
ICAS 2012

The Eighth International Conference on Autonomic and Autonomous Systems

ISBN: 978-1-61208-187-8

March 25-20, 2012

St. Maarten, Netherlands Antilles

ICAS 2012 Editors

Freimut Bodendorf, University of Erlangen, Germany

Wendy Powley, Queen's University - Kingston, Canada

 1 / 132

ICAS 2012

Foreword

The Eighth International Conference on Autonomic and Autonomous Systems (ICAS 2012), held between
March 25-30, 2012 - St. Maarten, Netherlands Antilles, was a multi-track event covering related topics
on theory and practice on systems automation, autonomous systems and autonomic computing.

The main tracks referred to the general concepts of systems automation, and methodologies and
techniques for designing, implementing and deploying autonomous systems. Next tracks developed
around design and deployment of context-aware networks, services and applications, and the design
and management of self-behavioral networks and services. Also considered were monitoring, control,
and management of autonomous self-aware and context-aware systems and topics dedicated to specific
autonomous entities, namely, satellite systems, nomadic code systems, mobile networks, and robots. It
has been recognized that modeling (in all forms this activity is known) is the fundamental for
autonomous subsystems, as both managed and management entities must communicate and
understand each other. Small-scale and large-scale virtualization and model-driven architecture, as well
as management challenges in such architectures were considered. Autonomic features and autonomy
requires a fundamental theory behind and solid control mechanisms. These topics give credit to specific
advanced practical and theoretical aspects that allow subsystem to expose complex behavior. It was
aimed to expose specific advancements on theory and tool in supporting advanced autonomous
systems. Domain case studies (policy, mobility, survivability, privacy, etc.) and specific technology
(wireless, wireline, optical, e-commerce, banking, etc.) case studies were targeted. A special track on
mobile environments was indented to cover examples and aspects from mobile systems, networks,
codes, and robotics.

Pervasive services and mobile computing are emerging as the next computing paradigm in which
infrastructure and services are seamlessly available anywhere, anytime, and in any format. This move to
a mobile and pervasive environment raises new opportunities and demands on the underlying systems.
In particular, they need to be adaptive, self-adaptive, and context-aware.

Adaptive and self-management context-aware systems are difficult to create, they must be able to
understand context information and dynamically change their behavior at runtime according to the
context. Context information can include the user location, his preferences, his activities, the
environmental conditions and the availability of computing and communication resources. Dynamic
reconfiguration of the context aware systems can generate inconsistencies as well as integrity problems,
and combinatorial explosion of possible variants of these systems with a high degree of variability can
introduce great complexity.

Traditionally, user interface design is a knowledge-intensive task complying with specific domains, yet
being user friendly. Besides operational requirements, design recommendations refer to standards of
the application domain or corporate guidelines.

Commonly there is a set of general user interface guidelines; the challenge is due to a need for cross-
team expertise. Required knowledge differs from one application domain to another, and the core
knowledge is subject to constant changes and to individual perception and skills.

 2 / 132

Passive approaches allow designers to initiate the search for information in a knowledge-database to
make accessible the design information for designers during the design process. Active approaches, e.g.,
constraints and critics, have been also developed and tested. These mechanisms deliver information
(critics) or restrict the design space (constraints) actively, according to the rules and guidelines. Active
and passive approaches are usually combined to capture a useful user interface design.

All these points posed considerable technical challenges and make self-adaptable context-aware
systems costly to implement. These technical challenges led the context-aware system developers to
use improved and new concepts for specifying and modeling these systems to ensure quality and to
reduce the development effort and costs.

SYSAT Advances in system automation
AUTSY Theory and Practice of Autonomous Systems
AWARE Design and Deployment of Context-awareness Networks, Services and Applications
AUTONOMIC Autonomic Computing: Design and Management of Self-behavioral Networks and Services
CLOUD Cloud computing and Virtualization
MCMAC Monitoring, Control, and Management of Autonomous Self-aware
CASES Automation in specialized mobile environments
ALCOC Algorithms and theory for control and computation
MODEL Modeling, virtualization, any-on-demand, MDA, SOA
SELF Self-adaptability and self-management of context-aware systems
KUI Knowledge-based user interface
AMMO Adaptive management and mobility

We welcomed technical papers presenting research and practical results, position papers addressing the
pros and cons of specific proposals, such as those being discussed in the standard forums or in industry
consortia, survey papers addressing the key problems and solutions on any of the above topics short
papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the ICAS 2012 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to ICAS 2012. We truly believe that, thanks
to all these efforts, the final conference program consisted of top quality contributions.

We hope that ICAS 2012 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in autonomic and autonomous
systems.

We are certain that the participants found the event useful and communications very open. The
beautiful places of St. Maarten surely provided a pleasant environment during the conference and we
hope you had a chance to visit the surroundings.

ICAS 2012 Chairs
Michael Bauer, The University of Western Ontario - London, Canada
Radu Calinescu, Aston University, UK
Michael Grottke, University of Erlangen-Nuremberg, Germany
Bruno Dillenseger, Orange Labs, France

 3 / 132

ICAS 2012

Committee

ICAS Advisory Chairs

Michael Bauer, The University of Western Ontario - London, Canada
Radu Calinescu, Aston University, UK
Michael Grottke, University of Erlangen-Nuremberg, Germany
Bruno Dillenseger, Orange Labs, France

ICAS 2012 Technical Program Committee

Jemal H. Abawajy, Deakin University, Australia
Nouara Achour, USTHB University, Algeria
Carl Adams, University of Portsmouth, UK
Jérémie Albert, University of Bordeaux, France
Javier Alonso, Technical University of Catalonia, Spain
Razvan Andonie, Central Washington University - Ellensburg, USA
Richard Anthony, University of Greenwich, UK
Eva Ibarrola Armendariz, Escuela Técnica Superior de Ingeniería de Bilbao, Spain
Ismailcem Budak Arpinar, University of Georgia - Athens, USA
Mark J. Balas, University of Wyoming - Laramie, USA
Michael Bauer, The University of Western Ontario -London, Canada
Julita Bermejo-Alonso, Universidad Politécnica de Madrid, Spain
Philippe Besnard, IRIT - CNRS /Universite Paul Sabatier - Toulouse, France
Ateet Bhalla, NRI Institute of Information Science and Technology - Bhopal, India
Karsten Böhm, Fachhochschule Kufstein, Austria
Fabienne Boyer, University of Grenoble I, France
David W Bustard, University of Ulster, UK
Radu Calinescu, Aston University, UK
Paolo Campegiani, University of Roma Tor Vergata, Italy
Sara Casolari, Università di Modena e Reggio Emilia, Italy
Fernando Cerdan, Universidad Politecnica de Cartagena, Spain
Michal Certicky, Comenius University - Bratislava, Slovakia
Carlos Cetina, Technical Universidad San Jorge, Spain
Lei Chen, Sam Houston State University, USA
Philippe Codognet, University of Tokyo, Japan
Lorcan Coyle, Lero - University of Limerick, Ireland
Felix Cuadrado Latasa, University Polytechnic of Madrid, Spain
Noel De Palma, INRIA/SARDES - Grenoble, France
Marina De Vos, University of Bath, UK
Sotirios Diamantas, Pusan National University, South Korea
Tadashi Dohi, Hiroshima University, Japan
Carlos Duarte, University of Lisbon, Portugal
Xavier Dutreilh, Université Pierre et Marie Curie, France
Larbi Esmahi, Athabasca University, Canada

 4 / 132

Thaddeus Eze, University of Greenwich - London, UK
Donghui Feng, eBay Inc., USA
Ziny Flikop, Scientist, USA
Matthias Fuchs, Mid-Sweden University - Östersund, Sweden
Alex Galis, University College London, UK
Rodrigo Garcia Carmona, Universidad Politecnica de Madrid (DIT-UPM), Spain
Fabio Gasparetti, Roma Tre University, Italy
Andrzej M. Goscinski, Deakin University - Geelong, Australia
Dominic Greenwood, Whitestein, Switzerland
William Grosky, University of Michigan - Dearborn, USA
Michael Grottke, University of Erlangen-Nuremberg, Germany
Jordi Guitart, Barcelona Supercomputing Center (BSC), Spain
Takako Hashimoto, Chiba University of Commerce, Japan
Clemens Holzmann, Upper Austria University of Applied Sciences, Austria
Tim Hussein, University of Duisburg-Essen, Germany
Yoshiro Imai, Kagawa University, Japan
Kazuo Iwano, IBM, Japan
Yiming Ji, University of South Carolina - Beaufort, USA
María José Ibáñez, RIAM I+L Lab (GNOSS), Spain
John Keeney, Ericsson Ireland Research, Ireland
Hamed Ketabdar, Deutsche Telekom Laboratories / TU Berlin, Germany
Satoshi Kurihara, University of Osaka, Japan
Helge Langseth, NTNU, Norway
Fidel Liberal Malaina, University of the Basque Country, Spain
Antonio Liotta, Eindhoven University of Technology, The Netherlands
Hai-Bin Liu, China Aerospace Engineering Consultation Center, China
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Hanan Lutfiyya, The University of Western Ontario - London, Canada
Sayyed Majid Esmailifar, Sharif University of Technology -Tehran, Iran
Jacques Malenfant, Université Pierre et Marie Curie, France
Mauricio Marin, Yahoo! Research Latin America, Chile
Patrick Martin, Queen's University - Kingston, Canada
Yasser F. O. Mohammad, Assiut University, Egypt / Kyoto University, Japan
Masayuki Murata, Osaka University, Japan
John O'Donovan, University of California, Santa Barbara, USA
Jonice Oliveira, Federal University of Rio de Janeiro, Brazil
Michael O'Mahony, University College Dublin, Ireland
Jose Oscar Fajardo, University of the Basque Country, Spain
David Ostrowski, Ford Motor Company / University of Michigan - Dearborn, USA
Umberto Panniello, Politecnico di Bari, Italy
Mark Perry, University of Western Ontario, Canada
Wendy Powley, Queen's University - Kingston, Canada
Francesco Quaglia, Sapienza Università di Roma, Italy
Kanagasabai Rajaraman, Institute for Infocomm Research, Singapore
Alejandro Ramirez-Serrano, University of Calgary - Alberta, Canada
Martin Randles, Liverpool John Moores University, UK
Christoph Rasche, University of Paderborn, Germany
Paolo Romano, INESC-ID Lisbon, Portugal

 5 / 132

Cristian Ruz, INRIA Sophia Antipolis Méditerranée, France
Ricardo Sanz, Universidad Politecnica de Madrid, Spain
Munehiko Sasajima, Osaka University, Japan
Jan Sefranek, Comenius University - Bratislava, Slovakia
Paulo Jorge Sequeira Gonçalves, Polytechnic Institute of Castelo Branco, Portugal
Martin Serrano, Waterford Institute of Technology, Ireland
Maxim Shevertalov, Drexel University, USA
Marius Slavescu, Elegant Computing Services Inc, Canada
Edward Stehle, Drexel University, USA
Claudius Stern, University of Paderborn, Germany
Azzzelarabe Taleb-Bendiab, Liverpool John Moores University, UK
Michael Tighe, University of Western Ontario - London, Canada
Irina Topalova, Technical University of Sofia, Bulgaria
Davide Tosi, Università dell'Insubria – Como, Italy
Raquel Trillo Lado, University of Zaragoza, Spain
Cristián F. Varas Schuda, Fraunhofer FOKUS, Germany
Phan Cong Vinh, NTT University, Vietnam
Stefanos Vrochidis, Centre for Research and Technology Hellas - Thermi-Thessaloniki, Greece
Nanjian Wu, Chinese Academy of Sciences, China
Reuven Yagel, Ben-Gurion University, Israel
Constantin-Bala Zamfirescu, "Lucian Blaga" University of Sibiu, Romania
Dieter Zöbel, University Koblenz-Landau, Germany
Albert Zomaya, University of Sydney, Australia

 6 / 132

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 132

Table of Contents

Comparison of Bio-Inspired and Graph-Theoretic Algorithms for Design of Fault-Tolerant Networks
Matthias Becker, Waraphan Sarasureeporn, and Helena Szczerbicka

1

A Technique for Measuring the Level of Autonomicity of Self-managing Systems
Thaddeus Eze, Richard Anthony, Alan Soper, and Chris Walshaw

8

A Framework to Create multi-domains Autonomic Middleware
Mahdi Ben Alaya, Thierry Monteil, Khalil Drira, and Tom Guerout

14

State-Space Feedback Control for Elastic Distributed Storage in a Cloud Environment
M. Amir Moulavi, Ahmad Al-Shishtawy, and Vladimir Vlassov

18

Towards Autonomic Marketing
Carl Adams, Richard John Anthony, Wendy Powley, David Bell, Chris White, and Chun Wu

28

A Dynamic Load Balancing Model Based on Negative Feedback and Exponential Smoothing Estimation
Di Yuan, Shuai Wang, and Xinya Sun

32

Interactive Rendering of Huge 3D Meshes in Cloud Computing
Daeyoung Kim and Haeyoung Lee

38

Fault Tolerant Approaches in Cloud Computing Infrastructures
Alain Tchana, Laurent Broto, and Daniel Hagimont

42

BtrScript: A Safe Management System for Virtualized Data Center
Remy Pottier and Jean-Marc Menaud

49

RFDMon: A Real-time and Fault-tolerant Distributed System Monitoring Approach
Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Krisa W. Rowland

57

Online Spectrum-based Fault Localization for Health Monitoring and Fault Recovery of Self-Adaptive Systems
Eric Piel, Alberto Gonzalez-Sanchez, Hans-Gerhard Gross, Arjan J.C. van Gemund, and Rui Abreu

64

Augmenting Reinforcement Learning Feedback with Prediction for Autonomic Management
Khandakar Rashed Ahmed, Raphael Bahati, and Michael Bauer

74

Autonomic Computing in the First Decade: Trends and Direction
Thaddeus Eze, Richard Anthony, Chris Walshaw, and Alan Soper

80

A Deliberative Reasoner for Model-Based Software Health Management 86

 1 / 2 8 / 132

Abhishek Dubey, Nagabhushan Mahadevan, and Gabor Karsai

Efficient Alignment of Aerial Images Based on Virtual Forces
Claudius Stern, Christoph Rasche, Lisa Kleinjohann, and Bernd Kleinjohann

93

Coordinating Energy-aware Administration Loops Using Discrete Control
Soguy Mak Kare Gueye, Noel De Palma, and Eric Rutten

99

Action Learning with Reactive Answer Set Programming: Preliminary Report
Michal Certicky

107

Development and Evaluation of a Self-Adaptive Organic Middleware for Highly Dependable System-on-Chips
Benjamin Betting, Mathias Pacher, and Uwe Brinkschulte

112

FUZZBUSTER: A System for Self-Adaptive Immunity from Cyber Threats
David Musliner, Jeffrey Rye, Dan Thomsen, David McDonald, Mark Burstein, and Paul Robertson

118

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 132

Comparison of Bio-Inspired and Graph-Theoretic
Algorithms for Design of Fault-Tolerant Networks

Matthias Becker, Waraphan Sarasureeporn and Helena Szczerbicka
FG Simulation and Modeling
Leibniz University Hannover

Welfengarten 1, 30167 Hannover, Germany
{xmb,sarasureeporn,hsz}@sim.uni-hannover.de

Abstract—Recently several approaches have been presented
that exploit the ability of Physarum polycephalum to connect
several food sources via a network of pipes in order to main-
tain an efficient food distribution inside the organism. These
approaches use the mechanisms found in nature in order to solve
a technical problem, namely the design of constructing fault-
tolerant and efficient connection networks. These works comprise
experiments with a real slime mold Physarum polycephalum as
well as computer simulations based on a tubular model and an
agent-based approach. In this work, we study the suitability of
those bio-inspired approaches and compare their performance
to a graph-theoretic algorithm for construction of fault-tolerant
connection networks, the (k, t)-spanner algorithm. The graph-
theoretic algorithm is able to construct graphs with a certain
degree of fault tolerance as well as meet a given maximal path
length between two arbitrary nodes. However the definition of
fault tolerance in previous bio-inspired works differs to that
used in graph theory. Thus in our contribution we analyze the
bio-inspired approaches as well as the graph-theoretic approach
for their efficiency of designing optimal fault-tolerant graphs.
We demonstrate the usability of the graph-theoretic approach
despite relying on a different definition of fault tolerance. We
conclude that classical efficient computational algorithms from
graph theory can be adapted and applied in the same field as the
bio-inspired approaches for the problem of constructing efficient
fault tolerant networks. They often provide an easier to use
and more direct solution than bio-inspired approaches, that need
more parameter tuning before getting satisfactory results.

Index Terms—slime mold, Physarum polycephalum, fault tol-
erant network, (k,t)-spanner

I. MOTIVATION

Recently bio-inspired computing based on slime molds
raised attention in scientific renowned journals [1]–[3] as well
as in popular newspapers for the slime molds’ ability to solve
complex problems, despite being a brainless primitive life-
form [4].

Research groups use a real slime mold or different types of
simulations of slime mold behavior for building networks or
finding a short path through a maze. One group [1] conducted
experiments with a real slime mold Physarum polycephalum
and computer simulations based on a tube model in order to
construct a fault tolerant and efficient transport network for
the Tokyo rail system. The natural slime mold as well as the
simulated slime mold generate networks that are similar to
the existing rail system of Tokyo. While the quality of the
solutions of the real slime mold shows considerable variations,

the networks constructed by tubular simulations show a very
regular structure in their quality that is correlated with one
parameter. In another approach [5] an agent based simulation
of Physarum polycephalum turned out to better approximate
the characteristics of the real slime mold’s networks.

However, existing classical algorithms for those problems
have not been included in the evaluation of bio-inspired
approaches in previous works.

Thus in this work we study, whether natural or simulated
Physarum polycephalum is an efficient means for construction
of fault tolerant networks at all, i.e., can networks of good
quality be generated with reasonable computational effort.
Although Physarum polycephalum simulations have also been
used in the past for obtaining fault tolerant networks, the
quality of such networks has only been compared to existing
networks that have been historically grown and not been
constructed efficiently from scratch. We demonstrate how
algorithms from graph theory can be used for the design
of fault-tolerant efficient networks, despite using different
definitions of fault tolerance. We show that in many scenarios
the graph-theoretic algorithm is a viable means to efficiently
obtain reliable results without having the additional effort of
parameter tuning which often is a serious disadvantage of bio-
inspired algorithms.

In the following, we will describe the state of the art
concerning simulation models of Physarum polycephalum that
can be used for the construction of fault tolerant connection
networks. We use the Tokyo railway network, which is the
mostly used reference network in this context. We also de-
scribe the agent-based simulation model and the (k, t)-spanner
algorithm from graph theory. A presentation and discussion of
the resulting networks for all approaches concludes this work.

II. PHYSARUM POLYCEPHALUM

There are basically two kinds of slime molds (cellular
and acellular) which are member of a category of eukaryotic
organisms that typically have some fungal-like attributes and
some animal-like attributes. In this work, we are interested in
Physarum polycephalum, a slime mold visible to the unaided
eye.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 10 / 132

A. Biological Foundations

Physarum polycephalum is a yellow single-celled slime
mold whose plasmodium is visible for the unaided human eye
and can grow up to one square meter if the environmental con-
ditions are ideal. Otherwise it usually has the size of a palm.
Starting with spores of Physarum polycephalum mysamben
with a single nucleus will be produced, which can reproduce
by mitosis. Dependent on environmental conditions flagellates
can evolve. If two flagellates of different sex meet they form
a diploid zygote. This will grow to the final size plasmodium
by division of the nucleus.

Summarizing, the large visible yellow slime mold is a large
single cell with multiple nuclei. When food is used up in
the area of the cell it enters the hunger phase. In this phase
Physarum polycephalum optimizes its shape by maintaining
thick pipes between food sources and by shrinking the contour
where no food is available any more. This is the phase that is
used by most computational slime mold inspired algorithms.

B. Computational Applications of Physarum polycephalum

New research showed that this kind of slime mold is able to
construct efficient and fault tolerant connection networks be-
tween multiple food sources. This ability has been used (with
real slime molds and simulations of Physarum polycephalum)
on examples such as British and American motorways [6],
[7] and for the Tokyo railway network [1]. Physarum poly-
cephalum constructed networks that had similar properties as
the existing networks designed by human engineers. Another
application is the usage of Physarum polycephalum as light
detector of a robot [8] and in wireless ad hoc networks [9].

C. Simulation Models for Physarum polycephalum

In the literature, several types of computer simulation mod-
els can be found.

In [10], the hunger-phase of Physarum polycephalum is
modeled by a mesh network of tubes that can enlarge or shrink.
This model is close to the natural mechanisms, where nutrition
is streamed through the slime mold, so that nutrition is spread
throughout the whole cell, from food sources to areas with
less food. During that process the streaming channels of the
slime mold enlarge, where more nutrition has to be moved, and
channels shrink or disappear where little nutrition is present or
is to be transported. The simulation model includes differential
equations of the pressure and the movement of the fluid with
time, and the changing of the size of pipes dependent on the
moving fluid.

In [11], an agent based model is used which basically is a
cellular automaton. Each place in the two dimensional matrix
can be visited by an agent. An agent has three sensors in its
front view, front right, front left and front middle. Parameters
are sensor angle and sensor range. Two actions are possible:
move to another cell and/or leave a trace. This approach
models the distribution of the nutrition inside the Physarum
polycephalum cell in a more abstract way, physically and
quantitatively not very close to the natural mechanisms. How-
ever the phenomena of building fault tolerant short networks

is captured by this model very well. The agents can be
interpreted as moving nutrition that is not explicitly channeled.
However channel-like streams will build up implicitly by the
rules governing the agents’ behavior. Furthermore the agent
based approach allows fast simulations/calculations and it is
not necessary to deal with costly calculation and solution of
differential equations.

The approach in [12] models the expansion and shrinkage
phase similarly to dilation and erosion as know from computer
graphics. This algorithm is especially designed for path finding
in a maze.

Subsequently, we will show how to obtain connection
networks using the agent-based simulation of Physarum poly-
cephalum. The resulting networks (see also [5]) will be
presented and their quality will be compared to that of the net-
works obtained by tubular simulations and with experiments
done with real Physarum polycephalum (see [1]). Then, it will
be demonstrated how algorithms from graph theory [13] can
be adapted for application in our context.

III. NETWORK DESIGN BY AGENT BASED SIMULATION OF
Physarum polycephalum

We used our simulator, that is based on the model in [11],
in order to construct a number of different fault tolerant
connection networks and compared the characteristics of the
found solutions with the existing real railway network and
with a manually constructed fault tolerant graph (by human
expertise, resulting from enhancing the Minimum Spanning
Tree (MST) where fault tolerance has been introduced by
manually adding some edges).

Our simulator is based on a cellular automaton. The play-
ground is a two dimensional matrix, on which agents are
placed, that observe their environment and that can move
around and/or leave a chemical, dependent on the environ-
mental conditions. The chemical is steering the movement of
agents. The chemical is emitted by food sources and spreads
spatially, by the same time vanishing through evaporation.
Agents can reinforce this signal by emitting the chemical
themselves. The value of the chemicals concentration is stored
as attribute of each cell of the matrix.

The main rules of the agent’s behavior according to [11]
(slightly different rules can be found in [14], [15]) are:

Movement:
Step 1: ’Attempt to move forward in current direc-
tion’
Step 2:
.....IF (’move forward successful’)
..........THEN ’Deposit trail in new location’
..........ELSE ’Choose random new orientation’

Given that each agent faces into a certain direction and can
sense the matrix for the concentration of the chemical in front
direction (F), front right (FL) and front left (FL), the agent
maintains its direction, rotates a certain angle (RA) to the left
or right, or randomly:

Step 1: ’Sample trail map sensor values F, FL, FR’

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 11 / 132

Fig. 1. Screenshot of simulation

Step 2:
IF (F > FL) AND (F > FR)
.....’Stay facing same direction’
ELSEIF (F < FL) AND (F < FR)
.....’Rotate randomly left or right by RA’
ELSEIF (FL < FR)
.....’Rotate right by RA’
ELSEIF (FR < FL)
.....’Rotate left by RA’
ELSE
.....’Continue facing same direction’

The simulation starts with a matrix which can be represented
as bitmap where the different colors stand for the various
states of a cell (cf. Fig. 1): The background representing
empty cells is white. A food source is yellow. Yellow food
sources represent the nodes of a graph (cities) which have
to be connected by the slime mold (connections representing
railways). Black and blue is forbidden terrain, red to gray is
the intensity of the trail signal.

In nature, food is the attractor for Physarum poly-
cephalum and where there is more food there Physarum poly-
cephalum moves to. In nature, food flows through Physarum
polycephalum and influences the movement and shape of
Physarum polycephalum. In the agent model, the food flow
is modeled by a trace that agents leave on their trail, the trace
signaling that food is near, or that many agents are heading
in this direction, probably because someone found food there.
This behavior is similar to ant algorithms, where ants also emit
pheromones on their path [16].

The optimization problem to be solved when constructing a
fault tolerant graph is to find a solution between the Minimum
Spanning Tree (minimum cost, that is sum of length of
edges between nodes, but no fault tolerance) and a fully
connected graph (maximal fault tolerance but also maximal
cost). The slime molds tries to connect all food sources thereby
shortening all of its connections as much as it can. Fault

tolerance is not a direct goal of the slime mold, fault tolerance
is a side effect since the slime mold just connects nodes that
are near each other so that automatically several paths are
established when a higher number of nodes are crowded in
an area. Only isolated nodes will not be connected in a fault
tolerant way. Note that the graph constructed by Physarum
polycephalum will not only consist of direct links between
nodes but may also have Steiner tree like connections. As can
be observed from the picture in Fig. 1, the agents/chemicals
not necessarily ’draw’ an easily automatically measurable line
between food sources. Thus the resulting graph has to be
determined manually by drawing an edge where are ’enough’
agents between two food sources. The graph constructed that
way can then be analyzed for its quality measures. Because
there is not always a state of clear convergence a stopping
criteria has to be defined, i.e., when the simulation has to be
stopped and the graph has to be defined and analyzed. We did
measurements in two ways to account for the dynamics of the
simulation: First experiments stopped after a fixed number of
iterations (5000), the resulting network was measured then. In
the second row of experiments, the simulation was stopped
periodically (every 250 iterations), the graph was measured
and analyzed, and then the simulation has been continued.

Both experiments were repeated with an additionally ac-
tivated 3x3 filter, that smoothens the chemical values around
each agent by averaging the values, which makes four different
experimental setups which will be shown and discussed in
Fig. 3 in the next section.

Before presenting the results, the measures describing the
quality of the found graph will be introduced. In order to make
this comparable to recent results the definition of the quality
measures are taken from [1]:
• Graph G
• S: Set of nodes of G
• E: Set of edges e of G
• length(e): weight of edge e representing the distance of

two nodes
• MST(G): Minimum Spanning Tree of G
• N : Number of nodes of G
• SP (vi, vj): Shortest Path from node i to node j
The evaluation of the found networks is analogous to [1],

where the definitions for the following measures of the graph
are taken from:

Total length of all connections:

TL(G) =
∑
e∈E

length(e)

Cost of the network relative to the minimum cost (of the
MST):

Cost(G) =
TL(G)

TL(MST (G))

Fault Tolerance FT that takes into account the length of
edges, since a long connection is more prone to fault:

FT(G) =

∑
e∈E|(G\{e}) isConnected length(e)

TL(G)

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 12 / 132

0

0.2

0.4

0.6

0.8

1

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Fa
u

lt
-t

o
le

ra
n

t

t-value

 Fault-tolerant t-spanner(k=0)

Fig. 2. Fault tolerance of spanner algorithm with varying value of t

The performance of the network as average distance be-
tween two arbitrary nodes relative to MST:

Performance(G) =
avgDistance(G)

avgDistance(MST)

IV. GEOMETRICAL SPANNERS

In this section we explain the algorithm from graph theory,
that has as input a set of points, and delivers a graph with a
certain degree of fault tolerance and a maximal path length
between each pair of nodes as result.

For a given set of nodes, a spanner is a graph that connects
all nodes. In this context, the notion of fault tolerance is
defined independently of the length of edges: a graph is said
to be k-fault tolerant when k arbitrary edges can be removed
and the graph still remains fully connected.

Obviously, the Minimum Spanning Tree is a spanner with
zero fault tolerance.

A. Definition and Construction of a (k, t)-Spanner

Taken from [17], the necessary definitions and the algorithm
for construction of a (k, t) spanner, are presented in this
section. Note that it has also be proven that vertex and edge
fault tolerance are corresponding concepts.

Let S be the set of N points in R2 as defined above. Let
t > 1 be a real number, let k ≥ 0 be an integer, and let
G = (S,E) be an undirected Euclidean graph with vertex
set S. The spanner with stretch factor t is called t-spanner, if
δ(p, q) < t|pq| for any two points of S. The notation |pq| to
denote the Euclidean distance and δ(p, q) to denote the shortest
Euclidean length of a path in a geometric graph G between p
and q. The approach is a greedy algorithm. Each edge of the
complete graph is considered for construction of the spanner.
The edges are processed in increasing order of the edge length,

for that purpose they are stored sorted in list L. For each edge
the intermediate result graph will be checked, whether already
the fault tolerant criterion between the two points connected
by that edge is fulfilled. If not, the edge is added to the graph.
If yes, but the t criterion is not fulfilled (i.e. the existing paths
are too long) then the edge is also added. Formally, that is, if
the graph G does not contains k+1 vertex-disjoint t-spanner
paths between p and q, the edge (p, q) will be included in the
set of edges E. The output of algorithm is a t-spanner for S
with k fault tolerance.

Altogether, the algorithm can be formalized as shown in the
following algorithm 1 (excerpted from [17]).

Algorithm 1 (k, t)-spanner algorithm

Input: A set S of N points in R2, an integer k ≥ 0,
and a real number t > 1

Output: A (k, t)-spanner for S
Initialisation: G := (S,E) with E := ∅

for each {p, q}εL considered pairs in nondecreasing order
do if G does not contain k + 1 vertex-disjoint t-spanner

paths between p and q
then E := E ∪ {{p, q}}

G := (S,E)
endif

endfor

Note that there are different definitions of fault tolerance. In
the following we will use the definition that includes the length
of edges. This has two reasons; first, the networks produced
by bio-inspired algorithms nearly never show fault tolerance
greater than one. Second, for application in real networks, the
definition including the lengths of edges is more realistic, since

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 13 / 132

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,00 0,50 1,00 1,50 2,00 2,50 3,00

Cost

F
a

u
lt

 t
o

le
r
a

n
c
e

5000 iterations (F) Continuous measurement (F) 5000 iterations Continuous measurement Tokyo Manual

Fig. 3. Agent-based slime mold simulation results for the trade-off fault tolerance vs cost (both normalized to MST)

the fault probability of longer connections usually is higher in
reality, be it communication lines or transport networks.

In Fig. 2, the characteristics of the generated networks
can be observed for changing values of t (for k = 0). For
values of t approaching one, the generated networks converge
towards the complete graph. Since for large values of t the
resulting networks converge towards the Minimum Spanning
Tree, the fault tolerance of the resulting spanners initially is
one, and falls down on a convex curve towards zero. We
conclude that by variation of parameter t a wide range of
networks can be generated. In the next section, we will analyse
these networks for their properties concerning length and fault
tolerance and compare them to those generated by the slime
mold simulation.

V. RESULTS

A. Fault Tolerance versus Costs

Fig. 3 presents the results obtained by agent-based sim-
ulations of Physarum polycephalum, showing the degree of
fault tolerance versus the costs of each produced network.
The diversity of networks has its origin in the stochastic
nature of the agent-based simulation. Additionally, the real
Tokyo network is included, as well as a network which has
been designed manually, taking the MST and adding several
connections manually, where obviously necessary. As first
observation, it can clearly be seen that the fault tolerance
of the Tokyo network as well as the manually constructed

network is better than the networks produced by the slime
mold algorithm. The Tokyo network is a bit less fault tolerant
and has marginally less costs than the manually constructed
network.

This is not surprising since the Tokyo network is grown
historically and has to cope with geographical, political and
other constraints that are not represented in the graph.

Since fault tolerance is not a primary goal of the slime
mold algorithm the results for performance do not reach top
values. However, a number of solutions show a good trade
off: Especially the simulation results after 5000 iterations
without filter reach values for fault tolerance around 0.84 while
having costs of only 1.4 (the Tokyo and manually constructed
networks have fault tolerance of around 0.98 and costs of
around 1.75).

Fig. 3 directly relates to Fig. 3 (A) in [1]. For reference, the
results for the natural slime mold and the tubular simulations
from [1] are given in Fig. 4 here. It can be seen that the
graph for the tubular simulation results starts with zero fault
tolerance and cost of one (obviously it found the MST), raising
quickly in a straight line to a fault tolerance of approximately
0.9 at normalized cost of 1.5 and from there on converging
to one, at raising cost. Contrary to the tubular simulation, the
results for the natural Physarum polycephalum barely find a
non-fault tolerant network, nearly all networks having fault
tolerance over 0.6. The convergence to fault tolerant networks
at high costs cannot be observed, several networks with costs

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 14 / 132

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

Fa
u

lt
 T

o
le

ra
n

ce

Cost

Tubular Simulation Natural Slime Mold (0,t)-spanner Tokyo

Fig. 4. Fault tolerance versus costs for tubular model, (k, t)-spanner and natural slime mold

of around 1.5 have a fault tolerance of less than 0.8.
The agent-based simulation results reproduce much better

the variety of the results obtained by the natural slime mold as
can be seen by comparing Fig. 3 and Fig. 4. Taking the results
for 5000 iterations without filter and continuous measurements
with filter together, the results resemble the natural results
much more in their variance, and also not showing less fault
tolerance than 0.4. The results for continuous measurement
without filter seem to be similar to the tube model, the trend
to convergence for fault tolerant networks at higher cost can
be clearly observed.

Fig. 4 also contains the results for the (k, t)-spanner. The
data points for the spanner algorithm show a good accordance
to the naturally produced variety of networks regarding non-
extremal values for t. For the extremal values of t the results
of course converge against the complete graph and MST,
similarly as for the tubular model.

Contrary to the tubular model, the spanner algorithm repro-
duces the variety of naturally produced networks much better
for non-extremal values for t, resulting in networks with costs
in the interval of 1.25 and 2, and fault tolerance between 0.5
and 0.95.

Altogether, it can be stated that the (k, t)-spanner algorithm
is applicable despite the different definition of fault tolerance
and that it is well capable of producing networks whose
characteristics show the same variety as networks constructed
by real slime molds. This is achieved by changing the value
of parameter t.

VI. DISCUSSION AND CONCLUSION

The results in the last section showed that slime mold
inspired construction of fault tolerant optimized connection
networks is a working approach.

However, it is the question, whether dedicated classical
algorithms might be a better choice for this task.

Algorithms for that purpose belong to the class of al-
gorithms for geometrical spanners [13], [17]. It has been
shown in this paper that by varying the parameter t in the
(k, t)-spanner algorithm, networks with the desired trade-off
between fault tolerance and performance can be generated. It
has also been shown how to overcome the different definitions
of fault tolerance, used in graph theory and in the bio-inspired
approaches.

Thus, the (k, t)-spanner algorithm can well be used in order
to construct a connection network tailored to the needs, be it
fault tolerance, length, etc.

For the Tokyo network, the spanner algorithm worked
quite satisfactory and faster than the bio-inspired approaches.
However the complexity is O(|L| · log|L|) stemming from the
sorting of |L| possible edges. Note that the problem size should
be characterized by the number of points N to be connected,
resulting in

(
N
2

)
possible edges. For future work it should be

investigated, for which N the (k, t)-spanner algorithm is not
applicable anymore and whether the bio-inspired approaches
still work for that problem complexity. In order to do this
an approach is needed to automatically construct a graph out
of the simulation results, since manually marking the result
graph in the image of the final agent distribution is not a
viable approach for larger problems.

It also showed that the approach of using human intuition,
i.e., constructing a Minimum Spanning Tree and adding man-
ually some edges for fault tolerance, is a cheap solution that
leads to good results. However, this approach is not viable for
larger graphs.

Summarizing, it can be said that naturally inspired algo-
rithms is of course an interesting field that also lead to valuable

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 15 / 132

new algorithmic approaches. However, not everything that
works in nature can be transferred to technical solutions easily.
As we show in this work, slime mold inspired algorithms
are capable to construct fault tolerant connection networks.
Drawbacks are found in the analysis of the simulation results
and in the runtime for the application of the Tokyo railway
system. Furthermore, relatively high effort has to be put in
the parameter tuning of the complex agent-based algorithm,
until it delivers satisfactory results. Additionally, it turned out
that among the different modeling approaches for Physarum
polycephalum, the agent based model the best one in the
context of constructing networks between food sources.

Future work will include evaluation of both bio-inspired and
classical approaches for a number of small to large benchmark
problems in order to decide for which problem complexity
classical or bio-inspired approaches are superior.

REFERENCES

[1] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. Bebber, M. Fricker, K. Yumiki,
R. Kobayashi, and T. Nakagaki, “Rules for biologically inspired adaptive
network design,” Science, vol. 327, no. 5964, p. 439, 2010.

[2] W. Marwan, “Amoeba-Inspired Network Design,” Science, vol. 327, no.
5964, p. 419, 2010.

[3] T. Nakagaki, H. Yamada, and A. Toth, “Intelligence: Maze-solving by
an amoeboid organism,” Nature, vol. 407, 2000.

[4] J. T. Bonner, “Brainless behavior: A myxomycete chooses a balanced
diet,” PNAS, vol. 107, no. 12, pp. 5267–5268, 2010.

[5] M. Becker, “Design of fault tolerant networks with agent-based simula-
tion of physarum polycephalum,” in Evolutionary Computation (CEC),
2011 IEEE Congress on, june 2011, pp. 285 –291.

[6] A. Tero, R. Kobayashi, and T. Nakagaki, “Physarum solver: A biologi-
cally inspired method of road-network navigation,” Physica A: Statistical
Mechanics and its Applications, vol. 363, no. 1, pp. 115 – 119, 2006.

[7] A. Adamatzky and J. Jones, “Road planning with slime mould: If
physarum built motorways it would route m6/m74 through newcastle,”
International Journal of Bifurcation and Chaos (IJBC), vol. 20, no. 10,
pp. 3065–3084, 2010.

[8] S. Tsuda, K. Zauner, and Y. Gunji, “Robot control with biological cells,”
BioSystems, vol. 87, no. 2-3, pp. 215–223, 2007.

[9] K. Li, K. Thomas, L. Rossi, and C. Shen, “Slime Mold Inspired Protocol
for Wireless Sensor Networks,” in Self-Adaptive and Self-Organizing
Systems, 2008. SASO’08. Second IEEE International Conference on.
IEEE, 2008, pp. 319–328.

[10] A. Tero, K. Yumiki, R. Kobayashi, T. Saigusa, and T. Nakagaki, “Flow-
network adaptation in physarum amoebae,” Theory in Biosciences, vol.
127, pp. 89–94, 2008.

[11] J. Jones, “The emergence and dynamical evolution of complex transport
networks from simple low-level behaviours,” International Journal of
Unconventional Computing, vol. 6, no. 2, pp. 125–144, 2010.

[12] M. Ikebe and Y. Kitauchi, “Evaluation of a multi-path maze-solving
cellular automata by using a virtual slime-mold model,” Unconventional
Computing 2007, p. 238, 2007.

[13] J. Gudmundsson, G. Narasimhan, and M. Smid, Encyclopedia of Al-
gorithms. Berlin: Springer-Verlag, 2008, ch. Geometric spanners, pp.
360–364.

[14] A. Adamatzky and J. Jones, “Programmable reconfiguration of
Physarum machines,” Natural Computing, vol. 9, no. 1, pp. 219–237,
2010.

[15] J. Jones, “Approximating the Behaviours of Physarum polycephalum
for the Construction and Minimisation of Synthetic Transport Networks,
Unconventional Computation 2009,” Springer LNCS, vol. 5715, pp. 191–
208, 2009.

[16] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, pp. 53 –66, Apr.
1997.

[17] G. Narasimhan and M. Smid, Geometric Spanner Networks. New York,
NY, USA: Cambridge University Press, 2007.

[18] P. Bose, J. Gudmundsson, and M. H. M. Smid, “Constructing plane
spanners of bounded degree and low weight,” in Proceedings of the 10th
Annual European Symposium on Algorithms, ser. ESA ’02. London,
UK: Springer-Verlag, 2002, pp. 234–246.

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 16 / 132

A Technique for Measuring the Level of Autonomicity of Self-managing Systems

Thaddeus O. Eze, Richard J. Anthony, Alan Soper and Chris Walshaw
Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich, London, United Kingdom

{T.O.Eze, R.J.Anthony, A.J.Soper and C.Walshaw}@gre.ac.uk

Abstract— Autonomic and self-managing systems are

increasingly pervasive across an ever-widening spectrum of

application domains. Autonomic technology is advancing at a

high rate, yet there are no universal standards for the technology

itself and the design methods used. There are also significant

limitations to the way in which these systems are validated, with

heavy reliance on traditional design-time techniques, despite the

highly dynamic behaviour of these systems in dealing with run-

time configuration changes and environmental and context

changes. These limitations ultimately undermine the trustability

of these systems and are barriers to eventual certification. This

paper is concerned with setting the groundwork for the

introduction of standards for Autonomic Computing (AC), in

terms of technologies and the composition of functionality as well

as validation methodologies. We propose that the first vital step

in this chain is to introduce robust techniques by which the

systems can be described in universal language, starting with a

description of, and means to measure the extent of autonomicity

exhibited by a particular system. We present a novel technique

for measuring the Level of Autonomicity (LoA) along several

dimensions of autonomic system self-CHOP (self-configuration,

self-healing, self-optimisation and self-protection) functionalities.

Keywords- autonomicity; level of autonomicity; autonomic system;

trustworthiness; metrics

I. INTRODUCTION

 AC seeks the development of self-managing (or

autonomic) systems to address management complexities of

systems. The high rate of advancement of autonomic

technology and methodologies has seen these systems

increasingly deployed across a broad range of application

domains yet without universal standards. Also the widening

acceptance of Autonomic Systems (AS) is leading to more

trust being placed in them with little or no basis for this trust,

especially in the face of significant limitations regarding the

way in which these systems are validated. The traditional

design-time validation techniques fail to address the run-time

requirements of AS‘ environmental and contextual dynamism.

These limitations undermine trustability and ultimately

impinge on certification. The more this proliferation goes on

without these challenges being addressed, the more difficult it

gets to introduce standards and eventually achieve certifiable

AS. It has therefore become pertinent and timely to address

these issues. A vital first step in this course would be

standards for the universal description of these systems and a

standard technique for measuring LoA achieved by these

systems. Standards for AC would be concerned with

technologies, composition of functionalities and validation

methodologies. By autonomicity we mean the ability of a

system to pursue its goal with minimal external interference

in the form of configuration or control. Then, the extent of

this interference defines autonomicity levels. Now the

questions facing the AC community are, for a given system,

―How autonomic should a system be?‖ and ―How autonomic

is a system and how is this determined?‖ The two questions

address both pre and post system design phases. The first

question is of primary importance to the designers of systems

where autonomic specification is a critical part of the whole

system requirements definition. A good example would be

spaceflight vehicles addressed in [1], where a level of

autonomy assessment tool was developed to help determine

the level of autonomy required for spaceflight vehicles. The

second question is in two parts. On the one hand is the need to

define systems according to a measure of autonomicity and

another is the method and nature of the measure. Addressing

this issue is the main thrust of this paper. Another significant

aspect addressed here is the need for evaluation of systems in

terms of individual functionalities. Not only do we measure

autonomicity but also look at how systems can be evaluated

and compared in terms of their autonomic compositions. We

call this ‗ranking‘ (see Section IV B).

Thaddeus et al [2] identified that defining LoA is one of

the critical stages along the path towards certifiable AS.

Along this path also is the need for an appropriate testing

methodology that seeks to validate the AS decision-making

process. But to know what testing (validation) is appropriate

requires knowledge of the system in terms of its extent of

autonomicity. Another issue that underpins the need for

measuring LoA is that a means of answering the identified

questions is also a solution for AS evaluation and ranking and

facilitates a proper understanding of such systems.

Currently, the vast majority of research effort in this

direction has progressed in answering the first question

(―How autonomic should a system be?‖) by providing us with

scales that describe autonomy in systems. These scales,

referenced by many researchers, provide fundamental

understanding of system autonomy by categorising autonomy

according to level of human-machine involvement in

decision-making and execution. Some key works in this area

include [1], [3], and [4]. For us, these scales only characterise

autonomy levels qualitatively and offer no means of

quantitatively measuring extent of autonomicity. We would

simply say that they are more sufficient for the purposes of

proposing an appropriate level of autonomy during the design

of a new system.

ISO/IEC 9126-1 standard [13] decomposes overall

software product quality into characteristics, sub

characteristics (attributes) and associated measures. Adapting

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 17 / 132

this we define a framework for measuring LoA along several

dimensions of AS self-CHOP functionalities. Systems are

well-defined by their set of functional capabilities and a

measure of these capabilities will form a better representation

of the systems. In our proposal we look at the core

functionalities of ASs, the self-CHOP functionalities (hereafter

referred to as CHOP), and identify specific metrics for each of

the functionalities. The cumulative measure of these metrics

defines a LoA. Our method is based on the establishment of a

generic technique that can be applied to any application

domain. This work is novel as it offers a quantitative measure

of LoA in terms of system‘s functionalities-based description.

It also opens a new research focus for autonomicity

measuring metrics. We believe this is timely because if not

addressed we not only run the risk of classifying systems as

trusted without basis but also risk losing track and control of

these systems as a result of spiraling complexities in terms of

technology and methodologies. [15] also raised the concern

that if the proliferation of unmanned systems (and by

extension ASs) is not checked by putting appropriate

measures (or mechanisms) in place that ensure

trustworthiness, the systems may ultimately lose acceptance

and popularity.

The remainder of this paper is organised as follows:

related work is presented in section II. In Section III, we

introduce metrics for measuring autonomicity. Our proposed

LoA measure and a case study is presented in Section IV.

Section V concludes the work.

II. RELATED WORK

The study of AC is now a decade old. However, its rapid

advancement has led to a wide range of views on meaning,

architecture, and implementations. The criticality of

understanding extent of autonomicity in defining AC systems

has necessitated the need for evaluating these systems. The

majority of research in this area has targeted specific

application domains with Unmanned Systems Technology

(UST) topping the list.

One major proposal for measuring LoA is the scale-

based approach. This approach uses a scale of (1– n) to define

a system‘s LoA where ‗1‘ is the lowest autonomic level

usually describing a state of least machine involvement in

decision-making and ‗n’ the highest autonomic level

describing a state of least human involvement. Clough [3]

proposes a scale of (1–10) for determining Unmanned Aerial

Vehicles‘ (UAV‘s) autonomy. Level 1 ‗remotely piloted

vehicle’ describes the traditional remotely piloted aircraft,

while level 10 ‗fully autonomous’ describes the ultimate goal

of complete autonomy for UAVs. Clough populates the levels

between by defining metrics for UAVs. Sheridan [7] also

proposes a 10-level scale of autonomic degrees. Unlike

Clough‘s scale, Sheridan‘s levels 2-4 centre on who makes

the decisions (human or machine), while levels 5-9 centre on

how to execute decisions. Ryan et al [1], in a study to

determine the level of autonomy of a particular AS decision-

making function, developed an 8-level autonomy assessment

tool. The tool ranks each of the OODA (Observe, Orient,

Decide and Act) loop functions across Sheridan‘s proposed

scale of autonomy [7]. OODA is decision-making loop

architecture for ASs. The scale‘s bounds (1 and 8) correspond

to complete human and complete machine responsibilities

respectively. They first identified the tasks encompassed by

each of the functions and then tailored each level of the scale

to fit appropriate tasks. The challenge here is ensuring relative

consistency in magnitude of change between levels across the

functions. The levels are broken into three sections. Levels 1-

2 (human is primary, computer is secondary), levels 3-5

(computer and human have similar levels of responsibility),

and levels 6-8 (computer is independent of human). To

determine the LoA needed to design into a spaceflight vehicle

Ryan et al needed a way to map particular functions onto the

scale and determine how autonomous each function should

be. They designed a questionnaire (sent to system designers,

programmers and operators) that considered what they call

‗factors for determining LoA‘ –these are LoA trust limit and

cost/benefit ratio limit. This implies that a particular LoA for

a function is favoured when a balance is struck between trust

and cost/benefit ratio limits. Ultimately the pertinent question

is ―How autonomous should future spaceflight vehicles be?‖

IBM‘s 5 levels of automation [4] describes the extent of

automation of the IT and business processes. We consider

these to be too narrowly defined and [5] observes that the

differentiation between levels is too vague to describe the

diversity of self-management. In general the autonomy scale

approach is qualitative and does not discriminate between

behaviour types. We posit that a more appropriate approach

should comprise both qualitative and quantitative measures.

Barber and Martin [8] supposes that in a multi-agent

system environment, agent autonomy is measured in terms of

a system-wide goal. It proposes a collaborative decision-

making algorithm for multi-agent systems. In the proposed

algorithm, a plan for achieving the system‘s goal is decided

by the agents. Every agent suggests a complete plan with

justification for how to achieve the entire system‘s goal. Each

agent evaluates each suggested plan and determines the value

of its justification. Each plan receives an integer number of

votes from the deciding agents. The plan with the highest

votes becomes the plan for the entire system. The ratio of an

agent‘s number of votes (received for suggested plan) to the

total number of votes cast is a measure of that agent‘s

autonomy and the extent of its capability to influence the

system. This method, however, does not offer a measure for

LoA but gives a valuable description of agents‘ individual

influence in a multi-agent system environment.

Fernando et al [6] proposes measures for evaluating the

autonomy of software agents. It believes that a measure of

autonomy (or any other agent feature) can be determined as a

function of well-defined characteristics. Firstly it identifies

the agent autonomy attributes (self-control, functional

independence, and evolution capability) and then defines a set

of measures for each of the identified attributes. By

normalising the results of the defined measures using a set of

functions, the agent‘s LoA is defined. [6] considers

autonomicity measure with reference to system‘s

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 18 / 132

characteristics and attributes. But in that work

‘characteristics’ are a broad range of attributes that describe a

system which also include features outside the system‘s core

functionalities and so in a way are vague and limited in

offering a proper and conclusive description of that system.

We have adapted this approach in our proposal for ASs but

with reference to self-CHOP functionalities.

III. AUTONOMICITY MEASURING METRICS

In this section, we introduce metrics for each of the

functionalities that define autonomicity of AS. Though

metrics are application domain dependent, the metrics

presented here are generic and serve as examples. We present

at least one metric for each of the functionalities. This is part

of a wide (and separate) research focus. This section only

focuses on how autonomic metrics can be generated. We also

show how metrics can be normalised to yield autonomic

values (see Section IV A). We will start with a definition of

each CHOP. (For more on these definitions see [10] and [12]).

Self-Configuring: A system is self-configuring when it

is able to automate its own installation and setup according to

high-level goals. When a new component is introduced into

an AS it registers itself so that other components can easily

interact with it. The extent of this interoperability (I) is a

measure of self-configuration, measured as ratio of the actual

number of components (actual in) successfully interacting with

the new component (after configuration) to the number of

components expected (expected in) to interact with the new

component.

1

actual

expected

i

i

i n

n
I  (1)

Interoperability ratio I measures to what extent a system is

distorted by an upgrade. A system is self-configuring to the

extent of its ability to curb this distortion. This example can

be related to the problem diagnosis system for AS upgrade

discussed in [10]. Here an upgrade introduces 5 software

modules. The installation regression testers found faulty

output in 3 of the new modules. This implies that only 2

modules out of 5 successfully integrate with the system.

Self-Optimising: A system is self-optimising when it is

capable of adapting to meet current requirements and also of

taking necessary actions to self-adjust to better its

performance. Resource management (e.g., load balancing) is

an aspect of self-optimisation. An AS is then required to be

able to learn how to adapt its state to meet the new challenges.

Also needed is consistent update of the system‘s knowledge

of how to modify its state. State is defined by a set of

variables such as current load distribution, CPU utilization,

resource usage, etc. The values of these variables are

influenced by certain event occurrences like new

requirements (e.g., process fluctuations or disruptions). By

changing the values of these variables, the event also changes

the state of the system. The status of these variables is then

updated by a set of executable statements (policies) to meet

any new requirement. A typical example would be an

autonomic job scheduling system. At first, the job scheduler

could assign equal processing time quanta to all systems

requiring processing time. The size of the time quantum

becomes the current state and as events occur (e.g.,

fluctuations in processing time requirement, disruptions of

any kind, etc.), the scheduler is able to adjust the processing

time allocation according to priorities specified as policies. In

this way the state of the system is updated. But this may lead

to erratic tuning (as a result of over or under compensation)

causing instability in the system. We define Stability as a

measure of self-optimisation. If an event leads to erratic

behaviour, incoherent results or system not been able to

retrace its working state beyond a certain safe margin (a

margin within which instability is tolerated) then the system is

not effectively self-optimising.

Self-Healing: A system is self-healing when it is able to

detect errors or symptoms of potential errors by monitoring its

own platform and automatically initiate remediation [11].

Fault tolerance is one aspect of self-healing. It allows the

system to continue its operation possibly at a reduced level

instead of stopping completely as a result of a part failure.

One critical factor here is latency; the amount of time the

system takes to detect a problem and then react to it. We
define reaction time T as a metric for self-healing capability.

This is crucial to the reliability of a system. If a change occurs

at time ta and the system is able to detect and work out a new

configuration and ready to adapt at time tb then (2) defines

the reaction time T. (Average is taken instead where
variations of T are possible).

b aT t t  (2)

A case scenario is a stock trading system where time is

of paramount importance. The system needs to track changes

(e.g., in trade volumes, price, rates etc.) in real time in order

to make profitable trading decisions.

Self-Protecting: A system is self-protecting when it is

able to detect and protect itself from attacks by automatically

configuring and tuning itself to achieve security. It may also

be capable of proactively preventing a security breach

through its knowledge based on previous occurrences. While

self-healing is reactive, self-protecting is proactive. A

proactive system, for example, would maintain a kind of log

of trends leading to security problems (threats and breaches)

and a list of solutions to resolve them (a list of problems and

corresponding solutions only applies to self-healing). One

major metric here is the ability of the system to prevent

security issues based on its experience of past occurrences.

For example let‘s assume p  {pij} to be true if i
th

 trend leads

to j
th

 problem where pij is a log of all identified trends and

corresponding problems. p is a particular instance of trend-

problem combination. A self-protecting manager will avoid a

situation of same trend leading to the same problem again by

blocking the problem, addressing it or preventatively shutting

down part of the system. We define ability to detect repeat

events R as a self-protecting metric. R is a Boolean value

(True indicates the manager is able to stop a repeating

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 19 / 132

problem and False otherwise). If we choose two samples of

{pij} at different times (t1 and t2) then (3) defines R. (Different

trends may lead to the same problem but a repeated trend-

problem combination indicates a failure of the system to

prevent a reoccurrence).

R True ij if 1 2{ } { }ij t ij tp p  (3)

One typical implementation of this is an antivirus

system. Some antivirus systems learn about trends or patterns

(signatures) and are able to make decisions based on this to

proactively protect a system from an attack. The antivirus is

able to stop repeatable patterns. Detecting problem

reoccurrence is an active research focus in Autonomic

Computing [18].

IV. PROPOSED LOA MEASURE

An AS is defined based on its achievement of the CHOP

capabilities [11]. In our approach, we define a level of AS in

terms of its extent of achieving the identified functionalities.

(We understand that these functionalities may overlap i.e., are

not necessarily orthogonal, thus some algorithms may

influence several functionalities, but to make progress in this

area we assume orthogonality for this preliminary work). If a

system fails to provide at least a certain level of one of the

CHOP, the system is said to be non autonomic. On the other

hand if the system provides a full level of all the four

capabilities, it is said to have achieved full autonomicity (as

defined by our proposed scheme). Each functionality is

defined by a set of metrics. An autonomic value contribution

is assigned to each functionality which is spread across the set

of metrics for that functionality. It then follows that each

metric contributes a certain definite level of the assigned

value. The cumulative normalisation of the measure of all

metrics (for all functionalities) defines a LoA. Let the

maximum LoA value for an AS be M. In generic terms, this

will mean an AS having a LoA value of N (0 ≤ N ≤ M) and

each functionality contributing a value in the range (0 ≤ x ≤

M/4), while each metric of each functionality contributes

(M/4)/m (m ≠ 0) autonomic value, where m is the number of

identified metrics defining a particular functionality, and the

constant 4 represents four CHOP functionalities. (With an

ongoing debate on the composition of AS functionalities and

the list substantially growing [16, 17], we choose to limit it to

the original, and generally accepted four).

Given that any AS is defined by the four autonomic

functionalities, the expression (4) is the representation of the

possible combinations of the functionalities.
4

1


n

r

rC 16 Combinations (4)

This will give 15 possible combinations (excluding zero

value which is a special case and not considered further as it

means the system provides no autonomic functionality) where

(n = 4) is the number of functionalities (the CHOP) and r is a

category of the possibilities (a specific implementation

combination of the functionalities). The CHOP functionalities

may not be of equal importance to an application domain so

categories indicate what CHOP is important to an application

domain. Category 2 means that only two functionalities are of

importance to the system‘s domain –so for example {C, H,

not O, not P} is a specific category representing a system

indicated by line 4 in Figure 1.

Figure 1 implies that, in terms of autonomic functionality

composition, a system deemed autonomic (an AS) can be

defined (or described) in one of fifteen ways. Each trace of

line from start to finish represents an AS except line 16. If we

define autonomic metrics for each of the functionalities, then

the sum of the autonomicity in each of the constituent

functionalities for a particular AS gives the system‘s LoA (5).

For example, the LoA of a system represented by line 9 in

Figure 1 will be the summation of the autonomic metrics

defining the self-healing, self-optimising and self-protecting

functionalities.

1 1 1 1

[] [] [] []
   

      
pc h o mm m m

i j k l

i j k l

LoA c h o p (5)

Subscripted m is the number of identified metrics for the

respective functionalities. ci, hj, ok and pl are the autonomic

metric contributions of the functionalities. These can be

composed of functions of different measures but as explained

in Section III they are normalised to yield autonomic values.

A. Normalising Autonomic Metrics

Depending on the application domain, metrics could be

scalar (of different measures) or non scalar values (e.g.,

observing a capability). One challenge here is defining and

normalizing appropriate autonomic metrics. The metrics‘

values (irrespective of units of measure) are normalized into

real numbers that are summed to give LoA (N). We identify

two simple methods for normalization: 1) By ranking values

according to high, medium, and low. The meaning of this

ranking is metric-dependent and is based on a defined margin.

For example, if a maximum expected value is 6, a value of 0-

2 will be ranked low, while 3-4 will be ranked medium and 5-

Figure 1: Combination of autonomic functionalities.

AS

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 20 / 132

6 high. A medium value would contribute fifty percent of the

metric‘s autonomic value contribution of (M/4)/m, while the

two extremes would contribute zero and hundred percents.

This can be used for scalar metrics like the interoperability

ratio and reaction time metrics discussed in Section III. 2) By

having a Boolean kind of contribution where two values can

suggest two extremes –either affirming a capability or not.

For example, if a ‗True‘ outcome affirms a capability then it

contributes hundred percent of the autonomic value

contribution, while a ‗False‘ outcome contributes zero.

Another example in this category is where an instance of an

event either does or doesn‘t confirm a capability (e.g., the

stability metric for self-optimising).

B. Evaluating Autonomic Systems

Evaluating Autonomic Systems using (5) gives their

separate LoA values. Systems are classified according to

categories. This is in terms of what CHOP functionalities are

required in their specific application domains. One thing

remains to be clarified at this point –‗how do we rank each

functionality in the autonomic composition of a system?‘ This

can be in terms of importance or extent of functionality

provided. We focus on the later –the extent of functionality

provided as against what is needed. Take for instance, if two

systems are of the same category we may wish to know which

of them provides a greater degree of say self-healing or self-

protection in any application domain. To address this we

adapt a function that measures agent‘s decision-making power

in a multi-agent AS defined in [8]. The rank R of a

functionality in the autonomic composition of a system is

defined by the ratio of its autonomic contribution x to the total

autonomic contribution of all metrics defining the composite

functionalities of that system.

R
x

LoA
 (6)

where x is the autonomic contribution of the considered

functionality which could be the summation of ci, hj, ok or pl

as in (5). With (6) any composite functionality can be ranked

in terms of their autonomic contribution. (See case study).

C. Autonomic Systems Evaluation Case Study

Our case study is Dynamic Qualitative Sensor Selection

System (DQSSS), based on work in [14]. The goal of DQSSS is

to dynamically select a sensor (amongst many) based on

continuously variable qualitative characteristics (e.g., signal

quality and noise levels). This is typical of an application that

accesses several sensors generating raw data from monitoring

a particular context; these could be physical attributes of a

system or perhaps information feeds from a service (e.g.

financial data). In such applications, it is expected that a

DQSSS would generate and differentiate signal characteristics

and trends, choose the best signal and without compromising

stability, be continuous, unsupervised, dynamic, and detect

and react if a sensor goes down. Autonomic metrics are drawn

from these characteristics. By definition self-configuration,

optimization and healing are of importance to this system

(r=3). The DQSSS presented in [14] is in three stages which

we refer to as systems A, B and C. All three systems are able

to differentiate sensors by their signal characteristics such as

noise level and spikes. These are then combined in a utility

function to determine the better quality sensor. Systems B and

C are able to generate trends in signal quality using trend

analysis logic. Only system C ensures stability (avoiding

unhealthy oscillation in sensor selection) by implementing

dead zone logic, while none of the systems has a way of

detecting a failed sensor.

TABLE I: REPRESENTATION OF THE DQSSS [14]

We adopt the 8-level autonomy assessment scale in [1]

as a way of qualitatively interpreting our results. In keeping

with this we adopt the arbitrary value 8 as the maximum LoA

implying that each CHOP contributes an autonomic value in

the range (0 ≤ x ≤ 2) spread across its metrics. Normalizing the

identified metrics in Table I (the numbers of metrics in each

category are: C=4, H=2, O=3) in the autonomic value range (0

≤ x ≤ 2) gives the result in Table II.

Figure 2 is a radar chart analysis of systems A, B and C

in terms of their separate autonomic functionality

composition. Recall that only three functionalities (CHO-) are

of importance here which means maximum LoA value of 6.

Out of this maximum value systems A, B and C achieved the

values 2 (i.e., 33%), 2.67 (i.e., 45%) and 5 (i.e., 83%)

respectively. This means that in a dynamic sensor selection

application domain (as defined), system C can be depended

upon to carry out the task with a confidence level of 83% and

0.17 risk factor, B with 45% and 0.55 risk factor, while A

with 33% and 0.67 risk factor. Furthermore this can also be

interpreted using Ryan et al‘s level of autonomy assessment

scale [1]. The scale as explained in Related Work section is

an 8-level autonomy assessment tool used for either

identifying (qualitatively) the level of autonomy of an

existing system or for proposing an appropriate level of

autonomy during the design of a new system. System A falls

within level 2 of the scale which points to a situation where

‗computer shadows human‘ in the self-management process.

This indicates that system A only has a narrow envelope of

environmental conditions in which it is both autonomic and

returns satisfactory behaviour. System B tends toward level 3

on the scale which is ‗human shadows computer‘ which

translates into a wider operational envelope, but once the

limits of that envelope are reached human input is needed in

the form of retuning, or manual override in the case of

oscillation, which for example system C can deal with

autonomicaly. System C falls within level 5, which points to

Characteristics (metrics) Contributing CHOP Sys A Sys B Sys C

Continuous C √ √ √
Unsupervised C √ √ √

Trends examination O - √ √

Stability O - - √

Dynamic (logic switching) O - - √

Signal characteristics C √ √ √

Signal differentiation C √ √ √
Failure sensitivity (sensors) H - - -

Robust (fault tolerance) H - - √

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 21 / 132

‗collaboration with reduced human intervention‘. This

indicates that C is sufficiently sophisticated to operate

autonomicaly and yield satisfactory results under almost all

perceivable operating circumstances.

Employing (6) to rank the functionalities and taking just

self-configuration for example, we find that in system A self-

configuration contributes 100% of its autonomic achievement,

while in systems B and C the contribution is 75% and 40%

respectively. This shows that system A is entirely a self-

configuring system, while system C is more of a self-

optimising system than B.

The benefit of analyzing Autonomic Systems in terms of

their extent of autonomicity not only offers a path to

Autonomic Systems‘ certification as stated earlier, it also

offers a way of comparing these systems, and also facilitates a

proper description of these systems to users.

V. CONCLUSION AND FUTURE WORK

A system is better defined by its capabilities and so

measuring the LoA of Autonomic Systems without a

reference to autonomic functionalities would be inaccurate.

We have proposed a CHOP-based LoA measurement. In our

proposal a typical AS is defined by the four CHOP

functionalities (self-configuring, -healing, -optimising and -

protecting) and LoA is measured with respect to these

functionalities. Each functionality is defined by a set of

metrics. The metrics values are normalised and aggregated to

give the autonomic contribution of each functionality which

are then combined to yield a LoA value for an AS. We have

adopted the maximum autonomic value of 8 to correspond

with the autonomy assessment scale defined in [1] to enable a

qualitative understanding of the quantitative LoA measure

proposed here. We have also shown how systems can further

be evaluated by looking at the ratio of autonomic

contributions of their separate functionalities. In this, we

found that only systems of the same autonomic categorisation

can be compared (e.g., a space exploration system cannot be

directly compared with a resource allocation system as both

are uniquely defined in terms of context and functionalities).

The standardization of a technique for the measurement

of LoA will bring many quality-related benefits which include

being able to compare alternative configurations of ASs, and

even to be able to compare alternate systems themselves and

approaches to building ASs, in terms of the LoA they offer.

This in turn has the potential to improve the consistency of

the entire lifecycle of Autonomic Systems and in particular

links across the requirements analysis, design and acceptance

testing stages.

As future work, we are looking at exploring areas where

the CHOP are not orthogonal and also how to properly define

and generate autonomic metrics to strengthen our framework.

This is a key component towards our wider research which

focuses on the challenge of validating AC systems to achieve

trustworthiness in Autonomic Systems.

REFERENCES

[1] Ryan W. Proud, Jeremy J. Hart, and Richard B. Mrozinski.
Methods for Determining the Level of Autonomy to Design
into a Human Spaceflight Vehicle: A Function Specific
Approach. http://handle.dtic.mil/100.2/ADA515467 accessed 28/03/11

[2] Thaddeus O. Eze, Richard J. Anthony, Chris Walshaw and
Alan Soper. The Challenge of Validation for Autonomic and
Self-Managing Systems. In proceedings of The 7th
International Conference on Autonomic and Autonomous
Systems (ICAS), May 22-27, 2011 – Venice/Mestre, Italy

[3] Clough B T. Metrics, Schmetrics! How The Heck Do You
Determine A UAV’s Autonomy Anyway? In Proceedings of
PerMis Workshop, pp 1–7. NIST, Gaithersburg, MD, 2002.

[4] IBM Autonomic Computing White Paper, An architectural
blueprint for autonomic computing. 3rd edition, June 2005

[5] Huebscher M. C. and McCann J. A.. A survey of autonomic
computing—degrees, models, and applications. ACM
Computer Survey, 40, 3, Article 7 (August 2008)

[6] Fernando Alonso, José Fuertes, Löic Martínez, and Héctor
Soza. Towards a Set of Measures for Evaluating Software
Agent Autonomy. In proceedings of 8th Mexican Int‘l
Conference on Artificial Intelligence (MICAI), 2009

[7] Sheridan T. B.. Telerobotics, Automation, and Human
Supervisory Control. The MIT Press. Cambridge, MA,
USA 1992. ISBN:0-262-19316-7

[8] Barber, K. S. and Martin, C. E.. Agent Autonomy:
Specification, Measurement, and Dynamic Adjustment. In
Proceedings of the Autonomy Control Software Workshop at
Autonomous Agents 1999 (Agents‘99), 8-15. Seattle

[9] Hui-Min Huang, Kerry Pavek, James Albus, and Elena
Messina. Autonomy Levels for Unmanned Systems (ALFUS)
Framework: An Update. In proceedings of SPIE Defense and
Security Symposium, Orlando, Florida. 2005

[10] Kephart J., Chess D. The Vision of Autonomic Computing.
Computer, IEEE, Vol 36, Issue 1, 2003, pp 41-50

[11] Bantz D. F. Bisdikian, C. Challener, D. Karidis, J.
P. Mastrianni, S. Mohindra, A. Shea, D. G. and Vanover,
M.. Autonomic Personal Pomputing. IBM Systems Journal,
Vol 42, No 1, 2003

[12] J. A. McCann and M. Huebscher. Evaluation issues in
Autonomic Computing. In proceedings of Grid and
Corporative Computing (GCC) Workshop, LNCS 3252, pp.
597-608, Springer-V erlag, Birlin Heidelber, 2004

[13] ISO/IEC 9126-1:2001(E), Software engineering — Product
quality — Part 1: Quality model

[14] R.J. Anthony. Policy-based autonomic computing with
integral support for self-stabilisation, Int. Journal of
Autonomic Computing, Vol. 1, No. 1, pp.1–33. 2009

[15] Gaea Honeycutt, How Much Do we Trust Autonomous
Systems? Unmanned Systems -2008

[16] H. Tianfield. Multi-agent Based Autonomic Architecture for
Network Management. In Proc. IEEE International
Conference on Industrial Informatics, pp. 462–469, 2003

[17] W. Truszkowski, L. Hallock, C. Rouff, J. Karlin, J. Rash, M.
G.Hinchey, and R. Sterritt, Autonomous and Autonomic
Systems. Springer, 2009

[18] Mark B., Sheng M., Guy L., Laurent M., Mark W., Jon C.
and Peter S., Quickly Finding Known Software Problems via
Automated Symptom Matching, The 2nd International
Conference on Autonomic Computing (ICAC), 2005,
Seattle, USA

 Sys C

 Sys B

 Sys A

 Sys

A

Sys

B

Sys

C

C 2 2 2

H 0 0 1

O 0 0.67 2

LoA 2 2.67 5

Figure 2: LoA representation of systems A, B & C

in the four CHOP domains.

TABLE II: ANALYSIS RESULT

O

H

C

P

2

2 2 1 1

1

2

1

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 22 / 132

A Framework to Create Multi-domains Autonomic Middleware

Mahdi Ben Alaya and Thierry Monteil and Khalil Drira and Tom Guérout

CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France

Université de Toulouse; UPS, INSA, INP, ISAE; UT1, UTM, LAAS; F-31077 Toulouse Cedex 4, France

Email: ben.alaya@laas.fr, monteil@laas.fr, khalil@laas.fr, tguerout@laas.fr

Abstract—This paper proposes an enumeration and a classifi-
cation of the services or functionality needed in the autonomic
middleware. This allows to propose a second time the foun-
dation for a framework that will be able to generate different
middleware implementing autonomic loop and adapted to areas
with different constraints and different needs. An illustration
in the field of ”Machine to Machine” and more particularly of
smart metering is given.

Keywords- autonomic computing; middleware; architecture;
components.

I. INTRODUCTION

The increasing complexity for the management of current

distributed software and system needs new solutions. The

computer system ”selfware” was created in the year 1995

for this purpose. By applying the properties of ”self-*” to

the computer systems, Kephart and Chess [2] and Brantz [1]

define in 2003 the four paradigms to be implemented at least

in such systems to become self-managed: self-configuring,

self-optimizing, self-healing and self-protecting.

In the last year, we are witnessing a widespread use of

autonomic loop in many areas: high performance computing,

service management, M2M (Machine to Machine) system,

network, etc. The expression of autonomic behavior in

each area often results in the construction of middlware

completely different. Yet, the basic principle remains the

same even if the elementary actions constituting the various

phases of the autonomic loop vary.

We propose in this work in progress paper to enumerate

the main ”components”, ”services”, ”features” needed to

create a generic framework for building autonomous mid-

dleware specific to each area. We then describe a generic

architecture between the proposed components. Finally, we

give an example of future utilization of this Framework in

the case of M2M.

II. RELATED WORK

There are many middlewares to implement autonomic

principles. They can be intrusive in the managed system or

not.

DeployWare [3], manages the deployment of autonomic

distributed applications. This approach defines three roles in

the management of the software. The ”expert software” is

the specialist in software technology to deploy. ”The system

administrator” gives the network configurations (description

of the physical infrastructure deployment). ”The end user” is

using the application deployed. The peculiarity of Deploy-

Ware is that it proposes specific language for deployment

(DSL Domain Specific Language) and a virtual machine

for this language. DeployWare language is defined by a

meta-model and provides a graphical notation in the form

of a UML profile. Two concepts are important for us: the

importance of defining roles and use of specific language

nearest for users.

OceanStore [4] is used for the field of distributed and per-

sistent storage of data. Its main goal is the implementation

of the four properties of ”self-management” applied to the

high data availability. Its features are for ”self-healing” fault

tolerance through data redundancy and automatic repair.

Here the focus is on the ability of middleware to provide

services. This requires an application of the autonomic loop

in the middleware itself.

Oceano [5] is applied to the field of cluster management

for computing intensive applications or applications with a

processor load varies with time (web servers). The pecu-

liarity of this approach is the way it manages the property

of ”self-Optimizing” policies dictated by contracts SLAs

(Service Level Agreement) to specify a level of service by

type of cluster or client (using one or more clusters). The

use of SLA seems an important step by the possibility of

applying it to many areas.

Gryphon [6] brings to the monitoring the notion of prior-

itization of events, as well as processing and agglomeration

of events. This is an event management system self-adaptive,

in fact, this approach also uses the events described as

meta-events that trigger a reconfiguration of its internal

functioning. Intelligent processing of events is a prerequisite

for scalability. This will also be addressed in the framework

that we propose.

Astrolabe [7] is an approaches providing an API to

develop applications with properties of ”self-management”.

It is used to collect the states of a very large scale (several

thousand to several million nodes) according to zones.

The area is also cutting into a solution that we wish to

implement through the use of the concept of group and

adapted communication patterns.

TUNe [8] is based on a component model. Its particularity

is to add autonomous behavior to different types of existing

legacy software. It provides a uniform vision of controlled

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 23 / 132

softwares using the method of encapsulation with compo-

nents. The administration then uses the standardized inter-

face provided by the component model and a set of generic

sensors or probes reusable skeletons. we will implement a

model of components and services based on SCA (Service

Component Architecture)[10].

None of those middlewares can address different domains.

Each one has some specific characteristics. The goal of

our framework is to build different autonomic middlewares

with specific properties covering the needs of the domain of

utilization.

III. FRAMEWORK PRINCIPLE

A. Functionalities

In this part, we presented the functionalities that should

be provided by our framework. We are inspired by the list

of the M2M (Machine to Machine) functionalities detailed

by ETSI (European Telecommunications Standards Institute)

[9] to specify our classification. We decided to structure our

framework features into six classes which are: communi-

cation, security, data toolkit, autonomic, management and

entity classes. Complex/structured Communication class

involves machine-to-machine, machine-to-man, and man-to-

machine communications based on multiple communication

means, e.g. SMS, GPRS and IP Access:

• Event processing: integrate different kind of event pro-

cessing style: simple, stream and complex flow.

• Service oriented interactions: support service invocation

between requester and provider.

• Transmission scheduling: Manage the scheduling of

network access and of messaging.

• Delivery modes: support any-cast, uni-cast, multi-cast

and broadcast communication.

• Flow management: handle asymmetric flows and sup-

port flow priority.

• Multi path: support physical paths diversity.

• Addressing: abstraction of the underlying network

structure including any network addressing mechanism.

Security class involves structures and processes needed to

protect the system and the connected users and devices

against danger, damage, loss, and crime:

• Authentication: support two-way authentication and

strength level selection.

• Encryption: support appropriate confidentiality of the

data exchange.

• Anonymous: Possibility to hide the identity and the

location of the requestor.

• Data integrity: support verification of the integrity of

the data exchanged.

• Privacy: System shall be capable of protecting privacy.

• Security credential and software upgrade: secure up-

dates of application security software and context (keys

and algorithm).

Data toolkit class contains modules used for collection,

representation and reporting of data:

• Data Base: gives a tool to store all necessary data

• Data collection: it includes pre collection activities

(target data, definitions, method, etc.), collection and

present findings.

• Reporting: Supports many type of reporting: periodic,

on-demand, scheduled and event-based reporting.

• Graph modeling: provide mechanism to represent data

in advanced structures like tree or graph to have a

mapping describing in details the physical system.

Autonomic class contains modules making a system able

to manage itself [2] (self-configuring, self-healing, self-

optimization and self-protecting) and dynamically adapt to

change in accordance with business policies:

• Monitoring: Provides the mechanisms that collect, ag-

gregate, filter and report details collected from managed

entities.

• Analyzing: provides the mechanisms that correlate and

model complex situations. Help to learn about the

environment and predict future situations.

• Planning: provides mechanisms that construct the ac-

tions needed to achieve objectives using policy infor-

mation to guide its work.

• Executing: provides the mechanisms that control the

execution of a plan with considerations for dynamic

updates.

• Policy: supports different type of behavior for the

planning component.

Management class contains modules that allow remotely

configuring and controlling connected devices.

• Configuration: supports maintaining consistency of a

system performance and its functional and physical

attributes with its requirements, design, and operational

information.

• Deployment: manages components life-cycle and ac-

tivities of release, install, uninstall, activate, deactivate,

update, adapt, built-in and version tracking.

• Remote administration: Supports advanced control re-

quest and receive acknowledgments to administrate the

middleware

• HMI (Human-Machine Interface) system: helps to man-

age the system graphically .

Entity class it handles resource that exist in the run-time

environment of an IT system and that can be managed:

• Group: support a mechanism to create and remove

groups, to introduce an entity into a group, modify

the invariants of the members, remove an entity, list

members, search entities in a group, identify entity

groups where the entity is a member, etc.

• Session: start and stop session supporting cooperation

between two or more communicating entities [11].

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 24 / 132

• Profile: support computer representation of a user and

device model [11].

• Role: possibility to assign role to a connected entity to

manage their behaviors, rights and obligations.

• Discovery: a connected entity to a network should be

able to advertise itself and to discover other entities.

• Description: each entity should be able to describe itself

and to detail its hosted services in a standard format.

• Registration: allowing an entity to subscribe to asyn-

chronous event messages produced by a given service.

• Meta-data exchange: provide dynamic access to a de-

vice’s hosted services and to their meta-data.

B. Architecture

The different classes and services defined above are

included in an architecture based on the SCA standard. This

will have great flexibility in the use and construction of a

middleware. Indeed, the interactions between components

can be defined by different means: rmi, web-service, java,

etc. Similarly, it is very easy to replace the instantiation of a

component by another, or to take only part of the available

components.

It is planned to establish the composition of middleware

from eclipse by drawing in architecture and components

available and so generate the autonomic middleware cor-

responding to his need. In Figure 1, a UML components

diagram shows a part of the relation between components

of the framework.

Figure 1. Framework architecture

We find the different elements of the autonomic loop

with the monitoring of the system to manage (P monitor)

but also the monitoring of the autonomic middleware

(M P monitor). The observed data are transformed into

a generic vision through the L monitor to be transmitted

via a component of effective communication (Structured

Communication Monitor, one or more component of the

class communication) to be used by the component analysis

(Analysis). The latter built a diagnosis that will generate a

reaction (Planning) based on various policies (Policy). The

set of elementary actions are effectively transmitted via the

communication component (Action Structured Communica-

tion) to component (L Execute) responsible for transforming

the logical actions in specific actions to be executed by the

actuators of the managed system (P Execute) or middleware

(M P Execute).

Depending on the area treated, there is a set of component

toolbox class entity that can be used to provide specific

services needed. There should be also the possibility in

the toolbox to define specific languages readily available

in various trades. There is also the use by the major

components part of a toolbox to manage data from different

patterns. Safety aspects are transversal to all this by using

the notion of politics in SCA. All these components are con-

figurable via the component configuration that orchestrates

the system. Components of administration (Administration)

and visualization (HMI) also allow to control the use of

middleware in its execution.

IV. EXAMPLE IN M2M DOMAIN

The smart metering is a domain of M2M where autonomic

loop could be used. Information such as energy consump-

tion, temperature, light etc are collected with sensors. They

are networked into a communication network that allows

the sensed information to be fed to a central system where

data can be analyzed then a list of actions can be planned.

Actuators and appliances can next be automatically config-

ured such as remotely reducing the level of the lamps or

turning off the heating. ETSI specified six functionalities

[12] related to smart metering expressed in broad terms, so

that they can be related to electricity, gas, heating/cooling

and water. Identifying functionalities at high level will

permit flexibility, innovation and competition:

• Remote reading of metro-logical registers and provision

to designated market organization.

• Provide two-way communication between the metering

system and designated market organization.

• Support advanced tariffing and payment systems.

• Remote activation and deactivation of supply.

• Communicating with (and where appropriate directly

controlling) individual devices within the building

• Providing information via gateway to an in-home dis-

play or auxiliary equipment.

The Figure 2 describes our smart metering architecture

which involves the smart building ADREAM [13] that will

serve as a real experimental platform to test our solution

capabilities.

MAPE-K Loop modules will be used to self-manage

smart metering operations: (P Monitor) collects data from

smart meters (electric, gaz, water and photovoltaic meters)

and also from sensors (temperature, light, presence, etc).

After analysing and planning, (P Execute) executes required

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 25 / 132

Figure 2. Smart metering architecture

actions to control different kind of actuators (roller shutter,

on/off light, heating level, etc.).

(M P Monitor) supervises the middleware components

and devices. It collects information about the middleware

distributed machines context (Server memory, CPU, Root-

ing, etc.). If a problem is detected (Server down, big

number of users, etc.) so, after analysing and planning,

(M P Execution) executes actions such as deploying addi-

tional servers in new distributed machines or re-configuring

gateways parameters to optimise the communication flows

to add more scalability to the middleware.

For example, consider a scenario where a Customer

decides to add a new sensor to regulate his consumption

as a function of luminosity, so he looks his consumption

and changes the way he wants that energy is consumed in

his house. After being authenticated, the system character-

izes his rights (role). It connects the new sensor that will

be inserted dynamically into the system after authentica-

tion (discovery, Registry, description and inclusion in the

database). It then displays (HMI) the consumer consumption

and decides to change the behavior of the system of energy

regulation (profile) because the system has automatically

update the new possibilities offered in terms of regulation

of energy thanks to this new sensor. The new autonomous

policy (policy) is connected to the planning module (Plan-

ning).

V. CONCLUSION

In this paper, we present the basis for a framework that

aims to create autonomic middleware specific to different

application areas. The goal is to build a single tool that

will be enriched and developed with many new components.

The use of SCA should facilitate this. This framework

will be used in various research projects and industry.

A first prototype showing the feasibility of concepts is

underway with the first application as the area of M2M.

Future work will develop the framework and use it as part

of large scale distributed computing. We can even think

about interpretability scenarios between multiple autonomic

middleware allowing to link several M2M domains.

REFERENCES

[1] D. F Bantz, C. Bisdikian, D. Challener, J. P Karidis, S. Mas-
trianni, A. Mohindra, D. G Shea, and M. Vanover, Autonomic
personal computing, IBM Systems Journal, pp. 165-176, 2003

[2] J. O. Kephart, and D. M. Chess, The vision of autonomic
computing, Computer, pp. 41-50, 2003

[3] Areski Flissi, J Dubus, Nicolas Dolet, and Philippe Merle,
Deploying on the Grid with DeployWare, 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid
(CCGRID), Lyon France, pp. 177-184, 2008

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and
others, Oceanstore: An architecture for global-scale persistent
storage, ACM SIGARCH Computer Architecture News, V. 28
N. 5, pp. 190-201, 2000

[5] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar,
S. Krishnakumar, D. Pazel, J. Pershing and B. Rochwerger,
Oceano-SLA based management of a computing utility, Pro-
ceedings of the 7th IFIP/IEEE International Symposium on
Integrated Network Management, Seattle USA, 2001

[6] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B.
Mukherjee, D. Sturman, and M. Ward, Gryphon: An infor-
mation flow based approach to message brokering, IBM TJ
Watson Research Center Reports, 1998

[7] R. Van Renesse, K. P Birman, and W. Vogels, Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining, ACM Transactions on
Computer Systems (TOCS), V. 21 N. 2, pp. 164-206, 2003

[8] Remi Sharrock, Thierry Monteil, Patricia Stolf, Daniel Hagi-
mont, and Laurent Broto, Non-intrusive autonomic approach
with self-management policies applied to legacy infrastructures
for performance improvements, International Journal of Adap-
tive, Resilient and Autonomic Systems (IJARAS), V. 2 N. 2,
pp. 1-20, 2010

[9] ETSI TS 102 689 Machine-to-Machine communications
(M2M); M2M service requirements.

[10] Simon Laws, Mark Combellack, Raymond Feng, Haleh Mah-
bod, and Simon Nash, Tuscany SCA in Action, February, 2011
— 472 pages ISBN 9781933988894, manning

[11] M.Ben Alaya, V.Baudin, and K.Drira, Dynamic deployment
of collaborative components in service-oriented architectures
11th International Conference of New Technologies in Dis-
tributed Systems (IEEE NOTERE2011), Paris, France, 2011.

[12] ETSI TR 102 691 Machine-to-Machine communications
(M2M); Smart Metering Use Cases.

[13] http://www.laas.fr/ADREAM/

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 26 / 132

State-Space Feedback Control for Elastic
Distributed Storage in a Cloud Environment

M. Amir Moulavi, Ahmad Al-Shishtawy, and Vladimir Vlassov

KTH Royal Institute of Technology

Stockholm, Sweden

Email: {moulavi,ahmadas,vladv}@kth.se

Abstract—Elasticity in Cloud computing is an ability of a
system to scale up and down (request and release resources)
in response to changes in its environment and workload. Elas-
ticity can be achieved manually or automatically. Efforts are
being made to automate elasticity in order to improve system
performance under dynamic workloads. In this paper, we report
our experience in designing an elasticity controller for a key-
value storage service deployed in a Cloud environment. To
design our controller, we have adopted a control theoretic
approach. Automation of elasticity is achieved by providing a
feedback controller that automatically increases and decreases
the number of nodes in order to meet service level objectives
under high load and to reduce costs under low load. Every
step in the building of a controller for elastic storage, including
system identification and controller design, is discussed. We have
evaluated our approach by using simulation. We have developed
a simulation framework EStoreSim in order to simulate an
elastic key-value store in a Cloud environment and be able to
experiment with different controllers. We have examined the
implemented controller against specific service level objectives
and evaluated the controller behavior in different scenarios.
Our simulation experiments have shown the feasibility of our
approach to automate elasticity of storage services using state-
space feedback control.

Keywords-elasticity; key-value store; Cloud; state-space feedback
control

I. INTRODUCTION

Web-based services frequently experience high workloads

during their lifetime. A service can become popular in just

an hour, and the occurrence of such high workloads has

been observed more and more recently. Cloud computing has

brought a great solution to the problem by requesting and

releasing VM (Virtual Machine) instances that provide the

service on-the-fly. This helps to distribute the loads among

more instances. However, the high level load typically does

not last for long and keeping resources in the Cloud costs

money. This solution has led to Elastic Computing where a

system running in the Cloud can scale up and down based on

a dynamic property that is changing from time to time.

In 2001, P. Horn from IBM [1] marked the new era of

computing as Autonomic Computing. He pointed out that the

software complexity would be the next challenge of Infor-

mation Technology. Growing complexity of IT infrastructures

can undermine the benefits IT aims to provide. One traditional

approach to manage the complexity is to rely on human inter-

vention. However, considering the expansion rate of software,

there would not be enough skilled IT staff to tackle the

complexity of its management. Moreover, most of the real-time

applications require immediate administrative decision-making

and actions. Another drawback of the growing complexity is

that it forces us to focus on management issues rather than

improving the system itself.

Elastic Computing requires automatic management that can

be provided using results achieved in the field of Autonomic

Computing. Systems that exploit Autonomic Computing meth-

ods to enable automated management are called self-managing

systems. In particular, such systems can adjust themselves ac-

cording to the changes of the environment and workload. One

common and proven way to apply automation to computing

systems is to use elements of control theory. In this way a

complex system, such as a Cloud service, can be automated

and can operate without the need of human supervision.

In this paper, we report our experience in designing an

elasticity controller for a key-value storage service deployed

in a Cloud environment. To design our controller, we have

adopted a control theoretic approach. Automation of elas-

ticity is achieved by providing a feedback controller that

continuously monitors the system and automatically changes

(increases or decreases) the number of nodes in order to

meet Service Level Objectives (SLOs) under high load and

to reduce costs under low load. We believe that this approach

to automate elasticity has a considerable potential for practical

use in many Cloud-based services and Web 2.0 applications

including services for social networks, data stores, online

storage, live streaming services.

Our second contribution presented in this paper is an open-

source simulation framework called EStoreSim (Elastic key-

value Store Simulator) that allows developers to simulate an

elastic key-value store in a Cloud environment and be able to

experiment with different controllers.

The rest of the paper is organized as follows. In Section II,

we define the problem of automated elasticity and describe the

architecture of an elastic Cloud-based key-value store with

feedback control. Section III presents different approaches

to system identification. In Section IV, we show how we

construct a state-space model of our elastic key-value store. We

continue in Section V by presenting the controller designing

for our storage. Section VI summarises steps of controller

design including system identification. In Section VII, we

describe the implementation of our simulation framework

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 27 / 132

EStoreSim. Experimental results are presented in Section VIII

followed by a discussion of related work in Section IX. Finally,

our conclusion and our future work are given in Section X.

II. PROBLEM DEFINITION AND SYSTEM DESCRIPTION

Our research reported here aims at automation of elasticity

of a key-value store deployed in a Cloud environment. We

want to automate the management of elastic storage instances

depending on workload. a Cloud environment allows the

system that is running in the Cloud to scale up and down in

few minutes in response to load changes. In-time and proper

decisions regarding the size of the system in response to the

changes in the workload is very critical when it comes to

enterprise and scalable applications.

In order to achieve elasticity of a key-value store in the

Cloud, we adopt a control theoretic approach to designing a

feedback controller that automatically increases and decreases

the number of storage instances in response to changes in

workload in order to meet SLOs under high load and to reduce

costs under low load. The overall architecture of the key-value

store with the feedback controller is depicted in Fig. 1.

Fig. 1. Architecture of the Elastic Storage with feedback control of elasticity

End-users request files that are located in the storage Cloud

nodes (instances). All the requests arrive at the Elastic Load

Balancer (ELB) that sits in front of all storage instances. The

Elastic Load Balancer decides to which instance the request

should be dispatched. In order to do this, the Elastic Load

Balancer tracks the CPU load and the number of requests sent

previously to each instance and based on that it determines the

next node that can serve the incoming request. In addition to

the performance metrics that it tracks, ELB has the file tables

with information about file replica locations since more than

one instance can have a replica of the same file in order to

satisfy the replication degree.

The Cloud Provider (Fig. 1) is an entity that is responsi-

ble for launching a new storage instance or terminating the

existing one on requests of the Elasticity Controller.

Our system contains the Elasticity Controller, which is

responsible for controlling the number of storage instances

in the Cloud in order to achieve the desired SLO (e.g.,

download time). The Controller monitors the performance of

the storage instances (and indirectly the quality of service)

and issues requests to scale the number of instances up and

down in response to changes in the measured quality of service

(compared to the desired SLO). These changes are caused

by changes in the workload, which is not controllable and

is considered to be a disturbance in terms of control theory.

In the following two sections, we provide the relevant

background and present steps of the design of the controller

including system identification [2].

III. APPROACHES TO SYSTEM IDENTIFICATION

In this section, we present methods of system identification,

which is the most important step in the design of a controller.

It deals with how to construct a model to identify a system.

System identification allows us to build a mathematical model

of a dynamic system based on measured data. The constructed

model contains a number of transfer functions, which define

how the output depends on past/present inputs and outputs.

Based on the transfer functions and desired properties and

objectives, a control law is chosen. System identification can

be performed using one of the following approaches.

First principle approach is one of the de facto approaches

to identification of computer systems [3]. It can be considered

as a consequence of the queue relationship. The first principle

approach is developed based on knowledge of how a system

operates. For example, this approach has been used in some

studies and systems like [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14]. However, there are some shortcomings with

this approach that have been stated in [2]. It is very difficult

to construct a first principle model for a complex system.

Since this approach considers detailed information about the

target systems, it requires an ongoing maintenance by experts.

Furthermore, this approach does not address model validation.

Empirical approach starts by identifying the input and out-

put parameters like the first principle approach. But rather than

using a transfer function, an autoregressive moving average

(ARMA) model is built and common statistical techniques

are employed to estimate the ARMA parameters [2]. This

approach is also known as Black Box [3]; and it requires

minimal knowledge of the system. Most of the systems in our

studies have employed a black-box approach rather than a first-

principle approach for system identification, e.g., [2], [15],

[16], [17], [18], [19]. This is mainly because the relationship

between inputs and outputs of the system is complex enough

so that the first-principle system identification cannot be done

easily. One of the empirical approaches is to build a State-

Space Model, which requires more knowledge of the internals

of the system. We use the state-space model approach for

system identification as described in the next section.

IV. STATE-SPACE MODEL OF THE ELASTIC KEY-VALUE

STORE

A state-space model provides a scalable approach to model

systems with a large number of inputs and outputs [3]. The

state-space model allows dealing with higher order target

systems without a first-order approximation. Since the studied

system executes in a Cloud environment, which is complex and

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 28 / 132

dynamic in a sense of dynamic set of VMs and applications,

we have chosen state-space modeling as the system identifica-

tion approach. Another benefit of using the state-space model

is that it can be extended easily. Suppose that after the model is

built, we find more parameters to control the system. This can

be accommodated by the state-space model without affecting

the characteristic equations as shown later in Section VI where

we summarize a generic approach for system identification and

controller design

The main idea of the state-space approach is to characterize

how the system operates in terms of one or more variables.

These variables may not be directly measurable. However, they

can be sufficient in expressing the dynamics of the system.

These variables are called state variables.

A. State Variables and the State-Space Model

In order to define the state variables for our system, first

we need to define the inputs and measured outputs since the

state variables are related to them. In particular, state variables

can be used to obtain the measured output. It is possible for

a state variable to be a measured output like it is in our case.

In our case, the system input is the number of nodes

(instances) denoted by NN(k) at time k. The measured system

outputs (and hence state variables) are the following:

• average CPU load CPU(k): the average CPU load of all

instances currently running in the Cloud during the time

interval [k − 1, k];
• interval total cost TC(k): the total cost of all instances

during the time interval [k − 1, k];
• average response time RT(k): the average time required

to start a download during the time interval [k − 1, k].

The value of each state variable at time k is denoted by

x1(k), x2(k) and x3(k). The offset value for input is ū1(k) =
NN(k) − N̂N, where N̂N is the operating point for the input.

The offset values for outputs are

ȳ1(k) = CPU(k)− ĈPU (1)

ȳ2(k) = TC(k)− T̂C (2)

ȳ3(k) = RT(k)− R̂T (3)

where ĈPU, T̂C and R̂T are operating points for corresponding

outputs.

The state-space model uses state variables in two ways [3].

First, it uses state variables to describe the dynamics of the

system and how x(k+1) can be obtained from x(k). Second,
it obtains the measured output y(k) from state x(k).
State-space dynamics for a system with n states is described

as follows

x(k + 1) = Ax(k) + Bu(k) (4)

y(k) = Cx(k) (5)

where x(k) is a n× 1 vector of state variables, A is a n× n

matrix, B is a n × mI matrix, u(k) is a mI × 1 vector of

inputs, y is a mO × 1 vector of outputs and C is a mO × n

matrix.

According to equations 4 and 5, we can describe dynamics

of our system as follows:

• Average CPU Load (CPU) is dependant on the number

of nodes in the system and previous CPU load, thus it

becomes

x1(k + 1) = CPU(k + 1) =

a11CPU(k)+ (6)

b11NN(k)+

0× TC(k) + 0× RT(k)

• Total Cost (TC) is dependant on the number of nodes in

the system (the more nodes we have, the more money we

should pay) and the previous TC, hence it becomes

x2(k + 1) = TC(k + 1) =

a21TC(k)+ (7)

b21NN(k)+

0× RT(k) + 0× CPU(k)

• Average Response Time (RT) is dependant on the number

of nodes in the system and the CPU load, so it is

x3(k + 1) = RT(k + 1) =

a31CPU(k) + a33RT(k)+ (8)

b31NN(k)+

0× TC(k)

In each equation (6, 7, 8) terms with zero factor include

those state variables that do not affect the corresponding state

variable definition. Thus their coefficient is zero. This is to

ensure that there is no relation between those state variables

or the relation is negligible and can be ignored. Their presence

in the equations is for the sake of clarity and completeness. In

order to prove that there is no relation or that it is negligible

one should do a sensitivity analysis to investigate this, but it

is out of the scope of this paper.

The output for the system at each time point k is equivalent

to the corresponding state variable:

y(k) = I3x(k) (9)

The outputs are the same as the internal state of the systems

at each time. That is why the matrix C is an identity matrix,

i.e., a diagonal matrix of 1’s. The matrices of coefficients are:

A =



a11 0 0
0 a22 0
a31 0 a33


 (10)

B =



b11
b21
b31


 (11)

C =



1 0 0
0 1 0
0 0 1


 (12)

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 29 / 132

B. Parameter Estimation

In Section IV-A, we have derived the State-Space model

(Equations 6-12) that describes the dynamics of an elastic key-

value store. There are two matrices A and B that contain the

unknown coefficients for the equations 6-8. In order to use

the model to design the controller we need to estimate the

coefficient matrices A and B.

Parameter estimation is done using experimental data. In

this research, we use data obtained from the simulation frame-

work EStoreSim that we have built, rather than from a real

system, because the major focus is on controller design and the

simulation framework allows us to experiment with different

controllers. We have implemented a simulation framework

EStoreSim (described in Section VII) of a Cloud system.

Using the framework we can obtain experimental data for

system identification.

To get the data, we have designed and run an experiment,

in which we feed the system with an input signal and observe

the output and internal state variable periodically. We change

the input (which is the number of nodes in the system) by

increasing it from a small number of nodes a to a large

number of nodes b and then back from b to a in a fixed period

of time, and measure outputs (CPU load, cost, and response

time). In this way, we ensure the complete coverage of the

output signals in their operating regions by the input signal

(the number of nodes). Load should be generated according to

an arbitrary periodic function to issue a number of downloads

per seconds. The period of the function should be chosen such

that at least one period is observed during the time of changing

the input between [a, b].
For example, using the modeler component of our frame-

work EStoreSim (Section VII), we scale up the number of

nodes from 2 to 10 and then scale down from 10 to 2. Every

225 seconds a new node is either added or removed (depending

on whether we scale up or down); sampling of training data

(measuring outputs) is performed every 10 seconds.

When identifying the system, the workload is modeled as a

stream of requests issued by the request generator component

where the time interval between two consecutive requests

forms a triangle signal in the range [1, 10] seconds as follows:
the first request is issued after 10 seconds, the second after 9

seconds, etc. The requests are received by the load balancer

component in the Cloud provider component. After each

scaling up/down the system will experience 2 triangle loads

of requests between 1 to 10 seconds. The time needed to

experience 2 triangles is 4
∑

10

i=1
i, which is 220 seconds. That

is why we have selected 225 seconds as the action time.

Once training data are collected, they can be used to

compute the matrices A and B using the multiple linear

regression method. We use the regress(y,X) function of

Matlab to calculate matrices:

A =




0.9 0 0
0 0.724 0

5.927 0 0.295




B =



2.3003
0.0147
77.8759




V. CONTROLLER DESIGN

In this section, we describe how the feedback controller

for the elastic storage deployed in a Cloud environment is

designed. The controller design starts by choosing an appro-

priate controller architecture according to system properties.

There are three common architectures for state-space feedback

control, namely, Static State Feedback, Precompensated Static

Control and Dynamic State Feedback. A good comparison

between these architectures can be found in [3]. A close

investigation in this comparison reveals that dynamic state

feedback control is more suitable for a Cloud system since

it has disturbance rejection that the other two architectures

lack. Disturbance (in terms of control theory) is observed in a

Cloud in the form of changes in the set of virtual machines and

workload of Cloud applications. Thus we choose dynamic state

feedback control as our controller architecture for autonomic

management of elasticity.

A. Dynamic State Feedback

Dynamic state feedback can be viewed as a State-Space

analogous to PI (Proportional Integral) control that has good

disturbance rejection properties. It both tracks the reference

input and rejects disturbances. We need to augment the state

vector with the control error e(k) = r − y(k) where r is

the reference input. We use integrated control error, which

describes the accumulated control error. The integrated control

error is denoted by xI(k) and computed as

xI(k + 1) = xI(k) + e(k)

The augmented state vector is

[
x(k)
xI(k)

]
. The control law is

u(k) = −
[
Kp KI

] [x(k)
xI(k)

]
(13)

where Kp is the feedback gain for x(k) and KI is the gain

associated with xI(k).

B. LQR Controller Design

An approach to controller design is to focus on the trade-

off between control effort and control errors. The control error

is determined by the squared values of state variables, which

are normally the difference from their operating points. The

control effort is quantified by the square of u(k), which is

the offset of the control input from the operating point. By

minimizing control errors we improve accuracy and reduce

both settling times and overshoot and by minimizing control

effort, system sensitivity to noise is reduced.

Least Quadratic Regulation (LQR) design problem is

parametrized in terms of relative cost of control effort (defined

by matrix R) and control errors (defined by matrix Q). The

quadratic cost function to minimize is the following [3]:

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 30 / 132

J =
1

2

∞∑

k=0

[
x⊤(k)Qx(k) + u⊤(k)Ru(k)

]
(14)

where Q must be positive semidefinite (eigenvalues of Q must

be nonnegative) and R must be positive definite (eigenvalues

of R must be positive) in order for J to be nonnegative.

After selecting the weighting matrices Q and R, the con-

troller gains K can be computed using the Matlab dlqr

function that takes as parameters the matrices A, B, Q,

and R. The performance of the system with the designed

controller can be evaluated by simulation. If the performance

is not appropriate, the designer can select new Q and R and

recompute the vector gain K.

In our example, the matricesQ and R are defined as follows:

Q =



100 0 0
0 1 0
0 0 1




R =
[
1
]

We have given 100 to the element that corresponds to

CPU Load to emphasize that this state variable is more

important compared to the others. One can give a high weight

to total cost TC to trade off cost for performance. Using

the Matlab dlqr function we compute the controller gains

K = dlqr(A, B, Q, R). For example, using the results

of system identification in the example in Section IV-B, the

controller gains (corresponding to the measured outputs of the

elastic storage, CPU, TC, and RT) are:

K =
[
0.134 1.470162e− 06 0.00318

]

C. Fuzzy Controller

The main purpose in using an additional fuzzy controller is

to optimize the control input produced by the Dynamic State

Feedback Controller that we have designed in Section V-B. A

fuzzy controller uses heuristic rules that define when and what

actions the controller should take. The output of the Dynamic

State Feedback Controller (control input) is redirected together

with measured outputs to the fuzzy controller, which decides

if the control input should affect the system or not. The overall

architecture for controllers is demonstrated in Fig. 2.

There is one important case that the dynamic state feedback

controller cannot act accordingly. Let us assume that there are

some instances with high CPU load. Since the average is high,

the controller will issue a control request to add a number of

new instances. The new instances will be launched and will

start to serve requests. But at the beginning of their life cycle

they have low CPU load, thus the average CPU load that is

reported back to the controller can be low. The controller then

assumes that the CPU load has dropped, and it requests to

remove some nodes.

A closer look at the CPU loads reveals that we can not judge

the system state by only the average CPU load. Hence the

fuzzy controller also takes into account the standard deviation

Fig. 2. Controllers Architecture

of CPU load. In this way, if the feedback controller gives

an order to reduce the number of nodes when there is high

standard deviation for CPU loads, the fuzzy controller will not

allow this control input to affect the system, thus reducing the

risk of unexpected results and confusions for the controller

that may cause oscillations. This will lead to a more stable

environment without so many unnecessary fluctuations.

D. Stability Analysis of Controller

A system is called stable if all bounded inputs produce

bounded outputs. The BIBO theorem [3] states that for a

system to be stable, its poles must lie within the unit circle

(have magnitude less than 1). In order to calculate the poles

for the controller we need to get the eigenvalues of matrix

A that are 0.2951, 0.9 and 0.7247. As it is obvious from the

values, all of the poles reside within the unit circle thus the

controller is stable.

VI. SUMMARY OF STEPS OF CONTROLLER DESIGN

This section summarizes the steps needed to design a

controller for an elastic storage in a Cloud environment.

The steps described below are general enough to be used

to design a controller for an elastic service in a Cloud. The

design process consists of two stages: system identification and

controller design. The design steps are as follows: the system

identification stage includes steps 1-9; and the remaining steps

(10-12) belong to the stage of the controller design.

1) Study system behavior in order to identify the inputs

and outputs of the system.

2) Place inputs and outputs in u(k) and y(k) vectors

respectively.

3) Select n system outputs that you want to control and

place them in state variable vector x. The outputs should

be related to SLOs and performance metrics.

4) Select m system inputs that you will use to control.

These system inputs will be the outputs of your con-

troller. The system outputs should depend on the system

inputs These inputs should have the highest impact in

your system. In some systems there might be only one

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 31 / 132

input that has high impact whereas in other systems there

might be several inputs that together have high impact.

To assess the impact you might need to do sensitivity

analysis.

5) Define state variables that describe the dynamics of

the system. State variables can be equivalent to system

outputs selected in step 3. Each state variable can depend

on one or more other state variables and system inputs.

Find the relation between the next value for a state

variable to other state variables and system inputs and

construct the characteristic equations as follows (see also

Equation 4).

x1(k + 1) = a11x1(k) + . . .+ a1nxn(k)

+b11u1(k) + . . .+ b1mum(k)

x2(k + 1) = a21x1(k) + . . .+ a2nxn(k)

+b21u1(k) + . . .+ b2mum(k)

...

xn(k + 1) = an1x1(k) + . . .+ annxn(k)

+bn1u1(k) + . . .+ bnmum(k)

6) Place coefficients from the previous equations into two

matrices A and B. Some of the coefficients can be zero:

An×n =



a11 . . . a1n
...

. . .
...

an1 . . . ann




Bn×m =



b11 . . . b1m
...

. . .
...

bn1 . . . bnm




7) In order to simplify the design of controller, one can

assume that outputs of the systems are equal to state

variables, thus matrix C is an identity matrix:

Cn×n =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1




8) Design an experiment, in which the system is fed with

its inputs. Inputs in the experiment should be changed

in such a way that they cover their ranges at least

one time. A range for an input is the interval that the

values of the input will most likely belong to when the

system operates. The selection of ranges can be based on

industry’s best practices. All inputs and outputs should

be measured periodically with a fixed time interval T .

Store collected data for each equation in a separate file

called xi.

9) In Matlab, for each file xi, load the file and extract each

column of data in a separate matrix. Use the function

regress to calculate the coefficients. Repeat this for

every file. At the end you will have all the coefficients

that are required for matrices A and B.

10) Choose a controller architecture for feedback control:

such as dynamic state feedback control, which is, in

our opinion, more appropriate for a Cloud based elastic

service (as discussed in Section V).

11) Construct matrices Q and R as described in Section V-B.

Remember to put high weights in matrix Q for those

state variables that are of more importance.

12) Use the Matlab function dlqr with matrices A, B, Q

and R as parameters to calculate the vector K of con-

troller gains. Perform stability analysis of the controller

checking whether its poles reside within the unit circle

(Section V-D).

VII. ESTORESIM: ELASTIC KEY-VALUE STORE

SIMULATOR

We have implemented a simulation framework, which we

call EStoreSim, that allows developers to simulate an elastic

key-value store in a Cloud environment and to experiment

with different controllers. We have selected Kompics as the

implementation tool. Kompics [20] is a message-passing com-

ponent model for building distributed systems using event-

driven programming. Kompics components are reactive state

machines that execute concurrently and communicate by pass-

ing data-carrying typed events through typed bidirectional

ports connected by channels. For further information please

refer to the Kompics programming manual and the tutorial on

its web site [20].

Implementation is done in Java and Scala languages [21]

and the source is publicly available at [22]. The overall

architecture of EStoreSim is shown in Fig. 3. The simulator

includes the following components.

Fig. 3. Overall Architecture of the EStoreSim Simulation Framework

Cloud Instance Component represents an entire storage

instance within a Cloud. The component architecture for

instance is shown in Fig. 4.

Cloud Provider Component represents an important unit

in the implementation. It is the heart of a simulated Cloud

computing infrastructure and provides vital services to manage

and administer the nodes (VM instances) within the Cloud.

The Cloud provider component architecture is shown in Fig. 5.

Elasticity Controller represents the controller that can

connect to the Cloud provider and retrieve information about

the current nodes in the system. The main responsibility of

the controller component is to manage the number of nodes

currently running in the Cloud. In other words, it attempts

to optimize the cost and satisfy some SLO parameters. The

overall component architecture is shown in Fig. 6.

For further information on EStoreSim please refer to [22].

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 32 / 132

Fig. 4. Cloud Instance Component Fig. 5. Cloud Provider Component Fig. 6. Elasticity Controller Component

VIII. EXPERIMENTS

We have conducted a number of simulation experiments

using EStoreSim in order to evaluate how the use of an

elasticity controller in a Cloud-based key-value store improves

the operation of the store by reducing the cost of Cloud

resources and the number of SLO violations. The baseline

in our experiments is a non-elastic key-value store, i.e., a key-

value store without the elasticity controller.

For evaluation experiments, we have implemented a dy-

namic state feedback controller with the parameters (controller

gains) calculated according to the controller design steps

(Section V-B). The controller is given reference values of the

system outputs that correspond to SLO requirements. Values

of system outputs (average CPU load CPU, Total Cost TC, and

average Response Time RT) are fed back into the controller

periodically. When the controller gets the values, it calculates

and places the next value of the number of nodes NN on its

output. The controller output is a real number that should be

rounded to a natural integer. We round it down in order to

save the total cost the Cloud generates. One can assume two

boundaries, which are defined as follows:

• L (Lower boundary): the minimum number of instances

that should exist in the Cloud at all times;

• U (Upper boundary): the maximum number of instances

that is allowed to exist in the Cloud at all times.

Hence if the value of controller output is smaller than L

or greater than U , then the value should be discarded. If the

calculated output of the controller is Θ, the number of nodes

is defined as follows:

NN =





L if Θ 6 L

Θ if L < Θ < U

U if U 6 Θ
(15)

If the number of current nodes in the system is NN′ and the

control input (output of the controller) is NN, then the next

control action is determined as follows:

Next action =







scale up with NN− NN
′ nodes if NN

′ < NN

scale down with NN′ − NN nodes if NN < NN
′

no action otherwise

(16)

We have conducted two series of experiments to prove our

approach to elasticity control. By these experiments we check

whether the elasticity feedback controller operates as expected.

In the first series (which we call SLO Experiment), the load

is increased to a higher level. This increase is expected to

cause SLO violation that is detected by the feedback controller,

which adds nodes in order to meet SLO under high load.

In the second series (which we call Cost Experiment), the

load decreases to a lower level. This causes the controller

to release nodes in order to save cost under low load. The

instance configuration for these experiments are as follows:

• CPU frequency: 2 GHz;

• Memory: 8 GB;

• Bandwidth: 2 MB/s;

• Number of simultaneous downloads: 70.

There are 10 data blocks in the experiments with sizes between

1 to 5 MB. Note that the same configuration is used in the

system identification experiments.

A. SLO Experiment: Increasing Load

In this series we conducted two experiments: one with

controller and another without controller. In the results and

figures presented below, they are denoted by w/controller

and w/o controller, respectively. Each experiment starts

with three warmed up instances. By a warmed up instance we

mean that in this instance each data block is requested at least

once thus it resides in the memory of this instance.

Workload that is used for this experiment is of two levels:

normal and high. Under the normal load the time interval be-

tween consecutive requests is selected from a uniform random

distribution in the range [10, 15] seconds that corresponds to

an average request rate of 4.8 requests per minute. Under the

high load the time interval between consecutive requests is

selected from a uniform random distribution in the range [1,

5] seconds that corresponds to an average request rate of 20

requests per minute. The experiment starts with normal load

and after 500 seconds the workload increases to the high level.

This is shown in Fig. 7.

Sensing of instance output is done every 25 seconds. In the

case of controller, actuation is performed every 100 seconds.

Thus there are 4 sets of measured data at each actuation time

that the controller should consider. In order to calculate values

of the system output, the controller computes averages of data

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 33 / 132

Fig. 7. SLO Experiment Workload

TABLE I
SLO VIOLATIONS

SLO Parameter Violation (%) w/ Controller w/o Controller

CPU Load 17.94 72.28
Response Time 2.12 7.073
Bandwidth 35.89 74.69

sets. The duration of each experiment is 2000 seconds with

warm up of 100 seconds. SLO requirements are as follows:

• Average CPU Load: 6 55%
• Response Time: 6 1, 5 seconds

• Average Bandwidth per download: > 200000 B/s

For each experiment the percentages of SLO violations are

calculated for each aforementioned SLO requirement based on

Equation 17. The result is shown in Table I.

SLO Violations = 100%×
Number of SLO Violations

Total Number of SLO Checks
(17)

Checking of SLO is done at each estimate (sensing) of the

Average CPU Load and Average Bandwidth per download and

each estimate of Response Time.

This experiment gives us interesting results that are dis-

cussed in this section. NL and HL in figures 8-12 indicate

periods of Normal Load and High Load respectively.

Fig. 8 depicts the Average CPU Load for the aforementioned

experiments. The Average CPU Load is the average of all

nodes’ CPU Loads at each time the sensing is performed. As

one can see in Fig. 8, CPU loads for the experiment with the

controller is generally lower than the same experiment without

the controller. This is due to the controller that launches new

instances under high workloads causing a huge drop in average

CPU Load.

Fig. 9 depicts the Average Response Time for the experi-

ments. By response time we mean the time that it takes for

an instance to respond to a request that download is started

and not the actual download time. As it is seen from the

diagram, the average response time for the experiment with

the controller is generally lower than the experiment without

controller. This is because in case of having a fixed number of

instances (3 in this experiment), there would be congestion by

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120
Average CPU Load

Time (s)

A
v
e
ra

g
e
 C

P
U

 L
o
a
d
 (

%
)

↑SLA Requirement < 55%

NL HL

w/ controller

w/o controller

Fig. 8. SLO Experiment - Average CPU Load

w/ controller w/o controller

Total Cost ($) 14.4528 8.6779

TABLE II
TOTAL COST FOR EACH SLO EXPERIMENT

the number of requests an instance can process. This increases

the responsivity of an instance. However, in the case that the

controller launches new instances, no instance will actually go

under high number of requests.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

200

300

400

500

600

700

800

900

1000

1100
Average Response Time

Time (s)

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e

NL HL

w/ controller

w/o controller

Fig. 9. SLO Experiment - Average Response Time

Fig 10 shows the total cost for the experiments. Interval

total cost means that total cost is calculated for each interval

in which the senses are done. As can be observed from the

diagram, the interval total cost for the experiment with the

controller is much higher than the experiment without the

controller. This is because launching new instances will cost

more money than having a fixed number of instances available

in the Cloud. This experiment has high load of requests for the

system in which the controller is more likely to scale up and

resides in that mood than to scale down. It should be noted

that costs are computed according to Amazon EC2 price list.

Calculated total cost for each experiment is given in Table II.

Fig. 11 depicts the Average bandwidth per download. If

an instance has a bandwidth of 4 Mb/s and has two current

downloads running, the bandwidth per download is 2 Mb/s. As

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 34 / 132

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Interval Total Cost

Time (s)

In
te

rv
a
l
T

o
ta

l
C

o
s
t
($

)

NL HL

w/ controller

w/o controller

Fig. 10. SLO Experiment - Interval Total Cost

can be seen from the diagram, the experiment with controller

shows significantly higher bandwidth per download. This is

mainly because the instances receive less number of requests

and bandwidth is divided among less requests also. This will

end up having higher bandwidth available on each instance.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18
x 10

5 Average Bandwidth per download

Time (s)

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 (
B

/s
)

↓SLA Requirement > 200 KB/s

NL HL

w/ controller

w/o controller

Fig. 11. SLO Experiment - Average Bandwidth per download (B/s)

Fig 12 shows the number of nodes for each experiment.

As we discussed earlier the number of nodes is constant for

experiment without controller. However, for the experiment

with the controller the number of nodes is changed over time

hence the SLO requirements can be met.

B. Cost Experiment: Decreasing Load

The purpose of this series of experiments is to show that the

controller can save the total cost by releasing instances when

the load is low. Each experiment in this series starts with 7

instances. The duration of the experiment is 2000 seconds.

In this series we use different workloads of two levels: high

and low. In the high load the time interval between consecutive

requests is selected from a uniform random distribution in the

range [1, 3] seconds that corresponds to a request rate of 30

requests per minute. In the low load the time interval between

consecutive requests is selected from a uniform random dis-

tribution in the range [15, 20] seconds that corresponds to a

0 200 400 600 800 1000 1200 1400 1600 1800 2000
3

4

5

6

7

8

9
Number of Nodes

Time (s)

N
u
m

b
e
r

o
f
N

o
d
e
s

NL HL

w/ controller

w/o controller

Fig. 12. SLO Experiment - Number of Nodes

w/ controller w/o controller

Total Cost ($) 10.509 16.5001

TABLE III
TOTAL COST FOR COST EXPERIMENT

request rate of about 3.4 requests per minute. Unlike the SLO

experiment, the cost experiment starts with a high load, which

changes to a low load after 500 seconds as shown in Fig. 13.

Fig. 13. Cost Experiment workload

The result of the cost experiment shown in Table III is

interesting. It is observed that the total cost in the experiment

with the controller is actually lower than the total cost in

the experiment without the controller unlike in the SLO

experiment. This is because the controller removes instances

under low load and that results in cost savings. The reason

that this experiment has lower cost than the previous one is

that L (lower bound on number of nodes) is not equal to the

initial number of nodes and it is smaller. Hence controller can

scale down the number of nodes to L.

IX. RELATED WORK

There are many projects that use elements of control theory

for providing automated control of computing systems includ-

ing Cloud-based services [2], [7], [8], [9], [12], [15], [16],

[17], [18], [19], [23]. Here we consider two related pieces of

work [17], [23], which are the closest to our research aiming

at automation of elasticity of storage services.

The SCADS Director proposed in [23] is a control frame-

work that reconfigures a storage system at run time in

response to workload fluctuations. Reconfiguration includes

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 35 / 132

adding/removing servers, redistributing and replicating data

between servers. The SCADS Director employs the Model-

Predictive Control technique to predict system performance for

the given workload using a performance model of the system

and make control decisions based on prediction. Performance

modeling is performed by statistical machine learning.

Lim et al. [17] have proposed a feedback controller for elas-

tic storage in Cloud environment. The controller consists of

three components: Horizontal Scale Controller responsible for

scaling the storage; Data Rebalancer Controller that controls

data transfer for rebalancing after scaling up/down; and the

State Machine that coordinates the actions of the controllers in

order to avoid wrong control decisions caused by interference

of rebalancing with applications and sensor measurements.

To our knowledge both aforementioned projects do not

explicitly use cost as a controller input (state variable, system

output) in the controller design. In contrast, we use state-space

feedback control and explicitly include the total cost of Cloud

instances as a state (system output) variable in the state-space

model (when identifying the system) and as a controller input

in the controller design (when determining controller gains).

This allows us to use a desired value of cost in addition to

the SLO requirements to automatically control the scale of the

storage by trading off performance for cost.

X. CONCLUSION AND FUTURE WORK

Elasticity in Cloud computing is an ability of a system to

scale up and down (request and release resources) in response

to changes in its environment and workload. Elasticity pro-

vides an opportunity to scale up under high workload and

to scale down under low workload to reduce the total cost

for the system while meeting SLOs. We have presented our

experience in designing an elasticity controller for a key-

value store in a Cloud environment and described the steps

in designing it including system identification and controller

design. The controller allows the system to automatically scale

the amount of resources while meeting performance SLO,

in order to reduce SLO violations and the total cost for

the provided service. We also introduced our open source

simulation framework (EStoreSim) for Cloud systems that

allows to experiment with different controllers and work-

loads. We have conducted two series of experiments using

EStoreSim. Experiments have shown the feasibility of our

approach to automate elasticity control of a key-value store in a

Cloud using state-space feedback control. We believe that this

approach can be used to automate elasticity of other Cloud-

based services.

In our future work, we will study other controller ar-

chitectures such as model predictive control, and conduct

experiments using real-world traces. We will also research on

using feedback control for other elastic Cloud based services.

ACKNOWLEDGMENTS

This research is supported by the End-to-End Clouds project

funded by the Swedish Foundation for Strategic Research, the

Complex Service Systems focus project, a part of the ICT-

TNG Strategic Research Area initiative at the KTH Royal

Institute of Technology, and by the Testbed for E2E Clouds

RCLD-project funded by EIT ICT Labs.

REFERENCES

[1] P. Horn, “Autonomic computing: IBM’s perspective on the state of
information technology,” IBM, Tech. Rep., October 2001.

[2] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus,
“Using control theory to achieve service level objectives in performance
management,” Real-Time Syst., vol. 23, pp. 127–141, July 2002.

[3] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback

Control of Computing Systems. Wiley-IEEE Press, September 2004.
[4] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms

for congestion avoidance in computer networks,” Computer Networks

and ISDN, vol. 17, no. 1, pp. 1–14, 1989.
[5] S. Keshav, “A control-theoretic approach to flow control,” SIGCOMM

Comput. Commun. Rev., vol. 21, pp. 3–15, August 1991.
[6] B. Li and K. Nahrstedt, “A control-based middleware framework

for quality-of-service adaptations,” Selected Areas in Communications,

IEEE Journal on, vol. 17, no. 9, pp. 1632 –1650, sep 1999.
[7] A. Kamra, V. Misra, and E. M. Nahum, “Yaksha: A self-tuning controller

for managing the performance of 3-tiered web sites,” In International

Workshop on Quality of Service (IWQoS, pp. 47–56, 2004.
[8] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees

for web server end-systems: a control-theoretical approach,” IEEE

Transactions on Parallel and Distributed Systems, vol. 13, no. 1, pp.
80–96, August 2002.

[9] A. Robertson, B. Wittenmark, and M. Kihl, “Analysis and design
of admission control in web-server systems,” in American Control

Conference. Proceedings of the 2003, vol. 1, june 2003, pp. 254–259.
[10] T. Abdelzaher and N. Bhatti, “Web content adaptation to improve server

overload behavior,” in WWW8 / Computer Networks, 1999, pp. 1563–
1577.

[11] B. Li and K. Nahrstedt, “A control theoretical model for quality of
service adaptations,” in In Proceedings of Sixth International Workshop

on Quality of Service, 1998, pp. 145–153.
[12] H. D. Lee, Y. J. Nam, and C. Park, “Regulating i/o performance of shared

storage with a control theoretical approach,” NASA/IEEE conference on

Mass Storage Systems and Technologies (MSST), April 2004.
[13] S. Mascolo, “Classical control theory for congestion avoidance in high-

speed internet,” in Decision and Control, 1999. Proceedings of the 38th

IEEE Conference on, vol. 3, 1999, pp. 2709 –2714 vol.3.
[14] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole,

“A feedback-driven proportion allocator for real-rate scheduling,” in
Proceedings of the third symposium on Operating systems design

and implementation, ser. OSDI ’99. Berkeley, CA, USA: USENIX
Association, 1999, pp. 145–158.

[15] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance
isolation and differentiation for storage systems,” in In International

Workshop on Quality of Service (IWQoS), 2004, pp. 67–74.
[16] N. Gandhi, D. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh, “Mimo

control of an apache web server: modeling and controller design,” in
American Control Conference, 2002. Proceedings of the 2002, vol. 6,
2002, pp. 4922 – 4927 vol.6.

[17] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” International Conf. on Autonomic Computing, pp. 1–10, 2010.

[18] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant, “Automated control of multiple virtualized resources,”
in 4th ACM European conf. on Computer systems, 2009, pp. 13–26.

[19] C. Lu, T. Abdelzaber, J. Stankovic, and S. Son, “A feedback control
approach for guaranteeing relative delays in web servers,” in Real-Time

Technology and Applications Symposium, 2001. Proceedings. Seventh

IEEE, 2001, pp. 51–62.
[20] “Kompics,” http://kompics.sics.se/, accessed Oct 2011.
[21] “Scala language,” http://www.scala-lang.org/, accessed Oct 2011.
[22] “EStoreSim: Elastic storage simulation framework,” https://github.com/

amir343/ElasticStorage, accessed Oct 2011.
[23] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan, and

D. A. Patterson, “The scads director: scaling a distributed storage system
under stringent performance requirements,” in Proceedings of the 9th

USENIX conference on File and stroage technologies, ser. FAST’11.
Berkeley, CA, USA: USENIX Association, 2011.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 36 / 132

Towards Autonomic Marketing

Carl Adams

University of

Portsmouth,

Portsmouth,

Hampshire UK

carl.adams@port.ac.uk

Richard John

Anthony

Dept. Smart Systems

Technologies

The University of

Greenwich

London, UK

R.J.Anthony@gre.ac.uk

Wendy Powley

School of Computing

Queen‟s University

Kingston, ON Canada

wendy@cs.queensu.ca

David Bell, Chris

White

School of Electronics,

Electrical Engineering

and Computer

Science,

Queen's University of

Belfast,

Belfast, UK

da.bell@qub.ac.uk

Cwhite06@qub.ac.uk

Chun Wu

Mount Marty College

Division of Natural

Sciences

Mount Marty College

Yankton, USA

cwu@mtmc.edu

Abstract— This paper explores one of the current innovation

waves within computing technology, that of the application of

Autonomic Computing (AC) to the marketing domain –

termed ―Autonomic Marketing‖, the result being an adaptive,

highly effective marketing strategy set to significantly change

target marketing and a company’s relationship with

customers. Marketing has often been at the forefront of

business adoption and utilization of the latest computing

technologies and functionality. Indeed, the marketing function

is interlinked with technology and has been proactively using

the capabilities of new technologies from the earliest databases

and mail merge functionality to sophisticated Customer

Relationship Management systems and intelligent behavioural

marketing systems. The Autonomic Computing paradigm

provides a framework in which marketing systems could

become self-configuring and context-aware, using a variety of

learning and decision-making techniques, providing the

potential of even more refined targeting of marketing

information to customers. In this paper, we introduce the

concept of Autonomic Marketing and outline some of the

research issues involved in the implementation of such a

system that will, indeed revolutionize the marketing world.

Keywords-Autonomic Computing; Autonomic Marketing;

Marketing Intelligence Systems.

I. INTRODUCTION

 There has always been a close relationship between
information and communication technology (ICT) and
marketing where marketers are often at the forefront of
exploiting new technological capabilities. From the early
days of using customer databases to the later multiple
channel Customer Relationship Management (CRM)
systems, marketers have used technology to better target
marketing information to customers. Each technological
wave has resulted in a step change in marketing activity and
capabilities [1][2]. Technology brings marketers closer to
their customers, and new technologies bring new channels
and approaches to marketing [3]. Database systems enabled
the recording and collation of many data items relating to

customers. Every interaction between a company and a
customer could be recorded and analyzed to generate
customer profiles which could then be used to target specific
marketing information. Similarly, Internet technologies have
enabled close monitoring and interaction of a user on the
Internet where preferences, behaviour, use patterns and much
more can be tagged and logged [1][4]. The move towards
Web 2.0 technologies bring more advanced monitoring
capabilities, drawing upon a wealth of personal information
[5].

Mitch [6] argued that, historically, there have been three
stages of marketing initiated by technological changes, these
being:

 Research based that used qualitative and statistical
data to guess what people wanted.

 Transaction based that used the stored transaction
data collected by organizations to help analyze and
profile customers. This saw the growth of database
marketing and CRM type systems.

 Volunteered Personal Information, a technology
based on customers being active participants in
providing key data, enabled by the later Web 2.0
technologies. Often the data is personal and
interlinked with a host of customer context
information, both personal and business information.
Companies have a far richer set of data to collect,
collate and analyze.

Each of the different stages has fundamentally changed

marketing activity.
We propose a new marketing approach, “Autonomic

Marketing” (AM), which employs the fundamentals of
Autonomic Computing (AC) to monitor the current
environmental state (including social trends, world events as
well as characteristics of the target consumer base) and use
these inputs to formulate an appropriate marketing strategy
to yield the best results given the current conditions. The
approach is adaptable, using feedback loops to monitor,

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 37 / 132

analyze, plan and subsequently execute the new marketing
plans on the fly.

The remainder of the paper is organized as follows.
Section II presents the overview of Autonomic Computing.
In Section III, we introduce the Autonomic Marketing
concept architecture. Section IV discusses the research
issues arising from the AM concept. We conclude the paper
in Section V.

II. AUTONOMIC COMPUTING PRINCIPLES

Two seminal papers, Ganek and Corbi [7] and Kephart
and Chess [8], consolidated a theme within computer science
- that of the practical emergence and development of
sophisticated autonomic systems which have the ability to
operate autonomously in remote dynamic environments with
limited intervention from human operators. Ganek and Corbi
discussed the „dawning of the Autonomic Computing era‟
describing the main attributes of Autonomic Computing
systems as being self managing systems with self-
configuring, self-healing, self-optimizing and self-protecting
capabilities. Kephart and Chess explored the grand
challenges to create self-managing computing systems that
can manage themselves according to an administrator's
goals.

The concepts of autonomic computer systems derive
from the human autonomic (vegetative) nervous systems [9],
the regulatory mechanisms of visceral functions such as
digestion, respiration, and the circulation of the blood, etc.
These biological systems operate autonomically, that is,
without conscious control by the individual.

In the past decade, many autonomic systems have been
developed for self-management of complex systems. For
instance, AC has been applied to database management
systems [10], web services environments [11], elastic
services in the cloud [12], workload management [13], and
complex networks [14]. Autonomic systems have the ability
to cope with dynamic environments [15]. Autonomic
systems have begun to reach a level of maturity with a
variety of models, applications and techniques [16][17]. A
further aspect of Autonomic Computing is the ability of units
and agents to interact with each other [18]. There are many
potential models for interaction, such as sharing resources,
sharing environment information, collaborating on a joint
activity or a multitude of transaction based information
sharing models.

Autonomic Computing brings together the advances in
artificial intelligence, intelligent agents and autonomic, or
self*, capabilities that enable real-time, contextual
adaptability and learning that can be applied to marketing
activities.

We use the term Autonomic Marketing (AM) to describe
a step-change in the sophistication of automated marketing
systems, in which the marketing activity itself is dynamically
configured and contextualized to suit the current market
conditions. AM can be succinctly defined as „it knows you
want it‟ technology, effectively the Holy Grail of marketing
that provides previously unprecedented levels of
personalization and targeting of product and service
information to customers - just when they need it, or when

they are likely to be most receptive to it. The technology
capabilities are already here and they are beginning to be
applied in this area, however, activity is piecemeal. In
addition, there is little consideration of the full capabilities,
and the likely consequences, of Autonomic Marketing.

III. AUTONOMIC MARKETING

The Autonomic Marketing Interest Group [19] defined
some initial concepts and promise of Autonomic Marketing,
that of "it knows you want it" technology or, applying it to a
real-time setting, "it knows you want it, when and where you
want it". Effectively, Autonomic Marketing is heading
towards the marketing Holy Grail where marketers can
utilize artificial intelligence capabilities to trawl through the
mass of data and data channels to closely match customers‟
needs, likes and preferences.

Figure 1. The Autonomic Marketing Architecture

Figure 1 outlines the AM architecture. The autonomic

management control unit monitors current state, taking input
from various sources such as the market conditions,
customer demographics, significant world events, trends
emerging from social media analysis, weather, and seasonal
information. The information is time correlated, analyzed
and fed into prediction models to formulate the best possible
marketing strategy. Success metrics include sales volume
and customer reports, which are used as feedback to the
autonomic manager. The behaviour of the autonomic
manager is controlled by customizable policies.

Autonomic Marketing may take two distinct approaches:
company-centric or customer-centric. Company-centric is a
more targeted “information push” approach, whereas
consumer-centric is more of an information pull technology.
In a company-centric approach, marketing strategies are
defined using data that is readily accessible and targets the
population as a whole. A consumer-centric approach is one
in which an individual provides context data and the system
sifts through potential offerings to select items most relevant
to the consumer based on the context provided.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 38 / 132

As an example of company-centric AM, consider an
organization that sells sportswear. The company wishes to
run an adaptable marketing campaign on television with the
ads to be aired on different networks during different
(unpredictable) events. The ads feature different products,
and the content is adaptable to be appealing to different
audiences with different demographics. Before each ad is
run, the current viewer demographics are analyzed (based on
past and/or present statistics gathered by the television
network), information about the current television show
being aired is considered (is it a sporting event, a comedy or
a reality television show?), if applicable, the current state of
the show is taken into account (who is winning the game?)
and social networking trends (such as fan favourites) are
determined. Different ads are run depending upon the
current conditions. For instance, if a football match is
currently airing, and Manchester United is the fan favourite
and are currently winning, Man U merchandise may be
advertised and the ad may feature Man U fans celebrating a
win, wearing their gear. Conversely, if FC Barcelona is
currently winning, more generic, non-team related
merchandise may be a better choice, or perhaps the ad should
not be run at that time. The audience demographics may
further refine the merchandise that is shown and the type of
ads that are aired at any particular time.

Alternatively, in a consumer-centric approach, the system
would gather customer profile data (demographics and
preferences, if available), prompt the customer for some
additional information and then sift through offerings to
identify products that may be of interest. Predictive models
would provide guidance as to what products would be
displayed. For example, the system may know that the
customer is 20 years of age, is located in Valencia, Spain and
knows, from previous searches, that the customer is a FC
Barcelona fan. The system may prompt for more
information, such as the fact that the customer is looking for
a jacket. It would then search for items from a variety of
companies and show the customer the items he/she is most
likely to purchase. Predictive models would base decisions
based on historical data (companies that the consumer has
purchased from previously, or companies frequented by
customers with similar demographics etc).

The way in which the various stages of the autonomic
control loop {monitor, analyze, plan, execute} map onto
such use cases can be explained in terms of Figure 1.
„Monitor‟ current market conditions, and factors directly
influencing this including diverse information such as
weather, seasonal, economic, as well as customer feedback
(direct via reviews etc, and also indirect in terms of sales
figures) and current pricing model; provide the current
sensed „state‟. „Analyze’ takes this information, combines it
with historical data, and searches for patterns / trends and
thus identifies opportunities to improve the system‟s
performance (ultimately to increase sales value or volume).
„Plan‟ decides what changes could be made to the current
marketing strategy and attempts to predict their impact. This
could use a utility function or fuzzy reasoning, for example,
to determine which of several possible adaptations yields the
most beneficial results under the various conditions.

„Execute‟ subsequently applies the changes by adjusting
tuning parameters on the marketing strategy.

IV. RESEARCH ISSUES IN AUTONOMIC MARKETING

Although the principles of Autonomic Computing are
well developed, the application of these principles to new
domains remains challenging and a number of issues will
need to be researched and resolved in order to make AM a
reality. Infrastructure must be put in place to collect, store,
analyze and mine the data sources, adaptable models must be
built to predict the impacts of taking particular actions, and
feedback mechanisms must be put in place.

AM requires data from many data sources – contextual
information from the potential consumer base
(demographics, geographical information, preferences etc),
trends emerging from social networking sites or significant
world events from news sources, weather/seasonal
information, market conditions, historical information, etc.
How and, from where, will this information be collected?
What exactly is contextual data? What tools are in place for
collecting this data? Who owns this data, and how do we
deal with the privacy issues? Will the data be stored? If so,
how, where, and for how long? Can the data be collected
and analyzed efficiently to allow for real-time AM? Is all
the data time-stamped to allow for time-correlation? Most
organizations already collect part of this information, but it is
held in disparate systems (e.g. for supply-chain management,
logistics, stock control, and traditional marketing), and not
used effectively in the way we propose. AM is to work
smarter, not harder.

The system must be able to predict the outcome of
applying AM strategies. How do we build and test the
predictive models? These models must be adaptable and
updated regularly, based on obtained feedback. How will
we detect that the models are outdated and how often should
they be updated? As with most current AC systems, a
human supervisor is still required for such high-level
decisions. The key goal of AM is to manage the complexity
of making targeted management actions with low latency,
freeing up the marketing executives to focus on only the
highest-level concerns. Ultimately, when dealing with situations
that have not been met before, or when new entities are encountered
in the application environment, plasticity and flexibility must be
greatly enhanced beyond the present state of the art. In this way
restrictions arising due to having only the pre-programmed
functionality familiar in current, predominantly „playback‟,
systems, can be overcome when dealing with novel situations [20].

The customer- & company-centric approaches are quite
different, with one being an information push based on
current knowledge and the other relying on gathering
information from the customer in order to find relevant
information. In terms of technology, what are the
requirements of each, and how do they differ?

Along with the technological aspects of AM, we need to
consider the implications of failure. AC systems take action
based on current conditions. They are unpredictable as it is
impossible to test all possible cases, especially with the large
number of parameters involved in the AM system. If a

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 39 / 132

marketing strategy employed by the AM fails, what are the
implications? How can trust be established?

Some of the questions posed above have been studied
extensively in the literature and solutions have been
proposed or are already in widespread use. For example, the
storage, correlation and analysis of massive amounts of data
using data warehouses and/or open source tools such as
HBase [21], Hadoop [22] and Mahout [23]. Other areas,
however, require additional research. Our further work is to
prototype a system and to pursue some of the open areas.

V. CONCLUSIONS AND FUTURE WORK

Autonomic Marketing, making use of the powerful
capabilities that Autonomic Computing provides, offers
many significant changes in marketing activity. As with any
new wave of technology, the impact could be far reaching
for customers and companies. Marketing budgets may be
significantly reduced as large numbers of marketers are
replaced by intelligent Autonomic Marketing agents that
operate 24/7 providing increasingly accurate targeting and ad
customization.

There are clearly challenges ahead, but Autonomic
Computing is a key area in computer science with over 10
years of development of principles and techniques. We
foresee that a natural extension of this science to marketing,
a complex “system” that requires self-configuration and self-
optimization, is the next technological wave that will sweep
the industry.

REFERENCES

[1] C.F. Hofacker, Internet Marketing (3rd Ed). Chichester: Wiley, 2001

[2] W. Rowan, Digital Marketing: Using New Technologies to Get
Closer to Your Customers. London : Kogan pp. 2002.

[3] A.J. Kimmel, Marketing Communication: New Approaches,
Technologies, and Styles. Oxford University Press, 2005.

[4] P. Martin, M. Matheson, J. Lo, J. Ng, D. Tan, and B. Thomson, B.,
Supporting Smart Interactions with Predictive Analytics. SITCON:
The CAS/NSERC Strategic Workshop in Smart Internet
Technologies. Ontario, Canada. 2010.

[5] S. Agresta, and B.B. Bough, Perspectives on Social Media
Marketing: The Agency Perspective/The Brand Perspective. Boston:
Course Technology, 2011.

[6] A. Mitch, “The Rise of Volunteered Personal Information”, Journal of
Direct, Data and Digital Marketing Practice, 12, pp. 154-164, 2010.

[7] A. G. Ganek, and T.A. Corbi, “The Dawning of the Autonomic
Computing Era”. IBM Systems Journal, March, 2003.

[8] J.O. Kephart, and D.M. Chess, “The Vision of Autonomic
Computing”. Computer IEEE 36(1), 2003, pp. 42-50.

[9] E.H. Ackerknecht, “The History of the Discovery of the Vegatative
(Autonomic) Nervous System”. Med Hist. January; Vol. 18, no.1,
1974, pp. 1–8.

[10] S. Elnaffar, W. Powley, D. Benoit and P. Martin, “Today‟s DBMSs:
How Autonomic Are They?”, 1st International Workshop on
Autonomic Computing Systems (DEXA 03). May 2003.

[11] W. Tian, F. Zulkernine, J. Zebedee, W. Powley and P. Martin. “An
Architecture for an Autonomic Web Services
Environment”, Proceedings of the Joint Workshop on Web Services
and Model-Driven Enterprise Information Systems WSMDEIS
(ICEIS 2005), May 2005, pp. 54-66.

[12] P. Martin, A. Brown, W. Powley, J.L. Vazquez-Poletti, “Autonomic
Management of Elastic Services in the Cloud”, Workshop on
Management of Cloud Systems (MoCS 2011), June 28, 2011, pp.
135-140.

[13] B. Niu, P. Martin, W. Powley, “Towards Autonomic Workload
Management in DBMSs”, Journal of Database Management, 20(3),
July - Sept 2009, pp. 1-17.

[14] L. W. Russell, S.P. Morgan, and E.G. Chron, “Clockwork: A New
Movement in Autonomic Systems”. IBM Systems Journal, vol 42,
no1, 2003, pp. 77-84.

[15] C. Adams, “Autonomic Systems, Coping Strategies and Dream
Functions”. ICAS 2007, The Third International Conference on
Autonomic and Autonomous Systems, June 19-25, 2007.

[16] K. Amina, A. Haye, M. Jahan, and S. Shamail, “Survey of
Frameworks, Architectures and Techniques in Autonomic
Computing”, Proceedings of the Fifth International Conference on
Autonomic and Autonomous Systems, 2009, pp. 220-225.

[17] H. Psaier, and S. Dustdar, “A Survey on Self-Healing Systems:
Approaches and Systems. Computing 91(1), 2011, pp. 43-73.

[18] C. Adams, “Collaboration Within the IoT: A Self-Conscious
Approach for Autonomic Units”. Internet of Things Workshop,
December 3rd, 2011.

[19] AMIG (2011) Principles of Autonomic Marketing. Autonomic
Marketing Interest Group (Adams C., Anthony R.J.., Bell D., Powley
W., White C. and Wu C.), International Conference of Autonomic
and Autonomous Systems (ICAS 2011), Venice May 2011.

[20] C. White, D. Bell, “Towards the Measurement of Plasticity and
Innateness in Artificial Agents”. AISB 2011, The 2nd Towards a
Comprehensive Intelligence Test (TCIT), Reconsidering the Turing
Test for the 21st Century Symposium, York, UK, April 4-7, 2011.

[21] Apache HBase. http://hbase.apache.org

[22] Apache Hadoop. http://hadoop.apache.org

[23] Apache Mahout. http://mahout.apache.org/

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 40 / 132

A Dynamic Load Balancing Model Based on Negative Feedback and Exponential

Smoothing Estimation

Di Yuan, Shuai Wang, Xinya Sun

Tsinghua University

Beijing, 100084, China

{yuan-d09, wangshuai04}@mails.tsinghua.edu.cn, xinyasun@tsinghua.edu.cn

Abstract—Server clusters can be used to manage the massive

number of requests that a hot website will receive, so as to

meet the rapid development of Internet application. The Linux

Virtual Server provides a good solution for cluster revision,

and there is software that can be used for management and

monitoring. However, the scheduling algorithms of Linux

Virtual Server are not sufficient to deal with the heavy load

balancing required today. A dynamic load balancing

scheduling algorithm has been proposed to solve the problems

of static algorithms, but we find that there are some drawbacks

in actual use. In this paper, we suggest an improved dynamic

load balancing model that overcomes the limits or drawbacks

of the simple dynamic algorithm. In the suggested model,

negative feedback and exponential smoothing estimation

methods have been used to improve the load balancing effect.

Besides, service response time has been used to adjust the

weight variation to achieve better effect. The suggested model

is implemented in our dynamic load balancing algorithm.

Experiments show that, our algorithm can achieve better

performance than the existing static and dynamic algorithms.

Keywords-load balancing; dynamic algorithm; negative

feedback; exponential smoothing estimation; throughput

I. INTRODUCTION

With the rapid development of the Internet, hot web sites
must cope with greater demands than before. Increasing
number of users or clients makes a single server not
sufficient to handle this aggressively increasing load. As a
result, we ought to use a server cluster to solve this problem.
A server cluster can help to keep computing service in good
quality by adjusting the server nodes dynamically when the
number of requests suddenly changes. However, we should
find a method to assign the new connections to the
computing elements properly.

Server cluster can be built with either expensive
hardware as F5 load balancer, or Linux Virtual Server (LVS)
[1]. LVS is a good solution to companies for cost factors.
Generally, the LVS is a software tool assigns connections to
multiple servers, which can be used to build highly scalable
and highly available services. An LVS cluster is composed
by the load balancer and real server nodes. The load balancer
receives requests and schedules them to real servers
following certain rules [2].

The LVS clusters are always built by Direct Routing
method, because load balancer is independent from OS and
the load balancer’s burden is less than server nodes [3]. LVS

has ten scheduling algorithms [4]. The WLC algorithm,
which schedules the new connections according to servers’
weights and number of active connections, is most
commonly used for its good balancing performance [3].
However, it is usually difficult to locate proper weight to a
server, and the weight can only be adjusted manually while
LVS is running. Moreover, if the requests vary in their
processing time or package size, the workload of servers will
be skewed.

A basic dynamic load balancing algorithm based on
negative feedback has been proposed [5]. Daemon tools like
Keepalived or HeartBeat can be used to manage server nodes.
The load balancer collects load information of a server node,
which can be used to update its weight through the Simple
Network Management Protocol (SNMP). Aggregated load of
a server node can be calculated by load information, and new
weight of the server node can be solved by

 3
1 step Aggregate_Loadi i iW W W A    

In the above equation, ‘Wstep’ denotes the step of weight
adjustment, while ‘A’ denotes the expected value of the
aggregate load. Through analysis and experiments, we have
found this dynamic algorithm have drawbacks in actual use.
Firstly, the current weight ‘Wi’ only relies on ‘Wi-1’ and the
current aggregate load. Once the collection or calculation of
load is interfered, the adjustment of weight may not reflect
actual variation of load. Secondly, the response time of the
server, an important factor of server’s load, is aggregated to
the ‘Aggregate_Load’, which may undermine its importance.
Lastly, no matter how much the variation of aggregate load
is, the upper bound of the weight adjustment is ‘Wstep’. As a
result, the update of the weight has limitations, which may
affect the load balancing effect.

In this paper, we suggest a new load balancing model to

improve the load balancing performance. We set up a

cluster system with the characteristics of high availability

and high reliability based on LVS and open source software

Keepalived, in order to implement our model and algorithm.

The load balancer checks server nodes by using Keepalived,

and collects the real-time load information through a user-

defined monitoring module. Then new weights of the server

nodes are calculated through weight evaluation module with

the load information and updated into Linux kernel. The

load balancer assigns new connections by using weighted

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 41 / 132

scheduling algorithm of LVS according to new weights [6].

In weight evaluation module, we collect load information of

the server nodes and evaluate the aggregated load. Besides,

the module detects response time from each server node to

correct ‘Wstep’. Furthermore, the module calculates weight

estimation through exponential smoothing method, the

purpose of which is to make the adjustment of weight

consistent with the actual variation of load. We suggest an

improved dynamic load balancing algorithm based on

improvements above and do experiments through open

source software Apache JMeter [7]. The new algorithm

shows better result of balancing effect than the existed WLC

algorithm and simple dynamic algorithm above.

The remainder of this paper is organized as follows:

Section II is a focus of this paper, our dynamic load

balancing model is described. In Section III, framework and

flow of corresponding algorithm is presented. In Section IV,

experiments of three algorithms are done to compare the

balancing performance. In Section V, some conclusions are

drawn through the experiments.

II. DYNAMIC LOAD BALANCING

A. Negative Feedback Model of Dynamic Load Balancing

The WLC algorithm schedules the new connections
according to weights and number of active connections. As
the former factor is static during the scheduling process,
WLC is essentially a static scheduling algorithm [8]. By
contrast, our dynamic load balancing algorithm schedules
the connections according to both active connections
number and load information. The load balancer sends
request to server nodes to get load information, and then the
weight evaluation module calculates new weight according
to former weights and aggregated load. The load balancer
schedules the new connections from client to server nodes
according to new weights. It is obvious that the dynamic
load balancing is a negative feedback process.

Load

Balancer

Client

Send Request

W Function(W, L)
+ Real

Server

Send

Request

Compute and Send Load L

+/-

W’

Send

Response

Set new weight W’

Save Weight

Figure 1. Negative feedback model of dynamic load balancing

In order to compute the weight of the server node, load
information collection service is running in each server node.
The load balancer collects load information ‘L’ periodically.

Weight evaluation module ‘Function(W, L)’ calculates the
new weight by former weight vector ‘W’ and aggregated
load ‘L’ and then update the IPVS scheduling table. This
dynamic algorithm can overcome the drawbacks of WLC,
and the effect of load balancing will be enhanced [9].

B. Weight Evaluation Module

As we discussed above, the weight evaluation module of
load balancer is an important part of this dynamic algorithm.
The load information can be used to calculate new weight of
the server.

Assume vector L=[L1, L2, L3, L4], (Li<1) denotes the
load parameters and vector Q=[Q1, Q2, Q3, Q4] denotes
proportionality factor of the parameters, where L1 to L4
represent CPU usage rate, memory usage rate, file system
usage rate, and one server’s new connections proportion of
the total number. Thus, 0<QL

T
<1, the aggregated load

parameter, denotes the current load of a server node [10].
Further, we assume that Tdelay denotes the real response time
of the computing service and Tideal denotes the ideal value of
Tdelay, then the ratio of them may represent the current
network state between load balancer and the server node.

The basic dynamic load balancing model assumes that,
current weight of a server node is only related to the former
one [5]. Considering the fact that the aggregated load may
be interfered, this mechanism may lead to deviation of the
weight calculation. Our improved dynamic algorithm solves
this problem through three former weights. Assume vector
W = [Wi-2, Wi-1, Wi] denotes weights before time i+1 and
vector P = [P1, P2, P3] denotes proportionality factor of the
weights. As we discussed above, estimated weight at time
i+1 should be used to adjust the ‘Wstep’, in order to make the
step more proper. Assume ‘A’ denotes the expected value of
the aggregate load, the weight update formula is



 Tsgn

T T1 ideal 3
1 step T

delay

ˆ
A

i

i

W T
W W A

T







  
      

  

QL

PW QL
PW

 

For each server node, Keepalived may set its weight
from 1 to 253 [6]. We can set the weight range [w0, 10w0],
(0<w0<25) for simplicity. The ideal service response delay
Tideal can be estimated through experiments. In order to
properly reflect the impact of service response time, we set
Tideal<Tdelay<1.5Tideal. If the aggregated load QL

T
 is greater

than A, weight adjustment and Tdelay is proportional, and
vice versa. Wstep and A are two important parameters.
Generally, we set Wstep= w0/2 and 0.45<A<0.95. As there
must be some differences between different cluster systems,
the exact value of them should be determined through
experiments [9]. We set W0 the reference value of W1 to W3,
and then the complete weight evaluation module is


 T

delay T3
0 step

ideal

sgn1

T T1 ideal 3
step T

delay

3

ˆ
3

Ai

i

T
W W A i

T

W
W T

W A i
T






  


 

  
       

  

QL

QL

PW QL
PW



33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 42 / 132

C. Exponential Smoothing Estimation

As discussed above, new weight should be estimated to
adjust ‘Wstep’ to make the adjustment of weight consistent
with the actual variation of load. We estimate the new
weight through linear quadratic exponential smoothing
method, the essence of which is to get the estimation result
through the weighted average of historical data. According
to exponential smoothing theory, time series trend with
stability or regularity, so they can be reasonably extended to
estimate the future trend [11]. Exponential smoothing
method, mainly used for variable parameter linear trend
time series, may estimate the current value according to the
historical ones, which could be helpful to weight estimation.

Assume the true value of the weight at time t is Wt.
Besides, assume that the first and second exponential
smoothing result is St

(1)
 and St

(2)
, the smoothing factor is a

and the estimation cycle from time t is 1, then the estimation
formula is shown below [12].



     

       

   

1 1

1

2 1 2

1

1 2

1

1

1

2 1ˆ
1 1

t t t

t t t

t t t

S aW a S

S aS a S

a
W S S

a a







  

  


 

 

 

III. IMPLEMENTATION OF IMPROVED DYNAMIC LOAD

BALANCING ALGORITHM

A. Framework of Improved Dynamic Algorithm

The improved dynamic load balancing algorithm we
suggest is based on the WLC scheduling algorithm. Besides,
Keepalived has been used to implement health checking and
weight update of server nodes. To be specific, the
MISC_CHECK module of Keepalived allows a user-defined
script or executable program to run as the health checker [6].
The exit code of the script or program can be used to update
the LVS scheduling table. If the exit code is 0, weight of a
server node remains unchanged. Computing service of a
server node is unavailable when the exit code is 1. In
addition to the two cases, the weight of a server node will be
set to ‘exit code-2’ when the range of exit code is 2-255 [6].
According to this idea, we can achieve our dynamic load
balancing algorithm through MISC_CHECK module of
Keepalived. Each modules of this dynamic algorithm is
shown in Figure 2.

IPVS module of

Linux Kernel

MISC_CHECKER of

Keepalived

Weight evaluation

module

Health checker &

Load collection

module

Load Balancer

Load information

gathering service

.

.

.

Timer

Real Servers

Load information

gathering service

Load information

gathering service

Figure 2. Modules of improved dynamic algorithm

The user defined module get the health status and the
load information periodically. Then the weight evaluation
module calculates new weight of the server node. The LVS
scheduling table is refreshing through MISC_CHECKER
module. If the health checking fails, the module will remove
the server node from the server pool automatically. Else, the
new weight of a server node will be update to the one
calculated by weight evaluation module.

B. Flow of Improved Dynamic Algorithm

The load balancer collects load information periodically,
so load gathering service should be running real-time. We
collect load information above through some system files of
Linux. The load balancer and the real server exchange load
information by using the client and server communication
mechanism, which are both user-defined. We set the
program mon_srv running in the server node to gather and
send load information to the load balancer. The program
mon_cli, running on the load balancer, sends request to get
load information periodically.

Computing service is also running real-time on the
server nodes. The load balancer checks the health of a server
node’s computing service firstly by using mon_cli, and then
gets the server response time if the server is health. Then the
balancer gets load information from the load information
gathering service. The load balancer checks the computing
service by using TCP connection. If the service is healthy,
the load balancer checks the scheduling table to check
whether the node exists or not, and then get the response
time. Else, the load balancer removes the node from the
scheduling table and set the weight of the node to 0. After
that, the load balancer collects load information from the
server node by using UDP connection. Then the weight
evaluation module calculates new weight of the server node
by using our weight evaluation model. Finally, new weight
of the server is updated by Keepalived. The flow chart of the
algorithm is shown in Figure 3.

Health check

Computing

Service

Request

Response

TCP connection

Service

Healthy?
Delete the server

from servers pool

 No

Server

existed?

Yes

Get the service

response time

Add the server

to servers pool

 No Yes

Load info

gathering Service

Request Get the usage rate of

CPU, MEM, and

File System

Get the new

connections proportion

Send the load informationResponse

UDP

connection

Collect the load

information
Former

weight vector

of the server

Weight evaluation

module

New weight

of the server

Load Balancer Real Server

Set Weight to 0

Figure 3. Flow chart of improved dynamic algorithm

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 43 / 132

IV. EXPERIMENTS

In order to test the performance of improved dynamic
load balancing algorithm, we have set up an experiment
environment, on which WLC algorithm, simple dynamic
load balancing algorithm and our improved dynamic
algorithm has been implemented.

A. Hardware Environment

In our experiments, 6 blade servers and 2 industrial
computers has been used, among which 1 blade server serves
as the client, 2 blade servers serve as load balancers, and the
other 3 blade servers serve as server nodes together with the
2 industrial computer. The 6 blade servers use one switch,
while the 8 devices use one. The hardware and OS
parameters of the 8 devices are shown in Table I.

TABLE I. CONFIGURATION PARAMETERS OF HARDWARE

 Parameters

Hosts
CPU

(Core/GHz)

MEM

(GB)

Storage

(GB/R)
OS

Client 16/2.40 8 320/7200 Win 2008

Load Balancer(M) 16/2.40 8 320/7200 SUSE 11

Load Balancer(B) 8/2.40 8 320/7200 SUSE 11

Real Server 1 16/2.40 8 320/7200 SUSE 11

Real Server 2 8/2.40 8 320/7200 SUSE 11

Real Server 3 8/2.40 8 320/7200 SUSE 11

Real Server 4 4/2.26 2 160/5400 SUSE 11

Real Server 5 2/2.50 4 120/5400 SUSE 11

Hardware devices’ configuration parameters are shown
in Table 1. There are two load balancers to implement
failover through VRRP, both of which have the same LVS
configuration, virtual IP address, and Keepalived
configuration [6]. Topological relations between the devices
above are shown in Figure 4.

Client:

192.168.4.77

DIP: 192.168.4.80

VIP: 192.168.4.83

Load Balancer

(Master)
RS: 192.168.4.71

RS: 192.168.4.72

RS: 192.168.4.73

Request

Load Balancing

RS: 192.168.4.74

RS:192.168.4.135

DIP: 192.168.4.137

VIP: 192.168.4.83

Load Balancer

(Backup)
Request

VRRP

Figure 4. Topological relations between the devices

B. Software Environment

The operating systems of the devices have been shown in
Table 1. Each server node supplies the same computing
services and we choose five of them to do our experiments.

The request processing time and the result data packet size of
each service is shown in Table II.

TABLE II. EFFICIENCY AND PACKAGE SIZE OF COMPUTING SERVICES

Service Name
Request Processing

Time (ms)

Size of Data

Packet (KB)

te_tl_ksp_radix_multi 20 30

te_ts_ksp_radix_multi 10 20

te_ts_sp_bidij_buckets 40 35

te_ae_ksp_astar_heap_multi 60 40

price_svc 1 2

The ‘price_svc’ service is the most efficient among these
services, while the ‘te_ae_ksp_astar_heap_multi’ service is
the least. It’s important to point out that, the two indexes are
the average result of 430 test samples, and the latter one has
more impact on the network load.

The computing services are compiled by GCC, while the
client program is Java application, which can be generated
to JAR file for testing. The open source software Apache
JMeter has been used to simulate multiple clients, which
could send requests to the server nodes. JMeter is an Apache
top level project that can be used as a load testing tool for
analyzing and measuring the performance of a variety of
services. The concurrent test is implemented by using multi-
threaded method [13]. Our experiments are performance test
with Java application and the concurrent test and analyzing
function of JMeter can meet our requirements.

A client and a server node communicate with each other
through a TCP connection. The client should do login and
authentication after a connection is established. Then the
client send request data package with specific service name
and parameters through the socket instance. After the login
and authentication process, multiple requests can be send to
the server node until the connection is closed. For each
request, the service is chosen randomly in our experiments.

C. Content of Experiments

The test objects of our experiments is the original WLC
scheduling algorithm, simple dynamic scheduling algorithm
based on WLC, and improved dynamic scheduling algorithm
based on WLC. The three algorithms can be recorded as
WLC, DWLC and IDWLC for convenience. We use JMeter
as the test and analysis tool and the test index is the
throughput of the system shown in Figure 4.

The cycle index of the threads group in JMeter should be
set to a constant. For each cycle, there are three parameters
to adjust, which are number of concurrent connections, the
ramp-up period of the concurrent threads, and number of
requests per connection. We denote the three parameters as P,
Q, and R. We study the system throughput variation
tendency when parameters P, Q, and R changes, and then
draw some conclusions of three algorithms through analysis.

D. Results and Analysis

In order to test the performance of three algorithms, we
set the cycle index to 10 in each experiment, so as to make
the test closer to the real situation. For the WLC algorithm,
we set the weights of real server nodes in Figure 4 to 50, 50,
50, 40, and 40. For the DWLC algorithm, we set the original

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 44 / 132

weights of real server nodes the same to 50 and the expected
value of the aggregate load to 0.70.

Then we determine the parameters of the IDWLC
algorithm. Firstly, the ideal service response time and the
true time should be determined through lots of experiments.
As the average server response time is greater than 0.2
milliseconds in our 100000 experiments, we set the Tideal to
0.2 milliseconds. Through the data analysis, we find that if
the computing service is healthy, the range of response time
will be 0.20-0.35 milliseconds. In order to set the parameter
more properly, we set the upper bound of Tdelay to 0.35
milliseconds. Then, we set the value of other important
parameters. As the weight value range of LVS server node
is [0, 253], we set w0=20 for convenience. Considering the
importance of former weights and load parameters, the
vector P is set to [0.2, 0.3, 0.5], Q is set to [0.4, 0.2, 0.1,
0.3]. Through some experiments, we set expected value of
the aggregate load A to 0.7, and initial weight W0 to 50.
According to the exponential smoothing prediction theory,
the greater the fluctuation range of predicted target is, the
more the predicted value depends on the true value of the
previous moment [11]. As a result, the value of smooth
factor ‘a’ ought to be greater. Considering the weight
sequence variation, we set a=0.6. The weight prediction and
adjustment formula of our experiments is



   

     

   

1 1

1

2 1 2

1

1 2

1

0.6 0.4

0.6 0.4

ˆ 3.5 2.5

i i i

i i i

i i i

S W S

S S S

W S S







 

 

 

 


 T

T3

delay

sgn 0.701

T T1 3

T

delay

0.2
50 10 0.70 3

ˆ 0.2
10 0.70 3

i

i

i
T

W
W

i
T






   


 

 
      

 

QL

QL

PW QL
PW

 

1) System throughput T and concurrent connections

number P: We set the ramp-up period of the connections to

10 seconds, requests number per connection to 50. When

concurrent connections number changes from 50 to 5000,

throughput curves are shown in Figure 5.

Figure 5. Throughput and connections number curves of three algorithms

As shown in Figure 5, when concurrent connections
number is smaller than 1000, difference among throughputs
of the system under three algorithms is insignificant. The
reason is that, when the connections number is small, the
processing ability of real server nodes is enough to handle
the requests from the client, so the dynamic algorithms’
balancing effect is no better than the WLC’s. When
concurrent connections number is greater than 1000, load of
the server nodes increases, and the dynamic algorithms come
into play and assigns the new connections more balanced. It
is shown in Figure 5 that, when the connections number is
greater than 1000 and smaller than 3500, the two dynamic
algorithms achieve greater throughput than the WLC
algorithm. Especially, our dynamic load balancing algorithm
achieved greater throughput than the other two. When the
number of connections is greater than 3500, the load of the
server nodes is greater than the processing ability of them,
and the effect of dynamic algorithm becomes insignificant
compared with the WLC algorithm. As a result, system
throughput of the three algorithms tends to be close to each
other.

2) System throughput T and threads ramp-up period Q:

We set the number of concurrent connections to 2500 and

the number of requests per connection to 50. When the

ramp-up period changes from 1 second to 40 seconds,

throughput curves are shown in Figure 6.

Figure 6. Throughput and ramp-up period curves of three algorithms

This experiment set the number of connections and
number of requests constant, so the total load per cycle is
constant too. As shown in Figure 6, when the ramp-up period
is small, system throughput of three algorithms is low. The
reason is that, the server nodes are under excessive load
during the ramp-up period, which leads to queuing or
waiting phenomenon and decreases the system throughput.
When the ramp-up period increases, the queuing or waiting
phenomenon has been alleviated. As a result, the two
dynamic algorithms achieve greater throughput than the
WLC algorithm and our improved dynamic algorithm shows
better result than the simple one. When the ramp-up period is
greater than 20 seconds, the assignment of new connections
is sparse, and the load of the server nodes gets smaller,

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 45 / 132

which lead to almost the same throughput for the three
algorithms.

3) System throughput T and requests number R per

connection: We set the number of concurrent connection to

2500 and the ramp-up period to 10 seconds. When the

requests number per connection changes from 10 to 160,

throughput curves are shown in Figure 7.

Figure 7. Throughput and requests number curves of three algorithms

This experiment set the connections number and ramp-up
period to constant. When the requests per connection is
smaller than 20, the load of server nodes is low. As a result,
the effect of two dynamic algorithms is not better than the
WLC algorithm. With the increase of the requests number,
dynamic algorithms could assign new connections more
proper, system throughput gets greater than the WLC
algorithm. We can find in Figure 7 that, our improved
algorithm achieves greater throughput than the other
algorithms when the requests number changes from 30 to
120. As the requests number gets greater than 120, the total
load is too heavy to the server nodes, which could lead to
similar system throughput for the three algorithms.

V. CONCLUSION

As described above, a static load balancing algorithm is
not sufficient to assign client connections when processing
time requests vary, and thus the scheduling programs of the
Linux Virtual Server are not useful [5]. A dynamic load
balancing algorithm has proposed before to solve this
problem. However, the algorithm has some problems, which
may reduce its usefulness, and thus we propose a more
efficient load balancing algorithm that achieves better
results.

The improved model we suggest could solve the
shortcoming of the simple dynamic algorithm and improve
the stability of the dynamic scheduling process. For one
thing, computing service response time has been used to
adjust the weight variation, aims to highlight the important
role of the network delay for load balancing. For another, the
exponential smoothing estimation method has been used to
make the adjustment of weight consistent with the actual

variation of load. The experimental results show that, our
improved dynamic load balancing algorithm could achieve
greater system performance than the other two, if the total
load is proper to the real server nodes.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Technology R&D Program under Grant 2009BAG12A08
and the Research Foundation of Easyway Company.

REFERENCES

[1] Linux Virtual Server Project, “Linux Virtual Server, ” 2007,
http://www.linuxvirtualserver.org

[2] Zhang Wensong, “Linux Virtual Server for Scalable Network
Services,” Ottawa Linux Symposium 2000, 2000(7)

[3] Suntae Hwang, Naksoo Jung, “Dynamic Scheduling of Web
Server Cluster,” Proc. Ninth Int’l Conf. Parallel and
Distributed Computer Systems (ICPADS ‘02), 2002

[4] Zhang Wensong, “Job Scheduling Algorithms in Linux
Virtual Server,” 2005, http://www.linuxvirtualserver.org

[5] Zhang Wensong, “Dynamic Feedback Load Balancing
Algorithm”, 2005, http://zh.linuxvirtualserver.org.

[6] Alexandre Cassen, “Keepalived for LVS datasheet”, 2002,
http://www.keepalived.org/pdf/UserGuide.pdf

[7] Ma Wei, “A New Approach to Load Balancing Algorithm in
LVS Cluster,” Master Degree thesis. Wuhan, Hubei, China:
Hua Zhong Normal University. 2006.5.

[8] Shen Wei, “Research and Realization of an Improved Load
Balancing Algorithm based on LVS Cluster,” Master Degree
thesis. Bejing, China: China University of Geosciences.
2010.6.

[9] Qin Liu, Lan Julong. Design and Implementation of Dynamic
Load Balancing in LVS. Computer Technology and Its
Applications, 2007, 09:116-119.

[10] Yang Jianhua, Jin Di. A Method of Measuring the
Performance of A Cluster-based Linux Web Server.
Computer Development & Applications, 2006, 04: 58-60.

[11] Diao Mingbi, Theoretical Statistics. Beingjing: Publishing
House of Electronics Industry. 1998.

[12] Luo Bin, Ye Shiwei, Server Performance Prediction using
Recurrent Neural Network. Computer Engineering and
Design, 2005,08: 2158-2160

[13] The Apache Jakarta Project, Apache JMeter, 1999-2011,
http://jakarta.apache.org/jmeter

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 46 / 132

Interactive Rendering of Huge 3D Meshes in Cloud Computing

Daeyoung Kim and Haeyoung Lee
Computer Engineering Dept.

Hongik University
Seoul, Korea

dykim99@gmail.com, leeh@hongik.ac.kr

Abstract — This paper presents a new hierarchical
representation of huge 3D meshes for fast and seamless
rendering in cloud computing. Shape-outlines, simplified
meshes, and uniform mesh partitions construct a hierarchy.
Our hierarchy enables on-demand rendering of huge 3D
meshes in cloud computing.

Keywords-cloud computing, 3D meshes, interactive
rendering, hiearchical representation.

I. INTRODUCTION
Rapid advances in 3D scanning technologies now enable

us to create huge and exquisite 3D meshes for medical
imaging and cultural heritage preservation. Nevertheless, it
is hard and even impossible to render huge meshes on
consumer computers and mobile devices due to limited
resources. Various techniques such as mesh compression [1],
[2], simplification [3], [4] and chartification [2] allow the
transfer and display of huge meshes on mobile devices;
however, interactive rendering in real time is hard to
achieve using these methods. Though image-based
rendering [5] has recently been introduced, pre-rendered
images and grid-based sparse meshes cannot provide
detailed views of original meshes. Moreover, these methods
do not allow for the control of file size. Advances in CPU-
related technologies have dramatically decreased CPU
processing times so that I/O time contributes to almost the
entire processing time. Uniformly sized files optimize I/O
processing time and are especially necessary for mobile
computing.

In this paper, we present an interactive rendering method
of a hierarchical data structure for huge meshes for cloud
computing platforms. Moreover, with our method the file
size for each of a series of files for hierarchical data
structures can be uniformly controlled for optimized and
predictable I/O processing time.

The remainder of the paper is organized as follows: the
basics of hierarchical rendering are described in detail in
Section II; uniform mesh partitioning and simplifications
are explained in Section II, parts A and B; our interactive
view modes are listed in Section II, parts C through E; our
conclusions and future work are presented in Section III.

II. HIERARCHICAL 3D MESH RENDERING
New hierarchical representations of huge 3D meshes

allow for fast and seamless rendering of 3D meshes in cloud
computing. The hierarchical display structure for a large 3D

Figure 1. A hierarchical rendering of a huge 3D mesh on a mobile device1.
David has 28,184,526 vertices at 1.1GB. (a) 3D shape-outlines in TP mode;
(b) simplified David of 10,820 vertices; (c) more detailed head of 10,649
vertices; (d) original resolution eye of 5,625 vertices fully rendered.

mesh is composed of several view options: a thumbnail-
preview mode (TP), a coarse-whole-view mode (CWV), a
zoomed-sector-view mode (ZSV), and finally a deep-zoom-
of-the-mesh mode (DZM). Shape-outlines (TP mode),
simplified meshes (CWV, ZSV modes), and the original
mesh partitions (DZM mode) hierarchically represent large
3D meshes. For example, Table I depicts a huge mesh
David with 28,184,526 vertices totaling 1.1 GB which
cannot be loaded and displayed on a mobile device. Using
our interactive rendering method, David can be displayed in
real time on a mobile device with a hierarchical data
structure as illustrated in Fig. 1. First, David is selected from
a 3D shape-outline in TP mode in (a). A selected CWV is
then generated with a simplified mesh of only 10,820
vertices in (b). After selecting the head in (b), a more
detailed mesh of 10,649 vertices is rendered in ZSV mode as
depicted in (c). For a DZM-mode view of the eye, partitions
of the original mesh having 5,625 vertices are loaded and
rendered in (d).

An overview of our interactive 3D mesh rendering for
cloud computing is depicted in Fig. 2. A huge mesh is

This work was supported by Seoul R&DB program (ST100035).
1 A mobile device ODROID-7 with Samsung S5PC 110 Cortex-A8 1Ghz
CPU and 512MB RAM.

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 47 / 132

TABLE I. LOADING AND RENDERING TIME ON A MOBILE DEVICE2

 Original Model Our Simplified Model
File Name Vertices Time(s) Vertices Time(s)
feline 49,864 3.48 10,379 0.59
foot 160,226 9.00 8,324 0.56
dragon 399,332 25.69 9,797 0.61
ihigenie 351,750 23.90 9,999 0.62
bddha 541,366 33.99 10,275 0.63
xyzrgb_dragon 3,609,455 N/A 9,589 0.60
lucy 14,027,872 N/A 10,180 0.64
david 28,184,526 N/A 10,820 0.66
Average 19.21 0.61

Uniformly partitioned and simplified meshes provide a hierarchical
representation for huge 3D meshes so that interactive renderings on mobile
devices can be performed with optimized and predictable processing times.

uniformly partitioned based on a user-specified equal
number of vertices for uniform I/O processing time. Then a
3D shape-outline of each uniform partition is extracted and
simplified through its own boundaries. Mesh simplifications
in multi-resolution are then executed by calculating the
representative vertex for a group of vertices in each partition.
The number of partitions can be controlled by the user
allowing the file size of a simplified mesh to be easily
manipulated. This enables the client to transfer and render
hierarchical structures of huge 3D meshes according to the
user’s interaction with the server in cloud computing.

Partitioned mesh files, simplified meshes, and a shape-
outline are generated and stored on a server as a hierarchy
automatically whenever a huge mesh is uploaded. Then a
client can access the hierarchy starting from a shape-outline
as shown in Fig.1. Our work will add interactive mesh
simplifications to provide appropriate simplified meshes
according to a user’s choice of views for server-side
processing in the future.

A. Uniform Mesh Partitioning
The main goal of partitioning a large mesh is to

minimize processing time while maintaining load balance.
The CPU in most systems today have improved radically
resulting in input-output (I/O) processing becoming the
main factor in the overall processing time. Uniform
partitioning is the division of a large mesh into partitions
with an equal number of user-specified vertices. Uniform
partitioning is essential for a 3D mesh in cloud computing,
so as to enable the assignment of standardized times to the
processing of each partition as well as to optimize I/O
processing time. Typically, mesh partitioning has been
implemented by clustering vertices or faces. Clustering has
been accomplished through either space subdivisions [1][7]
or incremental additions [2][6]. The octree method provides
fast hierarchical clustering [1][7]. However, the numbers of
vertices or faces in partitions are varied because the division
is performed not by the numbers of vertices or faces but by
the sizes of the cells. K-means clustering [6] can generate
partially uniform mesh partitions. However, it does not

2 A smart phone LG-SU660 with 1GHz Dual Core CPU and 512MB RAM.

Figure 2. Overview of our interactive 3D mesh rendering in cloud
computing.

provide uniform mesh partitioning and hierarchical clusters.
Also, initial positions of random seeds must be carefully
selected and an elaborate cost function must be designed to
attain quality results. Optimization takes a great deal of time
requiring many repetitions for large 3D meshes [2].

Our algorithm constructs a kd-tree for a mesh. Each cell
in the kd-tree represents a vertex cluster which forms a
single partition of the mesh. For a given mesh, our kd-tree
divides space based on the object median where the objects
are vertices of the mesh. Our kd-tree splits a cell into two
sub-cells each containing half the vertices of the cell.
Instead of cycling the axis from x to y to z-axis for a
perpendicular splitting plane, our kd-tree determines the
axis adaptively according to the longest axis of a bounding
box. Compactness is a quantity for measuring the degree to
which a shape is compact. Given a partition with area w and
perimeter p, we define the compactness c of the partition as
a ratio of its squared perimeter p2 to its areas w [9].

w
pc
p4

2

= (1)

A square figure has better compactness than a long thin
rectangular figure. To avoid long thin shaped partitions, our
algorithm considers compactness when determining an axis
for perpendicular splitting planes to subdivide cells in the
kd-tree. Fig. 3 depicts the steps from level 1 to level 4 of the
kd-tree in a simplified 2D format. The dotted-line is the
bounding box of vertices in a cell. The solid lines are

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 48 / 132

Figure 3. An example of our kd-tree construction in 2D. Our kd-tree is
based on the uniform number of vertices in each cell. An axis to be split is
adaptively determined to lower the compactness of the cell.

determined by, and are perpendicular to, the longer of the
two axes, x and y, of the bounding box and colored red for
two cells in level 1, blue for four cells in level 2, green for
eight cells in level 3, and yellow for sixteen cells in level 4.
The axes for cells at the same level may be chosen
differently depending on the shape of the bounding boxes as
depicted in Fig. 3. Median values are computed to split
vertices in half. Finally, sixteen uniform partitions of the
mesh are created from sixteen clusters of vertices in sixteen
leaf-cells in the kd-tree. To construct a kd-tree of a mesh, a
median value of the vertices in a cell needs to be determined
so as to split a cell into two subcells with equal numbers of
vertices. For an out-of-core mesh which has more data than
the size of the main memory, external sorting needs to be
applied; however, external sorting takes a lot of time.
Therefore, we plan to introduce an improved out-of-core
sorting method to find median values.

In Fig. 4, two previous partitioning methods are
compared with our method for a model foot of 40,058
vertices in (a). Partitioning results are listed in (b) by k-
means clustering, (c) by octree-based clustering, and (d) by
our kd-tree based clustering. The numbers of vertices in
each partition are charted in (e). K-means clustering
generates 128 partitions in 6.22 seconds with a compactness
measure of 3.155. Octree clustering runs fast in 3.76
seconds with a compactness of 1.806 for 126 partitions. Our
kd-tree clustering generates 128 uniform partitions in 3.85
seconds with a compactness of 1.929. Only our kd-tree
based clustering creates uniform partitioning with quality
shapes in a relatively fast processing time.

B. Mesh Simplification Using Our Mesh Partitioning
A uniform number of vertices in a partition plays a key

Figure 4. Examples of mesh partitioning. A mesh Foot of 40,058 vertices
and 80,112 faces is rendered in wire frame in (a). Partitioning results are
listed in (b) by k-means clustering, (c) by octree-based clustering, and (d)
by our kd-tree based clustering. The numbers of vertices in each partition
are charted in (e).

role in the quality of the mesh simplification. A single
representative vertex for a partition was calculated for the
vertices of the partition. Triangulations were performed with
simplified vertices according to the original connectivity.
The size and the shape of simplified triangle faces are more
regular with our kd-tree method since each simplified vertex
represents a uniform number of vertices, whereas each
simplified vertex using the octree method represents various
numbers of vertices as depicted in Fig. 5. In (a), the mesh is
simplified to 1,104 vertices using our kd-tree method
whereas in (b) the mesh is simplified to 1,206 vertices using
the octree method. The mean distortion to the original mesh
is 0.4149 by our kd-tree and 0.4563 with the octree [8]. Our
simplification preserves the original shape better with better
triangulation.

C. 3D Shape-Outlines: Interactive 3D Previews
For 2D images, TP mode provides small thumbnail

images so that a user can easily and quickly identify and
select a specific image. Until present, an interactive TP mode
for 3D meshes has not been available. As such, we offer our
TP mode which uses shape-outlines for interactive 3D mesh
previews to dramatically reduce file size. As shown in Fig.
1(a), a series of shape-outlines can easily be displayed on
mobile devices with no need for file names. A shape-outline
also depicts how the mesh is partitioned. As illustrated in Fig.
6, each TP shape-outline can be interacted with to translate
or rotate the thumbnail with no need to fully display the
mesh.

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 49 / 132

Figure 5. Examples of simplified meshes with a mesh Foot. In (a), the mesh
is simplified to 1,104 vertices using our kd-tree method whereas in (b), the
mesh is simplified to 1,206 vertices using the octree method.

D. Simplified Meshes in Multi-Resolution
Simplified meshes in multi-resolution can provide CWV

and ZSV modes of 3D meshes. As shown in Fig. 7, the more
detailed Buddha of 9,539 vertices in (b) provides higher
resolution than simply an enlarged but degraded view of the
simplified mesh of 2,569 vertices in (a).

E. Mesh Partitions for the Closest View
Finally, for DZM-mode views of meshes, uniformly

partitioned files of the selected area of the original mesh are
transferred and rendered as shown in Fig. 1(d). The number
of vertices in each partition can be specified by a user to
provide optimized and predictable processing time for each
partition.

III. CONCLUSION AND FURTURE WORK
This paper introduced a hierarchical representation of 3D

meshes for interactive rendering in cloud computing. As
listed in Table I, the rendering of 3D meshes on a mobile
device took 19.21 seconds on average while huge meshes
could not be loaded due to device memory limitations. With
our hierarchical method, interactive rendering can be
provided in real time in about 0.6 seconds on average even
for huge meshes. In our future work, we will investigate how
to automatically control simplification levels on the server or
the client. Our research has led us to conclude that texture
mapping to simplified meshes should be further studied.
Moreover, how to approximate texture coordinates for
simplified meshes also needs further investigation.

Figure 6. A shape-outline of a model Buddha in various views. A user can
interactively control TP mode views of the shape-outline.

(a) Simplified in a low resolution (b) Simplified in higher resolution

Figure 7. Simplified meshes in multi-resolution for a mesh Buddha. Rather
than zooming in to a lower resolution of the simplified mesh in CWV mode
in (a), rendering can automatically switch to ZSV mode to get a higher
resolution zoom.

REFERENCES
[1] D. Kim, S. Lee, H. Lee, and S. Cho, “A distance-based compression

of 3D meshes for mobile devices,” IEEE Trans. Consumer Electron.,
vol. 54, no. 3, pp. 1398-1405, 2008.

[2] S. Choe, J. Kim, H. Lee, and S. Lee, “Random accessible mesh
compression using mesh chartification,” IEEE Trans. Visualization
and Computer Graphics, vol. 15, no. 1, pp. 160-173, 2009.

[3] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, “External
memory management and simplification of huge meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 9, no. 4, pp. 525-
537, 2003.

[4] S. Schaefer and J. Warren, “Adaptive vertex clustering using
octrees,” SIAM Geometric Design and Computing, 2003.

[5] Y. Okamoto, T. Oishi, and K. Ikeuchi, ”Image-Based Network
Rendering of Large Meshes for Cloud Computing,” International
Journal of Computer Vision, vol. 94, no. 1, pp. 23-35, August 2011.

[6] S. Lloyd, “Least square quantization in PCM,” Information Theory,
IEEE Transactions, vol. 28, no. 2, pp. 129-137, 1982.

[7] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, “External
memory management and simplification of huge meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 9, no. 4, pp. 525-
537, 2003.

[8] P. Cignoni, C. Rocchini and R. Scopigno, “Metro: measuring error on
simplified surfaces,” Computer Graphics Forum, Blackwell
Publishers, vol. 17, no. 2, pp. 167-174, June 1998.

[9] M. Garland, A. Willmott, and P. Heckbert, “Hierarchical face
clustering on polygonal surfaces,” Proc. ACM Symposium on
Interactive 3D Graphics, pp. 49-58, 2001.

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 50 / 132

Fault Tolerant Approaches in Cloud Computing Infrastructures

Alain Tchana, Laurent Broto, Daniel Hagimont
Institut de Recherche en Informatique de Toulouse (IRIT)

Toulouse, France
Email: alain.tchana@enseeiht.fr, laurent.broto@enseeiht.fr, daniel.hagimont@enseeiht.fr

Abstract—Based on the pay-as-you-go strategy, cloud com-
puting platforms are spreading very rapidly. One of the main
characteristics of cloud computing is the splitting into many
layers. From a technical point of view, most cloud computing
platforms exploit virtualization, which implies that they are
split into 3 layers: hosts, virtual machines and applications.
From an administration point of view, they are split into 2
layers: the cloud provider who manages the hosting center and
the customer who manages his application in the cloud. This
structuring of cloud makes it difficult to implement effective
management policies. This paper focuses on fault tolerance in
cloud computing platforms and more precisely on autonomic
repair in case of faults. It discusses the implications of this
splitting in the implementation of fault tolerance. In most
of current approaches, fault tolerance is exclusively handled
by the provider or the customer, which leads to partial or
inefficient solutions. Solutions, which involve a collaboration
between the provider and the customer are much promising.
We illustrate this discussion with experiments where exclusive
and collaborative fault tolerance solutions are implemented in
an autonomic cloud infrastructure that we prototyped.

Keywords-Cloud Computing, Fault tolerance, Virtualisation.

I. INTRODUCTION

Due to the difficulty to maintain an internal infrastructure
technology and the associated rising costs, companies are
increasingly externalizing their IT services, which are there-
fore managed by specialized companies (called providers).
This trend led to the emergence of the so-called cloud
computing approach. One of the most important objective of
cloud computing is to allow customers to pay only for the
amount of resources they effectively consume. This option,
summarized by the term pay-as-you-go, is permitted in cloud
platforms through the partitioning of their resources.

Virtualization techniques are commonly used in cloud
platforms to implement partitioning of resources. Instead
of having direct access to cloud resources, customers have
access to virtual machines, which represent a fraction of a
physical machine. Then, we identify three layers in such a
cloud infrastructure: the physical resource layer (containing
the overall cloud resources), the virtualization layer (contain-
ing virtual machines) and the applications layer (containing
applications of external companies, which are hosted in the
cloud).

From an administration point of view, we consider two
main roles, which correspond to the administration of the
hosting infrastructure (the provider) and the administration

of the application deployed in the cloud (the customer).
These multiple layers and roles make difficult the man-

agement of cloud platforms and particularly the management
of failures in these infrastructures. Indeed, handling failures
become more complex because those who intervene in the
cloud (customers and provider) have different views (and
access rights) of the different layers of the cloud. Costumers
are limited to only detecting faults of virtual machines
and their applications, while the provider can only manage
real resources (physical machines) and virtual machines
faults. Therefore, possible Fault Tolerance (FT) solutions
vary according to the involved participants and according
to the implementation level.

Although current cloud platforms take in account many
challenges, their implementation usually propose no fault
tolerance solution ([1], [2]) or basic FT solutions ([3]). For
those who implement FT services ([4], [5], [6], [7]), we
retain that their solutions only entrust the responsibility of
fault management either to the customer or to the provider.
No collaboration between the two types of participants is
considered.

The purpose of this paper is to investigate FT policies
in cloud platforms. We identify two types of policies: one,
which is exclusively handled by one participant (customer
or provider) and another, which is a collaborative man-
agement between the provider and customers. This second
type constitutes an interesting tradeoff between exclusive
management by the provider and exclusive management by
the customer. This discussion is illustrated by experiments
and evaluations with an operational prototype of autonomic
cloud platform.

The rest of the paper is organized as follows. Section II
introduces the cloud computing technology (concepts and
architecture) and its challenges (including fault manage-
ment). Section III covers fault detection and management
techniques in the cloud. Section IV discusses related work.
Section V presents experiments and evaluations, which illus-
trate our reflection. Section VI concludes and outlines areas
for future works.

II. CLOUD COMPUTING OVERVIEW

Due to the lack of consensus on the definition of cloud
computing, let us refer to the CISCO [8] one: ”IT resources
and services that are abstracted from the underlying infras-

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 51 / 132

tructure and provided on-demand and at scale in a mul-
titenant environment”. Therefore, cloud computing consists
in: (1) providing on demand services to external customers
with the illusion of infinite resource, (2) and then using the
same resource pool for all customers. This strategy offers
several advantages including:

• Reduced costs for the customer. He no longer needs to
manage his own infrastructure and is billed according
to the use of cloud services.

• Flexibility for the customer. He can increase the ca-
pacity of his infrastructure without major investments,
resources of the cloud are dynamically allocated on
demand.

• Less waste. Internal IT systems managed by customers
are often under-utilized while the cloud infrastructure
is shared between many customers, which increases the
average resource utilization rate. A important example
of this waste is the energy consumption of such infras-
tructures.

Several models of cloud are presented in the literature,
including: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS). In
this article, we consider a cloud as an IaaS: a virtualized
infrastructure managed by a provider, in which external
customers deploy and execute their applications. Then, the
parties involved in a cloud platform are grouped into three
categories: cloud providers, cloud customers and end users.
A cloud provider is responsible for the administration of the
cloud resources (hardware and virtual machines(VM)) and
services. He is responsible for managing the accommodation
of the capacity of the cloud. Cloud customers use the
resources provided by the cloud to deploy and execute
their applications. They do not have a global view and
direct access to the cloud environment. They use cloud
resources through VMs, which host their applications and,
which represent a confined portion of physical resource.
End users are using customer applications deployed in the
cloud. Figure 1 summarizes and shows the vertical cloud
architecture and the scope of each cloud participant: the
cloud provider has access to physical resources and VMs;
cloud customers have access to VMs and their applications;
and end users have access to customer applications.

Figure 1. Cloud Computing architecture

III. FAULT TOLERANCE TECHNIQUES IN CLOUD
PLATFORMS

As shown in Figure 1, three layers are identifiable in
a cloud platform: resources, VMs and applications. Each
of them is concerned with failures. Therefore, we identify
three types of failure in a cloud platform: hardware failure,
VM failure and application failure. A FT strategy includes
two distinct phases: detection phase and repair phase. One
of the difficulties to implement FT in a cloud architecture
can be summarize by this question: which cloud participant
(provider or customer) is the best able to implement the two
phases of fault management, depending on its access rights
in the cloud architecture? In other words, is it reasonable
to leave exclusively the responsibility of FT to one cloud
participant knowing that: hardware failures can only be
detected and repaired by the cloud provider; VM failures
can be detected by the two participants but only repaired
by the cloud provider; and application failures can only be
detected by the customer but can be repaired by the two
participants.

We present in this section two visions of FT management
in a cloud platform. The first one consists in giving both the
detection and repair responsibilities to one cloud participant
(exclusively) while the second is to harness the skills of the
two types of participant. According to these two visions, we
present some FT techniques for the three types of failure we
have identified: hardware, VM and application.

A. Exclusive FT Management

We discus about exclusive FT solutions in this section.
1) Application FT: As mentioned above, application fail-

ures are detectable only at the customer level. The failure
detection policy depends on the application. However, the
mechanism used to implement a detection policy is gener-
ally the same. For each application, the customer deploys
in the cloud special software components called sensors,
which monitor the liveness of the application. According
to this monitoring, a sensor may trigger the execution of a
procedure for repairing the application when it is considered
as malfunctioning.

Two methods are possible for repairing a faulting ap-
plication. The first one concerns stateless application (such
as loadbalancers, e.g., HAProxy or MySQL-Proxy used in
our experiments). Repair consists in restarting the faulting
server on the same VM. The second method concerns state-
full servers (e.g., the MySQL database). In this case, the
customer must implement a mechanism for saving the server
state so that it can be restored before the server is restarted.
In the case of a database server for example, this save/restore
mechanism can be implemented by trapping and storing all
modification requests, allowing replay of these requests.

The advantage of this solution is that the customer has
full control over the solution. Then, the application can be
hosted in any cloud platform without assuming that the

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 52 / 132

platform implements any FT solution or that the platform
is dedicated to a particular kind of application. However,
this solution requires that customers have expertise on their
applications so that they can implement application state
save/restore procedures notably, and they must implement
their own monitoring system.

2) VM Fault Tolerance: VM failures can be detected and
repaired by the two cloud participants. We consider here
repair policies that are implemented exclusively by one of
them.

Customers implement VM FT by deploying sensors in
the cloud, which monitor VM state during their lifetime. In
this case, it is not recommended to give to a single sensor
the responsibility of probing one VM because a failure of
the VM hosting this sensor would compromise the repair
mechanism. The repair of the failed VM is organized as
follows: (1) the customer level requests the cloud to free
the failed VM; (2) it allocates a new VM; (3) it deploys
and starts the servers that were running on the failed VM;
and (4) it restores the state of these servers in case of state-
full servers. One disadvantage of this solution is that each
customer must implement his own VM monitoring system,
which leads to complexity and network resource wasting,
while VM monitoring can be factorized and implemented
by the cloud provider.

At the cloud provider level, an exclusive VM FT technique
can be implemented. With a direct access to VM hypervi-
sors, the cloud provider is more likely to implement VM
FT. Firstly, such an implementation decreases the number
of VM sensors (and their associated communication) as they
are integrated in hypervisors. Actually, a single sensor per
physical machine can monitor all the VMs hosted on this
machine. Secondly, through the hypervisor, the provider can
collect more detailed information about VM status. This
information allows him to implement more accurate FT
solutions according to VM status. In contrast, when a VM
failure is detected by the customer, it is more precisely the
VM inaccessibility, which is detected since the customer is
not supposed to be granted access to hypervisor information.
At the cloud level, the provider is able to identify several
types of VM failure. For example, considering the Xen
hypervisor, a VM can be broken when its state is blocked,
pending, or error. The provider can then implement VM
repair so that an appropriate repair method is applied for
each state of failure. Also, the analysis of Xen logs allows
releasing a VM (instead of reallocating a new VM as the
customer level would do) whose state is blocked waiting
for a device. A more agnostic solution for VM FT is to
regularly store VM states using the checkpointing ability
offered by virtualization systems. Thus, the cloud will just
restart a failed VM from its last saved state.

The advantage of provider level solutions resides in the
fact that it factorizes VM FT tasks that would be imple-
mented by the customers. However, being not aware of the

particularities of VM hosted applications, the provider repair
solution may not be efficient in certain cases. For example,
repairing a VM, which hosts MPI processes (used by other
VMs) cannot be done by restoring the VM to its last state.
MPI applications do not support rollbacks, even negligible.
In this case, a collaboration between the provider and the
customer can be the solution.

3) Physical Machine Fault Tolerance: Hardware failures
are more difficult to take into account in the cloud because
they trigger failures at the other levels (VM and application).
We consider repair implemented exclusively at the customer
or provider level.

At the customer level, it is impossible to detect a physical
machine failure. At this level, a physical machine failure is
perceived as multiple VM failures (the VMs running on the
failing machine). The customer level only sees VMs and
even if VM monitoring sensors are deployed in the cloud,
they may not be aware of a hardware failure if they are all
deployed on the same physical machine (sensors deployed
on VMs hosted by the faulting machine). The customer
would need to implement constraints regarding the physical
location of sensors, which is a form of collaboration between
the customer and the cloud provider (we will come back to
this collaboration in the next section).

At cloud provider level, hardware FT is implemented
with a monitoring system composed of sensors deployed
on different physical machines. For repair, the provider will
start on a new machine (or several machines according to
its capacities) the same number of VMs, which were hosted
on the failed machine. In addition, all VM states must be
saved by checkpointing so that VM restoration is possible.
This solution is used in [5] and [9] for example.

B. Collaborative Fault Tolerance Management

Exclusive FT techniques presented in the previous sec-
tions highlight difficulties regarding techniques applied for
certain types of failure. As will be discussed in this section,
these difficulties can be taken into account if a collaborative
management between the cloud provider and customers is
considered.

1) Application Fault Tolerance: In Section III-A1 we
have described an application fault detection without spec-
ifying the impact on other levels of failure (VM and
hardware). If the sensor is deployed on a separate VM
than the application, then a detected failure can have three
origins: application (already treated in Section III-A1), VM
or hardware. In the case of a VM failure, the collaboration
between the application sensor and the VM sensor (possibly
at the customer level) will give more clarification to the
application sensor. If the VM sensor does not detect any
error, then it can conclude that it is an application failure.
Otherwise, it can deduce that it is a VM or a hardware
failure. In this latter case, the customer alone has no way
to know much. A better collaboration with the cloud level

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 53 / 132

would provide confirmation of the failure type.
Concerning the repair of a failed application, a collab-

orative repair may be considered. Indeed, the cloud can
offer regular backups of VM states so that a customer can
subscribe to and invoke the cloud level for the restoration
of a VM from a saved image.

2) VM Fault Tolerance: If the VM fault detection is done
by the customer, we will have the same problem as described
in the previous section. At the customer level, a VM failure
detected by a sensor can be due to a hardware failure (the
machine, which hosts the VM), which is out of scope for
the customer. A VM fault detection at the cloud level allows
getting a more accurate decision.

If the VM fault detection is implemented at the cloud
level, a collaboration with the customer level can provide
a better solution than the checkpoint-based one described
in section III-A2. Concretely, once the fault is detected
by the cloud, it starts a new VM with the same features
(networking, memory, CPU, image) as the failed VM and
then calls the customer to redeploy, restart and synchronize
the new VM. This solution would probably perform better
than the checkpointing one regarding the cost of save/restore
operations.

3) Physical Machine Fault Tolerance: From the point of
view of the customer, the failure of a physical machine is
identical to the VM crashes. When detected by the cloud
provider, such a failure can be resolved collaboratively
during the repair of each VM hosted on the failed machine.
Each VM is restarted with the same characteristics on a new
physical machine and the completion of the repair is asked
to the customer (as seen in the previous section).

C. Synthesis

We have discussed possibilities for implementing FT
(repair) in a cloud environment. In a cloud environment
composed of a hosting center managed by a provider and
applications deployed in this hosting center and managed by
customers, we distinguish:

• FT managed exclusively at the customer level. At this
level, it is possible to detect application and VM faults,
but detecting hardware faults is difficult and it is not
possible to have details about detected VM fault (this
information is only available at the hypervisor level).
Repair can be implemented at this level by restarting
VMs (VM and hardware faults) and redeploying and
restoring applications (all faults). The main drawback
is that each customer must implement the whole FT
policy.

• FT managed exclusively at the provider level. At this
level, application faults cannot be detected, but detailed
information can be given for VM and hardware faults.
Repair can be based on VM checkpointing, which is
independent from applications, but can be quite costly.

• FT managed collaboratively at both levels. Applications
faults must be detected and repaired at the customer
level. VM and hardware faults can be detected at the
provider level (with details). The repair of the VMs
(upon VM and hardware faults) can then be accurately
performed at the provider level, and finally the recovery
of the application that were running on these VMs can
be requested and performed at the customer level. The
recovery (redeployment and restoration) of applications
on VMs can also have a significant cost.

Naturally, collaborative techniques appear to be the best
suited. However, most of the proposed solutions are exclu-
sively implemented in one level, as it is strategically difficult
to split an FT policy between two participants.

IV. RELATED WORK

As we mentioned in the introduction, few works addressed
the issues of FT in cloud environments. Some platforms such
as Eucalyptus [1] or CLEVER [6] provide no solution to take
into account hardware, VM or customer application failures.
CLEVER addresses FT management, but only for its own
components.

OpenNebula [3] offers exclusive VM FT implemented at
the cloud level. It allows the cloud provider to associate
hooks (scripts or programs) with each type of VM failure
(according to hypervisor information). Hardware failures are
not addressed by OpenNebula for two reasons: it provides
no hardware sensors and all VM sensors are located on the
same machine than the VM. So a machine failure cannot be
detected by OpenNebula.

As OpenNebula, the Microsoft Windows Azure plat-
form [5] offers an exclusive FT management at the cloud
level. Windows Azure replicates each VM so that a VM
failure is covered by its replicas. The Azure solution is
limited to web applications developed in the Windows Azure
platform. Moreover, no solution is proposed to repair the
failed VM. In addition, for VMs which are not instantiated
by the Azure development platform, the entire responsibility
of FT management is left to the customer. This is also the
case in the Amazon EC2 [7] cloud platform.

Kaushal [4] proposes an FT solution in the cloud at the
customer level by replicating servers queries, based on the
HA-Proxy load distributor. Other researches such as [10]
and [11] propose a collaborative solutions for specifics ap-
plications (MPI for example). However, they do not consider
the splitting of the cloud between a (VM) provider and its
customers, so their works are only applicable to an SaaS
cloud.

Uesheng Tan [12] describes a replication solution for VM
FT, exclusively managed by the cloud provider. It proposes
to improve efficiency by using passive VM replicas (with
very few resources), which become active when a failure
is detected. A mechanism is introduced to transfer/initialize
the state of VM. This solution is similar to the exclusive FT

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 54 / 132

solution (at the provider level) that we presented previously
and that we evaluate in the next section.

Finally, Wenbing Zhao [13] proposes a FT middleware,
which can be used by a cloud customer to implement soft-
ware FT. Their main purpose is to implement a synchronized
server replication strategy so that a failed server can be
repaired with a consistent state.

V. EVALUATIONS

In these experiments, we evaluate the two visions that we
presented above: exclusive and collaborative FT strategies.
Due to the limited space in this paper, we only present our
evaluation with VM FT. In these evaluations, we detect a
VM failure when the VM does not respond to a ping request
or when the hypervisor indicates an error state.

The evaluation environment is composed as follows. For
the cloud platform, we use a prototype called CloudEngine,
based on an adaptable autonomic management system called
TUNeEngine, which were both implemented in our research
group. Briefly, CloudEngine is similar to the OpenNebula
system, but it is more adaptable and flexible because it is
based on an adaptable system (TUNeEngine). For example,
it allows easy addition of new functionalities, management
policies and offers collaborative API. This prototype allows,
at the cloud level, the deployment of VMs and the definition
of VM level reconfiguration policies (repair in our case), and
at the customer level, the deployment of application servers
and their reconfiguration/repair.

Our prototype is used to allocate VM in the cloud, deploy
and start a J2EE application (RUBIS [14]) as our customer
application. Our J2EE experimental application is composed
of an Apache web server, two Tomcat servlet containers,
a MySQL-Proxy database loadbalancer and two MySQL
database servers. The MySQL stage is our replicated layer
in which failures will be triggered. For the evaluation of our
two FT techniques, we apply a pyramidal RUBIS workload
(upload phase, constant load phase and download phase) in
which we simulate a VM failure during the constant load
phase. The objective of the experiment can be summarized
by this question: what does the FT technique cost in term of
RUBIS performance (throughput). To answer this question,
we ran the same workload without failure in order to have a
reference execution with which the others can be compared.
We observe the request throughput during the benchmark
and the number of untreated requests during repair.

A. Exclusive Fault Tolerance

The exclusive FT technique we evaluate in this experiment
is implemented in the cloud level. The implemented FT
policy starts a checkpointing program on each IaaS node,
which role is to save the status of each VM every 7 seconds.
The choice of the backup frequency should not be too small
nor too large for two reasons: the risk of penalizing the
performance of the VM (as discussed) and the risk of having

a large gap between VM status after and before the failure.
Upon failure, the last checkpoint is used to restore a recent
image of the failed VM.

Figure 2 shows the comparison between the experimental
landmark (red curve) and the experiment with the check-
pointing (green curve) in which no failure was simulated.
These first curves allow us to observe the overhead of VM
checkpointing. We estimate this overhead is about 46% due
to the Xen VM checkpointing implementation. Actually, the
checkpointing implemented by Xen causes the unavailability
of the VM during the checkpoint, which explains this
overhead. Notice however that this unavailability does not
cause request loss since the TCP/IP protocol (on which our
network is based) retransmits a request when communication
fails. Thus, during checkpointing, the downtime of the
VM does not break TCP/IP communications and it only
postpones request handling. It explains the large fluctuations
in the green curve.

Figure 2. Checkpointing cost during VM repair in the IaaS

Figure 3 shows the result of applying our FT method (at
the cloud level) with fault simulation on a MySQL server
VM. Tp represents the failure date while Tr marks the end
of the repair. The repair time in this experiment is about
22 seconds. This time includes the time taken to detect the
failure and also the duration of VM restarting (from its last
saved state).

Notice here that requests are lost when we recover from
the last saved checkpoint. This can be tolerated for a web
application but it would not for more sensitive applications
such as MPI applications.

B. Collaborative Fault Tolerance

The second FT technique we evaluated is a collaborative
one in which VM fault detection and repair operations are
performed (collaboratively) by CloudEngine (the IaaS) and
the customer (via our TUNeEngine autonomic administra-
tion system at the application level). CloudEngine detects
VM failure, restarts the VM from its original image and
finally invokes the customer level TUNeEngine system to

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 55 / 132

Figure 3. Exclusive VM Fault Tolerance Technique

complete the repair. Then, TUNeEngine deploys on the
restarted VM the application that was running on it before
the failure (MySQL in this experiment), configures and starts
the MySQL application. The size of the deployed application
and the reconfiguration and start operations influence the
overall duration of the repair.

Figure 4 shows two curves: the red curve represents the
reference execution (without failure nor FT management)
while the green curve represents the result of our collabora-
tive FT technique. We observe that this repair method, unlike
the previous one, has no impact on RUBIS performance
when no failure is involved. This is shown in Figure 4 areas
(1) and (3). Zone (2) represents the duration of the repair. It
includes: the failure detection (at the cloud level), the VM
deployment and restart, the MySQL server binaries copy and
restart. For these reasons, we measured in this experiment a
repair time of 5 minutes 30 seconds. Notice that the use of a
mirror server, which is usually the case for such applications,
would keep the service available during the repair of the
failed server.

Even if the repair time is much higher with this solution,
it seems best suited as it does not incur any overhead on
execution.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we studied two visions for FT management
in cloud computing platforms: the first one consists in
leaving exclusively the responsibility of FT management
to one cloud participant (cloud customer or provider); the
second one consists in sharing the responsibility between
the two cloud participants. We reviewed all possible fault
situations in the cloud: application level, virtualization level
and hardware level. We proposed for each of them some
solutions involving exclusive or collaborative FT visions.
Given the limited space in this article, we only evaluated
two FT techniques (one exclusive and one collaborative).
However, this evaluation illustrates that sharing FT manage-
ment between the two cloud participants opens interesting

Figure 4. Collaborative VM Fault Tolerance Technique

perspectives.
In the near future, we intend to complete our experiments

with all the techniques described in this paper. Furthermore,
VM FT techniques based on checkpointing can be improved
by new VM checkpointing solutions, which consist in stor-
ing only the difference between successive VM states (rather
than the entire VM state).

REFERENCES

[1] Daniel Nurmi, Richard Wolski, Chris Grzegorczyk,
Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov “The eucalyptus open-source cloud-
computing system,” in 9th International Symposium on
Cluster Computing and the Grid (CCGRID), vol. 0, pp.
124-131. Washington, DC, USA, 2009.

[2] University. of Chicago, “Nimbus is cloud computing for
science,” http://www.nimbusproject.org/, [retrieved: january,
2012].

[3] OpenNebula, “Opennebula.org: The open source toolkit for
cloud computing,” http://opennebula.org, [retrieved: january,
2012].

[4] Vishonika Kaushal and Vishonika Kaushal, “Autonomic fault
tolerance using haproxy in cloud environment,” International
Journal of Advanced Engeneering Sciences and Technologies,
vol. 7, 2010.

[5] Microsoft, “Windows azure: Microsoft’s cloud services plat-
form,” http://www.microsoft.com/windowsazure/, [retrieved:
january, 2012].

[6] Francesco Tusa, Maurizio Paone, Massimo Villari, and Anto-
nio Puliafito, “Clever: A cloud-enabled virtual environment,”
in IEEE Symposium on Computers and Communications
(ISCC), pp. 477-482. Riccione, Italy, 2010.

[7] Amazon, Inc, Amazon Elastic Compute Cloud (Amazon EC2).
Available: http://aws.amazon.com/ec2/#pricing, [retrieved:
january, 2012].

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 56 / 132

[8] Kapil Bakshi, “Cisco cloud computing - data cen-
ter strategy, architecture, and solutions point of view
white paper for u.s. public sector 1st edition,” 2009,
http://www.cisco.com/web/strategy/docs/gov/
CiscoCloudComputing WP.pdf, [retrieved: january, 2012].

[9] Walters John Paul and Chaudhary Vipin, “A fault-tolerant
strategy for virtualized hpc clusters,” The Journal of Super-
computing, vol. 50, 2009.

[10] Qin Zheng, “Improving mapreduce fault tolerance in the
cloud,” in Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), pp. 1-6, 2010.

[11] Magdalena Slawinska, Jaroslaw Slawinski, and Vaidy Sun-
deram, “Unibus: Aspects of heterogeneity and fault tolerance
in cloud computing,” in Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), pp. 1-10, 2010.

[12] Uesheng Tan, Dengliang Luo, and Jingyu Wang, “Cc-vit:
Virtualization intrusion tolerance based on cloud computing,”
in 2nd International Conference on Information Engineering
and Computer Science (ICIECS), pp. 1-6. Wuhan, China,
2010.

[13] Wenbing Zhao, Michael Melliar-Smith, and Louise E. Moser,
“Fault tolerance middleware for cloud computing,” in 3rd In-
ternational Conference on Cloud Computing (CLOUD 2010),
pp. 67-74. Miami, FL, USA, 2010.

[14] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda,
Alan L. Cox, S Elnikety, Romer Gil, Julie Marguerite,
Karthick Rajamani, and Willy Zwaenepoel, “Specification
and implementation of dynamic web site benchmarks,” in 5th
Annual Workshop on Workload Characterization (WWC-5),
pp. 3-13. Austin, Texas, USA, 2002.

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 57 / 132

BtrScript: A Safe Management System for Virtualized Data Center

Rémy Pottier, Jean-Marc Menaud
École des Mines de Nantes, Ascola (EMN/INRIA, LINA)

Nantes, France
Email: remy.pottier@mines-nantes.fr, jean-marc.menaud@mines-nantes.fr

Abstract—Virtual machine management in data centers is
more and more complex due to the increasing total number
of virtual machines. Virtual machine resources and sched-
uled policies (e.g., consolidation) define the virtual machine
placement. This placement is difficult to compute for large
infrastructures. Administrators maintain a correct placement
by performing actions (e.g., migrate virtual machines, power
off servers, etc.) and some time using autonomic schedulers.
We propose btrScript: a safe autonomic system for virtual
machine management that includes actions and placement
rules. Actions are imperative operations to reconfigure the
data center and declarative rules specify the virtual machine
placement. Administrators schedule both actions and rules,
to manage their data center(s). They can also interact with
the btrScript system in order to monitor the data center and
compute the correct virtual machine placement.

Keywords-cloud computing; virtualization; management; do-
main specific language.

I. INTRODUCTION

With the emergence of cloud computing, the hosting
capacity of the data centers has been continuously growing
to support the non-stop increasing clients demand. Currently,
Amazon Web Service adds each day enough capacity to
support the whole Amazon.com infrastructure as it was
during its five first years [1].

Managing a data center implies to regularly manipulate
both the virtual machines (VMs) and the servers. Common
operations include snapshotting, starting, stopping, or re-
setting of VMs [2], but also starting, halting, rebooting or
performing maintenance operations on servers. Each hosted
VM has specific expectations regarding its quality of service
and each action must be executed in accordance to its
requirements. Typically, it is expected to have a sufficient
amount of resources to run the VM at peak level, but also
a placement that may be compatible with fault tolerance
or networking requirements. Finally, its availability may be
required at given periods (e.g. business hours for remote
desktops).

Infrastructure As A Service (IaaS) solutions such as
OpenStack [3] or VMWare VCenter [4] extremely sim-
plify creations and deployments of virtual environments.
However, the management of the VMs concepts did not
follow these changes. Virtualized infrastructure management
is still relying on manual changes on the environment as
well as a reaction to problems after they occur. Such an

approach is no longer compatible with an infrastructure
composed of thousands of VMs. A system administrator
cannot manipulate a large set of VMs insuring that his
actions are compatible with the expected quality of service
at a given time, but also will be compatible in the future.
This situation has led to some new approaches for the
infrastructure management employing automation to replace
the traditional manual approach. For example, VMWare
DRS [2] can react to a load spike and dynamically adapt
the VMs placement following a set of rules given by the
administrator.

Close to the VMWare DRS functionality, we have worked
with an autonomic system called Entropy [5], [6]. To
achieve autonomic computing, an architectural view called
the MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge)
loop, has been suggested in [7]. Mainly, an autonomic
system is a software component, configured by human
administrators using high-level goals. It uses monitored
elements (M), internal knowledge (K) of the system to
analyse (A), plan (P) and execute (E) tasks based on these
high-level goals. The low-level actions to achieve these goals
are automatically calculated and executed.

Entropy implements a classical MAPE-K loop [7]. It
specially focuses on the planning part (P). Based on con-
straint programming, the main Entropy’s high-level goal
is to ensure that placement rules are constantly satisfied,
both on system rules (CPU, RAM) and for the admin-
istrative rules. From a given current configuration (initial
VM placement and rules), Entropy proposes at each loop
a new configuration and its associated ordered operations
called the reconfiguration plan. Essentially, based on VM
live migration, the reconfiguration plan allows to switch
from the current to the new configuration. The main reason
to use an autonomic system like VMWare DRS or Entropy,
is that administrators define high-level goals by specifying
criteria that characterise desirable states, but leave to the
system the task of finding how to achieve that state.

The main drawback of these systems is that they react
after a problem occurs. Thus, daily maintenance operations
realised by administrators, like VM migration or creation,
are verified by the system after completion, at the next
MAPE-K execution loop. Therefore, placement rules can be
unsatisfied for a time, which may cause degradation of the
quality of service.

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 58 / 132

This paper, « BtrScript, a safe management system for
virtualized data center », follows our research into Do-
main Specific Languages (DSL) on VM management [8].
BtrScript checks, according to active rules, the validity of
all actions and rules performed by administrators. If an
action or a rule is invalid, btrScript detects conflicts and
displays all active rules involved for each conflict. To resolve
a conflict, btrScript proposes a combination of two modules.
The first one is a rule management system to modify,
suspend or activate rules. The other one, by interacting
with Entropy, proposes (if possible) to the administrator
a reconfiguration plan that satisfies all rules. In addition,
btrScript has an action scheduler that allows specifying time-
based operations and rules. Each interactive or scheduling
operation is ensured to be compatible with the current but
also the future active rules. Finally, we extend the language
proposed in [8] to allow administrators an easy placement
rules management.

We evaluate btrScript by comparing our rule management
with the scripting tool, vSphere PowerCLI, which can be
used to manage rules in a VMWare infrastructure.

This paper is structured as follows. The next section
presents the new modules of the btrScript architecture.
Section III presents the VMScript syntax then introduces
the language extension. Section IV describes mechanisms
to ensure the consistency in the infrastructure. Section V
explains how to compute reconfigurations that solve infras-
tructure issues. Section VI details the comparison of the rule
management with btrScript and with the vSphere PowerCLI.
Section VII summarizes the former research in the field.
Finally, Section VIII concludes and presents future work.

II. SYSTEM OVERVIEW

In virtualized infrastructures, the number of VMs and
servers, as well as the resource utilization of the VMs,
evolves. Administrators have to regularly re-organize the
infrastructure to optimize the resource usage. Moreover,
specific requirements as fault tolerant mechanisms have to
be defined by placement rules.

BtrScript uses mandatory rules existing in Entropy and in
the vmWare DRS, the most widely adopted VM scheduler.
Actually, rules define by administrators can restrict the
VM placement (for example, enforce a VM to stay in the
same server). As a rule does not describe actions, when
administrators enable rules, no infrastructure reconfiguration
is performed even if the rule is broken. The broken rule
detection requires the following data:

• static resources: the cpu and memory capacities of VMs
and servers ;

• dynamic resources: the cpu and memory utilization of
VMs and servers ;

• the VM placement.
BtrScript is based on VMScript and so it is able to

introspect and reconfigure a virtualized infrastructure (see

figure 1). The placement rule management implies addi-
tional modules to help administrators to maintain the rule
consistency and, consequently, the consistency of the infras-
tructure.

Administrators interact with btrScript modules through the
management console. This console is an interpreter of the
domain specific language that manages placement rules. This
language is described in Section III-C1.

Scheduling VMs in a large infrastructure is a complex
problem [9]. Furthermore, some issues in the infrastructure
do not require to be fixed because they are temporary (for
example, a cpu consumption peak). The guardian periodi-
cally analyzes the infrastructure to report violated rules and
overloaded servers. In our opinion, a server is overloaded
when the sum of the hosted VM cpu consumption equals
the cpu capacity of the server. The VM memory is not
considered because we assume memory overcommitment
is not used and, consequently, the memory utilization of
VMs can not be greater than the host memory. This module
warns administrators about issues but it does not try to
solve them. Administrators choose the appropriate moment
to solve issues manually (by executing actions) or by means
of the placement module.

The placement module is an algorithm that computes
actions to execute in order to solve infrastructure issues. It
has to integrate all the btrScript placement rules to solve
them. Entropy is connected to btrScript to use it as a
placement module.

III. BTRSCRIPT LANGUAGE

The VMScript language allows administrators to intro-
spect and reconfigure the virtualized infrastructure. BtrScript
is a VMScript extension that reuses these low-level oper-
ations and adds the placement rule management. Before
the extension language presentation (Section III-C1), Sec-
tion III-A briefly reminds the VMScript syntax to select,
introspect and reconfigure elements in the infrastructure.

A. VMScript background

VMScript operations are based on set manipulation in
order to deal with a large amount of VMs and servers. This
part describes the selection of elements in the infrastructure
to, afterwards, perform introspection and reconfigurations.

1) Selection: The architecture of virtualized infrastruc-
tures is a compound of two views, a physical view and a
virtual one. For example, the physical view can be clusters
that includes servers, and, the virtual view can be virtual
jobs (vjobs) that includes VMs. These views define language
types and their hierarchical organization. The hosting rela-
tion between servers and VMs maps both of the views.

Each element of the infrastructure is typed and has a
unique name and some properties to enhance the infrastruc-
ture with additional information such as resource consump-
tions, operating systems (OS), IP addresses, states, etc.

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 59 / 132

Figure 1. Global architecture

VMScript uses names to get elements. The “[]” operator
allows the selection of a set of elements using a sequence
of consecutive numbers, or an enumeration. The following
expression selects the elements named pm1, pm2, pm3 and
pm-master:
pm[1−3,−m a s t e r]

The “[]” operator can also make an union, a difference
or an intersection of sets. The selection of the five servers
named pm1, pm2, pm3, hostA and hostB is written by:
[pm[1−3] , h o s t [A, B]]

The binary “/” operator allows to select elements from
their type. The first parameter is a set defined with the
previous syntax and the second parameter is a type. If the
first element is omitted, all elements of the infrastructure
with the specific type are selected. For example, the selection
of servers of the infrastructure and the selection of VMs of
the cl1 cluster is, respectively, written by:
/ s e r v e r
c l 1 / vm

Element properties added to the model can be used to
refine a selection thanks to the “{}” operator. For example,
get all servers with a Linux OS:
/ s e r v e r { os == Linux }

B. Introspection and reconfigurations

Once elements to manipulate are selected, the operator “:”
allows to introspect and reconfigure the infrastructure.

The introspection is available by getting the value of
a property. The resource utilization is one of the default
property of servers and VMs, so that it is easy to display
the cpu consumption of VMs running on the server s1:

s1 / vm : cpu_cons

VMScript actions perform infrastructure reconfigurations
such as starting or migrating VMs. From a selection, actions
can be applied on VMs and servers. For example, start
servers and then migrate 3 VMs on one of them is written
by:

s [2 , 6] : s t a r t
vm[1 −3]: m i g r a t e s2

Supported actions for servers and VMs in the VMScript
language are start, stop, suspend, resume, reboot. The sup-
ported action for servers are createvm and supported actions
for VMs are snapshot, migrate.

C. The language extension

1) The rule management: Usually, administrators use
imperative actions like creating, migrating, stopping VMs in
their data center. However, some specific requirements can
not be defined in a imperative way because they describe
an infrastructure configuration that lasts for a certain period
(i.e., an invariant). Imperative actions describe reconfigura-
tion operations to perform whereas administrators want to
describe a configuration without defining how to obtain it.

In the VMScript extension btrScript, declarative rules aim
to specify VM placement and states with rules.

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 60 / 132

Placement rules implement in the btrScript language are a
subset of the constraints used by Entropy [6]. The btrScript
language supports the following rules:

• the group rule keeps the VMs on one physical server,
for example, to optimize network connections. The
following rule makes sure the VMs named vm1, vm3
and myvm stay on the same server:

s t r o n g C o n n e c t i o n : group [vm [1 , 3] , myvm]

• the spread rule avoids the VMs to run on a same server
(e.g., in a fault tolerance context). The following rule
makes sure the VMs named vm1, vm3 and myvm run
on three servers:

d b R e p l i c a : s p r e a d [vm [1 , 3] , myvm]

• the on rule forces a VM to run on specific servers.
Administrators can restrict where VMs run to enforce
the use of a specific hardware. The following rule
makes sure the VM named vm1 runs on the server hostA
or on the server hostB:

vm1Host : vm1 on h o s t [A, B]

• the !on rule is the negation of the on rule. It avoids a
VM to run on specific servers. The use of on or !on
operators rely on sets to describe. The smaller the set is,
the easier is its description. The following rule makes
sure the VM named vm1 runs on a server different from
hostA or hostB:

v m 1 B l a c k l i s t : vm1 ! on h o s t [A, B]

• the run rule forces VMs to run. It avoids to unfortu-
nately stop or suspend VMs. The following rule makes
sure VMs named vm1 and vm2 are in a running state.

a l i v e : run vm [1 , 2]

These rules define more accurately the VM placement.
As the data center architecture evolves (e.g., VMs are cre-
ated, cpu consumptions fluctuate, etc.), rules can be added,
enabled, disabled or deleted at run-time.

The previous rule declarations show rules that are defined
and enabled at the same time. However, administrators can
enable and disable rules as they wish, respectively, from
the language operators enable and disable. In the below
example, the rules property lists rules. Afterwards, rules are
managed from their identifier.

b l a c k l i s t : vm[1−100] ! on h o s t [A, B]
vm1 : r u l e s
< b l a c k l i s t > vm[1−100] ! on h o s t [A, B] ON
b l a c k l i s t : d i s a b l e
vm1 : r u l e s
< b l a c k l i s t > vm[1−100] ! on h o s t [A, B] OFF
b l a c k l i s t : d e l
vm1 : r u l e s

2) Timed actions and rules: Reconfigurations in the
infrastructure can occur at well-known dates such as the
end of a development project or outside business hours.
This language extension proposes to schedule actions, rule
activations and rule inactivations. The date definition is
close to the crontab syntax, with one additional parameter
specifying the year of the execution.

Thanks to the date syntax, repetitive tasks such as VM
reboot can be scheduled. The following operations stop VMs
of the myproject vjob during the night every day:

[0 0 : 2 1 :∗ :∗ :∗ :∗] m y p r o j e c t / vm : s t o p
[0 0 : 8 :∗ :∗ :∗ :∗] m y p r o j e c t / vm : s t a r t

For a rule, an activation date and/or an inactivation date
allow to automate the rule management. The first following
declaration inserts the rule and wait the June 3rd 2011 at
ten o’clock to enable it permanently. The second one inserts
the rule, wait the June 3rd 2011 to enable it and disable it
the June 6th 2011 at six pm.

[0 0 : 1 0 : 3 : 6 :∗ : 1 1] vm1_2 : group [@vm1,@vm2]
[0 0 : 1 0 : 3 : 6 :∗ : 1 1 − 0 0 : 1 8 : 6 : 6 :∗ : 1 1] vm1_2 : group [@vm1,@vm2]

IV. ENSURING THE INFRASTRUCTURE CONSISTENCY

Administrators manage virtualized infrastructures with
placement rules and actions. Nevertheless, rule insertions
must be checked to avoid inconsistencies that imply no
correct VM placement exists.

Once rules are inserted, administrators need to know
which rules are unsatisfied. The guardian module allows
to warn administrators about infrastructure issues as broken
rules.

Finally, infrastructure reconfigurations can not violate
placement rules. And so, a rule verification occurs by
simulating action effects on the model before each action
execution.

A. Rule insertion verification

Administrators describe rules from the btrScript language.
Before the insertion of a rule in the system, the placement
module checks if this rule does not conflict with existing
rules. A conflict leads to a resource organization with
no viable placement possible. For example, one on rule
enforcing 3 VMs, each one having 1 Gb of memory, to run
on a server with 2 Gb of memory can never be satisfied. The
conflict detection only considers static resources because
dynamic resources quickly evolves and can not be predicted.
Conflicts may also appear with the combination of several
rules. The following example illustrates such a situation in an
infrastructure composed of 3 servers (pm1, pm2 ,and pm3):

t o g e t h e r : group vm [1 , 2]
vm1Ban : vm1 ! on pm[1−2]
vm2Ban : vm2 ! on pm3

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 61 / 132

vm1 and vm2 must be hosted on the same server. vm1
must neither be hosted on pm1 nor pm2, and vm2 must not
be hosted to pm3. This last rule produces a conflict as the
VMs can not be hosted on any server because the group
[vm1, vm2] is excluded from all servers [pm1, pm2, pm3].

The verification of group and spread rules ensures there
is no intersection between group and spread VMs. For
example, 2 placement rules define VM groups. The first one
is composed by vm1, vm2 and the second one by vm1, vm3.
These 2 rules involves vm1, vm2 and vm3 must belong to
the same server. So a spread rule with vm2 and vm3 can not
be inserted.

The verification of on and noton rules ensures each VM or
group can be hosted by, at least, one server. In the previous
example, all on or noton rules about vm1 modify the vm2
and vm3 placement. Consequently, the verification ensures
at least one server can host the group vm1, vm2 and vm3.

Moreover, server sets defined in both a on rule and a noton
rule for a same VM must have an empty intersection. For
example, the following rules are not correct:

vm1Host : vm1 on pm[1−3]
vm1Ban : vm1 ! on pm2

Indeed, the server pm2 is included in both rules, conse-
quently, that does not represent what the administrator wants.
This ambiguous declaration is not allowed.

When the rule module detects a rule insertion will lead to
a conflict, the rule is not inserted and administrators receive a
warning with rules that conflicts. Administrators can disable
these rules to insert the new one.

When a scheduled rule is inserted, the rule module com-
putes its activation period. It selects all the active rules that
will be enabled during this period. If the rule to insert leads
to a conflict, it is not inserted.

The rule module ensures the consistency of the set of rules
but it does not check if a rule is true or false. So broken
(i.e., false) rules can be inserted and administrators have to
fix them in the future.

B. The infrastructure monitoring

In large infrastructures, administrators need information
about the infrastructure architecture to maintain it. Monitor-
ing systems like Ganglia [10] allow to collect lots of data
from such an architecture in an efficient way. However, the
large amount of VMs and servers and the number of metrics
to observe is too huge to be analyzed by an administrator.
In btrScript, a guardian module is proposed to analyze
monitoring data and warn the administrator when it detects
an overloaded server or a broken rule.

The guardian module periodically analyzes monitoring
data. As rules can be added even if they are false, the
guardian module periodically checks all activated rules
and sends warnings to administrators when a broken rule
is detected. Afterwards administrators can solve manually

unsatisfied rules, remove them (e.g., for out-of-date rules)
or use the placement module to solve the placement issues
automatically.

C. Actions and placement rules

Administrators perform and schedule actions to reconfig-
ure the infrastructure. As rules restrict the VM placement,
when an imperative action is invoked or planned, rules are
checked. This verification occurs by:

• selecting satisfied rules including servers and VMs
involved in the action at the action execution date. If
rules are not satisfied before the action execution, they
are not included in the action verification ;

• simulating the action on the model ;
• checking selected rules.
If the action is not compatible with one of the selected

rules, it is not executed.

V. THE PLACEMENT MODULE

When overloaded servers (i.e., a server with a cpu con-
sumption equals to 100%) or violated rules occur in the data
center, administrators have to fix them. However, finding
a VM placement considering rules and dynamic resources
is a tedious task for hundreds or thousands of VMs and
servers [9]. So btrScript is linked to a placement module in
order to compute a list of actions required to obtain a right
placement with respect to a scheduling policy, the placement
rules and the physical and VM resources. The policy defines
how to do the mapping between VMs and servers. Common
policies for VM scheduling are load balancing and consol-
idation. The load balancing policy [11] distributes the cpu
load uniformly across the servers whereas the consolidation
policy [12] reduces the number of servers which host VMs.
Placement rules customize the policy with specific needs
described by administrators. The placement module is used
for administrators to solve issues in the data center. In
our case, the placement module is Entropy [5], a VM
scheduler based on constraint programming. As btrScript
does not implement its own placement algorithms, the choice
of the placement module define the policy range. Entropy
provides a checker policy, which satisfies cpu and memory
requirements of VMs, and a consolidation policy.

Administrators invoke the placement module so as to
solve issues (broken rules and overloaded servers) in the
infrastructure. During this invocation, the placement module
builds a problem that includes:

• A set of servers to analyze;
• A set of VMs corresponding to VMs that run on the

server set;
• A set of rules to apply on the two previous sets.
From the btrScript model, the placement module obvi-

ously gets the actual VM placement and the resource usage
required to solve the problem. Afterwards, this module

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 62 / 132

computes a plan, that is to say a list of actions, and executes
it. In the following example, the placement module solves
issues in all the data center.
/ s e r v e r : s o l v e c h e c k e r

Due to the run rule, it is easy to start or resume VMs
without specifying any server. For example, the VM vm1
is in the off state. The administrator can start it with the
placement module:
vm1r : run vm1
/ s e r v e r : s o l v e c h e c k e r

If the administrator wants to run the VM on servers pm1
or hostA, he adds a on rule:
vm1r : run vm1
vm1On : vm1 on [pm1 , hostA]
/ s e r v e r : s o l v e c h e c k e r

The application of one policy on all servers of the infras-
tructure is not always relevant. Administrators may want to
consolidate VMs on a cluster and use load balancing on
another one. Moreover, a huge problem is longer to solve
than a small one. A plan for a small problem, that is to say
50 servers and 200 VMs, are solved in few seconds. For a
larger problem (1000 servers and 5000 VMs), the solving
time is few minutes [13].

Nevertheless, building a problem from a subset of server
infrastructure is complex because the set of servers implies
the set of rules added to the problem. Therefore the problem
defined is smaller but some rules are cut for being integrated
and so these rules are partially solved in the infrastructure
context. As an example, a data center is composed by 3
servers (pm1, pm2 and pm3) and 2 VMs (vm1 and vm2). vm1
runs on pm1 and vm2 runs on pm2. The administrator only
adds one rule that enforces the VMs vm1 and vm2 to belong
to the server pm3. As the rule is unsatisfied, the administrator
decides to fix it by using the placement module. He invokes
the placement module on pm2 and pm3 servers after adding
the rule:
vm1On : vm [1 , 2] on pm3
pm [2 , 3] : s o l v e c h e c k e r

Consequently, the placement module considers servers
pm2 and pm3. The associated set of VMs only contains the
VM vm2 because vm1 does not run on the server set. The
rule is therefore cut and modified to the following rule:
vm2On : vm2 on pm3

So, the placement module executes a migration of vm2 to
pm3. The rule is still violated because pm3 does not host
vm1.

Rule modifications are mandatory to avoid side effects and
transform a small problem to a big one. From the previous
example, the hypothesis of the insertion of the whole rule
in order to fix the vm1 placement involves to add vm1 and
its host pm1. Now the placement module needs all VMs

running on pm1 and their rules to compute the plan. The
rules of these VMs can add other servers and VMs and so
on. At the end, the problem to solve can include all servers
and VMs of the infrastructure.

VI. EVALUATION

In this section, we present a comparison between the
VMware vSphere PowerCLI and the btrScript language.
Only few solutions can perform operations and add place-
ment rules to virtualized infrastructures. The VMware
vSphere solution includes the most popular distributed re-
source scheduler (DRS) that enables dynamic scheduling
with two kinds of VM-to-VM rules: affinity and anti-affinity
rules. Affinity rules keep VMs together on the same host
and anti-affinity rules separate VMs on different hosts. The
vSphere PowerCLI is a command-line and scripting tool
based on PowerShell that provides useful functionality for
vSphere management. Throughout the rest of the section
we discuss about managing a rule (i) to the DRS from the
PowerCLI and (ii) to btrScript. This rule ensures that the
VMs named proxy1, proxy2 and proxy3 do not run on the
same host. Two other VMs with similar names (proxy4 and
proxy5) exist in the infrastructure that is annoying to use
regular expressions used by both PowerCLI and btrScript
tools.

The syntax for the rule with the PowerCLI tool is:

New−DrsRule −Name Proxy −C l u s t e r c l 1 −KeepToge ther : $ f a l s e
−VM Proxy1 , Proxy2 , Proxy3

The first parameter is the name of the rule to identify it.
As rules are associated to a cluster in the DRS, we assume
all VMs run to the cluster cl1. The KeepTogether parameter
defines if the VMs must run on the same host ($true) or if
VMs must run on different hosts ($false). At the end, VMs
are selected from their name.

The syntax for the rule with the btrScript language is:

Proxy : Proxy [1−3] s p r e a d

In the btrScript tool, rules are not associated to a clus-
ter and so the cluster name does not appear in the rule
declaration. The operator spread is used instead of the
’KeepTogether’ parameter. In the btrScript language, each
rule has one operator to keep clear confusion. So, the group
operator makes affinity rules and the spread operator makes
anti-affinity rules. The syntax of the btrScript language
allows regular expressions that is why the VM selection is
shorter with btrScript.

The New-DrsRule command allows to enable or dis-
able a rule at the declaration time. That is not allowed
with btrScript. However, the DRS is an autonomic system
where the administrator cannot solve rules when needed.
In btrScript, the administrator explicitly calls the placement
module enabling him to disable the rule before the rule
resolution. Moreover, the rule modification is easier with

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 63 / 132

btrScript than with PowerCLI. The syntax to add the VM
Proxy4 to the previous rule in PowerCLI is:

Set−DrsRule −Rule Proxy −VM Proxy1 , Proxy2 , Proxy3 , Proxy4

The administrator has to redefine the whole set of VMs.
With btrScript, the administrator modify the VM set by
including or excluding VMs:

Proxy : vms + Proxy4

If a rule is added or modified and it conflicts with another
rules the vSphere policy is to disable the new one. As
this management policy can hide issues, in btrScript, the
insertion of a rule that conflicts with other ones is canceled
and a notification showing conflicted rules is sent to the
administrator. If he wants to insert the new rule, he has to
disable conflicted rules.

Affinity rules between a group of VMs and a group of
hosts also exist in vSphere. This VM-to-Host rules corre-
spond to the on and noton rules in btrScript. Nevertheless,
their manipulation from the PowerCLI [14] is more compli-
cated than the rules above described. Moreover, there is no
conflict detection for this kind of rules. So, the administrator
can insert one rule and its opposite without receiving any
notification.

When an action is invoked by the vmWare administrator,
placement rules are not verified. So, actions can violate rules.
In btrScript, administrators can not execute an action that
violates one or more active rules. An error about the broken
rules is reported.

To conclude, brtScript and PowerCLI propose a similar
approach of placement rules. However, the rule management
is easier from btrScript thanks to advanced selection mech-
anisms and more verifications, especially those on actions.

VII. RELATED WORK

A. Business Rule Manager System (BRMS)

BRMS, like Drools [15], allows to set business rules to
manage a system. However, these rules are simple with the
syntax: “when something is true, do these operations". In
btrScript, placement rules do not define actions to execute
if the rule is not satisfied because rule satisfactions depend
on the resource organization and other rules.

B. Virtual machine manager

VMWare [2] [4] can manage servers and VMs. Placement
rules (called affinity rules in the VMWare documentation)
are used to restrict placement between VMs and servers.
These affinity rules include required and preferential rules.
Required rules are similar to the btrScript rules and prefer-
ential rules can be violated to allow the proper functioning
of the VMWare placement module. Preferential rules are
excluded from btrScript but the definition of affinity rules
from the VSphere GUI is not appropriate for managing large
infrastructures. Select thousand VMs and servers in a GUI

is not relevant. Administrators have to script themselves
functions to add, remove and list affinity rules through
the one of the vSphere API. Moreover, the consistency
checking must be added for scheduled rules. In btrScript,
these functions are integrated into the language operators.
Further activation period for rules are not designed and
VMWare actions does not take care of placement rules
whereas btrScript does.

OpenNebula [16] is an open source toolkit for cloud
computing designed to manage a large amount of VMs.
A placement module called mm_sched (i.e., match making
scheduler) allows to choose three different policies (com-
pared with two policies implemented in btrScript) for the
VM placement. However, these policies can not be tuned
with specific rules.

C. Domain Specific Languages (DSL)

Puppet [17] [18] is a declarative configuration language
for auditing and configuring large infrastructures (with vir-
tualization or not) from one centralized node. A visual
dashboard and reporting tools monitor servers to report every
change. Puppet deploys large infrastructures but, at run-time,
there is a lack of operations to handle servers or VMs.

VGrADS [19] and its virtual grid execution system allows
to describe jobs with vgDL [20] and run them with time
constraints. These tools address issues about deploying and
scheduling jobs but, like Puppet, it is not designed to handle
and perform reconfigurations on VMs and servers.

The former tools are designed to deploy and use resources
of a virtual infrastructure while btrScript handles resources
after deployment like Usher [21]. Usher is a shell for VM
management. It is designed to local management and so it
does not provide information about the whole grid.

Plasma [6] is the Entropy DSL to add constraints. It allows
to define constraints by selecting VMs and servers from their
name. However, physical and logical hierarchies do not exist
and there is no selection on element properties. Moreover,
no operation exists in the language to perform actions or
query resource utilization.

VIII. CONCLUSION

Our paper presented btrScript, a safe management system
for virtualized data center. It focuses on secure scheduled
actions and placement rules. Scheduled actions allow to
plan in advance tasks and schedule repetitive tasks for the
automation of administrative tasks. Placement rules, which
can be scheduled too, allow administrators to define the VM
placement more accurately. These rules also restrict sched-
uled and immediate actions. A guardian module monitors the
data center and reports issues such as overloaded servers and
violated rules. We introduced a placement module named
Entropy that enables to compute a plan with respect to rules
and dynamic virtual and physical resources. This module can
solve issues on all the data center or on a specific designated

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 64 / 132

part. The evaluation is a comparison between the command
line interface, PowerCLI, that can insert placement rules in
the vmWare vSphere client. The btrScript system provides
safer management by checking rules when an action is
invoked and detecting more contradiction than the vSphere
client.

Future work focus on running btrScript in a larger virtual
infrastructure. BtrScript only runs with small architectures
(20 servers) based on the kvm hypervisor. The use of the
experimental platform grid5000 [22] is planned to set up a
large infrastructure.

IX. ACKNOWLEDGEMENTS

This work is partially funded by
the SelfXL ANR/ARPEGE project
(http://selfxl.gforge.inria.fr/dokuwiki/doku.php). We would
like to thank Rémi Sharrock for their contributions.

REFERENCES

[1] J. Hamilton, “Sigmod keynote,” 2011, “Each day Amazon
Web Services adds enough new capacity to support all of
Amazon.com’s global infrastructure through the company’s
first 5 years, when it was a $2.76B annual revenue enterprise”.

[2] VMWare, “VMWare Infrastructure: Resource Management
with VMWare DRS,” VMWare, Tech. Rep., 2006.

[3] OpenStack, “Openstack web site,” March, 2012,
http://openstack.org/.

[4] VMware, “What’s new in vmware vsphere 4.1 - availability
and resource management,” VMWare, Tech. Rep., 2010.

[5] F. Hermenier, A. Lèbre, and J.-M. Menaud, “Cluster-wide
context switch of virtualized jobs,” in Proceedings of the
19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC ’10. New York, NY,
USA: ACM, 2010, pp. 658–666.

[6] F. Hermenier, J. Lawall, J.-M. Menaud, and G. Muller, “Dy-
namic Consolidation of Highly Available Web Applications,”
INRIA, Research Report RR-7545, 02 2011.

[7] A. Computing, “An architectural blueprint for autonomic
computing.” Quality, vol. 36, no. June, p. 34, 2006.

[8] R. Pottier, M. Léger, and J.-M. Menaud, “A reconfiguration
language for virtualized grid infrastructures,” in 10th IFIP
international conference on Distributed Applications and In-
teroperable Systems (DAIS), vol. 6115, June 2010, pp. 42–55.

[9] R. Sirdey, J. Carlier, H. Kerivin, and D. Nace, “On a
resource-constrained scheduling problem with application to
distributed systems reconfiguration,” European Journal of
Operational Research, vol. 183, no. 2, pp. 546 – 563, 2007.

[10] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia
Distributed Monitoring System: Design, Implementation, and
Experience,” Parallel Computing, vol. 30, no. 7, pp. 817–840,
July 2004.

[11] A. Goel and P. Indyk, “Stochastic load balancing and related
problems,” in Foundations of Computer Science, 1999. 40th
Annual Symposium on, 1999, pp. 579 –586.

[12] A. Beloglazov and R. Buyya, “Adaptive threshold-based ap-
proach for energy-efficient consolidation of virtual machines
in cloud data centers,” in Proceedings of the 8th International
Workshop on Middleware for Grids, Clouds and e-Science,
ser. MGC ’10. New York, NY, USA: ACM, 2010, pp. 4:1–
4:6.

[13] F. Hermenier, S. Demassey, and X. Lorca, “Bin repacking
scheduling in virtualized datacenters,” in Proceedings of the
17th international conference on Principles and practice of
constraint programming, ser. CP’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 27–41.

[14] A. van Lieshout, “Managing vmware drs rules using power-
cli,” March, 2012, http://www.van-lieshout.com/2011/06/drs-
rules/.

[15] C. L. Forgy, “Expert systems,” in Expert systems, P. G. Raeth,
Ed. Los Alamitos, CA, USA: IEEE Computer Society Press,
1990, ch. Rete: a fast algorithm for the many pattern/many
object pattern match problem, pp. 324–341.

[16] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Fos-
ter, “An Open Source Solution for Virtual Infrastructure
Management in Private and Hybrid Clouds,” IEEE Internet
Computing, vol. 13, no. 5, pp. 14–22, 2009.

[17] L. Kanies, “Puppet: Next-generation configuration manage-
ment,” j-LOGIN, vol. 31, no. 1, Feb. 2006.

[18] D. Edwards∗, A. Schafer†, T. Tyree†, A. Shortland∗,
A. Honor‡, and L. Thompson∗, “Web ops 2.0: Achieving
fully automated provisioning,” DTO Solutions∗ and Puppet
Labs† and ControlTier Project‡, Tech. Rep., 2009.

[19] L. Ramakrishnan, C. Koelbel, Y. S. Kee, R. Wolski, D. Nurmi,
D. Gannon, G. Obertelli, A. YarKhan, A. Mandal, T. M.
Huang, K. Thyagaraja, and D. Zagorodnov, “Vgrads: enabling
e-science workflows on grids and clouds with fault tolerance,”
in SC ’09: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis. New
York, NY, USA: ACM, 2009, pp. 1–12.

[20] Y.-s. Kee and C. Kesselman, “Grid resource abstraction, vir-
tualization, and provisioning for time-targeted applications,”
in Proceedings of the 2008 Eighth IEEE International Sym-
posium on Cluster Computing and the Grid. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 324–331.

[21] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker, “Usher:
an extensible framework for managing custers of virtual
machines,” in LISA’07: Proceedings of the 21st conference on
Large Installation System Administration Conference. Berke-
ley, CA, USA: USENIX Association, 2007, pp. 1–15.

[22] Grid5000, “Grid5000 web site,” March, 2012,
https://www.grid5000.fr.

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 65 / 132

RFDMon: A Real-time and Fault-tolerant Distributed System Monitoring Approach

Rajat Mehrotra
Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS, USA
Email: rm651@msstate.edu

Abhishek Dubey
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

Email: dabhishe@isis.vanderbilt.edu

Sherif Abdelwahed
Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS, USA

Email: sheirf@ece.msstate.edu

Krisa W. Rowland
US Army Engineer Research and Development Center

Vicksburg, MS, USA
Email: Krisa.W.Rowland@usace.army.mil

Abstract—One of the main requirements for building an
autonomic system is to have a robust monitoring frame-
work. In this paper, a systematic distributed event based
(DEB) system monitoring framework “RFDMon” is presented
for measuring system variables (CPU utilization, memory
utilization, disk utilization, network utilization, etc.), system
health (temperature and voltage of Motherboard and CPU)
application performance variables (application response time,
queue size, and throughput), and scientific application data
structures (PBS information and MPI variables) accurately
with minimum latency at a specified rate and with controllable
resource utilization. This framework is designed to be tolerant
to faults in monitoring framework, self-configuring (can start
and stop monitoring the nodes and configure monitors for
threshold values/changes for publishing the measurements),
aware of execution of the framework on multiple nodes
through HEARTBEAT messages, extensive (monitors multiple
parameters through periodic and aperiodic sensors), resource
constrainable (computational resources can be limited for
monitors), and expandable for adding extra monitors on the
fly. Since RFDMon uses a Data Distribution Services (DDS)
middleware, it can be used for deploying in systems with
heterogeneous nodes. Additionally, it provides a functionality to
limit the maximum cap on resources consumed by monitoring
processes such that it reduces the effect on the availability of
resources for the applications.

Keywords- Distributed Monitoring; ARINC-653; and Data
Distribution Services.

I. INTRODUCTION
Autonomic distributed computing infrastructure imposes

requirements of consistency, synchronization, and security
over multiple nodes. Additionally, in enterprise domain,
there is a tremendous pressure to achieve quality of service
(QoS) objectives in all possible scenarios of the system
operation. To this end, an aggregate picture of the distributed
infrastructure should always be available to analyze and
to provide feedback for computing control commands if
needed. The desired aggregate picture can be achieved
through an infrastructure monitoring system that is exten-
sive enough to accommodate system parameters, application
performance, and application data structures.

The desired monitoring technique should also be cus-
tomizable for various types of applications and their wide
range of parameters. Autonomic management of distributed
systems requires an effective monitoring technique, which
can work in a distributed manner similar to the underlying
system and reports each event to the system administrator
with maximum accuracy and minimum latency. Further-
more, the monitoring system should not be a performance
burden or interfere with the applications executing in the
system. Also, the monitoring system should be robust and
should be able to identify the internal faults to isolate
the faulty component and correct it immediately. However,
typical distributed monitoring techniques suffer from syn-
chronization issues among the nodes, communication delay,
non deterministic nature of events, large amount and asyn-
chronous nature of measurements, and limited bandwidth.
All of these issues may result into inconsistent global view
of the infrastructure.

This paper describes a distributed monitoring approach
“RFDMon” that utilizes the concepts of OMG Data Dis-
tribution Services [1] for an efficient exchange of mea-
surements among the computing nodes. This monitoring
framework is built upon the ACM: ARINC-653 Component
Framework [2] and an open source DDS implementation,
Open splice [3]. The primary principles in design of the
proposed approach are static memory allocation for deter-
minism, spatial isolation between monitoring framework and
real applications for fault containment, specification, and
adherence to real time properties such as periodicity and
deadlines in monitoring framework.

Experimental results show that “RFDMon” has small
overhead on the computational resources of the system. It
also identifies the faults in infrastructure and in itself with
minimum delay, and reconfigures itself to resume the mon-
itoring of infrastructure without further delay. “RFDMon”
can be combined easily with a fault diagnosis module due
to its standard interfaces.

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 66 / 132

Currently, “RFDMon” is installed at Fermi Lab, Batavia,
IL for monitoring scientific clusters, which consist of 100 to
800 computing nodes [4]. This approach is utilized in data
processing within the Large Quantum Chromo Dynamics
(LQCD) project at Fermi Lab [4]. This data processing
is carried as analysis campaigns (scientific workflows) that
consists of an input dataset and a set of interdependent pro-
cessing steps (named as jobs). These jobs are executed over
large commodity computer clusters. These large clusters can
result in systematic failure if operated over a long continuous
period of time executing these analysis campaigns. Typical
execution time of a campaign may span several months and
it executes hundreds of data and computational intensive
parallel MPI Jobs that require several computational nodes
during its lifetime. A campaign can fail even by failure of a
single job. “RFDMon” is used by administrators to diagnose
job problems and failures in this complex environment and
quickly respond to the intermittent faults.

This paper is organized as follows. Preliminary concepts
of the proposed approach are presented in Section II. Related
distributed monitoring products are described in Section III
and detailed description of the proposed approach is given in
Section IV. Details of each sensor is presented in Section V
and a set of system monitoring experiments is described in
Section VI. The major benefits of the approach is highlighted
in Section VII and applications of the approach is described
in Section VIII. Conclusions are presented in Section IX.

II. PRELIMINARIES

The proposed monitoring approach “RFDMon” consists
of two major modules: Distributed Sensors Framework
and Infrastructure Monitoring Database. Distributed Sen-
sors Framework utilizes Data distribution services (DDS)
middle-ware standard for communication among the nodes
of distributed infrastructure. It uses Opensplice Community
Edition [3]. It executes DDS sensor framework on top of
ARINC Component Framework [5]. Infrastructure Monitor-
ing Database uses Ruby on Rails [6] to implement a web
service that is used to update the database with monitoring
data and to display the data on administrator web browser.
In this section, the primary concepts of DDS, ARINC-653,
and Ruby on Rails are briefly presented.

Data Distribution Services: Data Distribution Service
(DDS) specifications are defined by Object Management
Group [7] for communication in distributed real-time sys-
tems through publish-subscribe mechanism. This mechanism
overcomes the typical shortcomings of client-server model,
where client and servers are tightly coupled. Each message is
associated with a topic. In DDS, publishers and subscribers
are not coupled to each other. Publishers or subscribers
need only the name and definition of the data in order to
communicate. Publishers do not need any information about
the location or identity of the subscribers, and vice versa.

ARINC-653: ARINC-653 software specification has been
utilized in safety-critical real time operating systems (RTOS)
that are used in avionic systems and recommended for space
missions [8]. The specification specifies the OS interfaces

and its associated services to ensure spatial and temporal
separation among various applications for fault-containment
in integrated modular avionics [9]. Spatial partitioning en-
sures exclusive use of a memory region by an application. It
guarantees that a faulty process in a partition cannot corrupt
or destroy the data structures of other processes that are exe-
cuting in other partitions. This space partitioning is useful to
separate the low-criticality vehicle management components
from safety-critical flight control components in avionics
systems [2]. Temporal partitioning ensures sharing of com-
putational resources through fixed periodic schedule among
multiple applications. ARINC-653 Emulation Library [2]
(available to download from [10]) provides a UNIX based
implementation of ARINC-653 interface specifications. This
scheduling scheme guarantees that a partition will relinquish
the CPU after its execution duration has expired.

Ruby on Rails: Rails [6] is a web application develop-
ment framework that uses Ruby programming language [11].
Rails uses Model View Controller (MVC) architecture for
application development [12]. In “RFDMon”, a web service
is developed to display the monitoring data collected from
the distributed infrastructure. These monitoring data includes
the information related to clusters, nodes in a cluster, node
states, measurements from various sensors on each node,
MPI and PBS related data for scientific applications, web
application performance, and process accounting. Currently,
“RFDMon” is using MYSQL open source database. Other
databases (e.g., Sqlite, PostgreSQL, etc) can also be used as
per the support in Ruby on Rails. Schema information of
the database is shown in [13].

III. OTHER DISTRIBUTED MONITORING SYSTEMS
Various distributed monitoring systems have been devel-

oped by industry and research groups in past many years.
Ganglia [14], Nagios [15], Zenoss [16], and Nimsoft [17]
are a few most popular enterprise products developed for
monitoring distributed systems.

Ganglia [14] is developed upon the concept of hierarchi-
cal federation of clusters. In this architecture, multiple nodes
are grouped as a cluster which is attached to a module, and
then multiple clusters are again grouped under a monitoring
module. Nodes and applications utilize a multi-cast based
listen/announce protocol for sending their measurements to
all of the other nodes. The primary advantage of Gan-
glia is auto-discovery of the nodes, easy portability and
manageability, and aggregation of cluster measurements at
each node. Nagios [15] is developed upon plug-in based
agent/server architecture, where agents can report the ab-
normal events from the computing nodes to the server node
(administrators) through email, SMS, or instant messages.
Nagios consists of three components - Scheduler: This is the
administrator component that checks the plug-ins and take
corrective actions if needed. Plug-in: These small modules
are placed on the computing node, configured to monitor a
resource, and then send the reading to the “Nagios” server
module over SNMP interface. GUI: This is a web based
interface that presents the measurements from the system
through various colourful buttons, sounds, and graphs.

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 67 / 132

Zenoss [16] is a model-based monitoring solution that has
comprehensive and flexible approach of monitoring with an
extremely detailed GUI interface. It is an agentless mon-
itoring approach where central monitoring server collects
measurements from each node over SNMP interface through
ssh commands. In Zenoss, the computing nodes can be
discovered automatically and specified with their types (Xen,
VMWare, etc.) that ensures appropriate and complete mon-
itoring using pre-defined templates, thresholds, and event
rules. Nimsoft Monitoring Solution [17](NMS) offers a
light-weight, reliable, extensive, and GUI based monitoring
of the entire infrastructure. NMS uses a message BUS for
exchange of messages among the applications residing in
the infrastructure. These applications (or components) are
configured with the help of a software component (HUB)
and are attached to the message BUS. Monitoring action
is performed by small probes and the measurements are
published to the message BUS by software components
(ROBOTS) deployed over each managed device. NMS also
provides an Alarm Server for alarm monitoring and a GUI
portal to visualize the comprehensive view of the system.

These distributed monitoring approaches are significantly
scalable in number of nodes, responsive to changes at
the nodes, and comprehensive in number of parameters.
However, these approaches do not support capping of the
resource consumed by the monitoring framework, fault con-
tainment in monitoring unit, and expandability of the moni-
toring approach for new parameters in the already executing
framework. Additionally, these approaches are stand-alone
and are not easily extendible to associate with other modules
that can perform fault diagnosis for the infrastructure at
different granularity (application level, system level, and
monitoring level). Furthermore, they work in a server/client
or host/agent manner (except NMS) that requires direct
coupling of two entities, where one entity has to be aware
of the location and identity of the other entity.

Therefore, “RFDMon” utilizes the data distribution ser-
vice (DDS) methodology to report the events or monitor-
ing measurements from each node to a central node in a
decoupled manner. In “RFDMon”, all monitoring sensors
execute on the ARINC-653 Emulator [2]. This enables the
monitoring agents to be organized into one or more partitions
and each partition has a fixed periodic schedule to use
the processing resources (temporal partitioning). The pro-
cesses executing under each partition can be configured for
real-time properties (priority, periodicity, duration, soft/hard
deadline, etc.). Additionally, ARINC-653 uses spatial parti-
tioning [9] that ensures exclusive use of a memory region
by an ARINC partition and introduces fault containment
property in the monitoring framework. The details of the
approach are described in later sections of the paper.

IV. ARCHITECTURE OF THE FRAMEWORK
The proposed monitoring framework “RFDMon” is based

upon data centric publish subscribe communication mecha-
nism. Modules (or processes) in the framework are separated
from each other through concept of spatial and temporal lo-
cality as described in section II. Architecture of “RFDMon”

Figure 1. Architecture of Sensor Framework

is shown in Figure 1. The proposed framework has following
key concepts and components.
A. Sensors

Sensors are the primary component of the framework.
These are lightweight processes that monitor a device on
the computing nodes and read it periodically or aperiodi-
cally to get the measurements. These sensors publish the
measurements under a topic (described in next subsection)
to DDS domain. There are various types of sensors in the
framework which are described in section V.
B. Region

The proposed monitoring framework organizes the nodes
in regions (or clusters). Nodes can be homogeneous or
heterogeneous. Nodes are combined only logically. These
nodes can be located in a single server rack or on single
physical machine (in case of virtualization). However, phys-
ical closeness is recommended to combine the nodes in a
single region to minimize the unnecessary communication
overhead in the network.
C. Local Manager

Local Manager is a module that is executed as an agent on
each computing node of the monitoring framework. These
agents are executed on each node with knowledge about its
pre-defined region name. However, it is not provided with
any information related to other nodes or configuration of
the region. The primary responsibility of the local manager
is to set up sensor framework on the node.
D. Regional Leader

Among multiple local manager nodes that belongs to same
region, there is a local manager node which is selected as
“Regional Leader” for updating the monitoring database for
sensor measurements from each local manager. Regional
leader will also be responsible for updating the changes
in state (UP, DOWN, FRAMEWORK DOWN) of various
local manager nodes. Each local manager is supplied with
the pre-defined URLs to Ruby on Rails web service for
database updates and update is done over http interface using
“libcurl” library [18]. However, these URLs are used to
update the database only when a local manager is selected
as regional leader. Once a regional leader terminates, a
new leader will be selected for the region. Selection of the
leader is done by Global Membership Manager module as
described in Section IV-G.

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 68 / 132

E. Topics
Topics are the primary unit of information exchange in

DDS domain. Details about the type of topic (structure
definition) and key values (keylist) to identify the different
instances of the topic are described in interface definition
language (IDL) file. CORBA IDL files are used to promote
the interoperability among the monitoring frameworks de-
veloped in different programming languages (e.g., C, C++,
Java, etc.) using the same interface. Keys can represent
arbitrary number of fields in the topic. These topics are
categorized in following categories based upon their content.

MONITORING INFO: System resource and hardware
health monitoring sensors publish measurements under this
topic.

HEARTBEAT: Heartbeat Sensor uses this topic to publish
its heartbeat in the DDS domain to notify the framework that
the node is attached to the framework. All nodes which are
listening to HEARTBEAT topic can keep track the health
condition of other nodes in the framework through this topic.

NODE HEALTH INFO: When a Regional Leader node
(defined in Section IV-D) detects change in state (UP,
DOWN, or FRAMEWORK DOWN) of any other node by
observing the change in node’s heartbeat, it publishes a
message with NODE HEALTH INFO topic to notify all
other nodes regarding change in status of the node.

LOCAL COMMAND: This topic is used by the Regional
Leader to send the control commands to other local nodes
for START, STOP, or POLL the sensors.

GLOBAL MEMBERSHIP INFO: This topic is used for
communication between local nodes and Global Member-
ship Manager (defined in Section IV-G) for selection of
Regional Leader and for providing information related to
existence of the leader.

PROCESS ACCOUNTING INFO: Process accounting
sensor reads records from the process accounting system
and publishes the records under this topic.

MPI PROCESS INFO: This topic is used to publish the
execution state (STARTED, ENDED, KILLED) and MPI or
PBS information variables of MPI processes executing on
the computing node.

WEB APPLICATION INFO: This topic is used to pub-
lish the performance measurements of a web application that
contains information logged from the web service related to
average response time, heap memory usage, number of JAVA
threads, and pending requests inside the system.
F. Topic Managers

Topic Managers are classes that create subscriber or
publisher for a pre-defined topic. This publisher publishes
the data received from various sensors under the same topic
name. Subscriber receives data from the DDS domain under
the same topic name and delivers it to underlying application
for further processing.
G. Global Membership Manager

Global Membership Manager (GMM) module is re-
sponsible to maintain the membership of each node
for a particular region and for selection of a Regional
Leader. Once a local node comes alive, it first contacts

Figure 2. Architecture of Scientific Application Health Monitoring Sensor

the GMM module with node’s region name using topic
GLOBAL MEMBERSHIP INFO to get the information re-
garding Regional Leader. GMM module replies with the
name of Regional Leader (if leader exists) or assign the new
node as Regional Leader. GMM module updates the leader
information in file (“REGIONAL LEADER MAP.txt”) on
disk in colon separated format (RegionName:LeaderName).
When a local node sends message to GMM module that its
leader is dead, GMM module selects a new leader for that
region and replies to the Local Node with leader name.

This leader re-election functionality enables the fault tol-
erant nature in the framework with respect to regional leader
that ensures periodic update of the infrastructure monitoring
database with measurements even in case of leader failure.
The leader selection for the region is performed by a single
GMM module that ensures that there will be only one
leader of a region. Because the leader selection or re-
selection is performed by communication between only two
nodes, this process is unaffected by the size of the region.
Communication delay of message exchange in DDS domain
is the only factor that can delay the leader selection process.
Additionally, other more sophisticated algorithms can be
easily plugged into the framework by modifying the GMM
module for leader selection.

GMM module is executed through a wrapper executable
“GMM Monitor” as a child process. “GMM Monitor”
keeps track of execution state of the GMM module
and starts a fresh instance of GMM module if previ-
ous instance terminates due to some error. New instance
of the GMM module receives updated data from “RE-
GIONAL LEADER MAP.txt” file. It provides the fault
tolerant abilities in the framework with respect to GMM
module.

V. SENSOR IMPLEMENTATION

The proposed monitoring framework implements various
software sensors to monitor system resources, network re-
sources, node states, MPI and PBS related information, and
performance of web applications (see Table I).

These sensors are executed as a ARINC-653 process on
top of the ARINC-653 emulator [2]. All sensors on a node
are deployed in a single ARINC-653 partition on top of the
ARINC-653 emulator. The ARINC-653 emulator monitors
the deadline and schedules the sensors such that their pe-
riodicity is maintained. Furthermore, the emulator performs
static cyclic scheduling of the ARINC-653 partition of the

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 69 / 132

Sensor Name Period Description
CPU Utilization 30 seconds Aggregate utilization of all CPU cores on the machines.
Swap Utilization 30 seconds Swap space usage on the machines.
Ram Utilization 30 seconds Memory usage on the machines.

Hard Disk Utilization 30 seconds Disk usage on the machine.
CPU Fan Speed 30 seconds Speed of CPU fan that helps keep the processor cool.

Motherboard Fan Speed 10 seconds Speed of motherboard fan that helps keep the motherboard cool.
CPU Temperature 10 seconds Temperature of the processor on the machines.

Motherboard Temperature 10 seconds Temperature of the motherboard on the machines.
CPU Voltage 10 seconds Voltage of the processor on the machines.

Motherboard Voltage 10 seconds Voltage of the motherboard on the machines.
Network Utilization 10 seconds Bandwidth utilization of each network card.
Network Connection 30 seconds Number of TCP connections on the machines.

Heartbeat 30 seconds Periodic liveness messages.
Process Accounting 30 seconds Periodic sensor that publishes the commands executed on the system.
MPI Process Info -1 Aperiodic sensor that reports the change in state of the MPI Processes.

Web Application Info -1 Aperiodic sensor that reports the performance data of Web Application.
Table I

LIST OF MONITORING SENSORS

local manager. The schedule is specified in terms of a hyper
period, the phase and the duration of execution in that
hyper period [13]. Effectively, it limits the maximum CPU
utilization of the local managers.

Sensors are constructed with following attributes:
Name: Name of the sensor (e.g., UtilizationAggregatec-

puScalar).
Source Device: Name of the device to monitor for the

measurements (e.g., “/proc/stat”).
Period: Periodicity of the sensor (e.g., 10 seconds for

periodic sensors and −1 for aperiodic sensors).
Deadline: A sensor has to finish its work within a spec-

ified deadline. A HARD deadline violation is an error that
requires intervention from the underlying middle-ware while
a SOFT deadline violation results in a warning.

Priority: Sensor priority indicates the priority of schedul-
ing the sensor over other processes in to the system. In
general, normal (base) priority is assigned to the sensor.

Dead Band: Sensor reports the value only if the difference
between current value and previous recorded value becomes
greater than the specified sensor dead band. It reduces the
number of sensor measurements in the DDS domain if
sensor measurement is changing slightly.

Sensors support three types of commands for publishing
the measurement: START, STOP, and POLL. START com-
mand starts the already initialized sensor to start publishing
the sensor measurements. STOP command stops the sensor
thread to stop publishing the measurement. POLL command
tries to get the latest measurement from the sensor. Sensors
publish the data as per the predefined topic to the DDS do-
main (e.g., MONITORING INFO). Sensors are categorized
based upon their functionality as follows.

System Resource Utilization Monitoring Sensors:
These sensors monitor utilization of the system resources:
CPU, RAM, Disk, Swap, and Network. These sensors (pe-
riodic in nature), follow SOFT deadlines, contain normal
priority, and provide monitoring of system devices (e.g.,
/proc/stat) to collect the measurements. These sensors pub-
lish the measurements under MONITORING INFO topic.

Hardware Health Monitoring Sensors: These sensors
monitor health of the system hardware components: CPU
Fan Speed, CPU Temperature, Motherboard Temperature,

and Motherboard voltage. These sensors are periodic.Theses
follow soft deadlines, contain normal priority, and read
the measurements over Intelligent Platform Management
Interface (IPMI) interface [19]. These sensors publish the
measurements under MONITORING INFO topic.

Node Health Monitoring Sensors: Each local manager
executes a Heartbeat sensor that periodically sends its own
node name to DDS domain under topic “HEARTBEAT” to
inform other nodes regarding its existence in the framework.

Scientific Application Health Monitoring Sensor: This
Sensor logs the information in case of state change
(Started, Killed, Ended) of the processes related to sci-
entific applications and reports the data to the centralized
database. In the proposed framework, a wrapper application
(SciAppManager) is developed that can execute the real
scientific applications (e.g., SciAPP in Figure 2) internally
as a child process. MPI “run command” is issued to ex-
ecute SciAppManager application from master nodes in
the cluster (see Figure 2). SciAppManager writes the state
information of scientific application in a POSIX message
queue that exists on each node. Scientific application sensor
will listen on that message queue and publishes message to
the DDS domain under MPI PROCESS INFO topic.

Web Application Performance Monitoring Sensor:
This sensor keeps track of performance behaviour of the
web application executing over the node through the web
server performance logs written to a POSIX message queue
(different from SciAppManager). This sensor will listen on
that message queue and publishes the message to the DDS
domain under WEB APPLICATION INFO topic.

VI. EXPERIMENTS

A set of experiments have been performed to exhibit the
system resource overhead, fault adaptive nature, and respon-
siveness towards fault in the developed monitoring frame-
work. During these experiments, the monitoring framework
is deployed in a Linux environment (2.6.18-274.7.1.el5xen)
that consists of five nodes (ddshost1, ddsnode1, ddsnode2,
ddsnode3, and ddsnode4). Ruby on Rails based web service
and MYSQL database are hosted on ddshost1 node. These
experiments have been performed to measure the impact
of executing monitoring framework over the computational

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 70 / 132

Figure 3. CPU and RAM Utilization by the Sensor Framework at Nodes

Figure 4. State Transition of Nodes and Leaders of the Sensor Framework.

resources (e.g., CPU and RAM) of system and to display the
fault tolerant and self-configure properties of the framework
in case of failures in the framework itself.

In one of these experiments, all of the nodes (ddshost1,
and ddsnode1..4) are started one by one with a random
time interval. Once all the nodes have started executing
the framework, local manager on a few nodes are killed
through KILL system call. During this experiment, the CPU
and RAM consumption by local manager at each node is
monitored through “TOP” system command. Results from
the experiment are presented in Figures 3, 4, and 5.

Figure 3 describes the CPU and RAM utilization by
monitoring framework (local manager) at each node during
the experiment. It is evident from Figure 3 that CPU
utilization is mostly in the range of 0 to 1 percent with
occasional spikes. However, even in case of spikes, CPU
utilization is under ten percent. Similarly, RAM utilization
by the monitoring framework is less than even two percent.
These results clearly indicates that overall resource over-
head of the developed monitoring approach “RFDMon” is
extremely low. As mentioned earlier, it is possible to cap this
resource usage by specifying the hyper period and duration
of execution of the local manager within the hyper period.
However, due to space constraints this experiment is not
shown in the paper. More details are available in [13].

Transition of various nodes between states UP and
FRAMEWORK DOWN is shown in Figure 4. According
to the figure, ddshost1 is started first, then followed by
ddsnode1, ddsnode2, ddsnode3, and ddsnode4. ddshost1
is selected as the regional leader in the beginning. At
time sample 310 (approximately), local manager of host
ddshost1 was killed, therefore its state has been updated to
FRAMEWORK DOWN. Similarly, state of ddsnode2 and
ddsnode3 is also updated to FRAMEWORK DOWN once

Figure 5. CPU Utilization at node ddsnode1 during the Experiment

their local manager is killed on time sample 390 and 410
respectively. local manager at ddshost1 is again started at
time sample 440; therefore its state is updated to UP at the
same time. Figure 4 also represents the nodes which were
regional leaders during the experiment. According to the
figure, initially ddshost1 was the leader of the region, while
as soon as local manager at ddshost1 is killed at time sample
310 (see Figure 4), ddsnode4 is elected as the new leader of
the region (as per the procedure specified in Section IV-G).
Similarly, when local manager of the ddsnode4 is killed at
time sample 520 (see Figure 4), ddshost1 is again elected as
the leader of the region. From Figure 4, it is clearly evident
that as soon as there is a fault in the framework related to
the regional leader, a new leader is elected instantly without
any further delay. This specific feature of the monitoring
framework exhibit that it is robust with respect to failures
of the regional leader and it can adapt to the faults in the
framework instantly without delay.

Sensor framework at ddsnode1 was allowed to execute
during the complete experiment (see Figure 4) and no
fault was introduced in this node. The primary purpose of
executing this node continuously was to observe the impact
of introducing faults in the framework over monitoring
capabilities of the framework. In the most ideal scenario,
entire monitoring data of ddsnode1 should be reported to
the centralized database without any interruption even in
case of faults (leader re-election and nodes going out of the
framework). Figure 5 shows the CPU utilization of ddsnode1
from the centralized database as reported by regional leader
through CPU monitoring sensor from ddsnode1. According
to the Figure 5, monitoring data from ddsnode1 was col-
lected successfully during the entire experiment. Even in
case of Regional Leader re-election at time sample 310 and
520 (see Figure 4), only one or two (max) data samples
are missing from the database (see Figure 5). Henceforth,
it is evident that there is a minimal impact of faults in
the framework over the monitoring functionality of the
framework.

VII. BENEFITS OF THE APPROACH

“RFDMon” can monitor system resources, hardware
health, node availability, MPI job state, and application
performance data in a comprehensive manner. “RFDMon” is
easily scalable with the number of nodes because it is based
upon data centric publish-subscribe mechanism. Publish-
subscribe mechanism is extremely scalable with respect
to number of nodes. Also, in proposed framework, new
sensors can be easily added to increase the number of
monitoring parameters. It is fault tolerant with respect to
faults in the framework due to partial outage (if regional
leader or global membership manager terminates). It can

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 71 / 132

self-configure (Start, Stop, and Poll) the sensors and can be
applied in the heterogeneous environment. The major benefit
of using this framework is that the total resource consump-
tion by the sensors can be limited by applying ARINC-
653 scheduling policies and due to spatial isolation features
of ARINC-653 emulation, monitoring framework will not
corrupt the memory area or data structures of applications
in execution on the node. Additionally, framework has a
small computational overhead.

VIII. APPLICATION OF THE FRAMEWORK

The initial version of the proposed approach was com-
bined with a hierarchical workflow management system
in [20] to monitor the scientific workflows for failure
recovery. Another direct implementation of “RFDMon” is
presented in [21] where virtual machine monitoring tools
and a model based predictive controller were combined
with the proposed monitoring framework to manage the
multi-dimensional QoS data for a multi-tier web service.
An extended version of this paper is available as technical
report [13].

IX. CONCLUSION AND FUTURE WORK

In this paper, detailed design of “RFDMon” is presented.
“RFDMon” is a real-time and fault-tolerant distributed sys-
tem monitoring approach based upon data centric publish-
subscribe paradigm. Basic concepts of OpenSplice DDS,
ARINC-653, and Ruby on Rails are also described in the
paper. Additionally, it is shown that “RFDMon” can effi-
ciently and accurately monitor the system resource consump-
tion, system health, application performance variables, and
scientific application data structures with minimum latency.
Furthermore, fault tolerance and self configurable properties
of “RFDMon” is also demonstrated through experiments.

An administrator can easily find the location and pos-
sible causes of the faults in system by visualizing the
measurements. To make this fault identification and di-
agnosis procedure autonomic, we are developing a fault
diagnosis module that can detect or predict the faults in
the infrastructure by observing and co-relating the various
sensor measurements. Additionally, we are developing a self-
configuring hierarchical control framework (extension of our
work in [22]) to manage multi-dimensional QoS parameters
in multi-tier web service environment.

X. ACKNOWLEDGEMENT

R. Mehrotra and S. Abdelwahed are supported for this
work from NSF I/UCRC CGI Program grant number IIP-
1034897 and The Engineer Research and Development
Center (ERDC) at Vicksburg, MS. A. Dubey is supported
in part by Fermi National Accelerator Laboratory, operated
by Fermi Research Alliance, LLC under contract No. DE-
AC02-07CH11359 with the United States Department of
Energy (DoE), and by DoE SciDAC program under the
contract No. DOE DE-FC02-06 ER41442. We are grateful
to the help and guidance provided by T. Bapty, S. Neema, J.
Kowalkowski, J. Simone, D. Holmgren, A. Singh, N. Seenu
and R. Herber.

REFERENCES

[1] Catalog of omg data distribution service (dds) spec-
ifications. http://www.omg.org/technology/documents/
dds spec catalog.htm [Nov 2010].

[2] Abhishek Dubey, Gabor Karsai, and Nagabhushan
Mahadevan. A component model for hard real-time
systems: Ccm with arinc-653. Software: Practice and
Experience, 41(12):1517–1550, 2011.

[3] Opensplice dds community edition. http://www.
prismtech.com/opensplice/opensplice-dds-community.

[4] Fermilab lattice gauge theory computational facility.
http://www.usqcd.org/fnal/ [Nov 2010].

[5] Arinc specification 653-2 : Avionics application soft-
ware standard interface part 1required services. Tech-
nical report, Annapolis, MD, December 2005.

[6] Ruby on rails. http://rubyonrails.org/ [Sep 2011].
[7] Object management group. http://www.omg.org/ [Nov

2010].
[8] Nuno Diniz and Jose Rufino. Arinc 653 in space.

In Proceedings of the DASIA 2005 ”Data Systems in
Aerospace” Conference, May/June 2005.

[9] A. Goldberg and G. Horvath. Software fault protection
with arinc 653. In Aerospace Conference, 2007 IEEE,
pages 1 –11, March 2007.

[10] Model-based software health management. https://wiki.
isis.vanderbilt.edu/mbshm/index.php/Main Page [Nov
2011].

[11] Ruby. http://www.ruby-lang.org/en/ [Sep 2011].
[12] J. Deacon. Model-view-controller (mvc) architec-

ture. JOHN DEACON Computer Systems Development,
Consulting & Training, 2005.

[13] Abhishek Dubey Rajat Mehrotra and Sherif Abdelwa-
hed. Rfdmon: A real-time and fault-tolerant distributed
system monitoring approach. Technical Report ISIS-
11-107, Institute for Software Integrated Systems, Van-
derbilt University, Oct 2011.

[14] Ganglia. http://ganglia.sourceforge.net/ [Sep 2011].
[15] Nagios. http://www.nagios.org/ [Sep 2011].
[16] Zenoss. http://www.zenoss.com/ [Sep 2011].
[17] Nimsoft unified manager. http://www.nimsoft.com/

solutions/nimsoft-unified-manager [Nov 2011].
[18] Curl. http://curl.haxx.se/ [Nov 2011].
[19] Intelligent platform management interface (ipmi). http:

//www.intel.com/design/servers/ipmi/ [Sep 2011].
[20] Pan Pan, Abhishek Dubey, and Luciano Piccoli. Dy-

namic workflow management and monitoring using
dds. In 7th International Workshop on Engineering
of Autonomic & Autonomous Systems (EASe), 2010.

[21] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed,
and Weston Monceaux. Large scale monitoring and
online analysis in a distributed virtualized environment.
Engineering of Autonomic and Autonomous Systems,
IEEE International Workshop on, 0:1–9, 2011.

[22] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed,
and Asser Tantawi. A Power-aware Modeling and
Autonomic Management Framework for Distributed
Computing Systems. CRC Press, 2011.

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 72 / 132

Online Spectrum-based Fault Localization for Health Monitoring and Fault
Recovery of Self-Adaptive Systems

Éric Piel∗, Alberto Gonzalez-Sanchez∗, Hans-Gerhard Gross∗ Arjan J.C. van Gemund∗, and Rui Abreu†
∗Department of Software Technology

Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

{e.a.b.piel, a.gonzalezsanchez, h.g.gross, a.j.c.vangemund}@tudelft.nl
†Department of Informatics Engieering

Faculty of Engineering of University of Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

rui@computer.org

Abstract—Software systems used in the industry are often
large and complex. Even with an extensive validation phase, it
is impossible to ensure that a software system is fault-free and
will remain so all along its evolution. When a failure happens
in operation, the time to solve the fault should be minimized.
The major challenge in this realm is the localization of a fault
in one of the constituent components of the overall system. We
strive at simplifying the localization of the fault that led to a
failure by adapting existing techniques to the online context
in such a way that allows the system to be aware of its own
internal faults and react to it. This article first proposes to
apply the Spectrum-based Fault Localization (SFL) method
for online fault localization and health monitoring. Several
implementation approaches are presented with a performance
that depends on the architecture and the framework used. Eval-
uation is done through simulation of online failure scenarios,
and through implementation in a demonstration surveillance
system. The results of the studies performed confirm that
applying SFL online, using monitoring, can successfully provide
health information and locate problematic components, so that
a software failure can be addressed adequately and timely.

Keywords-Fault localization; diagnosis; self-awareness; au-
tonomous system; monitoring; component-based system.

I. INTRODUCTION

It is generally accepted that all but the most trivial soft-
ware systems will inevitably contain residual defects. Large
and complex software systems, such as systems of systems,
will face these problems. Nowadays, the high reliability,
availability, and flexibility imposed on many systems require
support for online reconfiguration and join/leave of external
components (a coupled and cohesive part of a system).
This further increases the chances of unexpected behavior
during execution, as they are hard to take into account in
the validation phase. As such problems cannot be avoided,
the system should be prepared to handle them as quickly
as possible. Typically, after a failure (a deviation from the
expected behavior) has been detected the following steps are
taken: diagnosis, bug fix design, re-validation, and update.
To reduce the time of this process, we focus here on

automating the diagnosis step, which very few previous
works in adaptive systems have tried to automate. This step
focuses on finding the location of the fault, i.e., the cause
of one or more failures in the system.

So far automated diagnosis techniques, also called fault
localization, have been applied solely offline, during the test-
ing phase. In this article, we detail approaches to apply fault
localization in an online context, i.e., when the system is in
operation. One of the obstacles is that typical active testing
used offline cannot be applied online, because of interference
with the normal operations. So continuous validation must
come from observations provided by monitors, also referred
to as passive testing. While there exist other approaches
to fault localization [1], [2], [3], SFL is one of the most
light-weight fault localization techniques available to be used
for the provision of health information and for identifying
problematic components in software systems.

In this paper, we make the following three contributions.
(1) We demonstrate how SFL can be applied to online fault
localization by introducing three main adaptations to the
original technique. (2) We describe two different approaches
for the implementation of online fault localization according
to the characteristics of the software system. (3) We assess
the performance of our proposed techniques in simulations
as well as in a real industrial case study.

The original SFL technique is described in Section II.
Section III presents the modeling of the problem. Our
proposal of online fault localization is presented in Sec-
tion IV. Section V summarizes the main approaches we
have used to implement fault localization on actual software
systems. Section VI evaluates the technique on a case study.
Finally, Section VII discusses related work, and Section VIII
concludes the article.

II. SPECTRUM-BASED FAULT LOCALIZATION

The objective of fault localization is to pinpoint the
precise locations of faults in a system. Before delving into

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 73 / 132

C Program: Character Counter t1 t2 t3 t4 t5 t6 SC
function count(char *s) {
int let, dig, other, i; 0 0 0 0 0 0 0

c0 let = dig = other = i = 0; 1 1 1 1 1 1 0.87
c1 while (c = s[i++]) { 1 1 1 1 1 1 0.87
c2 if(’A’<=c && ’Z’>=c) 1 1 1 1 0 1 0.93
c3 let += 2; 1 1 1 1 0 0 1.0
c4 else if(’a’<=c && ’z’>=c) 1 1 1 1 0 1 0.93
c5 let += 1; 1 1 0 0 0 0 0.71
c6 else if(’0’<=c && ’9’>=c) 1 1 1 1 0 1 0.93
c7 dig += 1; 0 1 0 1 0 0 0.71
c8 else if(isprint(c)) 1 0 1 0 0 1 0.47
c9 other += 1;} 1 0 1 0 0 1 0.47
c10 printf("%d %d %d\n", 1 1 1 1 1 1 0.87

let, dig, other);}
Test case outcomes 1 1 1 1 0 0

Table I
EXAMPLE PROGRAM, SPECTRUM, AND OUTPUT IN SFL.

the usage of the SFL approach for online fault localization,
and the provision of health information, let us introduce SFL
in its offline version.

The following data are usually used as inputs in SFL
approaches:

• A finite set C = {c1, c2, . . . , cj , . . . , cM} of M compo-
nents (e.g., source code statements, functions, classes)
which are potentially faulty. We will denote the number
of faulty components in the system as Mf .

• A finite set T = {t1, t2, . . . , ti, . . . , tN}
of N given tests with binary outcomes
O = (o1, o2, . . . , oi, . . . , oN), where oi = 1 if
test ti failed, and oi = 0 otherwise.

• An N×M coverage matrix, A = [aij], where aij = 1 if
test ti involves (covers) component cj , and 0 otherwise.
Each row ai of the matrix is called a spectrum.

Table I shows an example of SFL applied on a small
program with a component granularity at the statement level.
This program aims at counting different types of characters.
The component c3 contains a fault, mishandling uppercase
characters. 6 tests are executed against this implementation.
The columns t1 to t6 present the coverage spectrum and
the test outcomes when executing each of the tests. The last
column shows the similarity coefficients, a value computed
by the SFL, which we will describe later.

The output of fault localization is a diagnosis, which
is a ranking of the components ordered according to their
assumed likelihood to contain a fault.

In program debugging, the granularity of a component
is often very small, typically at the statement level, since
SFL benefits from variations in program control flow (i.e.,
different branches of a if are taken). However, in an
online context, a larger grain size for components is more
appropriate. This still permits to monitor a system and to
take the appropriate actions in case of degradation, while
it reduces the performance overhead, and represents a more
realistic component granularity for large systems. In the later

study, we selected a granularity at the level of the source
code functions.

A. Statistical Spectrum-Based Fault Localization

Statistical SFL is a well-known approach originating in
software engineering [4], [5], [6]. Fault likelihood lj (and
thus assumed health) is quantified in terms of similarity
coefficients. Intuitively, the goal is to identify the component
whose line of test coverage is most similar to the test
outcomes. Similarity coefficients measure the statistical sim-
ilarity between component cj’s test coverage (a1j , . . . , aNj)
and the observed test outcomes, (o1, . . . , oN). It is computed
by four values npq(j) counting the number of times aij
and oi form the combinations (0, 0), (0, 1), (1, 0), (1, 1),
respectively, i.e.,

npq(j) = |{i : aij = p ∧ oi = q}| p, q ∈ {0, 1} (1)

For instance, n10(j) and n11(j) are the number of tests
in which component cj is executed, and which passed or
failed, respectively. For each component, the four counters
sum up to the number of tests N . There are several different
known similarity coefficients which are efficient. For exam-
ple, Tarantula [5], and Ochiai [4] are both very common
similarity coefficients. We use the latter one, given by

Ochiai: SC = n11(j)√
(n11(j)+n01(j))·(n11(j)+n10(j))

(2)

Ordering the components by their similarity coefficients
results in the ranking of the diagnosis algorithm.

In Table I, the similarity coefficient for each component
is indicated. As c3 was the part most used when a test failed
and less used when a test passed, its similarity coefficient
is the highest. The SFL will therefore rank c3 as the most
likely location of the fault, which is correct.

A by-product of statistical SFL is the component health.
The health of a given component can be simply approx-
imated by h = 1 − SC, where SC is the similarity
coefficient. This permits the system, or system of systems,
to also be self-adapting to the failures. Components which
have access to redundant information can adapt the weight
of each input depending on the health of the components
that provide it. For example, in the maritime safety and
security context, when a radar starts behaving incorrectly, the
situation awareness component can reduce automatically the
importance of the data from this radar in its computations.

Despite their lower diagnostic accuracy [7], similar-
ity coefficients have a ultra-low computational complexity
(compared with probabilistic diagnosis approaches, such as
Bayesian reasoning [5]), which is ideal for online diagnosis.
Another advantage is the fact that statistical SFL is incre-
mental. Only the counters npq must be kept per component,
so there is no need to compile a (possibly huge) test coverage
matrix. Finally, unlike other approaches, statistical SFL is
robust with respect to uncertainties in the test outcomes.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 74 / 132

While all techniques tolerate false negatives (i.e., a test
involving a faulty component and not returning a failure),
statistical approaches are more robust with respect to false
positives (i.e., a test reports a failure although the system
actually behaved correctly), which is essential in online
monitoring as the oracles are often less sophisticated than
in offline testing.

B. Diagnosis Effort
In order to compare different diagnosis approaches, there

is a need to measure how well a diagnosis performed.
This measure, the diagnostic performance, should represent
how well the diagnosis algorithm can pinpoint the true root
cause of an observed problem. In software fault localization,
this performance is often expressed in terms of a metric
Cd that measures the theoretical effort still needed for a
diagnostician to find all faulty components after reading the
generated diagnosis [7]. Cd is expressed as the position
of the last faulty component in the ranking given by the
fault localization. Cd measures wasted effort, independent
of the number of faulty components Mf in the system,
to enable an unbiased evaluation of the effect of Mf on
Cd. Thus, regardless of Mf , Cd = 0 represents an ideal
diagnosis technique (all Mf faulty components are ranked
at the top, and no effort is wasted for a human to check
healthy components), while Cd = M −Mf represents the
worst diagnosis technique (checking all M − Mf healthy
components before the Mf faulty ones), with M the total
number of components. For example, consider a diagnosis
algorithm that returned the ranking 〈c12, c5, c6, . . .〉, while c6
contains the actual fault. This diagnosis leads the developer
to inspecting c12 and c5 first. As both components are
healthy, Cd is increased by 2, and the next component to
be inspected is c6. As it is faulty, no more effort is wasted
and Cd = 2. To ease comparison between systems, a relative
wasted effort is often used: Cd

M−Mf
. A perfect diagnosis gives

therefore a relative effort of 0, while the worse possible one
gives an effort of 1, and an algorithm picking randomly a
component gives on average a relative effort of 0.5.

III. SIMULATION OF A FAULTY SYSTEM

For initial illustration and evaluation of online SFL we
use synthetic system simulations next to an actual case
study. The main advantage of the simulations is that they
can be executed quickly (e.g., for our case study system
we can simulate one hour of operation in just a few
seconds). They allow to vary many properties of a base
system, in order to generalize the findings according to
many different (synthetic) system configurations, and they
also avoid implementation details which could cause noise
in the observations (e.g., test outcomes with false positives).

A. System Model
The simulations use system models with different topolo-

gies all based on the surveillance system used as case study,

which is presented in Section VI. The simulation of a system
generates outputs similar to the ones given by the actual
SFL algorithm, i.e., a ranking of the components according
to their assumed health over the whole period of execution
of the simulation. The simulator and example models are
available for download [8].

Figure 1. Example topological layer with 7 functional components and 3
monitors.

Fig. 1 shows an example of a system model, with 7
functional components and 3 monitors (A, B, and C). As
we will see in Section IV, monitors are placed in order to
replace test cases in an online context. Component 2 is set
to be faulty, with a fault happening 60% of the time it is
used. The model represents a typical data-flow system where
component 1 receives the inputs and passes them on to the
other components. More information about the simulation
setup and a description of the type of model that is used in
the simulator can be found in [9].

B. Simulated System Generation

One of the most difficult parts of simulation is to obtain
models of systems which are representative of the reality.
If a model is generated fully randomly with respect to
every possible parameter, there is little chance that it cor-
responds to a potential real system. That is because only
some topologies, order of execution, etc. are reasonable for
a software system. Therefore, as basis for creating many
simulations, we used the topology of a known surveillance
system. It comprises 63 components for the functionality.
For each component, a configuration was generated with that
component being the faulty one. For each fault location, 10
different system configurations were generated by randomly
placing 15 monitors, and producing a set of 20 execution
paths (with random frequencies between 0.2 Hz and 50 Hz).
Therefore, each technique can be evaluated on 630 system
configurations. Results are presented in the next section.

IV. ONLINE FAULT LOCALIZATION

Applying SFL online brings up three issues: (1) test cases
would disrupt the normal operation of the system (to be
discussed in Section IV-A, (2) the range of a coverage
spectrum (to be discussed in Section IV-B), (3) the adequacy
of the diagnosis with the current system behavior (to be
discussed in Section IV-C). In an offline context, tests
are run separately, so the start and end of a test and the
coverage spectrum are clear, as well as associated inputs

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 75 / 132

and outputs. However, in the case of continuous diagnosis
these boundaries disappear, or, at least, become blurred. In
this section, we present solutions for adapting SFL to an
online context.

A. Obtaining Test Outcomes Online

In order to bring fault localization online, the usage of
test cases must be reevaluated. Test cases are active, as
they provides their own inputs to the system. If done during
operation, such input can interfere with the usual behavior
of the system, and can cause a large performance overhead.
Therefore, in the online context, monitoring is more fitting.
Monitoring is well-understood, easy to apply, and event-
based, due to its passive nature, e.g., triggered by the arrival
of new data, or a timer interrupt. A monitor is a specific
component in the system that observes and assesses the
correctness of the functionality without interfering through
test inputs.

A monitor observes data or behavior at specific loca-
tions and decides based on built-in oracle logic whether
an observation is expected (pass) or unexpected (fail),
for example through checking the range of a variable,
consistency between different data, or through comparison
with a state model. The monitor outcomes replace the test
outcome. Because SFL requires to know when the system
is deemed behaving both correctly and incorrectly, it is of
prime importance when writing a monitor that whenever a
fail could be sent, it sends a pass if no failure is detected.

B. Spectrum Sampling

In many cases, interactions in a live system are not clearly
separable by time or space boundaries (such as a complete
test transaction in testing). Input stimuli are continuously
arriving and the system responds accordingly changing its
internal state and/or producing some output. For example,
in our case study (cf Section VI), input messages arrive at
any time, and sometimes simultaneously in separate threads.
Previous inputs influence the behavior of a component either
explicitly such as in a database, or implicitly by affecting
its internal state. When applying SFL offline, the coverage
spectrum is recorded since the system was started for a test
case. In an online context, after a short period of operation,
the coverage matrix will contain only 1’s: “everything cov-
ered”. Although this approach would guarantee a theoretical
strong causal relationship between fault execution and failure
observation (i.e., if a failure is observed, the spectrum will
contain the fault information), a solid 1’s spectrum does not
provide any diagnostic information for the SFL, because it
infers the diagnosis from differences of the various spectra
in the coverage matrix A and the outcome O. The curve
named time inf of Fig. 2 shows the result of never resetting
the spectrum. The average diagnostic cost is approximately
0.5 all the time. Guessing the fault locations randomly would
yield a similar performance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

R
e

la
ti
v
e

 d
ia

g
n

o
s
ti
c
 c

o
s
t

C
d
/(

M
 -

 M
f)

Time (sec)

time inf
time 10s

time rnd 1s
time rnd 100s

transaction

Figure 2. Average diagnostic cost along the time of observation for various
observation policies, with simulated systems having one fault.

The coverage of components represented as binary values
in the spectrum must be reset regularly, in order to provide
a meaningful diagnosis. We propose two different solutions,
which are adapted to different development contexts, that is,
a transactional approach, and a time frame approach.

1) Transactional: A monitor validates the correctness of
a specific component transaction in the system, correspond-
ing to particular interactive functionality. The provision of
an outcome through the monitor correlates to the end of
this transaction. The transactional policy assigns a separate
spectrum to every monitor. Every monitor is also associated
to a scope, which represents which components might be
involved in the monitored interaction1. Each time a com-
ponent is involved, the current spectrum of every monitor
whose scope contains that component is updated. When a
monitor generates an outcome, its associated spectrum is
used as a row for the matrix A and is then completely reset
to zero.

The list of the components in the scope associated to
each monitor is provided before the start of the system (and
is updated after each modification). It is either manually
created by the user (the developer of the monitor, most
likely), or it could be determined by code or configuration
analysis. Fig. 2 shows with the curve transaction that this
solution is the most effective one, with a low average
diagnostic cost throughout the execution of the systems.
The curve tends towards an asymptote close from 0.2. This
asymptote corresponds to the average diagnostic cost that
can be achieved by the SFL algorithm with all possible
spectra for the specific set of systems in the simulation.

However, if a fault modifies how components interact
(i.e., the control flow is modified), the difference between
the expected behavior and the implementation could lead
to an inaccurate scope. In such a case, this policy would

1Each execution of the interaction can be considered a transaction, hence
the name of the policy.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 76 / 132

cause a faulty component to be omitted from every spectrum
associated with a fail outcome. The quality of the diagnosis
would be adversely affected. In addition, pre-analysis of the
system for every monitor can be time consuming, and needs
to be done every time the system is modified. It might be
difficult to perform if external components (from different
companies) are used. In order to avoid this analysis we
investigate a technique requiring less information about the
system, i.e., the time frame technique.

2) Time Frame: The time frame policy uses expiration of
time as transaction boundary to establish causality between
components covered and monitor outcome. Over a given
time period, the component activity is recorded into a global
“current spectrum”. When the time expires, the bits of the
involved components are reset and the recording of a new
current spectrum is started. Every monitor outcome during
this period, is associated with the current spectrum.

Time frame-based sampling avoids spectra with too many
1’s if the time window is properly adjusted to the working
speed of the system. To avoid using a period which could
hide a specific fault our approach uses a random frame
length. After expiration of a time frame, the length of
the next frame is determined randomly within reasonable
bounds. An exponential distribution is used, in order to have
a broad set of period sizes. An average period must be
selected according to the system under observation, but it
can be relatively roughly estimated to the average processing
time of a typical transaction. In Fig. 2 it can be seen
how a fixed time period leads a limited accuracy of the
fault localization, with the curve time 10s. The curves time
rnd 1s and time rnd 100s, corresponding respectively to a
randomized time frame with an average of 1 s and 100 s,
both provide on average a low diagnostic cost.

We recommend that the observation policy should be
selected according to the system context: if it is possible to
gather precise information on which interaction is observed
by a monitor, then the transactional policy should be applied.
Otherwise the randomized time frame policy should be
implemented, with just enough validation to ensure the
average period is adapted to the system.

C. Spectrum Matrix Size

When using SFL offline, the size of the spectrum matrix
and the test outcome vector are finite and, in practice,
relatively small, which is not the case online. For example, in
our case study, approximately 100,000 monitor outcomes are
generated for a single hour of observation. This could even-
tually lead to excessive storage requirements and processing
overheads. This potential size problem is addressed through
application of statistical SFL, on which our approach relies.
It is incremental, so that accumulating counters can be used.

However, another issue is the timeliness of a spectrum, for
example “is a week-old observation relevant for the current
state of the system?” A fault may appear long time after

the system was started (e.g., memory leakage, unexpected
combination of inputs that affect the internal state of the
system, an unnoticed third-party component update). Old
spectra might mislead the fault localization. The detection
of a new failure should always lead to the same diagnosis,
independent of how long the system has been running.

Note however that the problem is not symmetric, when
conversely, a fault is fixed, or the failures are not observed
anymore. If the fault is fixed, it is easy to reset the matrix
at the same time to avoid this “aging effect”. If the failures
stop appearing without the fault having been fixed, it is better
to still report the component as faulty for some sufficiently
long time to acknowledge the problem and deal with it.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600

E
s
ti
m

a
te

d
 h

e
a

lt
h

 (

l j)

Time (min)

Begin = 0s
Begin = 32s

Begin = 128s
Begin = 256s

Figure 3. Estimated health with an infinite window.

Fig. 3 shows the health estimated by the SFL algorithm
for a faulty component yielding a failure at different times,
when all spectra are kept. The later the failure surfaces, the
slower is the convergence of health. From the point of view
of the system maintainer, when a given failure happens, the
algorithm output should be identical independently from the
time system has been running previously.

To overcome this problem, we defined the sliding win-
dow policy. Spectra that are older than a given age are
discarded. In practice, as the SFL counters are accumulated,
we approximate the window by decomposing it into a fixed
number of small periods. An array of counters allows to
keep track of the SFL counters for each period. When the
current period is over, the oldest set of counters is discarded
and replaced by a new set for the next coming period. The
global counters are replaced by an addition of the counters
for each available period. In our implementation we used 32
sub-periods, which appeared to be of sufficient precision.

The ideal window size (leading to stable health values)
depends on the frequency of the monitors generating ob-
servations and the frequency of failures being detected. In
our experiments, we observed that short sliding windows
yield a relatively high diagnostic cost and unstable output

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 77 / 132

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

R
e

la
ti
v
e

 d
ia

g
n

o
s
ti
c
 c

o
s
t

C
d
/(

M
 -

 M
f)

D
ia

g
n

o
s
ti
c
 c

o
s
t

v
a

ri
a

n
c
e

Time (sec)

Sliding window
Sliding window variance

Figure 4. Average diagnostic cost on simulated systems with a sliding
window policy of length of 4 s (component fails in the period 128 s –
356 s, dotted lines).

over time, because they are too small to contain enough
test outcomes for adequate diagnosis. When the size of the
window is extended, it reaches a point where the diagnostic
performance does not improve anymore. Increasing further
the length solely leads to a bigger latency to react to
the failure disappearance. The size of the window after
which the diagnosis presents no more noise depends on the
frequency at which the failures are detected. We observed
that the minimum efficient window size depends on the
amount of fail outcomes that are captured. The amount
of pass outcomes is usually far superior, so it is not a
bottleneck. We observed that if a window is long enough
to contain at least approximately 10 fail outcomes, it is
sufficient to keep a good quality diagnosis.

Therefore, we recommend selecting a size of the window
which is sufficiently long to receive many monitor outcomes.
The main restriction on the maximum length is to ensure a
fairly fast reaction in terms of health. The window size can
be set as the minimum duration for which a single failure
occurrence should be seen when looking at the diagnosis.

In order to observe the effect of applying the sliding
window policy, we simulate a system where a new failure
is seen, lasts for 228 s, and disappears. Fig. 4 shows
the average diagnostic cost when a window size of 4 s
is applied. Approximately 4 seconds after the first failure
appears the diagnostic cost reaches its minimum. Similarly,
the diagnostic reacts within seconds to the disappearance of
the failures. As the failure frequency is high enough that
a window contains several fail observation outcomes, the
diagnostic variance is relatively low. Increasing the window
size would stabilize even further the diagnostic over the
period that the failure happens.

D. Self-Adaptation to Faults

By localizing properly and precisely the faults, a system
has two main ways to react in order to improve its behavior.
Firstly, it can attempt to fix the failure origin by applying
an automated fix such as described in [10]. Such automated

fixes rely usually on a set of generic fixes. Each of the
generic fix can be apply sequentially after each other, on
the each of the most suspicious fault location provided by
the online SFL. The search for a fix ends when the online
SFL detects that the health of the system goes back to
an acceptable level (or when all the fixes have been tried
unsuccessfully).

A second way to adapt to a fault, orthogonal to the first
one, is to take into account the estimated health of the
components into the functional behavior. As seen previously,
SFL computes for each component a similarity coefficient,
which can be converted into an estimated health value
approximating how likely the component provides a correct
output. The confidence of a data is the product of the health
of each component which was involved in generating it. In
dependable systems, it is usual to obtain data from multiple
independent sources and/or process the data via redundant
paths. Instead of relying equally on all the redundant data,
components which receive data from multiple sources can
weight the data according to their confidence value. There-
for, the system adapts automatically to faults by avoiding to
rely on the incorrect data.

V. IMPLEMENTATION OF ONLINE FAULT LOCALIZATION

There are many ways to implement the proposed tech-
niques. We outline here two different implementation ap-
proaches that we have carried out successfully. The first
approach is centralized, while the second one is metadata-
based.

A. Centralized Approach

Figure 5. Architecture of the case study system, which is based on the
centralized approach.

A first implementation approach, which we have used in
our Atlas framework [11], relies on a centralized spectrum
recording. Its architecture can be broken down into five parts.
An example system using such an approach is displayed in
Fig. 5. For each architectural part, we will refer to this exam-
ple. The coverage manager component takes care of keeping
the coverage spectrum of the system. In the example, this
component is represented by the box of the same name. The
spectrum is reset periodically according to the randomized
time frame policy as described previously. By request from
the coverage instrumentation part (discussed later), it sets
a position in the spectrum to indicate a specific component

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 78 / 132

has been covered. When a monitor sends a new observation,
the coverage manager receives this observation, attaches the
current spectrum, and forwards it to the SFL component.

The SFL component (which is represented by the SFL
box in the example) receives every monitor observation and
adds it to the matrix according to the sliding window policy.
In practice, a whole matrix is not needed, only a set of
accumulators, which permits a fast processing. Running at
a slower frequency, the similarity coefficient and ranking of
the faulty components is computed. This might require a
noticeable amount of processing power, but it can be done
independently from the rest of the system, even offloaded to
separate hardware.

Every functional component of the system is instrumented
to report whenever one of its methods is called. In the
example, every component part of the core functionality is
instrumented. We use Aspect Orientation [12] and Java self-
reflection to apply the same code to all the components. This
allows to dynamically instrument any component, even when
provided by a third party or added a posteriori. However,
it brings a high overhead to each method call. A static
approach, such as found in many code profilers, would likely
be more efficient.

Finally, the behavior of the system is validated by a
set of monitors, positioned at various places between or
around the normal components. Monitors are represented as
dash boxes in the example. Every monitor observation, both
fails and passes, is transmitted to the coverage manager.
A monitor can be replacing what would traditionally be a
warning or error check, or can be more complex piece of
code which validates the outputs of a component compared
to the previously received input (based for instance on a
state machine). Watchdogs, which detect the loss of service
provided by a component can also be implemented as
monitors but care should be taken to report in case of failure
not the actual spectrum, but the spectrum that would be
expected (so that SFL can point towards the non-responding
part of the system).

Last but not least, the visualization component receives
the measurements from the SFL component and displays to
the user a graph of the health of the components (approxi-
mated by their similarity coefficient) over time.

B. Metadata-Based Approach

The centralized approach is easy to implement and ef-
ficient on systems where all components can access the
coverage manager with a low latency and where communi-
cations have a low overhead. In systems where components
are running on physically separate nodes such as systems-
of-systems, or systems which are message-based, it might be
more efficient to use a different approach, based on meta-
data. All data transmitted between components is associated
to metadata that contains a coverage spectrum indicating all
the components used to generate this data. Every time an

output is generated, its metadata must be set, based on the
metadata of the inputs. Note that computing the spectrum
might be difficult in some cases where many inputs are
used. There is still a central component for the coverage,
but it is only accessed to request a position in the spectrum
when a component initializes. Monitors work similarly to the
previous implementation approach except that the spectrum
associated to an observation comes from the metadata of the
output which is validated. This observation can then be sent
directly to the SFL component.

To handle dynamic system architectures, where compo-
nents can be added and removed online, the coverage spec-
trum needs to have positions updated when there is a change.
We treat this requirement by having the coverage manager
assign positions to new components. When a component
is removed the positions which were assigned to it can
be reused, once a certain delay corresponding to the time
window length has passed.

VI. CASE STUDY

All techniques for realizing online fault localization with
SFL have been introduced. Synthetic system simulations
were used to compare different techniques to each other
on a large set of systems. In the following, we evaluate
our contributions on a real system. The main goal is to
validate the techniques on practical ground, and verify that
the simulated systems behave similarly to the actual ones.

The surveillance system that we use as case receives
information broadcasts from ships, called AIS messages [13],
and it processes them in order to form a situational picture of
a maritime area. The system is made of Atlas components in
Java. In total it is comprised of 63 methods (the granularity
of the SFL) for the core functionality with an average of 10
lines of Java code each.

The monitoring infrastructure comprises four monitors,
each of them guarding different functional and non-
functional aspects of the system. Coverage of components
is recorded through an ad-hoc Java aspect, as described in
Section V.

A. Injected Faults

We simulate two types of faults, loss of data between
components (for example due to reset of the component,
or unstable connection), and software faults caused by the
functionality. Data loss faults are simulated through inter-
mittent connection drops between two components. Software
faults are introduced through mutations in the original code
(a set of 100 mutants which was created with µJava [14]
and manually verified to affect the behavior of the system).
For each of the mutation faults, the system was executed for
one hour with the recorded input, producing approximately
100,000 monitor outcomes in total. A posteriori, it is then
possible to determine the diagnostic cost at each moment
in time. 12 mutations lead to early system crash (within a

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 79 / 132

minute) and are sorted out (in practice, such a bug would be
directly noticed and investigated off-line). 55 mutations have
faults not detected by the monitors, leaving 33 configurations
with detectable faults.

B. Results

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60
 0

 10

 20

 30

 40

R
e

la
ti
v
e

 d
ia

g
n

o
s
ti
c
 c

o
s
t

C
d
/(

M
 -

 M
f)

R
u

n
n

in
g

 s
y
s
te

m
s

Time (min)

time 1ms
time rnd 0.1ms
time rnd 10ms

transaction
systems

Figure 6. Average diagnostic cost (33 configurations) over the time for
three different observation policies.

The average Cd for transactional and randomized time
frame observation strategies is presented in Fig. 6. The
systems indicate the number of systems still running at
a given time. It decreases whenever a system crashes or
stop responding. The SFL algorithm uses a sliding window
of 5 minutes, in order to ensure a good quality of the
diagnosis while keeping a relatively fast reaction to any fault
correction.

The diagnostic cost Cd, which starts at 0.5, decreases
until it reaches some relatively constant value after around a
minute. This is similar to the results seen in the simulations
(Fig. 2). After 5 minutes of execution (i.e., the length of
the sliding window), all Cd graphs increase. This is because
some faults lead to failures only at initialization, i.e., they are
located in components only used at that time. When these
first spectra are removed from the matrix (through the sliding
window) the SFL loses information about their location, and
assumes a better health, leading typically to a Cd = 0.5.
Hence, the average Cd increases.

As in the simulation, the transactional observation per-
forms best, with an average Cd = 0.14. The time frame
observation yields its best results with 1 ms (Cd = 0.16). A
shorter or longer period impairs the results, leading to Cd

around 0.3 (not shown in the figure to improve readability).
This suggests that observation periods of 1 ms are optimal
for this system. The randomized time frame observation
performed equally well as the best fixed time period, for
all periods tried between 0.1 ms and 100 ms.

In our case, transactional observation provides the best
results. Nevertheless, this requires that for each monitor
the information about which components are observed is

known and correct. Otherwise, a randomized time frame
allows diagnosis with comparable quality, with only a rough
estimation of the processing time needed.

This case study demonstrates the feasibility of online fault
localization using the SFL technique in a system inspired by
industry. With a diagnostic cost ranging on average below
0.2 just after a minute, it also shows that fault localization
is able to point into the right direction for identifying
problematic components in software systems. Of course,
this works only if residual defects can be detected by the
monitors. The fact that the results are relatively similar to
the results obtained by simulation suggests that the model
employed for the simulation is representative of this real
case.

The case study shows also that a relatively small number
of monitors (compared to the number of components) is
sufficient to locate faults. Although no complete study has
yet be done on the needed number of monitors for a given
system, our first observations are that 1) this can vary
considerably depending on the topology of the system and
the false negative rate of the faults, and 2) for a system
of N components, a large number of fault locations can
be correctly found when the number of monitors is above
log(N).

VII. RELATED WORK

The role of fault diagnosis for realising more adaptive,
intelligent, and self-aware systems has been recognized for
at least a decade (e.g., [15], [16]). Some researchers have
looked at online defect detection [17], [18], but did not
address the specific issues of finding the root causes of
defects, i.e., the diagnosis.

Seltzer and Small [19] and Chen [20] have proposed
system infrastructures for enabling self-monitoring and -
adaptation. However, their approaches focus on system
performance, ignoring all the other software quality issues,
that our approach is able to treat. The biggest drawbacks
of these approaches is that they rely on ad-hoc localization
algorithms, which are based on long observations performed
in test systems rather than in the operational systems, and
that they often require manual adjustments. The usage of
automatic diagnosis in our approach avoids these drawbacks.
Our approach can be applied in a generic way, and relies
only on the latest observations.

In [2], an invariant-based approach is presented and
applied online. However, they use specialized active unit-
testing instead of monitoring, and the system state is
recorded every time a test is executed, which leads to a
very high overhead (execution time multiplied by ∼100).
An additional issue are interferences that active testing can
cause in a running system.

In [21], an approach for self-repair, coined Rainbow,
which allocates the diagnosis process to the individual repair

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 80 / 132

handlers is presented. Rainbow defines a set of repair strate-
gies that are triggered when certain architectural invariants
are violated in a running system. Thus, each strategy is
responsible to realize (i.e., diagnose) whether or not its set
of actions will fix the observed problem.

In [22], an approach for architecture-based run-time fault
diagnosis is presented. Conversely to our approach, the
one presented in [22] applies a lightweight model-based
approach to fault diagnosis based on the architecture de-
scription of the system at the granularity level defined by
the architecture (typically, coarse granularity). Similar to
the Rainbow approach, pass/fail information is obtained by
checking whether architectural invariants are violated in a
running system or not.

VIII. CONCLUSIONS AND FUTURE WORK

While fault localization is a fundamental step towards
adaptive and self-managing systems, in order to identify the
part of the system which should be corrected, little work so
far has focused on adopting existing diagnosis approaches
into this domain. In this article, we present an approach for
realizing online spectrum-based fault localization to be used
in self-adaptive systems. We introduce techniques to obtain a
significant spectrum for the SFL algorithm in order to yield
good diagnoses. The usage of a sliding window, provides a
diagnostic outcome which is always relevant to the current
state of the system. Furthermore, we presented two different
implementation approaches which fit either to centralized
architectures or distributed architectures.

Our contributions are validated first by simulation of a
large set of randomly generated systems, and through a case
study with a system inspired by industry. The diagnostic re-
sults on a set of real, mutated systems corroborate the results
of the simulation and confirm that, with our contributions,
SFL and monitoring can be applied successfully to online
fault localization.

Additional challenges could be investigated in future work
in order to improve the quality of online fault localization
in real systems. One of the main topics we will investigate
is the usage of runtime testing to complement the monitors.
When a fault is detected but its location cannot be precisely
pinpointed, a small set of runtime tests could be executed
on the system in order to obtain more information.

ACKNOWLEDGEMENT

This work is part of the ESI Poseidon project, partially
supported by the Dutch Ministry of Economic Affairs under
the BSIK03021 program.

REFERENCES

[1] H. Cleve and A. Zeller, “Locating causes of program failures,”
in ICSE ’05: Proceedings of the 27th international conference
on Software engineering. St. Louis, MO, USA: ACM Press,
May 2005, pp. 342–351.

[2] D. Slane, “Fault localization in in vivo software testing,”
Master’s thesis, Bard College, Massachusetts, USA, 2009.

[3] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H.
Elliott, “Model-based programming of intelligent embedded
systems and robotic space explorers,” in IEEE Special Issue
on Modeling and Design of Embedded Software, 2003, pp.
212–237.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the
accuracy of spectrum-based fault localization,” in Proceedings
of the Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION. Windsor, UK: IEEE
Computer Society, Aug. 2007, pp. 89–98.

[5] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of
test information to assist fault localization,” in ICSE ’02:
Proceedings of the 24th International Conference on Software
Engineering. Orlando, FL, USA: ACM, May 2002, pp. 467–
477.

[6] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. van Gemund,
Spectrum-based fault localization in practice. Eindhoven,
The Netherlands: Embedded Systems Institute, 2009, ch. 10,
pp. 113–124.

[7] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Spectrum-
based multiple fault localization,” in 24th IEEE/ACM In-
ternational Conference on Automated Software Engineering.
Auckland, New Zeeland: IEEE Computer Society, Nov. 2009,
pp. 88–99.

[8] “Sofl: simulator of fault localization website,”
http://swerl.tudelft.nl/bin/view/Main/SOFL, 2011, last
accessed Jan. 2012.

[9] É. Piel, A. Gonzalez-Sanchez, H.-G. Gross, and A. J. V.
Gemund, “Spectrum-based health monitoring for self-
adaptive systems,” in 5th IEEE Int’l Conference on Self-
Adaptive and Self-Organizing Systems (SASO’11). Ann
Arbor, USA: IEEE Computer Society, Oct. 2011.

[10] V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from
object behavior anomalies,” in 24th IEEE/ACM International
Conference on Automated Software Engineering, Auckland,
New Zeeland, Nov. 2009, pp. 550–554.

[11] “Atlas component framework website,”
http://swerl.tudelft.nl/bin/view/Main/Atlas, 2010, last
accessed Jan. 2012.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented pro-
gramming,” in Proceedings European Conference on Object-
Oriented Programming, M. Akşit and S. Matsuoka, Eds.
Berlin, Heidelberg, and New York: Springer-Verlag, 1997,
vol. 1241, pp. 220–242.

[13] Technical characteristics for a universal shipborne Automatic
Identification System using time division multiple access in
the VHF maritime mobile band, International Telecommuni-
cations Union, 2001, Recommendation ITU-R M.1371-1.

[14] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated
class mutation system: Research articles,” Software Testing
Verification and Reliability, vol. 15, pp. 97–133, Jun. 2005.

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 81 / 132

[15] “Berkeley/stanford recovery-oriented computing website,”
http://roc.cs.berkeley.edu/, 2005, last accessed Jan. 2012.

[16] “XEROX Model-Based Computing project website,”
http://www2.parc.com/spl/projects/mbc/, 1997, last accessed
Jan. 2012.

[17] G. K. Baah, E. Gray, and M. J. Harrold, “On-line anomaly
detection of deployed software: a statistical machine learning
approach,” in Proc. of the 3rd International Workshop on
Software Quality Assurance. Portland, Oregon, USA: ACM,
Nov. 2006, pp. 70–77.

[18] C. Rabejac, J.-P. Blanquart, and J.-P. Queille, “Executable as-
sertions and timed traces for on-line software error detection,”
in Annual Symposium on Fault Tolerant Computing, Sendai,
Japan, Jun. 1996, pp. 138–147.

[19] M. Seltzer and C. Small, “Self-monitoring and self-adapting
operating systems,” in Proc. of the Workshop on Hot Topics
in Operating Systems, Cape Cod, Massachusetts, USA, May
1997, pp. 124–129.

[20] Z. Chen, “Service fault localization using probing technol-
ogy,” in Proceedings of the Conference on Networking, Sens-
ing and Control, Ft. Lauderdale, Florida, USA, Apr. 2006,
pp. 937–942.

[21] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation
with reusable infrastructure,” IEEE Computer, vol. 37, no. 10,
pp. 46–54, 2004.

[22] P. Casanova, B. R. Schmerl, D. Garlan, and R. Abreu,
“Architecture-based run-time fault diagnosis,” in Proc. of
the 5th European Conference on Software Architectures
(ECSA’11), Essen, Germany, Sep. 2011, pp. 261–277.

73Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 82 / 132

Augmenting Reinforcement Learning Feedback
with Prediction for Autonomic Management

Khandakar Rashed Ahmed
Department of Computer Science

The University of Western Ontario
London Ontario, Canada, N6A5B7

kahmed25@uwo.ca

Raphael Bahati
Department of Computer Science

The University of Western Ontario
London Ontario, Canada, N6A5B7

rbahati@uwo.ca

Michael Bauer
Department of Computer Science

The University of Western Ontario
London Ontario, Canada, N6A5B7

bauer@csd.uwo.ca

Abstract—Autonomic management depends on a feedback
loop between the managed system and the autonomic
manager. Adding a learning component to the autonomic
manager introduces a second feedback loop – between the
manager and the learning agent. In this paper, we describe
a policy-based autonomic manager that makes use of a
reinforcement learning agent. The reinforcement learning
model is based on a state-transition model formed from an
active set of policies and the actions of the manager. Based
upon this model, this paper describes approaches for
prediction of potential policy violations and examines the
accuracy of the prediction approaches. Experimental results
show that a prediction approach based on the likelihood of a
violation performs better than a non-prediction approach
and has a positive impact on avoiding policy violations.

Keywords-autonomic management, prediction, policies,
reinforcement learning.

I. INTRODUCTION

Autonomic systems are commonly conceived around
the notion of a feedback loop, usually involving
monitoring, analysis, planning and execution [1]. In
some cases, this process may involve a learning
component [2-6] which can enable an autonomic manager
to adapt aspects of its behavior over time, e.g., to “learn”
which actions are better than others in certain situations.
Some of our previous work investigated the role of
reinforcement learning [7, 8] as a key element in a policy-
based system for autonomic management.

Policies are often used to specify the required or
desired behavior of a system and its applications. In
autonomic systems, policies have been used as the basis
for the management system to adjust application or
system tuning parameters in order to meet operational
requirements [2, 7], i.e., the policies are used to drive the
feedback needed to change the system’s behavior. When
these policies are violated, the autonomic management
system tries to identify the actions needed to take based
on the policies or, in some cases, based on the past
behavior of the system. That is, the management system
may incorporate some sort of learning in order to enhance
the decisions. The general model of the approach is
illustrated in Figure 1. The autonomic management
system makes adjustments to the system being managed.
Actions taken by the management system and values of

metrics are used by a learning component to determine
the best actions in the future.

Managed
System

Learning
Agent

Autonomic
Management

System

cl
ie

n
ts

p
o

lic
ie

s

A
dj

us
tm

en
ts

 to
 S

ys
te

m

P
os

si
bl

e
 A

ct
io

n
s

Figure 1. Feedback Loops for Autonomic Manager with Learning Agent

In this paper, we consider how prediction might be
considered in the context of such feedback control. Our
approach to reinforcement learning entails the
construction of a “state model” based on an active set of
policies. In this case, the “state model” does not directly
correspond to the states of the managed system, but rather
captures the states representing the “health” of the system
as dictated by the active set of policies. In the simplest
form, such a state may indicate that the system is “OK” or
“not OK”, i.e., has or has not violated a policy. Using
this “state model” we look at approaches to prediction –
one based on predicting a future state and one predicting
whether the system will be “unhealthy”, i.e., in any
“unhealthy state”. We describe the approach and report
on results of experiments for a system incorporating
prediction.

II. RELATED WORK

A variety of different approaches to prediction in
network and system management have been explored.
Most of the techniques have dealt with prediction of
faults or prediction of resource usage. A fuzzy logic
controller prediction method was in [9] to predict
computational demand in a utility computing
environment.

The probabilistic framework of a Bayesian network
has been used to do prediction in several research studies

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 83 / 132

[10-12]. The work in [10], for example, tries to predict
network anomalies that typically precede a fault.
Specifically, the authors propose an approach to predict
node failure. The intelligent agent learns the normal
behavior of each measurement variable and combines the
information into a Bayesian network. Work in [12] also
used a Bayesian based algorithm to predict disk failures,
while in [13], a specific analytical method is developed
for fast detection of faults in I/O systems.

Some approaches have looked at data mining and
learning approaches learn and classify failure patterns as
rules from historical data rather than generating
probabilistic models ahead of time [14-16]. Sahoo, et al.
applied association rules to predict failure events in a
350-node IBM cluster [17]. Meta-learning [14, 16]
methods have been investigated to explore the merits of
combining various data mining techniques. The use of
reinforcement learning in autonomic management [3-5, 7]
has also attracted significant interest.

Our work is similar to work that makes use of
probabilistic approaches. The key difference in our work
from other work in the autonomic area is that we
incorporate prediction based on the learned model. Our
work also differs in that our reinforcement learning model
uses “policy” states rather than “system” states.

III. MODEL OF REINFORCEMENT LEARNING

A policy-based management system has been
developed by Bahati [7] where reinforcement learning is
used to determine the best use of a set of active (enabled)
policies to meet different performance goals. The learning
approach is based on the analysis of past experience of
the system and the learning model is used to train the
system to dynamically adapt the choice of actions for
adjusting application and system tuning parameters in
response to policy violations.

Reinforcement learning is a learning paradigm [19-20]
where an agent learns how to best map situations to
actions through trial and error interaction with its
environment. It uses a “reward and punishment”
approach, where, for each action, a numeric reward is
generated by the agent which indicates the desirability of
the agent being in a particular state. The only way to
maximize this reward is to discover which action
generates the most reward in a given state by trying them.
The learning agent must also consider a trade off between
whether it should use its current knowledge to select the
best action to take (exploit) or to try new, untried, actions
(explore) in order to improve its performance.

We assume that policies are used to specify desired
behavior and are of the form of event-triggered,
condition-action rules [7]. An event triggers the
evaluation of a rule of the form “if [conditions] then
[actions]”. An event is generated when some condition
about the state of a system becomes true. The appropriate
action is chosen from the policy specification for that

event. A policy consists of one or more conditions and an
ordered list of actions which can be used by the
management system to make adjustments to system
tuning parameters. Table 1 illustrates examples of
polices; these form the basis for the discussion in this
paper.

In Table 1, p1 illustrates a policy where different
actions can be taken when the Apache response time
(ART) is greater than 2000 ms and the trend of the
response time (ARTT) is increasing. Action a1, for
example, indicates that the limit on the maximum number
of active Apache clients should be increased by 25.

TABLE 1. EXAMPLES OF POLICIES

p1: If Apache’s response time (ART) > 2000ms and the
 trend of the Apache response time (ARTT)) > 0, then
a1: Increase MaxClients by 25, or
a2: Decrease MaxKeepAliveRequests by 30, or
a3: Decrease MaxBandwidth by 128

p2: If Apache’s response time < 250 ms, then
a4: Decrease MaxClients by 25, or
a5: Increase MaxKeepAliveRequests by 30, or
a6: Increase MaxBandwidth by 64

The following introduces a number of key terms and

concepts related to how we model learning; a more
detailed and formal description can be found in [7]. A
policy p is a pair <C, A>, where C is a finite set of
conditions, C = c1, . . . , cm, and A = a1, . . . ak is an
ordered set of actions. Each condition, ci ε C, is defined
by a tuple ci = <metricName, operator, >, where
metricName is the name of a metric measured/monitored
by the management system, operator is a relational
operator, and , is a constant threshold value. The set of
active policies at any time within the management system
is then P = {p1, . . . , pn}.

To model the dynamics of the environment from an
active set of policies, we define a set of states whose
structure is derived from the metrics associated with the
active policies. The set of metrics that must be monitored
to support an active set of policies P = {p1, . . . , pn} is
then M = {m1, . . . , mt}, such that:

 pj = <Cj, Aj> ε P, M = ci ε Cj
 {ci. metricName}.

The set M is the set of all metrics occurring in any of
the active policies. For each metric in this set, there are a
finite number of threshold values to which the metric is
compared; these can be ordered to form “regions”. For
each metric mi ε M, let the set σmi

 = {1, 2, . . ., k} be

the set of thresholds from the conditions associated with
metric mi, such that, i, < j, if i < j. Then, σmi

 induces a

set of metric regions associated with metric mi:

 Rmi
 = {R1

mi
 , R2

mi
 , . . . , Rk+1

mi
}, where R1

mi
= (-∞, 1),

 R2
mi

 = (1,2), etc., and Rk+1
mi

 = (k, ∞).

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 84 / 132

In essence, for any metric, a measured value of the

metric can be mapped uniquely onto one of the regions
(i.e., intervals) as defined by the thresholds of the policy
conditions. For example, if σmi

 = {1, 2}, then there

would be three regions:

R1
mi

 = (-∞, 1), R
2

mi
 = (1, 2), and R3

mi
 = (2, ∞).

We also define a weighting function f over metrics and
their regions where f(Rj

mi
) → R, which assigns a numeric

value to the jth region, Rj
mi

 , such that, f(Rj
mi

) > f(Rk
mi

), if

k < j. An example of such a mapping, which we make
use of in our current implementation, is defined by:

f(Rj
mi

) = 100 - (100/(n - 1)) x (j - 1),

where n is the total number of regions in Rmi
.

This function assigns a numeric value between 100
and 0 for each metric's region in Rmi

 , starting from 100

for the most desirable region and decrementing at equal
intervals towards the opposite end of the spectrum, whose
region is assigned a value of 0. Here we assume that the
smaller the values of f(Rj

mi
) are more desirable, though in

general this is not a necessary requirement. The idea is
that regions of greater “desirability”, i.e., preferred
quality of service, are assigned higher values. Table 2
illustrates the metrics and their regions from the example
policies of Table 1.

TABLE 2. METRIC AND REGION FROM SAMPLE POLICIES

Metric Condition Region f(Rj
mi

)

m1: ART ART < 250.0
ART > 2000.0

R1
m

1
 = (-∞, 250.0)

R2
m

1
 = (250.0, 2000.0)

R3
m

1
 = (2000.0, 250.0)

100
50
0

m2: ARTT ARTT > 0.0 R1
m

2
 = (-∞, 0.0)

R1
m

2
 = (0.0, ∞)

100
0

The key role of these regions is that they partition the

space of values that a metric can take on with respect to
the thresholds in conditions involving that metric. We
use these to define a state within our model. A set of
active policies, P, with metrics M, derives a set of states S
= {si}, where si = <P(si), A(si), M(si), μ)>, where:

 P(si) is the set of policies that were violated when
the system was in state si.

 A(si) is the set of actions associated with the
policies in P(si), plus the γ-action, representing
the “null” or “no-op” action.

 M(si) is the set {(value1, Rr1m1
 , f(R r1m1

)), . . . ,

(valuen, Rrnmn
, f(Rrnmn

))), where valuej is the

observed measurement of metric mj or its average
value when state si is visited multiple times and

Rrjmj
 = (1, 2), where 1 < valuej < 2 , i.e., the

region of mi in which the measured value valuej

falls. Essentially, each state has a unique region
from each metric of M along with a measured
value of that metric, i.e., for a set of policies with
n metrics, each state would have n metrics { m1,
m2, . . . , mn} and for each of those metrics there
would be a single metric region.

 μ defines the “health” of the state, that is, is either
“violation” or “acceptable” depending,
respectively, on whether or not there are any
policies violated when visiting this particular
state.

Transitions are determined by the actions taken by the
management system and labeled by a value determined by
the learning algorithm. A state transition, ti(sp, ap, sc), is a
directed edge corresponding to a transition originating in
state sp and ending at state sc as a result of taking action ap
while in state sp and is labeled by <, Qti

(sp, ap)>, where

 is the frequency (i.e., the number of times) the
transition has occurred and Qti

(sp, ap) is the action-value

estimate from the reinforcement learning algorithm
associated with taking action ap in state sp. In our current
implementation, this value is computed using a one-step
Q-Learning [20] algorithm which has been described
elsewhere [7].

For a set of active policies, P, the state-transition
model can be defined by the graph GP = <S, T>, where S
is a set of states and T is a set of state transitions. The
construction of states and transitions is naturally done at
run-time (i.e., on-line) and not a priori given an active set
of policies (though, this could be done). In practice,
many of the states may never occur, thus keeping the size
of the model manageable.

S0

S1

S2

S3

S4

[a0, 10, 10.05]

[a3, 53, 89.70]

[a3, 11, 13.78]

[a0, 22, 39.71]

[a0, 40, 53.45]

[a1, 21, 23.34]

[a2, 30, 44.45]

[a0, 20, 33.45]

Figure 2. State Graph

Figure 2 shows several states, and for each transition

the action taken, the number of times that action was
taken, and a reward value as determined from the learning
algorithm. Action a0 represents the “null” action, that is,
no action was taken, but the system moved from one state
to another (e.g., S0 to itself). State S4 (colored) is a

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 85 / 132

“violation” state. After each management cycle, the
system updates the state graph information either by
adding a new state or by updating the previous state
information which includes an update of the transition
frequency and reward value of actions.

IV. PREDICTION

In this section, we outline our approaches for
prediction based on the state-transition model introduced
in the previous section. We consider two different
strategies for prediction - prediction of the next “state”
within the state-transition graph and prediction of whether
there might be some policy violation, i.e., move to an
“unhealthy” state. The first strategy is a straightforward
approach given that our model is comprised of states and
transitions with frequencies of occurrences included. The
latter, though, similar, originates from our specific
interest in policy-based autonomic management and that
the primary concern is to avoid policy violations. As a
result, this strategy tries to predict the likelihood of any
policy violation or not.

For our current work, we decided to predict two
management cycles ahead – a single cycle ahead was “too
close” while two cycles ahead seemed to be a good
starting point, though more might be of more interest.
This means that if we are currently at management cycle
t, then we will try to predict whether there will be any
policy violation at management cycle t+2 by predicting
which state is most likely or by predicting the likelihood
of some policy being violated. As indicated, states in the
reinforcement learning model contain frequency
information as well as reward values generated from the
learning algorithm. We further consider prediction using
the frequency values (probability approach) and one
based on just using reward values (reward approach).

A. Probability Approach

The probability is calculated from the action
frequency values (from the labels of each edge in the
state-transition graph). The action frequency value
indicates the number of times that an action has been
taken from a particular state. From the frequency values,
we can compute the probability of transitioning from a
state to an adjacent state and then states two transitions
away. Considering Figure 2 and assuming that the system
is in state S0, the probability of states two transitions
away is presented in Table 3. Multiple values in a single
cell of Table 3 indicate multiple paths, e.g., from S0 to S1
there are two paths and so there are two separate
probability values.

B. Reward Approach

The reward approach only considers the action reward
value (generated from the reinforcement learning
algorithm) for prediction analysis. The action reward
values are summed for all states on paths two transitions

away from the current state. These are shown in Table 3,
again, assuming that state S0 is the current state.

C. Predicting State

When we want to predict the state, we compute the
probabilities of reaching each state two transitions away.
The state with the highest probability is the chosen state
and depending on whether that state is a “violation” state
or not determines whether the prediction indicates a
violation or not. Similarly, in using reward, the sum of
the reward values is used and the state reached with
transitions that have the highest reward total is the state
selected. In the previous example, state S4 is selected
based on using probabilities and state S3 is selected based
on reward values.

TABLE 3. PROBABILITIES AND REWARDS FOR STATES

State
(2 transitions from S0)

Probability Reward

S0 0.03 20.10
S1 0.06

0.14
33.39
77.90

S2 0.08 54.50
S3 0.24

0.07
113.04
58.23

S4 0.10
0.28

63.05
97.90

D. Predicting Likelihood of a Violation

In contrast, predicting the “likelihood” of a violation
involves computing a score for all “violated” states
reachable in two steps from the given state. In this case,
we compute a score for “not violated” and one for
“violation” states. We do this by summing the
probabilities or summing the rewards for states that are
“not violated” and those that are “violated”.

Using the probabilities and rewards from Table 3, the
likelihood scores are shown in Table 4. Here, we see that
using approaches based on the probabilities and on the
reward suggest that there is no expected violation. This is
consistent with the state graph of Figure 2.

TABLE 4. PREDICTION OF FUTURE CONDITIONS

Future
Condition

Likelihood
(Probability)

Likelihood
(Reward)

No Violation 0.72 420.21
Violation 0.28 97.90

V. EXPERIMENTAL RESULTS

But, how accurate are these predictions? In the
following, we outline experiments to evaluate the
prediction approaches.

A. Experimental Environment

The experimental environment consists of networked
workstations. A Linux workstation with a 2.0 GHz

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 86 / 132

processor and 2.0 Gigabytes of memory is used to host an
Apache Web Server, the Knowledge Base and the
MySQL database server. Three network workstations are
used to run the traffic load tool for generating server
requests. The three workstations represent load for gold,
silver and bronze users and their service classes. Linux
Traffic Controller (TC) Tool is used to control the
bandwidth associated with the gold, silver, and bronze
service classes. Thus, given a ratio of bandwidth for each
of the service classes, the bandwidth is shared
accordingly; for our experiments this ratio was 85:10:5.
A tuning parameter MaxBandwidth determines
bandwidth which needs to be assigned to each service
class. Apache Jmeter is used as a traffic load generator.
The Jmeter application runs in each of the workstations
where each has a dynamic load testing plan. All
workstations generate traffic load using the same plan.
The load plan contains dynamic requests which create
situations where the system resource usage is increased at
significant rate.

B. Prediction Accuracy

Experiments were run with the above experimental
environment for 1 and 4 hours. The accuracy of
prediction results is present in Table 5.

TABLE 5. PREDICTION ACCURACY

Approach State
(1 hour)

State
(4 hours)

Violation
(1 hour)

Violation
(4 hours)

Probability 20.00% 3.90% 29.62% 29.66%
Reward 26.19% 7.69% 45.76% 37.03%

Predicting a single state is clearly less successful that
predicting the likelihood of a violation which could
include multiple states. In predicting a single state, the
accuracy dramatically decreases during the four hour run.
This is because the size of the state graph has grown and
so predicting a single state is much harder. There is a
much smaller reduction in accuracy for the four hour
experimental run when predicting the likelihood of a
violation. It is also interesting to note that the use of the
reward values for prediction proved to be more accurate
in both cases than the uses of probabilities.

B. Experiments with Prediction

Given the evaluation of the accuracy of the prediction
approaches, we decided to evaluate the likelihood
approach to prediction in the context of our prototype
web environment and autonomic manager. Our objective
for looking at prediction was to be able to avoid policy
violations, that is, if our predictive mechanism did predict
that a violation was likely, then the autonomic manager
could take action prior to the violation.

Our approach is outlined as follows. If the prediction
mechanism (probability based or reward based) predicts
that a violation was likely to occur, then our prediction
component would look for possible safe states and the
transitions that would take the system to a safe state two

steps away (our consideration of what happens at
management cycle t+2). The state selected is the safe
state with the highest value as per the prediction
computation. The algorithm determines the two actions
on the transitions to that safe state from the current state.
These are then passed to the autonomic manager for
execution.

If no safe state is available, then there are two
possibilities – do nothing, i.e., let the autonomic manager
rely strictly on its reinforcement learning algorithm to
select an action, or have another mechanism for choosing
an action. We have explored the latter [21], but details of
how this works is beyond the scope of this paper.

We compared the use of prediction to that of no
prediction. The “no prediction” method relied on the
autonomic manager and the reinforcement learning
component, which performed very well in adapting the
system in previous experiments [7]. Experiments were
done for each of the 1hr and 4hr testing periods with
traffic load varying during the test periods. Since our aim
is to reduce policy violations, we counted the number of
policy violations that occurred during the testing period;
each experiment was run three times and the average
used.

The results are presented in Table 6. The existing
management system encountered 77 and 280 policy
violations in the 1hr and 4hr time periods, respectively.
When we add prediction, the number of policy violations
is reduced to 60 and 226 in the 1hr and 4hr time periods.

TABLE 6: POLICY VIOLATIONS: WITH AND WITHOUT PREDICTION

Approach Policy
Violations
(1 hour)

Policy
Violations
(4 hours)

Reinforcement Learning
(Existing)

77 280

Prediction: Likelihood
of Violation
(Probability)

62 220

Prediction: Likelihood
of Violation (Reward)

61 226

Using prediction resulted in approximately a 20%

reduction in the number of policy violations encountered
in both the one hour and four hour test periods.

VI. CONCLUSIONS AND FUTURE WORK

Given the results, it is clear that our prediction
technique should only predict whether a policy violation
is likely to occur or not, rather than trying to predict a
state. The results of prediction with the reinforcement
learning resulted in useful feedback to the autonomic
manager with experimental results showing roughly a
20% improvement in the number of violations
encountered. This result is a little surprising in that the
accuracy of the likelihood prediction approach was only
around 38% for the reward approach and 30% for the

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 87 / 132

probability approach (4 hour test period). Would this
continue for a longer test period? If the prediction
accuracy was increased, would the improvement in the
number of violations continue? These are future areas of
study.

There are, of course, a number of other areas for
exploration, the obvious being to consider this approach
in a different scenario and with more policies. More
immediate work could include looking at some
combination of probability and reward or some
combination of predicting a state and predicting the
likelihood of a violation to see if there might be a useful
alternative evaluation mechanism that could result in
increased prediction accuracy. Other work could look at
prediction more than two cycles ahead to see how
accuracy changes. Finally, it would be useful to develop
a more formal basis for understanding how prediction and
reinforcement learning are dependent on each other and
their use in autonomic management.

REFERENCES

[1] R. Murch, Autonomic Computing. IBM Press., 2004.

[2] J. O. Kephart and W. E. Walsh, “An Artificial Intelligence
Perspective on Autonomic Computing Policies”, IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY’04), 2004, pp. 3–12.

[3] G. Tesauro, “Online Resource Allocation Using De-
compositional Reinforcement Learning”, Association for
the Advancement of Artificial Intelligence (AAAI’05),
2005.

[4] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A
Hybrid Reinforcement Learning Approach to Autonomic
Resource Allocation”, International Conference on
Autonomic Computing (ICAC’06), Dublin, Ireland, June
2006, pp. 65–73.

[5] D. Vengerov and N. Iakovlev, “A Reinforcement
Learning Framework for Dynamic Resource Allocation:
First Results”, International Conference on Autonomic
Computing (ICAC’05), Seattle, WA, USA, January 2005, pp.
339–340.

[6] P. Vienne and J. Sourrouille, “A Middleware for Autonomic
QoS Management based on Learning”, International
Conference on Sofware Engineering and Middleware,
Lisbon, Portugal, September 2005, pp. 1–8.

[7] R. M. Bahati and M. A. Bauer, “Modelling Reinforcement
Learning in Policy-driven Autonomic Management”,
International Journal On Advances in Intelligent Systems,
2008, vol. 1, no. 1, pp. 54-79.

[8] R. M. Bahati, M. A. Bauer, and E. M. Vieira, “Adaptation
Stratergies in Policy-Driven Autonomic Management”,
International Conference on Autonomic and Autonomous
Systems (ICAS’07), Athens, Greece, July 2007, pp. 16-21.

[9] A. Andrzejak S. Graupner and S. Plantikow. “Predicting
Resource Demand in Dynamic Utility Computing

Environments”, International Conference on Autonomic
and Autonomous Systems (ICAS), 2006, pp. 6-6.

[10] C. Hood and C. Ji. “Intelligent Agents for Proactive
Network Fault Detection”, IEEE Internet Computing, 1998,
Vol.2, 65-72.

[11] J. Ding and X. Li and N, Jiang and Kramer, B.J. and
Davoli, “Prediction Strategies for Proactive Management in
Dynamic Distributed Systems”, International Conference
on Digital Telecommunications. 2006, pp. 74-79.

[12] G. Hamerly and C. Elkan, “Bayesian Approaches to Failure
Prediction for Disk Drives”, Proceedings of International
Conference on Machine Learning (ICML), 2001, pp. 202-
209.

[13] K. Shen, M. Zhong, C. Li., “I/O System Performance
Debugging Using Model-driven Anomaly
Characterization”, 4th USENIX Conference on File and
Storage Technologies, 2005, pp. 309-322.

[14] P. Gujrati and Y. Li and Z. Lan and R. Thakur and J.
White, “A Meta-learning Failure Predictor for Bluegene/L
Systems”, Proceedings of International Conference on
Parallel Processing (ICPP), 2007, pp. 40-40.

[15] Y. Liang and Y. Zhang and A. Sivasubramanium and R.
Sahoo, “BlueGene/L Failure Analysis and Prediction
Models”, Proceedings of Dependable Systems and
Networks (DSN), 2006, pp. 425-434.

[16] J. Gu and Z. Zheng and Z. Lan and J. White and E. Hocks
and B. Park, “Dynamic Meta-Learning for Failure
Prediction in Large-Scale Systems: A Case Study”,
Proceedings of International Conference Parallel
Processing (ICPP), 2008, pp. 157-164.

[17] R.K. Sahoo and A.J. Oliner et al., “Critical event prediction
for proactive management in large-scale computer
clusters”, Proceedings of Knowledge Discovery and Data
Mining (KDD), 2003, pp. 426-435.

[18] G. A. Hoffmann, F. Salfner and M. Malek. Advanced
Failure Prediction in Complex Software Systems, Research
Report, No. 172, Department of Computer Science,
Humboldt University Berlin, 2004.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: an
Introduction. MIT Press, 1998.

[20] L. P. Kaelbing, M. L. Littman, and A. W. Moore, “Re-
inforcement Learning: A Survey”, Journal of Artificial
Intelligence Research, April 1996, pp. 237–285.

[21] R. A. Khandekar. Policy-Based Proactive System
Management: Predicting Faults in Advance. MSc.
Thesis, Department of Computer Science, The University
of Western Ontario, 2010.

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 88 / 132

Autonomic Computing in the First Decade: Trends and Direction

Thaddeus O. Eze, Richard J. Anthony, Chris Walshaw and Alan Soper
Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich, London, United Kingdom

{T.O.Eze, R.J.Anthony, C.Walshaw and A.J.Soper}@gre.ac.uk

Abstract — The Autonomic Computing (AC) concept has

received strong interest amongst the academic and industrial

research communities since its introduction exactly a decade ago.

It is important, after the first decade, to evaluate the actual work

done in achieving the original vision of this concept. In this short

paper we present a brief report of our work in this direction. We

have analyzed all the proceedings (2004 – 2011) of two leading AC

conferences (ICAC and ICAS) to show the trends in and direction

of AC research and to identify current and future research

challenges.

Keywords- autonomic computing; trends and direction

I. INTRODUCTION

The International Conference on Autonomic Computing

(ICAC) and the International Conference on Autonomic and

Autonomous Systems (ICAS) are two leading AC conferences

and have together published about 647 high quality research

papers in eight years of the first ten years of AC research. We

believe that the two conferences give a true representation of

the distribution of interest, work done, and trends in AC

research. Papers used in this work are sourced from [1]. AC

research is widely viewed to have started with the publication

of [46] in 2001 introducing the concept of AC and [47]

elucidating further the AC vision. However, only high level

analysis, requirements and challenges of AC were presented.

Jeffrey Kephart in a keynote during ICAC 2011

presented an excellent analysis of the extent to which the

original AC vision has been realized, and some discussion

and speculation about the remaining research challenges [2].

While Kephart concentrated more on the various

technological threads, their origins and how they have

progressed, our focus is mainly on the level of maturity in

terms of the types of, and scale of, problems targeted at the

various stages. This enables us to reflect on the overall

progress in the field, and to be able to identify current and

future challenges. Our work is not just a review but also a

validation of our earlier proposed roadmap (pathway) to

achieving the goal of autonomic computing [21].

We reviewed a total of 647 research publications

including keynotes (336 of which are from ICAC and 311

from ICAS) using webometrics and direct analysis techniques.

These are analyzed in terms of main application domain,

emphasis, and technical approach as well as author

distribution. Our result is an empirical evaluation of the

overall impact, trends and state-of-the-art of AC research

activity.

An analysis-by-problem approach reveals a particular

pattern (problem definition to issues of scale) in tackling the

AC vision. On the horizon there is the challenge of

coexistence and interoperability between Autonomic

Managers and yet beyond the current state-of-the-art, and

even further beyond state-of-practice are issues of validation,

trustworthiness and certification, requiring solutions

specifically tailored for run-time self-adaptive systems.

Overall, very impressive progress has been made in the

first decade, and this has been driven by the interest of the

main sponsors – industry leaders such as IBM, Sun, Motorola,

Google, Microsoft and Hewlet Packard, amongst others.

The remainder of this paper is organised as follows:

Section II gives a high level and general analysis of all

conference proceedings. Section III discuses trends and

direction, showing the pattern of how the research challenge

is being tackled by the AC research community while Section

IV concludes the work.

II. HIGH LEVEL AND GENERAL ANALYSIS

Tables I and II are high level analysis of conference

proceedings mainly taken from IEEE Computer Society

Digital Library [1]. A select few areas have been chosen and

some of these are discussed in this first report. In terms of

authoring, the academic community has the most

publications. While ICAS is academic dominant, ICAC has

been predominantly industry driven until recently. This

explains why on the average even though ICAS has more

publications ICAC has a far greater number of datacenter-

oriented papers and has been somewhat dominated by this

application domain. In terms of emphasis, contrary to popular

assumption that self-optimization takes the top shot, our

investigation actually shows that the predominance of work in

the field continues to focus on self-healing followed by self-

configuration, self-optimization and then self-protection. Both

conferences maintain the same trend. Out of all the self-CHOP

(self-configuration, self-healing, self-optimization and self-

protection) based publications in Tables I and II put together,

35% focus on self-healing while 27% on self-configuration,

22% are on self-optimization and 16% on self-protection

(Figure 1). In terms of technical approaches, good progress

has been made in using specific techniques including machine

learning [3, 4, 5], fuzzy logic [6, 7], utility functions [8, 9]

and policies [10, 11, 12] to define and achieve self-managing

capabilities. Alternative autonomic architectures (e.g.,

Intelligent Machine Design [13]) have also been proposed.

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 89 / 132

In terms of application domain, the datacentre clearly

tops the ranking in terms of interest to the community. This is

partly because the AC vision is industry-borne and has

continued to be driven by the industry. This is evidenced by

the number of papers (including on datacentre) that are

authoured, co-authoured or sponsored by the industry

partners. Datacentres are very complex; in fact have many

dimensions of complexity; which arise from their scale,

necessary speed of operation, and large number of tuning

parameters. In addition they have high power costs, including

a significant cost component for the cooling systems.

Autonomic Computing arose because of the need for

automatic management of such complexity and successful

autonomic techniques in this domain translate into significant

financial reward for the owners and users of such systems.

This high complexity is also attractive to academic

researchers as it provides a rich domain in which to evaluate a

wide range of techniques, tools and frameworks for AC.

With the vested interest, it is clear why the industry

takes the lead in datacentre related research when the industry

led ICAC is compared with the academic led ICAS (Figure 2).

While the influence is understandably obvious for ICAC, the

academic community, in ICAS, has diversified the research to

cover other areas more evenly.

But, there is also a noticeable industry influence on

ICAS; In the first year (2005) of ICAS there was only one

datacentre related paper but the second year saw a jump and

at the same time the industry participation on ICAS also saw a

jump almost with the same margin. This could be arguably

one other reason why the academic community‟s interest has

significantly drifted towards datacentre (Figure 3).

In general, good progress has been recorded in achieving

the AC vision with growing inter-disciplinary collaborations

as well as industry and academic partnerships. The industry

has a visible influence over the research direction

notwithstanding the lead by the academia (in terms of number

of publications –Tables I and II). This is a key factor in why

datacentre is the most addressed application domain. Figure 3

shows how the academic community is responding to this

influence. Industry inspired and driven ICAC is one of the first

conferences to address the AC vision while ICAS is a leading

Figure 1: Self-CHOP analysis in terms of emphasis of work in the community.

41%
28%

32%

4%

13%

83%

ICAC ICAS

Figure 3: Authour distribution of datacentre related publications.

TABLE I. ICAC PROCEEDINGS DISTRIBUTION

Distribution icac
04

icac
05

icac
06

icac
07

icac
08

icac
09

icac
10

icac
11

Tot
al

Authouring

Academic 39 30 20 15 15 18 18 32 187

Industry 17 18 09 06 05 10 04 01 70

Joint 08 16 14 11 06 06 05 13 79

Total 64 64 43 32 26 34 27 46 336

Main Application Domain

Datacentre 03 11 11 11 09 10 09 12 76

Distributed Systems 17 06 05 04 00 01 02 04 39

Networks 08 02 00 01 00 00 01 03 15

Robotics 01 00 00 00 00 00 00 02 03

Storage & Dbase Mgt 05 05 04 02 00 00 01 04 21

Others

Design/ Architecture 07 12 01 02 04 03 03 03 35

Learning/ knowledge 08 04 03 01 06 03 01 03 29

Performance Mgt 09 05 05 03 01 06 03 08 40

Policy 02 06 03 02 02 00 01 00 16

Self-CHOP 11 09 04 05 07 06 04 02 48

Survey 00 00 00 00 00 00 00 01 01

VTC 04 03 03 04 02 03 00 00 19

Actual VTC proposal 01 01 01 03 01 01 00 00 08

Distribution icas
05

icas
06

icas
07

icas
08

icas
09

icas
10

icas
11

Total

Authouring

Academic 20 39 53 34 48 27 23 244

Industry 01 10 13 00 04 01 01 30

Joint 02 09 03 09 05 02 07 37

Total 23 58 69 43 57 30 31 311

Main Application Domain

Datacentre 01 06 04 03 03 04 02 23

Distributed Systems 05 12 07 01 05 01 02 33

Networks 04 07 06 02 05 03 01 28

Robotics 01 03 01 04 04 01 03 17

Storage & Dbase Mgt 00 04 03 01 03 00 01 12

Others

Design & Architecture 03 15 07 02 09 03 07 46

Learning & knowledge 00 01 04 06 04 00 01 16

Performance Mgt 01 05 07 03 06 02 00 24

Policy 00 02 02 03 03 02 00 12

Self-CHOP 00 01 01 01 03 03 01 10

Survey 00 01 02 01 03 00 01 08

VTC 01 03 01 00 00 01 03 09

Actual VTC proposal 00 00 01 00 00 00 00 01

 TABLE II. ICAS PROCEEDINGS DISTRIBUTION

Figure 2: Distribution of datacentre related publications.

81Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 90 / 132

academia response to the challenge. Kephart [2] also

concludes that in terms of application domain, the datacentre

has emerged as the primary area of interest to the AC research

community. With this fact we draw, in Section III, the AC

research trends, direction and remaining challenges using

datacentre as case study.

III. TRENDS AND DIRECTION

We believe that trends in datacentre research will reflect

similar patterns in other application domains. So the analysis

in this section will mainly focus on datacentre. We use

analysis-by-problem approach (Figure 4) to show the pattern

(in terms of maturity stages) of how the research challenge is

being tackled by the AC research community.

Figure 4 shows the stages (A - C) the community has

adopted in addressing autonomic computing and our view of

the future challenges (D and E) towards achieving the goal of

autonomic computing. We keep this to a high level, but

appreciate that finer-grained sub stages exist. We classify the

stages against a maturity timeline, as shown in Table III.

TABLE III. STAGE CLASSIFICATION FOR ALL PROCEEDINGS

early stage (A) middle stage (B) current stage (C)

ICAC 2004 - 2005 2006 - 2008 2009 - 2011

ICAS 2005 - 2006 2007 - 2008 2009 - 2011

Our investigation reveals that in the early stage research

focused mainly on stating the problem and challenge of ever

growing system complexity [14, 15], the need for solution and

justifying autonomicity as that solution [16, 17]. Majority of

work in this area are hinged on dynamic resource allocation

[18, 19, 20] and are industry (e.g., IBM, HP, Sun, etc)

dominant (Table III). Towards the middle stage the

community intensified effort in developing and applying

techniques which have now been established and are

increasingly used in today‟s research e.g., policy-driven

autonomics [11, 41], utility functions [42, 43], fuzzy logic [6,

44] etc. Also progress was made in identifying and solving

specific problems in isolation. A significant number of papers

offered specific solutions to specific problems, e.g., [23, 24,

25, 26, and 27]. Some examples of the variety of these

include; [27] proposes a control scheme for dynamic resource

provisioning in a virtualized datacentre environment to

address issues of power management without trading

performance. Experiments report that the controller, while

still maintaining QoS goals, is able to conserve power by

26%. [25 and 26] investigate thermal load management to

address heating in datacenters. While Justin et al [25]

concentrated on predicting the effects of workload

distribution and cooling configurations on temperature

(deducing heat profile), Saeed et al [26] based their work on

workload scaling. Radu Calinescu in [24] implemented an

earlier proposed generic autonomic framework (based on

service-oriented architecture) and demonstrated the

effectiveness of his framework in resource allocation while

[23] presents an automatic diagnosis framework to

dynamically identify bottlenecks in large systems.

Virtualisation and power management [27, 28] are also of

interest in this area. Work in this stage largely comprise of

implementations, demonstrations and presentation of

experimented results of proposed ideas. Towards the end of

our list of reviewed papers we discover that the community is

now addressing the bigger picture with concern now more to

do with scale [29, 30, 31], and generalisation of techniques so

as to make re-usable solutions. At this stage issues of

heterogeneity of services and platforms [32, 33] began to

arise. The community is now addressing large scale

datacentres with diverse heterogeneous platforms. The

increase in scale and size of datacentres coupled with

heterogeneity of services and platforms means that more

Autonomic Managers could be integrated to achieve a

particular goal. This has led to the need for interoperability

between Autonomic Managers.

Interoperability has been somewhat neglected as a

challenge to date. Earlier work was fundamentally concerned

with getting autonomic computing to work and establishing

fundamental concepts and demonstrating viability. Many

mechanisms and techniques have been explored. Now that the

concept of autonomic computing is well understood and

widely accepted the focus can shift to the next level; - i.e.

how to manage multi-manager scenarios, to govern

interactions between managers and to arbitrate when conflicts

arise. These are the kind of problems on the horizon. For

example, when more than one autonomic manager is needed

to coordinate a system, there may be situations where one

manager counters the decision of another. There have been a

few mentions and general discussion around this problem [34,

35, 37] lately. The community has not yet made good

progress on this though there are efforts on the way. For

example Richard et al [36] evaluates the nature and scope of

the interoperability challenges for AC systems, identifies a set

of requirements for a universal solution and proposes a

service-based approach to interoperability to handle both

direct and indirect conflicts in a multi-manager scenario. In

Statement of

need and

complexity

+

Justify

autonomic

Develop

techniques

+

Identify and

solve specific

problems in
isolation

Problem beyond

current

thinking
(e.g.,

certification)

Problem on the

horizon
(e.g.,

interoperability

)

A C B

D E

Figure 4: Observed trend and direction of AC research.

Bigger

picture

+

Scale

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 91 / 132

this approach, an Interoperability Service interacts with

autonomic managers through a dedicated interface and is able

to detect possible conflicts of management interest. In this

way the Interoperability Service manages all interoperability

activities by granting or withholding management rights to

different autonomic managers as appropriate.

On the other hand, beyond current mainstream thinking

are problems of validation, trustworthiness and certification.

A lot of questions have not been considered or fully

answered. For example, „what are the processes to ensure that

component upgrades that are tested and confirmed in isolation

will not cause harm in a multi-system environment?‟, „how

can certified autonomic systems be achieved?‟ and „how can

users be confident that a system does what it says?‟ [38]. In

Tables I and II a number of Validation, Trustworthiness and

Certification (VTC) related papers have been published but

only a few are actual VTC methodologies and only one of

these [39] considers datacentre. The number for VTC includes

mainly those papers that incorporated validation, testing and

reliability into their architectures, frameworks or

implementations and not necessarily as a core or critical

feature. For example, in seven years of ICAS only one paper

[37] proposes a method. The work in [37] presents a

framework (based on model checking) for verifying and

detecting constraint violation when two or more workflows

are executed on the same system as a way of ensuring system

trustworthiness. The few in ICAC include [38], [39] and [40].

Hoi et al [38] asks the critical question of “How can we trust

an autonomic system to make the best decision?” and

proposes a „trust‟ architecture to win the trust of AC system

users. Shinji et al [39] proposes a policy verification and

validation framework that is based on model checking to

verify the validity of administrator‟s specified policies in a

policy-based system. Because a known performing policy

may lead to erroneous behaviour if the system (in any aspect)

is changed slightly, the framework is based on checking the

consistency of the policy and the system‟s defined model or

characteristics. In all the reviewed papers, this is the only VTC

method implemented with datacentre case study. Heo and

Abdelzaher [40] presented „AdaptGuard‟, a software designed

to guard adaptive systems from instability resulting from

system disruptions. The software is able to infer and detect

instability and then intervenes (to restore the system) without

actually understanding the root cause of the problem –root-

cause-agnostic recovery.

Our research group has been working on this problem

for some time and in ICAS 2011 we presented several works

[13, 21, and 22] identifying the problems of robust design,

validation and related issues on trustworthiness leading to

certification. In [21], we outline the challenges in current

autonomic system validation methods and propose a strategy

leading to the achievement of autonomic systems

certification. This strategy is a roadmap defining the stages or

processes in the journey towards full autonomic computing.

We posit that there are significant limitations to the way in

which AC systems are validated, with heavy reliance on

traditional design-time techniques, despite the highly dynamic

behaviour of these systems in dealing with run-time

configuration changes and environmental and context

changes. These limitations ultimately undermine the

trustability of these systems and are barriers to eventual

certification. Haffiz, Richard and Mariusz [13] proposed a

framework that will allow for proper certification of AC

systems. Central to this framework is an alternative

autonomic architecture based of Intelligent Machine Design

which draws from the human autonomic nervous system.

James, Richard and Miltos [22] demonstrated Teleo-Reactive

(T-R) programming approach to autonomic software systems

and shows how T-R technique can be used to detect

validation issues at design time and thus reducing the cost of

validation issues. We strongly believe that certification is

critical to achieving the full goal of AC. We have a longer

term vision to develop trustworthy and certifiable autonomic

systems and hope to progress towards this through defining

validation techniques. We propose that one vital step in this

chain is to introduce robust techniques by which the systems

can be described in universal language, starting with a

description of, and means to measure the type and extent of

autonomicity (autonomic functionalities) they provide [45].

Another of our current focus area is interoperability [36]

where we are evaluating the nature and scope of the

interoperability challenges for AC systems, identifying a set

of requirements for a universal solution and proposing a

service-based approach to interoperability to handle both

direct and indirect conflicts in a multi-manager scenario.

IV. CONCLUSION

We have presented a review and analysis of the actual

work done in achieving the original vision of autonomic

computing (AC) after the first decade. We reviewed all ICAC

and ICAS proceedings (2004 – 2011) and have shown what

the trends and directions there are in the AC research. Our

investigation transcends technologies and how they have

progressed to include areas, origins and scale of maturity. Our

results also show the current and future (or remaining)

challenges facing the AC research community. Beyond being

a review, this work also illustrates a pathway to achieving the

goal of AC and validates our earlier proposed roadmap [21].

The community has made good progress in terms of

autonomic technologies and in terms of collaboration or

partnership between the industry and academia. Though the

research is driven by the industry (the major sponsors) the

academia has also woken to the challenge. In terms of

application domain, the datacentre appears to dominate the

interest of the community. This is chiefly because AC is

industry borne and also the datacentre provides the academia

a rich and complex environment for diverse implementations

and testing. As systems grow in complexity and scale, the

community must now deal with addressing issues of

interoperability in multi-manager scenarios. This is one of the

critical issues on the horizon. Beyond current thinking, the

community will need to provide answers to issues of

validation, trustworthiness, standardisation and certification

of autonomic computing systems.

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 92 / 132

REFERENCES

[1] IEEE Computer Society Digital Library via

http://www.computer.org/portal/web/csdl/proceedings/i#1 –

last viewed 12th January 2012

[2] Jeffrey Kephart, Autonomic Computing: The First Decade,

Keynote at the 8th International Conference on Autonomic

Computing (ICAC), 2011, Germany

[3] Han Li and Srikumar Venugopal, Using Reinforcement

Learning for Controlling an Elastic Web Application

Hosting Platform, The 8th International Conference on

Autonomic Computing (ICAC), 2011, Karlsruhe, Germany

[4] Jonathan Wildstrom, Peter Stone and Emmett Witchel,

CARVE: A Cognitive Agent for Resource Value Estimation,

The 5th International Conference on Autonomic Computing

(ICAC), 2008, Illinois, USA

[5] Artur Andrzejak, Sven Graupner and Stefan Plantikow,

Predicting Resource Demand in Dynamic Utility Computing

Environments, The 2nd International Conference on

Autonomic and Autonomous Systems (ICAS), 2006, USA

[6] Ting-Jung Yu, Robert Lai, Menq-Wen Lin and Bo-Rue Kao,

A Fuzzy Constraint-Directed Autonomous Learning to

Support Agent Negotiation, The 3rd International Conference

on Autonomic and Autonomous Systems (ICAS), 2007,

Athens, Greece

[7] Biplav Srivastava, Joseph Bigus and Donald Schlosnagle,

Bringing Planning to Autonomic Applications with ABLE,

The 1st International Conference on Autonomic Computing

(ICAC), 2004, New York, USA

[8] Gerald Tesauro,, Rajarshi Das, William Walsh and Jeffrey

Kephart, Utility-Function-Driven Resource Allocation in

Autonomic Systems, The 2nd International Conference on

Autonomic Computing (ICAC), 2005, Seattle, USA

[9] William Walsh, Gerald T Tesauro, Jeffrey Kephart and

Rajarshi Das, Utility Functions in Autonomic Systems, The

1st International Conference on Autonomic Computing

(ICAC), 2004, New York, USA

[10] Andres Quiroz, Manish Parashar, Nathan Gnanasambandam

and Naveen Sharma, Autonomic Policy Adaptation using

Decentralized Online Clustering, The 7th International

Conference on Autonomic Computing (ICAC), 2010,

Washington, USA

[11] Richard Anthony, Policy-centric Integration and Dynamic

Composition of Autonomic Computing Techniques, The 4th

International Conference on Autonomic Computing (ICAC),

2007, Florida, USA

[12] Liliana Rosa, Ant´onia Lopes and Lu´ıs Rodrigues, Policy-

Driven Adaptation of Protocol Stacks, The 2nd International

Conference on Autonomic and Autonomous Systems

(ICAS), 2006, California, USA

[13] Haffiz Shuaib, Richard Anthony, and Mariusz Pelc, A

Framework for Certifying Autonomic Computing Systems,

The 7th International Conference on Autonomic and

Autonomous Systems (ICAS), 2011, Venice, Italy

[14] Sharath Musunoori, Geir Horn, Frank Eliassen, and Alia

Mourad, On the Challenge of Allocating Service Based

Applications in a Grid Environment, The 2nd International

Conference on Autonomic and Autonomous Systems

(ICAS), 2006, California, USA

[15] Anand Ranganathan and Roy Campbell, Self-Optimization

of Task Execution in Pervasive Computing Environments,

The 2nd International Conference on Autonomic Computing

(ICAC), 2005, Seattle, USA

[16] Sai Mahabhashyam and Natarajan Gautam, Dynamic

Resource Allocation of Shared Data Centers Supporting

Multiclass Requests, The 1st International Conference on

Autonomic Computing (ICAC), 2004, New York, USA

[17] Daniel Menasc´e and Mohamed Bennani, Autonomic

Virtualized Environments, The 2nd International Conference

on Autonomic and Autonomous Systems (ICAS), 2006,

California, USA

[18] David V. Nikolai I., A Reinforcement Learning Framework

for Dynamic resource Allocation: First Results, The 2nd

International Conference on Autonomic Computing (ICAC),

2005, Seattle, USA

[19] Mohamed Bennani and Daniel Menasc´e, Resource

Allocation for Autonomic Data Centers using Analytic

Performance Models, The 2nd International Conference on

Autonomic Computing (ICAC), 2005, Seattle, USA

[20] Choong Lee and Hyun Kim, A Part Release considering

Tool Scheduling and Dynamic Tool Allocation in Flexible

Manufacturing Systems, The 2nd International Conference on

Autonomic and Autonomous Systems (ICAS), 2006,

California, USA

[21] Thaddeus Eze, Richard Anthony, Chris Walshaw, and Alan

Soper, The Challenge of Validation for Autonomic and Self-

Managing Systems, The 7th International Conference on

Autonomic and Autonomous Systems (ICAS), 2011, Venice,

Italy

[22] James Hawthorne, Richard Anthony, and Miltos Petridis,

Improving the Development Process for Teleo-Reactive

Programming Through Advanced Composition, The 7th

International Conference on Autonomic and Autonomous

Systems (ICAS), 2011, Venice, Italy

[23] Darcy G. Benoit, Performance Diagnosis for Changing

Workloads, The 3rd International Conference on Autonomic

and Autonomous Systems (ICAS), 2007, Athens, Greece

[24] Radu Calinescu, Implementation of a Generic Autonomic

Framework, The 4th International Conference on Autonomic

and Autonomous Systems (ICAS), 2008, Gosier,

Guadeloupe

[25] Justin Moore, Jeffrey Chase and Parthasarathy Ranganathan,

Weatherman: Automated, Online, and Predictive Thermal

Mapping and Management for Data Centers, The 3rd

International Conference on Autonomic Computing (ICAC),

2006, Dublin, Ireland

[26] Saeed Ghanbari, Gokul Soundararajan, Jin Cheng and

Cristiana Amza, Adaptive Learning of Metric Correlations

for Temperature-Aware Database Provisioning, The 4th

International Conference on Autonomic Computing (ICAC),

2007, Florida, USA

[27] Dara Kusic, Jeffrey Kephart, James Hanson, Nagarajan

Kandasamy and Guofei Jiang, Power and Performance

Management of Virtualized Computing Environments via

Lookahead Control, The 5th International Conference on

Autonomic Computing (ICAC), 2008, Illinois, USA

[28] Jordi Torres, David Carrera, Vicenç Beltran, Nicolás Poggi,

Kevin Hogan, Josep Berral, Ricard Gavaldà, Eduard

Ayguadé, Toni Moreno and Jordi Guitart, Tailoring

resources: the energy efficient consolidation strategy goes

beyond virtualization, The 5th International Conference on

Autonomic Computing (ICAC), 2008, Illinois, USA

[29] Hui Zhang, Guofei Jiang, Kenji Yoshihira, Haifeng Chen,

and Akhilesh Saxena, Resilient Workload Manager: Taming

Bursty Workload of Scaling Internet Applications, The 6th

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 93 / 132

International Conference on Autonomic Computing (ICAC),

2009, Barcelona, Spain

[30] Mahendra Kutare, Greg Eisenhauer, Chengwei Wang,

Karsten Schwan, Vanish Talwar and Matthew Wolf,

Monalytics: Online Monitoring and Analytics for Managing

Large Scale Data Centers, The 7th International Conference

on Autonomic Computing (ICAC), 2010, Washington, DC,

USA

[31] Chengwei Wang, Karsten Schwan, Vanish Talwar, Greg

Eisenhauer, Liting Hu and Matthew Wolf, A Flexible

Architecture Integrating Monitoring and Analytics for

Managing Large-Scale Data Centers, The 8th International

Conference on Autonomic Computing (ICAC), 2011,

Karlsruhe, Germany

[32] Ramon Nou and Jordi Torres, Heterogeneous QoS Resource

Manager with Prediction, The 5th International Conference

on Autonomic and Autonomous Systems (ICAS), 2009,

Karlsruhe, Germany

[33] Vinod Ramachandran, Manish Gupta, Manish Sethi, and

Soudip Chowdhury, Determining Configuration Parameter

Dependencies via Analysis of Configuration Data from

Multi-tiered Enterprise Applications, The 6th International

Conference on Autonomic Computing (ICAC), 2009,

Barcelona, Spain

[34] Dominic Jones, John Keeney, David Lewis, and Declan

O‟Sullivan, Knowledge Delivery Mechanism for Autonomic

Overlay Network Management, The 6th International

Conference on Autonomic Computing (ICAC), 2009,

Barcelona, Spain

[35] Jeffrey Kephart, Hoi Chan, Rajarshi Das and David Levine,

Coordinating multiple autonomic managers to achieve

specified power-performance tradeoffs, The 4th International

Conference on Autonomic Computing (ICAC), 2007,

Florida, USA

[36] Richard Anthony, Mariusz Pelc and Haffiz Shauib, The

Interoperability Challenge for Autonomic Computing,

The 3rd International Conference on Emerging Network

Intelligence (EMERGING), 2011, Lisbon, Portugal

[37] Shinji Kikuchi, Satoshi Tsuchiya, Motomitsu Adachi, and

Tsuneo Katsuyama, Constraint Verification for Concurrent

System Management Workflows Sharing Resources, The 3rd

International Conference on Autonomic and Autonomous

Systems (ICAS), 2007, Athens, Greece

[38] Hoi Chan, Alla Segal, Bill Arnold and Ian Whalley, How

Can We Trust an Autonomic System to Make the Best

Decision? The 2nd International Conference on Autonomic

Computing (ICAC), 2005, Seattle, USA

[39] Shinji Kikuchi, Satoshi Tsuchiya, Motomitsu Adachi and

Tsuneo Katsuyama, Policy Verification and Validation

Framework Based on Model Checking Approach, The 4th

International Conference on Autonomic Computing (ICAC),

2007, Florida, USA

[40] Jin Heo and Tarek Abdelzaher, AdaptGuard: Guarding

Adaptive Systems from Instability, The 6th International

Conference on Autonomic Computing (ICAC), 2009,

Barcelona, Spain

[41] Raphael Bahati, Michael Bauer and Elvis Vieira, Adaptation

Strategies in Policy-driven Autonomic Management, The 3rd

International Conference on Autonomic and Autonomous

Systems (ICAS), 2007, Athens, Greece

[42] Julien Perez, Cecile Germain-Renaud, Balazs Kegl and

Charles Loomis, Utility-based Reinforcement Learning for

Reactive Grids, The 5th International Conference on

Autonomic Computing (ICAC), 2008, Illinois, USA

[43] Rajarshi Das, Jeffrey Kephart, Ian Whalley and Paul Vytas,

Towards Commercialization of Utility-based Resource

Allocation, The 3rd International Conference on Autonomic

Computing (ICAC), 2006, Dublin, Ireland

[44] Jing Xu, Ming Zhao, José Fortes, Robert Carpenter and

Mazin Yousif, On the Use of Fuzzy Modeling in Virtualized

Data Center Management, The 4th International Conference

on Autonomic Computing (ICAC), 2007, Florida, USA

[45] Thaddeus Eze, Richard Anthony, Chris Walshaw, and Alan

Soper, A Technique for Measuring the Level of Autonomicity

of Self-managing Systems, In review, The 8th International

Conference on Autonomic and Autonomous Systems

(ICAS), 2012, Maarten, Netherlands Antilles

[46] Horn Paul, Autonomic computing: IBM perspective on the

state of information technology, IBM T.J. Watson Labs, NY,

15th October 2001. Presented at AGENDA 2001, Scottsdale.

[47] Jeffrey Kephart and D. M. Chess, The vision of autonomic

computing, In IEEE Computer, volume 36, pp 41–50,

January 2003

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 94 / 132

A Deliberative Reasoner for Model-Based Software Health Management

Abhishek Dubey, Nagabhushan Mahadevan, Gabor Karsai
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37212, USA

{dabhishe, nag, gabor}@isis.vanderbilt.edu

Abstract—While traditional design-time and off-line ap-
proaches to testing and verification contribute significantly to
improving and ensuring high dependability of software, they
may not cover all possible fault scenarios that a system could
encounter at runtime. Thus, runtime ‘health management’ of
complex embedded software systems is needed to improve their
dependability. Our approach to Software Health Management
uses concepts from the field of ‘Systems Health Management’:
detection, diagnosis and mitigation. In earlier work we had
shown how to use a reactive mitigation strategy specified
using a timed state machine model for system health manager.
This paper describes the algorithm and key concepts for an
alternative approach to system mitigation using a deliberative
strategy, which relies on a function-allocation model to identify
alternative component-assembly configurations that can restore
the functions needed for the goals of the system. An example is
used to show how such an approach can be used for performing
automatic system reconfigurations, when faulty components are
diagnosed.

Keywords-Component-based systems; fault diagnosis; auto-
nomic computing; fault removal.

I. INTRODUCTION

Self-adaptive software systems, while in operation, must
be able to adapt to latent faults in their implementation,
in the computing and non-computing hardware; even if they
appear simultaneously. Software Health Management (SHM)
extends classical software fault tolerance techniques [1], [2],
[3] by applying anomaly detection, fault source identification
(diagnosis), fault effect mitigation (in operation), mainte-
nance (offline), and fault prognostics (online or offline), as
used in System Health Management of complex engineering
systems [4], [5]. It is performed at run-time, and it includes
fault detection, fault source isolation, and mitigation activi-
ties to remove fault effects. A good motivation for software
health management is provided in [6].

We have developed an approach and model-based tools
for implementing software health management functions
for component-based systems. The foundation of the ar-
chitecture is a real-time component framework (built upon
an ARINC-653 platform) that defines a specific model of
computation for software components [7]. This framework
brings the concept of temporal isolation, spatial isolation,
strict deadlines from ARINC-653 and combines them with
the well-defined component interaction patterns described in
CORBA Component Model [8]. Health management in the
framework is performed at two levels. The Component-Level

Health Manager (CLHM) provides localized and limited
service for managing the health of individual components.

Higher-level management is provided by a System Health
Manager (SLHM) that manages the health of the overall
system. SLHM includes a diagnosis engine that uses a Timed
Failure Propagation (TFPG) [9] model of the software that
is automatically synthesized from the model of the software
component assembly. The diagnostic engine reason about
cascading fault effect in the system and isolates the fault
source components. This is possible because the data and
behavioral dependencies (and hence the fault propagation)
across the assembly of software components can be de-
duced from the well-defined and restricted set of interaction
patterns supported by the framework [10]. In the past, we
showed how system-wide mitigation can be performed based
on reactive timed state machines specified by the designer
at the system integration time [11]. However, one of the
problems with this approach to system-mitigation is the
complexity of the specification required to cover all possible
combination of failure scenarios.

This paper describes our work on system-level mitigation
using a deliberative search-based technique that relies on
the models of system goals/functionalities and the compo-
nent groups allocated to provide these functionalities. Our
approach is based on:

• Maintaining a model of the desired system functions
and their sub-functions that all are required to provide
that function.

• Maintaining an allocation tree for each function where
the function is the root, the configuration groups (AND,
OR, M of N) are the intermediate nodes and the soft-
ware components are the leaf nodes. This tree captures
the multi component configurations that are required to
provide the service listed as the root function node.

• Identifying the current operational system goals.
• Identifying the affected operational goals based on the

list of faulty components.
• Searching for alternative configuration that can satisfy

the functions, while shutting down faulty components.

The outline of this paper is as follows: first we cover
the related research. Then we present a short overview
of our architecture and earlier results. Next, we discuss
the deliberative reasoner, followed by a case study and
conclusions.

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 95 / 132

II. RELATED RESEARCH

Our approach focuses on latent faults in software systems,
it follows a component-based architecture with a model-
based development process, and implements all steps in the
Collect/Analyze/Decide/Act loop [12].

Rohr et al. advocate the use of architectural models for
self-management [13]. They suggest the use of a run-time
model to reflect the system state and provide reconfiguration
functionality. From a development model they generate a
causal graph over various possible states of its architectural
entities. Garlan et al. [14] and Dashofy et al. [15] have
proposed an approach which bases system adaptation on ar-
chitectural models representing the system as a composition
of several components, their interconnections, and properties
of interest. They make reconfiguration decisions using rule-
based strategies.

While these works have tended to the structural part of the
self-managing computing components, some have empha-
sized the need for behavioral modeling of the components.
For example, Zhang et al. described an approach to specify
the behavior of adaptable programs in [16]. Their approach
is based on separating the adaptation behavior specification
from the non-adaptive behavior specification in autonomic
computing software. Williams’ research [17] concentrates on
model-based autonomy. The paper suggests that emphasis
should be on developing techniques to enable the software
to recognize that it has failed and to recover from the failure.
Their technique lies in the use of a Reactive Model-based
Programming Language (RMPL)[18] for specifying both
correct and faulty behavior of the software components.
They also use high-level control programs [19] for guiding
the system to the desirable behaviors.

Work described here is related to the larger field of
software fault tolerance: principles, methods, techniques, and
tools that ensure that a system can survive software defects
that manifest themselves at run-time [20], [21].

III. THE ARINC COMPONENT FRAMEWORK

System-level health management and fault tolerance ap-
proaches are based on the notion of interacting components.
Our work is based upon the ARINC-653 component model
(ACM) [7]. ACM combines the CORBA Component Model
[8] with ARINC-653 [22]. ACM components interact with
each other via well-defined patterns, facilitated by ports.
In ACM, a component can have four kinds of ports for
interactions: publishers, consumers, facets (a.k.a. provided
interfaces - where an interface is a collection of related
methods) and receptacles (a.k.a. required interfaces). The
component can interact with other components through
synchronous call/return interfaces (associated with facets
or receptacles), and/or via asynchronous publish/subscribe
event connections (between publisher and consumer). A
component can also have internal methods that are peri-
odically triggered. Systems are designed as composition of

System

Component
+CLHM

Component
+CLHM

Component
+CLHM

Alarm Aggregator Diagnoser
Deliberative Mitigation

Engine

A
la

rm
s

C
o

m
m

an
d

s

Figure 1. SLHM architecture.

components using a modeling environment, which includes
a domain specific modeling language and associated tools.

Component Execution and Failure Scenarios: A soft-
ware component can be in one of the following three states:
active, inactive and semi-active. When a component is
in the inactive state, none of the ports of the component
are operational. The active state of a component is the
exact opposite of the inactive, and all the component ports
are operational. In a semi-active state, only the consumer
and receptacle ports of a component are operational, the
publisher and provided ports are disabled. While the com-
ponent is executing , i.e., it is in the active or semi-active
state, the code in the component ports can introduce faults
in the system, which can lead to anomalies in either the
same component or in a connected component. We consider
two root failure sources for each component port (a) a
concurrency fault that is indicated by a timeout event in
the act of obtaining the lock associated with the component,
(b) or a latent bug in the code written by the developer
to implement the operation associated with the port. Every
component has a lock to ensure that at any given time at
most one thread is active in the component.

Example: Figure 2 shows the assembly for a notional
GPS system with a redundant set of Sensor and GPS
components (Sensor2, GPS2). Deployment information is
not shown in this figure. Sensors publish an event every
4 sec for their associated GPS. The GPS consumes the
event published by its sensor at a periodic rate of 4 sec.
Afterwards, it publishes an event, which is sporadically
consumed by the Navigation Display. Thereafter, the display
component updates its location by using getGPSData facet
of the GPS Component. In the initial setup of the assembly,
the Sensor, GPS, and NavDisplay components are used
and hence set to be in active mode. The redundant sensor
and GPS (Sensor2 , GPS2) are not used. The GPS2 is set
to a semi-active mode, leaving the Sensor2 component in
active mode. This would allow the GPS2 to keep track of
the current state (by being in semi-active mode where the
GPS2’s consumers are active) but not affect NavDisplay.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 96 / 132

Figure 2. GPS Software Assembly.

A. Health Management in ACM

Health Management in ACM happens at two levels. The
first level of protection is provided by a component level
health management (CLHM) strategy, which is implemented
in all components. It provides a localized timed state
machine with state transitions triggered either by a local
anomaly or by timeouts, and actions that perform the local
mitigation. The System Level Health Manager (SLHM) is
at the second, top level in our health management strategy.
The deployment of the SLHM requires the addition of three
special SLHM components to an ACM assembly: the Alarm
Aggregator, The Diagnosis Engine, and the Deliberative
Mitigation Engine, as shown in Figure 1.

The Alarm Aggregator is responsible for collecting and
aggregating inputs from the component level health man-
agers (local alarms and the corresponding mitigation ac-
tions). This information is collected using a moving window
two hyperperiods long. The events are sorted based on their
time of occurrence and then sent to the Diagnosis Engine.

The Diagnosis Engine hosts an instance of a Timed
Failure Propagation Graph reasoner engine. This engine is
initialized by a Timed Failure Propagation Graph (TFPG) [9]
model that captures the failure-modes, discrepancies (possi-
bly indicated by the alarms), and the failure propagations
from failure modes to discrepancies and from discrepancies
to other discrepancies, across the entire system [10], [11].
The reasoner uses this model to isolate the most plausible
fault source: a software component that could explain the
observations, i.e., the alarms triggered and the CLHM com-
mands issued. The result, i.e., the list of faulty components
is reported to the next component that provides the system
level mitigation: the Deliberative Engine, discussed in the
next section.

IV. DELIBERATIVE ENGINE

The mitigation engine in a system has to map the diag-
nosis results to a set of actions that remove the faults in the
system and restore the functionality. There are four basic
commands that can be sent to each component (a) RESET
: Instructs a component to Reset itself, (b) STOP : Instructs a
component to switch to inactive mode, (c) START: Instructs
a component to switch to active mode, and (d) REWIRE

Figure 3. Example of Functional Decomposition for an Inertial Measure-
ment Unit

Figure 4. Example showing allocation of the GPS position function shown
in Figure 3 to the components shown in assembly of Figure 1.

(ri,pc): Instructs a Component to rewire its receptacle In-
terface (ri) to connect to the appropriate facet interface in
another component (pc). In case of REWIRE, the appropriate
facet to be used is identified by the component which stores
a map of component to facet for every receptacle in the
component.

Our initial approach towards fault mitigation in SLHM
included a Reactive Mitigation Engine wherein the mitiga-
tion strategy was specified as a hand-crafted, timed state
machine model at design time. The updated fault status
of the components in the assembly was used to trigger
the SLHM state machine. For details on this mitigation
specification, please see [10], [11].

The new SLHM mitigation approach uses a Deliberative
Mitigation Engine which, like the reactive mitigation engine
receives the diagnosis results: the set of faulty components,
and responds with an appropriate system-level command to
mitigate the fault and its effects. The deliberative mitigation
approach relies on modeling the system goals as functions,
the functional dependency on other sub-functions and the
function-allocation model, i.e., the component group config-
urations that can provide the function (or sub-function). At
run-time, the deliberative engine searches through the space
of the function-allocation model to identify an alternate
configuration of healthy components that can restore the
functions (functionalities) affected by the faulty components.

In the timed-state machine approach, the modeler needs
to specify the specific mitigation strategy for each fault
(component) and/ or fault - combination (set of faulty com-
ponents). We realized that the state-machine based approach
(of modeling fault mitigation actions) is very tedious, error-
prone and gets extremely complicated as the number of
components and their fault combinations grow. In the current
SLHM Mitigation strategy using Deliberative Reasoner, the
reasoner builds a graph of the function allocation model

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 97 / 132

Table I
IsUsable SEMANTICS

Type Defintion
Component isUsable(c)⇔ ¬isFaulty(c)
AND-Group isUsable(g)⇔ (∀x ∈ child(g))(isUsable(x))
XOR-Group isUsable(g)⇔ (∃x ∈ child(g))(isUsable(x))
MofN-Group isUsable(g)⇔ (∃X ⊆ child(g))(|X| ≥M)

(∀x ∈ X)(isUsable(x))
Function isUsable(f)⇔ (∀x ∈ child(g))(isUsable(x))

Table II
isActive SEMANTICS.

Type Defintion
Component isActive(c) is marked by the deployment

scheme and any previous action of the reasoner
AND-Group isActive(g)⇔ (∀x ∈ child(g))(isActive(x))
XOR-Group isActive(g) ⇔ (∃x ∈

child(g))(isActive(x))(∀y ∈ child(g))(y 6=
x)(¬isActive(y))

MofN-Group isActive(g)⇔
(∃X ⊆ child(g))(|X| ≥
M)(∀x ∈ X)(isUsable(x))(∀y ∈
child(g)/X)(¬isUsable(y))

Function isActive(f)⇔ (∀x ∈ child(g))(isActive(x))

and the assembly model and searches this graph for an
appropriate mitigation action to restore the functionality. The
deliberative reasoning approach using the function allocation
model allows a better modeling scalability for faults and
fault combinations.

Modeling the Functional Decomposition of System:
During the design time, the system integrator enumerates
the system functions as a collection of simple AND trees.
That is, if F is the set of all immediate children of a
function node, fp, in the functional decomposition tree, then
isActive(fp) = (∀f ∈ F)(isActive(f)).

Example Model: Figure 3 shows the functional decom-
position of portions of an Inertial Measurement Unit. The
Inertial Position function requires the GPSPosition function
and the BodyAccelerationMeasurement function. In the run-
ning system one or more such function trees can be active.
Additionally, a lower level function may be required in
multiple trees.

Modeling the Functional Allocation: A function at any
level of the functional decomposition directed acyclic graph
can depend on other child functions and can depend upon the
availability of a set of components at that level. The set of
components related to a function can be hierarchically orga-
nized into groups. There are three kinds of groups: (a)AND
of some components (all), (b) XOR of some components
(exactly one of N), and (c) MofN of some components (at
least M out of N components.). Note that both XOR and
MofN groups are used to model redundancy.

Once specified, the functional allocation tree has the
function at the root, groups as intermediate nodes
and components as the leaf nodes. Components have
two attributes in this tree: isFaulty and isActive. While
isFaulty is determined based on the diagnoser output,

Procedure 1 Driver - RunDR
1: CLEAR LIST GRC, GRN.
2: for component c ∈ DR do
3: MarkAsFaulty(c)
4: end for
5: RunReconfig();
6: return GRC; {set of possible reconfig commands}

isActive is determined by the initial configuration. The
deliberative reasoning process could result in marking a
component (healthy or faulty) to be inactive , i.e., setting
isActive = false. This results in sending a STOP command
to the component. When a component is not faulty it is con-
sidered to be usable , i.e., isUsable(c) =⇒ ¬isFaulty(c).

Usable attribute for the groups can be set based on the
immediate child groups and child components. An AND
group is usable if and only if all its children are usable. A
XOR group is usable if any one of the children is usable. A
MofN group is usable if at least M children are usable. These
rules are summarized in Table I. Note in the table g means
group, c means component. Operator parent(x) returns the
set of all immediate parents of x in the function allocation
Directed Acyclic Graph (DAG). Operator child(x) returns
the set of immediate children of x, and |.| is the cardinality
operator.

Similarly isActive(c) can be evaluated from leaf to the
root of the function allocation tree. A root function in this
tree is usable if all its immediate groups are usable. It
is active if all its immediate groups are active. Table II
summarizes all the rules. Note that due to the maximal
nature of the isActive(c) definition for MofN group, any
reconfiguration action that requires turning a MofN group
active requires to turn all its usable children active.

Example Function Allocation Model: Figure 4 shows
the allocation diagram for one of the functions in figure
components shown in Figure 3 using the components in the
assembly depicted in Figure 2. The model indicates that
the GPS Function can be provided by an M of N (1 of
2) Group. It requires the services of at least one of the
two AND Groups (Group2 or Group3). The AND groups
in turn require the services of all of their child nodes (here
components).

A. Search and Reconfiguration Algorithms

During run-time, the deliberative engine is seeded with
the functional allocation model translated into a XML form
and the initial configuration of the system components.
Internally, it maintains three lists: (a) Global List GFC: set of
components that have been diagnosed as faulty, (b) Global
List GRC: set of possible reconfiguration commands, and
(c) Global List GRN: set of possible reconfiguration nodes.

Furthermore, the deliberative engine assigns an index to
each node in the functional allocation graphs. All leaves
are assigned index 0. Any other node has a level Number

89Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 98 / 132

Procedure 2 Mark as faulty
Input: Faulty Component c
Given: RN is an empty set.

1: if c ∈ GFC then
2: return
3: end if
4: c.isFaulty=true
5: c.isUsable=false
6: GFC.add(c)
7: RN = visitParent(c)
8: if isempty(RN) then
9: output-command = RESET(c)

10: else
11: output-command=STOP(c)
12: GRN.add(RN)
13: end if
14: GRC.add(output-command)

that is Max(Level-Index of its children) +1. This Level-
Index is used to sort the elements in GRN (the Possible-
Reconfig Nodes) based on the graph topology. During the
reconfiguration search, the elements in GRN are explored for
reconfiguration in the increasing order of Level-Index , i.e.,
the reconfigurable nodes closest to the source is explored
first.

Each time the deliberative reasoner is invoked, it receives
an input list DR of components diagnosed as faulty. It
invokes the steps detailed in Procedure 1. The deliberative
reasoner uses the Procedure 2 to mark the faulty component
in the functional allocation graphs. This algorithm does
nothing if the component is already faulty. Otherwise, it
marks it as faulty and invokes the visitParent Procedure 3.
If the visitParent Procedure returns a possible reconfigura-
tion node, then it records a command to STOP the faulty
component. Otherwise, it records a command to RESET the
faulty component. The reconfiguration node is added to the
GRN, the command is added to the GRC.

The visitParent Procedure 3 is used to visit a parent
node of the current node in the function allocation graph.
It evaluates the IsUsable property for each parent node.
If a parent node is still usable, then it returns the node
as reconfiguration node. Otherwise, it recursively invokes
VisitParent on the parent node. Note that each group has
only one parent group or one or more function parent node.

Once the reconfiguration node, i.e., the node in the allo-
cation tree where the change has to take place is identified,
the Run Reconfig Procedure 4 is invoked to compute the
reconfiguration that would restore the functionality. This
algorithm loops through each node that is stored in the
GRNlist. It invokes the Reconfig Procedure 5 on each node,
which returns true if an alternative exists, else it returns false.
It also invokes the ReconfigStop Procedure 6 on those child
nodes that need to be stopped as they are no longer usable.
Components that are marked as active but do not belong to
any active parent group are commanded to be stopped. As
a last step, it checks if any of the receptacles need to be

Procedure 3 visitParent
Input: Node N
Output: Set of Reconfig Node RN

1: P = parent(N)
2: for p ∈ P do
3: if isUsable(p) then
4: RN.add(p) {add a usable node to possible reconfig nodes}

5: return RN
6: else
7: if p ∈ GRN then
8: GRN.remove(p)
9: end if

10: return visitParent(p)
11: end if
12: end for
13: return 0

Procedure 4 RunReconfig
1: for n ∈ GRN do
2: Result= Reconfig(n)
3: if Result then
4: CN = child(N) {set of children}
5: for ch∈ CN do
6: if ¬isUsable(ch) ∧ isActive(ch) then
7: ReconfigStop(ch)
8: end if
9: end for

10: end if
11: end for
12: Check for Rewiring

rewired to a facet on a newly activated provider component.
This step of rewiring is required if any component servicing
a facet has been stopped in the current reconfiguration.

B. Example Reconfiguration

Consider the assembly captured in Figure 2. Initially Sen-
sor, GPS, NavDisplay components are active. Sensor2 is also
active. But, GPS2 is semi-active. Thus, GPS2 consumes data
from the Sensor2 but does not publish data to NavDisplay.
At this time, the Global List of Fault Candidates GFC is
initialized as an empty list. The deliberative engine records
the initial states of the component and identifies if the
currently active functionality shown in fig 4 is satisfied or
not.

The Deliberative Engine is invoked if there is any fault
diagnosis reported by the Diagnosis Engine component.
Consider that GPS component is reported faulty. This will
lead to the invocation of the MarkAsFaulty Procedure 2,
causing GPS to be set as faulty and unusable. When the
VisitParent Procedure 3 is invoked, the parent group of
GPS (And Group2) will be marked as unusable because it
requires all children to be usable. A recursive call to the
same Procedure will identify that the MofN Group 1 is still
usable because at least 1 of the 2 AND groups, Group 3
is still usable. At the end of these two Procedures, Group1
will be added to the GRN and a command to stop the GPS

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 99 / 132

Procedure 5 Reconfig
Input: Node N

1: if isUsable(N) then
2: if N.type() ==COMPONENT ¬isActive(N) then
3: N.isActive= true
4: Output-Command = START(N)
5: GRC.add(Output-Command)
6: end if
7: if N.type() ==MofNGROUP then
8: CN=child(N)
9: for x ∈ CN do

10: Reconfig(x)
11: end for
12: N.isActive= true
13: end if
14: if N.type() ==ANDGROUP then
15: if isUsable(N) then
16: CN=child(N)
17: for x ∈ CN do
18: Reconfig(x)
19: end for
20: N.isActive= true
21: end if
22: if N.type() ==XORGROUP then
23: CN=child(N)
24: for x ∈ CN do
25: if isUsable(x) then
26: Reconfig(x)
27: for y ∈ CN and y 6= x do
28: if isActive (y) then
29: ReconfigStop(y)
30: end if
31: end for
32: N.isActive= true
33: return {It will return as soon as the first is

usable child is found}
34: end if
35: end for
36: end if
37: end if
38: return
39: end if

component will be added to the GRC.

Once the reconfigurable nodes are identified, RunReconfig
Procedure 4 will be invoked to identify the exact reconfigu-
ration commands to restore the functionality. The Reconfig
Procedure 5 will be performed on Group 1 which is of
type MofN. This will result in iterative invocation of the
Reconfig Procedure 5 on Group2 and Group3. While nothing
will happen in the context of Group2 as it is no longer
usable, Reconfig step will be invoked on Group3’s children:
Sensor2 and GPS2. Commands to START GPS2 component
will be added to the Global Reconfig Command (GRC)
list. The RunReconfig Procedure 4 will invoke ReconfigStop
Procedure 6 on the other AND group (Group2) that will
result in the GRC list being updated with a stop command
for the Sensor component. An additional check will be
performed to see if any receptacle ports need to be rewired.
This results in the rewire of the receptacle in NavDisplay to

Procedure 6 ReconfigStop
Input: Node N

1: if N.type() 6= COMPONENT then
2: N.isActive=false
3: CN=child(N)
4: for x ∈ CN do
5: ReconfigStop(x)
6: end for
7: end if
8: if N.type() == COMPONENT then
9: PN=parent(N)

10: deactivate= true
11: for x ∈ PN do
12: if isActive(x) then
13: deactivate = false
14: BREAK
15: end if
16: end for
17: if deactivate then
18: output-command=STOP(N) {Deactivate a component,

when none of its parents are active}
19: GRC.add(output-command)
20: end if
21: end if

use the facet in GPS2. Note the details of this check have
not been included in the paper due to space constraints.

C. Limitation
The algorithm described above suffers from a limitation

exposed by the XOR group. The XOR group dictates that
one and only one component associated with that group is
active at any time. This condition associated with the XOR
group could be violated in the algorithm described above. If
one or more components appeared under an XOR group as
well as in other branches of the function allocation model,
the algorithm does not ensure that the XOR conditions are
honored. Currently, we impose a restriction that a component
featured under an XOR group may not feature elsewhere in
the function allocation model.

V. CONCLUSION

This paper discussed our approach towards restoring the
health of a software system based on identifying the alterna-
tive component configurations using the function-allocation
model for the system. We described the design language for
modeling the function allocation, the algorithm employed
to update the usable branches of the function allocation
model based on the fault report from the diagnosis engine
and identify suitable component reconfigurations that can
restore the function. An example was described to illustrate
the function allocation design and the algorithm. In order
to relax the restrictions associated with function allocation
model, we are exploring other approaches such as using a
SAT solver to identify alternate configurations.

Acknowledgement
This paper is based upon work supported by NASA

under award NNX08AY49A. Any opinions, findings, and

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 100 / 132

conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Aeronautics and Space Administration.
Authors would like to thank Dr Paul Miner, Eric Cooper, and
Suzette Person of NASA LaRC for their help and guidance
on the project.

REFERENCES

[1] Michael R. Lyu. Software Fault Tolerance, volume New York,
NY, USA. John Wiley & Sons, Inc, 1995.

[2] Wilfredo Torres-Pomales. Software fault tolerance: A tutorial.
Technical report, NASA, 2000. Available at http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8307.

[3] R.W. Butler. A primer on architectural level fault tolerance.
Technical report, NASA Scientific and Technical Information
(STI) Program Office, Report No. NASA/TM-2008-215108,
2008. Available at http://shemesh.larc.nasa.gov/fm/papers/
Butler-TM-2008-215108-Primer-FT.pdf.

[4] S. Ofsthun. Integrated vehicle health management for
aerospace platforms. Instrumentation Measurement Maga-
zine, IEEE, 5(3):21 – 24, September 2002.

[5] S.B. Johnson, T. Gormley, S. Kessler, C. Mott, A. Patterson-
Hine, K. Reichard, and P. Scandura Jr. System Health
Management: With Aerospace Applications. John Wiley &
Sons, Inc, 2011.

[6] Ashok Srivastava and Johann Schumann. The Case for
Software Health Management. In Fourth IEEE International
Conference on Space Mission Challenges for Information
Technology, 2011. SMC-IT 2011., pages 3–9, August 2011.

[7] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahade-
van. A component model for hard real-time systems: CCM
with ARINC-653. Software: Practice and Experience,
41(12):1517–1550, 2011.

[8] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan.
Overview of the CORBA component model. Component-
based software engineering: putting the pieces together, pages
557–571, 2001.

[9] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. Ofsthun.
Practical considerations in systems diagnosis using timed
failure propagation graph models. Instrumentation and Mea-
surement, IEEE Transactions on, 58(2):240–247, February
2009.

[10] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahade-
van. Model-based Software Health Management for Real-
Time Systems. In Aerospace Conference, 2011 IEEE, pages
1–18. IEEE, 2011.

[11] Nagabhushan Mahadevan, Abhishek Dubey, and Gabor Kar-
sai. Application of software health management techniques.
In Proceedings of the 6th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems,
SEAMS ’11, pages 1–10, New York, NY, USA, 2011. ACM.

[12] Betty H Cheng. Software engineering for self-adaptive
systems. chapter Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pages 1–26. Springer-Verlag,
Berlin, Heidelberg, 2009.

[13] Matthias Rohr, Marko Boskovic, Simon Giesecke, and Wil-
helm Hasselbring. Models in Software Engineering, Work-
shops, and Symposia at MoDELS 2006, volume 4364, chapter
Model-driven Development of Self-managing Software Sys-
tems. 2006.

[14] David Garlan, Shang-Wen Cheng, and Bradley Schmerl.
Architecting dependable systems. chapter Increasing system
dependability through architecture-based self-repair, pages
61–89. Springer-Verlag, Berlin, Heidelberg, 2003.

[15] Eric M. Dashofy, Andre van der Hoek, and Richard N.
Taylor. Towards architecture-based self-healing systems. In
WOSS ’02: Proceedings of the first workshop on Self-healing
systems, pages 21–26, New York, NY, USA, 2002. ACM
Press.

[16] Ji Zhang and Betty H. C. Cheng. Model-based development
of dynamically adaptive software. In ICSE ’06: Proceeding
of the 28th international conference on Software engineering,
pages 371–380, New York, NY, USA, 2006. ACM.

[17] Paul Robertson and Brian Williams. Automatic recovery from
software failure. Commun. ACM, 49(3):41–47, 2006.

[18] B.C. Williams, B.C. Williams, M.D. Ingham, S.H. Chung,
and P.H. Elliott. Model-based programming of intelligent
embedded systems and robotic space explorers. Proceedings
of the IEEE, 91(1):212–237, 2003.

[19] Brian C. Williams, Michel Ingham, Seung Chung, Paul El-
liott, Michael Hofbaur, and Gregory T. Sullivan. Model-based
programming of fault-aware systems. AI Magazine, 24(4):61–
75, 2004.

[20] Michael R. Lyu. Software reliability engineering: A roadmap.
In 2007 Future of Software Engineering, FOSE ’07, pages
153–170, Washington, DC, USA, 2007. IEEE Computer
Society.

[21] Laura L. Pullum. Software fault tolerance techniques and
implementation. Artech House, Inc., Norwood, MA, USA,
2001.

[22] ARINC specification 653-2: Avionics application software
standard interface part 1 - required services.

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 101 / 132

Efficient Alignment of Aerial Images Based on Virtual Forces

Claudius Stern, Christoph Rasche, Lisa Kleinjohann and Bernd Kleinjohann
Faculty of Computer Science, Electrical Engineering and Mathematics,

Department of Computer Science, C-LAB,
University of Paderborn, Germany

e-mail: {claudis, crasche, lisa, bernd}@c-lab.de

Abstract—Getting a contemporary aerial overview of a disaster
area is a foremost task in search and rescue operations. We
previously have introduced a novel method for registering a
large amount of aerial images when camera parameters are
almost unknown and no reference images are available. This
paper provides two new methods, which improve our method
for image registration based on virtual forces. The goal is to
improve the performance of creating a contemporary overview
map of a disaster area assembling several images taken by
unmanned aerial vehicles (UAVs) equipped with cameras. In this
paper, two new methods are introduced: a method for rotation
estimation and a method for scale estimation. Both methods use
fast heuristic approximation approaches and statistical methods
to provide high robustness. We discuss the methods in detail and
compare them to our previous approach regarding robustness
and calculation speed. We can show that the new methods
significantly increase the performance of the image registration
process.

Keywords-Virtual forces, image registration, UAV, map building

I. INTRODUCTION

For large-scale disasters—natural or human made—getting
a contemporary overview of the disaster area is an important
task in order to find victims and to plan the rescue actions.
Often an area is affected, which is too large to efficiently get
an overview at ground level. Classically, a manned aircraft or
helicopter is used to gather aerial pictures of the whole scene.
Nevertheless only in few cases the pictures are used to build
a map. In the cases where a helicopter equipped with video
cameras has been assigned an observation task, the video is
seen only by the observer located in the helicopter. Typically,
the video is not analyzed automatically and sometimes not
even recorded. Slow changes of the environment like, for
instance, the imminence of a flood may be recognized too late.
Also typically, there is only one helicopter over the area due
to the costs of such a mission. Hence, there is no possibility
to get up-to-date images of more than one place at the same
time. Furthermore, manned helicopters, which are not directly
involved in rescue missions are often not allowed to fly over
persons at low altitudes.

In recent years, Unmanned Aerial Vehicles (UAVs) have
increasingly become a more viable choice for such situations.
The research project SOGRO (German: ”Sofortrettung bei
Großunfall mit Massenanfall von Verletzten”, English: ”Im-
mediate rescue in a large-scale accident with mass casualties”)
also makes use of UAVs for exploring a terrain where a large-
scale accident or a natural disaster has caused many casualties.

In this paper, we present the improvement of an image
registration approach developed in the course of the SOGRO
project. In [1], we tackle the challenge to register sequentially
arriving images to a consistent map of a disaster area. To
achieve this, aerial images are delivered by a swarm of UAVs,
which spread out over the area [2], [3]. This enables us to
deliver up-to-date images of different parts of the disaster area
at the same time.

Each UAV produces many images, which are partially over-
lapping. The images contain distinctive feature points, which
can be extracted automatically. To improve the old-fashioned
observer approach, we store the images in a database, analyze
them, e.g., by extracting distinctive features, and using them
to create a contemporary overview map of the disaster area.
The extracted features are also stored in the database. They
are used to compare different images to each other such that
corresponding parts of images can be determined.

Corresponding feature points (key points) are connected
with virtual forces. Our image registration approach introduced
in [1] translates, rotates and scales the images such that
the forces’ lengths becomes minimal. We will describe that
approach shortly in Section II.

Two new methods are presented in this paper, which in-
crease the performance of our previous approach, supporting
the ability using low-cost UAVs to automatically create a
contemporary overview map of an area. We introduce a
new fast heuristic rotation estimation method and a new fast
heuristic scale estimation method. Both methods are compared
to the former ones in terms of calculation speed and resulting
scale factors.

The paper is organized as follows. In the next section, we
will point out the problems of classical image registration
and introduce the main idea of using virtual forces for image
registration. In Section III, we will give an overview of key
point extraction methods and compare our work with regard to
other approaches. Section IV describes our new approach for
rotation estimation in detail and Section V explains the new
approach for scale estimation. In Section VI, we show some
results of the evaluation regarding the use of the new methods
compared to the old ones. In Section VII, we conclude the
paper and give an outlook on future research.

II. VIRTUAL FORCES FOR IMAGE REGISTRATION

In [1], we have described the first steps towards using virtual
forces for image registration. For better understanding, we
motivate the use of virtual forces here again.

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 102 / 132

In order to build a contemporary map of a disaster area
only using civil UAVs equipped with relatively inexpensive
camera equipment, we encountered a challenge. Using clas-
sical approaches did not lead to satisfying results. We used
SIFT [4] as key point extractor, later also SURF [5]. After
a descriptor matching, RANSAC [6] was applied to filter the
matches. This approach is well-known and broadly used, e.g.,
for satellite images. Assuming only rare information about
flight attitude (describing, e.g., the position, the nick-angle,
the roll-angle, and the yaw-angle) and the inavailability of
reference imagery, only few images could be stitched due
to accumulating perspective errors. This behavior already
has been described by Brown and Lowe when successively
concatenating homographies [7].

The challenge in our scenario is to be able to create a
contemporary map of a disaster area without having flight
attitude information or any reference imagery. In field tests, we
also evaluated the reliability of off-the-shelf GPS receivers and
decided not to rely on them. The GPS signal delivered by our
receiver had a relatively high tolerance and even disappeared
intermittently. So, we decided not to rely on any measured
reference for the first steps. Our approach does not take
any measured reference into account at this time. In future
research, different measurements shall be included to increase
the stability even more or to increase the achievable resolution.

Classical approaches typically use a static mapping function,
local or global. In the global case, all images are needed in
advance to calculate a consistent mapping function. In the local
case, errors would propagate if the first image’s parameters
are erroneous. Using virtual forces for image registration
addresses with both problems, mapping images in a flexible
way and balancing the errors.

Images are regarded to be masses connected by forces that
could be imagined to work like rubber bands or springs, which
tend to have a length of zero. A virtual force has a start
point, an end point, a length and a direction. The force’s
strength is equivalent to its length. Like in the classical image
registration process, key points (distinctive image features) are
extracted from the images. These key points are compared
and matched against each other. Then each matching pair is
fitted with a new virtual force, pulling the newest image to
the previous ones, which it partially overlaps (otherwise no
matchings would have been found). Here connections between
the last image and its direct predecessor are established as
well as connections to all other images, which it overlaps by a
certain amount. Afterwards, an iterative process moves, rotates
and scales the masses until an equilibrium is established,
namely, the sum of all remaining forces is minimal. Assuming
geometrically consistent matches, corresponding key points
then will be next to each other, ideally with zero distance.

III. RELATED WORK

To find matching interest points (features) is essential for
image registration. Several interest point detectors were intro-
duced in the last decades. Such detectors are usually chosen
by means of requirements of an application. There are simple

feature detectors for edges and/or corners, e.g., like the Harris
corner detector [8], which are easy to compute. As these
detectors only indicate the presence of a feature, they are not
directly usable for image registration. When using a group of
features to match against another group of features, taking
the geometrical structure of the groups into account, these
kind of features are nevertheless usable for image registration.
Especially when regarding video sequences, these features or,
e.g., the features Shi and Tomasi introduced in [9] are trackable
in subsequent video frames assuming some kinematic restric-
tions.

More general, for image registration purposes features are
needed, which can be compared in terms of similarity. Two
well-known feature detectors of this kind are the Scale-
invariant feature transform (SIFT) [4] and Speeded Up Robust
Features (SURF) [10], [5].

As described by Zitová and Flusser in [11], most image
registration techniques use a kind of keypoints, which are
compared and matched against each other. The matched points
are then considered to represent the same location in the scene,
which was captured. According to Zitová and Flusser, image
registration is the process of overlaying two or more images of
the same scene taken at different times, from different view-
points, and/or by different sensors. A comprehensive survey
of the image registration process and an overview of solution
methods used by current approaches for different processing
steps is given in [11]. They also provide a classification of
different approaches and according to them the application
of this work belongs to their classes multiview analysis and
multitemporal analysis. The images used in our scenario can
be delivered by several UAVs at different positions over the
area, and also the same part of the area can be recorded
repetitively as the intention is to provide a contemporary
overview map.

IV. FAST HEURISTIC ROTATION ESTIMATION

In this section, we introduce the novel rotation estimation
method and compare it to the former approach.

We assume two masses that are connected by some virtual
forces. The former method presented in [1] was mainly in-
spired by physical application of forces to a mass. Besides an
acceleration, a torque-like quantity was calculated and used for
rotation. In the very first implementation, the center of gravity
(CoG) of the mass itself was used as center of rotation. This
had been enhanced so that the CoG of the forces’ attraction
points was used. Hence, the former method needed many
iterations to stabilize.

The new method also uses the CoG of the key points in two
images as center of rotation. Two center points are calculated:
one for the start points in the first image and one for the
end points in the second image. A CoG point is calculated
for both masses, using the start points CoGstart and the end
points CoGend of the forces respectively.

CoGstart =

∑
Fu

start(fi)

‖Fu‖
CoGend =

∑
Fu

end(fi)

‖Fu‖

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 103 / 132

CoG2

CoG1
d2

f1

d1

a

Fig. 1. Simple example for rotation calculation. The rotation angle α is
derived by intersecting the lines going through the CoG points and a matching
pair of key points. In this example, only one matching pair is used for
demonstration.

Forces can be marked as ineffective, so Fu ⊂ F denotes the
forces, which are actually used from the set of totally available
forces F , fi ∈ F denotes one force with a start point start(fi)
and an end point end(fi). Both, start point and end point are
given in local coordinates with respect to the according mass
object.

For each force two lines are built: a first line through the
CoG point of the start points and the start point of the force,
and a second line through the CoG point of the end points and
the end point of the force. These two lines are intersected and
the angle between them is calculated. This angle represents the
rotation angle, which is necessary to rotate the end-point-mass
such that it is equally oriented like the start-point-mass. Fig. 1
shows a simple example for the rotation calculation described
above. For demonstration only one force (f1); is considered.

#»

d1 =
»

start(f1)− # »

CoG1
#»

d2 =
»

end(f1)− # »

CoG2

α = arccos

#»

d1 ×
#»

d2

‖ #»

d1‖‖
#»

d2‖

With only one force considered, only two distance vectors
are considered (

#»

d1,
#»

d2). Here,
#»

d2 denotes the distance vector
from the CoG point of the start points to the actual start point
of f1, and

#»

d1 denotes the distance vector from the CoG point
of the end points to the actual end point of f1. The angle α
can then be derived by calculating the arc cosine of the cross
product of the two vectors divided by their length.

In general, the mean angle ᾱ between the matching pairs’
directional vectors is used:

»

dstart
i =

»

start(fi)−
»

CoGstart
»

dend
i =

»

end(fi)−
»

CoGend

αi = arccos

»

dstart
i ×

»

dend
i

‖
»

dstart
i ‖‖

»

dend
i ‖

ᾱ =

∑
Fu
αi

‖Fu‖

Fig. 2. Old scale method. Two previously aligned images with different scales
are shown. The virtual forces, which connect the images, form a star shape.
These forces act like gravitational forces and constrict the bigger image.

V. FAST HEURISTIC SCALE ESTIMATION

In this section, we introduce a novel scale estimation
method. The new method needs less computation time for
scale changes and the algorithm itself is much more numer-
ically stable than the former one. In non-controlled environ-
ments the UAV faces ascending or descending air currents
and has to level them out. During that leveling, scale changes
appear, as well as, when the territory rises or falls; whereas the
altitude of the UAV remains stable. Hence, scale changes will
occur and have to be tackled. Following is a brief description
of the former method.

The former method needed previously adjusted images.
Then the forces formed a star shape and the forces were
applied like gravitational forces. Fig. 2 shows two images
connected by forces, which were previously adjusted. The
forces also have been filtered and only the solid black ones are
effective. Nevertheless, that method required scaling iterations
interleaved with adjustments to stabilize: The forces’ vectors
are treated as lines and are randomly selected for intersection.
The mean of the intersection points is used as the center point
for scaling. Due to the randomness of the intersection, the
center point moves and after a few steps a readjustment of
the mass is necessary. In particular, the calculation of the
intersection points is numerically unstable due to the shrinking
vector lengths when the matching points come close to each
other. Nevertheless, that approach is robust due to the use
of statistical methods to overcome this numerical instability.
However, this procedure needed many calculation steps in
iterations when it came to scale changes, e.g., due to an altitude
change of the UAV. To cope with this behavior, a new method
has been created.

The new method also uses a statistical approach to derive the
center of the scale operation. In contrast to the former method,
the CoG of the key points is used instead of the intersection

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 104 / 132

CoG1CoG2

d2 d1

f1

Fig. 3. Simple example for scale calculation. The scale factor for one iteration
to scale the right mass to the left one is calculated as 1.001‖d2‖−‖d1‖. In
this example, only one distance is used for demonstration.

points. This operation is independent of the actual position of
the two masses. Like in the previous section, a CoG point is
calculated for both masses. CoGstart is calculated using the
start points and CoGend is calculated using the end points of
the forces.

Fig. 3 shows a simple example for scale calculation. Two
masses are shown, both with key points and connected by
forces. On both masses the CoG points are marked. For
demonstration, only one distance pair is depicted. Typically all
distance pairs are taken into account and the arithmetic mean
is used as scale factor. Listing 1 shows the basic algorithm
to calculate the scale of two masses. Each force connected
to both images has a start point and an end point. The start
points are located on one image, the end points on the other.
For both point sets a center of gravity is calculated. Then the
mean distance of each start point to the start point center is
set in relation to the mean distance of each end point to the
end point center. The resulting ratio is used as scale factor.

start diff i = ‖ start(fi)− CoGstart‖
end diff i = ‖ end(fi)− CoGend‖

mean diff =

∑
Fu

end diff i − start diff i

‖Fu‖
mean scale = 1.001mean diff

A more sophisticated variant has been implemented to
support multiple masses as potential force sources. There, at
first, the forces are grouped according to their source mass. For
each group of forces the basic algorithm is used to calculate
a scale factor. Then a mean scale factor is calculated from the
individual scale factors of each group.

As mentioned before, the scale center is of great importance,
too. If two masses were aligned before, the scale operation
should not move the mass. In the former approach, the scale
center was a bit volatile, so the pure scale operations had
to be interleaved by adjusting operations. The new approach
improves this behavior. The scale center is calculated as the
center of gravity of all start points and end points respec-
tively. Assuming aligned masses and geometrically consistent
matches (i.e., the matching points on the images represent the
same area in reality), the two centers for start points and end
points would lie above each other. Scaling around this point

scaleWithCoG()
CoGstart = calculateCenter(startPoints(Fu))
CoGend = calculateCenter(endPoints(Fu))
foreach fi ∈ Fu do:

start_diff = ‖ start(fi)− CoGstart‖
end_diff = ‖ end(fi)− CoGend‖
mean_diff = mean_diff + (end_diff - start_diff)

mean_diff = mean_diff / ‖Fu‖
mean_scale = pow(1.001, mean_diff)

Listing 1. Basic algorithm to scale the last mass according to the virtual
forces. The mean scale is an exponential function of the mean difference of
the distances from the start points to the start point center and the distances
from the end points to the end point center.

0 20 40 60 80 100
image

101

102

103

104

105

m
ill

is
e
co

n
d
s

new alignment, new scaling
new alignment, old scaling
old method

Fig. 4. Comparison of the computation times between old and new method.
The total computation times including alignment and scaling are shown. The
values are the mean of ten independent runs on identical image sets. Note the
logarithmic scale for computation time.

assures that the scale operation does not move the center of
gravity in terms of global coordinates.

Summarized, the new method has a faster convergence rate,
is independent from position and rotation of the mass to be
scaled and is numerically stable.

VI. RESULTS

Using the new method for rotation estimation, we have
achieved a significant speed-up of the registering performance.
In Fig. 4, the computation times of the old method [1] and the
new method are compared to each other. The total computation
times including alignment and scaling are shown. The values
are given in milliseconds and are calculated as the geometric
mean of ten independent runs on identical image sets of 100
images. As it can be seen, the new method outperforms the old
one and provides a much more stable runtime behavior. Also
the impact of the new scaling method can be seen here. The
middle curve depicts the runtime of the new rotation estimation
method combined with the old scaling method.

For this evaluation, images taken the bottom-view camera
of a “Parrot AR.Drone” [12] are used. The camera lacks a
stabilization so it is a good test to the robustness of our

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 105 / 132

0 20 40 60 80 100
image

0

5

10

15

20

25

30

35

40
it

e
ra

ti
o
n
 s

te
p
s

new method
old method

Fig. 5. Comparison of the iteration steps needed to stabilize between old and
new method. The values are the mean of ten independent runs on identical
image sets. A scale change starts at image 55. Here, the iteration steps of
the old method increase significantly. The new method better adapts to scale
changes due to its faster convergence.

approach against perspective distortions. Nevertheless, some
problems are to be expected at increased camera tilt levels,
when the perspective distortion becomes too large. Here a false
scale change is to be expected.

Fig. 5 shows the performance of the new scale estimation
method compared to the former one in terms of iteration steps.
In the first 54 images, the performance of both approaches
is nearly equal. A scale change starts at image 55 and
immediately the number of iteration steps of the old method
increases significantly over the number of iteration steps of the
new method. Most of the time, the new method only needs
one iteration step and while the scale changes, it significantly
outperforms the old method.

In Fig. 6, a related comparison of the computation times and
the scale factor is shown. The underlying set of images was
taken with the aforementioned ”Parrot AR.Drone”’s bottom-
view camera. The image set was taken at approximately the
same height above ground for all images. Here the effect
of large perspective distortion occurs, which causes a false
reaction of the heuristic scale estimation. Nevertheless, it can
be seen that the new method of scale estimation is much less
sensitive to such distortions. The resulting scale factor is as
expected: flat lines in phases of plain flight and a limited scale
change during phases with increased camera angles. These
occur as the “Parrot AR.Drone” is a Quadrotor, and it has to
change its flight attitude in order to fly in a given direction.

At last we evaluated different implementations of the new
scaling approach. We changed the scale estimation function
to a function, which should be able to calculate the scale
difference between two images in one single step. For this
purpose we used the mean quotient of the distances of the start
points to their center and the distances of the end points to
their center. In the aforementioned example showed in Fig. 3,

0 20 40 60 80 100
image

0

100

200

300

400

500

600

700

800

m
ill

is
e
co

n
d
s

new method
old method

0 20 40 60 80 100
image

1.0

1.1

1.2

1.3

1.4

sc
a
le

 f
a
ct

o
r

Fig. 6. Comparison of the computation times between old and new method
related to the scale factor. The values are the mean of ten independent runs
on identical image sets. A scale change starts at image 55. The scale changes
are false positives due to perspective distortion. The new method’s reaction
is much less than that of the old method.

0 20 40 60 80 100
image

0

100

200

300

400

500

600

700

800

m
ill

is
e
co

n
d
s

CoG exponential
CoG quotient
CoG quotient const.
old scaling

0 20 40 60 80 100
image

0.8

1.0

1.2

1.4

1.6

1.8

2.0

sc
a
le

 f
a
ct

o
r

Fig. 7. Comparison of the computation times and the resulting scale factor
of the old method with different versions of the new scale estimation method.

the scale factor would be calculated as d1/d2 to scale the right
image to the left one. Fig. 7 shows the calculation times and
the resulting scale factors of four different scale estimation
implementations. All implementations, which use a variant of
the new scale estimation, are using the CoG points of the
start points and the end points respectively. The chart lines

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 106 / 132

Fig. 8. Comparison between new and old scaling method. Shown are the
registered images using the new scaling method. The underlying contour
marks the extent of the registered images, if the old scaling method would
have been used.

are named correspondingly. The scaling method using the
direct quotient method (CoG quotient const.) needs constant
computation time but is very sensitive to any distortions
and reacts with false scale changes. Executing that method
iteratively (CoG quotient) increases its scaling performance
but yet the quotient method is worse than the old scaling
method. Using the exponential function for scale estimation in
combination with the CoG points (CoG exponential) reaches
our goal and outperforms the old scale method in terms of
calculation time as well as in the resulting scale factor.

Fig. 8 shows the registered images using the new methods.
Underneath the images a contour is drawn. It marks the extent
of the images, if the old scaling method would have been
used. The contour, starting very close to the images, soon
deviates in scale. That deviation starts to grow, when the
“Parrot AR.Drone” moves sidewards due to the assymetric
horizontal and vertical flare angles.

VII. CONCLUSION & OUTLOOK

We presented new methods for rotation estimation as well
as for scale estimation. The fast heuristic rotation estimation
significantly increases the overall performance of the map
building process and provides a smoother runtime behavior
than its predecessor.

Different implementations of the new approach for the fast
heuristic scale estimation were compared to the old scale es-
timation method and against each other in terms of numerical
stability, calculation time and resulting scale factor calculation.
The best one—based on an exponential function of the mean
difference of two vector lengths—provides a scale estimation
method independent from position and rotation of the object
to be scaled. It outperforms the old method in all tests: the
calculation is numerically stable, the calculation is faster and

is less dependent on scale changes, and the calculated scale
factor is less sensitive to perspective distortions.

The next step will be the integration of perspective projec-
tion into the mapping as well as the usage of sporadic reference
information. On the one hand, this will allow the building of
geo-referenced maps and, on the other hand, we can make
use of the sporadic reference information, e.g., to increase
the resolution of the map. Another future work will be the
evaluation of different kinds of features in order to increase
the mapping speed even more.

ACKNOWLEDGMENTS

This contribution was developed in the course of the
SOGRO project funded by the BMBF (German ministry of
education and research) under grant number 13N10164.

REFERENCES

[1] C. Stern, C. Rasche, L. Kleinjohann, and B. Kleinjohann, “Towards
using virtual forces for image registration,” in The 5th International
Conference on Automation, Robotics and Applications (ICARA 2011),
Wellington, New Zealand, Dec. 2011.

[2] C. Rasche, C. Stern, W. Richert, L. Kleinjohann, and B. Kleinjohann,
“Combining autonomous exploration, goal-oriented coordination and
task allocation in multi-uav scenarios,” in Autonomic and Autonomous
Systems (ICAS), 2010 Sixth International Conference on, Mar.
2010, pp. 52 –57, accessed 25-January-2012. [Online]. Available:
http://dx.doi.org/10.1109/ICAS.2010.16

[3] C. Rasche, C. Stern, L. Kleinjohann, and B. Kleinjohann, “Coordinated
exploration and goal-oriented path planning using multiple uavs,” in
International Journal on Advances in Software, vol. 3, no. 3&4. IARA,
2010, pp. 351–370.

[4] D. Lowe, “Object recognition from local scale-invariant features,”
in Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, vol. 2, 1999, pp. 1150 –1157 vol.2,
accessed 25-January-2012. [Online]. Available: http://dx.doi.org/10.
1109/ICCV.1999.790410

[5] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (surf),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346 – 359, 2008, similarity Matching in Computer Vision and
Multimedia. [Online]. Available: http://www.sciencedirect.com/science/
article/B6WCX-4RC2S4T-2/2/c2c03b6165996e30312e5b7c7b681155

[6] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, pp. 381–395, June 1981, DOI:
10.1145/358669.358692.

[7] M. Brown and D. Lowe, “Recognising panoramas,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference on,
Oct. 2003, pp. 1218 –1225 vol.2, accessed 25-January-2012. [Online].
Available: http://dx.doi.org/10.1109/ICCV.2003.1238630

[8] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Fourth Alvey Vision Conference, 1988, pp. pp. 147–151, accessed
25-January-2012. [Online]. Available: http://www.assembla.com/spaces/
robotics/documents/abzMnAOEer3zB7ab7jnrAJ/download/harris88.pdf

[9] J. Shi and C. Tomasi, “Good features to track,” in Computer
Vision and Pattern Recognition, 1994. Proceedings CVPR ’94.,
1994 IEEE Computer Society Conference on, jun 1994, pp.
593 –600, accessed 25-January-2012. [Online]. Available: http:
//dx.doi.org/10.1109/CVPR.1994.323794

[10] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in ECCV 2006, ser. Lecture Notes in Computer Science,
A. Leonardis, H. Bischof, and A. Pinz, Eds. Springer Berlin /
Heidelberg, 2006, vol. 3951, pp. 404–417, accessed 25-January-2012.
[Online]. Available: http://dx.doi.org/10.1007/11744023 32

[11] B. Zitová and J. Flusser, “Image registration methods: a survey,”
Image and Vision Computing, vol. 21, no. 11, pp. 977 – 1000,
2003, accessed 25-January-2012. [Online]. Available: http://dx.doi.org/
10.1016/S0262-8856(03)00137-9

[12] “Parrot AR.Drone,” 2012, accessed 25-January-2012. [Online].
Available: http://ardrone.parrot.com

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 107 / 132

Coordinating Energy-aware Administration Loops
Using Discrete Control

Soguy Mak-Karé Gueye
LIG / UJF

Grenoble, France
soguy-mak-kare.gueye@inria.fr

Noël De Palma
LIG / UJF

Grenoble, France
noel.de_palma@inria.fr

Eric Rutten
LIG / INRIA

Grenoble, France
eric.rutten@inria.fr

Abstract—The increasing complexity of computer systems
has led to the automation of administration functions, in the
form of autonomic managers. One important aspect requiring
such management is the issue of energy consumption of
computing systems, in the perspective of green computing.
As these managers address each a specific aspect, there is a
need for using several managers to cover all the domains of
administration. However, coordinating them is necessary for
proper and effective global administration. Such coordination is
a problem of synchronization and logical control of administra-
tion operations that can be applied by autonomous managers
on the managed system at a given time in response to events
observed on the state of this system. We therefore propose to
investigate the use of reactive models with events and states,
and discrete control techniques to solve this problem. In this
paper, we illustrate this approach by integrating a controller
obtained by synchronous programming, based on Discrete
Controller Synthesis, in an autonomic system administration
infrastructure. The role of this controller is to orchestrate the
execution of reconfiguration operations of all administration
policies to satisfy properties of logical consistency. We apply
this approach to coordinate energy-aware managers for self-
optimization and self-regulation of processor frequency.

Keywords-autonomic computing, coordination of multiple
autonomic managers, modeling, synchronous programming,
discrete controller synthesis.

I. INTRODUCTION

A. Green computing and the need for administration loops

The increasing complexity of computer systems, integrat-
ing several distributed components operating in a hetero-
geneous and dynamic environment, had led to a problem
of hand administration to be time-consuming, expensive,
and error-prone. In response to this problem, many research
works contribute to the automation of administration func-
tions, in the form of autonomic managers.

One important aspect requiring such management is the
issue of energy consumption of computing systems, in the
perspective of green computing. Its dynamic management is
based on the fact that the deployment and configuration of
systems can modified in response to changes in workload,
infrastructure and resource availability, or power supply. A
variety of mechanisms can be designed for power-aware
administration, using the autonomic loop framework. For

example, they can contribute at the level of processor
frequency, or at the level of server provisioning.

When multiple loops run concurrently, their interactions
have to be managed themselves, in order to avoid side-effects
annihilating the management actions. Our work focuses on
this problem, and proposes a solution for the coordination
and synchronization of administration managers, seen them-
selves as manageable elements.

B. Autonomic administration loops

Autonomic computing [9] aims at providing self-
management capabilities to systems. As shown in Figure 1,
the managed system or resource is monitored through
sensors, and an analysis of this information is used, in
combination with knowledge about the system, to plan and
execute reconfigurations, through the administration actions
offered by the system API.

managed resource

autonomic manager

analyse

knowledgemonitor

plan

execute

sensor actuator

Figure 1. Architecture of an autonomic system

Typical self-management issues handled in this framework
are self-configuration, self-optimization, self-healing (fault
tolerance and repair), and self-protection. They are managed
in closed loop, for which one design methodology is to apply
techniques from control theory, continuous or discrete.

C. The problem of coordinating administration loops

Classically, an autonomic manager focuses on one specific
concern of system administration. Often, several autonomic

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 108 / 132

managers must be used concurrently to cover all the admin-
istration domain. However, using multiple autonomic man-
agers is not enough for ensuring a correct and efficient global
system administration. The administration policy followed
by each autonomic manager does not take into account
the objectives of others aspects: this can of course lead
to inconsistencies. In order to benefit from the re-use of
several existing autonomic managers, one has to care for
coordinating their executions, according to global criteria
and properties of their assembly. Most of the proposed
solutions for coordinating autonomic managers are based on
software infrastructures, which are in charge of ensuring a
global view of the managed system for all managers and
synchronizing managers’ operations.

However, coordination is a problem of synchronization
and logical control of administration operations that can be
applied by autonomic managers on the managed system at
a given time in response to events observed on the state
of this system. Therefore, its solution requires the use of
models with events and states, where properties on the order
of events or the mutual exclusion of parallel states can
be addressed. Such models are at the basis of reactive or
synchronous programming languages, and their compilation
and analysis tools, as well as discrete control techniques.

D. Our proposed approach

Our approach is to consider the coordination as a synchro-
nization management problem, and to design an additional
layer, as shown in Figure 2, above the individual administra-
tion loops, which constitutes a coordination controller. This
relies upon access to information about local controllers,
such as their current state or execution mode, their con-
trollable features (e.g., suspendability), and relevant events.
We will build this hierarchical controller using models of
reactive systems, which are automata-based, and Discrete
Controller Synthesis to generate automatically the correct
coordination constraint, so that logical coherence invariants
are enforced.

sizing manager ...

coordination manager

managed system and resources

dvfs manager

Figure 2. Coordination architecture of multiple loops

In this paper, we apply this approach to the case of the
coordination of energy-aware controllers, which manage re-
spectively Sizing (server provisioning) and Dvfs (processor
frequency).

%CPU

%CPU Average
(Moving Average)

node

Cluster

&& not maximum_node
> maximum_threshold

< minimum_threshold
&& not minimum_node

Turn one
node on running node off

Turn one

Figure 3. Optimization controller

The rest of the paper is organized as follow. In section
II, we present two energy-aware autonomic managers. In
section III, we present the tools used in our approach for
designing an efficient and correct coordination controller for
autonomic managers. In section IV, we present the design
of the coordination controller for the managers presented in
Section II with our approach. In section V, we present a
simulation of the generated coordination controller. Section
VI presents the integration of the generated controller into
a real system. In section VII, we discuss background and
related work. Finally, in section VIII, we conclude the paper
and outline directions for future work.

II. UNCOORDINATED CONTROL LOOPS

We present two controllers dealing with energy opti-
mization and performance of a system. They are developed
independently. They try to optimize the energy consumption
of a system while preserving a good performance. They are
based on performance thresholds that describe an optimal
performance region where the system must be depending
on its workload.

A. Optimization controller: Sizing

This controller is for replicated servers based on a load
balancer scheme. Its role is to dynamically adapt the degree
of replication according to the system load. It dynamically
turns cluster nodes on when the load of the system cannot
be handled by resources it uses before the overload. When
the system is underloaded, it turns cluster nodes off to save
power under lighter load.

Figure 3 shows the execution scheme of the optimization
controller. The controller analyzes the nodes CPU usage
to detect if the system load is in the optimal performance
region. It computes a moving average of collected load
monitored by sensors. When the controller receives a notifi-
cation from sensors, if the average exceeds the maximum
threshold and the maximum number of replication (max
node) is not reached, it increases the degree of replication by
selecting one of the unused nodes. If the average is under the
minimum threshold and the minimum number of replication
is not reached, it decreases replication by turning a node off.

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 109 / 132

B. CPU-frequency controller: Dvfs

This controller targets single node management. Its role is
to dynamically adapt the CPU-frequency of a node according
to the load this node receives. It dynamically increases or
decreases the CPU-frequency depending on the load.

%CPU Average
(Moving Average)

> maximum_threshold

< minimum_threshold

&& not min_frequency

&& not max_frequency

%CPU Average

CPU
(Frequency / Voltage)

Single node

Decrease CPU
(freq/volt)(freq/volt)

Increase CPU

Figure 4. CPU-frequency controller

Figure 4 shows the execution scheme of this controller.
The controller analyzes the node CPU usage monitored by
sensor. If the observed load exceeds the maximum threshold
and the maximum CPU frequency is not reached, it increases
the CPU frequency. If the load is under the minimum
threshold and the minimum CPU frequency is not reached,
it decreases the CPU frequency. This controller is local to
the node it manages and is implemented either in hardware
or software. The one we use is a user-space software and
follows the on-demand policy.

C. Uncoordinated execution

Here, we analyze the control of replicated servers com-
posed of both controllers Sizing and Dvfs described above.
Sizing deals with the whole system while Dvfs deals with
each node separately.

When adding self-management capabilities to a system,
one can use these two controllers to manage the energy
consumption. The objective of using these two controllers
together could be to optimize the energy consumption lo-
cally on each used node by acting on the CPU frequency
and globally by managing the degree of replication. The
objective is to optimize the energy consumption, without any
coordination, however in some case this objective is not met.
For example, when the system is overloaded, it is detected
by Sizing and an upsizing operation is performed. But the
system is overloaded means that some or all nodes that
compose this system are overloaded, which implies CPU-
frequency increase operation on nodes that are overloaded. If
increasing the CPU frequency of these overloaded resources
could be enough to restore the system performance to the
optimal performance region, the upsizing operation become
irrelevant, useless and leads to waste of energy since a
new node is added while the previous nodes were able to
handle the load received by the system after increasing the
frequency of their CPU. There is a need to delay as long as

possible upsizing operations when CPU-frequeny increase
can be done.

III. SYNCHRONOUS PROGRAMMING AND DISCRETE
CONTROLLER SYNTHESIS

For our contribution, we use the language BZR [3]. This
language allows to describe reactive systems by means
of generalized Moore machines, i.e., mixed synchronous
dataflow equations and automata [11], with parallel and
hierarchical composition. The basic behavior is that at each
reaction step, values in the input flows are used in order
to compute the values in the output flows for that step.
Inside the nodes, this is expressed as a set of declarations,
which takes the form of equations defining, for each output
and local, the values that the flow takes, in terms of an
expression on other flows, possibly using local flows and
values computed in preceding steps (also known as state
values).

Idle Wait

e r and c/s

delayable(r,c,e) = a,s

Active
c/s

r and not c
a = false

a = true

a = false

node delayable(r,c,e:bool) returns (a,s:bool)
let
automaton
state Idle
do a = false ; s = r and c
until r and c then Active

| r and not c then Wait
state Wait
do a = false ; s = c
until c then Active

state Active
do a = true ; s=false
until e then Idle

end
tel

Figure 5. Delayable task in graphical and textual syntax.

Figure 5 shows a small program in this language. It
programs the control of a task, which can either be idle
or active. When it is idle, i.e., in the initial Idle state, then
the occurrence of the input r requests the launch of the
task. Another input c (which will be controlled further by
the synthesized controller) can either allow the activation, or
temporarily block the request and make the automaton go to
a waiting state. When active, the task can end and go back to
the idle state, upon the notification input e. This delayable
node has two outputs, a representing activity of the task, and
s being emitted on the instant when it becomes active : this
latter is connected to the OS with the task starting operation.

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 110 / 132

The main feature of the BZR language is that its com-
pilation involves discrete controller synthesis (DCS). DCS
allows to compute automatically a controller, i.e., a function
which will act on the initial program so as to enforce a given
temporal property. Concretely, the BZR language allows the
declaration of controllable variables, the value of which are
not defined by the programmer. These free variables can be
used in the program to describe choices between several
transitions. These variables are then defined, in the final
executable program, by the controller computed by DCS.
DCS produces, when it exists, the maximally permissive
constraint on the values of controllable variables, such that
the resulting inhibited behavior satisfies the objective.

twotasks(r1, e1, r2, e2) = a1, s1, a2, s2

enforce not (a1 and a2)
with c1, c2

(a1, s1) = delayable(r1, c1, e1)

(a2, s2) = delayable(r2, c2, e2)

Figure 6. Mutual exclusion enforced by DCS in BZR.

Figure 6 shows an example of use of these controllable
variables. This example consists in two instances of the
delayable node, as defined in Figure 5. These instances run
in parallel, defined by synchronous composition: one global
step corresponds to one local step for every equation, i.e.,
here, for every instance of the automaton in the delayable
node. Then, the twotasks node so defined is given a
contract composed of two parts: the with part allowing
the declaration of controllable variables (c1 and c2), and the
enforce part allowing the programmer to assert the property
to be enforced by DCS, using the controllable variables.
Here, we want to ensure that the two tasks running in parallel
will not be both active at the same time. Thus, c1 and c2 will
be used by the computed controller to block some requests,
leading automata of tasks to the wating state whenever the
other task is active.

IV. MODEL-BASED COORDINATION

We propose a coordination solution, based on such re-
active models, to avoid inconsistencies induced by these
controllers running in parallel. This solution consists of de-
signing a coordination controller on top of these controllers.
This coordination controller is responsible of controlling
the execution of Sizing and Dvfs in order to prevent any
execution which may lead to inconsistencies.

The design of such a coordination controller is based
on the synchronous approach. We use the synchronous
programming to model the behavior of each controller.
The models represent all the states in which they can be
during their execution, with some control on transitions. The
composition of these models describes the parallel execution

UpDown

Up
Down

Adding

adding =false

adding =false

adding =false

adding =true

node_added

node_added
and max_node /

and not max_node /

min_node /

CPU_avg > Max_threshold

and not delay /

CPU_avg > Max_threshold

and not delay /

add_node

add_node

CPU_avg < Min_threshold/

remove_node

CPU_avg < Min_threshold/

remove_node

Sizing_control(...) = add_node, remove_node,adding

Figure 7. Optimization controller

of the controllers, which means both desired and undesired
behaviors. We use discrete control synthesis techniques
to automatically compute and generate the coordination
controller based on the composition of the models and a
coordination policy. The coordination policy is expressed as
properties that should be enforced by the desired behaviors.

A. Optimization controller model

The model of this controller is composed of two automata.
Figure 7 represents the automaton for Sizing, where we

add a control of the upsizing operations. The control is
represented by the Boolean delay, upsizing operations are
possible only when this variable is false. The outputs of this
automaton are three Booleans, add_node and remove_node
being signals allowing the controller to request the resuming
or suspension of a node, adding being true whenever an
adding operation is performed.

The initial state is UpDown, both upsizing and downsiz-
ing operations are possible. When the CPU average reaches
the maximum threshold and the upsizing operations are
allowed, the controller requests a new node, and goes to
the Adding state, where it awaits for the new node to be
actually available. In this Adding state, nodes can neither be
added nor removed. When node_added occurs, the controller
can either go back to UpDown, or if there is no more
nodes able to be resumed, go to the Down state where only
downsizing operations can be performed. This Down state is
left once one node is suspended. The Up state is used when
no node can be removed, i.e., when the minimum number
of replication is reached. In the Up state, only the upsizing
operations can be applied.

Figure 8 represents how the Sizing manager can be
controlled, by inhibiting add_node operations in some global
states. The output of this automaton is the Boolean delay,
which enables upsizing operations when it is false. This
output feeds the input delay in Figure 7. Initially, the
automaton is in the state Idle where upsizing operations are

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 111 / 132

delayed. When c is true, it goes to the state Active where
upsizing operations are allowed. It stays there until c is false.

Active

Idle

delay= false

delay= true

c /not c/

Delay_control(c) = delay

Figure 8. Upsizing operations control

B. CPU-frequency controller model

In our coordination problem, it is not necessary to control
the execution of local dvfs controllers. We only need their
current state in order to allow/deny upsizing operations.
Therefore, a global observer is used for collecting informa-
tion about current state of the set of Dvfs, each Dvfs provides
two outputs, min being true when it can not decrease the
CPU-frequency and max being true when it can not increase
the CPU-frequency. This observer is a sensor that monitors
the global state of set of local Dvfs. It has two outputs,
one corresponding to the conjunction of all min outputs
and the others to the conjunction all max outputs. Figure 9
represents the automaton for the observer. The outputs of
this automaton are two booleans, max_freq being true when
all local Dvfs reach the maximum frequency and min_freq
being true when all local Dvfs reach the minimum frequency.

The inital state is Normal where max_freq and min_freq
are false. In this state, at least one of the set of Dvfs
can apply both CPU-frequency increase and CPU-frequency
decrease operations. When all nodes are in their maximum
CPU-frequency, the observer goes to the state Max. If all
nodes are in their minimum CPU-frequency, the controller
goes to the state Min. In the state Max, all Dvfs can only
apply CPU-frequency decrease operations. In the state Min,
they can only apply CPU-frequency increase operations.

min_freq = false

max_freq= true

min_freq = true

max_freq= false

min_freq = false
max_freq= fasle

Normal

Min

Max

not minimum /

 minimum /

not maximum /

maximum /

Dvfs_control(minimum, maximum) = min_freq, max_freq

Figure 9. CPU-frequency controller

When the observer is in the state Max or the state Min,
it stays there until at least one of the nodes is neither in its
maximum CPU-frequency nor its minimum CPU-frequency.

C. Coordination policy

Finally, we present the coordination controller design.

c / not c /

Active

Idle

UpDown

Down Up

Adding

Normal

Min

Max

With c

enforce (max_freq and not delay) or (not max_freq and delay)

Main (...) = ...

delay= false

delay=true

...

... and not delay/

... and not delay/

...

Figure 10. BZR program for coordination policy

Figure 10 is the coordination program built with the
BZR language. The three automata presented before are
composed in parallel, and a contract is added to enforce
the coordination policy. Here, we want that the upsizing
operations to be delayed when CPU-frequency increase
operations can be performed. This coordination policy is
stated by (max_freq and not delay) or (not max_freq and
delay). The variable c is declared as a controllable.

V. COORDINATION CONTROLLER SIMULATION

The generated controller behavior can be simulated be-
fore its integration in the system with the SIM2CHRO
chronogram tool (Verimag). It allows to test if the generated
program reaction, represented by its outputs, respects the
coordination policy expressed as logical invariant whatever
the inputs are. Figure 11 represents a snapshot example of
the complete simulation.

It shows a scenario illustrating the generated coordination
controller in action. The input and output variables are
Booleans. The input minimum notifies that all used nodes

Figure 11. coordination controller simulation

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 112 / 132

are in their minimum CPU frequency and maximum notifies
that all used nodes are in their maximum CPU frequency.
The input overload represents the condition CPU_avg >
Max_threshold and underload the condition CPU_avg
< Min_threshold. node_added notifies that the previous
adding node request have been treated succesfully. At the
beginning, all used nodes are neither in their maximum CPU
frequency nor in their minimum CPU frequency and the
upsizing operations are not allowed (output delay).

At step 5, the input overload becomes true. This event
should trigger an upsizing operation but, since all nodes are
not in their maximum CPU frequency (output max_freq),
this operation is not performed. An upsizing operation is
performed only after the step 11 where all nodes are in their
maximum CPU frequency.

VI. IMPLEMENTATION

A. Integrating the synchronous program into the system

The automata are composed in one BZR program. It is
compiled and the generated code has two main functions:
reset and step. The reset function allows to initialize the
program and step to compute a reaction to events that
correspond to the inputs of this function. The generated
program is a reactive one. It has to be encapsulated into
a loop that is responsible of executing the function step
periodically or when an event occurs to get a reaction.

The coordination controller corresponds to the loop that
encapsulates the BZR program. We have designed a program
that is responsible of getting events from sensors for average
load and Dvfs state, calling the function step with these
events and transmitting the outputs of this function step to
managers.

 Probe Dvfs Probe CPUs

Dvfs

CPUs usage

Managed resources

local dvfs state
Actuator

Sizing

Interface

synchronous program

Coordination controller

add / remove

commandsSizing state

call step results

CPUs_avgglobal state

Figure 12. Integration

Figure 12 represents the architecture of a system in which
the coordination controller is integrated. Since the role of
this coordination controller is to control which manager
should react or not to events, all sensed information is
transmitted to the coordination controller instead of the
managers. The outputs of the coordination, in reaction to
events, are forwarded to the controlled managers i.e., in this

case the manager Sizing. The interface allows interaction
between the synchronous program, the sensors and the
manager.

B. Connecting the automata

The automata are connected to the system by its input
events, and by outputs which are commands to be applied
in the system.

The automata represent the current state of a part of the
system, which the coordination controller needs in order to
make a decision when events occur. The inputs of automata
have to be fed with events occurred in the system for making
them evolve and their outputs have to be applied to the
system for acting on its state.

The automaton Dvfs_control informs about the global
state of the set of local Dvfs and its outputs serve only
for the decision the controller has to make. The inputs
of this automaton correspond to the outputs of the probe
Dvfs. The automaton Sizing_control manages Sizing exe-
cution. It describes the current state of Sizing and deci-
sion it takes in response to events. The input CPU_avg
corresponds to the average of system load. The inputs
max_node and min_node correspond to the capability for
Sizing to apply operations, max_node informing about the
capability to perform an upsizing operation and min_node
a downsizing operation. The output add_node respectively
remove_node are triggering the operations Sizing per-
forms when CPU_avg is over Max_threshold respectively
CPU_avg is under Min_threshold. add_node being true
respectively remove_node being true means Sizing has to
add a new node respectively remove a node. The automaton
Delay_control has one input which is managed by the
generated controller. Its output is used as input for the au-
tomaton Sizing_control, in order to control some transitions
Sizing_control can take.

C. Implementation architecture

This approach has been implemented for the management
of a clustered web server. The managed system consists of
one server Apache and replicated servers Tomcat.

Sizing

Apache

mod_jk

actuator actuator

Dvfs Dvfs

Probes

Switch

Tomcat 1 Tomcat 2

Coord

 Dvfs

 load

add/remove
Client requests

State

node 0

node 1 node 2

Figure 13. Experimental platform: architecture

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 113 / 132

The experimental platform, as shown in Figure 13, con-
sists of a network of three nodes. Node 0 hosts the Apache
server, each of node 1 and node 2, one Tomcat server. Ini-
tially, only one Tomcat server is active. Both Tomcat servers
are active when the requests received cannot be handled by
one. Unlike to the execution without coordination, where
undesired behaviors have been observed, we observe that the
coordination execution follows the defined policy. Upsizing
operations are performed only when all active nodes hosting
a server Tomcat are in their maximum CPU frequency.

In order for this controller to work well, it is important
that it runs sufficiently frequently compared to the load
dynamics : for every load peak to be detected and managed,
the frequency of sampling and the communication must be
fast enough.

VII. RELATED WORK

Concerning energy control, many works addressed energy
management on datacenters. Some of these researches are
based on (i) hardware with voltage and frequency control
(e.g., DVFS [6]), (ii) resource allocation: Reducing power
consumption by reducing the clock frequency of the pro-
cessor has been widely studied [7] [18], Flautner et al.
[5] explored a software managed dynamic voltage scaling
policy that sets CPU speed on a task basis rather than
by time intervals. [4] proposes a power budget guided
job scheduling policy that maximizes overall job perfor-
mance for a given power budget. [1] [13] [14] focused
on dynamic resource provisioning in response to dynamic
workload changes. These techniques monitor workloads or
other SLA (Service Level Agreement) metrics experienced
by a server and adjust the instantaneous resources available
to the server. Depending on the granularity of the server
(single or replicated), the dynamically provisioned resources
can be a whole machine in the case of replicated servers.
Energy efficiency is achieved using a workload-aware, just-
right dynamic provisioning mechanism and the ability to
power down subsystems of a host system that are not
required.

While these works are relevant, they did not adress the
problem of coordinating multiple energy managers. Our
work is complementary since it can be used to build a
system that includes more that one of the previous ap-
proaches. Few works have also investigated manager coor-
dination for energy efficiency. Kumar [10] proposes vMan-
age, a coordination approach that loosely couples platform
and virtualization management to improve energy savings
and QoS while reducing VM migrations. Kephart [2] ad-
dresses the coordination of multiple autonomic managers for
power/performance tradeoffs based on a utility function in
a non-virtualized environment. Nathuji [12] proposes Virtu-
alPower to control the coordination among virtual machines
to reduce the power consumption. These works involve
coordination between control loops, but these loops are

applied to the managed applications. However, these work
propose adhoc specific solutions that have to be implemented
by hand. If new managers have to be added in the system
the whole coordination manager need to be redesigned.

In contrast with [15], which relies on formal specifi-
cation to derive a formal model that is guaranteed to be
equivalent to the requirements, our work can be related to
the applications of control theory to autonomic or adaptive
computing systems [8]. In particular, Discrete Event Systems
in the form of Petri nets models and control have been
used for deadlock avoidance problems [17]. Compared to
these works, we rely on synchronous programming and
discrete controller synthesis. Once an autonomic manager is
modeled as automata, inserting this autonomic manager with
other pre-existing just require to update the coordination
invariants. The new coordination manager is automatically
generated from the managers models and the coordina-
tion invariants. In contrast with [16], which addresses the
management of datacenters based on thermal awarness
with external sensing infrastructure for energy and cooling
efficiency, the work, presented in this paper, focuses on
coordinating multiple workload-aware managers to ensure
an energy efficiency.

VIII. CONCLUSION AND FUTURE WORK

One major challenge in system administration is the
coordination of multiple autonomic managers for correct and
coherent administration. In this paper we presented an ap-
proach for coordinating multiple self-management modules
in a consistent manner to manage a system. This approach,
based on synchronous programming and Discrete Controller
Synthesis, has the advantage of generating the required
controller to enable the correct by construction coordination
of multiple autonomic managers. The advantages of this
approach are following:

• High-level of programming
• Correctness of the controller
• Automated generation/synthesis of the controller
• That is maximally permissive
We have tested this approach for coordinating two energy-

based self-management modules: Sizing, which manages
the degree of replication for a system based on a load
balancer scheme, and Dvfs, which manages the level of CPU
frequency for a single node. In this case, the coordination
policy was to allow Sizing to add new node only when
all Dvfs modules cannot apply increase operations at all in
response to the increasing load the system receives.

For future work, we plan to evaluate this approach
for large scale coordination with more complex coordina-
tion policies and several managers, combining both self-
optimization and self-regulation frequency managers with
self-repair manager that heal fail-stop clustered multi-tiers
system.

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 114 / 132

ACKNOWLEDGEMENT

This research is supported by ANR INFRA under a grant
for the project ctrl-Green.

REFERENCES

[1] Sara Bouchenak, Noel De Palma, Daniel Hagimont, and
Christophe Taton. Autonomic management of clustered
applications. In Cluster Computing, 2006.

[2] Rajarshi Das, Jeffrey O. Kephart, Charles Lefurgy, Gerald
Tesauro, David W. Levine, and Hoi Chan. Autonomic multi-
agent management of power and performance in data centers.
In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems: industrial track,
AAMAS ’08, pages 107–114, Richland, SC, 2008.

[3] Gwenaël Delaval, Hervé Marchand, and Eric Rutten. Con-
tracts for modular discrete controller synthesis. In Pro-
ceedings of the ACM SIGPLAN/SIGBED 2010 conference
on Languages, compilers, and tools for embedded systems,
LCTES ’10, pages 57–66, 2010.

[4] Maja Etinski, Julita Corbalan, Jesus Labarta, and Mateo
Valero. Optimizing job performance under a given power
constraint in hpc centers. In Proceedings of the International
Conference on Green Computing, GREENCOMP ’10, pages
257–267, Washington, DC, USA, 2010. IEEE Computer
Society.

[5] Krisztián Flautner, Steve Reinhardt, and Trevor Mudge. Auto-
matic performance setting for dynamic voltage scaling. Wirel.
Netw., 8:507–520, September 2002.

[6] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.
Brewer, and Paul Gauthier. Cluster-based scalable network
services. In Proceedings of the sixteenth ACM symposium on
Operating systems principles, SOSP ’97, pages 78–91, New
York, NY, USA, 1997. ACM.

[7] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing
algorithm for dynamic speed-setting of a low-power cpu. In
MOBICOM’95, pages 13–25, 1995.

[8] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. Feedback Control of Computing Systems.
Wiley-IEEE, 2004.

[9] Jeffrey O. Kephart and David M. Chess. The vision of
autonomic computing. Computer, 36:41–50, January 2003.

[10] Sanjay Kumar, Vanish Talwar, Vibhore Kumar, Parthasarathy
Ranganathan, and Karsten Schwan. vmanage: loosely coupled
platform and virtualization management in data centers. In
Proceedings of the 6th international conference on Autonomic
computing, ICAC ’09, pages 127–136, New York, NY, USA,
2009. ACM.

[11] Jean louis Colaço, Bruno Pagano, and Marc Pouzet. A
conservative extension of synchronous data-flow with state
machines. In In ACM International Conference on Embedded
Software (EMSOFT’ 05, pages 173–182. ACM Press, 2005.

[12] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated
power management in virtualized enterprise systems. In
Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, SOSP ’07, pages 265–278, New
York, NY, USA, 2007. ACM.

[13] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and
Taliver Heath. Load balancing and unbalancing for power and
performance in cluster-based systems, 2001.

[14] Ivan Rodero, Juan Jaramillo, Andres Quiroz, Manish
Parashar, Francesc Guim, and Stephen Poole. Energy-efficient
application-aware online provisioning for virtualized clouds
and data centers. pages 31–45, 2010.

[15] Roy Sterritt, Michael Hinchey, James Rash, Walt
Truszkowski, Christopher Rouff, and Denis Gracanin.
Towards Formal Specification and Generation of Autonomic
Policies. In Embedded and Ubiquitous Computing, pages
1245–1254, 2005.

[16] Hariharasudhan Viswanathan, Eun Lee, and Dario Pompili.
Self-organizing sensing infrastructure for autonomic manage-
ment of green datacenters. Ieee Network, 25(4):34–40, 2011.

[17] Yin Wang, Terence Kelly, and Stéphane Lafortune. Discrete
control for safe execution of it automation workflows. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, pages
305–314, New York, NY, USA, 2007. ACM.

[18] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker.
Scheduling for reduced cpu energy. In Proceedings of
the 1st USENIX conference on Operating Systems Design
and Implementation, OSDI ’94, Berkeley, CA, USA, 1994.
USENIX Association.

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 115 / 132

Action Learning with Reactive Answer Set Programming: Preliminary Report

Michal Čertický
Department of Applied Informatics

Comenius University Bratislava, Slovakia
certicky@fmph.uniba.sk

Abstract—Action learning is a process of automatic induction
of knowledge about domain dynamics. The idea to use Answer
Set Programming (ASP) for the purposes of action learning
has already been published in [2]. However, in reaction to
latest introduction of Reactive ASP and implementation of
effective tools [6], we propose a slightly different approach, and
show how using the Reactive ASP together with more compact
knowledge encoding can provide significant advantages. The
technique proposed in this paper allows for real-time induction
of action models in larger domains, and can be easily modified
to deal with sensoric noise and non-determinism. On the other
hand, it lacks the ability to learn the conditional effects.

Keywords-ASP; learning; actions; induction;.

I. INTRODUCTION

A. Action Learning and Reasoning about Actions

Knowledge about domain dynamics, describing how cer-
tain actions affect the world, is essential for planning and in-
telligent goal-oriented behaviour of both living and artificial
agents. In artificial systems, this knowledge is referred to as
action model. It is an expression of all the actions that can
be executed in a given domain, with all their preconditions
and effects in some kind of representation language.

Action learning, as a type of reasoning about actions,
is a process of automatic generation and/or modification of
action models based on sensoric observations. Autonomous
and automated systems may benefit from action learning,
since it allows them to adapt to unpredicted changes in
environment’s behaviour (caused for example by addition
of new unknown agents, by hardware malfunction, etc.).

Action models in general are used specifically for the
purposes of planning. As a motivating example, imagine
an autonomous Mars Rover robot (similar to one described
in [4]). Such robot acts in an unknown environment, but
plans its actions based on a static hard-wired knowledge
about about their effects. Now imagine, that one of its
wheels gets damaged, which would change the effects of the
“moveForward” action. If such robot was capable of action
learning, it could update his action model accordingly, and
continue acting successfully towards its goals.

B. Background and Methods

Recent action learning methods take various approaches
and employ the wide variety of AI tools. We should
mention the action learning technique based on heuristic

greedy search, introduced in [16], perceptron algorithm-
based method which can be found in [11], two solutions
based on the reduction of action learning into different
classes of satisfiability problems, available in [1] and [15],
learning with inductive logic programs described in [12], or
learning module written in Answer Set Programming (ASP),
described by M. Balduccini in [2].

The method we propose in this paper is closest to
Balduccini’s learning module, in that it also uses ASP
for induction and representation of action models. There
are however several differences, that make it usable under
different conditions. We will address these differences in
detail in Section IV.

C. Reactive ASP
Answer Set Programming (ASP [7], [3]) has lately be-

come a popular declarative problem solving paradigm, with
growing number of applications [6], among others also in the
field of reasoning about actions. Semantics of ASP enables
us to elegantly deal with incompleteness of knowledge, and
makes the representation of action’s properties easy, due
to nonmonotonic character of negation as failure operator
[10]. With ASP, our knowledge is represented by so-called
extended logic programs - sets of rules of the following
form:

c← a1 . . . an, not b1 . . . not bm.

where ai, bj and c are literals, i.e., either first-order logic
atoms, or atoms preceded by explicit negation sign “¬”. The
“not” symbol denotes negation by failure. Part of the rule
before “←” sign is called head and part after it is body.
Rule with an empty body (n = m = 0) is called a fact and
rule without a head is an integrity constraint. Every logic
program has a corresponding (possibly empty) finite set of
answer sets.

Since we are dealing with dynamic systems, we can
take advantage of so-called incremental logic programs. An
incremental logic program is a triple (B,P [t], Q[t]) of logic
programs, with a single parameter t ranging over natural
numbers [5]. While B only contains static knowledge,
parametrized P [t] constitutes a cumulative part of our
knowledge (Q[t] is so-called volatile part, but we don’t use
it in our solution). In our method, t will always identify the
most recent time step, and P [t] will describe how the newest
observation affects our previous beliefs.

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 116 / 132

In [6], Gebser et al. go further, and augment the concept
of incremental logic programming with asynchronous infor-
mation, refining the statically available knowledge. They
also introduce their reactive ASP solver oClingo which we
use in our solution.

II. LEARNING WITH REACTIVE ASP

We will now describe our learner, which is basically a
short incremental logic program (B,P [t], ∅). It has a large
(but gradually decreasing) number of answer sets, each
corresponding to a single possible action model.

At time step 1, the online ASP solver oClingo [6] com-
putes the first answer set and stores it in memory (along
with all the partial computations it has done so far). At every
successive time step, we confront this answer set with new
observations.

Note 1: The oClingo is a server application, which listens
on a specified port and waits for new knowledge. This
knowledge is sent to oClingo by a controller application,
and in our case always represents the latest action and fluent
observations.

A. Encoding the Action Model

First of all, we needed to choose the encoding of action
models into a logic programs that is sufficiently expressive,
but at the same time remains as compact as possible.

The main idea behind our encoding lies in the fact that
for a given fluent F , every possible action A can either:

1) cause a fluent F to hold (we encode this by a fact
causes(A,F).),

2) cause a complementary fluent ¬F to hold
(causes(A,¬F).),

3) or keep the value of that fluent literal
(keeps(A,F). resp. keeps(A,¬F).).

In addition to that, we want our action models to contain
the information about action’s executability. In that respect,
every action A can either:

1) have a fluent F as its precondition (encoded by a fact
pre(A,F).),

2) or not have it as its precondition (¬pre(A,F).).

B. Generating Answer Sets

Answer sets corresponding to all the possible action
models are generated by static part of our program (logic
program B). It consists of the set of rules depicted in figure
1.

In the first part, we have three choice rules, that generate
answer sets where A either causes F , causes ¬F , or
keeps F . Next two constraints filter out the answer sets
corresponding to impossible models - where A causes F
and ¬F at the same time, or where A both keeps and
changes the value of F . Last two rules merely express the
equivalence between two possible notations of A keeping
F .

% E f f e c t g e n e r a t o r and axioms :
c a u s e s (A, F) ← n o t c a u s e s (A,¬F) , n o t keeps (A, F) .
c a u s e s (A,¬F) ← n o t c a u s e s (A, F) , n o t keeps (A, F) .
keeps (A, F) ← n o t c a u s e s (A, F) , n o t c a u s e s (A,¬F) .
← c a u s e s (A, F) , c a u s e s (A,¬F) .
← c a u s e s (A, F) , keeps (A, F) .
keeps (A, F) ← keeps (A,¬F) .
keeps (A,¬F) ← keeps (A, F) .

% P r e c o n d i t i o n g e n e r a t o r and axioms :
p r e (A, F) ← n o t ¬p r e (A, F) .
¬p r e (A, F) ← n o t p r e (A, F) .
← p r e (A, F) , ¬p r e (A, F) .
← p r e (A, F) , p r e (A,¬F) .

Figure 1. Static (time-independent) part of our learner logic program.

Second part is very similar. Here we have two choice rules
generating answer sets where A either has, or doesn’t have a
precondition F . Constraints here eliminate those answer sets,
where A has and doesn’t have precondition F at the same
time, or where it has both F and ¬F as its preconditions.

Note 2: Keep in mind, that the logic programs in this
paper are simplified to improve the readability and save some
space. You can download the exact ready-to-use ASP solver
compatible encodings from [9].

C. Answer Set Elimination

Now, we need to process new knowledge received at
successive time steps1. We use a time-aware, cumulative
program P [t] for that.

e x t e r n a l obs / 2 .
e x t e r n a l exe / 2 .
← obs (F , t) , exe (A, t) , c a u s e s (A,¬F) .
← obs (¬F , t) , obs (F , t −1) , exe (A, t) , keeps (A, F) .
← exe (A, t) , obs (¬F , t −1) , p r e (A, F) .

Figure 2. Cumulative (time-aware) part of our learner logic program.

First two statements merely instruct oClingo that it should
accept two kinds of binary atoms from the controller appli-
cation2: fluent observations obs and executed actions exe.

Remaining three constraints take care of actual lear-
ning, by disallowing answer sets that are in conflict with
the latest observation. First constraint says, that if F was
observed after executing A, then A cannot cause ¬F . Second
constraint tells us, that if F changed value after executing
A, then A does not keep the value of F . And the last one
means, that if the action A was executed when ¬F held, F
cannot be a precondition of A.

1Note, that we allow at most one action to be executed in every time
step.

2Telling oClingo what to accept is not necessary, if we use new
--import=all parameter. This option was implemented only after we
designed our logic programs.

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 117 / 132

s t e p 9 .
exe (move(b1, b2, table) , 9) .
obs (on(b1, table) , 9) .
obs (¬on(b1, b2) , 9) .
obs (on(b2, table) , 9) .
obs (¬on(b2, b1) , 9) .
e n d s t e p .

Figure 3. Observation example from Blocks World domain[14] sent to
oClingo at time step number 9. It describes the configuration of two blocks
b1 and b2 on the table after we moved b1 from b2 to the table.

At every time step, these constraints are added to our
knowledge with parameter t substituted by a current time
step number. Also, we need to add the latest observation.
These observations are sets of obs and exe atoms. See the
example of observation that is sent to oClingo in figure 3.

We say, that a constraint “fires” in an answer set, if
its body holds there. In that case, this answer set be-
comes illegal, and is thrown away. Now recall, that in
time step 1, oClingo generated the first possible answer
set and stored it in memory. An observation like the one
above can cause some of our constraints to fire in it and
eliminate it. For example, if our answer set contained the
causes(move(b1, b2, table),on(b1, b2)) atom, the first
constraint would fire.

If that happens, oClingo simply computes the new an-
swer set, that is not in conflict with any of our previously
added constraints. This is how we update our knowledge,
so that we always have an action model consistent with
previous observations at our disposal. Note, that each ob-
servation potentially reduces the number of possible an-
swer sets of our logic program (B,P [t], ∅), thus making
our knowledge more precise. After a sufficient number of
observations, (B,P [t], ∅) will have only one possible answer
set remaining, which will represent the correct action model.

III. DEALING WITH NOISE AND NON-DETERMINISM

The problem may arise, in the presence of sensoric noise
or non-deterministic effects, since the noisy observations
could eliminate the correct action model. This could eventu-
ally leave us with an empty set of possible models. However,
we propose a workaround, that can overcome this issue.

The problem with non-determinism is, that we cannot
afford to eliminate the action model after the first negative
example. We need to have some kind of error tolerance.
For that reason, we should modify the cumulative part of
our program P [t], so that our constraints fire only after a
certain number of negative examples:

Here we can see, that our observations don’t directly
appear in the bodies of constraints. Instead, they are capable
of increasing the negative example count (which is kept
in the variable C of negExCauses, negExKeeps and
negExPre predicates). Constraints then fire, when the
number of negative examples is higher than 5.

negExCauses (A, F , C+1) ←
negExCauses (A, F , C) , obs (¬F , t) , exe (A, t) .

negExKeeps (A, F , C+1) ←
negExKeeps (A, F , C) , obs (¬F , t) ,
obs (F , t −1) , exe (A, t) .

negExPre (A, F , C+1) ←
negExPre (A, F , C) , exe (A, t) , obs (¬F , t −1) .

← c a u s e s (A, F) , negExCauses (A, F , C) , C > 5 .
← keeps (A, F) , negExKeeps (A, F , C) , C > 5 .
← p r e (A, F) , negExPre (A, F , C) , C > 5 .

Figure 4. Modified P [t] should be able to deal with sensoric noise, by
introducing error tolerance.

Note 3: The error tolerance threshold is a numeric con-
stant 5 here to keep things simple, but we can easily imagine
better, dynamically computed threshold values (for example
based on the percentage of the negative examples in the
training set, etc.).

IV. COMPARISON TO ALTERNATIVE METHOD

Let us now take a closer look at the similarities and
differences between our method and Balduccini’s learning
module approach described in [2].

Inc. kn. Prec. Cond. eff. Noise Real-time

Balduccini yes yes yes ? no
Our method yes yes no yes yes

A. Incomplete Knowledge

From the viewpoint of domain compatibility, both me-
thods share the ability to deal with incompleteness of
knowledge. The absence of complete observations may slow
down the learning process3, but cannot lead us to induce
incorrect action models.

B. Action’s Preconditions

Our method learns not only the effects, but also precon-
ditions of actions. Similarly, Balduccini’s learning module
supports the induction of preconditions, in a form of so-
called impossibility conditions.

C. Conditional Effects

Balduccini’s learning module allows for direct induction
of conditional effects, which is a greatest advantage over
our method. Having the conditional effects allows for more
elegant representation of resulting action models. (Note
however, that they are not necessary, and can be expressed
by a larger number of actions with right preconditions.) On

3By slowing down we understand, that we might require more time steps
to induce precise action models. Incompleteness of observations will not
hinder the computation times at individual time steps.

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 118 / 132

the other hand, we must keep in mind that learning them is
in general harder and more time-consuming problem.

D. Encoding of Action Models

An action model is in the case of Balduccini’s lear-
ning module encoded by a set of atoms of the following
types: d law(L), s law(L), head(L,F), action(L,A), and
prec(L,F), with L substituted by a name (unique constant
identifier) of a C-language [8] law, A by an action instance,
and F by a fluent literal. Notice, that this way, we directly
encode the syntactic form of individual C-language laws into
logic programs. See figure 5 for a simplistic example of this
encoding.

Following C-language law:

caused on(b1,table) after move(b1,b2,table), on(b1,b2),
free(b1), free(table).

Is in Balduccini’s learning module translated into:

d law (dynamicLaw25) .
head (dynamicLaw25 , on(b1, table)) .
a c t i o n (dynamicLaw25 ,move(b1, b2, table)) .
p r e c (dynamicLaw25 , on(b1, b2)) .
p r e c (dynamicLaw25 , free(b1)) .
p r e c (dynamicLaw25 , free(table)) .

Figure 5. Example of C-language → LP translation used in Balduccini’s
learning module.

Every time the observation is added, the whole history is
confronted with this set. If the observation is not explained
[2] by it, we add more atoms to it (either creating new laws,
or adding effect conditions to existing ones).

In our case, the action model encoding is much more
compact4. We don’t translate an action model from any given
planning language, which allows us to omit the d law and
s law predicates and L parameter. Instead we have chosen
an abstract, semantics-based, direct encoding of a domain
dynamics, where every effect or precondition is represented
by a single atom. Notice also, that the size of our action
model doesn’t increase over time.

E. Extending the Techniques

The bottom line here is, that our representation structures
are simpler, for the price of lower expressiveness. The
semantic-based encoding makes it fairly easy to extend
learning by an ability to deal with noise. It is probable,
that Balduccini’s learning module could also be similarly
extended, but it would be far less straightforward process
(it consists of 14 rules, describing a syntactic structure of
action model, rather than focusing directly on semantics).

4Note, that the main reason we can afford more compact encoding is the
fact, that we don’t use conditional effects.

F. Performance and Online Computation

Our method can be considered semi-online, in a sense
that we only consider the most recent observation as relevant
input for our computation. This is possible because of the
use of Reactive ASP: At each time step, the solver keeps
everything that it has computed at previous steps in memory,
and only adds new observation. If the current model is
disproved, some revisions might be needed, but significant
part of the computation has already been performed and
results are stored in memory. This, together with relatively
compact encodings allows us to learn action models in real-
time.

G. Experiments and Conclusion

In [2], we can find an experimental comparison of Bal-
duccini’s learning module and Otero and Varela’s Iaction
learning system [12]. Their experiment was conducted with
5 narratives of 4 blocks and 6 actions. Iaction system found
a solution in 36 seconds on Pentium 4, 2.4GHz, while
the results of Balduccini’s module was fairly comparable
with 14 seconds on somewhat faster computer (Pentium 4,
3.2Ghz).

To demonstrate the speedup resulting from using a
compact encoding and Reactive ASP, we have decided
to try significantly larger problem instance. Our do-
main was also a Blocks World with 4 blocks + table
(b1,b2,b3,b4,table), but we had 32 possible ac-
tions (valid instances of pickup(Block,From) and
puton(Block,To)) and our training set consisted of 150
observations of randomly chosen legal actions.

Processing the training set with full observations took
17.9 seconds, while similar set with partial observations
took 14.98 seconds. The experiment was performed with
oClingo solver, version 3.0.92b, under 64bit Linux system
with Intel(R) Core(TM) i5 3.33GHz CPU. The input files
that we used can be downloaded from [9], together with
detailed instructions.

We conclude, that the decrease in the size of encoding,
together with preservation of results from previous time
steps (using reactive ASP approach), enables us to learn
action models considerably faster. This seems to result from
the fact, that the complexity of answer set computation
algorithms is exponential in the number of input atoms [13]
(thus reducing the input for solver even a little can speed up
the computation significantly), and that an important part of
computation can be recycled from previous time steps.

In the near future, we are planning to provide an in-
depth comparison of our method to a wide variety of action
learning approaches, followed by a specification of the most
apropriate practical applications in the area of autonomous
and automated systems.

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 119 / 132

ACKNOWLEDGMENT

We acknowledge the support from VEGA project of Slo-
vak Ministry of Education and Slovak Academy of Sciences
no. 1/0688/10.

REFERENCES

[1] E. Amir and A. Chang. Learning partially observable de-
terministic action models. Journal of Artificial Intelligence
Research, Volume 33 Issue 1, pp. 349-402. 2008.

[2] M. Balduccini. Learning Action Descriptions with A-Prolog:
Action Language C. In Proceedings of Logical Formalizations
of Commonsense Reasoning, 2007 AAAI Spring Symposium.
2007.

[3] C. Baral. Knowledge Representation, Reasoning and Declara-
tive Problem Solving. Cambridge University Press. 2003.

[4] T. Estlin et al. Increased Mars rover autonomy using AI
planning, scheduling and execution. Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp.
4911-4918. 2007.

[5] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T.
Schaub, and S. Thiele. Engineering an Incremental ASP Solver.
In Proceedings of the 24th International Conference on Logic
Programming (ICLP’08), pp. 190-205. 2008.

[6] M. Gebser, T. Grote, R. Kaminski, and T. Schaub. Reactive
Answer Set Programming. In Proceedings of 11th International
Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR’2011), pp. 54-66. 2011.

[7] M. Gelfond and V. Lifschitz. Classical Negation in Logic
Programs and Disjunctive Databases. New Generation Com-
puting, pp. 365-387. 1991.

[8] E. Giunchiglia and V. Lifschitz. An Action Language based
on Causal Explanation: Preliminary Report. In proceedings of
15th National Conference of Artificial Intelligence (AAAI’98),
pp. 623-630. 1998.

[9] www.dai.fmph.uniba.sk/upload/9/9d/Oclingo-learning.zip.
Last accessed: 13 February 2012.

[10] V. Lifschitz. Answer Set Programming and Plan Generation.
Artificial Intelligence, vol. 138, pp. 39-54. 2002.

[11] K. Mourao, R. P. A. Petrick, and M. Steedman. Learning
action effects in partially observable domains. In Proceeding of
the 2010 conference on ECAI 2010: 19th European Conference
on Artificial Intelligence, pp. 15-22. 2010.

[12] R. Otero and M. Varela. Iaction, a System for Learning Action
Descriptions for Planning. In Proceedings of 16th International
Conference on Inductive Logic Programming, ILP 06. 2006.

[13] P. Simons, I. Niemela, and T. Soininen. Extending and Im-
plementing the Stable Model Semantics. Artificial Intelligence,
138(1-2), pp. 181-234. 2002.

[14] J. Slaney and S. Thiebaux. Blocks World revisited. Artificial
Intelligence 125, pp. 119-153. 2001.

[15] Q. Yang, K. Wu, and Y. Jiang. Learning action models from
plan examples using weighted MAX-SAT. Artificial Intelli-
gence, Volume 171, pp. 107-143. 2007.

[16] L. S. Zettlemoyer, H. M. Pasula, and L. P. Kaelbling. Learning
probabilistic relational planning rules. MIT TR. 2003.

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 120 / 132

Development and Evaluation of a Self-Adaptive Organic Middleware for Highly
Dependable System-on-Chips

Benjamin Betting, Mathias Pacher, and Uwe Brinkschulte
Institute for Computer Science

Johann Wolfgang Goethe-University
Frankfurt am Main, Germany

Email: {betting, pacher, brinks}@es.cs.uni-frankfurt.de

Abstract—This article presents our concept of an artificial
hormone system for realizing a completely decentralized self-
organizing task allocation using self-X properties. Besides the
basics of the prior hormone concept and possible realizations
in soft- as well as hardware, we present latest results of
our research: evaluation of a completely AHS-controlled SoC
implementing the different approaches, verifying the work and
stability criteria, analysis of upper timing boundaries and
showing the improvement of the reliability of the system.

Keywords-Reliability; Artificial Hormone System; Heteroge-
neous System-on-Chips.

I. INTRODUCTION

Because the performance of nowadays computational sys-
tems is still increasing rapidly within each generation, the
complexity to handle and manage such systems has grown
in a similar way, too. Today’s systems offer a high band-
width of functionality, considering an integration of large
numbers of distributed heterogeneous processing resources,
showing a highly dynamic behavior in time. Although the
architectural design of distributed systems differs strongly, a
common layer is still provided by Middleware, managing
the coordination of tasks on the corresponding resources
and also hiding the distribution from the application. To
be precise, Middleware is responsible for seamless task
interaction on distributed hardware. All tasks are controlled
by the Middleware layer and are able to operate beyond
processing element boundaries as if they would reside on
a single hardware platform. Besides complexity, other sys-
tem criteria like reliability have become important, too. In
consequence of the increasing integration density of today’s
SoCs, systems got likely open to system failure even during
the early stages of operation. Crashing of resources can be
caused, e.g., by radiation, aging or temperature hot spots.
Hence, in order to handle the complex task management as
well as the reliability problems of today’s and even more
future distributed systems, self- organizing and adapting
techniques are necessary. As the term ’self’ denotes, these
techniques must be achieved autonomously by the system
itself without any further external intervention (introduced
in [7][8]). In fact, a system should be able to find a suitable
initial configuration of task assignment by itself, to adapt or

optimize itself to changing environmental and internal con-
ditions, to heal itself in case of system failures or to protect
itself against attacks. In this paper, we present the solution
of an organic Middleware - implemented by an Artificial
Hormone System (AHS) - providing self-configuration, self-
optimization and self-healing for an autonomous decentral-
ized task assignment. Furthermore, the proactive task behav-
ior to prevent the system from arising failure conditions are
implemented. In Section II, we introduce the basic principles
of the AHS. Sections III and IV show theoretical constraints
and implementations of the approach, which are evaluated in
Section V. Topics of related work are presented in Section
VI. Finally, we conclude the paper with Section VII.

II. THE ARTIFICIAL HORMONE SYSTEM

According to organic endocrine systems, the AHS con-
siders elemental exchange of different hormone types for
special communication and controlling interaction. In fact, it
is the main function of the AHS to assign tasks to resources
without any further external intervention. The proper assign-
ment is handled in a self-organizing way, implemented via
simple resource competition upon tasks using three major
types of hormones:

• Eager value This hormone type represents the suit-
ability of a resource to execute a task. The higher the
hormonal value, the better the ability of the resource to
execute the task.

• Suppressor This hormone type lowers the suitability
of a task execution on a resource. Suppressors are
subtracted from eager values.

• Accelerator This hormone type favors the execution of
a task on a resource. Accelerators are added to eager
values.

These basic hormone types are divided in further sub-
types. Detailed information about these subtypes is presented
when needed because they are used for fine tuning of the
AHS and do not affect its basic understanding.

Keeping consistent formalism we introduce special nota-
tion, which distinguishes between received hormones, hor-
mones to be sent and also between tasks and processing
resources (like, e.g., processing cores). Therefore, tasks and

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 121 / 132

For γ received
eager values

Emiγ

For γ received
eager values

Emiγ

ΣΣ Task TiTask TiΣ
-

+ +

Modified
eager
values
Emiγ

sent by γ

For γ received
eager values

Emiγ

a > b ?
Take

task Ti

Suppressors
Siγ

sent by γ

For γ
received

suppressors
Siγ

For γ
received

suppressors
Siγ

For γ
received

suppressors
Siγ

For γ
received

accelerators
Aiγ

For γ
received

accelerators
Aiγ

For γ
received

accelerators
Aiγ Resource γ

a=Emiγ

Receive stage Compute and decision stage Send stage

Task Ti

Modified
eager
values
Emiγ

sent by γ

Modified
eager values

Emiγ
sent by γ

Suppressors
Siγ

sent by γ

Suppressors
Siγ

sent by γ

Accelerators
Aiγ

sent by γ

Accelerators
Aiγ

sent by γ

Accelerators
Aiγ

sent by γ

Local
eager values

Eiγ

Local
eager values

Eiγ

Local
eager values

Eiγ

b=Emiγ

Figure 1. Hormone based control loop

resources are referenced by different indices using Latin
letters such as i for tasks and Greek letters such as γ for
resources. The notation of raised Hiγ indents a hormone,
which will be received by resource γ, dedicated and effecting
task Ti. In turn subscript representation of Hiγ declares
resource γ and task Ti as emitter of the hormone, which is
send to other resources. Each resource periodically executes
the hormone based control loop presented in Figure 1. Each
iteration consists of three stages.

• Receive stage: Resource γ receives the modified eager
values Emiγ , suppressors Siγ and accelerators Aiγ for
each task Ti from each resource inside the network.
The communication between the different resources is
depicted by the dashed lines.

• Compute and decision stage: Resource γ computes the
modified eager values Emiγ for all of its tasks by
the following rule. The local static eager value Eiγ
indicates how suited γ is to execute task Ti. From
this value, all suppressors Siγ received by task Ti are
subtracted, and all accelerators received by task Ti are
added:

Emiγ = Eiγ −
∑

Siγ +
∑

Aiγ (1)

The modified eager value Emiγ of each task Ti is
finally broadcasted to the same task Ti on the other
resources in the send stage. In each iteration a single
task Ti is selected and the resource decides on alloca-
tion. For this purpose, it compares its own modified
eager value Emiγ with the received modified eager
values Emiγ (from all other resources) for this task. If
Emiγ > Emiγ is true for all received modified eager
values Emiγ , it decides to take the task. In case of
equality, a second criterion, e.g., the unique identifier of
the resources, is used to get an unambiguous decision.
Otherwise another resource has the highest modified
eager value for Ti and γ decides to not take it.
In the next iteration step the resource selects another
task and decides whether it will be taken. A resource

selects the tasks in a cyclic way, i.e., each task will
be selected in each mth iteration, if m tasks have
to be assigned. By selecting only one task at each
iteration, the suppressors and accelerators can take
effect. Otherwise, the decision of taking a task would
happen instantaneously and the hormones would have
no effect.

• Send stage: As already mentioned above, resource γ
broadcasts the modified eager values Emiγ to each task
Ti on the other resources. The strength of these values
depends on the results of the computation in the last
phase.
If a task Ti is taken on resource γ, it also broadcasts
suppressors Siγ dedicated to the same task on all
other resources. On one hand sending the suppressors
indicates the resource has taken the task, and on the
other hand, it limits the number of further allocations
of the same task somewhere else.
Furthermore, the resource multicasts accelerators Aiγ
to its neighbored resources to attract tasks cooperating
with task Ti to neighbored resources, thus forming
clusters of tasks.

Our approach is completely decentralized, each resource is
responsible for its own tasks and the communication to other
resources is realized by a unified hormone concept. The AHS
offers the following so called self-X properties:

• The approach is self-organizing, because no external
influence controls the task allocation.

• It is self-configuring, an initial task allocation is found
by exchanging hormones. The self-configuration is fin-
ished as soon as all modified eager values become zero,
meaning no more tasks have to be taken.

• The self-optimization is done by re-offering tasks for
allocation. The point in time for such an offer is
determined by the task or by the resource.

• The approach is self-healing: In case of a task or re-
source failure, the emission of related hormones stops.
This results in an automatic reassignment of the task
to the same resource (if it is still active) or to another
resource.

In addition, the self-configuration, self-optimization and self-
healing is real-time capable. Tight upper time bounds are
given for self-configuration, these are presented in detail in
[2][4][12].

III. IMPLEMENTATION CONSTRAINTS

Additional to the theoretical concept of Section II, the real
implementation of AHS has to consider further aspects of
the environmental system surrounding. Based on the primary
decentralized control loop mechanism of Section II, every
resource or processing element holds its own local instance
of the AHS during runtime. In fact today’s SoCs offer the
significant opportunity of an dual realization of the AHS in

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 122 / 132

Received Accelerators

Accelerators -
Suppressors

Received Eagervalues

Own Eagervalue

AR CR

AR

+

+ Σ

−

CR

AR

+

+ Σ

−

+
 Σ
+

+
 Σ
+

 >

Modified Eagervalue

 >
Take Task

Own Suppressors

Own Accelerators

Received Suppressors

AR : Accumulator
 Register
CR : Cycle Register
Σ : Adder /
 Subtractor
> : Comparator

Figure 2. Simply buffered solution of the hormone cycle implementation
using self-synchronization of cycles

both domains of soft- as well in hardware. Obviously this
is reducible to the likely natural representation of hormone
signals in terms of simple coded messages easily delivered
between tasks and resources.

First a total hormone buffered solution, using a local mem-
ory backing up all received hormones for each task within
each cycle, is traced. This approach keeps the advantage
of no further required modifications of the origin hormone
cycle and its steps, retaining a still asynchronous behavior
during run time. Due to the hormone memory, jitter effects
can be compensated. Duplicate hormones can be identified
and eliminated while missing hormones can be bridged by
previous values. But the approach also considers a high
effort of required management, controlling those hormone
memories, for, e.g., keeping them consistent. In cause of this,
the real implementation uses a simplified second approach
discarding the complex hormone memory and exploits the
accumulation character of the hormones as described in
Section II (adding accelerators and subtracting suppressors
from eager values). As shown in Figure 2, hormone values
of the current cycle are just accumulated and the overall
sum of the previous cycle is stored in a register. Instead
of storing many hormone values for each task within each
cycle, just the last recent accumulations for accelerators and
suppressors as well as the highest modified eager value are
kept. Considering this, the approach takes a high benefit and
requires a less level of buffering complexity than the first
approach. But due to the asynchronous processing resources
the risk of evaluating inconsistent hormones remains.

Therefore, this approach considers a modification of the
origin cycle scheme tracing an active self-synchronization
of the hormone cycles. This feature is simply achieved by
using the received hormones for synchronization. To be
precise, each cycle holds a waiting period right after startup,

send
hormone

(S)
decide

(D)tSD

tDS or hormone received

tDS + tSD or hormone
received

Start

Figure 3. Self-synchronized approach of the hormone cycle using waiting
period after startup

before emitting hormones to other resources. This waiting
period ends after the total hormone cycle time or the receipt
of a hormone from another resource, whatever happens
first. So, one resource will be the first and the others will
follow when receiving the hormones from the first resource.
The same happens after each loop period. This keeps all
resources synchronized within the maximum communication
time tk between the resources. Figure 3 shows a detailed
timing schedule of the hormone cycle, where tDS denotes
the maximum time span between the decision and sending
stage and vice versa tSD between the stage of sending and
decision. Hence the maximum total cycle time is set up
by accumulation of tSD + tDS . To specify both spans as
constraints, the maximum time displacement between the
earliest cycle evaluating resource Pγ and the latest one Pδ ,
which is the already mentioned maximum communication
time tk between Pγ and Pδ , must be considered. In order
to satisfy the receipt of a hormone sent by the later Pδ
to the earlier Pγ , tSD must be at least 2 ∗ tk (tk needed
for the communication + tk as maximum time displacement
between Pδ and Pγ). The definition of tDS is rather simple.
To guarantee a synchronized restart of both the early Pγ
and the late Pδ , tDS has to be at least tk. Due to tolerances
caused by timers on local resources, an additional jitter
compensation factor4tSD has to be considered. So tDS has
to be at least tK+tSD, which guarantees a synchronous start
of the next hormone cycle on every resource. Finally the total
time of the self-synchronized hormone cycle is set up by the
accumulation of both constraints to at least 3 ∗ tK +4tSD.

In summary, the major advantage of the self-synchronized
approach is the feature of hormone consistency. Within each
cycle, resources are capable to take correct decisions right
after the receipt of all necessary hormones sent by other
resources. Furthermore this modification does not influence
the already taken assumptions about other self-X properties
like healing or configuration, unless the basic processing
procedure of the hormone cycle will not be modified. As
a disadvantage, it causes a hormone cycle time increase
by tK + 4tSD compared to the asynchronous hormone
buffered solution, which requires only 2 ∗ tk as cycle time
(see [3]).

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 123 / 132

IV. IMPLEMENTATION

Because the AHS is intended to control a decentralized
assignment of tasks in software- as well as in hardware
related domain, specific implementations regarding different
system environments are required. In fact, two implementa-
tions of the AHS have been developed, providing a specific
realization of the prior hormone loop for the processing of
software and hardware tasks.

AHS Interface

AHS
Hormone Communication

AHS
Task Management

AHS Message
Communication

AHS Log
Management

AHS
Error Management

AHS
List Management

AHS
Basic OS Support

AHS Basic
Communication Support

Input
Stage

Accumulation
 Stage

Cycle
Stage

Output
Stage

A

B

Figure 4. Structure of software (A) and hardware (B) implemented AHS,
coded in ANSI-C and VHDL

A. AHS on software-level

In order of compatibility reasons and platform indepen-
dence, the AHS features a pure coded ANSI-C implementa-
tion. Considering this, the implementation possesses a high
level of reusability and achieves the goal of platform inde-
pendent Middleware. This fact also leads to a usability in the
domain of low-performance microcontroller computing. The
implementation of AHS is set up by different modules and
interfaces related to the AHS kernel as well as the attached
Operating System (OS) and distributed application. The
implementation structure is shown in Figure 4A. Starting
on the lower operating system level, elementary modules for
task handling and I/O communication are supported. In case
of platform porting, these modules must be implemented.
Regarding this abstraction, the approach takes high benefit
and requires less effort in modification and maintenance.
Upon OS modules, the main kernel of the AHS takes place,
isolated of the attached platform depended components.

B. AHS on hardware-level

Porting the basic hormone concept to real hardware im-
plementation takes the approach one step further. Against
pure software implementation, the entire hormone loop
mechanism is spread up into 4 different pipeline stages
(Figure 4B). Each stage represents a single isolated hardware
component, which implements a specific step of the proper
hormone loop shown in Section II. Further, this pipeline has
currently been fully implemented on register transfer level

by hardware description using Very High Speed Integrated
Circuit Hardware Description Language (VHDL). Within
each single hormone cycle all stages of the pipeline are
passed, issuing the decision whether task Ti is taken by
the corresponding resource or not. Because the current
hardware implementation realizes the self-synchronized vari-
ant of AHS only, an cycle stage is attached for buffering
already accumulated hormone values, avoiding the use of
heavy weighted local memories. This stage also confirms the
criteria of taking correct decisions upon consistent hormone
data by delaying progress of the current evaluation cycle
until all necessary hormone data of all other resources is
received. To avoid everlasting stall of the pipeline due to
missing data, this stage is passed lately after the timing
constraint of TSD ≥ 2∗ tk (shown in Section III) is expired.

V. EVALUATION

As next step, an evaluation to show the increase of
dependability using the hormone system for task assignment
in a distributed system is conducted. To achieve full insights
in hormone processing, a hormone cycle accurate hormone
simulator for the AHS has been developed [13]. Besides
the capability of simulating a dynamic processing grid,
containing multiple mixed signal resources, the provision
of self-X properties is ensured. We used the grid of 16 het-
erogeneous resources with 16 different tasks to be executed.
This simulation focuses on self-healing of dynamic failures
during runtime. As a reference, we first run a simulation
with deactivated self-healing. This means, after the self-
configuration process the hormone cycle was deactivated.
Failures caused by single event upsets, aging and tempera-
ture effects have been created by a stochastic process accord-
ing to corresponding failure models described. In the first
simulation, transient and permanent failures leading to task
or core crashes are considered. Figure 5 shows the result.
Initially, all 16 tasks are allocated by self-configuration.
This process is finished at hormone cycle 6, so at that
time the system is operational. Already at hormone cycle
7 the first failure, a single event upset, crashed one task.
More task crashes due to single event upsets followed at
hormone cycles 25, 37, 47 and 51 further reducing the
number of active tasks. No aging or temperature based
failures occurred up to that point in time. So, starting from
hormone cycle 7 the system is no longer operational as can
be seen by the linearly increasing system downtime (violet
line) resulting in a downtime ratio of 50/51 = 0.98 = 98%
at hormone cycle 51. Figure 6 shows the same scenario
with self-healing activated by the hormone cycle. To be
comparable, the stochastic process creating the failures was
initialized with the same random seed to produce identical
events. Again, the system comes operational by allocating
all 16 tasks at hormone cycle 6 while at hormone cycle 7
the first single event upset occurred crashing a task. This
caused the corresponding task suppressor to vanish. Due to

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 124 / 132

0 10 20 30 40 50 60
0

10

20

30

40

50

60 Tasks Taken
Downtime
Single Event Crashes

Runtime in Hormone Cycles

of

 A
ct

iv
e

Ta
sk

s,
 C

ra
sh

es
,

an
d

D
ow

nt
im

e

Figure 5. Behavior of 16 AHS resources with deactivated self-healing

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25 Downtime
Tasks Taken
Single Event Crashes
Aging Crashes
Temperature Crashes

Runtime in Hormone Cycles

of

 A
ct

iv
e

Ta
sk

s,
 C

ra
sh

es
, a

nd
 D

ow
nt

im
e

Figure 6. Behavior of 16 AHS resources with reactive self-healing

the resulting hormone imbalance, this task is reallocated at
cycle 8 bringing the system back online. The same happens
for the following failures. Every time a task is crashed by
a failure, the hormone system compensates this event by
task reallocation or reassignment∗. Beginning at hormone
cycle 81, aging and temperature based crashes occur as well
and are compensated. Even so the system downtime still
increases due to these crashes, it increase much slower and
the system always comes back online, as long as enough
cores are available to take all tasks (either by other cores
or regeneration of the crashed cores). The downtime ratio is
23/158 = 0.14 = 14% at hormone cycle 158.

The behavior shown is a pure reactive self-healing pro-
cess. To allow proactive failure handling, additional sup-
pressors can be applied. By monitoring, e.g., failures and
temperature, suppressors can be emitted for resources with
high temperature or failure count. This favors reliable and
cool resources in comparison to unreliable and hot ones. The

∗In case of a permanent failure, the task is reallocated to another core.
In case of a transient failure, the task might be reallocated to another core or
reasigned to the same core. This depends on the hormone balance induced
by the current task distribution.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80 Tasks Taken w. Suppr.
Temperature w. Suppr.
Temperature Suppr.

Runtime in Hormone Cycles

of

 A
ct

iv
e

Ta
sk

s,
 T

em
pe

ra
tu

re
, a

nd
 S

up
pr

es
so

rs

Figure 7. Temperature proactive task behavior of a local AHS resource

major effect of this proactive reallocation behavior is shown
in Figure 7, where temperature suppressors are proportional
emitted to the raising temperature load. This successively
reduces the suitability (eagervalue) of the core until tasks
get migrated to other cores. As a result of the sinking
workload, the temperature and the temperature suppressor
are declining. The temperature and load are balancing at
a reasonable level. The proactive task assignment increases
the reliability by preventing cores from total failing, using a
rebalance of the workload via task distribution on different
cores. In conclusion, the evaluation shows the major advan-
tage of the hormone cycle for task assignment. Comparing
with the results of the first simulation the system achieves
an excellent enhancement in downtime optimization thus
improving dependability in a significant way.

VI. RELATED WORK

Currently, there exist only a few approaches of task
assignment in Middleware on future CMP based mixed-
signal SoCs. The approach of [11] traces the assumption
of a reliable multi-layered MPSoC architecture against ther-
mal issues due to increasing task processing. This concept
internalizes a proactive task migration on cooler resources
by an distributed hierarchical agent-based system. Like our
approach the system is widely capable handling single point
of failure within the exception of high-level agent errors,
which is resisted by hardware redundancy. Furthermore, the
system is restricted to thermal management domain on none
intermixed circuit technology only.

Another approach using also the assumption of an agent
distributed system is shown in [1]. The author presents an
algorithmic schedule for task distribution on a processing
grid. Against our solution, this approach uses centralized
elements, so called Group Manager’s (GM), responsible
for the internal controlling in a clustered bunch of tasks.
Unless a single GM-instance fails, there is no possibility
for restoring the corresponding group information, which
implies a single point of failure occurrence.

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 125 / 132

In [9], two algorithms for task scheduling on heteroge-
neous systems are presented. Within both schedulings task
priorities are computed statically or dynamically. The first
algorithm, Fast Critical Path (FCP) uses dynamic increase
of priorities to ensure time constraints are kept. The second
approach, Fast Load Balancing (FLB) uses a workload
balanced task assignment to ensure every processor core will
be used. In contrast to our approach, both algorithms do not
regard crashing of cores and tasks.

Heiss and Schmitz [6] presented another approach for a
decentralized load balanced task assignment. The authors
consider a physical model where tasks are represented as
particles, which are influenced by forces like, e.g., load
balancing force (issued by the load potential of cores) or
communication force (intensities between tasks). Depending
on the resultant force action tasks are assigned to corre-
sponding cores.

Other approaches for workload balanced assignment are
presented in [5][10]. In summary, none of the concepts above
covers a decentralized assignment of tasks including the
spectrum of self-X properties and real-time conditions like
our approach.

VII. CONCLUSION AND FUTURE WORK

In summary, this paper presented an approach of a self-
adaptive organic Middleware solution for highly dependable
SoCs. The organic Middleware is represented by the AHS -
an artificial hormone system providing a decentralized self-
organized assignment of tasks on processing resources.

In prospection and future work, the whole project in-
vestigates further analysis of the reliability especially in
a field of real SoC computing, facing timing behavior on
real prototypes leaving the accomplished sector of sim-
ulation behind. Therefore, we intend the development of
a highly dependable mixed signal SoC. The prior AHS
is used in combination with a generalized core and task
concept to assign software and hardware tasks to suitable
mixed signal resources, so called processing elements (PEs).
Every PE represents a specific SoC function, which can be
any type of processor core like timer, memory, analog or
digital PE. Since different hardware tasks and analog PEs
are involved, the hormone controlled concept is extended
for time continuous processing of analog hormone signals.
The interconnection and communication throughout both
systems is realized by a common inter-core network with
redundant interfaces. Overall the interaction of the resultant
reliable mixed signal SoC has to be achieved facing a real
demonstrator application settled in the predestined area of
automotive driven assistance control. For this, the SoC is
admitted controlling a complex model helicopter.

REFERENCES

[1] L. F. Bittencourt, E. R. M. Madeira, F. R. L. Cicerre, and L. E.
Buzato. A path clustering heuristic for scheduling task graphs

onto a grid. In 3rd International Workshop on Middleware
for Grid Computing (MGC05), Grenoble, France, 2005.

[2] Uwe Brinkschulte, Mathias Pacher, and Alexander von
Renteln. Towards an artificial hormone system for self-
organizing real-time task allocation. 5th IFIP Workshop on
Software Technologies for Future Embedded & Ubiquitous
Systems (SEUS), pages 339–347, 2007.

[3] Uwe Brinkschulte, Mathias Pacher, and Alexander von
Renteln. An Artificial Hormone System for Self-Organizing
Real-Time Task Allocation in Organic Middleware. In Or-
ganic Computing. Springer, 2008.

[4] Uwe Brinkschulte, Mathias Pacher, and Alexander von
Renteln. An artificial hormone system for self-organizing
real-time task allocation. Springer, 2008.

[5] Jorge Finke, Kevin M. Passino, and Andrew Sparks. Stable
task load balancing strategies for cooperative control of
networked autonomous air vehicles. In IEEE Transactions
on Control Systems Technology, volume 14, pages 789– 803,
2006.

[6] Hans-Ulrich Heiss and Michael Schmitz. Decentralized
dynamic load balancing: The particles approach. In Proc. 8th
Int. Symp. on Computer and Information Sciences, Istanbul,
Turkey, November 1993.

[7] Paul (IBM Research) Horn. Autonomic computing manifesto:
IBM’s perspective on the state of information technology,
October 2001.

[8] Christian Mueller-Schloer, Christoph von der Malsburg, and
Rolf P. Wuertz. Organic computing. Informatik Spektrum,
27(4):332–336, 2004.

[9] Andrei Radulescu and Arjan J. C. van Gemund. Fast and
effective task scheduling in heterogeneous systems. In IEEE
Computer - 9th Heterogeneous Computing Workshop, Can-
cun, Mexico, 2000.

[10] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A
simple load balancing scheme for task allocation in parallel
machines. In ACM Symposium on Parallel Algorithms and
Architectures, pages 237–245, 1991.

[11] Thomas Ebi, Holm Rauchfuss, Jörg Henkel and Andreas
Herkersdorf. Agent-based Thermal Management using Real-
Time I/O Communication Relocation for 3D Many-Cores.
Integrated Circuit and System Design. Power and Timing
Modeling, Optimization and Simulation (PATMOS), Madrid,
Spain, September 26-29 2006.

[12] Alexander von Renteln and Uwe Brinkschulte. Reliablity
of an Artificial Hormone System with Self-X Properties. In
Parallel and Distributed Computing and Systems, Cambridge,
Massachusetts, USA, November 19 - 21 2007.

[13] Alexander von Renteln, Michael Weiss, and Uwe
Brinkschulte. Examining Task Distribution by an Artificial
Hormone System Based Middleware. In 11th IEEE
International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC 2008),
Orlando, Florida, USA, May, 5-7 2008.

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 126 / 132

FUZZBUSTER: A System for Self-Adaptive Immunity from Cyber Threats

David J. Musliner, Jeffrey M. Rye, Dan Thomsen, David D. McDonald, Mark H. Burstein
Smart Information Flow Technologies (SIFT)

Minneapolis, MN, USA
Email: {musliner, rye, dthomsen, dmcdonald, burstein}@sift.net

Paul Robertson
Dynamic Object Language Labs

Boston, MA, USA
Email: paulr@dollabs.com

Abstract—Today’s computer systems are under relentless at-
tack from cyber attackers armed with sophisticated vulnerabil-
ity search and exploit development toolkits. To protect against
such threats, we are developing FUZZBUSTER, an automated
system that provides adaptive immunity against a wide variety
of cyber threats. FUZZBUSTER reacts to observed attacks
and proactively searches for never-before-seen vulnerabilities.
FUZZBUSTER uses a suite of fuzz testing and vulnerability
assessment tools to find or verify the existence of vulnerabilities.
Then FUZZBUSTER conducts additional tests to characterize the
extent of the vulnerability, identifying ways it can be triggered.
After characterizing a vulnerability, FUZZBUSTER synthesizes
and applies an adaptation to prevent future exploits.

Keywords-self-adaptive immunity, cyber-security, fuzz-testing.

I. INTRODUCTION

Modern computer systems face constant attack from so-
phisticated adversaries, and the number of cyber-intrusions
increases every year [1], [2]. Cyber-attackers use numerous
vulnerability scanning tools that automatically probe target
software systems for a wide array of vulnerabilities. For
example, attackers use fuzz-testing tools (such as Peach
and SPIKE) that try to crash target applications, and SQL
injection tools (such as sqlmap and havij) that attempt to
manipulate the contents of databases. Upon discovering a
potential vulnerability, attackers use powerful exploit devel-
opment toolkits (such as Metasploit and Inguma) to quickly
craft exploits that take advantage of identified vulnerabilities.

Under DARPA’s Clean-slate design of Resilient, Adaptive,
Survivable Hosts (CRASH) program, we are developing
FUZZBUSTER to provide adaptive immunity from these
and other cyber-threats. FUZZBUSTER provides long-term
immunity against both observed and novel (zero-day) cyber-
attacks.

As shown in Figure 1, FUZZBUSTER operates proactively
to find vulnerabilities before they can be exploited, and
reactively to address exploits observed “in the wild.” FUZZ-
BUSTER directs the execution of custom and off-the-shelf
fuzz-testing tools to find and characterize vulnerabilities.
Fuzz-testing tools find software vulnerabilities by exploring
millions of semi-random inputs to a program. Given time
and expert guidance, fuzz-testing has proven effective at
finding a wide variety of software flaws, including defects
that account for the most severe security problems [3].

Innate
mechanisms
stop exploit

Fuzz-testing Shield
Generation

Exemplar
Proactive

Refined
vulnerability

model

Fuzzbuster
synthesizes

possible
exploit

Reactive

Figure 1. When reacting to a fault, FUZZBUSTER creates an exemplar test
case that reflects the environment and inputs at the time of the observed
fault. During proactive exploration, FUZZBUSTER synthesizes exemplar test
cases that could lead to a fault.

FUZZBUSTER uses fuzz-testing tools to find and charac-
terize vulnerabilities, determining what inputs to a program
can cause a fault. FUZZBUSTER then synthesizes defenses
to shield or repair the flaw, protecting against entire classes
of exploits that may be encountered in the future.

In this paper, we describe our rapidly-evolving implemen-
tation of the FUZZBUSTER architecture, and present some
preliminary results.

II. ARCHITECTURE

Model Repository

Exemplar

Generator Meta-Fuzz Tester

(MFT)

Adaptation

GeneratorExemplar

test case

Vulnerability

profile

Immunity Response Manager

(IRM)Software

Models

Detected

faults/exploits

Adaptations

Vulnerability

Ontology

Rest of system

Hardware

Operating System

Applications Replication/Recovery, Fault Handling,

Static Analysis, Tagged Architecture,

Wrappers, Access Rules, Policy

CRASH host with innate

immune system: run.pl

Fuzz Wrappers

env-var fuzz-2001 overflow …

Reactive Proactive

Figure 2. FUZZBUSTER’s IRM guides its efforts to automatically find,
refine, and adaptively shield vulnerabilities.

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 127 / 132

Figure 2 illustrates FUZZBUSTER’s major components and
how they interact to provide adaptive immunity. FUZZ-
BUSTER uses both proactive and reactive exploration to
identify (and then shield) vulnerabilities in a CRASH host.
For each vulnerability, FUZZBUSTER creates a vulnerability
profile representing the nature of the vulnerability, including
what ranges of inputs lead to the vulnerability. These vul-
nerability profiles represent as much of the vulnerability as
FUZZBUSTER can identify. After constructing a vulnerability
profile, FUZZBUSTER creates and applies an adaptation that
prevents future exploits of the vulnerability.

Processing begins with the Exemplar Generator creating
an exemplar test case. The Exemplar Generator may create
an exemplar in response to a fault notification from the
CRASH innate immune system or in response to an instruc-
tion from the Immunity Response Manager (IRM) to initiate
proactive exploration. At some point, the IRM determines
that looking for vulnerabilities relating to a particular exem-
plar test case is the next highest priority activity, and the
IRM assigns this activity to the Meta-Fuzz Tester (MFT).
Based on the nature and attributes of the exemplar test case,
the MFT chooses a fuzz-testing tool to search for or assess
vulnerabilities associated with the exemplar test case. Each
fuzz-testing tool refines a vulnerability profile based on the
results of its exploration. The MFT may use multiple fuzz-
testing tools to construct as complete a vulnerability profile
as possible given the available time or resources. For each
vulnerability profile, the Adaptation Generator creates one
or more candidate adaptations to protect the system against
being exploited via the vulnerability. When appropriate, the
IRM directs the Adaptation Generator to verify and then
subsequently apply these patches to the CRASH host. Since
fuzz-testing and patch verification both run tests that may
require significant time or resources to complete, the IRM
is intended to balance the priorities of these operations
with the available resources on the system, to minimize
FUZZBUSTER’s impact on system performance.

When an actual exploit or flaw is encountered and trapped
by the CRASH innate immune system, FUZZBUSTER re-
sponds reactively. In our design, the IRM puts a high priority
on responding to a live exploit, and may immediately choose
to use the Adaptation Generator to synthesize a customized
adaptation to shield the application while also engaging the
MFT to refine the vulnerability profile. FUZZBUSTER may
be conservative when reacting to an exploit, initially dis-
abling useful features of the subject software while disabling
the vulnerability. As the tests yield additional information,
FUZZBUSTER revises the adaptation to relax (or tighten) the
behavior restrictions it enforces. In this way, FUZZBUSTER
acts as a self-protecting, self-regenerative system, initially
clamping down on security and limiting functions when
attacked, and then gradually relaxing limits and restoring
functions as it gets a better picture of the vulnerabilities
that are being exploited.

A. Infrastructure

1) GBBopen: Our FUZZBUSTER implementation is built
within the GBBopen blackboard system [4], [5], which sup-
ports object-oriented data storage and event-triggered proce-
dural code. The functional components shown in Figure 2
are implemented as blackboard Knowledge Sources (KSs)
that respond to events on blackboard objects representing
the ongoing tasks and results.

For instance, exemplar objects are used to describe cases
raised by the immune system and cases where proactive ex-
ploration is suggested. Vulnerability profile objects capture
a progressively-refined model of the set of situations that
leading to security warnings for a particular software system.

During FUZZBUSTER’s exploration, it often needs to
initiate resource-intensive testing tasks or perform operations
that change the behavior of the CRASH host. To prevent
these activities from executing concurrently, and thus inter-
fering with each other, FUZZBUSTER defines a set of task
objects that are managed by the IRM. The processing of
these tasks is started and stopped by the IRM as necessary
to ensure effective operation of the system and to prevent
conflicts between concurrent activities. The KSs that perform
the processing have specific code to manage task status and
their own work. In the near future, we will replace this ad
hoc mechanism with a more automated and rigorous meta-
control scheme. The more complete meta-control scheme
will control the starting and stopping of tasks to ensure
consistent and correct behavior, while easing the effort
required to specify the desired properties and interactions
between them.

2) Interface to CRASH Host (run.pl): FUZZBUSTER
is designed to run in the context of a CRASH host whose
innate immune system provides alerts to violations that may
indicate vulnerabilities. Since a physical instantiation of the
CRASH host is not yet available, FUZZBUSTER defines
a proxy that serves as a stand-in. The proxy is currently
implemented as a Perl script that provides key CRASH
functionality on existing systems. In particular, the proxy
mimics the CRASH innate immune system by identifying
and reporting certain classes of faults. The proxy also pro-
vides an adaptation mechanism that allows FUZZBUSTER to
modify the environment and inputs of executing programs.

B. Exemplar Generator

The Exemplar Generator captures relevant inputs and
environmental aspects of an observed or suspected vulner-
ability as an exemplar test case. Ideally, an exemplar test
case contains all of the information required to generate
a repeatable test case for the MFT. However, since it
is not always possible to record every relevant piece of
information, and knowing the relevant bits is impossible
in the context of proactive exploration, the MFT treats an
exemplar test case as a starting point for exploration. An
exemplar test case may also indicate that it pertains to a

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 128 / 132

frequently-observed attack or applies to a mission-critical
software system, which the IRM will use to set a suitably
high priority on the discovery of the vulnerability and the
implementation of a defense.

When the CRASH proxy run.pl detects a fault, it sends
the Exemplar Generator a description of the environment and
inputs that triggered the fault. The description includes each
environment variable and its value, the path of the command,
the command line arguments, and the content passed thru
open streams including standard-input.

For proactive exploration, the Exemplar Generator also
synthesizes exemplar test cases from application models.
FUZZBUSTER stores models of applications that include the
absolute path to the command, a specification of the allowed
(or expected) command line arguments, and a flag indicating
whether the application accepts input via standard-input.
The Exemplar Generator translates these application models
into exemplar test cases by choosing specific command line
arguments or inputs.

C. Meta-Fuzz Tester

The Immunity Response Manager invokes the MFT to
conduct an analysis of subsystem or protocol vulnerabil-
ities, focused by the exemplar test case and limited by
some computing resource constraints (initially, just execu-
tion time). The MFT attempts to identify the specific cause
of an observed defect, or probe for a latent vulnerability in
the case of proactive analysis. Starting from the exemplar
test case, the MFT constructs a belief state describing the
vulnerabilities that could be present. Then, as long as the
MFT has remaining resources, it chooses a fuzz-testing tool
and uses it to try to gain more information about the possible
vulnerability. This analysis culminates in a vulnerability pro-
file describing the observed aspects of the vulnerability and
providing a basis for the Adaptation Generator to generate
an adaptation that protects the system. The choice of fuzz-
testing tool should be guided by a “performance profile”
model of each tool’s capabilities, in terms of what types of
vulnerabilities they can detect and how long they may take.
Our early experiments, discussed below, will help develop
those performance profiles. In the meantime, our preliminary
implementation uses a simpler method to allocate effort to
different fuzz-testing tools.

To facilitate the integration of diverse fuzz-testing tools,
FUZZBUSTER defines a fuzz-tool wrapper interface to each
tool, providing a common API for controlling tool execution.
Each fuzz-tool wrapper defines an action that may be
taken by the MFT. Moreover, each wrapper interprets the
results of execution, updating the vulnerability profile with
additional information. Fuzz-tool wrappers provide a simple
mechanism for FUZZBUSTER to incorporate dumb or smart
tools, with or without knowledge of the internals of the test
object.

D. Adaptation Generator

FUZZBUSTER’s Adaptation Generator improves system
security by creating and applying custom adaptations that
prevent exploitation of the flaws characterized by vulnera-
bility profiles. The Adaptation Generator uses a variety of
adaptive techniques, making the choice between them based
on an adaptation’s needs and the facilities available for the
relevant input channels. Our design anticipates that adapta-
tions could be defined at any level in the system, from an
atomic instruction, to a function call, to a high-level function
of an application. Our initial implementation operates only
at the application-input level, using the facilities provided
by the run.pl CRASH proxy.

To safely adapt a live system, the Adaptation Gener-
ator follows two core principles. First, adaptations only
restrict or reduce capability or privilege. Second, adaptations
do not disable key functionality. To enforce the second
principle, FUZZBUSTER will capture a set of test cases
during vulnerability analysis. Some of these tests will trigger
the vulnerability and others will exercise the vulnerable
application without triggering the vulnerability. These tests
will be used during adaptation creation to verify that an
adaptation successfully prevents the vulnerability without
otherwise changing the results or behavior of the vulnerable
application. Once an adaptation is applied to the CRASH
system, the tests will be added to a regression suite that
FUZZBUSTER will use to ensure that future patches do not
conflict with or invalidate existing adaptations.

The Adaptation Generator performs the following actions
on adaptations:

• Create — Search for adaptations that make the best
trade-off between performance, functional impact, and
security.

• Verify — Execute recorded test cases to ensure that
an adaptation prevents exploitation of a vulnerability
without otherwise affecting execution.

• Apply — Apply adaptations to the system to prevent
exploitation of vulnerabilities.

• Revoke — Remove previously applied adaptations
from the system because they are no longer desirable,
due to external software updates, more comprehensive
adaptations, or to improve performance.

When creating an adaptation, the Adaptation Generator
maps the constraints in the vulnerability profile to a set of
actions that the adaptation can take to prevent the fault.
FUZZBUSTER’s initial set of actions includes “remove,”
“modify,” “truncate,” and “filter”. An adaptation using the
remove action completely removes the fault-inducing in-
put, for instance unsetting an environmental variable. An
adaptation using the modify action performs an arbitrary
modification of the input, for example replacing the value
with another one. The truncate and filter actions apply
common modifications to inputs. Truncate reduces the size

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 129 / 132

of the input channel to a specific threshold, for example
shortening the length of an argument to prevent a buffer
overflow. The filter action replaces specific substrings in
the input channel. The Adaptation Generator examines the
vulnerability profile to derive parameters for these actions,
such as the target length for truncation or the content to
remove.

When instructed by the IRM, the Adaptation Generator
verifies an adaptation by temporarily applying the adaptation
to the system and running the accumulated test-cases. Once
an adaptation passes verification, the IRM may instruct the
Adaptation Generator to apply it to the system, thus prevent-
ing a vulnerability from being exploited. An adaptation fails
verification if it changes the behavior for non-fault-inducing
inputs or if it fails to prevent a fault.

E. Immunity Response Manager

The IRM oversees and manages FUZZBUSTER’s adaptive
immunity processes, ensuring that FUZZBUSTER’s proactive
and reactive protection functions are effective, while avoid-
ing undue burden on the resources of the protected system.

The IRM’s chief roles include initiating proactive vul-
nerability exploration, assigning test priorities, and tasking
the MFT and Adaptation Generator. Across these activities,
the IRM controls the system by creating, assigning, and
pausing tasks. Each task specifies a unit of work to be
performed by a component in the system. FUZZBUSTER
defines tasks for exploring an exemplar test case, verifying a
patch, applying a patch to the system, and revoking a patch.
By controlling which tasks are active, the IRM controls the
balance between proactive and reactive testing, decides when
to allocate resources to verifying that patches are acceptable,
and controls when FUZZBUSTER modifies the system.

Our initial implementation of the IRM uses a hand-
coded, static prioritization scheme that ranks tasks based on
their order of arrival. This initial implementation ensures
that FUZZBUSTER eventually explores all exemplar test
cases and attempts to apply adaptations for all identified
vulnerability profiles. In the future, the IRM will evolve
into an MDP-based meta-controller similar to the approach
described in [6].

III. EXPERIMENTAL RESULTS

With the first version of each FUZZBUSTER module
now functional, we have conducted numerous small tests
and one significant series of long experiments. In those
experiments, we used FUZZBUSTER to proactively search
for vulnerabilities in a set of 53 command-line utilities. We
ran the exploration on a Debian VM and a laptop running
OS X; both systems were fully patched at the time of the
experiment. FUZZBUSTER used a wrapper around Barton
Miller’s fuzz-testing tool to generate random byte sequences
to feed to the programs being tested. For each trial, we

configured FUZZBUSTER to use a specific set of options
to the fuzz-testing tool, varying:

• whether the inputs could contain non-printable charac-
ters or not,

• whether the inputs could contain null characters or not,
• the initial seed to use for randomization, and
• the length of the input.

Each trial ran for a fixed period of time (usually 20 sec-
onds), or until FUZZBUSTER found a fault. We relied on
our CRASH stand-in (run.pl) to identify faults. For the
purposes of this experiment, we identified faults as program
crashes (abnormal exits, such as from segmentation faults).

FUZZBUSTER ran 3,380 trials in just over 18 hours,
encountering 49 faults. Fifteen of those faults were “dupli-
cates” caused by the same input as another trial but with
additional, unnecessary, content at the end. For example, we
found a fault in tcsh with a 1,000 byte input created with
both printable and non-printable characters, no nulls, and a
seed of 1,002; that same fault was subsequently encountered
using a 10,000 byte input created with the same parameters.
Another eleven faults differed only in that one fault was
caused by feeding an input string to standard-input and the
other was caused by feeding the same string via a file argu-
ment. The remaining 23 faults correspond to unique crashes
in five programs: a2p, dc, indent, tcsh, and troff.
FUZZBUSTER considers these to be unique vulnerabilities,
as the inputs have unique combinations of printable/non-
printable characters, presence of null characters, and seeds.
However, we recognize that it is probable that these inputs
are triggering fewer than 23 software problems, perhaps as
few as five (one per program). Even if several of these faults
stem from a single vulnerability, the full FUZZBUSTER will
identify and shield the common vulnerability, thus protecting
the system against the original and related faults.

0

1

2

3

4

5

6

10 100 1000 10000 50000

S
e

e
d

s
te

st
e

d
 p

e
r

se
c

Length of input (bytes)

Figure 3. FUZZBUSTER executes 4.7 test cases per second when the inputs
are short (10 to 100 bytes). The testing rate decreases with larger test inputs,
falling to 3.0 tests per second when the inputs are 50,000 bytes long.

We configured FUZZBUSTER to repeat the proactive ex-
ploration numerous times, varying each of the conditions.

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 130 / 132

0

1

2

3

4

5

6

7

8

9

10 100 1000 10000 50000

F
a

u
lt

s
fo

u
n

d

Length of input (bytes)

Only printable, no nulls

Only printable, with nulls

With non-printable and

nulls

With non-printable, no

nulls

Figure 4. FUZZBUSTER requires larger input files to uncover all the faults
encountered during the experiment. Inputs with non-printable characters led
to discovery of 19 faults.

We tested with inputs of length 10, 100, 1,000, 10,000, and
50,000 bytes. As shown in Figure 3, running with the larger
inputs modestly reduces the rate at which FUZZBUSTER
runs individual test cases. Figure 4 shows that FUZZBUSTER
usually needs inputs of at least 1,000 bytes to trigger the
faults. Since we removed faults that were duplicates except
for size, Figure 4 illustrates unique faults discovered at each
size. Thus, FUZZBUSTER requires inputs with a length of
50,000 bytes to discover all of the faults in the test. From
this graph we can also see that testing with non-printable
characters is more effective than testing without, accounting
for 19 out of the 23 faults (82.6%). Inputs containing null
characters account of 10 faults and inputs without nulls
account for 13.

While this suggests that FUZZBUSTER should focus on
inputs containing non-printable characters, two applications
(a2p and indent) only faulted when the inputs consisted
entirely of printable characters. Moreover, our experiment
encountered only a single fault in each of these applications.
Thus, we can see the benefit of the MFT producing multiple
actions for each fuzz-tool wrapper.

As shown in Figure 5, FUZZBUSTER discovers faults
much more frequently using larger inputs. This graph il-
lustrates how much more effective it is to test with larger
inputs, despite the decrease in the number of test cases per
second. We would like the MFT to try to optimize its use
of limited fuzz-testing resources, so we’re also interested
in estimating how long FUZZBUSTER should run a test
configuration before giving up and trying another fuzz-tool
wrapper or abandoning the task. We can begin to answer this
by examining how many inputs FUZZBUSTER tried before
finding one that caused a fault. Figure 6 shows how many
non-faulting seeds were tried in each trial that found a fault.
The graph shows that it took, at most, 53 test-cases for inputs
of 10,000 bytes and 50 test-cases for inputs of 1,000 bytes

0

2000

4000

6000

8000

10000

12000

14000

10 100 1000 10000 50000

A
v

e
ra

g
e

 t
im

e
 s

p
e

n
t

p
e

r
fa

u
lt

 (
s)

Length of input (bytes)

Figure 5. Even though short inputs result in faster test execution, due to
the relative rarity of faults identified by short inputs, the average time spent
searching per fault is much higher.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

N
u

m
b

e
r

o
f

se
e

d
s

tr
ie

d

Length of input (bytes)

Figure 6. Number of seeds tested in a trial before finding one that induces
a fault.

before finding the fault. Given the test rates from Figure 3,
this shows that each of the successful tests took less than
fifteen seconds, for larger inputs. While the precise test
duration will vary according to the type of software being
tested, these values provide a good starting point for our
upcoming MDP-based Immunity Response Manager meta-
controller.

IV. RELATED WORK

As previously noted, the FUZZBUSTER approach has roots
in fuzz-testing, a term first coined in 1988 in the context of
software security analysis [7]. It refers to invalid, random,
or unexpected data that is deliberately provided as program
input in order to identify defects. Fuzz-testers and the closely
related “fault injectors” are good at finding buffer overflow,
XSS, denial of service (DoS), SQL Injection, and format
string bugs. They are generally not highly effective in
finding vulnerabilities that do not cause program crashes,
e.g., encryption flaws and information disclosure vulnerabil-
ities [8]. Moreover, existing fuzz-testing tools tend to rely
significantly on expert user oversight, testing refinement, and
decision-making in responding to identified vulnerabilities.

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

 131 / 132

FUZZBUSTER is designed both to augment the power
of fuzz-testing and to address some of its key limitations.
FUZZBUSTER fully automates the process of identifying
seeds for fuzz-testing, guides the use of fuzz-testing to
develop general vulnerability profiles, and automates the
synthesis of defenses for identified vulnerabilities.

To date, several research groups have created specialized
self-adaptive systems for protecting software applications.
For example, both AWDRAT [9] and PMOP [10] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods
to avoid damage or compromises.

The CORTEX system [11] used a different approach,
placing a dynamically-programmed proxy in front of a
replicated database server and using active experimentation
based on learned (not hand-coded) models to diagnose new
system vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the
self-adaptive, self-regenerative software concept, they are
closely tailored to specific applications and specific repre-
sentations of program behavior. FUZZBUSTER provides a
general approach to adaptive immunity that is not limited
to a single class of application. FUZZBUSTER does not
require detailed system models, but will work from high-
level descriptions of component interactions, such as APIs
or contracts. Furthermore, FUZZBUSTER’s proactive use of
intelligent, automatic fuzz-testing identifies possible vulner-
abilities before they can be exploited.

V. CONCLUSION AND FUTURE WORK

FUZZBUSTER is intended to augment and eventually
outmode various post-exploit security tools such as virus
scanners. Rather than scanning a computer all night to see
if it has been compromised by an exploit, FUZZBUSTER
will scan for vulnerable software and repair or shield it.
Our preliminary experiments have shown that there are still
many such vulnerabilities to be found, even on heavily used
software in mature systems. As we extend FUZZBUSTER
to address more complex applications with more forms of
input, we expect that FUZZBUSTER will find vulnerabilities
even more frequently. We hope that FUZZBUSTER will
play a crucial role in proactively finding and eliminating
vulnerabilities, making fuzz-testing no longer an effective
strategy for cyber-attackers.

ACKNOWLEDGMENTS

This work was supported by DARPA and Air Force Re-
search Laboratory under contract FA8650-10-C-7087. The
views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense
or the U.S. Government.

REFERENCES

[1] T. Kellerman, “Cyber-threat proliferation: Today’s truly per-
vasive global epidemic,” Security Privacy, IEEE, vol. 8, no. 3,
pp. 70 –73, May-June 2010.

[2] G. C. Wilshusen, “Cyber threats and vulnerabilities place
federal systems at risk: Testimony before the subcommittee
on government management, organization and procurement,”
United States Government Accountability Office, Tech. Rep.,
May 2009.

[3] “Automated penetration testing with white-box fuzzing,”
2008. [Online]. Available: http://msdn.microsoft.com/en-us/
library/cc162782.aspx#Fuzzing topic1

[4] D. D. Corkill, “Countdown to success: dynamic objects, gbb,
and radarsat-1,” Commun. ACM, vol. 40, pp. 48–58, May
1997.

[5] ——, “Blackboard systems,” AI expert, vol. 6, no. 9, pp. 40–
47, 1991.

[6] D. J. Musliner, R. P. Goldman, and K. D. Krebsbach, “Delib-
eration scheduling strategies for adaptive mission planning in
real-time environments,” in Proc. Third International Work-
shop on Self Adaptive Software, 2003.

[7] B. Miller, L. Fredriksen, and B. So, “An empirical study of
the reliability of unix utilities,” Communications of the ACM,
vol. 33, no. 12, December 1990.

[8] C. Anley, J. Heasman, F. Linder, and G. Richarte, The
Shellcoder’s Handbook: Discovering and Exploiting Security
Holes, 2nd Ed. John Wiley & Sons, 2007, ch. The art of
fuzzing.

[9] H. Shrobe, R. Laddaga, B. Balzer, N. Goldman, D. Wile,
M. Tallis, T. Hollebeek, and A. Egyed, “AWDRAT: a cog-
nitive middleware system for information survivability,” AI
Magazine, vol. 28, no. 3, p. 73, 2007.

[10] H. Shrobe, R. Laddaga, B. Balzer et al., “Self-Adaptive
systems for information survivability: PMOP and AWDRAT,”
in Proc. First Int’l Conf. on Self-Adaptive and Self-Organizing
Systems, 2007, pp. 332–335.

[11] “Cortex: Mission-aware cognitive self-regeneration technol-
ogy,” Final Report, US Air Force Research Laboratories
Contract Number FA8750-04-C-0253, March 2006.

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

Powered by TCPDF (www.tcpdf.org)

 132 / 132

http://www.tcpdf.org

