x : (≤ n R C))

∨ (x : (≤ (n− 1) R C))

Knowing that x 6' i or j : ¬C, the first conjunction x =
i ∧ j : C ∧ i ¬R j ∧ x : (≤ (n−1) R C) can be discarded
as it will never be satisfied in this case. Furthermore, the whole
formula of the wp can be reduced to x : (≤ n R C) according
to the second and third conjunction which indicates that the
number of restrictions remains unchanged in case one of these
two conditions is satisfied.

We illustrated how to reduce the wp with respect to a
postcondition composed of a single fact. In case of a postcon-
dition consisting of a conjunction of facts, only the facts that
manipulate the same concepts and roles given in the statement
parameters are identified as a first step. For example, adding
an instance to a concept (add(i : C) results in considering
in the given postcondition only the facts that manipulate this
concept (x : C, x : ¬C, x : (≤ n R C)).

Tables I and II represent the preconditions calculated by our
static analyzer for the statement add(i : C) and add(i R j)
respectively. For each statement s, we show in the second
column the facts that should be identified in the postcondition
to derive a precondition. The third column shows the standard
weakest precondition wp(s, f) of the statement s with respect
to an identified fact f . To simplify this formula, we present
in the fourth column the conditions that allow to discard
some conjunctive clauses of the wp. The resulting formula
is presented in the last column.

Consider the first row of the Table II. If a fact x R y
is identified within the postcondition during calculation, we
look for simplifying wp(add(i R j), x R y) = (x = i ∧ y =
j)∨x R y. If the alias calculus asserts that at least one of the
conditions x 6' i or y 6' j is true, wp is reduced to x R y.

As observed in Tables I and II, many complex disjunctions
in the wp can be reduced to only one conjunction on the basis
of a condition calculated by the alias calculus or a condition
given explicitly in the postcondition. Note that the results of
the delete(i : C) and delete(i R j) statements are similar to the
add statements.

2) The select statement:
So far, the static analysis transforms the predicate Q into a new
predicate P regarding statements already presented. However,
it operates differently when it comes to the select statement
where wp(select v with F,Q) = ∀v (F ⇒ Q). The weakest
precondition here involves two formulae that may be complex:
F given by the select, and the postcondition Q. Consequently,
the implication F ⇒ Q makes the wp more obscure for the
developer. In this case, the static analyzer simplifies the wp by
eliminating this implication as further detailed below.

For each conjunction Qi of the postcondition Q, the
static analysis isolates first the facts that manipulate the node
variables v of the select statement. Let Qiv be the conjunctive
formula of these identified facts, and Qiv′ the conjunctive
formula of the others facts, so that Qi = Qiv ∧ Qiv′ . For
example, given a formula Q1 = x R y∧y : C and the statement
select x with x : C, we have Q1v = x R y and Q1v′ = y : C.

Then, the static analysis checks, via our logic formula
evaluator, if the implication ∀v (F ⇒ Qiv) holds. If so, the
precondition wp(select v with F,Qi) = ∀v (F ⇒ Qi) is re-
duced to Qi without affecting the validity of the Hoare triple as
Qi ⇒ wp(select v with F,Qi). Conversely, the non-validity
of the implication ∀v (F ⇒ Qiv) results in transforming Qi
to the predicate false (⊥) so that nothing can be concluded

175Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 187 / 267

about the transformation correctness. This situation is meant
to warn the developer that there are inconsistencies in his
transformation between the select statement and the predicate
formula Q. The two presented cases are given in Table III.

TABLE III. REDUCING THE WP OF THE select STATEMENT

Statement Postcondition wp Condition Precondition

select v with F Qi ∀v (F ⇒ Qi)
∀v (F ⇒ Qiv) Qi

∀v (F 6⇒ Qiv) ⊥

We presented how the static analyzer filters the weakest
precondition of a statement with respect to each conjunction
Qi = ∧qj of Q where Q = ∨Qi. Hence, the final result of
the precondition will be presented as a DNF formula too that
expresses different possible alternatives. Each alternative rep-
resents a conjunction of facts, constituting a graph that matches
a subgraph of the source graph on which the transformation
rule is applied.

We filter the weakest precondition by discarding conjunc-
tive clauses that are invalid. This reduction leads to a precon-
dition P stronger than the weakest precondition wp(S,Q). In
particular, when two node variables are non-possibly equiva-
lent, a deductive reasoning is carried out by applying equiv-
alence and implication connectives between P and wp(S,Q).
We adopt a similar deduction for a node variable belonging
to a concept complement and for a role complement. Using
these deductions and the well-behaved wp properties, such as
distributivity of conjunction and disjunction, we construct the
formula P , which satisfies the implication P ⇒ wp(S,Q) so
that the triple {P}S{Q} is always correct-by-construction.

VI. EXAMPLE

Using the static analyzer to suggest a precondition formula
in the disjunctive normal form, the developer can select the
conjunctions that reflect his intention. He can then update his
transformation code or refine his specification by injecting into
them the facts of the chosen conjunctions.

Consider as an example the transformation code and the
postcondition given in Figure 5. The first statement adds a
node y to the concept C. The second one adds an R-edge
between nodes x and y. The postcondition asserts that x has
at most three R-successors to nodes of concept C, and that y
belongs to C.

add(y : C);
add(x R y);
post: x : (≤ 3 R C) ∧ (y : C);

Figure 5. Example of an initial code and postcondition

To achieve the given postcondition, a precondition calculus
is done in two stages: the first to extract a precondition P
with respect to the statement add(x R y) and the given
postcondition, the second to extract a precondition with respect
to the statement add(y : C) and P , as wp(s1; s2, Q) =
wp(s1, wp(s2, Q)). Consequently, the static analyzer extracts
seven possible conjunctions as a precondition:

x : (≤ 1 R C) (1)

y : C ∧ x : (≤ 2 R C) (2)

x R y ∧ x : (≤ 2 R C) (3)

x ¬R y ∧ x : (≤ 2 R C) (4)

x ¬R y ∧ y : C ∧ x : (≤ 2 R C) (5)

x R y ∧ y : ¬C ∧ x : (≤ 2 R C) (6)

x R y ∧ y : C ∧ x : (≤ 3 R C) (7)

Each of these conjunctions is a potential precondition that
yields a correct Hoare triple. The first formula is the weakest
one. It does not take into account neither the concept of y nor
the existence of an R-edge between x and y. On the contrary,
the other conjunctions are stronger formulae specifying the
mentioned properties of x and y. For example, the formula (7)
indicates that there exists an R-edge between x and y and that
y is of concept C. In this case, both of the two statements
of the code have no effects, and so the number of restrictions
remains 3 in the fact x : (≤ 3 R C). The various levels of
formulae’s strength gives the choice to the developer to specify
the constraints of rule’s applicability in the precondition as
much as he wishes to.

Suppose that the developer focuses on the non-existence
of an R-edge between x and y before the transformation as it
is indicated in the formulae (4) and (5). Thus, he decides to
inject the fact x ¬R y into the transformation by adding the
statement select y with x ¬R y at the beginning of his code.
By relaunching the static analyzer, the number of conjunctions
extracted decreases from seven to one conjunction which is
x : (≤ 2 R C). At this point, the developer can choose to put
the resulting formula as a precondition as shown in Figure 6.

pre: x : (≤ 2 R C);
select y with x ¬R y;
add(y : C);
add(x R y);
post: x : (≤ 3 R C) ∧ (y : C);

Figure 6. The final correct-by-construction triple

In this sense, we help developers to update and annotate
their code with specifications based on their intention to
achieve finally a correct-by-construction triple.

As described below, our framework guides developers to
achieve correct transformation programs. Moreover, it verifies
the resulting triple formally using the Small-tALC prover. The
latter is a formal verification tool that verifies a transformation
program with respect to its pre- and postconditions by trans-
lating it into Isabelle/HOL logic and generating verification
conditions. In case of failure, the prover displays a counter-
example which is a model of the precondition that does not
satisfy the postcondition when applying the transformation.

VII. RELATED WORK

Most of the logic-based approaches for graph transforma-
tions focus on the verification question. Thus, they attempt to
encode graph conditions in an appropriate logic that is both
expressive and decidable. Like us, Selim et al. [14] proposed a
direct verification framework for their transformation language
DSLTrans so that no intermediate representation for a specific

176Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 188 / 267

proving framework is required. They used symbolic execution
to build a finite set of path conditions representing all trans-
formation executions through a formal abstraction relation and
thus allow formal properties to be exhaustively proved. Their
property language based on graph patterns and propositional
logic proposes a limited expressiveness and the property-
proving algorithm was presented as a proof-of-concept.

The works in [15] and [16] share with ours some ideas
with respect to the assistance in producing a Hoare triple.
Given a modeling language with well-formedness constraints
and a refactoring specification, Becker et al. [15] uses an
invariant checker to detect and report constraint violations via
counter-examples and lets developers modify their refactoring
iteratively. Similarly to us, Clariso et al. [16] used backward
reasoning to automatically synthesize application conditions
for model transformation rules. Application conditions are
derived from the OCL expression representing the rules’s
postconditions and the atomic rewriting actions performed by
the rule. However, OCL expressions are not really suitable for
exploring the graph properties of the underlying model struc-
tures. It is thus rather cumbersome when used for verifying
complex model transformations.

VIII. CONCLUSION AND FUTURE WORK

The distinctive feature of Small-tALC is that it uses the
same logic ALCQ to represent graphs, to code a transforma-
tion and to reason about graph transformations in a Hoare style.
In order to assist users in developing correct transformations,
we propose a fine analysis of the weakest precondition to take
into account special situations of a program on the basis of
an alias calculus. Our approach allows developers to select a
precondition to annotate their code according to their intention.

It would be interesting in our framework to automatically
infer and test invariant candidates for loop constructs gathered
from their corresponding postcondition as proposed in [17].
This attempt is based on the fact that a Small-tALC loop often
iterates on individuals selected from a logic formula in order
to achieve the same property for the transformed elements.

As a complement to a Hoare triple verification, we expect
to focus on effects of rules execution in terms of DL reasoning
services at the specification rule level. A Small-tALC rule
execution updates a knowledge base founded upon a finite set
of ALCQ concept inclusions (TBox) and a finite set of ALCQ
concept and role assertions (ABox). This leads to a reasoning
problem about a knowledge base consistency embodied by a
graph in Small-tALC [18].

ACKNOWLEDGMENT

Part of this research has been supported by the Climt
(Categorical and Logical Methods in Model Transformation)
project (ANR-11-BS02-016).

REFERENCES
[1] A. Habel and K.-H. Pennemann, “Correctness of high-level transforma-

tion systems relative to nested conditions,” Mathematical. Structures in
Comp. Sci., vol. 19, no. 2, Apr. 2009, pp. 245–296.

[2] A. Rensink, “Representing first-order logic using graphs,” in Graph
Transformations: Second International Conference ICGT,. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 319–335.

[3] B. Courcelle, “Handbook of theoretical computer science (vol. b).”
Cambridge, MA, USA: MIT Press, 1990, ch. Graph Rewriting: An
Algebraic and Logic Approach, pp. 193–242.

[4] K.-H. Pennemann, “Resolution-like theorem proving for high-level
conditions,” in Graph Transformations: 4th International Conference,
ICGT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 289–
304.

[5] F. Orejas, H. Ehrig, and U. Prange, “A logic of graph constraints,” in
Fundamental Approaches to Software Engineering: 11th International
Conference, FASE. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 179–198.

[6] M. Strecker, “Modeling and verifying graph transformations in proof
assistants,” Electron. Notes Theor. Comput. Sci., vol. 203, no. 1, Mar.
2008, pp. 135–148.

[7] N. Baklanova, J. H. Brenas, R. Echahed, A. Makhlouf, C. Percebois,
M. Strecker, and H. N. Tran, “Coding, executing and verifying graph
transformations with small-tALCQe,” in 7th Int. Workshop on Graph
Computation Models (GCM), 2016, URL: http://gcm2016.inf.uni-due.
de/ [accessed: 2017-09-25].

[8] A. Makhlouf, H. N. Tran, C. Percebois, and M. Strecker, “Combining
dynamic and static analysis to help develop correct graph transfor-
mations,” in Tests and Proofs: 10th International Conference, TAP.
Switzerland: Springer International Publishing, 2016, pp. 183–190.

[9] M. Nagl, “Set theoretic approaches to graph grammars,” in Proceedings
of the 3rd International Workshop on Graph-Grammars and Their
Application to Computer Science. London, UK, UK: Springer-Verlag,
1987, pp. 41–54.

[10] M. Krötzsch, F. Simancik, and I. Horrocks, “A description logic primer,”
arXiv preprint arXiv:1201.4089, 2012, URL: http://arxiv.org/abs/1201.
4089 [accessed: 2017-09-25].

[11] M. Schmidt-Schauß and G. Smolka, “Attributive concept descriptions
with complements,” Artif. Intell., vol. 48, no. 1, Feb. 1991, pp. 1–26.

[12] E. W. Dijkstra and C. S. Scholten, Predicate Calculus and Program
Semantics. New York, NY, USA: Springer-Verlag New York, Inc.,
1990.

[13] B. Meyer, “Steps towards a theory and calculus of aliasing,” Int. J.
Software and Informatics, vol. 5, no. 1-2, 2011, pp. 77–115.

[14] G. M. Selim, L. Lúcio, J. R. Cordy, J. Dingel, and B. J. Oakes, “Specifi-
cation and verification of graph-based model transformation properties,”
in International Conference on Graph Transformation. Springer, 2014,
pp. 113–129.

[15] B. Becker, L. Lambers, J. Dyck, S. Birth, and H. Giese, “Iterative de-
velopment of consistency-preserving rule-based refactorings,” in Theory
and Practice of Model Transformations: 4th International Conference,
ICMT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 123–
137.

[16] R. Clarisó, J. Cabot, E. Guerra, and J. de Lara, “Backwards reasoning
for model transformations,” J. Syst. Softw., vol. 116, no. C, Jun. 2016,
pp. 113–132.

[17] J. Zhai, H. Wang, and J. Zhao, “Post-condition-directed invariant infer-
ence for loops over data structures,” in Proceedings of the 2014 IEEE
Eighth International Conference on Software Security and Reliability-
Companion, ser. SERE-C ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 204–212.

[18] U. Sattler, “Reasoning in description logics: Basics, extensions, and
relatives,” in Reasoning Web: Third International Summer School.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 154–182.

177Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 189 / 267

FANTASIA: A Tool for Automatically Identifying Inconsistency in AngularJS MVC

Applications

Md Rakib Hossain Misu
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

email: bsse0516@iit.du.ac.bd

Kazi Sakib
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

email: sakib@iit.du.ac.bd

Abstract—AngularJS is prone to inconsistency issues because
of the abstract interactions between Document Object Model
(DOM) and JavaScript. It creates hidden bugs, and leads the
application to failure. It becomes acute when developers use
custom AngularJS directives for increasing code reusability and
maintainability. To resolve the inconsistency issues, a static code
analysis based approach FANTASIA is proposed. FANTASIA
first extracts Abstract Syntax Tree (AST) and DOM from the
AngularJS application’s MVC modules including its custom
directives. By traversing AST and DOM, next it finds the
defined identifiers along with the associated data types of those
identifiers. Finally, the extracted identifiers and data types are
mapped and compared using a string matching algorithm to
determine the consistency across the application. To evaluate
FANTASIA, 25 open source AngularJS applications are used
where 15 applications contain only MVC modules and rest of
the applications contain both MVC modules and custom direc-
tives. The experimental result shows that FANTASIA produces
overall 97.63% recall and 100% precision to correctly detect
inconsistency in those 15 applications similar to existing approach
AUREBESH. Interestingly, when custom directives are present,
FANTASIA outperforms with a significant increase of overall
96.66% recall and 100% precision comparing to 76.97% recall
and 100% precision of AUREBESH.

Keywords-JavaScript; MVC; Inconsistency; Static Analy-
sis.

I. INTRODUCTION

AngularJS is a JavaScript-based MVC framework used for
developing loosely coupled web applications, which are known
as Single Page Applications (SPA) [1]. It provides developers
the flexibility to separate business logic in several reusable
modules and components, such as model, view, controller,
directive, service, etc. However, AngularJS is still prone to
inconsistency issues because of wrong interaction between
DOM and JavaScript [2]. This wrong interaction occurs, as
AngularJS facilitates the application development by abstract-
ing the DOM API method call between the JavaScript and
HTML code.

AngularJS depends on the use of identifiers to represent
model variable(s) (mv) and controller function(s) (cf). To
represent the functionality, the identifiers of mv and cf should
be consistent in the view. Besides, in AngularJS, views consist
of various built-in directives, such as ng-if, ng-count [3]. To

use built-in directives, developers have to assign mv and cf to
these directives with a defined form, such as ng-if=”{mv}”,
along with specific data types. For example, ng-if directive
takes boolean type of mv and cf. So, mv and cf are used in ng-
if directive should be boolean type. Since JavaScript is loosely
typed dynamic programming language, the developers have to
keep in mind that, values assigned to mv and returned by cf,
should be consistent to their expected types. Inconsistencies
among these identifiers and the types, can potentially incur
significant loss in the functionality and performance. The
reason is that, the major functionalities of an application rely
on mv and cf.

AngularJS also supports the Do not Repeat Yourself (DRY)
feature [4]. It allows developers to create one directive and
reuse it anywhere within the entire application. Despite having
a lot of built-in directives, it also encourages the developers
to create custom directives to enhance the re-usability of the
code. Every custom directive has some specific properties that
define its own view, model and controller. Sometimes, it is also
used inside a view under a specific controller by following
a parent child relationship. While using custom directives,
inconsistency may arise not only within its own model, view
and controller, but also between its parent view and controller.
Unfortunately, developers do not get exceptions and warnings
when inconsistency issue occurs [5]. It becomes the worst
to find inconsistencies when an application contains multiple
models, views and controllers.

Since the usages of AngularJS MVC framework for client-
end application development are fairly new, there are few
papers addressing the inconsistency issues. Two state-of the
art works, TypeDevil [6] and AUREBESH [7] are proposed to
detect inconsistencies in JavaScript applications. TypeDevil is
capable of detecting inconsistency only within the JavaScript
source codes. It performs dynamic source code analysis to
detect data type inconsistency. On the contrary, AUREBESH
is also able to detect inconsistencies in JavaScript MVC
applications by performing static code analysis on both the
JavaScript and HTML code. However, these approaches are
not able to accurately identify inconsistencies in AngularJS
MVC applications. The reason is that TypeDevil only dynami-
cally analyzes the JavaScript source code instead of analyzing
both JavaScript and HTML source code. AUREBESH only

178Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 190 / 267

performs static source code analysis in MVC modules and
never analyzes the presence of custom directives in AngularJS
applications.

To resolve the inconsistency issues in AngularJS MVC
applications, a static code analysis based approach FANTASIA
is proposed. It first extracts Abstract Syntax Tree (AST) and
DOM by performing static code analysis among the modules,
such as model, view, controller and custom directive including
its associated files. Then using AST and DOM, it searches for
the identifiers that are used to represent mv and cf. The data
types of mv and return types of cf are also drawn by exploring
the AST nodes and DOM elements. Finally, to determine the
inconsistencies across application, identifiers and data types,
extracted from model and controllers are compared to those
identifiers and data types extracted from views.

In order to evaluate FANTASIA, 25 open source AngularJS
applications are used. Among these 25 applications, 15 appli-
cations contain MVC modules and rest of the 10 applications
contain both MVC modules and custom directives. From
experimental result analysis, it is observed that FANTASIA
performs accurate with overall 97.63% recall and 100% pre-
cision to find inconsistencies in 15 applications with MVC
modules, comparing to the existing approach AUREBESH
[7]. When custom directives are present, FANTASIA achieves
a significant overall 96.66% recall and 100% precision to
identify inconsistencies in 10 AngularJS MVC applications
that contain inconsistencies within both the MVC modules
and custom directives.

The remainder of this paper is structured as follows. Section
II describes the proposed approach for inconsistency detection
with a concise description of each step. Implementation, eval-
uation and result analysis are discussed in Section III. Section
IV deals with the existing techniques for fault and incon-
sistency detection in JavaScript applications. Finally, Section
V concludes the paper by summarizing the contribution and
possible future direction of this work.

II. PROPOSED APPROACH

To resolve the inconsistency issues, a static code analysis
based approach FANTASIA is proposed. An overview of the
proposed approach is depicted in Figure 1 as a block diagram.
From the block diagram, it is seen that there are 9 modules,
such as MVC Components and Directive Identifier (MCDI),
DOMExtractor (DMEx), DirectiveExtractor (DEx), ASTEx-
tractor (AEx), ViewExtractor (VEx), ModelExtractor (MEx),
ControllerExtractor (CEx), MVC Group Builder (MGB) and
Inconsistency Detector (InD) that work collaboratively in
several phases. TABLE I also represents the terms used for
describing the proposed approach. The modules are depended
on each other for taking input, providing output and giving
feedback. A brief description of each of the modules is
discussed in the following subsections.

A. MVC Components and Directive Identifier (MCDI)

MCDI module identifies and filters the MVC component
source files (except library files) based on the file names and

Figure 1. Block diagram of proposed approach.

module types. It is assumed that every module is written in a
single source file and the file name should be self descriptive
to figure which and what type of AngularJS module it is.
After filtering, the module makes a list of directive definition
files and extracts the application configuration file which is
responsible for defining the routes and the correspondent views
and controllers related to that routes. It provides the view and
controller file names that are related and responsible for each
route of the application. Using this information, a Primary
MVC Group (PMG) is made that contains a list of HTML code
for view file and JavaScript code for controller file in a form
of tuple <view HTML code, controller JavaScript code>.
Further, this group is used by the DMEx and AEx module
and the list of directive files is used by the DEx module.

B. DOM Extractor (DMEx)
DMEx module uses HTML code as input from PMG that is

provided by MCDI module. It also gets HTML source code
from the DEx module (shown in Figure 1). It is responsible for
transforming the HTML code into its DOM representations,
which is used for analyzing the HTML elements and attributes.
This module provides the extracted DOM to the VEx module
for further extracting the AngularJS built-in directives and
elements.

C. AST Extractor (AEx)
Similar to DEx, AEx module gets the input from PMG. It

also gets JavaScript code from DEx module. The responsibility
of AEx is to transform the JavaScript code into its AST
representation. It provides the AST to the ME and CEx
module. Those modules analyze the AST for further extracting
mv and cf.

D. View Extractor (VEx)
VEx module analyzes the DOM and produces a set of View

(V) objects. It extracts all the identifiers of mv and cf that are

179Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 191 / 267

TABLE I. LIST OF TERMS USED IN PROPOSED APPROACH

Term Descriptions Term Descriptions
MCDI MVC Components and

Directive Identifier
DMEx DOM Extractor

AEx AST Extractor VEx View Extractor
MEx Model Extractor CEx Controller Extractor
DEx Directive Extractor MGB MVC Group Builder
InD Inconsistency Detector M Model Object
V View Object C Controller Object
CD-M Model Object for Custom

Directives
CD-V View Object for Cus-

tom Directives
CD-C Controller Object for Cus-

tom Directives
PMG Primary MVC Group

UMG Updated MVC Group CMG Complete MVC
Group

used in the view. Generally, mv and cf are appeared as DOM
elements or attribute value of AngularJS built-in directives.
The attributes of AngularJS built-in directives accept a specific
type of value. So, the accepted type of these built-in directives
are also analyzed. Besides, VEx finds the presence of custom
directives that are used in the DOM and makes a list of custom
directives.

E. Model Extractor (MEx)

MEx takes AST as input from AEx module. It analyzes
the AST of controller files and produces a set of Model (M)
objects. It finds all the mv that are defined in the controller.
The mv which are used in the view are binded with a view
model variable (generally it is represented by $scope or vm).
To find the identifiers of mv, MEx looks for the left hand side
of the assignment expression. So, the identifiers are found as
the properties of view model variable. For getting the type
of mv, MEx considers the right hand side of the assignment
expression and infers the assigned type based on the AST
node (e.g., if the right hand side is StringLiteral node than
the inferred type is String). If the right hand expression is too
complex, the assigned type cannot be inferred. In this case,
the type is considered as complex for that identifier.

F. Controller Extractor (CEx)

Similar to MEx, CEx also receives AST from AEx module
and analyzes the AST of controller files and generates a set of
Controller (C) objects. It extracts the cf identifiers following
the same way described in MEx. However, to get the assigned
types for cf identifiers, the return type of each cf is considered.
Finally, the modules VEx, MEx and CEx generates the sets
of Models (M), Views (V) and Controllers (C) objects. Each
element of the set of M, V and C is considered as a tuple of
UMG in a form of <M,V,C> that is used by MGB module.

G. Directive Extractor (DEx)

DEx module gets a list of custom directive definition files
from MCDI module. Using the definition files, it extracts
directive type, related view and controller files that are respon-
sible for representing the functionality of that directive. The
view files are fed to the DMEx module to generate DOM. After
that, DOM is similarly extracted by the VEx module to create
a View object for that custom directive that is represented by

CD-V. It contains a list of mv and cf identifiers and types used
in the custom directive view. The controller file of that custom
directive is fed to the AEx module that also generates AST.
Next, this AST is extracted by the MEx module to produce a
Model object for that custom directive represented by CD-M.
The MEx extracts identifier and type of the mv. Similarly, CEx
generates a Controller object CD-C for that custom directive.
It extracts the identifier and return type of cf. Finally, DEx
module builds a list of Directive objects that contains the
related model, view and controller for each directive.

H. MVC Group Builder (MGB)

The module MGB receives UMG and gets a list of Directive
objects from the module DEx. It is responsible for building
CMG by adding some new tuple with UMG. For every element
of UMG, each directive is analyzed from the list of Directive
objects based on its type. At first, for each directive, an empty
tuple of Model M, View V and Controller C object is initialized
and the View object of the directive CD-V is assigned to it.
The reason is that the directive has its own view and it cannot
be inherited from the parent view. Next, for each directive
the type of the directive is checked. The type of a directive
is determined by its scope property. If the scope is false, it
refers that this directive does not manipulate the cf and mv of
its parent controller. It directly uses the cf and mv properties
from its parent controller to its view. So, the CD-M and CD-C
of that directive are directly assigned to the empty M and C. If
the scope is true, it means that this directive can prototypically
inherit and manipulate the cf and mv of its parent controller.
So, the collection of mv and cf used in both directive and its
parent controller are assigned to the M and C, respectively.
When the scope is isolated, it means that the mv and cf of
this directive are isolated from its parent controller. For such,
the directive’s CD-M and CD-C are assigned to the empty M
and and C, respectively. Finally, new tuple of <M,V,C> are
added to the UMG to form the CMG.

I. Inconsistency Detector (InD)

The module InD gets CMG from MGB and provides a list
of inconsistency. It mainly compares all the mv and cf among
the Model, Controller and View object of each tuple of CMG.
It is performed to identify the potential inconsistencies that
exist within each tuple. At first, it searches the inconsistencies
related to mv by iterating every mv that is used in the view and
controller. For all such mvs that are defined in the controller,
their identifiers are checked to see whether these also exists
and are defined to the corresponding view. The checking is
done based on string comparison. If it does not exist it means
either these mv are not used in the view or their identifiers are
inconsistent. So, there exists an identifier inconsistency and it
is included in the inconsistency list. However, if mv exists, next
the data type of the mv is checked into the view and controller.
If the data type of the mv is dissimilar, corresponding to
the view and controller, it means that a type inconsistency is
present that is also included in the inconsistency list. Following
the same process, inconsistencies in the cf are identified. It is

180Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 192 / 267

assumed that mv and cf with unknown and complex types are
matched with all types.

III. EVALUATION

This section deals with the evaluation of proposed approach.
A brief description of each aspect of evaluation is described
in the following subsection.

A. Implementation

Since Command Line Interface (CLI) tools are getting
popular for client-end application development, FANTASIA
[8] is implemented in the form of a CLI using JavaScript
programming language on top of Node.js framework. It is
available as an open source Node.js package that can eas-
ily be installed using Node.js package manager (nmp). For
identifying inconsistencies, developers have to run a command
called find-incons in the application’s base directory using the
command prompt. For each identified inconsistency, an error
message is shown containing the inconsistency type, file name
and the location of the code where the inconsistencies are
occurred. Tool demonstration of FANTASIA is available in
[8].

B. Experimental Dataset

In total, 25 AngularJS MVC applications are used. These
are chosen from a list of MVC applications mentioned in
AngularJS Git-Hub page [9]. The applications that were
chosen here were also used to evaluate the existing approach
AUREBESH. Based on the presence of inconsistencies in the
custom directives, these applications are categorized into two
classes. Among the 25 applications, 15 applications containing
MVC modules are categorized as Class A and rest of the 10
applications containing both MVC modules along with custom
directives are categorized as Class B.

C. Fault Injection Study

Similar to AUREBESH [7], the efficiency of FANTASIA
was measured by performing a fault injection study on the
experimental dataset. The injection was performed by ini-
tializing mutations in the applications. The mutations were
initialized in a way so that these could create inconsistencies
in those applications. Inconsistencies within the applications
depend on consistency properties. According to Frolin et al.
[7], JavaScript MVC applications are inconsistent if the appli-
cations do not satisfy one of the following four consistency
properties.

1) The controller and view can only use mv that are defined
in the model.

2) The view only uses cf that are defined in the controller.
3) The expected types of corresponding mv in the view

match the assigned types in the model or controller.
4) The expected and returned types of corresponding cf

match in the view and controller.
Based on the consistency properties, Frolin et al. introduced

10 types of mutations [7]. The description of each mutation
type is represented in TABLE III. Among these types, every

mutation type corresponds to a violation of the above 4
consistency properties. In this experiment, these 10 types of
mutations (mentioned in TABLE III) were also used. At first,
the mutations were injected into the source code of those
applications. After that, FANTASIA was run on the mutated
version of the applications and analyzed whether FANTASIA
could identify the inconsistencies initialized by the mutations.
If the inconsistencies were identified, the result of the injection
was noted as successful, otherwise failed. Finally, the numbers
of successful and failed detections were counted for measuring
precision and recall. For comparative analysis, AUREBESH
was also run on the mutated applications and counted the
number of successful and failed detections.

The results of identifying mutation type represent how
well FANTASIA can detect the violation of corresponding
consistency properties. For this study, at least 4 injections were
performed per mutation type that amounts 30 to 40 injections
in each application. It was noted that some mutation types
were not applicable for all applications. For example, it is
not mandatory that all controllers use the model variables.
For these types of specific case, some mutation types were
not considered. As a result, there were less than 40 injections
injected in some applications. The location of the mutated code
was chosen arbitrarily only if that line of code was applicable
for current mutation type.

D. Result

After running both FANTASIA and AURBESH on the
mutated version of Class A dataset, recall and precision are
calculated based on successful and failed detection. TABLE
II shows the fault injection study results over the Class
A dataset where TI refers to total injection, SD refers to
successful detection and FD refers to failed detection. As
TABLE II shows, FANTASIA is very accurate yielding to
an overall recall of 97.63% with 100% precision and gets
perfect recall in 11 out of 15 applications. From TABLE
II, it is also observed that existing approach AUREBESH
also performs accurately with an overall recall of 97.20%
with 100% precision and gets perfect recall in 11 out of 15
applications. So, both FANTASIA and AUREBESH perform
similarly for identifying inconsistencies in those applications
which contain inconsistencies only in MVC modules and not
in custom directives.

Again FANTASIA and AUREBESH both were run on
mutated version of Class B dataset to calculate the recall and
precision. TABLE IV shows the fault injection study results
over the Class B dataset. Here, FANTASIA also performs ac-
curately with an overall recall of 96.66% with 100% precision
and gets perfect recall in 5 out of 10 applications. However,
AUREBESH does not perform well with an overall recall of
76.97% and 100% precision with no perfect recall. The reason
for AUREBESH’s poor performances is that it never analyzes
the presence of custom directives in those applications. So,
it was unable to identify those inconsistencies which were
occurred within the custom directives. On the other hand,
FANTASIA analyzes the presence of custom directives and

181Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 193 / 267

TABLE II. COMPARATIVE RESULT BETWEEN FANTASIA AND AUREBESH ON CLASS A DATASET

Applications Application Category Size (LOC) TI FANTASIA AUREBESH
SD FD Recall(%) Precision(%) SD FD Recall(%) Precision(%)

Angular Tunes Music Player 185 35 35 0 100.00 100.00 35 0 100.00 100.00
Balance Projector Finance Tracker 511 40 34 6 85.00 100.00 33 7 82.05 100.00
Cafe Townsend Employee Tracker 452 40 40 0 100.00 100.00 40 0 100.00 100.00
Cryptography Encoder 523 40 40 0 100.00 100.00 40 0 100.00 100.00
Dematerializer Blogging 379 40 36 4 90.00 100.00 37 3 92.05 100.00
Dustr Template Compiler 493 40 40 0 100.00 100.00 40 0 100.00 100.00
ETuneBook Music Manager 5042 40 40 0 100.00 100.00 40 0 100.00 100.00
Flat Todo Todo Organizer 255 40 40 0 100.00 100.00 40 0 100.00 100.00
GQB Graph Traversal 1170 40 38 2 95.00 100.00 37 3 92.05 100.00
Hackynote Slide Maker 236 40 40 0 100.00 100.00 40 0 100.00 100.00
Kodigon Encoder 948 40 40 0 100.00 100.00 40 0 100.00 100.00
Memory Games Puzzle 181 37 35 2 94.59 100.00 34 3 91.89 100.00
Shortkeys Shortcut Maker 407 40 40 0 100.00 100.00 40 0 100.00 100.00
Sliding Puzzle Puzzle 608 34 34 0 100.00 100.00 34 0 100.00 100.00
TwitterSearch Search 357 40 40 0 100.00 100.00 40 0 100.00 100.00
Overall 11747 626 612 14 97.63 100.00 610 16 97.20 100.00

TABLE III. TYPES OF INJECTED FAULTS

No Description Property
1 Change the name of a mv used in line N of a view 1
2 Change the name of a mv used in line N of a

controller
1

3 For a particular mv used in line N of a view, remove
the declaration of that mv in a corresponding model

1

4 For a particular mv used in line N of a controller,
remove the declaration of that mv in a corresponding
model

1

5 Change the name of a cf used in line N of a view 2
6 For a particular cf used in line N of a view, remove

the declaration of that cf in a corresponding con-
troller

2

7 For a particular mv used in the view that expects a
certain type T1, change the declaration of that mv in
line N of a corresponding model so that the type is
changed to T2

3

8 For a particular mv used in the view that expects
a certain type T1 and declared in line N of a
corresponding model, change the expected type to
T2 by mutating the ng attribute name

3

9 For a particular cf used in the view that expects a
certain type T1, change the return value of that cf in
line N of the controller to a value of type T2

4

10 For a particular cf used in the view that expects a
certain type T1 and returns a value in line N of a
corresponding controller, change the expected type
to T2 by mutating the ng attribute name

4

able to identify the inconsistencies that are occurred within
the custom directives.

From TABLE II and TABLE IV, it is observed that both
FANTASIA and AURBESH attain 100% precision. The reason
is that there is no occurrence of getting false positive results for
successful and failed inconsistency identification. As, it is the
assumption that all applications are developed by following
proper coding convention, it prevents both approaches from
getting false positive results.

IV. RELATED WORK

Inconsistency occurs in JavaScript applications because of
wrong interaction between DOM and JavaScript code. As a
result, DOM-related faults and errors are partially responsible
for inconsistency issues. However, AngularJS has gradually
been developed over the last couple of years. Therefore, it

is considered to be a new area of research. A few works
have been found that directly discusses inconsistency issues
in AngularJS MVC applications. Among those works, several
studies [2][5][10][11] rigorously discuss DOM-related faults
and errors that occur in JavaScript applications. Moreover,
two recent studies [6][7] have addressed the inconsistency
issues in JavaScript application development. So, considering
all of those works, the knowledge domain is classified in
two categories, such as DOM Related Fault in JavaScript
and Inconsistency in JavaScript. A brief description of each
category is mentioned in the following subsections.

A. DOM Related Fault in JavaScript
Since AngularJS MVC framework contains both HTML

DOM and JavaScripts, DOM related errors and faults are
directly responsible for inconsistency issues. Several studies
have been conducted to analyze the behavior of DOM in
JavaScript applications, such as Forlin et al. performed an
empirical study [10] for identifying numerous errors and
faults in JavaScript based web applications. Both static and
dynamic source code analysis are performed in this study that
has identified different characteristics of JavaScripts faults.
Further, these characteristics of JavaScript faults are used
by Ocaizer et al. [11] to identify errors and faults during
JavaScript application development. They proposed an auto-
matic fault localization approach AUTOFLOX by analyzing
the JavaScript fault characteristics. By performing dynamic
backward program slicing, AUTOFLOX can localize faults
within the JavaScript based web applications. Besides, the
evaluation result of AUTOFLOX shows that about 79% of
reported JavaScript errors and faults are DOM related [11].

On the other hand, based on those results, Forlin et al. [2]
observed that almost 65% of JavaScript faults are DOM related
faults that occur because of the wrong interaction of JavaScript
code and DOM element using incorrect identifier. However,
in development phase, these located faults are needed to be
resolved. In order to resolve these faults, an automatic fault
repairing technique VEJOVIS was proposed by Forlin et al.
[5]. This technique includes the combination of both static
and dynamic code analysis with backward program slicing.
The outcome of this technique is the categorization of some

182Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 194 / 267

TABLE IV. COMPARATIVE RESULT BETWEEN FANTASIA AND AUREBESH ON CLASS B DATASET

Applications Application Category Size (LOC) TI FANTASIA AUREBESH
SD FD Recall(%) Precision(%) SD FD Recall(%) Precision(%)

Angular Qize Quiz Maker 523 36 36 0 100.00 100.00 30 6 83.33 100.00
Angular Table Component 327 35 35 0 100.00 100.00 30 5 85.71 100.00
Angular Ui-Grid Component 243 35 35 0 100.00 100.00 26 9 74.78 100.00
C3-Chart Librery 763 35 35 0 100.00 100.00 27 8 77.14 100.00
Color Chooser Component 134 30 30 0 100.00 100.00 23 7 76.66 100.00
Date Picker Component 278 40 37 3 92.20 100.00 30 10 75.00 100.00
Directives Lab Directive Example 412 40 39 1 97.50 100.00 31 9 77.50 100.00
GemStore2 Game 453 40 38 2 95.00 100.00 28 12 70.00 100.00
Responsive Slider UI Design 359 37 33 4 89.18 100.00 25 12 67.56 100.00
Text Editor Editor 192 40 37 3 92.50 100.00 33 7 82.50 100.00
Overall 3684 368 355 13 96.66 100.00 283 85 76.97 100.00

common types of faults. However, FANTASIA completely
differs from these works, as in these works non-MVC applica-
tions and frameworks are considered. These applications have
various architectural patterns compared to AngularJS MVC
framework. So, these works are not compatible to resolve
inconsistency issues in AngularJS MVC applications.

B. Inconsistency in JavaScript

Since, JavaScript is a dynamic programming language, it
does not provide compile-time warning if a program contains
identifier or data type inconsistencies [11]. Both of these
inconsistencies are responsible of creating hidden bugs and
failures. However, in a survey study, it is found that among
460 developers, 39% of those consider that silent failures
caused by identifier or type inconsistencies, are real prob-
lems during application development [12]. For identifying
type inconsistencies, Michael et al. proposed an approach
called TypeDevil [6] that can detect type inconsistencies by
performing dynamic analysis on JavaScript code. To evaluate
the approach, TypeDevil [6] was applied on JavaScript code
collected from various applications. The evaluation shows that
it can detect type consistency within the JavaScript files.

In order to detect inconsistency, an approach AUREBESH
[7] was proposed that can detect both the type and identifier
consistencies by performing static code analysis in JavaScript
MVC applications. To evaluate AUREBESH, a fault injection
study was conducted on 20 open source AngularJS applica-
tions considering to be representative of MVC applications.
The result of this study shows that AUREBESH can detect
inconsistencies and some real world bugs in those applications.

However, TypeDevil [6] cannot find inconsistency in Angu-
larJS MVC applications since to find type and identifier incon-
sistencies in MVC applications, both the controller JavaScript
and view HTML code should be analyzed. TypeDevil [6]
does not analyze the inconsistencies between the HTML and
JavaScript code rather it only analyzes the JavaScript code.
FANTASIA resolves this problem by performing static analy-
sis on both HTML and JavaScript code instead of performing
dynamic analysis only within JavaScript code. On the other
hand, while using custom directives in AngularJS applications,
AUREBESH [7] cannot detect inconsistencies because it does
not analyze the presence of custom directives. FANTASIA
also differs from AUREBESH as it considers the presence of
custom directives across the applications and identifies those

inconsistencies that occur within the custom directives and
MVC modules.

V. CONCLUSION AND FUTURE WORK

The presence of inconsistencies (e.g., identifier and type in-
consistency) in AngularJS applications produces hidden bugs,
which reduce the maintainability and readability of code.
During development, it is hard to identify inconsistencies
since JavaScript does not provide compile time warn if any
inconsistency occurs. Detecting inconsistency becomes more
difficult when developers use custom directives with MVC
modules. However, existing approach can only identify incon-
sistencies that occur in MVC modules omitting the presence
of custom directives. To resolve this issue, FANTASIA is
proposed that performs static code analysis across the applica-
tion and analyzed the presence of custom directives to detect
inconsistencies.

According to the result analysis, FANTASIA achieves an
overall 97.63% recall and 100% precision similar to existing
approach AUREBESH, to detect inconsistency in 15 applica-
tions that contain inconsistency in MVC modules. Comparing
to AUREBESH, it outperforms with an overall 96.66% recall
and 100% precision to detect inconsistency in 10 applications
containing inconsistency both in MVC modules and custom
directives. The reason for FANTASIA’s significant increase of
recall is analysis the presence of custom directives.

Incorporating FANTASIA with the existing tool AU-
REBESH, to detect inconsistency in other JavaScript MVC
frameworks (e.g., Ember.js), can be a future research scope.
As FANTASIA is only applicable to the primary version of
AngularJS framework, the future work is to make FANTASIA
compatible to the latest versions of AngularJS. Future scope
also includes to make FANTASIA compatible for TypeScript
or CoffeScript based MVC applications. Currently, the scope
of this proposed technique is to identify inconsistency only in
AngularJS MVC applications developed in JavaScript. How-
ever, in future this approach can be further used to automati-
cally remove and fix inconsistency in MVC applications.

REFERENCES

[1] V. Balasubramanee, C. Wimalasena, R. Singh, and M. Pierce, “Twitter
bootstrap and angularjs: Frontend frameworks to expedite science gate-
way development,” in 2013 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2013, pp. 1–1.

183Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 195 / 267

[2] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical
study of client-side javascript bugs,” in 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 55–64.

[3] Angular, “Ng-if directive,” https://docs.angularjs.org/api/ng/directive/
ngIf, 2017, [Online], [Accessed 2017-06-15].

[4] AngularJS, “AngularJS.org,” https://angularjs.org/, 2017, [Online], [Ac-
cessed 2017-06-15].

[5] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Vejovis: suggesting
fixes for javascript faults,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 837–847.

[6] M. Pradel, P. Schuh, and K. Sen, “Typedevil: Dynamic type inconsis-
tency analysis for javascript,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1. IEEE, 2015, pp.
314–324.

[7] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Detecting incon-
sistencies in javascript mvc applications,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 325–335.

[8] FANTASIA, “FANTASIA,” https://www.npmjs.com/package/
fantasia-inconsistency-detector, 2017, [Online], [Accessed 2017-
06-15].

[9] GitHub, “GitHub/AngularJS,” https://github.com/angular/angular.js,
2017, [Online], [Accessed 2017-06-15].

[10] F. S. Ocariza Jr, K. Pattabiraman, and B. Zorn, “Javascript errors in the
wild: An empirical study,” in Software Reliability Engineering (ISSRE),
2011 IEEE 22nd International Symposium on. IEEE, 2011, pp. 100–
109.

[11] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Autoflox: An
automatic fault localizer for client-side javascript,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Valida-
tion. IEEE, 2012, pp. 31–40.

[12] M. Ramos, M. T. Valente, R. Terra, and G. Santos, “Angularjs in the
wild: a survey with 460 developers,” arXiv preprint arXiv:1608.02012,
2016.

184Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 196 / 267

Scope Management on Software Projects

An updated approach to maturity levels and services in the Gaia Scope Framework

Darlan Dalsasso

Departamento de Computação, Universidade Estadual de

Londrina - UEL

Londrina, Brazil

darlan_dalsasso@hotmail.com

Rodolfo Miranda de Barros

Departamento de Computação, Universidade Estadual de

Londrina - UEL

Londrina, Brazil

rodolfomdebarros@gmail.com

Abstract— Software development is a complex activity and one

of the most important activities to be developed in working

with the requirements of each software project. This work

addresses the development of the Gaia Scope Framework [3],

as a tool and as a methodology to be followed by engineering

and product scope management in software projects. The

structure of the framework is composed of services. These

services are the activities to be developed and are divided into

different levels of maturity, where the goal is to get the

company to reach the optimized level. Allied to that, the main

work is the diagnostic evaluation questionnaire and the

implementation process of the framework. This article presents

an update of the maturity levels and services that had been

initially defined, due to the need to make the framework easier

to understand and take care of. The main objective of this

study is the development of the Gaia Scope Framework, and

that it guides and assists system and software engineers in the

production of complete, correct and unequivocal requirements

that meet the needs of users.

Keywords - quality; software; framework; requirements;

project management.

I. INTRODUCTION

Software development is an activity that is constantly
evolving. The search for new techniques that will help and
improve the way to build software with higher quality and
that mainly meets the needs of its users motivated the
development of the Gaia Scope Framework.

Studies are carried out and applied in the corporate and
academic environment with the objective of developing
better techniques and tools that assist in the development of
software; the Gaia Scope Framework focuses on the scope of
products in software projects because it has its focus on what
'needs’ to be developed in software.

Many of the difficulties that are encountered are often
due to not knowing which activity needs to be developed
first and what sequence of steps is needed later. There is also
the situation of knowing what is the ultimate goal to be
achieved, but not knowing how to achieve this goal.

In this study, we are proposing the development of a
framework for managing the product scope in software
projects, known as the Gaia Scope Framework.

The framework has undergone an update the levels of
maturity. In the first version they were known as: undefined,

known, managed, quantitatively managed, optimized. In the
current version, the levels have been updated to: undefined,
known, defined, managed, and optimized. In the same way,
the services of the first version were: establishing the
strategy, planning the scope management, collecting the
requirements, defining the scope, creating the project
analytical framework (EAP), validating the scope,
controlling the scope, costs, the time, stakeholders, and the
last service was in continuous improvement. In the current
version, services are known as: establishing strategy,
requirements and scope research and analysis, requirements /
scope specification and negotiation, requirements / scope
validation, requirements / scope management, maintenance
and requirements / improvement (involves all areas and
scope management services). This update was necessary due
to the in-depth study and the need to make the framework
more coherent and functional in relation to the purpose of the
framework, which is to facilitate working with the elicitation,
specification, approval, management and control of the
product scope in the known projects as requirements.

This framework can be treated as a tool to be used or a
methodology to be followed because it expresses through
services the activities that need to be developed and how
they can be carried out to reach the final objective.

The services are divided into levels of maturity so that
the implementation of the framework is gradual and
incremental. An example would be the following: in order
for the company/institution to achieve the defined level of
the framework, it must be able to develop the services that
comprise this level, which are: requirements specification or
scope negotiation and the requirements validation service.
When reaching the objectives of each of the two services, it
is understood that the defined level has been successfully
achieved, which enables the company/institution to seek to
develop the services of the above level that is managed.

One of the ideas that surround the framework is that
users can develop the activities necessary to successfully
reach the services that make up each level of maturity in a
gradual way, until reaching all services of the highest level,
which is optimized, where it is possible to affirm that all
services of the levels have been successfully achieved [3].

The structure is different from other works like [1][7],
[8][12] because it not only suggests what needs to be
developed but also the goal to be delivered. In the case of the

185Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 197 / 267

Gaia Scope Framework, the services are responsible for
presenting the information that needs to be elaborated.

An example is that each service presents some templates
that can be used by analysts to develop their work. Services
are key items within the framework, as they facilitate the
conduct of analysts in the work required to achieve the
expected goal.

The Gaia Scope Framework is formed by different
services, which are the activities to be performed, which
have a structure composed of different information, such as
service description, document templates, questions related to
the diagnostic questionnaire, among other information.

Referring to the Gaia Scope Framework, the level of
maturity refers to knowing how adequate, apt and matured
the company is to carry out or develop the implementation of
the necessary services for the management of the scope of
software products. The maturity level also facilitates the
institutionalization and application of services in a gradual
way.

The Gaia Scope framework includes the diagnostic
assessment questionnaire and the framework implementation
process. One of the main ideas is to make services simple
and objective, easy to understand. The main idea for the
development of this framework was the fact that we know
that one of the main causes of the failure in software projects
is the existence of difficult-to-interpret requirements, poorly
defined, or sometimes due to poor management of
requirements, among other factors. These difficulties can
compromise all the work that will be developed in relation to
activities related to software requirements.

In the software industry is also known that activities
related to engineering and requirements management need
special attention, since it is a complex and fundamental
activity that justifies the development of this framework; if
the work related to the requirements is performed correctly,
complete and unambiguous, the chance to develop and
deliver software that meets the needs of end users is bigger.

This article is divided as follows: in Section 2, the
concepts of requirements engineering will be discussed.
Section 3 refers to project scope management. Section 4
discusses Information Technology (IT) services concepts and
the idea of maturity levels. Section 5 presents a comparative
study of engineering and requirements management. Section
6 will address the Gaia Scope Framework and their
advantages. Subsection A of Section 6 presents the maturity
levels of the Framework Gaia Scope. Subsection B of
Section 6 introduces the integration of maturity levels with
their respective services. Section 7 presents the conclusions
and future works about the study.

II. REQUIREMENTS ENGINEERING

As we approach the software development context, we
need to keep in mind what we are going to build for, and to
whom we are going to build it for. We can simply
understand that a requirement can be a need that has to be
satisfied or even a property of a product that already exists
[11].

This reflects in the discovery of the minimum details of
the product that will be implemented and in the

understanding of all the stakeholders involved. In general
way, it is called requirements or requirements engineering.

The task of obtaining the knowledge and understanding
the requirements is a problem to be solved and presents itself
one of the most complex challenges faced by analysts and
software engineers [7]. This is due to the fact that often the
customers themselves are in doubt of what they really expect
the software to do.

The requirements are the descriptions or specifications of
the application to be developed, its operating restrictions, and
the services they will offer [8]. These specifications serve as
the basis for all the work that is going to be done ahead and
are critical to the correct understanding of what is needed to
be developed.

The vast amount of tasks and techniques that make
analysts aware of what is needed to be developed is called
software engineering [7].

Requirements engineering can also be understood as a
process that is used to identify, analyze, develop the
documentation and verify the resources that the application
must offer and the constraints that need to be considered in
the development of the solution [8].

Analyzing the concepts presented above, it is possible to
be aware of the complexity that such activity has in the
software development process.

Obviously, the greater the competence in performing the
activity of identifying and documenting the requirements in a
simple, clear and objective way, thus maintaining a good
management of these activities, can cause the produced work
product to have a greater chance and probability of success.

So, the Gaia Scope Framework aims to assist analysts
and software engineers in performing their daily work tasks
in a standardized, simple and controllable way.

III. PROJECT MANAGEMENT AND PROJECT SCOPE

MANAGEMENT

We can identify the existence of projects in practically
everything around us. To find a new job, to open a company,
to carry out a university, to write a scientific article, among
others, involves understanding the needs that we intend to
develop in order to reach the main objective, and also, its
management in an efficient way to know where we are in the
project.

In company/institution, the idea of design becomes more
practiced, according to the large number of projects that
happen in the world at the same time. Many of these projects
are about the development of software to meet the most
varied demands of the market.

A survey conducted by the Project Management Institute
shows that company/institution, seeking to achieve a high
degree of performance in their projects implement twice the
number of strategic initiatives that are successfully carried
out (76%) from the comparison to low performance
company/institution, (38%) [10].

To understand how is possible to be able to evolve in our
project, we need to seek continuous improvement, adopting
strategies that make it possible to get the most out of the
performance and quality of the product generated.

186Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 198 / 267

In addition to that, high-performance company/institution
lose twelve times less money when compared to non-high
performing company/institution,, leaving $ 20 million lost to
high-performing companies and $ 230 million lost to
company/institution, that were non-high-performing. This
amount is considered for each U $$ 1 billion spent in project
expenditures [10].

So that, it is known the difference between
company/institution, that are high performance and the ones
that are not.

The amount of losses is so bulky that makes us wonder
how many projects could be developed with the resources
that are lost.

The development of software projects fits well in this
need, which leads us to seek to develop them, thinking
carefully about the format of projects, and consequently,
giving emphasis to the area of project scope management,
which is the basis of all work.

A project is an enterprise that does not repeat itself, and
which has a clear and logical sequence of events or activities
to be developed which seeks to achieve a clear and specific
objective, that is accomplished and led by people,
considering parameters of time, cost, resources involved and
quality [10].

By understanding that each project is unique and
theoretically has an established beginning and end, we need
to seek to develop the right requirements, primarily by
lowering the time for survey and validation of requirements.

According to the Project Management Institute (PMI), a
project is a temporary effort, with the aim of creating a
product or service considered unique. It is ended when the
project objectives are: met, have not been successfully
achieved, can not be achieved or the need for the project is
over. It can still be ended if it is the client's will or sponsor
[9].

Project quality can also be understood as the source of
customer satisfaction and project success. When clients are
satisfied, we can measure the project success [6].

Project scope management encompasses the activities
necessary to ensure that the project includes only what is
necessary for its development, nothing else [9].

It means that when we develop projects, we need to think
only about what is necessary to be done and delivered, not
worrying about activities and artifacts that are not part of the
scope.

The Gaia Scope Framework will serve as a tool to be
used or a methodology to be followed that will address the
key activities that need to be created to ensure that the
development and management of the product scope is
performed in a correct, complete, clear, modifiable,
prioritized, verifiable and traceable.

It will contribute to generating the effective, efficient,
reliable and quality product that reach the needs of the
product scope management area, but mainly, achieving the
needs of the users.

IV. IT SERVICES AND LEVELS OF MATURITY

The Gaia Scope Framework is developed in the service
format as discussed below, in section VI. These services are
the activities to be built up or can be understood as the
objectives to be achieved.

The purpose of a service is to offer something value to
customers, enabling them to accomplish their expected
results in a measurable way [3].Obviously, each of these
services aims some value for the project in a unitary way,
and all of these services add high value and success in the
activities of engineering and requirements management in a
general way.

The services strategy refers to IT skills in the generation
of service assets [4]. Services are classified as intangible
assets, not presenting physical characteristics, but can
generate economic benefits for company/institution, [4].

The value consists of two main components that are
utility and assurance, where utility is about what the
customer receives, and it turns the guarantee on how this
value is provided to customers [2].

Another characteristic of the services is due to the fact
that clients do not have to bear certain costs and risks [2].

Finally, service management is a set of specialized
organizational skills aimed at providing value to all of its
customers in the form of services.

The Gaia Scope Framework is developed using maturity
levels, as discussed below, in section VI.

Maturity levels are a combination of processes or
activities and process empowerment [5].

It is possible to understand that maturity levels are
composed of a set of processes that need to be satisfactorily
achieved or contemplated, achieving the minimum expected
favorable results to ensure that such process is considered
satisfactory or unsatisfactory.

Process capability refers to the set of skills to meet
business objectives, both current and future, meeting what is
required in each process [1].

Each process has its value within the maturity level. It is
worth emphasizing that each process has a significant value,
which, together with the other processes that make up the
level, cause the level of maturity to be reached.

The level of maturity of an company/institution, makes it
possible to gain a better understanding of its future
performance. This is due to the fact that by the logic, after
the company/institution, reaches a certain level, it means that
it has the minimum of excellence in the processes that
develops from that level, being able to work to implement
the processes of the upper levels, that is, trying always to
reach improvement in their processes.

It is worth mentioning that once an reaches a level of
maturity, it has to work to maintain it, because if it does not,
it may not go through an eventual revaluation of the level in
the future.

V. COMPARATIVE STUDY ON ENGINEERING AND

REQUIREMENTS MANAGEMENT

In the opportunity to develop this research, and as a way
to better understand the main initiatives regarding

187Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 199 / 267

requirements engineering, a comparative study was
developed between the main references of this area.

In order to develop this study, the works of Ian
Sommerville, Roger S. Pressmam, MPS-BR, CMMI, in their
most current versions were analyzed.

Through the analysis of the literature, it was possible to
better understand the activities proposed by each author
regarding requirements engineering, and an important asset
was developed for the development of the Gaia Scope
Framework, which is about updating services as also update
the maturity levels that will make up the framework.

This study made it possible to change the version of the
services being proposed, as we are going to see later.

A comparative study is presented. See Table I.

TABLE 1. MAPPING AND RELATIONSHIP OF ENGINEERING ACTIVITIES AND

REQUIREMENTS MANAGEMENT

Mapping and relationship of engineering activities and requirements
management

Ian

Sommervill

e [8]

Viability Study

Elicitation and Requirements Analysis

Requirements Specification

Requirements Validation

Requirements Management

Software Reuse: Does not specifically address the

process

 Roger S.

Pressman
[7]

Conception

Survey

Elaboration

Negotiation

Specification

Validation

Management

Reuse of Software: It is approached within the

construction of the analysis model

Historical database: Mentioned within the requirement
survey activity and within the construction of the

analysis model

MPS-BR

[1]

The understanding of the requirements is obtained from

the suppliers of requirements

The requirements are evaluated on the basis of objective
criteria and a commitment of the technical team to these

requirements is obtained

Bi-directional traceability between requirements and
work products is established and maintained

Revisions to project work plans and products are

conducted to identify and correct inconsistencies with
requirements

Requirements changes are managed throughout the

project

Organizational Culture: It is mentioned in the process
attribute that

refers to whether project execution is managed.

Historical database: Does not deal specifically with
these terms but can be seen the use of historical data in

the activity "Changes in requirements are managed
throughout the project"

Lessons learned: It does not deal specifically with these

terms but you can see the use of historical data in the

activitye "Changes in requirements are managed
throughout the project," which can generate lessons

learned.

CMMI [12]

1 - Develop customer requirements (Formed by the

activities of eliciting needs and transforming the needs

of those involved in customer requirements.)

2 - Develop product requirements (Formed by the
activities of establishing product and product component

requirements, allocating product component
requirements and identifying interface requirements.)

3 - Analyze and validate requirements (Formed by the

activities of establishing operational concepts and

scenarios, establishing a definition of required
functionality and quality attributes, analyzing the

requirements and analyzing the requirements to achieve

balance and validate requirements.)

REQUIREMENT MANAGEMENT

(Formed by the activities of understanding requirements,

obtaining requirements commitment, managing

requirements changes, maintaining bidirectional
traceability of requirements, ensuring alignment

between project work and requirements)

Reuse of Software: Addresses the idea of reuse of
software in the area of requirements development

In requirements management, the needs passed by the
organization are considered. This gives an idea of the

consideration of organizational culture.

Historical database: Addresses requirements database
and history of requirements changes. This refers in some

way to the historical database.

Lessons learned: Does not directly mention lessons
learned, but does mention the use of history of

requirements changes.

Gaia Scope

Framework

Establish strategy

Requirements / scope survey and analysis

Requirements specification / scope and negotiation

Validation of requirements / scope

Requirements / Scope Management (- Involves control

of requirements / scope; - Involves control and change
management; - Involves requirements / scope

traceability)

Maintenance and requirements / scope history (Involves

reuse of requirements - Involves historical database -

Involves lessons learned - Involves company/institution
culture and company/institution process assets)

Continuous improvement (Involves all areas and

services of scope management)

188Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 200 / 267

From this comparative study, we were able to extract the

best practices applied in each of the references, where it was
possible to design the services that will compose the Gaia
Scope Framework.

Soon we were able to create a framework that serves to
manage product scope in software projects of any size.

VI. GAIA SCOPE FRAMEWORK

The Gaia Scope Framework is a tool to be used or a
methodology to be followed to assist the engineering and
management of the product scope in software projects.

From this proposal, leaders and requirements engineers
will have a greater ease to surveying, specifying, validating,
and managing the product scope of their software projects,
thus ensuring greater management, ensuring ease of handling
during the work that must be developed and achieving
greater assurance and integrity of information.

The composition of the framework will be through
services that will be divided into different levels of maturity,
as will be analyzed next.

The idea of working with services is due to the fact that
we focus on delivering value to users, who will be clients of
the framework.

Each service consists of the following elements; service
description, document templates, questions related to the
diagnostic questionnaire, vocabulary, tools and techniques,
performance indicators and workflow.

The service description will provide an objective and
direct context about the service. Document templates are
basic standards that can be used.

The questions related to the diagnostic questionnaire
refer to verifying through this questionnaire whether the
service in question is answered or not.

The vocabulary refers to the terms used in the service.
The tools and techniques represent what can be used to
develop the service. The performance indicators are the
parameters that are used to measure the progress and service.
And finally, the workflow is the process of each service.

Another point is that the implementation through
maturity levels facilitates the deployment process, since it
will happen gradually as the company/institution, is able to
achieve the objectives of each service.

The framework will also be composed of an
implementation process that is adherent to the software
development processes in general, and a diagnostic
evaluation questionnaire that will be used to identify, in the
first moment, which level of maturity the
company/institution is, and also in future revaluations, to
know if the level will be maintained, lowered or raised.

The image below, presents the process of gaia scope
implementation, which is initiated by the application of the
diagnostic evaluation questionnaire, to understand in which
level of maturity the company/institution, is.

Then, from the understanding of the maturity level,
services are reviewed and optimized so that one can start
working to reach the highest levels of the framework, or to
maintain the level in which one is.

From the moment the company/institution, understands
that it is able to seek the next level of the framework or the
time comes for a reassessment of the company/institution, at
the level it is in, the diagnostic assessment questionnaire is
applied again to identify the company/institution, situation in
the activities that are part of the services of the desired level.

In the sequence, the performance indicators in the
historical database are registered and the maturity level is
redefined, and in the sequence it is checked to see if it meets
all the requirements of the level.

In the event of a reassessment, if the requirements are
met, the level is maintained, or it is passed to a higher level
in case of evaluation for level change.

The specified process is presented below, according to
[4]. See Figure 1.

Figure 1. Implantation process of Gaia Scope Framework

A. Gaia Scope Framework Maturity Levels

The Gaia Scope Framework has been updated to become
more adherent to its functional objective, which is product
scope management in software projects.

The levels that had been initially defined were:
undefined, known, managed, quantitatively managed, and
optimized [3].

The services that were initially planned were:
establishing strategy, planning scope management, collecting
requirements, defining scope, creating EAP, validating
scope, controlling scope (integration, risks, costs, time,
stakeholders) and improvement to be continued.

However, as mentioned, there was a need of updating
both the maturity levels and the services to compose the
framework, and the comparative study between the different
references was important for the more fruitful clarification of
the ideas and the main objective of the Framework.
Currently the maturity levels are as follows:

 Undefined;

 Known;

 Defined;

 Managed;

 Optimized;

The maturity levels presented are those that are
institutionalized in the Gaia Scope Framework currently.

189Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 201 / 267

B. Integration of maturity levels with their respective

upgraded services.

The maturity levels presented are those that are
institutionalized in the Gaia Scope Framework currently.

 Undefined
o The company/institution, does not have

defined and institutionalized processes and
artifacts.

 Known
o Establish strategy
o Requirements and scope survey and

analysis

 Defined
o Requirements specification / scope and

negotiation
o Validation of requirements / scope

 Managed
o Requirements / Scope Management

 Involves control of requirements /
scope

 Involves change control and
management

 Involves requirements / scope
traceability

o Maintenance and requirements / scope
history

 Involves requirements reuse
 Involves historical database
 It involves lessons learned
 Involves company/institution,

culture and company/institution
process assets

 Optimized
o Continuous improvement (Involves all

areas and services of scope management)

At the indefinite level, company/institution, do not have
the knowledge about their scope of requirements, nor about
their strategy. At the known level the company/institution,
will establish a strategy and know the requirements
analytically.

At the defined level, the company/institution, already
have important information about the scope, carrying out the
specification, negotiation and validation of the scope of
requirements. At the managed level, as its name implies,
there is management of the requirements scope through
requirements management activities, and maintenance of
requirements and a historical database.

The highest level is optimized, which suggests a
continuous improvement of all the services that are
implemented.

This is the current model of the structure of maturity
levels and services of the Gaia Scope Framework. To
analyze the hierarchy of maturity levels, see Figure 2.

Figure 2. Hierarchy of maturity levels

The Gaia Scope Framework has different advantages,
where we can mention the following: A) Possibility of being
used by any institution or company/institution, that develops
software; B) It is a tool or methodology that does not have
acquisition costs; C) Ease of application because it is divided
into maturity levels and not bureaucratic; D) Designed to be
constantly updated; E) It adds ideas of important references
of the area like Roger Pressmam, Ian Sommerville, Mps-Br,
CMMI, among other bibliographies; F) Simple and
objective; G) The requirements for the development of
software that supports the Gaia Scope framework are already
being analyzed.

VII. CONCLUSIONS AND FUTURE WORK

The development of the Gaia Scope Framework is an
initiative that comes to assist any agent that is directly or
indirectly involved in the area of engineering and
requirements management.

The development of this tool, which can also be
understood as a methodology, meets the need of many
company/institution,, which is to identify and manage their
requirements in the best possible way.

Allied to the simplicity that the framework values, it is
still possible to emphasize that it is free, which facilitates
even more the use by them.

It is important to clarify that the research work, as well as
the necessary adjustments continue to guarantee continuous
improvement in the framework, but the basis of the whole
study is already structured by defining and updating the
levels of maturity and services that the framework will
Contemplated, which were presented in this article

It is expected that, with the development of this
framework, it will be possible to better identify and manage
the requirements in software projects, aiming at a work that
is carried out with ever more quality, guaranteeing the
identification, analysis, development, documentation and
requirements, which will be the basis for the development of
all project needs.

The work that will be carried out in the future deals with
the detailed specification of each service and its elements,
the development of the diagnostic evaluation questionnaire,
the implementation of the framework in the Gaia company,
the analysis of the results after the application in at least two
projects, and if necessary, making the necessary adjustments,

190Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 202 / 267

until the institutionalization of the final version of the
framework.

And then, the finalization of the software requirements
specification to be developed that will support what the
framework values.

ACKNOWLEDGMENT

I would like to thank Dr. Rodolfo Miranda de Barros for
his help, advice and guidance for the development of this
work.

REFERENCES

[1] Association for the Promotion of Excellence in Brazilian Software.

General Software Guide. Brasilia: SOFTEX. January, 2016.

[2] Bon, Jan Van., 2012. ITIL [recurso eletrônico] : guia de
referência, edição 2011, Elsevier. Rio de Janeiro.

[3] Dalsasso, Darlan., Barros, Rodolfo Miranda de, GAIA scope:
Framework for the project scope management in software
development proccess. In, 11th Iberian Conference on Information
Systems and Technologies (CISTI), 2016, Gran Canaria, v.1. p. 1-6,
2016.

[4] Freitas, Marcos André dos Santos., 2013. Fundamentals of IT service
management, Brasport. Rio de Janeiro, 2nd edition.

[5] Koscianski, André., Soares, Michel dos Santos., 2007. Software
quality: learn the most modern methodologies and techniques for
software development, Novatec Editora. São Paulo, 2nd edition.

[6] K. L. Madhuri and V. Suma, Influence of domain and technology
upon scope creep in software projetcs. In. International Conference
on Advances in Electronics, Computers and Communications,
ICAECC 2014, pp. 1-6, 2014.

[7] Pressman, Roger S., 2011. Software Engineering A Professional
Approach, AMGH. Porto Alegre, 7nd edition.

[8] Sommerville, Ian., 2011. Software Engineering, Pearson Prentice
Hall. São Paulo, 9th edition.

[9] A project management knowledge guide (PMBOK guide) / (text and
translation) Project Management Institute. - 5 ed. - São Paulo:
Saraiva, 2014.

[10] Viana, Ricardo Vargas., 2014. Practical handbook of the project plan:
using the PMBOK Guide, Brasport. Rio de Janeiro, 5th edition.

[11] Vazquez, Carlos Eduardo. Simões, Guilherme Siqueira, 2016.
Requirements engineering: software oriented to business, Brasport.
Rio de Janeiro.

[12] Software Engineering Institute. (2010). CMMI for Development,
Version 1.3. Carnegie Mellon University, (November), 482.
http://doi.org/CMU/SEI-2010-TR-033 ESC-TR-2010-033.

191Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 203 / 267

IoT Caching in Information Centric Networks
A Systematic Mapping

1 Higgor Leimig da Silva Valença, 2 Felipe Silva Ferraz, and 3 Francisco Icaro do Nascimento Ribeiro
CESAR – Recife Center for Advanced Studies and Systems

Brazil, Recife
E-mail: {1hlsv, 2fsf, 3finr}@cesar.org.br

Abstract—The Internet of Things will connect billions of
devices to the Internet. However, our current Internet
infrastructure does not support this amount of connected
devices and cannot process the amount of data generated by
them. In order to improve our Internet, a novel architecture
has being proposed, Information Centric Networks. This work
has the objective of identify and analyze the current state of
the art solutions for Caching Schemes in Information Centric
Networks. To achieve that, a mapping of these solutions was
conducted. This mapping resulted in the finding of 127 works,
of which 20 were identified as primary studies. This mapping
shows what is being researched and which directions have been
considered for improving Caching in Information Centric
Networks.

Keywords-Information Centric Networks; Caching; In-
network Cache; Internet of Things; Systematic Mapping.

I. INTRODUCTION
Everyday, different types of objects are being connected

to the Internet. Objects like an irrigation monitor and control
systems, thermostats, refrigerators, and door lockers that
were not previously connected are now part of a network of
things with the purpose of providing data and/or acting on
its environment. This trend is called Internet of Things
(IoT), and it is a concept that has the potential to change our
day to day lives.

The IoT is enabling business models that rely on data
from a variety of different physical objects, like health
systems that monitor pacemakers. Current forecasts estimate
that 28-34 billion devices will be connected by the year
2020, from which 17.5-24 billion will have IoT as their
primary purpose [1]–[3]. They also estimated that, by 2020,
nearly 6 trillion dollars will be invested in IoT solutions
focusing on lowering costs, increasing productivity,
expanding business to new markets, and developing new
products [2].

This amount of connected devices provides us with a
unique opportunity to create solutions capable of interacting
with different areas of human knowledge to improve our
lives, like Urban Infrastructure, Agriculture, and
Manufacturing. Among the currently targeted areas, Health
Care is considered as the most promising of those [4].
Digitally delivered services like disease prevention,
diagnose, monitoring, and treatment are expected to create a
global growth in economy by 2025 of $1.1-2.5 trillion [4].

Even though the predictions for the IoT reveal a
promising area, it is not yet a reality. Challenges like
interoperability, security and privacy, scalability,
performance, availability, and device mobility [5][6] are still
being researched before we are able to connect the amount
of devices the IoT requires or to process the amount of data
that will be produced by these devices.

In order to solve these issues, researchers and companies
are working on multiple fronts. For example, the
interoperability and scalability issues are being tackled by,
among other things, the development of IoT platforms.
These platforms enable the connection and communication
of devices under a single protocol, like KNoT [7], Xively
[8], and Amazon IoT [9]. Regarding the performance issue
in IoT, a novel solution has emerged. It is called
Information Centric Networks (ICN).

ICN is a novel network architecture that aims to replace
TCP/IP as the default protocol of the Internet. The ICN
architecture proposes a shift in paradigm, from a host-
centric network to a data-centric network. In ICN, the focus
is on the data the user is trying to retrieve instead of from
where the data is coming. Focusing on the data means that
the data the user is looking for can come from anywhere in
the network. That encourages the use of in-network caching
[10][11], allowing popular data to be stored near the users
that request them the most.

In this paper we will map the state of the art of Caching
approaches in ICN. We will use a process defined by [12] in
order to minimize any possible bias during the analysis of
papers. This work aims to be a concise overview of the
research being made in this field.

This paper is organized as follow: Section II briefly
explains ICN’s protocol, how it works and what is still
being researched. Section III will describe the methods,
processes, and protocols that were used in this mapping. In
Section IV, we will present the analysis made in the primary
studies found during the process described in Section III.
Finally, in Section V, we will depict the results found in our
mapping.

II. INFORMATION CENTRIC NETWORKS
ICN is a novel approach to network architecture that

changes the paradigm from a host-centric Internet to a data-
centric Internet. In order to achieve that, content is promoted
to a first class citizen in ICN. That means that instead of
requesting data to an Internet Service Provider (ISP)

192Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 204 / 267

through TCP/IP and URL, in ICN the user requests the data
through an Unified Content Name. This approach decouples
data from its host and allows it to be stored anywhere in the
network [10].

In ICN, users do not connect directly with a host in order
to access their data. Instead, they send an Interest Packet to
all nodes in its Forwarding Information Base (FIB). Upon
receiving an Interest Packet, the node looks for the data in
its Content Store. If it is present, then the node consumes
the Interest Packet and answers the message with the desired
Data Packet [13]. In case the data is not present, the Interest
Packet is queued in the Pending Interest Table (PIT) and the
node forwards the Interest Packet to all nodes in its FIB.
Once the Packet reaches a node that has the desired data –
be it an ISP or another node in the network – it answers the
message with a Data Packet. The Data Packet then follows
the trail of breadcrumb left by the Interest Packet in the PIT
of each node in the network until it reaches the original
requester [13]. While following the breadcrumb, the Data
Packet meets nodes that implement and nodes that do not
implement cache policies. The ones that implement cache
policies will evaluate the Data Packet to decide if it is worth
caching or not, depending on the criteria configured for that
node. This characteristic of ICN allows Data Packets to be
spread in the network, making it easier to be accessed.

Because of the protocol described in the previous
paragraph, cache has gained primary importance in ICN.
Through in-network caching, data can be retrieved from
neighbor nodes in the network, instead of the ISP,
decreasing the delay of data retrieval.

The default implementation of the caching protocol in
ICN is called Cache All [13]. However, this protocol
imposes a high storage cost to all nodes in the network.
Moreover, duplicating all data in all nodes can lead to
duplication where the data is not necessary. In order to make
ICN viable for day to day use, ICN's Caching Scheme needs
to be improved. Several research are being made with this
goal in mind. This work will map some of these research.

III. APPLIED PROTOCOL
The objective of this mapping is to identify the state of

the art solutions for Caching in ICN. In order to identify the
studies related to this topic, the following question was
thought:

• How the Internet of Things will affect the performance
of the Internet?

From this question, secondary questions were developed
in order to help the comprehension of the solutions:

• How is Information Centric Networks handling
information cache?

• In what ways can we use cache to improve the data
availability in the Information Centric Networks?

• What are the main challenges in using cache in
Information Centric Networks?

The protocol used in this study is based on the protocol
used in [12], which is based on the guidelines of
Kitchenham [14] and the analysis of [15]. This review
process is composed of the following five stages: (1)

identification of inclusion and exclusion criteria, (2) search
for relevant studies, (3) critical assessment, (4) extraction of
data, and (5) synthesis. Each of these stages is elaborated in
the next sections.

A. Inclusion and Exclusion Criteria
For this review, we focused on studies that present novel

caching solutions for ICN. These solutions ranged from
novel forwarding algorithms to monetized caching policies.
Since the focus was to analyze the state of the art
considering Caching for ICN, the studies were excluded in
case they did not fit at least one of the following criteria:

• Published after 2015.
• Published in English.
• Studies that were not available online.
• Call for works, prefaces, conference annals,

handouts, summaries, panels, interviews, and news
report.

B. Search Strategies
The studies gathered for this review were found in the

databases below:
• IEEE Xplore.
• ACM Digital Library.
• SpringerLink.
Keywords were identified and combinations of those

were used to make sure relevant content were not missed.
The queries below were the result of these combinations:

• ICN AND cache
• ICN AND caching
• "information centric network" AND cache
• "information centric network" AND caching
These queries were combined into one query and used in

order to search the databases. The searches were performed
in March 2017. The results of each search were grouped and
were later examined in order to remove duplications. Table I
shows the amount of studies found on each database.

TABLE I. AMOUNT OF STUDIES FOUND ON EACH DATABASE

Database Number of Studies

IEEE Xplore 24

ACM Digital Library 47

SpringerLink 57

C. Studies Selection Process
This section describes the Selection Process from search

in the databases engines all the way through the
identification of the primary studies.

In the first stage, the studies gathered in the databases
through the queries were grouped in a spreadsheet for
further analysis. This search returned 127 non-duplicated
studies.

The second stage consists of the analysis of the titles of
all the resulting studies to determine its relevance for this
mapping. At this point, many works that were not related to
caching in ICN were discarded. From the original 127

193Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 205 / 267

works, 40 remained after selecting them by titles. Among
the works left, some were put aside to be analyzed in the
next stage due to ambiguous titles.

After analyzing the titles, the abstracts of the remaining
studies were analyzed in the third stage. In this stage several
other studies were discarded since many did not match our
expectations of presenting solutions for caching in ICN.
After this stage another 18 works were discarded, leaving 22
to be analyzed.

Table II summarizes the amount of studies left after each
stage of the Selection Process.

TABLE II. AMOUNT OF STUDIES LEFT AFTER EACH STAGE OF
THE SELECTION PROCESS

Phase of Selection Process Number of Studies

1. Database Search 127

2. Title Analysis 40

3. Abstract Analysis 22

D. Quality Assessment
In this stage, the remaining works went through a careful

analysis. This analysis took into account not only the title
and abstracts, but the whole content of the study. During
this analysis, 2 (two) studies were considered uninteresting
for this mapping so they were discarded.

In this analysis, relevance grades were used to classify
each of the studies according to five questions. These
questions helped in the identification of studies related to
our mapping of caching solutions in ICN. From these five
questions, the first two were crucial to the process of
assessing the study contribution for this mapping. The
remaining questions were used to assess the quality of the
studies. The questions were:

• Does the study propose a solution to improve the
performance of Information Centric Networks?

• Does the study adequately describe the proposed
solution?

• Was the solution adequately tested? e.g., did it use
an ICN Simulator?

• Were the conditions of the test adequately
described?

• Were the results adequately compared with other
solutions?

Of the remaining 22 works, 20 were selected as primary
studies. These studies then went to the Data Extraction and
Synthesis stage. The quality assessment process will be
explained in more details in the Results section, along with
an assessment of the 20 studies.

IV. RESULTS
As stated before, 20 works were selected as primary

studies [15]–[35] after the Selection Process. These studies
approached the caching issue in ICN in a variety of ways.
Some proposed novel Replication and Content Eviction
algorithms [17][18]. Some proposed Collaborative Caching
polices among routers [23]. And some worked on the

possibility of using monetization to incentive popular
content caching throughout the network [27][28].

The following sections will dive deeper into the
qualitative and quantitative analysis of the selected studies.

A. Quantitative Analysis
This section brings a quantitative analysis of the selected

studies. This analysis intends to show who is studying
Caching in ICN, where they are, and which keywords to use
in order to find these studies.

The 20 selected studies were written by 66 authors
affiliated to institutions in 12 countries. These studies were
published between January 2015 and March 2017. In total,
the studies used 63 different keywords.

The most common keywords used in these studies were:
information centric network (13), caching (6), ICN (6), ccn
(3), content centric networking (3), in-network caching (3),
cache (2), content delivery networks (ccn) (2), game theory
(2), named data networking (2), and network pricing (2). All
the other keywords appeared only once. It is worth noticing
that the first seven keywords are directly related to the
theme of this mapping.

An analysis of these keywords can show how the
primary studies are subdivided. The most frequent keywords
represent the common theme among the studies, keywords
like caching, networking, and information centric are
present in all studies. Moving past these keywords, we can
see keywords that state some of the concerns of these
studies, like performance and bandwidth. One step further
revels keywords that represent the strategies used by the
researchers, like forwarding, replication, and popularity
based algorithms. At last, the least common keywords are
the names of the proposed solutions. Fast-Start [24], CLCE
[17], LFRU [17], and RB-CCC [32] are a few of them.

Regarding the country of origin, China had the most
published studies (4.07). United States came in second place
with 4 publications, Japan in third with 3 studies, India and
France with 1.66 each. Brazil, Canada, Greece, United
Kingdom, and South Korea came in fifth place, all with 1
publication, Germany in sixth with 0.33, and Sweden in
seventh with 0.25.

B. Qualitative Analysis
As described before, each of the selected primary studies

have been assessed according to five quality criteria related
to their relevance. When considered, these five criteria can
provide a clear view of how much each of the primary
studies is relevant to this work. Each study has been
classified for each of the criteria using a positive or negative
answer.

Table III presents the result of this analysis. Each row
represents a study and the columns 'Q1' to 'Q2' represent
each of the defined quality criteria: Solution Proposal and
Description, Validation, and Comparison with other
solutions. For each criteria, '1' is used to represent a positive
answer and '0' is used to represent a negative one.

All but [19][27][28] had positive answers for 'Q1' and
'Q2'. As stated before, these questions were used as a way of
measuring the contribution each study could have to this

194Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 206 / 267

mapping. However, even though these studies did not
proposed any novel approaches to ICN caching, they were
included in the study since they either evaluated [19] an
approach that was not present in the database search or
proposed improvements in an already existing approach
[27][28]. Including these studies allows us to have a bigger
picture of the research in ICN caching.

TABLE III. QUALITY ANALYSIS OF PRIMARY STUDIES

Study Q1 Q2 Q3 Q4 Q1 Total

[17] 1 1 1 1 1 5

[18] 1 1 1 1 1 5

[19] 0 0 1 1 1 3

[20] 1 1 1 1 1 5

[21] 1 1 1 1 1 5

[22] 1 1 1 1 1 5

[23] 1 1 1 1 1 5

[24] 1 1 1 1 1 5

[25] 1 1 1 1 1 5

[26] 1 1 1 1 1 5

[27] 0 0 0 1 0 1

[28] 0 0 0 1 0 1

[29] 1 1 1 1 1 5

[30] 1 1 1 1 1 5

[31] 1 1 1 1 1 5

[32] 1 1 1 1 1 5

[33] 1 1 1 1 1 5

[34] 1 1 1 1 1 5

[35] 1 1 0 0 0 2

Total 17 17 17 19 17

Other than the studies discussed above, [35] was the
only other study that did not met all the expected criteria. It
does describe a new approach to ICN caching, but the
validation is not properly described nor it is compared to
other approaches.

V. DISCUSSION
After the analysis and data extraction phases, it was

possible to notice some aspects of the research that have
been made regarding ICN caching. Firstly, almost all of the
studies analyzed proposed a novel approach to ICN caching.
This shows that there is currently no agreement on which
solution should be considered standard. Secondly, a great
variety of solutions have been proposed. From simply
replacing the Storage [17] or Forwarding [20] algorithms, to

solutions involving monetization in order to incentive other
routers to cache data relevant to the payer router [27][28].
Finally, although most of the research have been made for
caching in applications of general use, some research have
also been made for niche-specific applications, like video
streaming [24].

The next sections will discuss the questions that guided
this mapping, and a important aspect of the performance
evaluations made in the studies.

A. How is Information Centric Networks handling
information cache?

The analysis of the primary studies reviewed several
different approaches to in-network caching. The first (and
most common) approach was to replace the algorithms used
in the Content Store. According to [17], the Content Storage
of a network is composed by two elements – the Replication
Algorithm and the Eviction Algorithm. The Replication
Algorithm defines the policy used to spread the content
throughout the network. Examples of Replication
Algorithms are Leave Copy Everywhere (LCE) [13][37] and
Leave Copy Down (LCD) [38][39]. The Eviction Algorithm
defines the rules used to decide whether an arriving content
should replace an existing one. An example of Eviction
Algorithm is the LRU (Least Recently Used) [40].

Here are a few examples of the proposed algorithms:
• Conditional Leave Copy Everywhere (CLCE) and

Least Frequent Recently Use (LFRU), by [17].
• Progressive and Fast Progressive, by [31].
• Object-Oriented Packet Caching, by [29].
These algorithms were built using different assumptions

and techniques. Some do popularity-based decisions [31],
others use assumptions regarding user behavior as input for
its algorithm [35], and some try to fix issues in previously
proposed approaches [17].

One of the studies leverages the use of monetization in
order to incentive nodes of the network to store data in their
caches. The studies [27][28] try to improve the original
approach by improving the algorithm used to determine the
price. Another study proposes a fixed network layout in
order to achieve optimal result with video streaming [24].
At last, one study proposes a change in the Routing
Algorithm [20] to improve the changes of finding the data
that the user is looking for in neighbor nodes, different than
the usual Routing Algorithm that creates a tree-like
structure.

This variety of approaches shows that there are many
aspects that can be tackled when improving Cache in ICN,
not only the most common one: improving the heuristic
behind the Eviction and Replication algorithms.

B. In what ways can we use cache to improve the data
availability in the Information Centric Networks?

An analysis of the primary studies shows that, although,
most of the proposed solutions are not domain specific,
some have very specific niches. At one hand, general-
application solutions have the advantage of being able to
deal with a broader set of situations. These solutions can
handle applications like web searching, file downloads, and

195Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 207 / 267

so forth. On the other hand, however, these solutions have
the disadvantage of not being fully optimized for demanding
niches, like video streaming.

According to a forecast by Cisco [36], by 2020 82% of
Internet traffic will be video stream; against 70% in 2015.
This shows a significant growth in video consumption.

In order to minimize network traffic, ICN can be used as
a way to cache video content near the consumers. Requiring
less hops to find the desired content and creating less
overhead in the network nodes. However, it can also be used
to store other types of streaming, like music, for example, as
well as for general web applications like news feed and data
access when the main ISP is offline.

ICN’s distributed cache nature allows us to improve the
Quality of Service in several different application domains,
as well as decrease the load in data centers and Internet
Providers, by increasing data availability.

C. What are the main challenges in using cache in
Information Centric Networks?

Even though caching can be used to improve the
performance of many different application domains, not all
domains have the same requirements and not all protocols
work the same way. Because of this, caching schemes that
deliver great performance for video streaming may not work
so well when caching data in for autonomous vehicles.
Moreover, these protocols are not always compatible among
each other.

In order to ICN to become commercially viable, the
authors identified three requirements:

• The network nodes should be able to cache relevant
amount of data. Consider as "relevant amount of
data”, data quantities appropriate to the context.
Hub nodes should be able to store more data than
the local nodes the users will have at his/hers home.

• These nodes should be widely spread in order to
ICN to truly show its potential.

• The caching scheme should either be universal, i.e.
caching regardless to the protocol, or multiple
protocols that are compatible and can work together
to complement each other. However, it is necessary
to point out that caching protocols should be fast in
order to deliver the requested packets as fast as
possible. And that this limitation should be in mind
when designing a caching scheme for ICN.

D. Performance evaluation
As shown in Section IV, most of the primary studies

evaluated their solutions and compared to others. After
analyzing the experiments performed, some trends were
noticed.

Firstly, the majority of studies used a Zipf distribution
[41] to generate the randomness in the network traffic. It is
based on the the fact that many types of studied data have a
similar distribution. This uniformity in input ensures the
comparisons are unbiased, distribution-wise.

In order to implement and test the proposed solutions,
most of the primary studies used network simulators. Here
are a few simulators related to ICN:

• NS-3 network simulator [42]
• ccnSIM [43]
• ndnSIM [44]
• Icarus [45]
These aspects should be followed in order to lessen the

bias and create a more uniform approach to evaluate the
performance of ICN caching schemes.

VI. CONCLUSION
The objective of this mapping was to identify and

analyze studies that contributed to the state of the art of
Caching Schemes in ICN. In the search phase, 127 works
were found. From which 20 were considered as primary
studies, after the phase of quality assessment. These studies
were then classified regarding the aspects of the solution
proposed.

The analysis of these studies showed that there is the
need of a standardization of the Caching Scheme in ICN.
Several different approaches were mapped, but none have
been particularly successful in establishing itself as a
standard. Most of the proposed approaches were only
compared to simpler solutions, other than the most
sophisticated ones. Leaving a gap of how these solutions
compare to each, performance-wise.

This mapping shows how ICN can improve the Quality
of Service in many areas. It also lists the approaches used by
the studies to try and improve the Caching performance in
ICN. And which techniques are being used in order to
validate new Caching solutions.

Regarding future works, we propose a comparison
between the mapped solutions in order to point the direction
to be followed by future researchers of ICN.

ACKNOWLEDGMENT
This work was developed under the Professional Master

of Software Engineer's program of the Educational branch
of CESAR, a Brazilian innovation center.

REFERENCES
[1] T. Barros, “What is missing to the Internet of Things?”

https://medium. com/cesar-reports/o-que-falta-na-internet-para-as-
coisas-f6f7cdf05aa6, retrieved: August, 2017.

[2] J. Greenough, “How the 'internet of things' will impact consumers,
businesses, and governments in 2016 and beyond,”
http://www.businessinsider.com/how-the-internet-of-things-market-
will-grow-2014-10, retrieved: August, 2017.

[3] Nordrum, “Popular internet of things forecast of 50 billion devices
by 2020 is outdated,” http://spectrum.ieee.org/tech-
talk/telecom/internet/popular-internet-of-things-forecast-of-50-
billion-devices-by-2020-is-outdated, retrieved: August, 2017.

[4] J. Manyika et al., Disruptive technologies: Advances that will
transform life, business, and the global economy. McKinsey Global
Institute San Francisco, CA, 2013, vol. 180.

[5] V. Gazis et al., “Short paper: Iot: Challenges, projects,
architectures,” in 2015 18th International Conference on Intelligence
in Next Generation Networks, Feb 2015, pp. 145–147.

[6] S. H. Shah and I. Yaqoob, “A survey: Internet of things (iot)
technologies, applications and challenges,” in 2016 IEEE Smart
Energy Grid Engineering (SEGE), Aug 2016, pp. 381–385.

[7] “Knot: the open source meta platform for iot,”
https://www.knot.cesar. org.br/, retrieved: August, 2017.

196Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 208 / 267

[8] “Xively,” https://www.xively.com/, retrieved: August, 2017.
[9] “Amazon iot,” https://aws.amazon.com/iot, retrieved: August, 2017.
[10] G. Zhang, Y. Li, and T. Lin, “Caching in information centric

networking: A survey,” Comput. Netw., vol. 57, no. 16, Nov. 2013,
pp. 3128–3141. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet. 2013.07.007

[11] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B.
Ohlman, “A survey of information-centric networking,” IEEE
Communications Magazine, vol. 50, no. 7, July 2012, pp. 26–36.

[12] F. I. N. Ribeiro, F. S. Ferraz, M. C. T. Silva, and G. H. S. Alexandre,
“Big data solutions for urban environments a systematic review,”
2015, pp. 22–28.

[13] V. Jacobson et al., “Networking named content,” in Proceedings of
the 5th international conference on Emerging networking
experiments and technologies. ACM, 2009, pp. 1–12.

[14] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Inf. Softw.
Technol. 52, 8 (August 2010), 2007, pp. 792-805.

[15] T. Dyb and T. Dingsyr, “Empirical studies of agile software
development: A systematic review,” Information and Software
Technology, vol. 50, no. 910, 2008, pp. 833 – 859. [Online].
Available:
http://www.sciencedirect.com/science/article/pii/S095058490800025
6

[16] F. Lai, F. Qiu, W. Bian, Y. Cui, and E. Yeh, “Scaled VIP Algorithms
for Joint Dynamic Forwarding and Caching in Named Data
Networks,” in Proceedings of the 3rd ACM Conference on
Information-Centric Networking, ser. ACM-ICN '16. New York,
NY, USA: ACM, 2016, pp. 160–165. [Online]. Available:
http://doi.acm.org/10.1145/ 2984356.2984377

[17] M. Bilal and S. G. Kang, "A Cache Management Scheme for
Efficient Content Eviction and Replication in Cache Networks,"
in IEEE Access, vol. 5, 2017, pp. 1692-1701.

[18] X. Sun and Z. Wang, "An Optimized Cache Replacement Algorithm
for Information-centric Networks," 2015 IEEE International
Conference on Smart City/SocialCom/SustainCom (SmartCity),
Chengdu, 2015, pp. 683-688.

[19] G. Carofiglio, L. Mekinda, and L. Muscariello, “Analysis of
Latency-Aware Caching Strategies in Information-Centric
Networking,” In Proceedings of the 1st Workshop on Content
Caching and Delivery in Wireless Networks (CCDWN '16). ACM,
New York, NY, USA, no. 5, 2015, pp. 1-7.

[20] K. Sato, T. Kamimoto, R. Shinohara, and H. Shigeno, “Cache
Management with Extended Interest for Information-centric
Networking,” In Adjunct Proceedings of the 13th International
Conference on Mobile and Ubiquitous Systems: Computing
Networking and Services (MOBIQUITOUS 2016). ACM, New
York, NY, USA, 245-250.

[21] P. Sena, A. Ishimori, I. Carvalho, and A. Abele ́m, “Cache-Aware
Interest Routing : Impact Analysis on Cache Decision Strategies in
Content-Centric Networking,” In Proceedings of the 9th Latin
America Networking Conference (LANC '16). ACM, New York,
NY, USA, 39-45.

[22] Z. Li and G. Simon, “Cooperative Caching in a Content Centric
Network for Video Stream Delivery,” Journal of Network and
Systems Management, vol. 23, no. 3, 2015, pp. 445–473.

[23] S. Wang, J. Bi, J. Wu and A. V. Vasilakos, "CPHR: In-Network
Caching for Information-Centric Networking With Partitioning and
Hash-Routing," in IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2742-2755, October 2016.

[24] Z. Liu et al., “Fast-Start Video Delivery in Future Internet
Architectures with Intra-domain Caching,” Mob. Netw. Appl. 22, 1
(February 2017), 98-112.

[25] Ravi, P. Ramanathan, and K. M. Sivalingam, “Integrated network
coding and caching in information-centric networks: revisiting
pervasive caching in the ICN framework,” Photonic Network
Communications, 2015.

[26] W. Quan, Y. Liu, X. Jiang, and J. Guan, “Intelligent popularity-
aware content caching and retrieving in highway vehicular
networks,” EURASIP Journal on Wireless Communications and
Networking, 2016. [Online]. Available:
http://dx.doi.org/10.1186/s13638-016-0688-z

[27] M. Hajimirsadeghi, N. B. Mandayam and A. Reznik, "Joint Caching
and Pricing Strategies for Information Centric Networks," 2015
IEEE Global Communications Conference (GLOBECOM), San
Diego, CA, 2015, pp. 1-6.

[28] M. Hajimirsadeghi, S. Member, and N. B. Mandayam, “Joint
Caching and Pricing Strategies for Popular Content in Information
Centric Networks,” vol. 8716, no. c, 2017.

[29] Y. Thomas, C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos,
“Object-oriented Packet Caching for ICN,” In Proceedings of the
2nd ACM Conference on Information-Centric Networking (ACM-
ICN '15). ACM, New York, NY, USA, 2015, pp. 89-98

[30] G. Zheng and V. Friderikos, "Optimal proactive cache management
in mobile networks," 2016 IEEE International Conference on
Communications (ICC), Kuala Lumpur, 2016, pp. 1-6.

[31] N. Abani, G. Farhadi, A. Ito and M. Gerla, "Popularity-based partial
caching for Information Centric Networks," 2016 Mediterranean Ad
Hoc Networking Workshop (Med-Hoc-Net), Vilanova i la Geltru,
2016, pp. 1-8.

[32] J. Li, H. Wu, B. Liu, and Z. Fang, “RBC-CC : RBC-Based Cascade
Caching Scheme for Content-Centric Networking,” Journal of
Network and Systems Management, 2016.

[33] W. Li, S. M. A. Oteafy, and H. S. Hassanein, “StreamCache :
Popularity-based Caching for Adaptive Streaming over Information-
Centric Net-works,” 2016.

[34] B. Panigrahi, S. Shailendra, H. K. Rath, A. Simha, and T. C.
Services, “Universal Caching Model and Markov-based Cache
Analysis for Information Centric Networks,” 2014, pp. 1–6.

[35] Z. Liu, Y. Ji, X. Jiang, and Y. Tanaka, “User-behavior Driven Video
Caching in Content Centric Network,” In Proceedings of the 3rd
ACM Conference on Information-Centric Networking (ACM-ICN
'16). ACM, New York, NY, USA, 2016, pp. 197-198.

[36] V. Cisco, “Forecast and methodology, 2015-2020.”
[37] G. Carofiglio, V. Gehlen, and D. Perino, “Experimental evaluation

of memory management in content-centric networking,” in
Communications (ICC), 2011 IEEE International Conference on.
IEEE, 2011, pp. 1–6.

[38] Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network
caching for information-centric networks,” in Proceedings of the
second edition of the ICN workshop on Information-centric
networking. ACM, 2012, pp. 55–60.

[39] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of
lru caches and its analysis,” Performance Evaluation, vol. 63, no. 7,
2006, pp. 609–634.

[40] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix
on caching performance in a content-centric network,” in Computer
Communications Workshops (INFOCOM WKSHPS), 2012 IEEE
Conference on. IEEE, 2012, pp. 310–315.

[41] D. M. Powers, “Applications and explanations of zipf's law,” in
Proceedings of the joint conferences on new methods in language
processing and computational natural language learning. Association
for Computational Linguistics, 1998, pp. 151–160.

[42] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM
demonstration, vol. 14, 2008.

[43] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnsim: An highly
scalable ccn simulator,” in Communications (ICC), 2013 IEEE
International Conference on. IEEE, 2013, pp. 2309–2314.

[44] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim
2.0: A new version of the ndn simulator for ns-3,” NDN, Technical
Report NDN-0028, 2015.

197Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 209 / 267

[45] L. Saino, I. Psaras, and G. Pavlou, “Icarus: a caching simulator for
information centric networking (icn),” in Proceedings of the 7th
International ICST Conference on Simulation Tools and Techniques.

ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2014, pp. 66–75.

198Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 210 / 267

Survey on Microservice Architecture - Security, Privacy and Standardization on
Cloud Computing Environment

Washington Henrique Carvalho Almeida, Luciano de Aguiar Monteiro, Raphael Rodrigues Hazin, Anderson

Cavalcanti de Lima and Felipe Silva Ferraz
Center of Advanced Studies and Systems of Recife

Recife, Brazil
E-mail: {washington.hc.almeida, lucianoaguiarthe, raphaelhazin, andclima}@gmail.com

E-mail: {fsf}@cesar.org.br

Abstract — Microservices have been adopted as a natural
solution for the replacement of monolithic systems. Some
technologies and standards have been adopted for the
development of microservices in the cloud environment; API
and REST have been adopted on a large scale for their
implementation. The purpose of the present work is to carry
out a bibliographic survey on the microservice architecture
focusing mainly on security, privacy and standardization
aspects on cloud computing environments. This paper presents
a bundle of elements that must be considered for the
construction of solutions based on microservices.

Keywords-Microservice; Cloud; Architecture; API; REST

I. INTRODUCTION
Migration of the monolithic architecture to the cloud has

been a major problem. In this paper a research was carried
out on the topic of microservices that have been adopted as
a natural solution in the replacement of monolithic systems.
The main question lies in how its architecture has been used
and issues of security and privacy keys in a cloud
computing environment. The motivation for this collection
was the fact that more and more microservices have been
found as a solution for applications in the cloud. Cloud
computing provides a centralized pool of configurable
computing resources and computing outsourcing
mechanisms that enable different computing services to
different people in a way similar to utility-based systems,
such as electricity, water, and sewage.

For the recent advances of cloud computing
technologies, the use of microservices on applications has
been more widely addressed due to the rich set of features in
such architecture. These applications can be deployed on
clouds that make users use it at low cost, threshold, and risk.
Therefore, their practical use in business can be expected as
a trend for the next generation of business applications [1].

Scaling monolithic applications is a challenge because
they commonly offer a lot of services. Some of them are
more popular than others. If popular services need to be
scaled because they are highly demanded, the whole set of
services will also be scaled at the same time, which implies
that unpopular services will consume a large amount of
server resources even when they are not going to be used
[2].

The architecture based on microservices has emerged to
simplify this reality and are a natural evolution to
application models.

Microservices are a software oriented entity, which have
the following features [3]:

Isolation from other microservices, as well as from the
execution environment based on a virtualized container;

Autonomy – microservices can be deployed, destroyed,
moved or duplicated independently. Thus, microservices
cannot be bound to any local resource because microservice
environment can create more than one instance of the same
microservice;

Open and standardized interface that describes all
specific goals with effectiveness, efficiency and available
communication methods (either API or GUI);

Microservice is fine-grained – each microservice should
handle its own task.

The microservice architecture is a cloud application
design pattern that implies that the application is divided into
a number of small independent services, each of which is
responsible for implementing a certain feature, as noted in
Figure 1.

Figure 1. Microservice system architecture[3].

199Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 211 / 267

Microservices can be considered meta-processes in a
Meta operating system (OS); they are independent, they can
communicate with each other using messages and they can
be duplicated, suspended or moved to any computational
resource and so on [3].

The remainder of this article is structured as follows:
Section II introduces the architecture of implemented
microservices. Section III presents security in the cloud
computing environment and Section IV shows the privacy
model adopted in the cloud applications for microservices. In
Section V, we present the standards of cloud environment
and then conclude and summarize all the results of that
exercise in Section VI.

II. MICROSERVICE ARCHITECTURE
The microservice architecture has become a dominant

architectural style choice in the service oriented software
industry. Microservice is a style of architecture that puts the
emphasis on dividing the system into small and lightweight
services that are purposely built to perform a very cohesive
business function, and is an evolution of the traditional
service oriented architecture style [4].

The idea of splitting an application into a set of smaller
and interconnected services (microservice) is currently
getting many interests from application developers and
service providers (e.g., Amazon [5][6], Netflix [7][8], eBay
[9][10]).

A Microservice based architecture has a pattern for
development of distributed applications, where the
application is composed of a number of smaller
"independent" components; these components are small
applications in themselves [11].

A microservice normally comprises three layers as a
typical 3-tiered application [12], consisting of an interface
layer [13], a business logic layer [9] and a data persistence
layer, but within a much smaller bounded context. This sets
a broad scope of the technical capabilities that a
microservice could possess. However, not every
microservice provides all capabilities. This would vary
depending on how the function provided is meant to be
consumed. For example, a microservice used primarily by
providers of API's would have a communications interface
layer, business logic and data persistence layers but not
necessarily have user interfaces [11].

We are considering a reference architecture model of
microservices, demonstrating the main components and
elements of this standard [11]. Table 1 presents a
comparison between monolithic architecture and
microservice architecture

TABLE I. COMPARING MONOLITHIC AND MICROSERVICE
ARCHITECTURE [14]

Category Monolithic
Architecture

Microservice
Architecture

Code
A single code
base for the entire
application.

Multiple code bases. Each
microservice has its own
code base.

Understandability
Often confusing
and hard to
maintain.

Much better readability
and much easier to
maintain.

Category Monolithic
Architecture

Microservice
Architecture

Deployment

Complex
deployments with
maintenance
windows and
schedules
downtimes.

Simple deployment as each
microservice can be
deployed individually, with
minimal if not zero
downtime.

Language

Typically, entirely
developed in one
programing
language.

Each microservice can be
developed in a different
programing language.

Scaling

Requires you to
scale the entire
application even
though
bottlenecks are
localized.

Enables you to scale bottle-
necked services without
scaling the entire
application.

In this paper, we will cover the following main

elements:
A. API Proxy

 To "de-couple" the microservice from its
consumers, this proxy pattern is applied at the
microservice interface level, regardless of the "API
proxy" component. Organizations will provide
API's to different consumers, some of whom are
within and others outside the enterprise. These
microservices would differ in service level
agreements (SLA), security requirements, access
levels, etc [11].

B. Enterprise API Registry
The "discovery" requirements of the microservices
are met through the use of the API registry service.
Its purpose is to make the interfaces exposed by the
microservice visible to consumers of the services
both within and outside the enterprise. An
"Enterprise API registry" is a shared component
across the enterprise, whose location must be well
known and accessible. Its information content is
published in a standard format, information should
be in consistent and human readable format, and
must have controlled access. It must have search
and retrieval capabilities to allow users to look up
details on available API specifications at design
time [11].

C. Enterprise Microservice Repository
The "enterprise microservice repository" would be a
shared repository for storing information about
microservices. It provides information such as
microservice lifecycle status, versions, business and
development ownership, detailed information like
its purpose, how it achieves the purpose, tools,
technologies, architecture, the service it provides,
any API's it consumes, data persisted and queried
and any specific non-functional requirements. In the
absence of well-defined repository standards, the
enterprise must define its own standard specification
artefacts for microservices [5].

200Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 212 / 267

These elements are fundamental to the organized
implementation of microservices and have been considered
in this survey.

III. SECURITY ON CLOUD COMPUTING
Switching from a monolithic or centralized architecture

to a decentralized architecture requires some care. In the
past, security was focused on a single point [15],
responsible for receiving all service requests. In the
microservice-based architecture, the resources are offered
through several points of access that interconnect each
other, forming a unique solution.

Monolithic security services are relatively easier to
implement than microservices. Monolithic services have a
clear boundary and encapsulate their intercommunications.
This will obscure security vulnerabilities [16][17] within the
inner layers of the system. A microservice also encapsulates
its communications. Both microservices and services are
based upon clear requirements.

In a microservice-based system a simple routine
completion requires the microservices to communicate with
each other over network, for example. This will expose
more data and information (endpoints) about the system and
thus it expands the attack surface [8]. Some care must be
taken in the communication between other services in the
same network, and this is one of the major challenges
[13][15][18] in this approach.

The organization of teams for the development of a
system based on microservices are generally subdivided into
teams and services, and these teams are generally
responsible for the implementation and delivery of services.
For this type of implementation, the teams have to be
aligned in the purposes of the microservices and the
interconnection between them, thus also synchronizing the
protocol [19] used to carry out the communication, thus
respecting a standard for access protection or improper
interception. Defining the way services are interconnected
and interacting is the key point of security [20].

The security challenge brought by such network
complexity is the ever-increasing difficulty in debugging,
monitoring, auditing and forensic analysis of the entire
application [21]. Since microservices are often deployed in a
cloud that the application owners do not control, it is
difficult for them to construct a global view of the entire
application [10].

In microservice architecture, an application is essentially
a collection of workflows. These workflows can compose
many levels of services, each processing and modifying the
data before its final destination. What we need is a way to
certify the metadata related to a data stream and manage its
validity during time and re-elaboration [22].

Security is a major challenge that must be carefully
thought of in microservices architecture. Services
communicate with each other in various ways creating a
trust relationship. For some systems, it is vital that a user is
identified in all the chains of a service communication

happening between microservices. OAuth and OAuth2 are
well-known solutions that are employed by designers to
handle security challenges [4].

Although the microservices are independent and do not
cause dependencies among the modules, the biggest
challenge nowadays is to guarantee availability [23]. The
DevOps movement (set of practices to integrate the software
development to IT operations) is currently collaborating
with cloud environments and microservice architecture,
providing continuous integration from the code compilation
to the availability of the test and production environment,
making it a facilitator for systems implementation utilizing
microservices.

Ensuring the availability of services is presented as a
security requirement facilitated by the use of the
microservice architecture. This approach usually works by
fragmenting the entire solution in smaller pieces [24].
Considering that these fragments are parts of the code with
specific functions (microservices), in the event of a
fragment failure, it would not result in the unavailability of
all system resources. Availability has some critical points as
they are bound to be observed such as: implementing
software versions, software crash recovery, invasions,
unavailability of infra features beyond points.

In a microservice architecture, it is typical for many
instances of a particular service to be running at any one
time and for these instances to stop and start over time [25].
The problem of service discovery is to enable service
consumers to locate service providers in real time to
facilitate communication [26]. Docker Containers have been
gaining a lot of hard work because of their agility and ease
of making new services available [23]. The containers allow
the microservices to be packaged [27] and available next to
their dependencies in a single image, thus facilitating the
availability of the service in a timely manner, minimizing
downtime. This mode is called code portability [28]. In the
context of microservices, the use of docker containers for
service delivery has resulted in benefits under various
aspects, such as: automation, independence, portability and
security, especially when considering ease of management,
creation and continuous integration of environments
systems offered by the docker platform. In Docker, each
container consists of only the application and the
dependencies that the application needs to run, ideally no
more and no less [28].

IV. PRIVACY MODEL
Privacy has been a barrier to adoption of cloud

computing [24][29]. The migration to microservices has
helped overcome this obstacle due to the scale gains
proposed in this architecture.

In general, privacy refers the condition or state of hiding
the presence or view [30]. There is a need to attain this state
in the places where confidential things are used such as data
and files. In cloud data storage privacy is needed to attain
the data, user identity and controls [31]

201Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 213 / 267

The exchange of sensitive data is intense in large-scale
scenarios of cloud computing, with several federations,
where multiple Identity Providers (IdP) and Service
Providers (SP) work together to provide services. Therefore,
identity management should provide models and privacy
mechanisms in order to manage the sensitive data of its
users [15].

Cloud service provides various options to the business
customers to choose the level of protection needed for their
data. The most common of these approaches is encryption.
The customer chooses the type of encryption that they prefer
and store the encryption key in a safe place under their
control [19].

To ensure privacy, a well referenced model is used. This
model is presented in Figure 2.

Figure 2. Cloud security and privacy model [29].

According to the proposed model in [29], a secure and
private cloud model is divided into five layers: Physical and
Environmental Security, Cloud Infrastructure Security,
Network Security, Data and Access Control and Privilege
Management.

1. Physical and Environmental Security
Layer of policies adopted with the objective of
protecting physical access to the cloud provider [5].

2. Cloud Infrastructure Security
Addresses issues with cloud infrastructure security, but
specifically with the virtualization environment [32].

3. Network Security
Specifies the medium to which the end user connects to
the cloud, comprising browsers and their connection [9].

4. Data
Layer covers data privacy, integrity, confidentiality, and
geographic location [22].

5. Access Control and Privilege Management
Policies and processes used by cloud services provider
to ensure that only the users granted appropriate
privileges can use or modify data. It includes
identification, authentication [33] and authorization
issues [29].

V. MICROSERVICE STANDARDS AND SOLUTIONS
In the centralized structure, the standardization becomes

almost a natural way, but in the implementation of
microservices this philosophy changes.

Teams building microservices prefer a different
approach to standards too. Rather than using a set of defined
standards, written down somewhere on paper, they prefer
the idea of producing useful tools that other developers can
use to solve similar problems to the ones they are facing.
These tools are usually harvested from implementations and
shared with a wider group, sometimes, but not exclusively,
using a git and github has become the de facto version
control system of choice. Open source practices are
becoming more and more common in-house [34].

A microservice is an application on its own to perform
the functions required. It evolves independently and can
choose its own architecture, technology, platform, and can
be managed, deployed and scaled independently with its
own release lifecycle and development methodology. This
approach takes away the construct of the SOA and ESB and
the accompanying challenges by making "smart endpoints"
and treating the intermediate layers as network resources
whose function is that of data transfer [11].

The applications that expose interfaces that can be used
by other applications to interact with are defined as
"application programming interfaces" (API) [5].
Microservice API's which are built using internet
communication protocols like HTTP, adhere to open
standards like REST [35][36] and SOAP [2] and use data
exchange technologies like XML [18] and JSON [5].

Applications developed in a monolithic architecture
perform multiple functions such as providing address
validation, product catalogue, customer credit check, etc.
When using the microservice based architecture pattern,
applications are created for specific functions, such as
address validation, customer credit check and online
ordering; these applications are cobbled together to provide
the entire capability for the proposed service. The approach
to application development based on microservice
architecture addresses the challenges of "monolithic"
application and services [11].

In the research undertaken in this paper, the
microservices are implemented and documented as follows:

A. Architectural views/diagrams [4]
● UML
● Standard modeling languages, e.g. RAML and

YAML.
● Specifically designed modeling languages, e.g.

CAMLE.
● Standard specification languages, e.g.

Javascript (Node.js), JSON and Ruby.
● Specifically designed specification languages,

e.g. Jolie.
● Pseudocode for algorithms.

B. REST
REpresentational State Transfer (REST) consisting
of a set of architectural principles that, when
followed, allows a well-defined interface design to
be created. Applications that use REST principles
are called RESTFul. REST [10][18][36][37] is
often applied to provide services to other services
(web services) and to the same full use of messages.
To better understand the architectural style, it is

202Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 214 / 267

important to highlight three important concepts: (i)
feature; (ii) operations and (iii) representations.
Resource is any information that is made available
to customers through a unique identifier (URI). We
can also define resource as being the source of
representations. The representations are a set of data
that explains the state of the requested resource.
URIs must have a notation pattern, be descriptive,
and have a previously defined hierarchy. The same
resource can be identified by one or more URIs, but
a URI [38] [39] identifies only one resource.

C. API
Application Program Interface (API) are (a) basic
authentication, including API user registration with
strong password protection, (b) modern security
mechanisms such as message level security, web
signature and web encryption, and (c) security
mechanism within API and its backend services as a
third security factor such as token based API for
backend authentication, public key infrastructure
and transport layer handshake protocol [13].

REST APIs [7] are developed in many technologies and
microservices developed using different types of
programing languages (Java, .NET, PHP, Ruby, Phyton,
Scala, NodeJs,etc.) and persistent technologies (SQL, No-
SQL, etc.) [2][28]. They can be managed and exposed to
web clients, who can then access the microservices and
receive their responses through a “livequery” mechanism
whereby updates to database data are instantly
communicated to subscribing clients [18]. Figure 3 best
presents categories of practices for designing REST-based
web services.

Figure 3. Categories of best practices for designing REST-based web

services [40].

NoSQL database are used in these implementations
[18][41][42][43]. The NoSQL nature of the database is
essential for providing the scaling, sharding and replication
functionality expected from modern architectures, as well as
to better support hierarchical data required for collaborative
document editing [18].

The popularity of the architecture based on
microservices is evident from the report by the popular jobs
portal indeed.com, in which the number of job openings on
microservices-related technologies, such as JSON
[10][20][39] and REST [2][18][36] has grown more than
100 times in the last six years, whereas jobs in similar
technology areas like SOAP and XML have remained
nearly identical [10].

Solutions for microservices seek to implement simple
algorithms that meet specific needs with the elements
presented in this section.

VI. CONCLUSIONS AND FUTURE WORK
Microservice-based architecture has been a growing

choice as an architectural style for software development. In
this architectural style, the services provided by software
solutions are divided into smaller parts and focused on the
specific service of some functionalities. The approach of
developing microservices with the construction of smaller
software components has a number of advantages over the
traditional monolithic architecture, such as increasing the
resilience of the software implemented as a microservice
and the ease of scaling the solution implemented through the
microservices.

The development of software using the microservice-
based architecture comprises important aspects that must be
observed in order to obtain good results. The objective of
this article is to present the elements that should be
considered for the development of solutions based on
microservices, describing how the architecture based on
microservices is defined, identifying the elements related to
their implementation in the cloud computing environment,
explaining the privacy model applicable and relating the
elements that integrate the standards and solutions linked to
the architecture based on microservices.

Future work can be developed to present case studies
demonstrating the implementation of the microservice
architecture in a cloud computing environment with the use
of docker containers for its construction.

REFERENCES
[1] J. Lin, L. Chaoyu, and S. Huang, “Migrating Web Applications

to Clouds with Microservices Architectures,” Int. Conf. Appl.
Syst. Innov., pp. 1–4, 2016.

[2] M. Villamizar and et al, “Evaluating the Monolithic and the
Microservice Architecture Pattern to Deploy Web Applications in
the Cloud Evaluando el Patrón de Arquitectura Monolítica y de
Micro Servicios Para Desplegar Aplicaciones en la Nube,” 10th
Comput. Colomb. Conf., pp. 583–590, 2015.

[3] D. I. Savchenko, G. I. Radchenko, and O. Taipale,
“Microservices validation: Mjolnirr platform case study,” 2015
38th Int. Conv. Inf. Commun. Technol. Electron. Microelectron.
MIPRO 2015 - Proc., no. May, pp. 235–240, 2015.

[4] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping
study in microservice architecture,” Proc. - 2016 IEEE 9th Int.
Conf. Serv. Comput. Appl. SOCA 2016, pp. 44–51, 2016.

[5] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City
Internet of Things Platform with Microservice Architecture,”
Proc. - 2015 Int. Conf. Futur. Internet Things Cloud, FiCloud
2015 2015 Int. Conf. Open Big Data, OBD 2015, pp. 25–30,
2015.

203Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 215 / 267

[6] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu,
“Efficiency analysis of provisioning microservices,” Proc. Int.
Conf. Cloud Comput. Technol. Sci. CloudCom, pp. 261–268,
2017.

[7] R. Heinrich et al., “Performance Engineering for Microservices:
Research Challenges and Directions,” Proc. 8th ACM/SPEC Int.
Conf. Perform. Eng. Companion, pp. 223–226, 2017.

[8] M. Ahmadvand and A. Ibrahim, “Requirements reconciliation for
scalable and secure microservice (de)composition,” Proc. - 2016
IEEE 24th Int. Requir. Eng. Conf. Work. REW 2016, pp. 68–73,
2017.

[9] T. Q. Thanh, S. Covaci, T. Magedanz, P. Gouvas, and A.
Zafeiropoulos, “Embedding security and privacy into the
development and operation of cloud applications and services,”
2016 17th Int. Telecommun. Netw. Strateg. Plan. Symp., pp. 31–
36, 2016.

[10] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-service for
microservices-based cloud applications,” Proc. - IEEE 7th Int.
Conf. Cloud Comput. Technol. Sci. CloudCom 2015, pp. 50–57,
2016.

[11] Yale Yu, H. Silveira, and M. Sundaram, “A microservice based
reference architecture model in the context of enterprise
architecture,” 2016 IEEE Adv. Inf. Manag. Commun. Electron.
Autom. Control Conf., pp. 1856–1860, 2016.

[12] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang,
“Orchestration of Containerized Microservices for IIoT using
Docker,” pp. 1532–1536, 2017.

[13] M. B. Mollah, M. A. K. Azad, and A. Vasilakos, “Security and
privacy challenges in mobile cloud computing: Survey and way
ahead,” J. Netw. Comput. Appl., vol. 84, pp. 38–54, 2017.

[14] K. Bakshi, “Microservices-based software architecture and
approaches,” IEEE Aerosp. Conf. Proc., 2017.

[15] J. Werner, C. M. Westphall, and C. B. Westphall, “Cloud identity
management: A survey on privacy strategies,” Comput.
Networks, vol. 122, pp. 29–42, 2017.

[16] I. Khalil, A. Khreishah, and M. Azeem, “Cloud Computing
Security: A Survey,” Computers, vol. 3, no. 1, pp. 1–35, 2014.

[17] C. Saravanakumar and C. Arun, “Survey on interoperability,
security, trust, privacy standardization of cloud computing,”
Proc. 2014 Int. Conf. Contemp. Comput. Informatics, IC3I 2014,
pp. 977–982, 2014.

[18] C. Gadea, M. Trifan, D. Ionescu, and B. Ionescu, “A reference
architecture for real-time microservice API consumption,” Proc.
3rd Work. CrossCloud Infrastructures Platforms - CrossCloud
’16, pp. 1–6, 2016.

[19] S. Srinivasan, “Data privacy concerns involving cloud,” 2016
11th Int. Conf. Internet Technol. Secur. Trans. ICITST 2016, pp.
53–56, 2017.

[20] A. Ciuffoletti, “Automated Deployment of a Microservice-based
Monitoring Infrastructure,” Procedia Comput. Sci., vol. 68, pp.
163–172, 2015.

[21] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari,
“Open Issues in Scheduling Microservices in the Cloud,” IEEE
Cloud Comput., vol. 3, no. 5, pp. 81–88, 2016.

[22] F. Callegati, S. Giallorenzo, A. Melis, and M. Prandini, “Data
security issues in MaaS-enabling platforms,” 2016 IEEE 2nd Int.
Forum Res. Technol. Soc. Ind. Leveraging a Better Tomorrow,
RTSI 2016, pp. 0–4, 2016.

[23] H. Kang, M. Le, and S. Tao, “Container and microservice driven
design for cloud infrastructure DevOps,” Proc. - 2016 IEEE Int.
Conf. Cloud Eng. IC2E 2016 Co-located with 1st IEEE Int. Conf.
Internet-of-Things Des. Implementation, IoTDI 2016, pp. 202–
211, 2016.

[24] K. Bao, I. Mauser, S. Kochanneck, H. Xu, and H. Schmeck, “A
Microservice Architecture for the Intranet of Things and Energy
in Smart Buildings,” Proc. 1st Int. Work. Mashups Things APIs -

MOTA ’16, pp. 1–6, 2016.
[25] D. Escobar et al., “Towards the understanding and evolution of

monolithic applications as microservices,” Proc. 2016 42nd Lat.
Am. Comput. Conf. CLEI 2016, 2017.

[26] J. Stubbs, W. Moreira, and R. Dooley, “Distributed Systems of
Microservices Using Docker and Serfnode,” Proc. - 7th Int.
Work. Sci. Gateways, IWSG 2015, pp. 34–39, 2015.

[27] R. Roostaei and Z. Movahedi, “Mobility and Context-Aware
Offloading in Mobile Cloud Computing,” Proc. - 13th IEEE Int.
Conf. Ubiquitous Intell. Comput. 13th IEEE Int. Conf. Adv. Trust.
Comput. 16th IEEE Int. Conf. Scalable Comput. Commun. IEEE
Int., pp. 1144–1148, 2017.

[28] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging
microservices architecture by using Docker technology,” Conf.
Proc. - IEEE SOUTHEASTCON, vol. 2016–July, pp. 0–4, 2016.

[29] K. El Makkaoui, A. Ezzati, A. Beni-Hssane, and C. Motamed,
“Data confidentiality in the world of cloud,” J. Theor. Appl. Inf.
Technol., vol. 84, no. 3, pp. 305–314, 2016.

[30] C. Perra and S. Member, “A Framework for the Development of
Sustainable Urban Mobility Applications,” 2016.

[31] M. Thangavel, P. Varalakshmi, and S. Sridhar, “An analysis of
privacy preservation schemes in cloud computing,” Proc. 2nd
IEEE Int. Conf. Eng. Technol. ICETECH 2016, no. March, pp.
146–151, 2016.

[32] H. Gebre-amlak, S. Lee, A. M. A. Jabbari, Y. Chen, and B. Choi,
“MIST : Mobility-Inspired SofTware-Defined Fog System,”
2017.

[33] R. H. Steinegger, D. Deckers, P. Giessler, and S. Abeck, “Risk-
based authenticator for web applications,” Proc. 21st Eur. Conf.
Pattern Lang. Programs - Eur. ’16, no. February 2017, pp. 1–11,
2016.

[34] J. Fowler, Marthin; Lewis, “Microservices: a definition of this
new architectural term,” Microservices:a definition of this new
architectural term, 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.ml. [Accessed:
07-May-2017].

[35] S. Yamamoto, S. Matsumoto, and M. Nakamura, “Using cloud
technologies for large-scale house data in smart city,” CloudCom
2012 - Proc. 2012 4th IEEE Int. Conf. Cloud Comput. Technol.
Sci., pp. 141–148, 2012.

[36] J. Bogner and A. Zimmermann, “Towards Integrating
Microservices with Adaptable Enterprise Architecture,” Proc. -
IEEE Int. Enterp. Distrib. Object Comput. Work. EDOCW, vol.
2016–Septe, pp. 158–163, 2016.

[37] D. Guo, W. Wang, G. Zeng, and Z. Wei, “Microservices
architecture based cloudware deployment platform for service
computing,” Proc. - 2016 IEEE Symp. Serv. Syst. Eng. SOSE
2016, pp. 358–364, 2016.

[38] P. Marchetta, E. Natale, A. Pescape, A. Salvi, and S. Santini, “A
map-based platform for smart mobility services,” Proc. - IEEE
Symp. Comput. Commun., vol. 2016–Febru, pp. 19–24, 2016.

[39] A. de Camargo, I. Salvadori, R. dos S. Mello, and F. Siqueira,
“An architecture to automate performance tests on
microservices,” Proc. 18th Int. Conf. Inf. Integr. Web-based
Appl. Serv. - iiWAS ’16, pp. 422–429, 2016.

[40] P. Giessler, R. Steinegger, S. Abeck, and M. Gebhart, “Checklist
for the API Design of Web Services based on REST,” vol. 9, no.
3, pp. 41–51, 2016.

[41] A. Gueidi, H. Gharsellaoui, and S. Ben Ahmed, “A NoSQL-
based Approach for Real-Time Managing of Embedded Data
Bases,” Proc. - 2016 World Symp. Comput. Appl. Res. WSCAR
2016, pp. 110–115, 2016.

[42] T. I. Damaiyanti, A. Imawan, and J. Kwon, “Extracting trends of
traffic congestion using a NoSQL database,” Proc. - 4th IEEE
Int. Conf. Big Data Cloud Comput. BDCloud 2014 with 7th IEEE
Int. Conf. Soc. Comput. Networking, Soc. 2014 4th Int. Conf.

204Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 216 / 267

Sustain. Comput. C, pp. 209–213, 2015.
[43] R. Simmonds, P. Watson, and J. Halliday, “Antares: A Scalable,

Real-Time, Fault Tolerant Data Store for Spatial Analysis,” Proc.

- 2015 IEEE World Congr. Serv. Serv. 2015, pp. 105–112, 2015.

205Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 217 / 267

Function-as-a-Service X Platform-as-a-Service:
Towards a Comparative Study on FaaS and PaaS

Lucas F. Albuquerque Jr.1,2, Felipe Silva Ferraz3, Rodrigo F. A. P. Oliveira1, and Sergio M. L. Galdino1

1Polytechnic School of Pernambuco, University of Pernambuco, Recife, Brazil
Email: {lfaj,rfapo}@ecomp.poli.br, sergio.galdino@ieee.org

2IFPE - Federal Institute of Technology, Palmares, Brazil
Email: lucasjr@palmares.ifpe.edu.br

3Recife Center for Advanced Studies and Systems (CESAR), Recife, Brazil
Email: fsf@cesar.org.br

Abstract—The adoption of cloud computing for service delivery
is a market trend and attracts customers seeking elastic, scalable,
and cost-effective infrastructures. Instance-based models, such as
Platform-as-a-Service (PaaS), are being used to support mobile
applications. Despite the management facilities, the PaaS receives
criticism for the inefficient use of resources. Studies point to
a new model, known as Function-as-a-Service (FaaS), as an
alternative that would offer a more efficient use of resources
and lower costs. The present work has proposed to perform a
comparative evaluation between FaaS and PaaS service delivery
models regarding performance, scalability and costs issues in
support of mobile applications based on microservices. The
conclusions obtained showed that FaaS presented an equivalent
performance, a more efficient scalability and the costs influenced
by workload type.

Keywords–Cloud Computing; FaaS; PaaS; Serverless; Mobile;
Microservices

I. Introduction
The term virtualization is associated with the abstraction

of computational resources for the purpose of optimizing their
use, allowing users and applications to transparently share
resources [1]. Thus, with virtualization of the infrastructure,
servers become a mere abstraction of resources, being more
easily managed [2]. Virtualization technologies form the basis
of what we now know as cloud computing, which is the
provision of information or computing resources as a ser-
vice accessible through the network [3]. Cloud models, such
as Infrastructure-as-a-Service(IaaS) and Platform-as-a-Service
(PaaS) use the concept of instance to define the amount of
computational resources allocated to carry out their tasks.

In parallel to the advances related to cloud computing,
the dissemination of mobile devices led to the emergence of
the Mobile Cloud Computing (MCC) [4] concept, which is
the use of cloud computing by mobile devices for service
delivery anytime, anywhere, managing a large volume of data
from a variety of device platforms. To meet performance and
scalability requirements in mobile applications, microservice
architectures have emerged to enable the development of de-
coupled applications in separate, scalable and portable modules
that communicate through common protocols [5].

Considering mobile application support, PaaS model has
been used as the cloud computing alternative for many mi-
croservices applications [6]. One of the advantages of PaaS
would be its independence from operational issues, allowing

the customer to focus on code development. However, the
PaaS model is criticized for being a instance-based model,
requiring pre-allocating resources, increasing costs for certain
types of workloads [7]. In this context, the Function-as-
a-Service (FaaS) model, commercially known as Serverless
Computing, has been cited as an alternative model for meeting
the requirements of mobile applications in microservices [8],
offering a scalable, on-demand infrastructure that operates in
response to events, adopting a granular demand-based billing
model.

FaaS has been cited in several studies as a computational
model with potential to meet many of the challenges of mobile
computing, as an alternative to the PaaS model. Works such
as [9]–[13] point out that due to platform variability, data
volume and temporal data characteristics of MCCs, event-
based models like FaaS, would be an alternative model in
support of mobile devices, Internet of Things (IoT), real-time
processing, artificial intelligence, among others. However, as
a newly proposed model, many questions remain open about
the benefits of using and applying FaaS model.

Considering the several open questions related to the FaaS
models, this paper presents a comparative analysis between the
PaaS and FaaS models in the mobile application support, as
well as a performance and scalability evaluation between these
two models. Finally, the paper also proposes to present a cost
comparison between the PaaS and FaaS models from a case
study based on a geolocation microservices-based application.

This paper is structured as follows. In Section 2, we
introduce the basic idea behind FaaS (Function-as-a-Service)
and present a comparative analysis to PaaS. In Section 3,
we discuss the experiment setup and test plan performed. In
Section 4, we discuss the findings, analyzing the performance,
scalability results (Section 4.1) and costs (Section 4.2). Section
5 discusses related research, and finally Section 6 concludes
the paper with lessons learned and an outlook on future work.

II. Function-as-a-Service
Serverless computing was initially associated with two

scenarios:

• Applications that depend on external services for their
operation, having their business rules concentrated on
the client side. This development model was initially
called Backend-as-a-Service (BaaS) and included the

206Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 218 / 267

Figure 1. A Faasified application where each service is decomposed into
functions that can be performed or escalated independently.

use of external services as databases, authentication
services, messaging services, among others [14].

• Applications whose business rules are located in the
cloud, running on demand only, in response to events
and in an ephemeral way (no relation between events).
This approach is more recent and usually referred as
FaaS (Function-as-a-Service) or Event-Driven Com-
puting [?].

The BaaS model was an important driver for both cloud
computing and popularization of mobile devices, but it did
carry with it some complications. Business rules on the client
side were making it difficult to update and deploy new features
as well as reverse engineering risks. In FaaS, business rules
can be server-centric or divided between the server and the
client, and the application is decomposed into small, specific,
well-defined tasks, called functions. Each executed function
is treated as an ephemeral event (independent and stateless)
and its lifetime is the same as the task being executed. The
client has an environment that responds to events, rather than
dedicated full-time infrastructure [8].

FaaS enables the decomposition of service in micro-
functions, which can be performed and scaled independently,
introducing the concept of nanoservices [15]. Another concept
introduced by FaaS is related to the transformation process of
monolithic or microservice applications to functions (Figure
1), process known as FaaSification [16] [17].

Studies that have already been carried out, place FaaS as a
variant of the PaaS model, or a type of specialized PaaS [6],
but do not present in a consolidated form the characteristics
of each of the models. From Table I it is possible to observe
the main differences that can be pointed out in relation to the
PaaS and FaaS models considering several aspects.

III. Experimentation
The purpose of this section is to present the environment

used to perform the experiments (Subsection III-A) and the
results obtained (Subsection III-B). At the end of the Sec-
tion, performance, scalability and cost analyzes will also be
presented for the scenarios evaluated (Subsections III-C and
III-D, respectively).

A. Experiment Setup
For the experiments, we developed an application using

the architecture based on microservices (Figure 2) composed

Figure 2. Diagram of the microservice application for storage and
availability of Geolocation data

of two services (µ1 e µ2), responsible for receiving and mak-
ing available geolocation information collected from mobile
devices. The µ1 was responsible for receiving and storing data
received through HTTP (Hypertext Transfer Protocol) REST
(Representational State Transfer) requests, while µ2 receives
requests and returns the results in JSON ((JavaScript Object
Notation) format (Figure 2).

To perform the experiments, we use Amazon Web Services
(AWS) Elastic Beanstalk as the PaaS environment and AWS
Lambda as FaaS solution for running an application developed
in Node.JS with MongoDB database as persistence layer. For
the tests, the following operations were performed, in three
rounds, with an interval of one hour between them:
• Write - Write operations targeting µ1 for both envi-

ronments.
• Read - Read operations targeting µ2 for both environ-

ments.
• Write/Read - Write and read operations for µ1 and
µ1 simultaneously, for both environments.

Beyond the one hour interval, upon completion of each
round, both environments were destroyed and re-implemented,
to ensure that results from previous rounds did not interfere in
the results of subsequent rounds.

In order to carry out the performance tests, we use JMeter
3.1 [18] configured in an EC2 c4.large instance connected to
the same Virtual Private Cloud (VPC) as the environments
to be evaluated. The performance tests were executed with
the objective of identifying the maximum number of requests
supported by each scenario and the scalability efficiency.
The tests simulated concurrent requests (threads) that were
gradually increased to the limit of 100 users. Tests started
with 10 threads and started another 10 every 10 seconds (with
ramp-up of 2 Seconds). After reaching 100 requests, the test
remained active for 120s, finally being finalized in a controlled
way, at a rate of 5 req/sec (Figure 3).

Figure 3. JMeter test plan used during experiments

In test plan, it was defined that the tests would be inter-
rupted if any of the conditions listed below were met:

207Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 219 / 267

TABLE I. COMPARATIVE ANALYSIS BETWEEN PAAS AND FAAS MODELS CONSIDERING DIFFERENT ASPECTS.

Aspects PaaS FaaS
Coding and

Delivery
Focused on services, with development teams being responsible
for one or more parts of the application. Service-based delivery.

Focused on tasks (functions) with development teams being
responsible for a set of functions. Function-based delivery.

Sizing Based on the number of instances and resources required by the
services. Risks of overestimating or underestimating workloads. Based on the amount of resources for the execution of each event.

Environment Fully operated by the provider with possibility of customization
by the client.

Fully operated by the provider with no possibility of customization
by the client.

Application
Maintenance Interventions in the code need to take into account the entire service. Interventions in the code need to take into account a specific

function. Less code.
Resources
Allocation

Pre-allocation of resources with the possibility of allocating additional
instances on demand. No pre-allocated resources. Transparent and on-demand allocation.

Execution Permanent waiting state, no restrictions on the duration of events. No waiting state. The function is executed when required.
Restriction of maximum duration per event.

Billing By instantiated resources, whether used or not. Per event executed. Without commitment.

1) If the latency for any of the requests destined for
µ1 and µ2 reaches the Maximum Latency Accepted
(MLA) for the test scenario being performed;

2) If any of the tested requests return errored responses
to the requests made;

3) If the time planned for the tests is completed, con-
sidering the test plan defined on JMeter for µ1 and
µ2;

B. Results
The results obtained during the tests will be presented in

tables throughout the section. In each table, the rounds in bold
with (1) indicate that the test round did not return positive
results, representing 100% errors in the samples. The rounds
in bold with (2), however, indicate successful samples, but
errors were observed during execution that forced premature
interruption of threads, as indicated in Section III-A. And,
finally, rounds without indication mean that the round was
completed successfully, with no observed errors.

For Lambda(A) scenario (Table II), the application exe-
cuted in the FaaS environment presented errors in 100% of
the samples tested, the round being closed due to the requests
having exceeded the MLA limit. The Cloudwatch logs showed
that the initial requests made to the Application Programming
Interface (API) Gateway reached a latency of 14.50 seconds,
which extrapolated the MLA for the scenario (5000 ms). This
latency observed in the execution of the FaaS functions was
an issue already cited in other works, being known as Cold
Start [19] [20], this behavior is observed in FaaS implemen-
tations, and affects functions of eventual use or that present
long temporary lapses between the requisitions, causing the
deallocation of resources. In order to try to overcome cold
start, for the Lambda(B) scenario the MLA was increased to
10000ms, but some rounds still showed errors, returning 100%
of failures.

For the Lambda(C) scenario (Table III), the MLA was
increased to 15000ms, which allowed the cold start to be
overcome and the samples returned successfully. But despite
overcoming cold start, the samples presented errors during
execution. When analyzing the Lambda logs, it was observed
that the errors occurred because the Lambda was taking a
lot of time to process the requests, exceeding the default
maximum duration for Lambda environment (3 secs), causing
timeout errors. In the Lambda (D) scenario, with the memory
increased to 256MB, the FaaS environment started to complete
the rounds successfully. The results confirmed the existence

TABLE II. RESULTS FOR THE SCENARIOS (A) AND (B) FOR
LAMBDA ENVIRONMENT, SETTING WITH MLA of 5000MS AND

10000MS, RESPECTIVELY.

of a direct proportionality between the allocated memory and
CPU resources.

TABLE III. RESULTS FOR THE SCENARIOS (C) AND (D) FOR
LAMBDA ENVIRONMENT, SETTING MEMORY TO 128MB AND

256MB RESPECTIVELY, AND 15000MS OF MLA

In the case of the Beanstalk(A) scenario (Table IV), the
same issues observed in Lambda(C) were also observed for
this scenario. During the execution of the tests, the PaaS
environment started to return errors, caused by the resource
saturation of the instance used (t1.micro). For the Beanstalk
(B) scenario, the multi-instance feature was enabled, allocating
more instances on demand, allowing the successful completion
of the test rounds.

Considering that the Lambda(D) and Beanstalk(B) scenar-
ios completed the tests successfully, other scenarios were ana-
lyzed, adding extra features to the tested environments in order
to evaluate the existence of a direct relation between resources
and performance considering the proposed application. For
the FaaS environment, the scenarios included the increase of
memory per function performed and the use of SSD disks. For

208Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 220 / 267

TABLE IV. RESULTS FOR THE SCENARIOS (A) AND (B) FOR
BEANSTALK ENVIRONMENT, USING SINGLE-INSTANCE AND

MULTI-INSTANCE, AND 15000MS OF MLA

the PaaS environment, tests were performed using instances
with more resources (2x) and Solid State Disks (SSD) also.
The results (Table V) show that, for the tested scenarios, based
on the Lambda(D) and Beanstalk(B), latency reduction did not
show a proportionality between the addition of resources and
performance, depending also on the type of operation (writing
or reading).

TABLE V. COMPARISON BETWEEN SEVERAL LAMBDA AND
BEANSTALK SCENARIOS SHOWING THE REDUCTION IN LATENCY

OBTAINED IN DIFFERENT SCENARIOS

C. Performance and Scalability Analysis
Considering the results for the scenarios tested, some

considerations:

• The results showed that the cold start observed in
FaaS environments affected the performance of appli-
cations executed in FaaS environments. This behavior
is observed in applications of occasional use or that
present long temporary lapses between the requisi-
tions, causing the deallocation of resources and is
common to all serverless implementations evaluated.

• The results showed that the allocation of more re-
sources to the tested environments had a positive im-
pact on overall performance. For FaaS environments,
there was a direct relationship between the amount
of memory and the processing resources allocated
by function. However, at the application level, the
allocation of more resources was not proportional to
the performance gains;

• The results showed that the scalability mechanisms
adopted by the PaaS and FaaS environments were
efficient in all scenarios evaluated. The scalability
of the PaaS environment was based on instance and
occured in resource jumps, being less granular. In
FaaS environments scalability was linear, occurring
based on volume of events.

D. Cost Analysis
Some types of applications tend not to benefit from the

characteristics of PaaS, especially those that present variations
in workload. For these types of applications, which can range
from zero requests to thousands in a few seconds, the perma-
nent instantiation of resources is not advantageous, considering
that the instances are kept alive and are charged regardless of
usage. For applications that present variations in workloads,
the FaaS model presents itself as more adequate, considering
the dynamic allocation of resources. The economic benefits of
serverless computing heavily depend on the execution behavior
and volumes of the application workloads.

Considering the scenarios tested, it was possible to extract
a cost basis in order to compare infrastructure costs. For
comparison purposes, the monthly quantity of requests were
used as a metric, since a direct cost comparison was not
possible. In order to obtain the number of monthly requests
supported by a Beanstalk instance, the number of 10,000
requests per minute was used as a reference, based on the
maximum number of requests supported per minute by one
instance during the tests performed. In order to obtain the
maximum number of requisitions per month, the maximum
number of requisitions supported (10,000) was multiplied by
43,200, which is the number of minutes per month, totaling
432,000,000 monthly requisitions.

For the costing of the FaaS environment, the durations of
100ms and 300ms were considered for writing and reading
operations, respectively, so that cost simulations were based
on 50/50 (50% write/50% read), 70/30 (70% write/30% read)
and 90/10 (90% write/10% read). The proposed durations were
based on the mean reading and writing values obtained from
the median latencies during the tests performed. Table VI
presents the results of the comparison for the three proposed
scenarios, as well as the monthly cost of an instance t1.micro.
As can be seen in the results, for the 50/50 scenario the
monthly cost was US$44.65, while for the 70/30 scenario the
monthly cost was US$ 37.45, both scenarios presented a higher
monthly cost than the AWS Beanstalk, which was US$ 33.86.
However, for the third scenario (90/10), the monthly cost was
US$ 30.25, falling below the monthly value for Beanstalk.

TABLE VI. COMPARISON OF COSTS BETWEEN AWS LAMBDA AND
AWS BEANSTALK CONSIDERING A TOTAL OF 43,200,000 MONTH

REQUESTS IN THREE DIFFERENT SCENARIOS

From the costs shown in Table VI, the following conclu-
sions were obtained regarding the costs related to the case
study in question:

• FaaS and PaaS environments presented cost variations
considering the different scenarios presented (50/50,
70/30 and 90/10), depending on the type of predomi-
nant operation. The cost of the FaaS environments was

209Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 221 / 267

higher in the first two scenarios due to the duration
observed during the writing operations;

• For FaaS, the longer the duration of the functions,
the higher the cost. Investing in the use of more
performative database instances and caching features
could reduce the duration of read operations, enabling
a reduction in cost per read event;

• Different FaaS providers may offer lower costs per
event (Table VII). Providers seeking to build a port-
folio of clients or seek to consolidate their product on
the market can offer attractive prices;

TABLE VII. COMPARISON OF COSTS BETWEEN FAAS PROVIDERS
CONSIDERING A TOTAL OF 43,200,000 MONTH REQUESTS FOR

THE 90/10 SCENARIO

• The commercial policies adopted by the PaaS and
FaaS providers follow a similar model to their re-
spective scalability characteristics. For the PaaS en-
vironment, the costs increase based on the allocated
instances (in jumps) (Figure 4). In the case of FaaS
environments, the cost increases due to the number of
requests received and executed.

Figure 4. Graphs showing the evolution of costs in the Paas (A) and FaaS
(B) environment in relation to the number of requisitions [21]

This section was dedicated to present and discuss the
results obtained during the performed experiments regarding to
performance and costs for the proposed scenarios. In the next
section will be presented the works that served as reference or
are related with the present work.

IV. RelatedWork
As a newly proposed model, scientific work related to FaaS

is still scarce, and most use the term Serverless to refer to
the model. Works such as [11] and [19] propose Serverless
implementations as proof of concept and experimental, to
be used for research purposes and for evaluation of appli-
cations in event-based environments, addressing conceptual
issues regarding scalability and performance. Some papers
are dedicated to proposing Serverless implementations and
present results of experiments performed, such as [22], which
addresses the inefficiency of instance-based models, and [23]
that analyzes scalability issues, cold start and execution in
FaaS environments.

Some papers focus on cost issues in Serverless environ-
ments, such as [24] that addresses performance, scalability, and
cost issues in FaaS environments. In [25] and [26], the authors
present results comparing a single application implemented
as monolithic, an instance-based microservices and an event-
based microservices (Lambda), and presenting significant cost
reductions with the adoption of the FaaS model. As in [21], the
authors present CostHat, a graphical model for evaluating costs
for instance and event-based microservices, which simulates
the impact of changes in applications.

In [16], the authors addressed FaaSification, which is a
process of migrating applications to nanoservices, or event-
based architectures that, although functional, still requires
more in-depth research. Works related to the use of Serverless
computing in several applications, such as for rejuvenation
of environments [27], support for weareables [28], cognitive
services [20], among others.

Considering previous works, the present paper has the
purpose to contribute with a comparison between the FaaS
and PaaS model with a focus on performance, scalability and
cost on support of microservices applications. The work seeks
to cover the characteristics of both the models, intrinsical
aspects of FaaS and its pitfalls, such as cold start and execution
limitations in different workload scenarios, points not covered
by other published papers.

V. Conclusion
The growth of cloud computing has been boosting and

enabling the emergence of parallel research areas, which use
computational clouds to support various applications, such as
mobile devices support. Variations in the volume of requests,
the use of heterogeneous platforms and the availability re-
quirements are peculiar characteristics of mobile computing
environments that, in association with the use of micro-
service architectures, allow scale gains, independence and the
availability required to support modern applications.

Although the PaaS is a consolidated model and recognized
as efficient in supporting applications in microservices, the
FaaS model has been identified as an alternative model for
meeting mobile computing scenarios, providing more efficient
use of resources and lower costs. This paper proposed to
perform a comparative evaluation between FaaS and PaaS
cloud service delivery models regarding performance issues,
scalability and costs in the use of mobile applications based
on microservices.

Based on the experiments carried out, the comparative
analyzes and the case study, it was possible to reach the
following conclusions:

• The FaaS application performance during the experi-
ments was shown to be equivalent to the PaaS for most
of the scenarios tested. And the addition of resources
did not represent proportional gains in performance.

• Cold Start issues observed in FaaS environments must
be taken into account prior to the adoption of the
model and can significantly impact the performance
of the application, despite the existence of techniques
to reduce these latencies;

• In terms of scalability, FaaS has proven to be most
interesting for services whose workloads are variable

210Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 222 / 267

or unpredictable, while PaaS best applies to constant
or predictable workloads;

• In terms of costs, FaaS presented a better cost benefit
in the treatment of requests that require short and
predictable execution times, while PaaS was better
suited for requests that require longer execution times
or variable duration;

• In order to keep costs low using FaaS, in addition to
the concern with the execution time of the requests,
the results showed that the dependence on the use
of external services, such as database, authentication
services, among others, can interfere considerably
with the expenses . In these cases, it is worth investing
in better-performing external services, to reduce the
time to perform functions while reducing costs.

In order to reduce the cold start impacts, some preliminar
techniques can be applied. (1) in applications that have a
higher latency tolerance, adjust the response threshold times,
as performed during the performed experiments; (2) maintain
an external routine (heartbeat) to keep resources permanently
active through requisitions at regular times; (3) associate
microservices of frequent and occasional use under the same
API endpoint, so that access to the most used microservices
guarantees the instantiation of resources to those of less access.

The results showed that the use of FaaS can help reduce
costs depending on the workload. As FaaS market implementa-
tions take a charge per event taking into account the execution
time of the function, the longer the time required to process
a request, the higher the cost of the operation. In addition,
applications whose execution times are short and predictable
tend to benefit from the use of FaaS, which, together with
the infinite scalability of the model, can aid in the support
of seasonal workloads. The results obtained can help solution
architects in the decision making regarding the use of FaaS to
support their applications.

A. Future Research Directions
The presented work requires future work in three direc-

tions:

• To deepen the cost studies in FaaS environments from
a service provider’s point of view, in order to evaluate
if, in comparison with other models, FaaS enables a
more efficient use of resources, thus reducing costs
reduction with infrastructure.

• Evaluation of techniques to reduce cold start in FaaS
environments in order to reduce latency in occasional
applications;

• Evaluate FaaSification techniques for the portability
of microservice applications for FaaS environments.

Acknowledgment
This research has been supported by an AWS in Education

Research Grant which helped us to run our experiments on
AWS Lambda as representative public commercial FaaS.

References
[1] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on

concepts, taxonomy and associated security issues,” in 2010 Second
International Conference on Computer and Network Technology, April
2010, pp. 222–226.

[2] M. Portnoy, Virtualization Essentials. Sybex, 2012.
[3] Y. Tsuruoka, “Cloud computing - current status and future directions,”

vol. 24, no. 2. Information Processing Society of Japan, 2016, pp.
183–194.

[4] Y. Wang, I.-R. Chen, and D.-C. Wang, “A survey of mobile cloud
computing applications: Perspectives and challenges,” Wireless Personal
Communications, vol. 80, no. 4, Feb 2015, pp. 1607–1623.

[5] M. Fazio et al., “Open Issues in Scheduling Microservices in the Cloud,”
in IEEE Cloud Computing, vol. 3, no. 5, sep 2016, pp. 81–88.

[6] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science - Volume 1, INSTICC. ScitePress, 2016, pp.
137–146.

[7] T. Reeder, “What is serverless computing and why is it important —
iron.io,” https://goo.gl/0oDIcT, Jul 2016, (Accessed on 06/16/2017).

[8] M. Roberts, “Serverless architectures,”
http://martinfowler.com/articles/serverless.html, 2016, (Accessed
on 06/16/2017).

[9] F. Renna, J. Doyle, V. Giotsas, and Y. Andreopoulos, “Query Processing
For The Internet-of-Things: Coupling Of Device Energy Consumption
And Cloud Infrastructure Billing,” ArXiv e-prints, Feb. 2016.

[10] M. Diaz, C. Martin, and B. Rubio, “State-of-the-art, challenges, and
open issues in the integration of internet of things and cloud computing,”
in Academic Press Ltd., vol. 67, no. C. Academic Press Ltd., May
2016, pp. 99–117.

[11] I. Nakagawa, M. Hiji, and H. Esaki, “Dripcast - Server-less java
programming framework for billions of IoT devices,” Proceedings -
IEEE 38th Annual International Computers, Software and Applications
Conference Workshops, COMPSACW 2014, vol. 23, no. 4, 2014.

[12] S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Provi-
sioning software-defined iot cloud systems,” in Proceedings of the 2014
International Conference on Future Internet of Things and Cloud, ser.
FICLOUD ’14. IEEE Computer Society, 2014, pp. 288–295.

[13] Y. Jararweh et al., “Sdiot: a software defined based internet of things
framework,” Journal of Ambient Intelligence and Humanized Comput-
ing, vol. 6, no. 4, 2015.

[14] K. Lane, Overview of the backend as a service (BaaS) space. API
Evangelist, 2015.

[15] E. Wolff, Microservices: Flexible Software Architecture. Pearson
Education, 2016.

[16] J. Spillner and S. Dorodko, “Java Code Analysis and Transformation
into AWS Lambda Functions,” ArXiv e-prints, Feb. 2017.

[17] J. Spillner, “Transformation of Python Applications into Function-as-a-
Service Deployments,” ArXiv e-prints, May 2017.

[18] D. Rahmel, “Advanced joomla!” in Apress. Apress, 2013, ch. 8, pp.
211–247.

[19] S. Hendrickson et al., “Serverless computation with openlambda,” in
Proceedings of the 8th USENIX Conference on Hot Topics in Cloud
Computing, ser. HotCloud’16. USENIX Association, 2016, pp. 33–39.

[20] M. Yan, P. Castro, P. Cheng, and V. Ishakian, “Building a chatbot with
serverless computing,” in Proceedings of the 1st International Workshop
on Mashups of Things and APIs, ser. MOTA ’16. New York, NY, USA:
ACM, 2016, pp. 5:1–5:4.

[21] P. Leitner, J. Cito, and E. Stckli, “Modelling and managing deployment
costs of microservice-based cloud applications,” in 2016 IEEE/ACM
9th International Conference on Utility and Cloud Computing (UCC),
Dec 2016, pp. 165–174.

[22] J. Spillner, “Snafu: Function-as-a-Service (FaaS) Runtime Design and
Implementation,” ArXiv e-prints, Mar. 2017.

[23] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the Cloud:
Distributed Computing for the 99%,” ArXiv e-prints, Feb. 2017.

[24] T. Hoff, “The serverless start-up - down withservers!”
http://highscalability.com/blog/2015/12/7/the-serverless-start-up-down-
with-servers.html, Dec 2015, (Accessed on 06/16/2017).

[25] M. Villamizar et al., “Infrastructure cost comparison of running web
applications in the cloud using aws lambda and monolithic and mi-
croservice architectures,” in 2016 16th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), May 2016,
pp. 179–182.

211Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 223 / 267

[26] M. Villamizar, O. Garcs, H. Castro, and M. Verano, “Evaluating
the monolithic and the microservice architecture pattern to deploy
web applications in the cloud,” in 2015 10th Computing Colombian
Conference (10CCC), Sept 2015, pp. 583–590.

[27] B. Wagner and A. Sood, “Economics of resilient cloud services,” in
2016 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), Aug 2016, pp. 368–374.

[28] I. Baldini et al., “Cloud-native , event-based programming for mobile
applications,” 2016 IEEE/ACM International Conference on Mobile
Software Engineering and Systems, 2016, pp. 287–288.

212Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 224 / 267

Architectural Programming with MontiArcAutomaton

Arvid Butting, Oliver Kautz, Bernhard Rumpe, Andreas Wortmann

Software Engineering
RWTH Aachen University

Aachen, Germany
Email: {lastname}@se-rwth.de

Abstract—Modeling software architectures usually requires pro-
gramming the behavior of components interfacing general pro-
gramming language (GPL) libraries. This raises a gap be-
tween modeling activities and programming activities that entails
switching between both activities, which requires considerable
effort. Current research on architecture description languages
(ADLs) focuses on employing state-based component behavior
modeling techniques or integrating handcrafted GPL artifacts
into skeletons generated from architecture models. The former
is rarely feasible to interface with GPL libraries, the latter
opens the aforementioned gap. We integrate GPLs, reified as
modeling languages, into the MontiArcAutomaton ADL to enable
defining component behavior on model level without considering
the idiosyncrasies of generated artifacts. To this effect, we
apply results from software language engineering to enable a
configurable embedding of GPLs as behavior languages into
ADLs. This ultimately enables architecture modelers to focus on
modeling activities only and, hence, reduces the effort of switching
between modeling and programming activities.

Keywords–Model-Driven Engineering, Architecture Description
Languages, Architectural Programming.

I. INTRODUCTION

Component-based software engineering pursues the vision
of constructing software from reusable, off-the-shelf building
blocks that hide their implementation details behind stable
interfaces to facilitate their composition. The behavior of such
software components requires implementation with general-
purpose programming languages (GPLs), which creates a con-
ceptual gap between the problem domains and the solution do-
mains of discourse and ultimately gives raise to the accidental
complexities of programming [1]. Model-driven engineering
aims at reducing this gap. To this end, it lifts models to
primary development artifacts. These models are better suited
to analysis, communication, documentation, and transforma-
tion. Consequently, the notion of software components has
been lifted to component models that conform to architecture
description languages (ADLs) of which research and industry
have produced over 120 [2]. However, most of these languages
focus on structural architecture aspects only. Where component
behavior is considered, it is either in form of state-based mod-
eling techniques or requires integration of handcrafted GPL
artifacts. The former usually is insufficient to describe the be-
havior of components interfacing GPL libraries or frameworks.
The latter requires architecture modelers to switch between
modeling and programming activities, which require different
mindsets and different tooling. Both approaches ultimately
complicate development, especially considering the fact that

developers switch between various activities 47 times per hour
on average already [3].

We present a notion of architectural programming that lifts
programming to modeling by reifying GPL (parts) as behavior
languages and embedding these into ADL components. This
enables reusing libraries and frameworks from within compo-
nent models. Ultimately, this prevents architecture modelers
from facing the idiosyncrasies of generated GPL artifacts and
from the elaborate patterns [4] to integrate handcrafted code.
Achieving this requires:

R1 The GPL of choice is integrated into the ADL such that
a single model contains ADL parts and GPL parts.

R2 The relevant modeling elements of the ADL are accessible
from the GPL.

R3 The integration of GPL elements is configurable to pre-
vent introducing unnecessary accidental complexities into
the ADL.

R4 The integrated artifacts consisting of ADL and GPL parts
are translatable into various target languages.

In the following, Section II presents preliminaries, before
Section III motivates our approach by example. Section IV
presents the language embedding mechanism and its appli-
cation. Afterwards, Section V presents a case study with
the MontiArcAutomaton ADL. Section VI debates related
work and Section VII discusses our approach. Section VIII
concludes.

II. PRELIMINARIES

To prevent architecture modelers from switching between
modeling and programming, we apply the language composi-
tion mechanisms of the MontiCore [5] language workbench to
the MontiArcAutomaton ADL [6] and embed the Java/P [7]
modeling language into its components. This section intro-
duces all three.

A. MontiCore
MontiCore [5] is a workbench for compositional modeling

languages. It supports the integrated definition of concrete
syntax (words) and abstract syntax (structure) via extended
context-free grammars. From these, it generates Java parsers
and abstract syntax classes for each production as depicted
in Figure 1. Each generated class yields members to capture
the production’s right-hand sides. Underspecified interface
productions are translated to Java interfaces. MontiCore uses
the generated parsers and abstract syntax classes to translate

213Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 225 / 267

01
02
03
04
05
06
07

grammar MontiArcAutomaton {
Component = "cmp" Name "{"

Port* (Subcomponent* Connector* | Behavior?)
"}";
interface Behavior;
// … other productions …

}

MCG

String name

Component
≪interface≫

Behavior

Port Subcomponent Connector

* * *

0..1

CD

concrete
syntax only

iteration disjunction optionality

Figure 1. MontiArcAutomaton grammar describing hierarchical components
with ports and connectors and the resulting abstract syntax classes.

textual models into abstract syntax trees (ASTs) on which
model analyses and transformations are performed. Its visitor
framework enables registering Java rules that process the ASTs
to ensure the models’ static semantics (well-formedness).
Template-based code generators realize the languages’ dy-
namic semantics (behavior) by translating ASTs into target
language artifacts. MontiCore supports language inheritance,
language embedding, and language aggregation to integrate
modeling languages [8]. Inheriting languages can arbitrarily
reuse productions of their parent languages (e.g., to create spe-
cialized language variants). Embedding languages integrates
parts of embedded languages into their underspecified interface
productions (e.g., Java embedding SQL to realize database
queries). Language aggregations loosely couple languages via
references (e.g., state machines referencing members of the
class diagram types they operate in). The language integra-
tion mechanisms rest on grammar combination (inheritance,
embedding) and symbolic integration (all). For the symbolic
integration of behavior languages with MontiArcAutomaton,
e.g., to check the validity of assignments to ports, the AST
types of relevant language elements are adapted to their
MontiArcAutomaton counterparts (e.g., variables to ports).

B. MontiArcAutomaton
MontiArcAutomaton [6] is an architecture modeling infras-

tructure that comprises an extensible component & connector
(C&C) ADL, various model transformations, and a modular,
template-based code generation framework. Its ADL is realized
with MontiCore and the infrastructure employs MontiCore’s
language integration mechanism to enable plug-and-play em-
bedding of modeling languages to describe component behav-
ior, including concrete syntax, abstract syntax, static semantics,
and dynamic semantics. Core concepts of its ADL are sketched
in Figure 1. It has been configured with various state-based
behavior modeling languages and successfully deployed to
service robotics applications [9].

C. Java/P
Java/P [7] is a MontiCore language resembling Java 1.7. It

is used as action language in the UML/P [7] language family
and supports the complete concrete and abstract syntax of Java
1.7 as well as its well-formedness rules. Figure 2 displays

01
02
03
04
05
06

grammar JavaP {
JavaClass = "class" Name "{" (Method | …)* "}";
Method = ReturnType Name "{" MethodBody* "}";
MethodBody = (Assignment | ReturnStatement | …)*;
// … other productions …

}

MCG

further alternatives

Figure 2. Simplified excerpt of the Java/P grammar.

ExplorerBot

Obstacles
Controller

Odometry

Motor

left(A)

Motor

right(B)

MotorCmd

data obstacles

ws ws

left cmd

MotorCmd

right cmd

MAA

LIDAR

components interfacing
motor drivers

Drive

Turn

Idle

Back

MapStore

component with state-
based behavior model

typed, directed,
1-to-n connector

Pose

map map

component interfacing
sensor drivers

component interfacing
map serialization library

name of
incoming port

name of
outgoing port

obstacles data

PoseCalc Pose

pose pose

WheelStates

Obstacles

ws

data

Figure 3. Software architecture for a mobile exploration robot.

an excerpt of its grammar. Its models are translated into
Java artifacts using MontiCore’s code generation framework.
Reifying a GPL as a modeling language enables to easily
extend it with new constructs (e.g., notions of components as
in ArchJava [10]), well-formedness rules (such as preventing
assignment of null values), and shortcuts (for instance,
automatically generating getters and setters for members).
Reifying Java with MontiCore furthermore yields a parser
capable of processing Java 1.7 classes, which allows to model
Java programs interacting with libraries and frameworks.

III. EXAMPLE

Consider modeling the software architecture of a mobile
service robot that should explore and map uncharted territories.
Such a robot must be able to perceive its environment, calculate
actions based on these perceptions, and perform these actions
to manipulate the environment. Perception and manipulation
require interfacing sensors and actuators, respectively. Usu-
ally, these are accessed using GPL libraries providing high-
level functionalities based on their mechatronic realization
and software drivers. To interface these libraries, model-driven
approaches must either lift GPL-like imperative programming
mechanisms to model level or postpone integration to the level
of generated code. For the latter, various patterns have been
developed [4], all of which require by nature comprehending
the idiosyncrasies of the GPL code generated from the models.
The C&C software architecture for such a system is depicted
in Figure 3. It perceives the environment via components
interfacing a LIDAR scanner and the robot’s odometry, decides
on the next action via its fully modeled controller, and passes
the results to its two motors and the map storage. The sensors
and motors interface GPL code ultimately controlling the re-
spective drivers. The components PoseCalc and MapStore
interface GPL libraries for mathematical operations and seri-
alization respectively.

Without lifting sufficient expressive GPL-like programming
to model level, the architecture modeler must describe the

214Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 226 / 267

grammar MAAJava extends MontiArcAutomaton,JavaP {

JavaPBehavior implements Behavior = MethodBody;

}

MCG

grammar inheritance

from MontiArcAutomaton
grammar

embedded from
Java/P grammar

String name

ASTComponent
≪interface≫

ASTBehavior

ASTSub

component

AST

Connector

* * *

0..1
CD

ASTPort
ASTJavaP

Behavior

ASTMethod

Body

1
abstract syntax
classes derived

from Java/P

AST

Assignment

ASTReturn

Statement

**

“AST” prefix of
generated classes

Figure 4. Grammar integrating Java/P into MontiArcAutomaton.

behavior of each of these components in the same GPL
than code generated from the architecture elements. This
might entail coping with various accidental complexities not
directly related to computing behavior based on incoming port
values, such as networking, exception handling, type casting,
etc. Most of this can be abstracted away on model level.
Additionally, the pattern selected for integrating handcrafted
component behavior with generated code might give rise to
further accidental complexities also not arising on model
level. Selecting, for instance, the popular generation gap [4]
pattern exposes the architecture modeler to all implementation
details of the technical component concerns via subclassing.
This exposure is another source of errors. Delegation, partial
classes, protected regions, etc., all yield similar complexities
due to operating on GPL level. Reifying and integrating (parts
of) GPLs, such as Java/P can reduce these. Finally, generation
to multiple target GPLs requires re-implementing the behavior
of each component type for each GPL, whereas using behavior
models requires a corresponding code generator only.

IV. EMBEDDING JAVA/P INTO MONTIARCAUTOMATON

Embedding a modeling language into another requires
combining their concrete syntaxes, abstract syntaxes, static
semantics, and dynamic semantics [11]. Embedding Java/P
into MontiArcAutomaton consequently rests on combining
the related MontiCore artifacts accordingly. For concrete syn-
tax and abstract syntax, this entails binding the production
MethodBody of the Java/P grammar (Figure 2) to the in-
terface production Behavior of the MontiArcAutomaton
grammar (Figure 1). With MontiCore, this is achieved by
leveraging its language inheritance mechanism as depicted in
Figure 4. Through language inheritance, integrating the related
concrete syntax and abstract syntax into MontiArcAutomaton
requires to provide a corresponding implementation of its
Behavior interface only. This enables parsing integrated
artifacts into combined ASTs (R1).

To ensure the integrated models are well-formed with
respect to both MontiArcAutomaton and Java/P, we provide
an extensible well-formedness checking visitor that applies
the MontiArcAutomaton well-formedness rules by default and

can be extended with additional rules. As the well-formedness
rules of MontiCore languages are Java classes responsible for
processing a specific abstract syntax class, they can be reused
without modification through registration with the MontiArc-
Automaton visitor.

The integration of behavior languages into components
aims at describing their input-output behavior. Hence, models
of these languages must be related to the inputs and outputs
of components (i.e., their ports). To this effect, the names
used in embedded Java/P assignments must be interpreted
as symbolic references to the surrounding component’s ports.
For Java/P, these names usually reference to variables, hence,
with MontiCore, this requires registering a corresponding
adapter acting as a variable of Java/P that delegates to a port
of MontiArcAutomaton [8]. In contrast to Java/P variables,
ports of MontiArcAutomaton cannot be used bidirectionally:
incoming ports are read-only and outgoing ports are write-only.
As the Java/P well-formedness rules must be unaware of such
a restriction, embedding Java/P requires integrating new well-
formedness rules ensuring this. Figure 5 (top) illustrates the
adaptation between MontiArcAutomaton’s Port and Java/P’s
Variable, which takes place between the symbols created
for each named relevant AST element. These symbols act as in-
termediate layer for language integration and support resolving
and caching named entities from the same and other models.
This adaptation enables reusing all Java/P well-formedness
rules in the context of ports (R2). Details on symbols, their
creation, and processing are available [8]. Figure 5 (bottom)
also shows a new well-formedness rule to ensure incoming
ports cannot be assigned values. To this effect, its check()
method (ll. 4-12) is called by MontiArcAutomaton’s visitor
framework for each assignment found in an integrated model.
It resolves the symbol of the assignment’s target (l. 5) and,
in case this actually adapts to MontiArcAutomaton’s port
(l. 6), checks that the ports have the correct direction (l. 8)
or reports an error (l. 9). Ultimately, symbolic adaptation fa-
cilitates integration of static semantics and enables integration
of new well-formedness rules easily. Eliminating and adding
new well-formedness rules can also be used to tailor the
language to application-specific requirements. To this effect,
MontiArcAutomaton features a well-formedness rule to check
for prohibited AST classes. The rule can be parametrized with
a set of abstract syntax classes and iterates over all embedded
abstract syntax instances to ensure none of the passed classes is
used. This restriction mechanism enables excluding language
elements from integration (such as ASTReturnStatement,
which does not make sense in our integration context) as
well as tailoring the embedded language to application-specific
requirements (R3).

As MontiCore languages typically realize their dynamic
semantics via code generation, integrating the dynamics of
Java/P into MontiArcAutomaton requires composing their code
generators. To this end, the code generator integrated for Java/P
must agree on the same run-time system (RTS) as the Monti-
ArcAutomaton code generator. A RTS is a collection of inter-
faces and classes enabling execution of generated models and
entails, for instance, the interfaces implemented by generated
component behavior realizations [6]. The interface for behavior
implementation artifacts imposed by the MontiArcAutomaton
RTS entails input-output semantics, i.e., generated behavior
realizations must provide a specific method receiving and

215Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 227 / 267

01

02

03

04

05

06

07

08

09

10

11

12

class AssignOutgoingPortsOnly extends

ContextCondition<ASTVariable> {

public void check(ASTAssignment a) {

Variable v = a.getSymbol().getTarget();

if (v instanceof Port2VariableAdapter) {

Port p = ((Port2VariableAdapter)v).getPort();

if (!p.isOutgoing)

reportError(“Writing to incoming port: ” + p);

}

}

}

Java

Port2Variable

Adapter

getName()

getType()

getPort()

Variable

name

type

value

Port

name

type

isOutgoing

value

abstract syntax
element of Java/P

symbol resolving

symbol of Java/P symbol of MontiArcAutomaton

adapts

Figure 5. Symbolic integration between ports and variables and a
well-formedness rule using it.

returning a set of named values. The artifacts generated from
components delegate behavior computation to this method by
passing the current values on incoming ports and assigning
the returned name-value pairs to outgoing ports accordingly.
Details on this generator composition mechanism are avail-
able [6]. The integration of Java/P into MontiArcAutomaton
consequently requires a code generator agreeing on the same
RTS that produces classes receiving input values, performing
computations according to the method body’s statements, and
returning the results. Creating a generator wrapping the code
generated for instances of ASTMethodBody (cf. Figure 2)
requires little effort.

For MontiArcAutomaton and Java/P, code generation is
template-based using the FreeMarker [12] template engine.
With this, generator integration requires the single template de-
picted in Figure 6. This constructs a method called compute
(l. 1) with a signature expecting all incoming ports of the
component type it is generated for (ll. 2-4). Afterwards, the
method creates local variables from each outgoing port (ll. 6-
8) and calls the Java/P generator template responsible for
translating method bodies (l. 9). Code generated from the latter
operates on method parameters and local variables created
for the ports and, hence, is correct by construction. This is
ensured by restricting references in embedded method bodies
to ports or local Java/P variables. Finally, the resulting values
are collected and returned (ll. 10-14). The code generated for
structural component aspects receives the resulting map and
assigns the values to corresponding ports. Through enforcing
type-compatibility on model level already, this assignment is
straightforward.

All of this is configured by a specific internal domain-
specific language (DSL) for language embedding into Monti-
ArcAutomaton. Its models can be configured with the behavior
language’s grammar production to be embedded, its well-
formedness rules to be reused, and its code generator to
be integrated [13]. Figure 7 presents a model of this DSL
responsible for embedding Java/P. Internal DSLs usually are
realized via fluent GPL APIs [14] in which the methods
yield names corresponding to language keywords. This enables
interacting with libraries of the host GPL easily, but restricts

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

public Map<String,Object> compute(

<list incomingPorts as p>

${p.getType()} ${p.getName()}<if_has_next>,</if>

</list>

) {

<list outgoingPorts as p>

${p.getType()} ${p.getName()};

</list>

${op.call(MethodBodyTemplate)}

Map<String,Object> results = new HashMap<>();

<list outgoingPorts as p>

results.put(${p.getName()},${p.getValue()});

</list>

return results;

}

FM

FreeMarker
built-in iteration

FreeMarker
built-in conditional

accessing ASTPort members

calling template from
original Java/P generator

static text

Figure 6. FreeMarker template wrapping code generator parts of Java/P for
usage with MontiArcAutomaton.

01

02

03

04

05

name "javap"

behavior "javap.JavaP.MethodBody"

cocos javap.cocos.CoCoCreator().create()

generator new javap.generators.JavaPTimeSync()

coco new montiarcjava.cocos.AssignOutgoingPortsOnly()

BCL

qualified name of the grammar
production to be embedded

well-formedness
rules to reuse

code generator
to integrate

integration-specific well-formedness rule

Figure 7. Model integrating Java/P into MontiArcAutomaton.

language extension. Various modern GPLs enable omitting
syntactic elements if their context is unambiguous, such as
the parentheses of method calls with single arguments. This
further enables designing fluent APIs to resemble DSLs. The
behavior configuration language model depicted in Figure 7
is realized on top of a Groovy fluent API. It consists of
five concatenated method calls that configure the integration
of Java/P into MontiArcAutomaton: The first line defines
the unique name of the embedded behavior language. After-
wards, it references the grammar production to be embedded
(l. 2) from which the integration framework synthesizes a
grammar similar to MontiArcJava depicted in Figure 2.
Subsequently, it collects the well-formedness rules of the
embedded language (l. 3) and the code generator to be in-
tegrated (l. 4). Finally, it also adds the new well-formedness
rule AssignOutgoingPortsOnly (cf. Figure 5) to the
resulting language composition (l. 5).

V. CASE STUDY

Reconsider the exploration robot’s software architecture
(Figure 3). Without lifting reifying and integrating a GPL into
the ADL, implementing the behavior of its Motor compo-
nent requires switching between modeling and programming
activities, comprehending patterns for integrating handcrafted
with generated implementations, and exposes the architecture
modeler to the accidental complexities of the generated code.

Figure 8 describes the integrated model for component
Motor: after declaring its type and parameters (l. 1), it yields
an incoming port cmd of data type MotorCommand (l. 2)
and contains an embedded behavior description (ll. 4-12).
Everything between the opening bracket (l. 4) and the closing
bracket (l. 12) is an embedded Java/P model. The embedded
MethodBody (cf. Figure 2, l. 4) instance declares a local
integer variable speed (l. 5), checks the value of port cmd and

216Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 228 / 267

01

02

03

04

05

06

07

08

09

10

11

12

13

component Motor(lejos.nxt.Motor m) {

port in MotorCommand cmd;

behavior {

int speed = 0.1;

if (cmd == MotorCommand.FORWARD)

speed = 720;

else if (cmd == MotorCommand.BACKWARD)

speed = -720;

m.setSpeed(speed)

return speed;

}

}

MAA

� � � � � � � � � � � � � � � 	 � �
 � � �
 � � � � � � �

� � � � � � �
 � � � �
 � � � � � � � � � �
 � � �

error raised by reused
Java/P well-formedness rule

error raised by integration-specific
well-formedness rule

em
b
ed

d
ed

 J
av

a/
P

Figure 8. Textual Motor component with embedded Java/P behavior
(ll. 5-10).

sets the value of speed accordingly (ll. 6-9), sets the speed of
the leJOS API [15] motor instance m passed to the component
(cf. l. 1), and returns the value of speed. Assigning a float
value to an integer variable is prohibited by one of the reused
Java/P well-formedness rules and consequently an error is
raised (l. 5). Additionally, a prohibited instance of Java/P’s
return statement is found and reported also (l. 11). Overall,
this syntactic and semantic integration of Java/P prevents the
architecture modeler from facing generated code, supports
developing with artifacts integration component structure and
behavior as depicted in Figure 8. It also reduces the effort of
continuously evolving and aligning two separate artifacts.

VI. RELATED WORK

Most ADLs focus on structural concerns. Where describing
component behavior is considered, many languages support
state-based behavior modeling only. More complex behavior
usually requires linking component models to GPL artifacts.

DiaSpec [16] is an ADL for pervasive computing systems
that supports integrating behavior via the generation gap
pattern [4]. Koala [17] is an ADL for the development of
embedded software. Its code generator produces C interfaces
(header files) from components and developers provide com-
ponent behavior via handcrafted interface implementations.
ArchFace [18] uses program points and their implementa-
tions to separate structure and behavior. Program points in
component interfaces are coordinated with implementations in
different GPLs. Component behavior in DAOP-ADL [19] is
divided into an interface definition in form of a pointcut and
its implementation potentially defined in a different artifact and
language. Specifying component behavior in C2SADEL [20]
requires integrating handcrafted code also.

Other ADLs feature embedded state-based behavior de-
scriptions. In AADL [21], state-based behavior can be modeled
following its behavior annex. Palladio [22] enables model-
ing behavior via service effect specifications, a variant of
activity diagrams that describe the quality-of-service proper-
ties of components, that describe component behavior. The
xADL [23] supports mapping components, connectors, and
types to Java classes [23]. An extension on modeling com-
ponent behavior with state machines [24] enables integrated
development of structural and behavioral aspects.

Only few ADLs support other behavior descriptions. For
example, in Æmilia [25], behavior is structured in blocks
containing EMPAgr terms [26], which are then translated into
state machines. ArchJava [10] embeds ADL concepts into

Java, hence it can use Java to describe component behavior.
However, it does not support tailoring the language to spe-
cific requirements and is bound to Java. The π-ADL [27]
also supports producing GPL code: Its behavior description
mechanism supports dynamically composing, decomposing,
and replicating (parts of) architectures, conditional statements,
and directives for sending or receiving values via compo-
nent interfaces. PiLar [28] is a reflective ADL for evolving
software system structures. It provides various constructs for
integrated behavior and structural modeling, such as directives
for dynamically modifying architectures, conditionals, loops,
and commands for exchanging message. Neither π-ADL, nor
PiLar support tailoring the behavior description mechanism.

VII. DISCUSSION

Our approach to architectural programming requires reify-
ing the GPL of choice as a modeling language. While being
of similar complexity than developing and integrating state-
based behavior languages (cf. [29]), the lower effort in code
generator development (essentially pretty printing the GPL
model parts) for contexts where only a single target GPL is
relevant compensates for this. Where multiple target languages
are required, transforming the concepts of embedded GPL
parts into another GPL is feasible as long as these concepts
are generally supported or can be worked around. However,
the inclusion of libraries is feasible only, if they are available
for both target GPLs. Moreover, including libraries might
require considering complexities that may be excluded from
the embedded GPL parts (e.g., exception handling is used
in a library, but not included in the embedded part of the
GPL). Another challenge arises from the integration of code
generators through wrapping and reuse, which requires that
relevant parts of the embedded GPL’s code generator are
accessible for wrapping. Where this is not fulfilled, generator
reuse might not be possible.

VIII. CONCLUSION

We presented a method for pervasive architecture modeling
by reifying programming languages as action languages and
embedding these into the C&C ADL MontiArcAutomaton.
Embedding relies on grammar interfaces, symbol adaptation,
and code generator composition, all of which focus on mini-
mizing the integration effort. The integration method supports
tailoring the embedded action languages in the process by
embedding what is required only and prohibiting undesired
action language concepts. Modeling component behavior with
integrated action languages reduces the need for switching
between modeling and programming activities and, hence,
ultimately reduces the effort in modeling architectures.

REFERENCES

[1] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” Future of Software Engineering
(FOSE ’07), 2007.

[2] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
Industry Needs from Architectural Languages: A Survey,” Software
Engineering, IEEE Transactions on, 2013.

[3] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014.

217Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 229 / 267

[4] T. Greifenberg, K. Hoelldobler, C. Kolassa, M. Look, P. Mir Seyed
Nazari, K. Mueller, A. Navarro Perez, D. Plotnikov, D. Reiss, A. Roth,
B. Rumpe, M. Schindler, and A. Wortmann, “A Comparison of Mech-
anisms for Integrating Handwritten and Generated Code for Object-
Oriented Programming Languages,” in Proceedings of the 3rd In-
ternational Conference on Model-Driven Engineering and Software
Development, 2015.

[5] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a Framework for
Compositional Development of Domain Specific Languages,” Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 2010.

[6] J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann, “Language
and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems,” Journal of Software
Engineering for Robotics, 2015.

[7] B. Rumpe, Modeling with UML: Language, Concepts, Methods.
Springer International, 2016.

[8] A. Haber, M. Look, and P. e. a. Mir Seyed Nazari, “Integration of
Heterogeneous Modeling Languages via Extensible and Composable
Language Components,” in Proceedings of the 3rd International Confer-
ence on Model-Driven Engineering and Software Development, 2015.

[9] R. Heim, P. M. S. Nazari, J. O. Ringert, B. Rumpe, and A. Wortmann,
“Modeling Robot and World Interfaces for Reusable Tasks,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015.

[10] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: connecting soft-
ware architecture to implementation.” in International Conference on
Software Engineering (ICSE) 2002, 2002.

[11] T. Clark, M. v. d. Brand, B. Combemale, and B. Rumpe, “Conceptual
Model of the Globalization for Domain-Specific Languages,” in Glob-
alizing Domain-Specific Languages, 2015.

[12] L. A. Tedd, J. Radjenovic, B. Milosavljevic, and D. Surla, “Modelling
and implementation of catalogue cards using FreeMarker,” Program,
vol. 43, no. 1, 2009, pp. 62–76.

[13] A. Butting, , B. Rumpe, and A. Wortmann, “Modeling Embedding
of Component Behavior DSLs into the MontiArcAutomaton ADL,” in
Proceedings of the 4th Workshop on the Globalization of Modeling
Languages (GEMOC), 2016.

[14] M. Fowler, Domain-Specific Languages. Addison-Wesley Professional,
2010.

[15] “leJOS API Website,” (accessed: 2017-02-21). [Online]. Available:
http://www.lejos.org/

[16] D. Cassou, J. Bruneau, C. Consel, and E. Balland, “Toward a Tool-
Based Development Methodology for Pervasive Computing Applica-
tions,” IEEE Transactions on Software Engineering, 2012.

[17] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,

“The Koala Component Model for Consumer Electronics Software,”
Computer, 2000.

[18] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: a contract place
where architectural design and code meet together,” in Proceed-
ings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, 2010.

[19] M. Pinto, L. Fuentes, and J. M. Troya, “A dynamic component and
aspect-oriented platform,” The Computer Journal, 2005.

[20] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language and en-
vironment for architecture-based software development and evolution,”
in Software Engineering, 1999. Proceedings of the 1999 International
Conference on, 1999.

[21] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland, D. Chemouil, and
D. Thomas, “The AADL behaviour annex–experiments and roadmap,”
in Proceedings of the 12th IEEE International Conference on Engi-
neering Complex Computer Systems. Washington, DC: IEEE Computer
Society, 2007.

[22] R. Reussner, S. Becker, and E. e. a. Burger, The Palladio Component
Model. Karlsruhe, 2011.

[23] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “An Infrastructure
for the Rapid Development of XML-based Architecture Description
Languages,” in Proceedings of the 24th International Conference on
Software Engineering, 2002.

[24] L. Naslavsky, L. Xu, M. Dias, H. Ziv, and D. J. Richardson, “Extending
xADL with Statechart Behavioral Specification,” in In Third Workshop
on Architecting Dependable Systems (WADS’04), Edinburgh, Scotland,
2004.

[25] S. Balsamo, M. Bernardo, and M. Simeoni, “Combining stochastic pro-
cess algebras and queueing networks for software architecture analysis,”
in Proceedings of the 3rd International Workshop on Software and
Performance, 2002.

[26] M. Bravetti and M. Bernardo, “Compositional asymmetric cooperations
for process algebras with probabilities, priorities, and time,” Electronic
Notes in Theoretical Computer Science, 2000.

[27] F. Oquendo, “π-ADL: An Architecture Description Language Based on
the Higher-order Typed π-calculus for Specifying Dynamic and Mo-
bile Software Architectures,” SIGSOFT Softwware Engineering Notes,
2004.

[28] C. E. Cuesta, P. de la Fuente, M. Barrio-Solórzano, and M. E. G. Beato,
“An “abstract process” approach to algebraic dynamic architecture
description,” The Journal of Logic and Algebraic Programming, 2005.

[29] L. Naslavsky, H. Z. Dias, H. Ziv, and D. Richardson, “Extending
xADL with Statechart Behavioral Specification,” in Third Workshop on
Architecting Dependable Systems (WADS), Edinburgh, Scotland, 2004.

218Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 230 / 267

Which API Lifecycle Model is the Best for API Removal Management?

Dung-Feng Yu, Cheng-Ying Chang

Institute of Computer and
Communication Engineering,

National Cheng Kung University,
Tainan, Taiwan

Email:{dfyu, zhengying}@nature.ee.ncku.edu.tw

Hewijin Christine Jiau, Kuo-Feng Ssu

Department of Electrical
Engineering,

National Cheng Kung University,
Tainan, Taiwan

Email:{jiauhjc, ssu}@mail.ncku.edu.tw

Abstract—Frameworks and libraries are reused through applica-
tion programming interfaces (APIs). Normally, APIs are assumed
to be stable and serve as contracts between frameworks/libraries
and client applications. However, in reality, APIs change over
time. When these changes happen, API users must spend addi-
tional effort in migrating client applications. If the effo rt is too
much to afford, the frameworks/libraries that API developers
have built will lose market share. In order to reduce migration
effort, API developers should manage API changes through API
lifecycle. Before construction of API lifecycle, investigation of the
following question is required: Which API lifecycle model is the
best for API removal management? To answer this question, we
first construct three API lifecycle models based on the observation
of current practices, and then devise a set of metrics to assess
those models using case studies. Assessment results conclude the
best model is deprecation involved model which benefits API
developers and users most with the least costs. Such model
becomes the base for API developers to build API lifecycle which
enables API developers to manage API changes, and reduces
migration effort.

Keywords–API lifecycle; API lifecycle model; API change; API
removal management; software migration.

I. I NTRODUCTION

Software reuse offers many benefits, such as acceleration
of software development and reduction of the overall devel-
opment cost [1]. Reusable software provides common func-
tionalities through application programming interfaces (APIs).
Normally, APIs are assumed to be stable and serve as contracts
between reusable software and client software. But, in fact,
as reusable software evolves to meet changing requirements
and solve emerging bugs over time, APIs will inevitably and
frequently change [2]. These changes will cause client software
to fail and increase maintenance cost [3]. Therefore, API
changes must be managed.

API developers manage API changes to web service using
tools, such asAPI Manager[4], Lifecycle Manager[5], and
Oracle API Management[6]. Each tool contains API lifecycle,
which is represented as a set of specific stages and the
transitions between them. Different tools contain different API
lifecycles. As a result, API developers need to choose the
tool that contains the most suitable API lifecycle. After API
lifecycle is chosen, API of the web service must follow the
lifecycle from its birth (i.e., API addition) to its death (i.e.,
API removal). Throughout API lifecycle, API developers can
control API addition, removal, and other changes.

Unlike API changes to web service, API changes to
frameworks and libraries are not well managed [3][7][8].

From previous study, API changes happen frequently across
different versions of a frameworks/libraries and commonly
across different frameworks/libraries [9]. These API changes
often cause a large amount of effort in migrating client
application [10]-[12]. As a result, API users will complain
through communication channels, such as online forums or
mailing lists. If API developers do not handle those specific
complaints, the framework or library that they have built
will lose market share because API users will choose other
frameworks or libraries instead.

To reduce migration effort, we first investigate the origin
of API changes and then propose an effective way to manage
them. According to previous research [3][9][10], most API
changes occur when API developersdirectly make themin the
design improvement tasks, without considering the affected
client applications. As a result, the most effective way to
manage API changes of frameworks and libraries is toplan
them based on API lifecycle. API lifecycle can enable API
developers to make API changes according to predefined stage
and transitions. It also guarantees that API developers consider
the affected client applications when making API changes.
However, there is no one-size-fits-all API lifecycle for allAPI
developers. Hence, we investigate the best API lifecycle model,
instead of the best API lifecycle.

In this work, API lifecycle model is an abstraction of API
lifecycles, and is represented as a set of general stages and
transitions between them. To choose the best API lifecycle
model, we first construct three API lifecycle models according
to the observation on current practices, and then analyze those
models from the perspective of API removal management.
This perspective is chosen because API removal management
enables API developers to prevent unintentional API removals
and therefore avoid causing client applications to fail. We
assess the impact of API lifecycle models on API developers
and API users through three case studies. The best model is
determined by the assessment results.

Main contributions of this work are as follows: 1) We are
the first to provide API developers with a solution to manage
API changes. 2) The best model is the base for API developers
to build a suitable API lifecycle. Such API lifecycle enables
API developers to manage API changes and therefore avoid
causing client applications to fail. As a result, migrationeffort
will be reduced. 3) We devise a metric set that enables API
developers to assess the impact of their API lifecycle on both
API developers and API users.

A preliminary analysis is performed in Section II to
introduce API lifecycle models and assess the impact on

219Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 231 / 267

both API developers and API users. Case studies of models
are conducted in Section III, and then results are presented
in Section IV. The best model is determined according to
the results. Related work is discussed in Section V. Finally,
conclusion and future work are provided in Section VI.

II. PRELIMINARY ANALYSIS

The goal of this preliminary analysis is to approximately
assess the impact of API lifecycle models on API developers
and API users from the perspective of API removal man-
agement. Therefore, three generic API lifecycle models are
introduced, which are shown in Figure 1. The support for
API removal management is discussed, and the positive and
negative impacts are further analyzed in detail. Finally, the
analysis result is summarized to provide an overview of API
lifecycle models.

creation deprecation removal

(a) D Model: Deprecation Involved Model.

d.1 d.2

creation removal

(b) ND Model: Non-Deprecation Involved Model.

n.1
creation deprecation removal

(c) H Model: Hybrid Model.

d.1 d.2

n.1

Figure 1. Three API Lifecycle Models.

A. D Model: Deprecation Involved Model
As shown in Figure 1(a),Deprecation Involved Model

(D Model) contains three stages, including creation stage,
deprecation stage, and removal stage. In D Model, API (e.g.,
AD) enters creation stage when it is designed to provide
functionality and exposed to API users. Through extensive
usage,AD might be found buggy or insufficient. Hence, API
developers decide thatAD should be scheduled for removal
because it is no longer recommended to use. To notify API
users of the decision, API developers often labelAD ‘dep-
recated’ and provide the corresponding migration information
(e.g., using other API instead) in API documents. After the
notification,AD enters deprecation stage from creation stage,
and becomes a deprecated API. Meanwhile, API developers
plan the future removal of the deprecated API. OnceAD is
removed, it enters removal stage and ends its lifecycle.

D Model provides API developers full support for API
removal management through the following ways. First, all
API removals are planned before they occur. Therefore, API
developers are able to control the timing of API removals.
Second, migration problems caused by API removals (e.g.,
compilation errors occur when API users compile client appli-
cations and new version of frameworks/libraries) are mitigated
through the provision of migration information. As a result,
API developers have control over the impact of API removals
on API users.

Although D Model provides full support for API removal
management, it still has one negative impact on API devel-
opers. When maintaining deprecated APIs, API developers
have to keep implementation of deprecated APIs in each
new version of frameworks/libraries, and thus encounter the

problem of code bloat. On the other hand, D Model has three
positive impacts on API users. First, migration information
enables API users to adapt client applications to API removals.
Second, API users are informed of API removal schedules in
advance through API documents, and thus they have sufficient
time to adapt client applications. Third, the probability that
API users have to adapt client applications is low because
API developers often remove APIs only when necessary. This
reduces the effort in migrating client applications.

B. ND Model: Non-Deprecation Involved Model
Figure 1(b) showsNon-Deprecation Involved Model(ND

Model). ND Model contains creation and removal stages, but
deprecation stage is excluded. As a result, the API following
ND Model is always a non-deprecated API, and will never
become a deprecated API. In ND Model, API (e.g.,AND)
enters creation stage when it is designed and exposed to
API users. AfterAND is used, it might be found buggy or
insufficient. Hence, the non-deprecated API,AND, will be
directly removed in the new version of frameworks/libraries
without planning. Such API is calledNR API in this work,
whereNRstands forNon-deprecatedandRemoved. AfterAND

is removed, it enters removal stage from creation stage. Such
stage transition is denoted by the dotted arc in Figure 1(b).

ND model does not provide API developers with any
support for API removal management. The reasons are listed
as follows. First, all API removals occur without any planning.
As a result, API developers are not able to control the timingof
API removals. Second, migration problems will occur because
of lacking of migration information in API document. API
users need to find the alternative APIs by themselves to replace
the removed APIs. Therefore, API developers do not have
control over the impact of API removals on API users.

ND Model not only lacks the support for API removal
management, but also has three negative impacts on API users.
First, API users have difficulties in adapting client applications
to API removals because no migration information is provided
in API documents. Second, API users do not have sufficient
time to adapt client applications because they are aware of
API removals only after those API removals occur. Third, the
probability that API users have to adapt client applications to
API removals is high because such API removals occur without
planning. Despite those negative impacts, ND Model has one
positive impact on API developers: there is no deprecated API
in ND Model, and thus API developers will not encounter the
problem of code bloat.

C. H Model: Hybrid Model
As illustrated in Figure 1(c),Hybrid Model (H Model) is

a hybrid of D Model and ND Model. In H Model, API in
creation stage has two possible paths to removal stage. Path
1 includes two solid arcs in Figure 1(c), which is the same
as D Model. Path 2 includes one dotted arc in Figure 1(c),
which is the same as ND Model. The API which follows Path
1 becomes a deprecated API, and its removal is planned. The
API which follows Path 2 becomes an NR API, and its removal
is unplanned.

H Model provides partial support for API removal man-
agement. In H Model, both deprecated APIs and NR APIs
exist. For deprecated APIs, API developers have control over
the timing and impact of their removal. But, for NR APIs,
API developers do not have any control. H Model has both

220Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 232 / 267

TABLE I. SUMMARY OF THE PRELIMINARY ANALYSIS RESULT.

Model API removal
management

Negative impacts Positive impacts

D Model Full support 1. Deprecated APIs cause API developersthe problem of code bloat.
(cBloat)

1. Migration information of deprecated APIs enables API users to
adapt client applications to planned API removals. (mInfo)
2. Prior notification of planned API removals enables API users to
have sufficient time to adapt client applications. (aTime)
3. The probability that API users have to adapt client applications to
planned API removals is low. (aPro)

ND Model No support 1. No migration information of NR APIs hinders API users from
adapting client applications to unplanned API removals. (mInfo)

1. NR APIs do not cause API developers the problem of code bloat.
(cBloat)

2. API users do not have sufficient time to adapt client applications due
to the lack of prior notification of unplanned API removals. (aTime)
3. The probability that API users have to adapt client applications to
NR APIs is high. (aPro)

H Model Partial support 1. No migration information of NR APIs hinders API users from
adapting client applications to API removals. (mInfo)

1. Migration information of deprecated APIs enables API users to
adapt client applications to planned API removals. (mInfo)

2. For unplanned API removals, the lack of their prior notification
causes API users the problem of not having sufficient time to adapt
client applications. (aTime)

2. For planned API removals, their prior notification enables API users
to have sufficient time to adapt client applications. (aTime)

3. For unplanned API removals, the probability that API users have
to adapt client applications is high. (aPro)

3. For planned API removals, the probability that API users have to
adapt client applications is low. (aPro)

4. Deprecated APIs cause API developers the problem of code bloat.
(cBloat)

4. NR APIs do not cause API developers the problem of code bloat.
(cBloat)

Note 1: The words in the parentheses are the abbreviations ofimpacts.
Note 2: The negative and positive impacts of H Model which areinherited from D Model are highlighted with the gray background, while those which are inherited from
ND Model are shown with the white background.
Note 3: Planned API removals are the removals of deprecated APIs, while unplanned API removals are the removals of NR APIs.

positive and negative impacts. Some of them are inherited from
D Model, and the others are inherited from ND Model. The
whole list of those impacts is provided in Table I, which is
introduced in the next section.

D. Summary
To have an overview of those API models, we summarize

the analysis result in Table I. The analysis result reveals the
following three types of information on the models: 1) degree
of support for API removal management, 2) negative impacts,
and 3) positive impacts. Furthermore, the impact categories,
which are shown as index words in Table I, are described as
follows:

1) Code bloat (cBloat). It includes the impacts related
to the problem of code bloat.

2) Migration information (mInfo). It includes the im-
pacts related to the provision of migration informa-
tion.

3) Adaptation time (aTime). It includes the impacts
related to the time which API users have for software
adaptation.

4) Adaptation probability (aPro). It includes the impacts
related to the probability that API users have to
adapt client applications to planned or unplanned API
removals.

III. C ASE STUDIES

The goal of the case studies is to assess the positive and
negative impacts of the models in four impact categories.
Through the assessment, the best model will be concluded if
it outperforms the others in the most impact categories.

A. Research Questions
To conclude the best model, we have to answer the follow-

ing research questions:
1) RQ1: Regarding the impact category of code bloat,

which model performs the best?

2) RQ2: Regarding the impact category of migration
information, which model performs the best?

3) RQ3: Regarding the impact category of adaptation
time, which model performs the best?

4) RQ4: Regarding the impact category of adaptation
probability, which model performs the best?

To answer these research questions, we assess impacts of
the models in four impact categories through a set of metrics.
As shown in Table II, those metrics are organized according to
targeted impact categories, and definitions are also provided.
With these metrics, we can assess the impacts and answer the
research questions.

B. Data Collection
Three subjects are chosen for data collection, and each

one is the representative of a specific API lifecycle model.
Those subjects are all medium-scaled open source projects
with hundreds of Java classes. The duration of data collection
for each subject is approximately three years. The subjectsand
the collected data are introduced as follows.

Subject for D Model: JFace with versions from 3.6 to
4.3. JFace is a popular user interface framework on Eclipse
platform. The duration of the data collection is from June 2010
to June 2013. The collected data includes API documents and
source code. From API documents, the deprecated APIs are
extracted to measure the values ofPCd/all andTd. Besides,
migration information for the deprecated APIs is investigated
to enable the measurement ofPCdMI/d. The value ofPBp is
measured through extracting APIs from API documents, de-
tecting planned API removals, and confirming the occurrence
of those planned API removals in the source code.

Subject for ND Model: JFreeChart with versions from
0.9.4 to 1.0.0. JFreeChart is a mature and widely used chart
library. According to download statistics, it has been down-
loaded for more than three million times since its registration
in SourceForge. The duration of the data collection is from
October 2002 to December 2005. During data collection,

221Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 233 / 267

TABLE II. D EFINITION OF METRICS.

Targeted impact category Metric Definition
Code bloat PCd/all In all APIs, the percentage of deprecated APIs.

PCnr/all In all APIs, the percentage of NR APIs.
Migration information PCdMI/d In all deprecated APIs, the percentage of deprecated APIs with migration information.

PCnrMI/nr In all NR APIs, the percentage of NR APIs with migration information.
Adaptation time Td The average time, measured in months, of a deprecated API from being announced to-be-removed to being removed.

(i.e., the average time of a deprecated API staying in the deprecation stage)
Tnr The average time, measured in months, of an NR API from being announced to-be-removed to being removed.

Adaptation probability PBp The probability of the occurrence of planned API removals.
PBu The probability of the occurrence of unplanned API removals.

TABLE III. A SSESSMENTRESULTS FOR THECODE BLOAT CATEGORY.

Model PCd/all, the metric for PCnr/all, the metric for
assessing negative impacts assessing positive impacts

package class method field package class method field
D 0.00% 4.01% 1.43% 2.69% – – – –

ND – – – – 6.81% 12.28% 13.19% 14.57%
H 0.00% 2.60% 1.81% 1.84% 0.00% 0.00% 0.02% 0.00%

Note 1: The label “–” means that the value of the metric is not available because
the negative or positive impact of the corresponding model does not exist.
Note 2: The model which performs the best is highlighted withthe gray background.

API documents are not provided. As a result, the collected
data includes the source code, online forum, and jfreechart-
commit mailing list, but no API documents. From the source
code, packages, classes, methods, and fields with public or
protected access modifiers are extracted as APIs. NR APIs
and their removals are then detected to measure the values of
PCnr/all andPBu. In the online forum, migration information
is identified to measure the value ofPCnrMI/nr. In jfreechart-
commit mailing list, notification of the removals of NR APIs
is also identified to measure the value ofTnr.

Subject for H Model: JFreeChart with versions from
1.0.2 to 1.0.13.The duration of the data collection is from
August 2006 to April 2009. API documents are provided dur-
ing data collection. Therefore, the collected data includes API
documents, source code, online forum, and jfreechart-commit
mailing list. In API documents, the deprecated APIs and their
migration information are investigated to measure the values of
PCd/all, Td, andPCdMI/d. From API documents and source
code, NR APIs, planned API removals, and unplanned API
removals are detected to measure the values ofPCnr/all, PBp,
andPBu. In the online forum, migration information of NR
APIs is identified to measure the value ofPCnrMI/nr. In
jfreechart-commit mailing list, notification of the removals of
NR APIs is identified to measure the value ofTnr.

IV. RESULTS OFCASE STUDIES

In Section IV-A, results of case studies are presented to
answer the four research questions. In Section IV-B, answers
to those research questions are summarized to conclude the
best model. Then, the cost-effectiveness of the best model is
also discussed.

A. Answers to Research Questions

RQ1: Assessment of Impacts in the Code Bloat Cat-
egory. The assessment results are summarized in Table III.
The values ofPCd/all show that little of APIs are deprecated
APIs. Thus, the problem of code bloat caused by deprecated
APIs in D Model is insignificant. On the other hand, NR
APIs in ND Model not only avoid the problem of code bloat

TABLE IV. A SSESSMENTRESULTS FOR THEM IGRATION INFORMATION
CATEGORY.

Model PCnrMI/nr, the metric for PCdMI/d, the metric for
assessing negative impacts assessing positive impacts

package class method field package class method field
D – – – – ∗ 87.10% 86.39% 58.97%

ND 0.00% 0.52% 0.04% 0.00% – – – –
H ∗ ∗ 0.00% ∗ ∗ 88.48% 92.87% 71.56%

Note 1: The label “–” means that the value of the metric is not available because
the negative or positive impact of the corresponding model does not exist.
Note 2: The label “∗” means that the value of the metric is not available because
of division by zero.
Note 3: The model which performs the best is highlighted withthe gray background.

for API developers, but also reduce API developers’ effort in
maintaining API implementation by 6.81% to 14.57%. Regard
to H Model, the values ofPCd/all are between two models, but
the values ofPCnr/all are very low. So, the negative impact
is medium but the positive is insignificant. In summary, ND
Model is the best model because of the following two reasons.
First, it only has the positive impact in the code bloat category.
Second, it has the largestPCnr/all values, which means its
positive impact is the most significant. As a result, ND Model
performs the best regarding the code bloat category.

RQ2: Assessment of Impacts in the Migration Informa-
tion Category. Table IV summarizes the assessment results.
Both D Model and H Model have significant positive impacts
with largePCdMI/d values. But, D Model is better than H
Model because D Model has only positive impact. Unlike
D Model, H Model has not only positive impact but also
negative impact. Regarding the positive one, H Model has
slightly larger positive impact than D Model. Regarding the
negative one, thePCnrMI/all value of H Model reveals that
none of NR APIs in the method level are provided with migra-
tion information. Unfortunately, lack of migration information
hinders API users from migrating client applications. Two
discussion topics in the online forum of JFreeChart have been
found as the evidence. The first one is “Arrrgh! Lots of API
changes again”, in which API users state that “..., these API
changes really are not funny! It takes a lot of time, researching,
looking in the new JFreeChart source code because there is no
migration description.” [13]. The second one is “API changes:
undocumented (again)”, in which API users state that “Could
documentation be improved and more information be provided
to ease migration?” [14]. With this evidence, it is concluded
that the negative impact of H Model is significant enough to
offset the positive impact of H Model. In summary, answer to
RQ2 is that D Model performs the best regarding the migration
information category.

RQ3: Assessment of Impacts in the Adaptation Time

222Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 234 / 267

TABLE V. A SSESSMENTRESULTS FOR THEADAPTATION T IME

CATEGORY.

Model Tnr , the metric for Td, the metric for
assessing negative impacts assessing positive impacts

D – 24.01
ND 0.40 –
H 1.75 14.19

Note 1: The label “–” means that the value of the metric is not available because
the negative or positive impact of the corresponding model does not exist.
Note 2: The model which performs the best is highlighted withthe gray background.

TABLE VI. A SSESSMENTRESULTS FOR THEADAPTATION PROBABILITY

CATEGORY.

Model PBu, the metric for PBp, the metric for
assessing negative impacts assessing positive impacts

package class method field package class method field
D – – – – 0.00 0.00 0.00 0.00

ND 0.39 0.94 1.00 0.83 – – – –
H 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.00

Note 1: The label “–” means that the value of the metric is not available because the
negative or positive impact of the corresponding model doesnot exist.
Note 2: The model which performs the best is highlighted withthe gray background.

Category. The positive and negative impact are assessed by
Td andTnr. However, the subjects for D Model and H model
do not contain the deprecated APIs which are removed. To
measure the values, we assume that deprecated APIs in the
subjects are finally removed in the last version. Because of
the assumption, actualTd values must larger than the measured
Td values. The assessment results are summarized in Table V.
Compared withTd values, values ofTnr are very small. It
means that API users have only a short time to adapt client
applications to unplanned API removals. Hence, the negative
impact of ND Model and H Model is significant in those cases.
Based on the assessment results, D Model is the best model
because it has the most significant positive impact with the
largestTd value. Besides, D Model does not have negative
impact. As a result, the answer to RQ3 is that D Model
performs the best regarding the adaptation time category.

RQ4: Assessment of Impacts in the Adaptation Proba-
bility Category. Table VI summarizes the assessment results.
Because deprecated APIs are not removed in our subjects,
values ofPBp are all zero. It means the positive impact on
API users is significant for D Model and H Model. On the
other hand, the high values ofPBu for ND Model indicate
that API users must adapt client applications to unplanned API
removals. So, the negative impact of ND Model is significant.
As a result, D Model is the best model because it has only pos-
itive impact and such positive impact is significant. Although
H Model has positive impact with the same significance, it has
some of negative impact assessed byPBu. Hence, D Model
is still better than H Model. In summary, the answer to RQ4
is that D Model performs the best regarding the adaptation
probability category.

B. The Best Model

The answer to RQ1 is ND Model, while the answers to
RQ2, RQ3, and RQ4 are D Model. As a result, ND Model
outperforms the others only in the code bloat category, while
D Model performs the best in the migration information,
adaptation time, and adaptation probability categories. Accord-

ing to the summary, D Model is the best model because it
outperforms the others in the most of categories.

The advantages of D Model are presented in Section II-A.
According to four impact categories, the following discussion
is to demonstrate that the cost of getting the advantage is low.

Code bloat category.The cost of maintaining deprecated
APIs is low. As discussed the answer of RQ1 in Section IV-A,
very few APIs in D Model are deprecated APIs. Hence, the
cost of maintaining deprecated APIs is low.

Migration information category. The cost of providing
migration information is low. Migration information is nat-
urally derived because deprecated APIs are often planned
to be replaced with new APIs. Besides, adding migration
information to API documents requires little cost. As a result,
the cost of providing migration information is low.

Adaptation time category. The cost of prior notification
is low. The notification of API removals is often performed
through 1) labelling an API ‘deprecated’ in API documents and
2) publishing updated API documents to API users. Because
both of such costs are low, the cost of prior notification is low.

Adaptation probability category. The cost of planning
API changes is low. Planning API removals requires designing
new APIs and scheduling API removals. The former is the in-
tegral part of API design, which does not cause any additional
cost. The latter needs little cost because API developers have
to consider API removals for software release. Hence, the total
cost of planning API changes is low.

V. RELATED WORK

Support for API removal adaptation. Chow and Not-
kin [15] proposed an approach for semi-automatic adapta-
tion to API removals in libraries. Their approach required
library developers to annotate API changes with a specific
language, and the annotation was used by API users for API
removal adaptation. The drawback of this approach was that
library developers had to learn a new language. Perkins [16]
developed a technique to replace calls to deprecated API
methods with their method bodies. The assumption of the
technique was that the method bodies contained appropriate
replacement code. Many approaches [17][18] were developed
to support API removal adaptation by recording and replaying
refactorings with refactoring engines. In those approaches,
API developers and API users were required to utilize the
same refactoring engines so that recorded refactorings could be
replayed by API users. An alternative solution to API removal
adaptation was to develop matching techniques [2][19]-[21]
for discovering replacement APIs, by which deprecated or
removed APIs were replaced. Some of the techniques directly
performed replacement without API users involvement, and
thus the appropriateness of discovered replacement APIs was
not guaranteed. On the contrary, the others provided a set
of replacement API candidates from which API users could
choose. But, API users had to spend additional effort in
guaranteeing the appropriateness.

Although many approaches and techniques are developed
to help API users with API removal adaptation, they all
have limitations. Recently, API deprecation is a promising
solution for adapting API changes. An empirical study of
Hora et al. [10] indicate that the deprecation mechanism
should be adopted. The study shows that API deprecation
reaction is faster and larger compared with NR API reaction.
Besides, the study of McDonnel et al. [22] indicate that client

223Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 235 / 267

applications need a longer adaptation time when APIs are
evolving fast. Such adaptation time can be preserved through
deprecation because it signals API users that which API ought
to be avoided [23]. In addition, Brito et al. [24] argue that
replacement messages with deprecated APIs facilitate API
users to adapt APIs. This argument complies with the study
of Ko et al. [25], which empirically indicates that migration
information promotes the reaction to API evolution. However,
all these previous studies focus on why API developers should
adopt deprecation. How to apply deprecation has not been
investigated. Therefore, we discover the best model embedded
with deprecation to present how deprecation can be applied to
API removal management. In the best model, API removals are
planned in advance and early announced to API users. More-
over, API developers provide migration information, which
contains replacement APIs. As a result, the appropriateness
of replacement APIs is guaranteed because of the credible
information source. In summary, the best model ensures the
support for API removal adaptation.

VI. CONCLUSION AND FUTURE WORK

The best model for API removal management is presented
in this work. The characteristics of the best model include
1) planning of API removals, which prevents unintentional
API removals and makes APIs stable, 2) provision of mi-
gration information, which reduces migration effort, and 3)
prior notification of planned API removals, which preserves
sufficient time to adapt client applications. The goal behind
the best model is to benefit both API developers and API
users, who are the major stakeholders in the ecosystem formed
by frameworks/libraries and client applications. As a result,
following the best model will make API developers design
more stable APIs with planning, and API users will spend
less effort in constructing and maintaining client applications.

While we conclude D Model is the best in two popular,
mature, and open source systems of Eclipse, the selected
subjects might not be representative in other domains, suchas
web framework. Web framework is widely adopted in different
ways to build kinds of web apps, and is changing at an
extremely rapid pace right now. For the purpose of preserving
market share, web framework developers are forced to evolve
the framework in time to catch up with the trend. API removals
will happen more frequently compared with those observed
subjects in this study. Therefore, to investigate the best API
lifecycle model further within such context will be our future
work.

REFERENCES

[1] I. Sommerville, Software Engineering. Pearson Education Limited,
2010, vol. Ninth Edition ed.

[2] Z. Xing and E. Stroulia, “API-Evolution Support with Diff-CatchUp,”
Journal of IEEE Transactions on Software Engineering, vol. 33, no. 12,
Dec. 2007, pp. 818–836.

[3] D. Dig and R. Johnson, “The Role of Refactorings in API Evolution,”
in Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM), 26–29 Sept. 2005, Budapest, Hungary, 2005.

[4] “About API Manager,” 2017, URL: https://docs.wso2.com/display
/AM110/About+API+Manager [accessed: 2017-08-22].

[5] “Lifecycle Manager for APIs,” 2015, URL: https://www.roguewave.com
/products-services/akana/lifecycle-manager [accessed: 2017-08-22].

[6] “Oracle API Management,” 2015, URL: http://www.oracle.com/us/
products/middleware/soa/api-management/overview/index.html
[accessed: 2017-08-22].

[7] D. Dig and R. Johnson, “How do APIs Evolve? A Story of Refactoring,”
Journal of Software Maintenance and Evolution: Research and Practice,
vol. 18, no. 2, Mar. 2006, pp. 83–107.

[8] Z. Xing and E. Stroulia, “Differencing Logical UML Models,” Journal
of Automated Software Engineering, vol. 14, June 2007, pp. 215–259.

[9] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and
Impact Analysis of API Breaking Changes: A Large-scale Study,” in
Proceedings of the IEEE 24th International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 20–24 Feb. 2017,
Klagenfurt, Austria, 2017, pp. 138–147.

[10] A. Hora et al., “How Do Developers React to API Evolution? A Large-
scale Empirical Study,”Journal of Software Quality Journal, 2016, pp.
1–31.

[11] W. Wu, F. Khomh, B. Adams, Y. G. Guhneuc, and G. Antoniol,
“An Exploratory Study of API Changes and Usages based on Apache
and Eclipse Ecosystems,”Journal of Empirical Software Engineering,
vol. 21, no. 6, Dec. 2016, pp. 2366–2412.

[12] G. Bavota et al., “The Impact of API Change and Fault-Proneness on
The User Ratings of Android Apps,”Journal of IEEE Transactions on
Software Engineering, vol. 41, no. 4, Apr. 2015, pp. 384–407.

[13] “Arrrgh! Lots of API changes again!” 2003, URL: http://www.jfree.org
/forum/viewtopic.php?f=3&t=5093 [accessed: 2017-08-22].

[14] “API changes: undocumented (again),” 2004, URL: http://www.jfree.org
/forum/viewtopic.php?f=3&t=9265 [accessed: 2017-08-22].

[15] K. Chow and D. Notkin, “Semi-automatic Update of Applications in
Response to Library Changes,” inProceedings of the IEEE International
Conference on Software Maintenance (ICSM), 4–8 Nov. 1996, Monterey,
CA, USA, 1996, pp. 359–368.

[16] J. H. Perkins, “Automatically Generating Refactorings to Support API
Evolution,” in Proceedings of the 6th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering(PASTE),
5–6 Sept. 2005, Lisbon, Portugal, 2005, pp. 111–114.

[17] J. Henkel and A. Diwan, “CatchUp! Capturing and Replaying Refactor-
ings to Support API Evolution,” inProceedings of 27th International
Conference on Software Engineering (ICSE), 15–21 May 2005,St.
Louis, MO, USA, 2005, pp. 274–283.

[18] D. Dig, S. Negara, V. Mohindra, and R. Johnson, “ReBA: Refactoring-
aware Binary Adaptation of Evolving Libraries,” inProceedings of 30th

International Conference on Software Engineering (ICSE),10–18 May
2008, Leipzig, Germany, 2008, pp. 441–450.

[19] M. Kim, D. Notkin, and D. Grossman, “Automatic Inference of Struc-
tural Changes for Matching across Program Versions,” inProceedings
of the 29th international conference on Software Engineering (ICSE),
20–26 May 2007, Minneapolis, MN, USA, 2007, pp. 333–343.

[20] W. Wu, Y.-G. Gueheneuc, G. Antoniol, and M. Kim, “AURA: AHybrid
Approach to Identify Framework Evolution,” inProceedings of 32nd

ACM/IEEE International Conference on Software Engineering (ICSE),
1–8 May 2010, Cape Town, South Africa, 2010, pp. 325–334.

[21] Z. Xing and E. Stroulia, “Identifying and Summarizing Systematic Code
Changes via Rule Inference,”Journal of IEEE Transactions on Software
Engineering, vol. 39, no. 1, Jan. 2013, pp. 45–62.

[22] T. McDonnell, B. Ray, and M. Kim, “An Empirical Study of API
Stability and Adoption in the Android Ecosystem,” inProceedings of
29th IEEE International Conference on Software Maintenance (ICSM),
22–28 Sept. 2013, Eindhoven, Netherlands, 2013, pp. 70–79.

[23] J. Zhou and R. J. Walker, “API Deprecation: a Retrospective Analysis
and Detection Method for Code Examples on the Web,” inProceedings
of 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 13–18 Nov., 2016, Seattle, WA, USA, 2016, pp.
266–277.

[24] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do Developers
Deprecate APIs with Replacement Messages? A Large-Scale Analysis
on Java Systems,” inProceedings of the IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
14–18 Mar. 2016, Suita, Japan, 2016, pp. 360–369.

[25] D. Ko et al., “API Document Quality for Resolving Deprecated APIs,”
in Proceedings of 21st IEEE Asia-Pacific Software Engineering Con-
ference (APSEC), 1–4 Dec., 2014, Jeju, South Korea, 2014, pp. 27–30.

224Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 236 / 267

Evaluating an Application Ontology for Recommending

Technically Qualified Distributed Development Teams

Larissa Barbosa, Gledson Elias

Informatics Center

Federal University of Paraíba

João Pessoa, Brazil

e-mail: larissa@compose.ufpb.br, gledson@ci.ufpb.br

Abstract—As a reflection of globalization, Distributed Software
Development (DSD) has become a mainstream approach, in
which the cooperation among globally distributed software
development teams has the potential to reduce cost and
development time. However, in order to make such promises a
reality, it is important to find teams with specific technical
background, required for implementing software modules that
constitute the software product under development. Thus, it is
a key aspect to contrast technical background of development
teams against specified technical requirements for
implementing the software project, making possible to select
the most skilled teams to develop each software module. In
such a context, this paper presents the evaluation of an
application ontology that supports selection processes of
distributed development teams, which are technically skilled to
implement software modules in distributed software projects.
Experimental results show that the evaluated ontology
represents and formalizes an extremely complex problem in a
systematic and structured way, allowing its direct or
customized adoption in selection processes of globally
distributed development teams.

Keywords-ontology; distributed software development;

selection process.

I. INTRODUCTION

In software engineering, a great body of knowledge has
been accumulated over the last decades regarding methods,
techniques, processes and tools, improving productivity and
software quality. As such, several software development
approaches have been proposed by academia and industry.
Nowadays, as a mainstream approach, Distributed Software
Development (DSD) promotes the cooperation among
globally distributed teams for implementing different
software product modules, reducing the development cost
and time, favored by the hiring of cheaper staff in different
locations, the fast formation of development teams and the
adoption of the follow-the-sun development strategy [1][2].
Besides, DSD also enables to find qualified workforces and
domain experts in worldwide outsourced teams or even
teams in global coverage companies [3][4][5].

In order to make DSD promises a reality, it is a key task
to identify development teams with specific skills and
technical knowledge required to develop software modules
that compose the software product under development. In
such a context, it is important to compare the skills and
technical knowledge of the candidate development teams

against the technical requirements specified to implement
each software module, making possible to identify those that
are more qualified to implement each one.

However, in DSD projects, geographic dispersion may
cause difficulties for the project manager to assess the skills
and technical knowledge of the candidate teams. In most
cases, the project manager does not develop face-to-face
activities with remote teams, having neither direct personal
contact nor drinking fountain talks [6]. Hence, it is therefore
hard to get precise and up-to-date information about
members of such remote teams, given that the formal
communication mechanisms based on documents or data
repositories do not react as quickly as informal ones.
Besides, even when the project manager has a bit of
information about candidate teams, in large software
projects, the task of selecting teams may still be quite
complex and prone to evaluation errors, since different teams
may adopt ambiguous vocabulary and incompatible methods
to identify and evaluate their skills and technical knowledge.

As a consequence, we have proposed a layered
recommendation framework [7] as a mean to help project
managers in the selection and allocation of development
teams in DSD projects. The framework is composed of three
recommendation phases: recommending software modules –
intends to cluster components into software modules,
reducing dependencies among modules and hence,
minimizing communication requirements; recommending
qualified teams – aims to identify technically qualified teams
to implement each software module; and recommending
teams allocation – intends to suggest possible allocations of
software modules to qualified development teams,
concerning their non-technical attributes as a mean to reduce
inter-team communication requirements.

In the context of the framework, this paper presents the
experimental evaluation of an application ontology, called
OntoDSD [8], whose main goal is to support the selection of
distributed development teams that are technically skilled to
implement software modules in DSD projects. Note that
OntoDSD is part of the second phase of the recommendation
framework which, as mentioned, is called recommending
qualified teams. As the main contribution, experimental
results show that OntoDSD represents and formalizes an
extremely complex problem in a systematic and structured
way, allowing its direct or customized adoption in selection
processes of globally distributed development teams.

225Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 237 / 267

The rest of this paper is organized as follows. Section II
introduces the main concepts and components related to an
ontology. Section III presents an overview of the OntoDSD
ontology, explaining its main concepts and relationships
associated to the selection of technically qualified distributed
teams. In order to observe the usability and applicability of
the proposed ontology, Section IV presents the experimental
evaluation. Next, Section V presents final remarks, identifies
limitations and indicates future work.

II. FUNDAMENTS

The literature contains many definitions of an ontology.
For the purposes of this paper, as defined in [9], an ontology
is a formal explicit description of concepts in a given domain
of discourse, properties of each concept describing its
features and attributes, and restrictions on such properties.

In general, the concepts in the modeled domain are
represented by elements called classes, which can adopt
inheritance abstraction to formulate a class hierarchy, in
which each class inherits properties from one or more
superclasses. Classes can have instances, which correspond
to individual objects in the modeled domain. A class has
several characteristics, attributes and restrictions that are
represented by elements called properties.

Each property has a domain and a range, which can
belong to a specific type and can have a set of allowed
values, ranging from simple types to instances of classes.
Properties can be divided into object properties and datatype
properties. Object properties associate instances of one or
two classes. Datatype properties create a relationship
between a class instance and values of a certain simple type,
such as strings and numbers. Each instance can have
concrete values for the properties of its respective class.

In relation to development methodologies, there are
several proposals in the literature to systematize the
construction and evolution of ontologies [10]. However,
despite the valuable contributions, none of them can be
considered the correct one. Indeed, none of them has enough
maturity, and therefore, there is no consensus on the best,
most complete or most appropriate methodology that can be
widely applicable in varied domains and application needs.

As a result, due to its simplicity of documentation, ease
of application, extensive tooling support and focus on the
construction of ontologies, we opted for the methodology
Ontology Development 101 [9], which defines a very simple
guide based on an iterative approach that assists ontology
designers, even non-experts, in the creation of ontologies
using a support tool, such as Protégé [11].

In the OntoDSD development, we decided to adopt a top-
down approach because it favors better control of the level of
details, avoiding excessive details present in a bottom-up
approach, which may lead to greater rework, effort and
inconsistencies, and moreover, may hinder the identification
of relationships and similarities among concepts [12].

It is important to highlight that the development of the
ontology was specified using the Protégé tool [11], which
provides support for the constructors of the Web Ontology
Language (OWL) [13], recommended by the World Wide
Web Consortium (W3C).

III. ONTODSD

OntoDSD is an application ontology, which has the main
goal of supporting the selection of distributed development
teams, technically skilled to implement software modules in
DSD projects. Thus, the modeled domain is DSD projects,
and, in a more specific way, the scope is the selection of
technically qualified teams to implement software modules.
Figure 1 presents the OntoDSD conceptual map.

RecByTechnology

RecByModule

Tecnology

Policy

inPolicy

hasRequirement

inTechnology

hasMember

hasProject & hasExperience

hasSkill

hasRule

string
reqTerm

string

Member

string

float [0, 1]

sklTerm

sklValue

Skill

Module

string

re
q

u
ir

ed
B

yM
o

d

kn
o

w
n

B
yT

ea
m

su
it

ab
ili

ty

string

string

Rule

Requirement

float [0, 1]

cptValue

CutPoint

Project

Team

Figure 1. OntoDSD conceptual map.

In OntoDSD, a DSD project (Project) is composed of a
set of software modules (Module) that can be developed by a
set of globally distributed development teams (Team). In
Figure 1, the object property composedOf represents the
relationship between a project and its constituting software
modules. The object property hasCandidate represents the
relationship between a project and distributed development
teams, which are candidates to implement software modules.

A software project (Project) adopts selection policies
(Policy) for recommending development teams to implement
software modules based on different criteria (Rule) and cut
points (CutPoint), which establish a minimum suitability
level for considering a team adequate to implement software
modules. In Figure 1, the object property adoptsPolicy
represents the relationship among a project and possible
selection policies, according to specific project needs. The
object property hasCutPoint represents the relationship
between a project and defined cut points, each on related to
each possible policy using the object property inPolicy.

OntoDSD provides two types of recommendations. The
first, called RecByTechnology, represents the suitability level
of candidate teams in relation to each technology required by
software modules. The second, called RecByModule,
represents the suitability level of candidate teams for
implementing each software module. In Figure 1, the object
properties hasRecByTech and hasRecByMod represent the
relationships between a project and their recommendations.

A. Representing Software Modules

Considering a given software module (Module), it is
important to characterize the knowledge requirements
(Requirement) imposed in relation to technologies
(Technology) adopted to implement the module. In
OntoDSD, the knowledge requirement indicates the
knowledge level required in each technology.

As illustrated in Figure 1, the object property
hasRequirement associates a specific software module with a

226Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 238 / 267

knowledge requirement, and through its datatype property
reqTerm, flags the required knowledge level, whose initially
proposed levels are low, medium and high. It is important to
note that the number and the value of the terms used to label
the knowledge level may be redefined by the project
manager. Now, regarding a given knowledge requirement,
the object property inTechnology associates the knowledge
requirement with a specific technology. Hence, together,
these classes and properties represent the fact that a given
module has a certain knowledge requirement in relation to a
particular technology, demanding a given specified
knowledge level.

B. Representing Development Teams

In OntoDSD, a development team (Team) is composed of
a set of members (Member). In Figure 1, the object property
hasMember represents the relationship between a team and
its constituting members. Regarding a given development
team, it is vital to gather information about each member in
relation to technologies (Technology) required by software
modules. To do that, for each required technology, three
pieces of data must be gathered: years of experience, number
of developed projects and number of degrees. As can be seen
in [14][15][16], in general, such information can indicate
whether an individual is an expert in a specific technology.

In OntoDSD, via the datatype property hasDgr and the
object properties hasExperience and hasProject, each
member (Member) is associated to a specific technology
(Technology). Note in Figure 2 that properties hasExperience
and hasProject have sub-properties for representing
respectively, the years of experience a given member has in a
specific technology, as well as the number of projects
developed by the member in such a technology. Hence,
together, such classes and properties represent that a given
team has members with degrees, projects and experiences in
many technologies.

1-3_years

3-5_years

none

7-9_years

+9_years

hasExperience

5-7_years

1-5_proj

5-10_proj 10-15_proj

none

15-20_proj

+20_proj

hasProject

Figure 2. Sub-properties for years of experience and number of projects.

Now, such gathered information about members of a
given team (Team) allows to infer the skill and technical
knowledge (Skill) possessed by the whole team in relation to
each technology (Technology). In Figure 1, the object
property hasSkill associates a given team to one or more
skills, which in turn are associated to their respective
technologies using the object property inTechnology. For
each skill, the datatype properties sklValue and sklTerm
signalize the real numeric value within the interval [0, 1] and
the correspondent textual term, such as none, low, medium
and high, representing the skill level of the team. Hence,
together, such classes, object and datatype properties
represent that a given team has a specified technical skill
level in a certain technology. Again, the number and the
value of the terms used to label the skill level may be
redefined by the project manager.

C. Representing Selection Policies

In order to evaluate the technical suitability of candidate
teams, it is necessary to define a selection policy. According
to the needs of the software project, different policies may be
adopted, changing the way the teams can be selected. A
selection policy is a table of rules (Table I), stated by if-then
expressions, which correlate terms in rows and columns,
defining rules that generate desired results, represented by
cells in their intersections. We can realize the rule rationale
with an example: IF Skill Level is “none” AND Knowledge
Level is “medium” THEN Suitability Level is “low”.

TABLE I. SELECTION POLICY

 Technical Requirements

 Knowledge Level

 low medium high

T
ea

m
s

S
k

il
l

L
ev

el

none medium low none
low high medium low

medium medium high medium
high low medium high

OntoDSD represents policies as individuals of the classes

Policy and Rule, which are related by the object property
hasRule, as shown in Figure 1. Observe that a certain policy
must be associated with a set of rules, modeling each cell of
the selection policy table. In turn, rules are modeled using
the datatype properties requiredByMod, knownByTeam and
suitability, representing, respectively: the knowledge level
required in a given technology, the technical skill possessed
by a certain team in that technology and accordingly, the
suitability level owned by that team in that technology.

D. Representing Technically Skilled Teams

Now, it is time to apply the selection policy in order to
discover the technical suitability owned by each team to
implement each software module. OntoDSD represents the
technical suitability possessed by teams as recommendations.
As discussed before, there can be two kinds of
recommendations, RecByTechnology and RecByModule,
which are characterized in the conceptual map in Figure 3.

Project Policy
recPolicy

Team

Module

recTeam

Technology
recRule

recTecnology

Rule
recModule

RecByTechnology

recPolicy

recTeam

recModule

booleanst
b

lV
a

lu
e

st
b

lT
e

rm

su
it

a
b

le

string
float [0, 1]

RecByModule

hasRecByTech hasRecByModule

Project

Figure 3. Recommendations in OntoDSD.

1) Recommendation of Teams to Required Technologies

A recommendation RecByTechnology represents the
suitability level possessed by a certain team (Team) in
relation to a particular technology (Technology) required by
a specific module (Module) according an adopted policy
(Policy). Indeed, the suitability level is signalized by an
instance of the rule (Rule) trigged by the adopted selection
policy, in which the datatype property suitability (Figure 1)
indicates the textual term representing the suitability level.

As can be seen in Figure 3, the relationship between such
concepts is represented using a set of object properties:

227Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 239 / 267

recPolicy, recTeam, recModule, recTechnology and recRule.
It should be noted that such object properties can be derived
through inference from information already stored in the
ontology. In order to infer such properties, OntoDSD has a
set of specified axioms, which are not discussed herein for
simplicity, but interested readers can found details in [8].

2) Recommendation of Teams to Software Modules

Based on the suitability level possessed by a given team
for each required technology, it is possible to estimate the
suitability level owned by that team in each software module,
which in OntoDSD is represented by the recommendation
RecByModule. To do that, the project manager ought to
adopt an empirical or mathematical method, like the one
proposed in [14].

A recommendation RecByModule represents the
suitability level possessed by a given team (Team) in relation
to a particular module (Module) according an adopted policy
(Policy). Indeed, the suitability level is signalized by the
datatype properties stblValue and stblTerm associated to the
respective recommendation (Figure 3), which indicate its
numerical value and textual term, respectively.

As shown in Figure 3, the relationship between such
concepts is represented via the object properties recPolicy,
recTeam and recModule. Note that such object properties
can also be derived by inference from information already
present in the ontology. However, for simplicity, the set of
related axioms are not discussed herein, but detailed in [8].

3) Application of the Cut Point

With the goal of filtering out the teams that might have a
low suitability level, a cut point defined by the project
manager must be used. This step consists simply in
eliminating those teams that do not reach the cut point. As
depicted in Figure 1, the object property hasCutPoint
associates a project (Project) to a specific cut point
(CutPoint), which through its datatype property cptValue
stores a real numeric value in the interval [0, 1], stipulated by
the project manager to determine the suitability possessed by
a given team in relation to a certain software module.

To do that, we must update the instances of the
recommendation RecByModule, setting the value of its
datatype property suitable, illustrated in Figure 3. It is
important to point out that the update of the property suitable
is also inferred automatically through an ontology axiom.

IV. CASE STUDY

In order to evaluate the usability and applicability of the
OntoDSD ontology, we developed three use cases based on
the project of two different software product lines. The two
first cases were developed using a hypothetical software
product line in the e-commerce area, documented in [17].
These two first use cases were organized in two development
iterations, contemplating the phases of domain engineering
and application engineering of the product line. Next,
another use case was developed based on a real project of a
middleware product line for mobile devices called
Multi-MOM [18], whose instantiation will be illustrated next
in this section.

When conducting the use cases, first the OntoDSD
ontology was completely specified and validated in the
Protégé tool [11], which supports the OWL specification
language [13]. Using Protégé, it was possible to create and
model classes, object and datatype properties, restrictions
and axioms. Next, each use case was also instantiated and
validated in Protégé, including individuals of the several
OntoDSD ontological elements. Besides, Protégé allows for
queries and visualization of the results that are automatically
generated by several OntoDSD axioms.

A. Representing Software Modules

Multi-MOM [18] is a middleware product line for mobile
computing. As shown in Figure 4, its component-based
architecture has five software modules, indicated in the small
rectangles labeled from M0 to M4, according to the first
phase of the proposed framework [7], explained in Section I.

<<kernel>>
Service Manager

M1 <<kernel>>
Service Locator

M1

<<kernel>>
Message Dispatcher

M0

<<kernel>>
Message Manager Control

M0<<kernel>>
Persistence Manager

M4

<<kernel>>
TTL Monitor

M2

<<kernel>>
Message Exchanger

M3

<<variant>>
Communication Paradigms

M0

IServiceLocator

IMessageDispatcher

ICommunicationParadigm

ITTLMonitor
IPersistenceManager

IMessageManagerControl

IMessageExchanger

Figure 4. Multi-MOM architecture.

The characterization of the technologies required by
those modules was performed by the software architecture
that created and designed Multi-MOM. As an example,
Figure 5 illustrates the OntoDSD instantiation to characterize
the technologies required to implement module MD0. As
illustrated in Figure 5, module M0 requires technologies
Communication Paradigms, Reflexive Programming,
Android and Java with “high” knowledge level. Besides, it
requires “medium” knowledge level on SQL.

Module Technology
hasRequirement inTechnology

string
reqTerm

”high”

Requirement

M0 Req1

Reflexive
Programming

Android

Java

Communication
Paradigms

SQL

”medium”

Req2

Figure 5. Characterization of module M0.

B. Representing Development Teams

Considering the difficulty of finding real development
teams for use cases, the development team definition was
performed based on the local market and computer science
students, resulting in a set of 179 participant developers,
which answered online forms covering all technologies
required by modules of the use cases. The adopted forms and
the respective answers can be found in [14].

Next, based on the answered forms, the skills and
technical knowledge of the 179 developers were
characterized in each technology required by modules.

228Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 240 / 267

Figure 6 shows an example instantiation for characterizing
the skills and technical knowledge in Android possessed by
member MB1 that belongs to team T20. As can be seen, MB1
has between three and five years of experience in Android
and has participated in up to five projects that adopt Android.

Team Technology
hasMember

hasProject
string

hasDgr

Android

Member

T20 MB1

hasExperiency

3-5_years

1-5_proj

Figure 6. Characterization of member MB1 in Android Technology.

Regarding 179 developers, we created 22 teams with
different sizes, varying from 2 to 18, dividing the members
randomly until complete all teams. The final composition of
the teams was: 1 team with 2 members, 3 teams with 3
members, 5 teams with 5 members, 4 teams with 8 members,
2 teams with 9 members, 3 teams with 10 members, 3 teams
with 15 members, and 1 team with 18 members.

Next, based on the skills and technical knowledge of
each developer, it is possible to characterize the skills and
technical knowledge of the respective teams for each
technology required by modules. Figure 7 shows the
instantiation for characterizing team T20 in Android
technology. As can be seen, considering the skills and
technical knowledge of its developers, team T20 has a
technical skill level with value 0,88 in Android technology,
which, according to the ranges of levels adopted,
characterizes a “high” skill.

Team Technology
hasSkill

float [0, 1]
sklValue

Android

0,88

Skill

T20

inTechnology

”high”

string
sklTerm

S1

Figure 7. Characterization of team T20 in Android technology.

It is important to stress that each candidate team can
consist of colocalized members only. Thus, if one needs to
consider a candidate team consisting of members from
different locations, it is suggested to model different teams
for each location. Besides, OntoDSD does not represent non-
technical aspects related to DSD projects in geographical,
temporal, cultural and economic dimensions. Such a design
decision is a consequence of the layered architecture of the
proposed framework [7], introduced in Section I, which
deals with such non-technical aspects in its third phase called
recommending teams allocation.

C. Characterization of Selection Policies

In the OntoDSD instantiation, we initially specified four
different selection policies, created based on the observations
and analysis presented in other related proposals in the
literature [19][20][21][22]. The four proposed policies are:

a) Equivalent qualification: selects teams with technical
skills close to knowledge level required by modules.

b) Most skilled teams: selects teams that have the
highest technical skills, independently of the
knowledge level required by modules.

c) Minimum qualification: selects teams that possess
minimum technical skills required by modules.

d) Training provision: selects teams that have technical
skills bellow the required by modules.

For instance, considering equivalent qualification policy,
defined in Table I, the rule instantiation represented by the
intersection of the fourth row with the third column, here
called R12, is presented in Figure 8. The instantiated rule is
interpreted as follows: IF Skill Level is “high” AND
Knowledge Level is “high” THEN Suitability Level is
“high”. It is important to point out that the 12 rules in
Table I were numbered from R1 to R12, going from the left
to the right and the top to the bottom.

Policy
hasRule

Rule

Equivalent Qualification

string

R12

string

string

requiredByMod

knownByTeam

suitability

”high”

”high”

”high”

Figure 8. Characterization of rule R12 in selection policy.

Table II shows that different cut points were used for
each selection policy. Based on the use cases, it was
perceived that the suitability values for the teams varied in
relation to adopted selection policies, reinforcing that
different policies assign different suitability to teams.
Nevertheless, in an experiment analysis where each use case
was evaluated according to each selection policy, we saw a
trend of the training provision policy to present suitability
values higher than all other ones. On the other hand, the
minimum qualification policy tends to present higher values
than the equivalent qualification and more skilled team
policies. Finally, we also realized that the equivalent
qualification policy tends to generate higher values than the
more skilled team policy. Given this empirical evidence, we
decided to use different cut points for each selection policy.

TABLE II. ADOPTED CUT POINTS

Selection Policiy Cut Point

Equivalent Qualification 0,60
Most skilled teams 0,55
Minimum Qualification 0,70
Training Provision 0,75

Figure 9 exemplifies the instantiation of the cut points in

OntoDSD, showing the representation of the cut point of
value 0,60 adopted in the selection policy Equivalent
Qualification used in the Multi-MOM project.

Project Policy
hasCutPoint

float [0, 1]
cptValue

0,60

CutPoint

Multi-MOM

inPolicy

P1 Equivalent Qualification

Figure 9. Cut point for policy Equivalent Qualification.

D. Evaluation of Team Suitability

At this point, considering technologies required by
modules, the team technical skills in each technology and the
selection policy adopted in the project, we can infer the

229Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 241 / 267

technical suitability for each team in each technology
required by each module, according to the selection policy.
Figure 10 shows the technical suitability inference for team
T20 in Android, which is required by module M0, according
to the selection policy Equivalent Qualification.

As we can see in Figure 10, the referred suitability is
defined by the application of rule R12, whose instantiation in
OntoDSD was shown in Figure 8.

Policy
recPolicy

Team

Module

recTeam

Technology

recRule

recTechnology

Rule

recModule

RecByTechnology

Project

Multi-MON

R12

Equivalent Qualification

T20

M0

Android

RBT1

Figure 10. Technical suitability of team T20 to Android in module M0.

It is relevant to point out that the adopted rule R12 is
inferred by an OntoDSD axiom, illustrated in Figure 11, as
specified in Protégé. As already indicated, OntoDSD has six
axioms for inferring six ontological elements: selection rules,
suitability terms and technically suitable teams. Herein,
figures show ontological elements inferred by axioms in
orange color. However, for simplicity, the other axioms are
not presented, but interested readers can found them in [8].

RecByTechnology(?re), hasRecByTech(?pr, ?re),
recPolicy(?re, ?po), recTeam(?re, ?e), recModule(?re, ?m), recTechnology(?re, ?t),
knownByTeam(?r, ?vh), requiredByModule(?r, ?vreq) -> recRule(?re, ?r)

Figure 11. Axiom for recommending a selection rule.

At this point, it is possible to measure empirically or
mathematically the suitability of the teams to the software
modules. For that, in these use cases, we adopted the
mathematical approach proposed by Santos [14] to derive
suitability level possessed by teams in software modules,
based on suitability possessed by those teams in each
technology required by software modules. In this
mathematical approach, based on forms filled by each
developer about years of experience, number of degrees and
projects in each technology, the answers are weighted in a
set of equations that derive the knowledge level owned by
each developer in each technology. Next, based on the skill
level owned by each member of each team in a specific
technology, we can derive mathematically the knowledge
level of the whole team in that technology.

Figure 12 shows an example of the final recommendation
of team T20 to module M0, whose numeric suitability value
is 0,71. Note that, applying OntoDSD axioms, it is possible
to infer the textual terms that represent the suitability. In
Figure 12, the suitability textual term is “medium”.

Finally, based on OntoDSD axioms, we can infer the
technically suitable teams for each software module from the
evaluation of the cut point defined in the software project to
the selection policy at hand, defining hence the possible

candidate teams for the implementation of software modules.
Please note that in the datatype property suitable, Figure 12
already includes the result of the suitability inference of team
T20 to module M0 in policy Equivalent Qualification.

Policy

string

Team

Module

recTeam
float [0, 1]

boolean

stblValue

Project

RecByModule

hasRecByModule

Multi-MOM
Equivalent Qualification

T20

M0

”medium”

0,71

true

RBM1

Figure 12. Recommendation of team T20 to module M0.

In the Multi-MOM use case, after applying the cut point,
among the 22 candidate teams, OntoDSD recommended 5,
11, 12, 21 and 19 teams to implement modules M0, M1, M2,
M3 and M4, respectively. For instance, analyzing the
recommendation for module M0, in sequence, teams T20,
T11, T16, T18 and T19 are recommended as suitable
considering the Equivalent Qualification policy.

Considering the high to medium knowledge levels
required by module M0 in all related technologies (Figure 5),
an inspection by hand, in relation to skill levels possessed by
all teams in such technologies, reveals that the recommended
teams are better suited because their technical skills are
closer to knowledge levels required by module M0 in such
technologies. Following such a rationale, it is possible to
conclude that recommended teams are the most appropriate
with respect to all adopted policies, but due space limitation,
it is not possible to present and discuss in detail such manual
inspection and assessment rationale.

In summary, regarding four selection policies defined
and three use cases developed to evaluate the usability and
applicability of the OntoDSD ontology, each use case
resulted in four recommendations of suitability of the teams
to the modules, generating one recommendation for each
selection policy. Hence, considering all use cases, we
generated 12 different set of recommendations.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the evaluation of an
application ontology, called OntoDSD, which supports the
selection of technically qualified distributed teams for the
implementation of software modules in DSD projects. As the
main contribution, adopting the strategy divide and conquer,
OntoDSD represents and formalizes an extremely complex
problem in a systematic and structured way, allowing its
direct or customized adoption in selection processes of
globally distributed development teams.

The general structure of OntoDSD is shown in the
conceptual map in Figure 1, where the whole problem is
modeled using only 12 classes, related by 23 object
properties and 11 datatype properties, which, when
instantiated, can systematize the decision-making process of
the project manager, especially when observed through the
viewpoint of the high complexity of the problem, which is

230Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 242 / 267

clear when this problem is handled in ad-hoc ways. Besides,
OntoDSD facilitates the communication between the project
manager and team members, establishing a common
vocabulary between all stakeholders in the selection process.

The OntoDSD instantiation may require a considerable
effort for creating instances and their object and datatype
properties, and consequently is prone to error and may cause
a waste of time. For instance, considering Multi-MOM,
which includes 5 software modules, 7 technologies, 22
teams, and 4 selection policies, the number of class instances
(3.267), object properties (19.150) and datatype properties
(1.982) is staggering, requiring a remarkable effort to
manipulate them in Protégé. In such a case, it was required
around 500 man-hours to represent gathered information as
instances and properties in Protégé.

Nevertheless, OntoDSD offers as an additional facility a
set of axioms, allowing the automatic inference of object and
datatype properties. In Multi-MOM, such axioms infer 2.376
object properties and 880 datatype properties, representing a
coverage around 12.5% and 44.4%, in relation to object and
datatype properties, respectively.

OntoDSD has potential to be reused in many different
scenarios. For instance, once a given software project is
instantiated, with its software modules, required
technologies, candidate teams and adopted selection policy,
the evaluation of another selection policy may easily reuse
all instances and object/datatype properties related to
software modules, required technologies and candidate
teams. In a most significant way, if we devise a data base of
previous software projects, including most technologies
usually required to implement software modules, a large
number of candidate teams and the main adopted selection
policies, the evaluation of a new software project may also
reuse all instances and object/datatype properties related to
technologies, teams and selection policies.

Even considering the reuse potential of the OntoDSD
ontology, it is still required a considerable effort during the
manual instantiation to identify and manipulate the instances
and their object and datatype properties that may be reused
and those that need to be created. In order to decrease this
effort, as a future work, its instantiation could be performed
programmatically, exploring the Protégé API, avoiding
errors and saving time. Just as an illustration to the extremely
positive impact of the programmatic approach, consider an
application where the user signalizes in a specific set of
tables: software modules, required technologies, candidate
teams and their members. In such an application, it could
almost all be created in an automatic and transparent way,
including all instances and object/datatype properties.

REFERENCES

[1] R. Martignoni, “Global Sourcing of Software Development:
A Review of Tools and Services”, 4th IEEE International
Conference on Global Software Engineering (ICGSE 2009),
IEEE, 2009, pp. 303-308.

[2] E. Carmel, Y. Dubinsky, and A. Espinosa, “Follow the Sun
Software Development: New Perspectives, Conceptual
Foundation, and Exploratory Field Study”, 42nd Hawaii
International Conference on System Sciences (HICSS´09),
IEEE, 2009, pp. 1-9.

[3] J. Herbsleb and D. Moitra, “Global Software Development”,
IEEE Software, issue 2, pp. 16-20, 2001.

[4] P. Ovaska, M. Rossi, and P. Marttiin, “Architecture as a
Coordination Tool in Multi-site Software Development”,
Software Process: Improvement and Practice, vol. 8, issue 4,
pp. 233-247, 2003.

[5] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “Global
Software Development in Practice: Lessons Learned”,
Software Process: Improvement and Practice, vol. 8, issue 4,
pp. 267-281, 2003.

[6] A. Mockus and J. Herbsleb, “Challenges of Global Software
Development”, 7th International Symposium on Software
Metrics (METRICS 2001), IEEE, 2001, pp. 182-184.

[7] T. A. B. Pereira, V. S. Santos, B. L. Ribeiro, and G. Elias, “A
Recommendation Framework for Allocating Global Software
Teams in Software Product Line Projects”, 2nd International
Workshop on Recommendation Systems for Software
Engineering (RSSE´10), ACM, 2010, pp. 36-40.

[8] L. Barbosa, “An Ontological Approach for Recommending
Technically Qualified Teams in Distributed Software
Projects”, Master Dissertation, UFPB, Brazil, 2013.

[9] N. F. Noy and D. L. McGuinness, “Ontology Development
101: A Guide to Creating Your First Ontology”, Stanford
Knowledge Systems Laboratory Technical Report
KSL-01-05, 2001.

[10] M. Cristani and R. Cuel, “A Survey on Ontology Creation
Methodologies”, International Journal on Semantic Web and
Information Systems, vol. 1, no. 2, pp. 48-68, 2005.

[11] Protégé. Available in: http://protege.stanford.edu 2017.08.16.

[12] M. Uschold and M. Gruninger, “Ontologies: Principles,
Methods and Applications”, The Knowledge Engineering
Review, vol. 11, issue 2, pp. 93-136, 1996.

[13] OWL Web Ontology Language Guide. Available in:
http://www.w3.org/TR/owl-guide 2017.08.16.

[14] V. S. Santos, “An Approach for Selecting Technically
Qualified Teams in Software Projects”, Master Dissertation,
UFPB, Brazil, 2014.

[15] J. Shanteau, D. J. Weiss, R. P. Thomas, and J. C. Pounds,
“Performance-Based Assessment of Expertise: How to Decide
if Someone is an Expert or not”, European Journal of
Operational Research, vol. 136, issue 2, pp. 253-263, 2002.

[16] D. J. Weiss, J. Shanteau, and P. Harries, “People Who Judge
People”, Journal of Behavioral Decision Making, vol. 19,
issue 5, pp. 441-454, 2006.

[17] H. Gomaa, “Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures”,
Addison-Wesley, 2004.

[18] Y. M. Bezerra, “Multi-MOM: A Multi-Paradigm, Extensible
and Message-Oriented Mobile Middleware”, Master
Dissertation, UFPB, Brazil, 2010.

[19] A. S. Barreto, “Staffing a Software Project: A Constraint
Satisfaction Based Approach”, Master Dissertation, Federal
University of Rio de Janeiro, Brazil, 2005.

[20] M. A. Silva, “WebAPSEE-Planner: Supporting People
Instantiation in Software Projects through Policies, Master
Dissertation, Federal University of Pará, Brazil, 2007.

[21] D. A. Callegari, L. Foliatti, and R. M. Bastos, “MRES: A
Tool for Resource Selection in Software Projects through a
Fuzzy, Multi-Criteria Approach, Brazilian Symposium on
Software Engineering (SBES 2009), Tools Session, 2009,
pp. 61-66.

[22] J. Collofello, D. Houston, I. Rus, A. Chauhan, D. M.
Sycamore, and D. S. Daniels, “A System Dynamics Software
Process Simulator for Staffing Policies Decision Support”,
31st Annual Hawaii International Conference on System
Sciences (HICSS´98), IEEE, 1998, vol. 6, pp. 103-111.

231Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 243 / 267

Validation of Specification Models Based on Petri

Nets

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—Each validation process of the software system re-
quirements should include an analysis of all possible scenarios.
Whereas only some of them are valid, some scenarios are redun-
dant, and some scenarios cause unsafe behavior of the system. An
important factor for successful checking of all possible scenarios is
the appropriate support of searching and evaluation of scenarios.
In this area, there is a gap between what formal approaches can
offer and how they are actually used. It comes from the belief
that formal approaches are difficult for understanding and using,
and that they are not suitable for validation because they have
no executable form. Nevertheless, systematic formal description
techniques allow to specify the system properties and the detailed
form of the solution during the design process and to analyze
system specification, including user interactions, and implement
architectural design decisions. This work focuses on the use of
Petri nets for specifying requirements and generating and analysis
scenarios to validate this specification.

Keywords–Object Oriented Petri Nets; Use Cases; Sequence
Diagrams; requirements specification; requirements validation.

I. INTRODUCTION

This work builds on the paper [1] and describes possible
validation procedures for the specification models. It is part
of the Simulation Driven Development (SDD) approach [2],
which combines basic models of the most used modeling
language Unified Modeling Language (UML) [3][4] and the
formalism of Object-Oriented Petri Nets (OOPN) [5].

One of the fundamental problems associated with software
development is the specification and validation of the system
requirements [6]. The use case diagram from UML is often
used for requirements specification, which is then developed
by other UML diagrams [7]. The disadvantage of such an
approach is an inability to validate the specification models
and it is usually necessary to develop a prototype, which is no
longer used after fulfilling its purpose. Utilization of OOPN
formalism enables the simulation (i.e., to execute models),
which allows to generate and analyze scenarios from spec-
ification models. All changes enforced during the validation
process are entered directly in the specification model, which
means that it is not necessary to implement or transform
models.

There are methods of working with modified UML models
that can be transformed to the executable form automatically.
Some examples are the MDA methodology [8], Executable
UML (xUML) [4] language, or Foundational Subset for xUML
[9]. These approaches are faced with a problem of model

transformations. It is hard to transfer back to model all changes
that result from validation process and the model becomes
useless. Further similar work based on ideas of model-driven
development deals with gaps between different development
stages and focuses on the usage of conceptual models during
the simulation model development process [10]. This approach
is called model continuity. While it works with simulation
models during design stages, the approach proposed in this
paper focuses on live models that can be used in the deployed
system.

The paper is organized as follows. Section II summarizes
concepts of the design method with using use cases and Petri
nets. It also introduces the simple case study. Section III
demonstrates possibilities of recording scenarios based on Petri
nets. Section IV deals with scenarios exploration including
generating scenarios and sequence diagrams. The summary and
future work is described in Section V.

II. DESIGN METHOD

In this section we will briefly introduce basic concepts of
the design method [11] and will demonstrate these concepts
on a simple case study.

A. Case Study in Basic Diagrams

The basis of design method is to identify use cases and
roles that interact with individual use cases; the use case
diagrams from the UML language are used. The behavior
of use cases and roles are described by special variant of
Petri nets, Object-Oriented Petri Nets (OOPN). Use cases and
roles correspond to classes of OOPN. One use case invocation
corresponds to creating an instance, i.e., an object of the
class. The basic behavior of each element is described by one
object net that represents independent autonomous behavior
of the object. Because the life of object and its object net is
closely related, we can use the notion object and net in the
same meaning. The object net, i.e., the basic behavior, can be
supplemented with method nets. Nets describing behavior of
roles are called role nets, nets describing behavior of use cases
are called activity nets.

The case study consists of simplified robotic system. For
our purposes, we will consider only one robot whose motion
is controlled by a predefined algorithm. So that the model
consists of one role of Robot and one use case Algorithm1. The
actor Robot represents a role of the real robot in the system.

232Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 244 / 267

Figure 1. The basic class diagram.

The real actor, i.e., robot, has to have own representation is the
system too. For terminological reasons we denote a real actor
by the term subject. The actor Robot has its subject called
RobotDevice. The classes of role, activity, and subject nets are
shown in Figure 1. A more detailed description of the model
can be found in the paper [1].

B. Behavioral modeling

Each object net, i.e., use case or role specification, de-
scribes a set of scenarios of the same type. From the Petri
nets definition, the common behavior is defined as an ori-
ented graph consisting of two kinds of nodes, transitions
and places. Transitions representing actions or commands and
places representing partial states of the scenario. Only nodes
from different kinds can be connected by arcs.

The system state is represented by places of the nets.
System is in a particular state if an appropriate place contains
a token. Actions that can be performed in a particular state
are modeled as part of the transition whose execution is con-
ditioned by a presence of tokens in that state. The transition is
modeled as an element that moves tokens between places, i.e.,
particular states. Except the input places, the transition firing
can be conditioned by a guard. The guard contains expressions
resulting in boolean value. The expression may also be a
synchronous port call. Synchronous port is a special variant
of transition, i.e., it may have input places, output places, and
a guard. Synchronous port cannot be fired independently but
has to be called from another transition or sycnhronous port.
These ports serve for synchronous communication between
nets, i.e., calling transition and called port have to be fired
simultaneously.

The transition can be fired only if the guard is evaluated
as true. It means that every boolean expression gets true and
every called synchronous port gets fireable. If the transition
fires, it executes all called synchronous ports that can have a
side effect, i.e., the executed synchronous port can change a
state of the called net.

C. Activity Net Algorithm1

The activity net Algorithm1 of the use case Algorithm1
(see Figure 2) consists of states testing, walking, stopped,

turnRight, and turnRound that are represented by appropriate
places. States turnRight and turnRound are only temporal and
the activity goes through these states to the one of stable states
walking or stopped. This net describes the following algorithm.
The robot goes straight and if it encounters an obstacle, it turns
to the right and tries to go straight. If it can not go straight, it
turns around. If it can not go straight, it stops.

walking

r isCloseToObstacle.

t1

r stop.

r turnRight.

r

r

turnRight

r isCloseToObstacle.

t2

r turnRight.

r turnRight.

r

r isClearRoad.

t11

r

r isCloseToObstacle.

t3 stopped

r isClearRoad.

t12 r

r

r go.

r go.

r

turnRound

r

r

r

testing

r isClearRoad.

t10

r go.

r

r

r

Figure 2. Model of the use case Algoritm1.

Control flow is modeled as the sequence of transitions.
Each transition execution is conditioned by events representing
the state of the robot. Let us take one example for all, the
state testing and linked transitions t10 and t1. The transition
t1 is fireable, if the condition isCloseToObstacle is met. This
condition is modeled by calling the synchronous port in the
guard. When firing the transition, actions stop and turnRight
the robot are performed and the system moves to the state
turnRight. The transition t10 is fireable, if the condition
(modeled by the synchronous port) isClearRoad is met. When
firing the transition, the action go (the robot goes straight) is
performed and the system moves into the state walking.

Both testing condition and message passing represent the
interaction between the system (especially the activity net
Algorithm1) and the role of robot (the role net Robot). The
object of the robot role serves as token moving through
the control flow. Presence of this token in places represents
particular states and allows the activity net to communicate
with the robot at the same time.

D. Role Net Robot

As already mentioned, actor represents a role of the user
or device (i.e., a real actor), which the actor can hold in the
system. One real actor may hold multiple roles, so that it can
be modeled by various actors.

A role is modeled as a use case and its behavior by Petri
nets. Interactions between use cases and actors are synchro-
nized through synchronous ports that test conditions, convey

233Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 245 / 267

subject

self delay: 10

d := s getDistance.

100

isCloseToObstacle

dist

d <= 10.
d

d

isClearRoad

d > 10.

s

d

oldD

p1

p2

t1

t2

Figure 3. Model of the role net Robot.

the necessary data and can initiate an alternative scenario on
both sides. For instance, the robot state is tested by a pair of
synchronous ports isClearRoad and isCloseToObstacle.

subject

 s turnRight.

turnRight

s

 s stop.

stop

s
return return

tr ts

Figure 4. Methods of the role net Robot.

The net can send or receive instructions through messages
too. In our example, the role Robot checks the distance from an
obstacle each 10 time unit by sending the message getDistance
to the robot subject. Methods turnRight, go, and stop that
control the robot moving are delegated to the subject. They
are shown in Figure 4.

III. MODELING OF SCENARIOS

Petri nets models describe possible scenarios of one type of
behavior, i.e., a behavior of a use case or an actor. For testing
purposes it is necessary to investigate specific scenarios for
individual situations. This section demonstrates possibilities of
recording individual scenarios based on Petri nets models.

A. Scenario records

To record one scenario, we use the notation common to
the Petri nets, the sequence of fired transitions. The basic
notation of the record is <tName1, tName2, . . .>. For in-
stance, the record <t10, t1, t11> means that the robot will
go straight, after a while it encounters an obstacle, turns
right, and continuous walking. The record may be comple-
mented with data including place markings and constraints.
The previous example may be complemented with place

markings after the scenario ends. At this moment, all places
are empty except the place walking, which contains object
of the class Robot as the control token. The sequence is
<t10, t1, t11, . . . , t3{stopped(ERobot)}>, where the nota-
tion ERobot means an instance of the class Robot. If it is
needed to name the instance, we will write nameERobot.

B. Subject Model

To have the model complete, we will simulate the subject
representing the real robot and the environment the robot is
moving in. We come out of the labyrinth model, which is
shown in Figure 5. The subject RobotDevice is modeled by
the Petri net, which is captured in Figure 6.

14

100

200

40

Figure 5. Labyrinth scheme.

The model has two places representing stable states of
the net—state (the symbol in this place indicates whether
the robot walks or not) and distance (the pair of numbers
represents the position in labyrinth and the distance from
an obstacle). If the net is in the state to go (symbol #g
is placed in the state state), the distance from the obstacle
is reduced by two length units each time unit. If the robot
reaches the obstacle, the distance does not change anymore.
The shape of labyrinth is modeled by pairs of values in the
place listDistances. The first value denotes the position, i.e.,
the corridor the robot should walk in, and the second value
denotes the length of this corridor. The position changes by
calling method turnRight.

(1,100) (2,40)

 (3,0) (4,40)

 (5,200) (6,0)

d > 2

nd := d - 2.

(i,d)

(i,nd)

#g

self hold: 1.#s

(1,20)
i <= 6

ni := i + 1.

i > 6

(i, d)

(i,old)

(ni,d)

i

turnRight

d <= 2

d

p1

state

dist

return

t1

t2

t3 p2

listDistances

Figure 6. Model of the subject RobotDevice simulating the real device.

The formalism of OOPN allows working with time using
a special method delay that is called from transitions. When

234Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 246 / 267

transition containing a delay message is invoked, this transition
is delayed for the specified time. It has the same meaning as
the timed transition in Timed Petri Nets. The simulator can
interpret the time in two ways. Either it works with model
time that simulates real time during simulation run or directly
real time.

C. Sequence of events

The transition sequence of the net Algorithm1 representing
the particular scenario, which corresponds to the labyrinth
model, is shown in Figure 7. Such listings are well machine-
readable, but are less readable for humans. It is possible to
graphically record the sequence of the performed transitions,
which can include additional information about the selected
states or time.

<t10, t1, t11, t1, t11, t1, t2, t12, t1, t2, t3>

Figure 7. The transition sequence of the Algorithm1 net.

An example of the graphical notation of the record is shown
in Figure 8. The record is a sequence of fired transition with no
conditions and branches. The information about chosen places
are displayed above arcs before and after the transition fires.
For our purposes, we have chosen the place Robot.dist (first
line, e.g., (100)) and the place RobotDevice.dist (second line,
e.g., (1, 20)). Each record of fired transitions can be supple-
mented by an information about model time (e.g., t = 0).

(100)

(1,20)
t10

(0)

(1,0)

(0)

(2,100)
t1

(100)

(2,100)
t=0 t=10

t11

t=10

(100)

(2,100)

(0)

(3,0)

t1

(40)

(3,40)

(40)

(3,40)

t11

(0)

(3,40)

t=80 t=60

t1

t=60 (0)

(2,0)

(0)

(6,200)
t2

(200)

(6,200)

(200)

(6,200)
t12

(0)

(6,0)
t=80 t=180

t1

t=180

(0)

(7,0)

t13

t=180

t2

t=180

(0)

(4,0)

(0)

(4,0)

(0)

(7,0)

(0)

(7,0)

(0)

(7,0)

Figure 8. Graphic record of the expected scenario.

The transition sequence can be recorded manually or
automatically. The first approach serves as a test case, which
is compared to the sequence obtained by model simulation.
In the case of manual recording, it is not advisable to declare
states and model time for all transitions, but only for significant
points in the sequence of transitions. In our example, there are
important locations before performing transitions t11, t12, and
t13. Figure 9 shows the initial part of the declared sequence
(show at the top) and the obtained (real) sequence (shown at
the bottom). By comparison, we can find out that the real
sequence differs from expected sequence in the third step
(transition).

IV. EXPLORATION OF SEQUENCES

In this section, we will explore the difference between
expected and obtained sequences. Since the model simulation
is not limited to one net, we have to take into account the
behavior of other interconnected networks. Therefore, we will
analyze transitions over time across all participating nets.

A. Records of sequence

To save space, we will not display sequences of
events graphically, but describe them in a table. The
table record includes model time t, fired transitions
trans, states of chosen places Alg1.walking (p1),
Alg1.turnRight (p2), Alg1.turnRound (p3), Robot.dist
(Rdist), RobotDevice.dist (Ddist), and RobotDevice.state
(Dstate).

(100)

(1,20)
t10

(0)

(1,0)

(0)

(2,100)
t1

(100)

(2,100)
t=0 t=10

t11

t=10

(100)

(2,100)

(100)

(1,20)
t10

(0)

(1,0)

(0)

(1,100)
t1

(0)

(2,100)
t=0 t=10

t2

t=10

(0)

(2,100)

Figure 9. Graphic record of the declared and obtained scenarios.

TABLE I. SEQUENCE OF EVENTS OF THE BASIC SCENARIO.

t trans p1 p2 p3 Rdist Ddist Dstate

0 Alg1.t10 r 100 (1, 20) #g
Robot.t1 r 100 (1, 20) #g
RDev.t1 r 100 (1, 20) #g

1 RDev.t2 r 100 (1, 18) #g
RDev.t1 r 100 (1, 18) #g

2 RDev.t2 r 100 (1, 16) #g
. .

9 RDev.t2 r 100 (1, 2) #g
RDev.t1 r 100 (1, 2) #g

10 RDev.t2 r 100 (1, 0) #g
Robot.t2 r 0 (1, 0) #g

<S>Alg.t1 0 (1, 0) #g
Robot...t 0 (1, 0) #g
RDev...t 0 (1, 0) #s
Robot...t 0 (1, 0) #s
RDev...t 0 (2, 100) #s

<F>Alg.t1 r 0 (2, 100) #s
<S>Alg.t2 0 (2, 100) #s
Robot...t 0 (2, 100) #s
RDev...t 0 (3, 40) #s
Robot...t 0 (3, 40) #s
RDev...t 0 (4, 0) #s

<F>Alg.t2 r 0 (4, 0) #s
Alg.t3 0 (4, 0) #s

Table I shows the sequence of transitions from the be-
ginning of the simulation, i.e., from the Alg1.t10 transition.
We find out that the transitions of nets Robot and RDev are
performed between the transitions Alg1.t10 and Alg1.t1 of
the base sequence. Sequence of these transitions simulates
the robot movement and updates the distance information.
Transition Alg.t1 is activated when information of the distance
is updated to value of 0. This activation corresponds to the

235Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 247 / 267

line with <S>Alg.t1 symbol. When this transition fires, the
transitions of Robot.stop and RDev.turnRight nets are per-
formed. After completing the Alg1.t1 transition, the system is
in a state that is captured on the line with <F>Alg.t1 symbol.
The next step is an activation of the Alg1.t2 transition even
though the declared sequence of events expects an activation
of Alg1.t11. There is a problem because the Alg.t1 transition
did not change the condition guarding transitions Alg.t2 and
Alg.t11.

TABLE II. SEQUENCE OF EVENTS OF THE CORRECTED SCENARIO.

t trans p1 p2 p3 Rdist Ddist Dstate

0 Alg1.t10 r 100 (1, 20) #g
Robot.t1 r 100 (1, 20) #g
RDev.t1 r 100 (1, 20) #g

1 RDev.t2 r 100 (1, 18) #g
RDev.t1 r 100 (1, 18) #g
Robot.t2 r 18 (1, 18) #g
Robot.t1 r 18 (1, 18) #g

2 RDev.t2 r 18 (1, 16) #g
. .

5 RDev.t2 r 12 (1, 10) #g
RDev.t1 r 12 (1, 10) #g
Robot.t2 r 10 (1, 10) #g
Robot.t1 r 10 (1, 10) #g

<S>Alg.t1 10 (1, 10) #g
Robot...t 10 (1, 10) #g
RDev...t 10 (1, 10) #s
Robot...t 10 (1, 10) #s
RDev...t 10 (2, 100) #s

<F>Alg.t1 r 10 (2, 100) #s
<S>Alg.t2 10 (2, 100) #s

. .

According to the state analysis, it can be deduced that the
information in the Robot net about distance to the obstacle
has not been updated. In addition, there is a long delay in
passing the current information from the subject RobotDevice
to the role Robot. If we focus on this problem, the solution
is relatively simple. We need to change the interval in which
the information is obtained so that the response is faster. We
change the action of Robot.t1 transition to the self hold: 1
statement. The resulting sequence is shown in Table II. The
information is being updated but the previous issue is not
addressed—the actual scenario is still different from the ex-
pected one. We will analyze this situation in next subsections.

B. Sequence Diagrams

It is not easy to get an overview of the communication
between objects in large models. One scenario corresponds to
a sequence of interactions between system objects. Interactions
are usually described by diagrams. The activity diagram and
the sequence diagram of the UML language being widely used
in this area. The activity diagram is suitable for modeling the
behavior of the use case, i.e., modeling all possible scenarios
in general way. The sequence diagram models one particular
scenario and makes it possible to better represent the external
view of the system dynamic, i.e., the messaging sequence. We
will present the possibilities of using sequence diagrams in
conjunction with Petri nets.

The Petri net model is conceived as a sequence of internal
and external events. Internal events may represent message
sending to another objects, external events may arise in re-
sponse to incoming events. Having a classical concept into

account, it is necessary to map the external events to methods.
Nevertheless, it makes the model less readable and understand-
able. When using Petri nets, the scenario is clearly defined as
a sequence of events. One can then monitor system dynamics
directly in the base model without event mapping. On the
other hand, the sequence diagram makes it possible to better
represent the external view of the system dynamic, i.e., the
sequence of messages.

Figure 10. Sequence diagram modeling the scenario.

In addition to statistical data, the information needed to
generate the sequence diagram can be collected during the
simulation. It is therefore possible to generate individual
scenarios in the form of sequence diagrams. The message
linked to the event is generated to the sequence diagram as the
message between sender and receiver. The synchronous port
connected to an event is captured in the sequence diagram as
the state of the object on which the port has been executed.

<Alg1.t10,Robot.isClearRoad,Robot.go.t1,
RobotDevice.go.t1>

Figure 11. Part of the complete transition sequence.

Let us get back to our example. Since we know that the
problem occurs before executing the transition Algorithm1.t2,
it is sufficient to generate a sequence diagram from the
first event Algorithm1.t10 to the event Algorithm1.t2. The
resulting sequence diagram is shown in Figure 10. For instance,
at time 0, the object o1EAlg1 sends a message go to the
object o2ERobot from the transition Alg1.t10. This execution
is conditioned by synchronous port isClearRoad and the
initial marking of the place Robot.dist is 100. The object
o2 responds by forwarding the message to o3ERobotDevice
object. This sequence corresponds to the initial part of the
scenario shown in Table II, the formal notation is captured in

236Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 248 / 267

Figure 11.

subject

100

dist

 s turnRight.

d := s getDIstance.

turnRight

s

oldD

d

tr

Figure 12. Fixed method of the role net Robot.

In Figure 10, there is a special symbol
⊗

marking the
position in the sequence where is a difference between ex-
pected and obtained scenario. We knew there is a problem
of transmitting information about robot’s distance. In the
sequence diagram, we can find out that the message of getting
distance is not called after turning the robot. We fix this by
calling the message getDistance inside the transition Robot.tr
as shown in Figure 12.

C. Interface to real robot

In the next step, we will analyze the behavior of model
connected to the real robot. From the model point of view,
only the subject stored in the place Robot.subject changes.
Because we work with a real component, we run the simulation
in real time rather than model time. The first steps of the
simulation are shown in Table III.

TABLE III. SEQUENCE OF EVENTS OF THE OBTAINED SCENARIO.

t trans p1 p2 p3 Rdist

0.00 Alg1.t10 r 100
Robot.t1 r 100

1.03 Robot.t2 r 18
.

5.10 Robot.t2 r 9
5.10 Robot.t1 r 9
5.10 <S>Alg.t1 9
5.11 Robot...ts 9
5.11 Robot...tr 0
5.11 <F>Alg.t1 r 0
5.12 <S>Alg.t2 0
.

We have got the same situation—the robot stops prema-
turely. Looking at the sequence of events, we find out that the
robot turns too early and stands in front of the wall of corridor
that it came. It is necessary to adjust the role behavior so that
it can slow down and gradually stop just before the obstacle.

V. CONCLUSION

The paper dealt with the concept of modeling software
system requirements using the formalism of OOPN. This
concept allows to model and validate specifications through
the scenarios exploration in simulated or real surroundings

with no need to transform models. We presented basic concepts
based on declaration, generation, and comparison of individual
scenarios. The concept is supported by mapping Petri net
model to sequence diagrams helping display the sequence of
messages. During the process of model analysis, we discovered
several inaccuracies in the description of role behaviors, but
own algorithm, i.e., the basic work-flow of the system, was
not modified. This approach of creating the requirements
specification combines an abstract view of the system with
implementation details, all of which are implemented by the
same formalisms.

At present, we have developed the tool supporting require-
ments modeling using use cases and the formalism of OOPN.
In the future, we will focus on the tool completion, a possibility
to interconnect model to others languages, and feasibility study
for different kinds of usage.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-17-4014 and The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Modeling System Requirements Using Use
Cases and Petri Nets,” in ThinkMind ICSEA 2016, The Eleventh
International Conference on Software Engineering Advances. Xpert
Publishing Services, 2016, pp. 160–165.

[2] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[5] M. Češka, V. Janoušek, and T. Vojnar, “Modelling, Prototyping, and Ver-
ifying Concurrent and Distributed Applications Using Object-Oriented
Petri Nets,” Kybernetes: The International Journal of Systems and
Cybernetics, vol. 2002, no. 9, 2002.

[6] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press,
2014.

[7] N. Daoust, Requirements Modeling for Bussiness Analysts. Technics
Publications, LLC, 2012.

[8] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in International Conference on Software
Engineering, ICSE, 2010.

[9] S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation, vol. 1069,
2013.

[10] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015.

[11] R. Kočı́ and V. Janoušek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266–276.

237Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 249 / 267

An OO and Functional Framework for Versatile Semantics of Logic-Labelled Finite

State Machines

Callum McColl Vladimir Estivill-Castro René Hexel

School of Information and Communication Technology
Griffith University, Nathan QLD 4111, Australia

callum.mccoll@griffithuni.edu.au

v.estivill-castro@griffith.edu.au

r.hexel@griffith.edu.au

Abstract—Logic-Labeled Finite State Machines (LLFSMs) offer
model-driven software development (MDSD) while enabling cor-
rectness at a high level due to their transparent semantics that
enables testing as well as formal verification. This combination of
the three elements (MDSD, validation, and verification) results in
more reliable behaviour of software components, but semantics
is constrained to specific scheduling. We offer a framework that
allows to obtain significant variations that suit specific domains
while maintaining the capability to generate Kripke structures for
formal verification or to execute corresponding monitor or testing
LLFSMs for validation in a test-driven development framework.
The framework is Object-Oriented so new software patterns
for scheduling can be derived to suit a particular embedded,
robotic, or cyber-physical system, while at the same time enabling
functional programming constructs.

Keywords–Logic-labelled finite-state machines; Model-Driven
Engineering; Real-Time Systems; Verification; Validation.

I. INTRODUCTION
By following a transparent semantics that includes a

synchronous model, Logic-Labelled Finite State Machines
(LLFSMs) enable the design of software that can achieve high
levels of complexity and sophistication while guaranteeing
deterministic execution and facilitating formal verification [1].

The semantics specify precisely when variables affected
by sensors outside the system are inspected as well as the
particular points in the execution of the software where snap-
shots of the environment variables are taken [2]. However, this
constrains the execution to just one specific semantics, and in
particular, to one specific frequency and pace, which may not
be suitable in another robotic or embedded system. It should
be possible to configure rapidly and efficiently the semantics
and constructs of LLFSMs providing developers the freedom
to adapt or tailor the system semantics to particular cases.
This paper enables such versatility. We provide the capacity
to instantiate new scheduling semantics with incarnations of
template methods and classes while still providing the capacity
to generate the corresponding Kripke structure for formal
verification with standard tools, such as NuSMV.

Therefore, this new framework removes the need to adhere
to the strict semantics currently implemented in tools such
as clfsm. Importantly, we maintain the ability to perform
formal verification. We illustrate two areas where we create
abstractions to the semantics of LLFSMs and show how in-
stantiation of these abstractions into concrete derivations main-
tain the ability to perform formal verification. We introduce

swiftfsm [3], a framework for LLFSMs written in Swift,
which enables formal verification, but allows developers more
freedom to design, adapt and create new LLFSM models that
are particular to application-specific use cases.

II. LOGIC-LABELLED FINITE STATE MACHINES

Finite state machines are ubiquitous models of system
behaviour. Variants of finite-state machines appear in many
system modelling languages, most prominently SysML [4]
and UML [5], [6]. Despite their widespread use and pene-
tration in model-driven software development, the semantics
of SysML [4] and UML [7] are ambiguous [8] and restricted
versions are offered to create executable models [9], real-
time systems [10] or enable formal verification [11]. More-
over, languages such as SysML and UML have historically
adopted the event-driven form of finite-state machines inspired
by Harel’s STATEMATE. Unfortunately, event-driven systems
cannot offer a simple semantics, as it becomes cumbersome
to manage event queues and the concurrent arrival of events
while handling the current event. The issue is intrinsic to these
types of machines, where a system is modelled as being in a
finite set S of states, and where transitions ‘immediately’ fire
upon arrival of an event (more complexity usually results as
executing a transition can itself fire a series of other events).

Complementary to this, LLFSMs model a system as being
in a finite set S of states. As before, each state (s ∈ S)
represents a possible situation that the system may find itself
in. But here it is more explicit that while in that state, the
LLFSM will execute some actions. The system also moves
from state to state by means of transitions. However, in sharp
contrast with the event-driven approach, each transition is
predicated by a logical expression. States are executable states.
A state machine is not waiting for events to happen and
reacting to them. It is executing its current state sc, and at
a precise point in the execution, the expressions labelling the
associated transitions are evaluated. If one of these expressions
evaluates to true, the system moves to the target state of the
transition, updating the current state. Each LLFSM has a state
designated as the initial state (s0 ∈ S), representing the state
at the point when execution commences.

Each state contains a set of executable actions. These
actions are executed at specific times and under certain condi-
tions. For example Wagner et al. define four distinct types of
actions [12]:

238Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 250 / 267

state
s

OnEntry
a

e

(a) Diagram for Entry
Actions.

s

OnEntry_s
d o
a statetrue e

(b) Diagram providing
semantics for Entry Actions.

Figure 1. Equivalence Wagner et al. [12] Entry Actions in terms of states
without sections and transitions.

1) Entry Actions: Executed when the system first enters
a state.

2) Exit Actions: Executed when the system leaves the
state.

3) Transition Actions: Executed when the system is
transitioning between states.

4) Input Actions: Executed when an input satisfies a
particular condition. These actions can be indepen-
dent of the state.

We use Wagner et al. to illustrate the first point of why a gen-
eral framework is of interest. We suggest that the fundamental
execution cycle is the very simple notion of two states between
a transition: a source state ss and target state st. The distinction
of an Entry Action a is merely semantic sugar for the removal
of an extra state. We illustrate this in Figure 1. Wagner et al.’s
Entry Actions [12] are essentially a pre-state to the state s.
Figure 1a is the construct that actually has the semantics of
Figure 1b. This is important, because if the expression e in
Figure 1 is also true, it becomes very transparent that the
action a will be performed at least once even if execution exits
state s immediately (we note that ambiguities of this type were
already identified in standards like SCXML).

The proper specification of semantics becomes even more
important when the actions in a state access a set of variables
that affect subsequent actions and transitions. That is, the
attached Boolean expressions (usually named guards) involve
variables. The first issue is the scope of the variables and
the second issue is the potential race conditions that could be
generated upon such variables if they are shared in some way.
Common cases of variables that are shared are the variables
where sensors record a status of the environment. Thus, while
the software is executing, the value of a sensor variable may
change. Similarly, control variables for effectors are shared.
The software modelled by LLFSMs may set a control variable
and the driver of the effector reads such a variable to act.
The prototype clfsm [2] for LLFSMs provides three levels
of scope for variables.

1) External Variables: Variables external to the system
from the perspective of the software, usually cor-
responding to the sensors and effectors. They may
change at any point in time.

2) FSM Local Variables: These are variables that are
shared between all states within a single LLFSM.

3) State Local Variables: These are variables that are
local to a state.

Naturally, one can specify more variants. For example, why not
have variables that are shared between all the LLFSMs of a
system, but not sensors and effectors? Why not have variables
whose scope is even more local than that of a state, e.g., only
local to the OnEntry section? These examples illustrate the
need for a flexible approach to extending the possibilities of

LLFSM constructs and form the proposed framework of this
paper.

III. PROTOCOL ORIENTED DESIGN
Protocols (akin to interfaces in Java) are a common

mechanism to establish the contract a module (or set of classes
under a main class) is to adhere to in order to participate
and implement some functionality. he protocol itself defines
the signatures (names and parameters) of the methods (and if
appropriate return values with types) in order for objects to
cooperate. In some cases the protocol also specifies invariants
and exceptions.

Our swiftfsm framework uses protocols extensively to
stipulate the required functionality. However, typically, the
protocols themselves contain no implementation (although it
is possible in Swift to have a default implementation),
thus a type (class) that conforms to a protocol provides its
specific implementation for the functionality that the protocol
encapsulates. We use protocol-oriented design to model the
semantics of a model, and thus, we focus on describing a
set of protocols. When a software engineer wants to develop
an implementation of the semantics; these shall conform to
a specific set of protocols and implement the required func-
tionality. This therefore enables a developer to design how
different parts of the system interact and function, without
the need to create a global implementation of behaviour
or a new implementation to generate Kripke structures for
verification. Moreover, the framework allows the developer
to create different implementations for specific, convenient
modelling of constructs that conform to the same semantics
modelled by these protocols.

IV. MODELLING STATES AND TRANSITIONS
We are now ready to present our first abstraction: the type

for transitions. To introduce the idea, consider the following
scenario where allowing developers to create custom semantics
leads to more robust designs. Let’s focus on a state A (Fig. 2).
The clfsm semantics [1] explicitly specifies that the onEntry
action will execute once and only once for each state, after
which the sequence of transitions will be evaluated in the order
α, then β. If the associated expression (not shown) evaluates
to true, the corresponding transition will fire and the state
will execute its onExit action. If none of the transitions fire,
the Internal action will be run. In either case, the execution
token passes to the next LLFSM in the arrangement.

Importantly, this way it is not possible to implement an
atLeastOnce semantics for the Internal action without adding
another state. If transitions α or β cause a state transition,
(in the clfsm semantics [1]), then the Internal action will
never execute. If this functionality is required, a pattern similar
to Figure 3 needs to be implemented. Note that this involves
creating two states and copying (duplicating) implementation,
obstructing factorisation and creating the danger of introducing
failures. Both a1 and a3 need to be copied into the new state
A0 in order to implement the atLeastOnce semantics. State
A1 is almost the same as the original state A. This becomes
arduous to maintain and modify as the developer must keep
the A0 actions in sync with the A1 actions.

With swiftfsm, we overcome this problem by allowing
developers to define custom state types. The result is shown
in Figure 4. Because of the wide breadth of state models,
swiftfsm only assumes that a state has a unique name.

239Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 251 / 267

C

BA

onEntry:
a1()

onExit:
a2()

a3()

Figure 2. A simple scenario

C

BA1

onEntry:

onExit:
a2()

a3()

A0

onEntry:
a1()

onExit:
a3()

Figure 3. Implementing “atLeastOnce” semantics in clfsm

Therefore swiftfsm defines a StateType protocol only
containing that name. The developer has complete freedom to
define any number of phase-actions that make up a state.

The swiftfsm framework does not even assume that a
state can transition. This is a separate requirement, modelled
as a separate protocol. The Transitionable protocol adds
a sequence of transitions to conforming states. All transitions
contain

1) a predicate function that, when it evaluates to true,
represents a situation where the LLFSM will transi-
tion; and

2) a target state the LLFSM will transition to.
The type of the transition predicate function is defined as:

StateContext→ Boolean

This abstracts a state context type that encapsulates all (and
only) the necessary variables that influence the evaluation of
the predicate function. In this way, a transition function can ac-
cess the necessary variables through its source state. This is an
important concept when generating the corresponding Kripke
structure of an executable model in order to perform formal
verification. The generation of the Kripke structure depends on
referential transparency, i.e., transitions will be evaluated with
any possible combination of state context variations passed in
with no further dependencies or side-effects.

This allows for an important optimisation. Typically, an
LLFSM state corresponds to several Kripke states, because of
• state sections (e.g., onEntry, onExit, Internal,

atLeastOnce, etc.), and
• the potential semantics of snapshotting external vari-

ables between these state sections.
However, our semantics recognises that external variables that
are not involved in a transition will not need to create a new
transition evaluation context. Therefore, the above transition
type is side-effect free and removes the need to consider
all possible combinations of external variables outside those
appearing in the transaction.

The traditional conceptualisation of the class of transitions
is that transitions have a source and a target state. Such a
conceptualisation complicates the optimisation we just men-
tioned, as the transition is in a static relationship with its source

C

BA

onEntry:
a1()

onExit:
a2()

atLeastOnce:
a3()

Figure 4. Implementing “atLeastOnce” semantics in swiftfsm

state (typically implemented as a reference). Our approach
does not need to change the source state of a transition in an
LLFSM to create the Kripke states for sections. Our framework
only updates the possible changes to the external variables
of relevance, and submits the State with this new context
for evaluation to the transition (which is a pure function).
Importantly, this means that the evaluation of any transition
is referentially transparent as it is a pure function with explicit
inputs and outputs. The Kripke structure generated in this way
is guaranteed to obtain the effect of evaluation of the transition
without possible side effects influencing the transition as all
the variables are in the context attached to the state.

V. SCHEDULING
Here, we introduce a new abstraction over the original

concept of an LLFSM ringlet [1]. A ringlet defines how the
sections within a state are executed, and more specifically, how
and in what order each action is executed. We propose to view
ringlets as pure functions that take a state and return the next
state to execute. Therefore we have them as objects of the
following type.

State→ State.

If a new state is returned, then the LLFSM has transitioned.
By modelling a ringlet in this fashion, we enable developers
to create custom ringlets which determine how their states are
executed. As an illustration of the adaptability of this approach,
it is also possible to create different ringlets that execute the
same states in different ways. Importantly, the execution of the
state becomes orthogonal to the definition of the state.

However, in practice it is common that a ringlet may re-
quire to modify state information. To this end, the swiftfsm
framework provides the Ringlet protocol which defines an
execute function. If we look at previous semantics for
LLFSMs, and in particular to the semantics offered by the
clfsm compiler, we can see that the ringlet only executes the
onEntry section when the previously executed state does not
equal the current state being executed (in particular, if a state
has a transition to itself, this is a legal construct, but if the
transaction executes, in clfsm this does not re-run the onEn-
try section). If a developers wished to extend the semantics
that all arriving transitions (including self-transitions) cause the
onEntry section to execute, our framework here allows the cre-
ation of a CLFSMRinglet that contains a previousState
member variable that the execute function refers to and
manages when executing the current state. That is we are using
the Method pattern, and the developer supplies the method
that defines the specific ringlet to sequence sections of a state.

Because LLFSM are not event-driven, they are scheduled
using a round robin scheduler. We provide such scheduling as
the default in the framework swiftfsm. Therefore, a single

240Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 252 / 267

ringlet, for the current state of each LLFSM, is executed in
a sequential fashion. This creates concurrent execution in a
predictable manner reducing state explosion for formal verifi-
cation. The sequential execution avoids thread management
and avoids complexities associated with parallel execution,
(there are essentially no critical sections or mutual exclusion
challenges). Because of the sequential scheduling, we have a
deterministic execution of an arrangement of the LLFSMs, thus
when the Kripke structure is created for the entire arrangement,
we have a smaller Kripke model (a smaller NuSMV input file)
that with unconstrained concurrency of event-driven systems.
By preventing side-effects (as shown in the previous Section),
we further reduce the size of the Kripke structure enhancing
the feasibility of performing model checking.

Furthermore, swiftfsm uses a stricter snapshot semantics
when executing the ringlets. A snapshot is taken of the
external variables before the ringlet is executed. The state
then uses the snapshot when executing actions and evaluating
transitions (recall our execution context). Only once the ringlet
has finished executing, any modifications made made visible
externally (e.g., to the environment). This defines the granu-
larity at which the system is reactive to changes observable
by sensors in the environment and does not need to make
a dangerous assumption of well-behaved environments and
that the software always runs faster than any external part
of the system. Compare this with many formal verification
approaches that only work with ideal event-driven systems,
that do not exist in practice. For example, approaches where
extended finite-state machines handling of external variables
is simply assumed to be irrelevant. “During a macrostep, the
values of the inputs do not change and no new external events
may arrive; in other words, the system is assumed to be in-
finitely faster than the environment” [13, p. 172]. Alternatively,
the environment is assumed to be well-behaved, so that it
sends the input the software requires at the right time, forming
“a closed model corresponding to the complete mathematical
simulation of the pair formed by the software controller and the
environment” [14, p. 89]. Finally, a simplistic approach where
any external stimulus (change of external variables) will not
happen until all internal changes take place “giving priority to
internal actions over external actions” [15].

We argue that the specification of when a snapshot is
taken defines the level of atomicity of the sections within the
state run by the ringlet with respect to the external variables.
This becomes particularly important when performing formal
verification.

VI. FORMAL VERIFICATION
If one strictly follows the derivation of Kripke structures

from the artefact of sequential program constructs [16], the
corresponding Kripke states would not only be the bound-
aries of sections of LLFSM states, but every assignment and
operation in those sections correspond to extended FSMs,
containing programming language statements (e.g., in Swift).
The sequential execution of LLFSMs and its default snapshot
semantics enables more succinct Kripke structures, where the
delicate point is the handling of the external variables [17],
[18]. Nevertheless, as we mentioned, such a default semantics
requires recording all of the variables influencing the execution
before and after every state section in order to generate the
Kripke structure [17]. For consistency, we configured a version
of swiftfsm that followed such an approach [3].

These earlier approaches relied on the ringlet itself to
record variables, influencing the execution of a state. How-
ever, a more succinct approach can be used and a further
optimisation can be made. Since the swiftfsm framework
not only uses a sequential scheduling similar to clfsm, but
a ringlet’s execution is atomic with respect to the external
variables, ringlet execution can now be treated as a black box.

Consequently, a snapshot should only be taken of the vari-
ables before and after the entire ringlet for a state is executed.
This variation also prevents statements being executed that
make modification to variables that are not reflected in the
final context for the next Kripke state. For example, a state
may make changes to an external variable during an onEntry
section that is cancelled by a further modification in the onExit
section. Since no effect of this will occur during the state’s
execution, as we now identify a Kripke state before and after
an entire ringlet execution, interim changes are not reflected
in the resulting Kripke structure.

Importantly, we argue that this is a benefit, not a problem!
In swiftfsm, the statements within sections of the state
operate within a context derived from a snapshot of the
external variables, which gets taken precisely when the state
is scheduled. There is absolutely no way that any modification
could (nor should) affect the environment until the snapshot
is saved. External variables are updated precisely once when
the ringlet has finished executing. Similarly, since swiftfsm
uses sequential scheduling, there is no way for the modification
of non-external variables to have side-effects and influence
the execution of other machines, because the semantics is
equivalent to a single thread. The only important record for
the construction of the Kripke states (to be part of the Kripke
structure or verification) is the context (of the variables) before
and after each ringlet is executed.

VII. CASE STUDY
We present a case study where we simplify the model

of a microwave oven, a ubiquitous example in the software
engineering literature of behaviour modelling through states
and transitions [19]. This model has been extensively studied
in formal verification [20, p. 39], as the safety feature of
disable cooking when the door is open is analogous to the
requirement that a radiation machine should have a halt-
sensor [21, p. 2]. Software models for microwave behaviour are
widely discussed [22], [23], [24], [25], [26], [27]). Figure 5
shows the standard executable model with LLFSMs. While
this model is transparent and formal verification establishes
requirements, the full machinery of Kripke states for each of
the three state-sections is not required (note that all Internal
sections are empty and the only onExit section that is used
is in the timer LLFSM, in state 3 to ADD_60. Moreover, the
model would also be simplified if the timeLeft variable
were to be removed by making it equivalent to the condition
0<currentTime. With respect to the requirements specified
in Myers and Dromey [27, p. 27, Table 1] or in Shlaer and
Mellor [23, p. 36] the behaviour of such a simplification is
irrelevant. But, for model checking, removing the Boolean
variable timeLeft alone would half the number of Kripke
states (and the corresponding size of the NuSMV file where
formal verification is conducted is thus halved). By removing
the state sections, the number of Kripke states would be halved
again. Thus, it would be advantageous to derive LLFSMs,
where states have no onExit nor Internal actions.

241Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 253 / 267

(a) A 4-state FSM for the timer. (b) A 3-state machine for controlling the bell.

(c) A 2-state machine for controlling the cooking engine. (d) A 2-state machine for the light.

Figure 5. Complete model of one-minute microwave.

Figure 6. Simplified timer with onEntry sections only.

The new model would globally replace timeLeft by
0<currentTime. All declarations of extern timeLeft
disappear from all LLFSMs. Thus, the timer machine changes
to Figure 6. We point out the slight change of behaviour. With
the executable model of Figure 5, when the button is pressed
for the first time and not released, nothing would happen.
With the changes suggested, when the button is pressed for
the first time and not released, if the door is closed, cooking
will commence and the light will go on. As long as the button
is pressed and not released such cooking with the light on will
continue and the timer will not be decremented. This behaviour
does exist in a slightly similar form in Figure 5, but only
happens from the second time onwards. That is, the user must
press the button; upon releasing the button, cooking starts and
the light turns on. If the user presses and holds the button
now that cooking has started, it also blocks timing counting
down. Again, we do not consider this subtle difference in
behaviour relevant as it is never identified in the requirement.
However, the variation simplifies the Kripke structure radically
for more efficient formal verification of the requirements. With
our framework, the designers can easily alternate between the
two executable models, and conduct model checking on both.

A further optimisation can be made when considering
how swiftfsm currently handles the snapshots of external

variables. Recall that a snapshot is taken before the ringlet
executes, and then saved back to the environment once the
ringlet has finished executing. By changing these semantics
to a per-schedule cycle, as opposed to a per-ringlet cycle, we
can further minimise the number of Kripke States that are
generated. Taking the microwave as an example, instead of
taking a snapshot of the external variables before executing
each state, we instead take a single snapshot of the environment
before executing the ringlet for the current state within each
LLFSM. Each LLFSM would therefore share the same snapshot
and any modifications made to the snapshot will only be saved
once each LLFSM has executed its current state.

This has a drastic impact to the number of Kripke States
that are generated for the Kripke Structure. Consider all
possible combinations of a snapshot of the external variables.
The microwave uses three Boolean variables, therefore this
results in 23 = 8 possible combinations. There are normally
four snapshots taken per schedule cycle as there are four
LLFSMs executing and a snapshot is taken when a ringlet
in each LLFSM is executed. Therefore, there are 23

4

= 4096
possible combinations of snapshots per schedule cycle. When
taking a single snapshot at the start of the schedule cycle,
the result is 23

1

= 8 possible combinations of snapshots.
Removing the timeLeft variable further reduces this to

242Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 254 / 267

22
1

= 4 combinations of snapshots per schedule cycle, a
reduction by three orders of magnitude.

VIII. CONCLUSION
In this paper, we have introduced a flexible semantic model

for logic-labelled finite-state machines. Compared to tradi-
tional event-driven state machines and LLFSMs, our approach
allows a more direct mapping of UML semantics [5], [6],
allowing high-level, executable models, which are less error-
prone and eliminate duplication. Moreover, we have shown
these semantics can be modelled in a referentially transparent
way that creates simpler Kripke structures, allowing formal
verification of our executable models, that is orders of magni-
tudes faster for the same model than previous approaches.

In software engineering, there is a prevalence for modelling
using UML state charts (which is a derivation of Harel’s
State Charts [28]) and which are event-driven. Moreover,
Sommerville [29], states that “state models are often used
to describe real-time systems” [29, p. 544], citing UML. We
note that Sommerville also uses a microwave to illustrate how
FSMs model the behaviour of systems [29, p. 136]. Because of
these associations among systems that respond to stimuli, we
thank the reviewers for suggesting to clarify the terminology
regarding what constitutes an event-driven system, a reactive
system and more importantly, a real-time system.

We refer to an event-driven system as one typically based
on a software architecture built around stimuli-driven call-
backs, a subscribe mechanism and listeners that enact such
call-backs (very much as GUIs are composed for desktops
today). Reacting to stimuli in this way implies uncontrolled
concurrency (e.g. using separate threads or event queues). The
counterpart to event-driven systems are time-triggered systems.
Lamport [30] provided fundamental proofs of the limitations of
event-driven systems. Reactive-systems are responsive systems
without much processing, as opposed to deliberative systems
(which reason, plan, learn). Real-time systems are required to
meet time-deadlines in response to stimuli. Therefore, although
closely related, these terms are not the same, and in this
paper, we argue (supported by the work of Lamport [30]) that
there are many solid reasons why real-time systems may be
better served by time-triggered systems and pre-determined
schedules, rather than the unbounded delays that may occur in
event-driven systems.

The work presented in this paper illustrates how LLFSMs
can be used as executable models. Moreover, we argue that
their deterministic execution and verifiability is more suitable
for real-time systems than systems where threads proliferate.

REFERENCES
[1] V. Estivill-Castro and R. Hexel, “Arrangements of finite-state machines

- semantics, simulation, and model checking,” in MODELSWARD,
S. Hammoudi, L. F. Pires, J. Filipe, and R. C. das Neves, Eds.
SciTePress, 2013, pp. 182–189.

[2] V. Estivill-Castro, R. Hexel, and C. Lusty, “High performance relaying
of c++11 objects across processes and logic-labeled finite-state ma-
chines.” Springer Int. 2014, pp. 182–194.

[3] C. McColl, “swiftfsm - A Finite State Machines Scheduler,” Honours
Thesis, Griffith University, Nathan QLD, 4111, Australia, 2016.

[4] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The systems Modeling Language. San Mateo, CA: Morgan Kaufmann,
2009.

[5] M. Samek, Practical UML Statecharts in C/C++, Second Edition: Event-
Driven Programming for Embedded Systems. Newton, MA, USA:
Newnes, 2008.

[6] D. Pilone and N. Pitman, UML 2.0 in a Nutshell. O’Reilly Media,
2005.

[7] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman, 2003.

[8] R. Rumpe, “Executable modeling with UML – a vision or a nightmare?
–,” in Issues and Trends of Information Technology Management in
Contemporary Associations Volume 1, M. Khosrowpour, Ed. Idea
Group, 2002, pp. 697–701.

[9] S. J. Mellor and M. Balcer, Executable UML: A foundation for model-
driven architecture. Reading, MA: Addison-Wesley, 2002.

[10] B. P. Douglass, Real Time UML: Advances in the UML for Real-Time
Systems (3rd Edition). Redwood City, CA, USA: Addison Wesley
Longman, 2004.

[11] A. Krupp, O. Lundkvist, T. Schattkowsky, and C. Snook, “The adaptive
cruise controller case study — visualisation, validation, and temporal
verification,” in UML-B Specification for Proven Embedded Systems
Design, J. Mermet, Ed. Springer US, 2004, pp. 199–210.

[12] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, Modeling
Software with Finite State Machines: A Practical Approach. CRC
Press, Boca Raton, FL 2006.

[13] W. Chan, R. J. Anderson, P. Beame, D. Notkin, D. H. Jones, and W. E.
Warner, “Optimizing symbolic model checking for statecharts,” IEEE
Trans. Softw. Eng., vol. 27, no. 2, Feb. 2001, pp. 170–190.

[14] J.-R. Abrial, Modeling in Event-B - System and Software Engineering.
Cambridge Uni., 2010.

[15] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A. Lindsay,
“Experience with fault injection experiments for FMEA,” Software,
Practice and Experience, vol. 41, no. 11, 2011, pp. 1233–1258.

[16] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT
Press, 2001.

[17] V. Estivill-Castro and D. A. Rosenblueth, Model Checking of
Transition-Labeled Finite-State Machines. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 61–73.

[18] V. Estivill-Castro, R. Hexel, and D. A. Rosenblueth, “Efficient mod-
elling of embedded software systems and their formal verification,” 19th
Asia-Pacific Software Engineering Conf., vol. 1, 2012, pp. 428–433.

[19] I. Sommerville, Software engineering (9th ed.). Boston, MA, USA:
Addison-Wesley Longman, 2010.

[20] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT
Press, 2001.

[21] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[22] S. J. Mellor, “Embedded systems in UML,” OMG White paper, 2007,
www.omg.org/news/whitepapers/ label: “We can generate Systems To-
day” Retrieved: April 2017.

[23] S. Shlaer and S. J. Mellor, Object lifecycles : modeling the world in
states. Englewood Cliffs, N.J.: Yourdon Press, 1992.

[24] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, Modeling
Software with Finite State Machines: A Practical Approach. NY: CRC
Press, 2006.

[25] L. Wen and R. G. Dromey, “From requirements change to design
change: A formal path,” 2nd Int. Conf. Software Engineering and
Formal Methods (SEFM 2004). Beijing, China: IEEE Computer Soc.,
2004, pp. 104–113.

[26] R. G. Dromey and D. Powell, “Early requirements defect detection,”
TickIT Journal, vol. 4Q05, 2005, pp. 3–13.

[27] T. Myers and R. G. Dromey, “From requirements to embedded software
- formalising the key steps,” 20th Australian Software Engineering Conf.
Gold Cost, Australia: IEEE Computer Soc., 2009, pp. 23–33.

[28] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts:
The Statemate Approach. New York, NY, USA: McGraw-Hill, 1998.

[29] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley,
2010.

[30] L. Lamport, “Using time instead of timeout for fault-tolerant distributed
systems,” ACM Transactions on Programming Languages and Systems,
vol. 6, 1984, pp. 254–280.

243Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 255 / 267

A Reusable Adaptation Component Design for Learning-Based Self-Adaptive Systems

Kishan Kumar Ganguly, Kazi Sakib
Institute of Information Technology

University of Dhaka, Dhaka, Bangladesh
Emails: bsse0505@iit.du.ac.bd, sakib@iit.du.ac.bd

Abstract—In self-adaptive systems, according to the separation
of concern principle, the adaptation logic and the business logic
components should be kept apart for reusability. However, this
promotes reuse of the whole adaptation component while reuse of
its subcomponents and their classes can also be helpful. Existing
techniques do not consider this. Moreover, existing approaches
also do not consider application and environment factors together
for a more accurate adaptation. In this paper, a learning-based
adaptation component design has been proposed which supports
these. Machine learning is used to express metrics that measure
system goals, as a combination of application and environment
attributes. These are used to select application components to
turn on or off by solving an optimization problem, aimed at
maximizing system goal conformance. Components are turned on
or off using a customizable effector component. Design patterns
are utilized for increasing the reusability of the adaptation
subcomponents. The proposed method was validated using the
popular Znn.com problem. The reusability and learning accuracy
metrics used indicate that it performs well for both. The system
was also put under high load for observing adaptation of response
time. It was seen that adaptation occurred as soon as the response
time was over a provided threshold.

Keywords–Reusable Adaptation Component; Environment Fea-
ture; Application Feature; Design Pattern.

I. INTRODUCTION

For self-adaptive systems, developing the business logic
and then, augmenting it with the adaptation logic are easier
due to the adaptation component complexity. Apart from this
component-level reuse, subcomponent-level reuse (i.e., reuse
of adaptation subcomponents and their classes) can further
reduce development time. For this, the adaptation component
needs to be customizable to easily add or remove any classes.
Moreover, adaptation effectiveness should be ensured for max-
imum goal conformance (e.g., performance, cost, etc.) [1].

In self-adaptive systems, goals are generally non-functional
requirements. These requirements are expressed using metrics
(e.g., response time, throughput, etc.), which help to detect
goal violation by checking metric thresholds. Goal violation
leads to adaptation which triggers reconfiguration to toggle
(turn on or off) components. These components, also called
features, are variation points of the system [2]. For example,
modules for turning on and off a server can be called separate
features. Generally, adaptation logic is a mathematical model
that provides a feature selection to toggle. In the proposed
methodology, these features, which can be toggled are called
application features. However, environment features may exist
that have impact on adaptation (e.g., service time, bandwidth,
etc.) but cannot be toggled. The challenge is to incorporate
these two types of features for effective adaptation and struc-
turing the adaptation logic modularly for reusability.

A number of design techniques for self-adaptive systems
have been proposed where a few seem to have considered

reusability. Garlan et al. proposed the Rainbow framework
where adaptation condition-action rules were hardwired into
the system which hampered reuse [1]. Esfahani et al. pro-
posed the FUSION framework, which used learning to derive
equations for predicting metrics and used these to construct
an optimization problem. This was solved to get a feature
selection. However, incorporating environment features in the
optimization problem leads to a feature selection that provides
specific numerical values for the environment features. This is
not useful because environment features cannot be controlled
or selected, rather these depend on the underlying system
environment. So, environment features cannot be directly used
with the FUSION framework. Ramirez et al. discussed twelve
design patterns for self-adaptive systems [3]. However, break-
ing these down to lower level patterns can facilitate reuse [4].

The contributions of this work are: 1) A generic design
for the adaptation component that supports both component
and subcomponent-level reuse. 2) A learning-based adaptation
technique that considers environment features and generates
training data automatically. The proposed approach applies
machine learning to derive feature-metric equations to predict
metric values from application feature statuses (on or off) and
environment feature values. These more accurate metric equa-
tions are combined with the user provided metric thresholds to
construct utility functions. These are used to devise an integer
linear optimization problem similar to FUSION in case of
goal violations. However, unlike FUSION, the environment
features are also considered. The feature selection given by
solving the optimization problem is applied to the system
using components called customizable effectors. The proposed
methodology also introduces a technique to automatically
derive the data for learning. All these make the adaptation
logic generic, which helps to reuse the component as a whole.
For subcomponent-level reuse, design patterns are utilized to
structure the adaptation component modularly.

The proposed technique was applied to the Znn.com model
problem [1]. This system was deployed in five servers with a
load balancer. Reusability was assessed using renowned met-
rics (e.g., Afferent Coupling, Rate of Component Observabil-
ity, etc.). Effectiveness was validated by observing whether the
response time stays under an empirically derived threshold in a
high load environment. The reusability metric values indicate
higher reusability in both component and subcomponent-level.
The proposed technique also performs better in the high load
as it brings down the response time once it rises. Moreover,
learning accuracy metrics (e.g., Adjusted R2, Correlation Co-
efficient, etc.) were used to show that considering environment
feature produces more accurate metric equations.

The rest of the paper is structured as follows. In Section
II, the proposed reusable adaptation component design is
presented. In Section III, a case study is provided along with

244Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 256 / 267

Solve Optimization Problem
Maximize total utility subject to
1. each utility > 0, feature constraints and
2. environment feature value =
current environment metric value

Execute

Customized
Effector

metric values
Monitor Analyze

Plan

metric1=c1xFeature1+c2xFeature2+c3xFeature3
metric2=c1xFeature1+c2xFeature2+c3xFeature4

Adaptation

if(utilityValues
>thresholds){
 plan();
}

if(failedAdaptations
>threshold){
 preprocess();
 train();
}

metric=c1xFeature1+
 c2xFeature2+
 c3xFeature3...

Preprocessing

Training Accuracy TestingLearning

Knowledge Base Construction
1. Randomly turn on/off features maintaining dependency
2. Read metric values for the selection
3. Write feature selection and metric values to training file

1,0,0,1,0,0.51

Feature Selection Metric Values

1,0,1,0,1,0.22

80.65

60.55

Figure 1. The Logical View of the Proposed Methodology.

an evaluation of reusability and effectiveness of the proposed
approach. Section IV contains the related works. Section V
holds the conclusion and future research directions in this area.

II. REUSABLE ADAPTATION COMPONENT DESIGN

Here, a generic adaptation logic has been designed based
on learning. Although this ensures reusability of the whole
adaptation component, reusability of the subcomponents (for
example, learning, preprocessing algorithm, etc.) is not guar-
anteed. For this, the subcomponents are structured with design
patterns. These two perspectives are discussed below.

A. Logical View
The adaptation logic consists of three processes - Knowl-

edge Base Construction (KBC), Learning and Adaptation.
These three processes and the required system specific inputs
are depicted in Figure 1 and discussed below.

1) Input: Information about application and environment
feature, feature dependency, metric, utility and initial feature
selection are required where application feature information
consists of feature name only.

For feature dependency, the dependent features and their
types are needed. The proposed method uses the dependency

TABLE I. CONSTRAINTS FOR FEATURE RELATIONSHIPS

Feature Constraint Feature Relation∑
∀fn∈zero-or-one-of-group

fn ≤ 1 zero-or-one-of-group∑
∀fn∈exactly-one-of-group

fn = 1 exactly-one-of-group∑
∀fn∈at-least-one-of-group

fn ≥ 1 at-least-one-of-group∑
∀fn∈zero-or-all-of-group

fn mod n = 0 zero-or-all-of-group

∀child ∈ Conflicting Feature Setfparent − fchild ≥ 0 parent child relation

types mentioned by Esfahani et al. [2] (Table I) because these
cover common feature relationships and can be represented
mathematically for the optimization problem. Here, zero-or-
one-of-group means more than one feature cannot be enabled.
Exactly-one-of-group means exactly one feature can be enabled
at a time. At-least-one-of-group means at least one of the
features must be enabled. Zero-or-all-of-group indicates either
all or none of the features can be turned on. Parent child
relation means enabling a specific (parent) feature requires all
other features of the group to be enabled.

The existing system needs to expose an API for metric
calculation. The metric information contains metric names,
types, thresholds and API location (e.g., URL, class file path
etc.). Two types of metrics are used representing maximization
and minimization goals. For maximization goals, the metric
values must be greater than the thresholds and the opposite for
minimization goals. Metric types are used to form the utility
equations using (1).

un =

{
mn − thn if Typen = Maximization

thn −mn otherwise
(1)

Where un and mn represent the utility and metric values
respectively. thn is the threshold value for the nth metric.

The initial feature selection is the feature selection for the
first run. This is used in KBC. The environment features are
also given. These features must have corresponding metrics
provided in the aforementioned metric information. The met-
rics calculate current values for these environment features. In
the optimization problem, these current values are considered
for better accuracy of the solution.

2) KBC: This component generates training data for the
learning process. As seen from Figure 1, training data con-
sists of feature combination and metric values. Environment
features generally have numeric values. So, the number of
possible feature combination is infinite and cannot be gen-
erated. So, the application is put under a simulated or real
environment and application features are toggled randomly
(Figure 1). The environment feature values and metric values
are read from the Monitor process and all the feature-metric
values are written as training data. For example, in Figure 1,
the random application feature selection is 1, 0, 0, 1, 0 for the
first row and 0.51 is the environment feature value. Here, 1
and 0 indicates application feature status (enabled or disabled).
This feature selection results in metric value 80.65. All these
are written as the training data.

Features in each of the feature dependency groups are
randomly toggled maintaining the dependency. For example,
in case of at-least-one-of group, when one feature is randomly
selected to turn on, all the other features are turned off. For
parent-child relation, a number between 0 and 1 is chosen to

245Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 257 / 267

Figure 2. The Structural View of the Learning Component.

Figure 3. The Structural View of the Adaptation Component.

toggle the parent feature and all the child features are turned
off or on accordingly. This random sampling with dependency
groups ensures that feature dependency is maintained and the
generated training data represents the population of training
data appropriately.

3) Learning: Learning process aims to generate equations
that predict metric values from feature selection. These equa-
tions are used in the Plan process. The generated training data
from KBC is preprocessed to be properly used in the learning
algorithm. For example, training data can be normalized for
scaling. Preprocessing methods depend on the training data
and the learning algorithm. So, it needs to be customizable.
Strategy pattern is used for this purpose (Section II-B).

The next step is training where the preprocessed data is
passed to a learning algorithm to derive metric equations.
These equations help to predict metric values provided appli-
cation and environment feature values. Training can be done
using a regression algorithm. For example, in Figure 1, the
metric equation from training is a linear regression equation.

As adaptation process will show, the training data is
gradually updated with monitored metric values and feature
selection. However, as the adaptation decision is taken using
metric equations derived from previous training data, this can
lead to failed adaptation when new patterns of data arrive.
In this case, training is rerun when the number of failed
adaptations exceed an empirically defined threshold (Figure
1).

4) Adaptation: Adaptation process consists of Monitor,
Analyze, Plan and Execute components following the MAPE-
K approach [5]. This process detects violated goals using the
utility equations and solves an optimization problem to find
a feature selection with maximum total utility function value.
Although this technique closely resembles FUSION [2], the
environment features are incorporated for better adaptation,
which is one of the contributions of this work. The four
components of Adaptation are discussed below.

a) Monitor: This collects metric values from the system
using the metric API. These are stored in the knowledge base
along with the current feature selection as training data.

b) Analyze: The metric values from Monitor are used
in the utility equations for goal violation detection. From
Equation (1), goal violations lead to un < 1. This is used
to detect goal violations in this technique.

c) Plan: Detection of goal violation invokes Plan com-
ponent. The metric equations from the learning process are
used to find conflicting goals. The conflicting goal detection
mechanism has been shown in Figure 1. The violated goal
metric equation is matched with other metric equations to find
overlapping features (shaded area in Figure 1). If overlapping
features are present, these metrics are conflicting to the vi-
olated metric and these need to be considered together for
optimization. Then, an optimization problem is formed.

Fselection = maximize(

nc∑
i=1

Ui(Mi(F)))

Subject To
∀i ≤ nc . Ui(Mi(F)) > 0
∧ ∀f ∈ F . Fd(f)
∧ ∀fe ∈ Fe . fe = c
Where
∀i ≤ nc,Mi(F) =

∑
c× f (2)

Here, Fselection is the feature selection after solving the
optimization problem. This feature selection contains all the
feature values (0 or 1) to toggle. The optimization problem
states that the total utility for nc conflicting goals needs to
be maximized. The constraints show that all utility functions
in the maximization function must be greater than zero be-
cause individual goals must not be violated. Besides, feature
dependencies must be maintained (i.e., Fd must be true). All
the environment features fe from the environment feature set
Fe will have corresponding environment metric values. All
The metrics Mi(F) in the utility equation will be replaced by
metric equations from the learning process.

d) Execute: Execute component helps to toggle selected
features in the existing system. This component consists of
some effectors which are used to toggle each of the features.
These effectors are specific to the system and so, and abstrac-
tions are provided for later customization.

B. Structural View of The Model
In the structural view, the subcomponents of Learning and

Adaptation have been organized with Gang of Four (GoF) de-
sign patterns [6] for reusability and customization. These were
chosen by comparing the functionality of the subcomponents
with the applicability of the design patterns [6].

Figure 2 and 3 show the design patterns for the Learning
and the Adaptation components. Decorator pattern is used to
provide additional functionality at runtime. In preprocessing,
the training data is dynamically filtered with algorithms such as
normalization, feature selection, etc., using this pattern (Figure
2). In optimization problem construction, decorators that add
the feature, utility and environment feature constraints, and
the objective function, build a complete optimization problem
(Figure 3). Strategy pattern helps to support interchangeable
algorithms. So, it has been used to support different learning
algorithm and failed adaptation testing strategies in Learning.

246Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 258 / 267

TABLE II. DEFINITIONS AND THRESHOLDS FOR REUSABILITY METRICS

Metric
Name Level Definition Range/

Value
RCO Component Rate of Component Observability [0.17, 0.42]
RCC Component Rate of Component Customizability [0.17, 0.34]
SCCr Component Self-Completeness of Components Return Value [0.61, 1.0]
SCCp Component Self-Completeness of Components Parameter [0.42, 0.77]
LCOM4 Class Lack of Cohesion of Methods 4 1
DIT Class Depth of Inheritance Tree 2
AC Class Afferent Coupling [0,1]
WMC Class Weighted Methods per Class [0,24]

In Adaptation, it has been used to support different algorithms
for monitoring, analyzing goal violation and optimization.

Observer pattern helps to notify all the dependent objects.
This has been used to notify the learning process to restart
when a new pattern arrives. In the Adaptation component,
Analyze component notifies the Plan component about goal
violations using this pattern. Facade pattern provides a set of
interfaces to a group of components. This is used to provide
interfaces for the Preprocessing and Training, and the Plan
component. Command pattern helps to decouple the caller and
receiver of a request. It has been used to validate the feature
selection from the Plan facade and pass to the effectors. This
helps to separate the effectors and the Plan component.

The logical view indicates effective adaptation and sep-
aration of the adaptation logic from the business logic. The
structural view enables reuse of the whole subcomponents and
their classes. So, the proposed methodology supports effective
adaptation with component and subcomponent-level reuse.

III. CASE STUDY: ZNN.COM

Znn.com is a model problem used in numerous papers
[7]. It is a news serving application where a load balancer
is connected to a server group. Its business goal is to serve
with a minimum content fidelity and within the budget while
maintaining a minimum performance. These interrelated goals
demand a self-adaptive mechanism to operate optimally.

In Znn.com, every server is an application feature as these
need to be added or removed at runtime. Content fidelity
types (high, low and text) are application features as these can
be toggled. Server and content fidelity features belong to at-
least-one-of and exactly-one-of dependency types respectively.
Performance, content fidelity and cost can be calculated by
response time, content size and number of active servers
respectively. Service time and request arrival rates can be
considered as environment features.

A. Experimental Setup
Znn.com was deployed on five virtual machines running

Apache2 web server, which were connected to a load balancer.
Two more virtual machines were used to collect metric values
and to simulate user requests respectively. An adaptation
component was developed in Java following the proposed
approach and incorporated with Znn.com.

Prior to the experiment, the inputs mentioned previously
were provided. Moreover, in a simulated environment, Queue-
ing Theory was used to calculate response time where the
M/M/c queue model was utilized to represent a system with c
servers. Reusability was evaluated using metrics mentioned in
Table II. To assess effectiveness, an experiment similar to [8]
was performed with a higher load, which is, 1) 15 seconds of
load with 30 visits/min 2) 2.5 minutes of ramping up to 3000

TABLE III. CLASS-LEVEL REUSABILITY METRIC VALUES

Metric Components Mean Max Min
%-Acceptable
Classes

LCOM4
Monitor 1 1 1 100
Analyze 1 1 1 100
Plan 1 4 1 87.5
Execute 1 2 1 75
Learning 1 2 1 80
KBC 1 2 1 85.7

DIT
Monitor 1.33 2 1 100
Analyze 1 1 1 100
Plan 1.35 2 1 100
Execute 1.25 2 1 100
Learning 1.2 2 1 100
KBC 1 1 1 100

AC
Monitor 1.14 2 1 87.5
Analyze 1 1 1 100
Plan 1.37 5 1 84.21
Execute 1.33 3 1 83.33
Learning 1.13 2 1 87.5
KBC 1 1 1 100

WMC
Monitor 2.67 8 1 100
Analyze 2 3 1 100
Plan 4.6 18 1 100
Execute 5.5 15 1 100
Learning 2.92 9 1 100
KBC 2.83 9 1 100

TABLE IV. COMPONENT-LEVEL REUSABILITY METRICS VALUES

Metric Monitor Analyze Plan Execute Learning KBC
RCO 0.17 0.33 0.29 0.33 0.25 0.2
RCC 0.33 0.33 0.29 0.33 0.5 0.6
SCCr 1 1 1 1 0.67 1
SCCp 1 0.67 0.67 1 0.67 0.75

visits/min 3) 4.5 minutes of fixed load to 3000 visits/min 4) 9
minutes of ramping down to 60 visits/min.

This experiment was performed five times starting from a
single server and high fidelity feature selection as this results
in the worst performance. The load was increased by 120
visits/min on every run and the system reached its maximum
memory limit after five runs. Following the literature, the main
objective (response time) was compared in two situations,
namely adaptation and without adaptation [2][7][9].

B. Metrics
Table II shows the metrics used to assess reusability of

Monitor, Analyze, Plan, Execute, Learning and KBC com-
ponents. Reusability was evaluated for the whole component
as well as for its classes. Four popular reusability metrics
by Washizaki et al. were used to evaluate component-level
reusability [10] (Table II). Reusability of the classes was
evaluated by Lack of Cohesion of Methods 4 (LCOM4) and
Afferent Coupling (AC) as these are well-known and valid
reusability metrics [11][12]. Depth of Inheritance Tree (DIT)
and Weighted Methods per Class (WMC) were also used
as these are well-understood and well-validated [13]. The
thresholds for LCOM4, WMC, DIT and AC are provided in
[11], [14] and [15]. It is notable that multiple metrics have been
used as no single metric can represent the overall reusability
of the system [12].

1) Reusability of Adaptation: Table III summarizes the
reusability metric values for classes from each aforementioned
component. It shows the minimum, maximum and average
of the metric values for the classes and the percentage of
acceptable classes according to the metric thresholds. From
the table, the mean LCOM4 values are close to the ideal value
(i.e.,1). Here, Execute component has the lowest acceptable
classes as it contains system-dependent customizable effectors.
For DIT and WMC, all the classes are acceptable as per their

247Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 259 / 267

0 10 20 30 40 50 60 70
0

5

10

0 10 20 30 40 50 60 70
0

8

16

0 10 20 30 40 50 60
0

6

12

0 10 20 30 40 50 60 70
0

8

16

0 10 20 30 40 50
0

10

20

Re
sp

on
se

 T
im

e
(m

s)
Re

sp
on

se
 T

im
e

(m
s)

Re
sp

on
se

 T
im

e
(m

s)
Re

sp
on

se
 T

im
e

(m
s)

Requests

Requests

Requests

Requests

Re
sp

on
se

 T
im

e
(m

s)

Requests

 With Adaptation Without Adaptation

Figure 4. Comparison of Performance: Adaptation vs Without Adaptation.

thresholds. However, the average WMC values are much lower
than the threshold because using design patterns have resulted
in smaller methods. For AC, 87.5, 100, 84.21, 83.33, 87.5
and 100 percent classes are acceptable. Here, Execute has the
lowest AC value for the aforementioned reason.

The component-level reusability metric values are shown
in Table IV. Here, all the Rate of Component Observability
(RCO) and Self-Completeness of Components Return Value
(SCCr) values are within the threshold. The RCC values are
also within the acceptable range except for Learning. This
is because Learning component is highly customizable as
all the preprocessing, learning algorithms etc. can be easily
substituted. For Self-Completeness of Components Parameter
(SCCp), only Monitor and Execute have out of range values as
these depend on the metric API and system-specific effectors
respectively.

2) Effectiveness of Adaptation: Figure 4 shows the five
runs of the experiment. By analyzing the system average
performance, the response time threshold was chosen to be
6.2 ms. In the first run, response time gradually decreases
after about 12 requests and rises after about 20 requests.
Then, the response time is almost constant due to the constant
load scenario (Section III-A). With adaptation, the response
time gradually decreases under 6.2 ms and remains as such.
However, without adaptation, response time remains more
frequently over 6.2 ms. Second run shows a similar pattern.

In the third run, for with adaptation scenario, the re-
sponse time gradually drops down the threshold after about
22 requests and remains stable up to about 36th request
when a sudden performance goal violation occurs. However,
adaptation quickly reduces the response time under the thresh-
old. The fourth run shows a similar structure. The fifth run

TABLE V. COMPARISON OF REGRESSION MODEL ACCURACY WITH AND
WITHOUT ENVIRONMENT FEATURES

Runs With Environment Features Without Environment Features

RMSE Adjusted
R2

Correlation
Coefficient RMSE Adjusted

R2
Correlation
Coefficient

1 0.7428 0.6637 0.7093 0.9373 0.278 0.4553
2 0.8626 0.7804 0.8683 1.6502 0.12322 0.3184
3 0.862 0.787 0.869 1.6444 0.16069 0.3439
4 0.7944 0.8114 0.888 1.4944 0.28563 0.5043
5 0.7884 0.8126 0.8946 1.6054 0.19748 0.4165

represents the highest load run of all. In this case, the system
becomes unstable and response time varies a lot. However, the
mechanism without adaptation produces response time above
the threshold where the system with adaptation crosses the
threshold only about five times, but runs down within threshold
instantly.

Table V shows the accuracy of the regression model
regarding environment features. In this case, three metrics,
namely Root Mean Squared Error (RMSE), Adjusted R2

and Correlation Coefficient are used. Among these, RMSE
is smaller by 0.6563 on average considering environment
features. Adjusted R2 and Correlation Coefficient are higher
by 0.562 and 0.4382 on average respectively. These indicate
that considering environment features results in more accurate
metric prediction, and so, better adaptation decision.

C. Discussion
The following observations can be made from the results.

• The class reusability metrics indicate overall high
reusability of the component classes on average. The 100
percent accepted classes for DIT and WMC, and low
mean WMC values indicate that using design patterns
have resulted in classes with smaller methods and lower
inheritance depth. This makes the behavior of the classes
more predictable. Besides, LCOM4 and Afferent coupling
indicate that an overall higher cohesion and lower cou-
pling is achieved, leading to higher reusability.

• The component reusability metrics indicate that all the
components have higher reusability. However, Learning
has the highest customizability and, Monitor and Execute
have external dependencies.

• Figure 4 and Table V indicate that adaptation improves
the performance of the system gradually. As knowledge
base is gradually enriched, this justifies the effectiveness
of this process. Moreover, the accuracy measures for the
first run from Table infers that knowledge base generation
provides useful training data. The high accuracy scores
also indicate that adaptation decisions are effective.

• Table V infers that accuracy largely suffers when environ-
ment features are not considered. This validates the use
of environment features in the proposed approach.

IV. RELATED WORK

In the literature, most of the learning-based self-adaptive
systems aim to achieve effectiveness. Kim et al. proposed a Q-
learning-based approach where learning derived Q-values and
adaptation actions with maximum Q-values were chosen [9].
Han et al. proposed a reinforcement learning-based approach
where learning discovered the model of the environment in
context in order to pick adaptation policies [16]. None of
[9] and [16] considered application factors and reusability.
Elkhodary et al. proposed supervised learning-based FUSION

248Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 260 / 267

technique, which applied learning to derive relationships be-
tween application features and metrics, and used these to opti-
mally select features [2]. However, environment features were
not considered. FUSION tool also could not be effectively
reused as it needed to be changed from system to system [2]. It
also could not be applied when training data was not available.

A few techniques that address reusability have been pro-
posed. Garlan et al. proposed the Rainbow framework [1] for
adaptation with infrastructural reusability. Rainbow captured
commonalities using architectural styles where systems with
same architectural style could reuse elements such as rules,
parameters etc. However, reuse among different architectural
styles was limited. Component Model-based approaches such
as the K-Component Framework [17] and the Fractal com-
ponent model-based approach [18] relied on structuring the
system with a specific component model for reusability. How-
ever, a specific component model made reuse between different
component models costly because the full code base needs to
be refactored. Ramirez et al. produced a list of twelve design
patterns for self-adaptive systems and applied these in Rainbow
[1]. However, it would be better if these patterns could be
mapped into more well-known GoF patterns [4].

None of the proposed techniques consider application and
environment features together for more effectiveness. Besides,
the learning-based approaches do not consider increasing
reusability. Learning-based approaches like FUSION also fails
if training data is absent. The proposed approach overcomes all
these by considering application and environment features, ap-
plying design patterns for reusability and providing a training
data generation mechanism.

V. CONCLUSION AND FUTURE WORK

This paper introduces an adaptation component design
considering reusability and effectiveness. A knowledge base
constructor is presented that randomly toggle features and
considers corresponding metric values to derive training data.
This data is used to produce equations to predict metrics from
application and environment features using Machine Learning.
These equations and the feature dependencies help to derive
an optimization problem. Solving this, a feature selection
with maximum total utility function value is obtained, which
can be executed through customizable effectors. This overall
generic logic supports component-level reuse. Design patterns
are used to enable reuse of the subcomponents. The reusability
metric values for each subcomponent are within the acceptable
threshold, indicating high reusability. Adaptation effectiveness
is also achieved as the system gradually decreases the response
time under a provided threshold when goal violation occurs.
The learning accuracy regarding environment features also val-
idates adaptation effectiveness and utilization of these features.

In future, the technique will be enhanced to take adaptation
decision by foreseeing future effects of the decision on the
system. It will also be extended to automate threshold selection
for metrics and failed adaptations.

REFERENCES
[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,

“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” IEEE Computer, vol. 37, no. 10, pp. 46–54, 2004.

[2] N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based frame-
work for engineering feature-oriented self-adaptive software systems,”
Software Engineering, IEEE Transactions on, vol. 39, no. 11, pp. 1467–
1493, 2013.

[3] A. J. Ramirez and B. H. Cheng, “Design patterns for developing dynam-
ically adaptive systems,” in Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. ACM,
2010, pp. 49–58.

[4] M. L. Berkane, L. Seinturier, and M. Boufaida, “Using variability
modelling and design patterns for self-adaptive system engineering:
application to smart-home,” International Journal of Web Engineering
and Technology, vol. 10, no. 1, pp. 65–93, 2015.

[5] IBM Corporation, “An architectural blueprint for autonomic comput-
ing,” IBM White Paper, 2006.

[6] E. Gamma, Design patterns: elements of reusable object-oriented
software. Pearson Education India, 1995.

[7] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-
adaptation in the presence of multiple objectives,” in Proceedings of
the 2006 international workshop on Self-adaptation and self-managing
systems. ACM, 2006, pp. 2–8.

[8] S.-W. Cheng, Rainbow: cost-effective software architecture-based self-
adaptation. ProQuest, 2008.

[9] D. Kim and S. Park, “Reinforcement learning-based dynamic adaptation
planning method for architecture-based self-managed software,” in
Software Engineering for Adaptive and Self-Managing Systems, 2009.
SEAMS’09. ICSE Workshop on. IEEE, 2009, pp. 76–85.

[10] H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A metrics suite for
measuring reusability of software components,” in Software Metrics
Symposium, 2003. Proceedings. Ninth International. IEEE, 2003, pp.
211–223.

[11] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in
object-oriented systems,” in Proceedings of International Symposium
on Applied Corporate Computing, 1995, pp. 25–27.

[12] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp.
476–493, 1994.

[14] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software met-
rics threshold values using roc curves,” Journal of software maintenance
and evolution: Research and practice, vol. 22, no. 1, pp. 1–16, 2010.

[15] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida, “Identifying thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, no. 2, pp. 244–257, 2012.

[16] H. N. Ho and E. Lee, “Model-based reinforcement learning approach
for planning in self-adaptive software system,” in Proceedings of the
9th International Conference on Ubiquitous Information Management
and Communication. ACM, 2015, p. 103.

[17] J. Dowling and V. Cahill, “The k-component architecture meta-model
for self-adaptive software,” in International Conference on Metalevel
Architectures and Reflection. Springer, 2001, pp. 81–88.

[18] P.-C. David and T. Ledoux, “Towards a framework for self-adaptive
component-based applications,” in Distributed Applications and Inter-
operable Systems. Springer, 2003, pp. 1–14.

249Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 261 / 267

Immersive Coding: A Virtual and Mixed Reality Environment for Programmers

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

email: roy.oberhauser@hs-aalen.de

Abstract—While virtual reality (VR) has been applied to
various domains to provide new visualization capabilities, the
leveraging of VR capabilities for programmers doing software
development or maintenance has not been sufficiently
explored. In this paper, we present a VR environment for
programmers called MR-FTC (mixed-reality FlyThruCode)
providing software code structure visualization in multiple
metaphors with integrated real keyboard/mouse viewing and
interaction in mixed reality (MR) to enable basic programming
task support without leaving the VR environment. A prototype
implementation is described, with a case study demonstrating
its feasibility and initial empirical evaluation results showing
its potential. This MR solution concept enables programmers
to benefit from VR visualization while supporting their more
natural keyboard interaction for basic code-centric tasks. This
can support programmers in exploring, understanding, and
directly interacting with and maintaining program code while
leveraging new VR paradigms and capabilities.

Keywords—mixed reality; virtual reality; programming;
software engineering; software visualization.

I. INTRODUCTION
As digitalization progresses, the volume of program

source code created and maintained worldwide is increasing
steadily. For instance, Google is said to have at least 2bn
lines of code (LOC) accessed by over 25K developers [1],
and GitHub has over 61m repositories and 22m developers
[2]. Worldwide it has been estimated that well over a trillion
LOC exist with 33bn added annually [3]. This is exacerbated
by a limited supply of programmers and high employee
turnover rates for software companies, e.g., 1.1 years at
Google [4].

A challenge faced by programmers who are now more
frequently facing unfamiliar preexisting codebases is how to
familiarize and understand its structure in a short time. Code
structures and their dependencies can be difficult to
visualize. According to F. P. Brooks Jr., the invisibility of
software is an essential difficulty of software construction
because the reality of software is not embedded in space [5].
While common display forms used in the comprehension of
source code include text and the two-dimensional Unified
Modeling Language (UML), there may be a place for
leveraging the opportunities afforded by a virtual reality
(VR) for software visualization to make it seem less abstract
and a more immersive experience for programmers. For
instance, it could enhance the ability to comprehend and
navigate software structures in a different reality without

relying on the typical abstractions they are given, such as
hierarchical file structures.

In our prior work, we developed VR-FlyThruCode (VR-
FTC) [6][7], an immersive VR software visualization
environment supporting flythrough navigation and virtual
tablet and virtual keyboard interaction within dynamically-
switchable metaphors but which lacked any support for
keyboard usage. Programmers typically are keyboard and
mouse/trackpad centric when interacting with code, which
would typically require removing the VR headset and
leaving the VR environment. Virtual keyboards which
require selecting one key at a time using the VR controllers
are an inefficient means for code input for experienced
programmers.

This paper contributes a solution concept enabling mixed
reality FTC (MR-FTC) keyboard and mouse viewing and
interaction and provides an initial empirical evaluation. Our
mixed reality (MR) solution concept enables real keyboard
and mouse/trackpad integration while remaining in an
immersive visualization and navigation experience through
the code structures, allowing the user to view logical
modularization and dependencies while enabling code object
creation/deletion and source code modification with real
keyboard access in the VR environment.

The paper is organized as follows: the next section
discusses related work; Section III then describes the
solution concept. Section IV provides details about our
prototype implementation of the solution concept. In Section
V, the evaluation, based on a case study, is described, which
is followed by a conclusion.

II. RELATED WORK
As to non-VR software visualization, Teyseyre and

Campo [8] give an overview and survey of 3D software
visualization tools across the various software engineering
areas. Software Galaxies [9] provides a web-based
visualization of dependencies among popular package
managers and supports flying, whereby every star represents
dependency-clustered packages. CodeCity [10] is a 3D
software visualization approach based on a city metaphor
and implemented in SmallTalk on the Moose reengineering
framework [11]. Rilling and Mudur [12] use a metaball
metaphor (organic-like n-dimensional objects) combined
with dynamic analysis of program execution. X3D-UML
[13] provides 3D support with UML in planes such that
classes are grouped in planes based on the package or
hierarchical state machine diagrams.

Work on VR-based software visualization includes
Imsovision [14] which visualizes object-oriented software in

250Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 262 / 267

VR using electromagnetic sensors attached to shutter glasses
and a wand for interaction. ExplorViz [15] is a Javascript-
based web application that uses WebVR to support VR
exploration of 3D software cities using Oculus Rift together
with Microsoft Kinect for gesture recognition.

With regard to MR and augmented reality support for
programming tasks, [16] describe an approach for authoring
tangible augmented reality applications with regard to scenes
and object behaviors within the AR application being built,
so that the development and testing of the application can be
done concurrently and intuitively throughout the
development process. Billinghurst and Kato [17] show
possible concepts for collaboration in VR, but do not depict a
keyboard or show how programming task support would
work.

In contrast to the above work, the MR-FTC approach
combines VR and game engines for software visualization
and direct code access, support multiple metaphors,
supporting basic programming tasks by integrating real
keyboard and mouse views and interaction in the VR
environment. To the best of our knowledge, no other
software visualization in VR includes real hardware and
mouse support.

III. SOLUTION
Our MR-FTC concept uses VR flythrough for visualizing

program code structure or architecture, such as software
architecture recovery, which can be useful in software
maintenance tasks. Our inherent 3D application domain view
visualization [8] arranges customizable symbols in 3D space
to enable users to navigate through an alternative perspective
on these often hidden structures. Certain metadata not readily
accessible is visualized, such as the relative size of classes
(not typically visible until multiple files are opened or a
UML class diagram is created), the relative size of packages
to one another, and the number of dependencies between
classes and packages. To support programming within the
VR environment, our solution concept utilizes MR for
integrating keyboard and mouse access to permit coding.

A. Principles

Our previous work [7] details the solution principles
which we summarize here: multiple customizable 3D visual
metaphors (dynamically switchable between universe and
terrestrial), flythrough navigation, a grouping metaphor
(solar systems and glass bubbles), a connection metaphor
(colored light beams), and a virtual tablet to provide
information and interaction capabilities on tagging, metrics,
UML, filtering, source code, and project configuration.
Figure 1 shows VR system interaction (without the
keyboard).

A further solution principle specific to this paper is MR
keyboard/trackpad/mouse integration. A live camera view is
integrated into the VR landscape. This allows the user to
determine where their hands and fingers are relative to the
actual hardware. Assuming the subject is seated, for instance,
tilting their head down can be interpreted as a gesture to
activate a live webcam on the VR headset, activating MR,

similar to the natural head movement made at a desktop PC
to look at the keyboard.

Figure 1. System setup with a subject wearing a Vive HTC headset, the

controller visible in a universe metaphor scene selecting a planet (a class)).

B. Process
The process used by the solution approach consists of

interaction and round-trip support for change propagation,
whereby any changes to code outside of VR is reflected in
VR, and any changes made to code in VR is reflected both
with the VR visualization and to the actual code.

Figure 2. MR-FlyThruCode process steps.

The steps shown in Figure 2 are as follows:
1) Modeling: the modeling of generic program code

structures, metrics, and artifacts as well as visual objects.
2) Mapping: the mapping of a program code artifact

model to a visual object metaphor, such as universe or
terrestrial objects.

3) Extraction: extracting a given project's metadata,
structure (via source code import and parsing), and metrics.

4) Visualization: visualizing a given model instance
within a metaphor.

5) Navigation: supporting navigation through the model
instance (via camera movement based on user interaction),
to provide a flythrough experience.

6) Interaction: providing interaction via hardware, such
as the VR controller and keyboard or trackpad/mouse, or
virtual objects, such as a virtual tablet and the visual
equivalent of code artifacts that can be created, deleted,
displayed (including metrics or metadata), or modified using
a virtual tablet, virtual keyboard, and virtual controllers.

7) Change Propagation: for any interactions that incur
changes (create/delete/modify), a background process is
triggered that restarts step 3 and step 4 updates the
visualization. For instance, if methods were added or

251Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 263 / 267

removed, then the height of the buildings or the size of the
planet would be affected.

IV. IMPLEMENTATION
We utilized the Unity game engine for 3D visualization

due to its multi-platform support, VR integration, and
popularity, and for VR hardware both HTC Vive, a room
scale VR set with a head-mounted display with an integrated
camera and two wireless handheld controllers tracked using
two 'Lighthouse' base stations.

We integrated a live camera view into the VR landscape
via a virtual plane object. This allows the user to determine
where their hands and fingers are relative to the actual
keyboard. When the VR user tilts their head down, it is
interpreted as a gesture to activate the live webcam on the
VR headset and blend this into the virtual plane object.
When the head is tilted starkly up, MR is deactivated.

Our MR-FTC architecture is shown in Figure 3.

Figure 3. MR-FlyThruCode software architecture.

Assets are used by the Unity engine and consist of
Animations, Fonts, Imported Assets (like a ComboBox),
Materials (like colors and reflective textures), Media (like
textures), 3D Models, Prefabs (prefabricated), Shaders (for
shading of text in 3D), VR SDKs, and Scripts. Scripts consist
of Basic Scripts like user interface (UI) helpers, Logic
Scripts that import, parse, and load project data structures,
and Controllers that react to user interaction. Logic Scripts
read Configuration data about Stored Projects and the Plugin
System (input in XML about how to parse source code and
invocation commands). Logic Scripts can then call Tools
consisting of General and Language-specific Tools. General
Tools currently consist of BaseX, Graphviz, PlantUML, and
Graph Layout - our own version of the KK layout algorithm
[18] for positioning objects. Java-specific tools are srcML,
Campwood SourceMonitor, Java Transformer (invokes
Groovy scripts), and Dependency Finder. Our Plugin system
enables additional tools and applications to be easily
integrated.

A. Code Information Extraction
srcML [19] is used to extract existing code structure

information into our model. The source code is converted
into XML and stored in the BaseX XML database.
Campwood SourceMonitor and DependencyFinder are used
to extract code metrics and dependency data, and plugins
with Groovy scripts and a configuration are used to integrate
the various tools.

B. Project Structure Model
A software project contains the following files, which are

used to access the data mapped to the VR objects:
• metrics_{date}.xml: metrics obtained from

SourceMonitor and DependencyFinder are grouped by
project, packages, and classes.

• source_{date}.xml: holds all classes in XML
• structure_{date}.xml: contains the project structure and

dependencies utilizing the DependencyFinder.
• swexplorer-annotations.xml: contains user-based

annotations (tags) with color, flag, and text including
both manual and automatic (pattern matching) tags.

• swexplorer-metrics-config.xml: contains thresholds for
metrics.

• swexplorer-records.xml: contains a record of each
import of the same project done at different times with a
reference to the various XML files, such as source and
structure for that import. This permits changing the
model to different timepoints as a project evolves.

V. EVALUATION
The evaluation consists of a case study with usage by

master computer science students currently involved in the
prototype implementation and familiar with VR.

A. Visualization and Navigation
Two metaphors were used for visualization: Figure 4

shows the universe or space metaphor, where planets
represent classes which are grouped in solar systems. Figure
5 shows the terrestrial or city metaphor, where buildings
represent classes with a label at the top and the number of
stories represents the number of methods in that class,
classes being grouped by glass bubbles. For the connection
metaphor, in both metaphors colored light beams were are to
show directional dependencies between classes or packages
(see Figure 6 with extra cones placed around the light
beams). To assist the user in remembering objects or
characteristics, tagging is supported, which allows any label
to be placed on an object (e.g., the Important Tag in Figure
4).

To realize flythrough navigation, the camera position is
moved with the touchpad on the left controller of the HTC
Vive controlling altitude (up, down) and the one on the right
hand controlling direction (left, right, forward, backward).
The controllers are shown in the scenery when they are
within the view field. A virtual laser pointer was created for
selecting objects, as was a virtual keyboard (in case no real
keyboard is accessible or desired) to support text input for

252Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 264 / 267

searching, filtering, and tagging. Menus and screens showing
source code, code metrics, UML, tags, filtering, and project
data are placed on the screen of the virtual tablet. To
highlight a selected object, we utilized a 3D pointer in the
form of a rotating upside-down pyramid (see Figure 4 and
Figure 5). This was needed because, once an object is
selected, after navigating away one may lose track of where
the object was, especially if the object was small relative to
its surrounding objects.

Figure 4. Universe metaphor: selected planet (class) has inverted pyramid
as arrow, tags evident, and tablet is visible and shows the class interface.

Figure 5. Terrestrial metaphor with bubbled cities (packages) and oracle
with metrics for selected object (pyramid pointer).

Figure 6. The virtual tablet interface showing source code. A bidirectional
(dependency) pipe is visible in the background.

B. Mixed Reality Interaction
To achieve MR and access the video stream of the front

camera, the standard Unity Plane asset was used and a small
Script added to this game object. From the SteamVR
TrackedCamera script, the method VideoStreamTexture is
invoked, which returns a Texture that is set to the material of
the Plane (see Figure 7 and Figure 8).

Figure 7. Coding with MR view of keyboard and mouse blended in and

scroll bar shown on the virtual tablet.

Figure 8. Far view in MR of keyboard with VR object visible.

The Vive camera must be activated (manually) in the
SteamVR settings. We chose to automatically activate and
show MR when the user's tilts the goggles low enough, as
one would if one were to wish to see the keyboard when
using it, and turn MR off again if one tilts the head up far
enough again. Keyboard and mouse inputs are accessible at
any time, not just when MR is activated.

For an initial empirical evaluation of the MR keyboard
capability, we utilized a convenience sample of Computer
Science students.

For evaluating typing speed in particular for comments
which are full words without special characters, five subjects
were required to write two unique pangrams consisting of 18
words using a text editor (Notepad++), the MR keyboard,
and the VR only keyboard. We varied the starting
configuration order among the subjects to minimize training
effects. As shown in Table I, the text editor was the most
efficient with 50 seconds duration and 22.5 words per minute
(wpm) with an average error rate of 3.3%. With MR 75
seconds were required (16.0 wpm) with an error rate of
3.3%. With the VR keyboard 110 seconds were required

253Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 265 / 267

(10.1 wpm) with an error rate of 4.4%. Thus the MR
keyboard was faster than the VR keyboard and did not
exhibit a higher error rate. However, the subjects needed 11
seconds on average between laying down the VR controllers
and pressing the first letter on the keyboard.

TABLE I. TEXT EDITOR, MR, AND VR PANGRAM MEASUREMENTS
(AVERAGE)

Text

Editor MR VR

Duration (seconds) 50 75 110

Words per minute 22.5 16.0 10.1

Error rate 3.3% 3.3% 4.4%

For evaluating programming, four subjects were required

to view a certain class and then create a class and were given
certain specified modifications thereafter (creating some
object and setting some variable to some value) using either
a text editor or the MR keyboard. As seen in Table II, using a
text editor (Notepad++), they needed on average 50 seconds
to analyze a similar class, 30 seconds to create a new class,
and 144 seconds to do the programming. Using the MR
keyboard, they needed 84 seconds to analyze a similar class,
77 seconds to create a class, and 245 seconds to complete the
programming.

TABLE II. TEXT EDITOR AND MR MEASUREMENTS (AVERAGE IN
SECONDS)

 Analysis Class Creation Programming

Text editor 50 30 144

MR 84 77 245

While a text editor remains more efficient, usage of the

MR keyboard was faster than a purely VR keyboard and,
once familiar with a certain keyboard, we expect the
overhead of MR to be reduced to an acceptable level given
sufficient practice. The overhead of switching between VR
controllers to keyboard and back again can be seen as
analogous to the overhead of keyboard use on a PC and
moving the hand to the mouse and back again and may thus
be considered acceptable for certain users. We will
investigate this further in future work.

We were pleased that none of the subjects reported
motion sickness despite the inclusion of MR and the average
response to how they felt afterwards was 4.75 (on a scale of
1 to 5 with 5 best).

Although the keyboard was a German layout keyboard,
we noted that some subjects already had used that specific
keyboard model before (Logitech K280e) while others had
not and thus needed more time to search for certain specific
keys. In searching they needed to get close with the VR
goggles to see the key label, so we will consider providing a
zoom or magnification option in the interface in the future.

C. Coding Support Interaction and Change Propagation
To provide basic programming support, package and

class creation are supported via a VR controller wrist-based

selection capability in both metaphors (see Figure 9 and
Figure 10). Thereafter a screen appears on the VR tablet for
naming the object (Figure 11 and Figure 12), which can be
done with a real or virtual keyboard and the change is then
propagated. For deletion, an object must first be selected,
then a deletion option appears as an "X" (not shown) on the
left VR controller, and if this "X" is targeted by the right
controller, the object and underlying source code file (or
directory in case of a package) is then removed from the file
system via change propagation. File editing can be
performed by pointing the VR controller or mouse at a
character on the virtual tablet when it is showing source code
and then typing with the physical (or virtual) keyboard. A
blinking cursor is then shown and editing via
insertion/deletion can be performed (selection not yet
supported). The code state is transmitted and change
propagation triggered when the virtual tablet is switched to a
different view, updating the visualization.

Figure 9.VR controller wrist-based palette selection for package (bubble)

or class (building) creation in the terrestrial metaphor.

Figure 10. VR controller wrist-based palette selection for package or class

creation in the universe metaphor.

Figure 11. Package creation (glass bubble) input screen.

254Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

 266 / 267

Figure 12. Class creation (building) input screen.

Our case study subjects found the ability to interact and
make changes to the software structure to be an improvement
over pure visualization, and the use of VR controller wheel
and pointer selection to be a natural in VR mode for creating
and removing object. The accessibility of a real keyboard
instead of a virtual keyboard via MR integration was also
found to be more natural and efficient versus virtual
keyboard usage for code editing.

Our prototype demonstrated that the MR solution concept
is feasible and can be a viable alternative to a virtual
keyboard. This enables touch typing and the use of the
mouse for screen interaction where appropriate, enabling
programmers to interact more naturally for their code-centric
programming tasks in the VR environment, without having
to interrupt their VR experience to take of the goggles and do
programming changes, and then put the VR gear on again. In
future work we will investigate empirical usage of our MR-
FTC concept prototype including programmers who are not
familiar with VR.

VI. CONCLUSION
As VR devices become ubiquitous, it is only a matter of

time before programmers wish to utilize VR capabilities as
well. Visualization of code structures in various metaphors
permits VR users to view code structures in new ways.
However, current interaction mechanisms are hampered due
to a lack of keyboard and mouse access for programmers
working directly with code, which can frustrate programmers
or require them to remove the VR headset and work with a
PC directly, and then return to VR mode.

This paper described our solution concept MR-FTC,
which provides a direct integration via mixed reality of the
keyboard and mouse into the VR landscape when the user
looks down, allowing them to orient their hands and fingers
after laying down the VR controllers. The prototype
demonstrated the feasibility of our solution concept, and the
case study with its empirical evaluation showed the potential
of MR using keyboards for supporting programming in VR
environments.

Future work includes a comprehensive empirical study
and the inclusion of additional features specific to the
programming interface such as syntax highlighting.

ACKNOWLEDGMENT
The author thanks Carsten Lecon, Dominik Bergen,

Alexandre Matic, Lisa Philipp, and Camil Pogolski for their

assistance with various aspects of the design,
implementation, and evaluation.

REFERENCES
[1] C. Metz, Google Is 2 Billion Lines of Code—And It’s All in

One Place. http://www.wired.com/2015/09/google-2-billion-
lines-codeand-one-place/ [retrieved 2017.08.31]

[2] GitHub. https://github.com [retrieved 2017.08.31]
[3] G. Booch, "The complexity of programming models,"

Keynote talk at AOSD 2005, Chicago, IL, Mar. 14-18, 2005.
[4] PayScale, Full List of Most and Least Loyal Employees.

http://www.payscale.com/data-packages/employee-
loyalty/full-list [retrieved 2017.08.31]

[5] F. P. Brooks, Jr., The Mythical Man-Month. Boston, MA:
Addison-Wesley Longman Publ. Co., Inc., 1995.

[6] R. Oberhauser and C. Lecon, "Virtual Reality Flythrough of
Program Code Structures," Proc. of the 19th ACM Virtual
Reality International Conference (VRIC 2017). ACM, 2017.

[7] R. Oberhauser and C. Lecon, "Immersed in Software
Structures: A Virtual Reality Approach," Proc. of the Tenth
International Conference on Advances in Computer-Human
Interactions (ACHI 2017). IARIA, 2017, pp. 181-186, ISBN
978-1-61208-538-8.

[8] A. R. Teyseyre and M. R. Campo, "An overview of 3D
software visualization," Visualization and Computer
Graphics, IEEE Trans. on, vol. 15, no. 1, 2009, pp. 87-105.

[9] A. Kashcha. Software Galaxies. http://github.com/anvaka/pm/
[retrieved 2017.08.31]

[10] R. Wettel and M. Lanza, “Program comprehension through
software habitability,” in Proc. 15th IEEE Int'l Conf. on
Program Comprehension, IEEE CS, 2007, pp. 231–240.

[11] R. Wettel, M. Lanza, and R. Robbes, "Software systems as
cities: A controlled experiment," in Proc. of the 33rd Int'l
Conf. on Software Engineering, ACM, 2011, pp. 551-560.

[12] J. Rilling and S. P. Mudur, "On the use of metaballs to
visually map source code structures and analysis results onto
3d space," in Proc.. 9th Work. Conf. on Reverse Engineering,
IEEE, 2002, pp. 299-308.

[13] P. M. McIntosh, "X3D-UML: user-centred design,
implementation and evaluation of 3D UML using X3D,"
Ph.D. dissertation, RMIT University, 2009.

[14] J. I. Maletic, J. Leigh, and A. Marcus, “Visualizing software
in an immersive virtual reality environment,” 23rd Intl. Conf.
on Softw. Eng. (ICSE 2001) Vol. 1, IEEE, 2001, pp. 12-13.

[15] F. Fittkau, A. Krause, and W. Hasselbring, "Exploring
software cities in virtual reality," IEEE 3rd Working
Conference on Software Visualization (VISSOFT), IEEE,
2015, pp. 130-134.

[16] G.A. Lee, D. Nelles, M. Billinghurst, and G.J.Kim,
"Immersive authoring of tangible augmented reality
applications," Proc. of the 3rd IEEE/ACM international
Symposium on Mixed and Augmented Reality, IEEE
Computer Society, 2004, pp. 172-181.

[17] M. Billinghurst and H. Kato, "Collaborative mixed reality,"
Proc. First International Symposium on Mixed Reality (ISMR
’99), Springer Verlag, 1999, pp. 261-284.

[18] T. Kamada and S. Kawai, "An algorithm for drawing general
undirected graphs," Information processing letters, 31(1),
1989, pp. 7-15.

[19] J. Maletic, M. Collard, and A. Marcus, "Source code files as
structured documents," in Proc. 10th Int. Workshop on
Program Comprehension, IEEE, 2002, pp. 289-292.

255Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 267 / 267

http://www.tcpdf.org

