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ICDT 2021

Forward

The Sixteenth International Conference on Digital Telecommunications (ICDT 2021)
continued a series of events covering topics related to telecommunications aspects in
multimedia environments. The scope of the conference was to focus on the lower layers of
systems interaction and identify the technical challenges and the most recent achievements.

The conference served as a forum for researchers from both the academia and the industry,
professionals, and practitioners to present and discuss the current state-of-the art in research
and best practices as well as future trends and needs (both in research and practices) in the
areas of multimedia telecommunications, signal processing in telecommunications, data
processing, audio transmission and reception systems, voice over packet networks, video,
conferencing, telephony, as well as image producing, sending, and mining, speech producing
and processing, IP/Mobile TV, Multicast/Broadcast Triple-Quadruple-play, content production
and distribution, multimedia protocols, H-series towards SIP, and control and management of
multimedia telecommunications.

High quality software is not an accident; it is constructed via a systematic plan that demands
familiarity with analytical techniques, architectural design methodologies, implementation
polices, and testing techniques. Software architecture plays an important role in the
development of today’s complex software systems. Furthermore, our ability to model and
reason about the architectural properties of a system built from existing components is of great
concern to modern system developers.

Performance, scalability and suitability to specific domains raise the challenging efforts for
gathering special requirements, capturing temporal constraints, and implementing service-
oriented requirements. The complexity of the systems requires an early stage adoption of
advanced paradigms for adaptive and self-adaptive features.

Online monitoring applications, in which continuous queries operate in near real-time over
rapid and unbounded "streams" of data such as telephone call records, sensor readings, web
usage logs, network packet traces, are fundamentally different from traditional data
management. The difference is induced by the fact that in applications such as network
monitoring, telecommunications data management, manufacturing, sensor networks, and
others, data takes the form of continuous data streams rather than finite stored data sets. As a
result, clients require long-running continuous queries as opposed to one-time queries. These
requirements lead to reconsider data management and processing of complex and numerous
continuous queries over data streams, as current database systems and data processing
methods are not suitable.

Event stream processing is a new paradigm of computing that supports the processing of
multiple streams of event data with the goal of identifying the meaningful events within those
streams.

We take here the opportunity to warmly thank all the members of the ICDT 2021 technical
program committee, as well as all the reviewers. The creation of such a high quality conference
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program would not have been possible without their involvement. We also kindly thank all the
authors who dedicated much of their time and effort to contribute to ICDT 2021. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions. We also thank the members of the ICDT 2021 organizing committee for their
help in handling the logistics of this event.
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Abstract — The increasing importance of sparse connectivity
representing real-world data has been exemplified by recent
work in the areas of graph analytics, machine language, and
high-performance computing. Sparse matrices are the critical
component in many scientific computing applications, where
increasing sparse operation efficiency can contribute
significantly to improving overall system efficiency. The main
challenge lies in efficiently handling the nonzero values by
storing them using a specific storage format and then
performing matrix operations, taking advantage of the
sparsity. This paper proposes an optimized algorithm for
performing sparse matrix operations in storage and hardware
implementation on Field-Programmable Gate Arrays
(FPGAs). The results are obtained from implementing the
sparse algorithm on hardware for matrices of different sizes.
Sparsity percentages and sparsity patterns achieved low
latency and high throughput compared with the standard
algorithm. Further, the number of resources utilized was
primarily reduced, enabling the FPGAs to focus on larger,
more interesting problems.

Keywords - Sparse matrix; latency; throughput; memory; FPGA;
hardware architecture.

I. INTRODUCTION

We live in a "big data" era where graph processing has
become increasingly important, because the amount of data
generated and collected from many real-world applications
such as sensors, social networks, portable devices. Graphs
are used to model many systems of interest to engineers and
scientists; today, useful information is being extracted. Once
entered into a computer, the data no longer looks like a
graph. Often, it is in the form of a sparsely populated matrix
with mostly zeros compared to nonzeros [1] [2]. When the
number of zeros is relatively large, efficient data structures
are required. Numerous studies have addressed finding new
algorithms for sparsely distributed matrices.

When obtaining information in a graph algorithm with a
small number of nonzero entries but millions of rows and
columns, memory would be wasted by storing redundant
zeros [3][4]. There are two ways one would take advantage
of the sparsity of a matrix: one would be to store the nonzero
elements of a matrix, and the second is to process only the
nonzero elements of a matrix [5]. However, large graphs are
hard to deal with as inputs, and outputs limit the state-of-the-
art graph processing systems. For the most part, Central
Processing Units (CPUs) and Graphics Processing Units

(GPUs) compute well on a performance scale. However,
there is a small niche where an FPGA has been an attractive
platform that can handle the same computation task for
acceleration and achieve high performance with low power
computation for many applications. Specifically, due to the
memory access pattern of graph problems, it is still
challenging to develop high throughput and energy-efficient
FPGA design [6].

This paper's primary goal is to develop an efficient
algorithm for various sparse matrix arithmetic operations like
addition, subtraction, multiplication, element by element
multiplication, and square root. By utilizing the sparse matrix
storage method, storage requirements should be reduced
when compared to a standard matrix operation algorithm.
The main goal is to improve efficiency in terms of latency
and throughput [7][8]. The performance analysis is
calculated based on the design that minimizes gate count,
area, and reducing the number of multipliers and adders. The
architectural design is scalable, simple to implement, and
capable of handling matrices of various sizes. This paper is
organized as follows. In Section II, the basics of matrix
operations are discussed. In Section III, the proposed
algorithm and system design are explained. FPGA
simulation and mapping are discussed in Sections IV and V,
respectively. Sections VI and VII show the detailed
performance analysis and the results. This paper concludes in
Section VIII.

II. MATRIX OPERATION

The design performs sparse matrix addition operations of
two sparse matrices where only the nonzero values are
stored, and the required operation is performed. It is
performed by using two algorithms:

 A symbolic algorithm, which determines the
structure of the resulting matrix.

 A numerical algorithm, which determines the
values of nonzero elements using the knowledge of
their positions.

 ��,� = ���,�� + ���,�� 

Each nonzero (nz) element of matrices A and B needs
one floating-point operation, so the total number of floating-
point operations to be performed is the number of nz

1Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-835-8
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elements. When the computation is completed, the number
of nz output operations is written on the external memory.

III. SYSTEM DESIGN

A. Storage Format

The proposed architectural algorithm performs sparse
matrix addition in which the number of rows and number of
columns of two matrices is equal. A parallel implementation
of the addition with enough fast memory algorithm, is
proposed. Consider a matrix addition of A+B, where A has a
density s1 percentage with size n×n (a square matrix is
considered), and matrix B has a density s2 percentage with
size n×n. Density sx percentage is defined as the number of
nonzero elements to the total number of elements in the
matrix n2. The matrix addition performs the operation row-
wise and column-wise throughout the matrix only for the
nonzero elements present, leaving behind the zeros. When an
addition operation must be performed on both input matrices,
the number of rows and columns are first compared to
determine if they are equal, i.e., both the matrices should be
of the same size. An additional operation cannot be
performed if the matrices are of different sizes. Then, the
matrix elements are checked row-wise and column-wise
from top-to-bottom order for nonzero elements, as shown in
Fig. 1. Two separate counters, A_count and B_count, are
used to increment the row and column for both the A and B
input matrices. This keeps incrementing from n to n+1 for
the size of the matrix. The algorithm for the sparse matrix
addition A+B is presented in Fig. 2.

The most important part of this algorithm is the index
comparison, which is represented as A_index for matrix A
and B_index for matrix B. After first storing the nonzero
elements, the row value of matrix A is compared with the
row value of matrix B for each operation. If the index of
A_sr is equal to the index of B_sr, then the next step of
comparing the column value of both matrices is performed.
If the index of A_sc is equal to the index of B_sc, then a
matrix addition operation is performed. The VAL array of the
respective row and column, i.e., A_sv and B_sv, are added to
each other as a sum. The assumption is made that the
nonzero element is located anywhere in the matrix and is
highly sparse. Finally, the nonzero element of input matrix A
that does not match the row and column of matrix B is given
directly as the sum in the output matrix.

Figure 1. Representing row and column access of matrices

B. Design Algorithm

A → n×n sparse matrix
B → n×n sparse matrix
for i → 0 to MAT_SIZE do 

if (A[i]≠ 0) then 
Indexing row and column = i + 1
A_sv [i] =A [i]
A_index = A_count + 1

end
if (B[i] ≠ 0) then 

Index2rc = i + 1
B_index = B_count + 1
B_sv [ i] = B [ i]

end
if((A_sr[A_index]==B_sr[B_index])&&
(A_sc[A_index] ==B_sc[B_index])) do

Row <= A_sr [A_index]
Col <= A_sc [A_index]
Sum <= A_sv [A_index] + B_sv [B_index]

end
if (A_sv [A_index] ≠0) then 

Row <= A_sr [A_index]
Col <= A_sc [A_index]
Sum <= A_sv [A_index]

end
if (B_sv [B_index] ≠ 0) then 

Row <= B_sr[B_index]
Col <= B_sc[B_index]
Sum <= B_sv[B_index]

end
end

Figure 2. Algorithm for Sparse Matrix Addition Operation

C. Memory Control

Memory control plays a crucial part in architectural
design. The memory control block oversees real enable sign
and assigning a memory access address, so accurate data is
acquired by the algorithm logic through all stages. The
operation is performed at the row level, so throughput is not
affected by the latency of data reading while performing the
arithmetic operation.

As shown in Fig. 3, the memory control module is
designed as a finite state machine. At the beginning of the
finite state machine, reset is set to Idle, which resets all the
registers to predefined values. After this state, the matrix
values are inferred for writing data to the Block RAMs
(BRAMs), which triggers the memory control transition
from the Idle State to the Read and Write state.

Once the elements are written, it calculates the nonzero
values by checking row-wise and column-wise throughout
the array by increasing the pointer locations by one. With the
nonzero elements located successfully, separate arrays are
created for matrix storage format in the order of ROW, COL,
and VAL. As the name indicates, the row and column values
are stored starting from 0 to the maximum, and the
respective integer values are written accordingly. Once the
sparse matrix storage format is generated, the arithmetic
design algorithm checks the ROW and COL arrays and
performs addition if both are equal. Otherwise, the design

2Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-835-8
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sends the values directly to the output, since addition is not
required there. When the system performs all arithmetic
operations, the finite state goes back to Idle State. By
operating this way, only the nonzero elements undergo
additional processes, and in the final state, the output is sent
back.

Figure 3. State transition diagram of the memory control

For example, if there are two matrices A and B with ten
nonzeros each, as shown in Fig. 4. The state machine will
read the values and write the nonzero values in the storage
format illustrated above. The necessary arithmetic operation
is then performed from the Idle state, staying in hold for the
state until it receives an end signal from the controller.

Figure 4. Operational example for the addition of sparse matrices

IV. SIMULATION

Random matrices of various sizes are generated using
MATLAB with variation in sparsity pattern and sparsity

percentage. Additionally, two parameters, MAT_SIZE (size
of the matrix n×n) and ELEMENT_SIZE (number of bits of
the integer) are included with the design, which is passed to
the input as known information.

Figure 5. Waveform showing storage of sparse matrices

As shown in Fig. 5, the nonzero elements of the input
matrices are stored to BRAMs in the format specified as
two-dimensional arrays. The memory controller then reads
the BRAMs to perform the required arithmetic operation.

Figure 6. Waveform showing results of arithmetic operation (sum)

Fig. 6 shows the results of the addition operation in a
simulation waveform. The algorithm is tested with multiple
test values by varying the sparsity percentage and the golden
result vectors generated using MATLAB.

V. FPGA MAPPING

Using Xilinx ISE Design Suite, the designed algorithm is
implemented on the target device Xilinx Artix7 XC7A100T-
1CG324C board, comprising of 15,850 logic slices and a
maximum of 4,860 Kbits fast BRAM [9] [10]. The hardware
implementation is split into two major top modules. The first
module is designed to implement the sparse matrix
arithmetic operations, and the second module is to
implement a Universal Asynchronous Receiver Transmitter
(UART) communication and data exchange between the PC
and FPGA. Each of the top modules is subdivided into
smaller modules to carry out specific operations with the
other modules through internal signals as shown in Fig. 7.

Figure 7. Block Diagram of the TX and RX Module

3Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-835-8
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The transmitter module is used to transfer data over the
UART device. It serializes a byte of data and transmits over
a Transmit Data (TxD) line. The serialized data has 9600
Baud Rate, 8 data bits (least significant bit first), 1 Stop bit,
and no parity. The receiver module double-registers the
incoming data. This module makes sure all the bits are sent
out. These modules expect the clock generated to be 100
MHz. The Phase-Locked Loop (PLL) is a control system that
produces an output signal whose phase is related to an input
signal. Keeping the input and output phases in lock steps, the
input and output frequencies can be kept the same. These are
widely used for synchronization purposes. For our hardware
design, which operates at 20 MHz, the phase-locked loop is
used to compensate for the required 100 MHz clock
frequency. This IP core is generated using the design tool.

VI. PERFORMANCE ANALYSIS

The following metrics were calculated to show the
algorithm's efficiency, such as latency, throughput, and
resources utilized. Latency is the amount of time it takes to
complete an operation, the time between reading the first
element of the input matrix and writing the first element of
the output matrix. Throughput is the number of such
operations executed per unit of time.

The latency for matrix addition operation was
significantly reduced, and high throughput was achieved
using the proposed algorithm compared with the standard
matrix algorithm. Table II illustrates the comparison of
different test values with matrix sizes ranging from 10x10 to
100x100 with sparsity ranging from 1% to 10% for both
proposed sparse and standard matrix algorithms for different
operations.

Figure 8. Latency for Sparse Matrix Addition

The comparison of latency calculated is plotted as a
graph, which is shown in Fig. 8. The difference between the
standard algorithm and the sparse algorithm is shown. Fig. 9.
shows the difference in throughput between the two methods
and shows that the proposed algorithm achieved high
throughput.

After experimentation with different test values, there are
improvements in latency and throughput for smaller matrices
with high sparsity percentage and larger matrices with low
sparsity percentage. Once the mapping of matrices is
implemented on the FPGA platform, the resources utilized
are shown in Table I.

Figure 9. Latency for Sparse Matrix Addition

VII. RESULTS AND DISCUSSION

In most cases, it is evident that latency and throughput
are directly dependent on the number of nonzero elements
present in the matrix. The efficiency of the design can be
further improved by increasing the frequency of the overall
design clock. The maximum speedup of the design for any
matrix depends on the number of rows and columns being
processed. One primary purpose of this paper is to reduce the
storage space used in an FPGA when implemented. This is
also accomplished when the design is implemented in an
Artix 7 FPGA board. The amount of resources utilized for
the proposed sparse algorithm is less than the standard
algorithm. The comparison is tabulated in Table I. The
design uses only 3 percent of the total FPGA resources.
Further, pipelining can be implemented to increase the
computational speed of the system. For arithmetic operations
performed on large matrices or memory-based algorithms
and for small matrices, a pipelined algorithm will be quite
efficient.

VIII. CONCLUSION

Today's applications require higher computational
throughput and a distributed memory approach for real-time
applications. This research is primarily focused on designing
an optimized architecture for sparse matrix operations,
allowing for more efficiency than standard operations. The
functionality of the design is verified by different sets of test
cases under a specific size. The system contains a memory
control which fetches the data from memory and passes it on
for various arithmetic operations. Research improvement in
this area is needed to increase logic resources by a
comparable increase in I/O bandwidth and on-chip memory

4Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-835-8
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capacity, especially when the matrix sparsity is unstructured
and randomly distributed.

TABLE I. DESIGN RESOURCE UTILIZATION SUMMARY
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TABLE II. LATENCY AND THROUGHPUT CALCULATION

Slice Logic utilization

Number of Slice Registers
4,799 out of

126,800
3%

Number of Slice Look-up Tables
(LUTs)

6,702 out of 63,400 10%

Slice Logic Distribution

Number of occupied Slices 2,413 out of 15,850 15%

Input/Output (IO) Utilization

Number of bonded IO Blocks 3 out of 210 1%

Specific Feature Utilization

Number of Block RAM/FIFO 2 out of 270 1%

Matrix Size
(n*n)

Number of
nonzero (nnz)

Sparsity

Sparse Algorithm Standard Algorithm

Latency (ns) Throughput Latency (ns) Throughput

Matrix Addition

1010 10 0.1 1137.169 879376.7681 4298.0515 232663.5688

20x20 32 0.08 8550.567 116951.3086 18688.1835 53509.74855

40x40 96 0.06 57464.964 17401.90771 93787.3685 10662.41666

60x60 144 0.04 123981.857 8065.696257 214929.95 4652.678698

100x100 100 0.01 22427.802 44587.51687 588369.806 1699.61135

Matrix Subtraction

1010 9 0.09 911.1375 1097529.187 3205.4335 311970.2842

20x20 28 0.07 6156.6615 162425.6913 19199.5965 52084.42792

40x40 80 0.05 43638.191 22915.70702 38884.05 25717.4857

60x60 108 0.03 84721.1265 11803.43134 214411.526 4663.928375

100x100 100 0.01 70001.865 14285.33368 589749.829 1695.634235

Matrix Multiplication (Element-by-Element)

1010 10 0.1 1107.282 903112.3056 3205.4335 311970.2842

20x20 36 0.09 9780.263 105482.3057 19199.5965 52084.42792

40x40 80 0.05 42519.648 23518.53901 38884.05 25717.4857

60x60 72 0.02 32073.866 31178.03136 214411.526 4663.9283

100x100 100 0.01 5152.62 18364.9265 589749.82 1695.6342
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Abstract — This paper investigates a method for improving the 
performance of sparse Lower-Upper (LU) decomposition which 
is widely used to solve sparse linear systems of equations, 
appearing in many scientific and engineering application 
models. However, LU decomposition is considered a 
computationally expensive tool. When dealing with large sparse 
matrices, numerical decomposition takes more time using 
normal matrix LU implementation. The problem of interest 
here is the irregular sparsity pattern which limits performance 
gain. An efficient architecture for sparse LU decomposition is 
proposed for both symmetric and asymmetric matrices with 
random sparsity percentages and patterns. The algorithm 
spends time in simultaneous localization and mapping of the 
sparse matrix and then solving the linearized system. The 
performance of the algorithm with matrices of varying 
parameters is calculated and compared with a regular LU 
decomposition algorithm. In most cases, there are performance 
improvements in terms of speed, area, and power. 

Keywords – Pivoting; latency; linear systems; throughput; LU 
Decomposition; Field Programmable Gate Arrays (FPGAs). 

I.  INTRODUCTION 
Numerical solutions of large linear systems are important 

for scientific and engineering applications like linear 
programming, circuit simulation, semiconductor device 
simulations, image processing, and power system modelling. 
Solving such systems of equations generally involves two 
methods: the direct method including Cholesky 
decomposition, LU decomposition, QR decomposition, and 
iterative methods. The Cholesky decomposition is a special 
form of LU decomposition which deals with symmetric 
positive definite matrices. Adapting these parallel 
architectures to solve large sparse linear system of equations 
is a main focus of research [1].  

A number of software- and hardware-based approaches 
have been developed to obtain better solutions for LU 
decomposition. Software implementation includes a Super 
nodal approach which considers the matrix as sets of 
continuous columns with the same nonzero structure, and a 
Multifrontal approach organizing a large sparse matrix into a 
small dense matrix [2]. Field Programmable Gate Arrays 
(FPGAs) have unique advantages in solving these problems. 
Depending on the characteristics of the algorithm, an 

architecture is designed with reconfigurable computational 
resources and memory. The consumption of energy is reduced 
and is a platform for experimentation and verification. Though 
there are many FPGA-based architectures for dense matrices, 
only a few are proposed for sparse matrix decomposition 
[3][4]. The three main direct methods for sparse LU 
decomposition are left-looking, right-looking and count 
algorithms. The proposed FPGA-based architecture for sparse 
LU decomposition can efficiently decompose the sparse 
matrix with varying sparsity patterns. The architecture first 
factorizes the columns from the lower triangular part of the 
matrix in parallel with the rows from the upper triangular part 
of the matrix. The control structure performs pivoting 
operations while factorizing the rows and columns of the 
matrix.    

The rest of the paper is organized as follows. Section II 
introduces the theoretical background of LU decomposition, 
Section III describes the architectural design with proposed 
algorithm, Section IV proves the simulation of the design 
using Xilinx Vivado Design suite with verification of 
MATLAB results, and Section V provides FPGA mapping of 
the design and discussion of performance results. This paper 
concludes with a brief conclusion in Section VI.  

II. BACKGROUND 

A. Sparse LU Decomposition 
 
LU decomposition or factorization is a popular matrix 

decomposing method for many numerical analysis and 
engineering science problems. It decomposes the matrix as a 
product of the lower triangular matrix (L) whose diagonal 
elements are equal to 1 and all the elements above the diagonal 
are equal to 0, and an upper triangular matrix (U) whose 
elements below the diagonal are equal to 0. If A is a square 
matrix, LU decomposes A with proper row and/or column 
orderings into two factors, which is shown in Fig. 1. 

 𝑨 = 𝑳𝑼 (1) 

 !
𝐴!! 𝐴!" 𝐴!#
𝐴"! 𝐴"" 𝐴"#
𝐴#! 𝐴#" 𝐴##

# = !
1 0 0
𝐿"! 1 0
𝐿#! 𝐿#" 1

# × !
𝑈!! 𝑈!" 𝑈!#
0 𝑈"" 𝑈"#
0 0 𝑈##

# (2) 
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LU decomposition is a direct method that can solve large 
systems of linear equations that arise from important 
applications such as circuit simulation, power networks, and 
structural analysis [5]. To ensure stability during LU 
decomposition, pivoting operations are performed to remove 
zero elements from the diagonal of matrix A. Without proper 
pivoting, the decomposition may fail to materialize. A proper 
permutation in rows or columns is sufficient for LU 
decomposition, which is also known as Partial Pivoting. This 
approach is suitable for a square matrix, and it is numerically 
stable in practice. 

 𝑷𝑨 = 𝑳𝑼 (3) 

On	the	other	hand,	Full	Pivoting	 involves	both	row	and	
column	permutations.  

 𝑷𝑨𝑸 = 𝑳𝑼 (4) 

where Q is a permutation matrix which reorders the columns 
of A. 

The forward reduction and backward substitution 
techniques are more stable compared to matrix inverses to 
solve systems of linear equations because every nonsingular 
matrix possesses an LU decomposition. When compared with 
regular matrices, sparse matrices can benefit from algorithms 
that reduce the number of operations which are required to 
calculate L and U. However, the disadvantage is that sparse 
methods will suffer from irregular computation patterns as 
they are dependent on the nonzero structure of the matrix. 

   
 

 
 
 
 
 
 
 
 

Figure 1.  Example of a sparse matrix and its factors L and U 

B. Related Work  
 
There have been many architectures proposed for sparse 

LU decomposition which either target domain-specific 
sparsity patterns or require a pre-ordered symmetric matrix 
[6]. Blocking is a useful technique for gaining higher 
throughput for dense matrices. When decomposing in blocks 
using a Block Sparse Row (BSR) format for solving linear 
systems, it is limited to a matrix containing square blocks of 
a single dimension. When decomposition is executed in 
parallel, it often tries to avoid pivoting by using threshold 
pivoting or static pivoting beforehand. The architecture 
proposed in [7] implements a right looking algorithm and 

includes a hardware mechanism for pivoting. The 
performance of this is primarily I/O bandwidth limited.  

Another implementation captures the static sparsity 
pattern and is exploited to distribute the data flow 
representation of computation for circuit simulation [8]. A 
more general hardware design is proposed parallelizing a left 
looking algorithm to support processing symmetric positive 
definite or diagonally dominant matrices. The factor limiting 
architecture efficiency is dynamically depending data 
dependencies. One more algorithm proposes choosing a 
pivoting strategy, where the matrix is decomposed block-
wise. FPGAs have been shown to be effective in accelerating 
a wide range of matrix operations in recent years [9] [10]. 

The algorithm with row pivoting yields LU=PA, where 
the matrix overwrites A with LU-I, and I is an identity 
matrix. The first half of the algorithm will be triangular 
solving, leaving behind pivoting and scaling. In the case of 
sparse matrix, it will be inefficient for swapping rows. Due to 
having a single unreduced row or column, full pivoting is not 
easily achievable. The control system is implemented as a 
Finite State Machine (FSM), which tracks the progress of the 
units for synchronization. The algorithm for sparse matrix LU 
decomposition is in Fig. 2. 

 
Algorithm 
A → n×n sparse matrix 
P → n×n identity matrix  
[n, m] = size(A) 
set reset high    
U = A      
L = P = In*n 
 
[Perform pivoting operation] 
function pivot (A, P, i)     
 P = choose pivot (Ai: end, i)  
 if (P ≠ k) then     
  SWAP (Ai, *, Ap, *)  
  SWAP (Pi, *, Pp, *)  
 end if      
 return (A, P) 
end function 
[Interchanging rows in matrix] 
If m≠ j 
    U ([m, j], :) = U ([j, m], :) 
    P ([m, j], :) = P ([j, m], :) 
    If j<=2 
        L ([m, j], 1: j-1) = L ([j, m], 1: j-1) 
    end 
end 
[Update row and column entries] 
for i = j+1 to n 
    for j = 1 to n 
        Li, j = Ui, j / Uj, j     
            for k = j+1 to n-1 
     U (i, *) = U (i, *) - L (i, j) × U (j, *) 
 end  
    end  
end 
 

Figure 2.  Pseudo code for Sparse LU Decomposition  

 
 
 
 
 
 
 

                 A                                      L                                       U 
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III. SPARSE LU DECOMPOSITION ARCHITECTURE 
The proposed approach for sparse LU decomposition 

consists of the following operations: 
 

1. Pivoting strategy, when A has nonzero entries which 
are at fill-up locations. 

2. Symbolic decomposition, which estimates the 
memory requirements for L and U factors. 

3. Numerical calculation, which is computed using 
Gaussian elimination.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Proposed LU Decomposition Hardware Algorithm 

To maximize performance, LU hardware is designed to 
focus on maintaining a regular computation and memory 
access pattern. Fig. 3 shows a block diagram of the proposed 
hardware algorithm. The control and memory access handle 
the operations performed for decomposing the matrix. The 
design ensures the memory will have enough space to store 
the values [11] [12].  

A. Pivot Operation 
 
In order to perform a pivoting operation, the design 

includes usage of lookup tables and memory pointers to keep 
track of memory mapping. It performs a pivot search for each 
step of matrix elimination. Index pointers are created for each 
pivot to store the row and column physical address, 
accordingly. These physical addresses are then used to fetch 
the values from memory. These values are sequentially 
checked as they arrive for the absolute maximum values with 
the index. Using a register, it is stored as a pivot element. The 
minimum amount of memory utilized is proportional to the 
size of the matrix. Once pivoting is complete, an update is 
sent back to the lookup tables.  

B. Update Pivot and Interchange Rows 
 
The “Update Pivot and Interchange Rows” logic block 

performs normalization prior to elimination for the pivot 
values of row and column requested from memory. The 
necessary data such as pivot index, values and column are 
inferred from the previous state. This process is executed one 
by one after each pivot value is fetched and read. The updated 

row and column values and the normalized row and column 
values are then stored in registers. 

C. Update Row and Columns 
 
The remaining computations required are performed 

during this transition state. First, it indicates if the given row 
or column should be updated. Second, it	 manages	 the	
addresses	of	nonzero	entries	that	are	to	be	stored. This 
unit contains the necessary floating-point multiplier and 
adder to perform the required arithmetic operations [13]. This 
unit is operational in parallel to maximize the utilization of 
all logic units. This will update the number of updated logics 
that fits in FPGA chip. There are enough resources available 
in the FPGA that can accommodate all of the units.  

IV. IMPLEMENTATION AND VERIFICATION 
Various arbitrary matrices with different sparsity patterns 

are generated using MATLAB and are tested using the 
hardware architecture. A parameter n is included along with 
the design to decompose the size of the matrix. Fig. 4 shows 
the simulated waveform from Xilinx Vivado design Suite. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Simulation Waveform for LU Decomposition 

The simulated results are stored in an external .txt file 
and are verified with the results from MATLAB for precision 
loss. For L matrix, the error ranges between -0.0872 to 
0.0357 and for U matrix it ranges between -0.0108 to 0.0057 
as shown in Fig. 5 below.  
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Figure 5.  MATLAB Calculated Errors Values 

V. PERFORMANCE ANALYSIS 

A comparison of LU decomposition of sparse matrix of 
size 10x10 and 100x100, with a different sparsity range of 
10% to 50% is shown in Fig. 6 below. The proposed LU 
decomposition design was able to achieve lower latency than 
the regular algorithm LU decomposition. The results are also 
verified with the MATLAB LU decomposition outputs for 
precision loss. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Latency Comparasion 

 
A comparison of the throughput calculated from the 

sparse matrix algorithm and regular algorithm is plotted in 
the form of a graph and is represented in Fig. 7. As the 
throughput needs to be high for better performance, we are 
able to infer from the graph that high throughput was 
achieved. 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Block Diagram of the TX and RX Module 

The data from Table I shows that the matrix storage format 
proposed in this research was able to achieve minimum 
resource utilization, as opposed to the traditional regular LU 
decomposition algorithm. The proposed design was 
implemented on a Xilinx Artix7 XC7A100T-1CG324C board 
comprising of 15,850 logic slices and a maximum of 4,860 
Kbits fast block RAM. This is achieved with optimization 
through the implemented design for the LU decomposition. A 
difference in about one third of the total resources utilized was 
achieved, as seen in Fig. 8 and 9, respectively. 

The performance of the design is based on the architecture 
and its parameters. As an FPGA has enough computational 
resources and the design is memory-bound, the performance 
is totally dependent on memory access time.  
 

TABLE I.  RESOURCES UTILIZED FOR PROPOSED ALGORITHM 

 
 

Device Utilization Summary 

 Proposed Sparse 
Algorithm 

Regular 
Algorithm 

Slice Logic 
Utilization Available Used 

Slice 
Registers 126,800 3,420 10,863 

Slice LUTs 63,400 11,211 16,807 

Memory 19,000 8 64 

Occupied 
Slices 15,850 3,504 5,455 

IOBs 210 40 40 
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Figure 8.  FPGA Design Utilization  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Design Power Requirements 

VI. CONCLUSION 
Numerous engineering and machine learning applications 

rely largely on solving linear equations using LU 
decomposition, due to rapid developments in the field of 
mathematics and computation. Compared with a CPU and 
GPU, the FPGA does not have an instruction set. Instead, it 
possesses a number of reconfigurable logic blocks which 
could perform any digital logic function. In this paper, a 
computational implementation of the LU decomposition is 
proposed using an optimized algorithm. The proposed 
architecture can achieve further improvement by increasing 
the overall design clock.  
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Abstract—Internet of Things (IoT) applications have many
forms, and leverage many different technologies. However, certain
classes of applications have extremely strong similarities in system
architecture. This paper discusses several important applications,
which leverage a small set of loosely coupled, distributed data
acquisition subsystems to effect a centrally coordinated, data in-
tensive function or application. For brevity, we call this structure
“Coordinated IoT for Data Acquisition” (CIDAQ). Finally, this
paper introduces a novel power line communication research,
which employs this CIDAQ architecture for data capture and
processing.

Keywords—Internet of Things; IoT; Smart Grid; Active Shooter;
Machine Learning; ML; Artificial Intelligence; AI.

I. INTRODUCTION
In some scenarios where Internet of Things (IoT) tech-

nologies are used, the application of interest could be useful
for training first responders, as it provides a more analytical
approach to how first repsonders move and react. In other
cases, IoT’s use relates more to optimization of an industrial
process, where a net of data could increase functionality or
longevity. It could also have use in observations of biological
processes where data has proven difficult to gather by more
traditional means. In all cases, the application benefits from
the Coordinated IoT for Data Acquisition (CIDAQ) architec-
ture, where a distributed, loosely-coupled set of IoT devices
provides telemetry data to a central repository, and Machine
Learning and Artificial Intelligence (ML/AI) algorithms are
employed to produce some application-related insights.

In this paper we describe various applications which lever-
age the CIDAQ architecture as well as some useful tech-
nologies. Section II presents a compelling application related
to training of first responders in active shooter scenarios.
Section III briefly describes several other applications, and
presents some of the ML/AI techniques that can be useful
in these applications. Section III-D exhibits some businesses
and products that are already available for purchase, ranging
in size and scope.

We conclude the paper in Section IV with a particularly in-
teresting application of the CIDAQ architecture, which focuses
on the electrical grid. In this application, the distributed system
“listens” to current disturbances on the electrical distribution
grid, “talks” upstream from the outlet to the substation, and
“geolocates” electrical devices for system management pur-
poses based on actively and passively gathered telemetry data.

II. ACTIVE SHOOTER TRAINING
A particularly compelling application of IoT systems is

to augment the training of first responders. This application
leverages the CIDAQ architecture by placing data acquisition

Fig. 1. Comparison of active shooter situations with and without first
responder intervention [1].

devices and sensors on various body parts of first respon-
ders who are participating in scenario-based, real-time active
shooter training.

Having properly trained first responders immediately avail-
able for active shooter situations is paramount to ensuring the
safety and survival of bystanders. Fig. 1 indicates an increase in
victim shootings and death associated with police intervention.
In a comparison study of 83 events with and without police
intervention, 37 (45%) included police intervention, which
accounted for over half of total victim shootings (63%) and
deaths (56%) [1]. Though this is a particularly alarming trend,
it does give insight on the fact that police officers need to be
better trained to deal with active shooter situations.

Traditional training for an active shooter situation can be
time consuming and expensive, and so is often not effective in
producing measurable outcomes [2]. The prevalence of active
shooter situations in the United States reveals a necessity for
officer training that is effective in measurable outcomes as
well as conventional metrics of time and cost [3]. Students
at Texas State University have designed a system with the
potential to improve training for first responders which could
play a part in revolutionizing first responder training, as shown
in Fig. 2. This system leverages the CIDAQ architecture. By
placing sensors strategically on participant, data about proper
movement and weapon handling can be gathered in real-
time from multiple participants, processed, and analyzed in a
central location, and leveraged to improve the effectiveness of
first-responder training. This information can in turn be used
to create augmented reality training programs that could be
effective tools in saving law enforcement valuable time and
money, and in improving the ability to repeat training remotely
[2]. Additionally, the data can be used to precisely compare
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Fig. 2. Augmented motion-tracking of first responders using CIDAQ
architecture sensors [4].

and contrast the effectiveness of different training programs,
thereby improving the effectiveness of the training program as
well as the measurable outcomes for each participant.

The devices used in this application consist of Inertial
Measurement Units (IMU) placed on the head, chest, and
weapon of the participants. Each IMU contains analog ori-
entation, acceleration, and location sensors whose outputs can
be easily acquired, stored, measured, and manipulated. The
data collected by these devices creates a 3-dimensional map
of the user’s movements which can be reconstructed and
replayed at-will. Augmented reality devices can create virtual
training experiences with these maps that include all of the
necessary movements and actions required by a first responder
[3]. This training method not only improves time and cost
effectiveness, but also affords a new level of access. The
ease of distribution of these expert training programs increases
accessibility for smaller or more distant municipalities and also
helps streamline training. This ensures first responders have
access to the exact same training, which will help with joint
operations as well as transfers between departments.

The application of CIDAQ architecture for training first
responders does not stop at active shooter situations; there are
a number of other projects being developed and at least one
that is already in use. Dartmouth College’s Interactive Media
Laboratory and Institute for Security Technology Studies cre-
ated a virtual program designed to aid in training for terrorism
response. The program, called Ops-Plus, utilizes 3D simulators
to aid in training against attacks that involve nuclear, radiolog-
ical, biological, and even chemical warfare. The Los Angeles
Police Department currently uses an immersive simulation
trainer, called HYDRA, used to train first responders in a
series of scenarios, from earthquakes to terrorism response,
that would be difficult to recreate. New York City has partnered
with the Environment Tectonics Corporation to develop a
software, similar to HYDRA, that creates an immersive envi-
ronment designed to help first responders prepare for citywide
disaster management [5]. As these technologies progress, the
breadth and depth of IoT application will increase, reducing
potential harm to first responders and civilians.

III. SIMILAR APPLICATIONS AND ML/AI
In addition to applications such as training for first respon-

ders, the CIDAQ architecture is being actively deployed in
various other applications including monitoring and control of
industrial processes, monitoring of the habitat for endangered
species, and enabling efficient hospital care for bedridden
patients. These applications are described briefly along with
the general nature of ML/AI algorithms which could be
used in processing the resulting telemetry data to create new

knowledge, or to improve application-specific outcomes.

A. Industrial Application
Heat trace cables or heat tapes are vital in oil and gas,

chemical treatment, power generation and many other indus-
tries. These cables and their control systems assist in the
continuous delivery of gases and liquids, often preventing
the contents of pipes or tanks from freezing in extreme
environments.

Based on advances in heat sensitive polymer design, many
of these cables come with self-regulating ability. In other
words, the heat generated by these cables can compensate for
environmental temperatures by autonomously adapting their
absorption of electrical current [6]. This capability provides
operational simplicity in external power control systems, as
well as convenience in direct attachment to the electrical power
source.

However, the heat cable can be damaged during deploy-
ment, or can degrade due to aging or other conditions. Ap-
proaches to locating damaged portions of heat cable is a
difficult challenge. One approach to this remote monitoring
problem is to integrate temperature sensors into the cable, or
add IoT-based devices along the cable to make measurements.
As a distributed, network-based monitoring architecture, a
CIDAQ system is a logical candidate for this application. Via
a CIDAQ architecture, deployed heat cables and the systems
they monitor can be remotely evaluated using low-rate data
transmitted along the heat cable and power lines. This data,
transmitted directly via low-frequency power line communi-
cations techniques, can also be aggregated, assimilated, and
analyzed using the ML/AI algorithms.

B. Biodiversity Application
The conservation of endangered species is important for

maintaining biodiversity and a well-balanced ecosystem. Sev-
eral techniques have only recently been applied in the marine
environment to detect the presence of marine species [7].
Confirming presence relies on locating the animals, which can
prove challenging for species with low population numbers. A
variety of methods have been used to determine the presence
of rare marine species, including fishing and underwater visual
surveys [8]. However, these approaches typically require sub-
stantial field-based effort by researchers and data gatherers.
Although scientists have been able to achieve a significant
amount of success using Environmental DNA (eDNA), not
every organism will be readily detected by eDNA and the scale
of the water bodies impacts the probability of detection.

Importantly, the abiotic factors of temperature, UV ra-
diation, and amount of DNA present all impact the length
of time that the eDNA stays in the environment [9]. A
compelling approach which uses the CIDAQ architecture to
monitor endangered species is detects and processes animal
voice or audio signals. Examples of such endangered species
that are being monitored with a CIDAQ architecture are the
Houston Toad and Craw Frog [10]. In these applications, an
embedded solution detects toad calls automatically with real-
time notification transmission capabilities to engage remote
researchers. The labelled audio data is filtered and fed to
a machine learning model to extract features. The extracted
features are then fed to classification algorithms using the
processing pipeline shown in Fig. 3.
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Fig. 3. Experimental Method.

This application of the CIDAQ architecture leverages deep
learning architectures, such as Recurrent Neural Network
(RNN), Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), Gated Recurrent Units (GRUs) as
well as conventional signal processing such as Mel-frequency
Cepstral Coefficients (MFCC), Linear predictive coding (LPC),
Perceptual Linear Prediction (PLP), Mel Filter banks, and
Spectrograms [11]. These technologies are used to improve
the identification of endangered species with reduced false-
positive rate [10].

C. Medical Application
Another intuitive application that uses CIDAQ architecture

enables efficient hospital care for bedridden patients. The
feasibility of using pervasive sensing technology and artificial
intelligence for autonomous and granular monitoring in the
Intensive Care Unit (ICU) is vital since manual observations
can suffer from subjectivity. The use of sensing technologies
and network-based telemetry can bring timely intervention
to assist in making life-saving decisions while dealing with
high levels of uncertainty under strict time constraints [12].
Artificial intelligence in the critical care unit could reduce
doctors’ workload to allow them to spend time on more
critical tasks. The approach used in this application include
accelerometer sensors, a light sensor, a sound sensor, and
a high-resolution camera to capture data on patients and
their environment in the ICU. Various computer vision and
deep learning techniques are used to recognize a patient’s
face, posture, facial expressions, head pose, and extremity
movements from video data [13]. For activity recognition, data
from wearable accelerometer sensors worn on the wrist, ankle,
and arm are analyzed. Additionally, the information uses the
room’s sound pressure and light intensity levels to examine
their effect on patients’ sleep quality. This framework employs
a cascaded architecture with three stages of deep CNNs to
predict face and landmark locations in a coarse-to-fine manner
[12].

In general, most embedded applications dealing with
IoT, machine learning and artificial intelligence implement
a CIDAQ architecture. Many of these applications leverage
deep learning algorithms, which are concerned with very large
datasets of labelled analog data, such as image, text, audio
and video [14]. Machine learning algorithms used in CIDAQ-
based systems can be based on supervised, unsupervised or
semi-supervised learning. Supervised learning model is based
on training data and helps to make predictions, some of the
important algorithms under supervised learning are logistic re-
gression and back propagation neural networks. Unsupervised
learning model is prepared by deducing structures present
in the input data, some of the important algorithms under
unsupervised learning are Apriori and K-means algorithm.
Semi-supervised learning is a mixture of both labelled and
unlabeled data.

D. Market Data
As IoT technologies gain in popularity and scope of

capability they will become more available and more widely

used. There are a number of businesses–ranging from startups
to Fortune 50 companies–using IoT, and implementing CIDAQ
architecture in a range of ways, for their products and services.
A few smaller startup companies are: Vicotee, MachineMax,
and Radio Bridge [15]. Vicotee is a Norwegian company that
offers a variety of sensors that can be used in conjunction with
each other for myriad ’smart’ applications including but not
limited to shipping, infrastructure, healthcare, air quality, and
land management [16]. MachineMax, based out of the UK, on
the other hand offers a software, rather than only offering a
full-package, that uses IoT to interconnect 3rd party sensors
into a a single platform [17]. Similarly, US based Balena offers
IoT ’fleet management’ that is designed to push updates across
varying platforms using a cloud-based container [18].Instead of
simply offering a product line, US based Radio Bridge offers
IoT data-as-a-service where they set up devices and monitor
the data, allowing the end user to focus on whatever task
is at hand [19]. Small startups are not the only businesses
interested in IoT technologies, there are also several major
players competing in the market as well, specifically IBM,
Samsung, AWS, and Microsoft [20]. Each of these Global 500
businesses offers a proprietary monitoring solution for their
products.

IV. ELECTRIC DISTRIBUTION GRID
As mentioned in Section I, the electric distribution grid is

a particularly compelling application of the CIDAQ architec-
ture. As more compute and sensor devices pervade modern
society, reliance on the electrical infrastructure continues to
increase. Although “the grid” is one of the unspoken wonders
of the modern technological society, the increased burdens
of two-way power flow, distributed generation facilities, and
complex/dynamic structure are pressing technologists to create
better approaches to monitoring, controlling, and leveraging
existing grid infrastructure.

An intuitive approach to leverage existing grid infrastruc-
ture is to use the grid itself as a communication medium. This
would pave a way for the development of a self-regulating
power grid, and in addition, obviate the need for deploying
other communication resources for grid related applications,
thereby saving time and money worth billions [21]. This
distributed system concept fits precisely within the CIDAQ
architecture.

Using the power grid as a communication medium is
not a novel concept. This technology, commonly referred to
as Power Line Communication (PLC), has been used since
early 1920’s for applications like fault detection and automatic
meter reading [22]. However, the development in the PLC
applications has been severely hindered due to the dynamic
and unpredictably noisy nature of this medium. This problem
is aggravated by the different electrical devices in the power
grid, like transformers, which obstruct and muddle the com-
munication signals even more [23].

One simple approach to solving this problem is the trans-
mission of low-frequency communication signals. Low- fre-
quency signals don’t attenuate or distort as much compared
to high-frequency signals, even after passing through the
transformers [24]. Thus, a low-frequency band, typically in
the range of 150 Hz-1350 Hz [24], can be used directly for
PLC applications. However, one major disadvantage of using
low- frequency bands for communication is the low data rate.
Consequently, this solution has been under-researched and
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Fig. 4. Experimental setup for sending and capturing communication signals
through powerlines.

mostly overlooked.
Nonetheless, such low-frequency PLC has applications in

fields that don’t require high-speed data transmission but prior-
itize reliability, simplicity, scalability, and ease of deployment.
There is an urgent need for this type of technology in the power
sector. As mentioned before, the existing power grids are fail-
ing because of the exponential increase in power demand over
the last few decades [25]. This problem is exacerbated by the
disconnect between the power producers and consumers which
leads to a huge waste of already depleted power supply. Low-
frequency PLC can bridge this disconnect thereby becoming
the backbone communication infrastructure of a continuously
sensing and self-monitoring power grid called “smart grid”
[26].

Therefore, there is a need for research and study in the
field of low-frequency PLC. To that end, our research is going
to be focused on employing a CIDAQ network architecture
to test low-frequency power line communication for simple
digital communication. Fig. 4 shows a simplified design of
this network architecture.

As shown in Fig. 4, a programmable current source injects
a known signal into the powerline via a stabilizing filter. This
signal passes through single-phase and three-phase distribution
grid via transformers. When the signal passes through a
transformer, the image of the signals are ingrained in the
other two-phases of the power line, creating noisy image
or echo signals [23]. In the electric substation, the injected
signals, which have passed through multiple transformations,
are collected by a Data Acquisition Device (DAQ) [27]. The
DAQ is controlled by an embedded system such as a Raspberry
Pi [28]. The control system and remote DAQ devices are
connected to a common wireless network for synchroniza-
tion. The control system commands the programmable current
source to inject communication or disturbance signals, and
simultaneously commands the DAQ to acquire signal data.
This data is collected centrally for signal processing and
machine learning techniques to analyze and reconstruct the
original signal, remove extraneous noise or images of signals,
and create a global understanding of the signal context on the
distribution grid.

The raw data captured at the substation contains the input
communication signal mixed with a more dominant power
signal and its highly correlated harmonics, plus a highly
dynamic and unpredictable environmental noise. Using the
CIDAQ architecture, the distributed system extracts the infor-
mation sent by the input signal from this mixture. Traditional

Fig. 5. Flowchart showing the basic signal workflow from input to machine
learning output.

Digital Signal Processing (DSP) techniques [29] do this job in
other communication media like telephone wires and optical
fibers, but are not adequate for highly noisy PLC. As a result,
supplementing DSP techniques with ML becomes a critical
aspect of this CIDAQ implementation. Machine learning is a
data-driven technique that formulates a relationship between
the input and the output based on the training data [30]. In
the case of the ultra-low-frequency powerline environment,
the training data is composed of various features of the raw
signal extracted using DSP techniques. This data is fed into
ML algorithms to form a model which extracts the transmitted
information from the raw noisy data. The overall signal flow
from transmitted input to the extracted ML output is shown in
Fig. 5.

This way, the CIDAQ architecture effectively captures PLC
data from the electrical grid and deciphers the information
contained in the data. This CIDAQ architecture can also easily
be scaled to employ multiple DAQs, which can be placed at
differing locations in the power grid. A similar architecture
can also be used to capture non-PLC internal power grid data,
which can contain information about the state of the grid and
its components. This non-PLC data can similarly be processed
and deciphered using signal processing and ML techniques via
the same CIDAQ architecture.

V. CONCLUSION
Using the context of several related applications, this paper

has introduced the CIDAQ architecture, which leverages dis-
tributed IoT-like devices to acquire relatively high-rate signals
and analyze them collectively to produce some application-
specific outcome. In cases of first responder training, IoT
devices are distributed on a participant’s body for analysis of
form and function in a high intensity situation. In cases of
industrial control and management, IoT devices are distributed
on heat-tape which ensures the consistent flow of gas or liquid
in an industrial environment. In cases of species management
or healthcare management, IoT devices gather data from the
environment or from healthcare facilities for processing and
analysis, and to create a larger context from which to prioritize
societal or personal decisions.

In the electrical grid, which underpins almost all related ap-
plications, sensors, and data acquisition systems are distributed
throughout a larger, dynamic context in order to acquire
signals, gather data, cross-correlate events, and effect changes
in system efficiency that will enable future applications which
could benefit from the CIDAQ architecture.
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Abstract—Power Line Communications (PLC) is a technology 

that uses power lines to transport communication data 

alongside the AC electric signals. Due to the highly penetrative 

pre-existing power grid infrastructure, PLC has a huge 

networking potential, especially in the implementation of smart 

grid technologies. However, PLC medium poses a major 

hindrance in the form of poor signal propagation. Traditional 

signal processing measures are not enough to demodulate these 

poor signals at the receiver end. To overcome this challenge, we 

are investigating Machine Learning (ML) as a supplement to the 

traditional digital signal processing techniques in this project. 

Our project focuses on testing and comparing various 

supervised machine learning and deep learning algorithms for 

the purpose of digital PLC bit classification.  

Keywords-power line communications; PLC; machine 

learning; ML; smart grid. 

I.  INTRODUCTION 

The use of electrical wiring and power lines for network 
communication is not new. Since the early 1920s, this 
technology has been used to automate meter reading by utility 
companies [1]. Beyond this application, the potential of Power 
Line Communications (PLC) was conceptualized as a 
universal networking solution mainly because of the pre-
existing power-grid [2]. This power grid would obviate the 
need for building other types of dedicated communication 
infrastructures like phone lines and optical fibers, thereby 
saving billions in cost [2]. However, over the years, such high 
expectations of this technology have not been realized due to 
many factors. One of the primary culprits is signal 
propagation.  

The power grid infrastructures, including the power 
cables, were not designed for communication purposes. Thus, 
communication signals face various hindrances in this 
medium, including highly variant and dynamic noise, 
radiation leakage, undesired modulation, etc., [3]. All of these 
problems aggregate to cause poor propagation of the signal. 
One approach to solving this problem is to devise ways to 
cancel out these causes and maintain a better quality of signal 
throughout its communication path. A different approach 
would be to design a better, more sensitive receiver that could 
extract information even from the poorly propagated 
communication signals. The latter approach has an advantage 
because only the receiver needs modification, while the 
former might need engineering improvements in the 
transmitter and the medium. 

Traditional communication receivers work primarily by 
implementing Digital Signal Processing (DSP) techniques, 
such as demodulation, filtering, digitization, etc., [4]. 
However, these methods alone are not sensitive enough to 
extract the information signals in PLC. Machine Learning 
(ML), which is a technique that probes data for information, 
might be a good supplement to traditional signal processing in 
creating more sensitive receivers for PLC. Therefore, in our 
study, we have designed a PLC network architecture and used 
ML with signal processing features to extract the transmitted 
information from the raw PLC signal captured at the receiver.  

The signal workflow of our project is shown in Figure 1. 
Digital information is modulated onto an analog carrier at the 
transmitter in one of several well-known approaches. This 
analog signal is injected into the power line where it combines 
with the dominant power signal plus highly variant noise. The 
output is collected with a Data Acquisition Device (DAQ) at 
the receiver, and it consists of a raw signal that resembles a 
power signal. Various features are extracted from this raw 
signal using DSP. These features, along with the 
corresponding digital labels, are arranged into a dataset. This 
dataset is then fed into ML algorithms, which creates a model. 
Lastly, we use this ML model to classify and thus, extract the 
transmitted digital information. 

The rest of the paper is organized as follows. In Section 2, 
we provide a description of the data-capture methodology, 
feature extraction process used in the raw-data, and the setup 
of the ML models. In Section 3, we present the outcomes of 
ML model optimization, performance of these models, and 
validation of the results. Finally, we summarize the paper and 
provide conclusions in Section 4. 

 

 

Figure 1. The flow of signals from digital input to ML output. 

16Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

                            24 / 50



II. PROCEDURE 

A. Data Capture 

The experimental setup used to capture the PLC data is 
shown in Figure 2. As shown in the figure, we used a current 
source to inject a low amplitude signal with a frequency of 
1595Hz into the power line via a current-modulator and a 
stabilizing filter. This signal first passes into a single-phase lab 
wiring, then into a three-phase distribution power grid via 
transformers. Some signature of the signal gets ingrained on 
all three-phases during this transition [3]. In the substation, the 
power signal and the injected signal go through more 
transformation, primarily due to Current Transformers (CT). 
These transformed signals were then collected at the 
substation using DAQ.  The communication signal originated 
at the low voltage region (the lab) and traveled towards the 
high voltage region (substation) of the distribution grid, 
thereby making the PLC path upstream. 

B. Raw Data 

The raw data, captured using DAQ, was a three-phase 
time-series data consisting of a power signal at around 60Hz, 
communication signal at around 1595Hz, and time-variant 
noise at all frequencies. The power signal dominated the time-
domain plot of this raw data because of its relatively high 
amplitude. Thus, the time-domain plot did not show any trace 
of our communication signal. The power signal and its 
harmonics also dominated the frequency-domain spectrum 
plot. However, a small peak was present at 1595Hz that 
showed the presence of our transmitted signal. However, the 
spectrum plot cannot show the time-varying nature of the 
signal, and thus, did not provide us information about the 
digital data that was transmitted. A spectrogram, which is a 
plot of signal energies in a time vs. frequency graph, helps 
acquire this information. Figure 3 shows the spectrogram of 
the Phase A raw data. We can see the dominant power signal 
and its harmonics at low frequencies. More significantly, there 
is a clear dotted band above 1500Hz, which is our 
communication signal. In this frequency band, the short bright 
dashes represent the 1s, and the gap between these dashes 
represents the 0s. These discrete amplitude (energy) shifts 
correspond to the data (bits) modulated and transmitted by the 
current source. 

 

 

Figure 2. Experimental setup for sending and receiving a current signal 

through power lines in a distribution power grid. 

 

Figure 3. Spectrogram of Phase A of captured raw data. 

C. Feature Extraction 

After the raw data was collected, this data needed to be 

converted to ML-ready format. First, we divided the raw data 

into numerous frames corresponding to the resolution frame 

of the labels (sample length of a single bit in the transmitted 

analog signal). Each of these frames would be a sample row 

in our final dataset. Then, from each of these frames, we 

extracted various features as described below: 

1) Amplitude Envelope 

This feature gives the change in the amplitude of the 

signal over time [5]. It effectively traces the outline of the 

signal in the time-domain. In our case, the raw signal’s 

amplitude envelope, as is, would not provide any meaningful 

information as the 60Hz power signal dominates all other 

superimposed sinusoidal signals. Therefore, we filtered the 

raw frames with band pass filters of 100Hz bandwidth 

starting from 1Hz and up to 2000Hz with no overlap (1Hz-

100Hz, 101Hz-200Hz,...,1901-2000Hz). Hence, we divided 

each frame into twenty frequency-separated signals and 

calculated each of these signals' amplitude envelope. Our 

expectation was that the amplitude envelope of one of these 

signals which contains our communication frequency 

(1595Hz in our case) would provide information about the bit 

that was transmitted in that frame. 

2) RMS (Root Mean Square) Energy 

The energy of a signal is the measure of the “strength” 

of the signal. A signal’s energy is defined as the sum of the 

square of its magnitude [6]. Thus, RMS Energy (RMSE) is 

the square root of the mean energy of a signal. Equation (1) 

[7] shows the formula for RMSE where xi is the ith sample of 

signal x and N is the total number of samples. 
 

𝑅𝑀𝑆𝐸 =  √
(𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑁

2 )

𝑁
 

 
(1) 

 In our case, the raw signal's energy (or each frame) 

would again be dominated by the power signal. Hence, we 

frequency separated the frames as before and calculated 

RMSE for each of the twenty bandpass filtered signals of 

each frame. Like the amplitude envelope, we were expecting 
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variations in the RMSE of 1,501-1,600Hz signals of different 

frames corresponding to the bit these frames were carrying. 

3) Spectral Centroid 

Amplitude envelope and RMSE are time-domain 

features, and thus, they were extracted from the time-series 

data. We decided to use spectral centroid to probe the 

frequency-domain of the raw data for important signal 

characteristics. The spectral centroid compares the center of 

mass of the signal’s spectrum [8]. Our raw signal’s spectrum 

had a primary peak at around 60Hz and secondary harmonic 

peaks at multiples of 60Hz because of the dominant power 

signal. Whenever the communication signal was present in 

the raw signal, there should also be a peak at 1595Hz (our 

communication frequency). We assumed that the presence 

and absence of the communication signal (corresponding to 

1 and 0, respectively) would noticeably shift the center of the 

spectrum’s mass, thereby providing a classification measure 

of the transmitted bit. Therefore, we included the spectral 

centroid of each frame as one of the features. 

D. Machine Learning 

After the dataset was formed by compiling the features 

from the raw data and labels were recorded, it was used in 

machine learning models with a 70% training split. To form 

the models with various supervised algorithms, Python Sci-

kit learn used for Logistic Regression (LR) [9], Support 

Vector Machines (SVM) [10], and Decision Tree (TREE) 

[11]. The hyperparameters for these algorithms were 

optimized using the grid search [12] method. A majority 

voting model [13] was also created from the optimized LR, 

SVM, and TREE to check if such ensemble model would 

outperform the individual models. ROC AUC scores [14], 

precision [15], recall [16], and f1 scores [17] were computed 

to evaluate and compare these various models, training, and 

testing accuracy scores. Learning curves [18] were plotted 

and evaluated to ensure the models were not overfitting or 

underfitting. Confusion matrices [19] were also plotted to 

visualize the accurate label versus the predicted label. 

Besides these basic “one neuron” ML models, multi-

neuron, multilayer Artificial Neural Network /Deep Neural 

Network (ANN/DNN) model [20] was also tested using 

python’s Tensor Flow and Keras. The various 

hyperparameters of these ANN/DNN models were optimized 

by manual trial and error method. Accuracy scores, loss and 

validation curves, and confusion matrix were generated to 

evaluate this ANN/DNN model’s performance and this 

performance was compared with the other ML models. 

ML was performed on the full dataset (with combined 

phase A, B, and C data). However, the accuracy and other 

performance metrics were low for this full dataset. Hence, the 

same ML techniques were applied for the phase A data only 

as well. The comparisons on the various metrics between 

these two datasets and other significant results are presented 

in Section 3. 

III. RESULTS AND DISCUSSIONS 

A. Grid Search 

A grid search was performed on the LR, SVM, and TREE 
algorithms to optimize the models’ hyperparameters. Tables I 
and II show the optimized parameters and their corresponding 
values for each of these algorithms. These tables also show the 
training and testing accuracy values for respective algorithms. 
Table I is for the phase A data only, while Table II is for the 
combined phase A, B, and C data (full dataset).  

As shown in Table I, all three algorithms, after grid search 
optimization, had similar performance in terms of training and 
testing accuracy for phase A data. The accuracy values were 
in the mid ninety percent, which indicates that the ML was 
successful in learning and classifying the samples into binary 
digital bits. 

On the other hand, Table II shows that the ML models 
were not as relatively successful in the same regard for the full 
dataset. This might be because the phase B and C dataset did 
not have the same amount of information on the 
communication signal as phase A, or the features that we 
extracted did not work as well for phase B and C data. As 
shown in Figure 2, the communication signal is injected into 
a single phase, and the image of this signal gets ingrained into 
the other two phases when the signal transitions through a 
distribution transformer. From our accuracy result, we can 
infer that the signal was injected directly into phase A, and the 
images were produced in phase B and C later in the PLC path.  

B. Feature Selection 

Next, to examine the most impactful features and to plot a 
2D graph with decision regions for each model, we used the 
Sequential Backward Selection (SBS) [21] method to filter 
out the two most essential features from a total of 41 (20 each 
of amplitude envelope and RMSE plus one spectral centroid). 
The results are presented in Tables III and IV.  

As shown in these tables, one of the two best features for 
every algorithm in both datasets was ‘RMSE 1501-1600’. 
This is the RMS energy feature of the samples after being 
filtered with a 1501Hz-1600Hz band pass filter. This 
frequency range is significant because our input 
communication signal is at 1595Hz. This result shows that the 
ML models can correctly identify the frequency band location 
of our communication signal. Further, the tables also show 
that RMSE was consistently the best feature in all cases. This 
is expected because the main difference between the 1s and 0s 
in our input signal is the signal strength, and RMSE is the 
measure of this signal strength. 

The tables also show the accuracy values of the models 
with just the two best features. Comparing these values to the 
values in Tables I and II, we can see that reducing the dataset 
features from 41 to 2 did not have a significant impact on the 
accuracy of the models. 

A 2D plot of labels with decision regions was produced 
using the two best features for each model. Figure 4 shows 
such a 2D plot of the Phase A training and testing set with 
SVM decision regions. 
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TABLE I.  GRID SEARCH RESULTS FOR PHASE A DATA 

Classifiers Optimized parameters Training 

accuracy 
Testing 

accurac

y 

Logistic 

Regression 

C=1.0, solver=lbfgs 
94.06 93.99 

SVM C=1000, gamma=0.001 94.45 95.19 

Decision 

Tree 

Max_depth=1, 

Min_samples_split=1.0 94.19 95.19 

TABLE II.  GRID SEARCH RESULTS FOR FULL DATASET 

Classifiers Optimized parameters Training 

accuracy 

Testing 

accuracy 

Logistic 

Regression 

C=1.0, solver=lbfgs 
77.27 76.73 

SVM C=10, gamma=0.1 77.15 75.52 

Decision 

Tree 

Max_depth=5,     

Min_samples_split=7 73.84 72.22 

TABLE III.  FEATURE SELECTION RESULTS FOR PHASE A DATA 

Classifiers Two best features Training 

accuracy 

Testing 

accuracy 

Logistic 

Regression 

RMSE 201-300 and 

RMSE 1501-1600  

93.29 94.58 

SVM RMSE 1301-1400 and 
RMSE 1501-1600  

95.53 96.78 

Decision 

Tree 

RMSE 1-100 and RMSE 

1501-1600  

95.7 95.19 

TABLE IV.  FEATURE SELECTION RESULTS FOR FULL DATASET 

Classifiers Two best features Training 

accuracy 

Testing 

accuracy 

Logistic 

Regression 

RMSE 501-600 and 

RMSE 1501-1600  

73.43 72.21 

SVM RMSE 701-800 and 

RMSE 1501-1600  

76.6 74.92 

Decision 

Tree 

RMSE 501-600 and 

RMSE 1501-1600  

78.86 74.51 

 

 
Figure 4. 2D feature plot showing labels and decision boundary of the 

SVM model for phase A data. 

C. Learning Curve 

To check if the ML models were overfitting or 

underfitting, we produced learning curves for each model. 

Overfitting is caused by high variance when models train 

with the noise and the appropriate data and produce a 

disproportionate result in the training and testing set [20]. In 

learning curves, overfitting can be implied if the training and 

validation accuracy curves do not converge and are far apart. 

On the other hand, underfitting is caused by high bias when 

the models do not consider all relevant data with appropriate 

weight. Underfitting can be implied in learning curves if the 

training and validation accuracy is consistently low [20]. 

Figure 5 shows the learning curve of the LR model for the 

phase A dataset. This shows that the model was not overfitted 

or underfitted. The two other models for the phase A dataset 

also had similar learning curves showing no overfitting or 

underfitting. 

D. Ensemble model 

After the LR, SVM, and TREE models were optimized, 

they were assembled into one classifier by soft (with 

probabilities) majority voting. The results of the individual 

classifier along with the ensemble model for phase A dataset 

and full dataset are shown in Table V. As shown in this table, 

both the phase A and full dataset had a slight decrease in the 

accuracy of their corresponding majority voting model 

compared to the best individual model. 

E. Confusion Matrix 

For all the models, including the ANN/DNN, confusion 

matrices were produced. The confusion matrix of the decision 

tree model for the phase A dataset is shown in Figure 6. It 

shows the number of True Positive (TP) on the top left 

quadrant, False Negative (FN) on the top right, False Positive 

(FP) on the bottom left, and True Negative (TN) on the 

bottom right. From these values, other metrics, including 

accuracy, can be calculated. In Figure 6, Precision = 

[TP/(TP+FP)], Recall =[TP/(TP+FN)] and F1 score 

=[2*(Precision*Recall)/ (Precision + Recall] [22] are 

calculated and shown on the plot title.  

 
Figure 5. Learning curve for logistic regression model of phase A dataset. 
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As shown in this figure, the decision tree model correctly 

classified most of the labels (shown in blue quadrants) while 

it wrongly classified eight samples of each of the two labels 

(shown in white quadrants). SVM was the best model for the 

phase A dataset, while for the full dataset, LR was the best. 

F. ROC AUC Curve 

The Receiver Operating Characteristics (ROC) curve is a 

graph of model probabilities of False Positive Rate (FPR) 

versus True Positive Rate (TPR). FPR is the ratio of the 

number of False Positives (FP) to the total number of 

negatives (FP+TN), while TPR is the ratio of True Positive 

(TP) to the total number of positives (TP+FN) [23]. ROC 

curve shows a model’s performance at all classification 

thresholds, and the Area Under this Curve (AUC) provides a 

metric for this performance measure [23]. Figure 7 shows the 

ROC curve and ROC AUC scores of LR, SVM, TREE, and 

Majority voting models for the phase A dataset. Please note 

that the straight diagonal line in the middle of the plot is a 

hypothetical model which cannot distinguish between the 

two classes and is equivalent to “guessing” the classification. 

Therefore, its AUC is 0.5. This diagonal line represents a 

threshold, and if a model falls below this threshold, it is 

performing worse than guesswork. As seen in Figure 7, our 

LR, SVM, TREE and Majority voting models’ respective 

curves are close to AUC of 1. The performance of these 

models in this metric is very similar. 

G. ANN/DNN model and its Loss Curve 

After testing the three basic ML algorithms, we created 

an ANN/DNN model with the phase A dataset. The number 

of hidden layers in this model, number of nodes in each layer, 

activation functions for each layer, optimizer, and 

hyperparameters for the model were all tuned and optimized 

by trial and error. The results of this optimization are shown 

in Table VI. 

With these parameters, the ANN/DNN model was trained 

with phase A data, and it produced a final training accuracy 

of 98.19% and testing accuracy of 94.29%. These accuracy 

values are slightly better than the corresponding accuracy 

values of LR, SVM, TREE, or Majority voting models. 

Figure 8 shows the training versus test (validation) curve of 

this ANN model. As shown in this figure, the model’s loss 

decreased and stabilized as the model trained for more 

epochs. 

TABLE V.  ACCURACY VALUES FOR INDIVIDUAL AND ENSEMBLE 

MODEL IN PHASE A AND FULL DATASET 

Classifiers Phase A Dataset 

Accuracy 

Full Dataset 

Accuracy 

Logistic Regression 0.94 0.77 

SVM 0.93 0.76 

Decision Tree 0.92 0.74 

Majority Voting 0.93 0.76 

 
Figure 6. Confusion matrix of the decision tree model for phase A 

dataset. 

 
Figure 7. ROC AUC curve of LR, SVM, TREE and majority voting 

model. 

TABLE VI.  ANN/DNN OPTIMIZED HYPERPARAMETER VALUES 

Number of hidden layers 2 

Number of nodes in each hidden 

layer 

50, 50 

Activation function for each 

layer 

tanh, tanh, sigmoid (for output 

layer) 

Optimizer Adam 

Optimizer parameters Learning rate of 0.01 and beta 
decay (beta_1) of 1e-5 
 

Number of epochs 100 

Validation ratio 0.01 

 

 
Figure 8. Training and testing (validation) loss curve for the ANN model. 
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IV. CONCLUSION 

This research study extracted time-domain (amplitude 
envelope and RMS energy) and frequency-domain (spectral 
centroid) feature from raw PLC data to generate an ML-ready 
dataset. Then, we used the dataset in three supervised machine 
learning algorithms: logistic regression, support vector 
machine, and decision tree, to generate classification models. 
We optimized these models using the grid search method, 
investigated impactful features in each model using sequential 
backward analysis, checked for model’s overfitting and 
underfitting using learning curves, and used accuracy, ROC 
AUC scores, precision, recall, and f1 score metrics to evaluate 
and compare the performance of the models. Using these 
performance metrics, we found out that all three models (and 
an ensemble model made by majority voting of the three) 
performed similarly, with SVM being slightly better than the 
rest because of its non-linear classification.  

Then, we used an artificial neural network/deep neural 
network model with two hidden layers to perform the same 
classification task on the PLC dataset. This ANN model 
performed slightly better than the aforementioned basic ML 
models. 

We also observed that all the models performed 
significantly better with the standalone phase A dataset than 
the full dataset containing data from all three phases. This is 
most likely because the input signal was initially transmitted 
through the phase A power line, and the phases B and C only 
got images of this signal along the PLC path. Hence, the 
deteriorated signal data in phases B and C diluted the full 
dataset and caused the model to be less accurate. In future 
works, the signal reception from the secondary phases can be 
improved, for example, by using a Rake receiver. This could 
result in a better performance from the full dataset.  
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Abstract— Monitoring and safeguarding the integrity of files 

in local filesystems is imperative to computer systems for many 

purposes, including system security, data acquisition, and other 

processing requirements. However, distributed systems may 

have difficulty in monitoring remote filesystem events even 

though asynchronous notification of filesystem events on a 

remote, resource-constrained device can be very useful. This 

paper discusses several aspects of monitoring remote filesystem 

events in a loosely-coupled and distributed architecture. This 

paper investigates a simple and scalable technique to enable 

secure remote file system monitoring using existing Operating 

System resident tools with minimum overhead.    

Keywords— Secure Remote Filesystem Monitoring; Firewall; 

Distributed Architecture; Secure Network Communication; SSH; 

Secure Shell Protocol; Filesystem. 

I. INTRODUCTION 

 Most modern computer systems incorporate local storage 
containing files associated with user data, application data, and 
other important data, such as trade secrets and passwords [1]. 
The vast majority of attacks to such classified files are well 
known issues in day-to-day operations so it is vital to ensure 
the integrity of the file system. There are two general 
approaches to monitoring filesystems for unauthorized access: 
(a) Hash-based file integrity (b) Real-time file integrity. The 
hash-based approach is to scan critical files on systems on a 
regular schedule,  detecting changes by comparing the current 
file hash to the previous version. In a real-time approach, the 
information is provided on not just file changes, but also on all 
the file read, write, and create events so determining a 
violation becomes much simpler [2]. 

 Although most modern computer systems have several 
tools that are capable of tracking local file system events, it 
becomes much more complex to monitor file system events 
remotely from a central location [3].  

 Each system in distributed architecture is typically capable 
of monitoring filesystem events, such as creation, deletion, 
and changes in local files. This can be performed by tools like 
inotify [4], kqueue [5], FSEvent [6], direvent [7] etc. However, 
these tools inherently lack the ability to monitor remote 
filesystems. Tools like Secure Shell Protocol Filesystem 
(SSHFS) [8][9] allow a user to mount remote directories into 
the local system; however, file monitoring is not possible with 
SSHFS. Asynchronous notification of filesystem events on a 
remote, resource-constrained devices can be very useful, 
particularly in distributed acquisition architectures and other 
scenarios where data is processed asynchronously. 

 In distributed architecture, one of the complexities 
introduced by Internet-based (IP) networking is a firewall 
[10][11]. Firewalls are vital for network security; however, the 
presence of an intervening firewall can make communication 
between distributed systems much more complex. Many 

networking solutions and architectures allow the users to 
circumvent certain firewall restrictions, thus increasing 
complexity while introducing security risks. Here, we leverage 
the well-known network architecture where an Internet-
reachable system acts as a middleman to establish a secure, 
bidirectional network connection between firewalled devices. 
This approach is not new, however, comprehensive analysis 
of various parameters is difficult to obtain, so we provide some 
results and discussion regarding the various configuration 
options and performance of this architecture.  

 In Section II of this paper, we describe various tools that 
are generally used to monitor local filesystem events. We also 
briefly discuss about Secure Shell Protocol Filesystem 
(SSHFS) [9] and Secure Shell Protocol (SSH) [12]. Section III 
presents our approach to an experiment, which presents 
different network architectures and usage of those 
architectures with SSHFS and SSH. In Section IV we evaluate 
local filesystem monitoring and network communications 
using metrics for (a) complexity, (b) portability, and (c) 
efficiency/speed. We conclude the paper in Section V 
describing the overall summary of our experiment. 

II. BACKGROUND AND RELATED WORK 

 Inotify [4] is a filesystem event notification tool for Linux 
operating systems. This tool allows user to add an automated 
watch to a file or directory which can monitor certain 
filesystem event(s) (for example: open, write, modify, close, 
etc.). When those events occur on the file or the folders being 
watched, this tool provides asynchronous, event-driven 
notification to the user for user interaction. Inotify-tools 
provides command-line interface to inotify [13][14].  
Inotifywait  is a shell utility included in inotify-tools that waits 
for changes to files or folders, and outputs the description of 
these changes when made. There are many options available 
for this command [15] through which the user can specify the 
target for the watch, the nature of the watch and the format of 
the output. These options, along with the fact that multiple 
watches can be made simultaneously, makes this tool very 
easy-to-configure, user-friendly and scalable. However, 
inotify is a kernel feature, which only monitors local file 
system events, and thus, remote filesystem events, not 
implemented in the local kernel, are not registered by inotify 
[13][15]. 

 iWatch [16] is a kernel feature written as a Perl wrapper 
for inotify to monitor changes in specific directories or files, 
sending alarms to system administrator in real-time. iWatch 
can run as a daemon, as well as via the command-line. The  
daemon  mode  uses  an Extensible Markup Language (XML) 
configuration file to register a list of directories and files to 
monitor. The command line mode will run without a 
configuration file. In  the  XML  configuration  file,  each 
target can have an individual email contact point. This contact 
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point allows an email notification for any modification in the 
monitored targets. 

 kqueue [3][5] is an event notification interface in 
FreeBSD, supported by other operating systems such as 
NetBSD, OpenBSD, DragonflyBSD, and macOS. kqueue 
monitor demands a file descriptor to be opened for every file 
which is being watched hence restricting its application to very 
large file systems [5]. kqueue does not provide direct support 
for generic events such as ‘create’ for files and its Application 
Programming Interface (API) is designed with higher 
dependency on the local kernel, limiting the ability to work 
asynchronously with remote file system monitoring.    

 Filesystem Notification Events (FSEvents) [6] is an 
event notification API designed for macOS. FSEvents is a 
kernel feature and has a device file called /dev/fsevents. It 
follows a simple process where all the primal event 
notifications are passed to the userspace through this device 
file. The event stream it is then filtered by a daemon to publish 
notifications. The macOS version 10.7(lion) added the 
capability to watch filesystem [6]. The FSEvents monitor is 
not constrained by requiring unique watchers and thus scales 
well for large systems with huge number of directories.  
Although FSEvents can monitor a directory that is within a 
remote mounted volume and provides a callback for local 
changes, it cannot detect changes made by users on other 
machines.  

 FileSystemWatcher [17] is a specific class in the 
System.IO namespace, which is used to monitor and detect file 
system changes in Windows. It triggers events for every 
change that appear in file or directory which is being watched.  
It generates a new instance for FileSystemWatcher with 
arguments required to specify the directory and type of files 
which needs to be monitored, and a buffer into which all the 
file changes are written. The kernel then reports file changes 
by writing to that buffer. This suffers event loss when large 
number of changes are pushed into the buffer. One of the 
drawbacks of filesystem watcher is that it can only establish a 
watch to monitor directories, not files. To monitor a file, its 
parent directory must be watched in order to receive change 
events for all of the directory’s children.  

 Tripwire is one of well-known file integrity 
program[18][19]. Tripwire was essentially built as a strong file 
integrity checker for Unix systems. The original Tripwire was 
termed as Academic Source Release (ASR) which has features 
such as strong set of supported hash functions, the power to 
examine file attributes, and a good configuration. It was a 
freely available program with reporting capabilities limited to 
results displayed only on the terminal screen. It also lacks 
database protection and verification capability. 

 The Python Watchdog module [20] is used to monitor file 
system events. Python Watchdog has a standard API for 
developers to select and deploy a monitor. Facebook’s 
Watchman [21] is similar to Python’s Watchdog module 
which also provides a similar interface for initiating different 
monitors. However, both these tools are operating system 
dependent making it infeasible for remote file monitoring and 
processing.   

 Direvent, like inotify, is a filesystem monitoring tool. 
However,  direvent works in GNU/Linux, BSD and Darwin 
(Mac OS X) systems [7]. This allows for uniformity, and 
possibly integration of file monitoring processes, across 
diverse systems in a network. The files and directories to be 
watched, along with their corresponding target event, are 
specified in the direvent configuration file with ‘watcher’ 

statements. Filesystem events can be divided into two major 
groups. (a) system-dependent events that are specific for each 
kernel interface (b) generic events that do not depend on the 
underlying system. They provide a higher level of abstraction 
and make it possible to port configurations between various 
systems and architectures. However, direvent relies on the 
local event monitoring Application Programming Interface 
(API) provided by kernel [22]. As a result, it is not natively 
compatible with remote file system monitoring. When 
compiling with Berkeley Software Distribution (BSD) 
systems direvent uses kqueue – another kernel event 
notification mechanism.  

 Secure Shell Protocol Filesystem (SSHFS) [9] is a file 
system in user space (FUSE) that uses the SSH File Transfer 
Protocol (SFTP) to locally mount a remote file system. The 
mounted file systems can be accessed and used the same way 
a local file system is, both from the command line or using 
other tools. Unfortunately, inotify is not aware of filesystem 
changes on an SSHFS mount which are initiated from the 
remote end of the link. 

 Secure Shell Protocol (SSH) [12][23] is a secure network 
communication paradigm that operates at the Open System 
Interconnection (OSI) session level. All session data 
transferred through an SSH connection is transparently 
encrypted. This encryption is transparent, which means it gets 
decrypted by SSH client daemon at the specified destination, 

and thus, users do not have to deal with decrypted data, 
because of its utility and security features, SSH is widely used 
for remote system management tasks and can incorporate 
multiple use-cases, including forwarding graphical sessions, 
automating “jump” behavior to access systems behind 
firewalls, and so on. 

a) Multiplexing  

SSH has the ability to carry multiple sessions over single 

TCP connection via “multiplexing”. One of the benefits of 

multiplexing is that it speeds up certain operations that utilize 

an SSH session. 

b) Reverse Port Forwarding 

 
Figure 1. Working of SSH Reverse Port Forwarding [24]. 

 

Figure 1 shows the working of Reverse SSH port 

forwarding. It is a technique through which systems that are 

behind a firewall can be accessed from the outside world. 

With this technique, a port on a remote machine can be 

forwarded to the local machine while still initiating the tunnel 

from the local machine. This works by listening to the port on 

the remote side, and whenever a connection is made to this 

port, the connection is forwarded over the secure channel to 

the host port from the local machine.  

III. APPROACH   

Our evaluation of these several alternatives consists of 

two parts: (a) building a simple and secure network 

architecture to communicate between devices, and (b) using 

that architecture to test remote, asynchronous filesystem 
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monitoring. The network architecture as well as file 

monitoring test setup that is designed and described in this 

paper is simplified to only two devices, however, this system 

is scalable to include any number of devices.  

A. Network Architecture  

Network communication is one of the primary challenges 

when creating a system where interconnectivity between 

devices is required. For this research, we have chosen an SSH 

based network architecture which leverages an IP reachable 

system acting as a “jump server” to establish communication 

between devices behind their individual firewall. Figure 2 

shows the basic components of this three-prong architecture. 

 
Figure 2. Representation of three-prong architecture. 

As shown in Figure 2,  system A is used to control remote 
devices behind a firewall, represented by System B. Both A 
and B are behind network firewalls, so a direct SSH 
connection cannot be made from A to B or vice versa. Thus, 
the need of system C, which is an open IP reachable server. 
Both A and B can communicate with C because firewalls 
allow outgoing connections. Using port forwarding, an SSH 
tunnel can be made from A to B via C. In this architecture, 
system C acts merely as SSH reflector, and no special 
configuration is necessary. 

 One of the main advantages of this architecture over 
other architectures and network solutions that circumvent the 
firewall restrictions is its simple configuration. The 
configuration for establishing this network begins when the 
first host  (A) which creates an SSH connection to C. 
Similarly another host (B) also creates an SSH connection to 
C. Finally, to create connection between A and B ports from 
A and B are forwarded to a common port in C, thereby cre-
ating a continuous tunnel from A to B. Two other simpler 
network architectures (referenced as Arch-0 and Arch-2 in 
this paper) were built using the components of our primary 
architecture (Arch-1) to compare the results. The design of 
these two architectures are shown in Figure 3 and Figure 4, 
respectively. 

i. Arch-0 

 

Figure 3. Representation of systems and network connection behind a 
common firewall. 

As shown in Figure 3, there is a common architecture 
between systems in the same network where there is no 
firewall between hosts. System A can SSH directly into 
system B. This architecture is used as a control and as a 
baseline in this study. 

ii. Arch-2 

  
Figure 4. Representation of components, security zones and connections 

in a client-server architecture. 

 

 Figure 4 shows the network architecture that is used more 
commonly as an alternative for our three-prong architecture. 
Here, the peripheral devices indicated by system B are 
controlled directly by an open IP reachable server. The system 
C cannot directly form an SSH connection to B because of the 
presence of a firewall. Thus, B needs to initiate a special SSH 
tunnel which is used by C to form a reverse SSH channel back 
to B.  

 In this architecture, C acts as the control center. Thus, the 
main difference between our three-prong architecture and this 
architecture lies in the role of the server. In this architecture, 
the server’s resources are heavily utilized. This can be 
advantageous if the server is powerful. However, since the 
server is internet reachable, it can pose security risks if its 
configuration is too complex. The main advantage of the 
three-prong architecture is in “hidden complexity” because the 
control unit is protected by firewall, so the exposed attack 
surface is minimized.  

 To evaluate these architectures, we used multiplexed SSH 
combined with a simple timing test which is shown using a 
vertical line diagram in Figure 5. This test program sends a 
simple UNIX command via regular and multiplexed SSH 
tunnels, and records the time taken to send, execute and 
receive the output of this command. To account for the 
variability of network speed at different times, this program 
was run every hour of every day for about a month. The results 
of this experiment are compiled in Section IV. 

 Figure 5 shows the three network architectures of interest, 
Arch-0, Arch-1 and Arch-2. In this case, Arch-1 indicated by 
red is a “three prong” network architecture, whereas Arch-0 
shown in Figure 3 and Arch-2 shown in Figure 4. indicated 
blue and green respectively, are two other simpler 
architectures built using the primary Arch-1 architecture. The 
bold lines represent multiplexed connections of these three 
architectures while the thin lines represent non-multiplexed 
connections. The dashed lines represent connections 
necessary for their corresponding architecture. For our timing 
test, both system A and B are on the same network. In case of 
Arch-1 the connections  goes through System C hence the 
firewalls can be separate. 

 

Figure 5. Vertical line diagram to represent three network architecture, 
Arch-0, Arch-1 and Arch 2. 
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B. Remote Filesystem Monitoring  

Application specific file monitoring is useful in detecting 

certain changes and responding to those changes. However, 

tools such as inotify and direvent lack capability to monitor 

files and directories of other devices in the network. To 

overcome this challenge, we took two approaches: 

1) Using SSHFS  

Secure Shell Protocol Filesystem SSHFS [11] enables 

the user to mount remote filesystem in the local filesystem. 

The user can access and monitor the mounted files and 

directories manually. To automate this monitoring process, 

we tried coupling SSHFS with inotify  by mounting a remote 

filesystem and  monitoring changes on it.  

In general terms, inotify is not aware of filesystem 

changes on an SSHFS mount which are initiated from the 

remote end of the link. This is because SSHFS is built on top 

of SFTP; hence, it is a client view of the remote filesystem 

and does not export filesystem events from the remote 

system.   

2)  Using SSH  

Using Secure Shell Protocol (SSH) [16], we devised a 

two-step method for remote filesystem monitoring which is 

simple, intuitive and scalable, and utilizes the light pre-

existing OS-resident tools. The target file or directory in the 

local system is monitored using a tool such as inotifywait. 

 Then, using the event registration of the monitored target 

as a trigger, a command is sent to the other end of the 

channel using SSH. Such SSH appended commands can be 

a simple OS command or another trigger to a script, and thus 

can be easily modified according to application 

requirements. 

Figure 6. Remote Filesystem monitoring using SSH and inotify tools. 
 

As shown in Figure 6, an inotifywait is issued on a top 

secret directory in System A, so whenever a filesystem event 

occurs in that watched section of the filesystem, the event is 

transmitted to the remote monitoring configuration on System 

B along with a timestamp of the event.  

IV. RESULTS 

     We evaluate different network architectures mentioned in 

Section III along with a timing data as shown in  Figure 7 and 

Figure 8. Multiplexed SSH connections significantly reduce 

connection time because the TCP handshake and keying 

interaction to set up the SSH session is already performed, 

and is being re-used   and efficiently. From Figure 7 and 

Figure 8, it is clear that Arch-0 exhibits the fastest 

communication time in both multiplexed and non-

multiplexed architectures, which is reasonable since both 

systems are on the same network, with no firewall. 

Figure 7. Timing data by hour of the day. 

 

 
Figure 8. Timing data by date. 

 

     Also from Figure 7 and Figure 8, the multiplexed 

connection of Arch-1 recorded lower time than non-

multiplexed version of Arch-0, which is interesting because 

in Arch-1 a firewall exists between systems, so TCP/keying 

lags are substantial, even for systems on the same network. 

The non-multiplexed connections exhibit substantial random 

latencies due to multiple network transits of TCP handshakes 

and keying interchanges, whereas corresponding points in the 

multiplexed configuration do not exhibit the same issues due 

to the more efficient re-use of multiplexed connections. The 

performance of multiplexed connections is much more 

consistent. 

V. CONCLUSION 

     This paper discusses the use of various filesystem 

monitoring tools which support local file system monitoring, 

but inherently lack ability to monitor remote filesystems. In 

distributed and loosely coupled architectures, monitoring of 

filesystem events on remote systems, possibly behind 

firewalls, can have important application-layer benefits and 

utility. To examine the performance of various system 

configurations, we evaluate network architectures with both 

multiplexing and non-multiplexing techniques, concluding 

that a simple and scalable technique using multiplexed SSH 

connections and inotify tools enables secure remote file 

system monitoring with minimum overhead. By recording 

timing of filesystem events on each of these network 

architectures, we note that multiplexed SSH connections are 

consistent, and much more efficient than other methods, even 

with complex distributed architectures involving exposed 

systems, multiple firewalls, and “three prong” SSH tunnels. 
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Abstract—Complex-valued data is ubiquitous in many scientific 

fields. However, machine learning for complex-valued input is 

still in the developmental stage. Alternatively, complex data can 

be transformed to real data in a few different ways to fit the 

traditional machine learning framework. In this research, we 

compare the performance of two such ways - combining real and 

imaginary components or stacking them - on a simple neural 

network. To compare these two methods, we create magnitude 

(combined) and rectangular (stacked) spectrograms from 

artificial time-series data. Then, we feed the raw 1D time-series 

dataset, 2D magnitude spectrogram dataset, and 3D rectangular 

spectrogram dataset to a neural network for training and 

validation. As a measure of performance, we track the accuracy 

of each dataset model. From our experimentation, we found out 

that the rectangular dataset outperforms the magnitude 

spectrogram in most cases.  

Keywords-complex-valued data; machine learning; neural 

network; real spectrogram; imaginary spectrogram. 

I.  INTRODUCTION 

Machine Learning (ML) is a computational technique of 
building models for complex systems using experiential data. 
Data is at the heart of machine learning. Therefore, the quality, 
quantity, format, and other characteristics of data have huge 
impact on the efficacy and effectiveness of the ML models. 
The quality and quantity aspect of data in ML, in a generalized 
sense or for a specific domain/application, are well 
documented in archive literature, such as [1]–[3]. In this 
paper, we focus on the performance of ML with input data in 
complex-valued format. 

Complex-valued data contains information from both real 
and imaginary axes. This kind of data is present in many 
scientific applications and areas, such as signal processing [4] 
in communication systems, Magnetic Resonance Imaging 
(MRI) [5] in biomedical imaging, seismic monitoring [6] in 
geosciences, etc. ML can be a great tool in research and 
technological development in these areas; however, ML 
algorithms typically do not handle complex numbers well [7]. 
Thus, complex data can be pre-processed for ML in these 
applications by either a) taking only the real component and 
ignoring the imaginary component or b) combining the real 
and imaginary components in some way to produce real-
valued data or c) separating the real and imaginary 
components and feeding them simultaneously to the same ML 
model. Approach a) is generally not desirable because of the 
loss of information caused by ignoring the imaginary 
component completely. Interestingly, for approaches b) and 

c), we are unable to find general guidelines in the literature 
which describe performance differences or areas of 
optimality. Hence, the objective of this paper is to make a 
comparison of these two complex-valued data pre-processing 
methods for ML with the aim of setting a general guideline 
when dealing with complex datasets in training ML models.  

There is a fourth approach as well, which uses novel 
Neural Network (NN) models like Complex-Valued Neural 
Network (CVNN) that can handle the complex dataset. In this 
approach, the complex-valued data does not need any format 
change during pre-processing. However, CVNN and the 
general use of complex numbers in “deep learning” seems to 
be an active research area, with a lot of different concepts [6]–
[12]. Interestingly, the predominant use of real-valued weights 
in neural networks seems to derive from the focus on real-
valued optimization problems. As shown in [8], the use of 
complex-valued networks (CVNN) on datasets with phase 
characteristics results in better performance. However, 
contemporary CVNN are very complicated and sensitive, and 
the added complexity might not be worth the disruption to the 
toolchain for most applications. Here, we focus on the use of 
conventional technology and tools in a way that does not 
involve a complete re-structuring of the toolset. Hence, our 
study is limited to the comparison of pre-processing methods 
of complex-valued dataset for use in real-valued NN. 

This paper is organized as follows. Section 2 describes the 
experimental setup we used to leverage two pre-processing 
methods for complex-valued data. Section 3 provides the 
result of the performance comparison between these pre-
processing methods when used in a simple NN. Section 4 
provides the conclusion of this experimentation.  

II. EXPERIMENTAL SETUP 

To be able to control, finetune and vary the different data 
parameters for our comparison, we leverage an artificial 
dataset. This artificial dataset is based on simple single-bit 
detection/classification, which is a fundamental component of 
digital communication. The general findings from the 
experiments in this dataset should be applicable beyond this 
domain as well. 

Figure 1 shows the flow of our experiment, divided into 
three main steps. The first step is the creation of artificial time-
series data. From a randomly generated binary class digital 
information {length=10,000 bits}, analog time-series signals 
were created using Amplitude Shift Keying (ASK), 
Frequency Shift Keying (FSK), and Phase Shift Keying (PSK) 
{sampling rate=10,000; number of bits per second=100}. 
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Then, varying levels of AWGN {from SNR= -21dB to 21dB 
in increments of 3dB} were added to the clean signals to make 
our raw time-series data (Test 1). In the second step, this 1D 
raw time-series data was transformed into a 2D complex-
valued spectrogram using Short-Time Fourier Transform 
(STFT) {frame length=50, frame overlap=50%, 
window=Hanning}. Then, the complex-valued data was 
transformed into magnitude-only spectrograms (described as 
Approach ‘b’ in Section I: ‘Introduction’), as well as 
real/imaginary spectrograms. The real / imaginary 
spectrograms were stacked to make a 3D dataset as described 
in [13] (Approach ‘c’). Finally, the 1D time-series dataset, the 
2D magnitude spectrogram dataset and the 3D real-imaginary 
dataset (referred henceforth as rectangular dataset) were 
flattened and fed into a fully connected NN with one-hidden 
layer. Although our main objective was to compare the 
magnitude spectrogram and rectangular spectrogram in a NN, 
we used time-series dataset as a control input to evaluate and 
compare the complexity and performance of NN for the other 
two datasets. In all cases, the hyper-parameters of this NN, 
listed in Table I, were kept identical. For ‘Test 2’, an ideal 
power signal {60Hz, 120V RMS} was added to the noisy 
time-series signal at the end of ‘Step 1’, and steps 2 & 3 were 
repeated. The purpose of ‘Test 2’ was to simulate the presence 
of a dominant interfering signal in the raw data. The 
performance of the NN models from both tests were evaluated 
primarily using the accuracy metric. This is because accuracy 
in our experimental context characterizes the Bit Error Ratio 
(BER), which is an important metric in digital 
communication. BER is the ratio of wrongly classified bits (or 
error bits) to the total number of transmitted or evaluated bits. 
Thus, BER is the “unit complement” of accuracy, i.e., BER + 
accuracy =100%. Other performance metrics, such as 
precision and recall, were also measured (see [14] for the data 
file containing these metrics) but are not evaluated in this 
paper.   

III. RESULTS AND DISCUSSIONS 

A. Modulation Intensity 

While converting the binary information to an analog 
signal using either of the three modulation schemes (ASK, 
FSK or PSK), the differentiating parameter between bit values 
or states can impact detection. Here, we define the modulation 
intensity as the difference between these parameter values. 
For example, if the amplitude of the ‘high’ is set to ‘1’ and 
‘low’ to ‘0.4’ in ASK, the modulation intensity is 60%. In 
practice, this modulation intensity is dependent on various 
external factors, which are not the focus of this study. We 
chose the intensity parameter based on a subjective ‘inflection 
point’ in a NN model-accuracy versus ‘low values’ graph as 
shown in Figure 2. Based on these plots (see [14] for similar 
FSK and PSK figures), we set the intensity values as shown in 
Table II. Clearly, as intensity decreases, differentiation 
between bit values or states becomes more difficult, and thus, 
the NN model classification accuracy drops.  

B. Training Time Comparison 

The architecture of the NN for all signal types and datasets 
was the same. However, the size of the datasets was different 
as shown in Table III. Since the size of each sample was 
different, the training time was also bound to be different. 
Figure 3 shows the distribution of the total training time for 
each type of dataset (ASK, FSK and PSK). The time-series 
dataset had the quickest training time due to small size and 
single dimensionality. The rectangular spectrogram dataset 
was the slowest, with the training time almost twice as much 
as magnitude spectrogram dataset. Depending on the 
application, the training time of a NN or ML model can have 
vital consideration. 

 

Figure 1.  Flow of experiment showing creation of raw time-series modulated signal, transformation to various spectrograms and the use of the three 

datasets (highlighted) in NN. The extra sub-step of addition of power signal for ‘Test 2’ is shown in green. 
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TABLE I.  HYPER-PARAMETERS OF THE NEURAL NETWORK 

Total number of samples 10,000 

Training to Test ratio 70:30 

No. of hidden layers 1 

No. of nodes in the hidden layer 64 

No. of nodes in the output layer 2 

Activation function for the 

hidden layer 

Relu 

Activation function for the 

output layer 

Softmax 

Optimizer RMSProp 

Loss function Categorical Entropy 

No. of training epochs 10 

Batch size for training 16 

 

 

Figure 2.  The NN model’s test accuracy for a range of ‘low values’ 
(compared to a high of ‘1’) for ASK signal with SNR=0dB. The plot shows 

general decrease in accuracy as ‘low-values’ get closer to the high-value, 

i.e., as modulation intensity decreases.  

TABLE II.  MODULATION INTENSITY VALUES 

 High Low 

ASK 1 V 0.7 V 
FSK 1000 Hz 950 Hz 
PSK 0° 25° 

TABLE III.  DATASET SIZE 

Dataset Size (each sample) 

Time-series (1D) 100 

Magnitude spectrogram (2D) 3 x 1024 

Rectangular spectrogram (3D) 3 x 1024 x 2 

 

 

Figure 3.  Boxplot showing the total training time distribution for the time-

series (red), magnitude spectrogram (blue) and rectangular spectrogram 

(green) NN models.  

C. Test accuracy 

1) Test 1 

a) ASK signal 

Figure 4 shows the accuracy of the NN models for the 

time-series (1D), magnitude spectrogram (2D) and 

rectangular spectrogram (3D) datasets containing ASK 

signals with SNR ranging from -21dB to 21dB. For all 

models, there is a general trend of increase in testing accuracy 

when the SNR increases. This is, again, a fairly intuitive 

behavior since higher SNR means the dataset is ‘cleaner’ and 

the NN models can better differentiate between the ‘highs’ 

and ‘lows’ of the core signal. 
The comparison between the three datasets is more 

interesting. In low SNR conditions (less than -15dB), the 
rectangular spectrogram model seems to perform slightly 
better than the magnitude spectrogram model. However, as 
the SNR increases, the performance of the magnitude 
spectrogram model improves rapidly and overtakes the 
rectangular spectrogram model after about -6dB. This can be 
explained by the type and quantity of information each dataset 
contains. Magnitude spectrogram, by definition, contains the 
magnitude or energy information of the signal, which is 
directly proportional to the signal amplitude. So, for ASK 
signals, the magnitude spectrogram more clearly represents 
modulation transitions in higher SNR conditions, thus 
simplifying the task of the NN as compared to the rectangular 
spectrogram. In contrast, the rectangular spectrogram holds 
more information about the signal, which is a boon in low 
SNR conditions but also the cause of data dilution resulting in 
lower performance compared to magnitude spectrogram in 
high SNR condition. 

b) FSK signal 

Figure 5 shows a similar NN model accuracy versus SNR 
plot as Figure 4, but for FSK signals. In contrast with the ASK 
signals of Figure 4, the comparison between the time-series, 
rectangular spectrogram and magnitude spectrogram models 
is more consistent across all SNR levels. The time-series and 
rectangular spectrogram models are evenly matched, and 
better than magnitude spectrogram models (until convergence 
occurs) in terms of accuracy.  

 

 

Figure 4.  Test accuracy of NN models trained with time domain, 
magnitude spectrogram and rectangular spectrogram datasets containing 

ASK signals (high=1, low=0.7) with SNR ranging from -21dB to 21dB. 

Time-series model had generally highest accuracy while the rectangular 
spectrogram model shows better performance than magnitude spectrogram 

model only in low SNR conditions. 
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Figure 5.  Accuracy versus SNR plot for NN models of FSK signals 

(high=1000 Hz, low=950 Hz) showing similar performance of time-series 

and rectangular spectrogram models while the magnitude spectrogram 

model performed worst across all SNR levels. 

The higher accuracy of rectangular spectrogram 
compared to magnitude spectrogram can again be explained 
by the quality and quantity of information represented by the 
magnitude and rectangular spectrograms. The real, imaginary 
and magnitude spectrograms all contain the frequency shift 
information. By stacking the real and imaginary parts 
together, the quantity of information is doubled in rectangular 
spectrogram. However, unlike ASK, this does not dilute the 
dataset because the quality of information in relation to 
frequency is the same in all three sets. Therefore, the 3D 
rectangular spectrogram performs better than the 2D 
magnitude spectrogram over all SNR values. 

c) PSK signal 

Figure 6 shows a similar NN model accuracy versus SNR 
plot as Figures 4 and 5 but for PSK signals. As with the FSK 
models, the time-series and rectangular spectrogram model 
accuracies are evenly matched across all SNR levels. 
However, the magnitude spectrogram models were stuck at 
around 50% accuracy regardless of the SNR level. By 
definition, magnitude spectrogram completely ignores the 
phase information of the complex-valued spectrogram, and 
thus, the corresponding model can’t distinguish between the 
different phases of the PSK signals. In contrast, the 
rectangular data retains this phase information indirectly, as 
indicated by the improved rectangular spectrogram accuracy 
curve in Figure 6. 

 

 

Figure 6.  Accuracy versus SNR plot for NN models of PSK signals 

(high=0°, low=25°) showing the similar performace of time-series and 

rectangular spectrogram models. The magnitude spectrogram models’ 
accuracy was approximately 50% for all SNR levels because of its inherent 

inability to retain phase information. 

2) Test 2 
From Figure 4-6, we observe that time-series NN model 

performed better than the spectrogram models in all three 
cases. This can be attributed to the unprocessed information 
that this raw time-series signal contains. Spectrograms need 
pre-processing, and each pre-processing step results in some 
information loss. Hence, the pre-processed spectrograms 
contained less information than the unprocessed time-series 
signal. However, the information contained in the time-series 
signal can be confused in the presence of fake or interfering 
signals. In such cases, we expect the classification 
performance of the time-series NN model to suffer. To test 
this hypothesis, we conducted ‘Test 2’. 

As explained in Section II, Test 2 is similar to Test 1 
except that an ideal power signal is included to the AWGN 
added modulated signal as a strong out-of-band interferer. In 
practical terms, this power signal simulates a dominant 
interfering signal that makes the identification and 
classification of the desired signal more difficult and can 
confound the ML training process. This test case directly 
corresponds to an application scenario of a power line 
communication medium where the power signal is much 
stronger than the communication signal and affects the 
reactive channel in various other ways. 

Figure 7 shows the accuracy of the NN models for time-
series, magnitude spectrogram and rectangular spectrogram 
datasets each with ASK, FSK or PSK signals. This figure 
shows that the time-series and magnitude spectrogram NN 
models fail to produce any notable result regardless of 
modulation type. On the other hand, the rectangular 
spectrogram models are able to compensate for the dominant, 
out-of-band interfering signal and produce a good 
classification result. This figure also shows that this plot is not 
merely a far-left extension (very low SNR) of the plots in 
Figures 4, 5 and 6, at least not for rectangular spectrogram 
models, as the accuracies approach 100%. The sharp increase 
in accuracies with increasing SNR indicates that the 
rectangular spectrogram model is affected more by the less 
energetic AWGN than the highly energetic out-of-band 
interferer. 

 

 

Figure 7.  Accuracies of the time-series, magnitude spectrogram and 
rectangular spectrogram NN models for ASK, FSK and PSK signals with 

added ideal power signal. The SNR levels in the X-axis of the plot is 

discounting the power signal (i.e., this SNR=Energy of the core modulated 

signal/Energy of the AWGN). 
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IV. CONCLUSION 

In this study, we compared the performance of time-series, 
magnitude spectrogram and rectangular spectrogram datasets 
in training a simple, fully connected NN. We observed that 
time-series and rectangular spectrogram training data 
performed better than magnitude spectrogram data for FSK, 
PSK and low-SNR ASK signals. We also observed that 
rectangular spectrogram training data performs significantly 
better than other formats when there are dominant out-of-band 
interferers present. 
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Abstract—Multiple-Input and Multiple-Output (MIMO) and
Orthogonal Frequency-Division Multiplexing (OFDM) are crucial
technologies inside the 5G mobile communication systems and be-
yond. Design and evaluation of detector techniques over realistic
channel conditions are essential in order to transmit signals at
high rates and with high reliability in such technologies. In this
paper, we present the evaluation of MIMO-OFDM preprocessors
over non-Gaussian impulsive noise. Also, we propose a non-
linear sigmoid preprocessor without a threshold parameter as
an alternative to the traditional preprocessors. The simulation
results show that the Symbol Error Rate (SER) performance
depends on not only the preprocessors used and their thresholds
but also the impulsiveness level in the noise.

Keywords—Impulsive noise; sigmoid function; non-linear pre-
processors; non-linear MIMO.

I. INTRODUCTION

Multiple-Input and Multiple-Output (MIMO) systems have
received much attention in recent years due to the increasing
demand of high transmission rates and high quality of service
for wireless communications. MIMO-OFDM techniques are
applied to many applications and contexts, such as 4G and 5G
networks, 802.11ac, and vehicular environments [1]. With the
increasing number of mobile users in the same time-frequency
resource, the array efficiency of MIMO allows us to reduce the
transmit power and improve energy efficiency [2]. In addition,
MIMO is robust in the face of hardware imperfections, such
as multiplicative phase drifts and additive distortion noise [2].

One of the greatest challenges of MIMO-OFDM systems
is to detect signals with high performance and relatively
low computational complexity. However, information signals
are degraded by many different undesirable wireless channel
effects in which noise assumptions have been demonstrated
as one of the greatest challenges faced by MIMO systems.
Thus, the design conception of such technology must consider
realistic channel and noise models in order to represent well
the current applications. On the other hand, various wireless
channels have been demonstrated to suffer from impulsive
noise which is more accurately characterized as non-Gaussian
processes [3]. Those effects are commonly caused by man-
made sources, electrical devices, ignition noise in vehicles,
and bursty radio frequency emissions typical in urban envi-
ronments [1].

In severe impulsive noise scenarios, the effects of the
MIMO performance may be misread as low Signal-to-Noise
Ratio (SNR), when in fact there is a certain impulsiveness
level degrading overall system performance. Especially for
classical MIMO detectors that rely on second-order statistics
noise models, the Gaussian model assumption of wireless

noise behavior leads to meaningful degradation or does not
work well. Thus, one way to improve the performance of
MIMO-OFDM systems is minimizing undesirable effects of
channel and noise by designing detectors considering non-
Gaussian noise. Notably, detectors have been proposed over
non-Gaussian noise models with considerable improvements
compared to traditional ones in those scenarios.

Several papers show non-linear preprocessors with threshold
level in order to mitigate the impulsive noise in receivers [4],
[5]. Performance evaluation has been done with those non-
linear techniques in OFDM receivers [5], reducing adverse ef-
fects of impulsive noise. Recently, an adaptive MIMO receiver
was proposed using an impulsive noise level detector. Other
adaptive techniques were also presented based on Recursive
Least Mean Square (RLS), adaptive Normalized Least Mean
Square (NLMS), and Variable Step-size adaptive Normalized
Least Mean (VSNLMS), thereby mitigating the impulsive
noise effects [6]. The Support Vector Machine (SVM) has been
investigated with non-linear complex Multiple Support Vector
Machine regression (M-SVM) in this environment. Further-
more, a MIMO detector was proposed based on the maximum
complex correntropy criterion using channel estimation to fit
a parameter of its technique [7].

Those methods present improvements in detection over
impulsive non-Gaussian noise as compared to traditional de-
tectors. However, they usually have too high computational
complexity making them often infeasible, due to the adding
of an adaptive step or the making of a channel estimation to fit
a parameter of the detector. Moreover, many detector solutions
require a parameter usually based on a prior noise information.
In this context, this work introduces a non-linear preprocessor
based on sigmoid functions without free parameter for MIMO
detector over non-Gaussian channels.

This paper is organized as follows. In Section II, we describe
the MIMO-OFDM system, presenting the channel and noise
model. MIMO-OFDM preprocessors are presented in Section
III. In Section IV, we propose a MIMO preprocessor based on
sigmoid function. In Section V, we evaluate its performance
over non-Gaussian scenarios by simulations. In Section VI,
we present our final remarks.

II. MIMO-OFDM SYSTEM

Consider a MIMO system with NR antennas at the receiver
and NT antennas at the transmitter, illustrated in Figure 1.
The transmitter consists of MIMO-OFDM modulation over N
subcarriers [5]. In the Orthogonal Frequency-Division Multi-
plexing (OFDM) transmitter, the bits are mapped into base-
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band symbols Sk using Phase Shift Key (PSK) or Quadrature
Amplitude Modulation (QAM) scheme. Then, the complex
baseband OFDM signal is computed by means of inverse
Discrete Fourier Transform (iDFT) as:

sn(t) =
1√
N

N−1∑
k=0

Skej
2πkt
Ts (1)

where N is the number of subcarriers, and Ts is the active
symbol interval.

Serial-to-
parallel
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Modulator
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.

.

.
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Demodulator

Demodulator

Preprocessor

Preprocessor

.

.
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serial
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Output

NR
.
.
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Non-Gaussian
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Figure 1. MIMO system architecture.

The NR antennas are spaced such that the received signals
may be considered independent of each other. The k-th symbol
received by the m-th antennas is given by:

ym(t) =

NT∑
n=1

sn(t)hmn(t)p(t) + wm(t), (2)

where sn(t) represents the transmitted symbol from the n-th
antenna, hmn(t) represents the channel coefficient between the
n-th transmitting antenna and m-th receiving antenna, wm(t)
corresponds to the channel noise, and p(t) is a rectangular
pulse.

The channel may be described as:

hmn(t) = hmn,r(t) + jhmn,q(t), (3)

where hmn,r(t) and hmn,q(t) are Gaussian processes with
mean zero and variance equal to 1/2. We also assume that
the differences in propagation times of the signals from the
transmitters to the receivers are small relative to the symbol
duration.

A. Noise Model

We assume that the noise is uncorrelated, and its distribution
can be represented by α-stable distributions, which are based
on crucial properties such as generalized central limit theo-
rem and stability. According to the generalized central limit
theorem, if the sum of independent and identically distributed
random variables with or without finite variance converges,
then the limit distribution must be α-stable. Another relevant
property, known as stability property, states that the sum of

two independent random variables with the same characteristic
exponent (α value) is also α-stable.

There are different parametrizations of α-stable distribution
for different specifications of the characteristic function. We
assume the parameters θα = (α, β, γ, δ) and the following
characteristic function [8]:

ϕ(ω;θα) = exp(−γα|ω|α[1− jΘ(ω;α, β)] + jδω), (4)

with

Θ =

{
β(tan πα

2 )(sign ω), α 6= 1
−β 2

π (ln |ω|), α = 1,
(5)

where
α is the characteristic exponent such that 0 < α < 2,
β is the symmetry parameter such that −1 ≤ β ≤ 1,
γ is the dispersion or scale parameter such that γ > 0,
δ is the location parameter such that −∞ < δ <∞.
ω is the independent variable of the characteristic function.

-0.5 0 0.5

x

0.2

0.4

0.6

0.8

1

1.2

1.4
D

e
n
s
it
y

 = 2

 = 1.5

 = 1

Figure 2. Probability distribution function of symmetrical α-stable with β =
δ = 0 and γ = 1.

We also assume a Symmetric α-Stable (SαS) class because
it has proved to be very useful in modeling impulsive noise [3].
For such distribution class, β = 0 and δ = 0 [9]. Figure 2 shows
the α value variation versus the random variable representing
the impulsiveness level of the distribution, where a low value
of α suggests high impulsiveness and a non-Gaussian behavior,
and a high value of α means that the distribution is close to
the Gaussian behavior, where α = 2 is the Gaussian case.

III. NON-LINEAR PREPROCESSORS

In order to mitigate impulsive noise effects, non-linear
preprocessors are applied at the receiver as illustrated in
Figure 1. Those memoryless preprocessors are non-linear
transformations over the signal amplitude. The most common
non-linear preprocessors are blanking and clipping based on
thresholds.
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A. Blanking

The blanking non-linear mapping can be described as:

yk =

{
rk, |rk| ≤ T
0, |rk| > T

, k = 0, 1, . . .M − 1 (6)

where T is the blanking threshold and M is the signal length.

B. Clipping

Similar to blanking, the clipping technique maintains the
amplitude when the signal is below a threshold. However,
when the signal is above the threshold, then the amplitude
is saturated by the threshold keeping its phase. This function
can be described as:

yk =

{
rk, |rk| ≤ T
T ejarg(rk), |rk| > T

, k = 0, 1, . . .M − 1

(7)
where T is the clipping threshold and M is the signal length.

IV. PROPOSED PREPROCESSOR

In this proposed technique, we compute the MIMO-OFDM
using a non-linear preprocessor function based on a class
of functions called sigmoid. These functions have essential
characteristics as non-linear functions, such as monotonically
increasing and anti-symmetry.

The non-linear functions aim to ensure the existence of
higher-order statistics. The most common functions in the
sigmoid family are the hyperbolic tangent functions, described
as follows.

yk = tanh(rk) =
erk − e−rk

erk + e−rk
. (8)

These functions are commonly used to compute covariance
by using non-linear data transformation, allowing to access
information from the signal, even when it is contaminated by
non-Gaussian noise [10].

V. RESULTS AND DISCUSSIONS

This section presents numerical simulation results for the
performance evaluation of the MIMO-OFDM system using
different preprocessors. We examined the Symbol Error Rates
(SER) versus the quality of signal metrics in a 2x2 MIMO
system. The simulations assess the results using the Monte
Carlo method with curves computed with at least 50 errors
in the estimation, using 104 subcarriers and 1000 frames.
All simulations consider baseband signal using Quadrature
Phase Shift Keying (QPSK) modulation and unity energy with
the antennas statistically independent of each other. Also,
Rayleigh flat fading was assumed as the multipath propagation
model in the wireless channel.

The performance metrics are usually computed versus the
Signal-to-Noise Ratio (SNR). However, the infinite variance of
non-Gaussian SαS processes prevents to compute the signal-
to-noise ratio as a measurement of signal quality. In this work,

we use the Geometric Signal-to-Noise Ratio (GSNR) [11]
instead of the SNR. The GSNR is given by

GSNR =
1

2Cg

(
A

S0

)2

, (9)

where the normalization constant Cg = eCe ≈ 1.78 is the
exponential of the Euler constant (Ce), used to ensure that
GSNR corresponds to SNR when the channel is Gaussian (α =
2); S0 is the geometric power of a SαS random variable; and
A is the root-mean-square value of the signal.

Figure 3 shows the performance of MIMO-OFDM receivers
over non-Gaussian SαS noise with impulsiveness level of
α = 1.3 and threshold T = 2 for blanking and clipping pre-
processors. This scenario represents an environment with high
impulsiveness noise where the performance of the MIMO-
OFDM system is very low compared to the Gaussian case.
However, one can see the preprocessors deliver better perfor-
mance than the case without the preprocessor, mainly for high
GSNR values. Thus, although all preprocessors increase the
performance of the MIMO-OFDM system, their performance
depends on the impulsiveness level of the noise.

Figure 3. Performance comparison among the preprocessor techniques over
SαS noise with α = 1.3 and T = 2.

A. Impulsiveness Analysis
Figure 4 presents the performance of preprocessors over

SαS noise model over different impulsiveness levels, i.e.,
many different values of α. More impulsiveness level is
close to the Gaussian case (α = 2), less is the increase in
performance due to preprocessors nonlinearity over impulsive
noise. This behavior occurs because in this case, the noise is
less impulsive than with low values of α.

Although all preprocessors increase performance over high
impulsive noise, that also depends on the threshold level used
for the blanking and clipping methods.

B. Threshold Analysis
Figure 5 presents the performance of blanking and clipping

preprocessors over different threshold levels. For an interme-
diate range of threshold values, these techniques have better
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Figure 4. Performance of preprocessors over SαS noise with many different
values of α, GSNR = 15 dB and T = 2.

performance than the sigmoid preprocessor. However, this
range changes with impulsiveness level and GSNR, making
this region of values difficult to be set.

Figure 5. Performance varying threshold level of blanking and clipping
preprocessors over SαS noise with α = 1.3 and GSNR = 15 dB.

VI. CONCLUSIONS

In this paper, we evaluated traditional preprocessors in
the detection of signals in MIMO-OFDM systems over non-
Gaussian channels. We analyzed those preprocessors by dif-
ferent aspects, such as the impulsiveness level of the noise,
the threshold level of the preprocessors, and the quality of the
signal. Also, we presented a non-linear sigmoid function as
an alternative to the classical preprocessors, comparing their
performance over all aspects mentioned before. The traditional
blanking and clipping preprocessors depend on the threshold
level, which, in turn, also depends on the impulsiveness level
in the environment. On the other hand, the sigmoid function
does not have any parameters, being an alternative in the trade-
off of preprocessors in the MIMO-OFDM detection systems.

Future works may use those results to investigate adap-
tive and machine learning solutions based on non-Gaussian

noise parameters such as GSNR and α values. Thus, the
preprocessors using such techniques must present a different
performance, thereby being an alternative to the traditional
ones.
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Abstract— A unique fingerprint in radio frequency signals 

provides a natural authentication for wireless edge devices in a 

cybersecurity application based on frequency analysis. Such 

fingerprints can be improved if extraneous frequency data is 

removed from the Fourier Transform prior to authentication, 

but the data manipulation must be done in real time systems 

with embedded databases designed to store such fingerprints. 

These embedded systems require a simple and fast process. A 

method is proposed to manipulate frequency-domain data 

captured from wireless signals for use in cybersecurity 

applications to remove unwanted features and ensure the 

retention of important attributes in embedded databases. 

Experimental measurements and field studies are presented 

which lead to modifications in the methodology to address 

unexpected features encountered. Computational efficiency is 

taken into account. 

Keywords-physical layer cybersecurity; wireless security; 

Fast Fourier Transform; radio frequency waveforms. 

I.  INTRODUCTION 

Under consideration in this paper is a cybersecurity 
application which relies on analysis of the frequency content 
of wireless signals sent from sensors, cameras and actuators 
that make up what is colloquially referred to as the Internet 
of Things. This particular application is based on 
authenticating fixed wireless devices by recognizing a 
fingerprint in wireless signals unique to each device. The 
fingerprint is based, in part, on polarization mode dispersion 
resulting from reflections in a multipath environment [1]. 
This was previously considered an undesirable trait of 
wireless communications has become a boon to secure 
identification of individual transmitting devices [2]. Such 
dispersion is found to be stable for fixed edge devices and 
relatively impervious to interference and motion within the 
multipath. The process may be deployed in applications 
which use channel-hopping, as well, indicating a broad 
application area [3][4]. 

Improvements in the fingerprint may be obtained by 
removing frequency data that is not specific to the 
calculation of polarization mode dispersion, specifically, data 
that is outside the bandwidth of the transmitting device. This 
often includes side lobe data and data near zero resulting 
from a transformation from the time domain to frequency 
domain. Because this authentication must be made as 
received signals are being demodulated in an access point, 

time is of the essence to minimize latency in the data 
transmission. Therefore, a method is suggested to trim 
frequency data for such applications in a manner suitable for 
real time systems employing embedded databases for 
retaining such fingerprint data. The method is simple and 
efficient. 

To properly address the subject matter of this paper, the 
following sections are offered. Section II covers background 
in the area of common implementations of side lobe 
reduction for applications that are not necessarily real time 
and embedded systems, so it is possible to envision how the 
suggested method compares. Section III discusses the theory 
behind the suggested method for context on why certain 
decisions were made. Section IV describes the precise signal 
processing that takes place in the method in a step-by-step 
manner. Section V shows results of laboratory measurements 
and modifications made to the method as a result. Section VI 
shows data from field measurements and further 
modifications made to the method taking these tests into 
account. Section VII draws conclusions from observations 
made in the previous sections. 

II. BACKGROUND 

Obtaining Radio Frequency (RF) data for the proposed 
fingerprinting analysis requires receiving a wireless signal, 
digitizing it and transforming it to the frequency domain. 
Here, a Discrete Fourier Transform (DFT) is being used for 
the transformation. 

Inherent to the digitization are certain artificial artifacts 
of the transformation process that may affect future 
calculations. Primarily targeted in this paper are side lobes in 
the frequency response data. To remove these, many 
methods have been proposed for use in applications of radar, 
radio and ultrasound, dating back to pivotal publications in 
the 1960s, like Blackman’s Data Smoothing and Prediction 
[5]. The most common of these methods are addressed here. 

A. Windowing 

Windowing covers a broad area of research in RF 
waveform manipulation. In this process, a function described 
mathematically within a fixed window and is multiplied with 
the signal of interest while being incrementally moved, 
sample by sample, from one end of the signal to the other, 
that is, in a sliding window. More precisely, the two 
functions representing the signal and the window, 
respectively, are convolved; that is, the integral is taken of 
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the multiplication of the two functions as in the definition of 
convolution given in equation (1), where f is the signal 
function and g is the window function which advances 
relative to f by frequency bin steps, τ. In this case t refers, not 
to time, but instead to frequency. 

 

                           (f*g)(t) := ∫ f(τ)g(t−τ) δτ  (1) 
 
Window functions may be as simple as having a 

rectangular shape or as complex as a Parzen, Welch, or sine 
wave. One of the most common is a parabolic shape with 
three different versions introduced each by Hann, Hamming 
and Blackman [6][5]. Each has a slightly different effect on 
modifying the transform, particularly in the area of interest: 
the side lobes. 

Even a simple triangular function can greatly reduce the 
amplitude of side lobes in RF waveforms. Applications 
engineers in industry have done extensive studies comparing 
such techniques in both the time and frequency domains [7]. 
These methods prove useful in operations that are not time 
critical and have been found appropriate for displaying the 
results, for instance. It is even conceivable to use such 
functions to precondition the waveform in the application 
under consideration. However, the side lobe data is still 
present after these convolutions and still troublesome for 
securely identifying RF fingerprints. 

B. Discrete Wavelet Transform 

A wireless signal of interest in the application of wireless 
cybersecurity often travels from transmitter to receiver in an 
industrial, commercial or residential setting. In these 
environments, the signal reflects off of many walls, ceilings, 
floors and objects on its way to the receiver. Such rich 
multipath channels have caused researchers to investigate 
other means of transforming received signals into frequency 
domain data. It is desired to find a transform that is perhaps 
less sensitive to the distortion and dispersion caused by the 
multipath. One such method is the Discrete Wavelet 
Transform, which has been shown to improve the Bit Error 
Rate (BER) over receivers using the DFT [8][9]. In the case 
under consideration, however, the dispersion caused by the 
multipath is of particular interest. There is, therefore, a need 
to preserve it across the main lobe of the resulting DFT. 

C. Subcarrier Weighting 

Commonly used in the popular Orthogonal Frequency 
Division Multiplexing (OFDM) protocols is a concept of 
subcarrier weighting [10]. In this process of transmitting a 
wireless signal, each OFDM subcarrier is weighted, that is, 
multiplied by a fixed or dynamic value used to reduce its 
impact on adjacent channels. This is commonly done using 
complex numbers to account for polarization of the signal. 

Another similar method has been proposed, which takes 
computational time into consideration to produce a real time 
method called advanced subcarrier weighting [11]. Designed 
primarily for the transmission of signals rather than receiving 
them, the method reduces side lobe interference with signals 
in adjacent frequency channels. However, since it is designed 

for the transmission side of the data communications, it is 
not directly applicable to this application. 

D. Ultrasound beam summation 

Some of the more exotic concepts of dealing with side 
lobes have come from the medical industry. These 
application areas are typically centered upon medical 
imaging, where the frequency domain data is useful in 
detecting abnormalities or enhancing features of biological 
images. Methods of beamforming, again on the transmission 
side, have provided a rich research area for new methods and 
improvements. One interesting method, which could have 
mathematical equivalency in received signals, is interference 
cancellation. For instance, ultrasound beam summation 
employs pseudo-inverse foci with a second focus located a 
distance from the initial focus such that the constructive 
interference between the two signals cancels the side lobes 
[12]. Although such methods are complex and again centered 
on transmission, they may lead to interesting developments 
in received signal manipulation in the future. 

E. Other Fingerprinting Methods 

Many research approaches to wireless cybersecurity have 
centered on fingerprinting source devices as a form of 
authentication. Convolutional Neural Networks (CNNs) have 
been proposed to fingerprint radios though deep learning of 
certain inherent hardware features and responses [13][14]. 
Ongoing research has indicated, however, that wireless 
multipath channels introduce distortion that negatively 
affects the reliability of such methods [15].  

The new method of cybersecurity authentication with 
fingerprinting, which is the method under consideration in 
this paper, employs such distortion for fingerprinting rather 
than trying to eliminate it. This new method, however, is 
impacted somewhat negatively by side lobes, which are 
formed due to the discrete nature of the transformation into 
the frequency domain. A new approach is sought to remove 
the undesired features while not creating a burden on real 
time system computation time. 

III. THEORY 

In real time embedded system design for radio frequency 
applications, the primary criterion of concern is execution 
time. The time required to prepare and store data is a cost 
subtracted from the total time available to make decisions on 
actions that must be taken. Thus, the more exotic solutions, 
although they may produce better results, must give way to 
the simplest to allow time for the more critical decision-
making algorithm. 

In the case considered in this paper, execution time is 
constrained by the requirement to make a decision on the 
authentication of a received signal prior to the receipt of the 
next viable signal. A DFT transforms the signal to the 
frequency domain and further analysis of the dispersion leads 
to a correlation of the received signal with a known signal. 
As an example of available time to do this function, using 
WiFi 802.11n signals transmitted as beacons to search for 
other devices yields a duration for a signal of around 300 
microseconds.  
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Fig. 1. Windowing data produces side lobes in the results of a DFT on 

sinusoidal data 

 
By restricting the execution time for data preparation and 

storage, more time is available for proper authentication. 
Thus, it is desired to find a way to eliminate unwanted data 
from the frequency domain data in a short amount of time. 

The shape of an ideal DFT resulting from a strong signal, 
for example one with a Signal-to-Noise Ratio (SNR) of 40 
dB, consists of a main lobe centered on the transmitted 
frequency and side lobes to each side with incrementally 
lower intensities, such as the one depicted in Figure 1 above. 
The task, therefore, is to identify and store only the main 
lobe in an embedded database designed for such signals. 

One may note that the ideal case is symmetrical. Often 
this fact is relied upon to store only half the amount of data, 
considering that it is mirrored around the center frequency. 
In the case presented here, however, the non-symmetry of 
actual frequency data in the main lobe is important to the 
cybersecurity application under consideration and, thus, the 
entire main lobe is to be saved. 

While many hardware and software solutions have been 
proposed for reducing side lobes in wireless signal DFTs, a 
simpler solution would be to trim the resulting DFT to 
include only the frequency bins of interest. This can also be 
referred to as cropping, although that term comes from 
image analysis with the data being removed being image 
data. Based on trimming as a proposed simplification applied 
to RF signals, the question then arises of whether or not it is 
feasible to identify the proper points at which the DFT 
should be trimmed. 

The feature of a DFT being discrete is inherent in the 
need to trim data. The transform assumes that a selected 
window for the DFT calculation is the exact width of one or 
more full cycles of the waveform of interest. However, in 
reality, the window often cuts a particular waveform short of 
a full cycle (or whole number multiple of a full cycle). The 
result is an introduction of side lobes in the transform, 
representing frequency components that are artifacts of the 
math rather than frequencies that actually exist in the signals 
of interest. This is referred to as spectral leakage. 

IV. SIGNAL PROCESSING 

To identify the main lobe with the least computational 
effort, one might consider using the maximum intensity of a 
DFT as an indication of a location near its center. From 
there, the edges can be sought and the width calculated. The 
main lobe data must then be trimmed to be placed into a 
database, along with like entries from other signals received. 

A. Step 1: Selecting the Main Lobe 

To begin, a point is identified with a high probability of 
being located as a frequency bin within the main lobe. That 
would be a point with a high intensity. Thus, a function 
invoked to find the maximum value in an array of floating 
point numbers would be appropriate. If the DFT output is an 
array, using a maximum value function may remove the 
dimension of the array of interest, replacing it with a scalar 
value. Look for a function argument, like ‘keepdims,’ in 
cases where it is desired that the resulting dimension remain 
consistent with the original dimensions. 

In practice, abnormalities exist in the DFTs measured in 
applications involving WiFi signals; abnormalities which 
will affect the selection of this point. These will be addressed 
in Section IV Laboratory Measurements, as well as in 
Section V Field Measurements. They will require altering 
this step. Until then, it is sufficient to say that the initial step 
is to identify a point of high intensity. 

B. Step 2: Finding the Edges 

Using a point with a high probability of residing in the 
main lobe as the starting point, it is now possible to examine 
lower, and then higher, frequency bins to find indications of 
the edges of the main lobe. In this portion of the process, low 
intensity is of more interest than high intensity. Finding the 
edges of the main lobe involves finding the points on either 
side of the point thought to be in the main lobe where the 
resulting value is first near zero; that is, near zero at the point 
closest to the maximum. 

Actual measurements are never as clean as the ideal 
example, however. The main lobe, in fact, is often sprinkled 
with many points that are near zero. In fact, “zero” can mean 
some value close to the noise floor of the signal. 

A moving-average acts as a low pass filter to smooth the 
normally jagged transform and provides a more stable value 
with which to compare some threshold value that is set near 
zero. A basic form of a moving average is the uniform 
moving average where the current frequency bin and the 
prior N-1 bins are summed and divided by N. This is 
equivalent to multiplying each frequency bin by 1/N and 
summing. 

Yet, a moving average is not necessary. A moving 
summation accomplishes the same task without requiring a 
division operation each time a signal is received, nor does it 
require handling the special case where there could be an 
undesirable division by zero. Using a summation only 
requires adjusting the threshold by the number of samples in 
the moving summation. 

 
 

Intensity 

normalized 

Frequency units 
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 In the proposed process, where generalization is desired, 
the threshold is set as a multiple of the center of the first 
quartile of sorted and ordered frequency bin intensities. For 
example, when collecting 12-bit data at 20M samples per 
second, one might receive a signal for which the DFT covers 
the full bandwidth of the receiver. However, it might also be 
far less than the full bandwidth. In either case, the center of 
the first quartile of sorted intensities most often carries some 
value close to the noise floor. By adjusting the multiplication 
factor of this value, a threshold may be chosen to 
appropriately mark the points at which the main lobe 
approaches zero (or really the noise floor). 

This simple algorithm compares a moving summation 
incrementally moving away from the maximum, first in the 
lower frequencies, then in the higher frequencies. It 
increments until it reaches the limits of the data or falls 
below the threshold, at which point the bin in the summation 
window closest to the maximum is used to mark the low and 
high side of the main lobe; variable names fftlo and ffthi. 
The “fft” refers to the fundamental function, a Fast Fourier 
Transform [16]. 

C. Step 3: Matching the Database 

To enter the selection into a database, one must consider 
the size allotted for each entry. If the simple difference, ffthi-
fftlo, is either greater than or less than the entry size for the 
database, then the data must be manipulated to fit the 
database. In cases where the difference is less than the size 
allotment in the database, the DFT data is zero-padded on the 
side of the highest frequency bins. 

It is important to note here that future comparisons of the 
padded data should take into consideration that the padding 
is not reflective of there being no high frequency 
components in the stored signal, but rather that the width of 
the main lobe is smaller than the allotted space. Thus, the 
values of the fftlo and ffthi should also be stored so the data 
retrieved may be viewed in proper context. 

It is also important to note that padding the frequency 
domain data is not mathematically the same as padding the 
time domain data for a signal. In the case of the latter, 
resulting side lobes in a DFT can be accentuated as the 
window of data analyzed is artificially shortened. 

On the other hand, the DFT of the received signal may be 
larger than that of the stored data. If the high-to-low 
difference is greater than the allotted space in the database, 
then the data must be trimmed again. In performing this 
operation, the center line between the fftlo variable and the 
ffthi variable is used trim each the low and high ends of the 
available frequency bins such that the center remains the 
center of the trimmed data. This is done to preserve the most 
valuable portion of the data for later analysis or comparison. 
Thus, the allotted size is halved and points marked lower and 
higher by the length of each half are marked relative to the 
center line. This results in a main lobe that is of lesser width 
than the original. 

 

V. LABORATORY MEASUREMENTS 

Initially, a test was created to establish a baseline for 
future testing. In this case, the baseline would be defined as 
one with minimal multipath travel and a single, strong 
wireless signal to study. 

A. Setup 

An Ettus B210 Universal Software Radio Peripheral 
(USRP) is employed to receive two channels of 
synchronized data capture. This device features an Analog 
Devices two-channel 14-bit Analog-to-Digital Converter. 
Two RF Elements OARDSBX244 4 dBi Omni antennas are 
attached to the receive channels and placed in horizontal and 
vertical positions, with an angle of 90 degrees. A Netgear 
N600 wireless dual band router generates a periodic beacon 
broadcast on channel 10 (centered on 2.462GHz) to 
announce its presence to any listening devices. 

In an outdoor setting with no measurable WiFi signals, 
the router is placed 10m from the antennas of the receiver. A 
recording is made of the electromagnetic signal with settings 
of 20M samples per second at a gain of 20. 

The recording is used as input data to a pulse detection 
algorithm which extracts a single beacon in the form of a 
multidimensional array of complex numbers representing 
each sample pair for the horizontal and vertical inputs. That 
beacon is processed using Python’s library NumPy function 
fft.fftn() in an orthonormal mode, placing resulting vectors 
on a unit sphere. An FFT shift function is performed to place 
the frequency bins in order of lowest to highest along the x-
axis. 

B. Results 

The resulting DFT, shown in Figure 2, produces an 
interesting result. The center point is not the maximum 
value. In fact, the main lobe dips in intensity at the center. 
This attribute is consistent over many tests. Thus, the 
algorithm was modified in Step 1 “Selecting the Main Lobe” 
to find the two highest points and take the center point 
between them to better reflect a point near the center of the 
main lobe. With the center point selected, the moving sums 
increment first forward and then backward from it to find the 
points at which the intensity is below the selected threshold. 
 

 

Fig. 2. A Unitized DFT for an example WiFi signal shown across 

frequency bins centered on 2.462GHz marking main lobe 

Intensity 

normalized 

Frequency bins 
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Fig. 3. A signal with lower SNR has a dip in the center approaching zero 

The results of the selection process are shown in the same 
figure as dashed vertical lines demarking the low side and 
high side of the main lobe. 

Moving the router farther away reduces the signal to 
noise ratio. The impact lessens the prominence of the main 
lobe making it slightly harder to identify. Nonetheless, the 
modification of using the two highest points continues to 
work. This is not obvious since the two highest points are 
now both to the left of center. But, since we are trying to 
identify a point with high probability of being in the main 
lobe, this point will suffice. One near the center would be 
more certain, but in this case, we are still well within the 
main lobe. The iteration to the higher frequencies will simply 
take longer than the iteration to the lower frequencies.  

Now, however, it may be seen that the dip in the center is 
approaching zero. This could cause the method to select the 
center as one of the edges of the main lobe.  

To compensate, the moving summations above and 
below the selected point begin on either side of a fixed 
margin around the center, in which we do nothing. Now, 
when incrementing to higher frequencies, the iterations will 
begin, not at the selected point, but at a fixed margin away 
from it, spanning the low center of the DFT. 

This is the second modification made to Step 1. Figure 3 
displays a signal with lower SNR and the resulting low and 
high points selected. Note in this image that a side lobe on 
the high frequency side of the main lobe was included in the 
selection erroneously. A minor adjustment lowering the 
multiplication factor on the threshold would resolve this. 

 

VI. FIELD MEASUREMENTS 

A. Setup 

A site was selected with an indoor space approximating 
an industrial setting. A barn home was used with cross 
beams, fixtures in the space and miscellaneous objects which 
would produce a rich multipath channel for the RF signals to 
traverse. A barn home is one that is shaped like a barn, 
featuring a very large living space that has a 12x18 meter 
floor space and 12 meters ceiling. A USRP was placed along 
one wall of the facility.  

The same router was placed at a point 9 meters in front of 
the receiving antennas and four Raspberry Pi 3B 
microcontrollers were placed on an arc 12 meters away from 
the receiving antennas and on positions relative to the plain 
of the two orthogonal antennas at angles of 60, 80, 100 and 
120 degrees. The Pi’s were programmed to connect with the 
router. Data was captured using the same parameters as the 
laboratory measurements. 

All electrical devices in the house were shut down and 
interference studies were conducted with electrical fans and a 
microwave. The tests which follow were shown to have no 
electrical interference and no stray transmitters. 

B. Results 

In this environment, the SNR of some of the signals was 
much lower than those of the previous tests. The shape of the 
DFTs were also found to vary. The relative signal strength of 
received signals was not always as strong as those in the 
laboratory measurements. Their shape may be even less 
predictable than the lowest laboratory measurements, as may 
be seen in Figure 4, depicting the DFT for a WiFi signal with 
low SNR. It is much more difficult to see the main lobe, 
which extends over what seem to be two lobes rather than 
one. 

 

 

Fig. 4. DFT with low SNR causes the main lobe to be harder to determine 

 
 
 

 

Fig. 5. When the SNR is low the dip in the center can be missing 
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Fig. 6. Even lower SNR lessens the definition of the main lobe 

 

 

Fig. 7. A DFT of a Bluetooth signal is narrow with sidelobes farther away 

from the main lobe (before correction) 

 

Fig. 8. A DFT of a Bluetooth signal centered on a different channel 

On occasion, the dip seen in the previous tests was not 
present, as may be seen in Figures 5 and 6. Nevertheless, the 
algorithm for identifying the main lobe worked as modified. 

A Bluetooth signal from one of the Pi’s was recorded and 
analyzed. This signal is much more narrow then the previous 
WiFi signals and thus, the modification to have a fixed 
margin around the center that is not part of the calculations, 
along with the width of the window for a moving sum, each 
failed to accurately mark the low and high sides of this main 
lobe, as may be seen in Figure 7.  

 

Fig.9. A DFT showing a WiFi signal captured from an adjacent channel 

 

 

Fig. 10. DFT of a Gaussian pulse has a high intensity artifact that must not 

be counted as a peak intensity 

 
Bluetooth signals use a channel-hopping protocol and, 

thus, may appear in several locations across a fixed 20MHz 
receiver bandwidth. Figure 8 is an example of one that is not 
centered on the same channel. 

In the particular cybersecurity application under 
consideration for use with this proposed process, the 
inclusion of data near zero causes problems in later analysis 
and, thus, is undesirable. As a result, narrow signals, like that 
depicted in Figures 7 and 8, are made exempt from these two 
interfering constraints. That is, the fixed margin to begin the 
sliding summation is not enforced and the window for the 
moving summation itself is removed, as seen in Figure 8. 
This is the third modification to Step 1 “Selecting the Main 
Lobe.” The binary parameter marking a narrow band signal 
is stored along with the fftlo and ffthi parameters. 

It should be noted that some signals may not be centered 
on the appropriate channel frequency, but may still be 
desirable to process. Such is a case depicted in Figure 9. 
Here, the signal is centered near the limit of the bandwidth of 
the receiver, which is approximately 20 MHz. The algorithm 
continues to perform appropriately in such cases with one 
boundary being selected as either zero or the maximum 
number of frequency bins, depending on which side of the 
desired channel it falls. 

Lastly, the DFTs of some WiFi signals were seen to 
contain one point away from the main lobe with a very high 
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intensity. This typically occurred near an extreme of the 
receiver’s bandwidth, likely from a dominant frequency in 
the noise floor, or as an artifact of the transform calculations. 
In either event, the errant point should not be used in the 
selection of the main lobe, as it is not in the main lobe. 
Figure 10 is an example of a case where there is a single 
point with a very high intensity. This is not a signal, per se, 
but rather a pulse of Gaussian energy like one may see 
emitting from a radar. 

The fourth and final modification to Step 1, as a result, is 
to not use the first and second highest peaks, but instead use 
the second and third highest peaks to find a point with high 
certainty of being a part of the main lobe. Figure 8 depicts 
such a case, where the second and third peaks were used to 
find the boundaries of the main lobe efficiently. 

With these four modifications made, approximately three 
thousand signals were studied and marked with selection of 
the main lobe for storage and retrieval from an embedded 
database. Only three were improperly marked and all three 
were signals with SNR less than 3 dB. The markings on all 
three truncated the main lobe on one side of the center point. 

VII. CONCLUSION 

Real time devices requiring use of an embedded database 
in RF signal applications must be efficient in terms of 
computing time. In cases where the frequency content is of 
particular interest, efficiency may be gained by carefully 
selecting only the main lobe resulting from discrete Fourier 
transforms and eliminating the side lobes and extraneous 
data on high and low sides. 

Selecting the main lobe, however, can be hindered by 
several common abnormalities seen in the transforms of 
wireless signals; abnormalities like a dip in the center of the 
main lobe, the dip nearing the noise floor, and a single 
frequency outside the lobe with a very high intensity. In 
addition, some signals may be narrow band, requiring 
alternate handling. 

Methods presented in this paper have been tested with a 
large number of varying cases and have shown to produce 
good results in selecting the proper main lobe information to 
offer efficient data storage and retrieval for further 
computation. 
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