
COMPUTATION TOOLS 2023

The Fourteenth International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-68558-050-6

June 26 - 30, 2023

Nice, France

COMPUTATION TOOLS 2023 Editors

Petre Dini, IARIA, USA/EU

 1 / 21

COMPUTATION TOOLS 2023

Forward

The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking (COMPUTATION TOOLS 2023), held between June 26 - 30, 2023, continued a series of
events dealing with logics, algebras, advanced computation techniques, specialized programming
languages, and tools for distributed computation. Mainly, the event targeted those aspects supporting
context-oriented systems, adaptive systems, service computing, patterns and content-oriented features,
temporal and ubiquitous aspects, and many facets of computational benchmarking.

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS 2023
technical program committee, as well as the numerous reviewers. The creation of quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and effort to contribute to COMPUTATION TOOLS 2023. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the COMPUTATION TOOLS 2023 organizing
committee for their help in handling the logistics and for their work that made this professional meeting
a success.

We hope COMPUTATION TOOLS 2023 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of
computational logics, algebras, programming, tools, and benchmarking. We also hope that Nice
provided a pleasant environment during the conference and everyone saved some time to enjoy this
beautiful city.

COMPUTATION TOOLS 2023 Steering Committee

Cornel Klein, Siemens AG, Germany
Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU) / DIMF / Leibniz Universität
Hannover, Germany

COMPUTATIONAL TOOLS 2023 Publicity Chairs

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

 2 / 21

COMPUTATION TOOLS 2023

Committee

COMPUTATION TOOLS 2023 Steering Committee

Cornel Klein, Siemens AG, Germany
Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU) / DIMF / Leibniz Universität
Hannover, Germany

COMPUTATIONAL TOOLS 2023 Publicity Chairs

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

COMPUTATION TOOLS 2023 Technical Program Committee

Lorenzo Bettini, Università di Firenze, Italy
Ateet Bhalla, Independent Consultant, India
Narhimene Boustia, University Saad Dahlab, Blida 1, Algeria
Azahara Camacho, Opinno, Spain
Angelo Ciaramella, University of Naples Parthenope, Italy
Cornel Klein, Siemens AG, Germany
Emanuele Covino, Universita' di Bari, Italy
Marcos Cramer, TU Dresden, Germany
Santiago Escobar, VRAIN - Universitat Politècnica de València, Spain
Andreas Fischer, Deggendorf Institute of Technology, Germany
Roderick Melnik, Wilfrid Laurier University, Canada
Corrado Mencar, Università degli Studi di Bari Aldo Moro, Italy
Ralph Müller-Pfefferkorn, Technische Universität Dresden, Germany
Keiko Nakata, SAP SE - Potsdam, Germany
Adam Naumowicz, University of Bialystok, Poland
Cecilia E. Nugraheni, Parahyangan Catholic University, Indonesia
Alberto Policriti, University of Udine, Italy
James Tan, Singapore University of Social Sciences, Singapore
Hans Tompits, Technische Universität Wien, Austria
Miroslav Velev, Aries Design Automation, USA
Kristin Yvonne Rozier, Iowa State University, USA

 3 / 21

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 4 / 21

Table of Contents

Capability and Applicability of Measurement Tools for AI Model’s Environmental Impact
Rui Zhou, Tao Zheng, Xin Wang, Lan Wang, and Emilie Sirvent-Hien

1

A Formal Model for the Simulation of Mobile Networks
Emanuele Covino

9

Powered by TCPDF (www.tcpdf.org)

 1 / 1 5 / 21

Capability and Applicability of Measurement Tools for AI Model’s Environmental
Impact

Rui Zhou, Tao Zheng, Xin Wang, Lan Wang

Orange Innovation China
Beijing, China

e-mail: {rui.zhou, tao.zheng, xin2.wang,
lan.wang}@orange.com

Emilie Sirvent-Hien
Orange Innovation
Châtillon, France

e-mail: emilie.hien@orange.com

Abstract—More and more of Artificial Intelligence (AI)
systems have been adopted by Information and
Communication Technology (ICT) solutions to make effective
digital transformation. In recent years environmental impact
of AI systems has been investigated and methodologies have
been developed to calculate their cost. In this paper, we survey,
analyze, and evaluate three types of tools for counting the
energy consumption/CO2 emission of AI systems. By verifying
them in sets of experiments, including centralized and
distributed on devices architecture, we compare ease of use of
tools, simulation result vs real measurement and finally bring
advice to help AI developers to take into account
environmental cost of AI models with measurement tools.

Keywords-FLOPs; PUE; PSF; TDP.

I. INTRODUCTION

The global average temperature in the past decades has
increased more than 1°C compared to the pre-industrial
baseline (1850-1900) [1]. Such climate change has caused
more extreme weather events, rising seas, reduction of
biodiversity, and negative impact to global health and safety.
The global warming is a critical issue facing all mankind.
Paris agreement sets a global objective for the temperature
increase below 2°C. Many nations, regions, industries,
companies, and individuals have put in place climate actions
on their agendas. The current rise is more rapid primarily as
the result of greenhouse gas emissions by burning fossil fuels
for energy used in industry, transport, building, etc., which
took 73.2% of global greenhouse gas emissions according to
the data obtained in the year 2016 [2].

Using Communication Technology (ICT) solutions in
these sectors can have a calculated potential to reduce
greenhouse gas emissions by up to 15% [3]. Their own
contribution to greenhouse gas emissions should not be
ignored. Our focus is on Artificial Intelligence (AI) as more
and more of them have been adopted by ICT solutions to
make the effective digital transformation. It is expected that
the Artificial Intelligence industry will be worth $190 billion
by 2025, with global spending in AI systems reaching $57
billion by 2021 already [4]. The demand for computing these
AI systems is growing exponentially. The intensive
computation nowadays not only takes place in datacenters
but also in a huge amount of edge devices closed to
consumers and enterprises to support AI applications to

process big data with low latency and large bandwidth
requirements.

Scientists and researchers have started to investigate the
environmental impact of AI systems in recent years and have
developed methodologies to calculate their costs. For
example, Schwartz and Doge et al. [5] refer to the AI
systems that focus on accuracy without any estimation on the
economic, environmental, or social cost of reaching the
claimed accuracy as Red AI. They have proposed a
simplified estimation of the cost of an AI which grows
linearly with the cost of processing a single example, the size
of the training dataset, and the number of hyperparameter
experiments. OpenAI [6] has pointed out that among the
three factors driving the advance of AI: algorithmic
innovation, data, and the amount of computing available for
training, computing is unusually quantifiable. The number of
FLoating point of OPerations (FLOPs) (adds and multiplies)
in the described architecture per training example can be
counted. If there is not enough information to directly count
FLOPs, Graphics Processing Unit (GPU) training time, how
many GPUs used and a reasonable guess at GPU utilization
can be used to estimate the number of operations performed.
Strubell et al. [7] have quantified the computational and
environmental cost of training several popular Natural
Language Processing (NLP) models. The total power
required at a given instance during training is related to the
average Power Usage Effectiveness (PUE) for datacenter
multiplying the sum of average power draw from all Central
Processing Unit (CPU) sockets, average power draw from all
Dynamic Random Access Memory (DRAM) (main memory)
sockets, and average power draw of a GPU during training
multiplied by the number of GPU. The greenhouse gas
emission equivalent per kilowatt-hour is then calculated
based on data provided by the U.S. Environmental Protection
Agency (EPA). Google research team R. So et al. [8] have
evaluated Large Transformer models which have been
central to recent advances in NLP and have developed a
more efficient variant with a smaller training cost than the
original transformer and other variants for auto-regressive
language modelling. Patterson et al. [9] have calculated the
energy use and carbon footprint of several recent large
models and found that large but sparsely activated Deep
Neural Networks (DNNs) can consume less energy than the
large, dense DNNs without sacrificing accuracy despite
using as many or even more parameters. The geographic
location and specific data center infrastructure matters to

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 6 / 21

reduce the greenhouse gas emission equivalent of Machine
Learning (ML) workload. Patterson et al. [10] have shared
interesting information that the inference represents about
3/5 of total ML usage at Google across three years, due to
the many billion-user services that use ML. The combined
emissions of training and serving need to be minimized.
Lacoste et al. [11] have developed a tool called “Machine
Learning Emissions Calculator” for ML community to
approximate the environmental impact of training ML
models. Ligozat and Luccioni [12] have proposed a practical
guide to quantifying carbon emissions for ML researchers
and practitioners. To analyse the carbon impact of ML,
besides the ML model emissions of greenhouse gas due to
the power consumption incurred by the equipment at the
running time, other dimensions of model impact should be
considered such as model preparation overhead, static
consumption of the equipment, infrastructure, as well as the
overall life cycle analysis of the equipment. The authors also
have suggested the most important steps to take for
practitioners and institutions for example, as an institution,
deploying computation in low-carbon regions, providing
institutional tools for tracking emissions, capping
computational usage, carrying out awareness campaigns, and
facilitating institutional offsets.

Standardizations have begun to tackle the subject, and for
example, a new work item proposal has been under
discussion in the Joint Technical Committee on Artificial
Intelligence (JTC 21) of European Committee for
Standardization (CEN) and European Committee for
Electrotechnical Standardization (CENELEC). The new
work item is about “Green and sustainable AI” which will
establish a framework for quantification of the
environmental impact of AI and its long-term sustainability
and encourage AI developers and users to improve the
efficiency of AI use [13]. The “CEN/CENELEC
standardization landscape for energy management and
environmental viability of green datacenters [14]” defines
Key Performance Indicators (KPIs) that address energy and
environmental control. However, these KPIs are focused on
datacenters and currently do not address the distributed or
IoT energy and environmental control. These aspects should
be addressed in the AI standards also including sustainable
development goals [15].

As discussed before, quantifying greenhouse emissions
for any AI system is very important and several simplified
and applicable methods have been developed in recent
studies. Some open-source tools are available applying and
integrating these methods. These tools have been classified
into three major categories: priori measurement tools which
usually calculate operational points in training and inference;
on-the-fly measurement tools which measure power
consumption, etc., when an AI system is running on
hardware; posteriori measurement tools refer to these tools to
approximate greenhouse gas emissions for a given
computation. In our experiments, we deep dive into
PowerAPI [16], PyJoules [17], and other open-source tools,
such as Keras-flops [18], Torchstat [19], torchsummaryX
[20], Flops-counter [21], JouleHunter [22], Jtop [23],
CarbonAI [24], MLCO2 [11] and Green Algorithm [25], in

order to have first-hand experience and to understand their
capabilities and limitations.

Most of the recent research work focuses on the
environmental impact of ML models at the training stage. As
[10] mentioned, the energy consumed at the inference stage
was more than the energy consumed at training for a given
few years. So our idea is to set up a framework to evaluate
the AI systems at both the training and inference stages.
Considering large scale of AI systems is running on the edge
side, we set up a heterogenous edge platform with various
device types where we can use the proper orchestration tool
that we have evaluated to deploy ML model on these
different edge devices which somehow can simulate
distributed AI applications deployed in real scenarios. Both
X86-based and ARM-based hardware are used in the
platform. We have designed methodologies to perform sets
of experiments to measure the power consumption of the ML
model incurred on hardware for the training stage and
inference stage. Unlike a data center, the power consumed by
these edge devices is mainly coming from CPU/GPU
computation and memory usage with very limited overhead
for cooling components if they have any. Even so, we have
measured the static power consumption of edge devices to
get a more precise measurement of AI model power
consumption by subtracting the static power consumption.
We also select various types of ML models for one AI use
case and compare the power consumption of these ML
models when they are running on edge devices in addition to
their performance.

Our objectives for the studies are to verify the
measurement tools and improve them; to obtain greenhouse
gas emissions of various ML models; to benchmark
performance vs environmental impact; and to develop
greener ML models. These experimental results can provide
useful information and recommendations for organizations to
build an institutional toolbox to track greenhouse gas
emissions of AI systems and offer responsible AI
applications to our customers. The scope and key point of
our analysis are the comparison of training and inference
energy/CO2 consumptions among different AI models
solving the same problem, not the comparison between the
centralized server and edge devices.

The organization of this paper is as follows. Section 1 is
an introduction; Sections 2 to 4 analyze the three categories
of measurement tools respectively; Section 5 provides our
experiments and results analysis, and Section 6 gives the
conclusion.

II. PRIORI MEASUREMENT TOOLS ANALYSIS

To evaluate the ML model’s power consumption by
comparing the model’s calculation amount, the priori
measurement tools are employed. They are used to evaluate
AI models and algorithms through computing the flops/mult-
adds/other parameters.

There are two usages of priori measurement tools:
 as an inline module to measure the AI model, for

example, first install as a python module, and then
call some tools’ functions in the model source

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 7 / 21

program to get the model’s related computing
information.

 as a Command Line Interface (CLI) tool to handle
the model’s source program, for example, first install
the tool, and execute the tool to process the model
source program to get the model’s related computing
information.

Because priori measurement tools handle the source code
of AI programs, they always process one specific framework
and support a subset of types of layers.

For testing priori measurement tools, a test environment
was built, and related AI frameworks and some candidate
priori measurement tools were installed first; then,
constructed some demo AI models with/without special
layers based on relevant frameworks; finally, computed and
compared these demo AI models’ Flops/Mult-Adds and
other related measurements using candidate priori
measurement tools and evaluated them through these
computed results.

We launched five tests for four priori measurement tools:
keras-flops, torchstat, torchsummaryX and flops-counter.

Keras-flops as a python module can calculate the FLOPs
of neural network architecture written in Tensorflow. Test1
verifies keras-flops’ support for Conv2dTranspose layer. In
this test, we constructed a model including
Conv2dTranspose layer to test this tool’s capability with two
python programs (with/without Conv2dTranspose Layer).
The difference value of flops means that Conv2dTranspose
layer is supported by keras-flops. Test2 verifies keras-flops’
support for Conv3dTranspose layer. According to the
supporting table, Conv3dTranspose layer is not supported by
keras-flops. In this test, we constructed a model including
Conv3dTranspose layer and test the tool’s capability with
two python programs (with/without Conv3dTranspose
layer). The same value of flops means that Conv3dTranspose
layer is not supported by keras-flops.

Torchstat is a lightweight neural network analyzer based
on PyTorch. Its usage is as a python module to measure an
AI model or as a CLI tool to handle a python program
including an AI model. Test3 verifies Torchstat’s support for
Conv2d layer and ConvTranspose2d layer. In this test, we
constructed Convolutional Neural Network (CNN) models
including Conv2d layer and ConvTranspose2d layer to test
the tool’s capability.

TorchsummaryX is also a tool based on the Pytorch
framework. This tool can handle Recurrent Neural Network
(RNN), Recursive Neural Network, or models with multiple
inputs. In the test4, we constructed two models with Conv2d
layer and ConvTranspose2d layer respectively. We can find
Mult-Adds remains unchanged. It means that
Convtranspose2d layer is supported for Mult-Adds by
torchsummaryX.

Flops-counter is based on the PyTorch framework and
designed to compute the theoretical number of multiply-add
operations in CNNs. It can also compute the number of
parameters and print the per-layer computational cost of a
given network. In the test5, we constructed two models with
Conv2d layer and ConvTranspose2d layer respectively. We
can find the computational complexity (i.e., number of

multiply-add operations) remains unchanged. It means that
Convtranspose2d layer is supported for Mult-Adds by
torchsummaryX.

Torchstat, torchsymmaryX, and flops-counter are all
based on the PyTorch framework, but their outputs are
different. Torchstat outputs numbers of parameters, amount
of Multiply+Adds, number of flops, and memory usage.
torchsummaryX and flops-counter just provide numbers of
parameters and amount of multiply+adds. According to some
feedback from Internet, the results of torchstat’s MAdd and
FLOPs are wrong, which should be swapped. The summary
of the four tools is shown in the following Table I.

TABLE I. SUMMARY OF FOUR PRIORI MEASUREMENT TOOLS

priori
measurement

tools

support
framework

outputs

keras-flops Tensorflow FLOPs
torchsummaryX PyTorch FLOPs, Multi-Add, memory,

total params
torchstat PyTorch Multi-Add, total params
flops-counter PyTorch Multi-Add, total params

Through our five tests, we can find that the effectiveness

of priori measurement tools relies on their detailed
implementation. The application of priori measurement tools
is limited. The tools we tested just support one special
framework (Tensorflow or PyTorch) and a subset of types of
model layers. In practice, most AI models usually include
some specific layers (e.g., 3D ConvTranspose layer) which
cannot be calculated by our tested priori measuring tools.

III. ON-THE-FLY MEASUREMENT TOOLS ANALYSIS

The most direct and precise way to measure an AI
program's power consumption is to measure it in real-time
while the process is going on. We named this type of tool the
"on-the-fly tool”. For this purpose, we have carried out the
research and study of relevant tools and later carried out the
comparison test and verification of their real use situation.

After preliminary selection, we choose the following
three measurement tools as candidates, they are PowerAPI
series (JouleHunter, PyJoules), CarbonAI, and Jtop. They
have their own methods and application scenarios, and
following their official instructions and guidance documents,
we conducted a series of tests and applications on them.

The first one is the PowerAPI, the goal of this project is
to provide a set of tools to go forward greener computing, the
idea is to provide software-defined power meters to measure
the power consumption of the program, the core of this
project is the PowerAPI toolkit for building such power
meters [29].

PowerAPI is a middleware toolkit for building software-
defined power meters. Software-defined power meters are
configurable software libraries that can estimate the power
consumption of software in real-time. A power meter built
on PowerAPI normally has two components -- the sensor and
the formula. The sensor is also a software, which worked like
the physical world sensor, queries the hardware’s (host
machine) data, and collects raw data correlated with the

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 21

power consumption of the software. All data will be stored in
an external database to make the data available to the
formula. For the other component, the formula is a
computational module that uses the collected data to
determine power consumption. Both are connected by a
database that is used to transfer information. The global
architecture of a power meter is represented in the Figure 1
below [26].

Figure 1. The global architecture of a power meter

For convenience and quick use, PowerAPI has provided
several useful components. As Hwps-Sensor (Hardware
Performance Counter), is a tool using the Running Average
Power Limit (RAPL) technology to monitor the Intel CPU
performance counter and power consumption of the CPU.
Also, some matched formulas like “SmartWatts Formula”
used for physical Linux machine, “VirtualWatts” used for a
virtue machine, etc.

PowerAPI also packages up (with sensor and formula) a
set of ready-to-use tools for diverse needs. Here Joule Hunter
and PyJoules are the two we selected and used for our
research.

JouleHunter runs on Linux machines with Intel RAPL
support. This technology has been available since the Sandy
Bridge generation [27]. JouleHunter can show what part of
your program code is consuming considerable amounts of
energy in detail. JouleHunter works similarly to
pyinstrument [28], as it forked the repo and replaced time
measuring with energy measuring. This tool can be easily
installed and used with one or two command line(s), two key
components of hardware the intel CPU and ram’s power
consumption can be printed out. However, from its official
documentation and real test we can see that JouleHunter this
tool has its limitation, such as it only worked with Linux OS
and no calculation for GPU power consumption.

Another software toolkit from PowerAPI is the PyJoules,
which can be used to measure the energy footprint of a host
machine along with the execution of a piece of Python code.
Except for Intel CPU socket package and RAM (only for
Intel server architectures), it also can monitor the energy
consumed by the GPU of the host machine, supporting both
for Intel integrated GPU (for client architectures) and Nvidia
GPU (Uses the Nvidia "Nvidia Management Library"
technology to measure the power consumption of Nvidia
devices. The energy measurement Application Programming

Interface (API) is only available on Nvidia GPU with Volta
architecture 2018) [29]. PyJoules can only work with AI
program coding on Python, and it should be installed and
imported as a function into the target main project python
file. It will report the total power consumption during the
code is running. Its results contain not only the target
project’s power consumption, thus including the OS and
other applications running at the same time if have. That
means it calculates the global power consumption of all the
processes running on the machine during this period. With
PyJoules, to get the closest measure to the real power
consumption of the measured program, we need to try to
eliminate any extra programs (such as graphical interface,
background running task, etc.) that may alter the power
consumption of the host machine and keep only the code
under measurement. Same as JouleHunter, PyJoules
currently can only work on GNU/Linux, and does not
support on Windows and MacOS.

CarbonAI is another project which aims to raise AI the
developers’ awareness of the AI’s carbon footprint. Firstly,
like PyJoules it provides a python package that allows
developer to monitor power consumption. Then based on the
measurement results, CarbonAI will do a transition between
power consumption and CO2 emissions, to provide a more
intuitive understanding of how much our AI development is
doing to the environment. For example, training an AI model
for 100 rounds is the equivalent of driving from Paris to
Marseille. Also, the power consumption results of CarbonAI
are given as a CSV file, which includes most key devices of
a host machine, like CPU, GPU, and RAM, but also the
name of the country where the package was used (based on
the IP or what the user set). So, the amount of CO2 emitted
by the usage will be depends on the country and the energy
mix used by the country to produce electricity. For
combability, a different form that PyJoules only support
Linux OS, CarbonAI package is compatible with most
platforms (Linux, Windows, and MacOS) with the varying
installation process.

At present, apart from x86 architecture servers and
devices, ARM-based devices are also widely used in various
fields of AI. However previous tree tools only work well on
x86 hardware platforms, all of them will get several issues or
bugs. For ARM platforms, Nvidia provides their official tool
Jtop for the Jetson series, a platform designed for AI
development and use cases. Jtop is one of jetson-stats, a
package for monitoring and controlling NVIDIA Jetson
(Xavier NX, Nano, AGX Xavier, TX1, TX2) Works with all
NVIDIA Jetson ecosystems. Jtop can be run independently
and show the real-time usage data of CPU, GPU, and RAM
and also the actual frequency of the hardware. With its built-
in graph user interface, we can easily read the results, but
only the immediate frequency, so for the final power
consumption we need manually calculate the Total power
consumption using w=p*t, and “t” is the duration of the
target AI program. Compared to other tools, although the
result of power consumption cannot be directly obtained,
Jtop can provide the usage rate of each device.

All those tools are not very difficult to install and use,
some of them can be installed with several command lines,

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 21

like JouleHunter, CarbonAI, and Jtop; and for PyJoules, we
can add it into our application code just like a function. For
compatibility, except CarbonAI supports Linux, Windows
and MacOS (we only use it on Linux machines), other tools
currently can only be used on Linux. Most tools currently
only support Intel CPU and RAM, for GPU’s power
consumption, we need external components or 3rd part tools.
For the programming language, most tools are built up as a
python package, so they only worked with AI apps coded
with python.

For the usage, the reported power consumption is not
only the power consumption of the code you are running.
This includes the global power consumption of all the
processes running on the machine during this period, thus
including the OS and other applications. So, we need to
eliminate any extra programs and get the value of the devices
when idling as the base level if possible. This will give the
closest measure to the real power consumption of the
measured code.

IV. POSTERIORI MEASUREMENT TOOLS ANALYSIS

AI researchers also proposed to estimate carbon
emissions of the AI computation by posteriori tools, i.e., ML
CO2 Impact and Green Algorithms. The key methodology of
the tools is to estimate the power consumption after the
computation process and achieve the carbon emissions from
power consumption and related carbon intensity.

As shown in Table II, ML CO2 Impact tool is designed
to estimate the carbon emissions produced by training ML
models. The inputs include the geographical zone of the
server, the type of GPU, and the training time, and the output
is the approximate amount of CO2e. The inventors collected
available public data for the computation including the
Thermal Design Power (TDP) of the hardware, the location
of the hardware, and the related carbon intensity (CO2e
emissions per kWh).

TABLE II. ML CO2 IMPACT AND GREEN ALGORITHMS

 ML CO2 Impact Green Algorithms
Energy
consumption

runtime * power
draw for GPU

runtime * (power draw for cores
* usage + power draw for
memory) * PUE * PSF

Hardware
type

Mainly GPU type GPU, CPU, CPU/GPU co-
existing case, number of cores,
memory

Usage factor 100% by default 100% by default and
configurable

Other factors / Power Usage Effectiveness: the
extra energy needed to operate
the data center (cooling, lighting
, etc.)
Pragmatic Scaling Factor:
multiple identical runs (e.g. for
testing or optimization)

Green Algorithms tool aims to estimate the carbon

footprint of any computational task. Compared with ML
CO2 Impact tool, it requires extra inputs of memory size,
real usage factor of the processing core, PUE, and Pragmatic
Scaling Factor (PSF).

Different from the on-the-fly measurement tools, the
power consumption model of both tools uses TDP and
runtime to achieve the power consumption, which means in
the calculation the usage of cores is 100% by default. Green
Algorithms tool allows to configure the real usage of cores
and takes more quantifiable elements into consideration, i.e.,
memory power, PUE, and PSF, allowing users to estimate
the power consumption more flexibly.

Considering carbon intensity, it is known that fossil fuels
have the highest carbon footprints, for example, coal emits
820g of CO2e per kWh of electricity produced [30], while
electricity generated by wind, solar, hydro, or nuclear power
emits lower amounts of carbon footprints, i.e., 12g CO2e
/kWh for wind, and 27~48g CO2e /kWh for all types of
solar. In different countries and regions, even different
electric power companies, the energy structure differs from
others, and various energy sources would be used to generate
electricity. The location matters as all servers are connected
to local grids and they will have different amounts of CO2e
emissions when consuming or generating the same amount
of electricity, for example, 174g CO2e emission per kWh of
electricity for France and 741g CO2e /kWh for Germany (at
12:00 PM on December 1, 2022) [31].

Both tools refer to public data for carbon intensity. They
provide data reference of data centers including Google
Cloud Platform, Amazon Web Services, and Azure.
However, we can see clearly that there is no unified data
source, location scope, and effective time due to differences
in the data sources of the two tools.

From the preliminary analysis of the above two tools, we
know that when evaluating carbon emission impact, both
power consumption and carbon intensity should be
considered. Parameters like hardware type, PUE, the usage
of the core, and memory will contribute to the energy
consumption. For carbon intensity, the location matters
because of the different energy mix in different countries and
regions, but there are various data sources that may provide
quite different location scopes and effective time. Also, we
notice that the goal of these tools is to make people aware of
the carbon emission impact, to provide a quick tool to
evaluate the carbon emission during machine learning work
and to recommend carbon reduction actions like selecting the
cloud provider or server location wisely, buying carbon
offsets, choosing clean energy, and improving AI algorithms
to be green.

V. EVALUATION EXPERIMENTS

Our objectives are to verify the measurement tools and
have some comments and suggestions proposed for
measurement tools for AI models through our experiments.

We have developed a systematic methodology to carry
out our experiments. First, a cloud-edge platform was set up
with heterogenous hardware either X86-based, or ARM-
based. These hardware devices have similar levels of
computation capabilities to commercial end devices such as
LiveBox, controllers on vehicles, etc. Then, we selected an
AI application, in our case, we choose Person Re-
Identification (Re-ID) which is the task of associating the
same person taken from different cameras or from the same

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 21

camera on different occasions [32]. Person Re-ID have wide
usage in smart building and smart city scenario. Many
Person Re-ID open-source models are accessible using
various AI architectures, such as CNN, Transformer, or Long
Short Term Memory (LSTM). Based on criteria, such as
performance, release date, accessibility, etc., we have
selected several Person Re-ID models with different AI
model architectures. After that, we measured their power
consumption during the training stage and inference stage
when they are running on various types of hardware in
rounds of experiments.

We build a benchmark to compare the results of the on-
the-fly and posteriori measurement tools. In the first
experiment, the power consumption of Fast-ReID (CNN)
model is measured by processing AI inference on a 500s
video of a single person. The results of PyJoules and Jtop
tools are selected as a baseline of the real-time measured
power consumption. MLCO2 Impact and Green Algorithms
tools are used to estimate the power consumption afterward,
respectively. As is shown in Table III, three types of
hardware have been evaluated: a server with GeForce GTX
1080 Ti, Intel Xeon E5-2678 v3 and a memory of 64GB, and
two edge devices – one with Intel i7-8559U and a memory of
16GB, and the other with NVIDIA Jetson AGX Xavier,
ARMv8 Processor rev 0 (v8l) and a memory of 32GB. For
Green Algorithms tool, there is a default CPU usage of 100%
and a configurable CPU usage that can be estimated based
on the observation of the AI processing experiment. The
PUE used in the calculation is 1 because we use local private
infrastructure instead of cloud services and ignore the power
consumption of cooling or lighting. The memory power draw
only depends on the size of memory available (0.3725 W per
GB).

In the second experiment, as is shown in Table IV, four
different Re-ID models are evaluated at the training stage:
Fast-ReID (CNN), st-ReID (CNN), DeepPerson (LSTM),
and Trans-ReID (Transformer). Since both GPU and CPU
cores will be used in the AI training process, power
consumption should be considered for both.

VI. CONCLUSION

We have been carrying out series of experiments to
verify the measurement tools. For different types of
measurement tools, we found that:

The effectiveness of priori measurement tools relies on
their detailed implementation. The application of priori
measurement tools is limited. The tools just support one
special framework and a subset of types of model layers.

The on-the-fly tools can be used during the processes of
AI programs; however, they are limited. PyJoules or
JouleHunter can be used to get power consumption (CPU,
GPU, RAM) of large AI programs on different x86
architectures devices, while for architectures ARM devices,
only Jtop supported. Ideally, it is better to develop and use
the same cross-platform tool. However, the comparison of
experimental and estimated results shows that the error of the
on-the-fly measurement tools is acceptable.

The posteriori measurement tools can be used for power
consumption estimation after the AI processing by knowing

the runtime and the parameters of hardware (CPU, GPU,
memory, etc.). For resource-constrained edge devices, the
resources usually tend to be nearly full of use, and the tools
with a default configuration are able to make a quick
estimation of the power consumption. For servers that have
more resources and stronger processing capabilities, if extra
information can be given, for example, the real usage of the
cores, the Green Algorithms tool will be optimized to make
close estimations to real-time measured power consumption.
Both tools can provide different CO2e emissions due to
different locations where the AI computation is processed.
The researchers aim to remind people to carefully select the
cloud providers and locations for AI services when carbon
impacts should be taken into consideration.

We have selected an AI use case: Re-ID which can be
realized by various types of AI architecture: CNN, LSTM,
and Transformer. Once the specific AI model for each type is
selected, the power consumption of the selected AI models is
measured during the training and inference stages when they
are running on different edge devices. The experimental
results show that the total training power consumption of the
AI model is determined by the training algorithm and
training time. Training power consumption is in proportion
to the training time in general. With the measurement tool, it
can quantify the power consumption to make a more
accurate assessment for different AI models. The power
consumption of AI applications is positively correlated with
the complexity of application scenarios when the hardware
capability allows.

Our plan includes continuously investigating and
improving the measurement tools and verifying them in
experiments. With these tools, researchers and scientists may
be able to design more power-efficient AI models without
sacrificing model performance.

REFERENCES
[1] WiKi climate change. [Online]. Available from:

https://en.wikipedia.org/wiki/Climate_change/ [retrieved: 05,
2023].

[2] H. Ritchie, “Sector by sector: where do global greenhouse gas
emissions come from?”. [Online]. Available from:
https://ourworldindata.org/ghg-emissions-by-sector/
[retrieved: 05, 2023].

[3] Ericsson, “ICT’s potential to reduce greenhouse gas emissions
in 2030”. [Online]. Available from:
https://www.ericsson.com/en/reports-and-papers/research-
papers/exploring-the-effects-of-ict-solutions-on-ghg-
emissions-in-2030/ [retrieved: 05, 2023].

[4] Matleena, “Amazing AI Statistics (2022): Stunning Growth of
AI”. [Online]. Available from: https://zyro.com/blog/ai-
statistic/ [retrieved: 05, 2023].

[5] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green
AI”, Communications of the ACM, vol. 63, No. 12, pp. 54-63,
Dec. 2020.

[6] OpenAI, http://openai.com/ [retrieved: 05 2023].
[7] E. Strubell, A. Ganesh, and A. McCallum, “Energy and

Policy Considerations for Deep Learning in NLP”, 57th
Annual Meeting of the Association for Computational
Linguistics (ACL). Florence, Italy. Jul. 2019, doi:
10.18653/v1/P19-1355.

[8] D. R. So, et al., “Primer: Searching for Efficient Transformers
for Language”, 35th Conference on Neural Information

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 21

Processing Systems (NeurIPS 2021), virtual, 2021, doi:
10.48550/arXiv.2109.08668.

[9] D. Patterson, et al., “Carbon Emissions and Large Neural
Network Training”, 2021, doi: 10.48550/arXiv.2104.10350.

[10] D. Patterson， et al., “The Carbon Footprint of Machine
Learning Training Will Plateau, Then Shrink”, Computer, vol.
55, pp. 18-28, Jul 2022.

[11] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres,
“Quantifying the Carbon Emissions of Machine Learning”,
2019, doi: 10.48550/arXiv.1910.09700.

[12] A. Ligozat and S. Luccioni, “A Practical Guide to
Quantifying Carbon Emissions for Machine Learning
researchers and practitioners”, [Online]. Available from:
https://hal.archives-ouvertes.fr/hal-03376391/document/
[retrieved: 05, 2023].

[13] CEN-CENELEC JTC 21 “Artificial Intelligence”, [Online].
Available from: https://www.cencenelec.eu/areas-of-
work/cen-cenelec-topics/artificial-intelligence/ [retrieved: 05
2023].

[14] CEN/CENELEC, “Standardization landscape for energy
management and environmental viability of green data
centres”, [Online]. Available from:
ftp://ftp.cencenelec.eu/EN/EuropeanStandardization/HotTopic
s/ICT/GreenDataCentres/GDC_report_summary.pdf
[retrieved: 05 2023].

[15] Walshe, R., Casey, K., Kernan, J., Fitzpatrick, D., “AI and big
data standardization: Contributing to United Nations
sustainable development goals”, Journal of ICT
Standardization, pp. 77–106, 2022.

[16] PowerAPI, http://www.powerapi.org/ [retrieved: 05 2023].
[17] PyJoules, https://github.com/powerapi-ng/pyJoules/

[retrieved: 05 2023].
[18] Keras-flops, https://github.com/tokusumi/keras-flops/

[retrieved: 05 2023].

[19] Torchstat, https://github.com/Swall0w/torchstat/ [retrieved:
05 2023].

[20] torchsummaryX,
https://github.com/nmhkahn/torchsummaryX/ [retrieved: 05
2023].

[21] flops-counter, https://github.com/sovrasov/flops-
counter.pytorch/ [retrieved: 05 2023].

[22] JouleHunter, https://github.com/powerapi-ng/joulehunter/
[retrieved: 05 2023].

[23] Jtop, https://pypi.org/project/jetson-stats/ [retrieved: 05 2023].
[24] CarbonAI, https://github.com/Capgemini-Invent-

France/CarbonAI/ [retrieved: 05 2023].
[25] L. Lannelongue, J. Grealey, and M. Inouye, “Green

algorithms: quantifying the carbon footprint of computation”.
Advanced science, vol 8, issue 12, 2021, doi:
10.48550/arXiv.2007.07610.

[26] Global architecture picture,
https://raw.githubusercontent.com/powerapi-ng/powerapi
ng.github.io/master/images/powerAPI_archi.png/ [retrieved:
05 2023].

[27] Sandy Bridge generation,
https://fr.wikipedia.org/wiki/Intel#Historique_des_microproce
sseurs_produits/ [retrieved: 05 2023].

[28] Pyinstrument, https://pyinstrument.readthedocs.io/ [retrieved:
05 2023].

[29] Volta architecture,
https://en.wikipedia.org/wiki/Volta_(microarchitecture)/
[retrieved: 05 2023].

[30] https://www.world-nuclear.org/ [retrieved: 05 2023].
[31] https://app.electricitymaps.com/map/ [retrieved: 05 2023].
[32] Person-re-Identification,

https://paperswithcode.com/task/person-re-identification
[retrieved: 05 2023].

TABLE III. FAST-REID, SINGLE PERSON, RUNNING TIME = 500S, AI INFERENCE

Measurement tools GPU/CPU type Power consumption

Carbon
emissionsa

CPU (W) Usage Memory (GB) Total (Wh) CO2e(mg)

1 On the fly - PyJoules Server:
GPU: GeForce GTX 1080 Ti
CPU: Intel Xeon E5-2678 v3
Memory: 64GB

 7.2
2 A posteriori - MLCO2 Impact 120 100% 16.67 633.46
3 A posteriori – Green Algorithms 120 30%/100% 64 8.31/19.98 426.18/

1002
1 On the fly - PyJoules Intel machine II:

CPU: Intel i7-8559U
Memory: 16GB

 4.1
2 A posteriori - MLCO2 Impact 28 100% 3.89 147.82
3 A posteriori – Green Algorithms 28 70%/100% 16 3.55/4.72 182.04/

241.86
1 On the fly - Jtop ARM:

NVDIA Jetson AGX Xavier
CPU: ARMv8 Processor rev 0 (v8l)
Memory: 32GB

 3.8
2 A posteriori - MLCO2 Impact 30 100% 4.17 158.46
3 A posteriori – Green Algorithms 30 70%/100% 32 4.57/5.82 234.45/

298.55
a. The reference location is Europe, France.

TABLE IV. FAST-REID, ST-REID, DEEPPERSON, AND TRANS-REID, AI TRAINING

Measurement tools Test ML
model

Running
time(s)

Power consumption

Carbon
emissionsa

GPU
(W)

Usage CPU
(W)

Usage Memory
(GB)

Total (Wh) CO2e(g)

1 On the fly - PyJoules Fast-ReID,
CNN

4625 125.06
2 A posteriori - MLCO2

Impact
120 100% 45 100% 211.98 8.06

3 A posteriori – Green
Algorithms

120 66%/100% 45 10%/100% 64 128.16/242.61 7.08/12.44

1 On the fly - PyJoules st-ReID, 7988 212.26

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 21

2 A posteriori - MLCO2
Impact

CNN 120 100% 45 100% 366.12 13.91

3 A posteriori – Green
Algorithms

120 66%/100% 45 10%/100% 64 238.62/419.01 12.24/21.49

1 On the fly - PyJoules DeepPerson,
LSTM

8326 201.74
2 A posteriori - MLCO2

Impact
120 100% 45 100% 381.61 30.35

3 A posteriori – Green
Algorithms

120 66%/100% 45 10%/100% 64 248.72/436.74 26.69/46.87

1 On the fly - PyJoules Trans-
ReID, Transf
ormer

17426

 451.7
2 A posteriori - MLCO2

Impact
120 100% 45 100% 798.69 30.35

3 A posteriori – Green
Algorithms

120 66%/100% 45 10%/100% 64 520.55/914.09 26.69g/46.87

a. The reference location is Europe, France.

8Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 21

A Formal Model
for the Simulation of Mobile Networks

Emanuele Covino

Dipartimento di Informatica
Universitá degli Studi di Bari Aldo Moro

Bari, Italy
emanuele.covino@uniba.it

Abstract—We introduce MOTION (MOdeling and simulaTIng
mObile ad-hoc Networks), a Java tool that simulates a well known
protocol for mobile networks (the Ad-hoc On-demand Distance
Vector - AODV); its definition is based on the Abstract State
Machine formal model used within the framework ASMETA
(ASM mETAmodeling). Morover, we suggest that some protocols
for mobile networks could be used to provide a formal definition
of social structures and to analyze the related properties.

Index Terms—AODV, Abstract State Machines, Mobile ad-hoc
networks, Mobile computing, Social network analysis.

I. INTRODUCTION

Wireless communication among both stationary and mobile
devices in absence of physical infrastructure can be established
and performed by means of the Mobile Ad-hoc NETwork
technology (MANET) [1] [22] [33]. While stationary devices
cannot change their location in the network, mobile devices are
free to move randomly, entering or leaving the network and
changing their relative positions. Each device can broadcast
messages inside its radio range only, implying that, outside
this area, communication is possible by means of some sort
of cooperation among intermediate devices, exclusively. Thus,
a communication protocol capable of handling this lack of
predictable topology is needed. One of the most popular
routing protocols for MANET’s is the Ad-hoc On-demand
Distance Vector (AODV) [32], together with several vari-
ants introduced in order to reduce communication failures
due to topology changes. For example, Reverse-AODV (R-
AODV) [6] [25] builds all possible routes between source and
destination devices: when the primary route fails (typically
the shortest one), communication is still provided by the
alternative routes. More recently, variants have been proposed
to cope with congestion issues [12] [24] and to improve the
security on communications, using cryptography to secure
data packets during their transmission (Secure-AODV) [41],
and adopting the so-called trust methods, in which nodes are
part of the communication if and only if they are considered
trustworthy (Trusted-AODV) [12] [26]. This research area is
receiving more attention in the last few years, in the context of
smart mobile computing, cloud computing and Cyber Physical
Systems [15] [31].

MANET’s technology raises several problems related to
the analysis of performance, synchronization and concurrency

of the network. Moreover, the request of computing services
characterized by high quality levels, broad and continuous
availability, and inter-operability over heterogeneous plat-
forms, increases the complexity of the systems’ architecture.
Therefore, it is quite important to be able to verify qualities
like responsiveness, robustness, correctness and performance,
starting from the early stages of the system’s development. In
order to do this, many studies are executed with the support
of simulators [3] [36] [39]. They can be used to measure
and to evaluate performances and to compare different so-
lutions, implementing the network at a low abstraction level
but, by their intrinsic nature, they cannot support proofs of
correctness, synchronization and deadlock properties, and they
cannot model MANET’s with a higher abstraction level of
specification. To overcome this limitations, formal methods are
used to create a model the system. For instance, the process-
calculus [35], the Calculus of Mobile Ad Hoc Networks
(CMN) [28], and the Algebra for Wireless Networks (AWN)
[14] capture essential characteristic of nodes, such as mobility
or packets broadcasting. Petri nets have been employed to
study the modeling and verification of routing protocols [40],
and the evaluation of protocols performances [13].

This kind of state-based models provide a suitable way
of representing algorithms, and they are typically equipped
with tools (such as CPN Tools [23]) that allow to simulate
the algorithms, directly. However, they lack expressiveness,
because they only show a single level of abstraction, and
they do not provide simple ways for refinements of the exe-
cutable code. These characteristics are intrinsic in the Abstract
State Machine model (ASM) that provides a way to describe
algorithms in a simple abstract pseudo-code, which can be
translated into a high-level programming language source code
[5] [17]. Formal methods are satisfactory for reasoning about
properties of the system they describe, but they rarely are
useful for studying performance results [8].

In this paper, we use the ASM formalism to define a
MANET and to simulate its behaviour; this is achieved by
introducing MOTION (MOdeling and simulaTIng mObile ad-
hoc Networks), a tool operating within the framework AS-
META (ASM mETAmodeling) [2] [16]. In particular, we adopt
the AODV protocol to manage the evolution of the network
and to show the behaviour of the application. In Section II, we

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 21

recall concepts and definitions of mobile ad-hoc networks and
of the specific protocol adopted in order to capture the dynamic
behavior of nodes in the network. In Section III, we recall the
basics about Abstract State Machine’s [4] [5]. We will use
this formalism to define and study properties of the network.
In Section IV, we outline the definition and behaviour of
MOTION, implementing the previous protocol by means of the
ASM’s formalism. In Section V, we discuss how the mobile
networks’ model could be used to represent social groups and
to study the related interactions (for instance, those occurring
within social networks). Conclusions and future work can be
found in Section VI.

II. MOBILE AD-HOC NETWORKS AND A ROUTING
PROTOCOL

Networks of mobile nodes, usually connected by means of a
wireless communication system, have been dubbed MANET.
Each node of the network can be considered as an autonomous
agent that re-arranges its position without conforming to a
fixed topology. During its lifetime it can enter or leave the net-
work, and it can change its position, continuously; this means
that routes connecting the nodes can rapidly change, because
of their mobility and of the limited range of transmission.
When a piece of information has to find his path from a source
node towards a destination, a routing protocol is needed. In
general, a routing protocol specifies how nodes communicate
with each other in order to distribute the information within the
network; routing algorithms determine this choice, according
to some specific principle, and they are able to adjust the route
when changes occur, such as disabled or partially available
connections, loops, obstructions, or starvation.

Several routing protocols have been proposed; among them,
the Ad-hoc On-demand Distance Vector (AODV) [32] is one of
the most popular (indeed, a number of simulation studies are
dealing with it, representing a reliable baseline for comparison
to the results of simulations executed with MOTION). It is a
reactive protocol that combines two mechanisms, the route
discovery and the route maintenance, in order to store some
knowledge about the routes into routing tables. Each node has
its own routing table that consists of a list of all the discovered
(and still valid) routes towards other nodes in the network; in
particular, the routing table entry of the node i concerning a
node j includes the address of j, the last known sequence
number of j, the hop count field (a measure of the distance
between i and j), and the next hop field (identifying the next
node in the route between i and j). The sequence number is
an increasing integer maintained by each node that expresses
the freshness of the information about the respective node.
When an initiator node wants to start a communication session
towards the destination node, it checks if a route is currently
stored in its routing table. If this happens, the communication
can start. If there aren’t any routes to the destination, the
initiator sends a route request (RREQ) to all its neighbors. This
message includes the initiator address, the destination address,
the sequence number of the destination (i.e., the most recent
information about the destination), and the hop count, initially

set to 0, and increased by each intermediate node. When an
intermediate node N receives an RREQ, it creates a routing
table entry for the initiator, or, if the entry already exists, it
updates its sequence number and next hop. Then, the process
is iterated: N checks if it knows a route to the destination
with corresponding sequence number greater than the number
contained into the RREQ (this means that its knowledge about
the route is more recent). If so, N sends back to the initiator
a route reply (RREP); otherwise, N updates the hop count
field and broadcasts once more the RREQ to all its neighbors.
The process ends successfully when a route to the destination
is found. While the RREP travels towards the initiator, the
routing tables of the traversed nodes are updated, creating
an entry for the destination, when needed. Once the initiator
receives back the RREP, the communication can start. The
mobile nature of the nodes can create new routes or break
some of them, because new links are established betweens
pairs of nodes or because one or more links are no more
available; when this happens, a route maintenance is executed
in order to notify the error and to invalidate the corresponding
routes, propagating a route error (RERR) into the network.

III. ABSTRACT STATE MACHINES

An ASM [5] M is a tuple (Σ, S,R, PM). Σ is a signature,
that is, a finite collection of names of total functions; each
function has arity n, and the special value undef belongs
to the range (undef represents an undetermined object, the
default value). Relations are expressed as particular functions
that always evaluate to true, false or undef.
S is a finite set of abstract states. The concept of abstract

state extends the usual notion of state occurring in finite
state machines: it is an algebra over the signature Σ, i.e.,
a non-empty set of objects together with interpretations of
the functions in Σ. Pairs of function names, together with
values for their arguments, are called locations: they are the
abstraction of the notion of memory unit. Since a state can be
viewed as a function that maps locations to their values, the
current configuration of locations, together with their values,
determines the current state of the ASM.
R is a finite set of rule declarations built starting from

the transition rules skip, update (f(t1, t2, . . . , tn) := t),
conditional (if φ then P else Q), let (let x = t in P),
choose (choose x with φ do P), sequence (P seq Q), call
(r(t1, . . . , tn)), block (P par Q) (see [5] for their operational
semantics). The rules transform the states of the machine, and
they reflect the notion of transitions occurring in traditional
transition systems. A distinguished rule PM , called the main
rule of the machine, represents the starting point of the
computation.

A move of a ASM, in a given state, consists of the simulta-
neous execution of all the rules whose conditions evaluates to
true in that state. Since different updates could affect the same
location, it is necessary to impose a consistency requirement:
a set of updates is said to be consistent if it contains no pairs
of updates referring to the same location. Therefore, if the
updates are consistent, the result of a move is the transition of

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 21

the machine from the current state to another; otherwise, the
computation doesn’t produce a next state. A run is a (possibly
infinite) sequence of moves: they are iterated until no more
rules are applicable.

The aforementioned notions refer to the basic ASMs. How-
ever, there exist some generalisations (e.g., Parallel ASMs
and Distributed ASMs) [17]. Parallel ASMs are basic ASMs
enriched with the rule forall x with φ do P , to express the
simultaneous execution of the same ASM P over x satisfying
the condition φ. A Distributed ASM is intended as a finite
number of independent agents, each one executing its own
underlying ASM: it is capable of capturing the formalization
of multiple agents acting in a distributed environment. A run,
which is defined for sequential systems as a sequence of
computation steps of a single agent, is defined as a partial order
of moves of finitely many agents, such that the three conditions
of co-finiteness, sequentiality of single agents, and coherence
are satisfied. Roughly speaking, a global state corresponds
to the union of the signatures of each ASM together with
interpretations of their functions.

IV. DEFINING MANET’S BY MEANS OF ASM

In [9], we have given a description of a MANET’s behaviour
based on the parallel ASM model and we have introduced
a preliminary version of MOTION that allows to define its
parameters (such as mobility and level of activity of a node),
to run the network, and to collect the output data of the
simulation. In this paper, we provide a refinement that allows
the user to visualize the dynamic evolution of the network,
step by step: the mobility of nodes within the network, the
path from a source to a destination and the overall evolution
of the network can be monitored and studied. The complete
package can be found in [21].

MOTION is developed within the ASMETA framework
[16]; the behaviour of the network is modelled using the
AsmetaL language, and then the model is executed by the As-
metaS simulator. The executions of MOTION and ASMETA
are interleaved: first, MOTION captures the parameters of the
network (number of nodes and their level of mobility, for
instance) and includes them into an AsmetaL file; then, it runs
AsmetaS according to those parameters. AsmetaS executes
an ASM move, simulating the behavior of the protocol over
the current network’s configuration. The control goes back to
MOTION at the end of each move: the information related
to the move (such as the new positions of the nodes, the
sent/received requests, the relations among the nodes) are
recorded and, in this new version, the current topology of the
network is visualised (showing the successful communication
attempts between pairs of nodes, the connections established,
and the failed attempts). Then, MOTION invokes AsmetaS for
the next move. At the end of the simulation, MOTION reads
the final log file, parses it, and stores the collected results in a
csv file. Note that these interleaved calls require a considerable
amount of interaction work; this is done in order to collect the
information about the evolution of the network step by step,

and to use it for the analysis of the behaviour of the network
itself.

In more details, MOTION expresses the network topology
by means of an adjacency matrix C, such that cij = 1 if i and j
are neighbors, 0 otherwise, for each pair of nodes i and j. The
mobility of nodes is implemented by updating the adjacency
matrix at every step of the simulation; each cij is randomly
set to 0 or 1, according to a mobility parameter defined by
the user. The new values of the matrix are used to execute the
next ASM move, accordingly. The relations among nodes are
expressed by means of predicates, as expected: for instance,
the reachability between two agents ai and aj is expressed by
the predicate isLinked(ai, aj), which evaluates to true if there
exists a coherent path from ai to aj , to false otherwise; the
predicate knowsActiveRouteTo(aj , aj) states that ai has an
active path leading to aj into its routing table.

The AODV routing protocol has been formally modeled
through ASMs in [4], for the first time. MOTION redefines
the protocol by means of new predicates and rules, also adding
a parameter Timeout, the waiting time for the route reply, to
avoid infinite loops when searching for a route. Each node of
the network represents a device or an agent. In what follows,
we show some of the high-level rules of MOTION (notice the
use of forall in order to run AODVSPEC on every node in
the network, and to look for a route from a given source a to
the remaining nodes dest).

MAIN RULE AODV =
forall a ∈ Nodes do AODVSPEC(a)

AODVSPEC(a)=
forall dest ∈ Nodes with dest 6= a do

if WaitingForRouteTo(a, dest) then
if Timeout(a, dest) > 0 then

Timeout(a, dest) := Timeout(a, dest)-1
else

par
WaitingForRouteTo(a, dest) := false
ca-fail(a, dest) := ca-fail(a,dest)+1

endpar
endif

if WishToInitiate(a) then PREPARECOMM(a)
if not Empty (Message) then ROUTER

WaitingForRouteTo expresses that the discovery process pre-
viously started is still running. In this case, if the waiting
time for RREP is not expired (i.e., Timeout() > 0), the
time-counter is decreased; otherwise, the search for the route
is ended. If WishToInitiate evaluates to true (depending on
a initiator probability parameter), the node wants to start a
communication, and the following rule PREPARECOMM is
called.

PREPARECOMM(a) =
forall dest ∈ Nodes with dest 6= a do

choose wantsToCommWith ∈ Boolean with true do

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 21

if wantsToCommWith then
par

if not waitingForRouteTo(a,dest) then
ca-tot(a, dest) := ca-tot(a, dest) + 1

endif
if knowsActiveRouteTo(a,dest) then

par
StartCommunicationWith(dest)
waitingForRouteTo(a, dest) := false

endpar
else

if not waitingForRouteTo(a, dest) then
par

GenerateRouteReq(dest)
WaitingForRouteTo(a, dest) := true
Timeout(a,dest) := Timeout

endpar
endif

endif
endpar

endif

Finally, if the node has received a message (either RREQ,
RREP or RERR), ROUTER is called, with

ROUTER = ProcessRouteReq;
ProcessRouteRep;
ProcessRouteErr

where each sub-rule expresses the behavior of the node,
depending on the type of the message received. Thanks to
this formalization, some properties have been proven in the
past, such as the starvation freeness for the protocol, the
properness of the message received back by the initiator of
any communication, and the capability to intercept black holes
into the network.

An actual simulation in MOTION is performed in a number
of sessions established by the user (10 sessions, Figure 1), each
of which has a duration (50 moves, Figure 1); during each
session, the network has a number of agents (hosts) defined
by the user. Each agent tries to initiate a communication
towards a destination: the probability that one of them acts
as an initiator is defined by setting the parameter Initiator
Probability (10 per cent, Figure 1). Thanks to the intrinsic
parallelism in the execution of the ASM’s rules, more attempts
can be executed simultaneously. A communication attempt
is considered successful if the initiator receives an RREP
within the waiting time expressed by the parameter Timeout;
otherwise, the attempt is considered failed.

In MOTION, agents’ mobility is defined by the user by
means of two parameters, namely Initial connectivity and
Mobility level. The former defines the initial topology of the
MANET: it expresses the probability that each agent is directly
linked to any other agent. During the simulation, the mobility
of agents is expressed by the random re-definition of the values
of the adjacency matrix C. More precisely, for each pair of

agents (ai, aj), and for each move of the ASM, the values of
C are changed with a probability expressed by Mobility level.

The new version of MOTION starts from an interface that
allows to set the parameters of the network (Figure 2); in this
case, six agents populate the network, with a high value of
initial connectivity and a low level of mobility. The chance that
an agent starts a communication is set to 20 per cent. When
the simulation is started, some new dynamic windows are
visualised, in contrast with the previous version of the tool. For
instance, a step of the network evolution can be seen in Figure
3. The window mobility model represents the connectivity
matrix, that is, the existing direct connections among nodes;
because of the high initial connectivity, we can find a big
number of successful connections and no failed connections.
After several moves, Figure 4 shows a new mobility model,
and a new set of successful or failed connections.

V. SOCIAL NETWORKS ANALYSIS

Social structures can be investigated by means of methods
and tools of social network analysis. A model often used
to represent these structures is a graph or network, that is,
a collection of nodes connected by arcs; the former are
associated with people or agents, while the latter represent
any kind of relation, interaction or influence between pairs
(or groups) of agents [30]. This idea has been applied in a
large number of studies, about social media networks [18]
[20], information circulation [19] [29], business networks,
knowledge networks [7] [11]. In particular, social network
analysis is a key technique in modern sociology, demogra-
phy, communication studies, market economy, sociolinguistic,
cooperative learning, being able to represent data by means of
a simple data structure, a graph, and to analyze the intrinsic
interactions using the standard methods and measures provided
by mathematics and computer science [38]. The interest of sci-
entists is surely driven by the availability of the so-called big
data; between 1990 and 2005, the new (virtually) unbounded
computational power has been applied to the concept of self-
organizing systems, providing the definition of models and
simulations of a big number of social activities. In the mid
1990s, physicist and mathematicians started to analyze big
data from financial markets, resulting in the development of
econophysics [27]; in the 2000s, the focus shifted on big data
generated by the Internet and the social networks, looking
for characteristic patterns that exists in social interactions,
no matter the technology, and revitalizing the research in
sociophysics [34] and in computational social sciences. Many
studies are executed with the support of simulators that are
suitable to compare different social structures and several
scenarios, according to the parameters of the network.

In general, networks used to represent social interactions
are static, meaning that the location of nodes and the related
ties don’t change as time goes by; every change that may
happen in the social group is not captured by this model. Aside
static networks, mobile networks exist: they have a flexible
structure, and their topology changes dynamically, given that
nodes can join or leave the network during their lifetime, that

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 17 / 21

communication among them depends on the availability of a
connection, and that connections can have different strength.
This reflects the dynamic nature of ties that exists between
agents in a social group. Computer science provides methods
to define and represent these kind of networks, together with
algorithms that allow to broadcast a message from a source to
a destination, mimicking the spread of information, opinions,
or consensus into the group. In order to do this, agents should
behave according to a cooperation protocol. We suggest that
the MANET models, as well as other models of mobile
networks, could be used to represent a social group and to
study the related interactions [10]. MOTION could be used
by social scientists to represent and study social interactions.
For instance, a high value of the initial connectivity parameter,
together with a low level of mobility, represent strong ties
within a very cohesive group, meaning that the members of
the group do not change their opinion or do not end a relation
easily. On the contrary, a high mobility means that the group is
prone to change opinions very easily. The initiator probability
measures how much a member of a social group is inclined
to spread information inside the network. It appears that the
properties of a MANET match the properties that can be
found in a social group, like starvation of information, fake
information spreading, popularity of opinions, and so on. One
could follow the propagation of a message (an opinion, an
influence) inside the social group that is represented by the
network, and to study how this is affected by the mobility of
the agents or by the strength of the ties inside the group itself.

VI. CONCLUSIONS AND FUTURE WORK

MANET is a technology used to perform wireless com-
munications among mobile devices in absence of physical
infrastructure. It is widely used in the context of smart mobile
computing, cloud computing and Cyber Physical Systems.
Several routing protocols have been developed, and problems
have been raised about the measurement of performances, and
also about the formal analysis of qualities like responsiveness,
robustness, correctness. In order to address these problems,
both simulators and formal description methods are needed.
The former allow us to measure performances through direct
simulation, but they aren’t suitable to investigate the properties
of the networks. This can be achieved when using formal
methods, but they can hardly be used to measure performance.
In this paper, we have introduced MOTION, a Java application
in which MANET’s are modeled as an Abstract State Machine
by means of the AsmetaL representation. This representation
can be used to prove formal properties of the network, as
well as can be simulated by means of the simulation engine
AsmetaS. MOTION can collect the results of this simulation
that can be used for performances’ analysis. We have vali-
dated MOTION on the Ad-hoc On-demand Distance Vector
protocol.

Several variants of routing protocols for mobile networks
have been proposed in the past; among them, the NACK-based
Ad-hoc On-demand Distance Vector (N-AODV), that improves
the awareness that each host has about the network topology,

and the Blackhole-free N-AODV (BN-AODV), that detects the
presence of malicious nodes leading to a blackhole attack.

One of the disadvantages of the AODV protocol is the poor
knowledge that each node has about the network topology.
In fact, each node n is aware of the existence of a node
m only when n receives an RREQ, either originated by, or
directed to m. In order to overcome this limitation, the NACK-
based AODV routing protocol has been proposed and modeled
by means of a Distributed ASM. A Not ACKnowledgment
(NACK) control packet is added in the route discovery phase.
Whenever an RREQ originated by n and directed to m is
received by the node p that doesn’t know anything about
m, p unicasts the NACK to n, with the purpose to state
the ignorance of p about m. In this way, n (as well as all
the nodes in the path to it) receives fresh information about
the existence and the relative position of p. Therefore, on
receiving the NACK, all the nodes in the path to p add an
entry in their respective routing tables, or update the pre-
existing entry. N-AODV has been experimentally validated
through simulations, showing its efficiency and effectiveness:
the nodes in the network actually improve their knowledge
about the other nodes and, in the long run, the number of
RREQ decreases, with respect to the AODV protocol.

All routing protocols assume the trustworthiness of each
node; this implies that MANET’s are prone to the black
hole attack [37]. In AODV and N-AODV a black hole node
produces fakes RREPs in which the sequence number is as
great as possible; the initiator establishes the communication
with the malicious node and the latter can misuse or discard
the received information. The black hole can be supported
by one or more colluders that confirm the trustworthiness
of the fake RREP. The Black hole-free N-AODV protocol
allows the honest nodes to intercept the black holes and the
colluders, thanks to two control packets: each intermediate
node n receiving an RREP must verify the trustworthiness of
the nodes in the path followed by the RREP; to do this, n
produces a challenge packet (CHL) for the destination node,
and only the latter can produce the correct response packet
(RES). If n receives RES, it sends the RREP, otherwise the
next node towards the destination is a possible black hole.

We are currently working on the final definition of the ASM
for the N-AODV and the BN-AODV protocols, together with
the extension of MOTION to those protocols. Moreover, a
complexity analysis of the network’s protocols and the related
algorithms could be performed; a change of the structure that
represents the connectivity among the nodes (from adjacency
matrix to adjacency list, for instance), could lead to a dramatic
improvement of the resource-consumption during the simula-
tion of the behaviour of the network.

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 18 / 21

REFERENCES

[1] D. P. Agrawal and Q.-A. Zeng, Introduction to wireless and mobile
systems. Cengage learning - Fourth Edition, Boston, 2016.

[2] P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra, ”A model-
driven process for engineering a toolset for a formal method,” Software:
Practice and Experience, vol. 41(2), pp. 155–166, 2011.

[3] S. Basagni, M. Mastrogiovanni, A. Panconesi, and C. Petrioli, ”Lo-
calized protocols for ad hoc clustering and backbone formation:
A performance comparison,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17(4), pp. 292–306, 2006, doi:10.1109/TPDS.2006.52, URL
https://doi.org/10.1109/TPDS.2006.52

[4] E. Börger and A. Raschke, Modeling Companion for Software
Practitioners. Springer, 2018. doi:10.1007/978-3-662-56641-1. URL
https://doi.org/10.1007/978-3-662-56641-1

[5] E. Börger and R. Stärk, Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer Verlag, Berlin, 2003.

[6] L. Bononi, G. D’Angelo, and L. Donatiello, ”Hla-based adaptive dis-
tributed simulation of wireless mobile systems,” Proceedings of the
seventeenth workshop on Parallel and distributed simulation, p. 40, IEEE
Computer Society, 2003.

[7] J. Brennecke and O. Rank, ”The firm’s knowledge network and the
transfer of advice among corporate inventors — A multilevel network
study,” Research Policy, 46(4), pp. 768-783, 2017.

[8] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, ”Self-
adaptive software needs quantitative verification at runtime,” Communi-
cations of the ACM, vol. 55(9), pp. 69–77, 2012.

[9] E. Covino and G. Pani, ”Analysis of Mobile Networks’ Protocols
Based on Abstract State Machines,” in A. Raschke et al. (Eds.): Logic,
computation and rigorous methods, LNCS 12750, pp. 187-198, 2021.

[10] E. Covino and G. Pani, ”Analysis of a Formal Model for Social Groups,”
ICOMP’22 - The 23rd Int’l Conf on Internet Computing and Internet
of Things, July 25th-28th, 2022, Las Vegas, USA.

[11] A. D’Andrea, F. Ferri, and P. Grifoni, ”An Overview of Methods for
Virtual Social Network Analysis,” in Abraham, Ajith (Ed.), Computa-
tional Social Network Analysis: Trends, Tools and Research Advances,
Springer, pp. 3-25, 2009.

[12] N. Das, S. K. Bisoy, and S. Tanty, ”Performance analysis of TCP variants
using routing protocols of manet in grid topology,” Cognitive Informatics
and Soft Computing, pp. 239–245, Springer, 2019.

[13] F. Erbas, K. Kyamakya, and K. Jobmann, ”Modelling and performance
analysis of a novel position-based reliable unicast and multicast routing
method using coloured Petri nets,” 2003 IEEE 58th Vehicular Technol-
ogy Conference, VTC 2003-Fall, Vol. 5, pp. 3099–3104, IEEE, 2003.

[14] A. Fehnker et al., ”A process algebra for wireless mesh networks,”
European Symposium on Programming, pp. 295–315, Springer, 2012.

[15] A. Garcia-Santiago, J. Castaneda-Camacho, J. F. Guerrero-Castellanos,
G. Mino-Aguilar, and V. Y. Ponce-Hinestroza, ”Simulation platform for a
VANET using the truetime toolbox: Further result toward cyber-physical
vehicle systems,” IEEE 88th Vehicular Technology Conference (VTC-
Fall), IEEE, pp. 1–5, 2018.

[16] A. Gargantini, E. Riccobene, and P. Scandurra, ”A metamodel-based
language and a simulation engine for abstract state machines,” J. UCS,
vol. 14(12), pp. 1949–1983, 2008. doi:10.3217/jucs-014-12-1949. URL
https://doi.org/10.3217/jucs-014-12-1949

[17] U. Glässer, Y. Gurevich, and M. Veanes, ”Abstract commu-
nication model for distributed systems,” IEEE Trans. Software
Eng., 30(7), pp. 458–472, 2004. doi:10.1109/TSE.2004.25. URL
https://doi.org/10.1109/TSE.2004.25

[18] M. Grandjean, ”A social network analysis of Twitter: Mapping the digital
humanities community,” Cogent Arts and Humanities, 3(1), 2016.

[19] M. Grandjean, ”Analisi e visualizzazioni delle reti in storia. L’esempio
della cooperazione intellettuale della Società delle Nazioni,” Memoria e
Ricerca, 2, pp. 371–393, 2017.

[20] L. Hagen, T. Keller, S. Neely, N. DePaula, and C. Robert-Cooperman,
”Crisis Communications in the Age of Social Media: A Network
Analysis of Zika-Related Tweets,” Social Science Computer Review,
36(5), pp. 523-541, 2018.

[21] URL https://github.com/Angelo997/VisualMotion.git.
[22] M. Ilyas (Ed.), The Handbook of Ad Hoc Wireless Networks, (1st ed.).

CRC Press, 2002.
[23] K. Jensen, L. M. Kristensen, and L. Wells, ”Coloured Petri nets and CPN

tools for modelling and validation of concurrent systems,” International

Journal on Software Tools for Technology Transfer, vol. 9(3-4), pp. 213–
254, 2007.

[24] N. Kaur and R. Singhai, ”Analysis of traffic impact on proposed con-
gestion control scheme in AODV,” Wireless Personal Communications,
pp. 1–24, 2019.

[25] C. Kim, E. Talipov, and B. Ahn, ”A reverse AODV routing protocol in
ad hoc mobile networks,” International Conference on Embedded and
Ubiquitous Computing, pp. 522–531, Springer, 2006.

[26] X. Li, M. R. Lyu, and J. Liu, ”A trust model based routing protocol
for secure ad hoc networks,” in 2004 IEEE Aerospace Conference
Proceedings, Vol. 2, pp. 1286–1295, IEEE, 2004.

[27] R. Mantegna and H. Stanley, Introduction to Econophysics: Correlations
and Complexity in Finance. Cambridge University Press, 1999.

[28] M. Merro, ”An observational theory for mobile ad hoc networks,”
Information and Computation, vol. 207(2), pp. 194–208, 2009.

[29] H. R. Nasrinpour, M. R. Friesen, and R. D. McLeod, ”An Agent-
Based Model of Message Propagation in the Facebook Electronic Social
Network,” arXiv:1611.07454, 2016.

[30] E. Otte and R. Rousseau, ”Social network analysis: a powerful strategy,
also for the information sciences,” Journal of Information Science, 28(6),
pp. 441–453, 2002.

[31] A. P. Pandian, J. I.-Z. Chen, and Z. A. Baig, ”Sustainable mobile
networks and its applications,” Mobile networks and application, vol.
24(2), pp. 295–297, 2019.

[32] C. E. Perkins, E. M. Belding-Royer, and S. R. Das, ”Ad hoc on-
demand distance vector (AODV) routing,” RFC 3561 (2003), pp. 1–37,
doi:10.17487/RFC3561. URL https://doi.org/10.17487/RFC3561.

[33] R. R. Roy, Handbook of Mobile Ad Hoc Networks for Mobility Models.
Springer, 2011.

[34] F. Schweitzer, ”Sociophysics,” Physics Today, 71(2), p. 40, 2018.
[35] A. Singh, C. Ramakrishnan, and S. A. Smolka, ”A process calculus for

mobile ad-hoc networks,” Science of Computer Programming, vol.75(6),
pp. 440–469, 2010.

[36] D. A. Tran and H. Raghavendra, ”Congestion adaptive routing
in mobile ad-hoc networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17(11), pp. 1294–1305, 2006. doi:10.1109/TPDS.2006.15. URL
https://doi.org/10.1109/TPDS.2006.151.

[37] F.-H. Tseng, L.-D. Chou, and H.-C. Chao, ”A survey of black hole
attacks in wireless mobile ad hoc networks,” Human-centric computing
and information sciences, 1,4, 2011.

[38] S. Wasserman and K. Faust, Social Networks Analysis: Methods and
Applications. Cambridge University Press, 1994.

[39] J. Wu and F. Dai, ”Mobility-sensitive topology control in
mobile ad hoc networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17(6), pp. 522–535, doi:10.1109/TPDS.2006.73, URL
https://doi.org/10.1109/TPDS.2006.73.

[40] C. Xiong, T. Murata, and J. Leigh, ”An approach for verifying routing
protocols in mobile ad hoc networks using Petri nets,” in Proceedings
of the IEEE 6th Circuits and Systems Symposium on Emerging Tech-
nologies: Frontiers of Mobile and Wireless Communication, Vol. 2, pp.
537–540, IEEE, 2004.

[41] M. G. Zapata, ”Secure ad hoc on-demand distance vector routing,” ACM
SIGMOBILE Mobile Computing and Communications Review, 6(3), pp.
106–107, 2002.

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 19 / 21

Fig. 1. MOTION’s user interface for AODV protocol

Fig. 2. MOTION’s new user interface

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 20 / 21

Fig. 3. Evolution of the network

Fig. 4. Evolution of the network, after several steps

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-050-6

COMPUTATION TOOLS 2023 : The Fourteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 21 / 21

http://www.tcpdf.org

