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Forward

The Tenth International Conference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking (COMPUTATION TOOLS 2019), held between May 5 - 9, 2019 - Venice, Italy,
continued a series of events dealing with logics, algebras, advanced computation techniques,
specialized programming languages, and tools for distributed computation. Mainly, the event
targeted those aspects supporting context-oriented systems, adaptive systems, service
computing, patterns and content-oriented features, temporal and ubiquitous aspects, and
many facets of computational benchmarking.

The conference had the following tracks:

 Advanced computation techniques

 Tools for distributed computation

Similar to the previous edition, this event attracted excellent contributions and active
participation from all over the world. We were very pleased to receive top quality
contributions.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS
2019 technical program committee, as well as the numerous reviewers. The creation of such a
high quality conference program would not have been possible without their involvement. We
also kindly thank all the authors that dedicated much of their time and effort to contribute to
COMPUTATION TOOLS 2019. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the COMPUTATION
TOOLS 2019 organizing committee for their help in handling the logistics and for their work that
made this professional meeting a success.

We hope COMPUTATION TOOLS 2019 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in the area
of computational logics, algebras, programming, tools, and benchmarking. We also hope that
Venice provided a pleasant environment during the conference and everyone saved some time
for exploring this beautiful city.
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Abstract—A lot of time is spent on Central Processing Unit 

(CPU) waiting for memory accesses to complete during the 

program is being executed, which would be longer because of 

data structure choice, lack of design for performance, and 

ineffective compiler optimization. Longer execution time 

means more energy consumption. To save energy, avoiding 

unnecessary memory accesses operations is desirable. In this 

paper, we optimize program energy consumption by detecting 

and modifying the dead write, which is a common inefficient 

memory access. Our analysis of the Standard Performance 

Evaluation Corporation (SPEC) CPU2006 benchmarks shows 

that the reduction of the program running energy consumption 

is significant after the dead write in the code was modified. For 

example, the SPEC CPU2006 gcc benchmark had reduced 

energy consumption by up to 26.7% in some inputs and 13.5% 

on average. We think this energy optimization approach has 

tremendous benefits for the developer to develop more energy-

efficient software. 

Keywords-Energy Optimization; Ineffective Memory Access; 

Energy-efficient Software 

I.  INTRODUCTION  

As power and energy consumption are becoming one 
of the key challenges in the system and software design, 
several researchers have focused on the energy efficiency of 
hardware and embedded systems [1][2], the role of 
application software in Information Technology (IT) energy 
consumption still needs investigation. On modern computer 
architectures, memory accesses are costly. For many 
programs, exposed memory latency accounts for a 
significant fraction of execution time. Unnecessary memory 
accesses, whether cache hits or misses, which lead to poor 
resource utilization and have a high energy cost as well [3]. 
In the era where processor to memory gap is widening 
[4][5], gratuitous accesses to memory are a cause of 
inefficiency, wasting so much energy, especially in large 
data centers or High Performance Computer (HPC) running 
complex scientific calculations. Therefore, the optimization 
of program memory access can bring about significant 
effects on energy consumption reduction. 

Prior work about on the optimization of energy 
consumption in computer systems mostly focused on the 
scheduling of system resources, such as the research and 
attempt of load balancing in clusters [6]. Due to the 

complexity of the computer system when the program is 
running and the uneven level of the developer, it is difficult 
to modify the program code for energy optimization. Our 
analysis found that there are a lot of redundant memory 
accesses in common programs, and the energy waste they 
cause cannot be eliminated by resource allocation and 
scheduling. It is very necessary to analyze and optimize the 
source code of the program.  

Fortunately, we found it conveniently to analyze and 
record the memory accesses during program execution by 
using Pin [7]. Pin is a dynamic binary instrumentation tool 
powered by Intel, which provides a rich set of high-level 
Application Programming Interfaces (APIs) to instrument a 
program with analysis routines at different granularities 
including module, function, trace, basic block and 
instruction. With this tool, we can instrument every read and 
write instruction, which helps us find out the redundant 
memory access clips in the program source code. 

In this paper, we focused on the impact of dead write 
on program energy consumption. A ‘dead write’ occurs 
when there are two successive writes to a memory location 
without an intervening read. Our work mainly focuses on 
the following three aspects. 1) Locating dead writes exactly 
to the line in the source code of programs. 2) Analyzing and 
modifying the source code fragments found in 1). 3) 
Measuring and comparing energy consumption of programs 
before and after modification of dead writes. 

The rest of the paper is organized as follows. Section 2 
presents detailed decision process of dead write and 
sketches the methodology for positioning dead writes in 
programs' source lines. Section 3 analyses two codes to 
explore the causes of dead writes and the energy 
optimization benefits of dead write elimination. Finally, 
conclusions are drawn in Section 4. 

II. METHODOLOGY 

Chabbi et al. [8] described a type of redundant memory 
access and named it  dead write, which means two writes to 
the same memory location without an intervening read 

operation make the first write to that memory location dead. 
This definition gives us a way to reduce energy 
consumption of programs by optimizing programs' memory 
access codes. 
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In the following subsections, we first describe in detail 
the conditions and scenarios of the formation of dead write. 
Then, we introduce our methodology to find out the dead 
writes in programs' source codes. 

A.  Dead Write 

For every used memory address, building a state 
machine based on the access instructions. The state machine 
state is changed to initial mark V (Virgin) for each used 
memory address, indicating that no access operation is 
performed, and when an access operation is performed, the 
state is set to R ( Read) according to the type of operation. 
Or W (Write). According to access to the same address, the 
state machine implements state transitions. The following 
two cases will be judged to be dead write: 

1) A state transition from W to W corresponds to a 
dead write.  
2) At the end of the program, the memory address in 
the W state, meaning that the program did not read it 
until the end of the operation. 

 

Figure 1  State transition of dead write diagram 

A halt instruction transitions the automaton to the 

terminating state. The Report Dead behavior indicates that 

an invalid write is detected and can be reported. 

Because the state machine records every memory 

access operation from the beginning to the end of the 

program, false positive or false negative situations can be 

avoided, and the judgment result is reliable. 

B. Finding dead writes in source lines 

Developing a tool based on CCTLib, a library uses Pin 
to track each program instruction, and builds dynamic 
Calling Context Tree (CCT) [9] with the information of 
memory access instructions. Each interior node in our CCT 
represents a function invocation; and each leaf node 
represents a write instruction. After the program is executed, 
each dead write will be presented to the user as a pair of 
CCT branches. 

Specifically implemented on our tool is the use of 
shadow memory [10] on the Linux platform to save the state 
of each memory location. In order to trace dead writes, each 
memory access instruction to address M is updated 
according to the state machine of Figure 1 with the state 
STATE (M), while saving pointers to restore its calling 
context and reporting dead writes when encountered. When 
the node in the created call tree reaches the state needs to 
report dead write according to the transition state of the state 

machine in Figure 1, our tool will record this context and 
output all contexts at the end of the entire analysis. By 
adding the -g option to the gcc compiler when compiling the 
program to be analyzed, the debugging information is 
obtained so that the contexts is mapped to the source codes. 

III. OPTIMIZATION FOR DEAD WRITES 

In this section, we discuss the optimal solution for dead 

write that has been found in programs. There are many 

causes of dead writing. For example, Figure 2 is the 

simplest scenario because of the repeated initialization of an 

array. The Figure 2 shows the function Bar () and function 

Foo () initializes the array a separately before the function 

Foo1 () reads it. In the following, we analyze two complex 

situations of the gcc benchmark in SPEC CPU2006 [11]. 

1 #define N (0xfffff) 

2 int a[N] 

3 void Foo() { 

4   int i; 

5   for ( i=0; i<N; i++ )  a[i] = 0; 

6 } 

7 void Bar() { 

8    int i; 

9    for ( i=0; i<N; i++ )  a[i] = 0; 

10 } 

11 void Foo1() { 

12   int i; 

13   for ( i=0; i<N; i++ )  a[i] = a[i]; 

14  +1; 

15 } 

16 int main() { 

17   Foo(); 

18 Bar(); 

19   Foo1(); 

20 return 0; 

21 } 

Figure 2  A simple example for dead write 

For 403.gcc, after testing each input, it was found that 
for the input c-typeck.i, the dead write is very large, 
accounting for 73% of the total amount of memory accesses. 
For gcc with the input c-typeck.i, do the following analysis 
and optimization. 

1 void  loop_regs_scan (struct  loop * loop, ...) 

2 {... 

3   last set=(rtx *) xcalloc (-regs>num, 

4 sizeof (rtx)); 

5 /*register used in the loop*/ 

6 for (each instr in loop) {... 

7 if(MATCH(ATTERN (insn))==SET || ...) 

8     count_one_set ...(, last_set, ...); 

9 ... 

10 if(block is end) 

11   memset (last_set, 0, regs->num 

12   *sizeof(rtx)); 

13 }... 

14 } 

Figure 3  Dead writes in gcc due to an inappropriate data structure 
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The code snippet shown in Figure 3 is refined in a 
frequently-called function named loop_regs_scan () in the 
file loop.c. The function of this part of the code fragment is 
as follows: 

• On line 3, 132KB of space is allocated to the array  
last_set, with a total of 16937 elements, each 
element occupying 8KB. 

• On Lines 6-14, iterating through each instruction in 
the incoming parameter loop. 

• On line 8-9, if the instruction matches a pattern, the 
count_one_set function is called. The function is to 
update last_set with the last instruction that sets the 
virtual register. 

• On lines 11-12, if the previous module completes, 
reset the entire last_set by calling the memset () in 
the next loop. 

This piece of code will produce a large number of dead 
writes, because the program spends a lot of time to reset the 
last_set to zero. In the module, only a very small number of 
elements of the array would be used in one cycle. However, 
at the beginning of the allocation, the largest array size 
possible for last_set is used. It means there are a large 
number of elements that were repeatedly reseted and cleared 
when they have not been accessed. It was found through 
sampling that in the 99.6% case, only 22 different elements 
per cycle would be written with a new value. Thus, a simple 
optimization scheme is: we maintain an array of 22 elements 
to record the index of the modified element of the last_set. 
Reseting only the elements of the subscript stored in the 
array when the reset is cleared. Reseting the entire 132KB 
array if the encounter array is overflow, then call memset () 
at the end of the period to reset the entire array. 

Another dead write context was found in cselib_init (). 
As shown in Figure 4, the macro VARRY_ELT_LIST_ 

INIT () allocates an array and initializes to 0. Then, the 
function clear_table () initializes the array to 0 again, 
apparently resulting in a dead write. By reading the source 
code, there is a more lightweight implementation for 
clear_table (). This implementation does not initialize the 
array reg_values, so this dead write could be eliminated by 
changing the interface. 

1 void cselib_init () { 

2   ... 

3   cselib nregs = max reg num(); 

4   /*initializ reg_values to 0 */ 

5   VARRY_ELT_LIST_INIT (reg_values, 

6    cselib_nregs, ...); 

7    ... 

8    clear_table (1); 

9 } 

10 void clear_table (int clear_all) { 

11   /*reset all elements of reg_values to 0 */ 

12   for (int i = 0; i < cselib_nregs; i++) 

13     REG_VALUES (i) = 0; 

14 ... 

15 } 

Figure 4  Dead writes in gcc due to excessive reset 

IV. EXPERIMENT 

In this section, we actually take the readings of the 

hardware performance counters by sampling them while the 

program is running. Those readings are the input of the 

Power Model [12] we had published in 2016. The output of 

the model is the power of the whole system. Obviously, 

time-based integration of power is energy consumption. 

A.  Experiment environment 

We used PAPI [13] to get the readings of the hardware 
performance counters and gcc to compile the programs with 
option -g before they are analyzed by dead write analysis 
tool. Detailed hardware configuration of the experiment 
platform is shown in Table I. 

TABLE I.  HARDWARE CONFIGURATION 

Component Description($) 

CPU 2.93GHz Intel Core i3 

Memory 4GB DDR3 1333HZ 

Hard Disk Seagate Barracuda 7200.12 

Net 1000Mb/s Ethernet 

B. Calculation method 

In our prior work [12], we have presented a full system 

energy consumption model based on performance events, 

and its accuracy had been verified. We use it in our work 

this time. 

In the model, we calculated full system power as the 

linear regression of three kinds of readings of the hardware 

performance counters according to performance Events. As 

shown in Formula 1. The three kinds of performance Events 

are Active Cycles ({Cycles in which processor are active.), 

Instruction Retired (The instruction (micro-operation) 

leaves the "Retirement Unit".) and Last-Level Cache (LLC) 

Misses (Count each cache miss condition for references to 

the last level cache.). 

 Psystem = 23.834+ActiveCycles+2.093 

                   ×InstructionRetired + 72.113                                 (1) 

                   ×LLCMisses+47.675 

When the host computer does not run the test program, 

it also has background programs running, and the 

components are also consuming power. Therefore, the 

energy consumption, when the host computer is not running 

the test program, should be removed to see more obvious 

contrast. Firstly, reading the host hardware performance 

counters' value when the test program is not running. Then, 

using Formula 1 to calculate the long-term power average 

valueP2 which is taken as the background power of the 

host. The energy consumption of this part can be calculated 

asP2 multiple the running time (which is Tend - Tstart). The 

final energy consumption will be energy caused by P1 

subtract that fromP2. Therefore, the energy consumption of 
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the test program can be calculated using Formula 2 since 

energy is the integral of power over time. 

                           )21 ( startend

Tend

Tstart

result TTPPE −×−= ∫                         (2) 

When the test program is running, the three hardware 

performance counters in Formula 1 are sampled every 5 

seconds.  The calculated system power is connected to each 

sampling point using a Bezier curve. Then, the energy 

consumption is calculated by integrating the time with 

Formula 2. 

C.  Result 

Since the same benchmark is running on different 

inputs, the functions in it invoked are different, so 

optimization tests are performed for different inputs. For 

some benchmarks, such as bzip2, because the program 

execution time is too short to sample an accurate reading, 

which are not suitable for energy consumption measurement. 

According to 403.gcc, it has a long execution time so that 

we can observe the changes in energy consumption before 

and after dead write optimization under different inputs. The 

results are shown in Table II. All the energy consumptions 

were calculated by using the methods described in previous 

parts.  

TABLE II.   CHANGES IN ENERGY CONSUMPTION FOR GCC 

Input Energy consumption (J) %Reduction 

 before after  

166.i 141.65 128.48 9.3 

200.i 207.34 203.2 2 

c-typeck.i 182.37 137.69 24.5 

cp-decl.i 133.36 115.76 13.2 

expr.i 153.13 127.4 16.8 

expr2.i 197.48 169.64 14.1 

scilab.i 98.46 97.8 0.8 

g23.i 254.07 219.26 13.7 

s04.i 227.0 166.39 26.7 

% Average 13.46 

The average energy consumption is reduced by 13.46%, 

which has a significant effect. The result shows that finding 

and the dead writes in the program code can significantly 

reduce the energy consumption of the programs. 

V. CONCLUSIONS 

This paper proposes an optimization method for 

program energy consumption. The method is based on the 

optimization of dead write, a widely-existing redundant 

memory access in the source code. Finding out and 

eliminating the dead writes in programs, which could 

increase system efficiency and reduce energy consumption. 

From the experimental results, the effect is significant. 

Subsequent work should be focused on developing the tools 

based this paper, which allow more developers to use simple 

operations to optimize energy consumption of written 

program code. 
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Abstract—We will introduce various extensions of ordinary bi-
nary operations to a specially chosen single dummy element
representing an undefined or missing value. We will apply these
extensions to the Perfilieva’s fuzzy transform technique and
extend it appropriately to operate with this dummy element
too. The result of this extension will be called partial fuzzy
transform. Moreover, we will demonstrate the usefulness of our
approach using partial fuzzy transform technique on an image
reconstruction problem.

Keywords–Undefined; Missing data; Error propagation; Fuzzy
transform; Image processing.

I. INTRODUCTION

Undefined or Missing (U/M) data as a source of various
bugs are a common problem in most scientific research do-
mains. Causes are various, e.g., computation exceptions, non-
terminating computation, mishandling of samples, measure-
ment error, non-response or division by zero. Such data are
needed to be represented in order to be correctly handled.
For this purpose, there exist various markers in programming
languages, e.g., Null, NaN, Inf. In this paper, we propose
to use a single dummy element denoted by ∗ to represent
U/M data, and we extend binary functions to operate with
∗ also [1]. As an output, we obtain several families of binary
functions due to variability of treating U/M data. Remark that
these extensions are analogous to the connectives of a partial
fuzzy logic [2].

Our main aim is to demonstrate the usefulness of the above-
mentioned extensions. For this purpose, we chose the ordinary
Fuzzy Transform (FT) technique introduced in [3] and its ap-
plication to an image reconstruction problem introduced in [4].
A brief description of FT, algorithms and their implementations
for Image Reconstruction (IR) using FT can be found in [5].

We have observed that algorithms for IR using FT in
all available sources lack an explanation of what happens
in case of exceptions in a computation process. We refer
mainly to the problem of the division by 0 when computing
components of the direct FT which often occurs in dam-
aged parts of an image. Moreover, the description of Multi-
Step Reconstruction Algorithm (MSRA) from [4] does not
correspond with experimental results presented in [4]. It is
because U/M parts of an input image are considered as having
value 0 which influences the final infilling of U/M areas of
images in each iteration step. The main problem lies in Step 5
of MSRA which states the following: “Update the mask by
deleting pixels whose reconstructed values are strictly greater
than zero”. Fulfilling this requirement leads to gradual falling
(with a growing number of iterations) of infilled values to 0

and consequently to the darkening of the centers of infilled
areas (see Figure 5). However, this is not the case of the
experimental results presented in [4]. Surprisingly, their results
are almost identical with ours (see Figure 6). A discussion on
differences between algorithms from [4] and our approach will
be explained in Section VI.

In this paper, we will present algorithms for an image
reconstruction based on FT which will be able to handle
U/M parts of images represented by ∗. For this purpose, we
will choose suitable extensions of elementary operations to ∗
according to our intuitive expectations on the behavior of FT
on U/M parts of an image which will result in a definition
of the so-called partial FT. In our approach, we encode U/M
areas of an image by ∗ and reconstructed parts are computed
only from the real image values.

The paper is organized as follows. In Section II, we
recall three basic extensions of binary functions from [1].
Perfilieva’s FT and partial FT are presented in Section III
and IV, respectively. Next, in Section V, we introduce algo-
rithms for image reconstruction using partial FT together with
illustrative examples. Finally, features of the used formalism
are summarized in Section VI.

II. EXTENSIONS OF OPERATIONS TO U/M DATA

Extensions of connectives to undefined truth values in
partial fuzzy logic [2] can be analogously carried for an
arbitrary binary function o : X2 → X as follows:

oB y ∗
x o(x, y) ∗
∗ ∗ ∗

oS y ∗
x o(x, y) x

∗ y ∗
(1)

where ∗ 6∈ X . We call oB the Bochvar-extension of o, oS the
Sobociński-extension of o

Moreover, if a ∈ X is an absorbing element of o, i.e.,
o(a, x) = o(x, a) = a then, we introduce the Kleene-extension
of o:

oK a y ∗
a a a a
x a o(x, y) ∗
∗ a ∗ ∗

(2)

Note that

• oB, oS, oK operate on (X∪{∗})2 and take values from
X ∪ {∗}.

• These extensions are motivated by classical four val-
ued logics.
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• Sobociński-style operations treat U/M inputs encoded
by ∗ as irrelevant and ignore them. In the case of
Bochvar-style operations, ∗ represents a fatal error,
and it terminates a computation. Kleene-style oper-
ations treat ∗ as a vincible error where ∗ is treated as
a fatal error up to the case of an absorbing element
which overwrites ∗.

• An extension should be chosen due to a required
behavior of o in the case of U/M data.

III. ORDINARY FUZZY TRANSFORM

Recall that FT is a well-established technique in the image
processing domain. Let us recall some applications, e.g., [6]
introduces an algorithm for pattern matching and provides
a comparison with existing methods, an image fusion was
elaborated in [7], and an image contrast enhancement can be
found in [8]. A higher order ordinary FT [9] was used in an
edge detection problem [10], as well as in an improvement of
image reconstruction method [11].

FT uses weighted arithmetic mean to compute transfor-
mation components and invert them as linear combination of
components with their weights. We recall a discrete FT from
[3] adjusted for 2-D case, where X = [a, b]× [c, d] 6= ∅ ⊂ R2

and a continuous function f : X → R is given only at some
non-empty finite set of points D 6= ∅ ⊆ X .

Let m,n ≥ 2, {xi}m+1
i=0 and {yj}n+1

j=0 be nodes such that
a = x0 = x1 < . . . < xm = xm+1 = b and c = y0 =
y1 < . . . < yn = yn+1 = d. Consider two finite sets of
fuzzy sets A = {A1, . . . , Am} and B = {B1, . . . , Bn}, where
each Ak and Bl are identified with their membership functions
Ak : [a, b] → [0, 1], Bl : [c, d] → [0, 1] for each k = 1, . . . ,m
and l = 1, . . . , n.

Let A fulfill the following conditions, for each k =
1, . . . ,m:

1) Locality: Ak(x) = 0 if x ∈ [a, xk−1] ∪ [xk+1, b].
2) Continuity: Ak is continuous on [a, b].
3) Normality: Ak(x) = 1 for some x ∈ (xk−1, xk+1).
4) Ruspini’s condition:

∑n
i=1Ai(x) = 1 for all x ∈

[a, b].

We shall say that A form a fuzzy partition of [a, b].
Often, we deal with the so called h-uniform fuzzy par-

tition A (see [4]) determined by the generating function
A : [−1, 1] 7→ [0, 1], which is assumed to be even, continuous,
bell-shaped and fulfill A(0) = 1. Fuzzy sets from a h-uniform
fuzzy partition are created as a shifted copy of a generating
function A.

Definition 1 Let A and B form fuzzy partitions of [a, b] and
[c, d], respectively. Let m = |A|, n = |B|, and moreover, let
A and B cover D, i.e., for each A ∈ A, B ∈ B there exist
(x, y) ∈ D such that A(x) > 0 and B(y) > 0. Then, a (direct
discrete) fuzzy transform of f w.r.t. A, B and D is defined as
a m× n matrix

Fm,n[f ] =


F11 F12 . . . F1n

F21 F22 . . . F2n

...
...

. . .
...

Fm1 Fm2 . . . Fmn



where the (k, l)-th component Fk,l is equal to

Fk,l =

∑
(c,d)∈D f(c, d)Ak(c)Bl(d)∑

(c,d)∈D Ak(c)Bl(d)
(3)

for each k = 1, . . . ,m and l = 1, . . . , n.

Observe that the matrix of components consists of weighted
arithmetic means with weights given by the values of the
respective fuzzy sets from A and B. A linear combination
of components from Fm,n[f ] and fuzzy sets from A and
B returns a continuous function on X called inverse fuzzy
transform.

Definition 2 The inverse discrete fuzzy transform of f
w.r.t. A, B and D is a function fF,m,n : X → R defined as

fF,m,n(x, y) =

m∑
k=1

n∑
l=1

Fk,l ·Ak(x)·Bl(y), (x, y) ∈ X. (4)

We refer to the direct and inverse discrete FT from the above
definitions as the ordinary FT.

IV. PARTIAL FUZZY TRANSFORM

Since f : X → R is given only at some non-empty finite set
of points, hence, it is total on D and partial on X . Therefore,
it can be considered undefined on X \ D. This fact can be
formalized by extension of real-line by a dummy element ∗
(represents U/M value) to R∗ = R∪{∗} and f to f∗ : X → R∗
as follows:

f∗(x) =

{
f(x) for x ∈ D;

∗ otherwise.
(5)

Now, we can introduce FT components for f∗ as extended
weighted arithmetic means.

Definition 3 Let A, B and m,n be as in Definition 1 and

Pkl = {(x, y) ∈ X|Ak(x) ·Bl(y) > 0}.

Then, a (direct discrete) partial fuzzy transform of f∗ w.r.t. A,
B and D is defined as a matrix of components

F ∗m,n[f
∗] =


F ∗11 F ∗12 . . . F ∗1n
F ∗21 F ∗22 . . . F ∗2n

...
...

. . .
...

F ∗m1 F ∗m2 . . . F ∗mn


where

F ∗k,l =

∑S

(x,y)∈Pkl

f∗(x, y) ·B (Ak(x) ·Bl(y))∑
(c,d)∈D∩Pkl

Ak(c) ·Bl(d)

B (6)

for k = 1, . . . , n.

In this definition, we do not consider A and B to cover D.
It follows that F ∗k,l 6= ∗ if and only if there exists (x, y) ∈ D
such that x ∈ [xk−1, xk+1] and y ∈ [yl−1, yl+1].
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Observe that (6) can be equivalently written as

F ∗k,l =

∑S

(x,y)∈Pkl

f∗(x, y) ·B (Ak(x) ·Bl(y))∑
(x,y)∈Pkl

Ak(x) ·Bl(y) · χD(x, y)

B (7)

where χD denotes characteristic function of D.

An inverse transformation of F ∗m,n[f
∗] to the space of

partial functions is defined as follows:

Definition 4 The inverse discrete partial fuzzy transform of f∗
w.r.t. A, B and D is a function f∗F,m,n : X → R∗ such that

f∗F,m,n(x, y) =

m∑B

k=1

n∑B

l=1

(F ∗k,l ·K (Ak(x) ·Bl(y))) (8)

for all (x, y) ∈ X .

Convention 5 We denote a partial fuzzy transform briefly
by FT∗.

This definition of FT∗ that operates on ∗-extended reals
allows us to fill in “small” gaps on X between the given data
D by means of real values given by the inverse FT∗ while
“big” gaps are filled only on the edges and remain undefined
otherwise. A meaning of “small” and “big” gaps is captured
by the width of supports of fuzzy sets in A and B.

V. IMAGE RECONSTRUCTION USING PARTIAL FUZZY
TRANSFORM

In this contribution IR problem does not mean a fusion of
several images, but a problem of reconstruction of undefined,
missing or corrupted part of a single input image. Methods
for solving this problem are often called image inpainting (or
image interpolation) methods. There are several approaches to
the problem of IR [12]. The F-transform based method falls to
the class of the interpolation techniques. For an overview and
a comparison of interpolation techniques, we refer to [13].

In this section, we will provide IR algorithms based on
FT∗ which fill in U/M regions of the input image I . We will
assume that information about these regions (denoted by ω)
is available in the form of the input mask S having value ∗
for U/M data and 1 otherwise. A goal of IR algorithms is to
replace ω by values gained through computation on undamaged
regions of an input image. Here, we use FT∗ to do so.

Remark that inverse FT and FT∗ transform a matrix of
components to the space of 2-D continuous functions having
values in R. Therefore, we round the received real values of
the inverse FT∗ to the closest natural number from the interval
[0, 255] and ∗ remains untouched.

Recall that gray-scale digital images are represented as
functions on X ⊂ N2 with values in [0, 255] ⊂ N, i.e., as
mappings I : X 7→ [0, 255], where X = [1,M ] × [1, N ] and
[1,M ], [1, N ] are closed intervals on N.

In the following, let us consider a non-empty set ω ⊂ X
and parameters s, h ∈ N.

A. A Simple IR Algorithm Based on Partial FT
Let us briefly sketch steps of the simple IR algorithm based

on FT∗ with the inputs I , ω, h > 1 and a generating function
A:

• Rewrite values of I on ω by ∗ and denote the result
by I∗.

• Compute m,n from h and generate h-uniform parti-
tions A and B using A.

• Compute the direct and inverse FT∗ of I∗ w.r.t. A, B
and D.

• Reconstruct a part of ω in I∗ using the inverse FT∗.

Inputs: Image I , damaged areas ω, width h > 1, generator A.

1) Set I∗(x, y) =
{
∗, ∀(x, y) ∈ ω;
I(x, y), otherwise.

2) Set D = X \ ω.
3) Compute m,n from h and generate h-uniform parti-

tions A and B using A.
4) Compute the direct FT∗ of I∗ w.r.t. A, B and D, i.e.,

F ∗m,n[I
∗] by (6).

5) Compute the inverse FT∗ of I∗ w.r.t. A, B and D,
i.e., I∗F,m,n by (8).

6) Set I∗(x, y) = I∗F,m,n(x, y), for all (x, y) ∈ ω.
7) Rewrite all ∗ by 0 in I∗.

Output: Image I∗.

B. An Iterative IR Algorithm Based on Partial FT
In this algorithm, we repeat the simple IR algorithm

described above with an increasing width h (determined by
the step s) until the whole ω is reconstructed. A detailed
description follows.

Inputs: Image I , damaged areas ω, width h > 1, generator
A, step s > 0.

1) Set I∗(x, y) =
{
∗, ∀(x, y) ∈ ω;
I(x, y), otherwise.

2) Set D = X \ ω.
3) Compute m,n from h and generate h-uniform parti-

tions A and B using A.
4) Compute the direct FT∗ of I∗ w.r.t. A, B and D, i.e.,

F ∗m,n[I
∗] by (6).

5) Compute the inverse FT∗ of I∗ w.r.t. A, B and D,
i.e., I∗F,m,n by (8).

6) Set I∗(x, y) = I∗F,m,n(x, y), for all (x, y) ∈ ω.
7) Set h = h+ s and ω = {(x, y) ∈ I∗|I∗(x, y) = ∗}.
8) If ω 6= ∅ then go to 2) else output I∗.

Output: Image I∗.

Remark 6 In the case of RGB (where I : X 7→ [0, 255]3)
or another image representation model, we run the selected
algorithm in each channel separately with the same settings
of the input parameters.

Example 7 Consider A(x) = 1−|x|. We apply the simple and
iterative IR algorithms based on FT∗ to an image with small,
as well as large U/M areas visualized in Figure 1. Figures 2
and 3 show an effect of the simple algorithm with h = 2
and h = 3, respectively. A suitable choice of h (the parameter
determining fuzzy partitions) leads to an infilling of U/M areas
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Figure 1. An original image with U/M areas.

Figure 2. Application of the simple IR algorithm based on FT∗ to the image
from Figure 1 with h = 2.

of a maximal vertical and horizontal width smaller than h.
Finally, an output of the iterative IR algorithm based on FT∗
with h = 2 and s = 1 is depicted in Figure 4. In this particular
example, both algorithms produce fine reconstructions of small
U/M areas. In the case of the big U/M area in Figure 1, which
covers Lena’s face, some context based IR algorithm would be
more applicable.

Figure 3. Application of the simple IR algorithm based on FT∗ to the image
from Figure 1 with h = 3.

Figure 4. Application of the iterative IR algorithm based on FT∗ to the
image from Figure 4.
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Figure 5. MSRA (due to the description in [4]) applied to Figure 1.

(a) IMSRA applied to Figure 4. (b) Difference between Figure 4 and
IMSRA.

Figure 6. An example of an output of the Implementation of MSRA
(IMSRA) provided in [5].

VI. CONCLUSIONS

The most important features of FT∗ is a significant simplifi-
cation and correction of MSRA from [4] (and also other later
sources). Indeed, experimental results of MSRA are almost
identical with outputs of our iterative IR algorithm based on
FT∗ (see Figure 6). Observe that FT∗ handles automatically
U/M parts and they do not need to be explicitly encoded in
(6) and (8). Moreover, this particular application shows the
usefulness of the introduced formalism that deals with one
error code ∗ for an arbitrary exception and various extensions
of operations to ∗. Hence, we can choose a suitable extension
of the user operation due to our requirements on the behaviour
of ∗ and consequently, we do not need to take care of
any exception because it is correctly handled using extended
operations. In our opinion, this approach may be useful also in
other research domains and problem-solving techniques where
U/M data are present.
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and LQ1602 of MŠMT ČR (NPU II).
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Abstract—In this paper, we present a preliminary result on the
generation of Hilbert proofs for classical propositional logic. This
is part of our ongoing research on the comparison of proof-search
in different proof-systems. Exploiting the notion of evaluation
function, we define a fully deterministic terminating decision
procedure that returns either a derivation in the Hilbert calculus
of the given goal or a counter model witnessing its unprovability.

Keywords–Automated Theorem Proving; Hilbert calculi.

I. INTRODUCTION

It is well-known [1] that the standard formalizations of
classical and intuitionistic logic based on Hilbert calculi,
sequent calculi and natural deduction are equivalent. In spite
of this, proof-search has been mainly developed around the
notion of sequent calculi, almost neglecting the cases of natural
deduction and Hilbert calculi. This is primarily motivated by
the fact that the latters lack the structural properties of sequent
calculi, like cut-elimination and subformula property, that can
be immediately exploited to define a goal-oriented proof-
search procedure (see, e.g., [2]-[3] for an accurate discussion).
In [4][5] it is shown that in the case of natural deduction it is
possible to design proof-search procedures with structural and
complexity properties comparable with those based on sequent
calculi. This is obtained by imposing a strict discipline on
the backward application of the rules and by exploiting some
internal features of the goal via evaluation functions. In this
paper, we begin an investigation concerning Hilbert calculi
with the aim to apply in this context the ideas developed in
the above cited papers. We take Classical Propositional Logic
(CPL) as the entry point of our investigation. We consider
the Hilbert system Hc for CPL as defined in [6] and we
introduce a proof-search strategy for it. The procedure builds
Hilbert proofs during the proof-search phase. Since the proof-
search phase is based on a strategy for a sequent calculus, the
procedure can be seen as building Hilbert proofs in one-pass,
that is, by translating on-the-fly sequent proofs. The procedure
relies on a sequent calculus with at most one formula on the
right, thus to get termination and completeness we need to
introduce the machinery of evaluations.
As regards related works, as far as we know, the only two
papers addressing this issue are [7][8], and both are scarcely
related with our approach. The former deals with backward
application of modus ponens, introducing metavariables to rep-
resents cut-formulas. In [8], an implementation of a prover for
CPL is presented, that relies on a semantic method exploiting
Kalmar completeness theorem.

The system Hc consists of some axioms and only one
rule, modus ponens (from A→ B and A infer B). The main
problem in defining a proof-search procedure for Hc is to
control the application of modus ponens. If we backward apply
modus ponens to prove a goal formula B, we have to guess a
cut-formula A, so that next goals are A and A→ B. To avoid
considering useless cut-formulas, we adapt to the classical
case the notion of evaluation function introduced in [9] for
intuitionistic propositional logic. Essentially, an evaluation
function is a lightweight computational mechanism that drives
the backward application of the rules, only analyzing the
current goal of the proof search. The evaluation function for
Hc is introduced in Section III. The proof-search procedure
described in Section IV takes as input a goal G and a set
of assumptions Γ and returns either a deduction of G in Hc
from assumptions Γ or a classical model of Γ falsifying G. As
proved in Section IV the proof-search procedure is terminating
and it does not require backtracking.

II. THE HILBERT CALCULUS Hc

We consider the propositional language L of CPL based
on a denumerable set of propositional variables Pv and the
connectives ∧, ∨, → and ¬. We write A↔ B as a shorthand
for (A→ B)∧ (B → A). A literal is a formula of the form p
or ¬p with p ∈ Pv; the set of literals is denoted by Lit. The
size of a formula A, denoted by |A|, is the number of logical
symbols occurring in A. A model M is a subset of Pv; we
write M � A to denote that the formula A is valid in M,
according to the usual definition. Let Γ be a set of formulas;
M � Γ iff, for every A ∈ Γ,M � A. By Γ � A we mean that
A is a classical consequence of Γ, namely: for every model
M, M � Γ implies M � A.

We call Hc the Hilbert calculus for CPL introduced in [6].
Logical axioms of Hc are:

(Ax1) A→ (B → A)
(Ax2) (A→ B)→ ((A→ (B → C))→ (A→ C))
(Ax3) A→ (B → (A ∧B))
(Ax4a) (A ∧B)→ A (Ax4b) (A ∧B)→ B
(Ax5a) A→ (A ∨B) (Ax5b) B → (A ∨B)
(Ax6) (A→ C)→ ((B → C)→ ((A ∨B)→ C))
(Ax7) (A→ B)→ ((A→ ¬B)→ ¬A)
(Ax8) ¬¬A→ A

The only rule of Hc is MP (Modus Ponens): from A→ B
and A infer B.
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Let Γ be a set of formulas and A a formula. A deduction
of A from assumptions Γ is a finite sequence of formulas
D = 〈A1, . . . , An〉 (possibly with repetitions) such that An =
A and, for every Ai in the sequence, one of the following
conditions holds:

(a) Ai ∈ Γ (namely, Ai is an assumption);
(b) Ai is an instance of a logical axiom;
(c) Ai is obtained by applying MP to Aj and Ak, with j < i

and k < i.

We denote with Fm(D) = {A1, . . . , An} the set of
formulas occurring in D. By D : Γ ` A we mean that
D is a deduction of A from assumptions in Γ. Given two
sets of formulas A1, . . . , An and B1, . . . , Bm, we write D :
A1, . . . , An, B1, . . . , Bm ` A instead of D : {A1, . . . , An} ∪
{B1, . . . , Bm} ` A.

Given two deductions D1 : Γ1 ` A1 and D2 : Γ2 ` A2, we
denote by D1 ◦ D2 the deduction obtained by concatenating
the sequences D1 and D2. One can easily check that D1 ◦D2 :
Γ ` A2, where Γ ⊆ Γ1 ∪ Γ2. Note that Γ can be a proper
subset of Γ1 ∪ Γ2, since some of assumptions in Γ2 could be
obtained by applying MP in D1 ◦ D2 (see the next example).

Example 1: Let us consider the derivations

D1 = 〈p1, p1 → p2〉 D2 = 〈p2, p2 → (p2 ∨ q), p2 ∨ q〉

We have D1 : p1, p1 → p2 ` p1 → p2. In D2, the formula
p2 → (p2 ∨ q) is an instance of axiom (Ax5a) and p2 ∨ q
is obtained by applying MP to p2 → (p2 ∨ q) and p2, hence
D2 : p2 ` p2 ∨ q. In the concatenation D1 ◦ D2 the formula
p2 can be obtained by applying MP to p1 → p2 and p1, hence
D1 ◦ D2 : p1, p1 → p2 ` p2 ∨ q.

In the following proposition, we introduce some deduction
schemas we use later on.

Lemma 1: For all formulas A, B and C, the following
deductions can be constructed:

(i) DMP(A→ B,A) : A→ B,A ` B;

(ii) D¬¬E(A) : ¬¬A ` A;

(iii) DEF(A,B) : A,¬A ` B;

(iv) DEF→(A,B) : ¬A→ B,¬A→ ¬B ` A;

(v) DEF→¬(A,B) : A→ B,A→ ¬B ` ¬A;

(vi) D∨E(A,B,C) : A→ C,B → C,A ∨B ` C.

Proof: The following sequence of formulas proves
Point (vi):

(1) A→ C Assumption
(2) B → C Assumption
(3) A ∨B Assumption
(4) (A→ C)→

((B → C)→ ((A ∨B)→ C)) (Ax6)
(5) (B → C)→ ((A ∨B)→ C) MP (4) (1)
(6) (A ∨B)→ C MP (5) (2)
(7) C MP (6) (3)

A distinguishing feature of Hilbert calculi is that there are
no rules to close assumptions. Thus, to prove the Deduction

Lemma for Hc we have to rearrange a deduction D of
A,Γ ` B to get a deduction of Γ ` A→ B. An analogous
issue holds for negation elimination and negation introduction.
The following lemma provides the schemas of derivation
transformations treating such cases:

Lemma 2 (Closing assumption lemma):

(i) Let D : A,Γ ` B. Then, there exists a deduction
EDL(D, A) : Γ ` A→ B such that, for every C ∈
Fm(D), A→ C ∈ Fm(EDL(D)).

(ii) Let D : ¬A,Γ ` K such that ¬K ∈ Fm(D). Then, there
exists a deduction E¬E(D,¬A) : Γ ` A.

(iii) Let D : A,Γ ` K such that ¬K ∈ Fm(D). Then, there
exists a deduction E¬I(D, A) : Γ ` ¬A.

Proof: For Point (i) see the proof of the Deduction
Lemma in [6]. As for Point (ii), by Point (i) there exists a
deduction EDL(D,¬A) : Γ ` ¬A→ K such that ¬A →
¬K ∈ Fm(EDL(D,¬A)). Let us consider the derivation
DEF→(A,K) : ¬A → K,¬A → ¬K ` A defined in
Lemma 1.(iv). We set E¬E(D,¬A) : Γ ` A as the deduction
EDL(D,¬A) ◦ DEF→(A,K). The deduction E¬I(D, A) of
Point (iii) is built in a similarly using DEF→¬(A,K) instead
of DEF→(A,K).

III. THE EVALUATION MECHANISM

Evaluation functions have been introduced in [9] to get
a terminating proof-search procedure for Gentzen sequent
calculus LJ for propositional intuitionistic logic. Here, we
adapt this mechanism to the case of classical propositional
logic.

Let Lt,f be the language obtained by adding to L the
constants t (true) and f (false), with the usual interpretation;
let H be a formula of Lt,f and let Γ be a set of formulas of
L. The evaluation of H in Γ, denoted by eval(H,Γ), is the
formula of Lt,f obtained by replacing every subformula K of
H such that K is an axiom or K ∈ Γ with t and then by
performing some truth preserving boolean simplifications (for
instance, any subformula of the kind t ∨K is replaced by t,
while f ∨ K is replaced by K). The function eval and the
auxiliary function simpl are defined by mutual induction in
Figure 1. We point out that eval(H,Γ) is either t or f or a
formula of L (not containing the constants t, f). Moreover,
|eval(H,Γ)| ≤ |H|.

One can easily prove that, assuming Γ, the formulas H ,
eval(H,Γ) and simpl(H,Γ) are classically equivalent, as
stated in the next lemma

Lemma 3: Let Γ be a set of formulas of L and H a formula
of Lt,f. Then:

1) Γ � H ↔ eval(H,Γ);

2) Γ � H ↔ simpl(H,Γ).

By Lemma 3 we immediately get:

Theorem 1: Let Γ be a set of formulas of L, let A be a
formula of L and M a model such that M � Γ.

1) eval(A,Γ) = t implies M � A.

11Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-709-2

COMPUTATION TOOLS 2019 : The Tenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

                            18 / 30



eval(H,Γ) =


t if H is an axiom or H ∈ Γ

f if ¬H ∈ Γ

H if H ∈ (Pv \ Γ) ∪ {t, f}
simpl(H,Γ) otherwise

in the following K1 = eval(H1,Γ) and K2 = eval(H2,Γ)

simpl(¬H1,Γ) =


t if K1 = f

f if K1 = t

¬K1 otherwise
simpl(H1 ∧H2,Γ) =


t if K1 = t and K2 = t

f if K1 = f or K2 = f

K1 ∧K2 otherwise

simpl(H1 ∨H2,Γ) =


t if K1 = t or K2 = t

f if K1 = f and K2 = f

K1 ∨K2 otherwise
simpl(H1 → H2,Γ) =


t if K1 = f or K2 = t

f if K1 = t and K2 = f

K1 → K2 otherwise

Figure 1. Definition of eval

2) eval(A,Γ) = f implies M � ¬A.

By L¬ we denote the set of formulas H such that H is a
literal or H = ¬(A ∨ B). A set of formulas Γ is reduced iff
the following properties hold:

• Γ ⊆ L¬;
• for every p ∈ Pv, p ∈ Γ implies ¬p 6∈ Γ;
• for every H = ¬(A ∨B) ∈ Γ, eval(H,Γ \ {H}) = t.

By Theorem 1, we get:

Theorem 2: Let Γ be a reduced set of formulas. Then, Γ∩
Pv is a model of Γ.

Proof: Let Θ be the subset of Γ containing all the
formulas of the kind ¬(A ∨ B) of Γ. We prove the theorem
by induction on the cardinality of Θ. If Θ is empty, then Γ
only contains propositional variables or formulas ¬p such that
p ∈ Pv \ Γ; this implies that Γ ∩ Pv is a model of Γ. Let
¬(A ∨ B) ∈ Θ, let Γ1 = Γ \ {¬(A ∨ B)} and let M be the
model Γ∩Pv. By induction hypothesis, M is a model of Γ1.
Since Γ is reduced, we have eval(¬(A ∨ B),Γ1) = t; by
Theorem 1 we get M � ¬(A ∨ B), hence M is a model of
Γ.

A set of formulas Γ is contradictory iff there exists a
formula X such that {X,¬X} ⊆ Γ. In the proof of termination
of the proof-search procedure Hp, we need the following
properties of eval.

Lemma 4: Let Γ be a non-contradictory set of formulas,
let H be a formula and let us assume that eval(H,Γ) = τ ,
where τ ∈ {t, f}. Let K ∈ Γ and ∆ = Γ \ {K}. Then:

1) If K = ¬¬A and ∆ ∪ {A} is not contradictory, then
eval(H, ∆ ∪ {A}) = τ .

2) If K = A∧B and ∆∪ {A,B} is not contradictory, then
eval(H, ∆ ∪ {A,B}) = τ .

3) If A0 ∨A1 ∈ Γ and ,∆∪{Ak} is not contradictory, then
eval(H, ∆ ∪ {Ak}) = τ .

4) If K = A→ B and ∆∪ {¬A} is not contradictory, then
eval(H, ∆ ∪ {¬A}) = τ .

5) If K = A→ B and ,∆ ∪ {B} is not contradictory, then
eval(H, ∆ ∪ {B}) = τ .

6) If K = ¬(A0 ∧ A1) and k ∈ {0, 1} and ∆ ∪ {¬Ak} is
not contradictory, then eval(H, ∆ ∪ {¬Ak}) = τ .

7) If K = ¬(A0 ∨A1) and eval(K,∆) = t and k ∈ {0, 1}
and ∆ ∪ {¬Ak} is not contradictory, then eval(H, ∆ ∪
{¬Ak}) = τ .

8) If K = ¬(A0 ∨ A1) and eval(A0,∆) = eval(A1,∆) =
f, then eval(H, ∆) = τ .

9) If ¬(A→ B) ∈ Γ and ∆∪{A,¬B} is not contradictory,
then eval(H, ∆ ∪ {A,¬B}) = τ .

IV. PROCEDURE Hp

We present the procedure Hp to search for a deduction in
Hc. Let Γ be a set of formulas and let G be the goal formula or
the special symbol � representing the empty goal. We define
the procedure Hp satisfying the following properties:

(H1) If G ∈ L, Hp(Γ, G) returns either a deduction D : Γ ` G
or a model of Γ ∪ {¬G}.

(H2) Hp(Γ,�) returns either a deduction D : Γ ` K such that
¬K ∈ Fm(D) or a model of Γ.

Procedure Hp (Γ, G)

(1) if G is an axiom or G ∈ Γ
return 〈G〉

(2) if there is {¬A,A} ⊆ Γ

if G 6= �, then return the proof DEF(A,G)
else return 〈¬A,A〉

(3) if there is ¬¬A ∈ Γ

let D = Hp( (Γ \ {¬¬A}) ∪ {A}, G ).
if D is a model, then return D
else return 〈¬¬A,¬¬A→ A〉 ◦ D

(4) if there is A ∧B ∈ Γ
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let D = Hp( (Γ \ {A ∧B}) ∪ {A,B}, G )
if D is a model, then return D
else return 〈A ∧B, (A ∧B)→ A, (A ∧B)→ B〉 ◦ D

(5) if there is A0 ∨A1 ∈ Γ and G = �
for i = 0, 1, let Di = Hp( (Γ \ {A0 ∨A1}) ∪ {Ai}, � )
if there exists i ∈ {0, 1} such that Di is a model, then
return Di

else for i = 0, 1, let Ki the last formula of Di

let D′
1 = D1 ◦ DEF(K1,¬K0) ◦ DEF(K1,K0)

let E0 = EDL(D0, A0)
let E1 = EDL(D′

1, A1)
return E0 ◦ E1 ◦ D∨E(A0, A1,¬K0) ◦ D∨E(A0, A1,K0)

(6) if there is A0 ∨A1 ∈ Γ and G 6= �
for i = 0, 1, let Di = Hp((Γ \ {A0 ∨ A1}) ∪ {Ai}, G)
if there exists i ∈ {0, 1}, such that Di is a model, then
return Di

else for i = 0, 1, let D′
i = EDL(Di, Ai)

return D′
0 ◦ D′

1 ◦ D∨E(A0, A1, G)
(7) if (G = A0 ∨A1 or G ∈ Pv) and eval(G,Γ) 6= f

let D = Hp( Γ ∪ {¬G},� )
if D is a model, then return D
else return E¬E(D,¬G)

(8) if G = A0 ∧A1

for i = 0, 1, let Di = Hp(Γ, Ai)
if there exists i ∈ {0, 1}, such that Di is a model, then
return Di

else let D2 = 〈 A0 → (A1 → (A0 ∧A1)),
A1 → (A0 ∧A1), A0 ∧A1〉

return D0 ◦ D1 ◦ D2
(9) if G = A→ B

let D = Hp(Γ ∪ {A}, B)
if D is a model, then return D, else return EDL(D, A)

(10) if G = ¬A
let D = Hp(Γ ∪ {A},�)
if D is a model, then return D, else return E¬I(D, A)

(11) if G = A0 ∨A1

// here eval(A0 ∨A1,Γ) = f
if eval(A0,Γ) 6= f

let D = Hp(Γ, A0)
if D is a model, then return D
else return D ◦ 〈A0 → (A0 ∨A1), A0 ∨A1〉

if eval(A1,Γ) 6= f
let D = Hp(Γ, A1)
if D is a model, then return D
else return D ◦ 〈A1 → (A0 ∨A1), A0 ∨A1〉

// here eval(A0,Γ) = eval(A1,Γ) = f
let D = Hp(Γ,�)
if D is a model, then return D
else let K be the last formula of D

return D ◦ DEF(K,G)
(12) if G ∈ Pv and ¬G ∈ Γ

let D = Hp(Γ,�)
if D is a model, then return D
else let K be the last formula of D

return D ◦ DEF(K,G)
// here G = �

(13) if there is ¬A ∈ Γ such that A = B0 ∨B1

and eval(¬A,Γ \ {¬A}) 6= t

let D = Hp(Γ, A)
if D is a model, then return D
else return 〈¬A〉 ◦ D

(14) if there is ¬A ∈ Γ such that A 6∈ Pv and A 6= B0 ∨B1

let D = Hp( Γ \ {¬A}, A )
if D is a model, then return D
else return 〈¬A〉 ◦ D

(15) if there is A→ B ∈ Γ

let D0 = Hp( Γ \ {A→ B}, A )
let D1 = Hp( (Γ \ {A→ B}) ∪ {B}, G )
if, for some i ∈ {0, 1}, Di is a model, then return Di

else return D0 ◦ 〈A→ B〉 ◦ D1

// here Γ is reduced
(16) return the model Γ ∩ Pv

Before discussing the properties of Hp, we give a high-
level overview of the proof-search procedure. Steps (1), (2)
and (16) are the base cases of Hp and immediately return a
value. In particular, Step (1) returns a derivation of G when
it is either an axiom or an assumption and Step (2) returns
the derivation of G when Γ is contradictory. As for Step (16),
it is executed when steps (1)-(15) cannot be applied; thus, Γ
is reduced and G is the empty goal �. As we discuss later
(see Theorem 4), the returned value Γ ∩ Pv is a model of Γ.
Steps (3)-(6) act on an assumption K ∈ Γ; according with the
form of K, these steps reduce the problem to prove Γ ` G to
the problem to prove Γ′ ` G, where Γ′ is obtained by replacing
K with its relevant subformulas. These steps exploit axioms
(Ax8), (Ax4a), (Ax4b), (Ax6) to decompose the assumption.
Steps (7)-(12) act on the goal formula G. Step (7) essentially
corresponds to an application of reductio ad absurdum. Note
that this case only applies when G is an atomic or a disjunctive
formula; how we discuss later (see Point (P6) below), the side
condition eval(G,Γ) 6= f has an essential role to guarantee
termination. Steps (8)-(12) exploit axioms (Ax3), (Ax5a) and
the closing assumption schemas of Lemma 2 to decompose the
goal formula. Steps (13) and (14) handle the case of negated
assumptions. We note that in Step (13) the treated assumption
¬(B0 ∨B1) is retained in the recursive call; also in this case
the firing condition involving the evaluation function plays an
essential role to guarantee termination (see Point (P8) below).
Finally, Step (15) handles the case of implicative assumptions.

Termination and completeness

To search for a derivation of a goal G0 from assumptions
Γ0, we have to compute Hp(Γ0, G0). We show that the call
Hp(Γ0, G0) terminates. The stack of recursive calls involved
in the computation of Hp(Γ0, G0) can be represented by a
chain of the form Γ0 ` G0 7→ Γ1 ` G1 7→ · · · 7→ Γn ` Gn

where, for every k ≥ 0, Γk is a set of formulas and the
goal Gk is a formula or �. Each sequent σk = Γk ` Gk

in the chain represents a call Hp(Γk, Gk) performed along
the computation of Hp(Γ0, G0). By Gk we denote the set
Γk ∪ {¬Gk} if Gk 6= � and the set Γk if Gk = �.

We have to prove that, for every set of formulas Γ0 and
goal G0, every chain starting from σ0 = Γ0 ` G0 is finite
(namely, the chain contains finitely many sequents). Let us
assume, by absurd, that there exists an infinite chain C(σ0) =
σ0 7→ σ1 7→ σ2 . . . ; we show that we get a contradiction. To
this aim, we state some properties of C(σ0) (the related proofs
are only sketched).

(P1) For every k ≥ 0, Gk is not an axiom.
(P2) For every k ≥ 0, the set Gk is not contradictory.
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Let us assume, by contradiction, that there exists k ≥ 0
such that Gk is an axiom. Then the call Hp(Γk, Gk) imme-
diately ends at step (1), hence σk would be the last sequent
of C(σ0), against the assumption that C(σ0) is infinite. This
proves (P1).

To prove (P2), let us assume that there exists k ≥ 0 such
that Gk is contradictory. Then, there is a formula X such that
{X,¬X} ⊆ Gk. If {X,¬X} ⊆ Γk or Gk = �, then the
call Hp(Γk, Gk) immediately ends at step (2), a contradiction.
Thus, let us assume Gk 6= � and either Gk ∈ Γk or ¬¬Gk ∈
Γk. In the first case, the call Hp(Γk, Gk) immediately ends
at step (1). If ¬¬Gk ∈ Γk, by inspecting Hp one can check
that there exists j > k such that Gk ∈ Γj and Gj = Gk

(see step (3)), hence σj would be the last sequent of C(σ0), a
contradiction. This concludes the proof of (P2).

By (P2) and the properties of eval, we can prove that the
evaluation of a formula is preserved along the chain, as stated
in the next property:

(P3) Let eval(A,Gk) = τ , with τ ∈ {t, f}. Then, for every
j ≥ k, eval(A,Gj) = τ .

To prove (P3), we can exploit Lemma 4, since, by
Point (P2), all the sets Gk are non-contradictory.

By Sf¬(σ0) we denote the set of the formulas H and ¬H
such that H is a subformula of a formula in σ0. By inspecting
the definition of Hp, one can easily check that:

(P4) For every k ≥ 0, Gk ⊆ Sf¬(σ0).
(P5) For every i ≤ j, Gi ∩ L¬ ⊆ Gj ∩ L¬.

We now state some crucial properties of disjunctive goals:

(P6) Let Gk = A∨B and eval(Γk, A) 6= f. Then, there exists
j > k such that eval(Γj , A) = f.

(P7) Let Gk = A∨B and eval(Γk, A) = f and eval(Γk, B) 6=
f. Then, there exists j > k such that eval(Γj , A) =
eval(Γj , B) = f.

(P8) Let H = ¬(A ∨B) such that H ∈ Γk and eval(H,Γk \
{H}) 6= t. Then, there exists j > k such that H ∈ Γj

and eval(H,Γj \ {H}) = t.

Let us consider Point (P6). If Gk = A ∨ B and
eval(Γk, A) 6= f, then there exists l ≥ k such that chain
starting from the sequent σl has the form

Γl ` A ∨B 7→ Γl+1 ` A 7→ · · · ; 7→ Γl+m ` H

where the formula H satisfies one of the following properties:

(a) H = H0 ∨H1 and eval(H0 ∨H1,Γl+m) 6= f;
(b) H is a literal.

Indeed, after a (possibly empty) initial phase where some
formulas in Γk are handled, the goal formula A∨B is eagerly
decomposed until a disjunctive formula H satisfying (a) or a
literal H is obtained. In this phase, whenever we get a goal
Gj = B → C, the formula B is added to the left-hand side
and the next sequent of the chain is Γj , B ` C (see step (9));
this might introduce a sequence of steps to decompose the
formula B and its subformulas. By exploiting (P3), one can
prove that:

(c) eval(H,Γl+m+1) = f implies eval(A,Γl+m+1) = f.

If H satisfies (a), the next sequent of the chain is σl+m+1 =
Γl+m,¬H ` � (see step (7)). Since eval(H,Γl+m+1) = f,
by (c) we get eval(A,Γl+m+1) = f, hence Point (P6)
holds. Similarly, if H is a propositional variable, then H 6∈
Γl+m, otherwise the set Gl+m would be contradictory, against
Point (P2). Thus, the next sequent of the chain is σl+m+1 =
Γl+m,¬H ` � (see step (7)), and this proves Point (P6). The
case H = ¬p, with p ∈ Pv, is similar (see step (10)). The
proofs of points (P7) and (P8) are similar.

By the above points, it follows that we eventually get a
sequent σm such that Γm is reduced and Gm = �. Indeed,
by (P4), the formulas occurring in C(σ0) are subformulas of
Sf¬(σ0). Along the chain, formulas H occurring in Γk such
that H 6∈ L¬ are eventually decomposed, formulas H ∈ L¬

are preserved (see (P5)). Formulas of the kind ¬p, with p ∈ Pv,
do not threaten termination. Let us take a formula H = ¬(A∨
B) occurring in some Γk. By (P8), there exists l > k such
that σl = Γl ` Gl and eval(H,Γl \ {H}) = t. By (P3), for
every j ≥ l it holds that eval(H,Γj \ {H}) = t. Since the
formulas of the kind ¬(A ∨ B) that can occur in the sets Γk

are finitely many, it follows that we eventually get a sequent
σm such that Γm is reduced and Gm = �. Since the only step
applicable to the call Hp(Γm, Gm) is (16), σm should be the
last sequent of C(σ0), a contradiction. This proves that C(σ0)
is finite, thus:

Theorem 3 (Termination): Let Γ be a finite set of formulas
of L and G a formula of L or �. Then, Hp(Γ, G) terminates.

Now, we prove that Hp is correct, namely:

Theorem 4 (Correctness): Let Γ be a finite set of formulas
of L and G a formula of L or �. Then, Hp(Γ, G) satisfies
properties (H1) and (H2).

Proof: By induction on the length l of C(Γ ` G). If
l = 0, then the computation of Hp(Γ, G) does not require any
recursive call. Accordingly, one of the steps (1), (2) or (16)
is executed. In the first two cases, a derivation satisfying
properties (H1) and (H2) is returned. In the latter case, the
model M = Γ ∩Pv is returned. Since none of the conditions
in the if-statements of cases (1)–(15) holds, the set Γ is reduced
and G = �; by Theorem 2, we conclude M � Γ. Let l > 1
and let C(Γ ` G) = Γ ` G 7→ Γ1 ` G1 7→ · · · . Since
the length of C(Γ1 ` G1) is l− 1, by induction hypothesis the
call Hp(Γ1, G1) satisfies properties (H1) and (H2). By a case
analysis, one can easily check that Hp(Γ, G) satisfies (H1)
and (H2) as well. For instance, let us assume that G = A0∨A1

and that step (11) is executed. If eval(A0,Γ) = f, the
recursive call Hp(Γ, A0) is executed. If a deduction D is
returned, by induction hypothesis D is a deduction of Γ ` A0.
This implies that the deduction D◦〈A0 → (A0∨A1), A0∨A1〉
returned by Hp(Γ, A0 ∨ A1) is a deduction of Γ ` A0 ∨A1

(note that A0 → (A0 ∨ A1) is an instance of the axiom
(Ax5a)). Let us assume that Hp(Γ, A0) returns a model
M. By induction hypothesis, we have M � Γ ∪ {¬A0}.
Moreover, since the if-condition in step (7) is false, it holds
that eval(A0 ∨ A1,Γ) = f. By Theorem 1, we get M �
¬(A0 ∨A1), hence M � Γ ∪ {¬(A0 ∨A1}. The proof of the
remaining subcases is similar.

To conclude this section we provide two examples, the first
one showing an example of an execution of the proof-search
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procedure returning a counter model, the second one returning
an Hc-derivation.

Example 2: Let us consider the case where the goal for-
mula is p ∨ q and the set of the assumptions is empty. We
describe the chain of recursive calls applied to compute the
goal, referring to the steps in the definition of Hp.

(c1) Hp(∅, p ∨ q)
Since eval(p ∨ q, ∅) = p ∨ q, case (7) is applied and the
recursive call Hp({¬(p ∨ q)},�) is executed.

(c2) Hp({¬(p ∨ q)},�)
Since eval(¬(p∨ q), ∅) = ¬(p∨ q), case (13) is selected
and Hp({¬(p ∨ q)}, p ∨ q) is executed.

(c3) Hp({¬(p ∨ q)}, p ∨ q)
Since eval(p ∨ q, {¬(p ∨ q)}) = f, case (11) is se-
lected. Moreover, since eval(p, {¬(p∨ q)}) = p, the call
Hp({¬(p ∨ q)}, p) is executed.

(c4) Hp({¬(p ∨ q)}, p)
Since eval(p, {¬(p ∨ q)}) = p, case (7) is selected and
Hp({¬(p ∨ q),¬p},�) is executed.

(c5) Hp({¬(p ∨ q),¬p},�)
Since eval(¬(p ∨ q), {¬p}) = ¬q, case (13) is selected
and Hp({¬(p ∨ q),¬p}, p ∨ q) is executed.

(c6) Hp({¬(p ∨ q),¬p}, p ∨ q)
Since eval(p ∨ q, {¬(p ∨ q),¬p}) = f, case (11) is
selected. Moreover, since eval(p, {¬(p ∨ q),¬p}) = f
and eval(q, {¬(p∨ q),¬p}) = q, Hp({¬(p∨ q),¬p}, q)
is executed.

(c7) Hp({¬(p ∨ q),¬p}, q)
Since eval(q, {¬(p ∨ q),¬p}) = q, case (7) is selected
and Hp({¬(p ∨ q),¬p,¬q},�) is executed.

(c8) Hp({¬(p ∨ q),¬p,¬q},�)
Since eval(¬(p ∨ q), {¬p,¬q}) = t and ¬p and ¬q are
literals, case (16) is executed and the model ∅ is returned.

Since the recursive call in (c8) returns the model ∅, any of
the recursive calls in points (c7)-(c1) returns the same model,
which indeed is a model of {¬(p ∨ q)}.

Example 3: Let us consider the case where the goal for-
mula is p ∨ ¬p and the set of assumptions is empty.

(c1) Hp(∅, p ∨ ¬p)
Since eval(p ∨ ¬p, ∅) = p ∨ ¬p, case (7) is selected and
the recursive call Hp({¬(p ∨ ¬p)},�) is executed.

(c2) Hp({¬(p ∨ ¬p)},�)
Since eval(¬(p ∨ ¬p), ∅) = ¬(p ∨ ¬p), case (13) is
selected and Hp({¬(p ∨ ¬p)}, p ∨ ¬p) is executed.

(c3) Hp({¬(p ∨ ¬p)}, p ∨ ¬p)
Since eval(p∨¬p, {¬(p∨¬p)}) = f, case (11) is selected
and since eval(p, {¬(p∨¬p)}) = p, the call Hp({¬(p∨
¬p)}, p) is executed.

(c4) Hp({¬(p ∨ ¬p)}, p)
Since eval(p, {¬(p ∨ ¬p)}) = p case (7) is selected and
Hp({¬(p ∨ ¬p),¬p},�) is executed.

(c5) Hp({¬(p ∨ ¬p),¬p},�)
Since eval(¬(p ∨ ¬p), {¬p}) = f, case (13) is selected
and Hp({¬(p ∨ ¬p),¬p}, p ∨ ¬p) is executed.

(c6) Hp({¬(p ∨ ¬p),¬p}, p ∨ ¬p)
Since eval(p ∨ ¬p, {¬(p ∨ ¬p),¬p}) = t, case (11) is
selected. Moreover, we have eval(p, {¬(p∨¬p),¬p}) =
f and eval(¬p, {¬(p∨¬p),¬p}) = t; as a consequence
Hp({¬(p ∨ ¬p),¬p},¬p) is executed.

(c7) Hp({¬(p ∨ ¬p),¬p},¬p)
Since ¬p ∈ {¬(p ∨ ¬p),¬p} case (1) is selected and the
Hc-derivation 〈¬p〉 is returned.

Since the recursive call in (c7) returns a derivation, any of the
calls in points (c6)-(c1) returns the derivation built according
with the receipt described in the corresponding case.

V. CONCLUSIONS

In this paper, we have presented a deterministic and ter-
minating proof-search procedure Hp for a Hilbert calculus
for classical propositional logic (a Prolog implementation is
available[10]). Hp is a procedure that builds Hilbert proofs, if
any, in one-pass, that is during the proof-search phase. Such
proofs can be seen as derivations based on a sequent calculus
having at most one formula on the right. The machinery of
evaluations is used to get completeness and termination.
As regards future works, we plan to provide terminating
procedures returning Hilbert proofs for intermediate logics by
applying the results in [9][11]. We also aim to extend the proof-
search procedure for Hc to treat some modal logics, as, e.g.,
S4 and S5 [12] and conditional logics [13].
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Abstract—Software tools for programming gate-based quantum
computers are being developed by many parties. These tools
should now grow towards a phase where they support quan-
tum devices running realistic algorithms to outperform classical
algorithms on digital computers. At this moment, they lack
capabilities for generic gates, capabilities for quantum debugging
and generic quantum libraries. This paper gives a view on the
functionalities needed for such software environments looking at
the various layers of the software stack and at the interfaces for
quantum cloud computing.
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I. INTRODUCTION

Quantum computers are still in an early stage of devel-
opment, and experimental quantum processors are getting to
support up to a few dozen of qubits [1][2]. That number is
growing, and support for a large number of qubits is just a
matter of time. Where we speak of quantum computers in this
paper, we mean gate based quantum computers and not quan-
tum annealers. Software tools for programming gate-based
quantum computers are also in an early stage of development,
where the basics, however, were already set 20 years ago [3]–
[5]. Currently, these software tools are mainly supporting a
set of low-level quantum instructions, embedded in a classical
(digital) programming language. They are adequate for running
rudimentary quantum applications [6] that can already run
on only a few qubits. Quantum computing should now grow
towards a phase where the development of quantum software
must get more emphasis. This is comparable with the sixties of
the previous century, when programming tools like Fortran and
Algol brought a much higher abstraction to digital computers
than just assembly language.

Since it is not obvious what ‘higher abstraction’ means for
quantum computing, this paper discusses what functionality
is needed in the next level of quantum computing and how
this can be implemented in a structured way, by means of a
stack of software layers. Important here is that, in this paper,
we assume that (1) quantum processors remain bulky devices
for a long time (like digital computers in the beginning), (2)
that real quantum applications will always be a mix of digital
and quantum computing, where only a part of the problem is
solved in a quantum manner, and (3) that we want to make this
available for a larger public, that has limited knowledge about
the underlying quantum layer. For this, we require (1) a strict
interface between remote quantum hardware, (2) local software
that runs at the user side that can, (a) independent of the used

TABLE I. Shortlist of languages being used for quantum software tools.

C / C++ based (>30) Matlab / Octave based (12)
F# based (1) Maxima based (2)
GUI based (>10) NET based (4)
Java based (>15) Online service (10)
JavaScript based (1) Perl / PHP based (3)
Julia based (1) Python based (>6)
Maple based (3) Scheme/Haskell/LISP/ML based (8)
Mathematica based (8)

local programming language, interact with the remote hard-
and software, (b) independent of the used local programming
language, make use of high level quantum algorithms in
libraries, and (c) has profound quantum specific debugging
capabilities where (small versions of) the desired algorithms
can be analysed, while stepping through the program in debug
mode, up to the underlying quantum states using simulations.

The remainder of this paper is organised as follows. In
Section II, we give an overview of the current state of the art,
by making a functional grouping of existing tools and their
capabilities. In Section III, we discuss the functionality we
expect from a quantum software environment to meet the above
requirements. In Section IV, we sketch our desired software
environment, by defining layers and discussing the functional-
ity of each of those layers and the placement of the separation
between local and cloud, followed by some examples of (later
defined) quantum function libraries in Section V. We conclude
in Section VI with a summary and conclusions.

II. STATE OF THE ART

Many quantum software tools are freely available via the
Internet, and overviews with good summaries of those tools
can be found in [7]–[9]. Most of these tools are still in the
development phase. The list of available tools is too long to
be duplicated here, but a first impression can be gained by
organising them according to the used programming language.
Table I shows the programming languages that are being used
for implementing quantum tools, and the number of each of
these quantum tools. What can be observed in this table is
the wide range of different programming languages that has
been used. There is no clear winner from that, simply because
almost any classical programming language is suitable for this
job, with each of these languages having its own advantages
and disadvantages.

An other way to group the tools is taking a high-level view
on their functionality. We recognise the following functional
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TABLE II. Examples of quantum compiling tools

Name Remarks
Scaffold or ScafCC C-alike, updated version of CLANG.

Compiles to LLVM & QASM [10].
Liquid (Microsoft) F#-alike, updated version of F# (called Q#),

with an emulator on board [11].
Quipper Haskel-alike [12]
QCL mix of C and Pascal alike, detailed language

specification with emulator on board [13].

groups: (a) quantum compilers, (b) quantum function libraries,
and (c) back-end quantum simulators. We are aware that some
tools may not fully fit into one particular group and these
groups may overlap, but it is helpful to identify several high-
level functionalities. We will now discuss the characteristics
of each of these groups one by one.

A. Quantum compilers
The word compiler refers in this context to a tool that

translates an entire program from higher level statements into
some lower level instructions (e.g., binary or assembly). The
execution of that program is started thereafter. The purpose of
a compiler is to generate low level quantum instructions (in
assembly or as native code), from a mix of low and high level
quantum statements, of classical control statements and loops,
of organised code in reusable routines, etc.

Quantum tools that present themselves as quantum com-
pilers are mainly modifications from an existing (classical)
compiler. The result is a changed syntax to have it extended
with quantum specific instructions. The present extensions are
mainly to offer a syntax for elementary instructions at the level
of quantum assembly code. Table II offers a few examples of
those tools.

Their main disadvantage is that creating a new language
may break access to existing code libraries with classical al-
gorithms. For instance, the development of quantum algorithms
for outperforming classical machine learning algorithms will
draw significant benefits if classical code libraries with, for
example, neural network algorithms are well-accessible from
the same software environment.

Next to this, quantum compilers that introduce new lan-
guages, or break compatibility with existing languages lack in
most cases powerful development and (quantum) debugging
tools.

B. Quantum function libraries
The term function library refers in this context to the use

of an existing and well-supported (classical) programming en-
vironment, where the quantum programmer can call quantum-
specific routines from a library. Their purpose is similar to
that of compilers, with the difference that the generation of
low level quantum code occurs in run time. Examples of such
quantum tools are: Qiskit (IBM), Quantum Learning Machine
(QLM, Atos), PyQuil (Rigetti), ProjectQ (ETH Zurich), and
OpenQL (TU Delft).

The approach of using function libraries brings hardly any
limitation, think of generating thousands of dedicated quantum
instructions by a single call to a library function. For instance,
a single call to a routine for a Quantum Fourier Transform or
a matrix expression, that automatically generates hundreds of
quantum instructions operating on tens of qubits. However,

the present quantum function libraries have a strong focus
on low-level quantum computing, and may only be targeted
at a specific quantum processor. Quantum programming with
the present tools is mainly a matter of calling routines for
generating individual low level quantum instructions (like as-
sembler). By calling several of them with different parameters,
one can generate a sequence of quantum instructions to build
a quantum circuit. The identification and handling of higher
level quantum instructions is still a topic of further research.

Some of these tools already offer powerful quantum de-
bugging capabilities, like the generation of a drawing of the
generated quantum circuit and access to a build-in quantum
simulator. Such simulator can return intermediate results, like,
for instance, a quantum state, that can never be obtained using
a real quantum processor. Some of these tools also offer a
graphical user interface, for positioning a few quantum gates
into a quantum circuit to process a few qubits. That approach
mainly serves an educational purpose for those who are setting
their first steps in quantum computing. However, as soon as
your quantum program grows in size, the use of scripting for
calling quantum functions may become more convenient.

C. Back-end simulators
The term back-end simulator refers in this context to a

tool that reads low level quantum assembly and executes them
in a manner like a real quantum processor would do. As
such, it becomes irrelevant for the quantum programmer in
what language such tool is written since that tool is instructed
directly via low level assembly instructions. The concepts of
high level instructions and function libraries are not applicable
here and therefore we consider it as another group.

Back-end simulators contain a very simple translator, to
feed low level assembly instructions (usually stored in an
ASCII file) to a build-in simulation engine. They are by
definition dedicated to low-level functionality only, and can
simulate/emulate on a digital computer what a real quantum
processor would have returned. These tools aim at simulating
a real quantum processor as good as possible on a classical
digital computer. They may even try to simulate the physical
imperfections of a particular quantum processor as well. For
instance, by adding some random mechanism (noise) to mimic
the loss of quantum coherence after executing more and
more quantum instructions, or by deliberately accounting for
topological limitations of a particular quantum processor.

These tools may be offered as a stand-alone tool, or as
part of a larger software environment (sometimes referred to as
‘virtual quantum machine’). The translation functionality they
possess, may also be used to interface with a real quantum
processor, but that is out of scope here. Examples of such
quantum tools are (modules inside) QX (QuTech) [14], QLM
(Atos) [15], QVM (Rigetti) [16] and Quantum Experience
(IBM) [17].

These tools serve purposes other than quantum function
libraries and quantum compilers do. They are valuable to
study the quantum assembly language, to study how to deal
with limitations in the quantum instruction set of the target
machine, or to study quantum error correction methods against
decoherence. They are also valuable to study the interfacing
between a local software environment and a quantum processor
somewhere in the cloud.
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TABLE III. Example of two different dialects of quantum assembler, both
representing the same quantum circuit

Atos-QASM QX
BEGIN
qubits 18 qbits 18
cbits 0 .ckt
H q[0] H q[0]
H q[5] H q[5]
CTRL(PH[1.570]) q[15],q[16] CR q[15], q[16], 1.570
CTRL(PH[0.785]) q[14],q[16] CR q[14], q[16], 0.785
CTRL(PH[0.392]) q[13],q[16] CR q[13], q[16], 0.392
H q[15] H q[15]
... ...
H q[16] H q[16]
END

III. DESIRED SOFTWARE FUNCTIONALITY

In this section, we describe the functionality we expect
in quantum software, such that it supports implementation of
more complex, hybrid digital and quantum algorithms and that
it will enable a larger public that has limited knowledge about
the underlying quantum layer to access quantum computing.

A. Commonly available functionality

In spite of all functional differences between the discussed
tools, they all share a common functionality: the concept of
quantum circuits for representing a set of quantum instructions
via interconnected gates, and the concept of quantum assem-
bler or Quantum Assembly Language (QASM) as a language
for describing those circuits as a list of sequential quantum
instructions. There are several of these quantum assembly
languages, each with their own dialect (syntax), but from a
pure conceptual point of view they all are roughly the same.
Table III shows an example of two different QASM dialects,
both describing the same quantum circuit. The first one shows
the syntax used by QLM (from Atos), the second one shows
the syntax used by QX (within Quantum Inspire).

A QASM file is typically a sequence of individual QASM
instructions, embedded between a header (with declarations)
and a footer. Some QASM tools also allow for grouping those
instructions into macros (like functions) to simplify the use
of the same code multiple times. Each QASM instruction is
build-up from (a) an instruction name, (b) optional parameters,
and (c) a list of qubit identifiers on which this instruction
should operate. Each instruction can change the contents of
a ‘quantum register’ (via gates or measurements), and many
of them in sequence define a quantum circuit. There is an
apparent consensus on the naming of several of these gates,
for instance, instruction names like H, X, Y, Z, but this
consensus does not hold for all gates. This difference can be
confusing, but is not a big issue when well defined. When
these names are well specified by means of the corresponding
matrix representation, the conversion from one QASM dialect
into another is pretty straight forward. And when a particular
gate is not available in one QASM, it can always be created
in another QASM via a combination of a few other gates.
Note that some QASM dialects start their counting of qubits
from 0, while others start from 1. This is only a matter of
convention and preference, mainly driven by the supporting
language, and not a big issue either. In conclusion, one may
say that it is relatively easy to translate one QASM dialect into
another one.

B. Next level functionality
To reach the desired level of quantum programming that

supports the implementation of more complex, hybrid quantum
algorithms and to enable a larger public that has limited knowl-
edge about the underlying quantum layer to access quantum
computing, we need a next level of software functionalities.
Examples of these functionalities are:
Desired capabilities for generic gates

• Define circuit libraries with generic gates, with an
arbitrary number of qubits, and callable as if it was a
single instruction. OpenQASM [18] does supports the
concept of macros and can provide this functionality,
but that concept is not available in all QASMs. The
desired circuit library should generate, for instance, a
Quantum Fourier Transform, or a circuit for modular
exponentiation by one instruction/call for an arbitrary
large number of qubits.

• Define circuit libraries with generic gates in terms of
an unitary matrix or a matrix expression, while the
tool translates that into circuits with only basic gates.
This capability is currently a weak point for almost all
tools. It may be available for one or two qubit gates,
but the issues get problematic for more qubits.

Desired capabilities for quantum debugging

• The capabilities to let the software draw a circuit
from a QASM specification to debug what has been
specified. Tools like Liquid, QLM and ProjectQ give
support for that, but it should be available on all tools
of interest.

• The capability to read out the full vector (or full ma-
trix) with complex numbers representing the present
quantum state or circuit (also at intermediate points).
This is impossible with a real quantum processor,
and only possible with a simulator. However, it is a
very powerful and essential debugging facility. Some
simulation tools do support this, but there are very
primitive solutions among them.

• The capability to analyse generic quantum states and
gates (during simulation), while stepping through the
program in debug mode, using sophisticated linear
algebra tooling.

• The capability to visualise in an abstract manner
relevant aspects of the (full) state vector or (full)
matrix in case they are too large for a full numerical
inspection. For instance, histograms, magnitude plots
by means of colours, etc,

Desired quantum libraries

• Libraries that implement many quantum func-
tions/circuits, callable from your quantum program.
Many functions are well known from the literature, but
inserting, for instance, a Quantum Fourier Transform
operating on an arbitrary number of qubits (in arbitrary
order) should be as simple as inserting a single qubit
X gate. Section V provides further details.

• Running quantum programs from a programming en-
vironment with good access to classic libraries with
legacy solutions for the quantum application under
study. This may mean (a) a language that is different
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Figure 1. Software stack for quantum tooling with different layers

from the implementation language of the quantum
tools, and/or (b) software that prepares the quantum
application locally (for debugging reasons) for run-
ning it on a remote quantum processor (via a well-
supported API, Application Programming Interface),
and/or (c) software that uses a different operating
system from the one used by the quantum processor.
We will also discuss this further in the next chapter.

These desired functionalities are examples only, and the list is
not complete. They have currently a strong focus on (quantum)
debugging capability, flexibility, and libraries. The present
tools may implement fragments of this list, but we have not
found a tool that can support them all in a convenient manner.

IV. DESIRED SOFTWARE ENVIRONMENT

If we know what functionality we need in the software to
enter the next level of quantum computing, we should define
where and how this functionality should be implemented and
where the separation between local and cloud can be placed.

A. Layered software stack
To define where and how the functionality should be

implemented, we use a full software stack with different layers,
as shown in Figure 1, covering functionality from quantum
applications down to quantum processors. The concept in
Figure 1 is very similar to the picture shown in [19][20]. We,
however, put more emphasis on the desired functionality within
the intermediate levels.

1) Functionalities of bottom Layers: The very bottom of
the low-level layers are reserved for the quantum processors,
each equipped with dedicated hardware for controlling it via
(binary) micro instructions. For instance, to change the quan-
tum state of a quantum processor via dedicated pulses. A soft-
ware layer directly above this hardware allows for translating
a sequence of low-level quantum instructions (e.g., assembly
or binary code) into dedicated pulses for the hardware. This
software layer should hide the hardware difference among
different quantum processors as much as possible, in order
to program them with uniform instructions that are more or
less hardware-independent. In practice, very different quantum
processors will be implemented, based on different physical

principles, and each with their own micro instruction sets. The
quantum programmer should not be bothered by that.

These instructions are still very low-level, and the use of
some QASM dialect is the most obvious choice here. These
instructions allow for defining quantum circuits with basic
gates, where the word basic refers to a set of predefined
gates operating on 1 or 2 qubits only. These instructions
may be restricted to the (hardware) instruction range of the
target quantum processor, and may also account for topological
(hardware) limitations.

Since quantum processors are still under development, the
use of a back-end circuit simulator also has its place in the
lower layers. Their aim is to simulate a real quantum processor
as fast as possible, with as many qubits as the used digital
computer platform can handle, and to simulate/emulate all its
imperfections and, if applicable, all topology limitations as
good as possible.

2) Functionalities of intermediate Layers: A more inter-
mediate level (the Q-circuit algorithms box in Figure 1) gives
the quantum programmer access to all kinds of quantum
algorithms, in a uniform manner, ideally independent from
the used quantum hardware and programming languages. It
is, for instance, equipped with all kinds of algorithm libraries
(examples can be found in the next section) and quantum
debugging capabilities to design the quantum-specific parts of
applications.

These instructions are at least capable of defining arbitrary
circuits with generic gates. This means within this context that
they can operate on an arbitrary number of qubits, far beyond
the instruction set of the quantum processor, and they may even
be specified via (unitary) matrices or high level expressions.
The translation from quantum circuit with a few generic gates
into circuits with many basic gates is the proper place to
perform gate and qubit optimisation. The best results can be
achieved when this translation is partly guided by control
parameters representing some of the hardware limitations of
the target quantum processor (hardware aware). These control
parameters are set only once for a particular target quantum
processor, and preferably invisible in the instructions with
generic gates (hardware agnostic). As such, this translation
is an important intermediate step in quantum programming,
applicable to both quantum compilers and tools based on
function libraries.

Figure 2 provides an example of a quantum circuit with
generic gates. At a first glance, generic may look the same as
basic gates, but in this case the gates can also be black boxes
operating on many qubits simultaneously specified as matrices,
expressions, or standard functionalities.

One may still consider the supported instructions as rather
low-level, but the distinction between low and intermediate
level brings a significant advantage. If quantum computing is
offered via the cloud, for running quantum applications from
all over the world, then the interface between the lower and
intermediate layer is a natural interface for the cloud based
quantum computer. And the use of one or more QASM dialects
is a natural component in the interfacing between these layers.
It means that software in the intermediate layers may fully run
on a local computer, while software in the lower layer should
typically run on a remote quantum host.
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Figure 2. Example of a quantum circuit with generic gates.

3) Functionalities of higher layers: The higher layers
(above the Q-circuit algorithms box in Figure 1) are typi-
cally reserved for classical programming environments that
are extended with quantum capabilities for solving dedicated
subproblems. Here the new group of users, with limited
knowledge of underlying quantum techniques should be able to
play around. It would be a waist of effort if each programming
environment has to develop its own collection of libraries with
quantum-specific algorithms. Therefore it is far more efficient
to equip them only with language-specific interfaces, wrapped
around common quantum libraries and debugging capabilities
from the intermediate layer.

Quantum applications will most likely be a hybrid mix
of classical programming concepts and quantum-specific algo-
rithms. This means that the classical programming languages
call a quantum algorithm only when needed for solving par-
ticular subproblems. These classical programming languages
should offer the following capabilities:

• Good access to classical software libraries, with ded-
icated algorithms for the problem area. Think of
libraries for artificial intelligence applications. But
think also of access to quantum circuit libraries with
dedicated quantum-specific algorithms like quantum
solutions for dealing with decoherence errors or for
decomposing a large number into its prime factors.

• Good access to quantum debugging capabilities, also
for the quantum specific aspects. Think of inspecting
quantum states and matrices of quantum circuits via
a build-in simulator and drawing quantum circuits
from instructions. These debugging capabilities should
easily interact with the higher layers, all in a very
interactive and flexible manner.

As such, the universal programming language for everybody
does not exist, and therefore the best solution for that is
that the intermediate layers offer access to quantum-specific
libraries for any programming language of interest. It supports
many quantum circuit algorithms as well as quantum-specific
debugging capabilities.

The use of languages with build-in support for linear
algebra expressions, that are also available as interpreter, give
the user powerful extra capabilities for quantum debugging.
These tools allow for inspecting and manipulating interme-
diate results of circuit matrices and state vectors in a very
interactive manner during simulation. Linear algebra languages
like Matlab/Octave, and to some extend Python with Numpy,

Figure 3. Quantum software stack overview.

are examples of languages offering the desired linear algebra
capabilities in an interactive environment and offer access to
a broad spectrum of classical code libraries.

B. Separation between Local and Cloud

It is assumed that quantum computers remain big installa-
tions with bulky refrigeration equipment for a long time. Com-
mercial deployment of quantum computing will then mean
a quantum computer hosted in a remote building, offering
access via the cloud to many users all over the world. Today,
experimental quantum computers already give access via the
cloud, but mainly in a restricted manner; end users have to
setup a remote terminal session with the hosting computer
and they should develop and run everything on that host.
This is quite inconvenient as it limits rapid interaction with
local software, like exchanging intermediate results with local
debugging software. Moreover, commercial users may not be
willing to share their source code with the hosting organisation.
Exchange of low-level code (binary or assembly) gives then
a similar protection as is common today for distributing pro-
grams as a binary executable. In that case, end users develop,
test and debug on a small scale (locally) at an intermediate
level, and then send low level quantum instructions to a remote
host in order to run at full quantum speed and size.

The most convenient way of implementing that is therefore
not by opening remote terminal sessions, but by accessing the
remote quantum computer via an API. An API allows the user
to program his (quantum) application in a language that differs
from the programming language being used by the remote host.
The intermediate layers will then send QASM-alike quantum
instructions to a remote host, while the end-user experiences
it as if it runs locally. Figure 3 illustrates this interaction
model, where the interface between local and cloud is situated
between the intermediate and lower layers. The intermediate
layers are equipped with all kinds of libraries for quantum
specific calculations, as well as debugging capabilities via a
local quantum simulator. These libraries generate the required
low level QASM instructions and can forward them through a
language-independent interface to the lower layers running in
the cloud.
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V. EXAMPLE LIBRARIES

To get an idea of the type of algorithms that can be imple-
mented via libraries, we will discuss a few examples: libraries
that convert a mathematical expression into a quantum circuit,
libraries that decompose a generic gate or generic matrix
description of such gates into circuits with basic gates and
libraries that convert arithmetic calculations into a quantum
circuit.

A. Quantum expression libraries
The first example is dedicated to generic gates described by

mathematical functions for generating special unitary matrices.
Think, for instance, of the following matrix expressions:

G1(a) = ej∗a∗Z

G2(a) = ej∗a∗ZZ

G3(a) = ej∗a∗ZZZZ

G4(a, b, c, d) = ej∗(a∗XX+b∗Y Y+c∗ZZ+d∗II)

Where

• a, b, c, d are parameters with arbitrary real values;
• X,Y, Z are the Pauli matrices;
• I is the unity matrix;
• XX,Y Y,ZZ, II are the Kronecker products of X ,

Y , Z and I with themselves;
• ZZZZ is the Kronecker product of ZZ and ZZ.
• j indicating the imaginary number

√
−1.

The solution for the first two examples is quite easy, and can
be found in almost any basic text book on quantum computing.
But finding a good solution for the last one is less obvious.
Fortunately, it can be represented by a relative simple circuit
[21]. One can easily imagine that the list of such expressions
is virtually unlimited, which illustrates the value of bringing
them all together into a well-organised quantum expression
library.

B. Quantum decomposition libraries
Another example occurs when mathematical functions are

not available in the expression libraries, as discussed in the
previous section. In those cases a solution may be to use a
numerical evaluation of that function into a unitary matrix with
complex numbers. For instance, to produce an 8 × 8 matrix
representing a 3 qubit gate. It is not that difficult to decompose
an arbitrary matrix into the product of much simpler matrices,
but a simpler matrix does not automatically mean a simpler
quantum circuit. Examples of useful matrix decompositions
are singular value decompositions, sine-cosine decompositions
[5] or QR-decompositions with Givens rotations [22]. How-
ever, these decompositions can easily result in large quantum
circuits with an exponential number of basic gates, and can
also produce quite inefficient solutions. Decomposition is
still an important topic for further research, because we still
need algorithms that convert arbitrary matrices into quantum
circuits, such that it is fully automatic and produces an efficient
circuit as well.

When the matrix is not fully arbitrary, dedicated solutions
may yield far more efficient solutions then the generic ap-
proach. Examples are

TABLE IV. Explanation of used gates in Figures 4c and 4b.

Peres approach QFT approach
G1 = c([1 + q4, 1 − q4; 1 − q4, 1 + q4]/2) G1 = cR(π/2)
G2 = c([1 + q2, 1 − q2; 1 − q2, 1 + q2]/2) G2 = cR(π/4)
G3 = G2′ (conjugated transpose of G2) G3 = cR(π/8)
G4 = G1′ (conjugated transpose of G1) G4 = Rs(π/8)

G5 = Rs(π/4)
where G6 = Rs(π/2)
q2 = (−j) G7 = Rs(π)

q4 =
√

(−j) G8 = cR(−π/2)
c([g11, g12; g21, g22]) = G9 = cR(−π/4)

[1, 0, 0, 0; G10 = cR(−π/8)
0, 1, 0, 0;
0, 0, g11, g12; where
0, 0, g21, g22] Rs(φ) = [1, 0; 0, e(j∗φ)]

cR(φ) = c(Rs(φ))

• U is a 1-qubit gate specified by a 2×2 unitary matrix
with arbitrary complex numbers;

• cU is a controlled version of U, representing a 4× 4
matrix;

• ccU is a double controlled version of U , representing
a 8× 8 matrix.

Such generic gates can be decomposed into multiple basic
gates and the simplest one can be found in almost any basic
text book on quantum computing. But finding solutions for
multiple controlled gates is not obvious, and should be gen-
erated automatically by a single function call, for an arbitrary
matrix U and with an arbitrary number of control inputs. One
can easily imagine that the list of different decompositions is
virtually unlimited, which illustrates the value of bringing them
all together into a well-organised ‘quantum decomposition
library’.

C. Quantum arithmetic libraries

Several quantum applications make use of algorithms
where discrete numbers are represented by distinct quantum
states. For instance, algorithms that make use of modular
additions, modular multiplications or modular exponentiations.
In those cases it is not obvious what the most efficient way
is to implement these on many qubits. We will show three
example circuits of how to calculate something ‘simple’ like
the modular increment of a discrete number encoded in 4
qubits. The first one (Figure 4a) can be found in any textbook,
looks quite simple, however, requires gates with many control
inputs. The second one (Figure 4b) with Peres gates is also
known [23], looks more complicated, but requires only single
qubits gates and single controlled qubit gates. The used gates
are explained in Table IV.

The third example (Figure 4c) using quantum Fourier
transforms [24], however, appeared to be the most simple one
of these three, in the sense that only single qubit gates and
controlled phases are used. This may illustrate that generating
an algorithm with the most efficient circuit is not obvious even
for a very simple problem.

There are many more of these modular arithmetic calcu-
lations, each of them with multiple implementations. Their
details are out of scope here, but it may again illustrate the
value of bringing all these implementations together into a
well-organised ‘quantum arithmetic library’.
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(a) Basic circuit of evaluating the
modular increment of a number,

encoded in 4 qubits.

(b) Peres approach of modular increment: looks more complicated than
the basic circuit, however, all gates are operating on only one or two

qubits.

(c) QFT approach of modular increment: offers the simplest implementation, although looks the most complicated.

Figure 4. Three examples of evaluating the modular increment of a number, encoded in 4 qubits.

D. Other quantum libraries
The list of useful libraries is unlimited. Think of circuits

to generate a Quantum Fourier Transform, or to step through
a quantum random walk. The same applies for the best way
to deal with error corrections, to deal with the topology
limitations of a particular quantum computer, or to build
standard circuits by using only the native gates of a particular
quantum computer (those that can be made with a single
pulse). Note that implementations of basic gates like X , Y , Z,
may require more than one pulse (this depends on the physical
implementation being used). Existing tools have some of those
algorithms implemented. However, a common library that can
be used by different quantum tools is currently only in an early
phase of development.

VI. SUMMARY AND CONCLUSIONS

This paper identified what functionality is needed in soft-
ware that enables the next level of quantum computing and
proposes a way to implement this throughout the software
stack. This next level quantum computing makes it possible
to run more complicated algorithms on quantum computers in
the cloud by a larger public.

The needed functionalities were categorised in functionali-
ties for generic gates, for quantum debugging capabilities and
quantum libraries.

A layered quantum software stack was discussed with
extra attention to the functionality of the intermediate layers.
Important is a clear separation between the software that runs
locally and software that runs on a remote host computer that
controls a quantum processor.

Looking at the layered stack, the lower layers contain one
or more quantum processors and/or back-end simulators and
are typically at the remote host. The intermediate and higher
layers are typically running locally. This enables also a clear
separation between the (classical) programming languages
being used for the quantum application, and software that

implement quantum-specific algorithms and quantum-specific
debugging capabilities. The intermediate layers contain all
kinds of libraries, and a local simulator to offer this to the
higher layers.

The thoughts discussed in this paper are to provide input to
a bigger research agenda on software development for quantum
computing. A first step to make the desired functionality
happen is increasing the effort on software development for
the intermediate layers as well. Activities that deserve more
attention are: (a) Interfacing between a local computer and
quantum processor at a remote host. This should not only
be defined in a language-independent manner, but also be
defined for different quantum processors (at different remote
hosts) in a common manner. (b) Collecting a wide variety of
quantum circuit algorithms into libraries, in a uniform manner
that can be used on any quantum processor. This may require
an automated translation from an abstract QASM syntax tree
(generated by the libraries) into the various QASM dialects of
different processors.

This paper has shown a few examples of those libraries.
All kinds of good algorithms are scattered around in literature,
and paying more attention on bringing them all together into
common libraries is a good start.
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