
FASSI 2018

The Fourth International Conference on Fundamentals and Advances in Software

Systems Integration

ISBN: 978-1-61208-666-8

September 16 - 20, 2018

Venice, Italy

FASSI 2018 Editors

Chris Ireland, Open University, UK

 1 / 25

FASSI 2018

Forward

The Fourth International Conference on Fundamentals and Advances in Software Systems
Integration (FASSI 2018), held between September 16, 2018 and September 20, 2018 in Venice,
Italy, continued a series of events started in 2015 and covering research in the field of software
system integration.

On the surface, the question of how to integrate two software systems appears to be a
technical concern, one that involves addressing issues, such as how to exchange data (Hohpe
2012), and which software systems are responsible for which part of a business process.
Furthermore, because we can build interfaces between software systems we might therefore
believe that the problems of software integration have been solved. But those responsible for
the design of a software system face a number of trade-offs. For example the decoupling of
software components is one way to reduce assumptions, such as those about where code is
executed and when it is executed (Hohpe 2012). However, decoupling introduces other
problems because it leads to an increase in the number of connections and introduces issues of
availability, responsiveness and synchronicity of changes (Hohpe 2012).

The objective of this conference is to work toward on understanding of these issues, the
trade-offs and the problems of software integration and to explore strategies for dealing with
them. We are interested to receive paper from researchers working in the field of software
system integration.

We take here the opportunity to warmly thank all the members of the FASSI 2018 technical
program committee, as well as all the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the
authors who dedicated their time and effort to contribute to FASSI 2018. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

We also gratefully thank the members of the FASSI 2018 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope that FASSI 2018 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the field
software systems integration. We also hope that Venice, Italy provided a pleasant environment
during the conference and everyone saved some time to enjoy the unique charm of the city.

FASSI 2018 Chairs

FASSI Steering Committee
Chris Ireland, The Open University, UK
Hironori Washizaki, Waseda University / National Institute of Informatics / System Information,
Japan
Keijiro Araki, Kyushu University, Japan

 2 / 25

FASSI 2018
Committee

FASSI Steering Committee
Chris Ireland, The Open University, UK
Hironori Washizaki, Waseda University / National Institute of Informatics / System Information,
Japan
Keijiro Araki, Kyushu University, Japan

FASSI 2018 Technical Program Committee
Frank J. Affonso, Universidade Estadual Paulista – UNESP, Brazil
Harvey Alférez, Montemorelos University, Mexico
Keijiro Araki, Kyushu University, Japan
Doo-Hwan Bae, School of Computing - KAIST, South Korea
Imen Ben Mansour, University of Manouba, Tunisia
Silvia Bonfanti, University of Bergamo, Italy
Michael Franklin Bosu, Waikato Institute of Technology, New Zealand
Graeme Burnett, University of Glasgow/Enhyper Ltd., UK
Yudith Cardinale, Universidad Simón Bolívar, Caracas, Venezuela
Stephen Clyde, Utah State University, USA
Marian Daun, University of Duisburg-Essen | paluno - The Ruhr Institute for Software
Technology, Essen, Germany
Nitish Devadiga, Datarista Inc. / Carnegie Mellon University, USA
Jorge Edison Lascano, Universidad de las Fuerzas Armadas ESPE, Quito, Ecuador
Leire Etxeberria Elorza, Mondragon Unibertsitatea, Spain
Ip-Shing Fan, Cranfield University, UK
Marie Farrell, University of Liverpool, UK
Peter Forbrig, University of Rostock, Germany
Atef Gharbi, LISI | INSAT, Tunisia
Hamza Gharsellaoui, ENI Carthage | Carthage University, Tunisia / Al Jouf College of Technology
| TVTC, KSA
Fotios Gioulekas, Aristotle University of Thessaloniki, Greece
Afef Gueidi, University Tunis El Manar / Carthage University, Tunisia
Mohammad Mahdi Hassan, Al Qassim University, Buraidah, Saudi Arabia
Shinpei Hayashi, Tokyo Institute of Technology, Japan
Alan Hayes, University of Bath, UK
Samedi Heng, Université Catholique de Louvain, Belgium
Nikolas Herbst, University of Würzburg, Germany
Uwe Hohenstein, Siemens AG, Munich, Germany
LiGuo Huang, Southern Methodist University, USA
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Chris Ireland, The Open University, UK
Slinger Jansen, Utrecht University, Netherlands

 3 / 25

Teemu Kanstren, VTT, Finland
Carlos Kavka, ESTECO SpA, Trieste, Italy
Jayden Khakurel, Lappeenranta University of Technology, Finland
John Klein, Carnegie Mellon University | Software Engineering Institute, Pittsburgh, USA
Bruno Lima, University of Porto & INESC TEC, Portugal
Francesca Lonetti, CNR-ISTI, Pisa, Italy
Tomi Männistö, University of Helsinki, Finland
Dusica Marijan, Simula Research Laboratory, Norway
Sanjay Misra, Covenant University, Ota, Nigeria
Osamu Mizuno, Kyoto Institute of Technology, Japan
Andreas Morgenstern, Fraunhofer Institute for Software Engineering (IESE), Germany
Tsuyoshi Nakajima, Shibaura Institute of Technology, Japan
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Yassine Ouhammou, LIAS/ISAE-ENSMA, France
Tosin Daniel Oyetoyan, SINTEF Digital, Norway
Roberto Paiano, University of Salento, Lecce, Italy
Michail Papamichail, Aristotle University of Thessaloniki, Greece
Christian Percebois, University of Toulouse, France
Olivier H. Roux, Ecole Centrale de Nantes, France
Gunter Saake, Otto-von-Guericke-University of Magdeburg, Germany
Maria Spichkova, RMIT University, Australia
Tim Storer, University of Glasgow, UK
Bedir Tekinerdogan, Wageningen University, The Netherlands
Alexandre Vasconcelos, Center of Informatics - Federal University Pernambuco, Brazil
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM
INFORMATION, Japan
Tim Weilkiens, oose Innovative Informatik eG, Germany
Zhi Zhang, Synopsys Inc., USA

 4 / 25

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 25

Table of Contents

Prototyping for a Parallel Programming Tool
Kyoko Iwasawa

1

Empirical Exploration of the Software Integration Success Factors in Global Software Development: Analyses
based on Company Size and Practitioners’ Experiences
Muhammad Ilyas and Siffat Ullah Khan

6

Applying Quality Requirements Framework to an IoT System
Tsuyoshi Nakajima

12

Integration of Data Providing and Analyzing System and its Application to Higher Education Institutional Data
Masaaki Ida

16

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 25

Prototyping for a Parallel Programming Tool

Kyoko Iwasawa
Department of Computer Science

Takushoku University
Hachioji Tokyo, Japan

e-mail: kiwasawa@cs.takushoku-u.ac.jp

Abstract—We propose a tool to enable even beginners in
parallel processing to develop a parallelization program using
Open Multi-Processing (OpenMP) directives. Our proposed
tool is characterized by its analysis of source programs for C
and OpenMP directives written by users and its display of
parallel structure diagrams. Further, the discovery of source
program bugs is facilitated by the static analysis of interactive
data access regions and decisions on the feasibility of
parallelization using these parallel structure diagrams. While
our proposed tool currently handles only basic OpenMP
directives, our aim is to improve the analysis of parallel
structure diagrams by including more complex simultaneous
processing and more precise data access.

Keywords-parallel programming; OpenMP directive; data
flow analysis.

I. INTRODUCTION

While the recent years have seen a proliferation in
systems capable of parallel execution, including multicore
and General Purpose computing on Graphics Processing
Units (GPGPU), in general, the development of programs for
parallel execution is difficult. While this is also the case with
algorithm development, writing parallel processing code in
an editing environment for the coding of sequential
processing easily produces errors. Further, it is difficult to
identify the errors, because in parallel programs the
execution results are not reproducible.

Therefore, we propose a programming environment
particularly for beginners in parallel processing, using a
parallel structure that is easily understood visually and also
statically analyses the feasibility of parallel execution from
the execution statement data access regions during program
editing. We are developing the prototype of this tool.

Open Multi-Processing (OpenMP) is an application
programming interface that supports multi-platform shared
memory multiprocessing programming by the OpenMP
Architecture Review Boards [1]. The details of OpenMP
spec are written in [2] and [3]. There are several tools for
OpenMP programming. [4] and [5] are integrated tools for
OpenMP programming, which include compiler and parallel
execution environments. They have various functions and
can be somewhat difficult for beginners of parallel
programming. We simplify the analyzing method in [6] and
[7] because our proposed tool does not generate parallel
object code, but suggests user appropriate directives for
parallelization.

The rest of paper is structured as follows. Section II
presents the overview of the proposed tool; Section III

describes the parallel structure diagrammatic display; Section
IV explains the access region analytical method; Section V
explains the parallelization feasibility decision method.
Finally, we conclude and present the future issues in Section
VI.

II. PROPOSED TOOL OVERVIEW

Our proposed tool is an environment for the C
programming language used in creating and editing
programs that give parallelization directions using OpenMP
directives. It has the following three main functions.

(1) OpenMP directive analysis
(2) Parallel structure graph display
(3) Interactive, static data flow analysis, and

parallelization feasibility decisions.
In addition, it display the structure written in OpenMP in

an easy understood manner for users not accustomed to
parallel processing, as well as for beginners to perform
debugging by displaying static analytical results
interactively.

Figure 1 shows the overall proposed tool structure.

Figure 1. Overall tool structure

A source program with an OpenMP directive parallel
execution direction is entered into a C program to analyze
the C programming language execution directions and
OpenMP directives. Subsequently, they are joined in an
intermediate representation. This is formed and displayed as
the parallel structure diagram in Figure 3. In this diagram,
the user selects the quadrangle in the execution direction and
the elliptical shape in the parallel execution direction to
decide the data access region and parallel execution
feasibility.

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 7 / 25

Figure 2. Display screen

Figure 2 shows the display screen and an analytical
example. In the editing window on the left, the user performs
the parallelization program coding using the C programming
language script and OpenMP directives. The command
“draw” is selected for the tool to display a parallel structure
diagram on the left. The details of this parallel structure
diagram are presented in Section III. The command ‘analyze’
is selected to enable the selection of the diagram quadrangle
and elliptical shape (line number and OpenMP directive).
Selecting one of these displays the parallel block access
regions for that OpenMP directive and the parallelization
decision.

III. GRAPH DRAWING OF OPENMP DIRECTIVE

ANALYTICAL RESULTS

The tool analyzes syntax and context of OpenMP
directives in the C source program, and these directives are
reflected in the intermediate representation. This displays the
diagram expressing the parallel structure in a graph from this
intermediate representation. This is a graph structure with
quadrangles expressing the parallel execution unit and
ellipses expressing parallel execution direction as nodes.

Quadrangles do not display the execution directions
merely by inserting the first and last direction numbers.
Ellipses have line numbers and OpenMP directives as labels.

Although there are many OpenMP directives, the current
parallel structure diagrams are expressing only for the
following three basic types thought necessary for beginners
as subjects of analysis.

(1)#pragma omp parallel
(2)#pragma omp parallel for
(3)#pragma omp parallel sections and #pragma omp

section

The “parallel for” for the do-all-type parallel processing
is expressed in double ellipses, and their loops are expressed
by overlapping quadrangles. The “parallel sections” that

express parallel-case type parallel processing are single
ellipses. The nested parallel execution is expressed by
drawing ellipses and quadrangles in other quadrangles.

The requirements of parallel structure graph to express
directives are the following:
· To distinguish between the execution of same statements
in parallel for the number of threads (#pragma omp parallel)
and the execution of different statements in parallel (
#pragma omp parallel for, #pragma omp parallel sections).
· To arrange statements to be executed simultaneously, side
by side.
· To arrange sequential statements vertically and clarify the
order of execution by using connected line.
· To show the synchronization point.
· To disclose parallel nesting structure.

Figure 3. Source program and parallel structure diagrams

Figure 3 shows an example of source program and
parallel structure graph. Since the eighth line is a “parallel”
directive, it directs to execute the entire following for-loop
parallel by the thread number. On the other hand, the 14th
line is a “parallel for” directive that divides the loop

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 8 / 25

repetition and directs to execute by dividing them in a
parallel manner. This is expressed with a double ellipse
directive and overlapping quadrangles such that the
difference can be intuitively understood. The 12th line is a
“parallel section” directive, and the quadrangles are able to
execute parallel and the synchronizing point for the “}” in
the 23rd line to clarify its scope. While internal statements of
each quadrangle and the overlapping quadrangle execute
sequentially, when there is any parallel directive graph
shows nested parallel execution.

IV. STATIC ANALYSIS OF DATA ACCESS REGION

When the user selects the quadrangle in a generated
parallel structure graph from an OpenMP directive analysis,
the tool finds and displays the data access region by its
execution. Additionally, when user selects the ellipse that
expresses parallel directive, the tools decides the parallel
execution feasibility. An example is shown in Figure 2.

Access region analysis to decide parallelization
feasibility analyses what regions are accessed in what order
according to a control flow.

A. Access Types

Four data access types are available:
 Possible use (USE)

Data that might be used within a certain scope (flow
graph pass)

 Possible exposed use (EUSE：Exposed USE)
Data that might be used within a certain scope before
definition (flow graph pass)

 Possible definitions (MOD：MODified)
Data that might be updated within a certain scope
before definition (flow graph pass)

 Definitely defined（DDEF：Definitely Defined）
Data that is definitely updated within a certain scope
(flow graph pass)

The ‘flow graph pass’ above widens the scope of
analysis to the parallelization block through the process of

one statement → basic block → loop i-th iteration → all

repetitions loop → outer loop.
While the ‘possible use’ and ‘possible definitions’ are

control flow insensitive, ‘possible exposed use’ and
‘definitely defined’ are control flow sensitive. These regions
are related as follows:

Possible use ⊆ Possible exposed use
Possible definitions ⊆ Definitely defined

As understood from the analytical methods in Section V, the
‘possible use’ and ‘possible definitions’ are required to
guarantee safety.

B. Method 1: [fusing]

In the if-then-else structure, when node 1 is ‘then’ and
node 2 is ‘else’, the tool integrates the access regions as in
Figure 4 (+ is union and * is intersection).

Figure 4. Access region integration (conditional branches)

C. Method 2: [join]

After fusing the if-then-else structure, the nodes
sometimes line up in a row. Node 1 is the priority node and
node 2 is the next node. The tool integrates the access
region as in Figure 5 (- is the difference set excluding the
intersection set from the first operand).

Figure 5 . Access region integration (connection)

D. Method 3: [expansion of loops]

Concerning loops, the access region of the i-th iteration
is analysed by Method 1 and Method 2 and the access region
of the entire loop is analysed, as shown in Figure 6. The
information of data access in a loop is expanded.

Figure 6. Access region expansion

The balloons indicating the quadrangles in Figure 2
contains an example of the analysis results.

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 9 / 25

V. PARALLEL EXECUTION FEASIBILITY DECISION

By using the parallel structure graph, the user knows
feasibility of parallel execution. The tool decides whether
each iteration of a loop can be executed independently for
the do-all type, and for the parallel-case type the tool decides
whether the parallel blocks surrounded by the section
directives can be executed independently. When dependency
that impedes parallel execution occurs, the tool displays it as
the reason of impossible of parallelization. In some cases, the
usage of the reduction instructions and the privatization of
variables are confirmed.

Decisions of parallel execution are conducted using
access regions as follows.

A. do-all Type

The entire loop-accessed region is checked for reliance
upon the following three types of loop-carried data
dependence.

∀�(0 ≤ � ≤ �,�: ���� ��������� ������) ����� ∩ �����

���

���

≠ ∅ (1)

→ loop carried flow dependence

∀�(0 ≤ � ≤ �,�: ���� ��������� ������)

���� ∩ �(���� − �����) ≠ ∅ (2)

���

���

→ loop carried anti dependence

∀�(0 ≤ � ≤ �,�: ���� ��������� ������)���� ∩ �����

���

���

≠ ∅ (3)

→ loop carried output dependence

When condition (1) is satisfied, confirming data that is
detected causes loop carried data dependence. It becomes
parallelization impeding factor. When conditions (2) and (3)
are satisfied, confirming data that is detected causes loop
carried anti and output data dependence. In this case,
parallelization might be possible by privatisation of these
confirming data. The tool recommends users to add private
clause to parallel for directive.

The balloon indicating the ellipse with the parallelization
direction in Figure 2 contains an example of the analysis
results.

B. parallel-case Type

In a parallel-case-type parallel processing, whether all
quadrangles that are connecting the parallel section ellipses
can be independently executed is decided as follows. They
are similar to do-all case. If defined area of a given section
is not overlapping with defined and used regions of any
other sections, these sections can be executed
independently. The overlapping of regions causes memory
hazard.

∀�(0 ≤ � ≤ �,�: ������� ������) ����� ∩ �������

�

���

≠ ∅ (4)

→ flow dependence

∀�(0 ≤ � ≤ �,�: ������� ������)

���� ∩ �(������ − �������) ≠ ∅ (5)

�

���

→ anti dependence

∀�(0 ≤ � ≤ �,�: ������� ������) ���� ∩ �������

�

���

≠ ∅ (6)

→ output dependence

The case of condition (4) is satisfied and there is flow
dependence, which inhibit parallel execution without any
synchronization. When condition (5) or condition (6) is
satisfied, the tool recommend user to privatize confirming
data that is detected.

VI. CONCLUSION

In a structure as presented herein, providing a parallel
program development environment allows the meaning of
the written OpenMP directives to be easily understood and
mistakes in directives to be easily recognized by beginners
not accustomed to parallel processing. Further, this enables
the detection and correction of errors peculiar to parallel
processing at an early development stage for an accurate
static analysis. Inserting OpenMP directives into C
programs, such as parallel structures graph enables the easy
understanding of parallel structure mistakes and missing
synchronous processes because when necessary OpenMP
directive is missed out the graph does not have parallel
structure. Then the tool makes comments reason why the
tool cannot make parallel structure.

Currently, the prototype of the proposed tool is under
developing. The GUI specifications have developed as they
are considered. We are going to connect the result of static
analysis to parallel structure graph. In the future, we would
like to increase the types of OpenMP directives for analysis,
display complex synchronous processes in an easily
understood manner, and provide appropriate advice from the
analytical results. Once the parallel structure specifications
are established, we would like for users to draw parallel
structure graph, input execution statements in them, and for
the tool to generate C and OpenMP source programs.

REFERENCES

[1] http://www.openmp.org/, “HOME OpenMP”, 2018.03.19

[2] B. Chapman, G. Jost, and R. Van Def Pas, “Using OpenMP:
Portable Shared Memory Parallel Programming”, MIT Press,
2008

[3] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J.
McDonald, “Parallel Programming in OpenMP”, Morgan
Kaufmann, 2000

[4] O. Harnandez, C. Liao, and B.Chapman, “Dragon: A Static
and Dynamic Tool for OpenMP”, Internationa Workshop on
OpenMP Applocation and Tools, pp.54-66, 2004

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 10 / 25

[5] https://pm.bsc.es/ompss, “Programming Models@BSC”,
2018.03.20

[6] http://coins-compiler.osdn.jp/international/index.html,

“COINS project”, 2018.03.19

[7] K. Iwasawa, Automatic Parallelizing “Method of Loops by
Conditional Region Analysis”, Proceedings of the 16th
IASTED International Conference Applied Informatics,
pp.310-313, 1998

[8] T., Watanabe, T. Fujise, K. Mori, K. Iwasawa, and I. Nakata,
“Design assists for embedded systems in the COINS
Compiler Infrastructure”, Proceedings of the 10th
International Workshop on Innovative Architecture for Future
Generation High-Performance Processors and Systems,
pp.60-09, 2007

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 11 / 25

Empirical Exploration of the Software Integration Success Factors in Global

Software Development

Analyses based on Company Size and Practitioners’ Experiences

Muhammad Ilyas

Software Engineering Research Group (SERG_UOM),

Department of Computer Science & IT,

University of Malakand, KPK, Pakistan

e-mail: milyasmkd@uom.edu.pk

Siffat Ullah Khan

Software Engineering Research Group (SERG_UOM),

Department of Computer Science & IT,

University of Malakand, KPK, Pakistan

e-mail: siffatullah@uom.edu.pk

Abstract — Software Integration is the most important and

complicated phase of software development process. The

integration phase becomes even more challenging in Global

Software Development (GSD) environment. In our previous

study, we identified nine Critical Success Factors (CSFs) using

Systematic Literature Review (SLR). Further, for validation of

the identified CSFs and for identification of additional success

factors, we conducted an industrial survey in GSD

environment. In this paper, we present some important

analyses of the identified software integration CSFs in GSD

environment, based on practitioners’ experiences and company

size, through industrial survey.

Keywords-Software Integration; Success Factors; Empirical

Study; Global Software Development.

I. INTRODUCTION

The advances in Information and Communication

Technologies (ICTs) have resulted in an increase in

software use and its size. The software development process

has also changed from local to global software development

[1]. Global software development paradigm has been

adopted by many software vendors, from the last two

decades, because of the perceived benefits that can be

gained from GSD [1] e.g., cost savings, reduced time to

market, proximity to market and customers’ access to large

skilled labor force, etc. However, in spite of the benefits

gained from GSD, vendors also face communication,

coordination, knowledge sharing and control problems due

to temporal, cultural and linguistic differences [2]-[5]. These

problems have also made software integration process more

complicated [6]-[8]. Many of the uncovered problems of the

previous phases start appearing in the integration phase [9].

These problems not only increase the workload of the global

teams but also decrease the quality of the final working

product. Researchers reported that more than 50% of the

software development projects suffer from cost overrun

and/or time overrun problem(s) due to the complexities and

incompatibilities found at the software integration stage

[10]. Keeping in mind the importance of the integration

stage, we proposed the following research questions.

RQ-1: What are the critical success factors (CSFs), as

identified in the literature and real-world practice, to be

adopted by GSD vendors at various stages of the product

integration in GSD environment?

RQ-2: Do the identified critical success factors, as

identified in the survey, vary with the level of experience?

RQ-3: Do the identified critical success factors, as

identified in the survey, vary with the organization size?

In order to answer RQ1, we identified a list of nine

Critical Success Factors (CSFs), as shown in Table 1, in our

previous study using Systematic Literature Review (SLR)

method. To answer RQ1, Table 1 shows a list of nine

Critical Success Factors (CSFs) identified in our previous

study, via Systematic Literature Review (SLR) method [11]-

[13]. These findings were further validated through a

questionnaire survey in the industry. In this paper, we

present analyses of the empirical data regarding the

identified CSFs based on different variables such as expert’s

level of experience and organization’s size. Thus, we have

tried to answer RQ2 and RQ3 in this paper, whereas RQ1

has already been published [11][13].

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 12 / 25

TABLE 1. LIST OF SOFTWARE INTEGRATION CSFS

S.No Software integration Critical Success Factor (CSFs)

1 Consistency in requirements and architecture design

2 Intra and inter team communication and coordination

3 Component/unit testing prior to integration

4 Advance and uniform development environment and training

5 Efficient incremental/continues integration

6 Efficient specification for interface compatibility

7 Proper documentation & configuration management

8 Early integration planning and centralized P3 management

9 Careful evaluation of the Commercial Off-The-Shelf/Open Source Software (COTS/OSS) components

The remaining of the paper is organized as follows. In

Section 2, background and motivation is presented, while

the research methodology is presented in Section 3. Results

are presented in Section 4. Finally, Section 5 discusses the

limitations of the study and Section 6 presents the

conclusion and future work.”

II. BACKGROUND

Lorson [9] defines the integration process as a set of

procedures for combining components into one larger

component, product, subsystem or system. It is the

integration stage that enables the organization to assess the

overall system functionality and performance that a system

may have. In software systems, the integration is the first

stage where the overall results of the software development

efforts can be observed. Thus integration is a critical phase

in the overall software development process.

Paloheimo [14] reported that “as the integration phase is

usually the last to follow in a software development process,

the unnoticed problems in the preceding phases tend to

accumulate in this final phase”. The author recommended

joint/shared milestones, and incremental integration for

successful integration of the software components in the

GSD environment.

Van Moll et al. [10] report that the majority of the GSD

projects suffer because of the integration complexities. The

authors of the study recommended good planning, better

monitoring and control, and assigning responsibilities to

each and every team member in a well defined manner.

Vasilescu et al. [15] have quantitatively analyzed the

continuous integration practice of software engineering.

They have concluded that the success or failure of a build

process is dependent on the way the code is modified. The

code can be modified in two ways:

 Direct change in the code: In this case, a small

group of developers, who have the write access to

the main project repository, modifies the code.

 Indirect/pull request: In this case, developers who

fork the main repository, change their copies

locally and tender pull request for review and

merge.

Their analysis showed that pull request method of code

change is more likely to cause integration testing failures as

compared to the direct method. The main limitation of their

results is their applicability to open source projects only.

Adams et al. [16] reported in an empirical study that,

although the reuse of COTS/OSS components is the best

practice, the integration process of these components may

also introduce unexpected maintenance costs. They pointed

out a need of increased empirical research in software

engineering for successful reuse and integration of

COTS/OSS software components [11][13].

III. RESEARCH METHODOLOGY

The empirical methods such as case studies, controlled

experiments, surveys and post-mortem analysis are essential

to the researchers for evaluation and validation of research

results in the field of software engineering because the

software development process is human intensive work

[17]-[19]. In survey design, a survey or questionnaire is

administered to a small group of people, also called the

sample, for identification of trends in characteristics,

opinions, attitudes or behavior of a large group of people,

also called population [20]. Interview and questionnaire are

the two main methods of gathering the quantitative or

qualitative data. In both methods, a sample representing a

population is studied. The results obtained from the survey

are analyzed for derivation of explanatory and descriptive

conclusions. These conclusions are then generalized to the

population from which the sample was taken and studied

[17]. In view of the available resources and diverse range of

respondents, we have used the questionnaire method as the

data collection tool.

The purpose of conducting the survey was to validate the

findings of the SLR through industry practitioners and to

identify new practices, if any. A similar approach has been

used by other researchers [5][6][18].

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 13 / 25

We have designed the questionnaire survey based on the

inputs from our previously published SLR study [21]. The

questionnaire survey was properly conducted as done by

other researchers [5][22]. We have used both open and close

ended questions in this survey. The close ended questions

were used as an instrument for collecting self-reported data.

In our case, we have used the close ended questions for

collecting data about the software integration success factors

identified through SLR. We have also used open ended

questions to gain the tacit knowledge on the success factors

from the industry experts.

The questionnaire used in the survey was designed for

eliciting the significance that each respondent has placed on

each software integration success factors as identified

through SLR. In order to expose the importance of each

factor, we have used a seven point Likert scale i.e.,

Extremely Agree, Moderately Agree, Slightly Agree, Not

Sure, Slightly Disagree, Moderately Disagree and

Extremely Disagree. The respondents were requested to

mention each practice relative value. We used a 7 point

Likert scale in the survey, however, for the analysis

purposes mentioned in this paper, we have considered

Extremely Agree (EA) view point of the survey participants.

The number of responses got for the other 6 view points

were very low and are therefore not analyzed in this paper.

IV. RESULTS

 This section discusses the results and examines the

identified software integration critical success factors for

each of the Research Questions stated in Section I.

RQ-2 Do the identified critical success factors, as

identified in the survey, vary with the level of experience?

We received consent from 232 experts for participation

in the survey. A total of 99 experts participated in the

survey from 22 different countries. We received a total of 96

valid responses from participants of the questionnaire

survey and have used seven point Likert scale (EA:

Extremely Agree, MA: Moderately Agree, SA: Slightly

Agree, NS: Not Sure, SD: Slightly Disagree, MD:

Moderately Disagree and ED: Extremely Disagree). In order

to answer RQ-1, we classified the survey participants into

three groups, as shown in Table 2, based on their experience

level, as follows:

 Junior level experts (JLE): 1 to 5 years experience

 Intermediate level experts (ILE): 5+ to 10 years

experience

 Senior level experts (SLE): 10+ experience

It should be noted that these three classes of experts were

defined after discussion with the industry experts and

external reviewers. Other researchers may however define

their own criteria for deciding different levels for experts.

TABLE 2. SUCCESS FACTORS, EXTREMELY AGREE VIEW POINT OF EXPERTS HAVING DIFFERENT EXPERIENCE LEVELS

Critical Success Factors (CSFs) Expert’s experience level Chi Square Test

(Linear-by-linear

Association

∝=0.05, Df =1)
Junior

(1 to 5y)

(n=39)

Intermediate

(5+ to 10 y)

(n=26)

Senior

(10+ y)

(n=31)

% of EA % of EA % of EA X2 P

CSF1-Consistency in requirements and architecture design 72 81 87 2.462 0.117

CSF2-Intra and inter team communication and coordination 74 58 77 3.897 0.048

CSF3-Component/Unit testing prior to integration 54 65 55 0.20 0.888

CSF4-Advance & uniform development environment and training 38 54 45 0.385 0.535

CSF5-Efficient incremental/continuous integration 38 46 48 0.710 0.399

CSF6-Efficient specification for interface compatibility 31 46 39 0.548 0.459

CSF7-Proper documentation & configuration management 44 42 45 0.014 0.904

CSF8-Early integration planning and centralized P3 management 23 27 35 1.275 0.259

CSF9-Careful evaluation of the COTS/OTS components 51 54 55 0.090 0.765

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 14 / 25

The data in Table 2 shows that all CSFs excluding CSF8

“Early integration planning and centralized P3

management” have been cited by >=30% in the sample of

extremely agree responses from the three levels of experts.

The most common success factors which have >=50% of

extremely agree responses in the sample, across all three

level of experts are CSF1-“Consistency in requirements and

architecture design”, CSF2-“Intra and inter team

communication and coordination”, CSF3-“Component/Unit

testing prior to integration” and CSF9-“Careful evaluation

of the COTS/OTS components”. It is worth mentioning that

the factor “Consistency in requirements and architecture

design” is the top ranked factor for all three experience

levels of experts. Therefore, proper care should be taken at

the design time of software architecture and gathering and

specification of requirements because consistent software

architecture is positively correlated with the ease of the

integration process [23]. Similarly, Kommeren et al. [24]

suggested that, for achieving a unified interpretation of

requirements, they should be discussed repeatedly with all

the development teams. This will result in an optimal design

of software components that can be easily integrated. On the

other hand, any deficiency in the common understanding of

requirements may yield poor design decisions leading to

delay in the integration process and the project as a whole.

RQ-3: Do the identified critical success factors, as

identified in the survey, vary with the organization size?

According to the Australian Bureau of Statistics [25]

definition of organization size, we divided the

questionnaires on the basis of organization size into three

groups as follows:

 Small (<20 employees)

 Medium (20 – 199 employees)

 Large (>=200 employees)

In order to answer RQ-3, the distribution of the success

factors reported by various groups of experts, in the survey,

from the three size of organization, is presented in Table 3.

The data in Table 3 shows that all success factors have

cited as extremely agree across various groups of experts in

all three types of organizations. It should also be noted that

all CSFs have been reported with >=30% by experts of all

three size organizations except CSF8-“Early integration

planning and centralized P3 management“, which has 20%

occurrence in the large size organization. The reason of low

frequency for CSF8 may be that large organizations may

have already implemented better planning and management

for the activities related to software integration. Again, there

are some factors which have got >=50% in the extremely

agree response sample in two or more than two types of

organizations. These factors are CSF1-“Consistency in

requirements and architecture design”, CSF2-“Intra and

inter team communication and coordination”, CSF3-

“Component/Unit testing prior to integration”, CSF4-

“Advance & uniform development environment and

training”, CSF7-“Proper documentation & configuration

management” and CSF9-“Careful evaluation of the

COTS/OTS components”.

It should be noted that the CSF1-“Consistency in

requirements and architecture design” and CSF2-“Intra and

inter team communication and coordination” are the two top

most ranked factors which have got >=50% across the

experts of all the three size of organizations i.e., small,

medium and large. Further, Chi Square Test shows that

there is no significant difference because no column has

p<0.05. Hence, it is obvious that these factors should be

implemented on priority basis in organizations of all sizes.

TABLE 3. SUCCESS FACTORS, EXTREMELY AGREE VIEW POINT OF EXPERTS ACROSS VARIOUS SIZE OF ORGANIZATIONS

Critical Success Factors (CSFs) Company size Chi Square Test

(Linear-by-linear

Association

∝=0.05, Df =1)
Small

(n=16)

Medium

(n=36)

Large

(n=44)

% of EA % of EA % of EA X2 P

CSF1-Consistency in requirements and architecture design 63 89 77 0.389 0.533

CSF2-Intra and inter team communication and coordination 75 83 59 3.145 0.076

CSF3-Component/Unit testing prior to integration 63 67 48 1.983 0.159

CSF4-Advance & uniform development environment and training 50 53 36 1.592 0.207

CSF5-Efficient incremental/continuous integration 56 44 39 1.401 0.237

CSF6-Efficient specification for interface compatibility 38 44 32 0.009 0.926

CSF7-Proper documentation & configuration management 63 50 32 2.245 0.234

CSF8-Early integration planning and centralized P3 management 44 31 20 3.260 0.071

CSF9-Careful evaluation of the COTS/OTS components 56 67 41 2.646 0.104

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 15 / 25

V. LIMITATIONS

The data presented for analysis in this paper was

obtained by conducting a questionnaire survey in the GSD

industry. A general problem with the survey is that it has a

very low response rate and has the possibility of subjective

biasness. The results of the survey exhibit opinions of the

respondents about a phenomenon under investigation.

Literature reveals that the opinions obtained through a

survey may be biased as well as different from the real

population distribution [26]. In our study, we have tried to

explore the perceptions and experiences of GSD experts, but

it was not possible to verify these perceptions and

experiences directly. Moreover, practitioner’s opinions and

perceptions may not be accurate. Additionally, the

respondents of the questionnaire survey were self-selecting.

However, the results of piloting studies give a satisfactory

level of internal validity since the variables incorporated in

this research study were obtained from comprehensive

literature review and piloting of the questions survey. The

external validity is addressed by receiving survey responses

from a total of 96 experts, among which 56 experts belong

to 22 different countries, providing a good representative

sample.

VI. CONCLUSION AND FUTURE WORK

The analyses presented in this paper show that our

identified software integration practices are important from

various experts point of view. This means that

implementation of these success factors may help GSD

vendors to easily and effectively integrate their software

components. The frequency percentages of each CSF in the

questionnaire survey (EA: extremely agree) show the

relative importance of each factor within the group of

software integration success factors. The implementation of

software integration CSFs, especially those reported with

greater percentage, may boost the performance of GSD

vendors by effectively integrating their software

components.

Further analysis of the CSFs based on different

variables, such as expert’s position, time etc. is reserved for

future work.

The ultimate aim of this research work is to develop our

proposed Software Integration Model (SIM) for GSD

vendors [27].

REFERENCES

[1] P. J. Agerfalk, B. Fitzgerald, H. H. Olsson and E. O.

Conchuir, "Benefits of global software development: the

known and unknown," in Making Globally Distributed

Software Development a Success Story, ed: Springer, 2008,

pp. 1-9.

[2] R. A. Khan, S. U. Khan and M. Niazi, "Communication and

Coordination Challenges Mitigation in Offshore Software

Development Outsourcing Relationships: Findings from

Systematic Literature Review," in The Tenth International

Conference on Software Engineering Advances (ICSEA

2015), Barcelona, Spain, 2015, pp. 45-51.

[3] M. Jimenez, M. Piattini and A. Vizcaino, "Challenges and

improvements in distributed software development: A

systematic review," Advances in Software Engineering, vol.

2009, pp. 1-14, 2009.

[4] P. J. Agerfalk et al., "A framework for considering

opportunities and threats in distributed software

development," in Proceedings of the International Workshop

on Distributed Software Development, Paris, 29, 2005, pp. 47-

61.

[5] A. W. Khan and S. U. Khan, "Solutions for Critical

Challenges in Offshore Software Outsourcing Contract,"

Pakistan Academy of Sciences, vol. 52, pp. 331-344, 2015.

[6] M. Niazi, S. Mahmood, M. Alshayeb and A. Hroub,

"Empirical investigation of the challenges of the existing tools

used in global software development projects," IET Software,

vol. 9, pp. 135-143, 2015.

[7] M. Ilyas and S. U. Khan, "Software integration in global

software development: Challenges for GSD vendors," Journal

of Software: Evolution and Process, vol. 29, pp. 1-17, 2017.

[8] M. Ilyas and S. U. Khan, "Software integration challenges for

GSD Vendors: An exploratory study using a systematic

literature review," Journal of Computers, vol. 12, pp. 416-

422, 2017.

[9] S. Larsson, "Key Elements of the Product Integration

Process," Ph.D. Thesis Proposal, Department of Computer

science and Electronics, Malardalen University Sweden,

Malardalen, 2007.

[10] J. Van Moll and R. Ammerlaan, "Identifying Pitfalls of

System Integration-An Exploratory Study," in IEEE

International Conference on Software Testing Verification

and Validation Workshop (ICSTW), Lillehammer, 2008, pp.

331-338.

[11] M. Ilyas and S. U. Khan, "Software Integration in Global

Software Development: Success Factors for GSD vendors," in

16th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD 2015), Takamatsu,

Japan, 2015, pp. 119-124.

[12] M. Ilyas and S. U. Khan, "Software Integration Challenges in

Global Software Development Environment: A Systematic

Literature Review Protocol," IOSR Journal of Computer

Engineering (IOSRJCE), vol. 1, pp. 29-38, 2012.

[13] M. Ilyas and S. U. Khan, "An Exploratory Study of Success

Factors in Software Integration for GSD Vendors "

Proceedings of the Pakistan Academy of Sciences, vol. 53, pp.

239–253 (2016), 2016.

[14] H. Paloheimo, "Feasibility of SW Architecture Integration in

a Distributed R&D Environment," HUT / SoberIT 2003, Fall

T-76.6512003.

[15] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik

and M. G. van den Brand, "Continuous integration in a social-

coding world: Empirical evidence from GitHub," in

International Conference on Software Maintenance and

Evolution (ICSME), BC, Canada, 2014, pp. 401-405.

[16] B. Adams, R. Kavanagh, A. E. Hassan and D. M. German,

"An empirical study of integration activities in distributions of

open source software," Empirical Software Engineering, pp.

1-42, 2015.

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 16 / 25

[17] C. Wohlin, M. Höst and K. Henningsson, "Empirical research

methods in software engineering," in Empirical methods and

studies in software engineering, ed: Springer, 2003, pp. 7-23.

[18] T. Ambreen, N. Ikram, M. Usman and M. Niazi, "Empirical

research in requirements engineering: trends and

opportunities," Requirements Engineering, vol. 21, pp. 1-33,

2016.

[19] M. Alshayeb, "Empirical investigation of refactoring effect on

software quality," Information and software technology, vol.

51, pp. 1319-1326, 2009.

[20] J. W. Creswell, Educational research: Planning, conducting,

and evaluating quantitative and qualitative research, 4th ed.:

Prentice Hall, 2008.

[21] M. Ilyas and S. U. Khan, "Practices for Software Integration

Success Factors in GSD Environment," in 15th International

Conference on Computer and Information Science (ICIS),

2016 IEEE/ACIS, Okayama, Japan, 2016, pp. 1-6.

[22] M. Niazi, D. Wilson and D. Zowghi, "A Framework for

Assisting the Design of Effective Software Process

Improvement Implementation Strategies," Journal of Systems

and Software, vol. 78, pp. 204-222, 2004.

[23] R. Land and I. Crnkovic, "Software systems in-house

integration: Architecture, process practices, and strategy

selection," Information and Software Technology (IST), vol.

49, pp. 419-444, 2006.

[24] R. Kommeren and P. I. Parviainen, "Philips experiences in

global distributed software development," Empirical Software

Engineering, vol. 12, pp. 647-660, 2007.

[25] D. Trewin, "Small Business in Australia," Australian Bureau

of Statistics, Canberra 2001.

[26] B. A. Kitchenham et al., "Preliminary guidelines for empirical

research in software engineering," IEEE Transactions on

software engineering, vol. 28, pp. 721-734, 2002.

[27] M. Ilyas and S. U. Khan, "Software Integration Model for

Global Software Development," in 15th International

Multitopic Conference (INMIC), Islamabad, Pakistan, 2012,

pp. 452-457.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 17 / 25

Applying Quality Requirements Framework to an IoT System

Tsuyoshi Nakajima

Department of Information Science and Engineering

Shibaura Institute of Technology

Tokyo, Japan

e-mail: tsnaka@shibaura-it.ac.jp

Abstract—Modern information and communication technology

systems more focus on their quality requirements since they

have been increasing their complexity. This paper shows how

the quality requirements framework of the ISO/IEC 25030 can

be applied to an Internet of things application, Elderly

monitoring system. The results of this application indicate the

usefulness of the framework.

Keywords. Quality requirements; SQuaRE; IoT.

I. INTRODUCTION

Information and Communication Technology (ICT)
systems are increasingly used to perform a wide variety of
organizational functions and personal activities. The quality
of these products enables and impacts various business,
regulatory and information technology stakeholders. High-
quality ICT systems are hence essential to provide value, and
avoid potential negative consequences, for the stakeholders.

To develop such high-quality ICT systems, it is important
to define quality requirements, because finding the right
balance of quality requirements, in addition to well-specified
functional requirements, is a critical success factor to meet
the stakeholders' objectives.

Furthermore, the complexity of ICT systems has grown
exponentially with the advent of modern digital technologies
like Internet of Things (IoT). This has also led to focus on
more and more quality requirements that are critical to
modern ICT systems.

ISO/IEC 25030 Quality requirements has been published
in 2007, and its revision process has been going on to expand
its scope from software to ICT systems [1]. The standard
belongs to ISO/IEC 25000 series: Systems and software
Quality Requirements and Evaluation (SQuaRE) has been
developed as the successor of the other standards on product-
related quality, including ISO/IEC 9126.

This paper shows how the quality requirements
framework of the ISO/IEC 25030 revision works [1], in case
that it is applied to an IoT system. Section II explains the
quality requirements framework and section III describe the
target IoT system, and then the framework is applied to the
system in section IV.

II. QUALITY REQUIREMENTS FRAMEWORK

A. Architecture of the SQuaRE series

The SQuaRE series consists of five main divisions and
on extension division. The divisions within the SQuaRE
series are:

 ISO/IEC 2500n - Quality Management Division.
The standards that form this division define all
common models, terms and definitions used by all
other standards in the SQuaRE series. The division
also provides requirements and guidance for the
planning and management of a project.

 ISO/IEC 2501n - Quality Model Division. The
standards that form this division provide quality
models for system/software products, quality in use,
data, and IT services. Practical guidance on the use
of the quality model is also provided.

 ISO/IEC 2502n - Quality Measurement Division.
The standards that form this division include a
system/software product quality measurement
reference model, definitions of quality measures, and
practical guidance for their application. This
division presents internal measures of software
quality, external measures of software quality,
quality in use measures and data quality measures.
Quality measure elements forming foundations for
the quality measures are defined and presented.

 ISO/IEC 2503n - Quality Requirements Division.
The standard that forms this division helps
specifying quality requirements. These quality
requirements can be used in the process of quality
requirements elicitation for a system/software
product to be developed, designing a process for
achieving necessary quality, or as inputs for an
evaluation process.

 ISO/IEC 2504n - Quality Evaluation Division.
The standards that form this division provide
requirements, recommendations and guidelines for
system/software product evaluation, whether
performed by independent evaluators, acquirers or
developers. The support for documenting a measure
as an Evaluation Module is also presented.

B. Quality requirements and quality models/measures

Quality In Use Requirements (QIURs) specify the
required levels of quality from the stakeholders' point of
view. These requirements are derived from the needs of
various stakeholders. QIURs relate to the outcome when the
product is used in a particular context of use, and QIURs can
be used as the target for validation of the product.

QIURs can be specified using quality in use model
(ISO/IEC 25010 [2]) and measures (ISO/IEC 25022 [4]).
Figure 1 describes characteristics and subcharacteristics of
quality in use model.

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 18 / 25

Effectiveness Efficiency Satisfaction Freedom from risk
Context

coverage

Effectiveness Efficiency Usefulness

Trust

Pleasure

Comfort

Economic risk

mitigation

Health and safety

risk mitigation

Environmental risk

mitigation

Context

completeness

Flexibility

Figure 1. Quality in use model [2]

Product Quality Requirements (PQRs) specify levels of

quality required from the viewpoint of the ICT product. Most
of them are derived from stakeholder quality requirements
including QIURs, which can be used as targets for
verification and validation of the target ICT product.

PQRs can be specified using product quality model
(ISO/IEC 25010[2]) and measures (ISO/IEC 25023[5]).
Figure 2 describes characteristics and subcharacteristics of
product quality model.

Functional

suitability

Performance

efficiency
Compatibility Usability

Reliability Security
Maintain-

ability
Portability

Functional

completeness

Functional

correctness

Functional

appropriateness

Adaptability

Installability

Replaceability

Time-behavior

Resource

utilization

Capacity

Co-existence

Interoperability

Appropriateness

recognisability

Learnability

Operability

User error

protection

Use interface

aesthetics

Accessibility

Maturity

Availability

Fault tolerance

Recoverability

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Modularity

Reusability

Analysability

Modifiability

Testability

Figure 2. Product quality model [2]

The Data Quality Requirements (DQRs) specify levels of

quality required for the data associated with the product.
These include requirements derived from QIURs and PQRs
of input and output products. DQRs can be used for
verification and validation from the data side.

Inherent System dependent

Accuracy

Completeness

Consistency

Credibility

Currentness

Availability

Portability

Recoverability

Inherent &
System dependent

Accessibility

Compliance

Confidentiality

Efficiency

Precision

Traceability

Understandability

Figure 3. Data quality model [3]

DQRs can be specified using data quality model

(ISO/IEC 25012[3]) and measures (ISO/IEC 25024[6]).

Figure 3 describes 15 characteristics of data quality model,
which are categorized by inherent and/or system dependent.

C. Quality requiremnets framework

The revision of ISO/IEC 25030[1] will provide a
framework for quality requirements, which consists of
concept of the quality requirements, and processes and
methods to elicit, define, use and govern them.

There are three important points:

 To elicit quality requirements, not only direct users
of the ICT product but also indirect users (using
results of the product) and other stakeholders, such
as developers, regulatory body, and society at large
should be taken into account.

 QIURs should be considered first because most of
PQRs are derived from QIURs, and they should be
deployed into PQRSs and DQRs of its sub-products
(smaller ICT products, software, data, hardware and
communication facilities) to meet them.

 Quality requirements should be defined
quantitatively, in order not to be vague and
unverifiable requirements that depend on subjective
judgement for their interpretation.

III. IOT SYSTEM AND TARGET SYSTEM

A. Characteristics of IoT systems

The IoT envisages a future in which digital and physical

things or objects can be connected by means of suitable

information and communication technologies, to enable a

range of applications and services. The IoT’s characteristics

include [7]:

 many relevant stakeholders involvement

 device and network heterogeneity and openness

 resource constrained

 spontaneous interaction

 increased security attack-surface
These characteristics will make development of the diverse

applications and services a very challenging task.

B. Target system

Internet

Target
info

Parameters
and rules for
monitoring

Monitor
data for
Targets

Action
log

Android
terminal

Arduino

Zigbee
(C)

Zigbee
(R)

Server
(Linux)

Zigbee
(R)

HDMI

Bluetooth

Fixed
sensors

Wearable sensors

Camera

Screen

Mic/
Speaker

3G/WiFi

3G/WiFi

Smart
device

(temperature, pulse,
acceleration)

(Motion(room),
sound(kitchen),

Temperature(stove))

Target Monitor
(target / family /

nurse)

Service company
(operator/maintainer/

data input operator)

Figure 4. Elderly monitoring system [8]

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 19 / 25

The target IoT system, to which SQuaRE’s quality
requirements framework is applied, is Elderly monitoring
system. Figure 4 shows its system architecture.

Figure 5 describes use cases of elderly monitoring system.

1-1
Input Sensor
configuration

1-2
Edit target info

1-3
Define abnormities
and their treatment

1-4
Define monitors and

their authority

2-1
Gather sensor data

for the target

2-2
Monitor and control

3-1
Access monitor data

3-2
Take photos

3-3
Hold TV conference

5
Report results of

analysis

4
Monitor and analyze

system status

Service company
(data input operator)

Contractor
(target / family)

Elderly living alone
(target)

Monitor
(target / family /

nurse)

Target ID, Name,
Birthday,
Medical history,
Physical info, Place

Target ID,
Data info (type, range,
accuracy, unit)
Sensor configuration
Definition of abnormities
(data, range)->action
Monitors and their
authority

Target ID,
Sensor data,
Status of components

Target info

Parameters
and rules for
monitoring

Monitor data
for Targets

Action
log

Service company
(operator/maintainer)

Figure 5. Use cases of elderly monitoring system (written by the author)

IV. APPLICATION OF THE FRAMEWORK

A. Stakeholder identification and select important QIURs

The quality requirements framework needs identification
of stakeholders of the target system, including not only direct
users but also indirect user and other stakeholders.

Table 1 lists identified stakeholders for the elderly
monitoring system, including:

 Direct user: contractor, elderly living alone, family,
nurse, and service company’s operators

 Indirect user: service company’s managers

 Other stakeholder: Developer, Ambulance

For all stakeholders, their goals to achieve through using
the target system are extracted. The direct users must have
use case of the system (Figure 5) in which they involved for
achieving their goal. The indirect users and other
stakeholders do not use the system directly, and the former
uses the results of the system and the latter may get
influenced from the system in an indirect way. Therefore,
they do not have relevant use cases.

Based on stakeholders’ goals and use cases, important
quality in use characteristics/subcharacteristics (Table 1)
should be selected with target outcomes and consequences.

Table 1. QIURs selection based on stakeholders’ goal

Stakeholder Goal
Use
case

QIUR (with target outcomes and
consequences)

Customer satisfaction NA
Usefulness
Trust

Prevention from incidents NA Freedom from risks: prevention from
* incidents by system faults or
malfunctions
* incidents by normal operation
* privacy leakage

* malfunction by malicious attach

Monitor all equipment, and take
actions if something wrong
with them.

4
Eff ic iency: system monitor and control
Effectiveness: preventive actions
before disfunction or malfunction

Maintain and update system
and equipment.

1-1 Eff ic iency: maintenance activities

Contractor
(direct user)

Inform the service company of
what he/she wants them to
do.

1-2
1-3

Eff ic iency: operation for input
Freedom from risks : prevention from
wrong input

Detect designated
abnormalities for the target,
and take actions.

2-2
Effectiveness: early treatment
Trust: correct results on good timing

Obtain his/her own current
body condition and behavioral
pattern.

5
Effectiveness: obtain info on current
body condition and behavioral pattern to
provide objective insights.

Confirm target's normality.
3-1
3-2

Effectiveness: see target's condition
anytime and anywhere

Be informed of target's serious
abnormalities.

2-2 Trust: correct results on good timing

Freedom from risks : prevention from
* overlook of serious abnormalities
* unnecessary notice on trivial
abnormalities

Confirm target's normality.
3-1
3-2

Effectiveness: remote nursing
Eff ic iency: early notice of patient's
abnormalities

Be informed of target's all
abnormalities.

2-2
Effectiveness: early treatment
Trust: correct results on good timing

Freedom from risks : prevention from
overlook of serious abnormalities

Create reports for asking
doctors to diagnose
abnormalities.

5 Eff ic iency: automatic reporting

Achieve QCD goal NA Eff ic iency: development activities

Update the system to
implement new functions
periodically

NA Eff ic iency: maintenance activities

Ambulance
(Other

stakeholder)

Dispatch ambulance cars on
demand (by nurse's call)

NA
Freedom from risks : prevention from
unnecessary dispatches of ambulance
cars

Service
company's
manager
(indirect

user)

Elderly living
alone

(direct user)

Family
(direct user)

Nurse
(direct user)

Developer
(Other

stakeholder)

Service
company's
operator

(direct user)

* direct user: person who interacts with the product
* indirect user: person who receives output from a system, but does not

interact with the system, for example executive manager, service acquirer

B. Drivation of PQRs and DQRs

Figure 6 describes how quality requirements derive

others in the system hierarchy.

The primary source of quality requirements is the users,

from whom first QIURs for the information system

including the target entities are elicited and documented.

Then, they evolve into PQRs and DQRs for the target

entities. Other stakeholders, such as developers and

regulatory bodies, also give some quality requirements on

the target entities. Finally, other entities give some

requirements as constraints to the target entities, including

non-target ICT products, software and data which are

connected to or used in the targets, and hardware and

communication which are used in them.

Table 2 shows how to derive PQRs and DQRs from

QIURs which are partially selected from Table 1. For PQRs

and DQRs, important product quality characteristics/

subcharacteristics (Figure 2) and data quality characteristics/

subcharacteristics (Figure 3) are selected to meet the

corresponding QIURs.

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 20 / 25

Information system

Derived from

Give requirements as secondary input, such as guidelines

Give requirements as constraints (ICT requirements)

ICT product/Data

Users

Other
stakeholders
(Regulator,

etc.)

ICT product/Data

Software/Data

Other
stakeholders
(Developer,
tester, etc.)

QIURs

PQR/
DQR

PQR/
DQR

PQR/
DQR

User Relevant
environment

Non-target Hardware &
Communication facility

Non-target
Software/Data

Non-target ICT product/Data (subsystem)

Hardware &
Communication facility

PQR/
DQR

Entity typeType of Quality
requirements

A

xQRs
xQRs can be defined
for Type A entities

Figure 6. Derivation of quality requirements [1]

Some PQRs for the target product may be deployed into

subcomponents to meet them (denoted with ->). DQRs are

identified for the data files or data base used in the system

(Figure 6).
Table 2. Derivation PQRs and DQRs from QIURs

Stakeholder
Use
case

QIUR (with target
outcomes and
consequences)

PQR DQR

Freedom from
risks:
 prevention from

* incidents by
system faults or
malfunctions

Maturity
->Availability for
 server
->Maturity for IoT
 devices

Recoverability of
all data

Time-behavior
->Throughput of
 server

Eff ic iency and
Accessibility on
Monitor data for
target

* incidents by
normal operation

Maturity: exhaustive
testing

Consistency and
Currentness on
Monitor data for
target

* privacy leakage
Confidentiality on
server

Conf identiality on
Target info

* malfunction by
malicious attach

Integrity: IoT devices,
network

Traceability on
Parameters and rules
for monitoring

Eff ic iency:
operation for input

Operability and
Accesability on Web
user interface

Understandability
on Parameters and
rules for monitoring

Freedom from
risks: prevention
from wrong input

Learnability and
User error
protection on : Web
user interface

Accuracy,
Completeness and
Consistency on
Parameters and rules
for monitoring

2-2

Effectiveness:
early treatment
Trust: correct
results on good
timing

Functional
su itability and
Functional
completeness for
detecting abnormalities

5

Effectiveness:
obtain info on
current body
condition and
behavioral pattern to
provide objective
insights.

Functional
su itability: inclusion
of useful information

Understandability
of reports

NA

Contractor
(direct
user)

1-2
1-3

Service
company's
manager
(indirect

user)

Elderly living
alone

(direct
user)

V. SUMMARY AND FUTURE WORK

Modern ICT systems like IoT systems should put more

focus on their quality requirements. This paper provides the

brief introduction of ISO/IEC 25000 (SQuaRE) series,

which define quality models and measures, and how to

define quality requirements and evaluate quality of the ICT

products.

And then, the IoT systems’ unique characteristics

compared to the other information systems are mentioned,

including many relevant stakeholders’ involvement, device

and network level heterogeneity and openness, resource

constrained, spontaneous interaction, and increased security

attack-surface, which may make development of the diverse

applications and services a very challenging task.

To solve this problem, we apply the quality requirements

framework of the ISO/IEC 25030 revision to an IoT system,

Elderly monitoring system. The results of this application

make us believe the usefulness of the framework.

More application of the framework to a variety of IoT

systems and much larger scale ones should be needed to

clarify its limitations and problems.

REFERENCES

[1] ISO/IEC 25030 DIS, Systems and Software engineering — Quality
requirements framework.

[2] ISO/IEC 25010:2011, Systems and Software engineering — System
and software quality models.

[3] ISO/IEC 25012:2008, Systems and Software engineering — Data
quality model.

[4] ISO/IEC 25022:2016, Systems and Software engineering —
Measurement of quality in use.

[5] ISO/IEC 25023:2016, Systems and Software engineering —
Measurement of system and software product quality.

[6] ISO/IEC 25024:2015, Systems and Software engineering —
Measurement of data quality.

[7] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for internet of things, a survey,” IEEE Internet of
Things Journal, Vol. 3, No. 1, pp. 70-95, 2016.

[8] S. Okazaki et al, “An Intelligent Space System and its
Communication Method to Achieve the Low Energy Consumption,”
IEEJ-C Vol. 136, No. 12, pp. 1804-1814, 2016 (in Japanese).

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 21 / 25

Integration of Data Providing and Analyzing System
and its Application to Higher Education Institutional Data

Masaaki Ida

National Institution for Academic Degrees and
Quality Enhancement of Higher Education

Tokyo, Japan 187–8587
Email: ida@niad.ac.jp

Abstract—There exist various kinds of data providing and an-
alyzing service on Web sites. Japanese College and University
Portraits is an information system consisting of databases with
Web services for providing information concerning various ac-
tivities undertaken by universities and junior colleges, covering
national, prefectural, municipal, and private institutions. This
paper describes the outline of this integrated system and related
analysis systems. Especially, we focus on data providing service in
several ways including research results conducted by the research
department of National Institution for Academic Degrees and
Quality Enhancement of Higher Education. A further advanced
and integrated data analysis and data visualization system can be
developed by using Web APIs with various multivariate analysis
methods. Canonical correlation analysis is one of the basic and
requisite data analysis and visualization skills for data analysts
in this Big Data era. Therefore, because data is received through
Web APIs, the development of an integrated data analysis system
equipped with canonical correlation analysis is desirable. This
article also presents a work-in-progress result of the canonical
correlation analysis for higher education institutional data.

Keywords–Higher education institutional data; data providing;
Web API; visualization.

I. INTRODUCTION

Education-related databases are important for college selec-
tions or various quality assurance activities, such as reporting
and data analysis in higher education institution. Therefore,
data service of higher education institutional data is desired to
be developed. However, Institutional data of universities, e.g.,
the number of various kinds of academic staffs, are difficult
to analyze because they were not necessarily standardized and
integrated in each university itself or even in national level
education-related agencies. Some advanced higher education
integrated data systems are progressively developing. The most
famous and useful system is the Integrated Postsecondary Edu-
cation Data System [1], which has been developed by National
Center for Education Statistics (NCES) in the United States.
The system collects and analyzes basic institution information
about universities and colleges in the U.S. The system stan-
dardizes and accumulates this information nationwide. This
system comprehensively holds general and basic institution
data. Moreover, this system is equipped with data analysis
tools to conduct university comparative analysis. There exist
other web-based university database systems in the U.S. and
other countries. These databases are well-organized and com-
prehensive systems with easy Web-based operation on their
Web sites. However, in order to cooperate or integrate with
other information systems, e.g., in-house database developed
in individual institutions, or external database services, more
improved systems are expected to be equipped with various

Web service functions and standardized data sets. In this paper,
in Section II, the integration of data providing and analyzing
system in Japan is described. In Section III, Web API and
data analysis is described. As an example of data analysis,
canonical correlation analysis is introduced with a numerical
example.

II. INTEGRATION OF DATA PROVIDING AND ANALYZING
SYSTEM

A. Japanese college and university portraits
In Japan, Ministry of Education, Culture, Sports, Science

and Technology collects basic information about higher educa-
tion institutions in Japan. This law-based basic statistical data
includes yearly information of higher education institutions,
such as the number of faculties or staffs, the number of enrolled
students by grade (undergraduate, graduate, foreign student),
the number of graduates by subsequent course, the number
of those who are employed after graduation by each industry
and by occupation, faculties, facilities, and financial data.
However, these are published as statistical data, so that detailed
information of individual universities are not published.

Japanese College and University Portraits is an information
system consisting of database with Web services for provid-
ing information concerning various activities undertaken by
universities and junior colleges, covering national, prefectural,
municipal, and private institutions [2]. System operation started
in March 2015. The system is managed by National Institution
for Academic Degrees and Quality Enhancement of Higher
Education, Japan (NIAD-QE) associated with Promotion and
Mutual Aid Corporation for Private Schools of Japan.

The purposes of the system are as follows

• Information Dissemination: The Portrait Website will
be used not only by those who intend to participate in
higher education as students, but also by stakeholders
in various areas of society, such as government and
industry. The database is also expected to be an in-
formation source contributing to improve international
society’s understanding of higher education institu-
tions in Japan.

• Monitor and Analysis of Institution Activities: The
system is expected to be used by higher education
institutions to monitor and analyze the status of their
own educational activities for internal quality assur-
ance and enhancement.

• Workload Reduction: Collection and publication of
fundamental and standardized data in the database sys-
tem will assist higher education institutions when they

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 22 / 25

respond to various surveys and external evaluation.
Workload reduction of institutions based on accurate
data are expected to be accomplished by the system.

Data items stored in the system are in multiple levels,
Institution level and faculty level, for example, general infor-
mation of higher education institution, objectives of education
and research, characteristics, education system organization,
campus, university evaluation, student support, policies of
education, academic program, admission, faculty, enrollment,
scholarship, completion, post graduate pathways, employment,
research activities, international activity, student life, financial
information and so on.

The database system consists of three databases, three
circles in Figure 1, with basic organization data located in
the common part of circles, which is regarded as university
data warehouse. These database are classified in the following
three categories:

• University common publication data: published com-
mon education data over national, prefectural, private
institution,

• University basic data: corresponding to school basic
survey,

• National university evaluation data: used for national
university evaluation.

Figure 1. Japanese College and University Portraits.

Each data is registered by data-sheet submission from higher
education institutions. The stored data are used for publication
and provided for data utilization for the sake of society and
universities.

B. Data providing service
Data providing and utilization services are explained in the

following ways. These functions are partially equipped in the
working system. Data analysis tools for data utilization are
now being developed by research department of NIAD-QE.

1) Data providing via Website: The system has search
(retrieval) functions, (1) simple search by university name,
faculty name and location, (2) detailed search, e.g., by entrance
examination, student financial aid and so on, and (3) keyword
search. Adding to searching and utilizing the data which are
ordinary in table format in Web pages, we can download

data tables, and utilize them in spreadsheet software in user
side. Then it is possible to extract necessary data for analysis,
and to conduct data analysis by using personal analysis tools
or personal Business Intelligence (BI) tools on user’s local
environment, which are popular tools in these days.

2) Data providing via BI tool: Highly-detailed and flexible
data analysis can be attained by Structured Query Language
(SQL). However, expert ability is required for such advanced
treatment of database. In case that we intend to try advanced
data analysis without expert ability, full-scale BI tools are
candidates of effective analysis with great potential, which is
equipped in the Portrait system. BI tool makes it possible for
system registered users to utilize the database more conve-
niently with some useful BI functions, such as filter, formula,
chart and drill-down functions. We can generate various kinds
of easily understandable data tables and charts, and also
generate data analysis report file in PDF format or spread sheet
format. This BI tool of the system was used to generate data
analysis reports in National University Corporation Evaluation
in Japan.

3) Data providing via Web-based analysis system: Data
analysis and data visualization tool are being developed by
research department of NIAD-QE. Figure 2 shows an example
of comparative analysis of universities. We refer European
university comparison and visualization systems, U-Map [3]
and U-Multirank [4]. They are new higher education trans-
parency tools for multi-dimensional mapping and ranking [5].
In this figure, data table includes selected eight indicators in
columns for selected 13 universities in rows for corresponding
fiscal year. Values of indicators are transformed into relative
classes or groups (e.g., four level: quantile point), which are
expressed by the number of star marks. Chart in lower side
shows feature of three universities selected from universities
in this data table. Fan-shaped parts of the charts, surrounding
center circle, correspond to the amount of indicators. Relative
analysis by class or group is helpful for understanding whole
aspect of higher education institutions with multiple features.

4) Data system integration: Data providing via Web API:
Web API is a Web Application Programming Interface for
performing computer processing via Internet. This mecha-
nism makes it possible for registered users to access external
database through the internet. The advantages to use Web API
are to obtain data when necessary, to obtain only necessary
part of data by query (search), to obtain standardized and latest
data that might be updated recently, and to have possibility to
provide more useful and valuable information combining with
other multiple external data sources provided by other Web
APIs such as official government statistics or location informa-
tion Web service. Moreover, this type of Web services has an
effect for developing application modules with independency,
which leads to improvement of maintenance and redesign of
database application system.

Research department of NIAD-QE is developing various
kinds of Web APIs and their applications which are suitable for
data analysis and data dissemination. Web APIs for university
basic survey (for national and prefectural) and university finan-
cial data have being developed. Output form can be selected
in JSON or XML formats. University basic survey sheets
consist of detailed university information cards in university
level or department level, e.g., institutional structure, faculty
member and staff (sheet 7: number of students, number of

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 23 / 25

Figure 2. Data Analysis and ata Visualization Tool.

academic staffs), student (sheet 8: number of students of each
department), graduate student (sheet 9), foreign student (sheet
11), facility (sheet 20), graduation and employment (sheet
30) and so on. This type of detailed university Web API
development is early attempt in higher education field.

The followings are examples retrieved by survey year and
institution code of Japanese universities. Figure 3 (left) shows
an example of Web API output concerning applicant and
enrollment figures by undergraduate school in faculty level.
The elements in Japanese language mean university name,
faculty name, and the number of undergraduate students in
every fiscal year. Figure 3 (right) shows an example of output
of the Web API concerning faculty members from survey in
university level.

API key is issued for registered user to access and use
API functions for security. Retrieved data is provided through
cryptographic protocol that provides communication security
over computer network.

III. WEB API AND DATA ANALYSIS

A. Analysis and visualization process
Generally, there exist various kinds of data analysis ser-

vices on Web sites. Further complex and advanced data anal-
ysis tool and data visualization applications can be developed
by data integration mechanism using Web API functions.
By utilizing Web APIs, we can develop flexible integrated
Web applications with data tables and charts generation, and
data analysis system. With flexibilities of API mechanism
more useful and user-friendly data visualization system can
be developed.

The analysis and visualization process is as follows:

Figure 3. Web API of university basic information (JSON format).

1) Database query by university name or department
name with various indicators is submitted to uni-
versity information Web API site with API key for
registered user, which is also developed by research
department of NIAD-QE.

2) Data in JSON or XML format are received by Web
programming on server side or client side.

3) Analysis and visualization of various indicators with
effective graphic libraries are conducted, and com-
parison of multiple indicators with sorting functions
on data tables or charts is made.

4) Moreover, analysis system can be programmed to
combine with other databases using API functions,
e.g., various official statistical data API or map API
on outer Web service sites. These Web service combi-
nation, or mash up programing, can be easily applied
using Web API functions.

B. Canonical correlation analysis
Canonical correlation analysis (CCA) is a core analysis

method in multivariate analysis field. CCA is a generalized
method of corresponding analysis that is useful for question-
naire analysis [6]–[8]. Two multiple variable data matrices, X
and Y are expressed with n× p and n× q real data matrices,
XR and YR. We define the following matrices for data average
and deviation:

Qn = In − (1/n)1n1
T
n

X = QnXR, Y = QnYR

where 1n means (1, 1, · · · , 1)T, and Qn means averaging.
Calculating correlation matrices, RXX , RY Y , RXY , for

X,Y , then, the result of canonical correlation analysis is the
singular value and corresponding singular vectors, µ with a
and b satisfy the following matrix equation:

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

 24 / 25

(
RXX RXY

RY X RY Y

)(
a
b

)
= (1 + µ)

(
RXX O
O RY Y

)(
a
b

)
We call the singular value µ as the first canonical correlation
coefficient µ1 for maximum value, and µ2 for second one, and
µ3 for third one and so on. And its corresponding vectors, ai

and bi for µi, are called score vectors. Similarly, we calculate
the vectors f i and gi as follows;

f i = Xai (1)
gi = Y bi (2)

In this paper, we consider µi,ai, bi,f i, gi for understanding
the arrangement of each element and tendency of whole data
set.

C. Numerical example
As an example of canonical correlation analysis with Web

API, we show the result of analysis for university financial
data (work in progress); In this case, the number of items for
X expressing incomes is four (management expenses grant,
tuition, research grant, donation), and the number of items for
Y expressing expenses is three (general management expenses,
research expenses, education expenses). Figure 4 shows the
result of canonical correlation analysis in two dimensions;
(a1,a2) and (b1, b2) for µ1, µ2. For f i, gi, Figure 5 show
the arrangement of each university incomes and expenses in
two dimensions.

Figure 4. Example of canonical correlation analysis (1).

Figure 4 shows visually summarized information in two
dimensions, which are high accumulation contribution of
eigenvalues. We can grasp the global feature of financial
situations of universities by this arrangement. Figure 5 shows
the proximity between universities (university ID) and the
tendency of whole data set.

Figure 5. Example of canonical correlation analysis (2).

In this way, we can take a global view of the clustering.
various comprehensive considerations on overall of accumu-
lated data can be taken by executing the analysis. Various
comprehensive considerations on overall accumulated data can
be taken by executing the analysis. Those abilities will deepen
the global understanding on the relations of accumulated
multiple information, and which have promising possibility
leads to new knowledge discovery.

IV. CONCLUSION

This paper describes the outline of the integrated system,
Japanese College and University Portraits and related data
analysis systems. Especially, we focus on several data provid-
ing services and utilization of Web API function. This type of
university Web API development is early attempt in higher
education field. In order to handle more general university
data, coordination of differences between the data definition is
needed for useful comparison. We hope that our development
and attempt will play an important role as an infrastructure for
data utilization and data analysis in higher education quality
assurance.

REFERENCES
[1] “Integrated Postsecondary Education Data System, IPEDS”, URL;

nces.ed.gov/ipeds [accessed: 2018-07-20].
[2] “Japanese College and University Portraits”, URL; top.univ-

info.niad.ac.jp [accessed: 2018-07-20]
[3] “U-Map”, URL; http://www.u-map.eu [accessed: 2018-07-20].
[4] “U-Multirank”, URL; http://www.umultirank.org [accessed: 2018-07-20].
[5] D. F. Westerheijden, “Multi-dimensional Mapping and Ranking

New Higher Education Transparency Tools”, NIAD-UE
University Quality Assurance Forum 2014 Keynote speech, URL;
www.niad.ac.jp/n kenkyukai/no13 2014forum keynote.pdf [accessed:
2018-07-20].

[6] B. Thompson, Canonical Correlation Analysis: Uses and Interpretation,
Sage Publications, 1985.

[7] J. P. Benzecri, Correspondence Analysis Handbook, Marcel Dekker,
1992.

[8] M. Greenacre, Correspondence Analysis in Practice, Second Edition,
Chapman and Hall/CRC, 2007.

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration

Powered by TCPDF (www.tcpdf.org)

 25 / 25

http://www.tcpdf.org

