
ICIMP 2016

The Eleventh International Conference on Internet Monitoring and Protection

ISBN: 978-1-61208-475-6

May 22 - 26, 2016

Valencia, Spain

ICIMP 2016 Editors

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain

Mario Freire, University of Beira Interior, Portugal

 1 / 59

ICIMP 2016

Foreword

The Eleventh International Conference on Internet Monitoring and Protection (ICIMP 2016),
held between May 22-26, 2016, in Valencia, Spain, continued a series of special events targeting
security, performance, vulnerabilities in Internet, as well as disaster prevention and recovery.

The design, implementation and deployment of large distributed systems are subject to
conflicting or missing requirements leading to visible and/or hidden vulnerabilities. Vulnerability
specification patterns and vulnerability assessment tools are used for discovering, predicting and/or
bypassing known vulnerabilities.

Vulnerability self-assessment software tools have been developed to capture and report critical
vulnerabilities. Some of vulnerabilities are fixed via patches, other are simply reported, while others are
self-fixed by the system itself. Despite the advances in the last years, protocol vulnerabilities, domain-
specific vulnerabilities and detection of critical vulnerabilities rely on the art and experience of the
operators; sometimes this is fruit of hazard discovery and difficult to be reproduced and repaired.

System diagnosis represent a series of pre-deployment or post-deployment activities to identify
feature interactions, service interactions, behavior that is not captured by the specifications, or
abnormal behavior with respect to system specification. As systems grow in complexity, the need for
reliable testing and diagnosis grows accordingly. The design of complex systems has been facilitated by
CAD/CAE tools. Unfortunately, test engineering tools have not kept pace with design tools, and test
engineers are having difficulty developing reliable procedures to satisfy the test requirements of
modern systems. Therefore, rather than maintaining a single candidate system diagnosis, or a small set
of possible diagnoses, anticipative and proactive mechanisms have been developed and experimented.
In dealing with system diagnosis data overload is a generic and tremendously difficult problem that has
only grown. Cognitive system diagnosis methods have been proposed to cope with volume and
complexity.

Attacks against private and public networks have had a significant spreading in the last years.
With simple or sophisticated behavior, the attacks tend to damage user confidence, cause huge privacy
violations and enormous economic losses.

The CYBER-FRAUD track focuses on specific aspects related to attacks and counterattacks, public
information, privacy and safety on cyber-attacks information. It also targets secure mechanisms to
record, retrieve, share, interpret, prevent and post-analyze of cyber-crime attacks.

Current practice for engineering carrier grade IP networks suggests n-redundancy schema. From
the operational perspective, complications are involved with multiple n-box PoP. It is not guaranteed
that this n-redundancy provides the desired 99.999% uptime. Two complementary solutions promote (i)
high availability, which enables network-wide protection by providing fast recovery from faults that may
occur in any part of the network, and (ii) non-stop routing. Theory on robustness stays behind the
attempts for improving system reliability with regard to emergency services and containing the damage
through disaster prevention, diagnosis and recovery.

We take here the opportunity to warmly thank all the members of the ICIMP 2016 Technical
Program Committee, as well as all of the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to ICIMP 2016. We truly believe that, thanks
to all these efforts, the final conference program consisted of top quality contributions.

 2 / 59

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ICIMP 2016 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that ICIMP 2016 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of Internet
monitoring and protection.

We are convinced that the participants found the event useful and communications very open.
We hope that Valencia provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.

ICIMP 2016 Chairs:

ICIMP General Chair
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain

ICIMP Advisory Committee
Go Hasegawa, Osaka University, Japan
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Constantion Paleologu, University ‘Politehnica’ Bucharest, Romania
Michael Grottke, University of Erlangen-Nuremberg, Germany
William Dougherty, Secern Consulting - Charlotte, USA

ICIMP Industry/Research Chairs
Mohamed Eltoweissy, Virginia Military Institute and Virginia Tech, USA
Nicolas Fischbach, COLT Telecom, Germany
Emir Halepovic, AT&T Labs - Research, USA
Miroslav Velev, Aries Design Automation, USA
Steffen Wendzel, Fraunhofer FKIE, Germany
Artsiom Yautsiukhin, National Council of Research, Italy

 3 / 59

ICIMP 2016

COMMITTEE

ICIMP General Chair
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain

ICIMP Advisory Committee

Go Hasegawa, Osaka University, Japan
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Constantin Paleologu, University ‘Politehnica’ Bucharest, Romania
Michael Grottke, University of Erlangen-Nuremberg, Germany
William Dougherty, Secern Consulting - Charlotte, USA

ICIMP Industry/Research Chairs

Mohamed Eltoweissy, Virginia Military Institute and Virginia Tech, USA
Nicolas Fischbach, COLT Telecom, Germany
Emir Halepovic, AT&T Labs - Research, USA
Miroslav Velev, Aries Design Automation, USA
Steffen Wendzel, Fraunhofer FKIE, Germany
Artsiom Yautsiukhin, National Council of Research, Italy

ICIMP 2016 Technical Program Committee

Jemal Abawajy, Deakin University - Victoria, Australia
Rifaat Abdalla, King Abdulaziz University, Saudi Arabia
Mohd Taufik Abdullah, Universiti Putra Malaysia, Malaysia
Jihad Mohamad Al Ja'am, Qatar University - College of Engineering, Qatar
Javier Barria, Imperial College London, UK
Olga Battaïa, ISAE-Supaero, Toulouse, France
Fadila Bentayeb, University of Lyon, France
Lasse Berntzen, University College of Southeast, Norway
Jonathan Blackledge, Dublin Institute of Technology, Ireland
Matthias R. Brust, University of Central Florida, USA
Christian Callegari, University of Pisa, Italy
Eduardo Cerqueira, Federal university of Para, Brazil
Hugo Coll, Universidad Politécnica de Valencia, Spain
Christopher Costanzo, U.S. Department of Commerce, USA
Jianguo Ding, University of Skövde, Sweden
Dimitris Dranidis, CITY College - International Faculty of the University of Sheffield, Greece
Mohamed Eltoweissy, Virginia Military Institute and Virginia Tech, USA
Nicolas Fischbach, COLT Telecom, Germany
Ulrich Flegel, SAP Research - Karlsruhe, Germany
Alex Galis, University College London, UK

 4 / 59

Dimitra Georgiou, University of Piraeus, Greece
Stefanos Gritzalis, University of the Aegean - Karlovassi/Samos, Greece
Michael Grottke, University of Erlangen-Nuremberg, Germany
Emir Halepovic, AT&T Labs - Research, USA
Go Hasegawa, Osaka University, Japan
Terje Jensen, Telenor Corporate Development - Fornebu / Norwegian University of Science and
Technology - Trondheim, Norway
Jose M. Jimenez, Universidad Politécnica de Valencia, Spain
Naser Ezzati Jivan, Polytechnique Montreal University, Canada
Andrew Kalafut, Grand Valley State University, USA
Ayad Ali Keshlaf, Newcastle University, UK
Andrew Kusiak, The University of Iowa, USA
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Maode Ma, Nanyang Technological University, Singapore
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Muneer Masadeh Bani Yassein, Jordan University of Science and Technology, Jordan
Daisuke Mashima, Advanced Digital Sciences Center, Singapore
Michael May, Kinneret College on the Sea of Galilee, Israel
Tony McGregor, The University of Waikato, New Zealand
Rajat Mehrotra, Applied Innovation Center for Advanced Analytics (AIC) - Desert Research Institute, USA
Johannes Merkle, secunet Security Networks, Germany
Jean-Henry Morin, University of Geneva, Switzerland
Stephan Neumann, Technical University of Darmstadt, Germany
Jason R.C. Nurse, Cyber Security Centre | University of Oxford, UK
Constantin Paleologu, University ‘Politehnica’ Bucharest, Romania
Andrea Polini, University of Camerino, Italy
Albert Rego, Universidad Politécnica de Valencia, Spain
Alireza Shameli-Sendi, McGill University, Canada
Sivasothy Shanmugalingam, R&D Technical Expert @Astellia, France
Jani Suomalainen, VTT Technical Research Centre, Finland
Bernhard Tellenbach, Zurich University of Applied Sciences, Switzerland
Guillaume Valadon, French Network and Information and Security Agency, France
Julien Vanegue, Bloomberg L.P., USA
Miroslav Velev, Aries Design Automation, USA
Rob van der Mei, VU University Amsterdam, The Netherland
Felix von Eye, Leibniz Supercomputing Centre, Germany
Arno Wagner, Consecom AG - Zurich, Switzerland
Steffen Wendzel, Fraunhofer FKIE, Germany
Artsiom Yautsiukhin, National Council of Research, Italy

 5 / 59

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 59

Table of Contents

Code-Stop: Code-Reuse Prevention by Context-Aware Traffic Proxying
Terrence OConnor and William Enck

1

Detecting Obfuscated JavaScripts Using Machine Learning
Simon Aebersold, Krzysztof Kryszczuk, Sergio Paganoni, Bernhard Tellenbach, and Timothy Trowbridge

11

Performance Study of a Software Defined Network Emulator
Jose M. Jimenez, Oscar Romero, Albert Rego, Avinash Dilendra, and Jaime Lloret

17

A Study on How to Characterize TCP Congestion Control Algorithms from Unidirectional Packet Traces
Toshihiko Kato, Leelianou Yongxialee, Ryo Yamamoto, and Satoshi Ohzahata

23

Intrusion Detection Using Indicators of Compromise Based on Best Practices and Windows Event Logs
Maria del Carmen Prudente Tixteco, Lidia Prudente Tixteco, Gabriel Sanchez Perez, and Linda Karina Toscano
Medina

29

Comparative Study of Routing Protocols in Ring Topologies Using GNS3
Roberto Alejandro Larrea-Luzuriaga, Jose M. Jimenez, Sandra Sendra, and Jaime Lloret

38

Enhancing Network Security Environment by Empowering Modeling and Simulation Strategy (Cyber Protect
Simulation Lesson Learned)
Rudy Agus Gemilang Gultom and Baskoro Alrianto

45

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 59

Code-Stop: Code-Reuse Prevention By Context-Aware Traffic Proxying

Terrence OConnor and William Enck
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

Email: tjoconno@ncsu.edu, enck@cs.ncsu.edu

Abstract—This paper introduces a network and host-based co-
operative system for defending against code-reuse attacks that
bypass exploit mitigation strategies. While the combination of
address space layout randomization (ASLR) and data execution
prevention (DEP) provide the means for mitigating exploitation,
attackers routinely bypass these mechanisms by borrowing code
from shared libraries that lack the same protections or by abusing
memory leaks. This paper illustrates the ability to identify code-
reuse attacks through cooperation between the traffic proxy and
destination host. With the context of the host, the network has
the ability to prevent code-reuse, and ultimately, exploitation.
Through experimentation, we demonstrate that our cooperative
system can effectively defeat a wide variety of code-reuse attacks,
including newer attack vectors such as Just-in-Time-Flash or
jump-oriented gadgets. Our experiments indicate our prototype
is compatible with popular software such as Internet Explorer,
Adobe Reader, and Microsoft Office applications and proved
successful mitigating code-reuse attacks.

Keywords–code-reuse attacks; return-oriented programming; in-
trusion prevention system; proxy.

I. INTRODUCTION

Identifying and defending against exploits in the wild is an
ongoing challenge. While system protections such as Address
Space Layout Randomization (ASLR) and Data Execution Pre-
vention (DEP) make vulnerabilities more difficult to exploit,
they can be bypassed using code-reuse attacks (e.g., Return
Oriented Programming [ROP], Jump Oriented Programming
[JOP], SigReturn Oriented Programming [S-ROP], and Just In
Time Return Oriented Programming [JIT-ROP]).

In 2012, Microsoft’s BlueHat Challenge [1] awarded over
a quarter of a million dollars to three solutions that defended
against ROP. Within a year, Shacham et al. [2] successfully
bypassed every ROP protection that had been awarded a
prize. Additionally, after Microsoft integrated the BlueHat
Challenge winner solutions into their commercial product The
Enhanced Mitigation Experience Toolkit (EMET), DeMott [3]
demonstrated separate methods for bypassing all twelve system
protections included in EMET. Most defense mechanisms have
focused exclusively on the host by either compiling gadget-
free binaries, protecting critical functions [4], or performing
runtime randomization [5], control flow analysis [6], or sys-
tem caller checking [7] [8] [9]. However, all have shown
weaknesses by making the potential victim responsible for
managing its own safeguards.

In contrast to these prior approaches, we propose a system
for defending against code-reuse attacks that pushes the de-
fense to the network but still relies on the host to provide the
active context of the attack. We focus exclusively on preventing
the code-reuse attacks (e.g., ROP, JOP, S-ROP, JIT-ROP) used

to bypass system protections (e.g., ASLR, DEP). The key idea
behind our solution is the concept of parameter suspicion. We
make the assumption that a code-reuse attack will be used to
bypass memory protections by allocating a protected region
of memory as executable. Further, we make the assumption
that a code-reuse attack will borrow code in order to execute
a memory-related function. Instead of monitoring the specific
function calls that may allocate or change memory protections,
we attempt to identify the parameters used by the function
call. Parameter suspicion identifies the generic behavior that
occurs prior to a code-reuse attack. It identifies when the
attacker abuses memory to load data into registers, functioning
as parameters for a call to a critical system call or function.

In this paper, we propose and implement Code-Stop, a
collaborative system that protects an application from code-
reuse attacks that bypass system protections. Code-Stop relies
on parameter suspicion to identify a code-reuse attack. We
implement Code-Stop on top of an existing traffic proxy in
communication with destination hosts. We observe that Code-
Stop can prevent modern client-side attacks at the network
layer only with the emulated context being provided by the
host. We demonstrate that prevention can occur with minimal
overhead by reducing the critical area of traffic that must be
tested. Our prototype scans for potential code-reuse attacks
in PDF documents, JavaScript, Adobe Flash, and Microsoft
Office documents, which account for 72.9% of vulnerable file
types [10].

This paper makes the following contributions:

• We design and implement Code-Stop to protect against
the broader threat of client-side attacks that use code-
reuse attacks. Code-Stop allows the traffic proxy to make
context-aware decisions about malicious traffic based on the
emulated impact on the destination host.
• We propose the technique of parameter suspicion to identify

code-reuse attacks with low false positives. Parameter sus-
picion emulates potential gadgets to determine the impact
on the general purpose registers used as parameters when
calling Windows API functions. Specifically, parameter sus-
picion identifies the parameters used for a Windows API
function that allocates or changes memory as executable.
• We evaluate the accuracy, performance overhead, scalability

and coverage of Code-Stop. We observe Code-Stop’s abil-
ity to prevent code-reuse attacks without producing false
positives with a large set of known malware-free files.
Code-Stop’s performance overhead and delay scales with
typical proxy configurations and anti-virus scanning proxy
solutions. We evaluate that Code-Stop can detect a wide
range of code-reuse attacks without modification.

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 8 / 59

The remainder of this paper is as follows. Section II
provides a background on memory protection mechanisms
and code-reuse attacks. Section III examines the challenges
with preventing code-reuse attacks. Section IV provides an
overview of our solution. Section V examines the design of
our prototype solution. Section VI evaluates our prototype,
Code-Stop. Section VII discusses the limitations and future
work. Section VIII discusses recent related work in the field
of preventing code-reuse attacks, and Section IX concludes.

II. BACKGROUND AND MOTIVATION

To understand the defense system presented in this pa-
per, we must review common mitigation strategies, including
ASLR, DEP, and compile-time, run-time, and network-layer
exploit prevention mechanisms.

Address Space Layout Randomization: Implemented in
early 2002, ASLR provided one of the earliest means to
decrease the effectiveness of an exploit. ASLR prevents an
attacker from using a predictable and pre-calculated virtual ad-
dress for code reuse in an exploit. ASLR can randomize the lo-
cation of code by randomizing the starting address of dynamic-
linked libraries, the base address of the heap, or the location of
routines and static data in the executable [11] [12] [13]. Initial
research targeting ASLR implementations studied the effec-
tiveness of defeating the entropy of code randomization [2].
However, attackers found it far more useful to bypass ASLR
entirely. Notably, the initial release of Windows Vista Service
Pack 0 only randomized the base address of executables
and dynamic link libraries [14]. The poorly implemented
Vista design effectively allowed attackers to bypass ASLR
by partially overwriting the address offset without overwriting
the randomized base address. Another common means for
bypassing ASLR borrows code from dynamic link libraries
(DLL) that lack ASLR. Several recent attacks in the wild have
relied upon using DLLs without ASLR [15] [16]. Attackers
routinely execute these attacks by forcing the application to
load a DLL that implements extra functionality.

Data Execution Prevention: The 2004 release of Windows
XP Service Pack 2 introduced the DEP security feature [17]
[18]. In Windows OS, hardware DEP works similar to Linux
W⊕X, which uses the non-executable (NX) bit to mark
memory as executable. Under W⊕X or DEP, memory may
be executable or writable, but not both [19]. This isolation of
memory mitigates control flow hijacking by preventing stack-
based buffer overflows. Combined with ASLR, DEP defeated
control flow hijacking on the Windows OS until Shacham [20]
and Litchfield [17] proposed the first code-reuse attacks.

Code-Reuse Attacks: In 2005, Litchfield proposed the first
means of defeating DEP by returning to the VirtualAlloc()
function [17]. Litchfield borrowed heavily from a Linux tech-
nique known as to return to libc, which replaced the return
address on the stack with the address from a function call
borrowed from the libc library. Return-Oriented-Programming
(ROP) expands upon return to libc by chaining a series of
borrowed code snippets together to execute a specific purpose.
Under Windows, ROP often overwrites the return address
with a chain of addresses that point to borrowed code inside
shared libraries. ROP chains these borrowed fragments of code
together to disable the DEP security mechanisms [21]. While
the application’s sandbox may implement memory protections,

attackers often dynamically load shared libraries in order to
borrow code and escape the sandbox of protection.

Under ROP, each small fragment (gadget) borrows a small
piece of code that is followed by a return. The variable x86
instruction length eases the difficulty of gadget discovery,
since gadgets can be borrowed from the offset of a logical
address. The assembly of gadgets typically disables protection
mechanisms in order to allow malicious shell-code to execute.
This commonly involves placing specific values into general
purpose registers before calling a Windows API function that
disables the security protection of DEP.

Our solution to preventing code-reuse relies on the fact that
an attacker must use gadgets to load these values into registers
before calling the API function. In this way, we can observe
the generic behavior in order to identify attacks. The next
section examines the challenges in preventing against code-
reuse attacks.

Host and Network Based Cooperative Defense: In Sec-
tion VIII, we discuss the shortcomings of previous host-
only or network-only defense mechanisms. We argue that the
shortcomings of the host-layer and network-layer defenses can
be addressed by using the network to defend with the context
of the host. Previous work has examined emulating arbitrary
data at the network to determine if it is part of a payload
of an attack. However, code-reuse attacks rely on borrowing
code from specific memory addresses. Since these addresses
vary between application and operating system versions, the
network must be aware of the dynamic context of the host to
successfully identify a code-reuse attack.

III. CHALLENGES

Our prototype, Code-Stop, hardens the security of the host
under protection and provides new opportunities to identify at-
tacks in progress. However, enabling this protection introduces
challenges that we address:

C-1 Ability to identify dynamic sandbox escapes. One method
commonly used by attackers forces an application to load
a library lacking the same protection mechanisms as the
application, so that the attacker escapes the sandbox of
protection. This can be seen in recent attacks against
Internet Explorer (with the hxds.dll bypass) and
Adobe Reader (with icuncnv36.dll bypass.) [22],
[23] Content that forces dynamic loading presents an
interesting challenge for a host-based context emulator.
In Section V-C, we introduce the concept of disarmed
reading, which removes the content for a code-reuse
attack and allows the application to determine whether
the suspected file forces the loading of a shared library
without ASLR. Preventing dynamic attacks is where our
approach notably differs from previous approaches [24].

C-2 Ability to seamlessly protect different application and op-
eration system versions and configurations. The address
space layout protection mechanisms and fixed address
space used in various bypass mechanisms differ within
versions and configurations. Therefore, the proxy must
dynamically construct the context of the attack to detect
attacks and not be overwhelmed with a range of false
positives. In Section V-B, we outline the design of the Pa-
rameter suspicion technique that uses the context gained

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 9 / 59

Data
Host Context

Attack Indicators

Malicious
Content

Proxy Host

Figure 1. Overview of Code Stop

from the host to make an informed decision about the
malicious nature of content.

C-3 Impact on application performance. Security and per-
formance must always be closely balanced. Code-Stop
protects client-side applications (Adobe Reader, Internet
Explorer, Microsoft Office) from attacks where the con-
tent is rendered over the network. In Section V-A, we
introduce the concept of parsing and scanning only the
most absolutely necessary critical-space in affected file-
formats (e.g., HTML, SWF, PDF, and DOCX).

IV. APPROACH

Our goal is to prevent the exploitation of a client side
application by identifying the presence of code-reuse attacks
in arbitrary data, such as an HTML document, PDF document
stream, or Flash object. We focus on these document types
since they account for 72.9% of malicious documents used in
exploit kits in 2014 [10]. To successfully identify an attack,
each input must be inspected with regard to the actual file
format and structure to reconstruct how that data would be
allocated into application memory. Figure 1 depicts the high
level overview of our Code-Stop prototype. Our prototype is
implemented on a network proxy, that scans suspected files to
identify valid addresses that correspond to code-reuse attacks.
Our approach differs from previous approaches because it in-
cludes dynamic context from the host under attack to determine
if suspected data is part of a code-reuse attack.

Our hybrid approach combines the benefits of both the
network layer and host layer to effectively identify and mit-
igate code-reuse attacks. We discuss the benefits of several
host-based defenses [7] [8] [25] [26] and network-based de-
fenses [24] [27] [28] [29] in Section VIII. However, few works
have examined the benefits of combining the network and host
together in defense of code-reuse attacks. Tzermias et al. [30]
presented a method for the identification of ROP payloads in
arbitrary data such as network traffic. However, their work
failed to address the dynamic context of the host. The dynamic
context of the host proves extremely important to monitor
as an application can be forced to load shared libraries by
processing an arbitrary document. Our work improves upon
the design of Tzermias et al. by adding dynamic context of the
host. Several optimizations arise out of our shared approach
from Tzermias et al. By adding the network layer into the host
defense, we store the record of known malicious documents.
Further, caching the result of known-malicious documents
allows the network layer to extend protection to hosts without
our prototype software.

Assumptions and Threat Model:

We make two general assumptions in our prototype design:

1) We implement our Code-Stop prototype on the 32-bit
architecture instruction set. We make the assumption that
expanding our prototype to support a 64-bit architecture
will only decrease the probability of false alarms. Sec-
tion VI-B discusses the probability of false alarms and
further explains this assumption. Further, the vast avail-
ability of exploits and ROP Chains for 32-bit applications
provided for better testing of our prototype.

2) We do not address de-obfuscation as a topic for this
paper. Rather, our prototype relies upon pdf-parser [31]
and jsunpack [32] as means for de-obfuscating content.
We make the general assumption that the proxy can de-
obfuscate content or simply block heavily obfuscated
content as already malicious in nature. Previous works
have addressed de-obfuscating malicious code from PDF
documents [33] and browser downloads [34]. Further,
Section V-A discusses Code Stop’s design for parsing
content, supporting this assumption. Further, we expand
on the limitation of de-obfuscation in Section VII. Future
work may examine de-obfuscation of malicious content
and the likelihood obfuscated content is benign.

We make the following assumptions in our threat model.
The adversary can exploit (i.e., control the flow of execution)
of a client application (under our protection). Further, the
adversary has the ability to read or infer randomized memory
from those binary and shared libraries. However, we assume
the attacker must bypass both DEP and ASLR to complete
their exploit and execute a payload (e.g., download a remote
access toolkit, add a user, or disable processes.) The trusted
computing base (TCB) includes the network proxy software
that parses the potential gadgets and the host application
that determines the context of the gadgets. We trust that
the context determined by the host application has not been
altered by a malicious administrator. Finally, we assume that
a trusted network channel exists between the host and the
network proxy. The channel is available and preserves the
traffic integrity between the proxy and the host. Given the
above-described challenges, assumptions and threat model, the
next section examines the design in detail.

V. DESIGN

The following section describes the design of our proto-
type, Code-Stop. In Section V-A, we address how the network
proxy parses the critical space of files to identify gadgets used
in Code-Reuse attacks. Section V-B proposes the concept of
parameter suspicion to identify code-reuse attacks in progress
by using the emulated context of the host. Section V-C details
disarmed reading, which disarms a malicious file in order
to safely identify mitigation bypass techniques. Section V-D
provides an example to illustrate how our prototype prevents
an attack. Finally, Section V-E discusses how to extend Code-
Stop to identify other generic exploit behaviors and operating
systems.

A. Parsing Potential Gadgets

In our prototype design, the network proxy runs an appli-
cation that parses arbitrary data for indicators of a potential
code-reuse attack. By de-obfuscating content and further de-
compiling and de-constructing specific file formats, the pro-
totype looks for arbitrary data that represents 32-bit memory

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 10 / 59

rop9 = unescape("
%u313d%u4a82%ua713%u4a82 %u1f90
%u4a80%u9038%u4a84%u7e7d%u4a80
%uffff%uffff%u0000%u0000%u0040 …. “)

0x4a82313d

 Potential
Gadget

 Javascript Stream
 PDF
File

Figure 2. PDF streams containing ROP gadgets

addresses or references to a variable that would contain a 32-
bit address. A 32-bit memory address can be constructed many
ways in memory and our parser matches regular expressions
for several methods for allocating arbitrary data as 32-bits.

Consider Figure 2 for how our prototype parses a potential
gadget out of a PDF File. In the example, our network proxy
parser application uses pdf-parser [31] to read the embedded
JavaScript inside the document. The parser then matches a reg-
ular expression for a unicode string containing two characters.
Since unicode strings are 16-bits wide, two unicode characters
are commonly used by attacks to represent a 32-bit memory
address. The parser matches the potential gadget 0x4a82313d
against the unicode string %u313d %u4a82 and passes the
potential gadget to the paramater suspicion classifier.

For our prototype, we implemented the parser to examine
browser traffic, including Internet Explorer Javascript, Adobe
Flash Vector Objects (Actionscript) and PDF Files containing
Javascript. While there are several other client side applications
- we implemeted our prototype to cover the client applications
that presented the largest surface area for recent exploits seen
in the wild. In 2015, Trend Micro observed that Internet
Explorer, Flash, and Adobe PDFs vulnerabilities accounted for
72.9% of the exploits used in the top nine exploit kits [10].

Within those specific file formats, the parser matches
JavaScript’s binary strings (BSTR) and Adobe Flash Objects
containing ActionScript code. As illustrated with the PDF
JavaScript, an attacker can cleanly construct a gadget for In-
ternet Explorer JavaScript with a binary string of two unicode
characters that refer to a 32-bit address. Although Internet
Explorer 9 removed BSTR functionality, Yu [35] discovered a
method for calling the earlier version of JavaScript on newer
browsers by adding an HTML compatibility tag. Our prototype
also decompiles Adobe Flash files and matches the embedded
ActionScript code for gadgets. ActionScript code offers similar
means to allocate arbitrary data as 32-bit addresses [36]. With
this understanding of how our Code-Stop prototype parses
allocated gadgets, the next section examines how Code-Stop
detects the generic behavior of code-reuse attacks.

B. Parameter Suspicion Classifier

In order for a code-reuse attack to allocate or change mem-
ory protections, it must make a call to a Windows API function
that manages memory (e.g., VirtualAlloc, VirtualProtect, Set-
InfoProcess.) Calling functions that allocate or change memory
require parameters such as the location of memory, size, and
bitwise value for new memory protections. These parameters
must be placed into data registers in order to be pushed onto the
call stack as parameters to the function. Rather than targeting
specific API function calls, we propose the idea of a parameter
suspicion classifier. The parameter suspicion classifier runs
entirely on the host to emulate potential gadgets. Parameter
suspicion determines if the instructions from the suspected

TABLE I. REGISTER VALUES FOR COMMON ROP CHAINS

Register VirtualAlloc() SetInfoProcess() VirtualProtect()

EAX Ptr to
VirtualAlloc

SizeOf
0x00000004

Ptr to
VirtualProtect

EBX dwSize
0x00000001

NtCurrentProcess
0xffffffff

dwSize
0x00000001

ECX flProtect
0x00000040

&ExecuteFlags
Ptr to 0x00000002 Writable Address

EDX flAllocationType
0x00001000

ProcessExecuteFlags
0x00000022)

NewProtect
0x00000040

gadgets load values into multiple general purpose registers.
Parameter suspicion overcomes the limitations of most code-
reuse defenses by identifying the anomalous characteristics of
a bypass, rather than looking for specific dangerous function
or system calls. We expand upon how and why it works, and
the probability for false positives.

To understand how parameter suspicion works, consider
Figure 3. The ROP gadgets placed onto the stack refer to in-
structions in the msvcr71.dll used by Java 1.6. The gadgets
are part of a larger chain used to execute the VirtualProtect()
function. After the proxy has parsed and sent potential gadgets
to the host, the host emulates the effects and determines the
chain loaded values into the ECX, EBX, and EDX registers.
The key insight of parameter suspicion is that we do not
need to trap the exact jump or call to the VirtualProtect()
function. Rather, we can detect the gadgets placing parameter
values into ECX, EBX, and EDX, respectively, to match the
lpAddress, dwSize, and flNewProtect parameters required by
VirtualProtect(). Using our technique we can identify any
generic function call used to bypass DEP/ASLR.

We expand this understanding to other critical functions
used to bypass DEP. Table I depicts the register values allo-
cated for the VirtualAlloc(), SetInfoProcess(), and VirtualPro-
tect() functions from ROP Chains generated by the Mona.py
toolkit (a commonly used tool to automatically build ROP
Chains) [37]. Note that each function requires a minimum of
three parameters in addition to a pointer to the critical function.
In fact, most of the 50 critical functions checked by EMET
require a minimum of three parameters. Functions that allocate
new memory and mark it as executable (e.g., VirtualAlloc,
VirtualProtect) commonly use parameters of the following
form: (1) a bitwise value for new memory protections, (2)
an address to which one might write shellcode, and (3) a
size of the memory allocated to the new region. Ultimately,
all functions that must accomplish anything of value require
multiple parameters.

Parameter suspicion does not produce significant false
positives, because the probability that a data value matches a
gadget address is very small. Consider the protection of Adobe
Reader as an example. Assume that icucnv36.dll is the
only current library available to bypass ASLR and DEP for
the Adobe Reader application. The probability that an arbitrary
eight character string corresponds to a single POP EAX; RET
sequence of instructions is represented in Fig. 1.

P (REAX) =

(
22

94

)8

∪
(
294, 912

232

)
∪
(

28

294, 912

)
(1)

We calculate this probability given that only 94 print-

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 11 / 59

BOOL$WINAPI$VirtualProtect($_In_$$$LPVOID$lpAddress,$_In_$$$SIZE_T$dwSize,$_In_$$$DWORD$flNewProtect,$
Out$$PDWORD$lpflOldProtect);

0x7c3536e3$$
0xffffffff
0x7c345255$
0x7c35218e
$
0x7c345937$
0xffffffc0
0x7c351eb1

0x7c36c5b9$
0x7c391e67$

POP$EBX;$RET$
VALUE
INCEBX;FPATAN;RET
ADD$EBX,$EAX;XOREAX,$EAX;$INC$EAX;$RET

POP$EDX;$RET$
VALUE
NEG$EDX;$RET$

POP$ECX;$RET$
WRITABLE$LOCATION$

EBX$=$0x00000001

EDX$=$0x00000040

ECX$=$0x7c391e67

dwSize

flNewProtect

lpAddress

Parameter'Suspicion

Figure 3. Parameter Suspicion used to identify msvcr71.dll ROP chain

TABLE II. LOADCONSTANT GADGETS FROM COMMON DLLS

DLL Application Size
(Bytes) Pop EAX Pop EBX Pop ECX Pop EDX

icucnv36.dll Adobe Reader 294,912 28 455 237 1
vgx.dll Adobe Flash 732,672 55 699 146 3

msvcrt.dll Visual C++ Runtime 184,320 86 358 164 22
msvcr71.dll Java 233,472 46 234 258 21

hxds.dll MS Office 564,224 33 481 345 7
PEhelper.dll IBM Forms 103,936 6 78 74 0

able ASCII characters exist and only 22 of them (0-9,A-
F,a-f) correspond to a memory address space. Further, the
Icucnv36.dll only has 294,912 unique memory locations
that point to executable code. And finally, only 28 of those
unique locations point to a POP EAX; RET gadget. Our
parameter suspicion classifier only matches when a chain of
gadgets loads constants into three or more separate memory
registers. While other operands exist (XCHG, MOV), the prob-
ability remains extremely small that three of these instructions
will be randomly constructed from an arbitrary data stream.

To understand how this applies to other applications, ex-
amine the results in Table II. These results show the frequency
of POP REG; RET instructions in some common shared
libraries discovered by the the Metasploit msfrop tool (a com-
mon tool used by hackers to find instructions for code-reuse
attacks.) Next, we examine how disarmed reading augments
our classifier to determine when exploits attempt to bypass
standard mitigations by loading shared libraries at runtime.

C. Disarmed Reading

One method commonly used by attackers forces an applica-
tion to load a library lacking the same protection mechanisms
as the application, so that the attacker escapes the sandbox of
protection. Content that forces dynamic loading presents an
interesting challenge for a host-based context emulator. The
emulator must be aware of the addresses of all shared libraries
that can be loaded dynamically by arbitrary data. Disarmed
reading allows parameter suspicion to determine when an
arbitrary file forces a protected application to load a shared
library without the same protection mechanisms (e.g., a library
without ASLR). To achieve this effect, disarmed reading re-
moves suspected gadgets from the formatted file and allows the
host to render the file hidden to the user. This removal includes
PDF streams, JavaScript memory allocations of BSTRs, and
ActionScript dynamic content. Disarmed reading allows the
host to safely inspect a disarmed file to understand if it loads
any shared libraries that lack the protection mechanisms of
the application. We expand upon disarmed reading using two
recent mitigation bypasses that highlight its necessity.

OBJ 1 0
TYPE /CATALOG
OBJ 2 0
TYPE /PAGES
OBJ 3 0
TYPE /PAGE
OBJ 4 0
TYPE /ACTION
OBJ 5 0
TYPE /STREAM /LEN 4449
OBJ 6 0
<</XFA 7 0 R>>
OBJ 7 0
TYPE /STREAM /LEN 372

OBJ 1 0
TYPE /CATALOG
OBJ 2 0
TYPE /PAGES
OBJ 3 0
TYPE /PAGE
OBJ 4 0
TYPE /ACTION

 %u313d%u4a82%ua713%u4a82
%u1f90 %u4a80

OBJ 6 0
<</XFA 7 0 R>>

 %u9090 %u9090 %u9090
%u9090 %u9090 %u9090

Figure 4. Disarmed reading of a malicious PDF

The first example considers the case where Adobe Reader
suffers from a similar bypass technique. A properly crafted
XFA tag within a PDF document can force the Adobe
Reader application to load icucnv36.dll, which lacks
ASLR [38]. For parameter suspicion to identify the gadget, it
must be aware that the formatted file has loaded the additional
shared library. Figure 4 depicts how disarmed reading handles
loading a malicious PDF. The suspected file contains seven
PDF objects: a catalogue, two pages, an action, two streams,
and an object containing the XFA tag. Code-Stop removes the
two streams when disarming the file, since streams prove to
be common locations for ROP chains and shellcode. However,
Code-Stop leaves the other objects intact. Object 6 0 contains
the XFA tag that forces the Adobe Reader application to load
icucnv36.dll. This results in disarmed reading learning
of the base address of the shared library without ASLR. It
further provides this information to parameter suspicion in
order for it to have the full context of addresses that code
exists at for the application under protection.

The second example considers the protection mechanisms
of Internet Explorer, which can be bypassed by loading the
hxds.dll by making a location reference to ms-help [22].
Because hxds.dll lacks ASLR, exploits can use fixed
addresses within hxds.dll to construct an ROP chain
capable of bypassing DEP. Parameter suspicion requires
knowledge of what code exists at specific memory locations.
Without knowing that an exploit forced Internet Explorer
to load hxds.dll at the base address of 0x51BD0000,
parameter suspicion cannot determine the emulated effect
of any gadget. Ultimately, Code-Stop allows a disarmed
version of an HTML document through the proxy such that
hxds.dll loads, but does not contain any dynamic content
that could be used to exploit the application.

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 12 / 59

HTTPGET/evil.html HTTPGET/evil.html

<html>

…try{
$$$$loca9on.href$=$'ms#help://'
}$catch$(e)${}$…$

sparkle+=$unescape(“…$
%u5ac3%u51c3
%u0040%00003…)$
…
</html>

disarmed$page malicious$page

!

parsed$poten9al$gadgets

…,$51c35ac3,00000040,$…

EDX$changed$to$0x40
value$required$for$
flNewProtect*paramater

ms#help://$loca9on$reference
loads$hxds.dll$at$base$address$
0x51000000

0x51c35ac3 POP$EDX,$RET;

0x00000040 VALUE

hdxs.dll

HTTP301redirect$/warning.html

Ini9al3request3for3exploit

Subsequent3requests3cached

HTTPGET/evil.html

HTTP301redirect$/warning.html

1 2

34

5

6

7

Figure 5. Example Detection of the Dynamically Loaded hxds.dll ROP Chain

D. Detection of an Example Attack

Figure 5 depicts how our prototype prevents an example
attack. (1) First, the victim requests the webpage evil.html that
contains an exploit with a VirtualProtect() ROP chain that loads
at runtime. (2) The proxy requests the webpage on behalf of
the client and (3) receives the html page (4) The proxy then
sends a disarmed form of the page to the client to determine
what additional libraries might be loaded when the page loads.
In this case, the location reference for ms-help:// loads a shared
library without ASLR protection. (5) The proxy parses values
that may be addresses of gadgets or part of a ROP Chain (e.g.,
- 0x51c35ac3,0x00000040). These potential gadgets are sent
to the host to determine their context. (6) The host replies with
the impact of the ROP Chain on the memory registers. In this
case, we demonstrate the part of the ROP Chain that loads the
value 0x40 into EDX as a parameter for VirtualProtect(). (7)
After classifying the malicious impact of the ROP Chain, the
proxy replies with a HTTP 301 redirect to a warning page. On
subsequent requests - the proxy replies with the HTTP 301.

E. Extending Code-Stop

We now examine how the design of Code-Stop allows us
to identify the distinct JOP code-reuse attack and other generic
exploit behavior.

JOP Classifier: Jump-Oriented Programming (JOP)
presents a unique code-reuse attack [39]. Instead of using
gadgets ending in return instructions, JOP uses register-indirect
jumps to chain together gadgets. JOP’s design contains two
types of gadgets: functional gadgets and dispatcher gadgets.
Dispatcher gadgets essentially maintain a virtual program
counter, advancing the attack and allowing functional gadgets
to execute. A dispatcher gadget may prove as simple as ADD
EDX, 4; JMP [EDX], which repeatedly advances the
virtual program counter by a constant value. Since dispatcher
gadgets must alternate functional gadgets, we implement a
classifier that identifies JOP similar to parameter suspicion.
To detect JOP, Code-Stop identifies the alternating dispatcher
gadgets by manipulation of a single register, and then a jump
instruction. As with parameter suspicion, there is a negligible
likelihood that a random string contains alternating addresses

!0x76BA9090!
^0x3C900063!
^0x3C5200B6^!!

90!90!BA!76!
35!63!00!90!3C!
35!B6!00!52!3C!35!!

90! ! ! !NOP!
90! ! ! !NOP!
BA!76356300!!MOV,!EDX!00633576!
90! ! ! !NOP!
3C!35! ! !CMP!AL,!0x35!
B6!00! ! !MOV!DH,0!
52! ! ! !PUSH!EDX!
3C!35! ! !CMP!AL,!0x35!

Figure 6. Identifying just-in-time code spraying

that point to instructions that happen to manipulate a single
register and then jump to that register.

JIT Code-Spraying Classifier: We now discuss how to
extend Code-Stop to detect other types of exploitation at-
tack vectors, including JIT-Flash. JIT-Flash sprays executable
code directly into memory. Consider the example depicted in
Figure 6. A JIT-Flash attack writes a suspected string into
memory. When Code-Stop translates the string to raw bytes,
it replaces the XOR character with the ASCII encoding value
0x35. Next, we evaluate the bytes as variable-length x86 in-
structions. Emulating the instructions determines that the attack
moves the value 0x00633576 into EDX and subsequently
pushed that value onto the stack. To detect JIT Code-Spraying,
we extend parameter suspicion to examine potential code and
determine if the value has intentionally been placed onto the
stack for malicious purposes. It is very unlikely that a benign
arrangement of bytes would accomplish the same effect.

To identify JIT Code Spraying, Code-Stop examines po-
tential JIT bytes to determine if they: 1) pop an address, 2)
push an address to the flow of execution, or 3) store values at
our heap-spray. In the case of Figure 6, the highlighted section
of code clearly pushes an address to the flow of execution and
is detected as an attack. Next, we describe our evaluation.

VI. EVALUATION

We evaluate Code-Stop by answering the following re-
search questions.

• RQ1: What is the accuracy of detecting gadgets?

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 13 / 59

• RQ2: What is the performance overhead on the client host?
• RQ3: What is the scalability of the network proxy?
• RQ4: What set of attacks can Code-Stop detect?

The following sections answers these questions and describes
the configuration of our prototype used in the evaluation.

A. Experimental Setup

We tested our prototype using the following systems, which
were configured as described below:

Network Proxy: DansGuardian 2.10.1.1, Squid Version 3.3.8
on Ubuntu 14.04 LTS. We implement our gadget parser as a
DansGuardian content-scanner via a python script that parses
suspect gadgets. The script communicates with the vulnerable
host over TCP sockets to understand the effect of the emulation
of the suspected gadgets.

Vulnerable Host: Windows 7 Service Pack 1. We installed
applications that are known to be vulnerable, including Adobe
Reader 9.0, Internet Explorer 8.0 and 11.0, JRE-1.6, and
Microsoft Office 2010. It is necessary to test using these
specific application versions to ensure we can properly test
ROP chains from icucnv36.dll, msvcr71.dll, and
hxds.dll. Additionally, we installed a third-party browser
help object IBM Forms Viewer 4.0.0, which installed the
pehelper.dll that is compiled without ASLR support. The
host runs a Python script that determines the emulated impact
of potential gadgets and communicates with the network proxy.

B. RQ1: Accuracy of Detecting Gadgets

The first part of our evaluation investigates the accuracy
of our prototype to detect gadgets in PDF documents. We
compare three cases: (a) matching a string that contains
a hexadecimal address; (b) matching a string that contains
a hexadecimal address corresponding to the address space
of Adobe Acrobat Reader and its shared libraries; and (c)
matching using parameter suspicion. In doing so, we show
the benefit of Code-Stop over naive approaches.

Datatasets: We utilize the following datasets to illustrate the
accuracy of our prototype.

• Contagio Datasets: The Contagio Benign Dataset consists of
9,000 known benign PDF documents from March 2013. The
Contagio Malware Repository Team collected the dataset
and published it for the specific purpose of testing security
products for false positives. We used the dataset to ensure
our prototype did not falsely detect benign documents as
malicious in nature. In addition, the Contagio Team pub-
lished a smaller dataset of 109 complex PDF documents
that contained shockwave flash. This dataset was included
for the specific testing of larger PDF files that contained
large amounts of arbitrary data.

• VirusTotal Dataset: The VirusTotal Dataset includes 1,000
known benign documents from September 2015. The Virus-
Total team made their private API available for testing our
prototype. Using their private API, we queried for known
benign documents that had been uploaded to their website
within the last thirty days.

• Metasploit Dataset: We extended the Metas-
ploit adobe toolbutton.rb exploit to include five additional

ROP Chains for shared libraries without ASLR. We then
randomly generated 550 unique malicious PDF documents
with different payloads and different ROP Chains. Note
that this is the only controlled dataset in our experiment
evaluation as all PDFs contain known ROP chains. Using
a controlled dataset, we can test Code-Stop’s ability to
detect code-reuse attacks since the application and operating
system versions must match that of the attack. Alternatively,
a wild dataset would encompass attacks against multiple
versions of applications and operating systems.

Results: Table III depicts the results of executing the string
matching algorithms on our dataset. The first row demonstrates
that simply matching strings containing hexadecimal addresses
produces a significant number of false positives. Refining the
matching to values that are valid address ranges significantly
reduces the number of false positives, but there are still some.
However, using parameter suspicion’s heuristic of identifying
three register changes; we do not detect false positives.

C. RQ2: Host Performance Overhead

Next, we measured the performance overhead on the client
to determine any negative impact when rendering content. We
focused on JavaScript performance, since Code-Stop heavily
parses and examines JavaScript for potential code-reuse at-
tacks. We measured JavaScript performance using the Sun
Spider JavaScript Benchmarking Suite [40]. Sun Spider mea-
sures the performance of the host executing core JavaScript
language, focusing on the typical code implemented in real-
world situations. We compared the Sun Spider results for the
following scenarios: (a) a normal host (baseline), (b) a host
using a Squid Proxy, (c) a host using the SquidClamAV Proxy
with Avast anti-virus scanning, and (d) our Code-Stop solution.
Sun Spider reports 95% confidence intervals as percentages.

Results: Table IV shows that Code-Stop suffers a minimal
performance overhead penalty, comparable to the results of the
SquidClamAV Proxy. Ultimately, the performance overhead is
negligible, since the difference between the baseline and Code-
Stop is less than 8ms, which is imperceptible to the end user.

D. RQ3: Network Proxy Scalability

In the previous experiment, we investigated the perfor-
mance overhead on a client protected by Code-Stop. However,
in a typical deployment, there will be many clients protected by
the Code-Stop proxy. Therefore, it is important to characterize
the scalability of Code-Stop to many clients. The experiment
measured the average time to download a 10MB PDF file
through the same four scenarios considered in Section VI-C.

We measured the average time to initiate and complete a
download of the PDF given 1,5,10,15,20 and 25 concurrent
users repeatedly downloading an uncached copy of the PDF
over a period of 5 minutes. During the Code-Stop test, this
resulted in the sum users downloading the 10MB file over
7,500 times over a period of 300 seconds.

Results: Figure 7 demonstrates that Code-Stop scales similar
to a typical proxy configuration and an anti-virus solution. In
an environment with 25 concurrent users, the time to download
a 10MB document averaged 0.978±0.129 seconds. In con-
trast, hosts under Code-Stop protection averaged 1.968±0.262

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 14 / 59

TABLE III. CODE-STOP PARAMETER SUSPICION DETECTION IN BENIGN AND MALICIOUS DATASETS

Total Files
Tested

Total String
Matches

Files with String
Matches

Total Strings
in Address Space

Files with Strings
in Address Space

Files Matched
by Parameter Suspicion

Contagio Benign Dataset 9,000 3,249,338 8,977 5,286 494 0
Contagio Complex Dataset 109 8,853 104 35 24 0
VirusTotal Benign Dataset 1,001 3,096,287 987 3,309 191 0
Metasploit Malicious Dataset 550 63,170 550 8,651 550 550

TABLE IV. RESULTS OF SUNSPIDER PERFORMANCE TEST

Without
Proxy

Standard
Proxy

SquidClamAV
Proxy

Code-Stop
Proxy

Time (ms) 105.9ms ± 1.2% 106.5ms ± 1.2% 112.3ms ± 3.7% 113.8ms ± 2.8%

0!

0.2!

0.4!

0.6!

0.8!

1!

1.2!

1.4!

1.6!

1.8!

2!

1! 5! 10! 15! 20! 25!

Ti
m
e!
(S
ec
)!

Concurrent!Users!

Without!Proxy!

Squid!Proxy!

Squid!ClamAV!Proxy!

CodevStop!Proxy!

Figure 7. Performance impact with concurrent users

seconds. Both an anti-virus proxy and our prototype roughly
double the time to complete the request to download a doc-
ument. We argue that our solution proves superior to anti-
virus scanning since the anti-virus scanning done on the proxy
cannot take into account the full context of the host.

E. RQ4: Coverage

Finally, we evaluated the coverage of our Code-Stop proto-
type. Coverage defines the set of attacks our system can detect
under ideal conditions. We evaluated parameter suspicion
alone, as well as its use in combination with disarmed reading
to detect code-reuse attacks that rely upon loading shared
libraries without protection. Further, we measured Code-Stop
against a set of five unique shared libraries that lack ASLR. We
argue that Code-Stop is not limited to the method, the library,
or the individual gadgets used in the code-reuse attack but is
a technique that is applicable to a broader set of attacks.

Dataset: We evaluated how parameter suspicion detected ROP
chains from different shared libraries. Specifically, we sought
libraries that had one or more of the following characters: (1)
compiled without ASLR (2) used with multiple different appli-
cations (3) contains the necessary instructions to generate an
ROP chain, and (4) has been seen in use in the wild in attacks.
Thus we selected the following libraries icucnv36.dll,
cryptocme2.dll, grooveutil.dll, pehelper.dll,
and msvcr71.dll respectively. Section VI-B previously
demonstrated that our prototype detected malicious PDFs with
ROP chains from the first three libraries with a malicious PDF.
To further demonstrate the coverage, we modified the script for
the Metasploit ie cgenericelement uaf.rb exploit for Internet
Explorer to include new ROP chains from pehelper.dll,
msvcr71.dll, and grooveutil.dll. In doing this, we
demonstrate that Code-Stop is applicable to a broader set of
applications since the technique detects the general behavior

of code-reuse attacks and is not unique to any one application
or shared library.

Results: Code-Stop detected the gadgets from the shared
libraries of pehelper.dll, msvcr71.dll, and
grooveutil.dll. Since these libraries are from a
third-party application, the operating system, and a separate
Microsoft application we can argue that the results indicate
that parameter-suspicion covers the broad spectrum of shared
libraries used to implement code-reuse attacks.

VII. LIMITATIONS AND FUTURE WORK

Limitations of 32-Bit Architecture: For simplicity, we imple-
mented the Code-Stop prototype against the 32-bit architecture.
Extending Code-Stop to 64-bit increases the accuracy of the
system, by decreasing the probability that a random string
would refer to an address in the 64-bit address space.

Limitations of De-obfuscation: Additionally, we do not ad-
dress obfuscation in the design of Code-Stop. Other works
have examined the de-obfuscation of malicious JavaScript,
PDF document streams, or Adobe Flash ActionScript [32] [41].
Implemented as a proxy, Code-Stop can prevent access to files
it is unable to de-obfuscate. Future work may examine the
concept of a quarantined machine that can emulate the full
effect the result of rendering the obfuscated file and determine
if the file attempts to allocate potential gadgets into memory.

Extending to Other Operating Systems: Further, we im-
plemented the Code-Stop host software only as a Microsoft
Windows application. Extending the host software to other
platforms allows the possibility to protect against platform-
unique attacks, such as S-ROP. In this paper, we addressed
classifiers for generic code-reuse attacks and specific cases for
ROP and JOP. Future work may extend classifiers to identify
other attack vectors outside of the scope of code-reuse attacks
as demonstrated with our JIT Code-Spraying classifier.

Allowing the Host to Proxy Content: Last, we implemented
the gadget parser on the proxy and rely on the host to deliver
context. Both could be implemented on the host. Splitting
the design allows both the network and the host to share the
performance overhead and prevents the attacker from opting
out of both defense mechanisms. Future work may examine
the host both parsing gadgets and examining context.

VIII. RELATED WORK

In the following section, we describe the related work that
addresses the shortcomings of defense strategies against code-
reuse attacks. First, we examine the recent work into mitigating
code-reuse using compiler- and operating system- based mech-
anisms. Next, we examine defenses utilizing the network layer.
We believe our solution can combine the benefits of both the
host and network layer defenses to mitigate code-reuse attacks.

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 15 / 59

A. Host-Level Code-Reuse Prevention

Because of ROP’s success in bypassing DEP, several papers
have examined means for defending against ROP [4] [42] [43].
Onarlioglu et al. [5] presented G-Free to counter ROP gadgets
by removing unaligned gadgets altogether, and by removing
a portion of aligned gadgets from binaries at compile-time.
Alignment checking proved to be one of the more trivial but
successful mechanisms for defeating ROP gadgets. Gadgets
can consist of different offsets inside valid instructions. G-Free
extends GCC to ensure a gadget-free binary. However, G-Free
fails to protect already compiled binaries or shared libraries.

Other mechanisms such as kBouncer, ROPGuard, and
ROPecker use the processor’s Last Branch Recording (LBR)
functionality to heuristically examine control flow for gad-
gets [25]. kBouncer [26] examines the LBR for fifty-two
WinAPI functions considered harmful. RopGuard [7] expands
upon this by performing past and future control flow analysis
and static checks. By preceding protected API calls, it ensures
that an attacker cannot divert into a protected function. Fur-
thermore, RopGuard performs checks to ensure a process does
not attempt to make the stack executable by disabling DEP.
ROPecker [8] attempts to combine the benefits of RopGuard
and kBouncer by examining the LBR control-flow simulation.
However, the LBR defenses have proven trivial to bypass
by clearing the LBR. Schustere et al. [25] demonstrated that
both i-long-jumps and LBR flushing gadgets can defeat the
effectiveness of any mitigation strategy that relies on the LBR.

Several recent defenses have prevented memory disclosures
that could be used to create gadgets just-in-time (JIT). Hi-
deM [44] uses a split translation look-aside buffer to fetch
read and executable memory separately. However, Crane et
al. [45] noted that the split TLB technique does not work
on recent x86 processors, since most processors released after
2008 contain a unified second level TLB. In contrast, Crane et
al. [45] presented Redactor that successfully disassembles code
pages and identifies JIT-ROP gadgets dynamically at runtime.
Additionally, De Groef et al. [9] presented a countermeasure
for JIT-ROP gadgets. When faced with the difficult problem
that JIT gadgets can bypass ASLR and W⊕X policies, De
Groef and his team implemented a run-time monitor to prevent
JIT ROP. The monitor uses a series of checks against any
system call generated from the stack or heap, in order to
determine the original calling function. However, DeMott [3]
demonstrated bypassing caller check monitors by borrowing
from valid code that makes calls to protected APIs.

B. Network-Level Exploit Prevention

Several checks can be performed at the network-layer to
prevent the successful exploitation of hosts. Early, signature-
based checks identified specific x86 instructions commonly
used in malicious shellcode. However, the vast abundance
of code-obfuscation techniques made these early checks easy
for an attacker to bypass. One of the earlier methods for
detection improved on such techniques by using a NIDS-
embedded CPU emulator [27]. This emulator executed po-
tential instructions with the intent of identifying polymorphic
shellcode that evaded signature-based detection. In a similar
approach, SigFree [28] presented a model for implementing a
proxy-based firewall. This firewall successfully identified and
filtered client-side exploits by detecting code and examining

instructions using a process of code abstraction. With the
extensive amount of client-side code executing in the context
of the modern browser, the 2006 results appear to be only
applicable in theory.

In 2010, researchers developed the JSAND toolkit [29] to
emulate JavaScript and reliably identify malicious code based
on machine-learning. However, this approach is limited to
JavaScript and does not affect the large volume of exploits
delivered via modern plug-ins, such as Adobe Flash. Support
Vector Machines (SVMs) shellcode detection egingines use
modern emulation to identify key instructions commonly used
in shellcode [46]. Polychronakis and Keromytis [24] specif-
ically proposed a network tool that could identify potential
ROP Gadgets, but did so without dynamic context from the
host. We argue that the shortcomings of the host-layer and
network-layer defenses can be addressed by using the network
to defend with the context of the host.

IX. CONCLUSION

This paper presented Code-Stop, a network and host-based
cooperative system for defending against client-side attacks
that bypass exploit mitigation strategies using code-reuse.
We introduced the concept of parameter suspicion classifier
to identify code-reuse attacks. With parameter suspicion, we
introduced the idea of identifying when an attacker attempts
to call a Windows API function with specific parameters
to allocate memory or change memory protections. Rather
than identifying the specific call to a particular function,
parameter suspicion identifies code-reuse attacks by emulating
the behavior of suspected instructions, gained from the context
of the destination host. Parameter suspicion identifies when
instructions place parameters onto the stack as part of a code-
reuse attack to call a Windows API function to allocate or
change memory. By examining the host context, Code-Stop
can effectively prevent client-side attacks from reaching the
intended victim. We implemented a prototype of Code-Stop,
and verified the ability to mitigate exploits against Internet
Explorer, Adobe Reader, and Microsoft Office applications.
Our evaluation showed that Code-Stop successfully prevented
code-reuse attacks without risk of false-positives. With the
ability to detect code-reuse attacks and mitigate against previ-
ously unseen attack vectors, Code-Stop is a practical solution
for enhancing the security of client-side applications.

REFERENCES

[1] Microsoft Corporation, “BlueHat Prize Winners Announced,”
Aug 2012, Retrieved: April 10, 2016. [Online]. Available:
http://www.microsoft.com/security/bluehatprize/

[2] H. Shacham et al., “On the Effectiveness of Address-Space Random-
ization,” in Proc. of the ACM conference on Computer and communi-
cations security, Oct 2004, pp. 298–307.

[3] J. DeMott, “Bypassing EMET 4.1,” Bromium Labs, Feb
2014, Retrieved: April 10, 2016. [Online]. Available:
http://labs.bromium.com/2014/02/24/bypassing-emet-4-1/

[4] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization,” in Proc. of the IEEE Symposium on Security and
Privacy, 2012, pp. 601–615.

[5] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-
Free: Defeating Return-oriented Programming Through Gadget-less
Binaries,” in Proc. of the Annual Computer Security Applications
Conference (ACSAC), 2010, pp. 49–58.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 16 / 59

[6] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
Exploit Mitigation Using Indirect Branch Tracing,” in Proc. of the
USENIX Conference on Security, 2013, pp. 447–462.

[7] I. Fratric, “Runtime Prevention of Return-Oriented Programming
Attacks,” in Microsoft’s BlueHat Prize - Black Hat USA 2012. June,
2012. [Online]. Available: https://github.com/ivanfratric/ropguard

[8] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “ROPecker: A
generic and practical approach for defending against ROP attacks,” in
Proc. of the Symposium on Network and Distributed System Security
(NDSS), 2014, pp. 763–780.

[9] W. De Groef, N. Nikiforakis, Y. Younan, and F. Piessens, “Jitsec: Just-
in-time security for code injection attacks,” in Benelux Workshop on
Information and System Security (WISSEC), Nov 2010, pp. 1–15.

[10] J. C. Chen and B. Li, “Evolution of exploit kits : Exploring past trends
and current improvements,” Trend Micro, Tech. Rep., 2015.

[11] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error
Exploits,” in Proc. of the 12th USENIX security symposium, vol. 120.
Washington, DC., Aug 2003, pp. 105–120.

[12] PaX Team, “Pax address space layout randomization (aslr),”
Mar 2003, Retrieved: April 10, 2016. [Online]. Available: http:
//pax.grsecurity.net/docs/aslr.txt

[13] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address Space
Layout Permutation (ASLP): Towards Fine-Grained Randomization of
Commodity Software,” in Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2006, pp. 339–348.

[14] A. Sotirov and M. Dowd, “Bypassing browser memory protections in
windows vista,” in Blackhat USA, Aug 2008.

[15] T. Haq, “Internet explorer 8 exploit found in watering hole campaign
targeting chinese dissidents,” Mar 2013, Retrieved: April 10, 2016.
[Online]. Available: https://www.fireeye.com/blog/threat-research/
2013/03/internet-explorer-8-exploit-found-in-watering-hole-campaign-
targeting-chinese-dissidents.html

[16] T. OConnor, “Nuclear Scientists, Pandas and EMET Keeping Me Hon-
est,” SANS Internet Storm Center, Tech. Rep., May 2013, Retrieved:
April 10, 2016.

[17] D. Litchfield, “Buffer Underruns, DEP, ASLR and improving the Ex-
ploitation Prevention Mechanisms (XPMs) on the Windows platform,”
in Next Generation Security Software, Sep 2005.

[18] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit Hardening
Made Easy,” in Proc. of the USENIX Security Symposium, Aug 2011,
pp. 25–41.

[19] P. Team, “Pax non-executable pages design & implementation,”
May 2003, Retrieved: April 10, 2016. [Online]. Available: http:
//pax.grsecurity.net/docs/noexec.txt

[20] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86),” in Proc. of the ACM
conference on Computer and communications security, Oct 2007, pp.
552–561.

[21] D. Dai Zovi, “Practical return-oriented programming,” 2010, Retrieved:
April 10, 2016. [Online]. Available: https://www.trailofbits.com/
resources/practical rop slides.pdf

[22] P. Anwar, “Bypassing Microsoft Windows ASLR with a little help by
MS-Help,” Aug 2012, Retrieved: April 10, 2016. [Online]. Available:
https://www.greyhathacker.net/?p=585

[23] N. Sikka, “Cve 2013 3893: Fix it workaround available,” Microsoft
Corporation, Tech. Rep., Sep 2013, Retrieved: April 10, 2016. [Online].
Available: http://blogs.technet.com/b/srd/archive/2013/09/17/cve-2013-
3893-fix-it-workaround-available.aspx

[24] M. Polychronakis and A. D. Keromytis, “ROP Payload Detection Using
Speculative Code Execution,” in Proc. of the International Conference
on Malicious and Unwanted Software (MALWARE), 2011, pp. 58–65.

[25] F. Schuster et al., “Evaluating the Effectiveness of Current Anti-ROP
Defenses,” in Research in Attacks, Intrusions and Defenses, vol. 8688,
2014, pp. 88–108.

[26] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-Assisted Fine-
Grained Control-Flow Integrity: Towards Efficient Protection of Em-
bedded Systems Against Software Exploitation,” in Proc. of the Annual
Design Automation Conference, 2014, pp. 1–6.

[27] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “Network-
Level Polymorphic Shellcode Detection Using Emulation,” in Proc.
of Detection of Intrusions and Malware & Vulnerability Assessment.
Springer, Jul 2006, pp. 21:1–21:3.

[28] X. Wang, C.-C. Pan, P. Liu, and S. Zhu, “Sigfree: A Signature-Free
Buffer Overflow Attack Blocker,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, Jun 2010.

[29] M. Cova, C. Kruegel, and G. Vigna, “Detection and Analysis of Drive-
by-download Attacks and Malicious JavaScript Code,” in Proc. of the
International Conference on World Wide Web (WWW), 2010.

[30] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos,
“Combining static and dynamic analysis for the detection of malicious
documents,” in Proc. of the Fourth European Workshop on System
Security. ACM, 2011, p. 4.

[31] D. Stevens, “Malicious pdf documents explained,” Security & Privacy,
IEEE, vol. 9, no. 1, 2011.

[32] B. Hartstein, “Jsunpack: An automatic javascript unpacker,” in
ShmooCon convention, 2009.

[33] N. Šrndic and P. Laskov, “Detection of malicious pdf files based on
hierarchical document structure,” in Proc. of the 20th Annual Network
& Distributed System Security Symposium. Citeseer, 2013.

[34] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection
attacks,” in Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2009, pp. 88–106.

[35] Y. Yu, “Rops are for the 99 percent,” Mar 2014, Retrieved: April 10,
2016. [Online]. Available: https://cansecwest.com/slides/2014/ROPs
are for the 99 CanSecWest 2014.pdf

[36] M. S. Xiaobo Chen, Dan Caselden, “New zero-day exploit targeting
internet explorer versions 9 through 11 identified in targeted
attacks,” Apr 2014, Retrieved: April 10, 2016. [Online]. Available:
https://www.fireeye.com/blog/threat-research/2014/04/new-zero-day-
exploit-targeting-internet-explorer-versions-9-through-11-identified-
in-targeted-attacks.html

[37] P. V. Eeckhoutte, “Corelan team exploit development swiss army
knife,” 2015, Retrieved: April 10, 2016. [Online]. Available:
https://github.com/corelan/mona/blob/master/mona.py

[38] J. V. Soroush Dalili, sinn3r, “Adobe reader toolbutton use
after free,” Nov 2013, Retrieved: April 10, 2016. [On-
line]. Available: http://www.rapid7.com/db/modules/exploit/windows/
browser/adobe toolbutton

[39] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
Programming: A New Class of Code-reuse Attack,” in Proc. of the ACM
Symposium on Information, Computer and Communications Security
(ASIACCS), 2011, pp. 30–40.

[40] J. K. Martinsen, H. Grahn, and A. Isberg, “A Comparative Evaluation of
JavaScript Execution Behavior,” in Proc. of the International Conference
on Web Engineering, 2011, pp. 399–402.

[41] J. M. Esparza, “Obfuscation and (Non-) Detection of Malicious PDF
Files,” in CARO 2011 Workshop in Prague, Czech Republic, 2011.

[42] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching
the Gadgets: On the Ineffectiveness of Coarse-grained Control-flow
Integrity Protection,” in Proc. of the USENIX Conference on Security
Symposium, 2014, pp. 01–416.

[43] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A Detection
Tool to Defend Against Return-oriented Programming Attacks,” in Proc.
of the ACM Symposium on Information, Computer and Communica-
tions Security, 2011, pp. 40–51.

[44] J. Gionta, W. Enck, and P. Ning, “Hidem: Protecting the contents of
userspace memory in the face of disclosure vulnerabilities,” in Proc.
of the ACM Conference on Data and Application Security and Privacy
(CODASPY), 2015, pp. 325–336.

[45] S. Crane and et al., “Readactor: Practical Code Randomization Resilient
to Memory Disclosure,” in Proc. of the IEEE Symposium on Security
and Privacy, 2015, pp. 763–780.

[46] Y. Hou, J. W. Zhuge, D. Xin, and W. Feng, “SBE : A Precise Shellcode
Detection Engine Based on Emulation and Support Vector Machine,”
in Proc. of the International Conf. on Information Security Practice and
Experience, 2014, pp. 159–171.

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 17 / 59

Detecting Obfuscated JavaScripts using Machine Learning

Simon Aebersold∗, Krzysztof Kryszczuk∗, Sergio Paganoni†, Bernhard Tellenbach∗, Timothy Trowbridge∗
∗Zurich University of Applied Sciences, Switzerland

†GovCERT.ch, Reporting and Analysis Centre for Information Assurance MELANI

Abstract—JavaScript is a common attack vector for attacking
browsers, browser plug-ins, email clients and other JavaScript
enabled applications. Malicious JavaScripts redirect victims to
exploit kits, probe for known vulnerabilities to select a fitting
exploit or manipulate the Document Object Model (DOM) of
a web page in a harmful way. Malicious JavaScript code is
often obfuscated in order to make it hard to detect using
signature-based approaches. Since the only other reason to use
obfuscation is to protect intellectual property, the share of scripts
which are both benign and obfuscated is quite low, and could
easily be captured with a whitelist. A detector that can reliably
detect obfuscated JavaScripts would therefore be a valuable tool
in fighting malicious JavaScripts. In this paper, we present a
method for automatic detection of obfuscated JavaScript using a
machine-learning approach. Using a dataset of regular, minified
and obfuscated samples from a content delivery network and
the Alexa top 500 websites, we show that it is possible to
distinguish between obfuscated and non-obfuscated scripts with
precision and recall around 99%. We also introduce a novel set
of features, which help detect obfuscation in JavaScripts. Our
results presented here shed additional light on the problem of
distinguishing between malicious and benign scripts.

Index Terms—Computer security; Machine learning; Pattern
analysis; Classification algorithms; JavaScript, Random Forest;
Malicious

I. INTRODUCTION

JavaScript is omnipresent on the web. Almost all websites
make use of it and there are a lot of other applications,
such as Portable Document Format (PDF) forms or HyperText
Markup Language (HTML) e-mails, where JavaScript plays
an important role. This strong dependence creates an attack
opportunity for individuals looking for an entry point into
a victims system. The main functionalities of a malicious
JavaScript are reconnaissance and exploitation, and cross-site
scripting (XSS) vulnerabilities in web applications.

JavaScript exploit kits belong to the first category of func-
tionality and typically contain code for identification of the
victim’s browser and its plug-ins. Most of the malicious
JavaScripts are obfuscated in order to hide what they are doing
and to evade detection by signature based security systems.
Since the only other reason to use obfuscation is to protect
intellectual property, the share of benign obfuscated scripts is
quite low and could probably be captured with a whitelist. A
detector that can reliably detect obfuscated JavaScripts would
therefore be a valuable tool in fighting malicious JavaScripts.

The most common method to address the problem of ma-
licious JavaScripts is having malware analysts write rules for
anti-virus or intrusion detection systems that identify common
patterns in obfuscated (or non-obfuscated) malicious scripts.
While signature based detection is good at detecting known
malware, it often fails to detect it when obfuscation is used to

alter the features captured by the signature [1]. Furthermore,
keeping up with the attackers and their obfuscation techniques
is a time consuming task. This is why a lot of research effort
is put into alternative solutions to identify/classify malicious
JavaScripts. One area is to automate at least parts of the
manual analysis required to identify whether or not a script
is malicious and to craft suitable signatures. JSDetox [2] and
Wepawet [3] are two solutions that help with the dynamic
analysis of JavaScript samples.

Likarish et al. [4] take another approach and apply machine
learning algorithms to detect obfuscated malicious JavaScript
samples. The authors use a set of 15 features like the number
of strings in the script or the percentage of white-space that
are largely independent from the language and JavaScript
semantics. The results from their comparison of four machine
learning classifiers (naive bays, ADTree, SVM and RIPPER)
are very promising: the precision and recall (see III-E for a
definition) of the SVM classifier is 92% and 74.2%. But since
their study originates from 2009, it is unclear how recent trends
like the minification of JavaScripts (see II-A) would impact on
their results.

A more recent study from Kaplan et al. [5] addresses
the problem of detecting obfuscated scripts using a Bayesian
classifier. They refute the assumption made by previous pub-
lications that obfuscated scripts are mostly malicious and
advertise their solution as filter for projects where users can
submit applications to a software repository such as a browser
extension gallery for browsers like Google Chrome or Firefox.
Also techniques such as AdSafe [6], severely restrict what is
allowed JavaScript and what not to simplify analysis.

Wang et al. [7] propose another machine learning based
solution to separate malicious and benign JavaScript. They
compare the performance of ADTree, NaiveBayes and SVM
machine learning classifiers using a set of 27 features of which
some are similar to those of Likarish et al. [4]. Their results
suggest a significant improvement over the work of Likarish
et al.

In this paper, we present a method for automatic detection of
obfuscated JavaScript using a machine-learning approach. We
confirm results from other researchers that using approaches
based on machine learning, it is possible to distinguish be-
tween obfuscated and non-obfuscated scripts with precision
and recall above 95%. Our results complement previous re-
search in that they expose a substantial challenge to obtain
those good results. Our results suggest that it is difficult to train
detectors to be robust versus changes in the way obfuscation
is done. If there are no samples of scripts obfuscated with
a specific obfuscation tool or method, detection rates drop

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 18 / 59

significantly.
Today’s JavaScript is mostly minified code. The second

contribution of this paper is an investigation whether mini-
fication has an impacts on the detection of obfuscated JS
using machine learning techniques. Finally, we shed additional
light on the problem of distinguishing between malicious and
benign scripts using a custom database. In our experiments we
could not confirm the promising results from previously pub-
lished research, where similar features and machine learning
approach was taken.

The rest of the paper is organized as follows. Section II
briefly explains the different JavaScript classes, which we
aimed to separate in this work. In Section III, we discuss the
machine-learning approach adopted in the presented work, as
well as the discriminatory features and classifiers we used.
Section IV presents our results, followed by a discussion and
conclusions in Section V.

II. SYNTACTIC AND FUNCTIONAL VARIETIES OF
JAVASCRIPT

The client-side JavaScript for JavaScript-enabled applica-
tions can be attributed to one of the following four classes:
regular, minified, obfuscated and malicious. The regular class
contains the scripts as they have been written by their devel-
opers. These scripts are typically easy to read and understand
by human beings. Obfuscation and minification are code
modifications that change the syntax but not the functionality
of the code. In this work, we refer to different syntactic and
functional varieties of JavaScript as classes.

A. Minification

Since the introduction of the YUI Compressor [8] and other
minification tools, more and more JavaScript in the Internet
is minified. It is considered good practice to concatenate and
minify JavaScript files to arrive at smaller file sizes and fewer
requests. Minification removes spaces, line breaks and renames
functions and variables to obtain a more compact version of
the script. While this makes the scripts harder to read and
understand for a human, the program flow remains the same.

B. Obfuscation

In contrast to minifiers, obfuscation tools do modify the
program flow with the goal to make it hard to understand
while keeping the original functionality. Many obfuscation
techniques exist. For example, encoding obfuscation encodes
strings using hexadecimal character encoding or Unicode
encoding to make strings harder to read. Other obfuscation
steps involve hiding code in data to execute it later using the
eval JavaScript function. The following listing shows a sample
use of the latter technique:

1 var a = "ale";
2 a += "rt(";
3 a += "’hello’";
4 a += ");";
5 eval(a);

Listing 1. A simple example for data obfuscation

C. Malicious vs benign

The dichotomy benign/malicious is of functional rather than
syntactic nature. In contrast to the regular, minified and obfus-
cated class, scripts in the malicious class can have a regular
form or make use of minifiers or obfuscators. This makes
it difficult to detect those scripts using features that focus
on differentiating the first three classes only. Previous work
sometimes conflates obfuscation with maliciousness. In this
work and in prior art (see [5]), it is explicitly stated that neither
all obfuscated code is malicious nor is all malicious code
obfuscated. Although formally speaking malicious JavaScript
does not have to be obfuscated, in practice, it usually is.

III. MACHINE LEARNING APPROACH TO JAVASCRIPT
CLASSIFICATION

In order to evaluate the feasibility and accuracy of distin-
guishing between different classes of JavaScript, we adopted a
classical machine learning approach. We collected a database
containing a number of instances representing each of the
classes of interest, i.e., regular, minified, obfuscated, benign
and malicious. For each of the samples in the database we
extracted a set of discriminatory features, which we list in Ta-
ble II below. The extracted features form fixed-length feature
vectors, which in turn are used for training and evaluation of
classifiers.

A. Data Set

Our dataset consists of data from three different sources:
(1) the complete list of JavaScripts available from the jsDelivr
content delivery network, (2) the Alexa Top 500 websites
and (3) a set of malicious JavaScript samples from the Swiss
Reporting and Analysis Centre for Information Assurance
MELANI.

jsDeliver: contains a large number of JavaScript libraries
and files in both a regular and a minified version. Since the
files are subject to manual review and approval and should
not make use of obfuscation, we used the regular versions of
the files as a basis for our evaluation. After a preprocessing
step including rule-based filtering, de-duplication as well as
manual sampling to check and make sure that the assumed
properties (minified, obfuscated or malicious) are met,
we generated three additional file sets from these files.
For the first set, we processed the files with uglifyjs [9],
the most popular JavaScript minifier to obtain a minified
version of them. uglifyjs works by extracting an abstract
syntax tree (AST) from the JavaScript source and then
transforming it to an optimized (smaller) one. For the second
and third set, we used the Dean Edwards’ Packer [10] and
javascriptobfuscator.com [11] to create obfuscated versions
of these files. Note that the second and third set can also
be considered to be minified. The two obfuscators remove
whitespaces and make the scripts more compact. Scripts
that are first minified and then obfuscated look similar or
are the same as when obfuscation is applied only. Applying
obfuscation and then minification might lead to partial

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 19 / 59

de-obfuscation (e.g., decoding of encoded strings) and is
therefor unlikely to be used in practice.

Alexa Top 500: To have a more comprehensible
representation of actual scripts found on websites [12],
we created a set of files consisting of the JavaScripts
found on the Alexa Top 500 websites [13]. To extract
the scripts from these websites, we parsed them with
BeautifulSoup [14] and extracted all scripts that were either
inlined (e.g., <script>alert("foo");</script>)
or referenced via external files (e.g., <script
type="text/javascript" src="filename.js"
></script>). Since we make no assumption about the
properties of these files other than that they are non-malicious,
no preprocessing was performed except for de-duplication.

MELANI: The fileset from MELANI contains only
malicious samples. Most of the malicious samples in the set
are either JS droppers used in drive-by-download attacks or
Exploit Kits for exploiting vulnerabilities in browser plugins.
Most samples are at least partially obfuscated and seem to
make use of different obfuscation techniques and tools.

B. Preprocessing

Since a manual inspection of a random subset of the non-
minified files downloaded from jsDeliver showed that 10% of
them were minified nevertheless, we preprocessed them by
applying the following simple heuristic:

• Remove files with less than 5 lines
• Remove files if less than 1% of all characters are spaces.
• Remove files where more than 10% of all lines are longer

than 1000 characters).
While we did not inspect all of the removed files (around

10% of the files), a manual inspection of a subset of them
showed no false positives. We did not find false negatives in
the files that were not removed. It must be noted, however,
that the above heuristic may not necessary be valid for
other JavaScript datasets. If the data source contains a large
number of small JavaScript snippets, the first rule might prove
problematic.

In a next step, we used DoubleKiller [15] to remove all
duplicate files. DoubleKiller compares files based on file
name, size, modification date and content (CRC32). After
preprocessing and de-duplication of the jsDeliver fileset a total
of 4218 unique JavaScript files were left. After de-duplication
of the Alexa Top 500 fileset, a total of 9459 files remained.

C. Feature Selection

For our experiments reported in this paper, we selected a
set of 21 features derived from manual inspection, related
work ([4], [16]) and analysis of the histograms of candidate
features. For example, observations showed that obfuscated
scripts often make use of encodings using hexadecimal or
Unicode characters (F17) and often remove white spaces
(F8). Furthermore, some rely on splitting a job in a lot of
functions (F14) and almost all use a lot of strings (F7) and

TABLE I
DATA COLLECTIONS

Collection Properties #Files
jsDelivr.com regular 4218
jsDelivr.com minified (uglifyjs) 4218
jsDelivr.com obfuscated (Dean Edwards Packer) 4218
jsDelivr.com obfuscated (javascriptobfuscator.com) 4218
Alexa Top 500 unknown 9459
MELANI malicious, obfuscated 132

are lacking comments (F9). An example of a comparison of
feature distributions across classes is shown in Figure 1. Here,
it can be noted that if a script has 70% or more of its characters
in strings, this is a strong indication that the file is obfuscated
or malicious.

Fig. 1. Histogram for feature F7: The share of scripts that have x% of their
characters in strings.

Table II lists the discriminatory features we used for training
and evaluation of the classifiers in the reported experiments.
These features are complemented with 26 features reflecting
the frequency of 26 different JavaScript keywords: break,
case, catch, class, continue, do, else, false, finally, for, if,
instanceof, new, null, return, switch, this, throw, true, try,
typeof, var, while, toString, valueOf and undefined. While
the present set yielded promising results in our experiments,
further investigations are required to determine an optimal set
of classification features for the problem. The features labeled
as ’new’ in Table II are a novel contribution of the present
paper. The special JavaScript elements used in feature F15
are elements often used and renamed (to conceal their use) in
obfuscated or malicious scripts. This includes the following
functions, objects and prototypes:

• Functions: eval, unescape, String.fromCharCode,
String.charCodeAt

• Objects: window, document
• Prototypes: string, array

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 20 / 59

TABLE II
DISCRIMINATORY FEATURES

Feature Description Used in:
F1 total number of lines [4]
F2 avg. # of chars per line [4]
F3 # chars in script [4]
F4 % of lines ¿1000 chars new
F5 Shannon entropy of the file [16]
F6 avg. string length [4]
F7 share of chars belonging to a string new
F8 share of space characters [4]
F9 share of chars belonging to a comment [4]
F10 # of eval calls divided by F3 new
F11 avg. # of chars per function body new
F12 share of chars belonging to a function

body
new

F13 avg. # of arguments per function [4]
F14 # of function definitions divided by F3 new
F15 # of special JavaScript elements divided

by F3
new

F16 # of renamed special JavaScript elements
divided by F3

new

F17 share of encoded characters (for example
\u0123 or \x61)

[4]

F18 share of backslash characters new
F19 share of pipe characters new
F20 # of array accesses using dot or bracket

syntax divided by F3
new

D. Feature Extraction

To extract the above features, we implemented a Node.js
application traversing the abstract syntax tree (AST) generated
by Esprima [17], a JavaScript parser compatible with Mozilla’s
SpiderMonkey Parser API [18]. Traversing the AST and
extracting all of the above features for an average JavaScript
library with around 20K characters takes around 330ms.

E. Machine Learning

The extracted set of feature vectors was used to train and
evaluate three different classifiers:

• Linear Discriminant Analysis (LDA) Due to it’s simple
design it avoids function overfitting. This means it is still
possible to overtrain this classifier, but only by training
insufficient amount of data.

• Random Forest (RF) Random Forest uses a tree based
approach. In comparison to decision trees it is less
prone to overfitting because it selects a random subset
of features to build multiple decision tress.

• Support Vector Machine (SVM) SVM works by search-
ing a hyperplane in a feature space that separates labels/-
classes. We use a radial basis function kernel (RBF) with
parameters γ=0.03, C=8.0 to capture non linearities.

For exhaustive details on the used classifiers, the reader is
referred to [19]. We used scikit-learn [20], which contains
the implementation of the above mentioned classifiers. We
performed following steps per experiment:

1) Normalization of the data using the StandardScaler of
scikit-learn

2) Random partitioning of the data set to be evaluated into
training and testing subsets. With one exception (see
IV-A), 60% of the data are used for training, 40% for
testing.

3) Training and testing of the classifiers. The partitioning
and the training and testing is done 10 times (10-fold
cross validation).

4) The results from the 10 rounds are averaged and the
standard deviation is calculated.

We report the (p)recision, (r)ecall, (f1)-score and (s)upport
for each considered class and considered classifier. Precision
is the number of true positives divided by the number of
true positives and false positives. Recall is the number of
true positives divided by the number of true positives and the
number of false negatives. The F1 Score conveys the balance
between precision and recall and is equal to 2∗ precision∗recall

precision+recall .
Finally, support is the total number of scripts tested for a
specific label. Note that since we used 10-fold cross-validation,
this number is the sum of the scripts tested in the 10 runs.

IV. RESULTS

In this section, we present how the partitioning of the dataset
impacts on classification accuracy and how well the classifiers
are able to distinguish obfuscated from non-obfuscated scripts.
Finally, we show our results from experiments where the
classifiers had to distinguish malicious from benign samples.

A. Partitioning and Accuracy

To check the impact of the size of the training set on the
observed accuracy, we first tested all splits from 1% to 99%
of test versus training data and calculated the share of scripts
whose label is predicted correctly. Figure 2 shows the impact
of the split of training and test data on the observed accuracy.
The x-axis shows the test dataset size in %, the y-axis shows
the accuracy in %. The training dataset size is equal to 100%
minus the test dataset size. Over 95% of the scripts are labeled
correctly for all classifiers if at least 15% of the data vectors is
used for training. At 60% training data, 2 out of 3 classifiers
reach a plateau in accuracy, hence we used 60% of our data
for training.

Fig. 2. Impact of the split of training and test data on the observed accuracy.

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 21 / 59

B. Obfuscated vs. Non-Obfuscated

To test the performance of the three machine learning
classifiers, we conducted the following three experiments. For
the first experiment, we used the jsDelivr.com data set and
labeled the regular and minified files as non-obfuscated, and
we labeled the files processed with one of the obfuscator tools
as obfuscated. Figure 3a shows the classification results after
10-fold cross-validation and a split of 60%/40% for training
and test datasets. On average, per cross-validation round, only
0.60% non-obfuscated scripts out of 3377 were classified as
obfuscated and only 1.67% obfuscated scripts out of 3366
were classified as non-obfuscated.

In order to verify the performance of the classifiers trained
with the jsDelivr.com dataset when deployed to classify
a broad set of scripts from various sources, we used the
JavaScripts found in the Alexa Top 500 websites as the eval-
uation dataset. Figure 3b shows the results of this experiment.
99.4% of the scripts were labeled non-obfuscated and 0.6% as
obfuscated. A manual inspection of the 52, 17 and 140 scripts
for the SVM, random forest and LDA classifier revealed that
about 30% of these scripts are true positives whilst 70% are
false positives. The false negative (FN) rate is not measurable
without manually classifying all the Alexa scripts. A manual
inspection of a random sample of 50 of the scripts labeled as
non-obfuscated did not contain obfuscated scripts. Based on
this limited sample inspection we assume the database contains
a negligible number of obfuscated scripts.

Figure 3 shows the results for the third experiment where
we trained the classifiers with the full jsDelivr.com dataset and
then tested them with the MELANI dataset. Since all of the
scripts in the MELANI dataset are obfuscated and therefore
have the correct label, not false positives are possible resulting
in a precision of 100%. However, there are quite a lot of false
negatives which results in low (for SVM) or even very low
(for RF/LDA) recall.

C. Malicious vs. Benign

In the previous experiments, we focused on detecting
obfuscation rather then maliciousness. Because our ultimate
goal is to be able to distinguish between benign and
malicious JavaScript, we trained and evaluated the classifiers
to distinguish between benign and malicious scripts as well.
The MELANI data set with malicious files is not large
or representative enough for this result to be statistically
significant. However, the results provide an indication whether
the set of features and the machine learning approach can
be used to detect malicious JavaScript. For this experiment,
the jsDeliver.com and MELANI data sets were both serving
as training and test data using a 10-fold cross-validation
using a 60%/40% split. Figure 4b shows the results of this
experiment. Less than one benign script has been classified
as malicious per round and therefore precision and recall for
benign samples is high.

SVM RF LDA
Non p 99.35% 99.81% 99.17%
Obfuscated r 99.40% 99.97% 99.38%

f1 98.87% 98.89% 99.27%
s 33770 33770 33770

Obfuscated p 99.40% 99.97% 99.37%
r 98.33% 99.80% 99.16%
f1 98.86% 98.89% 99.26%
s 33660 33660 33660

(a) Classification results for the jsDelivr.com data set with 10-fold cross-
validation and a split of 60%/40% for training and test data.

SVM RF LDA
Non p 100.00% 100.00% 100.00%
Obfuscated r 99.45% 99.82% 98.52%

f1 99.72% 98.91% 99.25%
s 9459 9459 9459

(b) Classification results for the Alexa Top 500 data set for the classifiers
trained with the jsDelivr.com data set, based on the assumption that it
contains no obfuscated scripts.

SVM RF LDA
Obfuscated p 100.00% 100.00% 100.00%

r 60.61% 19.70% 22.73%
f1 75.47% 32.91% 37.04%
s 132 132 132

(c) Classification results for the MELANI data set when the classifiers
are trained with the jsDelivr.com data set. All scripts in the MELANI data
set are obfuscated but with different obfuscation techniques and tools than
used in the jsDelivr.com data set.

Fig. 3. Performance of the classifiers with respect to distinguishing between
obfuscated and non-obfuscated scripts, for different test data sets.

Figure 4 contains the results of our last experiment where
we deployed a classifier trained with the jsDelivr.com and
MELANI data sets to classify the Alexa Top 500 dataset. Since
all of the scripts in this data set are labeled as benign, the
precision is 100%. The recall of above 99% shows, that only
a few of the Alexa Top 500 script were labeled as malicious.
A verification of theses scripts did not reveal any malicious
content.

V. DISCUSSION AND CONCLUSIONS

The results presented in Section IV-B give a summary of the
evaluation of a machine-learning approach to distinguishing
obfuscated vs. non-obfuscated JavaScripts. The results show
that if the training dataset contains a representative set of
samples of a particular type of obfuscation, it is likely to be
reliably detected in the testing phase. One intriguing question
presents itself: is the classifier learning a particular syntactic
structure of a particular type of obfuscator, or do different
types of obfuscation share some inherent characteristics that
can be captured in the learning phase. The data in Figure 3b
containing the results obtained for the Alexa 500 dataset
suggest that the obfuscation techniques may share certain
common syntactic characteristics. A more detailed analysis is
required to identify the root cause and to improve classification

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 22 / 59

SVM RF LDA
Benign p 99.87% 99.84% 99.59%

r 99.98% 100.00% 99.58%
f1 99.93% 99.92% 99.59%
s 67414 67414 67414

Malicious p 97.65% 99.76% 48.63%
r 83.88% 79.22% 49.08%
f1 90.25% 88.31% 48.85%
s 546 546 546

(a) Classification results for the combination of jsDelivr.com and the
MELANI data set with 10-fold cross-validation and a split of 60%/40%
for training and test data.

SVM RF LDA
Benign p 100.00% 100.00% 100.00%

r 99.65% 99.97% 99.26%
f1 99.83% 99.98% 99.63%
s 9459 9459 9459

(b) Classification results for the Alexa Top 500 dataset, when the
classifiers are trained with the combined jsDelivr.com and MELANI
datasets.

Fig. 4. Performance of the classifiers with respect to distinguishing malicious
vs. benign scripts, for different test data sets.

results. However, low recall for the MELANI dataset 3 clearly
suggests that there might be limits that could be challenging
to overcome if custom obfuscation strategies or tools are used.

Our results presented in this paper suggest that it may
be feasible to detect malicious JavaScripts. As the numbers
reported in Figure 4 indicate, the precision and recall on the
task of discriminating between malicious and benign scripts
is high. These results, however, must be approached with
caution. Since the database of malicious scripts was limited
and much smaller than that of benign ones, it is not evident that
the classifier is capturing the actual syntactic characteristics
correlated with the malicious behavior. It is possible that the
mere syntactic structure of the scripts in the MELANI database
is sufficiently different from that of the jsDelivr.com to allow
an accurate classification. As mentioned in the Introduction,
the malicious script behavior is due to the script’s functionality
and not syntax per se. An in-depth analysis of the link between
the functionality and syntax of a malicious code must be
performed in order to deliver conclusive results.

We envision to continue our efforts towards understanding
of the problem of automatic detection of malicious JavaScript
code by collecting more representative datasets. Given such
a dataset, an analysis of the statistical distribution of syn-
tactic features and their dependence on the malicious code
behavior will be studied. Consequently, we intent do develop
a dedicated set of classification features insensitive to the type
of obfuscation, which will allow for automatic detection of
malicious JavaScript.

REFERENCES

[1] W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation techniques
in malicious javascript code: A measurement study,” in Malicious and

Unwanted Software (MALWARE), 2012 7th International Conference
on. IEEE, 2012, pp. 9–16.

[2] sven t, “JSDetox,” last accessed on 2016-01-30. [Online]. Available:
http://www.relentless-coding.com/projects/jsdetox

[3] “Wepawet,” last accessed on 2016-01-30. [Online]. Available: http:
//wepawet.iseclab.org/

[4] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detection
using classification techniques,” in Malicious and Unwanted Software
(MALWARE), 2009 4th International Conference on, Oct 2009, pp. 47–
54.

[5] S. Kaplan, B. Livshits, B. Zorn, C. Siefert, and C. Curtsinger, “”no-
fus: Automatically detecting” + string.fromcharcode (32)+” obfus-
cated”.tolowercase()+” javascript code,” Microsoft Research, 2011.

[6] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi,
“Adsafety: Type-based verification of javascript sandboxing,” CoRR,
vol. abs/1506.07813, 2015. [Online]. Available: http://arxiv.org/abs/
1506.07813

[7] W.-H. Wang, Y.-J. LV, H.-B. Chen, and Z.-L. Fang, “A static malicious
javascript detection using svm,” in Proceedings of the International
Conference on Computer Science and Electronics Engineering, vol. 40,
2013, pp. 21–30.

[8] J. Lecomte, “Introducing the YUI Compressor,” last accessed on 2016-
01-30. [Online]. Available: http://www.julienlecomte.net/blog/2007/08/
13/introducing-the-yui-compressor/

[9] M. Bazon, “UglifyJS,” last accessed on 2016-01-30. [Online]. Available:
http://lisperator.net/uglifyjs/

[10] D. Edwards, “Dean Edwards Packer,” last accessed on 2016-01-30.
[Online]. Available: http://dean.edwards.name/packer/

[11] “JavaScript Obfuscator,” last accessed on 2016-01-30. [Online].
Available: http://javascriptobfuscator.com/

[12] P. Likarish and E. Jung, “A targeted web crawling for building malicious
javascript collection,” in Proceedings of the ACM first international
workshop on Data-intensive software management and mining. ACM,
2009, pp. 23–26.

[13] “Alexa Top 500 Global Sites,” last accessed on 2016-01-30. [Online].
Available: http://www.alexa.com/topsites

[14] L. Richardson, “Beautiful Soup,” last accessed on 2016-01-30. [Online].
Available: http://www.crummy.com/software/BeautifulSoup/

[15] “DoubleKiller,” last accessed on 2016-01-30. [Online]. Available:
http://www.bigbangenterprises.de/en/doublekiller/

[16] B.-I. Kim, C.-T. Im, and H.-C. Jung, “Suspicious malicious web site de-
tection with strength analysis of a javascript obfuscation,” International
Journal of Advanced Science and Technology, vol. 26, 2011, pp. 19–32.

[17] A. Hidayat, “Esprima JavaScript Parser,” last accessed on 2016-01-30.
[Online]. Available: http://esprima.org/

[18] “SpiderMonkey Parser API,” last accessed on 2016-01-30.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey/Parser API

[19] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
Edition, 2001.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, 2011, pp. 2825–2830.

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 23 / 59

Performance Study of a Software Defined Network Emulator

Jose M. Jimenez, Oscar Romero, Albert Rego, Avinash Dilendra, Jaime Lloret
Universidad Politécnica de Valencia

Camino Vera s/n 46022, Valencia (Spain)
email: jojiher@dcom.upv.es, oromero@dcom.upv.es, alrema91@gmail.com, avinash.dilendra@gmail.com,

jlloret@dcom.upv.es

Abstract—Generally, network researchers use applications that
allow them to emulate or simulate networks. It is desired to
obtain very close results between the ones given in a virtual
and the ones obtained when the real network hardware is
implemented. In this paper, we compare the experimental
results obtained when a virtual network is generated by using
Mininet versus a real implemented network. We have
compared them varying the Maximum Transmission Unit
(MTU) on Internet Protocol version 4 (IPv4) and Internet
Protocol version 6 (IPv6) packets. Ethernet, Fiber Distributed
Data Interface (FDDI), and Wireless Local Area Network
802.11 (WLAN 802.11) MTUs have been used in our
experimental tests.

Keywords- SDN; OpenFlow; Mininet; MTU; virtualization;
bandwidth; jitter.

I. INTRODUCTION
In the field of computer networks, the researches usually

use programs that allow us to emulate or simulate networks.
This is because, in most cases, we do not have the necessary
devices needed to create complex networks. There are
emulators and simulators as Omnet++ [1], OPNET [2], NS-
2 [3], NS-3 [4] Netsim [5], GNS3 [6], etc. that are
frequently used to create computer networks.

Deployment of network is very quick in virtual
environment, even if it is needed a large number of
resources, which is always practically almost impossible to
implement with real hardware. Problem solving or
troubleshooting capability is still easier than real
implementations. Note that a network researcher has to keep
in mind that the results obtained from a virtual network
should be similar from those obtained by the real hardware
network. If there is a significant difference between results
of virtual network and real network, then the research work
should not be taken into consideration. As a network test
bed gives almost the same results than the real implemented
network, then it saves a large amount of time, complexity
and a lot of resources.

In general, network devices perform the transport and
the control function. But, configuring a great amount of
devices and changing the configuration efficiently to work
properly, it means a big challenge for networking
professionals.

Today's, computer network world is able to offer a large
amount of functionalities suited to the requirements of users.
A new technology, named Software Defined Networking

(SDN) [7] appears to increase the efficiency and reduce the
cost of network configuration.

Figure 1 shows the components of SDN in a layered
structure. The first layer consists of some frequently used
tools of monitoring and depuration. The tool “Oftrace” is
used for analyzing and parsing Openflow message from
network dump. “Oftrace” provides a library which analyzes
and parses the message from TCP dump or Wireshark [8].
Loops or cyclic path can cause critical problems in SDN.
“Oflops” is a tool to catch the loop mechanism in the
software defined networks. It mentions the data packets in
the loop which are not able to leave the network [9].
“Openseer” is a CGI script which helps to plot that data
effectively in SDN [10]. In Controllers Layer there are few
controllers which are used in SDN. More often, controllers
are called the Brain of Network which controls and manages
the software defined network. Floodlight, Open Daylight,
Beacon, Nox are among the frequently used controllers in
SDN [11]. Flow Visor ensures that multiple isolated logical
networks can share the same topology and hardware
resources of a network. It places as a transparent proxy
between OpenFlow switches and OpenFlow controllers. The
isolated logical network is named slice of the network and
flow visor is named slicing software in SDN [12]. In SDN
environment, OpenFlow switches are used to forward the
packets. OpenFlow switches are either a software program
or a hardware device which is compatible to OpenFlow
protocols. Some of the commercial switches are available in
market like HP, Nec, Juniper, etc. [13]. Mininet is used to
create realistic virtual network within seconds on a single
machine that could be able to run real kernel, switch and
application code [14].

There are few emulators and simulators which are
frequently used to run and control the technology SDN from
a single screen, like NS-3, Estinet 9.0 [15], OmNet ++,
Mininet, etc.

In this paper, we show the comparison among the
obtained results from the virtual networks and from the real
implemented networks. With the assessment of these results
we are able to find the significant differences, which may be
very useful for the researchers who all are performing their
research work in Networking Industry.

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 24 / 59

Figure 1.Key component of SDN in layered structure.

We have performed different experiments over Mininet
and real implementation to have a good understanding of the
network behavior in both scenarios. To do a detailed study,
we must send data packets of different properties and
compare the results.

We used the data packets with different Maximum
Transmission Unit (MTU) on IPv4 and IPv6. These sizes of
packets are usual for Ethernet version 2, Ethernet with LLC,
PPoE, WLAN, Token Ring and FDDI.

The rest of the paper is structured as follows. In Section
2, we discuss existing related works. In Section 3, we
introduced all resources that we used in our test bench.
Measurement results and our discussion and analysis are
shown in Section 4. Section 5 shows the conclusion and
future works.

II. RELATED WORKS
In the past, a few researchers have accomplished their

work in the area of SDN and investigated the performance of
multimedia delivery over SDN. Furthermore, in the last
years, emulators have been developed in order to provide an
easy way to manage virtual networks and perform the
research experiments. These emulators reduce the costs
associated to the hardware needed to build the network.
Inside the SDN research, the emulators have a great
importance because of the great number of tests and the
specific hardware that are necessary.

In the following section, we are going to discuss about
some previous research work that helps us to get a deep
understanding of SDN. Then, we will describe the previous
researches in which emulators provide a useful way to test
the experiments.

Recently, in our previous research article [16], we tried to
evaluate the performance of multimedia streaming delivery
over Mininet compared to real network implementation. We
considered different properties of multimedia delivery, i.e.,
bandwidth, delay, jitter, and we found some significant
differences over mininet and real test network. Kreutzet et al.
[17] discussed the SDN, and analyzed the significance of
SDN over traditional networking. Authors explained about
the key components of SDN by using a bottom-up layered

approach and focused on challenges, troubleshooting and
debugging in SDN. Noghaniet et al. [18] introduced a
framework based on SDN that could enable the network
controller to deploy IP multicast between source and
subscribers. The network controller was also able to control
the distributed set of sources where multiple description
coded (MDC) video content is available by using a simple
northbound interface. Due to this SDN-based streaming
multicast framework for medium and heavy workload, the
Peak Signal-to-Noise Ratio (PSNR) of the received video is
increasing considerably. Authors noticed that the received
video, which had a very poor quality before, was having a
significant increase in the quality of video now. Nam et al.
[19] proposed a mechanism to solve the congestion problem
and improve the video quality of experience (QoE). Authors
tried to develop an SDN based application to improve the
quality of video that can monitor conditions of network in
real time streaming, and change routing paths dynamically
by multi-protocol label switching (MPLS).

Egilmezet et al. [20] gives a unique design of an
Openflow controller for multimedia delivery over SDN with
end to end Quality of Service (QoS) support. The authors
tried to optimize routes of multimedia dynamically. After
experiments over real test network, the authors found better
results than HTTP based multi-bitrate adaptive streaming.
They ensured that OpenQoS can guarantee the video
delivery with little or no video artifacts experienced by the
end-users. In another publication, Egilmezet et al. [21] gave
new distributed control plane architectures for multimedia
delivery over large-scale, multi-operator SDN. The
extension included in the design of architecture was: (a) to
acquire network topology and the state information by
topology aggregation and link summarization, (b) to
propose an optimized framework for flowing based end to
end over multi-domain networks, and (c) two distributed
control plane designs by addressing the messaging between
controllers for scalable and secure routing between two
domains. By applying these extensions on layered video
streaming, authors obtained a better quality of received
video, reduced cost and memory overhead. This architecture
was effectively scalable for large networks. Kassleret et al.
[22] tried to negotiate the service and parameter for network
communication between end users, and assign multimedia
delivery paths in network according to prefixed service
configuration. The idea behind this system was to
centralized multi-user optimization of path assignments,
which provide the better quality of experience by
considering network topology, link capacities, delay and
account service utility. Due to optimization, the system was
able to use Openflow to set up forwarding paths in network.

III. TEST BENCH
In this section, we are going to introduce the SDN

emulator and the real network topology used in our test
bench.

A. Devices and equipement
In this subsection, we explain the devices and equipment

used to perform our study.

Tools of
Monitoring

&
Depuration

Controllers NOX Beacon Floodlight Trema Maestro ONIX

Slicing
Software

OpenFlow
Switches

oflops openseeroftrace

FlowVisor Console FlowVisor

HP, NEC, Juniper…

Mininet

Commercial Switches

Simulation of Networks

Stanford Provided
Software

Ref. Switch NetFPGA Broadcom
Ref. Switch

OpenWRT PCEngine
WiFiAP

Open
vSwitch

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 25 / 59

The real topology is composed by the following
equipment:

• 1 Switch Cisco Catalyst WS-C3560-24PS-E [23]
that runs an IOS C3560-IPSERVICESK9-
M,Versión12.2 (53) SE2, release software (fc3). It
has 24 Fast Ethernet and 2 Gigabit Ethernet
interfaces and 16 Mbytes of flash memory;

• 1 Desktop PC that has an Intel Core Quad Q9400
CPU @2.66 Ghz processor, 6 Gb of RAM memory,
1 Network Interface Card (NIC) Intel 82579V
Gigabit Ethernet and Windows 7 Professional - 64
bits operative system;

• • 1 Desktop PC that has an Intel Core i5-2400 CPU
@3.10 Ghz, 4 Gb RAM memory, 1 NIC Intel
82579V Gigabit Ethernet and Windows 7 Enterprise
- 64 bits as operating system.

To design and develop the virtualized topology we have
used a laptop composed by an Intel i7-4500UCPU @ 2.70
Ghz processor, 16 Gb RAM memory, 1 10/100/1000 Mbit/s
NIC, and Ubuntu 14.04 - 64 bits as operating system.

B. Software used
With Mininet, we can create a realistic virtual network,

running real kernel, switch and application code, on a single
machine. The machine can be a virtual machine, or a
machine virtualized through the cloud, or a native machine.
For our study, we have used Mininet version 2.2.1, with a
native installation on Ubuntu 14 as shown in Figure 2.

We used a software application named gt, developed by
us, to send traffic with different MTU and bandwidths.

In both, real and virtualized topologies, to capture and
analyze the received traffic, we have used Wireshark [24],
version 1.10.

C. Characteristics of traffic transmited
In our work, we send traffic with different MTUs that

represents the packet sizes in different standards. Table I
shows different sizes of MTU that was sent in our network
topologies.

Figure 2. Host running in Mininet.

As can be observed in Table I, sizes of MTU that was
sent in our topology do not have standard values. This is
because of the need to establish a GRE tunnel in the real
topology, to connect the two hosts that have been created in
Mininet, thus changing the frame size. Traffic was
transmitted through UDP protocol. To calculate the jitter (J),
we use the expression presented in RFC 4689 (Terminology
for Benchmarking Network-layer Traffic Control
Mechanisms) [25]. Therefore, we use the formula (1), where
Si is the transmission timestamp from packet i, and Ri is the
reception timestamp of arrival packet i. For two consecutive
packets i and j.

 𝐽𝐽 = |�𝑅𝑅𝑗𝑗 − 𝑆𝑆𝑗𝑗� − (𝑅𝑅𝑖𝑖 − 𝑆𝑆𝑖𝑖)| (1)

D. Physical topology
The real topology consists of two computer connected by

straight-through cable, using one switch, as shown in Figure
3. The data transfer rates used is 10 Mbps.

In the virtualized network, we used a computer with
Mininet, where we set up the same topology as the real one.

IV. MEASURAMENT AND DISCUSSION

This section, shows the results obtained in both cases,
when traffic is being delivered over the real network and in
the virtual topology using Mininet. Here, we present
measures of traffic, with bandwidth links at 10 Mbps, and
sending traffic at 10 Mbps. The parameters observed are
bandwidth and jitter of packets with three different MTUs:
1518, 4370 and 7999, corresponding to the size of packets
for Ethernet, FDDI and WLAN 802.11 traffic.

1) MTU - 1518: We present the results related of
bandwidth and jitter obtained from the real and virtual
topologies.

In Figure 4, we can see the bandwidth consumption
values of the real topology and the values obtained in the
virtual topology.

TABLE I. MTU PACKETS IN TOPOLOGIES

Frame Differentiation

Media MTU (bytes)

Ethernet wit LLC and SNP, PPPoE 1518

FDDI 4370

WLAN 802.11, Ethernet Jumbo Frame 7999

Figure 3. Real topology.

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 26 / 59

The data have similar values for both topologies when
the transmission is stabilized. Although, in real topology is
less than in virtual topology. The mean value of bandwidth
in real topology is 9.5 Mbps while for virtual topology is 10
Mbps. The maximum and minimum values for real and
virtual topologies are different, 9.9 Mbps and 20.8 Mbps for
maximum and 6.7 Mbps and 9.9 Mbps for minimum.
Observe that in the virtual topology, at the beginning of the
transmission we obtain bandwidth values higher than 10
Mbps, meaning that in this situation the emulator is not
accurate since the maximum bandwidth for a emulated 10
Mbps physical link should be 10 Mbps. After a few
transmitted packets, the measured bandwidth is already
providing more accurate values.

In Figure 5, we can see the jitter values of the real
topology and the values obtained in the virtual topology. The
values of the real topology are higher than those from the
virtual topology. The mean value of jitter in real topology is
0.690 ms while for virtual topology is 0.001 ms. The
maximum values real and virtual topologies are different,
3.169 ms and 0.607 ms. The minimum values for both
topologies are the same, 0 ms.

2) MTU - 4370: We present the results related of
bandwidth and jitter obtained for the real and virtual
topologies.

Figure 4. BW at 1518.

Figure 5. Jitter at 1518.

In Figure 6, we can see the bandwidth consumption
values of the real topology and the values obtained in the
virtual topology. The data have similar values for both
topologies, when the transmission is stabilized, although in
real topology is less than in virtual topology. The mean value
of bandwidth in real topology is 9.5 Mbps while for virtual
topology is 10 Mbps. The maximum and minimum values
for real and virtual topologies are different, 9.8 Mbps and
31.5 Mbps for maximum, and 4.2 Mbps and 9.9 Mbps for
minimum. As in the previous case, MTU 1518 bytes, in the
virtual topology, we can observe that the bandwidth values
are not realistic at the beginning of the transmission. After
several transmitted packets, the values obtained are already
close to the real network values.

In Figure 7, we can see the jitter values of the real
topology and the values obtained in the virtual topology. The
values of the real topology are higher than those from the
virtual topology. The mean value of jitter in real topology is
0.228ms while for virtual topology is 0.002 ms. The
maximum values for real topology are different, 9.189 ms
and 1.277 ms. The minimum values for real topology and
virtual topology are the same, 0 ms.

3) MTU - 7999: We present the results related of
bandwidth and jitter obtained for the real and virtual
topologies.

In Figure 8, we can see the bandwidth consumption
values of the real topology and the values obtained in the
virtual topology. The data have similar values for both
topologies, when the transmission is stabilized, although in
real topology is less than in virtual topology. The mean value
of bandwidth in real topology is 9.5 Mbps while for virtual
topology is 10 Mbps. The maximum and minimum values
for real topology and virtual topology are different, 9.9 Mbps
and 23 Mbps for maximum and 3.9 Mbps and 10 Mbps for
minimum. Once again, the virtual topology is not providing
realistic bandwidth values at the beginning of the
transmission and, after transmitting a few packets, the
bandwidth values are quite similar to those from the real
network.

In Figure 9, we can see the jitter values of the real
topology and the values obtained in the virtual topology. The
values of the real topology are higher than those from the
virtual topology. The mean value of jitter in real topology is
0.345 ms while for virtual topology is 0.001 ms. The
maximum and minimum values for real topology and virtual
topology are different, 25.091 ms and 0.844 ms for
maximum and 0.037 ms and 0 ms for minimum.

0

0,5

1

1,5

2

2,5

3

3,5

0 2000 4000 6000 8000

Jit
te

r (
m

s)

Nº Packets

Real Virtual

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 27 / 59

Figure 6. BW at 4370.

Figure 7. Jitter at 4370.

Figure 8. BW at 7999.

Figure 9. Jitter at 7999

V. CONCLUSION
In this paper, we have studied the transmission of

different MTU sizes which correspond to Ethernet, FDDI,
and WLAN 802.11 (also Jumbo Ethernet frames) packets. It
can be seen that the variation of the bandwidth between the
real and virtual topologies are very low. But, the results
obtained for the jitter show that there are major deviations,
although, we are working with a very low time scale, as we
are dealing with milliseconds.

In our future work, we will compare real and virtual
networks using more complex topologies, and by using
Openflow compatible equipment.

.

ACKNOWLEDGMENT
This work has been supported by the “Ministerio de

Economía y Competitividad”, through the “Convocatoria
2014. Proyectos I+D - Programa Estatal de Investigación
Científica y Técnica de Excelencia” in the “Subprograma
Estatal de Generación de Conocimiento”, Project TIN2014-
57991-C3-1-P and the “Programa para la Formación de
Personal Investigador – (FPI-2015-S2-884)” by the
“Universitat Politècnica de València”.

REFERENCES
[1] Omnet++. Available at https://omnetpp.org/ [Last access

January 14, 2016]
[2] OPNET is now part of Riberved. Available at

http://es.riverbed.com/products/performance-management-
control/opnet.html / [Last access January 14, 2016]

[3] The Network Simulator - ns-2. Available at
http://www.isi.edu/nsnam/ns/ [Last access January 14, 2016]

[4] NS-3. Available at NS-3 website: https://www.nsnam.org/
[Last access January 14, 2016]

[5] NetSim NETWORK SIMULATOR. Available at
http://www.boson.com/netsim-cisco-network-simulator [Last
access January 14, 2016].

[6] GNS3 The software that empowers networks professionals.
Available at https://www.gns3.com/ [Last access January 14,
2016].

[7] Software-Defined Networking: A Perspective from within a
Service Provider Environment. Available at: https://
tools.ietf.org/pdf/rfc7149.pdf [Last access January 14, 2016]

[8] Liboftrace. Available at http://archive.openflow.org/wk/index
.php/Liboftrace [Last access January 14, 2016]

[9] OFLOPS. Available at https://www.sdxcentral.com/projects/
oflops/ [Last access January 14, 2016]

[10] OpenSeer. Available at http://archive.openflow.org/wk/
index.php/OpenSeer [Last access January 14, 2016]

[11] What are SDN Controllers (or SDN Controllers Platforms)?.
Available at https://www.sdxcentral.com/resources/sdn/sdn-
controllers/[Last access January 14, 2016]

[12] OpenFlow network virtualization with FlowVisor. Available
at https://www.os3.nl/_media/2012-2013/courses/rp2/p28_
report.pdf [Last access January 14, 2016]

[13] OpenFlow switch. Available at http://searchsdn.techtarget.
com/definition/OpenFlow-switch [Last access January 14,
2016]

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

BW
 (M

bp
s)

Nº Packets

Real Virtual

0

2

4

6

8

10

0 500 1000 1500 2000 2500

Jit
te

r (
m

s)

Nº Packets

Real Virtual

0

5

10

15

20

25

0 200 400 600 800 1000 1200

BW
 (M

bp
s)

Nº Packets

Real Virtual

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Jit
te

r (
m

s)

Nº Packets

Real Virtual

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 28 / 59

[14] Mininet An Instant Virtual Network on your Laptop (or other
PC). Available at http://mininet.org [Last access January 14,
2016]

[15] EstiNet Technologies Inc. Available at EstiNet Technologies
website: http://www.estinet.com/index.php [Last access
January 14, 2016]

[16] J. M. Jimenez, O. Romero, A. Rego, A. Dilendra and J.
Lloret, “Study of Multimedia Delivery over Software Defined
Networking” in Network Protocols and Algorithm, vol. 7, No.
4, 2015, pp. 37-62., 2015, doi:10.5296/npa.v7i48794

[17] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve
Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-
Defined Networking: A Comprehensive Survey", Proceedings
of the IEEE, Volume103, Issue 1, Jan. 2015, pp. 14-76. 2015,
http://dx.doi.org/10.1109/JPROC.2014.2371999

[18] K. A. Noghani and M. O. Sunay, “Streaming Multicast Video
over Software-Defined Networks” Proceedings of the IEEE
11th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS) (2014), 28-30 Oct. 2014, pages 551-556,
2014, doi: 10.1109/MASS.2014.125

[19] H. Nam, K. Kim, J. Y. Kim and H. Schulzrinney, “Towards
QoE-aware Video Streaming using SDN” Global
Communications Conference (GLOBECOM), Dec. 2014, pp
1317-1322, 2014, doi: 10.1109/GLOCOM.2014.7036990

[20] H. E. Egilmez, S. T. Dane, K. Tolga Bagci and A. Murat
Tekalp, “OpenQoS: An OpenFlow controller design for

multimedia delivery with end-to-end Quality of Service over
Software-Defined Networks” Signal & Information
Processing Association Annual Summit and Conference
(APSIPA ASC), 2012 Asia-Pacific, 3-6 Dec. 2012,
Hollywood (USA), pp 1-8, 2012

[21] H. E. Egilmez, and A. M. Tekalp, ”Distributed QoS
Architectures for Multimedia Streaming Over Software
Defined Networks” Multimedia, IEEE Transactions on ,
Volume:16 , Issue: 6 , Sept 2014, pages: 1597 – 1609, 2014;
doi:10.1109/TMM.2014.2325791

[22] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic,
and P. Dely, “Towards QoE-driven Multimedia Service
Negotiation and Path Optimization with Software Defined
Networking” Software, Telecommunications and Computer
Networks (SoftCOM), IEEE, Sept 2012, Split (Croatia),
pages: 1-5, 2012, ISBN: 978-1-4673-2710-7

[23] Z. Jingjing, C. Di, W. Weiming, J. Rong, and W. Xiaochun,
“The Deployment of Routing Protocols in Distributed Control
Plane of SDN” in The Scientific World Journal, Volume
2014, Article ID 918536, 8 pages, 2014, http://dx.doi.org/
10.1155/2014/918536

[24] Wireshark software. Available at Wireshark website:
https://www.wireshark.org/ [Last access January 14, 2016]

[25] Terminology for Benchmarking Network-layer Traffic
Control Mechanisms. Available at https://www.ietf.org/rfc/rfc
4689.txt.txt [Last access January 14, 2016]

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 29 / 59

A Study on How to Characterize TCP Congestion Control Algorithms

from Unidirectional Packet Traces

Toshihiko Kato, Leelianou Yongxialee, Ryo Yamamoto, and Satoshi Ohzahata

Graduate School of Information Systems

University of Electro-Communications

Tokyo, Japan

e-mail: kato@is.uec.ac.jp, zoosiab@net.is.uec.ac.jp, ryo_yamamoto@is.uec.ac.jp, ohzahata@is.uec.ac.jp

Abstract— Although traffic in the Internet increases largely, it

is sometimes pointed out that a small number of giant users

exhaust large part of network bandwidth. In order to resolve

such problems, a practical way is to suppress large traffic flows

which do not conform to Transmission Control Protocol (TCP)

congestion control algorithms. For this purpose, the network

operators need to infer congestion control algorithms of

individual TCP flows using packet traces collected passively in

the middle of networks. We proposed, in our previous paper, a

new scheme to characterize TCP algorithms from packet traces.

It estimates the congestion window size (cwnd) at a TCP sender

at round-trip time intervals, and specifies the cwnd growth as a

function of the estimated value of cwnd. We showed that our

previous scheme can characterize most TCP algorithms

introduced recently. In an actual network environment,

however, a packet trace captured over some link, especially a

backbone link, often contains only unidirectional TCP segments

due to the asymmetric routing. In this case, it is difficult to

estimate the cwnd itself, and a new analysis scheme is required.

This paper shows a study on how to characterize the TCP

congestion control algorithms from unidirectional packet traces.

We use a data size transmitted during a short period of time and,

using it, we apply our former scheme to the unidirectional trace.

This paper shows the results that we apply the proposed method

to popular TCP algorithms, such as TCP Reno and CUBIC TCP.

Keywords- TCP congestion control; passive monitoring;

unidirectional trace; congestion window.

I. INTRODUCTION

Recently, traffic in the Internet increases largely according
to the increase of network capacity. The benefit of this
capacity increase needs to be given equally to individual users.
However, it is sometimes pointed out that some giant users
exhaust large part of network bandwidth. Since most of traffic
in the Internet uses TCP, the network congestions will be
resolved by the TCP congestion control mechanisms.
However, if any giant users do not conform to them
intentionally, the problem will be worse. So, an important
approach for network operators is to infer congestion control
algorithms based on TCP segment exchanges captured over
some link in the network. This is called the passive approach
for TCP congestion control inferring. This is in contrast with
the active approach, where an active tester sends test
sequences to a target node and checks the replies

In the TCP congestion control [1], a data sender transmits
data segments under the limitation of the congestion window
size (cwnd) maintained within the sender itself, beside the
advertised window reported from a data receiver. The value

of cwnd grows up as a sender receives acknowledgment
(ACK) segments and is decreased when it detects congestions.
How to grow and decrease cwnd is the key of congestion
control algorithm.

Although there were only a few congestion control
algorithms, such as Tahoe, Reno and NewReno [2] in the early
stage, many TCP congestion control algorithms have emerged
recently [3]. For example, CUBIC TCP [4] and High Speed
(HS) TCP [5] are designed for high speed and long delay
networks. Among them, CUBIC TCP is used as a standard
version in the Linux operating system. While many
algorithms are based on packet losses, TCP Vegas [6] triggers
congestion control against an increase of round-trip time
(RTT). TCP Veno [7] combines loss based and delay based
approaches such that the congestion control is triggered by
packet losses but the delay determines how to grow cwnd.

This proliferation of algorithms complicates their
inference in the passive approach. In our previous paper [8],
we proposed a scheme for characterizing TCP congestion
control algorithms from passively collected packet traces. As
far as we know, this is the only passive approach which can
handle most of the major TCP algorithms, differently from
other proposals [9]-[14].

Our previous proposal requires both TCP data and
acknowledgment segments are captured in a packet trace. It
observes a RTT by mapping a data segment and its
corresponding ACK segment, and estimates the value of cwnd
as an outstanding data size during the RTT period. However,
in an actual network environment, due to the asymmetric
routing, a packet trace captured over some link, especially a
backbone link, often contains only unidirectional TCP
segments. In this case, it is difficult to estimate cwnd, and
therefore, a new analysis scheme is required.

In this paper, we show a study on how to characterize the
TCP congestion control algorithms from unidirectional packet
traces. We propose an approach based on sent data size
during a short time period. From the unidirectional trace, we
cannot estimate either the RTT or cwnd values. Instead, we
presume that the data size sent in a short time period is
proportional to a cwnd value. Using this data size, we applied
our former proposal to the unidirectional trace. We apply the
proposed method to TCP Reno, CUBIC TCP, HS TCP, TCP
Vegas, and TCP Veno.

The rest of this paper consists of the following sections.
Section 2 surveys the related works. Section 3 discusses the
detailed study on our proposal through applying the actual
packet traces of TCP Reno and CUBIC TCP. Section 4 shows

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 30 / 59

the results of our scheme being applied to other TCP versions.
In the end, Section 5 gives the conclusions of this paper.

II. RELATED WORKS

The works on the passive approach TCP congestion
control algorithm inference in the early stage [9][10] accepted
an approach to keep track of the sender’s cwnd based on the
predefined TCP finite state machine. But, they considered
only TCP Tahoe, Reno and New Reno and did not handle any
of recently introduced algorithms. Oshio et al. [11] proposed
a scheme to discriminate one out of two different TCP
versions randomly selected from fourteen versions. They
adopted an approach to keep track of changes of cwnd from a
packet trace and to extract several characteristics, such as the
ratio of cwnd being increased by one packet. But, they
assumed that the discriminator knows which two TCP
versions are used in the packet trace. Prior to our previous
proposal [8], the only study which can infer the TCP
algorithms including those introduced recently was a work by
Yang et al. [15]. It is an example of the active approach. It
makes a web server send 512 data segments under the
controlled network environment, and observes the number of
data segments contiguously transmitted. From those results,
it estimates the window growth function and the decrease
parameter to determine the TCP algorithm. All of the
proposals so far, including our previous one, based on
bidirectional TCP interactions.

On the other hand, there are several works based on
unidirectional packet traces [12]-[14]. T-RAT [12] used an
approach to separate a unidirectional packet trace into flights,
and then infer the TCP state of each flight (e.g., slow start or
congestion avoidance). K. Lan and J. Heidemann [13]
proposed an approach to examine characteristics of giant TCP
flows in four dimensions, i.e., size, duration, rate, and
burstiness, along with their correlations. Qian et al. [14]
proposed a scheme to extract more detailed statistical features
from unidirectional TCP traces. They focused on the size of
initial congestion window, the relationship between the
retransmission rate and the time required to transfer a fixed
size of data for detecting the irregular retransmissions, and the
flow clock to find TCP data transmissions controlled by the
application or link layer factors. None of them, however,
proposed a way to infer TCP algorithms from unidirectional
packet traces.

In this paper, we discuss on a scheme to characterize
recent TCP algorithms based on unidirectional traces. We use
TCP Reno and CUBIC TCP as examples to design the scheme,
and apply it to HS TCP, TCP Vegas and Veno.

III. STUDY BY ANALYSING TCP RENO AND CUBIC TCP

A. Proposal

In the rest of this paper, we use unidirectional packet traces
which contain only the information on TCP data segments.
From such a trace, we obtain a sequence of the time of
individual packet capture and the TCP sequence number
contained in captured packets for a specific TCP flow. Figure
1 (a) shows an example of such a sequence. This is selected
from a CUBIC TCP trace.

From this information, we use the following procedures to
characterize the TCP algorithms.
 Check the sequence numbers and select retransmissions

which can be detected by its decreasing.
 Pick up a portion where the sequence numbers are

increasing continuously (no retransmissions occur).
Figure 1 (a) is such a portion in a CUBIC TCP trace.

 Select a short time period to analyze the data size sent
during this period. In Figure 1 (b), we select 100 msec as
the period and apply it to the no retransmission portion
given in (a) in this figure. The data size sent in a TCP
segment is calculated by the TCP sequence number of the
next segment.

 Use the data size sent during a selected time period as
sentData. We use this as a value proportional to cwnd. In
the result of Figure 1 (b), 52,128, 146,288, 152,040 (bytes)
are those values.

 Calculate the difference of adjacent sentData. We denote
it by ΔsentData. We presume this value is proportional to
the increase of cwnd. In Figure 1 (b), 94,100 and 5,812
(bytes) are the values.

 Plot ΔsentData versus sentData graph and consult the
result with the relationship obtained by our previous
proposal [8]. We suppose that the result is similar with
that in [8]. In the case of TCP Reno, for the estimated
value of cwnd in a RTT interval, its difference Δcwnd has
the relationship with cwnd such as ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 (in
unit of packet) independently of the value of cwnd. For,
CUBIC TCP, the following relationship is resumed for
Δcwnd and cwnd.

 ⊿𝑐𝑤𝑛𝑑 = 3𝑅𝑇𝑇 ∙ √𝐶
3

(√𝑐𝑤𝑛𝑑 − 𝑐𝑤𝑛𝑑𝑚𝑎𝑥
3)

2
 (1)

time (sec) tcp.seq (byte) time (sec)
sentData

(byte)
23.48312 52023289 23.48312 1448
23.48327 52024737 23.48327 2896
23.48368 52026185 23.48368 4344
23.48407 52027633 23.48407 5792
23.48433 52029081 23.48433 7240
・・・ ・・・ ・・・ ・・・

23.49136 52072521 23.49136 50680
23.49146 52073969 23.49146 52128
23.5222 52075417 23.5222 1448

23.52236 52076865 23.52236 2896
・・・ ・・・ ・・・ ・・・

23.59184 52218809 23.59184 144840
23.59184 52220257 23.59184 146288
23.6227 52221705 23.6227 1448

23.62271 52223153 23.62271 2896
・・・ ・・・ ・・・ ・・・

23.69383 52370849 23.69383 150592
23.69383 52372297 23.69383 152040
23.72319 52373745 23.72319 1448
23.7232 52375193 23.7232 2896

23.72364 52376641 23.72364 4344
・・・ ・・・ ・・・ ・・・

(a) capture time and TCP
sequence number

(b) sent data size

Figure 1. Example of a unidirectional packet trace.

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 31 / 59

Here, C is a predefined constant and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥is the value
of cwnd just before the last loss detection.

B. Study on Scheme Using TCP Reno

Next, we discuss the effectiveness of the proposal above
through some experiments using actual packet traces. We use
the packet traces collected in our previous study [8]. In our
previous experiment, iperf TCP data transfer is performed
between sending and receiving terminals. The sending
terminal runs the Linux operating system and one of supported
TCP versions is selected in the experiment. Those terminals
are connected via a bridge, which inserts 100 msec delay (50
msec in one way) and packet losses whose probability is
1.0 × 10−4 . The sending terminal and the bridge are
connected by a 100 Mbps Ethernet link. The receiving
terminal and the bridge are connected by an Ethernet link or
an IEEE 802.11g WLAN. The TCP segments transmitted are
monitored by tcpdump at the sending terminal. We used
either result of an Ethernet link or a WLAN depending on
individual algorithms.

The obtained packet traces contain bidirectional TCP
segments. From them, we selected only segments from the
sending terminal to the receiving terminal, and obtained
unidirectional packet traces such as one given in Figure 1 (a).

First, we tried a TCP Reno trace. We picked up a portion
at the trace from 22.5 sec to 35.9 sec containing 11,437
segments whose sequence numbers continue to grow up. We
selected 100 msec as the short time period for calculating
sentData. The orange line in Figure 2 shows the relationship
between sentData and time in this case. As this figure shows,
the sentData is increasing linearly along with time. This result
seems to reflect the behavior of TCP Reno correctly. Figure
3 shows the relationship between ΔsentData and sentData.
The result indicates that ΔsentData mainly takes 0 byte and or
1448 bytes, and that it takes -1448 bytes and 2896 bytes
sometimes. This result seems to be similar with that in our
previous paper using bidirectional packet traces.

But, it needs to be mentioned that the period of 100 msec
is equal to the round-trip delay inserted by the bridge in the
experiment. So, the result in Figure 3 becomes similar to that
in the previous paper.

As another value of time period, we use 200 msec. Figure
2 blue line shows the relationship between sent data and time
in this case. The result is linear, but the value is twice of that
in the above case. Figure 4 shows the relationship between
ΔsentData and sentData obtained from the result above. In
this case, the result shows that ΔsentData mainly takes 1448
bytes and or 4344 bytes. These values correspond to the
segment size or three times of it. This result comes from the
fact that the period for sentData calculation differs from the
RTT value. We can say that, for TCP Reno, ΔsentData keeps
constant irrelevant with sentData and takes two values mainly.

Figure 5 shows the relationship between cwnd and cwnd
obtained in our previous paper in the same portion in the trace.
The result in Figure 3 is similar with that in Figure 5. So, our
scheme in this paper seems to be able to characterize TCP
Reno from unidirectional packet traces. This is because the
proposed scheme uses a time period identical to the delay
inserted in the experiment. In Figure 4, the time period is 200

msec which is twice of the inserted delay. Still, there is a
strong similarity among the result in Figure 4 and that in
Figure 5, and so our scheme is working well in the case that
the time period for calculating sentData is 200 msec.

50000

100000

150000

200000

250000

300000

350000

400000

20 25 30 35 40

time (sec)

sentData (byte)

100msec

200msec

Figure 2. sentData vs. time for TCP Reno with 100 and 200 msec period.

Figure 3. ΔsentData vs. sentData for TCP Reno with 100 msec period.

0

1000

2000

3000

4000

5000

6000

7000

100000 150000 200000 250000 300000 350000 400000

sentData (byte)

ΔsentData (byte)

Figure 4. ΔsentData vs. sentData for TCP Reno with 200 msec period.

0

200

400

600

800

1000

1200

1400

1600

70000 90000 110000 130000 150000 170000 190000

cwnd (byte)

Δcwnd (byte)

Figure 5. Δcwnd vs. cwnd for TCP Reno [8].

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 32 / 59

C. Study on Scheme Using CUBIC TCP

Next, we tried a CUBIC TCP trace as another example.
As described above, our previous paper indicates that, in the
case of CUBIC TCP, Δcwnd has the relationship of the square
of cubic root of cwnd. In order to examine whether this
relationship can be applied to ΔsentData and sentData, we
examined the unidirectional packet trace derived from the
trace in our previous paper, with 100 msec and 200 msec time
period for calculating sentData.

We picked up a portion at the trace from 23.5 sec to 38.3
sec containing 27,041 segments whose sequence numbers
continue to grow up. Figure 6 shows the relationship between
sentData and time for both cases of 100 msec and 200 msec
time periods. In both cases, the sentData is increasing as a
cubic curve of time.

Figures 7 and 8 show the relationship between ΔsentData
and sentData for 100 msec and 200 msec time periods,
respectively. Both figures indicate that ΔsentData is
symmetrical for some value of sentData (200,000 and
400,000 bytes in Figures 7 and 8, respectively), and that
ΔsentData is decreasing if sentData is smaller than the value
and increasing if larger than the value. This situation is similar
to the result of our previous result described in [9]. Especially,
the situation is clearer for the case of 200 msec time period.

Figure 9 shows the relationship between cwnd and cwnd
obtained in our previous paper in the same portion in the trace.
The results in Figures 7, 8 and 9 are similar and so we can say
that the proposed scheme here works well for CUBIC TCP.

IV. APPLY TO OTHER TCP VERSIONS

In this section, we apply our scheme to other TCP versions.
In the following study, we use 200 msec as the time period for
calculating sentData because we suppose that 200 msec will
give smoother results.

A. Result Applied to HS TCP

HS TCP is designed to obtain high throughput over wide
bandwidth and long delay networks. It grows cwnd to

𝑐𝑤𝑛𝑑 +
𝑎(𝑐𝑤𝑛𝑑)

𝑐𝑤𝑛𝑑
⁄ in response to every new ACK

segment. The coefficient a(cwnd) is defined as 1, 2, and 3
when cwnd is 38, 118, and 221 (in unit of packet). So, in our

previous approach, the estimated cwnd will be as follows.

 ⊿𝑐𝑤𝑛𝑑 = {

0 𝑜𝑟 1 (𝑐𝑤𝑛𝑑 < 38)
1 𝑜𝑟 2 (38 ≤ 𝑐𝑤𝑛𝑑 < 118)

1, 2 𝑜𝑟 3 (118 ≤ 𝑐𝑤𝑛𝑑 < 221)
 (2)

Similarly with the study in Section 3, we made the
unidirectional packet trace, and picked up a portion at the trace
from 20.2 sec to 28.8 sec containing 2,749 data segments.

Figure 10 shows the relationship between cwnd and
cwnd obtained in our previous paper. Figure 11 shows the
relationship between ΔsentData and sentData. These two
figures are for the identical portion in the trace. From the
results, it might be difficult to say that the method proposed in
this paper can characterize the feature of HS TCP.

100000

200000

300000

400000

500000

600000

700000

800000

900000

20 25 30 35 40

time (sec)

sentData (byte)

100 msec

200 msec

Figure 6. sentData vs. time for CUBIC TCP with 100 and 200 msec

period.

Figure 7. ΔsentData vs. sentData for CUBIC TCP with 100 msec period.

Figure 8. ΔsentData vs. sentData for CUBIC TCP with 200 msec period.

0

2000

4000

6000

8000

10000

12000

100000 200000 300000 400000 500000

cwnd (byte)

Δcwnd (byte)

Figure 9. Δcwnd vs. cwnd for CUBIC TCP [8].

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 33 / 59

B. Result Applied to TCP Vegas

TCP Vegas estimates the bottleneck buffer size using the
current values of cwnd and RTT, and the minimal RTT for the
TCP connection. At every RTT interval, Vegas uses this
BufferSize to control cwnd in the congestion avoidance phase
in the following way.

 ⊿𝑐𝑤𝑛𝑑 = {

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

 0 (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 (3)

Here, A = 2 and B = 4 (in unit of segment) are used in the
Linux operating system (in unit of packet).

We made the unidirectional packet trace from the trace in
the previous experiment, and picked up a portion at the trace
from 38.0 sec to 59.7 sec containing 8,155 data segments.

Figure 12 shows the relationship between cwnd and
cwnd obtained in our previous paper. Figure 13 shows the
relationship between ΔsentData and sentData. For the values
of sentData 100,000 through 120,000 bytes in Figure 13,
ΔsentData are distributed between +10,000 bytes and –
10,000 bytes. It can be said that there might be some
similarities between the results of Figures 12 and 13 in those
parts.

C. Result Applied to TCP Veno

TCP Veno (Vegas and ReNO) uses the BufferSize used by
Vegas to adjust the growth of cwnd in the congestion
avoidance phase as follows. If 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵 (B is the
Vegas parameter B), cwnd grows by 1/cwnd for every other
new ACK segment, and otherwise, it grows in the same
manner with TCP Reno. Therefore, if the delayed ACK is not

used, cwnd at RTT intervals will be as follows.

 ⊿𝑐𝑤𝑛𝑑 = {
 1 𝑜𝑟 0(𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)
 (4)

If the delayed ACK is used, ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 even if

𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵. But in this case, the ratio of cwnd being
1 and 0 is different for BufferSize. It will be 1:3 for
BufferSize >B, and 1:1 for 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵.

We made the unidirectional packet trace from the trace in
the previous experiment, and picked up a portion at the trace
from 37.6 sec to 52.7 sec containing 23,261 data segments.

Figure 14 shows the relationship between cwnd and
cwnd obtained in our previous paper. Figure 15 shows the
relationship between ΔsentData and sentData. From the
results, it can be said that ΔsentData are flat independent of
sendData. Although the values of ΔsentData are not fit to
zero and one segment, it can be said that there might be some
similarities between the results of Figures 14 and 15.

V. CONCLUSIONS

This paper presented some studies on how to characterize
the TCP congestion control algorithms from passively
collected unidirectional packet traces. We applied our
previous scheme, which compares cwnd, estimated from
bidirectional packet traces, and its difference. Since we
cannot estimate cwnd from unidirectional traces, the proposed
scheme in this paper selects a short time period and treats the
sent data size during this period as being proportional to cwnd
at this time. Our scheme characterizes the TCP algorithm by
use of the graph ofΔsentData and sentData.

We applied this scheme to TCP Reno and CUBIC TCP in
detail and showed that our proposal seems to work. We also
applied our scheme to HS TCP, TCP Vegas and TCP Veno.

0

200

400

600

800

1000

1200

1400

1600

20000 30000 40000 50000 60000 70000 80000 90000 100000

cwnd (byte)

Δcwnd (byte)

 Figure 10. Δcwnd vs. cwnd for HS TCP [8]. Figure 11. ΔsentData vs. sentData for HS TCP.

-2000

-1500

-1000

-500

0

500

1000

1500

2000

20000 30000 40000 50000 60000 70000 80000

cwnd (byte)

Δcwnd (byte)

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

40000 60000 80000 100000 120000 140000

sentData (byte)

ΔsentData (byte)

 Figure 12. Δcwnd vs. cwnd for TCP Vegas [8]. Figure 13. ΔsentData vs. sentData for TCP Vegas.

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 34 / 59

The results were worse than those for Reno and CUBIC. For
Vegas and Veno, the results in this paper have some similarity
with the results in our previous paper, but there are some
difficulties to distinguish Reno, Vegas and Veno. On the
other hand, for HS TCP, our proposed scheme could not
characterize it although our previous scheme could. It seems
to characterize TCP Reno and CUBIC TCP algorithms well in
our controlled in-laboratory setup. For the other TCP
algorithms, the approach must be refined.

The points to be improved include the followings. First of
all, the accuracy of our scheme needs to be increased. For this
purpose, one important approach is to estimate a RTT
correctly from unidirectional traces, because our scheme is
sensitive for the fact that the short time period for calculating
sent data is equal to RTT or integral multiples of RTT.

As describe above, the results in Figures 4, 13 and 15 have
some similarities in the sense that the graphs have flat parts
independent of sentData. So, it may be difficult to
discriminate them. The next point is to invent a procedure to
categorize the TCP algorithms into more general groups. ,
such as
 a flat type such as TCP Reno, HS TCP, TCP Westwood+

[16], TCP Vegas and Veno,
 a symmetric cubic root square type (CUBIC TCP),
 a monotonous increasing cubic root square type (Hamilton

TCP [17]), and
 a random type (TCP Illinois [18]).

Thirdly, our previous scheme uses the estimation of

multiplicative decrease parameter is also used together with
the estimation of window growth function. The scheme in this
paper also needs to consider the multiplicative decrease
parameter.

The last point is that the evaluation in this paper is done in
a controlled laboratory setup. For the generalization of the
results, the test has to be conducted under realistic network
conditions

REFERENCES

[1] V. Javobson, “Congestion Avoidance and Control,” ACM
SIGCOMM Comp. Commun. Review, vol. 18, no. 4, Aug.
1988, pp. 314-329.

[2] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” IETF RFC
3728, April 2004.

[3] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-
to-Host Congestion Control for TCP,” IEEE Commun. Surveys
& Tutorials, vol. 12, no. 3, 2010, pp. 304-342.

[4] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 5, July 2008, pp. 64-74.

[5] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”
IETF RFC 3649, Dec. 2003.

[6] L. Brakmo and L. Perterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE J. Selected
Areas in Commun., vol. 13, no. 8, Oct. 1995, pp. 1465-1480.

[7] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for
Transmission Over Wireless Access Networks,” IEEE J. Sel.
Areas in Commun., vol. 21, no. 2, Feb. 2003, pp. 216-228.

[8] T. Kato, A. Oda, C. Wu, and S. Ohzahata, “Comparing TCP
Congestion Control Algorithms Based on Passively Collected
Packet Traces,” Proc. IARIA ICSNC 2015, Nov. 2015, pp.

[9] V. Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” ACM Comp. Commun. Review, vol. 27, no.
4, Oct. 1997, pp.167-179.

[10] S. Jaiswel, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP Connection Characteristics Through Passive
Measurements,” Proc. INFOCOM 2004, March 2004, pp.
1582-1592.

[11] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP
Versions Based on Cluster Analysis,” Proc. ICCCN 2009, Aug.
2009, pp. 1-6.

[12] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the
Characteristics and Origins of Internet Flow Rates,” Proc.
ACM SIGCOMM’02, Aug. 2002, pp. 309-322.

[13] K. Lan and J. Heidemann, “Measurement Study of Correlations
of Internet Flow Characteristics,” Computer Networks, vol. 50,
iss. 1, Jan. 2006, pp. 46-62.

[14] F, Qian, A. Gerber, and Z. Mao, “TCP Revisited: A Fresh Look
at TCP in the Wild,” Proc. IMC ’09, Nov. 2009, pp. 76-89.

[15] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP
Congestion Avoidance Algorithm Identification,” Proc.
ICDCS ’11, June 2011, pp. 310-321.

[16] L. Grieco and S. Mascolo, “Performance evaluation and
comparison of Westwood+, New Reno, and Vegas TCP
congestion control,” ACM Computer Communication Review,
vol. 34, no. 2, April 2004, pp. 25-38.

[17] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long
distance networks,” Proc. Int. Workshop on PFLDnet, Feb.
2004, pp. 1-16.

[18] S. Liu, T. Bassar, and R. Srikant, “TCP-Illinois: A loss and
delay-based congestion control algorithm for high-speed
networks,” Proc. VALUETOOLS ’06, Oct. 2006, pp. 1-13.

0

400

800

1200

1600

150000 200000 250000 300000

cwnd (byte)

Δcwnd (byte)

 Figure 14. Δcwnd vs. cwnd for TCP Veno [8]. Figure 15. ΔsentData vs. sentData for TCP Veno.

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 35 / 59

Intrusion Detection Using Indicators of Compromise Based on Best Practices and
Windows Event Logs

María del Carmen Prudente Tixteco, Lidia Prudente Tixteco, Gabriel Sánchez Pérez, Linda Karina Toscano
Medina

Instituto Politécnico Nacional
Sección de Estudios de Posgrado e Investigación ESIME Culhuacan
Santa Ana 1000, San Francisco Culhuacán, Coyoacán, D. F., México

mprudentet0900@alumno.ipn.mx, lprudente@ipn.mx, gasanchezp@ipn.mx, ltoscano@ipn.mx

Abstract— Nowadays computer attacks and intrusions have
become more common affecting confidentiality, integrity or the
availability of computer systems. They are more sophisticated
making the job of the information security analysts more
complicated, mainly because of the attacking vectors are more
robust and complex to identify. One of the main resources that
information security people have on their disposition are
Indicators of Compromise (IOCs), which allow the identification
of potentially malicious activity on a system or network.
Usually IOCs are made off virus signatures, IP addresses,
URLs or domains and some others elements, which are not
sufficient to detect an intrusion or malicious activity on a
computer system. The Windows event logs register different
activities in a Windows® operating system that are valuable
elements in a forensic analysis process. IOCs can be generated
using Windows event logs for intrusion detection, improving
Incident Response (IR) and forensic analysis processes. This
paper presents a procedure to generate IOCs using Windows
event logs to achieve a more efficient diagnostic computer
system for IR.

Keywords-indicators of compromise; windows event logs;
intrusion detection.

I. INTRODUCTION
In the process of IR and forensic analysis, determining

that a computer system is compromised could mean success
or failure to mitigate a security incident. Attack vectors have
increased their complexity, making more difficult for
information security analysts to identify their presence.
Different tools have been developed to facilitate their
identification; one of these tools are the IOCs.

IOCs are pieces of forensic data, that could be found in
log entries or system files, which can help to identify
potentially malicious activity on a system or network [1].

In order to reduce the number of false-positive results
over time, it is required to improve IR and forensic analysis
procedures that collaborate directly with the Computer
Incident Response Team (CIRT).

As a part of a forensic analysis recommendation of
Computer Emergency Response Teams (CERTs), is of vital
importance that a computer system intrusion is promptly
identified, in order to perform the actions that will avoid

further damages within the information system infrastructure
[6].

Security Windows Event Logs Codes can be mainly used
to describe malicious activity [4], and these can be added to
antivirus signatures, IP addresses, URLs or domains to make
IOCs more robust and specific to determine if a computer
system could be compromised.

The containment step for the IR process is considered the
most important; because it allows us to know if changes
were made in the system [2], e.g., changes in privileges
within registry keys, relocation of .dll system files or any
other manipulation of processes and/or files during the
intrusion on a computer system.

Knowing the behavior of the attacker is of great
importance, it helps to achieve a better analysis stage for IR
and forensic analysis processes, applying proactive actions
and preventing future intrusions, e.g., computer system
hardening.

Event logs should not be considered as isolated events;
they have to be considered as a whole, that happen over a
period of time and occur commonly, i.e., to obtain an IOC a
failed login is not enough; this event must be associated with
some others to determine a compromised computer system
event.

This article presents a procedure to use Windows event
logs to generate IOCs, achieving the detection of a computer
system intrusion and help the information security people or
a CIRT to take quickly and effective decisions to defend the
information system infrastructure.

This paper is organized as follows. Section II presents
state of the art. Section III presents an explanation of
Windows event logs. Section IV describes the functionality
of indicators of compromise. Section V describes the
development of this research. Section VI presents the results
of this research and Section VII conclusion and future work.

II. STATE OF THE ART
An incident is a compromise or a security violation in an

organization. Preparation of the CIRT through planning,
communication, and practice of the IR process will provide
the experience needed to perform actions timely should an
incident occur [2].

There are six basic steps when an IR occurs: preparation,
identification, containment, eradication, recovery and lessons

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 36 / 59

learned; they provide the basic foundation to create and
perform their own IR plan. Specifically, there is one task
within the containment phase that should be done: the system
back-up. This provides the information about how the events
happened, resulting in an incident from a malicious activity,
or to be used for observing how the system was
compromised during the phase of lessons learned [2].

In order for an IR to be considered successful, the CIRT
should know the steps followed by an attacker when
computer system is being compromised. There are seven
steps: reconnaissance, weaponize, deliver, exploitation,
installation, command and control (C2), actions on
objectives, that the adversaries usually follow when
attempting an intrusion, these leave a trail behind them [3].
This process is also known as the Kill Chain Life Cycle
shown in Figure 1.

Figure 1. Kill Chain Life Cycle.

Microsoft Windows® Active Directory’s best practices
consider different signs to identify and evaluate a
compromised computer system by monitoring and the use of
alerts, through a proper configuration of Windows auditing
settings. These signs can help to detect a malicious activity
in a computer system early and timely.

The following security events can be considered as part
of the event monitoring to detect possible signs of computer
system intrusion within Windows® operating system [4]:

• Account Logon Events
• Account Management
• Directory Service Access
• Logon Events
• Object Access
• Policy Change
• Privilege Use
• Process Tracking
• System Events Audit
There are certain recommendations made by CERTs to

help identify a compromised computer system. However,
these have to be done by expert analysts [6]. When looking
for signs of intrusion, most of the time if one host has been
compromised, others on the same network have also been
compromised. These are some of the signs to look for in a
possible compromised computer system review [6]:

• Examine log files.
• Check for odd user accounts and groups.
• Check all groups for unexpected user membership.
• Look for unauthorized user rights.
• Check for unauthorized applications that start up

automatically.
• Check for unauthorized processes.
• Check for altered permissions on files or registry

keys.
• Check for changes in user or computer policies.
• Audit for intrusion detection.
On the other hand Hun-Ya Lock [5] presents the benefits

of using OpenIOC framework as common syntax to describe
the results of malware analysis; this work describes tools and
techniques used during analysis but not in the reporting of
results. The document emphasizes that reporting of the
results is as important as the results themselves and if the
results can be reported in a consistent well-structured manner
that is easily understood by man and machine, then it
becomes possible to automate some of the processes in the
detection, prevention and reporting of malware infections.

IOC Editor is a free editor tool for IOCs. The IOCs are
XML documents that support incident responders capturing
different information about threats including malicious files
attributes, changes in registries and artifacts in memory. IOC
Editor provides an interface to manage data within these
IOCs [7].

IOC Editor can:
• Manipulate the logical structures that define the IOC.
• Apply meta-information to IOC including detailed

descriptions or arbitrary labels.
• Convert IOCs into XPath filters.
• Manage lists of terms that are used within IOC.
SANS [8] published a checklist to review critical logs

during an IR. It can also be used for a log review routine.
The general approach is:

1) Identify which log sources and/or automated tools
can be used during the analysis.

2) Copy log records over to a single location for later
review.

3) Minimize noise by removing routinely and repetitive
log entries after confirming that they are benign.

4) Determine whether logs’ timestamps are reliable;
considering the different time zone differences.

5) Focus on recent changes, failures, errors, status
changes, access and administration events, and other
unusual events in the environment.

6) Go back in time to reproduce the scenario before and
after the incident.

7) Correlate activities across different logs to get a more
comprehensive picture.

8) Develop theories about what occurred; explore logs
to confirm or disprove them.

Some potential security log sources that can be found are
[8]:

• Server and workstation operating system logs.

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 37 / 59

• Application logs.
• Security tool logs.
• Outbound proxy logs and end-user application logs.
• Other non-log sources for security events.
Finally, this document recommends what to look for on a

Windows® OS like user logon/logoff events, user account
changes, password changes, startup or stopping of a service,
object access denial and other kind of resources [8].

Windows event logs can be used to generate IOCs and
help identify should a computer system is compromised,
detecting possible intrusions or strange behaviors, and make
timely decisions accordantly.

None of the above references use IOCs in conjunction
with Windows event logs.

This paper presents a procedure to fix this situation.
The efficiency of these IOCs could be improved if

correlation tools are implemented to analyze attack vectors
promptly.

III. WINDOWS EVENT LOGS
This following section describes key concepts about the

Windows event logs.

A. Log
A log is a record of events occurring within an

organization’s systems and networks. Logs are composed of
entries and they have evolved to contain information related
to many different kinds of events [9].

B. Operating Systems Logs
Usually, Operating Systems (OS) for computers log a

variety of information related to security. The most common
types of security-related OS data are the following:

• System Events. System events are operational
actions performed by OS components. Many OS
allow administrators to specify what type of events
will be logged and what kind of details register, such
as timestamp, status and error codes, service name
and user or system account associated with each
event.

• Audit Records. Audit records contain security event
information such as successful and/or failed
authentication attempts, file accesses, security policy
changes, account changes, and use of privileges [9].

OS logs are the most beneficial to identify or investigate
suspicious activity involving a particular host. After
suspicious activity like attacks, frauds, and inappropriate
usage, OS’ logs can be consulted to obtain more information
on the activity and type of situation. Commonly they contain
detailed information about each activity. Other logs can
contain information less detailed and are helpful only to
correlate events recorded in the primary log types [9].

C. Windows Event Log
Windows event log is a record of events that happen on a

computer system, generating alerts and notifications.
Microsoft® [10] defines an event as "any significant
occurrence in the system or in a program that requires users
to be notified, or an entry added to a log".

Some Windows event logs categories are [11]:
• Application. Events in this log are classified as error,

warning, or information, depending on the severity
of the event. An error is a significant problem. A
warning is an event that is not necessarily
significant, but might indicate a possible future
problem. An information event describes the
successful operation of a program, driver, or service.

• Security. This log contains security-related events,
which are called audit events, and are described as
successful or failed, depending on the event.

• Setup. Computers that are configured will have
additional logs displayed here.

• System. System events are sent to this log by
Windows and Windows system services, and are
classified as error, warning, or information.

• Forwarded Events. Events are forwarded to this log
by other computers.

Windows operating system classifies events by type as:
• Information event. Describes the successful

completion of a task.
• Warning event. Notifies the administrator of a

potential problem.
• Error message. Describes a significant problem that

may result in a loss of functionality.
• Success audit event. Indicates the completion of an

audited security event.
• Failure audit event. Describes an audited security

event that did not complete successfully, such as an
end-user locking himself out by entering incorrect
passwords [10].

Each event in a log entry contains the following
information:

• Date. The date the event occurred.
• Time. The time the event occurred.
• User. The user name of the user who was logged on

when the event occurred.
• Computer. The name of the computer.
• Event ID. A Windows identification number that

specifies the event type.
• Source. The program or component that caused the

event.
• Type. The type of event [10].
For the purpose of this research different event logs of

each category were selected and organized in the following
tables. These events are the most representative of each of
the categories being registered in a computer system and can
help to generate an IOC. Tables I to VIII show the
association of current Windows Event ID with its Event
Summary, retrieved from appendix of Events to Monitor by
Microsoft [13]:

TABLE I. EVENTS OF ACCOUNT LOGON CATEGORY.

Event ID Event Summary

4774 An account was mapped for logon.

4776 The domain controller attempted to validate the
credentials for an account.

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 38 / 59

TABLE II. EVENTS OF ACCOUNT MANAGEMENT CATEGORY.

Event ID Event Summary

4783 A basic application group was created.

4785 A member was added to a basic application
group.

4741 A computer account was created.

4742 A computer account was changed.

4727 A security-disabled global group was created.

4728 A member was added to a security-disabled
global group.

4720 A user account was created.

4722 A user account was enabled.

4724 An attempt was made to reset an account’s
password.

4738 A user account was changed.

4740 A user account was locked out.

TABLE III. EVENTS OF PROCESS TRACKING CATEGORY.

Event ID Event Summary

4688 A new process has been created.

4689 A process has exited.

TABLE IV. EVENTS OF LOGON CATEGORY.

Event ID Event Summary

4634 An account was logged off.

4647 User initiated logoff.

4624 An account was successfully logged on.

4625 An account failed to log on.

4649 A replay attack was detected. May be a harmless
false positive due to misconfiguration error.

4778 A session was reconnected to a Window Station.

4801 The workstation was unlocked.

4964 Special groups have been assigned to a new
logon.

TABLE V. EVENTS OF OBJECT ACCESS CATEGORY.

Event ID Event Summary

4665 An attempt was made to create an application
client context.

4668 An application was initialized.

4664 An attempt was made to create a hard link.

4985 The state of a transaction has changed.

5051 A file was virtualized.

4691 Indirect access to an object was requested.

4698 A scheduled task was created.

4700 A scheduled task was enabled.

4702 A scheduled task was updated.

4657 A registry value was modified.

4660 An object was deleted.

TABLE VI. EVENTS OF POLICY CHANGE CATEGORY.

Event ID Event Summary

4719 System audit policy was changed.

4905 An attempt was made to unregister a security
event source.

4907 Auditing settings on object were changed.

4912 Per User Audit Policy was changed.

4704 A user right was assigned.

4946 A change has been made to Windows Firewall
exception list. A rule was added.

4947 A change has been made to Windows Firewall
exception list. A rule was modified.

4948 A change has been made to Windows Firewall
exception list. A rule was deleted.

4949 Windows Firewall settings were restored to the
default values.

4950 A Windows Firewall setting has changed.

4670 Permissions on an object were changed.

TABLE VII. EVENTS OF PRIVILEGE USE CATEGORY.

Event ID Event Summary

4672 Special privileges assigned to new logon.

4673 A privileged service was called.

TABLE VIII. EVENTS OF SYSTEM AUDIT CATEGORY.

Event ID Event Summary

5025 The Windows Firewall Service has been stopped.

5034 The Windows Firewall Driver has been stopped.

4697 Attempt to install a service

4618 A monitored security event pattern has occurred.

The events review from Windows logs can help trace the

activities, IR and keep computer systems secure. Configuring
these logs properly can help to manage the logs efficiently to
identify and diagnose the current source of system problems
and predict future ones.

IV. INDICATORS OF COMPROMISE
It is necessary to know the terminology used for

indicators of compromise.
• Expression. The definition of a condition which,

when true, suggests that intrusion activity is present.
• Simple Expression. An expression that can be

defined without using “AND” or “OR” logic
operators.

• Complex Expression. An expression that combines
multiple simple expressions using “AND” or “OR”
logic operators.

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 39 / 59

• Indicator of Compromise (IOC). A mix of
expressions (simple, complex, or both), usually
grouped together for the purpose of describing a
single piece of malicious activity [7].

Figure 2 shows the common IOC structure.

Figure 2. IOC structure.

A. IOC Editor Logic
An IOC can be represented by expressions on a logic

tree. The logic tree starts out with a top-level “OR” structure.
When expressions are added, an IOC will be triggered as
long as one of the expressions describes a true circumstance.
Sometimes an IOC will consist of a collection of simple
expressions listed in the top-level “OR” structure without the
need of a more complex logic tree [7], as shown in Figure 3.

Figure 3. IOC by Simple logic.

When required, logic branches can be built with “AND”
and “OR” substructures to form complex expressions. Each
“AND” and “OR” applies to the branches only in its
substructure [7], as is shown in Figure 4.

Figure 4. IOC by Logic branch.

OpenIOC is an open source framework developed by
Mandiant® for sharing threat intelligence [12]. It can be used
to improve the reliability and repeatability of forensic
analysis, to support the investigations of incidents or
suspicious malicious activity in the IT operations of an
organization.

V. DEVELOPMENT
This section describes the steps followed to determine

some IOCs using Windows event logs that allow early
detection of malicious activity.

Using the classification made by Microsoft [4], only
eight out of nine of the categories were used (shown in
Figure 5). These categories can be associated with general
events, and used to detect malicious intrusion events on a
computer system.

Figure 5. Categories used of Windows event logs.

In order to generate IOCs using Windows event logs, the
main events (as described by Microsoft [4], and Anton
Chuvakin et al. [8]) were reviewed, these are user-related,
system access, granting of permissions or privileges, and
activities or services modified in the system whilst an
intrusion occurred.

The following sentences describe some of the possible
actions that an external agent would perform upon an
intrusion, and how this is reflected in the Windows event
logs:

1) If an unauthorized user tries to access the system with
invalid credentials, Windows event log provides the
information regarding the number of attempts to access the
computer system and the user credentials that are being used
on a specific period of time. Examples of the information
provided are: "authentication failure" or "failed to log on".

2) While the anomalous agent has valid credentials,
successful login events will be also considered.

Then the anomalous agent, within the system and
depending on the level of privileges the account has, will
try:
3) Privileges Escalation, administrative privileges could

be granted to ordinary accounts in order to create other user
and/or system accounts; execute actions amongst user
groups that could be reflected on events related to creation
or modification of accounts and eventually taking total
control over the system and be able to disable or delete
existing accounts.

4) Change in Windows Security Audit, preventing
modifications made within the system to be identified.

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 40 / 59

5) Create or modify files and/or system objects
belonging to the installation process itself.

6) Disable or change Windows Firewall Settings to
allow communications between malicious domains.

7) Change policies for network connections.
8) Install applications to create new services or change

services already running in the system.
9) Delete audit events to prevent register activities in the

system.
10) Log out session.

Having acquired all possible actions made by an intruder,
we considered the odds of each event happening
continuously over a determined period of time to classify
them in the following activities: user, audit, services and
objects (shown in Figure 6).

Figure 6. Classification of events by their activity.

Considering that events treated individually, might
indicate a normal behavior on a computer system, it is
necessary to generate a different kind of IOC, which could
handle different events in conjunction that could determine
malicious activity.

The following is a case study that represents the
procedure to generate an IOC using Windows event logs:

"Peter" is a valid user (the User from now on) in a
computer system with Windows® 8 OS. Peter’s account has
read-only user privileges.

After a security incident, the following activities were
detected:

1) Two attempts to login as the User were executed.
2) User session started successfully.
3) Special privileges were assigned to User’s account.
4) A new user account was created, named “Jame”.
5) A global group with security-disabled settings was

created.
6) An explorer process has been created.
7) An attempt to unregister a security event source was

executed.

8) Jame’s account was enabled.
9) The auditing settings on access-control object were

changed.
10) Peter´s account session was closed.

The diagram in Figure 7 shows the activity sequence of
an IOC considering the possible events achieved by an
intruder using Peter’s account.

Figure 7. Simple event sequence by malicious activity of a case study.

The next step on this procedure is to identify the event ID
corresponding to the activities registered on the sequence
considered malicious. Figure 8 shows the sequence of
current Windows event ID for this case study.

Then an IOC could be generated to analyze the malicious
activity on future occasions. It could be described with the
following simple expression using Windows event ID:

AND (4625, 4625, 4624, 4672, 4720, 4728, 4688, 4905,

4722, 4907, 4634)

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 41 / 59

Figure 8. Event ID sequence by malicious activity of a case study.

Through the use of the IOC Editor tool, different
indicators of compromise can be developed for the purpose
of a timely identification of possible intrusions on
Windows® OS. The simple expression for the case study
developed using IOC Editor can be represented as shown in
Figure 9.

Figure 9. IOC of simple expression using IOC Editor.

Different IOCs could be generated using statements that
represented different sequences of malicious activities
previously registered. Figure 10 shows another example;
taking into account the case study previously explained and
considering other event sequences, a more efficiently IOC
can be generated, reducing the false-positive behavior for a
forensic analysis.

Considering the different options of events described for
this new example, Figure 11 shows the current Windows
event ID for current activities sequences.

To represent sequences identified in the latest example,
simple expressions are combined using AND and OR logical
operators, to generate an IOC of complex expression.

Figure 10. Branch event sequences by malicious activity.

The sentence describing the IOC generated using logical
operators is:

AND (4625, 4625, 4624, 4672, OR (AND (4720, 4728,

4688, 4905, 4722, 4907, 4634)), OR (AND (4740, 4759,
4761, 4698, 4689, 4912, 4634)), OR (AND (4672, 5025,
4688, 4660, 4964, 4719, 4634)))

Figure 12 shows the representation of this sentence using

the IOC Editor tool, where the structure of the IOC is
displayed using simple expressions to create complex
expressions using logical operators.

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 42 / 59

Figure 11. Branch event ID sequence by malicious activity.

Figure 12. Indicator of Compromise of complex expression.

In order to have an overview of the activities during the
intrusion on a computer system, the IOCs can be generated
with the combination of user events, auditing, system and
objects.

The general description made above shows the procedure
developed to generate IOCs using Windows event logs to
detect intrusions that could result in a security incident on a
computer system.

VI. RESULTS
According to the previously described procedure, a list of

the most representative Windows event logs categories
considering how critical the events to generate IOCs of
complex expressions are; to identify patrons of abnormal
behavior that could result in an intrusion, were selected.

An example of a Windows event log for a compromised
computer system, which describes the creation of the user
account “Jame” using Peter´s user account, is shown in
Figure 13.

Figure 13. Windows event log structure example.

As previously described in Section V Development, a
single Windows event log is not sufficient to detect an
intrusion; events should relate to other events in the
computer system to generate the IOC representing that
malicious or anomalous activity.

To validate whether the IOCs generated are functional or
not, these were tested in a correlational tool, for the case
study presented above. A free version of the Splunk® tool
was used [14], which is a Security Information and Event
Management Software [9] that allows us to detect intrusion
events in real time.

Figure 14 shows an example of an intrusion detection
using a generated IOC.

In a sampling made on thirty computer systems over an
hour, 9996 events were registered, about 50% of these
belonging to the categories of User Account Management,
Logon and Logoff.

Other registered events that represent 1% are:
• 4735 A security-enabled local group was changed
• 4625 An account failed to log on
• 4738 A user account was changed
• 4634 An account was logged off and
• 4732 A member was added to a security-enabled

local group

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 43 / 59

Figure 14. Test of intrusion detection using a IOC.

These events are combined with others of higher
occurrence or lower occurrence. This helps generate IOCs of
simple or complex expressions, which can reduced by more
than 80% the rate of false positives.

There are now about 50 IOCs to detect intrusion on
computers running Windows® 7 OS an up; Table IX shows
examples of some of them. They come mainly from forensic
analysis.

TABLE IX. EXAMPLES OF IOCS FOR WINDOWS OS.

ID IOC Logic Description of Events used

1
AND [4618, 4912, OR (4907, 4660,4670,4691), OR (4964,

4767, 4760, 4758, 4757, 4753, 4750, 4743, 4740), OR
(5025, 5034, 4950, 4949,)]

2
AND [4649, 4912, 4618, OR (4907, 4660,4670,4691), OR
(4964, 4767, 4760, 4758, 4757, 4753, 4750, 4743, 4740),

OR (5025, 5034, 4950, 4949,)]

3
AND [4912, 4618, OR (4907, 4660,4670,4691), OR (4964,

4767, 4760, 4758, 4757, 4753, 4750, 4743, 4740), OR
(5025, 5034, 4950, 4949,)]

4 AND [4649, 4912, 4618]

5 AND [4618, 4912, 4618]

6
AND [6273, 4618, OR (4907, 4660,4670,4691), OR (4964,

4767, 4760, 4758, 4757, 4753, 4750, 4743, 4740), OR
(5025, 5034, 4950, 4949,)]

7
AND [4719, 4618, OR (4907, 4660,4670,4691), OR (4964,

4767, 4760, 4758, 4757, 4753, 4750, 4743, 4740), OR
(5025, 5034, 4950, 4949,)]

Most of the generated IOCs are complex expressions and

involve more than 15 events of different categories each.
85% of simple expressions can be used to generate different
IOCs of complex expressions, which represent different
ways that an attack vector may consist of.

The most repeated IOCs events are sometimes
considered as non-critical but associated with other events
may represent an intrusion or malicious activity.

VII. CONCLUSION AND FUTURE WORK
To summarize, IOCs can be generated by the

combination and sequence of different Windows event logs,
describing a possible malicious activity on a computer

system, adding them to the techniques known to generate
IOCs, which provides to CIRTs, another way to detect an
intrusion in a computer systems.

The use of IOCs with Windows event logs improves IR
and forensic analysis processes, allowing to know the
activities of an intruder on a computer system, and managing
to make proper actions to prevent future malicious activities
with the same attack vector in the system.

As future work, we propose to analyze what other events
can be added to improve the IOCs generated and perform the
same procedure on other OS such as Linux.

ACKNOWLEDGMENT
Thanks to Instituto Politécnico Nacional for the support

granted during the development of this research.

REFERENCES
[1] <http://searchsecurity.techtarget.com/definition/Indicators-of-

Compromise-IOC> 2015.09.23
[2] P. Kral, “The Incident Handlers Handbook,” SANS Institute

InfoSec Reading Room, 2011.
[3] T. Sager, “Killing Advanced Threats in Their Tracks: An

Intelligent Approach to Attack Prevention,” SANS Institute
InfoSec Reading Room, 2014.

[4] <https://technet.microsoft.com/en-us/library/dn487458.aspx>
2015.11.07

[5] H. Lock, “Using IOC (Indicators of Compromise) in Malware
Forensics,” SANS Institute InfoSec Reading Room, 2013.

[6] <https://www.auscert.org.au/render.html?it=4323&template=
1> 2015.12.16

[7] <https://www.fireeye.com/content/dam/fireeye-www/services
/freeware/ug-ioc-editor.pdf> 2015.09.25

[8] A. Chuvakin and L. Zeltser, “Critical Log Review Checklist
For Security Incidents,” Cheat sheet version 1.0, SANS.

[9] K. Kent and M. Souppaya, “Guide to Computer Security Log
Management, NIST Special Publication 800-92,”
Recommendations of the National Institute of Standards and
Technology, USA 2006.

[10] <http://searchwindowsserver.techtarget.com/definition/Windo
ws-event-log> 2016.01.04

[11] <https://technet.microsoft.com/en-us/library/cc722385%28v=
ws.10%29.aspx> 2015.11.10

[12] <http://openioc.org/resources/An_Introduction_to_OpenIOC.
pdf> 2015.12.05

[13] <https://technet.microsoft.com/en-us/library/dn535498.aspx>
2015.11.12

[14] <http://www.splunk.com/> 2015.10.10

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 44 / 59

Comparative Study of Routing Protocols in Ring Topologies using GNS3

Roberto Alejandro Larrea-Luzuriaga1, Jose Miguel Jimenez2, Sandra Sendra2, Jaime Lloret2
1Universidad Politécnica de Valencia, Valencia (Spain).

2Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universidad Politécnica de Valencia,
 Grao de Gandia (Spain)

e-mail: rolarlu@teleco.upv.es, jojiher@dcom.upv.es, sansenco@posgrado.upv.es, jlloret@dcom.upv.es

Summary— Routing is the function of seeking a path between
all possible in a packet network topologies which have great
connectivity. Because it comes to find the best possible route,
the first step is to define what constitutes best route and
consequently what is the metric to measure it. This parameter
and the operation of the routing protocol itself give us the
protocol performance. This work presents a comparative study
of three of the most used routing protocols, i.e., Routing
Information Protocol (RIP), Open Shortest Path First (OSPF)
and Enhanced Interior Gateway Routing Protocol (EIGRP) in
ring topologies. Through this study, the performance of each
routing protocol is analyzed. To this purpose, we have used a
network simulator known as GNS3 that allows simulating
different network scenarios using real operating systems (IOS)
of CISCO equipment. We have simulated a topology with these
three protocols in order to observe and analyze the network
behaviour, traffic flow, time of routes updating and network
convergence. As results show, RIP presents the lowest time for
initializing the network while OSPF is the protocol that
presents highest time in initializing process of network. Finally,
EIGRP shows the best convergence time after the first fault in
the network.

Keywords- Routing Protocol; Convergence time; RIP; OSPF;
EIGRP; GNS3; Network Performance.

I. INTRODUCCIÓN
Routing is the process through which a router determines

the best route of a data packet to reach a destination. This
packet passes through several devices so that the network
destination is different to the origin network. There are two
types of routes, i.e., statics and dynamics routes. Static routes
are those that are configured by hand or are specified by
default and do not have any reaction to new routes or falling
sections of the network routes. However, a router with
dynamic routing is able to understand the network and pass
routes between neighbouring routers. The network through
routers with dynamic routing is responsible for specifying
the access to new nodes on the network or adapts and
modifies the access to certain parts of the network due to the
fall of any link or node seeking an alternative optimal route
[1].

Routing protocols are algorithms that allow to determine
and to select the best route upon which the network traffic
will be send from one network to another. To this end, these
algorithms use different information associated to links, such
as bandwidth, delay, load, reliability, number of hops or cost,
among others [2]. In this way, the exchange of information

between the equipment can generate the existing network
topology and determine the best links to be used to reach a
specific destination.

Routing protocols are subdivided in two types, distance
vector and link state. On the one hand distance vector
algorithms use the Bellman-Ford algorithm. It searches the
path of lowest cost by the indirect method search. The
distance vector associated to a network node is a control
packet that contains the distance to the nodes of the network
known so far. Each node sends its neighbours the distances
that knows through this packet. The neighbouring nodes
examine this information and compare it with the
information they already have updating its routing table, if
necessary. Some examples of distance-vector protocols are
Routing Information Protocol (RIP) (version 1 and 2),
Interior Gateway Routing Protocol (IGRP) and Enhanced
Interior Gateway Routing Protocol (EIGRP). On the other
hand, link status algorithms are based on each node gets to
know the network topology and costs (delays) associated
with the links. From these data, nodes can obtain the tree and
the routing table after apply the minimum cost algorithm
(Dijkstra algorithm). Open Shortest Path First (OSPF) and
Intermediate system to intermediate system (IS-IS) protocols
are examples of link state protocols.

Because of the complex operation of these algorithms, it
is necessary understanding the protocols operation in order to
select the more adequate protocol for the designed network.
Additionally to the basic operation, researchers usually
modify some of these features in order to provide
improvements in energy consumption in the transmission of
information [3] [4] and the own consumption of network
devices [5].

On the other hand, it is important to know the most
appropriate sort of topology that our network needs. We can
find Simple topologies such as bus, star or ring topology and
more complex structures as mesh networks. Besides these
topologies, they can be combined for grouping nodes in
clusters [6] or in groups [7].

Networks with ring topologies offer one grade of
redundancy to a possible fail so that if one link fails, it is
possible to maintain the communication between all network
nodes. This fact is essential in backbone networks [8]. In a
backbone network with ring topology where dynamic routing
with default values is configured, every node of the ring,
after the network has converged, has a data base with the
information about the network routes toward every node,

38Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 45 / 59

where there will be information about how to arrive to the
destination for two routes with equal cost. It is known as
redundancy.

The time that a routing protocol takes to calculate the
route to achieve the destination, as well as the convergence
time to start data transmission after a failure and recovery
time are different depending on the protocol and the mode
that it exchanges information about the network topology.
For this reason, some protocols will have better performance
than another.

Taking into account all of these issues, in this paper, we
are going to perform a comparative analysis with three
routing protocols, RIP, OSPF and EIGRP, in order to check
which one offer the best performance when a ring topology
is used. To do this, we are going to use a network simulator
called GNS3 [9]. These protocols are used in a ring topology
composed by 5 routers and a computer that monitors all
events. The tests are performed in terms of convergence time
when network begins to work, recovery time after a failure
and network response when one or two links register a
failure.

The rest of this paper is structured as follows. Section 2
shows some previous studies where these protocols have
been analyzed. Section 3 presents the protocols RIP, OSPF,
and EIGRP that we have used in our test bench and
simulations. The simulation scenario and some previous
measurements are shown in Section 4. Section 5 shows the
result of our study. Finally, Section 6 presents the conclusion
and future work.

II. RELATED WORK
There is a big number of previous works where routing

protocols are studied and evaluated using network
simulators. There are several network simulators which are
widely used in telecommunications such as OPNET,
OMNET, NS-2 or NS-3, among others. Some of them are
free and other ones can only be used under license. In any
case, the most important thing is that these simulators should
offer results as realistic as possible [10]. This Section shows
some of these works.

G. S. Aujla and S. S. Kang [11] performed a study and
analysis of several routing protocols over Mobile ad hoc
networks (MANETs). Authors used OPNET simulation to
test the operation of five well known routing protocols as Ad
Hoc On-Demand Distance Vector (AODV), Dynamic Source
Routing (DSR), Temporally-Ordered Routing Algorithm
(TORA), Optimized Link State Routing (OLSR) and
Geographic Routing Protocol (GRP). The protocols
performance was measured on the basis of throughput, delay,
load and data dropped metrics. In addition, the work was
focussed on the e-mail and video conferencing traffic
generating applications by increasing the number of nodes.
As a result of this study, we can see that AODV is the one
which present better results for video conferencing when a
low number of nodes. However, OLSR protocol shows good
results for email traffic

K. Yao et al. [12] presented a real-time testbed for
routing network (ARTNet) in order to evaluate the
requirements that routing protocols should present. As

authors state ARTNet supports some of the most popular
routing protocols used in typical applications in a cost-
effective way. To test the good operation of ARTNet,
authors have performed several simulations with two popular
routing protocols, EIGRP and OSPF based on quantitative
metrics, i.e., packet loss and delta time for standard
application services. The results of this study demonstrate
that EIGRP presents converge time faster for HTTP and FTP
applications when the primary link for a subnet suffers a
fault. This kind of simulators and proposal are a good tool
that allows users to easily make different network
configurations.

M. I. Ashraf et al. [13] presented a comparative analysis
of OSPF and EIGRP. Authors study the network
performance of these protocols in enterprise environments.
The study was performed at simulation level using OPNET
Modeler. Along the paper, authors explained the main
features that a protocol should present in order to be used in
big networks that manage the information in corporative and
enterprise environments. The study evaluated OSPF and
EIGRP performance in terms of convergence time,
scalability and resources Utilization through the simulated
network models. As results shows, EIGRP seems to be more
scalable in terms of routing domain size. On the other hand,
OSPF is more efficient in terms of router and CPU
utilization, message processing, routing table size and the
traffic load through the network. In terms of convergence
time, EIGRP is faster than OSPF. This report can be
understood as a user guide to use EIGRP, OSPF in certain
circumstances.

There are several comparative studies where more
complex topologies have been studied, but we have not
found studies of routing protocols in ring topologies.
However, there are interesting proposals based on ring
topologies such as [14] where authors presented a set of test
benches to study the TCP/IP interaction based on congestion
price for evaluating the stability and optimality in ring
topologies and [15] where X. Li describes a particle swarm
optimization (PSO) algorithm using a ring neighborhood
topology, which does not require any niching parameters.
For this reason and because of the features of this kind of
topologies, we have decided to perform this work.

III. ROUTING PROTOCOLS
This section presents some of the most widely used

routing protocols. For each protocol, it is explained the main
characteristics as well as default values of each parameter
that these protocols use when they are running.

A. RIP and RIP V2
RIP [16] is an Interior Gateway Protocol (IGP) used by

routers to exchange information about IP networks that are
connected. This protocol is based on the distance vector
algorithm and it uses the User Datagram Protocol (UDP) to
send information through the network. The router that uses
this protocol has a limited knowledge about the network
information. This protocol uses the hops number mechanism
to determine the best route. It supports up to 15 hops to avoid
routing loops. A route with 16 hops is considered a route as

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 46 / 59

unreachable or not desirable. This fact limits the network
size. It is a popular protocol due its simplicity and easy
configuration. However, the main problem lies in the
convergence times and scalability limitations, so it has a
better performance in small networks [17].

On the other hand, RIPV2 [18] was created due to the
necessity of supporting variable length subnet masks
(VLSM) and other requirements enhanced in respect to its
first version. In addition to including VLSM, RIPV2
supports the process of routes authentication and it
incorporates the routes updating making use of multicast
packets, classless inter-domain routing (CIDR) and the
updating by trigger. It keeps the sending of updating packets
each 30 seconds and a limit of 15 hops. It uses the same port
UDP, i.e., the port 520, and it uses the strategies of inverse
poisoning and counting to infinite to prevent loops, as the
first version of RIP [19].

Unlike other protocols, RIP is a free protocol to be used
by different routers and not only by a single one owner such
as EIGRP which was developed by Cisco Systems. Table I
[20] shows a summary of the default parameters of RIP
protocol.

TABLE I. PARAMETERS OF RIP

Parameter
Default values of RIP Parameters

Description Value
Updating
interval

Time period to sending actualizations, to
its neighbours. 30 s.

Invalid route
It is a initialized timer when a route is
inserted in the routing table. When this
time expires the route is invalid.

180 s.

Flush
It marks that a route must be removed of
routing table. This value must be bigger
that the value to the invalid route.

240 s.

Holddown

It is used to avoid that one route has been
marked as valid immediately after of it had
marked as invalid. During this time the
actualizations respect to the invalid route
are ignored.

180 s.

Announcing’s
methods

It specifies the mechanisms that the router
uses to communicate with its neighbours.
1- No filtering: Announce the routes for all
its neighbours.
2- Split horizon: Do not announce a route
to one neighbour from which it was
learned.
3- Split horizon with poison reverse:
Announce the route to the neighbour of
which it was learned with a metric to
infinite or 16 maximum.

3

B. OSPF
OSPF [21] is a link state routing protocol that uses the

algorithm short path first (SPF) to calculate the best route to
the destination node. It is one of the most widely used
hierarchical protocols due to its significant scalability.

OSPF keeps all network information in its routing table.
For this reason, it requires a major level of processing and
memory. The header of OSPF packets includes the source
and destination address. OSPF uses multicast as destination
address and sends many message types including hello
messages, link state requests and updates and database

descriptions. Djisktra’s algorithm is used to specify the
shortest path to the destination. SPF calculations are
computed either periodically or upon a received Link State
Advertisement (LSA). This fact depends on the protocol
implementation. The protocol operation is based on 5
different types of link states packets (LSP’s). These packets
help the protocol to distinguish between its neighbours and
update the routing information of link states. The routers of a
network that runs OSPF can have different roles as a
function of its position. These roles are internal router,
backbone router, edge area router and autonomous systems
(AS) router. OSPF uses the accumulated bandwidth as metric
from the source interface to destination interface to calculate
the cost. Finally, it is important to know that OSPF supports
VLSM [17]. Contrary to RIP, however, OSPF has the
disadvantage of being too complicated. Table II shows a
summary of the main parameters of OSPF protocol [20].

TABLE II. PARAMETERS OF OSPF

Parameter
Default values of OSPF parameters

Description Value

Cost
Interface

The cost of each interface can be specified,
this parameter is used to use the short path
first.

1

Hello’s
messages
interval

Time period to send Hello’s messages to its
neighbours. If this parameter is too small,
result in more traffic to the router, that it
increments the risk of that the packets are
discarded, so it could producing false alarms.
If the value is too big, the change detection
times in the topology are majors, the router
dead timer could be expire.

10 s.

Router
dead timer

Timer used, to declare to its neighbours as
down, when the Hello messages didn’t have
been received. Its value must be multiple of
the Hello interval.

40 s.

Transmissi
on delay

It is the estimated time to transmit
notification packets about link state LSA. 1 s.

Retransmis
sion
interval

Retransmission time LSA. It must be major
that the round trip time estimated between
any couple routers in the network.

5 s.

Parameters
to the
calculate
SFP

It specifies how often it calculates the short
path first:
1- Periodic: It recalculated in each specified
interval, unless it hasn't occurred any
change.
2- LSA delivered: It recalculated after of
each LSA has been received.

2

C. EIGRP
EIGRP [22] is an advanced routing protocol based on

distance vector, owned by Cisco Systems, which offers the
best characteristics of both distance vector and link state
algorithms. This protocol can only be used in Cisco routers.
It is a fast convergence routing protocol and extremely
scalable for medium and big networks. In addition, EIGRP
implements CIDR and VLSM. It is considered an advanced
protocol because it is based on features commonly associated
with link-state protocols and although it may serve as it, the
fact is that EIGRP is a distance vector routing protocol.
EIGRP uses some of the best features of OSPF, such as
partial updates and neighbor discovery.

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 47 / 59

The key of its good performance is use of the Diffusing
Update ALgorithm (DUAL) for updating routes. Through it,
this protocol achieves an exceptional and rapid network
convergence. The metrics takes into account the bandwidth,
load, feasibility and delay. It keeps the routes’ information
and topology’s network details in three different tables called
neighbour table, topology table and routing table [4]. This
algorithm uses the neighbour table and the topology table to
develop the routing table in the EIGRP router. The topology
table is created by the finite states machine of DUAL using
the collected information of its routers neighbours. With the
available information of the topology table, DUAL calculates
the best route to the router destination and it makes that link
as successor. DUAL also calculates the feasible successor
(second best link free of loops) if it is available. Although
EIGRP does not guarantee the use of the best route, this
protocol is rather used because it is easier to configure than
OSPF.

Table III shows the main parameters used by EIGRP
protocol [20].

TABLE III. PARAMETERS OF EIGRP

Parameter
Default values of EIGRP parameters

Description Value

Hello interval
messages

Period of time to send Hello messages to
its neighbours. If this parameter is too
small, the result is more traffic to the
router, so it increases the risk of that
packets are discarded, so it could
producing false alarms. If the value is too
big, the changes detection time in the
topology will be major, the router dead
timer could expire.

5 s.

Hold Time

Timer used to declare to the neighbours as
down, when the Hello messages has not
been received. Its value must be multiple
of Hello interval.

15 s.

Split Horizon
When it is enabled, it does not notifies the
routes to the neighbours of which were
learned.

Enable

As we can see, the EIGRP is simpler in terms of the

number of different types of packets generated by the
protocol.

IV. SIMULATION ENVIROMENT
In order to evaluate the performance of each protocol, we

have implemented a basic ring topology. This topology and
response times of each router are shown in this Section.

As Figure 1 shows, the topology is composed by 5
routers linked by Fast Ethernet interfaces. In this case, the
devices used are Cisco routers with the Cisco IOS Release
12.4(13b) for 2691 service Platform with IP Base. To
perform the simulations, a personal computer (PC) is
connected to the ring topology. Each router has, at least, 2
network interfaces except the router R1 which needs one
more interface to connect the PC. This PC is in charge of
monitoring all network events making use of the
management software. Figure 1 also shows the subnet
network and the physical interfaces that connects each
router.

To design the network addressing, we have used VLSM.
We have defined 5 subnets with subnet mask /30 starting
from the class B address 172.30.10.0/16.

In order to see the initial performance of this network, we
have configured static routes in each router. After that, a ping
is transmitted from Host 1 to each router following the route
with lowest cost. Figure 2 shows the Round Trip Time
(RTT) in ms. where routers are configured with static routes.
With the value of RTT, it is easy to measure the time during
which part of the network does not have connectivity. We
can also compare the times for symmetric routes.

From these results, we can calculate the average response
time to reach each router (See Figure 3). Figure 3 also shows
the percentage of packet loss. In this case, because we are
working static routes and a very simple network, we do not
register packet losses. If results are analyzed, we can observe
that the biggest response time is registered by the farthest
network to R1, i.e., the route up to network 172.30.10.12/30
through the interface F0/1 of router R3. We can observe that
the minimum response time is established to reach the router
R1 in 21 ms, and the maximum time is 64 ms to reach the
node R3. In addition, it is important to see that this value is
doubled when two hopes are needed to reach the destination.

Device Subnet Device
PC 172.30.10.0/30 R1
R1 172.30.10.4/30 R2
R2 172.30.10.8/30 R3
R3 172.30.10.12/30 R4
R4 172.30.10.16/30 R5
R5 172.30.10.20/30 R1

Figure 1. Network in ring topology used in our simulations.

0
20
40
60
80

100
120
140
160
180

0 5 10 15 20 25 30

RT
T

(m
s)

Time (s)

172.30.10.5 172.30.10.9 172.30.10.13
172.30.10.17 172.30.10.21

Figure 2. Response times from Host 1 to all routers

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 48 / 59

It is easy to see that symmetric routes, such as PC to R5
and PC to R2, present a difference of average response time
of 10ms. If we analyze both, route from PC to R3 and route
from PC to R4 this difference between the average response
times is lower.

V. PROTOCOLS’ EVALUATION
This Section presents several tests where RIP, OSPF and

EIGRP are evaluated. Protocols are evaluated in terms of
recovery time after a network failure. This Section also
analyzes the different states that a network running a routing
protocol can suffer, i.e., event of updating messages, event of
network initialization, network failure and network recovery.

When configuring the routing protocols with its default
parameters, routers calculate 4 optimal routes to reach the no
adjacent networks from each router. Because we have a ring
topology, each router only has two optimal routes to reach
the farthest network to each node. To evaluate the
performance of each routing protocol, we need to determine
the learning and route publication time and the ring network
convergence, in three different stages: (1) at the beginning of
network operation, (2) when a dropped link is registered and
(3) when this link is restored. The failure point has been
established in the link between router R1 and R5. When the
network starts, routers have to calculate and learn the two
optimal routes to reach the two non adjacent networks in
both directions through the interfaces of each router with a
same cost. To determine the recalculating times of routes and
the network convergence as a result of a dropped link, the
monitoring point is established in the farthest network from
router R5, i.e., Host 1 is used to monitor the network activity.
The failure point is established in the fast Ethernet interface
0/1 (F0/1) of router R5. After generating the failure, the link
is reconnected and restored. The time elapsed between the
failure generation and the communication re-establishment
will give us the time of network inactivity time which will
consider the convergence time and some additions
milliseconds that the devices will need to route the packets.
As packets, we have used pings with the parameters by
default.

A. Evaluation of RIP
In order to evaluate the network performance when RIP

is running, we have generated a failure in the link between
the R1 and R5. After that, the link is restored. To evaluate
the restoring time of this protocol, we have sent a continuous
ping between Host 1 and each router. Figure 4 shows the
RTT in ms. of each ping between Host 1 and each router. As
we showed in Figure 1, R4 and R5 are reached through the
shortest path, i.e., R4 is reached through R5. As Fig. 4
shows, the disconnection and restoration of link is generated
at 25th second. From this moment, the network needs around
475 s to recover the communication with R4 and R5. We can
also observe that R1, R2 and R3 have not lost the
connectivity with Host 1 although the RTT of their ping has
slightly increased. This is because the protocol needs to
inform to the rest of routers about the new path to reach R4
and R5. The RTT for R4 and R5 has increased about 110
milliseconds.

Table IV shows the response times evaluated for this
protocol, in the different phases of its operation.

TABLE IV. RESULTS OF RIP

Event
RIP Results

Action Time (s)
Updating messages -- 29.601

Network start
Learning and publishing routes 7.515
Ring network convergence 13.823

Failure
Learning and publishing routes 27.931
Ring network convergence 298.129

Recovery
Learning and publishing routes 2.269
Ring network convergence 30.888

B. Evaluation of OSPF
In order to evaluate the restoring time of OSPF, we have

sent a continuous ping between Host 1 and each router. In
this case we have generated 2 failures in the same link. The
second one is generated after restoring the network
communication of the first failure. Fig. 5 shows the RTT in
ms. of each ping between Host 1 and each router after the
first failure. Figure 5 shows that the disconnection and
restoration of link is generated at 7th second. From this
moment, the network needs around 50 s to recover the
communication with R5 and around 10 s to recover the
communication with R4. We can also observe that R1, R2
and R3 have not lost the connectivity with Host 1. However,
the RTT of their ping has increased around 10-15 ms. After
restoring the communications with R4 and R5, the RTT is
around 110 ms for R4 and 140 ms for R5.

% Packet Loss

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0ms 5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 45ms 50ms 55ms 60ms 65ms

Percent Loss Response Time

R3 - 172.30.10.13

R4 - 172.30.10.17

R2 - 172.30.10.9

R5 - 172.30.10.21

R1 - 172.30.10.5

Response Time (ms)
Figure 3. Average response time

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200 250 300 350 400 450 500 550 600

RT
T

(m
s)

Time (s)

172.30.10.5 172.30.10.9 172.30.10.13
172.30.10.17 172.30.10.21

Figure 4. RTT and communication restoring time for RIP after a failure

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 49 / 59

0
20
40
60
80

100
120
140
160
180

0 5 10 15 20 25 30 35 40 45 50 55 60

RT
T

(m
s)

Time (s)

172.30.10.5 172.30.10.9 172.30.10.13
172.30.10.17 172.30.10.21

Figure 5. RTT and communication restoring time for OSPF after the first

failure

0
20
40
60
80

100
120
140
160
180

0 5 10 15 20 25 30

RT
T

(m
s)

Time (s)

172.30.10.5 172.30.10.9 172.30.10.13
172.30.10.17 172.30.10.21

Figure 6. RTT and communication restoring time for OSPF after the

second failure

0
20
40
60
80

100
120
140
160
180

0 5 10 15 20 25 30

RT
T

(m
s)

Time (s)

172.30.10.5 172.30.10.9 172.30.10.13
172.30.10.17 172.30.10.21

Figure 7. EIGRP data convergence before the failure

After generating the second fault and restoring it in the
same link (in 15th second), we have observed that the
network only needs 7 seconds to establish the connectivity
(See Figure 6). This is because the routing tables already
contain the alternative route to reach R4 and R5. The RTT
values are similar to Figure 5.

Table V shows the response times registered for OSPF
protocol, in the different stages.

TABLE V. RESULTS OF OSPF

Event
OSPF Results

Action Time (s)
Hello
messages

-- 9.99

Network start
Learning and publishing routes 53.84
Ring network convergence 66.78

Failure

Number of failure of the same
link 1st 2nd

Learning and publishing routes 42.14 2.51
Ring network convergence 45.00 5.62

Recovery
Learning and publishing routes 7.76
Ring network convergence 14.80

As Table V shows, the response times improve after the
second failure. This is because the routing tables maintain
the information about how to reach R4 and R5. The
calculation of alternative routes is faster than the previous
situation. The elapsed time without communication is the
time that routers need to switch to the alternative route.

C. Evaluation of EIGRP
To evaluate the network performance when EIGRP is

running, we have generated an only failure in the link
between the R1 and R5. Figure 7 shows the RTT in ms. of
each ping between Host 1 and each router. The disconnection
and restoration of link is generated at 5th second. From this
moment, the network needs around 12 s to recover the
communication from Host 1 to R4 and R5. R1, R2 and R3
have not lost the connectivity with Host 1. The RTT of pings
for R1, R2 and R3 are around 28 ms, 52 ms. and 75 ms,
respectively. The average value of RTT for R4 is about 91
ms and for R5 is 111ms.

Finally, Table VI shows the different response times for
EIGRP protocol in its different stages it needs to correctly
work.

TABLE VI. RESULTS OF EIGRP

Event
EIGRP Results

Action Time (s)
Hello messages -- 4.939

Network start
Learning and publishing routes 6.677
Ring network convergence 15.241

Failure
Learning and publishing routes 0.9547
Ring network convergence 12.573

Recovery
Learning and publishing routes 1.492
Ring network convergence 1.965

As observed, EiGRP presents the lowest times compared

to RIP and OSPF.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have analyzed the network performance

of ring topology when RIP, OSPF and EIGRP protocols are
executed.

After evaluating these routing protocols, we should
highlight several aspects of ring topologies as a function of
the routing protocol it runs. On the one hand, RIP presents a
good response time at the beginning of the network activity
while its performance decreases after a failure. RIP requires
higher time in the network establishing, when the network is
recovered from the failure.

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 50 / 59

On the hand, OSPF has a higher time in the network
starting, but unlike of RIP, its performance improves after
the first failure. It also improves its convergence time, even
when a second failure is registered in the same link. OSPF
registers better times response that the ones registered by
EIGRP.

The simulations shows that after a failure the ring routers
converge in an asynchronous form, i.e., the connectivity with
the other routers is restoring according to time that each
router needs to calculate the new optimal route.

EIGRP recorded the best convergence times of the ring
after a failure and it also presents the best RTT when it is
restored.

As future work, we would like to extend the comparative
analysis of routing protocols for mesh topologies [23] in
order to check their behaviour after a failure and the impact
of this fact over the network efficiency. In addition, we have
also found interesting approaches related to genetic
algorithms based on ring topologies [24] and we would like
to explore this possibility to improve the efficiency of sensor
networks.

ACKNOWLEDGMENT
This work has been supported by the “Ministerio de

Economía y Competitividad”, through the “Convocatoria
2014. Proyectos I+D -Programa Estatal de Investigación
Científica y Técnica de Excelencia” in the “Subprograma
Estatal de Generación de Conocimiento”, project TIN2014-
57991-C3-1-P, by the “Contratos Postdoctorales UPV 2014
(PAID-10-14)” by the“Universitat Politècnica de València”
and by the “Programa para la Formación de Personal
Investigador – (FPI-2015-S2-884)” by the “Universitat
Politècnica de València”

REFERENCES
[1] S. Sendra, P. Fernández, M. Quilez, and J. Lloret, “Study and

Performance of Interior Gateway IP Routing Protocols”, Integrated
Management Coastal Research Institute, Polytechnic University of
Valencia, Network Protocols and Algorithms, 2010, Vol. 2, No. 4, pp.
88-117.

[2] J. Deng, S. Wu, and K. Sun, “Comparison of RIP, OSPF and EIGRP
Routing Protocols based on OPNET,” Simon Fraser University
School of Engineering Science. ENSC 427: Communication
Networks, 2014.

[3] Q. Ling, J. Yan, and H. Deng, “A Novel Energy-Aware Routing
Algorithm for Wireless Sensor Networks Based on CDMA and
TDMA,” Ad Hoc & Sensor Wireless Networks, 2015, Vol. 26, No. 1-
4, pp. 21-41.

[4] M. Eslaminejad, S. A. Razak, and M. Sookhak, “Classification of
Energy-Efficient Routing Protocols for Wireless Sensor Networks,”
Ad Hoc & Sensor Wireless Networks, 2013, Vol. 17, No, 1-2, pp.
103-129

[5] S.Andrade, S. Sendra, E. Granell, and J. Lloret, “Towards green
networks using optimized network devices.” (Ch. 15), Green
Networking and Communications: ICT for Sustainability,2013, CRC
Press, Taylor & Francis Group, pp. 355-376.

[6] M, Atto and C. Guy, “Routing Protocols for Structural Health
Monitoring of Bridges Using Wireless Sensor Networks,” Network
protocols and Algorithms, 2015, Vol 7, No 1, pp.1-23.

[7] J. Lloret, S. Sendra, M. Garcia, and G. Lloret, "Group-based
underwater wireless sensor network for marine fish farms," 2011
IEEE GLOBECOM Workshops, Houston, Texas, USA, December 5-
9, 2011. pp.115,119.

[8] B. Meador. “A Survey of Computer Network Topology and Analysis
Examples,” Academic Report. In Washington University website.
Available at http://www.cse.wustl.edu/~jain/cse567-
08/ftp/topology/#ring_network_topology [Last Access: January 25,
2016]

[9] C. Welsh, “GNS3 Network Simulation Guide,” Packt Publishing,
ISBN 13 9781782160809, October 2013

[10] A. Basu et al., “The state of peer-to-peer network simulators,” ACM
Computing Surveys (CSUR), 2013, Vol. 45, No. 4, pp. 1-25.

[11] G. S. Aujla and S. S. Kang, “Comprehensive Evaluation of AODV,
DSR, GRP, OLSR and TORA Routing Protocols with varying
number of nodes and traffic applications over MANETs,” IOSR
Journal of Computer Engineering (IOSR-JCE), 2013, Vol. 9, No. 3,
pp 54 -61.

[12] K. Yao, W. Sun, M. Alam, M. Xu, and V. Devabhaktuni, “A Real-
Time Testbed for Routing Network,” In proceedings of the 8th
International ICST Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(TRIDENTCOM 2012), Thessaloniki, Greece, June 11-13, 2012. pp.
256-270.

[13] I. Ashraf, S. Iftikhar, U. Sarwar, and A. Latif, “Comparative Analysis
of Link State and Hybrid Routing Protocols,” International Journal of
Computer Science and Management Research, 2013, Vol. 2, No. 4,
pp. 2244-2255.

[14] J. He, M. Chiang and,J. Rexford, "TCP/IP interaction based on
congestion price: Stability and optimality." In proceedings of the
IEEE 2006 International Conference on Communications (ICC 2006).
June 11-15, 2006, Istanbul, Turkey. pp. 1032-1039.

[15] X. Li, "Niching without niching parameters: particle swarm
optimization using a ring topology," IEEE Transactions on
Evolutionary Computation, 2010, Vol. 14, No. 1, pp. 150-169.

[16] RIP Features. In IETF Website. Available at:
https://tools.ietf.org/html/rfc1058 [Last Access: January 25, 2016]

[17] D. Sankar and D. Lancaster, “Routing Protocol Convergence
Comparison using Simulation and Real Equipment,” Advances in
Communications, Computing, Networks and Security Volume 10,
ISBN: 978-1-84102-358-8, pp186-194, 2013.

[18] RIP V2 Features. In IETF Website. Available at:
http://tools.ietf.org/html/rfc1723[Last Access: January 25, 2016]

[19] A. Bruno and J. Kim., “CCDA Self-Study: RIP, IGRP, and EIGRP
Characteristics and Design,” Cisco Press , Pearson Education 2015.

[20] M. Nguyen, K. Mirzahossein, and S. Elmasry, “Analysis of RIP,
OSPF, and EIGRP Routing Protocols using OPNET,” Simon Fraser
University School of Engineering Science ENSC 427:
Communication Networks, 2013.

[21] OSPF Features. In IETF Website. Available at:
https://tools.ietf.org/html/rfc1247 [Last Access: January 25, 2016]

[22] EIGRP Features. In IETF Website. Available at:
http://tools.ietf.org/html/draft-savage-eigrp-02 [Last Access: January
25, 2016]

[23] D. Lee, K. Lee, S. Yoo and, J.-K. K. Rhee, "Efficient Ethernet Ring
Mesh Network Design", Journal of Lightwave Technology, 2011,
Vol. 29, No. 18, pp. 2677-2683.

[24] N. Tian, J. Sun, W. Xu and, C.-H. Lai, “Quantum-Behaved Particle
Swarm Optimization with Ring Topology and Its Application in
Estimating Temperature-Dependent Thermal Conductivity,”
Numerical Heat Transfer, Part B: Fundamentals, 2011, Vol. 60, No. 2,
pp. 73-95.

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 51 / 59

Enhancing Network Security Environment by Empowering Modeling and

Simulation Strategy

(Cyber Protect Simulation Lesson Learned)

Rudy Agus Gemilang Gultom

Deputy for Strategic Studies

The National Resilience Institute of the Republic of

Indonesia (Lemhannas RI)

Jakarta, Indonesia

e-mail: rudygultom@lemhannas.go.id

Baskoro Alrianto

Bureau of Telematics

The National Resilience Institute of the Republic of

Indonesia (Lemhannas RI)

Jakarta, Indonesia

e-mail: karotelematika@lemhannas.go.id

Abstract—This paper provides an overview based on cyber

protect simulation experiences to enhance network security

environment by empowering modeling and simulation

strategy. Cyber protect is a simulation tool developed by the

US Defense Information Systems Agency (DISA). Cyber

protect simulation is an integral part of cyber security for

information leaders course at National Defense University

(NDU), Washington, DC. USA. Strategic thoughts can be

implemented during cyber protect simulation exercises.

Brilliant ideas in simulating an organization network security

environment become good lesson learned. The implementation

for proper defense strategy could secure an organization Local

Area Network (LAN) from various threats, attacks and

vulnerabilities in concrete and abstract levels. Countermeasure

strategy, which is implemented in this simulation exercise is

presented as well. At the end of this paper, an initial network

security framework concept, so called The Six-ware

Framework concept (The SWF concept) has been introduced.

Keywords-cyber protect simulation; threats, attacks and

vulnerabilities; countermeasures strategy; network security

framework and models

I. INTRODUCTION

Nowadays, as the cost of information processing and
internet accessibility falls, civilian, military and government
organizations security environments are becoming
increasingly vulnerable from cyber threats or attacks, e.g.,
network intrusions, DoS/DDoS, phishing, spoofing, viruses,
flooding, etc. At this point, the information security manager
might allocate budget, spreading it for network defense tools,
e.g., anti-virus software, firewalls, intelligent routers or
expensive modeling and simulation (M&S) tools. M&S is
an effective technique to support better understanding for
information security managers in concrete and abstract levels
[1]. M&S can be used to identify weaknesses proactively
and it can also provide education and training using “what if”
scenarios reactively. Ultimately when new threats appear the
ability of an organization to respond is significantly
enhanced.

One good lesson learned in the context of information
security issue today is the phenomenon of Panama papers
where over 11.5 million files have been leaked including 2.6

terabytes of data. E-mails accounted for the majority of
exposed records (4,804,618 files), followed by database
formats (3,047,306), PDFs (2,154,264), images (1,117,026),
text documents (320,166) and other (2,242) files (see Figure
1). At this point it is still unclear whether the 11.5 million
files were obtained through hacking (data breach) or leaked
from someone inside of the Panamanian law firm (insider
leak). But from a cyber protect perspective, the lessons are
nearly identical either way [2][3][4][5].

Figure 1. Number of files revealed in Panama Papers data leak in April

2016 by type [5]

The purpose of this paper is to enhance security

awareness environment within an organization in order to

overcome the various security threats, attacks and

vulnerabilities through empowering modeling and

simulation strategy based on network security framework

models. It also meets the demands of the countermeasures

strategy and policy of an organization.

The rest of the paper is structures as follows. Section II

presents the cyber protect simulation tool. Section III

presents security threats, attacks and vulnerabilities

discussion. Section IV explains countermeasures strategy

and policy. Section V discusses why an organization needs

to adopt an appropriate network security framework model

45Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 52 / 59

to enhance its network security environment. Section VI

describes contribution of this paper by proposing a new

concept proposal, called The Six-Ware Framework (The

SWF). This contribution is a very early concept inspired by

cyber protect simulation experiences. Section VII contains

concluding remarks and future work for the SWF concept

development.

II. WHAT IS CYBER PROTECT?

Cyber Protect is a network security simulation tool
designed by the DISA [6]. It revolves around the purchase
and application of information security countermeasures in a
Local Area Network (LAN) environment. It takes place over
four quarters. Each quarter the user makes decisions about
what resources/countermeasures to purchase and put in place
[7]. After making those decisions, the simulation is set in
motion. The user is then subject to a variety of security
attacks. The following cycle steps are repeated four times:

 First step, choose computer network security

resources, e.g., user training, redundant systems,

access control, virus protection, backup,

disconnection, encryption, firewalls, and intrusion

detection.

 Second step, applies/installs resources by drag and

drop to a specific location on the cyber protect

simulation dashboard.

 Third step, experiencing a variety of attacks. There

are nine possible forms of attack, e.g., jamming,

viruses, moles, social engineering, packet aniffers,

data theft, data modification, flooding, and imitation

(spoofing). The numbers and types of attacks are

random; they can come from outside and inside an

organization.

 Fourth step, receiving report indicating performance

level. For every quarter the user receives a score

sheet based upon how well they did in purchasing

and applying resources to thwart the attacks.

In cyber protect simulation exercise, the user acts as an

information leader within an organization. The user has full

responsibility to protect or to defend his LAN department.

Moreover, by utilizing cyber protect simulation dashboard,

the user can freely setup the best and appropriate strategies

of a LAN configurations which are expected to be immune

from various types of threat, attack or data breach [8].

In order to successfully complete the simulation,

meeting a "commanders" goal, the user needs to score 90 or

above. As in real world situation, there is good and bad

experiences and/or fortune associated with the simulation. A

user might do very poorly in allocating his resources, yet

through good fortune be subject to very few attacks, and

therefore receive a final high score. At the other end of the

spectrum, the user might do a pretty good job in allocating

the resources, yet because of numerous attacks, the ending

tally would not be good. Even with perfect "known"

defenses, the enemy may still slip through.(see Figure 2).

Figure 2. Cyber protect simulation dashboard

The objective of cyber protect simulation exercise is to

produce a minimum 90% security readiness rating. If the

user achieves this requirement, then the user can print out a

certificate states that the user has passed network security

readiness rating as an ultimate information leader in his

organization [9]. For this simulation exercise, a remark of

94% out of 100% was obtained, which is an evidence that

the network security design met the standards and passed

successfully.

III. THREATS, ATTACKS AND VULNERABILITIES

During the process of cyber protect simulation exercise,
the user will experience several types of threats, attacks and
vulnerabilities e.g.,:

 Flooding, from Internet (external), where the

symptom on incident report stating “Network server

and/or Router function seriously impaired, degraded

or crashed”.

 Viruses, from internal network stating “Network

users report odd characters, noises, tunes, and/or

messages appearing on work station screens.

Network operations are unusual, degraded or

crashed”.

 Packet Sniffer, from Headquarters (HQ) stating

“Slight degradation in time required for network

information transference”.

 Jamming, from HQ stating “Network Transmissions

become unreliable or unreadable due to interfering

signals”.

 Social engineering attack, from internal network

stating “Report of suspicious attempts by outside

individuals to gain access to information”.

To deal with those threats, attacks and vulnerabilities

cyber protect simulation exercises was divided into four

quarter tasks, each quarter consist of at least two threat

types, attacks and vulnerabilities. Every result obtained in

each quarter task is displayed into a form of quarter

summary reports. Useful experiences during cyber protect

simulation process whereby the user can investigate any

failures in his network security at the previous quarter. The

user determines why controls in place did not prevent

46Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 53 / 59

threats, attacks and vulnerabilities, while making attempts to

improve the network security system at the sub-sequent

quarter.

IV. COUNTERMEASURES STRATEGY AND METHODOLOGY

Countermeasure strategy and methodology were needed
during cyber protect simulation exercises. The user was
asked to design a secure process, technology and personnel
of the computer network systems, effectively and efficiently.
The user can also identify residual risks of the modelled
LAN. At this point, it was found that most of threats and
attacks came from internal network; these are more difficult
to tackle than the external ones (outsiders).

From the threat-driven approach perspective, most

threats that came from insiders and outsiders (internet) can

be handled effectively through a good methodology e.g.,

placing proper security and adequate peripherals, such as,

firewalls, IDS and encryption, etc. The threat-driven

approach is a methodology, a set of practices and a mindset.

The primary purpose of this approach is to enable

organizations to allocate the commensurate level of

resources to defend their assets, to develop the inherent

skills needed to support these efforts, and to align groups

and teams into functional roles that will implement this

approach [10]. Figure 3 shows a success countermeasure

strategy for a LAN modeled configuration by developing

appropiate security strategy, effectively and efficiently.

Figure 3. Design of secured LAN

 It was found that the proper security strategy worked

very well in the proposed modeled network security system;

the strategy works as follows:

 First, configure one medium firewall and one low

encryption system at the main router that is

connected directly to the internet. The aim is to

anticipate threats or attacks from outside the

network, any kind of attacks from the Internet enter

the network can be anticipated by a firewall system.

 Second, configure three low level of access control

units at the entrance and exit of data communication

lanes in the network to make it sure that there is no

communication path that is not observed in the

network. These access control units work as an early

warning control system for the network administrator

and it has the capability of monitoring all data

transmission in the network.

 Third, complete system security in every servers with

proper security equipments, e.g., high antivirus

system, low level backup system, one medium

Intruder Detection System (IDS) and one medium

redundant system. This strategy can be applied to

secure server from various attacks.

 Fourth, configure two low level backup systems on a

particular client who has a high risk job in order to

avoid from internal threats or breaches, especialy via

social engineering attacks.

It was found that the proper implementation of

countermeasure strategy is a crucial point in cyber protect

simulation exercise. The countermeasure strategy might be

implemented in various LAN departments, but it depends on

its information security and risk management policies [11].

On the other hand, several countermeasure strategies, e.g.,

Defense-In-Depth Strategy by the US Homeland security or

ProCurve-ProActive Defense Strategy by the Hewlett-

Packard innovation center can be found on internet.

A. Defense-In-Depth Strategy

In October 2009, the US Homeland security developed a
defense-in-depth strategy as a recommended practice in
order to improve Industrial Control Systems (ICS) cyber
security [12]. This strategy is not just about deploying
specific technologies to counter certain risks, but it depends
on how effective security program for an organization, its
adherence and willingness to accept security as a constant
constraint on all cyber activities.

Moreover, implementing an effective defense-in-depth
strategy will require taking a holistic approach and
leveraging all of an organization’s resources in order to
provide effective layers of protection. Figure 4 shows an
overview on the key elements of a defense-in-depth strategic
framework.

 Figure 4. The strategic framework for cyber defense-in-depth

47Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 54 / 59

The basic principles of this framework are as follows:

 First, to know the security risks that an organization

faces.

 Second, to quantify and qualify those risks.

 Third, to use key resources to mitigate security risks.

 Fourth, to define each resource’s core competency

and identify any overlapping areas.

 Fifth, to abide by existing or emerging security

standards for specific controls.

 Sixth, to create and customize specific controls that

are unique to an organization.

In order to implement a defense-in-depth strategy an

organization will need to start at understanding its current

risk. Risk for industrial control systems is best understood

by knowing the threats and vulnerabilities that face an

organization. The organization should undergo a rigorous

risk assessment that covers all aspects to understand risk.

Risk assessments are very crucial steps in defining,

understanding, and planning remedial efforts against

specific threats and vulnerabilities. All level areas and levels

in the organization, including executives, must support the

valuable risk assessments which are constantly updated at

timely intervals.

B. ProCurve-ProActive Defense Strategy

In February 2007, the Hewlett-Packard (HP) innovation

proposed a new alternative for network security: a

comprehensive security vision and strategy that arises

directly from the revolutionary ProCurve Adaptive EDGE

Architecture™ (AEA). This defense strategy embraces

distributed intelligence at the network edge and takes a

holistic approach to an organization’s or company’s

networking. The HP innovation declared a new security

vision, called ProCurve-ProActive Defense strategy. This

was claimed as the first approach that combined proactive

security offense techniques with steadfast traditional

defense security techniques simultaneously, at the edge of

the network, where users connect.

As such, ProCurve-ProActive defense strategy is

expected to change dramatically how network security is

deployed from now on. ProCurve-ProActive defense

strategy delivers a trusted network infrastructure that is

immune to threats, controllable for appropriate use and able

to protect data and integrity for all users. The three main

pillars of the ProActive Defense strategy are as follows:

 Access Control, proactively prevents security

breaches by controlling which users have access to

systems and how they connect in a wired and

wireless network.

 Network Immunity, detects and responds to internal

network threats such as virus and worm attacks;

monitors behavior and applies security information

intelligence to assist network administrators maintain

a high level of network availability.

 Secure Infrastructure, secures the network for policy

automation from unauthorized extension or attacks to

the control plane; includes protection of network

components and prevention of unauthorized

managers from overriding mandated security

provisions; also includes privacy measures to ensure

the integrity and confidentiality of sensitive data:

protection from data manipulation, prevention of

data eavesdropping, end-to-end VPN support for

remote access or site-to-site privacy, and wireless

data privacy (see Figure 5).

Figure 5. The Three Pillars of Access Control, Network Immunity and

Secure Infrastructure

One of unique aspects of the ProCurve-ProActive

defense vision and strategy is that it combines both the

security offense and security defense at the same time and,

most importantly, at the network edge [13]. This combined

offense and defense is possible only because ProActive

defense is based on AEA principles, which drive

intelligence to the network edge while retaining centralized

control and management. ProActive defense strategy

includes characteristics such as the following:

 Additional enhancements to Identity Driven

Manager, such as clientless and agent-based endpoint

integrity with flexible remediation and a

vulnerability assessment framework.

 Additional enhancements to Network Immunity

Manager, such as increased network behavior

anomaly detection (NBAD) capabilities.

 Enhanced policy control at the edge, including Web-

Auth with clientless endpoint integrity

authentication.

 Standards-based endpoint integrity, with trusted

agent access for LANs, WANs and WLANs.

V. NETWORK SECURITY FRAMEWORK MODELS

Based on cyber protect simulation experience,
organizations need to adopt an appropriate security policy as
well as planning and deployment in order to enhance its
network security. Every personnel within the organization,
from senior level management down to the staff level, must
be fully aware of the importance of enterprise information
security. All employees should understand the underlying
significance of security policy, planning and deployment of

48Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 55 / 59

the organization. There are several models providing security
framework or security reference model, available in the
market, namely the US National Institute of Standards and
Technology (NIST) or the Control Objectives for
Information and related Technology (CobiT) security
framework, etc.

A. The NIST cyber security framework

In February 2013, the US President issued an Executive

Order (EO) 13636, in order to improving national critical

infrastructure cybersecurity. The EO states: "It is the policy

of the United States to enhance the security and resilience of

the Nation's critical infrastructure and to maintain a

cybersecurity environment that encourages efficiency,

innovation and economic prosperity while promoting safety,

security, business confidence, privacy and civil liberties."

 This order directed NIST to work with stakeholders to

develop a voluntary framework – based on existing

standards, guidelines, and practices - for reducing cyber risks

to critical infrastructure (NIST 2014) [14]. NIST framework

consists of standards, guidelines, and practices to promote

the protection of critical infrastructure. NIST framework is

organized into five basic cybersecurity activities:

 Identify (to develop the organization's understanding

to manage cybersecurity risk to systems, assets, data

and capabilities).

 Protect (to develop and implement the appropriate

safeguards to ensure delivery of critical infrastructure

services).

 Detect (to develop and implement the appropriate

activities to identify the occurrence of cybersecurity

events).

 Respond (to develop and implement the appropriate

activities to take action regarding a detected

cybersecurity event).

 Recover (to develop and implement the appropriate

activities to maintain plans for resilience and to

restore capabilities or services that were impaired due

to a cybersecurity event).

Each of the functions are then divided into categories to

define more specific security practices and capabilities (e.g.,

asset management, access control). Subcategories describe

more detailed or technical controls needed to meet objectives

within each category (see Table I).

TABLE I. THE NIST CYBER SECURITY FRAMEWORK

Func-

tions

Categories Sub-categories
Information

References

Identify

 Asset

Management

 Governance

 Invetory devices,

systems and
software, etc.

 NIST 800-

53 CM-8,
CA-2, etc.

Protect

 Access

Control, etc.

 Review access
periodically

 Two-factor
authentication

 ISO 27001
A6, A9,

A11, A13,

etc.

Detect

 Detect &

Monitor for
anomalies

and events

 Review logs for

suspicious

activity, etc.

 NIST 800-

53 AU-6,

CA-7, etc.

Respond

 Mitigation of
security

events, etc.

 Report suspicious
events, etc.

 ISO 27001

A6, A16,
etc.

Recover

 Recovery

planning,

improve-
ments and

communi-

cation

 Recovery plan

 Manage public

relations

 Repair reputation

 NIST 800-
53 CP-10,

IR-4, IR-8,

etc.

 ISO 27001

A16, etc.

B. The CobiT security framework

CobiT is an Information Technology (IT) governance

framework developed by the Information System Audit and

Control Association (ISACA). CobiT consists of acquire and

maintain application software; acquire and maintain

technology infrastructure; develop and maintain procedures,

install and accredit systems and manage changes. In April

2012, CobiT 5 was released, with the concept of enterprise

governance of IT as a foundation.

CobiT 5 provides a comprehensive framework that

assists enterprises to achieve their objectives for the

governance and management of enterprise IT [15]. CobiT 5

brings together the five principles that allow the enterprise to

build an effective governance and management framework

based on a holistic set of seven enablers that optimises

information and technology investment and use for the

benefit of stakeholders (see Figure 6).

 Figure 6. The strategic framework for cyber defense-in-depth

 Principle 1, meeting stakeholder needs - stakeholder
needs are translated into specific enterprise, IT-related
goals and enabler goals.

 Principle 2, covering the enterprise end-to-end –
governance and management of information and
related technology is addressed from an enterprise-
wide, end-to-end perspective.

 Principle 3, applying a single integrated framework -
COBIT 5 defines the overarching governance and

49Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 56 / 59

management framework that has been designed to
integrate seamlessly with other good practice
guidance, e.g., ISO 38500.

 Principle 4, enabling a holistic approach – the seven
categories of inter-connected enterprise enablers are
set out below (see Figure 7).

 Principle 5, separating governance from management.
CobiT 5 advocates that organisations implement the
key governance and management processes (see
Figure 8).

Figure 7. The seven categories of CobiT 5 enterprise enablers

Figure 8. Separating Governance from Management

VI. CONTRIBUTION

This paper contributes an initial security framework
concept, so called, The Six-Ware Framework (The SWF).
The SWF concept is a comprehensive security solution to
enhance an organization’s network security resilience from
various threats, attacks and vulnerabilities. This is an
operational-level security strategy that enables to figure out
the most efficient and effective actions that may lead to the
success of cyber security operation [16]. The idea behind this
new concept was inspired by NIST cyber security platform
version 1.0., dated 12 February 2014. The SWF concept
tries to elaborate NIST cyber security framework to be more
practical for the operational level. The security framework

disscussion can be found also in mashup web data extraction
system [18].

The SWF concept contributes a common thought to

understanding, managing, and expressing network security

risks, both internally and externally. The SWF concept

contributes increased security awareness environment within

an organization where it requires internal/external risk

assessment and also threat analysis policies. All levels

employees in the organization, ranging from highest level to

lowest level must be actively involved in the SWF concept

implementation. Otherwise, they can not obtain better

understanding of how threats or attacks can be carried out

successfully across the entire organization.

A. The SWF enablers

 The SWF enablers provide a set of activities, which

consists of six main variables, sub-variables, indicators and

information references (e.g., reference guidances). The SWF

enablers are not only a set of checklist of actions to perform,

but it presents key network security solutions to manage

security risk and analysis in an organization computer

network [19]. The SWF enablers comprises six main

aspects, e.g., Brainware, Hardware, Software,

Infrastructureware, Firmware, Budgetware (see Table II).

 Brainware or human factor, is the main aspect in

network security environment. This variable

becomes top list variable within the SWF concept.

From network security perspective, it commonly

known that human is the weakest link in information

security environment. Human factor plays dominant

role to enhance or on the contrary, to disrupt all

efforts of existing information security wityhin an

organization. Therefore, organizations must have

function or position related to information security,

e.g., Chief Information Security Officer (CISO).

The CISO is a company's top executive who is

responsible for security of personnel, physical assets,

data and information in both physical and digital

form. The CISO position has increased in the era of

cyberspace where it becomes easier to steal sensitive

company information. One of CISO’s responsibilities

is to conduct information security certification

programs to all level employees. The intention is to

produce "information security awareness employees"

related to their position and function.

 Hardware, plays dominant role in handling threats,

attacks and vulnerabilities. CISO has to teach all

level employees how to use and treat organization’s

hardware devices safely and wisely. It is because a

high-level hacker is not just relying on a specific

technique, but still combined with the conventional

attack, e.g., social engineering attack. Combination

of internal risk assessment and threat analysis are

extremely needed, e.g., controlling individual access

into the organization’s premises or facilities, locking

systems and removing unnecessary CD-ROM or

50Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 57 / 59

USB thumb drives, or monitoring and protecting the

security perimeter of organization’s facilities, etc.

 Software, relates to utilization of software

applications security which are used daily in the

office, e.g., email, website, social media and other

applications. High security awareness is really

required because a high profile attacker will always

kept on trying to infect or inject malicious emails and

its attachments or invite to visit malware-infected

websites. The attackers are also constantly

introducing new threats although various cyber

security application tools are available in the market.

 Infrastructureware, has an important role in

facilitating secure organization network

infrastructure, e.g., monitoring network from various

threats, attacks and vulnerabilities. Nowadays, most

of organizations have been highly dependent on

Internet access. On the other hand, not all of

employees have a good level understanding about

security risks they might face in the office, where

this condition is making the organization’s network

infrastructure more vulnerable.

 Firmware, includes documentation of an organization

security strategy and policy, standard operating

procedures (SOPs), business continuity plans

(BCPs), network security frameworks or

international security standardizations compliance to

International Organization for Standardization (ISO),

such as ISO 27001:2013 [18]; NIST cyber security

framework version 1.0 or government security policy

and strategy [20], etc.

 Budgetware, plays important and strategic role in

facilitating implementation of the five-ware variables

above. It is because an organization is urged to

provide big enough money or sufficient budget to

purchase e.g., network security application tools,

patching systems, software licenses, training and

education, certification programs, etc. It is highly

recommended top level management must put this

matter as a high level priority in order to build

information security awareness. Allocating sufficient

information security budget could protect the entire

network system. Otherwise, they will face

organization’s significant financial losses, etc.

TABLE II. THE SWF CONCEPT (ENABLERS AND COMPONENTS)

Aspe-

cts

Varia-

bles

Sub-varia-

bles

 Indicators Infosec

References

Brain

ware

 CISO,
etc.

 Security
training,

etc.

 Security
Aware-

ness

 CISSP,
CISA, etc.

Hard

ware

 Server
Farms

 USB, etc.
 No com-

promises
 Bench mar-

king, etc.

Soft

ware

 Applic

ation

 MS

Office,

etc.

 No pira-

ted Appl.

etc.

 Regular
updates,etc

Infra

struc-

ture-

ware

 Net-

work
Infra-

struc-

ture

 Firewalls.

 IDS.

 DMZ, etc.

 No net-

work
security

breaches,

etc.

 Self
penetration

testing, etc.

Firm

ware

 Secu-

rity
hand

book

 Bussiness
Continui-

ty Plan

 Good

Bussi-
ness pro-

cesses

 NIST.

 ISO 27001,
etc.

Bud-

get

ware

 Suffi-
cient

budget

 Buy soft-

ware licen
ses, etc.

 Licences
always

updated,

etc.

 Allocated

budget
policy, etc.

B. The SWF component

The SWF component works together as follows:

 Variables, organize network security fundamental

aspects as enablers, e.g., brainware, hardware,

software, infrastructureware, firmware and

budgetware) at highest level. These variables help an

organization in managing its security risk and

analysis by organizing or clustering information,

threats and attacks activity. Variables align with

security and policy framework to reduced impact to

organization quality of services (QoS) e.g.,

investments in human resources, planning and

budgeting exercises or recovery actions, etc.

 Sub-variables, are sub-divisions of a variable closely

tied to a particular (for example, brainware variable)

security awareness activities e.g., “security

awareness”, “socialization and training”, “cyber

security certification program”, etc.

 Indicators, are sub-divisions of a sub-variable,

divided into technical outcomes. Indicators provide a

set of results to achieve outcomes for each sub-

variable. Indicators example (like security awareness

sub-variable) e.g., “conducting security awareness

training program”; “socializing and implementing

security awareness culture in the company”; or

“notifications from any social engineering attacks or

security breaches that are being investigated", etc.

 Information References (IR), consists of network

security standards, guidelines, methods and practices

to achieve solutions or outcomes associated with

each indicator. IR which presented in the SWF

concept are illustrative and not complete. Examples

of IR (like conducting security awareness training

program indicator) e.g., “certified ethical hacking

(CEH) course from EC-council”; “DoD information

assurance awareness training”; and “Achieving ISO

27001 Certification”; etc.

 The SWF component provides a set of activities to

achieve specific network security outcomes, and references

examples of guidance to achieve those outcomes. The SWF

component is not a checklist of actions to perform. It

presents key cybersecurity outcomes identified by

organization as helpful in managing the risk within

organization network security environment.

51Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

 58 / 59

VII. CONCLUSION AND FUTURE WORK

 Cyber protect simulation is a good simulation tool, but it

needs to be developed to face the growth of new variants of

security threats, attacks and vulnerabilities. It provides users

with useful experiences of tactical and strategical security

situation awareness. The users are given the freedom to

model and simulate the best strategy to defense his secured

LAN configurations efficiently and effectively.

 In this paper, the SWF concept can not be compared

with the NIST, because it is just an initial proposal to

enhance an organization’s network security environment.

In the future, the SWF concept needs to be developed more

in-depth through further research on specific areas, e.g.,

determining more technically and specifically security

framework variables, sub-variables, indicators and

information references. The SWF concept acts as an early

warning system measurement within an organization. It

portraits the existing LAN security environment while

finding the root cause of security loopholes. It can be

concluded that to achieve a totally secure network

environment is very difficult.

ACKNOWLEDGMENT

The authors would like to give high appreciation to the

i-College, IRMC, NDU, Washington, DC., USA., for giving

a valuable chance to attend cyber security for information

leaders course in March 2015. The authors would like also

to thank the Lemhannas RI and the Nuffic (Project Niche

IDN 143) for its financial support so the authors can attend

and submit this academic paper in the ICIMP 2016

International Conference, Valencia, Spain, May 22 to 26,

2016.

REFERENCES

[1] J. H. Saunders, "The Case for Modeling and Simulation of
Information Security," National Defense University.
http://www.johnsaunders.com/papers/securitysimulation.htm, last
accessed April 2016.

[2] Sara Peters, “7 Lessons From The Panama Papers Leak,”
vulnerabilities/ threats, http://www.darkreading.com/vulnerabilities---
threats/7-lessons-from-the-panama-papers-leak/d/d-id/1324976, last
accessed April 2016.

[3] Swati Khandelwal, The Panama papers-Biggest leaks in History
Exposes Global Corruption, The Hacker News,
http://thehackernews.com/2016/04/panama-paper-corruption. html,
April 3, 2016.

[4] Statista.com, “Number of files revealed in Panama Papers data leak in
April 2016, by type,” http://www.statista.com/statistics/531286/
panama-papers-data-type/, last accessed May 2016.

[5] Statista.com, “Number of files revealed in Panama Papers data leak in
April 2016 by type”, http://www.statista.com, last access April 2015.

[6] The i-college, Cyber Cecurity for Information Leaders course, “Cyber
Protect Simulation Exercises,” National Defense University (NDU),
Washington, DC., USA, March 2015.

[7] Vicente Pastor, Gabriel Díaz and Manuel Castro, “State-of-the-art
Simulation Systems for Information Security Education, Training and
Awareness,” IEEE EDUCON Education Engineering 2010, The
Future of Global Learning Engineering Education, 978-1-4244-6571-
2/10, April 14-16, 2010, Madrid, Spain.

[8] Cyber Protect Network Defense Simulation Tool,
https://ndu.blackboard.com and http://iatraining.disa.mil/eta/ cyber-
protect/launchpage.htm, the i-college, NDU, Washington, DC, USA,
March 2015.

[9] Ann O’Brien, “Effective Learning Strategies: Cyber Protect –
Learning About System Security”, Wisconsin School of Bussiness,
adapted from Jim Mensching, Chicago State University, USA.

[10] Michael Muckin, Scott C. Fitch, “A Threat-Driven Approach to
Cyber Security: Methodologies, Practices and Tools to Enable a
Functionally Integrated Cyber Security Organization,” Lockheed
Martin Corporation, http://lockheedmartin.com/content/dam/
lockheed/data/isgs/documents/Threat-Driven%20Approach%20
whitepaper.pdf, last accessed May 2016.

[11] Cyber Security for Information Leaders course, “Information Security
and Risk Management,” CISSP Textbook Reading, Chapter 3,
the i-college, NDU, Washington, DC, USA, March 2015.

[12] The US Homeland Security, Recommended Practice: Improving
Industrial Control Systems Cybersecurity with Defense-In-Depth
Strategies,https://ics-cert.us-cert.gov/sites/ default/files/recommended
practices/Defense_in_Depth_Oct09.pdf, October 2009, last accessed
May 2016.

[13] The Hewlett-Packard (HP) innovation, “ProCurve-ProActive
Defense: A Comprehensive Network Security Strategy,” Pro Curve
Networking, February 2007, http://www.hp.com/rnd/pdfs/ProCurve
_Security_paper_022107.pdf, last accessed May 2016.

[14] The National Institute of Standards and Technology (NIST),
“Framework for Improving Critical Infrastructure Cybersecurity
Version 1.0.,” http://www.nist.gov/cyberframework/upload/cyber
security-framework-021214-final.pdf, February 12, 2014, last
accessed May 2016.

[15] ISACA,“COBIT 5 Framework: A Business Framework for the
Governance and Management of Enterprise IT,” http://www.isaca.
org/cobit/pages/cobit-5-framework-product-page.aspx, last accessed
April 2016.

[16] Chen, J., and Duvall, G., “On Operational-Level Cybersecurity
Strategy Formation,” Journal of Information Warfare: 13.3: 79-87.
SSN 1445-3312 print/ISSN 1445-3347 online, 2014.

[17] Rudy AG Gultom, “Proposing the new Algorithm and Technique
Development for Integrating Web Table Extraction and Building a
Mashup,” Journal of Computer science, Science Publication, NY,
USA, DOI: 10.3844/jcssp.2011.129.142, http://www.thescipub.com/
issue-jcs/7/2, 25 February 2011.

[18] Rudy AG Gultom, “The Six-Ware Framework Proposal: A New
Comprehensive Cyber Security Framework To Defend Your Network
From Social Engineering Attack,” Final Paper, i-college, IRMC,
National Defense University, Washington, DC., USA, 19 March
2015.

[19] ISO, “ISO/IEC 27001: 2013, Information Technology-Security
Techniques-Information Security Management Systems-
Requirements,”http://www.iso.org/iso/catalogue_detail?csnumber=54
534, last accessed April 2016.

[20] Adam Quinn, “Obama’s National Security Strategy Predicting US
Policy in the Context of Changing Worldviews,”US Research Papaer,
Project 2015, https://www.chathamhouse.org/sites/files/
chathamhouse/field/field_document/20150109ObamaNationalSecurit
yQuinn.pdf, last accessed April 2016.

52Copyright (c) The Government of Indonesia, 2016. Used by permission to IARIA. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

Powered by TCPDF (www.tcpdf.org)

 59 / 59

http://www.tcpdf.org

