
DEPEND 2015

The Eighth International Conference on Dependability

ISBN: 978-1-61208-429-9

August 23 - 28, 2015

Venice, Italy

DEPEND 2015 Editors

Pascal Lorenz, University of Haute-Alsace, France

Petre Dini, Concordia University, Canada / China Space Agency, China

 1 / 53

DEPEND 2015

Foreword

The Eighth International Conference on Dependability (DEPEND 2015), held between
August 23-28, 2015 in Venice, Italy, provided a forum for detailed exchange of ideas,
techniques, and experiences with the goal of understanding the academia and the industry
trends related to the new challenges in dependability on critical and complex information
systems.

Most of critical activities in the areas of communications (telephone, Internet), energy &
fluids (electricity, gas, water), transportation (railways, airlines, road), life related (health,
emergency response, and security), manufacturing (chips, computers, cars) or financial (credit
cards, on-line transactions), or refinery& chemical systems rely on networked communication
and information systems. Moreover, there are other dedicated systems for data mining,
recommenders, sensing, conflict detection, intrusion detection, or maintenance that are
complementary to and interact with the former ones.

With large scale and complex systems, their parts expose different static and dynamic
features that interact with each others; some systems are more stable than others, some are
more scalable, while others exhibit accurate feedback loops, or are more reliable or fault-
tolerant.

Inter-system dependability and intra-system feature dependability require more
attention from both theoretical and practical aspects, such as a more formal specification of
operational and non-operational requirements, specification of synchronization mechanisms, or
dependency exception handing. Considering system and feature dependability becomes crucial
for data protection and recoverability when implementing mission critical applications and
services.

Static and dynamic dependability, time-oriented, or timeless dependability,
dependability perimeter, dependability models, stability and convergence on dependable
features and systems, and dependability control and self-management are some of the key
topics requiring special treatment. Platforms and tools supporting the dependability
requirements are needed.

As a particular case, design, development, and validation of tools for incident detection
and decision support became crucial for security and dependability in complex systems. It is
challenging how these tools could span different time scales and provide solutions for
survivability that range from immediate reaction to global and smooth reconfiguration through
policy based management for an improved resilience. Enhancement of the self-healing
properties of critical infrastructures by planning, designing and simulating of optimized
architectures tested against several realistic scenarios is also aimed.

To deal with dependability, sound methodologies, platforms, and tools are needed to
allow system adaptability. The balance dependability/adaptability may determine the life scale
of a complex system and settle the right monitoring and control mechanisms. Particular
challenging issues pertaining to context-aware, security, mobility, and ubiquity require

 2 / 53

appropriate mechanisms, methodologies, formalisms, platforms, and tools to support
adaptability.

We take here the opportunity to warmly thank all the members of the DEPEND 2015
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
DEPEND 2015. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the DEPEND 2015 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that DEPEND 2015 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the field
of dependability.

We are convinced that the participants found the event useful and communications very
open. We hope Venice provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city.

DEPEND 2015 Chairs:

DEPEND Advisory Chairs
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain

DEPEND 2015 Industry Liaison Chairs
Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2015 Research/Industry Chair
Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2015 Special Area Chairs
Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan
Big Data and dependability
Cesario Di Sarno, University of Naples Parthenope, Italy
Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy
Security and Trust
Syed Naqvi, CETIC, Belgium

 3 / 53

DEPEND 2015

Committee

DEPEND Advisory Chairs

Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain

DEPEND 2015 Industry Liaison Chairs

Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2015 Research/Industry Chair

Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2015 Special Area Chairs

Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan

Big Data and dependability
Cesario Di Sarno, University of Naples Parthenope, Italy

Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy

Security and Trust
Syed Naqvi, Birmingham City University, United Kingdom

DEPEND 2015 Technical Program Committee

Habtamu Abie, Norwegian Computing Centre, Norway
Don Adjeroh, West Virginia University, USA
Muhammad Afzaal, National University of Computer and Emerging Sciences, Pakistan
Joxe Inaxio Aizpurua Unanue, University of Strathclyde, UK
Murali Annavaram, University of Southern California, USA
Luciana Arantes, Université Pierre et Marie Curie (Paris 6), France
Afonso Araújo Neto, University of Coimbra, Portugal
José Enrique Armendáriz-Iñigo, Universidad Pública de Navarra, Spain
Radu F. Babiceanu, Embry-Riddle Aeronautical University, USA
Ian Bayley, Oxford Brookes University, U.K.
Siegfried Benkner, University of Vienna, Austria
Jorge Bernal Bernabé, University of Murcia, Spain

 4 / 53

James Brandt, Sandia National Laboratories, U.S.A.
Andrey Brito, Universidade Federal de Campina Grande, Brazil
Lasaro Camargos, Federal University of Uberlândia, Brazil
Juan Carlos Ruiz, Universidad Politécnica de Valencia, Spain
Antonio Casimiro Costa, University of Lisbon, Portugal
Simon Caton, Karlsruhe Institute of Technology (KIT), Germany
Andrea Ceccarelli, University of Firenze, Italy
Sudip Chakraborty, Valdosta State University, USA
Binbin Chen, Advanced Digital Sciences Center, Singapore
Albert M. K. Cheng, University of Houston, USA
Marcello Cinque, University of Naples Federico II, Italy
Peter Clarke, Florida International University, U.S.A.
Luigi Coppolino, Università degli Studi di Napoli "Parthenope", Italy
Domenico Cotroneo, Università di Napoli Federico II, Italy
David de Andrés Martínez, Universitat Politècnica de València, Spain
Rubén de Juan Marín, Universidad Politécnica de Valencia, Spain
Vincenzo De Florio, University of Antwerp, Belgium & IBBT, Belgium
Ewen Denney, SGT/NASA Ames, U.S.A.
Catello Di Martino, University of Illinois at Urbana-Champaign, U.S.A.
Cesario Di Sarno, University of Naples Parthenope, Italy
Nicola Dragoni, Technical University of Denmark - Lyngby, Denmark
Diana El Rabih, Université Paris 12, France
Cain Evans, Birmingham City University, UK
Francesco Flammini, Ansaldo STS, Italy
Franco Frattolillo, University of Sannio, Italy
Gregory Frazier, Apogee Research, U.S.A.
Jicheng Fu, University of Central Oklahoma, U.S.A.
Cristina Gacek, City University London, United Kingdom
Joaquin Gracia Moran, Institute ITACA - Universitat Politecnica de Valencia, Spain
Marisol García Valls, University Carlos III de Madrid, Spain
Alessia Garofalo, University of Naples "Parthenope", Italy
Ann Gentile, Sandia National Laboratories, U.S.A.
Manuel Gil Perez, University of Murcia, Spain
Michael Goldsmith, University of Oxford, UK
Patrick John Graydon, NASA, USA
Michael Grottke, University of Erlangen-Nuremberg, Germany
Nils Gruschka, University of Applied Science - Kiel, Germany
Ibrahim Habli, University of York, U.K.
Houcine Hassan, Universitat Politecnica de Valencia, Spain
Bjarne E. Helvik, The Norwegian University of Science and Technology (NTNU) - Trondheim, Norway
Luke Herbert, Technical University of Denmark, Denmark
Pao-Ann Hsiung, National Chung Cheng University, Taiwan
Jiankun Hu, Australian Defence Force Academy - Canberra, Australia
Neminath Hubballi, Infosys Lab Bangalore, India
Bukhary Ikhwan Ismail, MIMOS Berhad, Malaysia
Ravishankar K. Iyer, University of Illinois at Urbana-Champaign, U.S.A.
Arshad Jhumka, University of Warwick - Coventry, UK
Shouling Ji, Georgia Institute of Technology, USA

 5 / 53

Zhanpeng Jin, State University of New York at Binghamton, U.S.A.
Yoshiaki Kakuda, Hiroshima City University, Japan
Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, U.S.A.
Hui Kang, Stony Brook University, USA
Aleksandra Karimaa, Turku University/TUCS and Teleste Corporation, Finland
Sokratis K. Katsikas, University of Piraeus, Greece
Dong-Seong Kim, University of Canterbury, New Zealand
Ezzat Kirmani, St. Cloud State University, USA
Seah Boon Keong, MIMOS Berhad, Malaysia
Kenji Kono, Keio University, Japan
Israel Koren, University of Massachusetts - Amherst, USA
Mani Krishna, University of Massachusetts - Amherst, USA
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Inhwan Lee, Hanyang University - Seoul, Korea
Matthew Leeke, University of Warwick, UK
Jane W. S. Liu, Academia Sinica, Taiwan
Yun Liu, Boeing Company, USA
Paolo Lollini, Dipartimento di Matematica e Informatica "U. Dini", Italy
Xuanwen Luo, Sandvik Mining, USA
Miroslaw Malek, Humboldt-Universitaet zu Berlin, Germany
Amel Mammar, Mines Telecom/ Telecom SudParis, France
Antonio Mana Gomez, University of Malaga, Spain
Gregorio Martinez, University of Murcia, Spain
Célia Martinie, Université Toulouse 3, France
Rivalino Matias Jr., Federal University of Uberlandia, Brazil
Yutaka Matsuno, Nagoya University, Japan
Manuel Mazzara, Innopolis University, Russia
Per Håkon Meland, SINTEF ICT, Norway
Carlos Julian Menezes Araujo, Federal University of Pernambuco, Brazil
Hugo Miranda, University of Lisbon, Portugal
Shivakant Mishra, University of Colorado at Boulder, USA
Costas Mourlas, National and Kapodistrian University of Athens, Greece
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong
Jun Na, Northeastern University, China
Syed Naqvi, Birmingham City University, United Kingdom
Sarmistha Neogy, Jadavpur University, India
Mats Neovius, Åbo Akademi University - Turku, Finland
Dimitris Nikolos, University of Patras, Greece
Satoru Ohta, Toyama Prefectural University, Japan
Hong Ong, MIMOS Bhd, Malaysia
Frank Ortmeier, Otto-von-Guericke-Universität Magdeburg, Germany
Roberto Palmieri, Virginia Tech, USA
Andreas Pashalidis, Katholieke Universiteit Leuven - iMinds, Belgium
Giancarlo Pellegrino, Saarland University, Germany
Ronald Petrlic, Saarland University, Germany
Alfredo Pironti, INRIA Paris Rocquencourt, France
Peter T. Popov, City University London, UK

 6 / 53

Wolfgang Pree, University of Salzburg, Austria
Chi-Man Pun, University of Macau, Macau S.A.R., China
Feng Qin, Ohio State University, USA
Ruben Rios, University of Málaga, Spain
Luigi Romano, University of Naples Parthenope, Italy
Paolo Romano, INESC-ID/IST, Portugal
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Hans-Peter Schwefel, FTW Forschungszentrum Telekommunikation Wien GmbH, Austria / Aalborg
University, Denmark
Sahra Sedighsarvestani, Missouri University of Science and Technology, U.S.A.
Jean-Pierre Seifert, Technische Universität Berlin & Telekom Innovation Laboratories, Germany
Dimitrios Serpanos, University of Patras & ISI, Greece
Muhammad Shafique, Karlsruhe Institute of Technology (KIT), Germany
Kuei-Ping Shih, Tamkang University, Taiwan
Francois Siewe, De Montfort University, UK
Navjot Singh, Avaya Labs Research, USA
Alessandro Sorniotti, IBM research - Zurich, Switzerland
George Spanoudakis, City University London, U.K.
Avinash Srinivasan, George Mason University, USA
Kuo-Feng Ssu, National Cheng Kung University, Taiwan
Vladimir Stantchev, Berlin Institute of Technology, Germany
Dimitrios Stratogiannis, National Technical University of Athens, Greece
Jingtao Sun, National Institute of Informatics, Japan
Neeraj Suri, TU-Darmstadt, Germany
Kenji Taguchi, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Oliver Theel, University Oldenburg, Germany
Sergio Pozo Hidalgo, University of Seville, Spain
Kishor Trivedi, Duke University - Durham, USA
Elena Troubitsyna, Åbo Akademi University, Finland
Timothy Tsai, Hitachi Global Storage Technologies, USA
Sara Tucci-Piergiovanni, CEA List, France
Marco Vallini, Politecnico di Torino, Italy
Ángel Jesús Varela Vaca, University of Sevilla, Spain
Bruno Vavala, Carnegie Mellon University, USA | University of Lisbon, Portugal
Phan Cong Vinh, Nguyen Tat Thanh University, Vietnam
Lucian Vintan, Lucian Blaga University of Sibiu, Romania
Hironori Washizaki, Waseda University, Japan
Byron J. Williams, Mississippi State University, USA
Victor Winter, University of Nebraska at Omaha, USA
Dong Xiang, Tsinghua University, China
Chun Jason Xue, City University of Hong Kong, Hong Kong
Hiroshi Yamada, Keio University, Japan
Toshihiro Yamauchi, Okayama University, Japan
Chao-Tung Yang, Tunghai University, Taiwan
Liu Yang, Nanyang Technological University, Singapore
Piyi Yang, University of Shanghai for Science and Technology, China

 7 / 53

Il Yen, University of Texas at Dallas, U.S.A
Hee Yong Youn, Sungkyunkwan University, Korea

 8 / 53

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 53

Table of Contents

Measuring Application Server Availability on the NorNet Core
Sune Jakobsson

1

Beyond Integration Readiness Level (IRL): A Multi-Dimensional Framework to Facilitate the Integration of
System of Systems
Clarence Eder

5

On Handling Redundancy for Failure Log Analysis of Cluster Systems
Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and James Browne

7

An Investigation of the Impact of Double Single Bit-Flip Errors on Program Executions
Fatimah Adamu-Fika and Arshad Jhumka

15

Efficient Simulation of Multiple Faults for Reliability Analysis of Analogue Circuits
Eduard Weber and Klaus Echtle

22

Reducing the Communication Complexity of Agreement Protocols By Applying A New Signature Scheme called
SIGSEAM
Omar Bousbiba

28

Dependability of Active Emergency Response Systems
Jane W. S. Liu and Edward T.H. Chu

32

Trust-based Service Management of Mobile Devices in Ad Hoc Networks
Yating Wang, Ing-Ray Chen, and Jin-Hee Cho

37

Powered by TCPDF (www.tcpdf.org)

 1 / 1 10 / 53

Measuring Application Server Availability on the NorNet Core

Sune Jakobsson

Department of Telematics

NTNU

Trondheim, Norway

Email: sune.jakobsson@telenor.com

Abstract— This paper investigates the availability of

applications servers running on the NorNet Core test-bed.

NorNet Core is the world's first, open, large-scale Internet test-

bed for multi-homed systems and applications. Particularly, it

is currently used for research on topics like multi-path

transport and resilience. The NorNet Core test-bed provides

access to worldwide distributed nodes, connected with multiple

interfaces over a set of ISPs (Internet Service Providers),

providing independent transport paths between them. Each

node has a set of programmable nodes that can be used for

network experiments. This paper describes a practical

approach to assess how suitable this test-bed is for distributed

computing, and application servers.

Keywords- Test-bed; Java virtual machines; application

servers; availability; tunnelling.

I. INTRODUCTION

This paper addresses the behaviour and availability of
distributed computing resources in a “virtual” network built
on top of academic and commercial networks, afterwards
referred as the NorNet test-bed [13]. In a previous paper
discussing the availability of web servers in commercial
settings using providers (e.g. Amazon, Google and other
providers) hosting the computing resources that use the
Internet as the transport network [12]. In such setting, you as
a customer have little or no control over the computing
resources. It is hard to assess to what extent the computing
resources are shared or virtualized, but one can assume that
the Internet itself is a reasonably stable platform for
transport. However, as a consumer of the computing
resources one has little or no control of the instance of
deployment. By this we mean that the commercial providers
do not disclose any or very little information regarding their
infrastructure. In the NorNet Core case, one has near
complete control and information over the computing
resources but limited control over the point-to-point tunnels
running between the sites.

The objective here is to assess the behaviour and
availability of web servers running in the NorNet Core
network and the transport of packets between sites. It
describes a series of simple experiments at application level,
i.e., invocation of Web servers and how to capture their
continuous operation and long term behaviour.

In Section II, we describe the infrastructure in detail and
how the experiments were carried out. The goal of these
measurements was to detect changes in the test-bed over
periods of days or weeks, due to issues that can be traced
back to the communication or the software (SW) running at
the sites and how these issues affect application servers

running on the test-bed. The NorNet Core test-bed was
continually updated and upgraded and the packet route the
tunnels use was entirely up to the ISP, so there was a number
of factors that impacted the availability. Section III addresses
the details of the monitoring, and Section IV highlights a
subset of the results. Section V provides recommendations.

II. THE NORNET CORE TEST-BED

A. Test-bed structure

As of writing March 2015, the NorNet Core test-bed [1]
is deployed on 19 sites physically distributed across the
world and interconnected with tunnels over 14 different
ISP’s networks. The majority of the sites are at the major
universities in Norway, at Simula A/S in Oslo and the rest
are at universities in Sweden, Germany, China, Korea and
USA. The 14 ISP's provide connectivity across the sites, so
that the majority of the sites are connected using tunnels with
more than 1 ISP involved.

Each site has a set of research systems running virtual
machines for experiments, a control box for management
functions, and a tunnel box that terminates the tunnel end-
points between the sites. The NorNet Core runs its own
domain name service (DNS), and the tunnels provide both
IPv4 and IPv6 connectivity between the sites. The tunnels
provide site to site connectivity over academic and
commercial IP networks. The overall structure of the NorNet
Core is illustrated in Figure 1.
The red line from the control box is the connection to the
central management system in Oslo.

Each site contains a set of physical servers that host
individual virtual machines running instances of Planet lab
software [3] for managing the sites. The virtual machines

Figure 1. Overall structure of Nornet Core

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 11 / 53

(VM) run the Fedora version 18 operating system [4], and
connect to all available VPN tunnels at the site through the
tunnel-box, and researchers can use them for multi-homed
experiments as needed. Each site contains a number of VM
instances, and they are all connected to all ISP’s at the site.
The experimenters are free to install SW on the VM’s as
needed. These VM instances are referred as slivers in the
NorNet terminology. Please note that the term sliver in this
paper refers to a running VM at a site. The term is also used
by Fedora, but with a different meaning in their setting. The
test-bed is configured so that the users get global access to
all nodes, and they are able to do experiments on each node
as needed, by accessing each virtual machine on an instance
by instance basis. This allows individual users to get
assigned VM’s with private IP addresses, and do not need to
consider sharing network interfaces with other users. There
are some restrictions on what access rights a user is assigned
to the operating systems on each site, and access to all
operating system instances is done through the central site at
Simula A/S in Oslo, Norway. These restrictions include
tunnel configuration, and the underlying management of the
research systems at a site. The entire NorNet Core
infrastructure is managed from Simula Research Laboratory
and their technical staff in Oslo, Norway.

B. The measurement setup

The NorNet Core test-bed at Simula A/S, has kindly
provided a central node in Oslo for measurement purposes,
which has direct access to the network interface, and is able
to do packet capture on the wire, so that the behaviour of the
network can be captured and studied in retrospect. The
measurements are done on HTTP calls issued from the
central node in Oslo, where the calls are issued at fixed
intervals to a select set of sites, using all tunnels, and thereby
using the infrastructure provided by all involved ISP’s. Since
this is also the node that manages all other tunnels and nodes,
and has other usages within Simula A/S, it is fair to assume

that any operational issues are observed and rectifier within
reasonable time. This central measurement node runs the
Ubuntu operating system and is directly connected to four
ISP’s. The HTTP calls from the measurement node are

issued in a shell script using the curl command [7] and

crontab [8] to schedule the commands every minute, and
the results are captured in a log file, as shown if Figure 2.
The results from a day without down-time and invocation
errors on a particular ISP and site are shown in Figure 3,
where the status (200 OK) is shown in a horizontal pink line
and the black lines are the DNS lookup times, the blue lines
are the connection setup times, and the green lines are the
total invocation time. However some of the invocations
might exceed the time constraints, but this depends on the
actual application, and its requirements. The time shown in
green shows all the time elements, DNS lookup, connection
time and data transfer time added together.

C. Experiment VM at sites

For the availability experiment, an instance of an
Embedded Jetty Server [5] runs and listening to HTTP
requests on all interfaces. The HTTP requests are issued with

the curl command, and scheduled with crontab. The
invocations are scheduled at one minute intervals, and each
ISP tunnel runs 1440 measurements per day. Since the
network is virtualized each sliver has its own IP addresses on
each of the ISP tunnels. The HTTP requests are tagged with
time-stamps and also logged locally on each Web server.

The Web Server logs locally the incoming request and their
unique invocation tags, and responds with a short response
containing the amount of available memory on its Java
instance. The triplet of IP source and destination addresses
and time-stamp provides a unique identifier in the local logs.
This also eases the identification of the packets captured on
the wire between servers and clients, and makes it possible to
observe the network behaviour at the packet level, with the
packet sniffing tools.

Figure 3. Invocation times (seconds) and status for 24 hours

Figure 2. Invocation time sequence for the measurement script

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 12 / 53

III. MONITORING OF THE TEST-BED

There are multiple issues that one wants to observe in
order to determine the stability of a test-bed. One is the
nodes themselves, their ability to communicate, and what
changes over time are observable. Given that the test-bed
should be able to run Internet scale experiments, observing
them from an application point of view will give a real life
picture of its abilities. The setup of the NorNet Core needs a
set of experiments carried out in parallel in order to pinpoint
possible issues that can occur, whether they occur on a single
sliver, on an entire site, or on NorNet Core as a whole.

The measuring node runs two distinct sets of
measurements in parallel where the first set runs towards
physically distributed nodes and the other set runs towards
the slivers residing on one physical location. The reasoning
behind this is to be able to detect internal issues on a node,
i.e., if there are issues that can be traced back to the tunnel-
box and the installation at that site vs. general operation
issues in the test-bed as a whole. Since all requests are issued
on all ISP’s available for transport at that particular site, one
can determine if an issue is related to a site or to transport.
Each tunnel on each ISP can then be plotted every day as a
graph shown in Figure 3, and one has a visual overview of
the behaviour over time from day to day.

The “curl” command gives the connection time, DNS
lookup time and connection time for each invocation. In
addition each invocation is tagged with a time-stamp so that
it is possible to explore the network behaviour at the packet

level using tools like “Wireshark” [9] to do retro
inspection of unusual or odd behaviour in the HTTP
communication between the sites. Unfortunately the packet
capture is only available at the monitoring node. In addition
the local logs are available at each sliver that is invoked.

With the redundant transport between the nodes it is easy
to determine the overall condition of an individual tunnel and
an individual sliver between the measuring node and the
sliver. By automating the plot generation, daily plots are
easily generated like the one shown in Figure 3. This,
however, results in great numbers of plots and checking

them all for abnormalities can be a daunting task. By setting
limits on the invocation time Tt on tunnels or slivers with
issues are easily identified and can then be inspected further.
By visually comparing plots between different physical sites,
it is straight forward to identify global issues or particular
issues only manifesting themselves at one site or on one
single tunnel to that site.

It is also desirable to assess the network characteristics of
the tunnels on a daily basis by a statistical analysis. Since the
tunnels are tunnelled over Internet or some local transport,
their characteristics varies over time. The connection times
Tc for a particular tunnel and sliver pair, are shown as a
density plot in Figure 4 or as a visual plot of an empirical
cumulative distribution as shown in Figure 5. Given the
shape of the distributions and the number of samples per day,
the Kolmogorov-Smirnov test [9] is chosen to be the most
suitable test to compare the daily connection time data.

The daily connection time distribution can be determined
for each tunnel and sliver pair and the result gives an
indication if there are changes in the communication
between the measuring node and a particular sliver. Uninett
is the research network in Norway, whereas Powertech and
Broadcom are commercial ISP providers in Norway.

IV. RESULTS

By assessing daily measurements first at HTTP
invocation level, and by defining an acceptable maximum
invocation time, depending on the application and the usage,
and comparing connection-time distributions and slivers
memory usage patterns, enables detection of changes in all
involved parts of the test-bed. By overlying the daily HTTP
invocation and status plots one can identify “global” issues
affecting the entire test-bed, and as well as “local” issues
affecting one site, or one ISP tunnel between the measuring
node and the site or sliver. By “global” issues we mean
events that impact the entire NorNet Core network, like the
DNS or the management functions, where as “local” issues

Figure 5. Empirical Cumulative Distribution Function

Figure 4. Density plot of connection times

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 13 / 53

are issues that affect only one site. Even though there are
variations the connection-time distribution is stable, unless
there is a change in the IP packet route or a change in the
tunnel-box SW. By viewing the density plots (Figure 4) or
empirical cumulative distribution functions (ECDP) (Figure
5) on tunnel and sliver pairs, the tunnels repeat the same
plots. In addition the Kolmogorov-Smirnov tests have been
run to show that the days without changes or downtime give
the same distribution.

The memory usage on the slivers has also been checked,
and the slivers do not appear to be disturbed by other
processes on each server. They all show a regular pattern in
the amount of free available memory, and are hence not
disturbed or affected by external factors.

The Web Server SW and the scripts used to run the
experiments are all available at github [6].

V. CONCLUSIONS

The NorNet test-bed provides a multi-homed
environment for large scale Internet experiments, but it has
unfortunately focused the technical aspects of such a test-
bed, and primarily at the transport level between the slivers.
Most of the experiments published address multi-home
transport and their protocols, and are not addressing Internet
style client-server usage [2].

The physical distribution of sites adds some transport
time between them, and occasionally the routing changes
between sites add a constant to the transport time.

The NorNet Core test-bed provides monitoring tools with
graphical interfaces. However, this does not give a detailed
picture of the communication between the sites nor the status
or quality of the tunnels between the sites. When a site goes
off-line there is limited support for bringing the site back on-
line other than contacting the personnel at the site. This has
some grave implications on availability if parts of the test-
bed run into issues or go down outside office hours or
vacation times. Being a research network NorNet Core does
not provide a service level agreement (SLA) for their users,
so you do not get your money back when there are failures
[11]. To be able plan and carry out long term experiments it
is necessary with more than only best effort guarantees on a
test-bed, to provide repeatable experiments.

The NorNet Core should add some rudimental

monitoring SW for each node and each tunnel, and provide

this information on the NorNet Core web page. This

information could also be used internally at Simula A/S to

alert the personnel in charge to quicker respond to failures

or errors that are bound to happen at some point. A SLA for

the users of NorNet Core could be beneficial for all parties

involved.

ACKNOWLEDGMENT

I would like to thank Professor Rolv Bræk and Professor
Bjarne Helvik at Department of Telecommunication at
NTNU, for their advice and guidance in my research work,
and my wife for proof reading my papers.

REFERENCES

[1] NorNet Core, https://www.nntb.no/pub/nornet-
configuration/NorNetCore-Sites.html , Last seen June 2015

[2] NorNet publications, https://www.nntb.no/publications/, Last
seen June 2015

[3] Planet lab, https://www.planet-lab.org/ , Last seen June 2015

[4] Fedora 18 (Spherical Cow), http://docs.fedoraproject.org/en-
US/Fedora/18/html/Release_Notes/index.html , Seen June
2015

[5] Jetty, application server, http://eclipse.org/jetty/ , Seen June
2015

[6] GitHub, code base, https://github.com/sunejak/EmbeddedJetty
, Seen June 2015

[7] Curl, tool, http://curl.haxx.se/docs/manual.html , Seen June
2015

[8] Crontab, tool, http://www.unix.com/man-
page/linux/5/crontab/ , Seen June 2015

[9] Wireshark, tool, https://www.wireshark.org , Seen June 2015

[10] Vito Ricci, “Fitting distributions with R”, http://cran.r-
project.org/doc/contrib/Ricci-distributions-en.pdf , Seen June
2015

[11] Brian Harry, “How do you measure quality of service?”,
http://blogs.msdn.com/b/bharry/archive/2013/10/14/how-do-
you-measure-quality-of-a-service.aspx , Seen June 2015

Article in conference proceedings:

[12] Sune Jakobsson, “Estimation of Performance and Availability
of Cloud Application Servers through External Clients”, in
DEPEND 2013, 6th International Conference on
Dependability, Pages 1-5, ISBN: 978-1-61208-301-8

[13] Thomas Dreibholz, Jarle Bjørgeengen, and Jonas Werme:
“Monitoring and Maintaining the Infrastructure of the NorNet
Testbed for Multi-Homed Systems”, in 5th International
Workshop on Protocols and Applications with Multi-Homing
Support (PAMS) 2015, Pages 611–616, ISBN 978-1-4799-
1775-4, DOI 10.1109/WAINA.2015.76

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 14 / 53

Beyond Integration Readiness Level (IRL): A Multi-Dimensional Framework to
Facilitate the Integation of System of Systems

Clarence L. Eder

Systems Engineering PhD Candidate
George Washington University

Washington DC, United States of America
Email: edercl@gwu.edu

Abstract—Integration Readiness Level (IRL) can be an
effective systems engineering tool to facilitate integration of
systems. With further research and the use of systems
architecture methodology, IRL principles could enhance the
use of systems integration in Department of Defense (DoD)
Acquisitions. DoD space systems are great examples of system
of systems, and analyzing space systems’ integration issues will
help identify critical integration variables. Integration data
will be collected to develop a framework to enhance IRL
notional definitions that will help improve space systems’
availability and dependability.

Keywords-Integration Readiness Level (IRL); Department of
Defense (DoD) Acquisitions; Technology Readiness Level (TRL).

I. INTRODUCTION
Integration Readiness Level (IRL) was introduced to help

understand the maturity of integrating one system to another
[1]. The need to expand the use of IRL is increasingly
becoming more relevant in the United States’ Department of
Defense (DoD) Acquisitions as programs try to acquire
systems with the intent to have multiple capabilities and
interfaces.

Throughout the years, DoD has continuously reduced the
budget for weapon systems acquisitions. DoD Acquisitions
implemented several systems engineering processes and
tools to help meet budgetary requirements and still produce
the best weapon systems available. The budget reduction
along with the need to expedite the deployment of
capabilities into operations trigger the drive to improve these
processes and tools that program managers can depend on
when making program decisions. In order to make
decisions about a system and the technology available for the
system, DoD Acquisitions adopted the use of Technology
Readiness Level (TRL) in 2002 [2]. TRL provides close to a
quantitative measure for explaining the maturity of a system
based on the technology used for that system.

To further the use of TRL, IRL was introduced as an
integration tool to complement TRL (Figure 1). IRL was
developed to align with the TRL definitions, but it was never
officially implemented by DoD to help with integration
assessment. Other readiness levels such as System
Readiness Level (SRL) and Test Readiness Level were also
introduced but not officially recognized by DoD
Acquisitions. Although not implemented, the use of IRL
could become a necessary tool to help reduce integration
risks of complex systems. Integrating system of systems are
becoming more complex and the current definitions of IRL

do not allow it to be independent of the TRL process, which
could be one reason why IRL is heavily scrutinized in
current systems engineering literature.

Lvl Basic TRL reported IRL

1 Basic principles observed
and reported

An interface between technologies has
been identified with sufficient detail to
allow characterization of the relationship

2 Technology concept
and/or application
formulated

There is some level of specificity to
characterize the interaction between
technologies through their interface

3 Analytical and
experimental critical
function and/or
characteristic proof of
concept

There is compatibility between
technologies to orderly and efficiently
integrate and interact

4 Component and/or
breadboard validation in
laboratory environment

There is sufficient detail in the quality
and assurance of the integration between
technologies

5 Component and/or
breadboard validation in
relevant environment

There is sufficient control between
technologies necessary to establish,
manage, and terminate the integration

6 System/subsystem model
demonstration in relevant
environment

The integrating technologies can accept,
translate, and structure information for
its intended application

7 System prototype
demonstration in relevant
environment

The integration of technologies has been
verified and validated with sufficient
detail to be actionable

8 Actual system completed
and qualified through test
and demonstration

Actual integration completed and
mission qualified through test and
demonstration in the system environment

9 Integration is mission
proven through
successful mission
operations

Execute a support program that meets
operational support performance
requirements and sustains the system in
the most cost-effective manner over its
total life cycle

Figure 1. IRL and TRL Levels Defined [1]

II. THEORY
IRL can be an effective systems integration assessment

tool and given the right multi-dimensional framework, it can
facilitate the integration of system of systems. Utilizing
other integration variables and expanding the current
notional definitions of IRL can significantly impact the
assessment of integration of system of systems. IRL was
also proposed as an intermediate step by making it part of a
matrix function with TRL in order to determine the SRL [2].

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 15 / 53

When IRL is used as a function of SRL, IRL could be
overlooked from being a significant independent assessment
value, and the IRL level may be influenced by what is
needed as the SRL value. There are others who determine
integration readiness can be assessed as part of DoD
Acquisition’s Technology Readiness Assessment (TRA)
process, which is the official process to determine TRL
score, but this process does not capture the purpose of
integration. It is important to understand that a system with
mature technology does not automatically equate to having a
high IRL when interfacing with another system with mature
technology. The current high-level definition given to IRL
levels from 1 to 9 allows room for different interpretations
when working with complex systems.

DoD space systems continue to provide examples of
complex system of systems. With very limited opportunities
to do operational tests and analyses for satellite systems and
rocket launches, space systems provide a platform to
incorporate the latest technologies and processes to attain
successful operational systems. IRL can be used to assess
the integration of these systems given a rigorous process that
account for other variables. An assessment based on the
current definition, which allows subjectivity that may be
misinterpreted, will not work with current space systems.

A research is being performed to show the effectiveness
of IRL in facilitating integration of system of systems. The
research will focus on understanding the integration points
with additional critical variables, and focus on the
development of a systems architecture that will provide the
framework to explain enhanced IRL levels. A systems
architecture will be used as the methodology to prove the
effectiveness of a newly defined IRL process.

III. GOALS/RESULTS
The goal is to expand beyond the IRL notional identified

levels using architectural framework and assessed integration
variables. To determine the integration variables, the
research will focus on understanding the integration issues of
six major DoD space systems. The data will be collected
from the following family of systems: 1) Advanced
Extremely High Frequency (AEHF) satellite; 2) Evolved
Expendable Launch Vehicle (EELV); 3) Global Positioning
Satellite (GPS); 4) National Polar-Orbiting Observing
Satellite System (NPOESS); 5) Space Based Infrared
Systems (SBIRS); and 6) Wideband Global SATCOM
(WGS). The research will focus on integration issues from
1999 to 2014, and the data will be analyzed to understand the
overall impact on capability, schedule, and cost. The focus
of the integration issues will be at the space segment
integration points (Figure 2) along with the subsystems
integrated into each of the space segment.

The data collected will be used to construct an
architectural framework and to determine weights for each
identified variable. The framework and weighted variables
will determine an objective IRL level. Initial integration
variables that are being considered include: 1) Schedule
(need date, allowed timeline to integrate); 2) Resources
(Funding, Personnel, Available tools); 3) Processes
(Documented approach, Binding Agreements, Testing); 4)

Policies (Directives, Guidance); 5) Communication
(Documentation, Semantics, Expectations); and 6) Risks
(Cost, Schedule, Technical).

Figure 2. Major DoD Space Systems Integration Points

IV. CONCLUSION
The data will be validated through systems architecture

application of the integration activities for all six space
systems. The data collected will also be manipulated
through regression analyses to determine possible trends
that can support or object to the theory being researched.
The systems architecture methodology will help scope the
data collected and help facilitate the use of critical
integration variables into relevant products that can be used
to support overall program decisions and improve system
availability and dependability.

The expected result is to have a list of integration issues
and an understanding of how those issues impacted the
system delivery through time, level of capability, and
schedule. This will help identify attributes that will be used
as variables for systems integration. Although the current
DoD process of deploying space system capabilities for
operational use does not require assessment of integration
maturity, the result of this research should help quantify an
integration tool that can further the use of IRL principles.
Thus, making it very useful for stakeholders’ decisions.
With further research, using IRL with additional variables
applied into a multidimensional architectural framework
will provide a systems engineering quantitative tool that can
enhance the facilitation of integrating system of systems.

V. REFERENCES
[1] Sauser, B., Gove, R., Forbes, E., Ramirez-Marquez, J. (2010).

Integration maturity metrics: Development of an integration readiness
level. Information. Knowledge. Systems Management., v 9, n 1, p 17-
46

[2] Electronic Publications DoD Instruction 5000.02-R
[3] McConkie, E., Mazzuchi, T., Sarkani, S., Marchette, D. (2013).

Mathematical properties of System Readiness Levels. Systems
Engineering, v 16, n 4, p 391-400.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 16 / 53

On Handling Redundancy for Failure Log Analysis of Cluster Systems

Nentawe Gurumdimma∗

Arshad Jhumka† and
Maria Liakata‡

Department of Computer Science
University of Warwick

Coventry, CV4 7AL UK

Email: ∗N.Y.Gurumdimma@warwick.ac.uk
†arshad@dcs.warwick.ac.uk
‡M.Liakata@warwick.ac.uk

Edward Chuah§ and
James Browne¶

Department of Computer Science
University of Texas - Austin

Email: §chuah@acm.com
¶J.Browne@utexas.com

Abstract—System event logs contain information that capture
the sequence of events occurring in the system. They are often
the primary source of information from large-scale distributed
systems, such as cluster systems, which enable system adminis-
trators to determine the causes and detect system failures. Due
to the complex interactions between the system hardware and
software components, the system event logs are typically huge in
size, comprising streams of interleaved log messages. However,
only a small fraction of those log messages are relevant for
analysis. We thus develop a novel, generic log compression or
filtering (i.e., redundancy removal) technique to address this
problem. We apply the technique over three different log files
obtained from two different production systems and validate the
technique through the application of an unsupervised failure
detection approach. Our results are positive: (i) our technique
achieves good compression, (ii) log analysis yields better results
for our filtering method than normal approach.

Keywords-Cluster Log Data; Unsupervised learning; Compres-
sion; Levenshtein distance; filtering.

I. INTRODUCTION

The size and complexity of computer systems required for
computationally-heavy jobs such as scientific computations
is increasing and failures are expected to be the norm
rather than exceptions. The unscheduled downtime of such
large production computer systems carries huge costs: (i)
applications running on them have to be executed again,
potentially requiring hours of re-execution, (ii) checkpointing
has to be performed regularly and (iii) lots of effort is
required to find and fix the causes of the downtime. These
systems generate a large amount of data, typically in the
form of system logs, and these data files represent the main
avenue by which system administrators can gain insight into
the behaviour of the systems.

Due to the size of such data files and the complexity of
such systems, system administrators usually adopt a divide
and conquer approach to analyse the data. Such log files are
typically incomplete and redundant; that is, the files may
not contain all the relevant events to characterize a failure

while containing several interleaved events related to the
same failure.

There are several possible ways to increase the dependabil-
ity of these computer systems [1], with failure prediction [2]
or failure diagnosis [3][4] being the most prominent ones.
One of the basic tasks of automatic analysis of log files
for the purposes mentioned above is preprocessing, which
typically involves filtering the logs. However, such analysis
techniques are invariably expensive due to the size and type
of the logs being processed. Specifically, these log files are
highly redundant and unstructured. To handle the lack of
structure in log files, further information is added, often
manually, to capture specific aspects of the data, i.e., the data
is labelled using system information. To address the redun-
dancy problem, the logs are filtered, or preprocessed, to aid
the log analysis process. Specifically, to handle redundancy,
Filtering/compression techniques, or redundancy handling
techniques are used to remove events that are not useful for
any analysis. A common problem with such compression
techniques is that they may remove important information
that are pertinent to the analysis phase, as captured by the
targeted high compression or filtering rate [5]. The terms
compression and filtering are used interchangeably.

This paper seeks to bridge this gap; we filter event logs
based on their similarities. We propose a novel and generic
clustering approach to log filtering where events that are
not similar but causality related are also kept. This is to
preserve events patterns that serve as precursor to failures.
We focus on trying to achieve good failure analysis, hence
we evaluate the impact of the filtering on failure pattern
detection approach.

The rest of the paper is organised as follows: In Section II,
we present the system logs and models we assumed in
the paper. We present the methodology for achieving our
objective in Section III, while failure pattern detection for
performance evaluation is presented in Section IV. In Sec-
tion V, we discuss the results when applying the approach

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 17 / 53

to log data from different supercomputer systems. Related
works are presented in Section VI. We conclude the paper
and provide direction for future work in Section VII.

II. MODELS AND SYSTEM LOGS

A. Basic Definitions

We will refer to Figure 1 (sample logs from Ranger
supercomputer) in this section for definition of terms.

• Event: A single line of text containing various fields
(time-stamp, nodeID, protocol, application, error mes-
sage) that reports the activity of a particular cluster
system. Such an event is also often called a log message.

• Event logs: A sequence of events containing the activ-
ities that occur within a cluster system.

• Similar Events: These are events containing similar log
messages based on the similarity measure used. From
Figure 1, events 5 and 6 can be considered similar.

• Identical Events: These are events believed to be
exactly the same and/or are produced by the same
’print’ statement, e.g., events 7 and 8 in Figure 1.

• Failure Event: This is an event that is often associated
with and/or is indicative of a system failure.

• Sequence A sequence consists of one or more consec-
utive events logged within a given time period. In this
paper, sequence and patterns means the same and are
used interchangeably.

TABLE I. SUMMARY OF LOGS USED FROM PRODUCTION SYSTEMS

System Log Size Messages Start Date End Date
Syslogs 1.2 GB > 107 2010-03–30 2010-08-30
Ratlogs 4.3 GB > 2× 107 2011-08-01 2012-01-20
Blue Gene/L 730 MB 4, 747, 963 2005-06-03 2006-01-04

B. System Model and Cluster Logs

Here we explain the model of our system and explain the
logs we work with as well as the event types contained in
the logs.

1) Cluster System: A cluster system contains a set of
nodes, jobs or tasks, production time, job scheduler and sets
of software components (e.g., parallel file system). The job
scheduler allocates jobs to nodes with certain production
time, and all the components involved write logs to a writing
container. This is a common model for most of the cluster
vendors like Ranger, Cray, IBM etc. In this research, we
use the log of two popular cluster systems, namely (i)
Rationalised logs (ratlogs) from Ranger Supercomputer, (ii)
syslog from Ranger supercomputer and (iii) IBM Blue-
Gene/L. Table I shows a summary of the logs from the cluster
systems we focused on in this research.

2) Cluster Event Logs: Different attributes are used by su-
percomputer vendors to represent its components. The IBM
standard for Reliability, Availability, Serviceability (RAS)
logs incorporates more attributes for specifying event types,
severity of the events, job-id and the location of the event[6].

An example of Ranger’s (syslog) event can be seen below:
Apr 4 15:58:38 mds5 kernel: LustreError: 138-a: work-
MDT0000: A client on nid .*.*.5@o2ib was evicted due to
a lock blocking callback to .*.*.5@o2ib timed out: rc -107

It has five attribute fields namely: Time-stamp (Apr 4
15:58:38) containing the month, date, hour, minute and
second at which the error event was logged. Node Identifier
or Node Id (mds5) identifies the nodes from which the
event is logged. Protocol Identifier (kernel) and Application
(LustreError) provides information about the sources of logs.
Message (A client on nid *.*.*.5@o2ib was evicted due to
a lock blocking callback to *.*.*.5@o2ib timed out: rc -
107) contains alphanumeric words and English-only words.
The English-only words (A client on nid was evicted due to
a lock blocking callback to timed out) is believed to give
an insight into the error that has occurred. They are referred
to as Constant. The alpha-numeric tokens (*.*.*.5@o2ib ,rc-
107) also called Variable, signify the interacting components
within the cluster system. The ratlogs have and additional
field (job-id) which differentiates it from syslogs. Detailed
example of the Ranger logs is seen in Figure 1 and IBM’s
Blue Gene/L (BGL) is seen in Table II.

C. Failure Model

The failures we focused on in this paper are those that
cause the system to malfunction, i.e., execution of some jobs
has stopped. For example, such a failure in IBM BlueGene/L
is characterized by FAILURE severity level while, in the
Ranger Supercomputer, these failures are characterized by
a compute node soft lockups.

These failures usually occur as a result of faults occurring
in the system, i.e., caused by the fault(s) of one or more sub-
systems/components in the system [7]. These faults result in
a log entry or fault message in the log data file. For example,
a network timeout will result in a “Network timeout” log
message being recorded. Hence, in a typical sequence, there
will be an interleaving of fault events and normal events.

III. METHODOLOGY

We first briefly explain the existing filtering approach,
which we call normal filtering. We next explain our filtering
approach which is based on simple iterative clustering. The
clustering is based on the notion of Levenshtein’s Distance
(LD), defined on the events messages to capture their
similarities.

Filtering based on defined heuristics is applied to purge
out redundant events. The resulting event sequences are then
transformed into term frequency matrices which serve as
input to detection algorithm.

A. Normal Event Filtering

Filtering or compression as it may be called here, is meant
to reduce the complexities that comes with analysing logs.
It is generally agreed that filtering or pre-processing logs is
an important process. The process helps eliminate redundant
events from logs, thereby reducing the initial huge size. This

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 18 / 53

TABLE II. AN EXAMPLE OF EVENT FROM BLUE GENE/L RAS LOG

Rec ID Event
Type Facility Severity Event Time Location Entry Data

17838 RAS KERNEL INFO 2005-06-03-15
.42.50.363779 R02-M1-N0-C:J12-U11 instruction cache parity error corrected

1: Mar 29 10:00:44 i128-401 kernel: [8965057.845375] LustreError: 11-0: an error occurred while communicating with *.*.*.36@o2ib. The

ost_write operation failed with -122

2: Mar 29 10:00:53 i128-401 kernel: [8965077.319555] LustreError: 11-0: an error occurred while communicating with *.*.*.28@o2ib. The

ost_write operation failed with -122

3: Mar 29 11:27:16 i182-211 kernel: [8981960.031578] a.out[867]: segfault at 0000000000000000 rip 0000003351c5b2a6 rsp 00007fffdcd318c0

error 4

4: Mar 29 11:27:16 i115-209 kernel: [2073150.255467] a.out[22921]: segfault at 0000000000000000 rip 0000003ad725b2a6 rsp 00007fffbf1a6d40

error 4

5: Mar 30 10:02:24 i107-308 kernel: [8966098.630066] BUG: Spurious soft lockup detected on CPU#8, pid:4242, uid:0, comm:ldlm_bl_22

6: Mar 30 10:02:24 i107-308 kernel: [8966098.642055] BUG: soft lockup detected on CPU#10, pid:21851, uid:0, comm:ldlm_bl_13

7: Mar 30 10:09:25 i107-111 kernel: [8966563.203631] Machine check events logged

8: Mar 30 10:09:51 i124-402 kernel: [8965663.148499] Machine check events logged

9: Mar 30 10:10:22 master kernel: LustreError: 28400:0:(quota_ctl.c:288:client_quota_ctl()) ptlrpc_queue_wait failed, rc: -3

10: Apr 1 05:23:54 i181-409 kernel: [9203054.301173] Machine check events logged

11: Apr 1 05:23:58 visbig kernel: EDAC k8 MC0: general bus error: participating processor(local node response), time-out(no timeout)

memory transaction type(generic read), mem or i/o(mem access), cache level generic)

Figure 1. Sample Log events for RANGER Supercomputer

however, must avoid removing useful events or event patterns
that are important for failure pattern detection. In normal log
filtering, events that repeats within certain time window are
removed, only the first is kept. This simple log filtering is
what we refer to as normal filtering in this work. Details can
be seen in [6].

B. Preprocessing

Tokenization and Parsing
This phase involves parsing the logs to obtain the event
types and event attributes, using simple rules. Tokens that
carry no useful information for analysis are removed. For
example, numeric-only tokens are removed but attributes
(alpha-numeric tokens) and the message types (English-like
only terms) are kept. Also, fields like protocol identifier and
application are removed or omitted during the parsing and
tokenizing phase.

Message part contains English words, numeric and al-
phanumeric tokens. The English tokens show a pattern pro-
viding information pertaining to the state of the system. The
alpha-numeric tokens capture the interacting components or
software functions involved. These interacting components,
which do not occur frequently and show less or no pattern,
are also important since we are interested in interacting nodes
of the cluster system. The numeric only tokens are removed
as they only add noise.

C. Filtering: Redundancy Handling

1) Logs Message types Extraction and Labelling through
Clustering: Generally, data clustering techniques group sim-
ilar data points together, based on some closeness measure.
The output of such clustering algorithms is a set of clusters,
where each of the clusters contain members (data points)
that are similar (or close) to each other and very dissimilar
to members of other clusters. In order to identify all the
unique events in the logs, we first extract the message types
and we introduce a clustering technique (see Algorithm 1)

that partitions the logs based on events similarities given by
an edit distance. Each cluster represents a unique event.

Edit Distance - (Levenshtein’s Distance): The closeness of
events is measured using Levenshtein’s Distance (LD) [8]. It
is a metric that measures differences between two strings.
It is defined based on edit operations (insertion, deletion
or substitutions) of the characters of the strings. Hence the
Levenshtein’s distance between two strings s1 and s2 is the
number of operations required to transform s2 into s1 or vice
versa. LD is an effective and widely used string comparison
approach. We found it more useful as we easily can define
it on tokens rather than characters. We equally found it to
be more suitable here than cosine similarity as the later is a
vector-based similarity measure.

Events Similarity: In our algorithm, we define LD as the
number of operations required to transform one message
type into another. Therefore, instead of defining the opera-
tions on characters of event message types, we define the
operations on the tokens or terms ti of the event types,
ei = {t1, t2, ..., tn}. It should be noted that message types
of event logs mostly do not have many terms or tokens,
therefore the computational overhead is reduced.

Consider the log entries of Figure 1. Events 1 and 2 are
both failed communication events by the same node; the
communication is, however, with different nodes. Events 7
and 8 are both normal machine checked exceptions. The
challenge is that these events greatly increase the feature
space of distinct events, making it difficult to handle for
any meaningful analysis. In solving this, we consider the
following: (1) Similar events need to be grouped together
and considered the same and (2) identical events are also
considered same and the redundant ones are removed. We
propose an algorithm (Algorithm 1 - see Figure 3) to first
find the similarity between these events and then cluster those
events that are similar. Then, events in the same cluster are
indexed with the same identity (IDs).

From the sample logs of Figure 1, it is necessary that

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 19 / 53

 Event ID Time-stamp Node

Identifier

Message

1 LEO 1269856844 i128-401 LustreError: error occurred while communicating with 129.114.97.36@o2ib. The

ost_write operation failed with

2 LEO 1269856853 i128-401 LustreError: error occurred while communicating with 129.114.97.36@o2ib. The

ost_write operation failed with

3 SEGF 1269862036 i182-211 segfault at rip rsp error

4 SEGF 1269862036 i115-209 segfault at rip rsp error

5 SSL 1269943344 i107-308 BUG: Spurious soft lockup detected on CPU, pid:4242, uid:0, comm:ldlm_bl_22

6 SSL 1269943344 i107-308 BUG: soft lockup detected on CPU, pid:21851, uid:0, comm:ldlm_bl_13

7 MCE 1269943765 i107-111 Machine check events logged

8 MCE 1269943791 i124-402 Machine check events logged

9 CQF 1269943822 master client quota ctl ptlrpc queue wait failed,

10 MCE 1270099434 i181-409 Machine check events logged

11 GBE 1270099438 visbig general bus error: participating processor local node response, time-out no timeout

memory transaction type generic read, mem or io mem access cache level generic

Figure 2. Sample pre-processed logs

any similarity metric used must consider the order of the
terms in the events for meaningful result. For example,
the event messages ...error occurred while communicating
with... and ...Communication error occurred on... may appear
similar but semantically different. A similarity metric that
does not take order of tokens/terms into consideration will
cluster these events together, i.e., these events will be seen
as similar, because they have similar terms. To address this
challenge, we define an edit distance metric on terms without
transposition, taking term order into consideration. Also,
defining this metric based on terms or tokens reduces the
computational cost incurred as opposed to when it is defined
on string characters.

Finally, to capture the similarity of events, we define a
similarity threshold, where the lesser the number of edits,
the higher the similarity. Hence, we define the threshold such
that, when the edit distance between a pair of messages is
less than or equal to the threshold λ (hence highly similar),
these events are regarded as similar and thus clustered
together.

Event Similarity Threshold
It has also been observed that events that can be regarded

similar do not have much difference in terms of the number
of terms contained in the event messages. Using an iterative
approach [9], we start with a small value of similarity
threshold λ, then increase the value in small increments
and monitor the output, until a satisfied similarity value
is obtained. We observed that with a very small similarity
threshold, only events that are exactly similar are clustered
together. But, as the value of threshold is increased to values
higher than 3, events that are often dissimilar were being
classed as similar. Therefore, to have a more acceptable
result, we chose a threshold of 2.

Clustering event logs and ID assignment The challenges
addressed by this algorithm and its approach can be ex-
plained in two steps:

STEP I: The events are grouped based on the value of
the edit distance or LD. In this step all events with equal
terms or token length are clustered together. This is because

Algorithm 1
Input: Log events e0. . . en, MinimumSimilarityThreshold λ
Output: Log events with cluster IDs

1: initialise s0 = e0;

2: for all log events ei, i = 0 . . . n do{ }
3: Obtain events similarities using Levenshtein Distance

similarity(s0, ei)=LD(s0, ei);
4: end for
5: for all log events do
6: if similarity <= λ then
7: Assign log events to cluster
8: Assign ID to log event representing its cluster
9: end if
10: end for
11: Repeat step 2 for clusters with problem explained in STEP II above
Until all log events are clustered
12: Return() {outputs log events with their cluster ID}

Figure 3. An algorithm that Clusters event logs base on similarity and
assign event IDs (represent the clusters).

they will have same value of LD.

STEP II: Since LD gives the number of operations
performed to transform one event to the other, different event
types with same token length are clustered together from the
step 1. For example, . . . “machine check event logged” and
. . . “Spurious soft lockup detected” will belong to the same
cluster. This step partitions clusters with such problems with
smaller LD value. This step is performed recursively until
the clusters contains only events of similar message type.
More on this is shown is Algorithm 1 seen in Figure 3.

As example of the output of this step is shown in Figure 2.
These logs still contain redundant events, for example, events
5 and 6 (please observe that events 5 and 6 are clustered
together, though being slightly different, and are indexed
using the same id).

2) Removing Redundant Events: There are several seem-
ingly identical error events reported frequently in cluster
logs. These events are then clustered together and have the
same ID from the clustering step. The events are sometimes
reported by the same cluster node and they occur within
a small time difference (temporal aspect). Also, sometimes

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 20 / 53

some of these events are reported by different cluster nodes
(spatial aspect) but still within the small time difference.

According to Iyer and Rosetti [10], occurrence of similar
or identical events within a small time window might likely
be caused by the same fault. Thus, these messages are related
(and hence redundant) as they potentially point to the same
root-cause. Therefore, removing these redundant messages
may prove to be beneficial to the analysis stage. In another
sense, removing the “redundant” events could be useful in
understanding the behaviour of a particular fault in terms
of the frequency of the event generated within the period.
Therefore, in filtering of redundant log events we consider
events in a sequence having the following properties:

• Similar events that are reported in sequence by the same
node within a small time window are redundant. This
is because nodes can log several similar messages that
are triggered by the same fault.

• Similar events that are reported by different nodes in
a sequence and within a time window. This could
be triggered by the same fault resulting in similar
misbehaviour by those affected cluster nodes.

• Identical events occurring in sequence and within a
small time difference are redundant.

General approach to filtering will keep the first similar
event of sequence and subsequent ones removed [5]. It is
pertinent to note that it is possible that the same error
messages logged by different nodes are caused by different
faults and at close time interval. Some events are causally-
related. In our approach, we keep such events. The process
of identifying and grouping the error events exhibiting the
above properties is done using a combination of both tupling
and time grouping heuristics [9]. We define some heuristics
that captures the properties outlined above.

With careful observation of the logs and experts’ input,
we realised that achieving high compression rate and yet
preserving patterns are important and dependent on how
informative and well-labelled a given log is. For example,
Ranger’s Ratlogs contains more information regarding the
nodes and jobs involves which provides more information
regarding an event. Job-ids in logs indicates particular job
that detects the reported event. The job-ids when correlated
with failure events, tells which job is the source of the failure.
This implies that identical job-ids present on different events
within a given event sequences would have high correlation
as regards the faults and failure that is eventually experi-
enced [11]. In order to achieve high events compression
accuracy (ability to keep unique events) and completeness
(remove redundant events), yet maintaining events which are
possible precursor to failure (preserving failure pattern), we
propose a filtering approach that removes redundant events or
events that are related based on the causes, sources, similarity
and time of their occurrence.

Specifically, given two events e1 and e2, with the time of
occurrence Te1 and Te2 respectively, they are both causality
related or emanates as result of same faults if:

• nodeid(e1) == nodeid(e2) && |Te1−Te2| ≤ tw &&
sim(e1, e2) ≤ λ

• nodeid(e1) == nodeid(e2) && jobid(e1) ==
jobid(e2) && |Te1−Te2| ≤ tw && sim(e1, e2) ≤ λ,

where sim(.) is the similarity given by LD, λ is similarity
threshold.

IV. CASE STUDY: PATTERN DETECTION

A. Introduction

The aim of compression or filtering event logs of large-
scale computer systems is to reduce the massive size by
properly removing redundant events; and preserving the
necessary events patterns to enhance any log analysis. Such
analysis can be failure prediction, root cause analysis, failure
detection etc. In this section, we introduce an unsupervised
pattern detection approach in logs of distributed systems.
This is an approach used to evaluate the accuracy and
efficiency of our filtering approach. That is, if the approach
preserve useful event patterns in logs that improves failure
detection.

Filtered logs sequences are now extracted transformed into
term-frequency matrix. This matrix comprises of row vec-
tors representing distribution or counts of each event types
within a given time and the column vectors representing the
sequences or patterns.

We further utilise clustering approach [12] to group similar
behaving patterns. Each of these patterns are then expected
to be normal event sequences or comprising faulty events.

B. Failure Pattern Detection

According to Gainaru et al. [13], event log sequences can
be categorised as noisy, periodic or silent in their behaviour.
Noisy sequences occur with high frequency (busty or chatty)
and the level of interaction of the nodes involved increases
within short period. The characteristics of these patterns are
captured through entropy [14] and mutual information. High
entropy signifies that the cluster is likely failure cluster.

Hence, given a cluster with set of sequences or patterns
C = {c1, ..., cm} and each pattern ci contains a set of similar
events sequences,s, i.e., ci = {s1, ..., sn}. Then detection is
achieved as follows:

f(c) =


1 if ϕ(c) < 0

else

{
1 if ϕ(c) > τ & H(c) > 0

0 otherwise
(1)

Where,
ϕ(c) =MI(c)−H(c) (2)

and MI(c) and H(c) are the mutual information and the
entropy of patterns c, τ is detection threshold, the value of
ϕ(c) for which we can decide if c contained failure sequences
or not.

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 21 / 53

V. EXPERIMENTS, RESULTS AND DISCUSSION

A. Experimental Setting

We performed our experiments in order to evaluate the ef-
fectiveness of our filtering method is preserving useful events
patterns that may potentially improve failure detection. Fur-
ther, we aim to assess the efficiency of our unsupervised
detection method on the various logs. The experiment was
conducted on three different logs obtained from two cluster
systems. The ratlogs and syslogs are obtained from the
Ranger supercomputer sited at Texas Advanced Computing
Center at the University of Texas at Austin, and the BGL
logs from IBM Blue Gene/L supercomputer. These systems
were chosen because of the availability of the logs and they
are among the top 500 widely used supercomputers. Further,
their event logging system is representative of a many other
similar systems.

Following, a sequence, an input vector for the pattern
detection algorithm is labelled as either a failure or non-
failure. We implemented normal filtering approach as ex-
plained earlier in order to compare with our approach. Note
that we could not implement the approach by Zheng et
al. [5] to compare with ours because it is log-specific. It
cannot be generalised with logs that are not labelled with
severity levels, which is the case for most systems. Hence
we compare with normal filtering method which is the most
used.

To form the basis of our evaluation, we use information
retrieval metrics precision (the relative number of correctly
detected failure patterns to the total number of detections);
recall (the relative number of correctly detected failure
sequences to the total number of failure sequences) and F-
measure (harmonic mean of precision and recall) to measure
the performance of our approach. They are as expressed
in Equations (3) - (5). We capture the parameters in the
metrics as follows: True positives (TP): Number of failure
sequences/patterns correctly detected. False positives (FP):
Number of non-failure (good) sequences detected as failure.
False negatives (FN): Number of failure sequences identified
as non-failure sequences.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F −Measure = 2 ∗ Precision×Recall
Precision+Recall

(5)

B. Results

The results are captured in Figures 5, 6, 7 and 8. Each plot
of the graphs contains two curves, one is representing the
detection efficacy of our method, and the other representing
that of normal filtering.

As mentioned in the introduction, we obtained a good
log events compression from the original size. We obtained

40

50

60

70

80

90

1 2 3 4 5

C
o

m
p

re
ss

io
n

 r
at

e
 (

%
)

Levenshtein Distance (LD) similarity threshold, λ

Figure 4. Compression rate on syslogs data against LD

Ratlog

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120
R

e
ca

ll

Time Window (mins)

Our Method Normal Filtering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

(a) Precision

Ratlog

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

(b) Recall

Figure 5. Precision and recall showing effectiveness of failure detection on
syslogs filtered with our method and normal filtering

compression rate of 78%, 80% and 84% on syslogs, ratlogs
and Blue Gene/L logs respectively with LD = 3. Normal
filtering achieved an average compression of 88%. We show
from Figure 4, the compression rate on syslogs data as the
value of LD increases.

syslogs: Results, as seen in Figure 5, shows that the
precision and recall on logs filtered by our method is
consistently higher than on those filtered by normal filtering
through all the time windows captured. Furthermore, filtering
using our method achieve highest precision and recall of
69% and 88%, respectively, normal filtering on the other
hand is considerably lower with peak precision and recall of
53% and 52% respectively. Our filtering method achieved a
relative improvements of about 16% and 26% over normal
filtering, for precision and recall respectively.

ratlogs: On ratlogs (see Figure 6), both precision and
recall for our filtering method are consistently high across
time windows, ranging between 67%− 80% for the former
and between 79% − 98% for the latter. However, both
precision and recall for normal filtering is inconsistently low,
with maximum precision of 60% and recall of 82%.

Ratlog

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

(a) Precision

Ratlog

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering

(b) Recall

Figure 6. Results showing effectiveness of failure detection on ratlogs
filtered with our method and normal filtering

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 22 / 53

Ratlog

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering
(a) Precision

Ratlog

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

Our Method Normal Filtering

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

Our Method Normal Filtering

(b) Recall

Figure 7. Showing effectiveness of failure detection on BlueGene/L (BGL)
logs filtered with our method and normal filtering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

P
re

ci
si

o
n

Time Window (mins)

 Filter+ Job_Id OFM

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

R
e

ca
ll

Time Window (mins)

 Filter+ Job_Id OFM

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

Fm
e

as
u

re

Time Window (mins)

 Filter+ Job_Id OFM

Figure 8. Detection performance on ratlogs using our filtering method
without using additional structure (legend: OFM) and logs compressed

with additional useful structure (legend: Filter + Job ID).

Similarly, on IBM BlueGene/L (BGL), the precision as
seen in Figure 7 shows there is improvement in detection
using our method over normal filtering. It achieved an
average improvement of about 30% over normal filtering.
Recall for both methods are high, however, our method
performed better at smaller time windows.

What is the implication of these results? Our method
achieved an improvement over normal filtering of about
10% − 30% across all logs used. One of the reasons for
this is that, after careful manual investigation, we discovered
that failures experienced as captured in these logs are often
preceded by event patterns within a short time window.
Further, our filtering method was able to preserve these pre-
cursor events to failures. This implies that our approach can
aid system administrators take necessary failure preventive
measures earlier.

We show the result of compression taking job-ids into con-
sideration in Figure 8. This result is for ratlogs only, being
the only logs with job-id field among the three logs used.
The result shows that there is a remarkable improvement over
not using job-ids for compression with an average detection
improvement of about 15%. The increased detection in logs
compressed with job-ids can be explained by the fact that
events which are reported by same jobs and are semantically
related, yet not similar are properly filtered.

VI. RELATED WORK

Data mining and machine learning techniques are the
mostly used in recent works that focused on analysing logs
for failure analysis in cluster systems. These works can be
found in [15][16][17][18] and [19], and they all developed

algorithms that mine patterns of events in the logs. The works
in [20] and [18] combines console logs with source code
and employed PCA to obtain faulty patterns in the logs.
The authors of [2] proposed a method for analysing system
generated messages by extracting sequences of events that
frequently occur together. In [21], the authors proposed a
technique and developed a tool based on clustering called
HELO, to extract event templates and describes the templates
for system administrator’s use. None of the above work
considers removing any redundancy in the events logs. They
considered every event useful for analysis.

Zheng et al. [5] proposed a method that pre-processes logs
and removes redundant events without losing important ones,
for failure prediction. In their approach, redundancy from
both a temporal and spatial viewpoint is considered. They
also filter events based on their causal relationship. Unlike
this method, we assume that temporal events must occur
in sequence to be removable and we believe that causally-
related but semantically unrelated events are patterns or sig-
natures to failure, therefore we keep them. Since the method
of [5] cannot be implemented on logs without severity levels,
we conjecture that the approach will yield either a high false
positive or negative, should it be used on these types of logs.
Hence we couldn’t compare this method with ours.

Pecchia et al. [22] developed an approach based on
heuristics combined with statistical techniques that provides
likelihood of events produced by different nodes to removed
unwanted events. Their approach is different from ours as
they focused on analysing the effects of tupling on compres-
sion while we proposed a new filtering approach.

Other approaches that use clustering can be found in [23]
and [16]. The latter mainly focus on extracting the message
types that can be used for indexing, visualization or model
building. One of the caveats of this approach is that it
clusters events/message types that are believed to have been
produced by the same print statement and their occurrences
is non-overlapping. In contrast, our approach can cluster
overlapping and non-overlapping events together.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel, generic compression algorithm
that can be instantiated according to the structure of the log
files. Our method did not only compressed logs, it first ex-
tract message types in logs. The clusters formed and indexed
with ids represents message types. These message types are
useful in log analysis e.g., visualization, indexing. Our com-
pression method make use of event similarity (Levenshtein
distance), and event structure to determine a redundant event.
The efficiency of the compression technique is validated
through a proposed pattern detection algorithm. The results
from three different logs demonstrate that compression does
not only reduce log size which leads to low computational
cost of failure analysis, but also enhance better detection of
failure patterns. As future work, we intend to use the result
and perform failure prediction.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 23 / 53

ACKNOWLEDGEMENTS

The data which was analyzed in this paper was available
through the SUPReMM project funded by NSF grant ACI-
1023604, and has utilized and enhanced the NSF-funded
system Ranger (OCI-0622780). We thank the PTDF Nigeria
for partly funding this research.

REFERENCES

[1] J.-C. Laprie, “Dependable computing: Concepts, challenges,
directions,” in COMPSAC, 2004, p. 242.

[2] A. Gainaru, F. Cappello, J. Fullop, S. Trausan-Matu, and
W. Kramer, “Adaptive event prediction strategy with dynamic
time window for large-scale hpc systems,” in Managing
Large-scale Systems via the Analysis of System Logs and the
Application of Machine Learning Techniques, ser. SLAML
’11. New York, NY, USA: ACM, 2011, pp. 4:1–4:8.

[3] E. Chuah, S. hao Kuo, P. Hiew, W.-C. Tjhi, G. Lee, J. Ham-
mond, M. Michalewicz, T. Hung, and J. Browne, “Diagnosing
the root-causes of failures from cluster log files,” in 2010 In-
ternational Conference High Performance Computing (HiPC),
dec. 2010, pp. 1 –10.

[4] A. J. Oliner, A. Aiken, and J. Stearley, “Alert detection in
system logs,” in Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on. IEEE, 2008, pp. 959–964.

[5] Z. Zheng, Z. Lan, B. H. Park, and A. Geist, “System log
pre-processing to improve failure prediction,” in Dependable
Systems & Networks, 2009. DSN’09. IEEE/IFIP International
Conference on. IEEE, 2009, pp. 572–577.

[6] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. Mor-
eira, and M. Gupta, “Filtering failure logs for a bluegene/l
prototype,” in Dependable Systems and Networks, 2005. DSN
2005. Proceedings. International Conference on, June 2005,
pp. 476–485.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” in Dependable and Secure Computing, IEEE
Transactions on, vol. 1, no. 1, 2004, pp. 11–33.

[8] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions and reversals,” in Soviet physics doklady,
vol. 10, 1966, p. 707.

[9] J. Hansen and D. Siewiorek, “Models for time coalescence
in event logs,” in Fault-Tolerant Computing, 1992. FTCS-22.
Digest of Papers., Twenty-Second International Symposium
on, jul 1992, pp. 221 –227.

[10] R. Iyer, L. Young, and P. Iyer, “Automatic recognition of
intermittent failures: an experimental study of field data,” in
Computers, IEEE Transactions on, vol. 39, no. 4, apr 1990,
pp. 525 –537.

[11] E. Chuah, G. Lee, W.-C. Tjhi, S.-H. Kuo, T. Hung, J. Ham-
mond, T. Minyard, and J. C. Browne, “Establishing hypothesis
for recurrent system failures from cluster log files,” in Pro-
ceedings of the 2011 IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing, ser. DASC
’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 15–22.

[12] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and
J. Brwone, “Towards detecting patterns in failure logs of
large-scale distributed systems,” in Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2015 IEEE
International. IEEE, 2015.

[13] A. Gainaru, F. Cappello, and W. Kramer, “Taming of the
shrew: Modeling the normal and faulty behaviour of large-
scale hpc systems,” in Parallel Distributed Processing Sym-
posium (IPDPS), 2012 IEEE 26th International, May 2012,
pp. 1168–1179.

[14] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies
using traffic feature distributions,” in SIGCOMM Computer
Communication Review, vol. 35, no. 4. New York, NY, USA:
ACM, Aug. 2005, pp. 217–228.

[15] R. Vaarandi, “A data clustering algorithm for mining patterns
from event logs,” in IP Operations Management, 2003. (IPOM
2003). 3rd IEEE Workshop on, 2003, pp. 119–126.

[16] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A
lightweight algorithm for message type extraction in system
application logs,” in IEEE Trans. on Knowl. and Data Eng.,
vol. 24, no. 11. Piscataway, NJ, USA: IEEE Educational
Activities Department, Nov. 2012, pp. 1921–1936.

[17] M. Aharon, G. Barash, I. Cohen, and E. Mordechai, “One
graph is worth a thousand logs: Uncovering hidden structures
in massive system event logs,” in Proceedings of the European
Conference on Machine Learning and Knowledge Discovery
in Databases: Part I, ser. ECML PKDD ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 227–243.

[18] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console
logs,” in Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, ser. SOSP ’09. New York,
NY, USA: ACM, 2009, pp. 117–132.

[19] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “Log-
master: Mining event correlations in logs of large-scale cluster
systems,” in Reliable Distributed Systems (SRDS), 2012 IEEE
31st Symposium on, Oct 2012, pp. 71–80.

[20] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Min-
ing console logs for large-scale system problem detection,”
in Workshop on Tackling Computer Problems with Machine
Learning Techniques (SysML), San Diego, CA, 2008.

[21] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer,
“Event log mining tool for large scale hpc systems,” in
Proceedings of the 17th International Conference on Parallel
Processing - Volume Part I, ser. Euro-Par’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 52–64.

[22] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. Iyer, “Im-
proving log-based field failure data analysis of multi-node
computing systems,” in Dependable Systems Networks (DSN),
2011 IEEE/IFIP 41st International Conference on, June 2011,
pp. 97–108.

[23] S. Jain, I. Singh, A. Chandra, Z.-L. Zhang, and G. Bronevet-
sky, “Extracting the textual and temporal structure of super-
computing logs,” in High Performance Computing (HiPC),
2009 International Conference on, Dec 2009, pp. 254–263.

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 24 / 53

An Investigation of the Impact of Double Single Bit-Flip Errors
on Program Executions

Fatimah Adamu-Fika and Arshad Jhumka

Department of Computer Science
University of Warwick

Coventry, CV4 7AL UK
Email: {fatimah,arshad}@dcs.warwick.ac.uk

Abstract—This paper investigates a novel variant of the double
bit errors fault model and studies its impact on program
execution. Current works have addressed the problem of both
random bit upsets occurring in the same location (a given
memory word or register). In contrast, we randomly select
two locations and flip a single bit at each location, which we
call Double Single Bit-flip (DSB) variant. We then evaluate the
viability of this new variant in uncovering vulnerabilities in soft-
ware (SW). As a baseline for comparison, we inject traditional
single bit-flip (SBF) errors in registers. To better understand the
impact of the injected faults on SW, we classify the behaviour
of the program in five possible failure categories. Our results,
based on nearly a million fault-injection experiments, show that
(i) DSB causes a significantly higher proportion of SW failures
than SBF errors, (ii) a large proportion of those failures was
crash failure and (iii) under DSB, the proportion of silent data
corruptions (SDC) varies significantly between programs from
different application areas. The failure profile induced by DSB
is very different to other fault models, such as SBF.

Keywords–Multiple bit-flip errors; Fault injection; Failure
profile; Evaluation.

I. INTRODUCTION

With the ever-decreasing size of hardware and issues
such as temperature hotspots [1], computer systems are
being subjected to increasing rate of transient faults. These
transient faults originate from the transistor level. These
faults typically cause a corruption of the state of the pro-
gram, i.e., errors exist in the program [2]. To mimic these
errors, bit-flip errors are typically artificially injected into
the program state during a process called fault injection [3].
Traditionally, a single bit-flip error was injected in a single
run of the program. This involves selecting a variable at a
given location in the program and, when execution reaches
this location, a single bit upset (SBUs) is performed on the
selected variable. However, the increasing rate of transient
faults have limited the usefulness of SBUs in uncovering
vulnerabilities, necessitating multiple-bit upsets (MBUs) to
be injected in a single run.

Fault injection is a widely used technique for the val-
idation of dependable systems. Its importance is being in-
creasingly recognised, with its recommendation as a highly
valuable assessment method in the recently published ISO
26262 standard [4] for functional safety of road vehicles
supporting this increasing importance. It is expected that
single event upsets will likely create MBUs in forthcom-
ing hardware circuits [5][6], including those in embedded
systems. In anticipation of this problem, several work have

started investigated double-bit upsets (DBUs) fault model
[7][8]. However, these works focused on one variant of
DBUs: at a given location, two bits are randomly selected
and are subsequently inverted. There is a rareness of field
data on how these hardware errors will manifest. This is also
observed in [7][8]. In [9], it has been shown that multiple
memory errors may occur as: (i) several bit upsets within
a single location, (ii) one or more bit upsets across several
locations or (iii) several bits upsets all across the chip. In
this paper, we investigate a variant of DBUs: two locations
are selected and a SBU is injected at each location. We call
this new fault model the Double Single Bit-flip (DSB) fault
model.

The usefulness of a fault model is its ability to uncover
vulnerabilities in a system. Specifically, it is often the case
that the error sensitivity of a software system is assessed
with respect to the errors being injected according to the
proposed fault model. Error sensitivity is commonly defined
as the likelihood that a softare component will produce a
SDC, which is a type of problem that often goes undetected
by the system, as a result of a hardware error. It also
often the case that the failure profile of the system is
evaluated with respect to the fault model. Hence, we have
conducted an extensive fault injection campaign, with close
to one million fault injection experiments on five different
software modules, each with different software structures, to
validate the DSB fault model. Our contributions are: (i) we
investigate the impact of DSB on program execution, (ii) we
conduct a large-scale fault injection experiments, of close
to a million executions, to assess the usefulness of DSB,
and (iii) our results show that DSB induces very different
failure profiles in software than existing fault models, such
as SBF. We conclude that DSB is indeed useful in uncovering
vulnerabilities.

The remainder of the paper is structured as follows: In
Section II, we present the system and fault models we assume
in the rest of the paper. We detail the experimental setup
used in Section III. In Section IV, we present the results of
our experiments. We present an overview of related work in
Section V. We conclude the paper in Section VI.

II. MODELS

In this section, we present the system model and the fault
model we assume in the rest of the paper.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 25 / 53

A. System Model
In this paper, we consider modular software, i.e., software

that consists of a number of discrete software functions,
called modules, that interact to deliver the requisite func-
tionality. We consider a module as a generalised white-box,
having multiple inputs and outputs and whose codebase is
available. We do not assume knowledge of the implemen-
tation details. The codebase is needed only to enable the
software to be instrumented to enable errors to be injected.

Modules communicate with each other in some specified
way using different forms of signalling, e.g., shared memory,
parameter passing etc. This is usually down to the nature
of the software and to the chosen communication model.
A software module performs computations using the inputs
received on its input channels to generate the outputs, which
are then placed on the requisite output channels.

B. Fault Model
Our fault model is transient hardware faults that ulti-

mately affect the software modules. These faults typically
originate at the transistor level due to issues such as hardware
size and temperature hotspots. These faults affect the state of
the program by changing the content of memory and registers
(i.e., different locations), causing errors [2] to exist in the
software. These errors in software are typically mimicked by
injecting bit-flip errors in main memory words and registers.
In this paper, we focus only on errors in registers and the
total number of errors that can occur in any run is two, i.e,,
we randomly select two registers and flip one bit in each.
We specifically corrupt the contents of registers immediately
before they are written into main memory.

III. FAULT-INJECTION EXPERIMENTS

In this section, we empirically study how DSB and DBF
affect program executions. In section III-A, we describe
the target programs, the modules that are instrumented in
each target program and the input sets that are processed
by the programs during injection. We then describe how
the modules are instrumented and how the fault injection
experiments are done in III-B.

A. Target Programs
We select five different modules from two different

software systems for instrumentation. The first system is
an image recognition package, SUSAN (Smallest Univalue
Segment Assimilating Nucleus) [10], developed for noise
filtering and for recognising corners and edges in Magnetic
Resonance Image (MRI) of the brain. The second software
system is the Mathwork’s implementation of a flight control
system for the longitudinal motion of an aircraft [11]. We
target five different modules within these systems, three from
SUSAN and two from the flight control systems.

The three different modules we use in SUSAN are for
corners detection, edges detection and noise filtering, which
we refer to as corners, edges and smoothing, respectively, in
the rest of the paper. We select two modules within the flight
control system, (i) the module for updating derivatives for the
root system and (ii) the module for updating model step. We
refer to these modules as derivatives and step, respectively.
Details are provided in Table I for description of input set.

TABLE I. SIZES OF TARGET MODULES AND DESCRIPTION OF THEIR
INPUT SET.

Module Size
(bytes) Input description

Corners 7975 PGM files:
A simple four-sided geometric shape (7292 bytes)
Multiple geometric shapes of various shapes and sizes (65551 bytes)
An image (111666 bytes)

Edges 6053
Smoothing 3488

Derivatives 2915 Pilot Frequency in rads/secs:
Variable of type unsigned long long
between 0.030000000000000000 to 0.1199999999999999Step 10249

B. Experimental Setup

In this section, we provide details about the experimental
setup and the fault injection experiments that we conducted.

1) System platform: The experiments were executed on a
3 GHz Intel Core i7 machine, with 16 GB, 1600 MHz DDR3
and 500 GB solid state drive. The machine was running
Darwin OS version 14.0.0.

2) Target system: For our faullt injection experiments,
we used a variant of LLVM fault injection tool (LLFI)
[12], which we refer to as Fault-Rate LLFI (or FR-LLFI)
[13]. LLFI works at the LLVM [14] compiler’s intermediate
representation (IR) level. FR-LLFI allows the injection of
faults using a fixed probability, which is called fault rate,
rather than a single fault per execution. We extended FR-
LLFI to allow for multiple bit flips in specific points, we
also added the functionality of allowing the selection of what
bit(s) to flip at specific points.

To perform a fault injection, we first compiled the source
files into a single IR file. The compiled IR file together with a
fault injection configuration script (written in PyYaml format
[15]) are then fed to the extended FR-LLFI instrumentor
(instrumentor) for instrumentation. The instrumentor outputs
executables (IR and C/C++ object files) to be passed to
the extended FR-LLFI Profiler (profiler) for profiling and
the extended FR-LLFI fault-injector (fault-injector) for fault
injection.

Extended	
 FR-­‐LLFI	

profiler	

Source	

files	

LLVM	
 Compiler	

Extended	
 FR-­‐LLFI	

instrumentor	

IR	
 File	
 PyYaml	
 	
 FI	

Configura@on	
 file	

FI	
 executable	

files	

FI	
 setup	
 text	
 files	
 Golden	
 Run	

output	

Extended	
 FR-­‐LLFI	
 	

fault-­‐injector	

Profiling	
 executable	

files	

FI	
 experiments	

program	
 output	

FI	
 experiments	
 stat	

&	
 log	
 file	

Figure 1. Extended FR-LLFI fault-injection (FI) workflow.

We then passed the executables generated for profiling
into the profiler. The profiler then generates the setup files
(text files) to be used by the fault-injector for the fault
injection phase. In addition, the profiler executes a fault-

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 26 / 53

free execution of program. This fault-free execution is called
golden run.

Finally, we fed the setup files generated by the profiler,
the fault injection executables generated by the instrumentor
and the fault-injection configuration script into the fault-
injector.

The fault-injector selects an instance of the places of
interest specified in the fault injection IR file generated by
the instrumentor and then inject fault into it at runtime
(execution of the fault injection C/C++ object file generated
by the instrumentor). The output of the fault-injector is the
fault injection experiments, consisting of program output, log
and stat files. Figure 1 depicts the workflow of extended FR-
LLFI.

TABLE II. VARIABLES SELECTED FOR FAULT INJECTIONS IN DIFFERENT
BLOCK LOCATIONS.

Target
Program Module Variable Size

(bits)
Location
(Block) Alias

SUSAN

Corners

x size 32 early SC A
y size 32 early SC B
n 32 central SC C
c 8 central SC D
xx 32 late SC E
yy 32 late SC F

Edges

x size 32 early SE A
y size 32 early SE B
n 32 central SE C
m 32 central SE D
c 8 central SE E
w 32 late SE F
x 32 late SE G
y 32 late SE H

Smoothing

x size 32 early SS A
y size 32 early SS B
n max 32 early SS C
x 32 central SS D
center 32 central SS E
area 32 late SS F
tmp 32 late SS G

Flight
Longitudinal
Controller

Derivatives

Integrate CSTATE 64 early FD A
ActuatorModel STATE 64 early FD B
Integrategdot CSTATE 64 early FD C
Wgustmodel CSTATE 64 central FD D
Qgustmodel CSTATE 64 central FD E
AlphaSendorLowPassFilter CSTATE 64 central FD F
StickPrefilter 64 late FD G
PitchRateLeadFilter 64 late FD H

Step

Integrate 64 early FS A
ActuatorModel 64 early FS B
Integrateqdot 64 early FS C
Wgustmodel 64 central FS D
Qgustmodel 64 central FS E
PitchRateLeadFilter 64 central FS F
Gain3 h 64 late FS G
Sum2 g 64 late FS H
Sum1 m 64 late FS I

3) Experimental Procedure: To achieve the goals of the
study, we run a number of fault injection experiments into a
number of different variables (or combinations of variables)
in five different modules. We run each target module on three
input sets, one from each of three input categories, namely
small, medium and large. Before running these experiments,
we partition the source code of the program into three parts,
namely (i) early, (ii) central and (iii) late. For each part,
we choose two or three variables at random, i.e., variables
are partitioned and selected according to their placement in
the source code of the program. These variables are shown
in Table II, with the part of the program source code they
belong to. We define a target location (or location for short)
as a given register used by the program. When a single bit-
flip error is injected, a single location is selected. On the
other hand, two locations are selected for DSB errors. A
fault injection experiment is the injection of a an error under
the assumed fault model in a given target location. A fault
injection campaign for a fault model is a set of experiments
for a given input set.

Once a location (or pairs of locations) have been selected,
we then injected bit-flip errors exhaustively in the locations
to cover all possible combination. For each selected location,
fault is injected only once during the execution of the
program. For the SBU fault model, we ran n experiment
in each target location, n being the length of the register.
We injected a total 5136 SBUs in the various modules. For
the DSB model, for each location pair and a given input,
we ran n × m experiments, m,n being the length of the
target locations. Overall, we injected a total of 955392 DSB
errors in the software modules. More details can be found
in Table II for the size of target locations.

To better understand the profile of the program, we
classify the outcome of each fault injection experiment as
(i) a Safe Run, if the program terminates normally and with
an output identical to that of the golden run’s, (ii) as a No
Output failure, if the program terminates normally but fails to
produce an output, (iii) as a Silent Data Corruption (SDC), if
the program terminates normally but with an output different
to that of the golden run’s, (iv) as a Program Hang, if the
program fails to terminate within a predefined time (we set
this to 15 times larger than the execution time of the golden
run), and (iv) as a Crash failure, if the program is terminated
due to an exception by the either the program or the operating
system.

IV. EXPERIMENTAL RESULTS

We now analyse the results of the various FI experiments,
as presented in Tables III – IV and Figures 2 – 4.

A. Impact of DSB vs Impact of Single bit-Flip Error
The first goal of the paper was to evaluate the impact

of DSB errors on programs compared to that of single
bit-flip (SBF) errors in the same variables. The results for
each module are summarised in Table III, while an overall
summary is presented in Figure 2.

TABLE III. AVERAGE OUTCOME DISTRIBUTIONS FOR DIFFERENT
MODULES.

Module Fault
Model

Outcome

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners SBF 29.4% 18.3% 8.5% 0.0% 43.8%
DSB 12.5% 13.8% 15.2% 0.1% 58.4%

Edges SBF 41.5% 0.0% 3.7% 0.0% 54.7%
DSB 22.0% 0.0% 3.6% 0.1% 74.3%

Smoothing SBF 14.3% 0.6% 40.0% 0.0% 45.1%
DSB 6.7% 1.2% 16.4% 10.8% 64.8%

Derivatives SBF 0.0% 7.1% 0.0% 0.0% 92.9%
DSB 0.0% 0.5% 0.0% 0.0% 99.5%

Step SBF 0.0% 25.6% 0.0% 0.0% 74.4%
DSB 0.0% 6.7% 0.0% 0.0% 93.2%

1) Overall observations: The first observation to be made
is that there is marked difference between the failure profile
induced by DSB errors compared to that of single-bit flip
errors. Further, the proportion of safe run (i.e., no impact)
under DSB errors is halved when compared to the proportion
of safe runs under SBF errors (see Figure 2). On the other
hand, the proportion of crash failure is considerably higher
(≈ 16%) under DSB errors than under SBF errors. Also,
we observe a reduction in the occurrence of SDCs under
DSB errors than under SBF errors. We conjecture that this
result is due to the fact DSB errors induce more severe crash

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 27 / 53

failures, which cause the programs to prematurely exit, and
hence such executions cannot display SDCs.

As a matter of contrast, previous work on double bit-flip
errors, where two-bit errors are injected into a given location,
concluded that single and double bit-flip errors induce very
similar proportions of SDCs. We conclude that DSB errors
induce a failure profile different to that induced by the double
bit-flip errors. As such, we conclude that DSB errors uncover
new vulnerabilities in the system and, hence, need to be
considered when validating dependable software systems.

2) Module-level observations: From Table III, we ob-
serve that the failure profile is dependent on the given target
program. For example, we notice the proportion of safe runs
under SBF errors in the SUSAN modules is twice as much as
that observed under DSB errors. Further, we observe that all
faulty runs, irrespective of fault model, in the modules from
the control system end in either no output or crash failure.
Additionally, we also notice that only the SUSAN modules
suffer from SDCs and program hangs under both SBF and
DSB errors.

We also observe that the modules from the control system
experience mostly crash failures in the presence of DSB
errors. Further, we also notice for the control system modules
the proportion of no output failure is significantly higher
for SBF errors. We also observe a higher proportion of
crash failure for DSB errors than that for SBF errors in the
SUSAN modules. Given the nature of control systems, which
are at the heart of several safety-critical embedded systems,
the fact that a high proportion of the DSB errors leads to
failures implies that the control systems will not provide
reliable service. SDCs have the property that they have not
been detected by the system and, thus, provide a potential
vulnerability to the system. Also, we observe that DSB errors
induce different failure profiles in different modules.

B. Impact of injection location of failure profile
Figures 3 and 4 show the results of the impact injection

location has on the failure profile.
1) SBF errors: From Figure 3, the highest proportion,

100%, of safe runs observed in the presence of SBFs is in
location SE D (Figure 3b) and the lowest proportion, 0.0%,
is observed in all target locations in derivatives (Figure 3d)
and step (Figure 3e).

As can be observed from Figure 3, the two modules
from the control software suffer a high proportion of crash
failures, irrespective of injection location. The other failure
type suffered by these two modules are the “no output
failure” type. We also observe that, in general, the earlier
the injection is performed, the higher the likelihood of a
crash failure to happen, i.e., when SBF error is injected in
the early part of the modules, the crash failure is more likely
to result. On the other hand, crash failure is very likely to
happen in the modules of the control software, irrespective
of injection location.

2) DSB errors: To understand the impact of injection
locations under the DSB errors, we focus on Figure 4 and
Table IV

From Figure 4, we observe that failure profiles of the
different modules differ from one another. This shows that
DSB errors cause these modules to fail differently, thereby

17.0%	

10.3%	

10.5%	

0.0%	

62.2%	

Safe	
 Run	

No	
 Output	
 Failure	

SDC	

Program	
 Hang	

Crash	
 Failure	

a. Single bit-flip

8.3%	

4.4%	

7.1%	

2.2%	

78.1%	

Safe	
 Run	

No	
 Output	
 Failure	

SDC	

Program	
 Hang	

Crash	
 Failure	

b. Double single bit-flip

Figure 2. Average outcome distributions over all modules.

inducing different failure profiles in these modules and also
that injection locations do affect the failure profiles of these
modules.

For the two control software modules, any combination
of injection locations mostly lead to a crash failure, where
the step module suffer a small proportion of the “no output”
failure. Focusing on the SUSAN modules, it can be observed
that, in general, the earlier an injection is done, the higher the
likelihood the failure is a crash failure. On the other hand, it
can also be observed that the later an injection is done, the
likelihood of a safe run is non-negligible. We now perform a
step-by-step comparison between different pairs of injection
locations and their respective impact of the software module.

3) DSBs in early blocks vs DSBs in central blocks: We
first compare the difference in the impact of DSB errors
in early blocks against DSB errors in central blocks, which
are shown in Table IV(a) and Table IV(b), respectively. For
example, the highest safe run rate observed in early blocks
is 0%, whereas the highest safe run rate observed for central
blocks is 49.0% (smoothing). The highest proportion of DSB
errors in early blocks resulting in crash failure is 99.4%
(derivatives) and the lowest is 55.4% (corners), while the
highest proportion of SBFs that resulted in crash failure is
99.5% (derivatives) and the lowest, 33.6% (corners).

Comparing the results for the different modules, we
observe that there is a higher proportion of crash failure,
SDCs and program hang when DSB errors are injected in
early blocks while, when DSB errors are injected in central
block, this results in higher rate of safe run and no output
failure.

4) DSBs in early blocks vs DSBs in late blocks: Here,
we compare the results of DSB errors in early block with
DSB errors in late blocks, as captured in Table IV(a) and

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 28 / 53

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SC_A	
 SC_B	
 SC_C	
 SC_D	
 SC_E	
 SC_F	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

a. Corners

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SS_A	
 SS_B	
 SS_C	
 SS_D	
 SS_E	
 SS_F	
 SS_G	
 SS_H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

b. Edges

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SS_A	
 SS_B	
 SS_C	
 SS_D	
 SS_E	
 SS_F	
 SS_G	
 SS_H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

c. Smoothing

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FD_A	
 FD_B	
 FD_C	
 FD_D	
 FD_E	
 FD_F	
 FD_G	
 FD_H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

d. Derivatives

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FS_A	
 FS_B	
 FS_C	
 FS_D	
 FS_E	
 FS_F	
 FS_G	
 FS_H	
 FS_I	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

e. Step

Figure 3. Average outcome distributions for SBF experiments for different
modules.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SC
_A
/SC

_B
	

SC
_A
/SC

_C
	

SC
_A
/SC

_D
	

SC
_A
/SC

_E
	

SC
_A
/SC

_F
	

SC
_B
/SC

_C
	

SC
_B
/SC

_D
	

SC
_B
/SC

_E
	

SC
_B
/SC

_F
	

SC
_C
/SC

_D
	

SC
_C
/SC

_E
	

SC
_C
/SC

_F
	

SC
_D
/SC

_E
	

SC
_D
/SC

_F
	

SC
_E
/SC

_F
	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

a. Corners

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SE
_A

/S
E_
B	

SE
_A

/S
E_
C	

SE
_A

/S
E_
D	

SE
_A

/S
E_
E	

SE
_A

/S
E_
F	

SE
_A

/S
E_
G	

SE
_A

/S
E_
H	

SE
_B

/S
E_
C	

SE
_B

/S
E_
D	

SE
_B

/S
E_
E	

SE
_B

/S
E_
F	

SE
_B

/S
E_
G	

SE
_B

/S
E_
H	

SE
_C

/S
E_
D	

SE
_C

/S
E_
E	

SE
_C

/S
E_
F	

SE
_C

/S
E_
G	

SE
_C

/S
E_
H	

SE
_D

/S
E_
E	

SE
_D

/S
E_
F	

SE
_D

/S
E_
G	

SE
_D

/S
E_
H	

SE
_E
/S
E_
F	

SE
_E
/S
E_
G	

SE
_E
/S
E_
H	

SE
_F
/S
E_
G	

SE
_F
/S
E_
H	

SE
_G

/S
E_
H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

b. Edges

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

SS_
A/
SS_

B	

SS_
A/
SS_

C	

SS_
A/
SS_

D	

SS_
A/
SS_

E	

SS_
A/
SS_

F	

SS_
A/
SS_

G	

SS_
B/S

S_
C	

SS_
B/S

S_
D	

SS_
B/S

S_
E	

SS_
B/S

S_
F	

SS_
B/S

S_
G	

SS_
C/S

S_
D	

SS_
C/S

S_
E	

SS_
C/S

S_
F	

SS_
C/S

S_
G	

SS_
D/
SS_

E	

SS_
D/
SS_

F	

SS_
D/
SS_

G	

SS_
E/S
S_
F	

SS_
E/S
S_
G	

SS_
F/S
S_
G	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

c. Smoothing

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FD
_A

/F
D_

B	

FD

_A
/F
D_

C	

FD

_A
/F
D_

D	

FD

_A
/F
D_

E	

FD

_A
/F
D_

F	

FD

_A
/F
D_

G	

FD

_A
/F
D_

H	

FD

_B
/F
D_

C	

FD

_B
/F
D_

D	

FD

_B
/F
D_

E	

FD

_B
/F
D_

F	

FD

_B
/F
D_

G	

FD

_B
/F
D_

H	

FD

_C
/F
D_

D	

FD

_C
/F
D_

E	

FD

_C
/F
D_

F	

FD

_C
/F
D_

G	

FD

_C
/F
D_

H	

FD

_D
/F
D_

E	

FD

_D
/F
D_

F	

FD

_D
/F
D_

G	

FD

_D
/F
D_

H	

FD

_E
/F
D_

F	

FD

_E
/F
D_

G	

FD

_E
/F
D_

H	

FD

_F
/F
D_

G	

FD

_F
/F
D_

H	

FD

_G
/F
D_

H	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

d. Derivatives

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

FS
_A

/F
S_
B	

FS
_A

/F
S_
C	

FS
_A

/F
S_
D	

FS
_A

/F
S_
E	

FS
_A

/F
S_
F	

FS
_A

/F
S_
G	

FS
_A

/F
S_
H	

FS
_A

/F
S_
I	

FS
_B

/F
S_
C	

FS
_B

/F
S_
D	

FS
_B

/F
S_
E	

FS
_B

/F
S_
F	

FS
_B

/F
S_
G	

FS
_B

/F
S_
H	

FS
_B

/F
S_
I	

FS
_C

/F
S_
D	

FS
_C

/F
S_
E	

FS
_C

/F
S_
F	

FS
_C

/F
S_
G	

FS
_C

/F
S_
H	

FS
_C

/F
S_
I	

FS
_D

/F
S_
E	

FS
_D

/F
S_
F	

FS
_D

/F
S_
G	

FS
_D

/F
S_
H	

FS
_D

/F
S_
I	

FS
_E
/F
S_
F	

FS
_E
/F
S_
G	

FS
_E
/F
S_
H	

FS
_E
/F
S_
I	

FS
_F
/F
S_
G	

FS
_F
/F
S_
H	

FS
_F
/F
S_
I	

FS
_G

/F
S_
H	

FS
_G

/F
S_
I	

FS
_H

/F
S_
I	

Safe	
 Run	
 No	
 Output	
 Failure	
 SDC	
 Program	
 Hang	
 Crash	
 Failure	

e. Step

Figure 4. Average outcome distributions for DSB experiments for different
modules.

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 29 / 53

TABLE IV. AVERAGE OUTCOME DISTRIBUTIONS FOR DSB IN
DIFFERENT BLOCKS COMBINATIONS FOR DIFFERENT MODULES.

(A) EARLY BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 0.0% 14.8% 29.3% 0.5% 55.4%
Edges 0.0% 0.0% 1.8% 1.5% 96.6%
Smoothing 0.0% 1.4% 27.1% 4.0% 67.5%
Derivatives 0.0% 0.6% 0.0% 0.0% 99.4%
Step 0.0% 8.3% 0.0% 0.1% 91.7%

(B) CENTRAL BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 40.9% 21.7% 3.8% 0.0% 33.6%
Edges 47.8% 0.0% 0.0% 0.0% 52.2%
Smoothing 49.0% 0.0% 16.9% 0.0% 34.1%
Derivatives 0.0% 0.5% 0.0% 0.0% 99.5%
Step 0.0% 8.3% 0.0% 0.0% 91.6%

(C) LATE BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 16.1% 14.7% 13.2% 0.0% 56.0%
Edges 35.5% 0.0% 0.0% 0.0% 64.5%
Smoothing 15.7% 0.0% 0.1% 49.7% 34.6%
Derivatives 0.0% 0.4% 0.0% 0.0% 99.6%
Step 0.0% 3.6% 0.0% 0.0% 96.3%

(D) EARLY & CENTRAL BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 4.3% 10.0% 18.4% 0.0% 67.3%
Edges 1.5% 0.0% 7.5% 0.3% 90.7%
Smoothing 0.8% 1.4% 19.6% 1.4% 76.7%
Derivatives 0.0% 0.5% 0.0% 0.0% 99.5%
Step 0.0% 8.3% 0.0% 0.0% 91.7%

(E) EARLY & LATE BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 3.8% 9.9% 18.1% 0.0% 68.2%
Edges 1.4% 0.0% 7.8% 0.0% 90.8%
Smoothing 0.7% 1.4% 18.4% 16.9% 62.6%
Derivatives 0.0% 0.4% 0.0% 0.0% 99.6%
Step 0.0% 6.0% 0.0% 0.0% 94.0%

(F) CENTRAL & LATE BLOCKS

Safe Run No Output
Failure SDC Program

Hang
Crash
Failure

Corners 35.5% 22.2% 3.8% 0.0% 38.5%
Edges 44.3% 0.0% 0.0% 0.0% 55.7%
Smoothing 16.9% 0.0% 4.9% 14.0% 64.3%
Derivatives 0.0% 0.4% 0.0% 0.0% 99.6%
Step 0.0% 5.9% 0.0% 0.0% 94.1%

Table IV(c), respectively. For example, the highest ”no
output” failure rate observed in the presence of DSB errors
in early blocks in 14.8% (corners) whereas the highest “no
output” failure rate observed in the presence of DSBs in late
blocks is 14.7% (corners). The highest proportion of DSBs in
early blocks resulting in data corruption is 29.3% (corners).

Comparing the results of the different modules, we ob-
serve that there is a higher proportion of crash failure, data
corruption and no output failure in the presence of DSBs in
early blocks, while the presence of DSBs in late blocks result
in higher rate of safe runs. Also, the failure profile is more

varied (different types of failures) when DSBs are injected
in an early block, while the profile is more restricted when
DSBs are injected late. Thus, we can conclude that, by not
injecting in an early block, there is a reduced likelihood of
uncovering vulnerabilities.

5) DSBs in early blocks vs DSBs in block combinations:
Here, we compare the results of DSBs in early blocks against
DSBs in different combinations of blocks, which we present
in Table IV(a), Table IV(d), Table IV(e) and Table IV(f),
respectively. For example, the lowest crash failure rate seen
for DSBs injected in early blocks is 55.4% while the lowest
crash failure rate observed for DSBs injected in both early
& central block is 67.3%. The highest data corruption rate
observed for DSBs in early blocks is 29.3%, while that
seen for combination of DSB in early & late blocks is
18.4%. The highest proportion of safe run observed in the
presence of DSBs in early block is 0.0%, while the highest
observed for DSBs injected in both central & early blocks
is 44.3%. Overall, we observed that the proportion of crash
failures has increased when DSBs are injected in an early
and central block compared when DSBs are injected in an
early block only. However, this comes as a counterbalance to
a corresponding decrease in SDCs when DSBs are injected
in an early and central block.

We also observed that injecting DSBs in an early and
central block results in very similar failure profile as when
injecting DSBs in an early and late block. On the other hand,
we observed that when DSBs are injected in a central and
late block, the profile changes considerably. The proportion
of safe runs increases while the proportion of crash failures
decreases (except for the control software). Thus, with these
results, we can conclude that the locations at which DSBs
are injected has a strong impact on the failure profile of the
system. We have shown that an early injection of a DSB
error often leads to a failure.

C. Limitations
One limitation of the results presented here is the range of

applications we have used to evaluate the DSB fault model.
Though initial results show that the fault model can help
uncover vulnerabilities that are otherwise not detected by
single bit-flip errors, the fault model needs to be validated
against several other applications.

A second limitation in the results presented here is
that, to the best of our knowledge, there is little to no
field data that shows how multiple bit upsets will manifest
themselves. There is however increasing evidence that the
rate of hardware errors is increasing. We only consider DSB
errors here and, in our future work, we are considering
multiple single bit-flip (MSB) errors. The relevance of the
results presented here is only as far as the field data matches
the DSB model introduced.

V. RELATED WORK

Fault injection is a widely used technique in dependabil-
ity evaluation [7][12][16][17]. Hardware transient faults are
injected into a target system by flipping bits in CPU registers
or memory [16][17]. Recent research have shown that multi-
ple fault injections can be very effective in detecting software
vulnerabilities [7][8]. Other works have investigated impact
of device-level fault injections that manifest as single bit-
upsets in registers and main memory [18][19][20].

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 30 / 53

Recently, the effects of multiple bit-upsets on SRAMs
and DRAMs have been studied. In [21], the authors inves-
tigated DRAM disturbance errors that manifests as multiple
bit-upsets in memory. On the other hand, the authors of
[22] investigated the geometric effects of multiple bit-upsets
injected into DRAMs. The main difference between our
study and these studies is the level of abstraction we focused
on. The fault model under investigation in [22] is multiple
bit-upsets in multiple cells within the same memory location
while that under investigation in [21] is multiple bit-upsets
in different memory locations. In spite of the fundamental
differences between our work and theirs, they also showed
higher rate of safe runs under the single bit-flip model. In
addition, under the double bit-flip model, higher crash failure
rate is observed. However, they reported that the proportion
of SDCs is higher under the double bit-flip model, this
is contrary to what our study showed. We observed lower
proportion of SDCs under the variant of double bit-flip model
studied here than when compared with the single bit-flip
model.

Similar to our study, the authors of [8] mimicked bit-
flips in registers of a real hardware platform. In addition,
they investigated the impact of SBF and double bit-flips (two
random bit-flips in same location) on program execution.
Our study mainly differs from theirs in the assumed DBU
fault model. The DBU fault model in their work selects
a single location and flips two bits in that location, while
in ours the model chooses two locations and flips one bit
in each location. However, in [8], they also injected faults
in memory words and investigated the error sensitivity for
different target locations. Both works reported a higher level
of safe runs for SBUs and a higher proportion of crash
failures for DBUs.

VI. CONCLUSION AND FUTURE WORK

We have investigated the impact of a novel variant of the
double bit upsets, namely the double single bit-flip model,
on software execution. We have evaluated it on five different
modules from two different applications. Our results show
that (i) the proportion of crash failures induced by DSBs
is significantly higher than single bit-flip errors, (ii) the
proportion of SDCs is lower with DSBs than with single
bit-flips and (iii) DSBs induce different failure profiles in
different applications.

As future work, we will investigate the reason behind
the observed differences between this model and SBF. We
will also extend the DSB model to include injection in
memory words. Further, we will compare the failure profile
of the DSB model with existing DBU models. We will
also investigate the effectiveness of current software-based
fault tolerance techniques, such as detectors, against DSBs
and in turn determine the type of fault tolerance needed to
handle the different types of failures. We will also generalise
the work focusing on multiple single bit-flip (MSB) errors
(instead of two).

REFERENCES

[1] C. Yang and A. Orailoglu, “Processor reliability enhancement through
compiler-directed register file peak temperature reductionprocessor
reliability enhancement through compiler-directed register file peak
temperature reduction,” in Proceedings Dependable Systems and
Networks, 2009, pp. 468–477.

[2] J.-C. Laprie, Dependability: Basic Concepts and Terminology.
Springer-Verlag, December 1992.

[3] M. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” IEEE Computer, vol. 30, no. 4, April 1997, pp. 75–82.

[4] “Iso 26262-1:2011, road vehicles – functional safety – part 1:
Vocabulary. iso, geneva, switzerland,” 2011.

[5] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Rucker-
bauer, “Investigation of increased multi-bit failure rate due to neutron
induced seu in advanced embedded srams,” in IEEE Symposium on
VLSI Circuits, 2007, pp. 80–81.

[6] R. Reed and et al., “Heavy ion and proton-induced single event
multiple upset,” IEEE Transactions on Nuclear Science, vol. 44, no. 6,
1997, pp. 2224–2229.

[7] S. Winter, M. Tretter, B. Sattler, and N. Suri, “simfi: From single to
simultaneous software fault injections,” in Proceedings of Dependable
Systems and Networks (DSN), 2013.

[8] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A
study of the impact of single bit-flip and double bit-flip errors on
program execution,” in Computer Safety, Reliability, and Security,
ser. Lecture Notes in Computer Science, F. Bitsch, J. Guiochet,
and M. Kaniche, Eds. Springer Berlin Heidelberg, 2013, vol.
8153, pp. 265–276. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-40793-2 24

[9] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,”
in Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIXATC’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 6–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855840.1855846

[10] S. Smith, “Susan version 2l,” http://users.fmrib.ox.ac.uk/∼steve/
susan/susan2l.c, 1999, [Online; accessed 19-November-2014].

[11] MATLAB, version 8.3 (R2014a). Natick, Massachusetts: The
MathWorks Inc., 2014. [Online]. Available: http://www.mathworks.
co.uk/products/matlab/

[12] A. Thomas and K. Pattabiraman, “Llfi: An intermediate code level
fault injector for soft computing applications,” in Proceedings of IEEE
Workshop on Silicon Errors in Logic, System Effects (SELSE), 2013.

[13] S. Smith, “Fault-rate llfi,” https://github.com/ShadenSmith/LLFI,
2014, [Online; accessed 19-November-2014].

[14] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=977395.977673

[15] PyYaml, “Pyyaml,” http://pyyaml.org/wiki/PyYAMLDocumentation,
2011, [Online; accessed 19-November-2014].

[16] M. Hiller, A. Jhumka, and N. Suri, “An approach for analysing
the propagation of data errors in software,” in Proceedings of the
31st IEEE/IFIP International Conference on Dependable Systems and
Networks, July 2001, pp. 161–172.

[17] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari:
A flexible software-based fault and error injection system,” IEEE
Transactions on Computers, vol. 44, no. 2, February 1995, pp. 248–
260.

[18] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson, “A study
of the impact of bit-flip errors on programs compiled with different
optimization levels,” in Dependable Computing Conference (EDCC),
2014 Tenth European, May 2014, pp. 146–157.

[19] D. Di Leo, F. Ayatolahi, B. Sangchoolie, J. Karlsson, and
R. Johansson, “On the impact of hardware faults — an investigation
of the relationship between workload inputs and failure mode
distributions,” in Proceedings of the 31st International Conference
on Computer Safety, Reliability, and Security, ser. SAFECOMP’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 198–209. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33678-2 17

[20] M. Demertzi, M. Annavaram, and M. Hall, “Analyzing the effects
of compiler optimizations on application reliability,” in Workload
Characterization (IISWC), 2011 IEEE International Symposium on,
Nov 2011, pp. 184–193.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 31 / 53

[21] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” SIGARCH
Comput. Archit. News, vol. 42, no. 3, Jun. 2014, pp. 361–372.
[Online]. Available: http://doi.acm.org/10.1145/2678373.2665726

[22] S. Satoh, Y. Tosaka, and S. Wender, “Geometric effect of multiple-
bit soft errors induced by cosmic ray neutrons on dram’s,” Electron
Device Letters, IEEE, vol. 21, no. 6, June 2000, pp. 310–312.

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 32 / 53

Efficient Simulation of Multiple Faults for Reliability Analysis

of Analogue Circuits

Eduard Weber, Klaus Echtle

University of Duisburg-Essen

Dependability of Computing Systems

Essen, Germany

e-mail: (echtle, weber)@dc.uni-due.de

Abstract—Software-based fault simulation can support all

abstraction levels, is flexible and allows reliability assessment at

different stages in the design process. Fault diagnosis and

reliability analysis are increasingly important in circuit design

and determine the product’s time-to-market. In this paper, we

provide a new efficient method and systematic scheme for

reducing the time for simulation for multiple simultaneous

faults and/or multiple failure modes per element in an analogue

circuit. By arranging similar multiple faults in groups, some

failure classes can be interpolated with an adequate precision

rather than being evaluated by time-consuming simulation. The

technique can be used to perform efficient multiple fault

diagnosis based on multiple fault injection. Finally, the

implemented procedure is validated experimentally.

Keywords—Fault simulation; fault modeling; multiple fault

injection; fault diagnosis; reliability prediction

I. INTRODUCTION

Fault diagnosis of circuits is a well-developed research

field with a long tradition. The first scientific publications are

from early 1960s. Circuit simulation is nowadays an accepted

standard in the development of electronic circuits. Small to

complex analogue, digital and mixed signal circuits can be

tested and verified with appropriate simulation software. A

lot of progress has been made in the development of software

tools for the design and verification of analogue and/or

mixed-signal circuits, both in the open-source and in the

commercial sector. Already two decades ago the method of

analogue fault modelling has been suggested to enable both

fault diagnosis and reliability evaluation. Different appro-

aches have been developed for fault simulation of analogue

and mixed-signal circuits. Previous work on analogue fault

modelling focuses on parametric defects (soft faults) and

catastrophic defects (hard faults). Parametric faults are

typically simulated with parameter modifications, while open

and short defects are dealt with via injecting a high or low

resistance on transistor level, respectively. Fault simulation is

generally done by injecting a fault on transistor level and

analysing the circuit’s behaviour by applying single DC,

transient or AC simulation for linear or nonlinear circuit

models. Also software tools for automatic fault injection and

efficient test generation have been developed. However,

mostly single faults have been considered in the past. Test

cases for fault injection have been generated often by hand

from an understanding of the design and fault expectations of

major circuit elements. Most of the fault simulators for

analogue circuits presented in the literature cover only

parameter or catastrophic faults. Some tools have attempted

to automate test generation and the fault simulation process

for analogue circuits. Most existing fault simulators use the

Simulation Program with Integrated Circuits Emphasis

(SPICE) and modify SPICE net lists to represent faults

[1] - [7]. The fault simulation software [8] used for the work

presented in this paper defines circuit faults in Visual Basic

(VB-Script) language and allows flexible and very accurate

fault modelling. The main goal of this paper is to speed up

the simulation for multiple faults.

II. DIAGNOSIS OF ANALOGUE CIRCUITS

Test and fault diagnosis of analogue circuits are necessary

despite the ongoing digitalization. Analogue circuits are

always required to form the interface to the physical

environment. Analogue signals do not consist of just "low"

or "high" values like in the digital field. In principle, infinite

numbers of signal values are conceivable. The time and

frequency characteristics of analogue signals bring another

dimension, and are an additional issue within circuit assess-

ment. The propagation of faults is more difficult than in the

digital field. Typically it does not occur in just one direction,

but could be from any element in all directions towards

neighbour elements within the circuit. A particular fault in an

element (like resistor, capacitor, transistor, etc.) does not

provide explicit information about the resulting signal values.

Therefore a calculation of signal values (done by circuit

simulation) is always necessary. Nonlinear models, parasitic

elements, charges between elements or energy-storing

elements make diagnosis and reliability analysis more

complex [9]. Because of these reasons, the automation level

of fault diagnosis procedures for analogue circuits has not yet

achieved the development level realized in the digital field.

The reason for the limited automation is simply due to the

nature of analogue circuits. The predominant design metho-

dology for analogue circuits is still individual optimization of

reusable topologies.

The simulation of multiple simultaneous faults is even

more complex. The consideration of multiple faults is

important for the following reasons. Different fault modes

can be present in the elements of complex circuits. Their

occurrence increases even more in rough environments. Also,

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 33 / 53

multiple parametric faults can be present in the field as a

result of ageing, environmental stress and design errors.

Moreover, multiple fault diagnosis is relevant when a new

circuit design is introduced and a high failure density exists.

The restriction to single fault simulation can lead to incorrect

evaluation results.

One of the main issues in software-based fault simulation

is the relatively long runtime in case of complex analogue

circuits. In general, the runtime increases rapidly with the

circuit size and the number of faulty elements (fault depth)

and the failure modes per element. When performing fault

simulation, the runtime is mostly determined by the number

of fault injections. Each injection of a multiple fault has to be

simulated separately. Usually the simulation time for single

faults (at transistor level) is tractable because of available

computer performance. Also the performance of Electronic

Design Automation (EDA) tools has been increased during

the last decade. However, multiple fault injection is a

challenge with respect to runtime.

The fault simulation framework [8] used for the work

presented in this paper can deal with several fault modes

injected simultaneously into elements of a circuit. We con-

sider permanent hard (open and short circuit) and soft faults

(parametric faults). Please note, that even shorts and opens

are dealt with as analogue (not digital) faults, because the

simulator generates the analogue signal throughout the

complete circuit in the case of these faults. Figure 1 shows

how the total simulation time (here number of simulation

runs) is influenced by the number of multiple faults and the

failure modes per element. The diagram shows a medium-

sized circuit example composed of 20 elements where faults

are injected, each of which leads to two different failure

modes. The solid line represents the number of simulation

runs for all necessary test cases. This quantity increases

rapidly with the number of multiple faults. The dashed line

shows that the quantity of simulation runs can be reduced

significantly by assuming monotonic behaviour as follows:

When a set F of simultaneous faults is not tolerated, then also

a superset of F will not be tolerated. Consequently the

superset needs not be simulated. The assumption of mono-

tonic behaviour is slightly pessimistic, because experience

has turned out that in practice there are only few exceptions.

This monotonicity does not always exist. Instead we have

observed that it exists in overwhelming majority of cases with

only very few exceptions.

III. STRATEGIES FOR REDUCING SIMULATION TIME

To reduce the runtime for simulation with fault injection

the following two general approaches are possible: reduce the

number of test cases (simulation runs) or speed up the

simulation procedure for each test case. Several approaches

are described in the literature to speed-up the simulation

process, including fault or test case ordering [10] - [13] and

distributed fault simulation [14][15]. Several approaches for

multiple fault generation [16][17] and simulation [18][19] for

reliability analysis are described in the literature. A general

rule (if applicable) is the assumption of monotonic behaviour

(see previous section). Two joint faults will not be tolerated,

if at least one of them is not tolerated when injected as single

fault. By “tolerated” we mean that the circuit under diagnosis

(CUD) is still providing its function according to a given

maximum deviation from the ideal output. The monotony

assumption has the advantage that many irrelevant multiple

fault combinations can be discarded before being simulated.

The effect to the number of test cases (simulation runs) is

quite substantial. Discarding dual faults will also result in a

smaller number of considered triple faults, and so on. The

simulation time is reduced for all fault depths (see Figure 1).

In general, the monotony assumption reduces the number of

both considered elements and failure modes per element.

In the remainder of the paper, we present a further method

how the number of simulation runs can be reduced, see

Sections 4 and 5. Before we describe the method we will

formalize the selection of test cases to achieve a better

precision in the description of the fault classes the new

method is making use of.

Figure 1. Complexity of fault simulation for an example medium sized

circuit (20 elements with two fault modes per element).

Formally, the relationship between faults, elements of the

circuit, injections and simulation runs is defined by the

following tuples and functions:

1) C = {c0, … , cm} is the set of circuits to be evaluated,

c0  C is the fault-free circuit.

2) E = {transistor1, transisitor2, ..., resistor1, ... , … }

is the set of elements of the circuit c0.

3) F = {short_circuit, open_circuit,

 parameter_modification, ... }

is the set of considered fault modes of the circuit c0.

4) I = { (f, e) F  E : probability of fault f in element e}

is the set of potential injections.

5) I* = { i*  I : (x  i*, y  i*, x y) x|E  y|E }

is the set of potential multiple injections. I* is a subset

of the power set of I. By x|E and y|E we denote the

element of injection x or injection y, respectively.

The inequality x|E  y|E excludes joint injection of

different faults to the same element of the circuit.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 34 / 53

6) Q : F  E  [0, 1]

is the probability of fault f  F in a faulty element

e  E. If a fault f  F is not applicable to an element

e  E then Q(f, e) = 0. For a given faulty element e  E

the sum of fault probabilities is always 1:

fF: Q(f, e) =1.

Example: If we assume only two fault modes F = {open,

short} and only two elements E = {R1, R2}, there may be four

injections I = {(open, R1), (open, R2), (short, R1), (short, R2)}

and four double injections. In all we obtain:

I* = { {(open, R1)}, {(open, R2)}, {(short, R1)},

{(short, R2)}, {(open, R1), (open, R2)},

{short, R1), (short, R2)}, {(open, R1), (short, R2)},

{short, R1), (open, R2)} }.

If shorts are more likely for R1 and opens are more likely for

R2 we may get, say,

Q(open, R1) = 0.2, Q(short, R1) = 0.8 (0.2 + 0.8 = 1).

Q(open, R2) = 0.4, Q(short, R2) = 0.6 (0.4 + 0.6 = 1).

P : E  [0,1] is the function indicating the probability that

element e  E is fault-free.

Function R: I*{0,1} is a simulation run with joint

injection of all faults from i  I*. The method returns 1 if the

injected faults are tolerated according to the tolerance

criterion, otherwise 0. In the following the fault simulation

procedure is described for single, double, triple, fault

injection.

Single faults:

I1 = I is the set of single fault injections to be evaluated by

simulation.

T1 = { i  I1 : R({i}) = 1 } is the set of single injections that

have been tolerated. The function

𝑃1 = ∑ R(i)  (1 – P(i|E))  Q(i|F)iI1
∏ P(y|E)y (I1\i)

expresses the probability of tolerated single injections.

Double faults:

I2 = {{(f, e), (f’, e’)} : (f, e)  T1, (f’, e’)  T1, e  e’ }

is the set of double injections to be evaluated by simulation.

I2 has been defined on the basis of T1, not I1, because the non-

tolerated injections from the complement I1 \ T1 are excluded

due to the assumption of monotony.

T2 = {i*  I2 : R(i*) = 1} is the set of double injections that

have been tolerated.

𝑃2 = ∑ R(i∗)∏ (1– P(x|E))Q(x|F)xi∗i∗I2
∏ P(y|E)y(I2\i∗)

expresses the probability of tolerated double injections.

Triple faults:

I3={{(f, e), (f',e’), (f’’,e’’)} : {(f, e), (f’, e’)}T2,

(f’’, e’’)T1, e  e’, e  e’’, e’  e’’} is the set of triple

injections to be evaluated by fault simulation. Again, the non-

tolerated previous injections have been excluded due to the

assumption of monotony.

T3 = {i*  I3 : R(i*) = 1} is the set of triple injections that

have been tolerated.

𝑃3 = ∑ R(i∗)∏ (1– P(x|E))Q(x|F)xi∗i∗I3
∏ P(y|E)y(I3\i∗)

expresses the probability of tolerated triple injections.

The injections of higher numbers of joint faults are

defined accordingly.

IV. FAULT CLASS ALGORITHM

Our new algorithm is an heuristic approach that is based

on an observation of simulation results [8] of so-called fault

classes. A fault class is a set of test cases (series of fault

injections) all of which have the same number of faults and

the same fault modes, independent of the elements where the

faults are injected.

Experimental results show that three fault classes FC1,

FC2 and FC3 for multiple faults mostly exhibit a monotoni-

cally increasing degree of tolerance, when the fault distance

between FC1 and FC2 is 1, and also the fault distance

between FC2 and FC3 is 1. By a fault distance d(FC, FC’)

(similar to the Hamming distance), we understand the number

of fault modes that differ between FC and FC’. The degree t

of tolerance is defined by the number of tolerated test cases

divided by the number of all test cases of a fault class.

The case d(FC1, FC2) = d(FC2, FC3) = 1 means that each

pair of fault classes differs by just one fault mode. For

example, consider the following fault classes:

FC1 (open, open, open),

FC2 (open, open, short),

FC3 (open, short, short).

The fault distances are d(FC1, FC2) = d(FC2, FC3) = 1 and

d(FC1, FC3) = 2. Typically this leads to

either t(FC1) ≤ t(FC2) ≤ t(FC3)

or t(FC1) ≥ t(FC2) ≥ t(FC3).

From this observation we developed an algorithm that can be

characterized as follows:

 Search for fault classes FC1, FC2, FC3 satisfying the

condition above – or search for even longer chains of fault

classes with this property.

 Determine which of the chains will typically lead to

an ascending or descending degree of tolerance. To

decide that, analysing the fault classes of the previous

fault depth is necessary, see Step 2 of this section below.

 Quantify the tolerance of the first and the last fault class

of a chain by simulation.

 Quantify the tolerance of the remaining fault classes of a

chain by interpolation.

Fault classes are defined by the modes of the injected

faults and their number of simultaneously injected faults.

FC2(x, y) denotes a fault class for two joint injections, namely

fault modes x and y. Since the fault classes

FC2(x, y) and FC2(y, x) are identical, we enforce a unique

notion by assuming an order among the fault modes. Since

fault modes x and y may be identical (injection of two faults

of identical mode into different elements), we require x  y

for FC2(x,y). For an arbitrary fault class FCn(x1, x2, …, xn)

we require x1  x2  …  xn. Then, a fault class for double

fault injection is defined as follows:

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 35 / 53

FC2(x, y) = { {(f, e), (f’, e’)}  I2 : f = x, f’ = y }

A fault class for the injection of n faults is defined accord-

ingly: FCn(x1,…, xn) = {{(f1, e1),…, (f1, e1)} In : fi = xi}.

The subset of test cases in a fault class FCn(x1,…, xn) that

has been tolerated is called tolerance class TCn(x1,…, xn). The

following holds: TCn(x1,…, xn)  FCn(x1,…, xn). Moreover,

TCn(x1,…, xn) = FCn(x1,…, xn)  TCn. The quotient of the

cardinality of TCn(x1,…, xn) and the cardinality of

FCn(x1,…, xn) is called tolerance degree tn(x1,…, xn). Thus

t𝑛(x1, … , x𝑛) =
|TC𝑛(x1, … , x𝑛)|

|FC𝑛(x1, … , x𝑛)|

The heuristic approach is defined in the following steps

and the algorithm is shown in Figures 2 and 3. We assume

that the tolerance classes TC1(…) and TC2(…) have already

been generated by the respective fault simulations.

Consequently, the tolerance degrees t1(…) and t2(…) are

known. Then the following steps describe how the fault

classes FC3(…) for triple fault simulation – or interpolation!

– are formed.

A. Step 1 – Generation Of Fault Classes

A fault class FC3(x, y, z) with 3 faults is generated by

combining all test cases of T2 with all test cases of TC1 in the

following way: Each union of a test case tc2  TC2(x,y) and

a test case tc1  TC1(z) form a test case tc3  FC3(x,y,z)

provided x, y and z inject faults into different elements. Since

we avoid double injections into a single element, the

respective combined injections {x, y, z} are filtered out. The

corresponding algorithm is shown in Figure 2. In the

algorithm we denote the fault mode of injection x by x|F.

Figure 2. Generate Fault Classes.

B. Step 2 – Search Fault Class Chains

The search of fault class chains starts with a search in TC2.

We inspect all pairs of tolerance classes TC2(x, y) and

TC2(x’, y’) and filter out those with a fault distance of 1 and,

moreover, with “significantly unequal” tolerance degrees

(the difference should be at least). Formally:

d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|  

where  may be in the range of 5% of the absolute values.

From the fault distance 1 we can conclude that either

x = x’ or y = y’. In the following we assume x = x’ and

y  y’ without loss of generality.

From the two tolerance classes TC2(x, y) and TC2(x, y’)

we derive the following chain of three fault classes:

< FC3(x, y, y), FC3(x, y, y’), FC3(x, y’, y’) >

According to the observation of likely monotonicity (see

beginning of section IV) we only simulate the test cases of

the first and the last fault class in the chain to obtain the

tolerance degrees t3(x, y, y) and t3(x, y’, y’), respectively. The

tolerance degree t3(x, y, y’) of the inner fault class in the chain

is obtained by interpolation:

t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2.

The algorithm can be seen from Figure 3.

Figure 3. Search Fault Class Chains.

C. Step 3 – Calculation of Probabilities

The simulations of FC3(x, y, y) and FC3(x, y’, y’) deliver

the set of all tolerated test cases, this means the two tolerance

classes TC3(x, y, y) and TC3(x, y’, y’). The probability of

tolerating the respective triple faults can be calculated by the

formula presented in section III. When this formula is applied

to tolerance class TC3(x, y, y) we obtain

∑ ∏ (1– P(x|E))Q(x|F)xi∗i∗𝑇𝐶3(𝑥,𝑦,𝑦) ∏ P(y|E)y(𝑇𝐶3(𝑥,𝑦,𝑦)\i∗)

For tolerance class TC3(x, y’, y’) we obtain:

∑ ∏ (1– P(x|E))Q(x|F)xi∗i∗𝑇𝐶3(𝑥,𝑦′,𝑦′) ∏ P(y|E)y(𝑇𝐶3(𝑥,𝑦′,𝑦′)\i∗)

The probability of tolerating the triple faults of the inter-

polated fault class cannot be obtained directly, because the

test cases of this class have not been simulated. For this

reason we approximate the probability by multiplying the

respective formula with the tolerance degree:
 t3(x, y, y’) ∙

∑ ∏ (1– P(x|E)) Q(x|F)
xi∗i∗𝑇𝐶3(𝑥,𝑦,𝑦′) ∏ P(y|E)

y(𝑇𝐶3(𝑥,𝑦,𝑦′)\i∗
)

The tolerance class of the non-simulated fault class is gene-

rated by selecting a portion of t3(x, y, y’) test cases at random.

For the injection of more than three joint faults, steps 1 to 3

can be applied accordingly.

V. EXPERIMENTAL RESULTS

In this section, the efficiency of the proposed solution to

reduce the simulation time is evaluated. The fault simulation

framework [8] is used to evaluate the dependability of four

example electronic circuits. It should be noted, that for used

circuits only permanent faults (e.g. short, open or parameter

deviations) have been considered.

The simulation time (fault injection and simulation)

depends on the number of elements, the number of injected

Procedure 1 Generate Fault Classes

for all test cases tc2  TC2 do

 for all test cases tc1 e TC1 do

 { test case {x, y, z} = i j;

 if x|E  y|E and x|E  z|E and y|E  z|E then

 FC3(x|F, y|F, z|F) = FC3(x|F, y|F, z|F)  {x, y, z}

 }

Procedure 2 Search Fault Class Chains

for all pairs (TC2, TC2’) of tolerance classes with two injections do

 if d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|   then
 { fault class FC = FC3(x, y, y),

 fault class FC’ = FC3(x, y, y’),

 fault class FC’’ = FC3(x, y’, y’);
 t3(x, y, y) = simulation of FC3(x, y, y);

 t3(x, y’, y’) = simulation of FC3(x, y’, y’);

 t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2;
 }

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 36 / 53

faults per element and the fault depth. Appropriate fault

tolerance criteria have been defined on circuit outputs.

All of the circuits have been evaluated twice: The first

evaluation was without generation of fault classes (chains

have not been formed and all test cases have been simulated

with the monotonicity assumption). The second evaluation

applied the new method with fault classes (only a portion of

the test cases has been simulated). The remaining ones have

been evaluated by interpolation according to the algorithm in

steps 1 to 3). This way the new method can be compared

directly to the solution without fault classes.

The result is shown in table 1. The last but one column

shows the speedup achieved by the new approach: 45% in the

average. It has to be paid by an error in the results (see last

column). The error refers to the number of tolerated test

cases. A deviation of 2.62% has been noticed in the average.

VI. CONCLUSION

Fault simulation of analogue circuits with multiple faults

is an important problem to deal with, since multiple faults

appearance is unavoidable in real systems. In this paper we

have introduced the fault class concept for our approach to

reduce the simulation time of multiple fault analysis. We

discussed the idea of faults classes, providing conditions that

ensure chains of fault classes with ascending or descending

degree of tolerance. We implemented the procedure and

evaluated it experimentally.

In this paper, we have successfully reduced the duration

of software-based fault simulation for multiple faults and

different fault modes. In the evaluated example circuits, our

methodology shows that the number of simulation runs is

significantly lower while preserving the precision quite well.

REFERENCES

[1] Z. R. Yang and M. Zwolinski, “Fast, robust DC and transient

fault simulation for nonlinear analogue circuits,” in Design,

Automation and Test in Europe Conference and Exhibition

1999. Proceedings, 1999, pp. 244–248.

[2] J. Jagodnik and M. Wolfson, “Systematic fault simulation in

an analog circuit simulator,” vol. 26, no. 7, pp. 549–554, 1979.

[3] Y. Cao, Z.-h. Cen, J.-l. Wei, X. Ma, B. Yang, and M. Li,

“FDSAC-SPICE: fault diagnosis software for analog circuit

based on SPICE simulation,” in International Conference on

Space Information Technology 2009: SPIE, 2010, pp.

765120–765120-8.

[4] C. Sebeke, J. P. Teixeira, and M. J. Ohletz, “Automatic fault

extraction and simulation of layout realistic faults for

integrated analogue circuits,” in the European Design and

Test Conference. ED&TC 1995, pp. 464–468.

[5] S. Spinks, “ANTICS analogue fault simulation software,” in

IEEE Colloquium on Testing Mixed 23 Oct. 1997, p. 13.

[6] Bernd Straube, Bert Müller, Wolfgang Vermeiren, Christoph

Hoffmann, Sebastian Sattler, “Analogue Fault Simulation by

aFSIM,” DATE 2000 - User Forum, Paris, 2000.

[7] H. Spence, “Automatic analog fault simulation,” in

Conference Record. AUTOTESTCON '96, pp. 17–22.

[8] Weber E, Echtle K, and 52nd IEEE International Reliability

Physics Symposium, IRPS 2014, “Simulation-based

reliability evaluation for analog applications,” (English),

IEEE Int. Reliab. Phys. Symp. Proc. IEEE International

Reliability Physics Symposium Proceedings, 2014.

[9] P. Kabisatpathy, A. Barua, and S. Sinha, Fault Diagnosis of

Analog Integrated Circuits. Boston, MA: Springer, 2005.

[10] Junwei Hou and A. Chatterjee, “Concurrent transient fault

simulation for analog circuits,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst, vol. 22, no. 10, pp. 1385–1398,

2003.

[11] P. N. Variyam and A. Chatterjee, “FLYER: fast fault

simulation of linear analog circuits using polynomial

waveform and perturbed state representation,” Tenth

International Conference on VLSI 4-7, pp. 408–412, 1997.

[12] A. V. Gomes, R. Voorakaranam, and A. Chatterjee, “Modular

fault simulation of mixed signal circuits with fault ranking by

severity,” IEEE International Symposium on Defects and

Fault Tolerance in VLSI Systems, pp. 341–348, 1998.

[13] H. Hashempour, J. Dohmen, B. Tasić, B. Kruseman, C. Hora,

M. van Beurden, and Yizi Xing, “Test time reduction in

analogue/mixed-signal devices by defect oriented testing: An

industrial example,” Design, Automation & Test in Europe,

2011.

TABLE I. COMPARISON OF EXPERIMENTAL RESULTS

Circuit name No. of simulation runs Speed-up factor Error

 Number of
simulation runs for

all possible fault

combinations

Number of
simulation runs

with monotonicity

assumption

Number of simulation
runs

for the new approach

with fault classes

Our approach over
simulation with

monotonicity

assumption

Our approach over
fault simulation

with monotonicity

assumption

Two stage BJT amplifier with
feedback (Fault depth 1-4)

22422 356 284 1.25 5.4 %

LM741 AMP [20]

(Fault depth 1-4)
3923175 2090 1612 1.30 0.6 %

Broadband VHF/UHF amplifier

[21] (Fault depth 1-3)
695525 18187 10928 1.66 1.8 %

Limiter BSP [22]

(Fault depth 1-4)
1045256 1208 758 1.59 2.7 %

Average: 1.45 Average.: 2.62 %

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 37 / 53

[14] T. Markas, M. Royals, and N. Kanopoulos, “On distributed

fault simulation,” Computer, vol. 23, no. 1, pp. 40–52, 1990.

[15] C. P. Ravikumar, V. Jain, and A. Dod, “Faster fault simulation

through distributed computing,” Tenth International

Conference on VLSI, pp. 482–487, 1997.

[16] S. Kajihara, T. Sumioka, and K. Kinoshita, “Test generation

for multiple faults based on parallel vector pair analysis,”

International Conference on Computer Aided Design

(ICCAD), pp. 436–439, 1993.

[17] H. H. Zheng, A. Balivada, and J. A. Abraham, A Novel Test

Generation Approach for Parametric Faults in Linear Analog

Circuits: Proceedings / 14th IEEE VLSI Test Symposium,

Princeton, New Jersey. Los Alamitos, Calif: IEEE Computer

Society Press, 1996.

[18] K. Saab, N. Ben-Hamida, and B. Kaminska, “Parametric fault

simulation and test vector generation,” Meeting on Design

Automation, pp. 650–656, 2000.

[19] Yong Chang Kim, V. D. Agrawal, and K. K. Saluja, “Multiple

faults: modeling, simulation and test,” 7th Asia and South

Pacific Design Automation Conference, pp. 592–597, 2002.

[20] National Semiconductor, LM741 Operational Amplifier.

Available: http://web.mit.edu/6.301/www/LM741.pdf (2015,

Mar. 05).

[21] C. G. Gentzler and S. K. Leong, “Broadband VHF/UHF

amplifier design using coaxial transformers,” High Frequency

Electronics, pp. 42–51,

http://www.polyfet.com/HFE0503_Leong.pdf and

https://awrcorp.com/download/faq/english/appnotes/uhf_vhf

_amplifier.aspx, 2003.

[22] AWR Corporation, Bipolar Limiting Amplifier Circuit.

Available:

https://awrcorp.com/download/faq/english/docs/Getting_Star

ted/Tonal_Analysis.html (2015, Mar. 05).

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 38 / 53

Reducing the Communication Complexity of Agreement Protocols By Applying A

New Signature Scheme called SIGSEAM

Omar Bousbiba

Dependability of Computing Systems

University of Duisburg-Essen

Essen, Germany

bousbiba@dc.uni-due.de

Abstract—Distributed computing systems need agreement

protocols when global consistency must be achieved in a fault-

tolerant way. However, solving the Byzantine agreement

problem in an efficient way in terms of communication

complexity is still a challenging task. In synchronous systems

with stringent time requirements not only the fault tolerance,

but also the limitation of the communication complexity are

crucial for practical usability. Many agreement protocols use

digital signatures. This paper presents a novel signature

generation technique to merge several signatures into a single

one. This advantage opens a design space for agreement

protocols with significantly reduced message overhead.

Moreover, the new signature technique can also be applied to

existing agreement and/or consensus protocols (Turquois and

ESSEN, for example) without affecting the fault tolerance

properties of the protocol.

Keywords— Malicious Byzantine Faults; Agreement proto-

cols; Digital Signatures for Fault Tolerance.

I. INTRODUCTION

Distributed systems are becoming more and more

important in our electronic society. In case of safety

relevance, it is important to make these systems resilient

against faults. Fault tolerance techniques can be applied to

increase various dependability properties. Many real-time

applications require fail-operational behaviour. Take a fail-

safe brake-by-wire system as an example. It has to provide

its functionality all the time. In the presence of a fault, the

four-wheels braking is reduced to diagonal-wheel braking.

Consequently, a decision has to be taken which pair of

wheels has to be passivated (in a non-blocking way, of

course).

The agreement problem is recognized as a fundamental
element in fault-tolerant distributed computing (i.e., safe
brake, collision avoidance, semiautomated vehicles, etc.).
The problem has been known for decades as Byzantine
agreement (BA) [1][2]. In order to solve it, two conditions
have to be satisfied, known as interactive consistency (IC):

IC1: All fault-free nodes obtain exactly the same view

IC2: The information provided by a fault-free node is
part of this view.

 Due to its paramount importance, the problem has

attracted a great deal of attention in the past. It has been

investigated extensively and many solutions have been

proposed. Many of the approaches [3][4][5] focused on

reducing the communication complexity in terms of the

number of messages, the number of nodes (related to the

number of faults to be tolerated), and required storage.

Signature techniques contribute a lot to a reduction in

communication complexity, because they protect the origin

of the message against undetectable corruption when the

message is forwarded from node to node [2].

Typical sequences of actions during the execution of an

agreement protocol are the following ones:

1. Send a signed message to one/more neighboring node(s)

2. Forward a message from node to node(s), where each

forwarding node cosigns the message

3. Collect incoming messages (which can be numerous)

including signature checks

4. a) Take a local decision on the message to be sent in the

next round, b) termination with some value or a con-

sistency vector [3][4].

The steps 1 to 4 may be repeated several times, depending

on the particular protocol.

Typically, the following situation occurs frequently: In

some phases, a node X receives different messages

M1,…,Mk all of which it has to forward to a neighbor node

Y. If all the messages M1,…,Mk have been signed by

different nodes N1,…,Nk and all nodes contain identical

payload contents A (see Figure 1), then node X cannot

summarize the messages and send only one message with

payload contents A to node Y, because the signatures would

be lost then. Instead X has to forward the k messages

separately (in some protocols it is sufficient to filter out a

subset of the messages).

Consequently, a signature mechanism which allows

messages to be merged has the potential to greatly reduce

the communication overhead of an agreement protocol.

Figure 1 illustrates an example of the idea behind signature

merging.

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 39 / 53

Figure 1. (left) new (right) conventional - signature mechanism.

A. Contribution and Outline

The goal of this work is the provision of a novel

signature mechanism, which opens an extended design

space for agreement protocols with lower communication

complexity in terms of message transmissions. By signature

merging, the number of messages, and thus the overall

transmitted information can be reduced. The new method

does not use cryptographically strong signatures. Instead,

the signatures are designed to withstand faults, even with

Byzantine behaviour, but not intelligent attacks of humans.

Besides the (very short) computation time for signature

merging, the protocol does not need extra time for reaching

agreement.

The rest of the paper is organized as follows: Section II

characterizes the agreement protocols relevant for this

paper. The new signature method is presented in Section III

and its application to agreement protocols in Section IV.

The improvement is shown in Section V by providing a

quantification of the overhead. A summary and an outline of

ongoing work are given in Section VI.

II. CONSIDERED AGREEMENT PROTOCOLS

A. Protocols

Since the time when the agreement problem was intro-

duced by Lamport et. al. [1], many solutions have been

proposed. Most of the work is focused on reducing the

number of messages, the required number of nodes per

tolerated fault and the storage consumption.

It has turned out that signatured protocols need signifi-

cantly less messages. However, without signature merging

there is a limitation to further reduction. In this paper, the

merging approach is applied to two protocols: Turquois [3]

and ESSEN [5]. For each of these protocols a variant is

derived that takes benefit of signature merging.

Turquois is a protocol which solves the consensus

problem in asynchronous systems composed of n ad hoc

nodes where a subset f (with 𝑓 <
𝑛

3
) of them can fail in an

arbitrary manner. It is the first work which addresses the

problem of reaching consensus in the presence of omission

faults. However, Turquois solves the problem at the expense

of a relatively high communication and storage overhead.

The high number of message transmissions is caused by the

message validation process. In the worst case, a node has to

transmit more than
𝑛+𝑓

2
 messages received from previous

round(s). A signature technique has a great impact on the

message and storage overhead as will be shown later in this

paper.

ESSEN is a protocol that solves the Byzantine agree-

ment problem even in the presence of “malicious coopera-

tion” faults. This means two faulty nodes may “secretly”

exchange their information, such as keys and signed

messages. In ESSEN, the communication complexity is

very low for up to four arbitrary faults. The protocol

requires a fully synchronous system (clock synchronization

is presupposed). The message storage consumption is the

space of only three messages. The required number of nodes

grows quadratically with the number of tolerated faults. As

with Turquois, the protocol uses signatures without merging

functionality. The benefit of adding a signature scheme with

merging capability will be shown later in this paper.

B. Signatures

For the purpose of fault tolerance, cryptographically

strong signatures are not needed, because the signatures

serve as countermeasures against “stupid faults” rather than

“intelligent attacks”. Consequently, signatures with

relatively low computation time can be used (as reported in

[7]). Signature techniques greatly improve the communi-

cation complexity of agreement/consensus protocols. How-

ever, when using an existing signature technique [7][8] a

receiver has only two options to deal with after a message

has been received. Either each received signature is stored

separately, as is done in Turquois, or some kind of filter

mechanism is applied (e.g., only the message with the

highest number of signatures is stored). In both cases the

overhead for both message storage and communication may

become high.

By the proposed signature merging technique the

receiver(s) get the opportunity to combine the messages into

a single one without affecting the information about the

signature source. This means, the new message will still

contain the information of all signature sources (as shown in

Figures 1 and Section III).

III. NEW SIGNATURE SCHEME SIGSEAM

The proposed signature scheme is intended to withstand

arbitrary technical faults rather than intelligent attacks. For

the purpose of fault tolerance simple signature generation

methods are sufficient [6][7][8]). The signature technique

presented in this paper is based on a multiplication scheme

similar to [7]. It achieves almost the same effectiveness as

Message M1

A:N1

Message M2

A:N2

Message M4

A:N4

Message M3

A:N3

Message M

A:N1:N2:N3:N4

received received

New

signature

mechanism

Conventional

signature

mechanis

sent

Message M

A:Ni, i ϵ {1,2,3,4}

sent

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 40 / 53

[7]. A thorough investigation on the new signature merging

mechanism is still work in progress. Next, the algorithms

for signature generation and checking are presented in

detail.

All calculations are done modulo m, where m is set to a

power of two (m = 2
x
 with x ϵ ℕ). Typical values may be

m = 2
16

 or m = 2
32

. The generation of private and public

signature keys is done as follows: Each node chooses two

arbitrary natural numbers a, b from modd = [m/16, m/2] 

ℕ𝑜𝑑𝑑 . The product c = a ▪ b is calculated. The value of

parameter a is used as private key. The pair (b, c) is taken as

public key, which is publically distributed to all nodes to be

used for signature checking.

Signature generation: The signature of the original

sender of a message is calculated over the payload data d

and the sequence number n (e.g., the sequence number is

changed from round to round) only. The following signature

function 𝜎0 and a usual CRC function are used by the first

signing node (e.g., source node, indexed with zero):

 σ0(n, d) ≔ CRC(n, d) ∙ ai   

Cosignature generation of a forwarding node is done as

follows: The cosignature value is calculated over the

signature value σ𝑗 with j ≥ 0 by applying the following

cosignature function σ𝑖 . The index represents the number of

signing and/or cosigning nodes:

 σ𝑖 : = {
σ𝑗 + CRC(n, d) ∙ (ai + 1), if j is even

σ𝑗 + CRC(n, d) ∙ (ai − 1), otherwise
 

where j < i. Depending on the number of signatures in σ𝑗

the secret key ai of the cosigning node is used as either (ai +

1) or (ai – 1) depending or whether or not the number of

already added (co-) signatures is even.

Compared to usual (co-) signature schemes there is an

important point: In the proposed merging signature scheme

the new cosignature 𝜎𝑖 replaces the existing (co-) signature

in a message to be forwarded. However, the indices of all

signing nodes are kept in the message. Thus, there is a list

“Who has signed?” in each message.

The signature value signed by j nodes can be expressed
by the following sum function:

𝑠 = CRC(n, d) ∙ ((j + 1) mod 2 + ∑ ai
j
i=0). 

A receiver uses the following signature check function

τ(n, d, s) after reception of a message with number n,

payload data d and signature s. The check is passed if the

following equation is correct:

 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 = 

CRC(n, d) ∙ (e ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

+ ∑ [𝑐𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

]

𝑗

𝑖

).

If s has been signed by an odd number of nodes, then

parameter e is set to zero. Otherwise parameter e is set to

one. In case of an odd number of nodes having (co-) signed

the message we obtain:

 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 = CRC(n, d) ∙ ∑ (c𝑖 ∙ ∏ 𝑏𝑘

𝑗
𝑘=0,𝑘≠𝑖)

𝑗
𝑖=0  

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ((j + 1)mod 2 + ∑ ai

j

i=0

) ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ∑ ai

j

i=0

∙ ∏ 𝑏𝑖

𝑗

𝑖

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ∑ a𝑖 ∙

𝑗

𝑖=0

b𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ∑ (c𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

)

𝑗

𝑖=0

 Q. E. D.

The implications from right to left are obvious. The

implication from left to right based on the same conclusion,

as shown in [8]. The proof is done by contradiction: Due to

the fact that all calculations are done modulo m (m = 2
x

with x ϵ ℕ) for b ϵ modd the product 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 returns a

unique value in modulo m. However, parameter b is odd and

the only prime factor of m is 2. Consequently, 2 must be a

prime factor of value b ϵ modd (contradiction) Q.E.D.

IV. MODIFIED AGREEMENT PROTOCOL

A detailed explanation of the two protocols ESSEN and

Turquois can be found here [3][5]. In the following, only the

parts of the algorithm which have been modified are

discussed in detail. The modified protocol variants are

called SEAM and Turquois*, respectively.

A) SEAM

Storing of received messages: A data message is stored

in the secondary buffer, when (in addition to the four

conditions given in [5]) also the following two conditions

are satisfied:

1. The node is member of group ExtG (see [5])

2. The node has not transmitted a message yet.

Otherwise, if all six conditions are not satisfied, the data

message is rejected (for more details see [5]).

Merging of signatures: The messages in the primary and

the secondary buffer are merged, iff both messages contain

at least 2f – 2 (parameter f indicates the number of tolerated

faults) different signature sources. The content of the

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 41 / 53

secondary buffer is deleted after transmission (regardless of

whether or not the message has been merged). Moreover, in

contrast to [5], only the primary and default buffer are used

for the final decision. All other parts of the algorithm remain

unchanged.

B) Turquois*

Merging of signatures: In each round, all messages with

identical content are merged (instead of stored separately).

This means not more than two different messages are stored

within a round. All other parts of Turquois remain un-

changed. Both variants SEAM and Turquois* have been

simulated for up to 30 nodes and up to 10
9
 rounds. The

number of simultaneously faulty nodes has been limited to 6

in case of SEAM and 9 in case of Turquois (for more details

see [3][5]). In all simulation runs the interactive consistency

was fully preserved.

V. COMPLEXITY OF THE INVESTIGATED PROTOCOLS

 BY USING SIGSEAM

In this section, the communication complexity in terms

of redundant nodes as well as message transmission over-

head is quantified by simulation. The modified protocols

SEAM and Turquois* are compared with their original

versions ESSEN and Turquois, respectively. The outcomes

are shown in Figure 2. Summarizing the results it can be

said that the new signature technique greatly improves the

communication complexity of both protocols. In case of

ESSEN the number of redundant nodes as well as the

number of required message transmissions has been reduced

from 1 +
f² + f

2
+ ⌈

(f – 1)

2
⌉ down to

3f+2⌈
f−1

2
⌉+⌈

f²

2
⌉

2
. In case

of Turquois, the high number of (3f + 1)
(n+f+2)

2
 message

transmission (worst case) has been reduced to a constant of

3 messages per node, whereas the number of required nodes

remains unchanged. This means 9f + 3 messages in all.

VI. CONCLUSION AND FUTURE WORK

The simulation results have clearly shown that the proposed

signature technique with merging functionality significantly

improves the efficiency of agreement protocols and does not

affect the time taken to reach agreement.

The work on signature merging is still in progress. The

coverage of special fault cases affecting the signatures

themselves must be evaluated in detail. Besides bursts, bit

flips, wrong data, also signature-related faults like copy-

and-paste of signatures between messages, etc., have to be

assessed with respect to the achieved coverage. Moreover,

these results will be compared with 16-bit or 32-bit “light”

versions of existing cryptographic signature techniques.

ACKNOWLEDGMENT

The author gratefully acknowledges the helpful discussions

with Prof. Klaus Echtle who participated in the development

of the concept of signature merging.

REFERENCES

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults”, JACM, vol. 27, Apr. 1980, pp. 228–234, doi:
10.1145/322186.322188.

[2] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generalsproblem”, ACM and TOPLAS, vol. 4, July 1982, pp. 382–
401, doi:10.1145/357172.357176.

[3] H. Moniz, N. F. Neves, and M. Correia, “Turquois: Byzantine
consensus in wireless ad hoc networks”, IEEE, DSN, Chicago, IL, pp.
537-546, June 2010, pp. 537–546, doi: 10.1109/DSN.2010.5544268.

[4] M. Jochim and T. M. Forest, “An Efficient Implementation of the
SM Agreement Protocol for a Time Triggered Communication
Systems”, SAE International Journal of Passenger Cars - Electronic
and Electrical Systems, vol. 3, 2010, pp. 106-116, doi:10.4271/2010-
01-2320.

[5] O. Bousbiba, “ESSEN - An Efficient Single Round Signature
Protected Message Exchange Agreement Protocol for Wireless
Distributed Networks”, ACRS 28th, Workshop Proceedings, March
24 - 27, 2015, Porto, Portugal, ISEP, Berlin: VDE Verl., ISBN: 978-
3-8007-3657-7.

[6] K. Echtle and T. Kimmeskamp, “Fault-Tolerant and Fail-Safe Control
Systems Using Remote Redundancy”, ARCS 22th, Workshop
Proceedings, March 11, 2009, Delft, The Netherlands, Berlin: VDE
Verl., ISBN: 978-3-8007-3133-6.

[7] L. Martin, “Relative signatures for fault tolerance and their
implementation”, Dependable Computing – EDCC-1, Lecture Notes
in Computer Science, vol. 852, Oct. 1994, pp. 561–580,
doi:10.1007/3-540-58426-9_158.

[8] K. Echtle, “Avoiding Malicious Byzantine Faults by a New Signature
Generation Technique”, Depenable Computing – EDCC3, Lecture
Notes in Computer Science, vol. 1667, Sept. 1999, pp. 106-123,
doi:10.1007/3-540-48254-7_9.

Figure 2. The idea of signature merging. Communication complexity: (a) message transmission overhead (b) required number of redundant nodes.

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 42 / 53

Dependability of Active Emergency Response Systems

Jane W. S. Liu
Institute of Information Science

Academia Sinica
Taipei, Taiwan

e-mail: janeliu@iis.sinica.edu.tw

Edward T. H. Chu
Computer Science and Information Engineering
National Yunlin Science and Tech. University

Yunlin, Taiwan
e-mail: Edwardchu@yuntech.edu.tw

Abstract— Recent technological and infrastructure advances
along several fronts have enabled smart embedded devices,
systems and applications that can enhance preparedness of our
living environments against common natural and man-made
disasters. They can also help us to be safer when disasters
strike. This paper first discusses issues in configurability,
maintainability and safety specific to this type of smart things
and systems. It then describes models and tools for assessing
their effectiveness and ensuring their safety.

Keywords - disaster preparedness and response; system
safety; cyber-physical elements; simulation environment; testbed

I. INTRODUCTION

The term Active Emergency Response Systems (AERS)
[1] refers to systems of smart embedded devices and mobile
applications that can process standard-compliant disaster
alert messages from authorized senders and respond by
taking appropriate actions to prevent loss of lives, reduce
chance of injuries and minimize property damages and
economical losses when the forewarned disaster strikes. We
call such devices and applications iGaDs (intelligent Guards
against Disasters) collectively [2]-[4]. Examples of iGaDs
include smart devices that shut natural gas intake valves and
turn off electricity to prevent fire, open doors to ease
evacuation, bring elevators to the ground floor, turn on
hazard flashers and warn the drivers of trucks and cars on
highways, and deliver location-, environment- and situation-
specific alerts and instructions to people via their mobile
devices upon receiving an alert of a strong earthquake.

iGaDs and AERS have been made feasible in developed
regions by recent advances along four directions: First,
advances in sensor and analysis technologies have enabled
the predication and detection of common types of natural
disasters and issuance of accurate early warnings about them.
For example, in developed countries frequented by
earthquakes, systems of strong motion sensors networked via
RF links with computers running analysis tools can generate
early warnings of strong earthquakes within second(s) of
their occurrences, providing receivers in affected areas with
warnings, often second(s) before ground motion starts.

The second enabler is Common Alert Protocol (CAP) for
encoding alert messages [5]. The OASIS standard has been
adopted in US, Canada, Australia and parts of Asian Pacific
region, including Taiwan and Japan. Being XML-based,
CAP alert messages can be processed automatically by smart
devices and applications. Hereafter, we assume that all alert

messages are in CAP format and sometimes call iGaDs
CAP-aware devices, systems or applications.

Third, iGaDs and AERS are enabled by platforms for
receiving and authenticating CAP-compliant alerts from
alerting authorities and then broadcasting them. An example
is Integrated Public Alert and Warning System (IPAWS) -
OPEN [6], which has been operational in USA and Canada
since 2011 [6]. IPAWS-OPEN and similarly platforms in
other parts of the world enable CAP alerts to be disseminated
via multiple communication pathways, including broadcast
channels, cellular broadcast and Internet.

The fourth enabler is Building Information Models
(BIM) [7] and associated digital data exchange standards.
BIM has been adopted increasingly more widely. The
integration of BIM with facility management and building
automation systems (e.g., [8] [9]) has enabled the systems to
provide 3D-4D data on buildings and their facilities, interior
layouts, and so on that are vital to support decisions of
individual iGaDs in their choices of protective actions.

To illustrate this, Figure 1 shows an earthquake scenario:
A strong earthquake alert in CAP format is issued by Central
Weather Bureau, the agency authorized to issue such alerts in
Taiwan. Today, earthquake alerts are sent directly to safety
equipment of power plants, trains and fabrication lines.
Alerts are also sent to Emergency Alert Services (EAS) and
mobile alert services, including Google Public Alerts. These
services in turn warn the general public. Limitation in
human’s ability to react in time and the lack of specific
instructions limit the effectiveness of the warnings.

Alert xmlns: …
Sender: Central Weather Bureau
Status: Actual
MsgType: Alert
Scope: Public
Info

Category: Geo
Event: Earthquake
Urgency: Immediate
Severity: Strong
Certainty: Observed

Description: A strong earthquake
measuring 7.8 occurred in …

Parameters: Magnitude, depth, …
Areas: Polygons specifying

affected areas
Resources: … …

Active use
of alerts

Earthquake,
Walk in

indicated
directions

Earthquake.
Slow down,

pull over

Figure 1. A earthquake scenario illustrating active use of alert [2]

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 43 / 53

Our white paper [2] advocates an alternative: Broadcast
the alerts in the original CAP format directly to iGaDs
pervasively deployed throughout our living environment.
CAP-aware embedded devices can respond with humanly
impossible speed to make the environment safer in ways
illustrated by the examples mentioned earlier and shown in
the lower right corner of Figure 1. CAP-aware mobile
applications can instruct people how to stay safe based the
seismic codes of buildings, interior layouts, and furnishings
around them. Indeed, if such applications were available at
the time of 2011 5.8 Virginia Earthquake [10], most people
from New York City to Washington DC would be instructed
to stay where they were: That is, do not evacuate. The chaos
and economic loss occurred on the day could be avoided.

From this and other scenarios [2], one can see that iGaDs
are mission critical. Ubiquitous iGaDs are Internet of Things
(IoTs), and AERS containing iGaDs and remote and local
sensors are cyber-physical systems. So, the title “No
dependability, no internet of things” of the article [11]
published by Newsroom Editor of European Commission is
applicable to iGaDs/AERS. Challenges in making them
adaptable and dependable, unless satisfactorily overcome,
are roadblocks to their becoming pervasive elements of
future disaster prepared smart living environment.

Following this introduction, Section II presents related
work on dependability of IoTs and cyber-physical system in
general and discusses dependability issues specific to iGaDs
and AERS. To date, the results of our work include iGaDs
and AERS prototypes built for proof of concept purposes and
as solutions of configurability and adaptability problems.
They are described in Section III. Safety is an important
dependability requirement of iGaDs and AERS. Section IV
describes our current and future work on models and tools
for assessing the safety of AERS containing a large number
of diverse iGaDs. Section V summarizes the paper.

II. RELATED WORK

The above-mentioned statement on dependability of IoTs
[11] and similar observation by researchers and developers
worldwide have motivated vast efforts on IoT dependability.
Examples of recent results include mechanisms and
protocols for enhanced availability and reliability of IoTs and
networks and middleware in applications/services built from
them [12]-[14]. Other efforts (e.g., [15]-[18]) aim at
providing frameworks, tools, benchmarks to support the
design, implementation and assessment of dependable IoT
applications and cyber-physical systems. These applications
and systems, including AERS, have long lifetime. Support
infrastructures, including tools for maintenance and upgrade,
need to be put in place (e.g., in [19]) to ensure non-disruptive
operations of existing devices and systems as they adapt to
inevitable changes in message delivery platforms, message
format standards, security mechanisms, and technological
advances during their lifetime.

 Our work on the dependability of iGaDs and AERS has
the same general goal as these related efforts. We leverage
existing solutions as much as possible. Section III will
present examples. By doing so, we can better focus on
dependability issues specific to iGaDs and AERS.

A focal point of our current effort is safety of AERS that
contain vast numbers of diverse iGaDs and local sensors
(e.g., intelligent emergency evacuation systems for large and
complex buildings). To explain the challenges, we note that
an iGaD may need to process at the same time multiple types
of alerts (e.g., a strong earthquake alert for the region and a
local fire or flash flood alarm) that call for conflicting
responses (e.g., open all doors and close some doors,
respectively). Alerts may be cancelled and reissued as
conditions changes. Even most advanced disaster prediction
and detection systems may issue false alarms and have
missed detections. Protocols for handling such events need to
be put in place, however rarely they may happen. Even when
all alert messages arrive correctly and in time and all devices
function correctly, the combinations of their actions may
lead to catastrophic consequences.

Section IV will further elaborate issues related to safety
of AERS and present our current work on building an
extensible simulation framework, called AERS Simulation
Framework (AERS-SF). The framework is agent-based. It
resembles many existing toolkits (e.g., [20]-[22]) for the
development of agent-based applications in their use of
agents as model elements. Existing safety studies and
emergency and disaster simulators (e.g., [23]-[25]) typically
consider specific kind of emergency (e.g., fire) in a specific
environment (e.g., in high rises or planes). In contrast,
AERS-SF aims to provide models, tools and benchmarks
needed to support simulation of diverse AERS in diverse
operating environments and disaster scenarios for sake of
assessing safety of AERS throughout their development.

III. CONFIGURABLE AND ADAPTABLE PROTOTYPES

Thus far, our work aims to demonstrate the concept of
configurable and adaptable AERS [1]-[4] for homes, office
buildings, and large public places. They contain diverse
iGaDs capable of responding to alerts of natural disasters
affecting the region in general, as well as alerts of emergency
conditions within the building.

?xmlns version = “1.0”
<alert xmlns = …
<event>Earthquake</event>
<urgency>Immediate</urgency>
<severity>Strong</severity>
<certainty>Observed</certainty>
<parameter>

<valueName>Magnitude</valueNa
me>
<value>7.1</value>

</parameter>
<area>

<circle>32.9525 -
115.55850</circle>

</area>
…

iGad

iGaD

Structure
data

Spatial
and floor
plan data

Maintenance
records

Local
sensor
data

FM

CAP-aware
building
management
system

(AlertType == Earthquake) AND (Magnitude >= 8.0)
(AlertType == Earthquake)
AND (Magnitude >= 7.0)

Building/environment Data and
Information Cloud (BeDIC)

Figure 2. Underlying assuptions

Figure 2 highlights three of the underlying assumptions:
First, all messages are compliant to the XML-based CAP
standard. They are sent by trustworthy entities (e.g., in US,

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 44 / 53

responsible authorities via IPAWS-OPEN) and the building
management system. So, their contents can be secured and
authenticated by the existing XML security mechanism [26].

Second, the decisions of individual iGaDs on whether
and how to respond to an alert are based in part on the alert
type and severity specified by the alert. In an AERS for
indoor spaces, their decisions are also based on data on the
building, including its seismic code and maintenance
records. For example, suppose that the home and office
building in Figure 2 are designed to withstand earthquakes of
magnitude 7.0 and 8.0, respectively. Then, CAP-aware door
and gas value controllers in the home should respond to the
magnitude 7.8 earthquake alert in Figure 1, but the devices of
the same types in the office building should ignore the alert.
Building data are provided by an information system, called
Building and environment Data and Information Cloud
(BeDIC) in Figure 2. It contains datasets selected from BIM
and facility management system of the building.

Third, the response decision of an iGaDs also depends on
how the device(s) is used and data (e.g., sensor data) from
local sources. For example, upon receiving a Enhanced
Fujita (EF) [27] scale 5 tornado alert, an iGaD controlling a
public shelter door should open the door unconditionally. An
iGaD controlling the front door of a house may wait until the
tornado is about to strike the house, indicated by drastic
decrease of outside air pressure, and then opens the door.

From these examples, we can see that iGaDs must be
configurable and customizable, not only at installation times
but also at maintenance and runtimes. Figure 3 shows an
architectural framework for iGaDs for building configurable
and customizable iGaDs for diverse purposes from the same
set of components [2][3]. Specifically, every iGaDs has a
CAP message processor/parser for validating CAP-
compliances of the message and extracting from each CAP
message the type and severity of the disaster, areas targeted
by the message and so on. Every iGaD has a location filter
that determines whether the device is located in an affected
area and hence is targeted by the alert. An embedded iGaD
has a device controller that interfaces with one or more
physical devices. Customization of the kinds mentioned
above is enabled by using a rule engine to process action
activation rules such as the ones shown in Figure 2. The rules
are selected and their parameters set at installation and
maintenance time of each iGaD.

Some iGaDs are reachable only via the Internet.
Examples include CAP-aware elevator, smart gas valve and
door controllers. These devices receive alerts relayed by the
building (home) management system that is connected to the
Internet and serves as an aggregation server. Clearly, iGaDs
and people can take protective actions in preparation of an
imminent calamity only when they receive warnings about
the calamity in time. This means that the end-to-end delay of
earthquake warning messages should be a second or less, and
delay for tornado and flash flood warnings a minute to a few
minutes, and so on. Performance data of Asynchronous
Message Delivery Service (AMeDS) [3] [4] for delivering
CAP messages asynchronously over the Internet show that
end-to-end delay requirements of this order are feasible and
AMeDS offers a way to do so.

CAP Message Processor

Alert type &
information Alert

records

Affected
areas

Alert
message

buffer
Modem

Signature
validation

CAP (XML)
parser

Location
filter

Device
Controller

Device interfaces

Configuration
files

Device
location

Resources

Local data

Rule processor

Rule engine

Activation parameters
and rules

Figure 3. iGaD architecture and key components

IV. AERS SIMULAITON FRAMEWORK

Again, a major thrust of our current work is on safety of
AERS, in particular, systems containing a large number of
diverse iGaDs and local sensors and serving large complex
buildings and facilities, such as transport hubs, major
hospitals, sports centers, and shopping malls. A common
definition of safety is the absence of dangerous conditions
that can cause death, injury, damage to property and
economical loss [28]. This definition is not appropriate for
AERS since such systems work in the presence of dangerous
conditions. As an alternative definition of safety, we may say
that an AERS is safe if its actions never create new
dangerous conditions and never increase the probability of
occurrence of dangerous conditions known to exist when the
system is not in use.

We work with a definition that is more practical from the
point of view of validation: We say that a system is safe as
specified when it always removes the dangerous conditions
identified by disaster and emergency response experts and
defined in its safety requirement specification. We need to be
able assess to what degree a given AERS is safe (i.e., safe as
specified) under all likely operating conditions/demands,
including occurrences of nearly simultaneous multiple alerts
that require conflicting responses; arbitrary sequences of
alerts, cancellations, and re-issuances; and false alarms and
missed detections of specified rates. The combined actions of
a large number of iGaDs may lead to unexpected dangerous
conditions, even when all alerts are correct and delivered in
time and every device and application works correctly. The
problem of making AERS serving large public buildings safe
is further complicated by two factors. First, iGaDs may need
to collaborate and coordinate their actions for error/failure
handling and conflict resolution purposes. The complexity
thus introduced may actually make the system less safe. The
second complicating factor is the presence of people and
crowds, who are also smart entities and may respond to alerts
on their own in unsafe ways unless constrained from doing
so. The problem is to identify the constraints.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 45 / 53

Motivated by the fact that highly available, secure and
configurable and maintainable AERS may nevertheless be
unsafe, we are developing the simulation framework AERS-
SF capable of supporting simulation experiments on diverse
AERS for purposes of finding safety flaws and assessing
their safety throughout their design, development and
deployment. We also want to evaluate via simulation
constraints on operations of the system and its components,
which when adhered to, can make the system safer.

Figure 4 shows the major components of AERS-SF. The
framework will offer libraries of models, tools, and test
scenarios generators, together with a simulation
environment, using which a user (i.e., a designer or a
developer) can construct customized simulator(s) of his/her
AERS in building(s) targeted by the system and conduct
experiments with design choices (e.g., action activation rules
and conflict resolution protocols) of individual iGaDs and
alternative Standard Operating Procedures (SOPs) governing
alert cancellations and false alarms, for the system as a
whole. Specifically, AERS-SF model libraries have (1)
agent-based models of active entities in AERS and operating
environment, including executable models of iGaDs; (2)
behavior models of people as individuals and as members of
crowds; (3) BIM-based models of representative buildings
and facilities controlled by iGaDs; and (4) conflict resolution
and collaboration protocols for iGaDs and representative
SOPs. Similar to model libraries of the Agent-Based Disaster
Simulation Environment ABDiSE [22], AERS-SF model
libraries are extensible: Model elements in the underlying
model of each simulation experiment are dynamically loaded
during set up and initialization time. The user can add new
types of models by providing dynamic linked library
functions defining the behavior of new types.

USER(S)

User Interface

GUI Main Window

V
I
E
W

Input Output

Updates

XML Controller

Dynamic Loader

Core Controller

Thread Pool

C
O
N
T
R
O
O
E
R

User

Input

Manipulates

Crowds

Women Offices

Women

Men

Mobile devices

Elevators

Power switches

Test scenarios

Protocols and SOPs

CAP alert sequences

Commander (user)

Doors

Other AERS components

M
O
D
E
L
S

Global & local environment

Stairwells

Halls

Other building
models

Abstract agent

Figure 4. Structure and major components of AERS-SF

To support what-if experiments, the framework will also
have extensible libraries of test scenarios. In particular, it
will provide traces of disaster and emergency alerts, both
actual traces from CAP alert message records that have been
released as open data in many countries and synthetic traces
that can be used as benchmark input to the system being
evaluated. Some of the scenarios detailing the development

of emergencies within the targeted building are generated
from historical records of common types of disasters and
local emergencies. For example, scenario generation scripts
can use as input information extracted from historical records
on impacts of past typhoons and debris flows on similar
buildings. We also plan to link AERS-SF with ABDiSE and
through it, to import external disaster simulation programs.

AERS-SF will adopt two other features of ABDiSE. One
is to build model elements on common-sense concepts. For
example, every simulation experiment has one and only one
simulation world, i.e., the geographical area specified by the
user for the experiment at set up time. The world may have
many regions with specified boundaries. The simulation
world has a global environment, and some regions may have
local environments that differ from the global environment.
Each environment is defined by a set of environment
parameters. The behaviors of all agents around any point in
space and time within a region depend on the values of local
environment parameters at that point in space and time.
Thus, we eliminate the need to model sensors explicitly.

Also, similar to ABDiSE, AERS-SF makes tools for
building the underlying model for each series of simulation
experiments and for controlling simulation runs accessible to
the user from the GUI of the framework. Figure 5 uses a
marked up screen dump of ABDiSE to illustrate this point.
The most prominently displayed tool is the Map Explorer in
area B, which displays a 2-D map of a region (e.g., an office
area shown here). The tool provides the user with an easy
way to specify locations of agents (e.g., two CAP-aware
doors). Area A provides access to tools using which the user
can select and retrieve model elements from libraries and use
them to construct and customize simulation models of the
target AERS and its operating environment. When new agent
types need to be created, a click of “Create New Agent”
button in area A is the first step. Area C displays the list of
all model elements that have been selected. Area D lets the
user set up and control simulation experiments (e.g., lengths
of time steps and the current simulation run). Area E lets the
user to specific environment parameters of the region
displayed in area B. The user can also visualize via the GUI
the development of the scenario within the part displayed in
area B during the simulation run.

B

B

CAP-
aware
door

D

A
Agent

Selection
and

creation

C
Agents in
current

simulation
model

Properties
of a

selected
agent F E

Create New Agent

Figure 5. GUI, tools and use scenario

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 46 / 53

V. CONCLUSION

The previous sections first presented the need for AERS
and ways to make them configurable, maintainable and
secure. Among all attributes of dependability, safety is the
most challenging one for AERS for reasons stated earlier.
We are developing the simulation framework AERS-SF
designed to support the use of simulation as a tool for
assessing the safety of AERS of diverse AERS in diverse
operating environments throughout their development and
deployment process. Thus far, we have been focusing on its
design; especially we want to make sure that the framework
will support the underlying models, simulation methods, data
capture and analysis methods required to meet its design
goals. We have adopted some of the approaches of ABDiSE.
Compared with that framework, AERS-SF is far more
complex in almost all aspects. Nevertheless, we believe that
the software architecture of ABDiSE, as well as some of its
software components, can be adopted and enhanced to give
the implementation of AERS-SF a head start.

ACKNOWLEDGMENT

This work is supported by the Academia Sinica,
Sustainability Science Research Project OpenISDM.

REFERENCES
[1] C. Y. Lin, E. T.-H. Chu, L.-W. Ku, and J. W. S. Liu, "Active

Disaster Response System for a Smart Building," Sensors, 14,
2014, pp.17451-17470, doi:10.3390/s140917451.

[2] J. W. S. Liu, E. T. H. Chu and C. S. Shih, “Cyber-Physical
Element of Disaster Prepared Smart Environment,” IEEE
Computer, Vol. 46, No. 2, Feb. 2013, pp. 69 – 75,
doi:10.1109/MC.2012.149.

[3] W. P. Laio, Y. Z. Ou, E. T. H. Chu, C. S. Shih, and J. W. S.
Liu, “Ubiquitous Smart Devices and Applications for Disaster
Preparedness,” Proc. of the 2012 Int. Symp. Ubiquitous
Intelligence & Computing, Frontiers Workshop, IEEE Press,
Sep. 2012, pp. 764 – 770, doi:10.1109/UIC-ATC.2012.98.

[4] Y. Z. Ou, C. M. Huang, C. T. Hu, E. T. H. Chu, C. S. Shih,
and J. W. S. Liu, "Responsive Alert Delivery over IP
Network," Proc. of IEEE Int. Conf. on Cyber Physical
Systems, Networks and Applications, IEEE Press, Aug. 2013,
pp. 19 – 25, doi:10.1109/CPSNA.2013.6614241.

[5] Common Alert Protocol Version 1.2, OASIS Standard,
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-
os.html (Retrieved: June 2015).

[6] Integrated Public Alert & Warning System (IPAWS)-OPEN,
https://www.fema.gov/integrated-public-alert-warning-
system-open-platform-emergency-networks, (Retrieved: June
2015).

[7] Building Information Models/Modeling (BIM) - Wikipedia,
http://en.wikipedia.org/wiki/Building_information_modeling,
(Retrieved: June 2015).

[8] P. Teicholz (editor). BIM for Facility Managers, Mar 2013,
IFMA Foundation.

[9] G. Percivall, “Smart Cities Spatial Information Framework,”
Jan 2015, Open Geospatial Consortium Document,
https://portal.opengeospatial.org/files/?artifact_id=61188,
(Retrieved: June 2015).

[10] 2011 Magnitude 5.8 Virginia Earthquake, August 23, 2011,
http://en.wikipedia.org/wiki/2011_Virginia_earthquake,
(Retrieved: June 2015).

[11] “No dependability, no Internet of Things,” Mar. 2004,
https://ec.europa.eu/digital-agenda/en/news/no-dependability-
no-internet-things, (Retrieved : June 2015)

[12] P. H. Su, C. S. Shih, J. Y-J. Hsu, J.Y.-J., K. J. Lin and Y. C.
Wang, “Decentralized fault tolerance mechanism for
intelligent IoT/M2M middleware,” Proc. of IEEE World
Forum on IoT, IEEE Press, Mar. 2014, pp. 45 – 50,
doi:10.1109/WF-IoT.2014.6803115.

[13] S, Cherrier, Y. M. Ghamri-Doudane, S. Lohier, and G.
Roussel, "Fault-recovery and coherence in Internet of Things
choreographies," Proc. of IEEE World Forum on IoT, IEEE
press, Mar. 2014, pp. 532 – 537, doi:10.1109/WF-
IoT.2014.6803224

[14] N. Maalel, N., E. Natalizio, A. Bouabdallah, P. Roux and M.
Kellil, "Reliability for emergency applications in Internet of
Things," Proc. of Int. Conf. on Distributed Computing in
Sensor Systems (DCOSS), IEEE Press, Mar. 2015, pp. 361 –
366, doi:10.1109/DCOSS.2013.40.

[15] RELYonIT Project, http://www.relyonit.eu/, (Retrieved: June
2015).

[16] RERUM: REliable, Resilient and secUre IoT for sMart city
applications, https://ict-rerum.eu/, (Retrieved: Jun 2015).

[17] L. Wu, and G. Kaiser, "FARE: A Framework for
Benchmarking Reliability of Cyber-Physical Systems," Proc.
of IEEE 2013 Long Island Systems, Applications and
Technology Conference, IEEE press, May 2013, pp. 1-6,
doi:10.1109/LISAT.2013.6578226.

[18] L. Silva, R. Leandro, D. Macedo , and L. A. Guedes, "A
Dependability Evaluation Tool for the Internet of Things,"
ACM Jr of Comp. and Elect. Eng, Vol. 39, No.7, Oct. 2013,
pp. 2005-2018, doi: 10.1016/j.compeleceng.2013.04.021.

[19] NIST Cyber-Physical Systems Testbed Workshop,
http://www.nist.gov/cps/cyber-physical-systems-testbed-
workshop.cfm, (Retrieved: Jun 2015)

[20] C. M. Macal and M.l J. North, “Introductory Tutorial: Agent-
Based Modeling and Simulation”, Journal of Simulation, Vol.
4, 2010, pp. 151–162. doi:10.1057/jos.2010.3.

[21] Rob Allan. “Survey of Agent Based Modeling and Simulation
Tools,” http://www.grids.ac.uk/Complex/ABMS/, (Retrieved:
June 2015).

[22] Hsu, T. L. and J. W.S. Liu, "An Agent-Based Disaster
Simulation Environment," Academia Sinica Technical Report
No. TR -IIS-15-005, March 2015.

[23] Case Study: Sophisticated fire safety systems enable rapid
isolation of incidents and evacuation of occupants,
http://w3.siemens.com/topics/global/en/sustainable-
cities/resilience/pages/sophisticated-fire-safety-systems.aspx,
(Retrieved: June 2015)

[24] A. Sagun, C. J. Anumba, and D. Bouchlaghem, "Safety Issues
in Building Design to Cope with Extreme Events: Case Study
of an Evacuation Process," J. Archit, Eng, Vol. 20, No.3,
Sept. 2014, doi: 10.1061/(ASCE)AE.1943-5568.0000147.

[25] B. Wang, H. Li, Y. Rezgui, A. Bradley, and H. N. Ong, “BIM
Based Virtual Envionrment for Fire Emergency Evacauation,”
The Sci. World Jr., 2014, Article ID 589016, 22 pages.

[26] W3C XML Security 2.0, http://www.w3.org/TR/xmlsec-
reqs2/, April 2013, (Retrieved: June 2015).

[27] Enhanced Fujita (EF) scale, from Wikipedia,
http://en.wikipedia.org/wiki/Enhanced_Fujita_scale,
(Retrieved: June 2015).

[28] NASA System Safety Handbook, Vol. 1, NASA/SP-2010-
580, Nov. 2011, http://www.w3.org/TR/xmlsec-reqs2/,
(Retrieved: June 2015).

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 47 / 53

Trust-based Service Management of Mobile Devices in Ad Hoc Networks

Yating Wang, Ing-Ray Chen
Virginia Tech

Department of Computer Science
Falls Church, VA, USA

Email: {yatingw, irchen}@vt.edu

Jin-Hee Cho
U.S. Army Research Laboratory

Computational and Information Sciences Directorate
Adelphi, MD, USA

Email: jinhee.cho@us.army.mil

Abstract— With the proliferation of fairly powerful mobile
devices and ubiquitous wireless technology, traditional mobile
ad hoc networks (MANETs) now migrate into a new era of
service oriented MANETs wherein a mobile device can provide
and receive service from other mobile devices it encounters
and interacts with. We discuss our ongoing research efforts in
trust management and trust-based algorithm design for
service-oriented MANET applications to answer the challenges
of MANET environments, including no centralized authority,
dynamically changing topology, limited bandwidth and battery
power, limited observations, unreliable communication, and
the presence of malicious nodes who act to break the system
functionality as well as selfish nodes who act to maximize their
own gain. We also highlight key ideas and experiences learned,
and provide future research directions.

Keywords-service-oriented mobile ad hoc networks; multi-
objective optimization; trust; performance analysis.

I. INTRODUCTION
An autonomous service-oriented mobile ad hoc network

(MANET) is populated with service providers (SPs) and
service requesters (SRs). A realization of service-oriented
MANETs is a web-based peer-to-peer service system with
mobile nodes providing web services and users (through
their mobile devices) invoking web services. Unlike a web
service system in which nodes are connected to the Internet,
nodes in service-oriented MANETs are mobile and the
communication between peers not within radio range is
multi-hop with nodes in the system serving as routers. One
can view a service-oriented MANET as an instance of
Internet of Things (IoT) systems [7] with a wide range of
mobile applications including smart-city, smart tourism,
smart car, smart environmental monitoring, and healthcare
[1]. It is particularly suitable to military applications where
all nodes are mobile with multi-hop communication.

This paper discusses our ongoing research work in trust
management and trust-based algorithm design for service-
oriented MANETs, key ideas and experiences learned, and
future research directions. Our aims are to (1) identify trust
dimensions for service-oriented MANET applications; (2)
develop an efficient and effective trust protocol for service-
oriented MANETs; and (3) develop efficient and effective
trust-based algorithms for a set of service-oriented MANET
applications. The overarching principle is the design notion
of adaptive control, allowing trust computation, aggregation,
propagation, formation (out of multiple trust dimensions)

and update decisions to be dynamically adjusted to minimize
trust bias and maximize application performance. This goal
is to be achieved in the presence of malicious mobile devices
performing a wide range of attacks, including bad-mouthing,
ballot-stuffing, packet dropping, opportunistic service, self-
promotion, conflicting behavior, and on-off service attacks
for personal gain.

The rest of the paper is organized as follows. Section II
discusses related work. Section III discusses the threat model
for service-oriented MANETs. Section IV presents our
solutions toward trust management of mobile devices in
service oriented MANETs. Section V presents our solutions
toward trust-based service management for performance
optimization of service-oriented MANET applications.
Section VI summarizes key research ideas and experiences
learned. Finally, Section VII concludes the paper and
outlines future research directions.

II. RELATED WORK
Many existing trust models for predicting trust are based

on Bayesian inference [3]. Bayesian inference treats trust as
a random variable following a probability distribution (e.g.,
Beta distribution) with its model parameters being updated
upon new observations. A shortcoming of Bayesian
inference is that trust value does not reveal the uncertainty of
trust since it is just a mean. For example, the same trust value
can be given to two nodes despite one node was observed for
just 2 times, while the other node was observed for 20 times.
Belief theory or subjective logic trust models [9] have been
proposed to remedy the problem mentioned above, by
introducing uncertainty into trust calculation. Fuzzy logic
based trust models are also well studied in the literature [12].
Instead of using a binary set, a membership function is
defined indicating the degree to which a node is considered
trustworthy. Relative to the works cited above based on
Bayesian inference, belief theory, or fuzzy logic, we take an
entirely different approach. Our root is in statistical analysis.
We develop a regression-based trust model to learn the
behavior pattern of a SP, taking context information into
consideration to estimate the reliability trust of a SP that is
selected by a SR to execute a service request under a
particular environment context.

A significant amount of work has been done in the area
of trust-based defenses against attacks in MANETs [13]-
[18], [35]-[38]. A common drawback is that dynamically
tuning trust parameters may perform poorly when a node

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 48 / 53

does not have enough self-observation experiences with
other nodes in MANET environments and must rely on
recommendations. Different from the works cited above, we
advocate the use a robust statistical kernel to tolerate false
recommendations to effectively achieve resiliency against
recommendation attacks. Also unlike existing work, our goal
is not to identify “bad” SPs, but to predict whether a SP,
whether “good” or “bad,” can provide good service, given a
set of context variables characterizing the MANET
operational environment, including dynamically changing
topology, limited bandwidth, battery power, and unreliable
communication. In our approach, a SR learns and predicts a
SP’s service behavior taking context information into
consideration, instead of just judging a SP’s trustworthiness
from self-observations or recommendations received, as
having been done in existing works.

III. THREAT MODEL
Just like Internet-based web services, in a service-

oriented MANET there are malicious SPs acting for their
own gain. The common goal of malicious nodes is to
increase their chance of being selected for providing service.
Malicious nodes can collude to achieve this common goal.
We consider the following malicious attacks in our research:
1. Bad-mouthing attacks: a malicious node can ruin the

trust of a good node (by providing bad
recommendations against it) so as to decrease the
chance of that node being selected for service. This is a
form of collusion recommendation attacks, i.e., a
malicious node can collaborate with other malicious
nodes to ruin the trust of a good node.

2. Ballot-stuffing attacks: a malicious node can boost the
trust of another malicious node (by providing good
recommendations) so as to increase the chance of that
malicious node being selected as a SP. This is another
form of collusion recommendation attacks, i.e., a
malicious node can collaborate with other malicious
nodes to boost the trust of each other.

3. Packet-dropping attacks: when serving as a packet
relaying node, a malicious node can delay forwarding
or simply drop data packets to ruin the trust of the
source node.

4. Opportunistic service attacks: a malicious node can
provide good service to gain high reputation when it
senses its trust status is low, and can provide bad
service when it senses its trust status is high.

5. Self-promotion attacks: A malicious node can boost its
service quality information so as to increase its chance
of being selected as a SP.

6. Conflicting behavior attacks: a malicious node can
selectively provide satisfactory service for some SRs
while unsatisfactory for others. Here, we note that a
node’s best service quality is dictated by the
environmental and operational conditions at the time a
service request is issued. Therefore, a malicious node
can only perform conflicting behavior attacks with a
service quality not exceeding its best service quality.

7. On-off attacks: instead of always performing its best
service, a malicious node can perform bad service. With

on-off attacks, a malicious node performs bad service
on and off (or randomly) so as to avoid being labeled as
a low trust node and risk itself not being selected as a
SP, as well as not being able to effectively perform bad-
mouthing and ballot-stuffing attacks. One can view on-
off attacks as random attacks.

A malicious node may also perform data modification
attacks to ruin the reputation of a good node. We assume
data/source authentication techniques based on PKI can
prevent such attacks. A malicious node may also jam the
communication channel or perform denial of service (DoS)
attacks to overwhelm a SP. We assume that standard
intrusion detection techniques [8] are in place to mitigate
such attacks.

IV. TRUST MANAGEMENT
One challenge for implementing trust management in

service-oriented MANETs is to reliably estimate the trust
levels of SPs in a fully distributed manner, in contrast with
an e-commerce system with a centralized authority for trust
management. Most existing works take direct evidence for
direct trust assessment and propagates its observations to
other nodes as recommendations for indirect trust
assessment. However, a malicious node may violate this
protocol. Further, trust management of mobile devices must
take “service context” information into consideration. Such
service context information includes the current capability
of a SP (e.g., energy status), the service environment (e.g.,
congested wireless traffic), the identity of the SR (e.g., a
friend or a stranger), the payoff obtained (which is
application-dependent), and the service cost (e.g., energy
consumed). All these factors are called “context” variables
based on which the service behavior of a node forms a
pattern. The key to effective trust management is therefore
to learn the service behavior pattern of a node toward these
context variables. The behavior pattern learned can be used
to assess the reliability trust [3] of a SP when it is selected
to service a request in a particular context state
characterized by these context variables.

More specifically, within a specific type of service, SR
𝑖’s observation 𝑠𝑖𝑖𝑡 at time 𝑡 of the service quality received
from SP 𝑗 is either “satisfactory” or “unsatisfactory.” If the
service quality is satisfactory, then 𝑠𝑖𝑖𝑡 =1 and SP 𝑗 is
considered trustworthy; otherwise, 𝑠𝑖𝑖𝑡 =0 and SP 𝑗 is
considered untrustworthy. Let the operational and
environmental conditions at time 𝑡 be characterized by a set
of distinct context variables deemed appropriate for an
application, denoted by a column vector 𝐱𝑡 = [𝑥0𝑡 , … , 𝑥𝑚𝑡]⊤,
where 𝑥𝑖𝑡 represents the ith context variable. Then,
reliability trust or just trust for short is the probability that
SP 𝑗 is capable of providing satisfactory service under the
operational and environment conditions at time 𝑡 described
by the context variable set 𝐱𝑡.

Let 𝑘 (𝑘 ≠ 𝑖) be a recommender who had a prior service
experience with SP 𝑗 and is asked by SR 𝑖 to provide its
feedback regarding SP 𝑗. The recommendation from node 𝑘
is in the form of [𝐱𝑡 , 𝑠𝑘𝑖𝑡] specifying the specific operational
and environmental context conditions in 𝐱𝑡 under which the

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 49 / 53

observation in 𝑠𝑘𝑖𝑡 was made. For notational conveniences,
let 𝐒𝒊𝒊 = �𝑠𝑖𝑖

𝑡0 , … , 𝑠𝑖𝑖
𝑡𝑛�

⊤
, 𝑖 ≠ 𝑗, denote the cumulative

evidence gathered by SR 𝑖 regarding SP j’s service quality
over [𝑡0, 𝑡𝑛] including self-observations and
recommendations. Also let 𝐗 = [𝐱𝑡0 , … , 𝐱𝑡𝑛]⊤ denote the
corresponding operational and environmental context
conditions when the observations are made.

The problem is to learn the service behavior pattern of
SP 𝑗 by a latent variable 𝛃𝑖 between 𝑺𝒊𝒊 and 𝐗, and predict
the probability that SP j is trustworthy at time t, given the
context environment set at time n+1, 𝐱𝑡𝑛+1 , as input,
i.e., 𝑇𝑖,𝑖

𝑡𝑛+1 = Pr�𝑠𝑖𝑖
𝑡𝑛+1 = 1�𝐱𝑡𝑛+1 ,𝛃𝑖�. Essentially 𝑇𝑖,𝑖

𝑡𝑛+1
obtained above is the reliability trust of SP 𝑗 at time 𝑡𝑛+1
from SR 𝑖’s perspective. The service quality at time n+1,
�̂�𝑖𝑖
𝑡𝑛+1 , can be predicted by setting a trust threshold,

depending on the SR’s tolerance for the risk.
A common practice is to set the trust threshold as a value

greater than 0.5. For example, if the trust threshold is set to
be 0.6 by SR i then the requested service performed by SP j
is predicted to be satisfactory when the predicted reliability
trust is greater than 0.6.

In [2], we utilized logit regression as the behavior
pattern learning mechanism to solve the above trust
assessment problem, resulting in a trust management
protocol which we call LogitTrust.

LogitTrust assesses each SP in terms of its service
behavior patterns in response to operational and
environmental changes characterized by three context
variables: �𝑥𝑒𝑡 , 𝑥𝑐𝑡 ,𝑥𝑝𝑡 � for energy, capability, and price (or
reward). Energy is used to measure the cost of task
execution. In a congested environment the probability of
wireless channel contention and signal interference will be
high, so it will cost more for a SP to execute a task because
the SP needs to consume more energy in listening to the
channel and repeating packet transmission. The reasons for
considering the above context variables in service-oriented
MANET environments are: (a) a SP is more likely to
provide inferior service when the cost of servicing the task
is high (b) a SP is likely to provide inferior service when it
is limited in resources and capability; and (c) a profit-aware
SP is more likely to provide quality service when the SR
offers a higher price.

SR i will assess the three context variables �𝑥𝑒𝑡 , 𝑥𝑐𝑡 ,𝑥𝑝𝑡 �
while it sends a service request to SP j as follows: 𝑥𝑒𝑡 is
estimated by the number of neighbors sharing the channel as
more energy is consumed for channel contention and packet
retransmission when there are more nodes sharing the
channel; 𝑥𝑐𝑡 is estimated by the packet traffic to SP 𝑗 as more
traffic to SP 𝑗 hinders its processing capability; 𝑥𝑝𝑡 is SR i’s
reward to SP j upon satisfactory service completion. When
SP j completes the service, SR i will assess if the service is
satisfactory (1) or not (0), and store the service outcome
together with �𝑥𝑒𝑡 , 𝑥𝑐𝑡 , 𝑥𝑝𝑡 � context information as one record
in the dataset set for learning. It can also pass this
experience record to another node as a recommendation. A
SR in the system uses its own self-observations and

recommendations received to learn the behavior pattern of a
SP, and predict the reliability trust of the SP on a service
request in a particular context environment.

Relying on its robust learning engine, LogitTrust is
highly effective against dishonest recommendations
(through bad-mouthing and ballot-stuffing attacks). It
significantly outperforms existing trust computation models
such as Beta reputation with belief discounting [3] and
Adaptive Trust Management [4] in terms of trust accuracy
because it takes context information into consideration in
service behavior assessment. LogitTrust is also efficient in
terms of computational complexity as it utilizes a simple
linear model to model the relation between context variables
and observations.

With conflicting behavior attacks, a SP can selectively
provide satisfactory service for some SRs while providing
unsatisfactory service for others. In general, the relation
between a SR and a SP determines the SP’s service attitude
toward the SR. This is naturally solved by LogitTrust since
LogitTrust is based on SR-SP pairing. That is, each SR
evaluates each SP based on its own self-observations and
filtered recommendations. If SP j provides bad services to a
particular SR, then this evidence will be considered by this
SR as it learns SP j’s behavior pattern (that is, 𝛃𝑖) and will
not trust SP j with its service request.

With on-off attacks, a malicious node will attack only
randomly so as to evade detection and avoid being classified
as a malicious node. To the system, this malicious node is
not 100% of the time providing bad service, but just a
percentage of time providing bad service. Therefore, SP j
performing on-off attacks translates into SP j providing bad
service only randomly instead of persistently, which is a
pattern that can be learned by SR as LogitTrust learns SP j’s
behavior pattern (that is, 𝛃𝑖). This in effect allows each SR
to cope with a particular SP’s on-off attack behavior.

V. TRUST-BASED ALGORITHM DESIGN FOR
APPLICATION PERFORMANCE MAXIMIZATION

Service-oriented MANET applications are on the rise
thanks to the proliferation of fairly powerful mobile devices
and ubiquitous wireless technology. We aim to design and
validate trust-based algorithms for application performance
maximization for service-oriented MANET applications
with the goal of satisfying multiple objectives with
conflicting goals to achieve multi-objective optimization
(MOO).

Trust-based service composition and binding (with or
without MOO) has been studied in the web services domain
but only a single-trust, i.e., a single dimension of trust, was
considered. This largely ignores the fact that trust is multi-
dimensional. Identifying proper trust components and
forming the overall trust out of multiple trust components to
maximize application performance is of paramount
importance. We advocate the use of two key trust
dimensions in service request execution, namely,
competence and integrity, as the building blocks of a
composite trust metric.

Below we discuss our trust-based service management

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 50 / 53

algorithm designs for solving two service-oriented MANET
applications with MOO.

In [5], we investigated a trust-based dynamic task
assignment algorithm for performing dynamic task-to-node
service assignments to satisfy multiple objectives with
conflicting goals. The results demonstrated that our trust-
based solution has low complexity and yet can achieve
performance comparable to that of the ideal solution with
perfect knowledge of node reliability, and can significantly
outperform the non-trust-based solution. We analyzed how
MOO is achieved by the ideal, trust-based and non-trust-
based solutions, and identified parameter settings under
which the trust protocol performance in terms of MOO is
optimized for the trust-based solution which can best
balance multiple objectives with conflicting goals. The
results obtained are useful for dynamic trust management to
maximize application performance in terms of MOO in the
presence of malicious attacks.

In [6], we investigated a trust-based service composition
algorithm designed to satisfy mobile user service requests
with multiple objectives including maximizing quality-of-
service (QoS) and quality-of-information (QoI) while
minimizing the service cost (e.g., pricing) with the user
satisfaction ultimately measuring success. With a service
request in hand, a SR has to first formulate a service
composition plan based on the available SPs it encounters
and interacts with dynamically, and then determine the best
node-to-service assignment for achieving MOO. Dynamic
service composition and binding is especially complicated in
MANETs because of the space-time complexity of mobile
devices. This issue is further compounded by the fact that the
information received is often malicious, erroneous, partly
trusted, uncertain and incomplete in MANET environments.
Our trust-based service composition and binding algorithm
based on multi-trust outperforms the non-trust-based
counterpart using blacklisting, as well as a single-trust-based
algorithm using a traditional beta reputation system.

Our trust-based algorithm has a linear runtime
complexity and is able to achieve a solution quality
approaching that generated by Integer Linear Programming
without sacrificing much solution accuracy. We conducted a
comparative performance analysis of single-trust vs. multi-
trust protocols for peer-to-peer trust evaluation in service-
oriented MANETs. We utilized trust to effectively prevent
malicious nodes from disrupting the operation of a service-
oriented MANET. We conducted a detailed performance
analysis and demonstrated that our trust-based algorithm can
effectively penalize malicious nodes performing bad-
mouthing, ballot-stuffing packet dropping, self-promotion, or
opportunistic service attacks, thus filtering out malicious
nodes from service participation, and can ultimately lead to
high user satisfaction.

VI. KEY IDEAS AND EXPERIENCES LEARNED
The major difference between a service-oriented

MANET and an Internet-based web service system is that
the information received in MANET environments is often
malicious, erroneous, partly trusted, uncertain and
incomplete. In this paper we discussed key research ideas

for trust-based service management of mobile devices in
service-oriented MANETs wherein every node can be a
service provider or a service requester.

The first key idea is to take special characteristics of
service-oriented MANET environments into consideration
so as to design an efficient and effective trust protocol. We
discussed a novel logit regression-based trust model called
LogitTrust to dynamically estimate the trust of a mobile
device based on how it behaves in response to dynamically
changing MANET environments characterized by a set of
context variables. LogitTrust outperforms traditional
approaches based on Bayesian Inference with belief
discounting in terms of trust accuracy and resiliency against
attacks, while maintaining a low false positive rate. It is
efficient as it adopts a simple liner model for behavior
learning with low computational complexity. It is effective
since it reflects dynamic MANET characteristics, such as
limited bandwidth and battery power, as context variables in
the learning model formulation.

The 2nd key idea is to use multi-trust instead of single-
trust for trust-based algorithm design, recognizing multi-
dimensional trust assessment is critical for decision makings.

The 3rd key idea is that multi-trust-based algorithm
design is application specific. One must apply the best trust
formation tailored to the application requirements to achieve
application performance maximization, especially for those
applications with multi-objective optimization goals. We
demonstrated that our multi-trust-based algorithm
outperforms its non-trust-based and single-trust-based
counterparts with multi-objective optimization over a range
of service-oriented MANET applications, including node-
to-service composition and binding, and node-to-task
assignment MANET applications. Furthermore, we
demonstrated that our multi-trust-based algorithms for
solving these problems are efficient (with linear runtime
complexity) and effective without compromising solution
optimality, when compared with non-trust-based solutions,
and other single-trust-based solutions based on Bayesian
inference.

VII. FUTURE RESEARCH DIRECTIONS
There are several future research directions for trust

management of mobile devices in service-oriented
MANETs:

First, we plan to address the issue of runtime learning
and decision making for MANET nodes with limited
storage and computation resources. This may involve the
use of heuristics for each resource-limited node to store
most relevant trust records [10].

Second, we plan to incorporate adaptive control to the
trust protocol design. A possible direction is to use a
recommendation filtering mechanism to dynamically decide
if a recommendation is to be taken or not. Adaptive control
may be achieved by adjusting the recommender filtering
threshold value based on the hostility level in the
environment. When the hostility level is low (i.e., not many
“bad” nodes are out there), one can set a low threshold so as
to take in recommendations into the dataset, because
chances are all recommendations are benign. On the other

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 51 / 53

hand, when the hostility level is high, one can set a high
threshold to filter out false recommendations so as not to
contaminate the dataset for effective behavior learning.

Third, although we have reflected MANET environment
characteristics such as limited bandwidth and energy power
as context variables in our trust model formulation, we have
not considered node social behaviors which can also be
treated as context information. A context variable such as
“friendship” can dictate whether a node will perform good
service or bad service toward another node, or if a node will
perform ballot-stuffing or bad-mouthing attack toward
another node. We plan to further test the resiliency of
LogitTrust [2] against more complicated environmental and
operational scenarios such as noisy environments, social-
based service behaviors, as well as more sophisticated attack
behaviors such as opportunistic, collusion and insidious
attacks [11].

Lastly, we plan to leverage game theory and artificial
intelligence principles [19]-[23], and stochastic Petri net
modeling techniques [24]-[34] to capture the dynamics
between attacker/defense behaviors [39]-[42] and reason
how a service requester can perform counterattacks by
adaptive trust-based service management for achieving
multi-objective optimization of service quality.

ACKNOWLEDGMENT
This work is supported in part by the U. S. Army

Research Laboratory and the U. S. Army Research Office
under contract number W911NF-12-1-0445. This research
was also partially supported by the Department of Defense
(DoD) through the office of the Assistant Secretary of
Defense for Research and Engineering (ASD (R&E)). The
views and opinions of the author(s) do not reflect those of
the DoD or ASD (R&E).

REFERENCES

[1] E. Borgia, "The Internet of Things vision: Key features,
applications and open issues," Computer Communications,
vol. 54, 2014, pp. 1-31.

[2] Y. Wang, Y. C. Lu, I. R. Chen, J. H. Cho, A. Swami, and C.
T. Lu, "LogitTrust: A Logit Regression-based Trust Model
for Mobile Ad Hoc Networks," 6th ASE International
Conference on Privacy, Security, Risk and Trust, Boston,
MA, Dec. 2014, pp. 1-10.

[3] A. Jøsang and R. Ismail, "The Beta Reputation System," 15th
Bled Electronic Commerce Conf., 2002, pp. 1-14.

[4] I. R. Chen, J. Guo, and F. Bao, "Trust Management for SOA-
based IoT and Its Application to Service Composition," IEEE
Transactions on Service Computing, 2015, in press.

[5] Y. Wang, I. R. Chen, and J. H. Cho, "Trust-Based Task
Assignment in Autonomous Service-Oriented Ad Hoc
Networks," IEEE 12th International Symposium on
Autonomous Decentralized Systems, Taichung, Taiwan,
March 2015, pp. 71-77.

[6] Y. Wang, I. R. Chen, J. H. Cho, K. S. Chan, and A. Swami,
"Trust-based Service Composition and Binding for Tactical
Networks with Multiple Objectives," 32th IEEE Military
Communications Conference (MILCOM 2013), San Diego,
CA, USA, Nov. 2013, pp. 1862-1867.

[7] F. Bao and I. R. Chen, “Dynamic Trust Management for
Internet of Things Applications,” 2012 International
Workshop on Self-aware Internet of Things, San Franscisco,
CA, USA, Sept. 2012, pp. 1-6.

[8] R. Mitchell and I. R. Chen, “A Survey of Intrusion Detection
in Wireless Network Applications,” Computer
Communications, vol. 42, April 2014, pp. 1-23.

[9] A. Jøsang, “A Logic for Uncertain Probabilities,”
International Journal of Uncertainty, Fuzziness and
Knowledge-based Systems, vol. 9, no. 3, 2001, pp. 279-311.

[10] I. R. Chen, F. Bao, and J. Guo, “Trust-based Service
Management for Social Internet of Things Systems,” IEEE
Trans. on Dependable and Secure Computing, 2015, in press.

[11] R. Mitchell and I. R. Chen, “Effect of Intrusion Detection and
Response on Reliability of Cyber Physical Systems,” IEEE
Transactions on Reliability, vol. 62, no. 1, 2013, pp. 199-210.

[12] H. Xia, Z. Jia, L. Ju, and Y. Zhu, “Trust Management Model
for Mobile Ad Hoc Network Based on Analytic Hierarchy
Process and Fuzzy Theory,” IET Wireless Sensor Systems,
vol. 1, no. 4, 2011, pp. 248-266.

[13] I. R. Chen, J. Guo, F. Bao, and J. H. Cho, “Trust Management
in Mobile Ad Hoc Networks for Bias Minimization and
Application Performance Maximization,” Ad Hoc Networks,
vol. 19, August 2014, pp. 59-74.

[14] I. R. Chen, F. Bao, M. Chang, and J. H. Cho, “Dynamic Trust
Management for Delay Tolerant Networks and Its Application
to Secure Routing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 5, 2014, pp. 1200-1210.

[15] P. Michiardi and R. Molva, “Core: A Collaborative
Reputation Mechanism to Enforce Node Cooperation in
Mobile Ad Hoc Networks,” IFIP 6th Joint Working
Conference on Communications and Multimedia Security,
Portorož, Slovenia, 2002, pp. 107-121.

[16] J. H. Cho, A. Swami, and I. R. Chen, “Modeling and Analysis
of Trust Management for Cognitive Mission-Driven Group
Communication Systems in Mobile Ad Hoc Networks,” in
Int’l. Conf. Computational Science and Engineering, 2009,
pp. 641-650.

[17] J. H. Cho, A. Swami, and I. R. Chen, “Modeling and analysis
of Trust Management with Trust Chain Optimization in
Mobile Ad Hoc Networks,” Journal of Network and
Computer Applications, vol. 35, no. 3, 2012, pp. 1001-1012.

[18] K. Govindan and P. Mohapatra, “Trust Computations and
Trust Dynamics in Mobile Adhoc Networks: A Survey,”
IEEE Comm. Survey and Tutorials, vol. 14, no. 2, 2012, pp.
279-298.

[19] D. Korzhyk, V. Conitzer, and R. Parr, “Solving Stackelberg
Games with Uncertain Observability,” 10th International
Conference on Autonomous Agents and Multiagent Systems,
Taipei, Taiwan, May 2010, pp. 1013-1020.

[20] J. Wang and I. R. Chen, “Trust-based Data Fusion
Mechanism Design in Cognitive Radio Networks,” IEEE
Conference on Communications and Network Security
(CNS), San Francisco, Oct. 2014, pp. 53-59.

[21] I. R. Chen and F. B. Bastani,, “Effect of Artificial-Intelligence
Planning-Procedures on System Reliability,” IEEE Trans-
actions on Reliability, vol. 40, no. 3, 1991, pp. 364–369.

[22] I. R. Chen, F. B. Bastani, and T. W. Tsao, “On the Reliability
of AI Planning Software in Real-time Applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 7, no.
1, 1995, pp. 4–13.

[23] F. B. Bastani, I. R. Chen, and T. W. Tsao, “Reliability of
Systems with Fuzzy-Failure Criterion,” Annual Reliability
and Maintainability Symposium, Anaheim, California, USA,
1994, pp. 442–448.

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

 52 / 53

[24] I. R. Chen and D. C. Wang, “Analyzing Dynamic Voting
using Petri Nets,” 15th IEEE Symposium on Reliable Distrib-
uted Systems, Niagara Falls, Canada, 1996, pp. 44-53.

[25] I. R. Chen and D. C. Wang, “Analysis of Replicated Data
with Repair Dependency,” The Computer Journal, vol. 39, no.
9, 1996, pp. 767-779.

[26] R. Mitchell and I. R. Chen, “Behavior Rule Specification-
based Intrusion Detection for Safety Critical Medical Cyber
Physical Systems,” IEEE Transactions on Dependable and
Secure Computing, vol. 12, no. 1, 2015, pp. 16-30.

[27] I. R. Chen, T. M. Chen, and C. Lee, “Performance Evaluation
of Forwarding Strategies for Location Management in Mo-
bile Networks,” The Computer Journal, vol. 41, no. 4, 1998,
pp. 243–253.

[28] B. Gu and I. R. Chen, “Performance Analysis of Location-
Aware Mobile Service Proxies for Reducing Network Cost in
Personal Communication Systems,” Mobile Networks and
Applications, vol. 10, no. 4, 2005, pp. 453–463.

[29] O. Yilmaz and I. R. Chen, “Utilizing Call Admission Control
for Pricing Optimization of Multiple Service Classes in
Wireless Cellular Networks,” Computer Communications,
vol. 32, 2009, pp. 317-323.

[30] I. R. Chen and T. H. Hsi, “Performance Analysis of
Admission Control Algorithms based on Reward
Optimization for Real-Time Multimedia Servers,”
Performance Evaluation, vol. 33, no. 2, pp. 89-112, 1998.

[31] I. R. Chen, T. M. Chen, and C. Lee, “Agent-based forwarding
strategies for reducing location management cost in mobile
networks,” Mobile Networks and Applications, vol. 6, no. 2,
2001, pp. 105-115.

[32] S. T. Cheng, C. M. Chen, and I. R. Chen, “Dynamic Quota-
based Admission Control with Sub-Rating in Multimedia
Servers,” Multimedia Systems, vol. 8, no. 2, 2000, pp. 83-91.

[33] I. R. Chen, O. Yilmaz, and I. L. Yen, “Admission Control
Algorithms for Revenue Optimization with QoS Guarantees
in Mobile Wireless Networks,” Wireless Personal
Communications, vol. 38, no. 3, 2006, pp. 357-376.

[34] Y. Li and I. R. Chen, “Design and Performance Analysis of
Mobility Management Schemes Based on Pointer Forwarding
for Wireless Mesh Networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 3, 2011, pp. 349-361.

[35] H. Zhu, S. Du, Z. Gao, M. Dong, and Z. Cao, “A Probabilistic
Misbehavior Detection Scheme Towards Efficient Trust
Establishment in Delay-Tolerant Networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no.
1, 2014, pp. 22-32.

[36] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-
Based Trust for Peer-to-Peer Electronic Communities,” IEEE
Trans. on Knowledge and Data Engineering, vol. 16, no. 7,
2004, pp. 843-857.

[37] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The
EigenTrust Algorithm for Reputation Management in P2P
Networks,” 12th International Conference on World Wide
Web, Budapest, Hungary, May 2003, pp. 640-651.

[38] Z. Su et al., “ServiceTrust: Trust Management in Service
Provision Networks,” IEEE International Conference on
Services Computing, Santa Clara, CA, 2013, pp. 272-279.

[39] J. H. Cho, I. R. Chen, and P. G. Feng, "Effect of Intrusion
Detection on Reliability of Mission-Oriented Mobile Group
Systems in Mobile Ad Hoc Networks," IEEE Transactions on
Reliability, vol. 59, no. 1, 2010, pp. 231-241.

[40] H. Al-Hamadi and I. R. Chen, “Adaptive Network Defense
Management for Countering Smart Attack and Selective
Capture in Wireless Sensor Networks,” IEEE Transactions on
Network and Service Management, 2015, in press.

[41] R. Mitchell and I. R. Chen, “Modeling and Analysis of
Attacks and Counter Defense Mechanisms for Cyber Physical
Systems,” IEEE Transactions on Reliability, 2015, in preess.

[42] R. Mitchell and I. R. Chen, “Behavior Rule Based Intrusion
Detection Systems for Safety Critical Smart Grid Applica-
tions,” IEEE Transactions on Smart Grid, vol. 4, no. 3, Sept.
2013, pp. 1254 – 1263.

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

Powered by TCPDF (www.tcpdf.org)

 53 / 53

http://www.tcpdf.org

