
ICDT 2021

The Sixteenth International Conference on Digital Telecommunications

ISBN: 978-1-61208-835-8

April 18 - 22, 2021

ICDT 2021 Editors

Stan McClellan, Texas State University, USA

 1 / 50

ICDT 2021

Forward

The Sixteenth International Conference on Digital Telecommunications (ICDT 2021)
continued a series of events covering topics related to telecommunications aspects in
multimedia environments. The scope of the conference was to focus on the lower layers of
systems interaction and identify the technical challenges and the most recent achievements.

The conference served as a forum for researchers from both the academia and the industry,
professionals, and practitioners to present and discuss the current state-of-the art in research
and best practices as well as future trends and needs (both in research and practices) in the
areas of multimedia telecommunications, signal processing in telecommunications, data
processing, audio transmission and reception systems, voice over packet networks, video,
conferencing, telephony, as well as image producing, sending, and mining, speech producing
and processing, IP/Mobile TV, Multicast/Broadcast Triple-Quadruple-play, content production
and distribution, multimedia protocols, H-series towards SIP, and control and management of
multimedia telecommunications.

High quality software is not an accident; it is constructed via a systematic plan that demands
familiarity with analytical techniques, architectural design methodologies, implementation
polices, and testing techniques. Software architecture plays an important role in the
development of today’s complex software systems. Furthermore, our ability to model and
reason about the architectural properties of a system built from existing components is of great
concern to modern system developers.

Performance, scalability and suitability to specific domains raise the challenging efforts for
gathering special requirements, capturing temporal constraints, and implementing service-
oriented requirements. The complexity of the systems requires an early stage adoption of
advanced paradigms for adaptive and self-adaptive features.

Online monitoring applications, in which continuous queries operate in near real-time over
rapid and unbounded "streams" of data such as telephone call records, sensor readings, web
usage logs, network packet traces, are fundamentally different from traditional data
management. The difference is induced by the fact that in applications such as network
monitoring, telecommunications data management, manufacturing, sensor networks, and
others, data takes the form of continuous data streams rather than finite stored data sets. As a
result, clients require long-running continuous queries as opposed to one-time queries. These
requirements lead to reconsider data management and processing of complex and numerous
continuous queries over data streams, as current database systems and data processing
methods are not suitable.

Event stream processing is a new paradigm of computing that supports the processing of
multiple streams of event data with the goal of identifying the meaningful events within those
streams.

We take here the opportunity to warmly thank all the members of the ICDT 2021 technical
program committee, as well as all the reviewers. The creation of such a high quality conference

 2 / 50

program would not have been possible without their involvement. We also kindly thank all the
authors who dedicated much of their time and effort to contribute to ICDT 2021. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions. We also thank the members of the ICDT 2021 organizing committee for their
help in handling the logistics of this event.

ICDT 2021 Chairs

ICDT 2021 Steering Committee
Stan McClellan, Texas State University - San Marcos, USA
Bernd E. Wolfinger, University of Hamburg, Germany

ICDT 2021 Advisory Committee
Constantin Paleologu, University Politehnica of Bucharest, Romania
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Ioannis Moscholios, University of Peloponnese - Tripolis, Greece
Sathiamoorthy Manoharan, University of Auckland, New Zealand

ICDT 2021 Industry/Research Advisory Committee
Tomohiko Taniguchi, Fujitsu Laboratories Limited, Japan
Scott Trent, IBM Research – Tokyo, Japan

ICDT 2021 Publicity Chairs
Lorena Parra, Universitat Politecnica de Valencia, Spain
Jose Luis García, Universitat Politecnica de Valencia, Spain

 3 / 50

ICDT 2021

Committee

ICDT 2021 Steering Committee

Bernd E. Wolfinger, University of Hamburg, Germany
Stan McClellan, Texas State University - San Marcos, USA

ICDT 2021 Advisory Committee

Constantin Paleologu, University Politehnica of Bucharest, Romania
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Ioannis Moscholios, University of Peloponnese - Tripolis, Greece
Sathiamoorthy Manoharan, University of Auckland, New Zealand

ICDT 2021 Industry/Research Advisory Committee

Tomohiko Taniguchi, Fujitsu Laboratories Limited, Japan
Scott Trent, IBM Research – Tokyo, Japan

ICDT 2021 Publicity Chairs

Lorena Parra, Universitat Politecnica de Valencia, Spain
Jose Luis García, Universitat Politecnica de Valencia, Spain

ICDT 2021 Technical Program Committee

Arsalan Ahmad, National University of Sciences and Technology, Islamabad, Pakistan / Trinity College
Dublin, Ireland
Ayad Al-Adhami, Plymouth University, UK / University of Technology, Iraq
Babak Barazandeh, University of Southern California, USA
Ilija Basicevic, University of Novi Sad, Serbia
Pierre Beauseroy, Université de Technologie de Troyes, France
Larbi Boubchir, University of Paris 8, France
Abhishek Das, Aliah University, Kolkata, India
Somaieh Davar, ConcordiaUniversity, Canada
Tan Do Duy, Ho Chi Minh City University of Technology and Education, Vietnam
Mário Ferreira, University of Aveiro, Portugal
Mohamed Fezari, Annaba University, Algeria
Rita Francese, Università di Salerno, Italy
Felix J. Garcia-Clemente, University of Murcia, Spain
Benedict R. Gaster, University of West of England, UK
Carlos Guerrero, University of Balearic Islands, Spain
Onur Günlü, Technical University of Berlin, Germany

 4 / 50

Yishan Jiao, Pearson Education, USA
Kasem Khalil, University of Louisiana at Lafayette, USA
Wen-Hsing Lai, National Kaohsiung University of Science and Technology, Taiwan
Jan Lansky, University of Finance and Administration, Czech Republic
Moonjin Lee, Korea Maritime and Ocean University / University of Science & Technology Korea /
Research Institute of Ship and Ocean engineering, Korea
Shunbo Lei, University of Michigan-Ann Arbor, USA
Isaac Lera, University of the Balearic Islands, Spain
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Vladimir Lyashev, Huawei Technologies Co. Ltd. - Moscow Research Center,Russia
Min Ma, Google speech, USA
S. Manoharan, University of Auckland, New Zealand
Alexandru Martian, University Politehnica of Bucharest, Romania
Stan McClellan, Texas State University, USA
Ioannis Moscholios, University of Peloponnese, Greece
Dmitry Namiot, LomonosovMoscowStateUniversity, Russia
Morteza Noshad, University of Michigan, USA
Patrik Österberg, Mid Sweden University, Sweden
Constantin Paleologu, University Politehnica of Bucharest, Romania
Euthimios Panagos, Perspecta Labs Inc., USA
Liyun Pang, Huawei Germany Research Center, Germany
Maciej Piechowiak, Kazimierz Wielki University, Poland
Eric Renault, IMT-TSP, France
Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Akbar Sheikh-Akbari, Leeds Beckett University, UK
Saurabh Sihag, Rensselaer Polytechnic Institute, Troy, USA
M. Estela Sousa-Vieira, University of Vigo, Spain
Cristian Lucian Stanciu, University Politehnica of Bucharest, Romania
Mahbubur Syed, Minnesota State University, Mankato, USA
Christopher Tegho, Calipsa, London, UK
Giorgio Terracina, Università della Calabria, Italy
Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India
Božo Tomas, University of Mostar, Bosnia and Herzegovina
Laszlo Toth, University of Szeged, Hungary
Mahyar Tourchi Moghaddam, INRIA Grenoble-Rhône-Alpes, France
Scott Trent, IBM Research - Tokyo, Japan
Chrisa Tsinaraki, European Commission - Joint Research Centre, Italy
Ming Tu, JD AI Research, MountainView, USA
Adriano Valenzano, CNR-National Research Council, Italy
Rob van der Mei, Centre for Mathematics and Computer Science (CWI), Amsterdam, Netherlands
Calin Vladeanu, University Politehnica of Bucharest, Romania
Sergey V. Volvenko, Peter the Great St. Petersburg Polytecnic University, Russia
Bernd E. Wolfinger, University of Hamburg, Germany
Qilian (Vision) Yu, University of California, Davis, USA
Zbigniew Zakrzewski, UTP University of Science and Technology, Poland
Ligang Zhang, School of Engineering and Technology -Central Queensland University, Australia
Piotr Zwierzykowski, Poznan University of Technology,Poland

 5 / 50

 6 / 50

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 50

Table of Contents

Optimization of Sparse Matrix Arithmetic Operations and Performance Improvement using FPGA
Dinesh Kumar Murthy and Semih Aslan

1

Optimized Architecture for Sparse LU Decomposition on Matrices with Random Sparsity Patterns
Dinesh Kumar Murthy and Semih Aslan

6

IoT Applications with Common Distributed Architecture for Data Acquisition
Kushal Thapa, Vinay Lokesh, and Kevin Seets

11

Supervised Machine Learning in Digital Power Line Communications
Kushal Thapa, Stan McClellan, and Damian Valles

16

Remote Filesystem Event Notification and Processing for Distributed Systems
Vinay Lokesh, Kushal Thapa, and Stan McClellan

22

An Evaluation of Neural Network Performance Using Complex-Valued Input Data
Kushal Thapa and Stan McClellan

27

A non-Linear MIMO-OFDM Preprocessor for non-Gaussian Channels
Danilo Pena, Thais Areias, Luan Pena, and Juliano Bazzo

32

Wireless Frequency Data Manipulation for Embedded Databases Used in Cybersecurity Applications
Page Heller

36

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 50

Optimization of Sparse Matrix Arithmetic Operations and Performance
Improvement using FPGA

Dinesh Kumar Murthy
Ingram School of Engineering

Texas State University
San Marcos, TX, USA
d_m410 @txstate.edu

Semih Aslan
Ingram School of Engineering

Texas State University
San Marcos, TX, USA

aslan@txstate.edu

Abstract — The increasing importance of sparse connectivity
representing real-world data has been exemplified by recent
work in the areas of graph analytics, machine language, and
high-performance computing. Sparse matrices are the critical
component in many scientific computing applications, where
increasing sparse operation efficiency can contribute
significantly to improving overall system efficiency. The main
challenge lies in efficiently handling the nonzero values by
storing them using a specific storage format and then
performing matrix operations, taking advantage of the
sparsity. This paper proposes an optimized algorithm for
performing sparse matrix operations in storage and hardware
implementation on Field-Programmable Gate Arrays
(FPGAs). The results are obtained from implementing the
sparse algorithm on hardware for matrices of different sizes.
Sparsity percentages and sparsity patterns achieved low
latency and high throughput compared with the standard
algorithm. Further, the number of resources utilized was
primarily reduced, enabling the FPGAs to focus on larger,
more interesting problems.

Keywords - Sparse matrix; latency; throughput; memory; FPGA;
hardware architecture.

I. INTRODUCTION

We live in a "big data" era where graph processing has
become increasingly important, because the amount of data
generated and collected from many real-world applications
such as sensors, social networks, portable devices. Graphs
are used to model many systems of interest to engineers and
scientists; today, useful information is being extracted. Once
entered into a computer, the data no longer looks like a
graph. Often, it is in the form of a sparsely populated matrix
with mostly zeros compared to nonzeros [1] [2]. When the
number of zeros is relatively large, efficient data structures
are required. Numerous studies have addressed finding new
algorithms for sparsely distributed matrices.

When obtaining information in a graph algorithm with a
small number of nonzero entries but millions of rows and
columns, memory would be wasted by storing redundant
zeros [3][4]. There are two ways one would take advantage
of the sparsity of a matrix: one would be to store the nonzero
elements of a matrix, and the second is to process only the
nonzero elements of a matrix [5]. However, large graphs are
hard to deal with as inputs, and outputs limit the state-of-the-
art graph processing systems. For the most part, Central
Processing Units (CPUs) and Graphics Processing Units

(GPUs) compute well on a performance scale. However,
there is a small niche where an FPGA has been an attractive
platform that can handle the same computation task for
acceleration and achieve high performance with low power
computation for many applications. Specifically, due to the
memory access pattern of graph problems, it is still
challenging to develop high throughput and energy-efficient
FPGA design [6].

This paper's primary goal is to develop an efficient
algorithm for various sparse matrix arithmetic operations like
addition, subtraction, multiplication, element by element
multiplication, and square root. By utilizing the sparse matrix
storage method, storage requirements should be reduced
when compared to a standard matrix operation algorithm.
The main goal is to improve efficiency in terms of latency
and throughput [7][8]. The performance analysis is
calculated based on the design that minimizes gate count,
area, and reducing the number of multipliers and adders. The
architectural design is scalable, simple to implement, and
capable of handling matrices of various sizes. This paper is
organized as follows. In Section II, the basics of matrix
operations are discussed. In Section III, the proposed
algorithm and system design are explained. FPGA
simulation and mapping are discussed in Sections IV and V,
respectively. Sections VI and VII show the detailed
performance analysis and the results. This paper concludes in
Section VIII.

II. MATRIX OPERATION

The design performs sparse matrix addition operations of
two sparse matrices where only the nonzero values are
stored, and the required operation is performed. It is
performed by using two algorithms:

 A symbolic algorithm, which determines the
structure of the resulting matrix.

 A numerical algorithm, which determines the
values of nonzero elements using the knowledge of
their positions.

 ��,� = ���,�� + ���,��

Each nonzero (nz) element of matrices A and B needs
one floating-point operation, so the total number of floating-
point operations to be performed is the number of nz

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 9 / 50

elements. When the computation is completed, the number
of nz output operations is written on the external memory.

III. SYSTEM DESIGN

A. Storage Format

The proposed architectural algorithm performs sparse
matrix addition in which the number of rows and number of
columns of two matrices is equal. A parallel implementation
of the addition with enough fast memory algorithm, is
proposed. Consider a matrix addition of A+B, where A has a
density s1 percentage with size n×n (a square matrix is
considered), and matrix B has a density s2 percentage with
size n×n. Density sx percentage is defined as the number of
nonzero elements to the total number of elements in the
matrix n2. The matrix addition performs the operation row-
wise and column-wise throughout the matrix only for the
nonzero elements present, leaving behind the zeros. When an
addition operation must be performed on both input matrices,
the number of rows and columns are first compared to
determine if they are equal, i.e., both the matrices should be
of the same size. An additional operation cannot be
performed if the matrices are of different sizes. Then, the
matrix elements are checked row-wise and column-wise
from top-to-bottom order for nonzero elements, as shown in
Fig. 1. Two separate counters, A_count and B_count, are
used to increment the row and column for both the A and B
input matrices. This keeps incrementing from n to n+1 for
the size of the matrix. The algorithm for the sparse matrix
addition A+B is presented in Fig. 2.

The most important part of this algorithm is the index
comparison, which is represented as A_index for matrix A
and B_index for matrix B. After first storing the nonzero
elements, the row value of matrix A is compared with the
row value of matrix B for each operation. If the index of
A_sr is equal to the index of B_sr, then the next step of
comparing the column value of both matrices is performed.
If the index of A_sc is equal to the index of B_sc, then a
matrix addition operation is performed. The VAL array of the
respective row and column, i.e., A_sv and B_sv, are added to
each other as a sum. The assumption is made that the
nonzero element is located anywhere in the matrix and is
highly sparse. Finally, the nonzero element of input matrix A
that does not match the row and column of matrix B is given
directly as the sum in the output matrix.

Figure 1. Representing row and column access of matrices

B. Design Algorithm

A → n×n sparse matrix
B → n×n sparse matrix
for i → 0 to MAT_SIZE do

if (A[i]≠ 0) then
Indexing row and column = i + 1
A_sv [i] =A [i]
A_index = A_count + 1

end
if (B[i] ≠ 0) then

Index2rc = i + 1
B_index = B_count + 1
B_sv [i] = B [i]

end
if((A_sr[A_index]==B_sr[B_index])&&
(A_sc[A_index] ==B_sc[B_index])) do

Row <= A_sr [A_index]
Col <= A_sc [A_index]
Sum <= A_sv [A_index] + B_sv [B_index]

end
if (A_sv [A_index] ≠0) then

Row <= A_sr [A_index]
Col <= A_sc [A_index]
Sum <= A_sv [A_index]

end
if (B_sv [B_index] ≠ 0) then

Row <= B_sr[B_index]
Col <= B_sc[B_index]
Sum <= B_sv[B_index]

end
end

Figure 2. Algorithm for Sparse Matrix Addition Operation

C. Memory Control

Memory control plays a crucial part in architectural
design. The memory control block oversees real enable sign
and assigning a memory access address, so accurate data is
acquired by the algorithm logic through all stages. The
operation is performed at the row level, so throughput is not
affected by the latency of data reading while performing the
arithmetic operation.

As shown in Fig. 3, the memory control module is
designed as a finite state machine. At the beginning of the
finite state machine, reset is set to Idle, which resets all the
registers to predefined values. After this state, the matrix
values are inferred for writing data to the Block RAMs
(BRAMs), which triggers the memory control transition
from the Idle State to the Read and Write state.

Once the elements are written, it calculates the nonzero
values by checking row-wise and column-wise throughout
the array by increasing the pointer locations by one. With the
nonzero elements located successfully, separate arrays are
created for matrix storage format in the order of ROW, COL,
and VAL. As the name indicates, the row and column values
are stored starting from 0 to the maximum, and the
respective integer values are written accordingly. Once the
sparse matrix storage format is generated, the arithmetic
design algorithm checks the ROW and COL arrays and
performs addition if both are equal. Otherwise, the design

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 10 / 50

sends the values directly to the output, since addition is not
required there. When the system performs all arithmetic
operations, the finite state goes back to Idle State. By
operating this way, only the nonzero elements undergo
additional processes, and in the final state, the output is sent
back.

Figure 3. State transition diagram of the memory control

For example, if there are two matrices A and B with ten
nonzeros each, as shown in Fig. 4. The state machine will
read the values and write the nonzero values in the storage
format illustrated above. The necessary arithmetic operation
is then performed from the Idle state, staying in hold for the
state until it receives an end signal from the controller.

Figure 4. Operational example for the addition of sparse matrices

IV. SIMULATION

Random matrices of various sizes are generated using
MATLAB with variation in sparsity pattern and sparsity

percentage. Additionally, two parameters, MAT_SIZE (size
of the matrix n×n) and ELEMENT_SIZE (number of bits of
the integer) are included with the design, which is passed to
the input as known information.

Figure 5. Waveform showing storage of sparse matrices

As shown in Fig. 5, the nonzero elements of the input
matrices are stored to BRAMs in the format specified as
two-dimensional arrays. The memory controller then reads
the BRAMs to perform the required arithmetic operation.

Figure 6. Waveform showing results of arithmetic operation (sum)

Fig. 6 shows the results of the addition operation in a
simulation waveform. The algorithm is tested with multiple
test values by varying the sparsity percentage and the golden
result vectors generated using MATLAB.

V. FPGA MAPPING

Using Xilinx ISE Design Suite, the designed algorithm is
implemented on the target device Xilinx Artix7 XC7A100T-
1CG324C board, comprising of 15,850 logic slices and a
maximum of 4,860 Kbits fast BRAM [9] [10]. The hardware
implementation is split into two major top modules. The first
module is designed to implement the sparse matrix
arithmetic operations, and the second module is to
implement a Universal Asynchronous Receiver Transmitter
(UART) communication and data exchange between the PC
and FPGA. Each of the top modules is subdivided into
smaller modules to carry out specific operations with the
other modules through internal signals as shown in Fig. 7.

Figure 7. Block Diagram of the TX and RX Module

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 11 / 50

The transmitter module is used to transfer data over the
UART device. It serializes a byte of data and transmits over
a Transmit Data (TxD) line. The serialized data has 9600
Baud Rate, 8 data bits (least significant bit first), 1 Stop bit,
and no parity. The receiver module double-registers the
incoming data. This module makes sure all the bits are sent
out. These modules expect the clock generated to be 100
MHz. The Phase-Locked Loop (PLL) is a control system that
produces an output signal whose phase is related to an input
signal. Keeping the input and output phases in lock steps, the
input and output frequencies can be kept the same. These are
widely used for synchronization purposes. For our hardware
design, which operates at 20 MHz, the phase-locked loop is
used to compensate for the required 100 MHz clock
frequency. This IP core is generated using the design tool.

VI. PERFORMANCE ANALYSIS

The following metrics were calculated to show the
algorithm's efficiency, such as latency, throughput, and
resources utilized. Latency is the amount of time it takes to
complete an operation, the time between reading the first
element of the input matrix and writing the first element of
the output matrix. Throughput is the number of such
operations executed per unit of time.

The latency for matrix addition operation was
significantly reduced, and high throughput was achieved
using the proposed algorithm compared with the standard
matrix algorithm. Table II illustrates the comparison of
different test values with matrix sizes ranging from 10x10 to
100x100 with sparsity ranging from 1% to 10% for both
proposed sparse and standard matrix algorithms for different
operations.

Figure 8. Latency for Sparse Matrix Addition

The comparison of latency calculated is plotted as a
graph, which is shown in Fig. 8. The difference between the
standard algorithm and the sparse algorithm is shown. Fig. 9.
shows the difference in throughput between the two methods
and shows that the proposed algorithm achieved high
throughput.

After experimentation with different test values, there are
improvements in latency and throughput for smaller matrices
with high sparsity percentage and larger matrices with low
sparsity percentage. Once the mapping of matrices is
implemented on the FPGA platform, the resources utilized
are shown in Table I.

Figure 9. Latency for Sparse Matrix Addition

VII. RESULTS AND DISCUSSION

In most cases, it is evident that latency and throughput
are directly dependent on the number of nonzero elements
present in the matrix. The efficiency of the design can be
further improved by increasing the frequency of the overall
design clock. The maximum speedup of the design for any
matrix depends on the number of rows and columns being
processed. One primary purpose of this paper is to reduce the
storage space used in an FPGA when implemented. This is
also accomplished when the design is implemented in an
Artix 7 FPGA board. The amount of resources utilized for
the proposed sparse algorithm is less than the standard
algorithm. The comparison is tabulated in Table I. The
design uses only 3 percent of the total FPGA resources.
Further, pipelining can be implemented to increase the
computational speed of the system. For arithmetic operations
performed on large matrices or memory-based algorithms
and for small matrices, a pipelined algorithm will be quite
efficient.

VIII. CONCLUSION

Today's applications require higher computational
throughput and a distributed memory approach for real-time
applications. This research is primarily focused on designing
an optimized architecture for sparse matrix operations,
allowing for more efficiency than standard operations. The
functionality of the design is verified by different sets of test
cases under a specific size. The system contains a memory
control which fetches the data from memory and passes it on
for various arithmetic operations. Research improvement in
this area is needed to increase logic resources by a
comparable increase in I/O bandwidth and on-chip memory

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 12 / 50

capacity, especially when the matrix sparsity is unstructured
and randomly distributed.

TABLE I. DESIGN RESOURCE UTILIZATION SUMMARY

REFERENCES

[1] X. Lin and J. Xu, "Special Issue on Graph Processing:
Technique and Applications," Data Sci. Eng., vol. 2, no.1, p.
1, 2017.

[2] A.Ching, S. Edunov, M. Kabiljo, D. Logothetis,and ,S.
Muthukrishnan, “One Trillion Edges : Graph Processing at
Facebook-Scale," , Proceedings of the VLDB Endownment,
vol. 8, no. 12, pp. 1804-1815, 2015.

[3] M. Ryan, "FPGA Hardware Accelerators - Case Study on
Design Methodologies and Trade-Offs", 2013. Thesis.
Rochester Institute of Technology. Accessed from
http://scholarworks.rit.edu/theses/959.

[4] T. Mattson et al., "Standards for graph algorithm primitives,"
IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2013, pp. 1-2, doi:
10.1109/HPEC.2013.6670338.

[5] S. Jain, N. Kumar, J. Singh, and M. Tiwari, “FPGA
Implementation of Latency, Computational time
Improvements in Matrix Multiplication,” International Journal
of Computer Applications, 2014, vol.86, no.8,
doi:10.5120/15007-3261.

[6] S. Aslan and J. Saniie, "Matrix Operations Design Tool for
FPGA and VLSI Systems," 2016, Circuits and Systems, vol.
7, no.2, pp. 43–50, doi: 10.4236/cs.2016.72005.

[7] P. Grigoras, P. Burovskiy, E. Hung and W. Luk,
"Accelerating SpMV on FPGAs by Compressing Nonzero
Values," 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines,
Vancouver, BC, Canada, 2015, pp. 64-67, doi:
10.1109/FCCM.2015.30.

[8] L. Zhuo and V. Prasanna, “Sparse Matrix-Vector
multiplication on FPGAs,” In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-
programmable gate arrays (FPGA '05). ACM, New York,
NY, USA, 63-74.

[9] B. Hamraz, N. Caldwell, and P. Clarkson "A Matrix-
Calculation-Based Algorithm for Numerical Change
Analysis”, IEEE Transaction on Engineering Management,
Vol.60, No.1 February 2013.

[10] Nexys 4 DDR board – Reference Manual.

TABLE II. LATENCY AND THROUGHPUT CALCULATION

Slice Logic utilization

Number of Slice Registers
4,799 out of

126,800
3%

Number of Slice Look-up Tables
(LUTs)

6,702 out of 63,400 10%

Slice Logic Distribution

Number of occupied Slices 2,413 out of 15,850 15%

Input/Output (IO) Utilization

Number of bonded IO Blocks 3 out of 210 1%

Specific Feature Utilization

Number of Block RAM/FIFO 2 out of 270 1%

Matrix Size
(n*n)

Number of
nonzero (nnz)

Sparsity

Sparse Algorithm Standard Algorithm

Latency (ns) Throughput Latency (ns) Throughput

Matrix Addition

1010 10 0.1 1137.169 879376.7681 4298.0515 232663.5688

20x20 32 0.08 8550.567 116951.3086 18688.1835 53509.74855

40x40 96 0.06 57464.964 17401.90771 93787.3685 10662.41666

60x60 144 0.04 123981.857 8065.696257 214929.95 4652.678698

100x100 100 0.01 22427.802 44587.51687 588369.806 1699.61135

Matrix Subtraction

1010 9 0.09 911.1375 1097529.187 3205.4335 311970.2842

20x20 28 0.07 6156.6615 162425.6913 19199.5965 52084.42792

40x40 80 0.05 43638.191 22915.70702 38884.05 25717.4857

60x60 108 0.03 84721.1265 11803.43134 214411.526 4663.928375

100x100 100 0.01 70001.865 14285.33368 589749.829 1695.634235

Matrix Multiplication (Element-by-Element)

1010 10 0.1 1107.282 903112.3056 3205.4335 311970.2842

20x20 36 0.09 9780.263 105482.3057 19199.5965 52084.42792

40x40 80 0.05 42519.648 23518.53901 38884.05 25717.4857

60x60 72 0.02 32073.866 31178.03136 214411.526 4663.9283

100x100 100 0.01 5152.62 18364.9265 589749.82 1695.6342

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 13 / 50

Optimized Architecture for Sparse LU Decomposition on Matrices with Random
Sparsity Patterns

Dinesh Kumar Murthy
Ingram School of Engineering

Texas State University
San Marcos, TX, USA
d_m410 @txstate.edu

Semih Aslan
Ingram School of Engineering

Texas State University
San Marcos, TX, USA

aslan@txstate.edu

Abstract — This paper investigates a method for improving the
performance of sparse Lower-Upper (LU) decomposition which
is widely used to solve sparse linear systems of equations,
appearing in many scientific and engineering application
models. However, LU decomposition is considered a
computationally expensive tool. When dealing with large sparse
matrices, numerical decomposition takes more time using
normal matrix LU implementation. The problem of interest
here is the irregular sparsity pattern which limits performance
gain. An efficient architecture for sparse LU decomposition is
proposed for both symmetric and asymmetric matrices with
random sparsity percentages and patterns. The algorithm
spends time in simultaneous localization and mapping of the
sparse matrix and then solving the linearized system. The
performance of the algorithm with matrices of varying
parameters is calculated and compared with a regular LU
decomposition algorithm. In most cases, there are performance
improvements in terms of speed, area, and power.

Keywords – Pivoting; latency; linear systems; throughput; LU
Decomposition; Field Programmable Gate Arrays (FPGAs).

I. INTRODUCTION
Numerical solutions of large linear systems are important

for scientific and engineering applications like linear
programming, circuit simulation, semiconductor device
simulations, image processing, and power system modelling.
Solving such systems of equations generally involves two
methods: the direct method including Cholesky
decomposition, LU decomposition, QR decomposition, and
iterative methods. The Cholesky decomposition is a special
form of LU decomposition which deals with symmetric
positive definite matrices. Adapting these parallel
architectures to solve large sparse linear system of equations
is a main focus of research [1].

A number of software- and hardware-based approaches
have been developed to obtain better solutions for LU
decomposition. Software implementation includes a Super
nodal approach which considers the matrix as sets of
continuous columns with the same nonzero structure, and a
Multifrontal approach organizing a large sparse matrix into a
small dense matrix [2]. Field Programmable Gate Arrays
(FPGAs) have unique advantages in solving these problems.
Depending on the characteristics of the algorithm, an

architecture is designed with reconfigurable computational
resources and memory. The consumption of energy is reduced
and is a platform for experimentation and verification. Though
there are many FPGA-based architectures for dense matrices,
only a few are proposed for sparse matrix decomposition
[3][4]. The three main direct methods for sparse LU
decomposition are left-looking, right-looking and count
algorithms. The proposed FPGA-based architecture for sparse
LU decomposition can efficiently decompose the sparse
matrix with varying sparsity patterns. The architecture first
factorizes the columns from the lower triangular part of the
matrix in parallel with the rows from the upper triangular part
of the matrix. The control structure performs pivoting
operations while factorizing the rows and columns of the
matrix.

The rest of the paper is organized as follows. Section II
introduces the theoretical background of LU decomposition,
Section III describes the architectural design with proposed
algorithm, Section IV proves the simulation of the design
using Xilinx Vivado Design suite with verification of
MATLAB results, and Section V provides FPGA mapping of
the design and discussion of performance results. This paper
concludes with a brief conclusion in Section VI.

II. BACKGROUND

A. Sparse LU Decomposition

LU decomposition or factorization is a popular matrix

decomposing method for many numerical analysis and
engineering science problems. It decomposes the matrix as a
product of the lower triangular matrix (L) whose diagonal
elements are equal to 1 and all the elements above the diagonal
are equal to 0, and an upper triangular matrix (U) whose
elements below the diagonal are equal to 0. If A is a square
matrix, LU decomposes A with proper row and/or column
orderings into two factors, which is shown in Fig. 1.

 𝑨 = 𝑳𝑼 (1)

 !
𝐴!! 𝐴!" 𝐴!#
𝐴"! 𝐴"" 𝐴"#
𝐴#! 𝐴#" 𝐴##

= !
1 0 0
𝐿"! 1 0
𝐿#! 𝐿#" 1

× !
𝑈!! 𝑈!" 𝑈!#
0 𝑈"" 𝑈"#
0 0 𝑈##

(2)

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 14 / 50

LU decomposition is a direct method that can solve large
systems of linear equations that arise from important
applications such as circuit simulation, power networks, and
structural analysis [5]. To ensure stability during LU
decomposition, pivoting operations are performed to remove
zero elements from the diagonal of matrix A. Without proper
pivoting, the decomposition may fail to materialize. A proper
permutation in rows or columns is sufficient for LU
decomposition, which is also known as Partial Pivoting. This
approach is suitable for a square matrix, and it is numerically
stable in practice.

 𝑷𝑨 = 𝑳𝑼 (3)

On	the	other	hand,	Full	Pivoting	 involves	both	row	and	
column	permutations.

 𝑷𝑨𝑸 = 𝑳𝑼 (4)

where Q is a permutation matrix which reorders the columns
of A.

The forward reduction and backward substitution
techniques are more stable compared to matrix inverses to
solve systems of linear equations because every nonsingular
matrix possesses an LU decomposition. When compared with
regular matrices, sparse matrices can benefit from algorithms
that reduce the number of operations which are required to
calculate L and U. However, the disadvantage is that sparse
methods will suffer from irregular computation patterns as
they are dependent on the nonzero structure of the matrix.

Figure 1. Example of a sparse matrix and its factors L and U

B. Related Work

There have been many architectures proposed for sparse

LU decomposition which either target domain-specific
sparsity patterns or require a pre-ordered symmetric matrix
[6]. Blocking is a useful technique for gaining higher
throughput for dense matrices. When decomposing in blocks
using a Block Sparse Row (BSR) format for solving linear
systems, it is limited to a matrix containing square blocks of
a single dimension. When decomposition is executed in
parallel, it often tries to avoid pivoting by using threshold
pivoting or static pivoting beforehand. The architecture
proposed in [7] implements a right looking algorithm and

includes a hardware mechanism for pivoting. The
performance of this is primarily I/O bandwidth limited.

Another implementation captures the static sparsity
pattern and is exploited to distribute the data flow
representation of computation for circuit simulation [8]. A
more general hardware design is proposed parallelizing a left
looking algorithm to support processing symmetric positive
definite or diagonally dominant matrices. The factor limiting
architecture efficiency is dynamically depending data
dependencies. One more algorithm proposes choosing a
pivoting strategy, where the matrix is decomposed block-
wise. FPGAs have been shown to be effective in accelerating
a wide range of matrix operations in recent years [9] [10].

The algorithm with row pivoting yields LU=PA, where
the matrix overwrites A with LU-I, and I is an identity
matrix. The first half of the algorithm will be triangular
solving, leaving behind pivoting and scaling. In the case of
sparse matrix, it will be inefficient for swapping rows. Due to
having a single unreduced row or column, full pivoting is not
easily achievable. The control system is implemented as a
Finite State Machine (FSM), which tracks the progress of the
units for synchronization. The algorithm for sparse matrix LU
decomposition is in Fig. 2.

Algorithm
A → n×n sparse matrix
P → n×n identity matrix
[n, m] = size(A)
set reset high
U = A
L = P = In*n

[Perform pivoting operation]
function pivot (A, P, i)
 P = choose pivot (Ai: end, i)
 if (P ≠ k) then
 SWAP (Ai, *, Ap, *)
 SWAP (Pi, *, Pp, *)
 end if
 return (A, P)
end function
[Interchanging rows in matrix]
If m≠ j
 U ([m, j], :) = U ([j, m], :)
 P ([m, j], :) = P ([j, m], :)
 If j<=2
 L ([m, j], 1: j-1) = L ([j, m], 1: j-1)
 end
end
[Update row and column entries]
for i = j+1 to n
 for j = 1 to n
 Li, j = Ui, j / Uj, j
 for k = j+1 to n-1
 U (i, *) = U (i, *) - L (i, j) × U (j, *)
 end
 end
end

Figure 2. Pseudo code for Sparse LU Decomposition

 A L U

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 15 / 50

III. SPARSE LU DECOMPOSITION ARCHITECTURE
The proposed approach for sparse LU decomposition

consists of the following operations:

1. Pivoting strategy, when A has nonzero entries which
are at fill-up locations.

2. Symbolic decomposition, which estimates the
memory requirements for L and U factors.

3. Numerical calculation, which is computed using
Gaussian elimination.

Figure 3. Proposed LU Decomposition Hardware Algorithm

To maximize performance, LU hardware is designed to
focus on maintaining a regular computation and memory
access pattern. Fig. 3 shows a block diagram of the proposed
hardware algorithm. The control and memory access handle
the operations performed for decomposing the matrix. The
design ensures the memory will have enough space to store
the values [11] [12].

A. Pivot Operation

In order to perform a pivoting operation, the design

includes usage of lookup tables and memory pointers to keep
track of memory mapping. It performs a pivot search for each
step of matrix elimination. Index pointers are created for each
pivot to store the row and column physical address,
accordingly. These physical addresses are then used to fetch
the values from memory. These values are sequentially
checked as they arrive for the absolute maximum values with
the index. Using a register, it is stored as a pivot element. The
minimum amount of memory utilized is proportional to the
size of the matrix. Once pivoting is complete, an update is
sent back to the lookup tables.

B. Update Pivot and Interchange Rows

The “Update Pivot and Interchange Rows” logic block

performs normalization prior to elimination for the pivot
values of row and column requested from memory. The
necessary data such as pivot index, values and column are
inferred from the previous state. This process is executed one
by one after each pivot value is fetched and read. The updated

row and column values and the normalized row and column
values are then stored in registers.

C. Update Row and Columns

The remaining computations required are performed

during this transition state. First, it indicates if the given row
or column should be updated. Second, it	 manages	 the	
addresses	of	nonzero	entries	that	are	to	be	stored. This
unit contains the necessary floating-point multiplier and
adder to perform the required arithmetic operations [13]. This
unit is operational in parallel to maximize the utilization of
all logic units. This will update the number of updated logics
that fits in FPGA chip. There are enough resources available
in the FPGA that can accommodate all of the units.

IV. IMPLEMENTATION AND VERIFICATION
Various arbitrary matrices with different sparsity patterns

are generated using MATLAB and are tested using the
hardware architecture. A parameter n is included along with
the design to decompose the size of the matrix. Fig. 4 shows
the simulated waveform from Xilinx Vivado design Suite.

Figure 4. Simulation Waveform for LU Decomposition

The simulated results are stored in an external .txt file
and are verified with the results from MATLAB for precision
loss. For L matrix, the error ranges between -0.0872 to
0.0357 and for U matrix it ranges between -0.0108 to 0.0057
as shown in Fig. 5 below.

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 16 / 50

Figure 5. MATLAB Calculated Errors Values

V. PERFORMANCE ANALYSIS

A comparison of LU decomposition of sparse matrix of
size 10x10 and 100x100, with a different sparsity range of
10% to 50% is shown in Fig. 6 below. The proposed LU
decomposition design was able to achieve lower latency than
the regular algorithm LU decomposition. The results are also
verified with the MATLAB LU decomposition outputs for
precision loss.

Figure 6. Latency Comparasion

A comparison of the throughput calculated from the

sparse matrix algorithm and regular algorithm is plotted in
the form of a graph and is represented in Fig. 7. As the
throughput needs to be high for better performance, we are
able to infer from the graph that high throughput was
achieved.

Figure 7. Block Diagram of the TX and RX Module

The data from Table I shows that the matrix storage format
proposed in this research was able to achieve minimum
resource utilization, as opposed to the traditional regular LU
decomposition algorithm. The proposed design was
implemented on a Xilinx Artix7 XC7A100T-1CG324C board
comprising of 15,850 logic slices and a maximum of 4,860
Kbits fast block RAM. This is achieved with optimization
through the implemented design for the LU decomposition. A
difference in about one third of the total resources utilized was
achieved, as seen in Fig. 8 and 9, respectively.

The performance of the design is based on the architecture
and its parameters. As an FPGA has enough computational
resources and the design is memory-bound, the performance
is totally dependent on memory access time.

TABLE I. RESOURCES UTILIZED FOR PROPOSED ALGORITHM

Device Utilization Summary

 Proposed Sparse
Algorithm

Regular
Algorithm

Slice Logic
Utilization Available Used

Slice
Registers 126,800 3,420 10,863

Slice LUTs 63,400 11,211 16,807

Memory 19,000 8 64

Occupied
Slices 15,850 3,504 5,455

IOBs 210 40 40

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 17 / 50

Figure 8. FPGA Design Utilization

Figure 9. Design Power Requirements

VI. CONCLUSION
Numerous engineering and machine learning applications

rely largely on solving linear equations using LU
decomposition, due to rapid developments in the field of
mathematics and computation. Compared with a CPU and
GPU, the FPGA does not have an instruction set. Instead, it
possesses a number of reconfigurable logic blocks which
could perform any digital logic function. In this paper, a
computational implementation of the LU decomposition is
proposed using an optimized algorithm. The proposed
architecture can achieve further improvement by increasing
the overall design clock.

REFERENCES

[1] M. Wielgosz, G. Mazur, M. Makowski, E. Jamro, P. Russek,
and K. Wiatr “Analysis of the Basic Implementation Aspects
of Hardware-Accelerated Density Functional Calculations,”
OJS Computing and Informatics, vol. 29, no. February, pp.
989–1000, 2010.

[2] A.Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S.
Muthukrishnan, “One Trillion Edges : Graph Processing at
Facebook-Scale," , Proceedings of the VLDB Endownment,
vol. 8, no. 12, pp. 1804-1815, 2015.

[3] A. Pinar and M. T. Heath, “Improving Performance of Sparse
Matrix-Vector Multiplication,” Proceedings of the 1999
ACM/IEEE Conference on Supercomputing, January 1999
Pages 30–39 doi:10.1145/331532.331562.

[4] T. Mattson et al., "Standards for graph algorithm primitives,"
IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2013, pp. 1-2, doi:
10.1109/HPEC.2013.6670338.

[5] S. Jain, N. Kumar, J. Singh, and M. Tiwari, “FPGA
Implementation of Latency, Computational time
Improvements in Matrix Multiplication,” International Journal
of Computer Applications, 2014, vol.86, no.8,
doi:10.5120/15007-3261.

[6] S. Aslan and J. Saniie, "Matrix Operations Design Tool for
FPGA and VLSI Systems," 2016, Circuits and Systems, vol. 7,
no.2, pp. 43–50, doi: 10.4236/cs.2016.72005.

[7] P. Greisen, M. Runo, P. Guillet, S. Heinzle, A. Smolic, H.
Kaeslin, and M. Gross, “Evaluation and FPGA Implementation
of Sparse Linear Solvers for Video Processing Applications”,
in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 23, no. 8, pp. 1402-1407, Aug. 2013, doi:
10.1109/TCSVT.2013.2244797.

[8] W. Liu and B. Vinter, “An Efficient GPU General Sparse
Matrix-Matrix Multiplication for Irregular Data”, 2014 IEEE
28th International Parallel and Distributed Processing
Symposium, Phoenix, AZ, USA, 2014, pp. 370-381, doi:
10.1109/IPDPS.2014.47.

[9] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara, and
C. Nwankpa, “Sparse LU Decomposition using FPGA”,
International Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA), pp. 1-12, 2008.

[10] G. Wu, X. Xie, Y. Dou, J. Sun, D. Wu, Y. Li, and A. S.
Matrix, “Parallelizing Sparse LU Decomposition on FPGAs”,
2012 International Conference on Field-Programmable
Technology, Seoul, Korea (South), 2012, pp. 352-359, doi:
10.1109/FPT.2012.6412160.

[11] L. Polok and P. Smrz, “Pivoting Strategy for Fast LU
Decomposition of Sparse Block Matrices”, HPC'17:
Proceedings of the 25th High Performance Computing
Symposium April 2017, no. 14, Pages 1–12.

[12] X. Wang and S. G. Ziavras, “Parallel LU Factorization of
Sparse Matrices on FPGA-Based Configurable Computing
Engines,” Wiley Concurrency Computat.: Pract. Exper.,, vol.
16, no. April, pp. 319-343, 2004.

[13] Siddhartha and N. Kapre, "Breaking Sequential Dependencies
in FPGA-Based Sparse LU Factorization," 2014 IEEE 22nd
Annual International Symposium on Field-Programmable
Custom Computing Machines, Boston, MA, USA, 2014, pp.
60-63, doi: 10.1109/FCCM.2014.26.

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 18 / 50

IoT Applications with Common Distributed Architecture for Data Acquisition

Kushal Thapa
Ingram School of Engineering

Texas State University
San Marcos, USA

email: k t260@txstate.edu

Vinay Lokesh
Ingram School of Engineering

Texas State University
San Marcos, USA

email: v v183@txstate.edu

Kevin Seets
Ingram School of Engineering

Texas State University
San Marcos, USA

email: kms489@txstate.edu

Abstract—Internet of Things (IoT) applications have many
forms, and leverage many different technologies. However, certain
classes of applications have extremely strong similarities in system
architecture. This paper discusses several important applications,
which leverage a small set of loosely coupled, distributed data
acquisition subsystems to effect a centrally coordinated, data in-
tensive function or application. For brevity, we call this structure
“Coordinated IoT for Data Acquisition” (CIDAQ). Finally, this
paper introduces a novel power line communication research,
which employs this CIDAQ architecture for data capture and
processing.

Keywords—Internet of Things; IoT; Smart Grid; Active Shooter;
Machine Learning; ML; Artificial Intelligence; AI.

I. INTRODUCTION
In some scenarios where Internet of Things (IoT) tech-

nologies are used, the application of interest could be useful
for training first responders, as it provides a more analytical
approach to how first repsonders move and react. In other
cases, IoT’s use relates more to optimization of an industrial
process, where a net of data could increase functionality or
longevity. It could also have use in observations of biological
processes where data has proven difficult to gather by more
traditional means. In all cases, the application benefits from
the Coordinated IoT for Data Acquisition (CIDAQ) architec-
ture, where a distributed, loosely-coupled set of IoT devices
provides telemetry data to a central repository, and Machine
Learning and Artificial Intelligence (ML/AI) algorithms are
employed to produce some application-related insights.

In this paper we describe various applications which lever-
age the CIDAQ architecture as well as some useful tech-
nologies. Section II presents a compelling application related
to training of first responders in active shooter scenarios.
Section III briefly describes several other applications, and
presents some of the ML/AI techniques that can be useful
in these applications. Section III-D exhibits some businesses
and products that are already available for purchase, ranging
in size and scope.

We conclude the paper in Section IV with a particularly in-
teresting application of the CIDAQ architecture, which focuses
on the electrical grid. In this application, the distributed system
“listens” to current disturbances on the electrical distribution
grid, “talks” upstream from the outlet to the substation, and
“geolocates” electrical devices for system management pur-
poses based on actively and passively gathered telemetry data.

II. ACTIVE SHOOTER TRAINING
A particularly compelling application of IoT systems is

to augment the training of first responders. This application
leverages the CIDAQ architecture by placing data acquisition

Fig. 1. Comparison of active shooter situations with and without first
responder intervention [1].

devices and sensors on various body parts of first respon-
ders who are participating in scenario-based, real-time active
shooter training.

Having properly trained first responders immediately avail-
able for active shooter situations is paramount to ensuring the
safety and survival of bystanders. Fig. 1 indicates an increase in
victim shootings and death associated with police intervention.
In a comparison study of 83 events with and without police
intervention, 37 (45%) included police intervention, which
accounted for over half of total victim shootings (63%) and
deaths (56%) [1]. Though this is a particularly alarming trend,
it does give insight on the fact that police officers need to be
better trained to deal with active shooter situations.

Traditional training for an active shooter situation can be
time consuming and expensive, and so is often not effective in
producing measurable outcomes [2]. The prevalence of active
shooter situations in the United States reveals a necessity for
officer training that is effective in measurable outcomes as
well as conventional metrics of time and cost [3]. Students
at Texas State University have designed a system with the
potential to improve training for first responders which could
play a part in revolutionizing first responder training, as shown
in Fig. 2. This system leverages the CIDAQ architecture. By
placing sensors strategically on participant, data about proper
movement and weapon handling can be gathered in real-
time from multiple participants, processed, and analyzed in a
central location, and leveraged to improve the effectiveness of
first-responder training. This information can in turn be used
to create augmented reality training programs that could be
effective tools in saving law enforcement valuable time and
money, and in improving the ability to repeat training remotely
[2]. Additionally, the data can be used to precisely compare

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 19 / 50

Fig. 2. Augmented motion-tracking of first responders using CIDAQ
architecture sensors [4].

and contrast the effectiveness of different training programs,
thereby improving the effectiveness of the training program as
well as the measurable outcomes for each participant.

The devices used in this application consist of Inertial
Measurement Units (IMU) placed on the head, chest, and
weapon of the participants. Each IMU contains analog ori-
entation, acceleration, and location sensors whose outputs can
be easily acquired, stored, measured, and manipulated. The
data collected by these devices creates a 3-dimensional map
of the user’s movements which can be reconstructed and
replayed at-will. Augmented reality devices can create virtual
training experiences with these maps that include all of the
necessary movements and actions required by a first responder
[3]. This training method not only improves time and cost
effectiveness, but also affords a new level of access. The
ease of distribution of these expert training programs increases
accessibility for smaller or more distant municipalities and also
helps streamline training. This ensures first responders have
access to the exact same training, which will help with joint
operations as well as transfers between departments.

The application of CIDAQ architecture for training first
responders does not stop at active shooter situations; there are
a number of other projects being developed and at least one
that is already in use. Dartmouth College’s Interactive Media
Laboratory and Institute for Security Technology Studies cre-
ated a virtual program designed to aid in training for terrorism
response. The program, called Ops-Plus, utilizes 3D simulators
to aid in training against attacks that involve nuclear, radiolog-
ical, biological, and even chemical warfare. The Los Angeles
Police Department currently uses an immersive simulation
trainer, called HYDRA, used to train first responders in a
series of scenarios, from earthquakes to terrorism response,
that would be difficult to recreate. New York City has partnered
with the Environment Tectonics Corporation to develop a
software, similar to HYDRA, that creates an immersive envi-
ronment designed to help first responders prepare for citywide
disaster management [5]. As these technologies progress, the
breadth and depth of IoT application will increase, reducing
potential harm to first responders and civilians.

III. SIMILAR APPLICATIONS AND ML/AI
In addition to applications such as training for first respon-

ders, the CIDAQ architecture is being actively deployed in
various other applications including monitoring and control of
industrial processes, monitoring of the habitat for endangered
species, and enabling efficient hospital care for bedridden
patients. These applications are described briefly along with
the general nature of ML/AI algorithms which could be
used in processing the resulting telemetry data to create new

knowledge, or to improve application-specific outcomes.

A. Industrial Application
Heat trace cables or heat tapes are vital in oil and gas,

chemical treatment, power generation and many other indus-
tries. These cables and their control systems assist in the
continuous delivery of gases and liquids, often preventing
the contents of pipes or tanks from freezing in extreme
environments.

Based on advances in heat sensitive polymer design, many
of these cables come with self-regulating ability. In other
words, the heat generated by these cables can compensate for
environmental temperatures by autonomously adapting their
absorption of electrical current [6]. This capability provides
operational simplicity in external power control systems, as
well as convenience in direct attachment to the electrical power
source.

However, the heat cable can be damaged during deploy-
ment, or can degrade due to aging or other conditions. Ap-
proaches to locating damaged portions of heat cable is a
difficult challenge. One approach to this remote monitoring
problem is to integrate temperature sensors into the cable, or
add IoT-based devices along the cable to make measurements.
As a distributed, network-based monitoring architecture, a
CIDAQ system is a logical candidate for this application. Via
a CIDAQ architecture, deployed heat cables and the systems
they monitor can be remotely evaluated using low-rate data
transmitted along the heat cable and power lines. This data,
transmitted directly via low-frequency power line communi-
cations techniques, can also be aggregated, assimilated, and
analyzed using the ML/AI algorithms.

B. Biodiversity Application
The conservation of endangered species is important for

maintaining biodiversity and a well-balanced ecosystem. Sev-
eral techniques have only recently been applied in the marine
environment to detect the presence of marine species [7].
Confirming presence relies on locating the animals, which can
prove challenging for species with low population numbers. A
variety of methods have been used to determine the presence
of rare marine species, including fishing and underwater visual
surveys [8]. However, these approaches typically require sub-
stantial field-based effort by researchers and data gatherers.
Although scientists have been able to achieve a significant
amount of success using Environmental DNA (eDNA), not
every organism will be readily detected by eDNA and the scale
of the water bodies impacts the probability of detection.

Importantly, the abiotic factors of temperature, UV ra-
diation, and amount of DNA present all impact the length
of time that the eDNA stays in the environment [9]. A
compelling approach which uses the CIDAQ architecture to
monitor endangered species is detects and processes animal
voice or audio signals. Examples of such endangered species
that are being monitored with a CIDAQ architecture are the
Houston Toad and Craw Frog [10]. In these applications, an
embedded solution detects toad calls automatically with real-
time notification transmission capabilities to engage remote
researchers. The labelled audio data is filtered and fed to
a machine learning model to extract features. The extracted
features are then fed to classification algorithms using the
processing pipeline shown in Fig. 3.

12Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 20 / 50

Fig. 3. Experimental Method.

This application of the CIDAQ architecture leverages deep
learning architectures, such as Recurrent Neural Network
(RNN), Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), Gated Recurrent Units (GRUs) as
well as conventional signal processing such as Mel-frequency
Cepstral Coefficients (MFCC), Linear predictive coding (LPC),
Perceptual Linear Prediction (PLP), Mel Filter banks, and
Spectrograms [11]. These technologies are used to improve
the identification of endangered species with reduced false-
positive rate [10].

C. Medical Application
Another intuitive application that uses CIDAQ architecture

enables efficient hospital care for bedridden patients. The
feasibility of using pervasive sensing technology and artificial
intelligence for autonomous and granular monitoring in the
Intensive Care Unit (ICU) is vital since manual observations
can suffer from subjectivity. The use of sensing technologies
and network-based telemetry can bring timely intervention
to assist in making life-saving decisions while dealing with
high levels of uncertainty under strict time constraints [12].
Artificial intelligence in the critical care unit could reduce
doctors’ workload to allow them to spend time on more
critical tasks. The approach used in this application include
accelerometer sensors, a light sensor, a sound sensor, and
a high-resolution camera to capture data on patients and
their environment in the ICU. Various computer vision and
deep learning techniques are used to recognize a patient’s
face, posture, facial expressions, head pose, and extremity
movements from video data [13]. For activity recognition, data
from wearable accelerometer sensors worn on the wrist, ankle,
and arm are analyzed. Additionally, the information uses the
room’s sound pressure and light intensity levels to examine
their effect on patients’ sleep quality. This framework employs
a cascaded architecture with three stages of deep CNNs to
predict face and landmark locations in a coarse-to-fine manner
[12].

In general, most embedded applications dealing with
IoT, machine learning and artificial intelligence implement
a CIDAQ architecture. Many of these applications leverage
deep learning algorithms, which are concerned with very large
datasets of labelled analog data, such as image, text, audio
and video [14]. Machine learning algorithms used in CIDAQ-
based systems can be based on supervised, unsupervised or
semi-supervised learning. Supervised learning model is based
on training data and helps to make predictions, some of the
important algorithms under supervised learning are logistic re-
gression and back propagation neural networks. Unsupervised
learning model is prepared by deducing structures present
in the input data, some of the important algorithms under
unsupervised learning are Apriori and K-means algorithm.
Semi-supervised learning is a mixture of both labelled and
unlabeled data.

D. Market Data
As IoT technologies gain in popularity and scope of

capability they will become more available and more widely

used. There are a number of businesses–ranging from startups
to Fortune 50 companies–using IoT, and implementing CIDAQ
architecture in a range of ways, for their products and services.
A few smaller startup companies are: Vicotee, MachineMax,
and Radio Bridge [15]. Vicotee is a Norwegian company that
offers a variety of sensors that can be used in conjunction with
each other for myriad ’smart’ applications including but not
limited to shipping, infrastructure, healthcare, air quality, and
land management [16]. MachineMax, based out of the UK, on
the other hand offers a software, rather than only offering a
full-package, that uses IoT to interconnect 3rd party sensors
into a a single platform [17]. Similarly, US based Balena offers
IoT ’fleet management’ that is designed to push updates across
varying platforms using a cloud-based container [18].Instead of
simply offering a product line, US based Radio Bridge offers
IoT data-as-a-service where they set up devices and monitor
the data, allowing the end user to focus on whatever task
is at hand [19]. Small startups are not the only businesses
interested in IoT technologies, there are also several major
players competing in the market as well, specifically IBM,
Samsung, AWS, and Microsoft [20]. Each of these Global 500
businesses offers a proprietary monitoring solution for their
products.

IV. ELECTRIC DISTRIBUTION GRID
As mentioned in Section I, the electric distribution grid is

a particularly compelling application of the CIDAQ architec-
ture. As more compute and sensor devices pervade modern
society, reliance on the electrical infrastructure continues to
increase. Although “the grid” is one of the unspoken wonders
of the modern technological society, the increased burdens
of two-way power flow, distributed generation facilities, and
complex/dynamic structure are pressing technologists to create
better approaches to monitoring, controlling, and leveraging
existing grid infrastructure.

An intuitive approach to leverage existing grid infrastruc-
ture is to use the grid itself as a communication medium. This
would pave a way for the development of a self-regulating
power grid, and in addition, obviate the need for deploying
other communication resources for grid related applications,
thereby saving time and money worth billions [21]. This
distributed system concept fits precisely within the CIDAQ
architecture.

Using the power grid as a communication medium is
not a novel concept. This technology, commonly referred to
as Power Line Communication (PLC), has been used since
early 1920’s for applications like fault detection and automatic
meter reading [22]. However, the development in the PLC
applications has been severely hindered due to the dynamic
and unpredictably noisy nature of this medium. This problem
is aggravated by the different electrical devices in the power
grid, like transformers, which obstruct and muddle the com-
munication signals even more [23].

One simple approach to solving this problem is the trans-
mission of low-frequency communication signals. Low- fre-
quency signals don’t attenuate or distort as much compared
to high-frequency signals, even after passing through the
transformers [24]. Thus, a low-frequency band, typically in
the range of 150 Hz-1350 Hz [24], can be used directly for
PLC applications. However, one major disadvantage of using
low- frequency bands for communication is the low data rate.
Consequently, this solution has been under-researched and

13Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 21 / 50

Fig. 4. Experimental setup for sending and capturing communication signals
through powerlines.

mostly overlooked.
Nonetheless, such low-frequency PLC has applications in

fields that don’t require high-speed data transmission but prior-
itize reliability, simplicity, scalability, and ease of deployment.
There is an urgent need for this type of technology in the power
sector. As mentioned before, the existing power grids are fail-
ing because of the exponential increase in power demand over
the last few decades [25]. This problem is exacerbated by the
disconnect between the power producers and consumers which
leads to a huge waste of already depleted power supply. Low-
frequency PLC can bridge this disconnect thereby becoming
the backbone communication infrastructure of a continuously
sensing and self-monitoring power grid called “smart grid”
[26].

Therefore, there is a need for research and study in the
field of low-frequency PLC. To that end, our research is going
to be focused on employing a CIDAQ network architecture
to test low-frequency power line communication for simple
digital communication. Fig. 4 shows a simplified design of
this network architecture.

As shown in Fig. 4, a programmable current source injects
a known signal into the powerline via a stabilizing filter. This
signal passes through single-phase and three-phase distribution
grid via transformers. When the signal passes through a
transformer, the image of the signals are ingrained in the
other two-phases of the power line, creating noisy image
or echo signals [23]. In the electric substation, the injected
signals, which have passed through multiple transformations,
are collected by a Data Acquisition Device (DAQ) [27]. The
DAQ is controlled by an embedded system such as a Raspberry
Pi [28]. The control system and remote DAQ devices are
connected to a common wireless network for synchroniza-
tion. The control system commands the programmable current
source to inject communication or disturbance signals, and
simultaneously commands the DAQ to acquire signal data.
This data is collected centrally for signal processing and
machine learning techniques to analyze and reconstruct the
original signal, remove extraneous noise or images of signals,
and create a global understanding of the signal context on the
distribution grid.

The raw data captured at the substation contains the input
communication signal mixed with a more dominant power
signal and its highly correlated harmonics, plus a highly
dynamic and unpredictable environmental noise. Using the
CIDAQ architecture, the distributed system extracts the infor-
mation sent by the input signal from this mixture. Traditional

Fig. 5. Flowchart showing the basic signal workflow from input to machine
learning output.

Digital Signal Processing (DSP) techniques [29] do this job in
other communication media like telephone wires and optical
fibers, but are not adequate for highly noisy PLC. As a result,
supplementing DSP techniques with ML becomes a critical
aspect of this CIDAQ implementation. Machine learning is a
data-driven technique that formulates a relationship between
the input and the output based on the training data [30]. In
the case of the ultra-low-frequency powerline environment,
the training data is composed of various features of the raw
signal extracted using DSP techniques. This data is fed into
ML algorithms to form a model which extracts the transmitted
information from the raw noisy data. The overall signal flow
from transmitted input to the extracted ML output is shown in
Fig. 5.

This way, the CIDAQ architecture effectively captures PLC
data from the electrical grid and deciphers the information
contained in the data. This CIDAQ architecture can also easily
be scaled to employ multiple DAQs, which can be placed at
differing locations in the power grid. A similar architecture
can also be used to capture non-PLC internal power grid data,
which can contain information about the state of the grid and
its components. This non-PLC data can similarly be processed
and deciphered using signal processing and ML techniques via
the same CIDAQ architecture.

V. CONCLUSION
Using the context of several related applications, this paper

has introduced the CIDAQ architecture, which leverages dis-
tributed IoT-like devices to acquire relatively high-rate signals
and analyze them collectively to produce some application-
specific outcome. In cases of first responder training, IoT
devices are distributed on a participant’s body for analysis of
form and function in a high intensity situation. In cases of
industrial control and management, IoT devices are distributed
on heat-tape which ensures the consistent flow of gas or liquid
in an industrial environment. In cases of species management
or healthcare management, IoT devices gather data from the
environment or from healthcare facilities for processing and
analysis, and to create a larger context from which to prioritize
societal or personal decisions.

In the electrical grid, which underpins almost all related ap-
plications, sensors, and data acquisition systems are distributed
throughout a larger, dynamic context in order to acquire
signals, gather data, cross-correlate events, and effect changes
in system efficiency that will enable future applications which
could benefit from the CIDAQ architecture.

14Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 22 / 50

ACKNOWLEDGEMENT
The authors would like to thank Bo Hyse, Matt Healea,

and Karina Paz for the use of their senior design project
as an example in this paper, as well as the Advanced Law
Enforcement Rapid Response Training (ALERRT) team at
Texas State University for the use of their research involving
active shooter training.

REFERENCES
[1] M. H. Martaindale, W. L. Sandel, and J. P. Blair, “Active-shooter events

in the workplace: Findings and policy implications,” J. Bus. Contin.
Emer. Plan., vol. 11, no. 1, p. 6–20, 2017.

[2] P. Glass et al., “Use of computer simulation modeling to reduce the
consequences of an active shooter event in a large event venue,” in
2018 IEEE International Symposium on Technologies for Homeland
Security (HST), 2018, pp. 1062–1065.

[3] B. Heyse, M. Healea, and K. Paz, “EE Senior Design project Statement
of Work: 3-D Motion Capture and Virtualization for Response Train-
ing,” Ingram School of Engineering, Texas State Univ., San Marcos,
Texas, Senior Design Thesis, 2019.

[4] Miecz. Blender motion capture retargeting tip. 25-March-2021. [On-
line]. Available: https://www.blendernation.com/2018/08/29/blender-
motion-capture- retargeting-tip/

[5] G. Meyers. Simulation software is cost-effective for emergency response
training. FyorgeFX Training Simulations. 25-March-2021. [Online].
Available: https://forgefx.com/simulation-software-is-cost-effective-for-
emergency-response-training/

[6] USXTM Self-Regulating Heating Cable. Thermon. 25-March-2021.
[Online]. Available: http://www.thermon.com/us/products/electric-
heating/heat-trace/usx#overview

[7] K. Weltz et al., “Application of environmental DNA to detect an
endangered marine skate species in the wild,” PLoS ONE, vol. 12, pp.
1–16, June 2017.

[8] G. F. Ficetola et al., “Species detection using environmental DNA from
water samples,” Biology letters, vol. 4, pp. 423–5, Sep. 2008.

[9] H. C. Rees et al., “The detection of aquatic animal species using
environmental DNA – a review of eDNA as a survey tool in ecology,”
Journal of Applied Ecology, vol. 51, pp. 1450–1459, 2014. [Online].
Available: http://eprints.nottingham.ac.uk/id/eprint/30254

[10] S. Islam and D. Valles, “Houston Toad and other chorusing amphibian
species call detection using deep learning architectures,” in Proc. 10th
IEEE Computing and Comm. Workshop and Conf., Jan. 2020, pp. 0511–
0516.

[11] L. Rabiner and R. Schafer, Theory and Applications of Digital Speech
Processing. Pearson, 2011.

[12] A. Davoudi et al., “Intelligent ICU for Autonomous Patient Monitoring
Using Pervasive Sensing and Deep Learning,” Scientific Reports, vol. 9,
pp. 1–13, May 2019.

[13] N. A. Halpern and S. M. Pastores, “Critical care medicine
in the united states 2000-2005: an analysis of bed numbers,

occupancy rates, payer mix, and costs,” Critical care medicine,
vol. 38, no. 1, p. 65—71, Jan. 2010. [Online]. Available:
https://doi.org/10.1097/CCM.0b013e3181b090d0

[14] Deep Learning. Machine Learning. 25-March-2021. [Online]. Available:
https://machinelearningmastery.com/what-is-deep-learning/

[15] 5 top wireless sensor solutions impacting the telecom sector. 30-March-
2021. [Online]. Available: https://www.startus-insights.com/innovators-
guide/5-top-wireless-sensor-solutions-impac ting-the-telecom-sector/

[16] How vicotee’s technology can help you move fast forward. 30-March-
2021. [Online]. Available: https://https://www.vicotee.com/use-cases/

[17] We’re building the new age of construction. 30-March-2021. [Online].
Available: https://machinemax.com/pages/solutions

[18] What is balena? 08-April-2021. [Online]. Available:
https://www.balena.io/what-is-balena

[19] Iot data-as-a-service. 30-March-2021. [Online]. Available:
https://radiobridge.com/services/iot-data-as-a-service

[20] J. Guth et al., A Detailed Analysis of IoT Platform Architectures:
Concepts, Similarities, and Differences. Springer, 2018, pp. 81–101.

[21] K. Rabie et al., “IEEE Access Special Section Editorial: Advances in
Power Line Communication and its Applications,” IEEE Access, vol. 7,
pp. 133 371–133 374, Sep. 2019.

[22] K. Dostert, “Telecommunications over the power distribution grid -
possibilities and limitations,” in Proc. Int. Symp Power Line Comm.
and Appl., 1997, pp. 1–9.

[23] S. U. Ercan et al., “Power line communication design and imple-
mentation over distribution transformers,” in 2017 10th International
Conference on Electrical and Electronics Engineering (ELECO), 2017,
pp. 190–194.

[24] D. Dzung, I. Berganza, and A. Sendin, “Evolution of powerline com-
munications for smart distribution: From ripple control to OFDM,” in
2011 IEEE International Symposium on Power Line Communications
and Its Applications, 2011, pp. 474–478.

[25] S. McClellan, D. Valles, and G. Koutitas, “Dynamic voltage optimiza-
tion based on in-band sensors and machine learning,” Appl. Sci., vol. 9,
no. 14, p. 2902, July 2019.

[26] N. Uribe-Pérez et al., “Smart grid applications for a practical implemen-
tation of IP over narrowband power line communications,” Energies,
vol. 10, no. 11, p. 1782, Nov. 2017.

[27] DI-1100 4-channel USB Data Acquisition Starter Kit.
DATAQ Instruments. 25-March-2021. [Online]. Available:
https://www.dataq.com/products/di-1100/

[28] Raspberry Pi 4 Model B. Raspberry Pi. 25-March-2021. [Online].
Available: https://www.raspberrypi.org/products/raspberry-pi-4-model-
b/

[29] D. Kakati and S. C. Arya, “A full-duplex optical fiber/wireless
coherent communication system with digital signal processing at the
receiver,” Optik, vol. 171, pp. 190 – 199, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S003040261830799X

[30] S. Raschka and V. Mirjalili, Python Machine Learning, 2nd ed. Packt
Publishing, 2017.

15Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 23 / 50

Supervised Machine Learning in Digital Power Line Communications

Kushal Thapa*, Stan McClellan†, Damian Valles§

Ingram School of Engineering

Texas State University

San Marcos, TX, USA

email: *k_t260@txstate.edu, †stan.mcclellan@txstate.edu, §dvalles@txstate.edu

Abstract—Power Line Communications (PLC) is a technology

that uses power lines to transport communication data

alongside the AC electric signals. Due to the highly penetrative

pre-existing power grid infrastructure, PLC has a huge

networking potential, especially in the implementation of smart

grid technologies. However, PLC medium poses a major

hindrance in the form of poor signal propagation. Traditional

signal processing measures are not enough to demodulate these

poor signals at the receiver end. To overcome this challenge, we

are investigating Machine Learning (ML) as a supplement to the

traditional digital signal processing techniques in this project.

Our project focuses on testing and comparing various

supervised machine learning and deep learning algorithms for

the purpose of digital PLC bit classification.

Keywords-power line communications; PLC; machine

learning; ML; smart grid.

I. INTRODUCTION

The use of electrical wiring and power lines for network
communication is not new. Since the early 1920s, this
technology has been used to automate meter reading by utility
companies [1]. Beyond this application, the potential of Power
Line Communications (PLC) was conceptualized as a
universal networking solution mainly because of the pre-
existing power-grid [2]. This power grid would obviate the
need for building other types of dedicated communication
infrastructures like phone lines and optical fibers, thereby
saving billions in cost [2]. However, over the years, such high
expectations of this technology have not been realized due to
many factors. One of the primary culprits is signal
propagation.

The power grid infrastructures, including the power
cables, were not designed for communication purposes. Thus,
communication signals face various hindrances in this
medium, including highly variant and dynamic noise,
radiation leakage, undesired modulation, etc., [3]. All of these
problems aggregate to cause poor propagation of the signal.
One approach to solving this problem is to devise ways to
cancel out these causes and maintain a better quality of signal
throughout its communication path. A different approach
would be to design a better, more sensitive receiver that could
extract information even from the poorly propagated
communication signals. The latter approach has an advantage
because only the receiver needs modification, while the
former might need engineering improvements in the
transmitter and the medium.

Traditional communication receivers work primarily by
implementing Digital Signal Processing (DSP) techniques,
such as demodulation, filtering, digitization, etc., [4].
However, these methods alone are not sensitive enough to
extract the information signals in PLC. Machine Learning
(ML), which is a technique that probes data for information,
might be a good supplement to traditional signal processing in
creating more sensitive receivers for PLC. Therefore, in our
study, we have designed a PLC network architecture and used
ML with signal processing features to extract the transmitted
information from the raw PLC signal captured at the receiver.

The signal workflow of our project is shown in Figure 1.
Digital information is modulated onto an analog carrier at the
transmitter in one of several well-known approaches. This
analog signal is injected into the power line where it combines
with the dominant power signal plus highly variant noise. The
output is collected with a Data Acquisition Device (DAQ) at
the receiver, and it consists of a raw signal that resembles a
power signal. Various features are extracted from this raw
signal using DSP. These features, along with the
corresponding digital labels, are arranged into a dataset. This
dataset is then fed into ML algorithms, which creates a model.
Lastly, we use this ML model to classify and thus, extract the
transmitted digital information.

The rest of the paper is organized as follows. In Section 2,
we provide a description of the data-capture methodology,
feature extraction process used in the raw-data, and the setup
of the ML models. In Section 3, we present the outcomes of
ML model optimization, performance of these models, and
validation of the results. Finally, we summarize the paper and
provide conclusions in Section 4.

Figure 1. The flow of signals from digital input to ML output.

16Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 24 / 50

II. PROCEDURE

A. Data Capture

The experimental setup used to capture the PLC data is
shown in Figure 2. As shown in the figure, we used a current
source to inject a low amplitude signal with a frequency of
1595Hz into the power line via a current-modulator and a
stabilizing filter. This signal first passes into a single-phase lab
wiring, then into a three-phase distribution power grid via
transformers. Some signature of the signal gets ingrained on
all three-phases during this transition [3]. In the substation, the
power signal and the injected signal go through more
transformation, primarily due to Current Transformers (CT).
These transformed signals were then collected at the
substation using DAQ. The communication signal originated
at the low voltage region (the lab) and traveled towards the
high voltage region (substation) of the distribution grid,
thereby making the PLC path upstream.

B. Raw Data

The raw data, captured using DAQ, was a three-phase
time-series data consisting of a power signal at around 60Hz,
communication signal at around 1595Hz, and time-variant
noise at all frequencies. The power signal dominated the time-
domain plot of this raw data because of its relatively high
amplitude. Thus, the time-domain plot did not show any trace
of our communication signal. The power signal and its
harmonics also dominated the frequency-domain spectrum
plot. However, a small peak was present at 1595Hz that
showed the presence of our transmitted signal. However, the
spectrum plot cannot show the time-varying nature of the
signal, and thus, did not provide us information about the
digital data that was transmitted. A spectrogram, which is a
plot of signal energies in a time vs. frequency graph, helps
acquire this information. Figure 3 shows the spectrogram of
the Phase A raw data. We can see the dominant power signal
and its harmonics at low frequencies. More significantly, there
is a clear dotted band above 1500Hz, which is our
communication signal. In this frequency band, the short bright
dashes represent the 1s, and the gap between these dashes
represents the 0s. These discrete amplitude (energy) shifts
correspond to the data (bits) modulated and transmitted by the
current source.

Figure 2. Experimental setup for sending and receiving a current signal

through power lines in a distribution power grid.

Figure 3. Spectrogram of Phase A of captured raw data.

C. Feature Extraction

After the raw data was collected, this data needed to be

converted to ML-ready format. First, we divided the raw data

into numerous frames corresponding to the resolution frame

of the labels (sample length of a single bit in the transmitted

analog signal). Each of these frames would be a sample row

in our final dataset. Then, from each of these frames, we

extracted various features as described below:

1) Amplitude Envelope

This feature gives the change in the amplitude of the

signal over time [5]. It effectively traces the outline of the

signal in the time-domain. In our case, the raw signal’s

amplitude envelope, as is, would not provide any meaningful

information as the 60Hz power signal dominates all other

superimposed sinusoidal signals. Therefore, we filtered the

raw frames with band pass filters of 100Hz bandwidth

starting from 1Hz and up to 2000Hz with no overlap (1Hz-

100Hz, 101Hz-200Hz,...,1901-2000Hz). Hence, we divided

each frame into twenty frequency-separated signals and

calculated each of these signals' amplitude envelope. Our

expectation was that the amplitude envelope of one of these

signals which contains our communication frequency

(1595Hz in our case) would provide information about the bit

that was transmitted in that frame.

2) RMS (Root Mean Square) Energy

The energy of a signal is the measure of the “strength”

of the signal. A signal’s energy is defined as the sum of the

square of its magnitude [6]. Thus, RMS Energy (RMSE) is

the square root of the mean energy of a signal. Equation (1)

[7] shows the formula for RMSE where xi is the ith sample of

signal x and N is the total number of samples.

𝑅𝑀𝑆𝐸 = √
(𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑁

2)

𝑁

(1)

 In our case, the raw signal's energy (or each frame)

would again be dominated by the power signal. Hence, we

frequency separated the frames as before and calculated

RMSE for each of the twenty bandpass filtered signals of

each frame. Like the amplitude envelope, we were expecting

17Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 25 / 50

variations in the RMSE of 1,501-1,600Hz signals of different

frames corresponding to the bit these frames were carrying.

3) Spectral Centroid

Amplitude envelope and RMSE are time-domain

features, and thus, they were extracted from the time-series

data. We decided to use spectral centroid to probe the

frequency-domain of the raw data for important signal

characteristics. The spectral centroid compares the center of

mass of the signal’s spectrum [8]. Our raw signal’s spectrum

had a primary peak at around 60Hz and secondary harmonic

peaks at multiples of 60Hz because of the dominant power

signal. Whenever the communication signal was present in

the raw signal, there should also be a peak at 1595Hz (our

communication frequency). We assumed that the presence

and absence of the communication signal (corresponding to

1 and 0, respectively) would noticeably shift the center of the

spectrum’s mass, thereby providing a classification measure

of the transmitted bit. Therefore, we included the spectral

centroid of each frame as one of the features.

D. Machine Learning

After the dataset was formed by compiling the features

from the raw data and labels were recorded, it was used in

machine learning models with a 70% training split. To form

the models with various supervised algorithms, Python Sci-

kit learn used for Logistic Regression (LR) [9], Support

Vector Machines (SVM) [10], and Decision Tree (TREE)

[11]. The hyperparameters for these algorithms were

optimized using the grid search [12] method. A majority

voting model [13] was also created from the optimized LR,

SVM, and TREE to check if such ensemble model would

outperform the individual models. ROC AUC scores [14],

precision [15], recall [16], and f1 scores [17] were computed

to evaluate and compare these various models, training, and

testing accuracy scores. Learning curves [18] were plotted

and evaluated to ensure the models were not overfitting or

underfitting. Confusion matrices [19] were also plotted to

visualize the accurate label versus the predicted label.

Besides these basic “one neuron” ML models, multi-

neuron, multilayer Artificial Neural Network /Deep Neural

Network (ANN/DNN) model [20] was also tested using

python’s Tensor Flow and Keras. The various

hyperparameters of these ANN/DNN models were optimized

by manual trial and error method. Accuracy scores, loss and

validation curves, and confusion matrix were generated to

evaluate this ANN/DNN model’s performance and this

performance was compared with the other ML models.

ML was performed on the full dataset (with combined

phase A, B, and C data). However, the accuracy and other

performance metrics were low for this full dataset. Hence, the

same ML techniques were applied for the phase A data only

as well. The comparisons on the various metrics between

these two datasets and other significant results are presented

in Section 3.

III. RESULTS AND DISCUSSIONS

A. Grid Search

A grid search was performed on the LR, SVM, and TREE
algorithms to optimize the models’ hyperparameters. Tables I
and II show the optimized parameters and their corresponding
values for each of these algorithms. These tables also show the
training and testing accuracy values for respective algorithms.
Table I is for the phase A data only, while Table II is for the
combined phase A, B, and C data (full dataset).

As shown in Table I, all three algorithms, after grid search
optimization, had similar performance in terms of training and
testing accuracy for phase A data. The accuracy values were
in the mid ninety percent, which indicates that the ML was
successful in learning and classifying the samples into binary
digital bits.

On the other hand, Table II shows that the ML models
were not as relatively successful in the same regard for the full
dataset. This might be because the phase B and C dataset did
not have the same amount of information on the
communication signal as phase A, or the features that we
extracted did not work as well for phase B and C data. As
shown in Figure 2, the communication signal is injected into
a single phase, and the image of this signal gets ingrained into
the other two phases when the signal transitions through a
distribution transformer. From our accuracy result, we can
infer that the signal was injected directly into phase A, and the
images were produced in phase B and C later in the PLC path.

B. Feature Selection

Next, to examine the most impactful features and to plot a
2D graph with decision regions for each model, we used the
Sequential Backward Selection (SBS) [21] method to filter
out the two most essential features from a total of 41 (20 each
of amplitude envelope and RMSE plus one spectral centroid).
The results are presented in Tables III and IV.

As shown in these tables, one of the two best features for
every algorithm in both datasets was ‘RMSE 1501-1600’.
This is the RMS energy feature of the samples after being
filtered with a 1501Hz-1600Hz band pass filter. This
frequency range is significant because our input
communication signal is at 1595Hz. This result shows that the
ML models can correctly identify the frequency band location
of our communication signal. Further, the tables also show
that RMSE was consistently the best feature in all cases. This
is expected because the main difference between the 1s and 0s
in our input signal is the signal strength, and RMSE is the
measure of this signal strength.

The tables also show the accuracy values of the models
with just the two best features. Comparing these values to the
values in Tables I and II, we can see that reducing the dataset
features from 41 to 2 did not have a significant impact on the
accuracy of the models.

A 2D plot of labels with decision regions was produced
using the two best features for each model. Figure 4 shows
such a 2D plot of the Phase A training and testing set with
SVM decision regions.

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 26 / 50

TABLE I. GRID SEARCH RESULTS FOR PHASE A DATA

Classifiers Optimized parameters Training

accuracy
Testing

accurac

y

Logistic

Regression

C=1.0, solver=lbfgs
94.06 93.99

SVM C=1000, gamma=0.001 94.45 95.19

Decision

Tree

Max_depth=1,

Min_samples_split=1.0 94.19 95.19

TABLE II. GRID SEARCH RESULTS FOR FULL DATASET

Classifiers Optimized parameters Training

accuracy

Testing

accuracy

Logistic

Regression

C=1.0, solver=lbfgs
77.27 76.73

SVM C=10, gamma=0.1 77.15 75.52

Decision

Tree

Max_depth=5,

Min_samples_split=7 73.84 72.22

TABLE III. FEATURE SELECTION RESULTS FOR PHASE A DATA

Classifiers Two best features Training

accuracy

Testing

accuracy

Logistic

Regression

RMSE 201-300 and

RMSE 1501-1600

93.29 94.58

SVM RMSE 1301-1400 and
RMSE 1501-1600

95.53 96.78

Decision

Tree

RMSE 1-100 and RMSE

1501-1600

95.7 95.19

TABLE IV. FEATURE SELECTION RESULTS FOR FULL DATASET

Classifiers Two best features Training

accuracy

Testing

accuracy

Logistic

Regression

RMSE 501-600 and

RMSE 1501-1600

73.43 72.21

SVM RMSE 701-800 and

RMSE 1501-1600

76.6 74.92

Decision

Tree

RMSE 501-600 and

RMSE 1501-1600

78.86 74.51

Figure 4. 2D feature plot showing labels and decision boundary of the

SVM model for phase A data.

C. Learning Curve

To check if the ML models were overfitting or

underfitting, we produced learning curves for each model.

Overfitting is caused by high variance when models train

with the noise and the appropriate data and produce a

disproportionate result in the training and testing set [20]. In

learning curves, overfitting can be implied if the training and

validation accuracy curves do not converge and are far apart.

On the other hand, underfitting is caused by high bias when

the models do not consider all relevant data with appropriate

weight. Underfitting can be implied in learning curves if the

training and validation accuracy is consistently low [20].

Figure 5 shows the learning curve of the LR model for the

phase A dataset. This shows that the model was not overfitted

or underfitted. The two other models for the phase A dataset

also had similar learning curves showing no overfitting or

underfitting.

D. Ensemble model

After the LR, SVM, and TREE models were optimized,

they were assembled into one classifier by soft (with

probabilities) majority voting. The results of the individual

classifier along with the ensemble model for phase A dataset

and full dataset are shown in Table V. As shown in this table,

both the phase A and full dataset had a slight decrease in the

accuracy of their corresponding majority voting model

compared to the best individual model.

E. Confusion Matrix

For all the models, including the ANN/DNN, confusion

matrices were produced. The confusion matrix of the decision

tree model for the phase A dataset is shown in Figure 6. It

shows the number of True Positive (TP) on the top left

quadrant, False Negative (FN) on the top right, False Positive

(FP) on the bottom left, and True Negative (TN) on the

bottom right. From these values, other metrics, including

accuracy, can be calculated. In Figure 6, Precision =

[TP/(TP+FP)], Recall =[TP/(TP+FN)] and F1 score

=[2*(Precision*Recall)/ (Precision + Recall] [22] are

calculated and shown on the plot title.

Figure 5. Learning curve for logistic regression model of phase A dataset.

19Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 27 / 50

As shown in this figure, the decision tree model correctly

classified most of the labels (shown in blue quadrants) while

it wrongly classified eight samples of each of the two labels

(shown in white quadrants). SVM was the best model for the

phase A dataset, while for the full dataset, LR was the best.

F. ROC AUC Curve

The Receiver Operating Characteristics (ROC) curve is a

graph of model probabilities of False Positive Rate (FPR)

versus True Positive Rate (TPR). FPR is the ratio of the

number of False Positives (FP) to the total number of

negatives (FP+TN), while TPR is the ratio of True Positive

(TP) to the total number of positives (TP+FN) [23]. ROC

curve shows a model’s performance at all classification

thresholds, and the Area Under this Curve (AUC) provides a

metric for this performance measure [23]. Figure 7 shows the

ROC curve and ROC AUC scores of LR, SVM, TREE, and

Majority voting models for the phase A dataset. Please note

that the straight diagonal line in the middle of the plot is a

hypothetical model which cannot distinguish between the

two classes and is equivalent to “guessing” the classification.

Therefore, its AUC is 0.5. This diagonal line represents a

threshold, and if a model falls below this threshold, it is

performing worse than guesswork. As seen in Figure 7, our

LR, SVM, TREE and Majority voting models’ respective

curves are close to AUC of 1. The performance of these

models in this metric is very similar.

G. ANN/DNN model and its Loss Curve

After testing the three basic ML algorithms, we created

an ANN/DNN model with the phase A dataset. The number

of hidden layers in this model, number of nodes in each layer,

activation functions for each layer, optimizer, and

hyperparameters for the model were all tuned and optimized

by trial and error. The results of this optimization are shown

in Table VI.

With these parameters, the ANN/DNN model was trained

with phase A data, and it produced a final training accuracy

of 98.19% and testing accuracy of 94.29%. These accuracy

values are slightly better than the corresponding accuracy

values of LR, SVM, TREE, or Majority voting models.

Figure 8 shows the training versus test (validation) curve of

this ANN model. As shown in this figure, the model’s loss

decreased and stabilized as the model trained for more

epochs.

TABLE V. ACCURACY VALUES FOR INDIVIDUAL AND ENSEMBLE

MODEL IN PHASE A AND FULL DATASET

Classifiers Phase A Dataset

Accuracy

Full Dataset

Accuracy

Logistic Regression 0.94 0.77

SVM 0.93 0.76

Decision Tree 0.92 0.74

Majority Voting 0.93 0.76

Figure 6. Confusion matrix of the decision tree model for phase A

dataset.

Figure 7. ROC AUC curve of LR, SVM, TREE and majority voting

model.

TABLE VI. ANN/DNN OPTIMIZED HYPERPARAMETER VALUES

Number of hidden layers 2

Number of nodes in each hidden

layer

50, 50

Activation function for each

layer

tanh, tanh, sigmoid (for output

layer)

Optimizer Adam

Optimizer parameters Learning rate of 0.01 and beta
decay (beta_1) of 1e-5

Number of epochs 100

Validation ratio 0.01

Figure 8. Training and testing (validation) loss curve for the ANN model.

20Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 28 / 50

IV. CONCLUSION

This research study extracted time-domain (amplitude
envelope and RMS energy) and frequency-domain (spectral
centroid) feature from raw PLC data to generate an ML-ready
dataset. Then, we used the dataset in three supervised machine
learning algorithms: logistic regression, support vector
machine, and decision tree, to generate classification models.
We optimized these models using the grid search method,
investigated impactful features in each model using sequential
backward analysis, checked for model’s overfitting and
underfitting using learning curves, and used accuracy, ROC
AUC scores, precision, recall, and f1 score metrics to evaluate
and compare the performance of the models. Using these
performance metrics, we found out that all three models (and
an ensemble model made by majority voting of the three)
performed similarly, with SVM being slightly better than the
rest because of its non-linear classification.

Then, we used an artificial neural network/deep neural
network model with two hidden layers to perform the same
classification task on the PLC dataset. This ANN model
performed slightly better than the aforementioned basic ML
models.

We also observed that all the models performed
significantly better with the standalone phase A dataset than
the full dataset containing data from all three phases. This is
most likely because the input signal was initially transmitted
through the phase A power line, and the phases B and C only
got images of this signal along the PLC path. Hence, the
deteriorated signal data in phases B and C diluted the full
dataset and caused the model to be less accurate. In future
works, the signal reception from the secondary phases can be
improved, for example, by using a Rake receiver. This could
result in a better performance from the full dataset.

REFERENCES

[1] K. Dostert, “Telecommunications over the power distribution
grid–possibilities and limitations,” IIR-Powerline, vol. 6, no.
97, 1997.

[2] A. M. Tonello, N. A. Letizia, D. Righini, and F. Marcuzzi,
“Machine Learning Tips and Tricks for Power Line
Communications,” IEEE Access, vol. 7, pp. 82434–82452,
2019, doi: 10.1109/ACCESS.2019.2923321.

[3] S. U. Ercan, O. Ozgonenel, Y. E. Haj, C. Christopoulos, and D.
W. P. Thomas, “Power line communication design and
implementation over distribution transformers,” in 2017 10th
International Conference on Electrical and Electronics
Engineering (ELECO), Nov. 2017, pp. 190–194.

[4] D. Kakati and S. C. Arya, “A full-duplex optical fiber/wireless
coherent communication system with digital signal processing
at the receiver,” Optik, vol. 171, pp. 190–199, Oct. 2018, doi:
10.1016/j.ijleo.2018.05.140.

[5] T. Smyth, “Amplitude Envelopes”, Department of Music,
UCSD, 2019. [Online]. Available from:
http://musicweb.ucsd.edu/~trsmyth/sinusoids171/Amplitude_
Envelopes.html [retrieved: April, 2021]

[6] B. Boashash, “Chapter 4 - Advanced Time-Frequency Signal
and System Analysis,” in Time-Frequency Signal Analysis and
Processing (Second Edition), Oxford: Academic Press, 2016,
pp. 141–236.

[7] Energy and RMSE. musicinforetrieval.com. [Online].
Available from:
https://musicinformationretrieval.com/energy.html#:~:text=T
he%20root%2Dmean%2Dsquare%20energy,x%2C%20sr%20
%3D%20librosa [retrieved: April, 2021]

[8] J. M. Grey and J. W. Gordon, “Perceptual effects of spectral
modifications on musical timbres.,” Journal of the Acoustical
Society of America, vol. 63, pp. 1493–1500, May 1978.

[9] sklearn.linear_model.LogisticRegression. Scikit-learn.
[Online]. Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.Logi
sticRegression.html [retrieved: April, 2021]

[10] sklearn.svm.SVC. Scikit-learn. [Online]. Available from:
https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html
[retrieved: April, 2021]

[11] sklearn.tree.DecisionTreeClassifier. Scikit-learn. [Online].
Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTree
Classifier.html [retrieved: April, 2021]

[12] sklearn.model_selection.GridSearchCV. Scikit-learn.
[Online]. Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.G
ridSearchCV.html [retrieved: April, 2021]

[13] sklearn.ensemble.VotingClassifier. Scikit-learn. [Online].
Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.VotingC
lassifier.html [retrieved: April, 2021]

[14] sklearn.metrics.roc_auc_score. Scikit-learn. [Online].
Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.roc_auc_s
core.html [retrieved: April, 2021]

[15] sklearn.metrics.precision_score. Scikit-learn. [Online].
Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.precision_
score.html [retrieved: April, 2021]

[16] sklearn.metrics.recall_score. Scikit-learn. [Online]. Available
from: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.recall_sco
re.html [retrieved: April, 2021]

[17] sklearn.metrics.f1_score. Scikit-learn. [Online]. Available
from: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.f1_score.h
tml [retrieved: April, 2021]

[18] Plotting Learning Curves. Scikit-learn. [Online]. Available
from: https://scikit-
learn.org/stable/auto_examples/model_selection/plot_learning
_curve.html [retrieved: April, 2021]

[19] sklearn.metrics.confusion_matrix. Scikit-learn. [Online].
Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.confusion
_matrix.html [retrieved: April, 2021]

[20] S. Raschka, Python machine learning. Packt publishing ltd,
2015.

[21] sklearn.feature_selection.SequentialFeatureSelector. Scikit-
learn. [Online]. Available from: https://scikit-
learn.org/dev/modules/generated/sklearn.feature_selection.Se
quentialFeatureSelector.html [retrieved: April, 2021]

[22] K.P. Shung. Accuracy, Precision, Recall or F1? Towards data
science. Mar. 15, 2018. [Online]. Available from:
https://towardsdatascience.com/accuracy-precision-recall-or-
f1-331fb37c5cb9 [retrieved: April, 2021]

[23] D. M. Powers, “Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and correlation,”
arXiv preprint arXiv:2010.16061, 2020.

21Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 29 / 50

Remote Filesystem Event Notification and Processing for Distributed Systems

Kushal Thapa†‡, Vinay Lokesh*#, Stan McClellan†§
†Ingram School of Engineering

*Dept. of Computer Science

Texas State University

San Marcos, TX, USA

 e-mail: ‡k_t260@txstate.edu, #v_v183@txstate.edu, §stan.mcclellan@txstate.edu

Abstract— Monitoring and safeguarding the integrity of files

in local filesystems is imperative to computer systems for many

purposes, including system security, data acquisition, and other

processing requirements. However, distributed systems may

have difficulty in monitoring remote filesystem events even

though asynchronous notification of filesystem events on a

remote, resource-constrained device can be very useful. This

paper discusses several aspects of monitoring remote filesystem

events in a loosely-coupled and distributed architecture. This

paper investigates a simple and scalable technique to enable

secure remote file system monitoring using existing Operating

System resident tools with minimum overhead.

Keywords— Secure Remote Filesystem Monitoring; Firewall;

Distributed Architecture; Secure Network Communication; SSH;

Secure Shell Protocol; Filesystem.

I. INTRODUCTION

 Most modern computer systems incorporate local storage
containing files associated with user data, application data, and
other important data, such as trade secrets and passwords [1].
The vast majority of attacks to such classified files are well
known issues in day-to-day operations so it is vital to ensure
the integrity of the file system. There are two general
approaches to monitoring filesystems for unauthorized access:
(a) Hash-based file integrity (b) Real-time file integrity. The
hash-based approach is to scan critical files on systems on a
regular schedule, detecting changes by comparing the current
file hash to the previous version. In a real-time approach, the
information is provided on not just file changes, but also on all
the file read, write, and create events so determining a
violation becomes much simpler [2].

 Although most modern computer systems have several
tools that are capable of tracking local file system events, it
becomes much more complex to monitor file system events
remotely from a central location [3].

 Each system in distributed architecture is typically capable
of monitoring filesystem events, such as creation, deletion,
and changes in local files. This can be performed by tools like
inotify [4], kqueue [5], FSEvent [6], direvent [7] etc. However,
these tools inherently lack the ability to monitor remote
filesystems. Tools like Secure Shell Protocol Filesystem
(SSHFS) [8][9] allow a user to mount remote directories into
the local system; however, file monitoring is not possible with
SSHFS. Asynchronous notification of filesystem events on a
remote, resource-constrained devices can be very useful,
particularly in distributed acquisition architectures and other
scenarios where data is processed asynchronously.

 In distributed architecture, one of the complexities
introduced by Internet-based (IP) networking is a firewall
[10][11]. Firewalls are vital for network security; however, the
presence of an intervening firewall can make communication
between distributed systems much more complex. Many

networking solutions and architectures allow the users to
circumvent certain firewall restrictions, thus increasing
complexity while introducing security risks. Here, we leverage
the well-known network architecture where an Internet-
reachable system acts as a middleman to establish a secure,
bidirectional network connection between firewalled devices.
This approach is not new, however, comprehensive analysis
of various parameters is difficult to obtain, so we provide some
results and discussion regarding the various configuration
options and performance of this architecture.

 In Section II of this paper, we describe various tools that
are generally used to monitor local filesystem events. We also
briefly discuss about Secure Shell Protocol Filesystem
(SSHFS) [9] and Secure Shell Protocol (SSH) [12]. Section III
presents our approach to an experiment, which presents
different network architectures and usage of those
architectures with SSHFS and SSH. In Section IV we evaluate
local filesystem monitoring and network communications
using metrics for (a) complexity, (b) portability, and (c)
efficiency/speed. We conclude the paper in Section V
describing the overall summary of our experiment.

II. BACKGROUND AND RELATED WORK

 Inotify [4] is a filesystem event notification tool for Linux
operating systems. This tool allows user to add an automated
watch to a file or directory which can monitor certain
filesystem event(s) (for example: open, write, modify, close,
etc.). When those events occur on the file or the folders being
watched, this tool provides asynchronous, event-driven
notification to the user for user interaction. Inotify-tools
provides command-line interface to inotify [13][14].
Inotifywait is a shell utility included in inotify-tools that waits
for changes to files or folders, and outputs the description of
these changes when made. There are many options available
for this command [15] through which the user can specify the
target for the watch, the nature of the watch and the format of
the output. These options, along with the fact that multiple
watches can be made simultaneously, makes this tool very
easy-to-configure, user-friendly and scalable. However,
inotify is a kernel feature, which only monitors local file
system events, and thus, remote filesystem events, not
implemented in the local kernel, are not registered by inotify
[13][15].

 iWatch [16] is a kernel feature written as a Perl wrapper
for inotify to monitor changes in specific directories or files,
sending alarms to system administrator in real-time. iWatch
can run as a daemon, as well as via the command-line. The
daemon mode uses an Extensible Markup Language (XML)
configuration file to register a list of directories and files to
monitor. The command line mode will run without a
configuration file. In the XML configuration file, each
target can have an individual email contact point. This contact

22Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 30 / 50

point allows an email notification for any modification in the
monitored targets.

 kqueue [3][5] is an event notification interface in
FreeBSD, supported by other operating systems such as
NetBSD, OpenBSD, DragonflyBSD, and macOS. kqueue
monitor demands a file descriptor to be opened for every file
which is being watched hence restricting its application to very
large file systems [5]. kqueue does not provide direct support
for generic events such as ‘create’ for files and its Application
Programming Interface (API) is designed with higher
dependency on the local kernel, limiting the ability to work
asynchronously with remote file system monitoring.

 Filesystem Notification Events (FSEvents) [6] is an
event notification API designed for macOS. FSEvents is a
kernel feature and has a device file called /dev/fsevents. It
follows a simple process where all the primal event
notifications are passed to the userspace through this device
file. The event stream it is then filtered by a daemon to publish
notifications. The macOS version 10.7(lion) added the
capability to watch filesystem [6]. The FSEvents monitor is
not constrained by requiring unique watchers and thus scales
well for large systems with huge number of directories.
Although FSEvents can monitor a directory that is within a
remote mounted volume and provides a callback for local
changes, it cannot detect changes made by users on other
machines.

 FileSystemWatcher [17] is a specific class in the
System.IO namespace, which is used to monitor and detect file
system changes in Windows. It triggers events for every
change that appear in file or directory which is being watched.
It generates a new instance for FileSystemWatcher with
arguments required to specify the directory and type of files
which needs to be monitored, and a buffer into which all the
file changes are written. The kernel then reports file changes
by writing to that buffer. This suffers event loss when large
number of changes are pushed into the buffer. One of the
drawbacks of filesystem watcher is that it can only establish a
watch to monitor directories, not files. To monitor a file, its
parent directory must be watched in order to receive change
events for all of the directory’s children.

 Tripwire is one of well-known file integrity
program[18][19]. Tripwire was essentially built as a strong file
integrity checker for Unix systems. The original Tripwire was
termed as Academic Source Release (ASR) which has features
such as strong set of supported hash functions, the power to
examine file attributes, and a good configuration. It was a
freely available program with reporting capabilities limited to
results displayed only on the terminal screen. It also lacks
database protection and verification capability.

 The Python Watchdog module [20] is used to monitor file
system events. Python Watchdog has a standard API for
developers to select and deploy a monitor. Facebook’s
Watchman [21] is similar to Python’s Watchdog module
which also provides a similar interface for initiating different
monitors. However, both these tools are operating system
dependent making it infeasible for remote file monitoring and
processing.

 Direvent, like inotify, is a filesystem monitoring tool.
However, direvent works in GNU/Linux, BSD and Darwin
(Mac OS X) systems [7]. This allows for uniformity, and
possibly integration of file monitoring processes, across
diverse systems in a network. The files and directories to be
watched, along with their corresponding target event, are
specified in the direvent configuration file with ‘watcher’

statements. Filesystem events can be divided into two major
groups. (a) system-dependent events that are specific for each
kernel interface (b) generic events that do not depend on the
underlying system. They provide a higher level of abstraction
and make it possible to port configurations between various
systems and architectures. However, direvent relies on the
local event monitoring Application Programming Interface
(API) provided by kernel [22]. As a result, it is not natively
compatible with remote file system monitoring. When
compiling with Berkeley Software Distribution (BSD)
systems direvent uses kqueue – another kernel event
notification mechanism.

 Secure Shell Protocol Filesystem (SSHFS) [9] is a file
system in user space (FUSE) that uses the SSH File Transfer
Protocol (SFTP) to locally mount a remote file system. The
mounted file systems can be accessed and used the same way
a local file system is, both from the command line or using
other tools. Unfortunately, inotify is not aware of filesystem
changes on an SSHFS mount which are initiated from the
remote end of the link.

 Secure Shell Protocol (SSH) [12][23] is a secure network
communication paradigm that operates at the Open System
Interconnection (OSI) session level. All session data
transferred through an SSH connection is transparently
encrypted. This encryption is transparent, which means it gets
decrypted by SSH client daemon at the specified destination,

and thus, users do not have to deal with decrypted data,
because of its utility and security features, SSH is widely used
for remote system management tasks and can incorporate
multiple use-cases, including forwarding graphical sessions,
automating “jump” behavior to access systems behind
firewalls, and so on.

a) Multiplexing

SSH has the ability to carry multiple sessions over single

TCP connection via “multiplexing”. One of the benefits of

multiplexing is that it speeds up certain operations that utilize

an SSH session.

b) Reverse Port Forwarding

Figure 1. Working of SSH Reverse Port Forwarding [24].

Figure 1 shows the working of Reverse SSH port

forwarding. It is a technique through which systems that are

behind a firewall can be accessed from the outside world.

With this technique, a port on a remote machine can be

forwarded to the local machine while still initiating the tunnel

from the local machine. This works by listening to the port on

the remote side, and whenever a connection is made to this

port, the connection is forwarded over the secure channel to

the host port from the local machine.

III. APPROACH

Our evaluation of these several alternatives consists of

two parts: (a) building a simple and secure network

architecture to communicate between devices, and (b) using

that architecture to test remote, asynchronous filesystem

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 31 / 50

monitoring. The network architecture as well as file

monitoring test setup that is designed and described in this

paper is simplified to only two devices, however, this system

is scalable to include any number of devices.

A. Network Architecture

Network communication is one of the primary challenges

when creating a system where interconnectivity between

devices is required. For this research, we have chosen an SSH

based network architecture which leverages an IP reachable

system acting as a “jump server” to establish communication

between devices behind their individual firewall. Figure 2

shows the basic components of this three-prong architecture.

Figure 2. Representation of three-prong architecture.

As shown in Figure 2, system A is used to control remote
devices behind a firewall, represented by System B. Both A
and B are behind network firewalls, so a direct SSH
connection cannot be made from A to B or vice versa. Thus,
the need of system C, which is an open IP reachable server.
Both A and B can communicate with C because firewalls
allow outgoing connections. Using port forwarding, an SSH
tunnel can be made from A to B via C. In this architecture,
system C acts merely as SSH reflector, and no special
configuration is necessary.

 One of the main advantages of this architecture over
other architectures and network solutions that circumvent the
firewall restrictions is its simple configuration. The
configuration for establishing this network begins when the
first host (A) which creates an SSH connection to C.
Similarly another host (B) also creates an SSH connection to
C. Finally, to create connection between A and B ports from
A and B are forwarded to a common port in C, thereby cre-
ating a continuous tunnel from A to B. Two other simpler
network architectures (referenced as Arch-0 and Arch-2 in
this paper) were built using the components of our primary
architecture (Arch-1) to compare the results. The design of
these two architectures are shown in Figure 3 and Figure 4,
respectively.

i. Arch-0

Figure 3. Representation of systems and network connection behind a
common firewall.

As shown in Figure 3, there is a common architecture
between systems in the same network where there is no
firewall between hosts. System A can SSH directly into
system B. This architecture is used as a control and as a
baseline in this study.

ii. Arch-2

Figure 4. Representation of components, security zones and connections

in a client-server architecture.

 Figure 4 shows the network architecture that is used more
commonly as an alternative for our three-prong architecture.
Here, the peripheral devices indicated by system B are
controlled directly by an open IP reachable server. The system
C cannot directly form an SSH connection to B because of the
presence of a firewall. Thus, B needs to initiate a special SSH
tunnel which is used by C to form a reverse SSH channel back
to B.

 In this architecture, C acts as the control center. Thus, the
main difference between our three-prong architecture and this
architecture lies in the role of the server. In this architecture,
the server’s resources are heavily utilized. This can be
advantageous if the server is powerful. However, since the
server is internet reachable, it can pose security risks if its
configuration is too complex. The main advantage of the
three-prong architecture is in “hidden complexity” because the
control unit is protected by firewall, so the exposed attack
surface is minimized.

 To evaluate these architectures, we used multiplexed SSH
combined with a simple timing test which is shown using a
vertical line diagram in Figure 5. This test program sends a
simple UNIX command via regular and multiplexed SSH
tunnels, and records the time taken to send, execute and
receive the output of this command. To account for the
variability of network speed at different times, this program
was run every hour of every day for about a month. The results
of this experiment are compiled in Section IV.

 Figure 5 shows the three network architectures of interest,
Arch-0, Arch-1 and Arch-2. In this case, Arch-1 indicated by
red is a “three prong” network architecture, whereas Arch-0
shown in Figure 3 and Arch-2 shown in Figure 4. indicated
blue and green respectively, are two other simpler
architectures built using the primary Arch-1 architecture. The
bold lines represent multiplexed connections of these three
architectures while the thin lines represent non-multiplexed
connections. The dashed lines represent connections
necessary for their corresponding architecture. For our timing
test, both system A and B are on the same network. In case of
Arch-1 the connections goes through System C hence the
firewalls can be separate.

Figure 5. Vertical line diagram to represent three network architecture,
Arch-0, Arch-1 and Arch 2.

24Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 32 / 50

B. Remote Filesystem Monitoring

Application specific file monitoring is useful in detecting

certain changes and responding to those changes. However,

tools such as inotify and direvent lack capability to monitor

files and directories of other devices in the network. To

overcome this challenge, we took two approaches:

1) Using SSHFS

Secure Shell Protocol Filesystem SSHFS [11] enables

the user to mount remote filesystem in the local filesystem.

The user can access and monitor the mounted files and

directories manually. To automate this monitoring process,

we tried coupling SSHFS with inotify by mounting a remote

filesystem and monitoring changes on it.

In general terms, inotify is not aware of filesystem

changes on an SSHFS mount which are initiated from the

remote end of the link. This is because SSHFS is built on top

of SFTP; hence, it is a client view of the remote filesystem

and does not export filesystem events from the remote

system.

2) Using SSH

Using Secure Shell Protocol (SSH) [16], we devised a

two-step method for remote filesystem monitoring which is

simple, intuitive and scalable, and utilizes the light pre-

existing OS-resident tools. The target file or directory in the

local system is monitored using a tool such as inotifywait.

 Then, using the event registration of the monitored target

as a trigger, a command is sent to the other end of the

channel using SSH. Such SSH appended commands can be

a simple OS command or another trigger to a script, and thus

can be easily modified according to application

requirements.

Figure 6. Remote Filesystem monitoring using SSH and inotify tools.

As shown in Figure 6, an inotifywait is issued on a top

secret directory in System A, so whenever a filesystem event

occurs in that watched section of the filesystem, the event is

transmitted to the remote monitoring configuration on System

B along with a timestamp of the event.

IV. RESULTS

 We evaluate different network architectures mentioned in

Section III along with a timing data as shown in Figure 7 and

Figure 8. Multiplexed SSH connections significantly reduce

connection time because the TCP handshake and keying

interaction to set up the SSH session is already performed,

and is being re-used and efficiently. From Figure 7 and

Figure 8, it is clear that Arch-0 exhibits the fastest

communication time in both multiplexed and non-

multiplexed architectures, which is reasonable since both

systems are on the same network, with no firewall.

Figure 7. Timing data by hour of the day.

Figure 8. Timing data by date.

 Also from Figure 7 and Figure 8, the multiplexed

connection of Arch-1 recorded lower time than non-

multiplexed version of Arch-0, which is interesting because

in Arch-1 a firewall exists between systems, so TCP/keying

lags are substantial, even for systems on the same network.

The non-multiplexed connections exhibit substantial random

latencies due to multiple network transits of TCP handshakes

and keying interchanges, whereas corresponding points in the

multiplexed configuration do not exhibit the same issues due

to the more efficient re-use of multiplexed connections. The

performance of multiplexed connections is much more

consistent.

V. CONCLUSION

 This paper discusses the use of various filesystem

monitoring tools which support local file system monitoring,

but inherently lack ability to monitor remote filesystems. In

distributed and loosely coupled architectures, monitoring of

filesystem events on remote systems, possibly behind

firewalls, can have important application-layer benefits and

utility. To examine the performance of various system

configurations, we evaluate network architectures with both

multiplexing and non-multiplexing techniques, concluding

that a simple and scalable technique using multiplexed SSH

connections and inotify tools enables secure remote file

system monitoring with minimum overhead. By recording

timing of filesystem events on each of these network

architectures, we note that multiplexed SSH connections are

consistent, and much more efficient than other methods, even

with complex distributed architectures involving exposed

systems, multiple firewalls, and “three prong” SSH tunnels.

25Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 33 / 50

REFERENCES

[1] K. P. Suresh, U. Himanshu, and L. Leonel, “File integrity
monitoring tools: issues, challenges, and solutions,” [Online].
Available from:
https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.5825
[retrieved April 2021]

[2] S. Evangelou, “How to verify File Integrity using hash
algorithms in Powershell,” [Online]. Available from:
https://stefanos.cloud/blog/kb/how-to-verify-file-integrity-
using-hash-algorithms-in-powershell/ [retrieved April 2021]

[3] A. K. Paul et al. "FSMonitor: Scalable File System Monitoring
for Arbitary Storage Systems," in IEEE International
Conference on Cluster Computing (CLUSTER) Cluster
Computing (CLUSTER), Albuquerque, 2019, pp. 1-11.

[4] R. Love, "Kernel Korner - Intro to Inotify," Linux Journal,
2005.

[5] J. Lemon, "Kqueue – A generic and scalable event notification
facility," in Proceedings of the FREENIX Track: USENIX
Annual Technical Conference, Boston, 2001, pp. 1-14

[6] Apple, "File System Events Programming Guide," 13
December 2012.[Online]. Available from:
https://developer.apple.com/library/archive/documentation/Da
rwin/Conceptual/FSEvents_ProgGuide/Introduction/Introducti
on.html#//apple_ref/doc/uid/TP40005289-CH1-SW1.
[retrieved April 2021].

[7] S. Poznyakoff, "GNU Direvent," 13 July 2019. [Online].
Available from:
https://www.gnu.org.ua/software/direvent/manual/direvent.ht
ml. [retrieved 06 August 2020].

[8] N. Rath, "libfuse/ sshfs," [Online]. Available from:
https://github.com/libfuse/sshfs. [retrieved March 2021].

[9] M. E. Hoskins, "SSHFS: Super Easy File Access over SSH,"
Linux Journal, 2006, pp. 1-6.

[10] J. R. Vacca and S. Ellis, Firewalls : jumpstart for network and
systems administrators, Elsevier Digital, 2005.

[11] W. Noonan and I. Dubrawsky, Firewall fundamentals,
Indianapolis, Cisco, 2006.

[12] D. J. Barrett, R. G. Byrnes, and R. E. Silverman, "Introduction
to SSH," in SSH, The Secure Shell: The Definitive Guide : The
Definitive Guide, O’Reilly Media, Inc., 2011, pp. 1-15.

[13] A. Schwab, "inotify-tools," [Online]. Available from:
https://github.com/inotify-tools/inotify-tools. [retrieved April
2021].

[14] C. Fischer, "Linux Filesystem Events with inotify," Linux
Journal, 2018. pp. 1-17.

[15] R. McGovern, "inotifywait(1) - Linux man page," [Online].
Available from: https://linux.die.net/man/1/inotifywait.
[retrieved April 2021].

[16] C. Wirawan, “iwatch - realtime filesystem monitoring program
using inotify,” Ubuntu man page [retrieved 25 March 2021]

[17] Microsoft. FileSystemWatcher. https://docs.microsoft.com/en-
us/dotnet/api/system.io.filesystemwatcher?redirectedfrom=M
SDN&view=netframework-4.7.2, 2010. [retrieved April
2021].

[18] D. Armstrong, “An introduction to file integrity checking on
unixsystems,” [Online] Available from:
https://www.giac.org/paper/gcux/188/introduction-file-
integrity-checking-unix-systems/104739. [retrieved April
2021].

[19] G. Kim and E. H. Spafford, “The Design and Implementation
of Tripwire A File System Integrity Checker,” In:2nd ACM
Conference on Computer and Communications Security, pp.
18–29. ACM, Fairfax, VA, USA (1994)

[20] Python Watchdog. [Online]. Available from:
https://pypi.org/project/watchdog/, 2010. [retrieved April
2021].

[21] Facebook Watchman. “A file watching service.
https://facebook.github.io/watchman/, 2015”. [retrieved April
2021].

[22] M. Kerrisk, "Filesystem notification, part 2: A deeper
investigationof inotify," 14 July 2014. [Online]. Available
from: https://lwn.net/Articles/605128/. [retrieved April 2021].

[23] T. Ylonen and C. Lonvick, "The Secure Shell (SSH) Protocol
Architecture," RFC 4251, January 2006. [Online]. Available
from: https://www.rfc-editor.org/info/rfc4251. [retrieved April
2021].

[24] J. Knafo, “What is reverse SSH Porting” Available from:
https://blog.devolutions.net/2017/3/what-is-reverse-ssh-port-
forwarding. [retrieved March 2021]

26Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 34 / 50

An Evaluation of Neural Network Performance Using Complex-Valued Input Data

Kushal Thapa*, Stan McClellan†

Ingram School of Engineering

Texas State University

San Marcos, TX, USA

email: *k_t260@txstate.edu, †stan.mcclellan@txstate.edu

Abstract—Complex-valued data is ubiquitous in many scientific

fields. However, machine learning for complex-valued input is

still in the developmental stage. Alternatively, complex data can

be transformed to real data in a few different ways to fit the

traditional machine learning framework. In this research, we

compare the performance of two such ways - combining real and

imaginary components or stacking them - on a simple neural

network. To compare these two methods, we create magnitude

(combined) and rectangular (stacked) spectrograms from

artificial time-series data. Then, we feed the raw 1D time-series

dataset, 2D magnitude spectrogram dataset, and 3D rectangular

spectrogram dataset to a neural network for training and

validation. As a measure of performance, we track the accuracy

of each dataset model. From our experimentation, we found out

that the rectangular dataset outperforms the magnitude

spectrogram in most cases.

Keywords-complex-valued data; machine learning; neural

network; real spectrogram; imaginary spectrogram.

I. INTRODUCTION

Machine Learning (ML) is a computational technique of
building models for complex systems using experiential data.
Data is at the heart of machine learning. Therefore, the quality,
quantity, format, and other characteristics of data have huge
impact on the efficacy and effectiveness of the ML models.
The quality and quantity aspect of data in ML, in a generalized
sense or for a specific domain/application, are well
documented in archive literature, such as [1]–[3]. In this
paper, we focus on the performance of ML with input data in
complex-valued format.

Complex-valued data contains information from both real
and imaginary axes. This kind of data is present in many
scientific applications and areas, such as signal processing [4]
in communication systems, Magnetic Resonance Imaging
(MRI) [5] in biomedical imaging, seismic monitoring [6] in
geosciences, etc. ML can be a great tool in research and
technological development in these areas; however, ML
algorithms typically do not handle complex numbers well [7].
Thus, complex data can be pre-processed for ML in these
applications by either a) taking only the real component and
ignoring the imaginary component or b) combining the real
and imaginary components in some way to produce real-
valued data or c) separating the real and imaginary
components and feeding them simultaneously to the same ML
model. Approach a) is generally not desirable because of the
loss of information caused by ignoring the imaginary
component completely. Interestingly, for approaches b) and

c), we are unable to find general guidelines in the literature
which describe performance differences or areas of
optimality. Hence, the objective of this paper is to make a
comparison of these two complex-valued data pre-processing
methods for ML with the aim of setting a general guideline
when dealing with complex datasets in training ML models.

There is a fourth approach as well, which uses novel
Neural Network (NN) models like Complex-Valued Neural
Network (CVNN) that can handle the complex dataset. In this
approach, the complex-valued data does not need any format
change during pre-processing. However, CVNN and the
general use of complex numbers in “deep learning” seems to
be an active research area, with a lot of different concepts [6]–
[12]. Interestingly, the predominant use of real-valued weights
in neural networks seems to derive from the focus on real-
valued optimization problems. As shown in [8], the use of
complex-valued networks (CVNN) on datasets with phase
characteristics results in better performance. However,
contemporary CVNN are very complicated and sensitive, and
the added complexity might not be worth the disruption to the
toolchain for most applications. Here, we focus on the use of
conventional technology and tools in a way that does not
involve a complete re-structuring of the toolset. Hence, our
study is limited to the comparison of pre-processing methods
of complex-valued dataset for use in real-valued NN.

This paper is organized as follows. Section 2 describes the
experimental setup we used to leverage two pre-processing
methods for complex-valued data. Section 3 provides the
result of the performance comparison between these pre-
processing methods when used in a simple NN. Section 4
provides the conclusion of this experimentation.

II. EXPERIMENTAL SETUP

To be able to control, finetune and vary the different data
parameters for our comparison, we leverage an artificial
dataset. This artificial dataset is based on simple single-bit
detection/classification, which is a fundamental component of
digital communication. The general findings from the
experiments in this dataset should be applicable beyond this
domain as well.

Figure 1 shows the flow of our experiment, divided into
three main steps. The first step is the creation of artificial time-
series data. From a randomly generated binary class digital
information {length=10,000 bits}, analog time-series signals
were created using Amplitude Shift Keying (ASK),
Frequency Shift Keying (FSK), and Phase Shift Keying (PSK)
{sampling rate=10,000; number of bits per second=100}.

27Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 35 / 50

Then, varying levels of AWGN {from SNR= -21dB to 21dB
in increments of 3dB} were added to the clean signals to make
our raw time-series data (Test 1). In the second step, this 1D
raw time-series data was transformed into a 2D complex-
valued spectrogram using Short-Time Fourier Transform
(STFT) {frame length=50, frame overlap=50%,
window=Hanning}. Then, the complex-valued data was
transformed into magnitude-only spectrograms (described as
Approach ‘b’ in Section I: ‘Introduction’), as well as
real/imaginary spectrograms. The real / imaginary
spectrograms were stacked to make a 3D dataset as described
in [13] (Approach ‘c’). Finally, the 1D time-series dataset, the
2D magnitude spectrogram dataset and the 3D real-imaginary
dataset (referred henceforth as rectangular dataset) were
flattened and fed into a fully connected NN with one-hidden
layer. Although our main objective was to compare the
magnitude spectrogram and rectangular spectrogram in a NN,
we used time-series dataset as a control input to evaluate and
compare the complexity and performance of NN for the other
two datasets. In all cases, the hyper-parameters of this NN,
listed in Table I, were kept identical. For ‘Test 2’, an ideal
power signal {60Hz, 120V RMS} was added to the noisy
time-series signal at the end of ‘Step 1’, and steps 2 & 3 were
repeated. The purpose of ‘Test 2’ was to simulate the presence
of a dominant interfering signal in the raw data. The
performance of the NN models from both tests were evaluated
primarily using the accuracy metric. This is because accuracy
in our experimental context characterizes the Bit Error Ratio
(BER), which is an important metric in digital
communication. BER is the ratio of wrongly classified bits (or
error bits) to the total number of transmitted or evaluated bits.
Thus, BER is the “unit complement” of accuracy, i.e., BER +
accuracy =100%. Other performance metrics, such as
precision and recall, were also measured (see [14] for the data
file containing these metrics) but are not evaluated in this
paper.

III. RESULTS AND DISCUSSIONS

A. Modulation Intensity

While converting the binary information to an analog
signal using either of the three modulation schemes (ASK,
FSK or PSK), the differentiating parameter between bit values
or states can impact detection. Here, we define the modulation
intensity as the difference between these parameter values.
For example, if the amplitude of the ‘high’ is set to ‘1’ and
‘low’ to ‘0.4’ in ASK, the modulation intensity is 60%. In
practice, this modulation intensity is dependent on various
external factors, which are not the focus of this study. We
chose the intensity parameter based on a subjective ‘inflection
point’ in a NN model-accuracy versus ‘low values’ graph as
shown in Figure 2. Based on these plots (see [14] for similar
FSK and PSK figures), we set the intensity values as shown in
Table II. Clearly, as intensity decreases, differentiation
between bit values or states becomes more difficult, and thus,
the NN model classification accuracy drops.

B. Training Time Comparison

The architecture of the NN for all signal types and datasets
was the same. However, the size of the datasets was different
as shown in Table III. Since the size of each sample was
different, the training time was also bound to be different.
Figure 3 shows the distribution of the total training time for
each type of dataset (ASK, FSK and PSK). The time-series
dataset had the quickest training time due to small size and
single dimensionality. The rectangular spectrogram dataset
was the slowest, with the training time almost twice as much
as magnitude spectrogram dataset. Depending on the
application, the training time of a NN or ML model can have
vital consideration.

Figure 1. Flow of experiment showing creation of raw time-series modulated signal, transformation to various spectrograms and the use of the three

datasets (highlighted) in NN. The extra sub-step of addition of power signal for ‘Test 2’ is shown in green.

28Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 36 / 50

TABLE I. HYPER-PARAMETERS OF THE NEURAL NETWORK

Total number of samples 10,000

Training to Test ratio 70:30

No. of hidden layers 1

No. of nodes in the hidden layer 64

No. of nodes in the output layer 2

Activation function for the

hidden layer

Relu

Activation function for the

output layer

Softmax

Optimizer RMSProp

Loss function Categorical Entropy

No. of training epochs 10

Batch size for training 16

Figure 2. The NN model’s test accuracy for a range of ‘low values’
(compared to a high of ‘1’) for ASK signal with SNR=0dB. The plot shows

general decrease in accuracy as ‘low-values’ get closer to the high-value,

i.e., as modulation intensity decreases.

TABLE II. MODULATION INTENSITY VALUES

 High Low

ASK 1 V 0.7 V
FSK 1000 Hz 950 Hz
PSK 0° 25°

TABLE III. DATASET SIZE

Dataset Size (each sample)

Time-series (1D) 100

Magnitude spectrogram (2D) 3 x 1024

Rectangular spectrogram (3D) 3 x 1024 x 2

Figure 3. Boxplot showing the total training time distribution for the time-

series (red), magnitude spectrogram (blue) and rectangular spectrogram

(green) NN models.

C. Test accuracy

1) Test 1

a) ASK signal

Figure 4 shows the accuracy of the NN models for the

time-series (1D), magnitude spectrogram (2D) and

rectangular spectrogram (3D) datasets containing ASK

signals with SNR ranging from -21dB to 21dB. For all

models, there is a general trend of increase in testing accuracy

when the SNR increases. This is, again, a fairly intuitive

behavior since higher SNR means the dataset is ‘cleaner’ and

the NN models can better differentiate between the ‘highs’

and ‘lows’ of the core signal.
The comparison between the three datasets is more

interesting. In low SNR conditions (less than -15dB), the
rectangular spectrogram model seems to perform slightly
better than the magnitude spectrogram model. However, as
the SNR increases, the performance of the magnitude
spectrogram model improves rapidly and overtakes the
rectangular spectrogram model after about -6dB. This can be
explained by the type and quantity of information each dataset
contains. Magnitude spectrogram, by definition, contains the
magnitude or energy information of the signal, which is
directly proportional to the signal amplitude. So, for ASK
signals, the magnitude spectrogram more clearly represents
modulation transitions in higher SNR conditions, thus
simplifying the task of the NN as compared to the rectangular
spectrogram. In contrast, the rectangular spectrogram holds
more information about the signal, which is a boon in low
SNR conditions but also the cause of data dilution resulting in
lower performance compared to magnitude spectrogram in
high SNR condition.

b) FSK signal

Figure 5 shows a similar NN model accuracy versus SNR
plot as Figure 4, but for FSK signals. In contrast with the ASK
signals of Figure 4, the comparison between the time-series,
rectangular spectrogram and magnitude spectrogram models
is more consistent across all SNR levels. The time-series and
rectangular spectrogram models are evenly matched, and
better than magnitude spectrogram models (until convergence
occurs) in terms of accuracy.

Figure 4. Test accuracy of NN models trained with time domain,
magnitude spectrogram and rectangular spectrogram datasets containing

ASK signals (high=1, low=0.7) with SNR ranging from -21dB to 21dB.

Time-series model had generally highest accuracy while the rectangular
spectrogram model shows better performance than magnitude spectrogram

model only in low SNR conditions.

29Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 37 / 50

Figure 5. Accuracy versus SNR plot for NN models of FSK signals

(high=1000 Hz, low=950 Hz) showing similar performance of time-series

and rectangular spectrogram models while the magnitude spectrogram

model performed worst across all SNR levels.

The higher accuracy of rectangular spectrogram
compared to magnitude spectrogram can again be explained
by the quality and quantity of information represented by the
magnitude and rectangular spectrograms. The real, imaginary
and magnitude spectrograms all contain the frequency shift
information. By stacking the real and imaginary parts
together, the quantity of information is doubled in rectangular
spectrogram. However, unlike ASK, this does not dilute the
dataset because the quality of information in relation to
frequency is the same in all three sets. Therefore, the 3D
rectangular spectrogram performs better than the 2D
magnitude spectrogram over all SNR values.

c) PSK signal

Figure 6 shows a similar NN model accuracy versus SNR
plot as Figures 4 and 5 but for PSK signals. As with the FSK
models, the time-series and rectangular spectrogram model
accuracies are evenly matched across all SNR levels.
However, the magnitude spectrogram models were stuck at
around 50% accuracy regardless of the SNR level. By
definition, magnitude spectrogram completely ignores the
phase information of the complex-valued spectrogram, and
thus, the corresponding model can’t distinguish between the
different phases of the PSK signals. In contrast, the
rectangular data retains this phase information indirectly, as
indicated by the improved rectangular spectrogram accuracy
curve in Figure 6.

Figure 6. Accuracy versus SNR plot for NN models of PSK signals

(high=0°, low=25°) showing the similar performace of time-series and

rectangular spectrogram models. The magnitude spectrogram models’
accuracy was approximately 50% for all SNR levels because of its inherent

inability to retain phase information.

2) Test 2
From Figure 4-6, we observe that time-series NN model

performed better than the spectrogram models in all three
cases. This can be attributed to the unprocessed information
that this raw time-series signal contains. Spectrograms need
pre-processing, and each pre-processing step results in some
information loss. Hence, the pre-processed spectrograms
contained less information than the unprocessed time-series
signal. However, the information contained in the time-series
signal can be confused in the presence of fake or interfering
signals. In such cases, we expect the classification
performance of the time-series NN model to suffer. To test
this hypothesis, we conducted ‘Test 2’.

As explained in Section II, Test 2 is similar to Test 1
except that an ideal power signal is included to the AWGN
added modulated signal as a strong out-of-band interferer. In
practical terms, this power signal simulates a dominant
interfering signal that makes the identification and
classification of the desired signal more difficult and can
confound the ML training process. This test case directly
corresponds to an application scenario of a power line
communication medium where the power signal is much
stronger than the communication signal and affects the
reactive channel in various other ways.

Figure 7 shows the accuracy of the NN models for time-
series, magnitude spectrogram and rectangular spectrogram
datasets each with ASK, FSK or PSK signals. This figure
shows that the time-series and magnitude spectrogram NN
models fail to produce any notable result regardless of
modulation type. On the other hand, the rectangular
spectrogram models are able to compensate for the dominant,
out-of-band interfering signal and produce a good
classification result. This figure also shows that this plot is not
merely a far-left extension (very low SNR) of the plots in
Figures 4, 5 and 6, at least not for rectangular spectrogram
models, as the accuracies approach 100%. The sharp increase
in accuracies with increasing SNR indicates that the
rectangular spectrogram model is affected more by the less
energetic AWGN than the highly energetic out-of-band
interferer.

Figure 7. Accuracies of the time-series, magnitude spectrogram and
rectangular spectrogram NN models for ASK, FSK and PSK signals with

added ideal power signal. The SNR levels in the X-axis of the plot is

discounting the power signal (i.e., this SNR=Energy of the core modulated

signal/Energy of the AWGN).

30Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 38 / 50

IV. CONCLUSION

In this study, we compared the performance of time-series,
magnitude spectrogram and rectangular spectrogram datasets
in training a simple, fully connected NN. We observed that
time-series and rectangular spectrogram training data
performed better than magnitude spectrogram data for FSK,
PSK and low-SNR ASK signals. We also observed that
rectangular spectrogram training data performs significantly
better than other formats when there are dominant out-of-band
interferers present.

REFERENCES

[1] J. Zhou, R. Cao, J. Kang, K. Guo, and Y. Xu, “An Efficient
High-Quality Medical Lesion Image Data Labeling Method
Based on Active Learning,” IEEE Access, vol. 8, pp. 144331–
144342, 2020, doi: 10.1109/ACCESS.2020.3014355.

[2] S. Raschka, “Chapter 4: Building good training dataset,” in
Python machine learning : machine learning and deep learning
with Python, scikit-learn, and TensorFlow., Second edition,
Fully revised and Updated., Packt Publishing, 2017, pp. 109–
144.

[3] M. C. Sorkun, J. M. V. A. Koelman, and S. Er, “Pushing the
limits of solubility prediction via quality-oriented data
selection,” iScience, vol. 24, no. 1, p. 101961, Jan. 2021, doi:
10.1016/j.isci.2020.101961.

[4] J. Krzyston, R. Bhattacharjea, and A. Stark, “Complex-Valued
Convolutions for Modulation Recognition using Deep
Learning,” in 2020 IEEE International Conference on
Communications Workshops (ICC Workshops), Jun. 2020, pp.
1–6, doi: 10.1109/ICCWorkshops49005.2020.9145469.

[5] W. He, Y. Zhang, J. Ding, and L. Zhao, “A Modified Phase
Cycling Method for Complex-Valued MRI Reconstruction.,”
Int. J. Biomed. Imaging, pp. 1–7, Nov. 2020, doi:
10.1155/2020/8846220.

[6] J. S. Dramsch, M. Lüthje, and A. N. Christensen, “Complex-
valued neural networks for machine learning on non-stationary
physical data,” Comput. Geosci., vol. 146, p. 104643, Jan.
2021, doi: 10.1016/j.cageo.2020.104643.

[7] S. Scardapane, S. V. Vaerenbergh, A. Hussain, and A. Uncini,
“Complex-Valued Neural Networks With Nonparametric
Activation Functions,” IEEE Trans. Emerg. Top. Comput.
Intell., vol. 4, no. 2, pp. 140–150, Apr. 2020, doi:
10.1109/TETCI.2018.2872600.

[8] H. G. Zimmermann, A. Minin, and V. Kusherbaeva,
“Comparison of the complex valued and real valued neural
networks trained with gradient descent and random search
algorithms,” 2010, pp. 213–218.

[9] R. Chakraborty, Y. Xing, and S. X. Yu, “SurReal: Complex-
Valued Learning as Principled Transformations on a Scaling
and Rotation Manifold,” IEEE Trans. Neural Netw. Learn.
Syst., pp. 1–12, 2020, doi: 10.1109/TNNLS.2020.3030565.

[10] M. Amin, “Complex-Valued Neural Networks: Learning
Algorithms and Applications,” Ph.D. Dissertation, University
of Fukui, Japan, 2012.

[11] J. A. Barrachina, C. Ren, C. Morisseau, G. Vieillard, and J.-P.
Ovarlez, “Complex-Valued vs. Real-Valued Neural Networks
for Classification Perspectives: An Example on Non-Circular
Data,” ArXiv200908340 Cs Stat, Sep. 2020. [Online].
Available from: http://arxiv.org/abs/2009.08340 [retrieved:
April, 2021]

[12] C. Trabelsi et al., “Deep Complex Networks,” in
arXiv:1705.09792 [cs], Feb. 2018, pp. 1–19. [Online].
Available from: http://arxiv.org/abs/1705.09792 [retrieved:
April, 2021]

[13] J. Shima, “Weak signal processing systems and methods,”
United States Patent 10879946, Dec. 29, 2020.

[14] K. Thapa, kushal-thapa/NN_complex-valued-data. 2021.
https://github.com/kushal-thapa/NN_complex-valued-data.

31Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 39 / 50

A non-Linear MIMO-OFDM Preprocessor for non-Gaussian Channels

Danilo Pena∗, Thais Areias†, Luan Pena‡, Juliano Bazzo§

Sidia Institute of Science and Technology, Manaus, Brazil
E-mail: ∗danilo.pena@sidia.com, †thais.areias@sidia.com, ‡luan.pena@sidia.com, §juliano.bazzo@sidia.com

Abstract—Multiple-Input and Multiple-Output (MIMO) and
Orthogonal Frequency-Division Multiplexing (OFDM) are crucial
technologies inside the 5G mobile communication systems and be-
yond. Design and evaluation of detector techniques over realistic
channel conditions are essential in order to transmit signals at
high rates and with high reliability in such technologies. In this
paper, we present the evaluation of MIMO-OFDM preprocessors
over non-Gaussian impulsive noise. Also, we propose a non-
linear sigmoid preprocessor without a threshold parameter as
an alternative to the traditional preprocessors. The simulation
results show that the Symbol Error Rate (SER) performance
depends on not only the preprocessors used and their thresholds
but also the impulsiveness level in the noise.

Keywords—Impulsive noise; sigmoid function; non-linear pre-
processors; non-linear MIMO.

I. INTRODUCTION

Multiple-Input and Multiple-Output (MIMO) systems have
received much attention in recent years due to the increasing
demand of high transmission rates and high quality of service
for wireless communications. MIMO-OFDM techniques are
applied to many applications and contexts, such as 4G and 5G
networks, 802.11ac, and vehicular environments [1]. With the
increasing number of mobile users in the same time-frequency
resource, the array efficiency of MIMO allows us to reduce the
transmit power and improve energy efficiency [2]. In addition,
MIMO is robust in the face of hardware imperfections, such
as multiplicative phase drifts and additive distortion noise [2].

One of the greatest challenges of MIMO-OFDM systems
is to detect signals with high performance and relatively
low computational complexity. However, information signals
are degraded by many different undesirable wireless channel
effects in which noise assumptions have been demonstrated
as one of the greatest challenges faced by MIMO systems.
Thus, the design conception of such technology must consider
realistic channel and noise models in order to represent well
the current applications. On the other hand, various wireless
channels have been demonstrated to suffer from impulsive
noise which is more accurately characterized as non-Gaussian
processes [3]. Those effects are commonly caused by man-
made sources, electrical devices, ignition noise in vehicles,
and bursty radio frequency emissions typical in urban envi-
ronments [1].

In severe impulsive noise scenarios, the effects of the
MIMO performance may be misread as low Signal-to-Noise
Ratio (SNR), when in fact there is a certain impulsiveness
level degrading overall system performance. Especially for
classical MIMO detectors that rely on second-order statistics
noise models, the Gaussian model assumption of wireless

noise behavior leads to meaningful degradation or does not
work well. Thus, one way to improve the performance of
MIMO-OFDM systems is minimizing undesirable effects of
channel and noise by designing detectors considering non-
Gaussian noise. Notably, detectors have been proposed over
non-Gaussian noise models with considerable improvements
compared to traditional ones in those scenarios.

Several papers show non-linear preprocessors with threshold
level in order to mitigate the impulsive noise in receivers [4],
[5]. Performance evaluation has been done with those non-
linear techniques in OFDM receivers [5], reducing adverse ef-
fects of impulsive noise. Recently, an adaptive MIMO receiver
was proposed using an impulsive noise level detector. Other
adaptive techniques were also presented based on Recursive
Least Mean Square (RLS), adaptive Normalized Least Mean
Square (NLMS), and Variable Step-size adaptive Normalized
Least Mean (VSNLMS), thereby mitigating the impulsive
noise effects [6]. The Support Vector Machine (SVM) has been
investigated with non-linear complex Multiple Support Vector
Machine regression (M-SVM) in this environment. Further-
more, a MIMO detector was proposed based on the maximum
complex correntropy criterion using channel estimation to fit
a parameter of its technique [7].

Those methods present improvements in detection over
impulsive non-Gaussian noise as compared to traditional de-
tectors. However, they usually have too high computational
complexity making them often infeasible, due to the adding
of an adaptive step or the making of a channel estimation to fit
a parameter of the detector. Moreover, many detector solutions
require a parameter usually based on a prior noise information.
In this context, this work introduces a non-linear preprocessor
based on sigmoid functions without free parameter for MIMO
detector over non-Gaussian channels.

This paper is organized as follows. In Section II, we describe
the MIMO-OFDM system, presenting the channel and noise
model. MIMO-OFDM preprocessors are presented in Section
III. In Section IV, we propose a MIMO preprocessor based on
sigmoid function. In Section V, we evaluate its performance
over non-Gaussian scenarios by simulations. In Section VI,
we present our final remarks.

II. MIMO-OFDM SYSTEM

Consider a MIMO system with NR antennas at the receiver
and NT antennas at the transmitter, illustrated in Figure 1.
The transmitter consists of MIMO-OFDM modulation over N
subcarriers [5]. In the Orthogonal Frequency-Division Multi-
plexing (OFDM) transmitter, the bits are mapped into base-

32Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 40 / 50

band symbols Sk using Phase Shift Key (PSK) or Quadrature
Amplitude Modulation (QAM) scheme. Then, the complex
baseband OFDM signal is computed by means of inverse
Discrete Fourier Transform (iDFT) as:

sn(t) =
1√
N

N−1∑
k=0

Skej
2πkt
Ts (1)

where N is the number of subcarriers, and Ts is the active
symbol interval.

Serial-to-
parallel
converter

Modulator

Modulator

Input
NT

.

.

.

Detector

Demodulator

Demodulator

Preprocessor

Preprocessor

.

.

.

Parallel-to-
serial

converter
Output

NR
.
.
.

Non-Gaussian
Channel

Figure 1. MIMO system architecture.

The NR antennas are spaced such that the received signals
may be considered independent of each other. The k-th symbol
received by the m-th antennas is given by:

ym(t) =

NT∑
n=1

sn(t)hmn(t)p(t) + wm(t), (2)

where sn(t) represents the transmitted symbol from the n-th
antenna, hmn(t) represents the channel coefficient between the
n-th transmitting antenna and m-th receiving antenna, wm(t)
corresponds to the channel noise, and p(t) is a rectangular
pulse.

The channel may be described as:

hmn(t) = hmn,r(t) + jhmn,q(t), (3)

where hmn,r(t) and hmn,q(t) are Gaussian processes with
mean zero and variance equal to 1/2. We also assume that
the differences in propagation times of the signals from the
transmitters to the receivers are small relative to the symbol
duration.

A. Noise Model

We assume that the noise is uncorrelated, and its distribution
can be represented by α-stable distributions, which are based
on crucial properties such as generalized central limit theo-
rem and stability. According to the generalized central limit
theorem, if the sum of independent and identically distributed
random variables with or without finite variance converges,
then the limit distribution must be α-stable. Another relevant
property, known as stability property, states that the sum of

two independent random variables with the same characteristic
exponent (α value) is also α-stable.

There are different parametrizations of α-stable distribution
for different specifications of the characteristic function. We
assume the parameters θα = (α, β, γ, δ) and the following
characteristic function [8]:

ϕ(ω;θα) = exp(−γα|ω|α[1− jΘ(ω;α, β)] + jδω), (4)

with

Θ =

{
β(tan πα

2)(sign ω), α 6= 1
−β 2

π (ln |ω|), α = 1,
(5)

where
α is the characteristic exponent such that 0 < α < 2,
β is the symmetry parameter such that −1 ≤ β ≤ 1,
γ is the dispersion or scale parameter such that γ > 0,
δ is the location parameter such that −∞ < δ <∞.
ω is the independent variable of the characteristic function.

-0.5 0 0.5

x

0.2

0.4

0.6

0.8

1

1.2

1.4
D

e
n
s
it
y

 = 2

 = 1.5

 = 1

Figure 2. Probability distribution function of symmetrical α-stable with β =
δ = 0 and γ = 1.

We also assume a Symmetric α-Stable (SαS) class because
it has proved to be very useful in modeling impulsive noise [3].
For such distribution class, β = 0 and δ = 0 [9]. Figure 2 shows
the α value variation versus the random variable representing
the impulsiveness level of the distribution, where a low value
of α suggests high impulsiveness and a non-Gaussian behavior,
and a high value of α means that the distribution is close to
the Gaussian behavior, where α = 2 is the Gaussian case.

III. NON-LINEAR PREPROCESSORS

In order to mitigate impulsive noise effects, non-linear
preprocessors are applied at the receiver as illustrated in
Figure 1. Those memoryless preprocessors are non-linear
transformations over the signal amplitude. The most common
non-linear preprocessors are blanking and clipping based on
thresholds.

33Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 41 / 50

A. Blanking

The blanking non-linear mapping can be described as:

yk =

{
rk, |rk| ≤ T
0, |rk| > T

, k = 0, 1, . . .M − 1 (6)

where T is the blanking threshold and M is the signal length.

B. Clipping

Similar to blanking, the clipping technique maintains the
amplitude when the signal is below a threshold. However,
when the signal is above the threshold, then the amplitude
is saturated by the threshold keeping its phase. This function
can be described as:

yk =

{
rk, |rk| ≤ T
T ejarg(rk), |rk| > T

, k = 0, 1, . . .M − 1

(7)
where T is the clipping threshold and M is the signal length.

IV. PROPOSED PREPROCESSOR

In this proposed technique, we compute the MIMO-OFDM
using a non-linear preprocessor function based on a class
of functions called sigmoid. These functions have essential
characteristics as non-linear functions, such as monotonically
increasing and anti-symmetry.

The non-linear functions aim to ensure the existence of
higher-order statistics. The most common functions in the
sigmoid family are the hyperbolic tangent functions, described
as follows.

yk = tanh(rk) =
erk − e−rk

erk + e−rk
. (8)

These functions are commonly used to compute covariance
by using non-linear data transformation, allowing to access
information from the signal, even when it is contaminated by
non-Gaussian noise [10].

V. RESULTS AND DISCUSSIONS

This section presents numerical simulation results for the
performance evaluation of the MIMO-OFDM system using
different preprocessors. We examined the Symbol Error Rates
(SER) versus the quality of signal metrics in a 2x2 MIMO
system. The simulations assess the results using the Monte
Carlo method with curves computed with at least 50 errors
in the estimation, using 104 subcarriers and 1000 frames.
All simulations consider baseband signal using Quadrature
Phase Shift Keying (QPSK) modulation and unity energy with
the antennas statistically independent of each other. Also,
Rayleigh flat fading was assumed as the multipath propagation
model in the wireless channel.

The performance metrics are usually computed versus the
Signal-to-Noise Ratio (SNR). However, the infinite variance of
non-Gaussian SαS processes prevents to compute the signal-
to-noise ratio as a measurement of signal quality. In this work,

we use the Geometric Signal-to-Noise Ratio (GSNR) [11]
instead of the SNR. The GSNR is given by

GSNR =
1

2Cg

(
A

S0

)2

, (9)

where the normalization constant Cg = eCe ≈ 1.78 is the
exponential of the Euler constant (Ce), used to ensure that
GSNR corresponds to SNR when the channel is Gaussian (α =
2); S0 is the geometric power of a SαS random variable; and
A is the root-mean-square value of the signal.

Figure 3 shows the performance of MIMO-OFDM receivers
over non-Gaussian SαS noise with impulsiveness level of
α = 1.3 and threshold T = 2 for blanking and clipping pre-
processors. This scenario represents an environment with high
impulsiveness noise where the performance of the MIMO-
OFDM system is very low compared to the Gaussian case.
However, one can see the preprocessors deliver better perfor-
mance than the case without the preprocessor, mainly for high
GSNR values. Thus, although all preprocessors increase the
performance of the MIMO-OFDM system, their performance
depends on the impulsiveness level of the noise.

Figure 3. Performance comparison among the preprocessor techniques over
SαS noise with α = 1.3 and T = 2.

A. Impulsiveness Analysis
Figure 4 presents the performance of preprocessors over

SαS noise model over different impulsiveness levels, i.e.,
many different values of α. More impulsiveness level is
close to the Gaussian case (α = 2), less is the increase in
performance due to preprocessors nonlinearity over impulsive
noise. This behavior occurs because in this case, the noise is
less impulsive than with low values of α.

Although all preprocessors increase performance over high
impulsive noise, that also depends on the threshold level used
for the blanking and clipping methods.

B. Threshold Analysis
Figure 5 presents the performance of blanking and clipping

preprocessors over different threshold levels. For an interme-
diate range of threshold values, these techniques have better

34Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 42 / 50

Figure 4. Performance of preprocessors over SαS noise with many different
values of α, GSNR = 15 dB and T = 2.

performance than the sigmoid preprocessor. However, this
range changes with impulsiveness level and GSNR, making
this region of values difficult to be set.

Figure 5. Performance varying threshold level of blanking and clipping
preprocessors over SαS noise with α = 1.3 and GSNR = 15 dB.

VI. CONCLUSIONS

In this paper, we evaluated traditional preprocessors in
the detection of signals in MIMO-OFDM systems over non-
Gaussian channels. We analyzed those preprocessors by dif-
ferent aspects, such as the impulsiveness level of the noise,
the threshold level of the preprocessors, and the quality of the
signal. Also, we presented a non-linear sigmoid function as
an alternative to the classical preprocessors, comparing their
performance over all aspects mentioned before. The traditional
blanking and clipping preprocessors depend on the threshold
level, which, in turn, also depends on the impulsiveness level
in the environment. On the other hand, the sigmoid function
does not have any parameters, being an alternative in the trade-
off of preprocessors in the MIMO-OFDM detection systems.

Future works may use those results to investigate adap-
tive and machine learning solutions based on non-Gaussian

noise parameters such as GSNR and α values. Thus, the
preprocessors using such techniques must present a different
performance, thereby being an alternative to the traditional
ones.

ACKNOWLEDGMENT

This work was partially supported by Samsung Eletronica
da Amazonia Ltda., under the auspice of the informatic law
no 8.387/91.

REFERENCES

[1] S. Liu, F. Yang, X. Wang, J. Song, and Z. Han, “Structured-compressed-
sensing-based impulsive noise cancelation for MIMO systems,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 8, pp. 6921–6931,
Aug 2017.

[2] X. Cheng, J. Sun, and S. Li, “Channel estimation for FDD multi-user
massive MIMO: A variational bayesian inference-based approach,” IEEE
Transactions on Wireless Communications, vol. 16, no. 11, pp. 7590–
7602, nov 2017.

[3] C. L. Nikias and M. Shao, Signal Processing with Alpha-stable Distri-
butions and Applications. New York, NY, USA: Wiley-Interscience,
1995.

[4] H. A. Suraweera, C. Chai, J. Shentu, and J. Armstrong, “Analysis of
impulse noise mitigation techniques for digital television systems,” in
Proc. 8th International OFDM Workshop, 2003, pp. 172–176.

[5] S. Zhidkov, “Analysis and comparison of several simple impulsive
noise mitigation schemes for OFDM receivers,” IEEE Transactions on
Communications, vol. 56, no. 1, pp. 5–9, jan 2008.

[6] A. Hakam, N. A. Aly, M. Khalid, S. Jimaa, and S. Al-Araji, “Impul-
sive noise reduction in MIMO-OFDM systems using adaptive receiver
structures,” in 2013 IEEE 20th International Conference on Electronics,
Circuits, and Systems (ICECS). IEEE, dec 2013, pp. 674–677.

[7] P. T. V. De Souza, A. I. R. Fontes, V. S. V. De Souza, and L. F.
Silveira, “A novel signal detector in MIMO systems based on complex
correntropy,” IEEE Access, vol. 7, pp. 137 517–137 527, 2019.

[8] M. Shao and C. L. C. Nikias, “Signal processing with fractional lower
order moments: Stable processes and their applications,” Proceedings of
the IEEE, vol. 81, no. 7, pp. 986–1010, jul 1993.

[9] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random
Processes: Stochastic Models with Infinite Variance, ser. Stochastic
Modeling Series. Taylor & Francis, 1994.

[10] D. Pena, A. Lima, V. de Sousa Jr, L. Silveira, and A. Martins,
“Robust time delay estimation based on non-gaussian impulsive acoustic
channel,” Journal of Communication and Information Systems, vol. 35,
no. 1, pp. 86–89, 2020.

[11] J. G. Gonzalez, J. L. Paredes, and G. R. Arce, “Zero-order statistics: A
mathematical framework for the processing and characterization of very
impulsive signals,” IEEE Transactions on Signal Processing, vol. 54,
no. 10, pp. 3839–3851, 2006.

35Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 43 / 50

Wireless Frequency Data Manipulation for Embedded Databases Used in

Cybersecurity Applications

Page Heller

Endpoint Security Inc

College Station, TX, USA

email: heller@endpointsecurityinc.com

Abstract— A unique fingerprint in radio frequency signals

provides a natural authentication for wireless edge devices in a

cybersecurity application based on frequency analysis. Such

fingerprints can be improved if extraneous frequency data is

removed from the Fourier Transform prior to authentication,

but the data manipulation must be done in real time systems

with embedded databases designed to store such fingerprints.

These embedded systems require a simple and fast process. A

method is proposed to manipulate frequency-domain data

captured from wireless signals for use in cybersecurity

applications to remove unwanted features and ensure the

retention of important attributes in embedded databases.

Experimental measurements and field studies are presented

which lead to modifications in the methodology to address

unexpected features encountered. Computational efficiency is

taken into account.

Keywords-physical layer cybersecurity; wireless security;

Fast Fourier Transform; radio frequency waveforms.

I. INTRODUCTION

Under consideration in this paper is a cybersecurity
application which relies on analysis of the frequency content
of wireless signals sent from sensors, cameras and actuators
that make up what is colloquially referred to as the Internet
of Things. This particular application is based on
authenticating fixed wireless devices by recognizing a
fingerprint in wireless signals unique to each device. The
fingerprint is based, in part, on polarization mode dispersion
resulting from reflections in a multipath environment [1].
This was previously considered an undesirable trait of
wireless communications has become a boon to secure
identification of individual transmitting devices [2]. Such
dispersion is found to be stable for fixed edge devices and
relatively impervious to interference and motion within the
multipath. The process may be deployed in applications
which use channel-hopping, as well, indicating a broad
application area [3][4].

Improvements in the fingerprint may be obtained by
removing frequency data that is not specific to the
calculation of polarization mode dispersion, specifically, data
that is outside the bandwidth of the transmitting device. This
often includes side lobe data and data near zero resulting
from a transformation from the time domain to frequency
domain. Because this authentication must be made as
received signals are being demodulated in an access point,

time is of the essence to minimize latency in the data
transmission. Therefore, a method is suggested to trim
frequency data for such applications in a manner suitable for
real time systems employing embedded databases for
retaining such fingerprint data. The method is simple and
efficient.

To properly address the subject matter of this paper, the
following sections are offered. Section II covers background
in the area of common implementations of side lobe
reduction for applications that are not necessarily real time
and embedded systems, so it is possible to envision how the
suggested method compares. Section III discusses the theory
behind the suggested method for context on why certain
decisions were made. Section IV describes the precise signal
processing that takes place in the method in a step-by-step
manner. Section V shows results of laboratory measurements
and modifications made to the method as a result. Section VI
shows data from field measurements and further
modifications made to the method taking these tests into
account. Section VII draws conclusions from observations
made in the previous sections.

II. BACKGROUND

Obtaining Radio Frequency (RF) data for the proposed
fingerprinting analysis requires receiving a wireless signal,
digitizing it and transforming it to the frequency domain.
Here, a Discrete Fourier Transform (DFT) is being used for
the transformation.

Inherent to the digitization are certain artificial artifacts
of the transformation process that may affect future
calculations. Primarily targeted in this paper are side lobes in
the frequency response data. To remove these, many
methods have been proposed for use in applications of radar,
radio and ultrasound, dating back to pivotal publications in
the 1960s, like Blackman’s Data Smoothing and Prediction
[5]. The most common of these methods are addressed here.

A. Windowing

Windowing covers a broad area of research in RF
waveform manipulation. In this process, a function described
mathematically within a fixed window and is multiplied with
the signal of interest while being incrementally moved,
sample by sample, from one end of the signal to the other,
that is, in a sliding window. More precisely, the two
functions representing the signal and the window,
respectively, are convolved; that is, the integral is taken of

36Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 44 / 50

the multiplication of the two functions as in the definition of
convolution given in equation (1), where f is the signal
function and g is the window function which advances
relative to f by frequency bin steps, τ. In this case t refers, not
to time, but instead to frequency.

 (f*g)(t) := ∫ f(τ)g(t−τ) δτ (1)

Window functions may be as simple as having a

rectangular shape or as complex as a Parzen, Welch, or sine
wave. One of the most common is a parabolic shape with
three different versions introduced each by Hann, Hamming
and Blackman [6][5]. Each has a slightly different effect on
modifying the transform, particularly in the area of interest:
the side lobes.

Even a simple triangular function can greatly reduce the
amplitude of side lobes in RF waveforms. Applications
engineers in industry have done extensive studies comparing
such techniques in both the time and frequency domains [7].
These methods prove useful in operations that are not time
critical and have been found appropriate for displaying the
results, for instance. It is even conceivable to use such
functions to precondition the waveform in the application
under consideration. However, the side lobe data is still
present after these convolutions and still troublesome for
securely identifying RF fingerprints.

B. Discrete Wavelet Transform

A wireless signal of interest in the application of wireless
cybersecurity often travels from transmitter to receiver in an
industrial, commercial or residential setting. In these
environments, the signal reflects off of many walls, ceilings,
floors and objects on its way to the receiver. Such rich
multipath channels have caused researchers to investigate
other means of transforming received signals into frequency
domain data. It is desired to find a transform that is perhaps
less sensitive to the distortion and dispersion caused by the
multipath. One such method is the Discrete Wavelet
Transform, which has been shown to improve the Bit Error
Rate (BER) over receivers using the DFT [8][9]. In the case
under consideration, however, the dispersion caused by the
multipath is of particular interest. There is, therefore, a need
to preserve it across the main lobe of the resulting DFT.

C. Subcarrier Weighting

Commonly used in the popular Orthogonal Frequency
Division Multiplexing (OFDM) protocols is a concept of
subcarrier weighting [10]. In this process of transmitting a
wireless signal, each OFDM subcarrier is weighted, that is,
multiplied by a fixed or dynamic value used to reduce its
impact on adjacent channels. This is commonly done using
complex numbers to account for polarization of the signal.

Another similar method has been proposed, which takes
computational time into consideration to produce a real time
method called advanced subcarrier weighting [11]. Designed
primarily for the transmission of signals rather than receiving
them, the method reduces side lobe interference with signals
in adjacent frequency channels. However, since it is designed

for the transmission side of the data communications, it is
not directly applicable to this application.

D. Ultrasound beam summation

Some of the more exotic concepts of dealing with side
lobes have come from the medical industry. These
application areas are typically centered upon medical
imaging, where the frequency domain data is useful in
detecting abnormalities or enhancing features of biological
images. Methods of beamforming, again on the transmission
side, have provided a rich research area for new methods and
improvements. One interesting method, which could have
mathematical equivalency in received signals, is interference
cancellation. For instance, ultrasound beam summation
employs pseudo-inverse foci with a second focus located a
distance from the initial focus such that the constructive
interference between the two signals cancels the side lobes
[12]. Although such methods are complex and again centered
on transmission, they may lead to interesting developments
in received signal manipulation in the future.

E. Other Fingerprinting Methods

Many research approaches to wireless cybersecurity have
centered on fingerprinting source devices as a form of
authentication. Convolutional Neural Networks (CNNs) have
been proposed to fingerprint radios though deep learning of
certain inherent hardware features and responses [13][14].
Ongoing research has indicated, however, that wireless
multipath channels introduce distortion that negatively
affects the reliability of such methods [15].

The new method of cybersecurity authentication with
fingerprinting, which is the method under consideration in
this paper, employs such distortion for fingerprinting rather
than trying to eliminate it. This new method, however, is
impacted somewhat negatively by side lobes, which are
formed due to the discrete nature of the transformation into
the frequency domain. A new approach is sought to remove
the undesired features while not creating a burden on real
time system computation time.

III. THEORY

In real time embedded system design for radio frequency
applications, the primary criterion of concern is execution
time. The time required to prepare and store data is a cost
subtracted from the total time available to make decisions on
actions that must be taken. Thus, the more exotic solutions,
although they may produce better results, must give way to
the simplest to allow time for the more critical decision-
making algorithm.

In the case considered in this paper, execution time is
constrained by the requirement to make a decision on the
authentication of a received signal prior to the receipt of the
next viable signal. A DFT transforms the signal to the
frequency domain and further analysis of the dispersion leads
to a correlation of the received signal with a known signal.
As an example of available time to do this function, using
WiFi 802.11n signals transmitted as beacons to search for
other devices yields a duration for a signal of around 300
microseconds.

37Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 45 / 50

Fig. 1. Windowing data produces side lobes in the results of a DFT on

sinusoidal data

By restricting the execution time for data preparation and

storage, more time is available for proper authentication.
Thus, it is desired to find a way to eliminate unwanted data
from the frequency domain data in a short amount of time.

The shape of an ideal DFT resulting from a strong signal,
for example one with a Signal-to-Noise Ratio (SNR) of 40
dB, consists of a main lobe centered on the transmitted
frequency and side lobes to each side with incrementally
lower intensities, such as the one depicted in Figure 1 above.
The task, therefore, is to identify and store only the main
lobe in an embedded database designed for such signals.

One may note that the ideal case is symmetrical. Often
this fact is relied upon to store only half the amount of data,
considering that it is mirrored around the center frequency.
In the case presented here, however, the non-symmetry of
actual frequency data in the main lobe is important to the
cybersecurity application under consideration and, thus, the
entire main lobe is to be saved.

While many hardware and software solutions have been
proposed for reducing side lobes in wireless signal DFTs, a
simpler solution would be to trim the resulting DFT to
include only the frequency bins of interest. This can also be
referred to as cropping, although that term comes from
image analysis with the data being removed being image
data. Based on trimming as a proposed simplification applied
to RF signals, the question then arises of whether or not it is
feasible to identify the proper points at which the DFT
should be trimmed.

The feature of a DFT being discrete is inherent in the
need to trim data. The transform assumes that a selected
window for the DFT calculation is the exact width of one or
more full cycles of the waveform of interest. However, in
reality, the window often cuts a particular waveform short of
a full cycle (or whole number multiple of a full cycle). The
result is an introduction of side lobes in the transform,
representing frequency components that are artifacts of the
math rather than frequencies that actually exist in the signals
of interest. This is referred to as spectral leakage.

IV. SIGNAL PROCESSING

To identify the main lobe with the least computational
effort, one might consider using the maximum intensity of a
DFT as an indication of a location near its center. From
there, the edges can be sought and the width calculated. The
main lobe data must then be trimmed to be placed into a
database, along with like entries from other signals received.

A. Step 1: Selecting the Main Lobe

To begin, a point is identified with a high probability of
being located as a frequency bin within the main lobe. That
would be a point with a high intensity. Thus, a function
invoked to find the maximum value in an array of floating
point numbers would be appropriate. If the DFT output is an
array, using a maximum value function may remove the
dimension of the array of interest, replacing it with a scalar
value. Look for a function argument, like ‘keepdims,’ in
cases where it is desired that the resulting dimension remain
consistent with the original dimensions.

In practice, abnormalities exist in the DFTs measured in
applications involving WiFi signals; abnormalities which
will affect the selection of this point. These will be addressed
in Section IV Laboratory Measurements, as well as in
Section V Field Measurements. They will require altering
this step. Until then, it is sufficient to say that the initial step
is to identify a point of high intensity.

B. Step 2: Finding the Edges

Using a point with a high probability of residing in the
main lobe as the starting point, it is now possible to examine
lower, and then higher, frequency bins to find indications of
the edges of the main lobe. In this portion of the process, low
intensity is of more interest than high intensity. Finding the
edges of the main lobe involves finding the points on either
side of the point thought to be in the main lobe where the
resulting value is first near zero; that is, near zero at the point
closest to the maximum.

Actual measurements are never as clean as the ideal
example, however. The main lobe, in fact, is often sprinkled
with many points that are near zero. In fact, “zero” can mean
some value close to the noise floor of the signal.

A moving-average acts as a low pass filter to smooth the
normally jagged transform and provides a more stable value
with which to compare some threshold value that is set near
zero. A basic form of a moving average is the uniform
moving average where the current frequency bin and the
prior N-1 bins are summed and divided by N. This is
equivalent to multiplying each frequency bin by 1/N and
summing.

Yet, a moving average is not necessary. A moving
summation accomplishes the same task without requiring a
division operation each time a signal is received, nor does it
require handling the special case where there could be an
undesirable division by zero. Using a summation only
requires adjusting the threshold by the number of samples in
the moving summation.

Intensity

normalized

Frequency units

38Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 46 / 50

 In the proposed process, where generalization is desired,
the threshold is set as a multiple of the center of the first
quartile of sorted and ordered frequency bin intensities. For
example, when collecting 12-bit data at 20M samples per
second, one might receive a signal for which the DFT covers
the full bandwidth of the receiver. However, it might also be
far less than the full bandwidth. In either case, the center of
the first quartile of sorted intensities most often carries some
value close to the noise floor. By adjusting the multiplication
factor of this value, a threshold may be chosen to
appropriately mark the points at which the main lobe
approaches zero (or really the noise floor).

This simple algorithm compares a moving summation
incrementally moving away from the maximum, first in the
lower frequencies, then in the higher frequencies. It
increments until it reaches the limits of the data or falls
below the threshold, at which point the bin in the summation
window closest to the maximum is used to mark the low and
high side of the main lobe; variable names fftlo and ffthi.
The “fft” refers to the fundamental function, a Fast Fourier
Transform [16].

C. Step 3: Matching the Database

To enter the selection into a database, one must consider
the size allotted for each entry. If the simple difference, ffthi-
fftlo, is either greater than or less than the entry size for the
database, then the data must be manipulated to fit the
database. In cases where the difference is less than the size
allotment in the database, the DFT data is zero-padded on the
side of the highest frequency bins.

It is important to note here that future comparisons of the
padded data should take into consideration that the padding
is not reflective of there being no high frequency
components in the stored signal, but rather that the width of
the main lobe is smaller than the allotted space. Thus, the
values of the fftlo and ffthi should also be stored so the data
retrieved may be viewed in proper context.

It is also important to note that padding the frequency
domain data is not mathematically the same as padding the
time domain data for a signal. In the case of the latter,
resulting side lobes in a DFT can be accentuated as the
window of data analyzed is artificially shortened.

On the other hand, the DFT of the received signal may be
larger than that of the stored data. If the high-to-low
difference is greater than the allotted space in the database,
then the data must be trimmed again. In performing this
operation, the center line between the fftlo variable and the
ffthi variable is used trim each the low and high ends of the
available frequency bins such that the center remains the
center of the trimmed data. This is done to preserve the most
valuable portion of the data for later analysis or comparison.
Thus, the allotted size is halved and points marked lower and
higher by the length of each half are marked relative to the
center line. This results in a main lobe that is of lesser width
than the original.

V. LABORATORY MEASUREMENTS

Initially, a test was created to establish a baseline for
future testing. In this case, the baseline would be defined as
one with minimal multipath travel and a single, strong
wireless signal to study.

A. Setup

An Ettus B210 Universal Software Radio Peripheral
(USRP) is employed to receive two channels of
synchronized data capture. This device features an Analog
Devices two-channel 14-bit Analog-to-Digital Converter.
Two RF Elements OARDSBX244 4 dBi Omni antennas are
attached to the receive channels and placed in horizontal and
vertical positions, with an angle of 90 degrees. A Netgear
N600 wireless dual band router generates a periodic beacon
broadcast on channel 10 (centered on 2.462GHz) to
announce its presence to any listening devices.

In an outdoor setting with no measurable WiFi signals,
the router is placed 10m from the antennas of the receiver. A
recording is made of the electromagnetic signal with settings
of 20M samples per second at a gain of 20.

The recording is used as input data to a pulse detection
algorithm which extracts a single beacon in the form of a
multidimensional array of complex numbers representing
each sample pair for the horizontal and vertical inputs. That
beacon is processed using Python’s library NumPy function
fft.fftn() in an orthonormal mode, placing resulting vectors
on a unit sphere. An FFT shift function is performed to place
the frequency bins in order of lowest to highest along the x-
axis.

B. Results

The resulting DFT, shown in Figure 2, produces an
interesting result. The center point is not the maximum
value. In fact, the main lobe dips in intensity at the center.
This attribute is consistent over many tests. Thus, the
algorithm was modified in Step 1 “Selecting the Main Lobe”
to find the two highest points and take the center point
between them to better reflect a point near the center of the
main lobe. With the center point selected, the moving sums
increment first forward and then backward from it to find the
points at which the intensity is below the selected threshold.

Fig. 2. A Unitized DFT for an example WiFi signal shown across

frequency bins centered on 2.462GHz marking main lobe

Intensity

normalized

Frequency bins

39Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 47 / 50

Fig. 3. A signal with lower SNR has a dip in the center approaching zero

The results of the selection process are shown in the same
figure as dashed vertical lines demarking the low side and
high side of the main lobe.

Moving the router farther away reduces the signal to
noise ratio. The impact lessens the prominence of the main
lobe making it slightly harder to identify. Nonetheless, the
modification of using the two highest points continues to
work. This is not obvious since the two highest points are
now both to the left of center. But, since we are trying to
identify a point with high probability of being in the main
lobe, this point will suffice. One near the center would be
more certain, but in this case, we are still well within the
main lobe. The iteration to the higher frequencies will simply
take longer than the iteration to the lower frequencies.

Now, however, it may be seen that the dip in the center is
approaching zero. This could cause the method to select the
center as one of the edges of the main lobe.

To compensate, the moving summations above and
below the selected point begin on either side of a fixed
margin around the center, in which we do nothing. Now,
when incrementing to higher frequencies, the iterations will
begin, not at the selected point, but at a fixed margin away
from it, spanning the low center of the DFT.

This is the second modification made to Step 1. Figure 3
displays a signal with lower SNR and the resulting low and
high points selected. Note in this image that a side lobe on
the high frequency side of the main lobe was included in the
selection erroneously. A minor adjustment lowering the
multiplication factor on the threshold would resolve this.

VI. FIELD MEASUREMENTS

A. Setup

A site was selected with an indoor space approximating
an industrial setting. A barn home was used with cross
beams, fixtures in the space and miscellaneous objects which
would produce a rich multipath channel for the RF signals to
traverse. A barn home is one that is shaped like a barn,
featuring a very large living space that has a 12x18 meter
floor space and 12 meters ceiling. A USRP was placed along
one wall of the facility.

The same router was placed at a point 9 meters in front of
the receiving antennas and four Raspberry Pi 3B
microcontrollers were placed on an arc 12 meters away from
the receiving antennas and on positions relative to the plain
of the two orthogonal antennas at angles of 60, 80, 100 and
120 degrees. The Pi’s were programmed to connect with the
router. Data was captured using the same parameters as the
laboratory measurements.

All electrical devices in the house were shut down and
interference studies were conducted with electrical fans and a
microwave. The tests which follow were shown to have no
electrical interference and no stray transmitters.

B. Results

In this environment, the SNR of some of the signals was
much lower than those of the previous tests. The shape of the
DFTs were also found to vary. The relative signal strength of
received signals was not always as strong as those in the
laboratory measurements. Their shape may be even less
predictable than the lowest laboratory measurements, as may
be seen in Figure 4, depicting the DFT for a WiFi signal with
low SNR. It is much more difficult to see the main lobe,
which extends over what seem to be two lobes rather than
one.

Fig. 4. DFT with low SNR causes the main lobe to be harder to determine

Fig. 5. When the SNR is low the dip in the center can be missing

Intensity

normalized

Intensity

normalized

Intensity

normalized

Frequency bins

Frequency bins

Frequency bins

Margin

40Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 48 / 50

Fig. 6. Even lower SNR lessens the definition of the main lobe

Fig. 7. A DFT of a Bluetooth signal is narrow with sidelobes farther away

from the main lobe (before correction)

Fig. 8. A DFT of a Bluetooth signal centered on a different channel

On occasion, the dip seen in the previous tests was not
present, as may be seen in Figures 5 and 6. Nevertheless, the
algorithm for identifying the main lobe worked as modified.

A Bluetooth signal from one of the Pi’s was recorded and
analyzed. This signal is much more narrow then the previous
WiFi signals and thus, the modification to have a fixed
margin around the center that is not part of the calculations,
along with the width of the window for a moving sum, each
failed to accurately mark the low and high sides of this main
lobe, as may be seen in Figure 7.

Fig.9. A DFT showing a WiFi signal captured from an adjacent channel

Fig. 10. DFT of a Gaussian pulse has a high intensity artifact that must not

be counted as a peak intensity

Bluetooth signals use a channel-hopping protocol and,

thus, may appear in several locations across a fixed 20MHz
receiver bandwidth. Figure 8 is an example of one that is not
centered on the same channel.

In the particular cybersecurity application under
consideration for use with this proposed process, the
inclusion of data near zero causes problems in later analysis
and, thus, is undesirable. As a result, narrow signals, like that
depicted in Figures 7 and 8, are made exempt from these two
interfering constraints. That is, the fixed margin to begin the
sliding summation is not enforced and the window for the
moving summation itself is removed, as seen in Figure 8.
This is the third modification to Step 1 “Selecting the Main
Lobe.” The binary parameter marking a narrow band signal
is stored along with the fftlo and ffthi parameters.

It should be noted that some signals may not be centered
on the appropriate channel frequency, but may still be
desirable to process. Such is a case depicted in Figure 9.
Here, the signal is centered near the limit of the bandwidth of
the receiver, which is approximately 20 MHz. The algorithm
continues to perform appropriately in such cases with one
boundary being selected as either zero or the maximum
number of frequency bins, depending on which side of the
desired channel it falls.

Lastly, the DFTs of some WiFi signals were seen to
contain one point away from the main lobe with a very high

Intensity

normalized

Intensity

normalized
Intensity

normalized

Intensity

normalized

Intensity

normalized

Frequency bins

Frequency bins Frequency bins

Frequency bins Frequency bins

Undesired upper

bound requires

modification

Boundary

selection

solved

41Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

 49 / 50

intensity. This typically occurred near an extreme of the
receiver’s bandwidth, likely from a dominant frequency in
the noise floor, or as an artifact of the transform calculations.
In either event, the errant point should not be used in the
selection of the main lobe, as it is not in the main lobe.
Figure 10 is an example of a case where there is a single
point with a very high intensity. This is not a signal, per se,
but rather a pulse of Gaussian energy like one may see
emitting from a radar.

The fourth and final modification to Step 1, as a result, is
to not use the first and second highest peaks, but instead use
the second and third highest peaks to find a point with high
certainty of being a part of the main lobe. Figure 8 depicts
such a case, where the second and third peaks were used to
find the boundaries of the main lobe efficiently.

With these four modifications made, approximately three
thousand signals were studied and marked with selection of
the main lobe for storage and retrieval from an embedded
database. Only three were improperly marked and all three
were signals with SNR less than 3 dB. The markings on all
three truncated the main lobe on one side of the center point.

VII. CONCLUSION

Real time devices requiring use of an embedded database
in RF signal applications must be efficient in terms of
computing time. In cases where the frequency content is of
particular interest, efficiency may be gained by carefully
selecting only the main lobe resulting from discrete Fourier
transforms and eliminating the side lobes and extraneous
data on high and low sides.

Selecting the main lobe, however, can be hindered by
several common abnormalities seen in the transforms of
wireless signals; abnormalities like a dip in the center of the
main lobe, the dip nearing the noise floor, and a single
frequency outside the lobe with a very high intensity. In
addition, some signals may be narrow band, requiring
alternate handling.

Methods presented in this paper have been tested with a
large number of varying cases and have shown to produce
good results in selecting the proper main lobe information to
offer efficient data storage and retrieval for further
computation.

ACKNOWLEDGMENTS

The author extends his thanks to Dr. Thomas G. Pratt of
the University of Notre Dame for his encouragement and
experience in the use of the experimental settings and
measurement equipment and also to Jay Labhart, Chief
Technology Officer for Endpoint Security, for his knowledge
of field conditions and assistance in the actual tests.

REFERENCES

[1] T. G. Pratt and R. D. Kossler, “Input-to-Output Instantaneous

Poalrizaton Characterization,” IEEE Transactions on
Antennas and Propogation, Vol. 67, No. 3, pp. 1804-1818,
March 2019.

[2] R. P. Heller, T. G. Pratt, J. Loof and E. Jesse, “RF Biometric
for Wireless Devices,” In: Arai K., Bhatia R., Kapoor S. (eds)

Proceedings of the Future Technologies Conference (FTC)
2018. FTC 2018. Advances in Intelligent Systems and
Computing, vol 881. Springer Nature Switzerland AG, Cham.
https://doi.org/10.1007/978-3-030-02683-7_65, October 2018.

[3] J. Loof and T. G. Pratt, "Frequency-Hopped Signal Source
Identification in Frequency-Selective Channels," IEEE
Transactions on Aerospace and Electronic Systems, Vol. 55,
Issue 6, pp. 3316-3329, December 2019.

[4] J. Loof and T. G. Pratt, "Unsupervised Classification of
Frequency-Hopped Signals in Frequency-Selective
Channels," Resilience Week, Denver Colorado, Best
Cybersecurity Technology Paper Award, pp. 108-113, IEEE
Cat. No. CFP18B24-POD, ISBN 978-1-5386-6914-3, August
2018.

[5] R. B. Blackman, “Linear Data-Smoothing and Prediction in
Theory and Practice,” January 1, 1965, Addison Wesley, 1st
Edition, ISBN-10: 0201006103.

[6] F. J. Harris, “On the use of Windows for Harmonic Analysis
with the Discrete Fourier Transform,” Proceedings of the
IEEE 66(1): 51-83 doi/10.1109/PROC.1978.10837, January
1978.

[7] J. Carnes, “Windowing High-Resolution ADC Data-PartI,”
EETimes, Designlines, Frbruary 4, 2009

[8] S. V. Moholkar, “BER Performance for FFT and Wavelet
Based OFDM Systems over AWGN Channel,” International
Journal of Research and Scientific Innovation, Vol II, Issue
VIII, pp. 52-54, ISSN 2321-2705, August 2015.

[9] A. N. Akansu and X. Lin, "A comparative performance
evaluation of DMT (OFDM) and DWMT (DSBMT) based
DSL communications systems for single and multitone
interference," Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing,
ICASSP '98 (Cat. No.98CH36181), Seattle, WA, USA, pp.
3269-3272 vol.6, doi: 10.1109/ICASSP.1998.679562, 1998.

[10] I. Cosovic, S. Brandes and M. Schnell, “Subcarrier
Weighting-A Method for Sidelobe Suppression in OFDM
Systems, IEEE Communications Letters 10(6); pp. 444-446,
DOI: 10.1109/LCOMM 2006.1638610, June 2006.

[11] A. Selim and L. Doyle, “Real-time sidelobe suppression for
OFDM systems using advanced subcarrier weighting,” IEEE
Wireless Communications and Networking Conference, pp.
4043-47. 10.1109/WCNC.2013.6555224, 2013.

[12] A. Ilovitsh, T. Ilovitsh and K.W. Ferrara, “Multiplexed
Ultrasound Beam Summation for Side Lobe Reduction,”
Nature, Scientific Reports 9, article 13961,
https://doi.org/10.1038/s41598-019-50317-7, September 27
2019.

[13] K. Sankhe et al., “ORACLE: Optimized Radio clAssification
through Convolutional neuraL nEtworks,” in IEEE
INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, pp. 370–378, 2019.

[14] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep
Learning Convolutional Neural Networks for Radio
Identification,” IEEE Communications Magazine, vol. 56, no.
9, pp. 146–152, Sept 2018.

[15] A. Al-Shawabka et al., "Exposing the Fingerprint: Dissecting
the Impact of the Wireless Channel on Radio Fingerprinting,"
IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, Toronto, ON, Canada, pp. 646-655, doi:
10.1109/INFOCOM41043.2020.9155259, 2020.

[16] M. T. Heidman, D. H. Burrus and C. S. Sidney, “Gauss and
the History of the Fast Fourier Transform,” IEEE ASSP
Magazine, Vol 1, Issue 4, pp. 14-21, October 1984.

42Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

Powered by TCPDF (www.tcpdf.org)

 50 / 50

http://www.tcpdf.org

