
COMPUTATION TOOLS 2012

The Third International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-61208-222-6

July 22-27, 2012

Nice, France

COMPUTATION TOOLS 2012 Editors

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria

Pascal Lorenz, University of Haute Alsace, France

 1 / 63

COMPUTATION TOOLS 2012

Foreword

The Third International Conference on Computational Logics, Algebras, Programming,
Tools, and Benchmarking (COMPUTATION TOOLS 2012), held between July 22 and 27, 2012 in
Nice, France, continued an event under the umbrella of ComputationWorld 2012 dealing with
logics, algebras, advanced computation techniques, specialized programming languages, and
tools for distributed computation. Mainly, the event targeted those aspects supporting context-
oriented systems, adaptive systems, service computing, patterns and content-oriented
features, temporal and ubiquitous aspects, and many facets of computational benchmarking.

We take here the opportunity to warmly thank all the members of the COMPUTATION
TOOLS 2012 Technical Program Committee, as well as the numerous reviewers. The creation of
such a broad and high quality conference program would not have been possible without their
involvement. We also kindly thank all the authors who dedicated much of their time and efforts
to contribute to COMPUTATION TOOLS 2012. We truly believe that, thanks to all these efforts,
the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the COMPUTATION TOOLS
2012 organizing committee for their help in handling the logistics and for their work to make
this professional meeting a success.

We hope that COMPUTATION TOOLS 2012 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of
progress in the areas of computational logics, algebras, programming, tools, and benchmarking.

We are convinced that the participants found the event useful and communications very
open. We hope Côte d’Azur provided a pleasant environment during the conference and
everyone saved some time for exploring the Mediterranean Coast.

COMPUTATION TOOLS 2012 Chairs:

COMPUTATION TOOLS Advisory Chairs
Kenneth Scerri, University of Malta, Malta
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania

COMPUTATIONAL TOOLS 2012 Industry/Research Chairs
Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao

 2 / 63

COMPUTATION TOOLS 2012

Committee

COMPUTATION TOOLS Advisory Chairs

Kenneth Scerri, University of Malta, Malta
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania

COMPUTATIONAL TOOLS 2012 Industry/Research Chairs

Torsten Ullrich, Fraunhofer Austria Research GmbH - Graz, Austria
Zhiming Liu, UNU-IIST, Macao

COMPUTATION TOOLS 2012 Technical Program Committee

François Anton, Technical University of Denmark, Denmark
Florin Avram, University of Pau, France
Henri Basson, University of Lille North of France (Littoral), France
Steffen Bernhard, TU-Dortmund, Germany
Ateet Bhalla, NRI Institute of Information Science and Technology, Bhopal, India
Narhimene Boustia, Saad Dahlab University - Blida, Algeria
Manfred Broy, Technical University of Munich, Germany
Luca Cassano, University of Pisa, Italy
Emanuele Covino, Università di Bari, Italy
Hepu Deng, RMIT University - Melbourne, Australia
Eugene Feinberg, Stony Brook University, USA
Cynthia Vera Glodeanu, Institute of Algebra / Technische Universität Dresden, Germany
Luis Gomes, Universidade Nova de Lisboa, Portugal
Rajiv Gupta, University of California - Riverside, USA
Fikret Gurgen, Bogazici University - Istanbul, Turkey
Cornel Klein, Siemens AG - Munich, Germany
Stano Krajci, Safarik University - Kosice, Slovakia
Giovanni Lagorio, DISI/University of Genova, Italy
Tsung-Chih Lin, Feng-Chia University, Taichung, Taiwan
Paolo Masci, Queen Mary, University of London, UK
Cecilia E. Nugraheni, Parahyangan Catholic University - Bandung, Indonesia
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Corrado Priami, CoSBi & University of Trento, Italy
Evgenia Smirni, College of William and Mary - Williamsburg, USA
James Tan, SIM University, Singapore
Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria
Miroslav Velev, Aries Design Automation, USA
Zhonglei Wang, Karlsruhe Institute of Technology, Germany

 3 / 63

Marek Zaremba, Universite du Quebec en Outaouais - Gatineau, Canada
Naijun Zhan, Institute of Software/Chinese Academy of Sciences - Beijing, China

 4 / 63

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 63

Table of Contents

Fast Efficient Fixed-Size Memory Pool: No Loops and No Overhead
Ben Kenwright

1

Utilising an Ant System for a Competitive Real-Life Planning Scenario
Christopher Blocker and Sebastian Iwanowski

7

Towards Discrete Event Multi Agent Platform Specification
Sebastien Mattei, Paul-Antoine Bisgambiglia, Marielle Delhom, and Evelyne Vittori

14

Multiplicative Complexity and Solving Generalized Brent Equations With SAT Solvers
Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis

22

UPC-CompilerCheck: A Tool for Evaluating Error Detection Capabilities of UPC Compilers
Marina Kraeva, James Coyle, Glenn Luecke, Indranil Roy, Elizabeth Kleiman, and James Hoekstra

28

An Integrated Scientific Experiment Framework for Numerical Analysis in e-Science Environment
Sookyoung Park, Hyejeong Kang, Yoonhee Kim, Chongam Kim, and Yunjung Hyun

34

Minimally Invasive Interpreter Construction
Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner

38

Implicit Nested Repetition in Dataflow for Procedural Modeling
Wolfgang Thaller, Ulrich Krispel, Sven Havemann, and Dieter W. Fellner

45

Temperature Based Embedded Programming Algorithm For Conventional Machines Condition Monitoring
Michael Kanisuru Adeyeri, Buliaminu Kareem, Adeyemi Adegbemisipo Aderoba, and Sunday Olumide Adewale

51

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 63

Fast Efficient Fixed-Size Memory Pool
No Loops and No Overhead

Ben Kenwright

School of Computer Science
Newcastle University

Newcastle, United Kingdom,
b.kenwright@ncl.ac.uk

Abstract--In this paper, we examine a ready-to-use, robust,
and computationally fast fixed-size memory pool manager
with no-loops and no-memory overhead that is highly suited
towards time-critical systems such as games. The algorithm
achieves this by exploiting the unused memory slots for
bookkeeping in combination with a trouble-free indexing
scheme. We explain how it works in amalgamation with
straightforward step-by-step examples. Furthermore, we
compare just how much faster the memory pool manager is
when compared with a system allocator (e.g., malloc) over a
range of allocations and sizes.

Keywords-memory pools; real-time; memory allocation;
memory manager; memory de-allocation; dynamic memory

I. INTRODUCTION

A high-quality memory management system is crucial
for any application that performs a large number of
allocations and de-allocations. In retrospect, studies have
shown that in some cases an application can spend on
average 30% of its processing time within the memory
manager functions [1–4] and in some cases this can be as
high as 43% [5].

However, speed is only one of the features we look at
for a good memory manager; in addition, we are also
concerned with:

• Memory management must not use any resources
(both memory or computational cost)

• Minimize fragmentation
• Complexity (ideally a straightforward and logical

algorithm that can be implemented without too
many problems)

• Ability to verify and identify memory problems
(corruption, leaks).

Nevertheless, the majority of applications use a
general memory management system, which tries to
provide a best-for-all solution by catering for every
possible scenario. For some systems, where speed is
critical, such as games, these solutions are overkill.
Instead, a simplified approach of partitioning the memory
into fixed sized regions known as pools can provide
enormous enhancements, such as increased speed, zero
fragmentation and memory organization.

Hence, we focus on a fixed-pool solution and
introduce an algorithm that has little overhead and almost
no computational cost to create and destroy. In addition,

it can be used in conjunction with an existing system to
provide a hybrid solution with minimum difficulty. On
the other hand, multiple instances of numerous fixed-sized
pools can be used to produce a general overall flexible
general solution to work in place of the current system
memory manager.

Alternatively, in some time critical systems such as
games; system allocations are reduced to a bare minimum
to make the process run as fast as possible. However, for
a dynamically changing system, it is necessary to allocate
memory for changing resources, e.g., data assets
(graphical images, sound files, scripts) which are loaded
dynamically at runtime. The sizes of these resources can
be determined prior to running. This then makes the fixed
memory pool manager ideal. Alternatively, as mentioned
a range of pools can be used for a best-fit approach to
accommodate varying size data.

Naive memory pool implementations initialize all the
memory pool segments when created [6][7]. This can be
expensive since it is usually necessary to loop over all the
uninitialized segments. Our algorithm differs by only
initializing the first element and so has little
computational overhead when it is created (i.e., no loops).
Hence, if a memory pool is only partially used and
destroyed, this wastes fewer processor cycles.
Furthermore, for dynamic memory systems where
partitioned memory is constantly created and destroyed
this initialization cost can be important (e.g., pools being
repeatedly partitioned into smaller pools at run-time).

In summary, a memory pool can make an application
execute faster, give greater control, add greater flexibility,
enable greater customizability, greatly enhance
robustness, and prevent fragmentation. To conclude, this
paper presents the implementation for a straightforward,
fast, flexible, and portable fixed-size memory pool
algorithm that can accomplish O(1) time complexity
memory allocation and de-allocation that is ideal for high
speed applications.

The fixed-size pool algorithm we present boasts the
following properties:

• No loops (fast access times)
• No recursive functions
• Little initialization overhead
• Little memory footprint (few dozen bytes)
• Straightforward and trouble-free algorithm
• No-fragmentation

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 7 / 63

• Control and organization of memory

The rest of the paper is organized as follows. First,
Section II discusses related work. In Section III , we
outline the contribution of the paper, followed by Section
IV , which gives a detailed explanation of how the
memory pool algorithm works. Section V discusses
practical implementation issues. Section VI outlines some
limitations of the method. Section VIII gives some
benchmark experimental results. Finally, Section IX
draws conclusions and further work.

II. RELATED WORK

The subject of memory management techniques has
been highly studied over the past few decades [8–12][13].
A whole variety of techniques and algorithms are
available, while some of them can be overly complex and
confusing to understand. On the other hand, the technique
we present here is not novel, but is a modification of an
existing technique [14][6][13]; whereby loops and
initialization overheads are removed; this makes the
resulting algorithm extremely fast and straightforward.
The method also boasts of being one of the most memory
efficient implementation available since it has very little
memory footprint and while giving an O(1) access time.
We also give an uncomplicated implementation in C++ in
the appendix.

Memory pools have been a well known choice to
speed-up memory allocations/de-allocations for high-
speed systems [15][16][17]. Zhao et al. [18] grouped data
together from successive calls into segregated memory
using memory pools to reduce pre-fetch latency. An
article by Applegate [19] gave a well-defined overview of
the various methods and advantages of high-performance
memory in portable applications and the advantages of
memory pools. Further discussion in Malakhow [20]
outlines the advantages of memory pools and their
applicability in high-performance multi-threaded systems.

While we present a similar single-pool allocator to
Hanson [7], our algorithm is more clear-cut and makes it
easier to customize for an ad-hoc implementation.

Additionally, performance considerations are
discussed by Meyers [21], e.g., macros and monolithic
functions, that can be applied to gain further speed-ups
and gain greater reliability while incorporating good
coding practices. A comparison of the computational cost
of a memory management system implemented in an
object orientated language (e.g., C++) is less efficient than
one implemented in a functional language (e.g., C)
[3][22]; however, we implemented our fixed-size
memory pool in C++ because we believe it makes it more
re-usable, extensible and modular.

III. CONTRIBUTION

The contribution of this paper is to demonstrate a
practical, simple, fixed-size memory pool manager that
has no-loops, virtually no-memory overhead and is
computationally fast. We also compare the algorithm
with the standard system memory allocator (e.g., malloc)

to give the reader a real-world computational comparison
of the speed differences. The comparison emphasizes just
how much faster a simple and smart algorithm can be over
a more complex and general solution.

IV. HOW IT WORKS

We explain how the fixed-size memory pool works by
defining what information we have and what information
we need to calculate (to help make the details more
understandable, see Figure 1 and Figure 2 for
illustrations).

When the pool is created, we obtain a continuous
section of memory that we know the start and end address
of. This continuous range of memory is subdivided into
equally sized memory blocks. Each memory blocks
address can be identified at this point from the start
address, block-size, and the number of blocks.

This leaves the dynamic bookkeeping part of the
algorithm. The algorithm must keep track of which
blocks are used and un-used as they are allocated and de-
allocated.

We begin by identifying each memory block using a
four-byte index number. This index number can be used
to identify any memory location by multiplying it by the
block size and adding it to the start memory address.
Hence, we have 0 to n-1 blocks; where n is the number of
blocks).

The bookkeeping algorithm works by keeping a list of
the unused blocks. We only need to know which blocks
are being unused to find the used blocks. This list of
unused blocks is modified as blocks are allocated and de-
allocated.

Figure 1. (a) Illustrate how the unused memory is linked together (the

unused memory blocks store index information to identify the free
space). (b) Example of how memory is subdivided into a number of n

blocks.

However, we avoid the cost of initializing and link
together all the unused blocks. We alternatively initialize
a variable to inform us of how many of the n blocks have
been appended to the unused list. Whereby, at each
allocation unused blocks are appended to the list and the
number of initialized blocks variable is updated (see
Figure 1).

0

2

4

2

4

used

used

used

?

Start

End

0

1

2

n-1

n-2

n-3

(e.g., 0x005A1D38)

(e.g., 0x005A1E8C)

Memory block
> 4 bytes

Memory block index number
32 (0 to 2 blocks for 4 byte index)

n equally sized blocks of memory

(a) (b)

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 63

The list uses no additional memory. Since the
memory blocks that are being kept track of are not being
used, we can store information inside them. Each unused
block stores the index of the next unused block. The pool
keeps track of the head of the unused linked chain of
blocks.

For this bookkeeping algorithm to work a minimum
size constraint must be imposed on the memory blocks.
The individual memory blocks must be greater than four-
bytes. This is because each unused memory block will
hold the index of the next unused memory block to form a
linked list all the unused blocks.

Therefore, each unused block holds the index to the
next unused block and so on. Our pool stores the index to
the head of the first unused block. For each allocation an
unused block is removed from the list and returned to the
user. We keep track of the head of the unused list of
blocks and is updated after each allocation. Alternatively,
when a block de-allocated we can calculate its index from
its memory address then append it to the list of unused
blocks.

We only add new unused blocks to the list during
allocation. We keep track of how many blocks have been
added to the list and stop appending new blocks when we
have reached the upper limit. This avoids any loops and
initialization costs since we only initialize blocks as we
need them. In summary, as we allocate blocks, further
unused blocks are initialized and appended to the list as

needed.
Figure 1 is used to help further illustrate the working

mechanism of the algorithm; in addition, Listing 1 gives
the pseudo-code.

A. Step-by-Step Example

To follow the fixed-pool method through, we use a
simple step-by-step example shown in Figure 2 to see the
algorithm in action.

We create a fixed pool with four-blocks. We show
how unused blocks and member variables change during
the process of creation, allocation and de-allocation
sequentially from the start (identifying uninitialized and
unknown memory with question marks – the three
variables in Figure 2 represent the necessary variables
used by the pool for bookkeeping).

B. Verification

Writing a custom memory pool allocator can be both
difficult and error prone. While the fixed size memory
pool algorithm is relatively straightforward and trouble-
free to implement, it is advised that additional verification
and sanity checks be incorporated to ensure a robust and
reliable implementation.

These sanity and safety checks can come at the cost of
extra memory usage and increased computational cost.
For example, running experimental simulations of system
allocations within the debugger would increase allocation

Figure 2. Step-by-step example of the memory pools internal workings for a simple 4 slot segmentation - the sequence of events from (a) to (h).

head = ?
numFreeBlock = ?
numInitialized = ?

0

1

2

3

?

?

?

?

head = 0
numFreeBlock = 4
numInitialized = 0

Create Pool

0

1

2

3

?

?

?

?

head = 1
numFreeBlock = 3
numInitialized = 1

out
0

1

2

3

?

?

?

?

head = 2
numFreeBlock = 2
numInitialized = 2

0

1

2

3

?

?

?

?

head = 3
numFreeBlock = 1
numInitialized = 3

0

1

2

3

3

?

?

?

head = 0
numFreeBlock = 2
numInitialized = 3

Allocate Allocate

Allocate DeAllocate

0

1

2

3

3

?

0

?

head = 2
numFreeBlock = 3
numInitialized = 3

DeAllocate

0

1

2

3

3

?

?

4

head = 0
numFreeBlock = 2
numInitialized = 4

out

out

in

in
out

Allocate

(a) (b) (c) (d)

(e) (f) (g) (h)

Allocated
Block of memory

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 63

times by up to 100 times (see Figure 3 and Figure 4,
which show the different allocation times of running
within and outside the debugger).

The memory pool gives the maximum amount of
control and can implement various custom checks. They
can be enabled and disable at will, and can be less
computationally expensive than the system memory
checks enabling builds to run at fast speeds while gaining
debug information.

For example, the de-allocated memory addresses can
easily be verified, since each memory address must be
within an upper and lower boundary of the continuous
memory region. Furthermore, the de-allocated memory
address must be the same as one of the addresses from the
divided memory blocks. In addition, memory guards can
be added to include boundary checks by adding a pre and
post byte signature to each block. These memory guards
can be checked globally (i.e., for all blocks) and locally
(i.e., currently deleted block) to identify problems and
provide sanity checks.

Furthermore, leaks can be found by extending and
embedding the memory guards to store additional
information about the allocation; for example, the line
number of the allocation.

V. IMPLEMENTATION

We implemented the code in C++. The pool was
created using create/destroy functions instead of the
constructor/destructor so that the pool could be
dynamically resized without destroying and recreating the
pool each time it needed reconfiguring.

The implementation has four essential public
functions: Create, Destroy, Allocate, and De-allocate.

The fundamental source code that implements the
fixed-size memory pool is given in the appendix. To keep
the source code as straightforward and as easy to read as
possible all the validation and sanity check code has been
excluded.

Initialize pool
[Block of memory is allocated or obtained]
1. Store the start address, number of blocks and the
number of uninitialized unused block
Allocator

2. Check if there any free blocks
3. If necessary - initialize and append unused memory
block to the list
4. Go to the head of the unused block list
5. Extract the block number from the head of the unused
block in the list and set it as the new head
6. Return the address for the old block head
De-allocator

7. Check the memory address is valid
8. Calculate the memory addresses index id
9. Set its contents to the index id of the current head of
unused blocks and set itself as the head

Listing 1. Pseudo-code for pool.

Combining the fixed pool allocator with an existing
memory management system in C++ by overloading the

new and delete operators would give better performance
with the minimum amount of disruption, since 38% of
execution time can be consumed by the dynamic memory
management [3]. This ad-hoc approach works by
checking the memory allocation size within the new
operator; if space is available inside the pool, and the size
is within a specified tolerance the memory is taken from
the pool, but if not, the general system allocator is called
to supply the memory.

Additionally, the greatest care must be exercised to
ensure that classes and structures in C++ that are allocated
and de-allocated by the fixed-size pool allocator have
their constructors and destructors manually called.

VI. LIMITATIONS

The fixed-pool memory manager relies on it being
assigned a continuous block of memory. This can be a
serious limiting factor if the assigned block of memory is
scattered around.

Furthermore, we have focused on the algorithm and
not discussed hardware limitations. For example, a page
fault can result in an access time being 10,000 times
slower than normal. Additionally, we have not addressed
the issue of using the memory pool in a multi-threaded
environment. This also raises the question of how the
memory manager can be managed across multiple cores
and the subject of scalability.

As well, the presented memory pool implementation is
limited to systems with direct access to the memory and
so cannot be implemented in managed memory
environments (e.g., Java and C#).

The amount of memory requested from the fixed-size
pool allocator can raise two major problems. Firstly, if
the requested memory is dramatically smaller than the
slot-size then lots of memory will be wasted. Secondly,
and worse, if the requested memory is greater than the
slot-size then it is impossible to allocate memory from the
pool. Nevertheless, to combat these problems and to
reduce memory wastage and largely miss-sized
allocations an ad-hoc solution can be used. Whereby, a
general system allocator in conjunction with multiple
fixed-size pools would help to reduce memory wastage
while still benefiting from the pool speedups.

On the other hand, it should be pointed out, that a
general memory management system could become
slower and fragmented over time. Whereby, a suitable
block of memory would require considerable searching
overhead, in addition to, small chunks of unsuitable and
unusable memory being scattered around.

VII. RESIZING

The fixed-size memory pool holds a list of unused
memory blocks. This list resides in the unused memory
and is incrementally extended when a memory block is
allocated. Hence, if more memory blocks are needed than
are available, and further additional memory follows the
end of the continuous memory pools allocation, the pool
can be extended effortlessly with little cost by updating its
member variables. Once the member variables have been

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 63

updated to incorporate the new end memory address it
will automatically extend and fill the new region of
memory during block allocations.

The algorithm currently always initializes the next
unused memory block during the allocation call.
However, an additional check can be added to avoid
initialization of further unused blocks if they are not
needed. For this reason, we could identify the maximum
allocated number of unused blocks. Then, optionally the
large pool of memory could be resized-down without
needing to destroy and re-create the pool.

VIII. EXPERIMENTAL RESULTS

The algorithm itself is simple with no loops, no
recursion, and little computational cost, and produces
extremely fast allocations and de-allocations. To get a
ballpark idea of how much faster the memory pool
manager can be over a general memory system; we
allocated and de-allocated a range of memory chunks as
shown in Figure 3 and Figure 4. The figures show the
fixed-pool allocator to be ten times faster than the general
system allocator, and a thousand times faster when
running within a debug environment.

IX. CONCLUSION AND FURTHER WORK

We have shown a fundamental, unsophisticated, raw-
and-ready memory pool algorithm that produces
remarkably fast speeds with nearly no-overhead and
boasts the added advantage of being straightforward to
understand and easy to implement. The fixed-size
memory pool provides the best solution for processes such
as games, which assume that relatively few memory
allocations happen, and when they do happen they are of a
deterministic size and need to be extremely fast (for
example, graphical assets, particles, network packets and
so on).

The Keep It Short and Simple (K.I.S.S) approach was
a target goal for the fixed-size memory pool since the
presented algorithm is a fundamental building block for
constructing, if desired, a more elaborate and flexible
memory manager.

Further work is needed to investigate if the algorithm
could be optimised to use less decisional logic (i.e., if
statements). In addition to exploring hardware
considerations (e.g., caching, paging, registers, memory
alignment, threading) and how the algorithm can be
enhance to accommodate platform specific speed-ups.

REFERENCES
[1] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles,

“Dynamic storage allocation: A survey and critical review,”
Lecture Notes in Computer Science, pp. 1–1, 1995.

[2] B. Zorn, “Empirical measurements of six allocation-
intensive C programs,” ACM Sigplan notices, no. July,
1992.

[3] B. Calder and D. Grunwald, “Quantifying behavioral
differences between C and C++ programs,” Journal of
Programming, vol. 2, no. 4, pp. 313–351, 1994.

[4] W. Li, S. Mohanty, and K. Kavi, “A Page-based Hybrid
(Software-Hardware) Dynamic Memory Allocator,” IEEE

Computer Architecture Letters, vol. 5, no. 2, pp. 13-13,
Feb. 2006.

[5] E. Berger and B. Zorn, “Reconsidering custom memory
allocation,” Sciences-New York, 2002.

[6] J. Deng, “Why to use memory pool and how to implement
it,” (3 July), 2008. [Online]. Available:
http://www.codeproject.com/Articles/27487/Why-to-use-
memory-pool-and-how-to-implement-it. [Accessed: 06-Jan-
2011].

[7] R. D. Hanson, C Interfaces and Implementation. O’Reilly
Safari, 1997.

[8] A. Gorine, “Memory Management and Embeded
Databases,” Dr. Dobb’s (1st December), 2005. [Online].
Available: http://drdobbs.com/database/184406355.
[Accessed: 06-Jan-2011].

[9] J. Bartlett, “Inside Memory Management: The choices,
tradeoffs, and implementations of dynamic allocation,”
IBM (16th November), 2004. [Online]. Available:
http://www.ibm.com/developerworks/linux/library/l-
memory/. [Accessed: 06-Jan-2011].

[10] J. L. Risco-Martín, J. M. Colmenar, D. Atienza, and J. I.
Hidalgo, “Simulation of high-performance memory
allocators,” Microprocessors and Microsystems, vol. 35,
pp. 755-765, Aug. 2011.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing
high-performance memory allocators,” in ACM SIGPLAN
Notices, 2001, vol. 36, no. 5, pp. 114–124.

[12] D. Atienza, J. M. Mendias, S. Mamagkakis, D. Soudris, and
F. Catthoor, “Systematic dynamic memory management
design methodology for reduced memory footprint,” ACM
Transactions on Design Automation of Electronic Systems,
vol. 11, no. 2, pp. 465-489, Apr. 2006.

[13] D. Lea, “A memory allocator,” 1996. [Online]. Available:
http://gee.cs.oswego.edu/dl/html/malloc.html. [Accessed:
06-Jan-2011].

[14] Stephen Cleary, “Boost C++ Memory Pool Librarys,” (5th
December), 2006. [Online]. Available:
www.boost.org/libs/pool;
http://www.boost.org/doc/libs/1_47_0/libs/pool/doc/concep
ts.html. [Accessed: 06-Jan-2011].

[15] D. Bulka and D. Mayhew, Efficient C++: performance
programming techniques. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[16] D. Gay and A. Aiken, Memory management with explicit
regions, vol. 33, no. 5. ACM, 1998, pp. 313-323.

[17] K. Frazer, C++ in action: industrial-strngth programming
techniques. SIGSOFT Softw. Eng. Notes, 2002.

[18] Q. Zhao and R. Rabbah, “Dynamic memory optimization
using pool allocation and prefetching,” ACM SIGARCH
Computer Architecture, 2005.

[19] D. A. Applegate, “Rethinking Memory Management :
Portable techniques for high performance,” Dr. Dobb’s
(June), 1994. [Online]. Available:
www.ddj.com/184409253/. [Accessed: 06-Jan-2011].

[20] A. Malakhow, “Scalable Memory Pools: community
preview feature. Retrieved from Intel Software Network,”
Intel (December 19), 2011. [Online]. Available:
http://software.intel.com/en-us/blogs/2011/12/19/scalable-
memory-pools-community-preview-feature/. [Accessed:
06-Jan-2011].

[21] S. Meyers, More Effective C++: 35 New Ways to Improve
Your Programs and Designs. Addison-Wesley Longman
Publishing Co., 1995.

[22] D. Detlefs, A. Dosser, and B. Zorn, “Memory allocation
costs in large C and C++ programs,” Software: Practice
and Experience (June), vol. 24, no. 6, pp. 527-542, 1994.

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 63

APPENDIX

A. Fixed-Size Pool Manager - C++ Code
class Pool_c
{ // Basic type define
 typedef unsigned int uint;
 typedef unsigned char uchar;

 uint m_numOfBlocks; // Num of blocks
 uint m_sizeOfEachBlock; // Size of each block
 uint m_numFreeBlocks; // Num of remaining blocks
 uint m_numInitialized; // Num of initialized blocks
 uchar* m_memStart; // Beginning of memory pool
 uchar* m_next; // Num of next free block
public:

 Pool_c()
 {
 m_numOfBlocks = 0;
 m_sizeOfEachBlock = 0;
 m_numFreeBlocks = 0;
 m_numInitialized = 0;
 m_memStart = NULL;
 m_next = 0;
 }
 ~Pool_c() { DestroyPool(); }

 void CreatePool(size_t sizeOfEachBlock,
 uint numOfBlocks)
 {
 m_numOfBlocks = numOfBlocks;
 m_sizeOfEachBlock = sizeOfEachBlock;
 m_memStart = new uchar[m_sizeOfEachBlock *
 m_numOfBlocks];
 m_numFreeBlocks = numOfBlocks;
 m_next = m_memStart;
 }

 void DestroyPool()
 {
 delete[] m_memStart;
 m_memStart = NULL;
 }

 uchar* AddrFromIndex(uint i) const
 {
 return m_memStart + (i * m_sizeOfEachBlock);
 }

 uint IndexFromAddr(const uchar* p) const
 {
 return (((uint)(p - m_memStart)) / m_sizeOfEachBlock);
 }

 void* Allocate()
 {
 if (m_numInitialized < m_numOfBlocks)
 {
 uint* p = (uint*)AddrFromIndex(m_numInitialized);
 *p = m_numInitialized + 1;
 m_numInitialized++;
 }

 void* ret = NULL;
 if (m_numFreeBlocks > 0)
 {
 ret = (void*)m_next;
 --m_numFreeBlocks;
 if (m_numFreeBlocks!=0)
 {
 m_next = AddrFromIndex(*((uint*)m_next));
 }
 else
 {
 m_next = NULL;
 }
 }
 return ret;
 }

 void DeAllocate(void* p)
 {
 if (m_next != NULL)
 {
 (*(uint*)p) = IndexFromAddr(m_next);
 m_next = (uchar*)p;
 }
 else
 {
 ((uint)p) = m_numOfBlocks;
 m_next = (uchar*)p;
 }
 ++m_numFreeBlocks;
 }

}; // End pool class

Listing 2. C++ Source Code.

B. System Information
Simulation tests were performed on a machine with the

following specifications: Windows7 64-bit, 16Gb Memory,
Intel i7-2600 3.4Ghz CPU. Compiled and tested with Visual
Studio.

C. Speed Comparison Graphs
Each line represents a fixed allocation size and the time

taken to allocate repeatedly.

Figure 3. Release build with full optimization running within the
debugger (Time in ms); system malloc only.

(a)

(b)

Figure 4. Running outside the debugger – standalone (Time in ms);
(a)system malloc and, (b)custom pool.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 63

Utilising an Ant System for a Competitive Real-Life Planning Scenario

Christopher Blöcker1

Research and Development
implico GmbH

Hamburg, Germany
Email: christopher.bloecker@implico.com

Sebastian Iwanowski
Department of Computer Science

FH Wedel, University of Applied Sciences
Wedel, Germany

Email: iw@fh-wedel.de

Abstract—This paper describes the design of an ant system
for a dynamic tour planning scenario for oil and gas delivery.
The software has been integrated into an existing planning
system and achieved satisfying results in the simulation of real-
life scenarios considering spontaneous non-predictable changes
of tasks. The notion of such dynamics is more general than in
previous approaches. The response time and other complexity
measures match the needs of real practice. While other papers
already exist describing the functionality and advantages of ant
systems and giving some case studies, this paper is the first one
referring to an integration into a standard operational SAP
system. Thus, this paper shows how to bridge the gap between
innovative scientific research and industrial application.

Keywords-ant system; dynamic tour planning; vehicle routing
problem with time windows; greedy strategy; SAP system

I. MOTIVATION

Software for tour planning solutions often suffers from
the problem that typical real-life applications continuously
violate the original input specifications due to changes of
existing tasks, generation of new tasks, malfunction of
operational units, and traffic congestion in the underlying
route system. All these dynamic events may occur while the
software is executing its current task.

Tour planning is an NP complete problem, which makes
it infeasible to design an efficient solution satisfying all
theoretical needs. Real-life logistics requires a solution for
the even more complex vehicle routing problem VRP (cf.
[1], [2]) dealing with several vehicles to serve delivery orders
meeting pre-defined time windows.

Despite these theoretical obstacles, reasonable heuristics
for tour planning already exist achieving remarkable run
time results for problem sizes occurring in real problems.
Besides classical OR techniques (e.g., cf. [3]), some promis-
ing heuristics also use innovative artificial intelligence tech-
niques such as neural networks, genetic algorithms, and ant
algorithms (cf. [4], [5], [6], [7]).

However, the benchmarks normally used in the scientific
community (cf. [8], [9]) in order to evaluate the different
heuristics do not consider problems of the type described
above i.e., problems where the input is subject to continuous

1This work was done while the author was working on his Bachelor’s
degree at FH Wedel.

and unpredictable changes even during execution of the
software.

Some of the ant papers cited above (e.g., [6]) do work
with dynamic changes explicitly, which is not surprising
because ant algorithms are specially suited for that situation
as we will also elaborate in the following. But none of them
referred to the exact planning tasks we wanted to deal with,
which are described in Section II.

The task of this work is an implementation of a tour
planning system coping with dynamic changes. The software
has to be integrated smoothly into the IDM (Integrated
Dispatch Management), which is an implico framework for
tour planning of oil and gas delivery linked to an SAP
system. Typical scenarios of past applications of IDM serve
as evaluation benchmarks.

This paper is organised as follows: Section II presents
the problem to be solved in practice. Section III describes
the software architecture of the operational system, in which
the new solution had to be integrated, and the functionality
of the modules existing before. Section IV gives a short
description of principles and advantages of ant systems in
general. Section V shows how we adapted these general
principles for the actual problem. Section VI gives some
test results and interpretations. The conclusion in Section
VII compares with other approaches.

II. THE ACTUAL PLANNING TASK

Our actual planning problem is the scheduling and routing
of oil and gas delivery to a set of customers: The customers
specify the requested product and a time window, in which
they want to receive the delivery. The possible transportation
units are heterogeneous trucks, which are initially located
at several truck depots. The products are located at several
supply depots differing in availability and price. Not all
trucks are eligible to transport all kind of products or fit
further needs of all customers.

Among the frequent dynamic events that we want to
take special care of are the failure of a vehicle, delays in
the delivery procedure, incoming of new orders with high
priority, and traffic congestion during the tour. Our target
is to provide a substitute schedule shortly after a dynamic
event occurs and to minimize the additional costs.

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 63

Plan

Tour 0

Tour 1

vehicle 0

vehicle 1

truck depot load depot delivery delivery

stop 0 stop 1 stop 2 stop 3 stop 4

load depot

Trip 0

truck depot load depot delivery delivery

stop 0 stop 1 stop 2 stop 3 stop 4

load depot

Trip 0 Trip 1

vehicle 2

Figure 1. The structure of a delivery plan built from tours, trips and stops.

A schedule in our context consists of a set of several
delivery plans each describing the deliveries to be performed
within one day in the given planning period. A single
delivery plan is composed of a set of several delivery tours,
one tour per vehicle. Due to common practice in oil and
gas delivery, every tour is defined to begin and end at the
corresponding truck’s home depot. A tour contains several
subsequently ordered trips. Each trip is a sequence of stops.
The first stop of a trip is a supply depot followed by several
delivery stops. When a product for a subsequent customer
is finished, the truck has to reload new supply at a depot
starting a new trip. An extract of a sample plan is shown in
Fig. 1.

Each customer may reserve time windows, in which he
wants to be delivered. Additional attention has to be paid to
the reservation of recreation breaks for the drivers prescribed
by law. Furthermore, not all different products are eligible
to be shipped together on the same trip due to possible
chemical reactions or even explosions.

In general, we assume that there is no need to split deliv-
ery charges because for each single delivery charge there will
be at least one vehicle providing sufficient transport capacity.
If this is not the case, we require that the delivery charge
is decomposed in appropriate sizes prior to consideration
within our planning procedure.

III. SOFTWARE ARCHITECTURE OF THE OPERATIONAL
SYSTEM

The underlying business framework IDM provides all
functionalities a human dispatcher needs. For example, it
visualizes current orders to be fulfilled, the current delivery
plan on a map and gives easy opportunities for manual
integration of new stops and rearranging the current plan.
It is based on an SAP system [10], which handles the entire
delivery order process. In addition to this base functionality,
IDM provides an interface for the integration of various tour
optimizers, which may even be operated simultaneously and
should ideally make a manual interaction unnecessary. But
since the dispatchers are often overcharged with the frequent

dynamic changes of the situation in practice, they should at
least be supported by an automatic tour optimizer being able
to handle specially the dynamic case in a very short response
time.

Currently, IDM involves three different optimizers in the
context of delivery scheduling (including our ant system),
each addressing a different part of the problem.

The first of them, TermiDe, is used to determine whether
an incoming request can be served considering the time
window and other constraints given by the customer. This
is typically done by a phone order several days prior to the
actual delivery. If a delivery can be granted, the order is put
into a pre-schedule for tour planning, which is the starting
point for subsequent optimizations. Since TermiDe is used
for telephone sale, it must provide its decision a few seconds
after the request. This leads to a feasible but not very good
solution.

The second optimizer, IcedG, uses a metaheuristic ap-
proach based on tabu search [11], [12] in order to ap-
proximate solutions for the static VRP. It is run daily
with the purpose to precompute the delivery plan for the
following day based on the results of TermiDe. IcedG faces
no competitive restrictions regarding the response time, but
the quality of the result is required to be very high because it
has direct influence on the operational costs of the schedule.
Typically, IcedG computes almost the optimal result, but it
may need several hours for computation.

The tour optimizer, which is subject of this paper, is called
Dyonisys, which is short for Dynamic optimization using
a nature-inspired system. This optimizer is running during
the execution of a delivery plan, i.e., during the whole day.
In the morning it gets its input from the schedule, which
was previously computed by IcedG. Whenever a notable
event occurs, Dyonisys tries to adapt the schedule to the
new situation. In fact, Dyonisys can also be configured such
that it may further improve the current plan while there is
no other work to do.

Most likely Dyonisys will not be able to compute as good
results as IcedG would do. The advantage of Dynisys is the
following: While IcedG only solves the static VRP and needs
several hours to compute an approximate solution, Dyonisys
is capable of solving the dynamic VRP and to reduce the
response time to a few minutes.

At any time, IDM may ask Dyonisys for the next stop
for a particular vehicle and assign a task to it according to
the current schedule. Dyonisys then considers the stop the
vehicle is currently heading to as granted and estimates the
time point when the vehicle will be available for further
deliveries when the next delivery has been rolled out.

If the situation happens that a certain delivery cannot be
performed at all according to the current schedule due to an
unexpected event, this is detected by IDM, which informs
Dyonisys. Then, Dyonisys would reply with a substitute
schedule, as soon as required. This can be guaranteed,

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 63

IDMTermiDe

IcedG

Dyonisys

customer requests

pre-schedule plan, events

adapted plan

pre-schule optimized plan

(with SAP)

Figure 2. Communication between IDM and its optimizers TermiDe, IcedG
and Dyonisys.

because ant systems are anytime algorithms which always
can provide a solution. Of course, the quality of the solution
depends on the allowed response time.

The communication between the different modules de-
scribed above is given in Fig. 2.

IV. GENERAL PRINCIPLES OF ANT SYSTEMS AND THEIR
ADVANTAGES

Ant systems are used to solve optimization problems on
graphs. The current optimization problem is defined by a
target function depending on edge costs and possibly further
information about the graph. Ant systems are specially
designed for the scenario that edge costs and the target
function vary during operation. They resemble the behavior
of natural ants when they seek for food.

Being living animals with a nondeterministic behaviour,
ants differ in their strategy from classical optimization
methods in the way that there are always some individuals
searching a solution on an obviously non-optimal path.
An ant colony consists of a large number of individuals,
who communicate via pheromones, which are chemical
substances dropped on the paths. The intensity of the
pheromones biases the behaviour of ants, which leads to
a nearly optimal solution for the majority of the individuals.
However, the nondeterministic behaviour of the minority
enables such a system to react rather quickly to dynamic
changes of the environment. This is the main advantage of
ant systems.

In the following, we describe the general idea of artificial
ants and ant systems.

An (artificial) ant is a software unit, which is continuously
generated over time by the ant system. Each ant uses the
current data of the graph, considers the current constraints
to be solved at the time of its generation, and tries to
find a single solution for this problem. The quality of the
result influences the modification of pheromones, which
are dynamic information chunks placed onto the edges of
the graph. The pheromones represent the collected memory
of previous ants using the respective edge. Subsequently
generated ants are biased by these pheromones for their own
construction of a solution.

In general, ant systems use complete graphs for tour
planning problems since this will always enable them to

complete partial solutions. For our problem, this assumption
is reasonable because in practice it is always possible to find
a route from one location to any other.

The probability of selecting an edge for tour completion
depends on the quality of pheromones put so far as well as
on some heuristic value, which is usually derived from the
graph’s cost function. Usually, this heuristic value is static,
but for ant systems even that need not be. The trade-off
between the dynamic pheromones and this heuristic value
may vary depending on the stage of the process or on
the application in general. The continuous generation of
ants by the system guarantees that the pheromone value is
successively updated to the latest situation in an eager way
i.e., prior to a possible request from a user to the ant system.
This guarantees a quick response time for any request.
However, after the occurrence of a new event, the longer the
ant system is running, the better do the pheromones reflect
the current situation.

The construction of solutions is carried out in different
phases.

First, in the initiation phase, initial pheromones are dis-
tributed to all edges in the graph. Normally, all edges get the
same pheromone value, but at initialization we could make
that also dependent on the cost function [4].

Then, in a loop, construction and coordination phase are
executed in turn as long as the ant system is needed. In
the following, we denote a construction step followed by a
coordination step as one iteration.

In the construction phase, a certain number of ants is
generated simultaneously. Each ant has to find a solution.
Applied to our VRP, the task of a single ant is to construct
an assignment of vehicles to the stops in a certain order
such that the tour is feasible for each vehicle, each station
is served in the requested time window, and there is always
sufficient product supply. At each stop, which is reached by
an ant during the construction of a tour, the probability that
this ant will use a certain edge leaving this stop is directly
proportional to the amount of the pheromone value. Thus,
more ants will use the edges baring good pheromone values.

When all ants that were generated in the construction
phase have constructed a solution, the construction phase
is finished and the coordination phase starts, in which all
pheromone values are updated: First, all pheromones are
decreased resembling evaporation. This makes the future
results more decisive than the past ones. After evaporation
all ants increase the pheromones on the edges they actu-
ally used for their specific solution. The increase of the
pheromones is inversely proportional to the real costs of the
associated solution. In total, this makes pheromones of edges
belonging to favorable tours increasing and of disfavorable
tours decreasing.

Note that the alternating phases of construction and coor-
dination correspond to a discrete simulation of a continuous
process which was first described in [4].

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 63

If a current solution is requested, the system returns
the solution obtained from the current pheromones. This
enables an ant system to give a quick answer with a solution
corresponding to the current status of the dynamic system
and makes it suit well for the problem we have addressed
above.

For further information about ant systems, we refer to the
standard literature such as [4], [5], [13], [14].

V. HOW DYONISYS WORKS IN DETAIL

A request to the ant system is generated every time a
vehicle in operation needs the information about the next
target. Dyonisys then looks up which delivery is scheduled
next, passes this information to IDM and removes it from
the set of deliveries that are left to be performed. We have
decided to take this approach because it is much more
practical to inform a driver about his next target once he
needs to know this than to inform the driver continuously
about the best schedule found so far.

At the beginning of a day, Dyonisys starts with the
schedule produced by IcedG. As long as no dynamic event
occurs there is no need in running the ant optimizer because
the IcedG schedule achieved near optimality. Once an event
occurs, Dyonisys catches up with the current state of the real
world situation i.e., it modifies the graph’s cost function or
adds / removes vehicles or deliveries.

Dyonisys uses the following representation of the sce-
nario: For every delivery, load depot, and truck depot, the
underlying graph maintains a separate node. Since IDM
already provides a distance matrix between the locations
involved, Dyonisys need not perform the actual navigation
on street level.

According to the general principle described in the pre-
vious section, each ant to be generated will try to find
a solution for the total planning task, which is currently
in consideration. Each solution is evaluated according to a
quality function considering the overall time and the con-
sumption of resources. The solution is also compared with
the constraints currently valid. If a constraint is violated, a
penalty function is applied decreasing the evaluated quality
of the current solution. There are several penalties depending
on the different types of constraint violations.

In the initialization phase, Dyonisys creates the ants,
which will be used for solution construction and sets the
initial pheromones τ0 to all edges (i, j) from nodes i to
j (this is the way it is explained in [4]). For performance
reasons, we prefer to reuse the ants rather than to dispose
them and create new ones every iteration.

Right after that, the loop of construction and coordination
phase is started, and each ant produces a schedule. We chose
a greedy strategy for this step: An ant picks one of the
vehicles and creates a complete tour before proceeding with
the next one until all deliveries are assigned to a tour or there
is no capacity left among the vehicles. The benefits of this

technique are a good response time and quite satisfactory
results.

Note that there always exists the trivial solution where no
delivery is carried out. So we will always have an initial
solution. However, in nearly all cases we will get a better
one, because this trivial solution is associated with very high
penalties.

As mentioned before, the ants successively construct a
tour starting at the selected vehicle’s home depot. At any
point, they decide which node of the graph (i.e., which
delivery stop respectively, which supply depot) to visit next
depending on a value derived from the pheromone level and
heuristic value of the incident edges.

If an ant is located at node i, then the probability of
visiting node j next is obtained by evaluating term (1),
where τi,j denotes the pheromone level on the edge (i, j),
ηi,j the heuristic value of the same edge and α, respectively
β, are weighting parameters to control the contribution of
pheromones and heuristic. N (i) is the set of unvisited
neighbours of node i (cf. [4], [5]).

pj =
ταi,j · η

β
i,j∑

j∈N(i)

ταi,j · η
β
i,j

(1)

For reasons of efficiency, we only evaluate the numerator
of (1) and accumulate the values to obtain the denominator.
Instead of normalizing the probabilistic values according to
(1) and generating a random value r ∈ [0, 1], we introduce
the new approach to let them unchanged and take a random
value r′ ∈ [0,

∑
j pj]. Choosing this implementation we

were able to save a lot of runtime without altering the result.
Note that if α were set to 0, the ant system would act in
a completely deterministic way, and the pheromone values
would be ignored.

After that, the coordination phase is started:
First, evaporation takes place. A fraction ρ specifies the

amount, by which a pheromone value should evaporate, cf.
(2).

τi,j ← (1− ρ) τi,j (2)

Then, each ant increases the pheromone value on the
edges it used for constructing its individual solution. Ac-
cording to Dorigo et al. [4], if the cost of a solution of ant
a is ca, then the pheromone increase is 1

ca
. Dorigo et al.

also suggest to apply additional methods such as allowing
only the best ants to increase pheromone values at all or to
add so-called elite ants, which reinforce the best solutions
found so far (cf. [15]).

Since our solution had to be effective also for huge
networks which may occur in practice, we had to adapt the
pheromone update a little more sophisticated than previous
papers suggest:

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 63

Since some overall cost values c of our scenarios were
rather high, the inverse 1

c (which should be the pheromone
update value) came close to 0. In these cases, the evaporation
rate of pheromone values would outnumber the increase
rate of pheromone values, which eventually would lead to
a pheromone value nearly 0. Subsequent ants would then
use the (static) heuristic function only, but not the dynamic
pheromone values, which makes our system less prone for
dynamic changes. This is why we use the update value
cbest
ca

instead of 1
ca

, where cbest denotes the value of the
best solution found so far and ca the costs of the solution
computed by and a. Then the update value for ants having
found a rather good solution is close to 1 (or even higher
if the ant found a better solution than before). This would
make the respective edge favourable for subsequent ants.
Only when an ant finds a very bad solution, this would still
decrease the update value as it did before our modification,
but a frequent occurrence of such solutions would indicate
that the link really deteriorated. This makes our system
reacting on dynamic changes just as desired.

We summarise the algorithmic improvements to the state-
of-the-art described in Section IV:

1) The probabilistic values of (1) are not normalized,
which saves a lot of time without altering the result.

2) Our evaporation update of the pheromones is done in
such a way that pheromone changes are also realised
in huge networks.

Considering the operational system, special attention
should be taken to handle dynamic events such that the
proper execution of the ant system is not too much disturbed
by the unexpected input of a new event. For this sake, we
make a distinction between events changing the structure of
the graph and events leaving the graph as it is.

Since we are only dealing with complete graphs, a cost
function change leaves its structure always unmodified.
Thus, an information about a traffic congestion would simply
result in an update of our cost function and let the ants
continue their work. The same argument holds for the
opposite case, i.e., when edge costs are reduced.

However, adding or deleting a node would be a change of
the graph structure. Such changes need a more sophisticated
treatment: The ant system has to be halted, the changes have
to be applied, and then the ant system may resume its work.

The following considers the tasks of such structure chang-
ing events in more detail:

New customer orders must be added to the set of deliver-
ies and marked as unplanned. Simultaneously, a new node
is added to the graph, connected to all other nodes, and
pheromones are put onto the new edges. Feasible values for
the new pheromones are the initial values for starting graphs
or the average of pheromone values computed so far.

A vehicle break down results in the deletion of a node
and its adjacent edges. But this requires a scan of all ants
and the removal of this vehicle from all partial solutions.

We implemented a proper data structure and method such
that this is still superior than deleting all ants and starting
from the scratch.

In detail, this is achieved by the following:
Note that we only need to consider ants that have already

finished constructing a solution or - at least - that have
already started constructing a solution. All other ants will
be supplied with the new situation before they start and,
thus, need not be bothered by the fact that in previous times
we had a different situation.

Our data structure allows an easy access to the tour be-
longing to the removed vehicle, which is possible in constant
time because there is a direct correspondance between a
vehicle and the tour it is used for.

This is why we wait until all ants having started, before
removal was announced, have finished their construction.
Then we delete the tour corresponding to the removed
vehicle and mark all deliveries from the deleted tour as
unplanned, which automatically leads to higher penalties in
the evaluation of the corresponding solution. Only then we
start the ants for the new situation. This can be expected
to happen very fast due to our greedy strategy for tour
construction.

VI. TEST RESULTS

We tested Dyonisys using typical real world scenarios
scanned by IDM in the past. We chose a standard config-
uration of 100 iterations, an evaporation rate of ρ = 0.1,
initial pheromones of τ0 = 25, α = 1 and β = 5 and ran
our tests on an Intel Core-i5 M560 with 8GB RAM. In our
tests we used different values for the parameters and studied
their effect on the runtime of the ant system and the quality
of the solutions.

Not surprisingly, we found that the runtime is directly
proportional to the amount of ants used for optimization, cf.
Table I and Fig. 3.

Interestingly, we did not get a corresponding result for the
quality of the solutions. In general, using more ants enlarges
the chance of finding a better solution, but the more ants are
used, the smaller is the benefit of using an additional ant.

We observed a similar result with respect to the number
of iterations: The solutions also get better as more iterations
are performed, cf. Table II and Fig. 4. But, if we have
already applied a high number of iterations, the benefit of
an additional iteration is rather low.

As expected, if the number of iterations is kept constant,
Dyonisys is able to find better solutions using more ants
and vice versa. Thus, a higher amount of ants used and a
higher number of iterations performed have a similar quality
enforcing effect.

Summarizing, we conclude that it is generally more
practical to perform a higher number of iterations keeping
the number of ants not too high. How many iterations and
ants should exactly be used depends on the actual scenario.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 17 / 63

ants
0 10 20 30 40 50

0

900

1000

2800

2900

3000

0

2500

5000

7500

10000

12500costs

distance

runtime

Figure 3. Progression of runtime, total costs and total distance of a
schedule depending on the count of ants used for optimization.

ants costs distance time
1 2.951 978 395
2 2.932 968 604
5 2.910 954 1.343

10 2.877 933 2.501
15 2.871 934 3.856
20 2.871 930 4.918
30 2.856 924 7.468
50 2.846 921 12.529

Table I

In most cases, we were able to achieve satisfying results
using only 10 ants. In general, there is a trade-off between
runtime and quality.

The complete results dependent on the variation of several
parameters are elaborated in [16] (in German).

VII. CONCLUSION

We developed an ant system solving the VRP with time
windows for a special application scenario in practice. The
ant system was integrated into an operational SAP software
environment. The ant heuristics used were simple using a
greedy strategy, which resulted in a system with reasonable
run time and space consumption. Our intensive testing
revealed, which parameters to adjust in order to obtain
qualitatively best results in short time. We could thus obtain
a setting that fulfils all functional needs.

The improvements to the state-of-the-art are the following:

1) We proposed some algorithmic improvements con-
cerning runtime and applicability for huge networks
(cf. Section V). The feasibility is shown in Section VI
in examples and in [16] in detail.

2) We took special care for some implementation specific
details important to improve the usability in practice.
One example is the distinction between different types
of events (cf. Section V).

iterations
0 20 40 60 80 100

0

900

1000

2900

3000

3100

3200

0

2500

5000

7500costs, 10 ants

distance, 10 ants

costs, 31 ants

distance, 31 ants

runtime, 10ants

runtime, 31ants

Figure 4. Progression of runtime, total costs and total distance of a
schedule depending on the iterations performed by the ant system.

10 ants 31 ants
iterations costs distance time costs distance time

1 3.054 1.034 31 3.000 1.002 85
2 3.023 1.018 67 2.976 992 177
5 2.976 989 152 2.944 972 429

10 2.950 978 268 2.921 959 810
15 2.943 973 404 2.906 952 1.176
20 2.935 968 527 2.898 945 1.526
30 2.925 961 812 2.886 939 2.274
50 2.899 950 1.276 2.870 930 3.749

100 2.881 937 2.592 2.856 926 7.614

Table II

3) Our notion of dynamics is more general than that of
other papers. For example, compared to [6], we admit
the removal of vehicles and the removal of deliveries
from a certain tour.

4) A unique novelty of this paper is the combination with
other (standard) techniques for the VRP problem in an
integrated software environment (SAP), which makes
the novel technique of ant systems ready to be sold
in a software product. Previous papers dealing with
practical applications showed stand-alone field studies
and were not integrated into a software product.

A promising target of improvement would be a replace-
ment of the greedy strategy by a tabu search. Besides this
conceptional improvement our focus will be the further
product development fulfilling all needs of our customers.

The general message of this work is:
Operational logistics systems baring dynamic behaviour

profit from ant technology.
A question that may arise to the reader is: Would this

result also hold for other innovative approaches of soft
computing?

Our previous experience showed that theoretically suc-
cessful approaches cannot always be adapted straight for-
ward as this happened to our ant approach:

Before we applied the ant approach we tried to solve our

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 18 / 63

problem with a neural network approach. In particular, we
tried to apply self organizing maps (cf. [17]). In a quick
implementation we were able to achieve remarkable results
on the standard set of benchmarks for the traveling salesman
problem (cf. [18]), which were even better than our results
with ant systems.

But, we faced two main problems when we attempted
to design a neural network approach to solve our vehicle
routing problem as stated above.

First, we found no adequate way of readjusting the
learning parameters in case of a dynamic event.

Second and even more severe, in our application the
triangle inequality does not hold for all triples of nodes in
the graph, because we have to obey toll costs in the traffic
network. But, the validity of the triangle inequality is an
important prerequesite for readjusting the neurons’ positions
properly.

We do not claim that a neural network approach would
fail for our application in general, but at least our attempts
revealed that the development of a successful solution would
not be that easy as the one presented in this paper using ant
systems. Thus, a further value of this work is that it proved
the practical applicability of ant systems in a real world
setting which is not self understood as indicated with our
search for alternatives. This makes the future development
of ant systems for logistics applications more attractive even
if other approaches may prove superior in closed world
experiments.

REFERENCES

[1] A. Larsen. The Dynamic Vehicle Routing Problem. PhD
thesis, University of Denmark, 2000.

[2] P. Toth and D. Vigo. The vehicle routing problem, volume 9.
Society for Industrial and Applied Mathematics, 2002.

[3] O. Bräysy and M. Gendreau. Vehicle Routing Problem with
Time Windows, Part I: Route Construction and Local Search
Algorithms. Transportation Science, 39(1):104–118, 2005.

[4] M. Dorigo and T. Stützle. Ant colony optimization. The MIT
Press, 2004.

[5] M. Dorigo, M. Birattari, and T. Stützle. Ant Colony Op-
timization – Artificial Ants as a Computational Intelligence
Technique. IEEE Comput. Intell. Mag, 1:28–39, 2006.

[6] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and
A. V. Donati. Ant Colony System for a Dynamic Vehicle
Routing Problem. J. Comb. Optim, 10(4):327–343, 2005.

[7] O. Bräysy and M. Gendreau. Vehicle Routing Problem
with Time Windows, Part II: Metaheuristics. Transportation
Science, 39(1):119–139, 2005.

[8] M. Gendreau, F. Guertin, J. Potvin, and R. Seguin. Neigh-
borhood search heuristics for a dynamic vehicle dispatching
problem with pick-ups and deliveries. Transportation Re-
search Part C: Emerging Technologies, 14(3):157–174, June
2006.

[9] A. E. Rizzoli, F. Oliverio, R. Montemanni, and L. M. Gam-
bardella. Ant Colony Optimisation for vehicle routing prob-
lems: from theory to applications. Technical report, 2004.

[10] SAP online reference. http://www.sap.com/uk/solutions/
business-suite/erp/index.epx. [retrieved: 05, 2012].

[11] F. Glover and M. Laguna. Tabu Search. Kluwer Academic
Publishers, Norwell, MA, USA, 1997.

[12] P. Toth, and D. Vigo. The Granular Tabu Search and Its
Application to the Vehicle-Routing Problem. INFORMS J.
on Computing, 15(4):333–346, December 2003.

[13] M. Dorigo and L. M. Gambardella. Ant Colony System:
A cooperative learning approach to the traveling salesman
problem. IEEE Transactions on Evolutionary Computation,
1997.

[14] É. D. Taillard. Ant Systems. Kluwer, 2000:131–144, 1999.

[15] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics - Part B,
26(1):29–41, 1996.

[16] C. Blöcker. Entwurf und Implementierung zur dynamischen
Optimierung von Liefertouren mit einem Ameisen-System (in
German). Bachelor’s thesis, FH Wedel, 2011. http://www.
fh-wedel.de/mitarbeiter/iw/eng/r-d/done/bachelor/ [retrieved:
05, 2012].

[17] T. Kohonen, M. R. Schroeder, and T. S. Huang, editor. Self-
Organizing Maps. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 3rd edition, 2001.

[18] G. Reinelt. TSPLIB - A Traveling Salesman Problem Library.
INFORMS Journal on Computing, 3(4):376–384, 1991.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 19 / 63

Towards Discrete Event Multi Agent Platform Specification

Sébastien Mattei, Paul-Antoine Bisgambiglia, Marielle Delhom, Evelyne Vittori

University of Corsica, CNRS UMR SPE 6134, UMS Stella Mare 3514

Corte, France

{smattei,bisgambiglia,delhom,vittori}@univ-corse.fr

Abstract— Nowadays, simulation tools have become essential.

They allow to study and understand complexes actions that

may be impossible to study in situ. In this paper we introduce

an approach to use Discrete Event System Specification model

as agents and finally create an original platform which allows

using DEVS framework and a Multi Agent System platform

working together to simulate population dynamics. We first

apply this approach on anthill model and then the final

approach to a fish model. Ants’ basic behaviors are added

successfully in DEVS formalism.

Keywords-DEVS; MAS; Modeling; Simulation.

I. INTRODUCTION

For years, we have been working on modeling and

complex system simulation [1–4], and on Discrete Event

System Specification (DEVS [5]). Our researches are

essentially based on DEVS formalism [6]. In 1970’s,

Professor Zeigler [5] introduced this method that has proved

successful. It represents: (1) a complex system from an

interconnected collection with more simple subsystems; (2)

a separation between modeling and simulation, simulation

algorithm are automatically generated according to defined

models. This formalism is open, flexible and offers a large

extension capacity.

According to recent works [4], [7–11], it has been

proved that DEVS formalism might be qualified as a multi-

formalism thanks to its opening capacity, to its capacity to

encapsulate others modeling formalisms. In one

heterogeneous system, it is possible to use modeled

subsystems from different formalisms, differentials

equations, neuron networks, continuous systems.

These opening and extension capacities are really

interesting in our researches, because this formalism has

boundaries and doesn’t allow a representation of all kind of

systems like living systems. In order to get over these

boundaries, Multi Agent System (MAS [12], [13]) seems to

be an interesting alternative.
MAS’s purpose is to create cooperation between entities

(agents) that have intelligent behavior, and to coordinate
their purposes and their action plans to solve a problem. In
our case, MAS utilization is justified because they are
adapted to reality, they also allow: (1) agents cooperation;
(2) to solve complexes’ issues; (3) incomplete expertise
integration. An agent is a physical or virtual identity
determinated by movements collections (individual
objectives, functions of satisfactions or survival), owning its
own resources and getting just one partial representation (or

none) of its environment. An agent’s behavior goes to satisfy
its objectives according to its resources, its skills and its
functions of perceptions, representations and
communications. MAS have got a lot of applications into
artificial intelligence. They can reduce complexity of issue’s
resolution by breaking the sub-collection’s knowledge by
associating an intelligent independent agent to each of its
sub-collections and coordinating activity of these agents
[14]. MAS are related to Distributed Artificial Intelligence
(DAI).

Our team works on several scientific research and
technology development. These two domains include
concepts (scientific way) and concepts implementations
(technological way). They are used for issue’s study linked
to artificial or naturals complexes system’s behavior like
management and modeling evolutive interfaces systems
(spread of pollutants) and natural system’s modeling (tides,
fishes), telecommunication, acquisition’s system’s
conceptions (sensors) and analysis and data treatment
(decision’s help).

So, our objective is to capitalize the twenty last years
gained experiences and skills to propose a brand new and
ambitious project. This project’s final objective is to propose
a brand new platform to:
• Modelize different processes working on fauna and

flora’s evolution (tide, wind, phytoplankton,
zooplankton, larva, algae, fishes, pollutants, etc.);

• Simulate from autonomous and intelligent’s agents the
interaction and evolution of these processes. We are
going to develop and integrate in a multi modelization
and simulation based on multi formalism’s environment
«Discrete Event System Specification» (DEVS a hybrid
platform based on multi agent system’s properties (MA
S [14]);

• Finally, we want to provide tools for decision help to

make easier the simulating results operations and

resource management.
To meet our goals we are going to proceed step by step.

In this paper, we propose to associate DEVS formalism and
MAS. From advantages of these two paradigms, we want to
define an extension of DEVS’s formalism, faithful to
standard, that make possible to modelize agents and way of
communication and environment interactions as a DEVS’s
system. This transformation, from agents to model, emerge a
lot of issues that we propose to study and solve by our self.

In the first part, we introduce DEVS formalism and MAS
principles. Then, in a second part, we detail these two
modeling and simulation’s paradigms advantages. In the
third part, we propose our approach formalization. Then, the

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 20 / 63

fourth part is dedicated to a MAS study case presentation
before proposing its DEVS’s model conversion. At last, the
final part concerns the conclusion and a presentation of our
future works.

II. OVERVIEW

Today, simulation’s tools have become essential. They
allow to study and understand complexes actions that may
are impossible to study in situ. In this part, we introduce our
works based on our researches and in particular two
modeling and simulation’s methods.

A. DEVS presentation

DEVS formalism [5], [6] is based on the definition of

two types of components: atomic models and coupled

models.

Atomic model (Fig. 1) provides an autonomous

description of the system behavior, defined by states,

input/output functions and transition functions. The coupled

model is a composition of atomic models and/or coupled

models. It is modular and presents a hierarchical structure

which enables the creation of complex models from basic

models.

1) DEVS models

Atomic DEVS model:

AM: < X; Y; S; ta; δext; λ; δint > (1)

Figure 1. Atomic model.

where:

- X: is the set of input events, is characterized by a couple

(port, time, value), where the port means the input on which

the event occurs, the time is the date of occurrence of the

event, it is blank for internal events, and the value

symbolizes the data from the event;

- Y: is the set of output events;

- S: is the set of partial or sequential states, which includes

the state variables;

- ta: S → T∞: is the time advance function which is used to

determine the lifespan of a state;

- δext: QxX → S: is the external transition function which

defines how an input event X changes a state of the system,

where Q = {(s, te) | s ∈ S, te ∈ (T ∩ [0, ta(s)]} is the set of

total states, and te is the elapsed time since the last event, T

is the total time of the simulation;

- λ: S → Yι : is the output function where Yι = Y ∪ {ι} and ι

∉ Y is a silent event or an unobserved event. This function

defines how a state of the system generates an output event,

when the elapsed time reaches to the lifetime of the state;

- δint: S → S: is the internal transition function which defines

how a state of the system changes internally, when the

elapsed time reaches to the lifetime of the state.
Every state S is associated with a lifetime ta, which is

defined by the time advance function. When a model
receives an input event X, the external transition function δext
is triggered. This function uses the input event, the current
state and the time elapsed since the last event in order to
determine what the next model state is. If no events occur
before the time specified by the time advance function for
that state, the model activates the output function λ
(providing outputs Y), and changes to a new state
determined by the internal transition function δint.

Coupled model: coupled model is a composition of
atomic models and/or coupled models. It is modular and
presents a hierarchical structure which enables the creation
of complex models from basic models. It is described in the
form of:

CM :< XM, YM, CM, EIC, EOC, IC, L > (2)
With:

• XM: all the input ports;
• YM: all the output ports;
• CM: the list of models forming the CM coupled model;
• EIC: all the input links connecting the coupled model to

its components;
• EOC: all the output links connecting the components to

the coupled model;
• IC: all the internal links connecting the components

between themselves;
• L: the list of the priorities between components.

With the DEVS formalism, each model is independent
and can be considered as its own entity or as a model of a
larger system. DEVS formalism is closed under coupling,
that is to say that for each atomic or coupled DEVS model it
is possible to build an equivalent DEVS atomic model.

The DEVS models are executed by abstract simulators
[15–17] that are independent from the models themselves.
Consequently, separated concerns between models and
implementations of simulation can be achieved and enhance
the verification of each layer independently. DEVS is a
popular method to simulate a variety of systems. However,
since its introduction by B.P. Zeigler, significant efforts were
taken to adapt this formalism to different fields and
situations. The many proposed extensions proved its ability
to extend and openness.

2) DEVSIMPY framework

DEVSimPy framework allows a simple graphical

interface to create and use DEVS models. It is a WxPython

based environment for the simulation of complex systems.

Its development is supported by the CNRS (National

Center for Scientific Research) and the SPE research

laboratory team.

The main goal of this framework is to facilitate the

modeling of DEVS systems using the GUI library and the

drag and drop approach. The interface is designed to help

the implementation of DEVS model in form of blocks. The

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 21 / 63

modeling approach of DEVSimPy is based on UML

Software, and there is a separating between the GUI part

and the implementation part of DEVS formalism.

With DEVSimPy we can: (1) describe a DEVS model and

save or export it into a library; (2) edit the code of DEVS

model to modify behaviors also during the simulation; (3)

import existing library of models which allows the specific

domain modeling (Power Systems, Fuzzy, Continuous ...);

(4) automatically simulate the system and perform its

analysis during the simulation.

3) DEVS Advantages and drawbacks

Discrete event simulation has a quickly execution because

of its way to treat event, avoiding continuous treatment.

Moreover, coupling and separation between modeling and

simulation on DEVS formalism allow reusing existing

models in new models. DEVS is a powerful formalism

allowing reusing models through library already developed

and also interconnecting of these models to compose

heterogeneous models based on a different formalism. In

our team, it used to simulate continuous systems [2], and

differentials equations, and fuzzy system [18], and sensor

network and neural network.

As such DEVS does not allow simulating all kind of

systems. For example, it is not quite complete to study

systems describing behavior of living species, and their

interaction with environment. As is a formalism associating

other approaches, we would like to add new functionalities

to coupling it with MAS.

After a description of the DEVS formalism and his

working, we’ll introduce Multi Agent System.

B. MAS presentation

MAS are more suited to living organism’s modeling

where communication between system’s members is

complex.

The multi agents’ paradigm is issued from the

distributed artificial intelligence in the early 80’s [13], [14].

This bottom up approach is used to build individual based

model dedicated to the study heterogeneous systems and

solve problems with complex interactions. Multi-agent

systems consist of agents and their environment.

According to Michael Wooldridge we consider that "An

agent is a computer system that is situated in some

environment, and that is capable of autonomous action in

this environment in order to meet its design objectives" [13].

Agents can either be physical (human being, robot, etc.)

or virtual. The global behavior of MAS emerges from the

sum of individual actions of agents, from the interactions

between agents and between agents and their environment.

Many Multi-agent systems platforms and frameworks are

created by researchers and developers. They implement

common standards useful to save developers time and also

aid in the standardization of MAS development. Multi-agent

systems are applied in the real world to computer games,

environment, E-commerce defense, transportation, logistics,

GIS.

1) MAS organisation

In MAS, environment is created in first. Then, agents are

positioned on the environment with random position or

known position. There are three kinds of agents:

 Reactive agent;

 Cognitive agent;

 Hybrid agent.

Reactive agent has no representation of its environment

or others agents, it only reacts to environment stimuli. It has

a simple behavior.

Cognitive agents are smart agents, they detect

environment and others agents. They have skills, and they

are able to plan an action with his skills and his thoughts.

Hybrid agents are the most complex kind of agent: they are

the middle way between cognitive agent and reactive agent.

They may have simple behavior in reaction of stimuli or

complex behavior like a cognitive agent. If we need both

behaviors, we can use hybrid agent to describe simple

behavior to manage memory (use less memory and it is less

complex to code) and complex behavior when we need it.

Agent may communicate with others and with environment

thanks to three communications methods:

 Share memory (blackboard);

 Communication by messages;

 Message by environment.

Share memory is like a database process. Each agent

fills a general knowledge base and takes information in. At

any time an agent can ask blackboard for information.

Communication by messages is like a conversation. Agents

can send a message to one agent or various agents, and they

can ask information to the others agents. The final method

consists to give the whole responsibility to the environment.

Only it can send information to agents.

2) MAS Advantage and drawback

Various kinds of agents exist and we explain their

perspective’s advantage in living organism’s modeling.

TABLE I. MAS AGENT AND COMMUNICATION SUMMARY

Kind of agents
Way of

communication
Architecture

Reactive

Shared

memory (black
board)

Subsumption

architecture

Cognitive By message BDI architecture

Hybrid By environment Hybrid architecture

We have chosen reactive agent because its behavior is
simpler to modelize, and it doesn’t have an environment
perception and it reacts only to exterior stimuli that we can
modelize with an input message. Thereafter, we plan to use
others kind of agents to make behavior and simulation more
specific and reliable.

The MAS’ major drawback is timing constraint. Using
continuous simulation is longer and can cause issues. For
example, it is difficult to apply an action to an agent at a
given time. While DEVS make it possible. Moreover, MAS
does not allow interconnection between heterogeneous

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 22 / 63

models. For example, it is not possible to associate an agent
model with a model describing flow of a river.

C. Existing approaches

In this part, we introduce two existing approaches and
explain our choices about our method.

The first approach we have studied is the platform
GALATEA [19].

GALATEA is offered as a family of languages to model
MAS to be simulated in a DEVS, multi-agent platform.
GALATEA is the product of two lines of research:
simulation languages based on Zeigler's theory of simulation
and logic-based agents. There is in GALATEA a proposal to
integrate, in the same simulation platform, conceptual and
concrete tools for multi-agent, distributed, interactive,
continuous and discrete event simulation. It is also
GALATEA a direct descendent of GLIDER, a DEVS-based
simulation language which incorporated tools for continuous
modeling as well. In GALATEA, GLIDER is combined with
a family of logic programming languages specifically
designed to model agents.

This platform would allow modelize different
formalisms, in different languages in a same interface. But
this implementation seems tedious and difficult.

The second approach is the “Specification of Dynamic
Structure Discrete Event Multiagent [20]” article. It matches
a lot with our works. An agent is represented by an atomic
model and stimuli by exterior messages. But using of VLE
plateform [21], [22] to simulate and using of CELL-DEVS
formalism [7], [23] to describe environment can make the
simulation slower to generate. Indeed, each cell is
represented by an atomic model and for a big environment
number of atomic model is very high. Because of its number,
simulation use lot of resources and memory, especially in our
case with a big agent’s concentration and a large
environment (all of both are atomics models if we’ll use
CELL-DEVS.

III. OUR APPROACH

After analyzing DEVS and MAS’ good points and
weaknesses, it is important to remember the final objective
of this project: to realize a M&S platform to study population
dynamics.

Figure 2. Simplified approach.

 Fig. 2 points a global vision of our DEVS based
architecture. Agents are DEVS models interacting with a

database. Simulation results are displayed by an external
tools (viewing tool). It’s the first step of our project: describe
MAS from DEVS model.

Our goal is to propose a coupling between these two
modeling approaches in order to keep their advantages:
flexibility and opening (in Information technology) for
DEVS formalism and good living organism’s representation
and their interactions for MAS.

To modelize living organisms and their interactions, the
tool must allow:

 To create and destroy agent during simulation;

 To modify variable during simulation;

 To have a graphical and dynamic representation of
models’ evolution;

 To follow evolution thanks to curves;

 To save simulation’s results in database or file;
In this case, we need:

 Data on species studied (by simulation or by levy
and field study);

 A modeling environment;

 Decision aid tools.

Figure 3. AgentDEVS platform.

Fig. 3 represents our platform architecture. It is
composed of a DEVS model library including in the
DEVSIMPY framework and two databases. The first
database contains all data and the second is simpler and
contains only ants’ location used to make the graphical
interface.

DEVSIMPY framework is composed by various atomic
and coupled models. We detail these models:

 One atomic model “Agent manager” is charging to
read and transmit information from database to
agents (send answer) and it is able to create and
destroy agents;

 One atomic model “Data manager” to manage agents
output (it receives their messages) and to update the
two databases (a full database and another allowing

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 23 / 63

to display information). It can also transmit directly
a message to the Agent manager;

 N atomic agent models with their own behavior and
N coupled society models to gather agents with same
behavior;

 An atomic model to allow graphical display.
Data side contains:

 A database containing all information;

 A small database containing only information to

display.
To represent an agent in its environment with DEVS

formalism, we use atomic models. We have one atomic
model for each agent and one atomic model for the
environment. Environment is also a supervisor and there are
coupled models to represent society and agents’ group
(Anthill for ant or shoal). Another approach was defined in
[19] with a hybrid simulation platform called GALATEA.
This platform seems to slow in simulation time and unsuited
to utilization that we wish have.

The chosen way of communication is shared memory
(Blackboard). After studying and thoughts it seems that it is
the most adapted way of communication to couple with
DEVS. DEVS being hierarchical, there are a lot of messages
outstanding. So, using an associated data file (here
blackboard), or a database, allows to limit the number of
messages (towards high level model: environment), and
avoid concurrent access issues to data (files are generated by
high level model and information are centralized). Using
communication by messages, it would have been very
difficult to manage important flow of messages.

Other issues to consider are:

 File management;

 Messages’ format;

 Dynamic agent destruction and creation;

 Graphical interface.
The issue of file management is in first on the file format

used. There are lots of data to represent and we suggest using
a XML file or Netcdf. This kind of file can represent data
easily and clearly. We have also thought on a unique file
reading issue to graphical display and we propose solution:
to have two files. One has only agent’s location and
identification and is use only to graphical display: it’s a CSV
or excel file to represent a grid and the environment. And the
other is a XML or Netcdf file to represent all data. The other
advantage of file management with one model is data
centralization and so we don’t have concurrent access issues.

In MAS, message’s format is defined by a standard:
FIPA-ACL. The minimum message is: type of send
messages (syntaxes), message sender, message receiver,
message content. But often the minimum message isn’t
enough to communicate. We may need to indicate others
information like used language in message content, used
protocol, message’s ontology, reference to an earlier
message and reference to a conversation. Then message must
be transmitted by a Message Transport Service (MTS) by
communication channel (Agent Communication Channel:
ACC).

In the DEVS formalism, message is composed as
following: port, time, value. When compared these two
messages, we could say that “port” in DEVS could be
“sender” and “receiver” in MAS. “Value” could be “content
message”. We did not define remaining parameters yet. To
avoid agents’ creation and destruction issues we suppose that
we can use a DEVS’ extension. This extension allows create
and destroy agents dynamically with a manager [8–10], [16].
The manager is our environment model with a supervisor
role.

The final goal being to represent MAS in DEVS model, it
is essential to use a graphical interface to display data. We
plan to implement a coupling with Google API (Google map
to display data on a map world) and use a viewer to display
data in a board.

IV. CASE OF STUDY

In order to validate our approach, we chose to work on

ant modeling and simulation.

One of the most used models in Multi Agent System

(MAS) is the example of anthill. We will try to transcribe

this ant model with DEVS formalism. In Multi agent

system, an ant is an agent and works alone or with others

agents to modify the environment (Fig. 4). Environment

represents a spot where agents can interact, is a kind of grid.

In a MAS, they are various kind of agents, we used reactive

agent. It reacts to an exterior stimulus and does an action

when it gets this stimulus. With DEVS, we can represent

this with a received message on the entry port of a model.

Every reactive agent is an atomic model.

Figure 4. Agent communication with environment.

Fig. 4 points an external stimulus or initialization from

environment (1). Then ant makes an action or not (2) and

sends a message to the environment to ask questions and

update information (3).

A. Ants’ behavior description

Global behavior of an ant is made with various

independents’ behaviors or with behaviors

Linked. Behaviors we have retained are:

● To look for food;

● To collect food;

● To drop pheromones;

● To back to the nest (brining food);

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 24 / 63

● To drop food;

● Possibility to follow pheromones.

An ant check out of the nest and look for food, it makes

a random motion around the nest. When it founds food, it

eats and goes back to the nest to drop it. During return, it

drops pheromones on the way which are chemicals agents

able to show the way to follow to find food. After have

dropped the food, ant choose to follow pheromone or

looking for others sources food.

B. MAS’ models

In our model, ant has only one parameter, its energy.

Environment have location of food source, nest and others

variables like the number of food in the nest and the number

of pheromone on a cell. At model initialization, the

environment creates many food sources and the nest. Then

agents are created with a default position: nest location.

First, agents move randomly around the nest at each time

step. Ant sends message to the environment to tell him their

locations. Environment tests if ants’ locations are equal to

others object’s location like food and sends him the result.

Figure 5. Ants DEVs behavior.

Ant receives message and depending on the result (Fig.

4 and Fig. 5); it keeps its behavior (looking for food) or

change (eating food). When it finds food, it sends a message

to the environment to inform about the food eaten.

Environment knows how many foods remains on the cell.

Once the food eaten ant changes its behavior and passes in

«back to the nest» step. It drops pheromones (it sends a

message to the environment for each cell through and

environment adds pheromones on that cell). Then ant drop

food in the nest and may choose to follow pheromones if the

scent is strong enough (if many ants drop pheromone on a

same cell, that cell smells more and catches more ants) or

move randomly to find others food sources.

C. DEVS models

The Research team intends to make a link between agent

behavior and a DEVS model.

Fig. 5 represents ants DEVS behavior. Message is like

following: location x, location y, energy, food, and

pheromone. A message involves automatically a data update

and an answer.

1) Ant atomic model

The sets of states about our system are S: looking for

food collects food, back to the nest (bringing food), drop

food and follow pheromones. To start the system’s state is

‘Look for food’. According to this state and input messages

it is changing its state variables (position x, y) and its state

and sends message to update the database or query the

environment.

The internal function δint is the way to allow the ant to

change its behavior and so change state.

The externals functions δext are messages from

environment (here, if they are foods or pheromones).

The output function λ is message send by ant to

environment (here, its location and number of food eat).

The time advance ta function is evolution of time like

«tick» in Multi Agent System.

Input: X = location of neighbors object and object type

(MSG.x,MSG,y,MSG.type)

Output: Y = x, y, id, energy, pheromone, food

Time: Sigma = 0

State: Looking for food, collect food, back to the nest

(bringing food), drop food and follow pheromones.

State variable: x, y, food, energy, id

Initialization function:

S = LookForFood()

X=Y=Food = 0

Energy = 100

Id = UNIQUE

Sigma = 0

Output function: λ

MSG.id=ID

MSG.x =x

MSG.y=y

MSG.energy=energy

MSG.pheromone=False

MSG.food=0

Send(MSG)

Time advance function: ta

return Sigma

Behavior function: δext(MSG) :

if MSG.type== food et S!= bringingFood:

S = EatFood // we change state to EatFood

energy+=10 // it collect food so it gain energy

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 25 / 63

X=MSG.x // ant go on the cell with food

Y=MSG.y // ant go on the cell with food

food+=20 // ant increases number of food

Sigma=4 // time to do action

if MSG.type==pheromone et s!=bringingFood:

S =follow // ant change state to follow

X=MSG.x // ant go on the cell with pheromone

Y=MSG.y // ant go on the cell with pheromone

Sigma =0 // time to 0 to continue motion

if MSG.type==anthill et s==bringingFood:

S=drop // we change state to Drop

Increase number of food in the anthill

(MSG.food=food)

food=0 // food is already drop

X=MSG.x // ant go on the anthill

Y=MSG.y // ant go on the anthill

Sigma=6 // time to drop food

Behavior function: δint() :

if s==drop

S=LookForFood

if s==eatFood

S= BringingFood

if s==LoofForFood

X=random

Y=random

if s== BringingFood

X=random // towards anthill

Y=random // towards anthill

drop pheromone (MSG.pheromone=True)

if s==follow

X=follow pheromone

Y=follow pheromone

Sigma=0

2) Environment atomic models
Environment atomic models manage pheromones, food

source.
Manager’s agent model receives ant’s location, if ants

drop pheromone (with a Boolean) and if food was eaten. In
output it sends to the ants if they are on food source and
pheromones location.

Manager’s data model updates data.

D. Simulation and results

Our models allow simulate an ants’ basic behavior. Its
aim is the validation of our theoretical approach. This
example must be improved to be realistic.

V. CONCLUSION ANS PERSPECTIVES

In this paper, we proposed an original approach to
associate DEVS formalism and MAS. Our approach seems
similar to VLE works but these are limited to an
environment representation made with cellular grid. We do
not want to be limited by this mode of representation.

We propose a new method based on DEVS. We chose an
easy study case, ants’ evolution, to focus on the interests of

our solution. Ant society modeling is a famous example in
MAS. We have chosen this example to test our approach and
to propose a tutorial application even if it’s far to our final
application.

Various issues happened: an important increase in
messages that were sent between agents and environment
(slow down the simulation); the need to dynamically create
or destroy agents (dynamic DEVS [8]); the database
management from atomic model and the display tool
development.

Born of recent work [24], [25] our interest on MAS has
become a real need. Moreover it perfectly integrates to the
development of our platform (DEVSIMPY). Indeed, in
Mediterranean, water availability and quality, as well as and
biodiversity evolution represents a real issue. This is why
development activities and land use planning must consider
the water management and water systems. To answer to
these issues, the STELLA MARE project (« Sustainable
TEchnologies for LittoraL Aquaculture and Marine Research
» was developed at the University of Corsica. Its objectives
are large and it must be a scientific research center in
innovation and appreciation of Mediterranean resources.

We wish to propose a generic software environment
based on discrete event simulation principals (DEVS) and
MAS described in Fig. 6. This environment must allow
simulating fish resources evolution.

Figure 6. Final platform.

Fig. 6 points our final architecture. At time, we suggested
proposed a method to describe MAS from DEVS model. The
next step is completing DEVS framework with a MAS
platform. The objectives of this platform are to make easier
agent creation without describing atomic models behaviors.

Our research perspectives are various with the DEVS
formalism and we plan to work on simulation algorithm
haste and on cognitive agents’ models and on agents and
environment’s interaction and communication. We need also
visualization tools development (viewer).

Our final objective is to define agent models autonomous
and intelligent and able to interact together. So, they will be
influenced by their environment based on current models.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 26 / 63

REFERENCES

[1] J.-B. Filippi, F. Bernardi, and M. Delhom, « The JDEVS

environmental modeling and simulation environment », IEMSS,

Integrated Assessment and Decision Support, Lugano Suisse, pp.

283–288, 2002.

[2] L. Capocchi, F. Bernardi, D. Federici, and P.

Bisgambiglia, Transformation of VHDL Descriptions into DEVS

Models for Fault Modeling and Simulation. 2003.

[3] P.-A. Bisgambiglia, E. de Gentili, P. A. Bisgambiglia,

and J. F. Santucci, « Fuzzy Simulation for Discrete Events

Systems », in Proceedings of the 2008 IEEE World Congress on

Computational Intelligence (WCCI 2008) - IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), pp. 688–694, 2008.

[4] S. Garredu, E. Vittori, J.-F. Santucci, and D. Urbani, « A

methodology to specify DEVS domain specific profiles and create

profile-based models », pp. 353–359, 2011.

[5] B. P. Zeigler, Theory of Modeling and Simulation.

Academic Press, 1976.

[6] B. P. Zeigler, Multifaceted modelling and discrete event

simulation. Academic Press, 1984.

[7] J. Ameghino, A. Troccoli, and G. Wainer, « Models of

complex physical systems using Cell-DEVS », pp. 266–273.

[8] F. Barros, « Dynamic structure discrete event system

specification: a new formalism for dynamic structure modelling

and simulation », in Proceedings of Winter Simulation Conference

1995, 1995.

[9] A. M. Uhrmacher and B. Schattenberg, « Agents in

Discrete Event Simulation », in Proceedings of ESS98, 1998.

[10] A. Uhrmarcher, « Dynamic Structures in Modeling and

Simulation: A Reflective Approach », ACM Transactions on

Modeling and Computer Simulation vol. 11 2001, pp. 206–232,

2001.

[11] P. Fishwich and B. P. Zeigler, « A multi-model

methodology for qualitative model engineering », ACM

transaction on Modeling and Simulation, vol. 2, no. 1, pp. 52–81,

1992.

[12] G. Weiss, Multiagent Systems, A Modern Approach to

Distributed Artificial Intelligence. MIT Press, 1999.

[13] M. Wooldridge, An Introduction to MultiAgent Systems,

Wiley and Sons. Chichester, West Sussex, Angleterre: Wiley and

Sons, 2002.

[14] J. Ferber, Multi-Agent System: An Introduction to

Distributed Artificial Intelligence, Addison Wesley Longman.

Addison Wesley Longman, 1999.

[15] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of

Modeling and Simulation, Second Edition. 2000.

[16] F. Barros, « Abstract simulators for the dsde

formalism », in Proceedings of WSC 1998, pp. 407–412, 1998.

[17] A. C. Chow and B. P. Zeigler, « Abstract Simulator for

the Parallel DEVS Formalism », in Proceedings of AIS94, 1994.

[18] P.-A. Bisgambiglia, P. A. Bisgambiglia, and J.-S.

Gualtieri, « Cognitive simulation-based on knowledge evolution in

fuzzy discrete event systems », pp. 895–901, 2011.

[19] J. Davila and M. Uzcategui, « GALATEA: A multi-

agent, simulation platform », in In International Conference on

Modeling, Simulation and Neural Networks MSNN’2000, Mérida,

Venezuela, 2000.

[20] R. Duboz, D. Versmisse, G. Quesnel, A. Muzzy, and E.

Ramat, « Specification of Dynamic Structure Discret event

Multiagent Systems », in Agent-Directed Simulation (ADS 2006),

Huntsville, AL, USA,, 2005.

[21] E. Ramat and P. Preux, « “Virtual laboratory

environment” (VLE): a software environment oriented agent and

object for modeling and simulation of complex systems »,

Simulation Modelling Practice and Theory, vol. 11, no. 1, pp. 45–

55, March 2003.

[22] G. Quesnel, R. Duboz, and É. Ramat, « The Virtual

Laboratory Environment – An operational framework for multi-

modelling, simulation and analysis of complex dynamical

systems », Simulation Modelling Practice and Theory, vol. 17, no.

4, pp. 641–653, April. 2009.

[23] L. Ntaimo and B. P. Zeigler, « Expressing a Forest Cell

Model in Parallel DEVS and Timed Cell-DEVS Formalisms »,

2002.

[24] D. Urbani and M. Delhom, « Water Management Using

a New Hybrid Multi-Agents System - Geographic Information

System Decision Support System Framework », pp. 314–319,

2006.

[25] D. Urbani and M. Delhom, « Analyzing knowledge

exchanges in hybrid MAS GIS decision support systems, toward a

new DSS architecture », in Proceedings of the 2nd KES

International conference on Agent and multi-agent systems:

technologies and applications, Berlin, Heidelberg, pp. 323–332,

2008.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 27 / 63

Multiplicative Complexity and Solving Generalized
Brent Equations With SAT Solvers

Nicolas T. Courtois
University College London,
Gower Street, London, UK
Email: n.courtois@ucl.ac.uk

Daniel Hulme
University College London,
Gower Street, London, UK

Email: d.hulme@cs.ucl.ac.uk

Theodosis Mourouzis
University College London,
Gower Street, London, UK

Email: theodosis.mourouzis.09@ucl.ac.uk

Abstract—In this paper we look at the general problem of
Multiplicative Complexity (MC) as an essential tool for opti-
mizing potentially arbitrary algebraic computations over fields
and rings in the general non-commutative setting. Our goal is to
find optimizations in a fully automated way via algebraic formal
coding and conversion to a SAT problem [1].

We focus on the basic problems of minimizing the number
of multiplications in Matrix Multiplication, complex number
multiplication and also quaternion multiplication. Minimizing
the number of multiplications in the Matrix Multiplication
problem alone (and this for problems of fixed size some of
which we were able to optimize [4]) is known to be able to
lead to immediate improvements in countless other algorithms
on formal languages, graphs, arbitrary finite groups, various
real/complex/algebraic rings and fields of practical importance.
Thus we may hope to translate our efforts to improve many
high-profile applications in computer graphics, signal processing,
cryptography, computational physics and chemistry, weather
prediction, financial computing, Google page ranking, etc.

The classical tool to solve the Matrix Multiplication problem
are the Brent Equations [3]. We have developed a methodology
for solving these equations over small fields such as GF(2) with
a conversion to a SAT problem and progressive lifting to larger
fields and rings. We generalize the Brent Equations [3] and extend
our method to similar algebraic optimizations and to tri-linear
problems.

We have been able to obtain new results to decrease the MC of
several well known operations in algebra, which to the best of our
knowledge are new. For example we have obtained a new general
3×3 matrix multiplication method with 23 multiplications [4]. We
also present new formulas for complex number multiplications
and quaternion multiplications. Additionally, using our method-
ology we are able to produce highly optimized implementations
of small circuits. We obtained exact lower bounds with respect
to MC of two very well known block ciphers, such as PRESENT
and GOST, known for their exceptionally low implementation
cost. Our method is efficient for any sufficiently small circuit [5].

Index Terms—Linear Algebra, Fast Matrix Multiplication,
Complex Numbers, quaternions, Strassen’s algorithm, Multi-
plicative Complexity

I. INTRODUCTION

The optimization of certain arbitrary algebraic computations
over fields and rings in the general non-commutative setting is
considered as one of the most important topics in theoretical
computer science and mathematics. In this paper we study
how the Multiplicative Complexity (MC) of certain arbitrary
algebraic computations such as the Matrix Multiplication

(MM), multiplication of complex numbers, multiplication of
quaternions and of a general Boolean circuit can be reduced
over small fields such as GF(2), the field of two elements,
and then be progressively lifted to larger rings.

MC is the minimum number of AND gates that are needed
if we allow an unlimited number of NOT and XOR gates.
Informally, we are interested in reducing the number of
multiplications involved in an arbitrary algebraic computation
allowing unlimited number of additions.

Our method consists of three basic steps. In the first step we
formally encode the problem by writing a system of equations
which describe the problem and then we consider the problem
over the finite field of two elements GF(2). In case of the
MM problem and the complex or the quaternion multiplication
problem we use the Brent Equations [3] in the encoding
step while for circuit minimization we encode the problem
formally as a straight-line representation problem, described
by a quantified set of multivariate relations [5]. Then we
proceed by converting the reduced modulo 2 problem to a
SAT problem using the Courtois-Bard-Jefferson method [2]
and then we progressively lift the solution to larger fields and
rings using different heuristic techniques and other constraint
satisfaction algorithms.

A. Motivation for Low MC

Matrix Multiplication:
One of the most famous problems in computer algebra is the

problem of MM of square and non-square matrices, where the
aim is to reduce the number of 2-input multiplications needed
in order to compute the product of two matrices. A speed-up
in MM will automatically result in a speed improvement of
many other algorithms and techniques such as:

• Gauss Elimination algorithm for solving a system of
linear polynomial equations

• Algorithms for solving of non-linear polynomial equa-
tions

• Recognizing if a word of length n belongs to a context-
free language

• Transitive closure of a graph or a relation on a finite set
• Cryptanalysis

Circuit Complexity:

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 28 / 63

We refer to some reasons why circuits of low MC are very
important especially for industrial reasons and for cryptogra-
phy. For more analytic explanations, see [5].

• Lower the hardware implementation cost of a cipher in
silicon

• Develop certain so called Bitslice parallel-SIMD software
implementations of block ciphers such as in [16]

• In symbolic computing and numerical algebra, this kind
of optimization can be applied recursively to produce
asymptotically fast algorithms to solve very famous and
important practical problems such as Gaussian reduction
and MM

• Prevent Side Channel Attacks (SCA) on smart cards such
as Differential Power Analysis (DPA) [15].

II. METHODOLOGY

We have fully automated the process as follows:
1) Form the Brent Equations (or write a quantified set of

multivariate relations that describes the problem)
2) Consider only solutions in 0,1=integers modulo 2
3) Convert to SAT with Courtois-Bard-Jefferson method [2]
4) Lift the solution from GF(2) to the general bigger fields

by another constraint satisfaction algorithm

A. Brent Equations
We use Brent Equations as a sort of “formal algebraic”

method for encoding problems that optimize certain arbitrary
algebraic computations. Our main idea is to encode such
problems into a “language” which can be converted to a SAT
problem and then we attempt to solve this hard problem using
our portfolio of 500 SAT solvers.

Suppose we want to multiply a M×N matrix A by a N×P
matrix B using T 2-input multiplications.

We solve the above problem by solving the following system
of (MNP)2 equations in T (MN +NP +MP) unknowns,
see [3]:

{∀i∀j∀k∀L∀m∀n,
∑T

p=1 αijpβkLpγmnp = δniδjkδLm}(1)

A solution to this set of equations implies that the coefficient
entries cij of the product matrix C = AB can be written as
cnm = ΣT

p=1γmnpqp (2) where the products q1, q2, ..., qT are
given by qp = (Σαijpaij)(ΣβKLpbKL) (3).

Thus, our aim is to form Brent-like equations for other
problems such as complex multiplication and quaternion mul-
tiplication and then convert it to a SAT problem where we can
apply our portfolio of SAT solvers to get the solution.

B. SAT Solvers
Satisfiability (SAT) is the problem of determining if the

variables of a given Boolean formula can be assigned in a
way as to make the formula evaluate to TRUE [13]. SAT
was the first known example of an NP-complete problem. A
wide range of other decision and optimization problems can
be transformed into instances of SAT and a class of algorithms
called SAT solvers can efficiently solve a large enough subset
of SAT instances such as MiniSAT solver [23]. Our aim is to
transform problems like MM into SAT problems.

C. Solving Brent Equations Modulo 2 and Lifting

In the first step we form the Brent Equations for our problem
and we consider them over the field GF(2). We are interested
only in simple solutions that work over small finite rings and
fields. Then using the Courtois-Bard-Jefferson converter we
convert this system of equations over GF(2) to a SAT problem
and attempt to solve it. After obtaining the solution modulo
2 we begin again and try to lift the solution to a modulo 4
solution using very similar formal encoding.

D. Solving and Conversion

The system of equations is encoded algebraically and then
converted to a SAT problem. We have implemented a method
to convert this very hard problem to a SAT problem, and we
have attempted to solve it, with our portfolio of some 500 SAT
solvers and their variants.

III. MATRIX MULTIPLICATION

Many attempts to solve the general MM problem in the
literature work by solving fixed-size problems and applying
the solution recursively. This leads to pure combinatorial
optimization problems with fixed size. For square matrices
the naive algorithm is cubic and the best known theoretical
exponent is 2.376, due to Coppersmith and Winograd [14].
This exponent is quite low and it is conjectured that one should
be able to do MM in so called “soft quadratic time”, with
possibly some poly-logarithmic overheads, which could even
be sub-exponential in the logarithm. This in fact would be
nearly linear in the size of the input.

In 2005 a team of scientists from Microsoft Research and
two US universities established a new method for finding such
algorithms based on group theory, and their best method so
far gives an exponents of 2.41 [17], close to Coppersmith-
Winograd result and subject to further improvement.

All attempts to solve the MM problem in the literature
rely on solving certain fixed size problems, which can be the
recursively applied to produce asymptotically fast algorithms
that can be used for more general cases. In 1969 Victor
Strassen established a first asymptotic improvement to the
complexity of MM algorithm, by proving that two matrices
2 × 2 can be multiplied by using seven instead of eight
multiplications [22]. Later in 1975 Laderman published a
solution for multiplying 3×3 matrices with 23 multiplications
[9]. Since then this topic generated very considerable interest
and yet to this day it is not clear if Laderman’s solution in
case of 3× 3 multiplication can be further improved.

As in many previous attempts to solve the problem
we proceed by solving the so called Brent equations [3].
This approach has been tried many times before, see
[[3],[8],[10],[12],[13],[11]].

We write the coefficients of each product as three 3 × 3-
matrices for each multiplication A(i), B(i) and C(i), 1 ≤ i ≤
r, with r = 23 where A will be the left hand side of each
product, B the right hand size, and C says to which coefficient
of the result this product contributes.

The Brent equations are as follows:

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 29 / 63

∀i∀j∀k∀l∀m∀n
∑r

i=1 A
(i)
ij B

(i)
kl C

(i)
mn = δniδjkδlm (4)

For 3×3 matrices we get exactly 729 cubic equations. Then
using our methodology we obtained the following solution for
the case of 3× 3 matrices. Our solution in non-isomorphic to
any of the existing solutions:

P01 := (a23) ∗ (−b12 + b13 − b32 + b33);
P02 := (−a11 + a13 + a31 + a32) ∗ (b21 + b22);
P03 := (a13 + a23 − a33) ∗ (b31 + b32 − b33);
P04 := (−a11 + a13) ∗ (−b21 − b22 + b31);
P05 := (a11 − a13 + a33) ∗ (b31);
P06 := (−a21 + a23 + a31) ∗ (b12 − b13);
P07 := (−a31 − a32) ∗ (b22);
P08 := (a31) ∗ (b11 − b21);
P09 := (−a21 − a22 + a23) ∗ (b33);
P10 := (a11 + a21 − a31) ∗ (b11 + b12 + b33);
P11 := (−a12 − a22 + a32) ∗ (−b22 + b23);
P12 := (a33) ∗ (b32);
P13 := (a22) ∗ (b13 − b23);
P14 := (a21 + a22) ∗ (b13 + b33);
P15 := (a11) ∗ (−b11 + b21 − b31);
P16 := (a31) ∗ (b12 − b22);
P17 := (a12) ∗ (−b22 + b23 − b33);
P18 := (−a11 + a12 + a13 + a22 + a31) ∗ (b21 + b22 + b33);
P19 := (−a11 + a22 + a31) ∗ (b13 + b21 + b33);
P20 := (−a12 + a21 + a22 − a23 − a33) ∗ (−b33);
P21 := (−a22 − a31) ∗ (b13 − b22);
P22 := (−a11 − a12 + a31 + a32) ∗ (b21);
P23 := (a11 + a23) ∗ (b12 − b13 − b31);

c11 = P02 + P04 + P07− P15− P22;
c12 = P01− P02 + P03 + P05− P07 + P09 + P12
+P18− P19− P20− P21 + P22 + P23;
c13 = −P02− P07 + P17 + P18− P19− P21 + P22;
c21 = P06 + P08 + P10− P14 + P15 + P19− P23;
c22 = −P01− P06 + P09 + P14 + P16 + P21;
c23 = P09− P13 + P14;
c31 = P02 + P04 + P05 + P07 + P08;
c32 = −P07 + P12 + P16;
c33 = −P07− P09 + P11− P13 + P17 + P20− P21;

Lemma 1: : Our new solution is neither equivalent to the
Ladermans solution [9] nor equivalent to any of the solutions
given in [1].

Proof:
Following [1], the Ladermans solution has exactly

6 matrices of rank 3 (which occur in products
P01, P03, P06, P10, P11, P14). At the same time in
all new solutions presented in [1], at most 1 matrix will have
rank 3. In our solution we have exactly 2 matrices of rank
3 (which occur in products P18 and P20, there are 2 and
not more such matrices, both being on the left hand size
namely A(18), in A(20)). This proves that all these solutions
are distinct.

Remark: This result demonstrates that the space of so-
lutions to Ladermans problem is larger than expected, and

therefore it becomes now more plausible that a solution with
22 multiplications exists. If it exists, we might be able to find
it soon just by running our algorithms longer, or due to further
improvements in the SAT algorithms.

IV. COMPLEX NUMBER MULTIPLICATION

In order to compute the product (a+ bi) ∗ (c+ di) = (ac−
bd)+ (ad+ bc)i (5) we need 4 multiplications using the naive
algorithm. Gauss was the first to prove that the multiplication
of two complex numbers (a+bi)∗(c+di) can be done using 3
multiplications instead of 4. We obtained the same result using
our methodology. We can translate this complex multiplication
problem to a MM problem using the isomorphism between
the set of complex numbers {a + bi : a, b ∈ R} and the 2

dimensional sub-algebra of {
(
a b
c d

)
: a, b, c, d ∈ R}, given

by:

{
(
a −b
b a

)
: a, b ∈ R}.

In the first step we form the 3-dimensional Brent Equations
for multiplying two 2x2 matrices A and B and then using SAT
solvers and lifting techniques we obtain the seven following
Strassen-like products, which can be used to compute the
entries {c11, c12, c21, c22} of the matrix C = AB.

P1 = (a12 + a22) ∗ (b12 + b22);
P2 = (a11) ∗ (b11);
P3 = (a21) ∗ (b11 + b12 + b21 + b22);
P4 = (a12) ∗ (−b21);
P5 = (−a11 + a12 − a21 + a22) ∗ (b12);
P6 = (−a21 + a22) ∗ (b21 + b22);
P7 = (−a12 + a21 − a22) ∗ (b12 + b21 + b22);
c11 = P2− P4;
c12 = P4− P5− P6− P7;
c21 = P3 + P4− P1− P7;
c22 = P1 + P6 + P7− P4;

Now if we consider these products over the 2-
dimensional sub-algebra of matrices defined before we get
that Span{P1, .., P7} = Span{P1, .., P4} since we have
P5 = 2P4, P7 = P3 − P2 (6) and P6 = 2P2 − P3 − P1 (7).
This suggests that four products are enough to compute the
product of two complex numbers as the naive multiplication.
However, if we also consider the set of entries {c11, c21} over
the new set of products we have that c11 = P2 − P4 (8) and
c21 = P2 + P4 − P1 (9). As we see, our method gives three
multiplications in total as proposed by Gauss.

A. Multiplication of three complex numbers

We provide an exceptionally good solution which exists
over GF(2) in the non-homogenous case for the problem of
multiplying three complex numbers. Multiplication of three
complex numbers is a trilinear problem as we aim to minimize
the number of multiplications needed to represent the map
f : (V, V, V) → V .

Using our method we show that multiplication of three
complex numbers (a+ bi)∗ (c+di)∗ (e+f i) can be achieved
using five multiplications at most.

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 30 / 63

Lemma 2: : MC((a + bi) ∗ (c + di) ∗ (e + f i)) ≤ 5 over
GF(2).

Proof:
In GF(2) we can do 5 multiplications total!
P1 := (a+ b+ e+ f) ∗ (c+ d+ e+ f);
P2 := (a+ e) ∗ (d+ e);
P3 := (c+ f) ∗ (b+ f);

Im := P4 := (P1+P2+P3+ a+ d+ e) ∗ (P1+ e+ f);
Re := P5 := (P1+ e+f)∗ (P1+P4+a+ b+ c+d+1);

V. QUATERNION ALGEBRA

Quaternions are a number system that extends the complex
multiplication that were introduced by the Irish Mathematician
Sir William Rowan Hamilton, who defined a quaternion as the
quotient of two directed lines in a three-dimensional space or
equivalently as the quotient of two vectors [7]. It can also be
seen as the sum of a scalar and a vector. They are widely
used in both theoretical and applied mathematics, especially
for calculations involving three-dimensional rotations such as
three-dimensional computer graphics and computer vision and
in real-time symmetric cryptography [6].

As a set, the quaternions are equal to R4 and every element
can be represented as:

a1+ bi+ cj+dk, where i, j, k satisfy the following relations;

i2 = j2 = k2 = ijk = −1, ij = k, ji = −k, jk = i, kj = −i
and ki = j, ik = −j (10).

The Hamilton product of two quaternions:
a1 + b1i+ c1j + d1k, a2 + b2i+ c2j + d2k is given by
(a1a2− b1b2− c1c2−d1d2)+(a1b2+ b1a2+ c1d2−d1c2)i
+(a1c2+b1d2+c1a2+d1b2)j+(a1d2+b1c2−c1b2+d1a2)k

(11).
Our aim is to compute the minimum number of 2-input

multiplications needed to compute the product of two quater-
nions. Using the naive multiplication method we need 16
multiplications but this number of multiplication can be re-
duced using the Gauss method to 12. Using our software
we obtain the 12 products that are needed to compute the
product of two quaternions over the general non-commutative
setting. Additionally, we further investigate the number of 2-
input multiplication needed over GF(2) and we surprisingly
get eight. Below we provide the encoding of quaternion
multiplication problem into Brent Equations and the next
Lemmas provide the result obtained by our software.

Encoding q1 ∗ q2 into Brent Equations:
Suppose {a1, a2, a3, a4}, {b1, b2, b3, b4} are non-

commutative variables and σijk is a given three-
dimensional array of numbers from the set {−1, 0, 1} ,
and we want to compute the 4 sums of 2-input products:
a1b1 − a2b2 − a3b3 − a4b4, a1b2 + a2b1 + a3b4 − a4b3, a1b3 +
a2b4 + a3b1 + a4b2, a1b4 + a2b3 − a3b2 + a4b1.

Then our aim is to find the least possible T and scalars
αit, βjt, γkt such that from the T products of the form
pt = (

∑
i αitai).(

∑
j βjtbj) (12) for 1 ≤ t ≤ T , we can

form the qk as linear combinations of the pt as

qk =
∑T

t=1 γktpt (13) for 1 ≤ k ≤ K.
Combining these two results we formulate the problem of

finding the minimum number of 2-input multiplications for
multiplying two quaternions a1 + a2i+ a3j+ a4k, b1 + b2i+
b3j + b4k as follows:

Quaternion multiplication problem: Find constants
αit, βjt, γkt and least T (where T ≤ 12) such that the
following system of 64 equations in 12 ∗ T unknowns hold:∑T

t=1 αitβjtγkt = σijk (14),
for 1 ≤ i ≤ 4, 1 ≤ j ≤ 4, 1 ≤ k ≤ 4

,where σijk: σ111 = 1, σ122 = 1, σ133 = 1, σ144 = 1,
σ212 = 1, σ221 = −1, σ234 = 1, σ243 = 1, σ313 = 1, σ324 =
−1, σ331 = −1, σ342 = 1, σ414 = 1, σ423 = 1, σ432 = −1,
σ441 = −1 and zero elsewhere.

Lemma 3: MC(q1 ∗ q2 : qi ∈ H) ≤ 12

Proof: Using the complex representation of q1 and q2 we
need to compute four entries of the form:

1) (q1 ∗ q2)11 = (a+ bi) ∗ (e+ fi) + (c+ di) ∗ (−g + hi)
2) (q1 ∗ q2)12 = (a+ bi) ∗ (g + hi) + (c+ di) ∗ (e− fi)
3) (q1 ∗ q2)21 = (−c+ di) ∗ (e+ fi)+ (a− bi) ∗ (−g+hi)
4) (q1 ∗ q2)22 = (−c+ di) ∗ (g + hi) + (a− bi) ∗ (e− fi)

Using Gauss formulaes we can obtain the first two entries
{(q1 ∗ q2)11, (q1 ∗ q2)12} using 12 multiplications. Using this
methodology we have obtained the following terms ae −
bf, be+af, ce+fd, ed−fc, ag−bh, bg+ah,−cg−hd, ch−dg.
However the other entries {(q1 ∗ q2)21, (q1 ∗ q2)22} can be
computed using these terms multiplied by −1. Using our
software we obtained the following formulas for the quaternion
multiplication using 12 multiplications which can be also
directly verified using MAPLE computer algebra software:

P01 := (a4) ∗ (b2);
P02 := (a1) ∗ (b1 + b2 + b4);
P03 := (a1) ∗ (b3);
P04 := (−a1 + a2) ∗ (b1);
P05 := (−a2) ∗ (b1 − b2);
P06 := (a2) ∗ (b3);
P07 := (a2) ∗ (b4);
P08 := (a3) ∗ (b1);
P09 := (a1 + a3 − a4) ∗ (b1 + b2);
P10 := (a3 + a4) ∗ (−b3);
P11 := (a1 − a3 + a4) ∗ (b4);
P12 := (−a4) ∗ (−b3 + b4);

expand(−P04− P05 + P10 + P12− a1 ∗ b1 + a2 ∗ b2 +
a3 ∗ b3 + a4 ∗ b4);

expand(P02+P04−P11−P12− a1 ∗ b2− a2 ∗ b1− a3 ∗
b4 + a4 ∗ b3);

expand(P01+P03+P07+P08− a1 ∗ b3− a2 ∗ b4− a3 ∗
b1 − a4 ∗ b2);

expand(−P01+P02+P06+P08−P09− a1 ∗ b4 − a2 ∗
b3 + a3 ∗ b2 − a4 ∗ b1);

Additionally, we obtain a result over the field GF(2) and
our results are summarized in the next lemma. Obtaining

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 31 / 63

results over the field of two elements is very useful as binary
encoding is employed in many areas such as cipher design in
cryptography and circuit design for either software or hardware
implementations.

Lemma 4: MC(q1 ∗ q2 : qi ∈ H) ≤ 8 over GF(2).

Proof: Using our automated software we obtained the
following solution which can be directly verified with MAPLE
computer algebra software:
P01 := (a2 + a3) ∗ (b1 + b2 + b4);
P02 := (a1 + a2 + a3) ∗ (b1 + b2 + b3 + b4);
P03 := (a1 + a2) ∗ (b2 + b3 + b4);
P04 := (a1 + a3) ∗ (b1 + b2 + b3);
P05 := (a3 + a4) ∗ (b1);
P06 := (a1 + a2 + a3 + a4) ∗ (b2);
P07 := (a2 + a4) ∗ (b4);
P08 := (a1 + a4) ∗ (b3);
expand(P01+P02+P03+P07− a1 ∗ b1+a2 ∗ b2+ a3 ∗

b3 + a4 ∗ b4)mod2;
expand(P02+P03+P04+P08− a1 ∗ b2−a2 ∗ b1− a3 ∗

b4 + a4 ∗ b3)mod2;
expand(P01 + P02 + P03 + P04 + P06− a1 ∗ b3 − a2 ∗

b4 − a3 ∗ b1 − a4 ∗ b2)mod2;
expand(P01+P02+P04+P05− a1 ∗ b4−a2 ∗ b3+ a3 ∗

b2 − a4 ∗ b1)mod2;

VI. EXACT CIRCUIT COMPLEXITY OPTIMIZATION

In case of circuit complexity we employed the heuristic
proposed by Boyar and Peralta [18] based on the notion of
MC and consists of the following steps:

1. (Step 1) First compute the MC.
2. (Step 2) Then optimize the number of XORs separately,

see [[19],[21]].
3. Optional Step 3: At the end do additional optimizations

to decrease the circuit depth, and possibly additional software
optimizations, see [[18],[20]].

We encode the problem formally as a straight-line represen-
tation problem, described by a quantified set of multivariate
relations and we convert it to SAT with the Courtois-Bard-
Jefferson tool [2]. Our method on how we compute the MC
of the circuit is found in [5].

As a proof of concept we consider the following S-box with
3 inputs and 3 outputs, which have been generated at random
for the CTC2 cipher [5] and is defined as 7, 6, 0, 4, 2, 5, 1 .
We have tried to optimize this S-box with the well known
software Logic Friday (based on Espresso min-term optimiza-
tion developed at Berkeley) and obtained 13 gates. With our
software and in a few seconds we obtained several interesting
results, each coming with a proof that it is an optimal result
(cannot be improved anymore). We get:

Lemma 5: The Multiplicative Complexity (MC) is exactly
3 (we allow 3 AND gates and an unlimited number of XOR
gates).

The Bitslice Gate Complexity (BGC) is exactly 8 (allowed
are XOR,OR,AND,NOT).

The Gate Complexity (GC) is exactly 6 (allowing
NAND,NOR,NXOR).

The NAND Complexity (NC) is exactly 12 (only NAND
gates and constants).

Fig. 1. Our provably optimal implementation of CTC2 S-box with 6 gates.

Proof: Unlike the great majority of circuit optimizations,
needed each time a given cipher is implemented in hardware,
our results are exact. They are obtained by solving the problem
at a given gate count k, the SAT solver outputs SAT and a
solution, and if for k-1 gates the SAT solver is good enough
and fast enough, it will output UNSAT and we obtain a proven
lower bound, a rare thing in complexity, see [5].

VII. CONCLUSION

In this paper we study the notion of Multiplicative Com-
plexity (MC) which minimizes the number of elementary non-
linear operations (AND gates) at the cost of linear operations.
We used MC as an essential tool for optimizing potentially
arbitrary algebraic computations over fields and rings in the
general non-commutative setting.

We employed an automated method for obtaining new
formulas for Matrix Multiplication (MM), complex number
and quaternion multiplication based on SAT solvers. We
extensively used the notion of Brent Equations [3] as a formal
encoding of these problems and then we consider solutions of
the corresponding system of equations over the field of two
elements. After we algebraically encode the problem we con-
vert it into a SAT problem using the Courtois-Bard-Jefferson
[2] and then using our portfolio of 500 SAT solvers we try to
solve the problem over GF(2). Starting from scratch we try
to lift the solutions modulo 2 to solutions modulo 4 and also
to bigger fields. We lift the solutions using another constraint
satisfaction algorithm and some heuristics discovered during
our simulations that reduces the complexity of our lifting
technique even more.

We have been able to obtain new results in decreasing the
MC of several well known operations in algebra, which to the
best of our knowledge are new. For example we have obtained
a new general 3× 3 MM method with 23 multiplications [4].
We also derived new formulaes regarding the multiplication
of three complex numbers using 5 multiplications over GF(2)
and for multiplying two quaternions using 8 multiplications
over GF(2). We also derived efficient implementations regard-
ing the MC of some ciphers such as PRESENT, GOST and
CTC2 [5].

So far our method works efficiently for obtaining compact
representations of algebraic computations or circuits over the

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 32 / 63

field of two elements. In some cases we are able to lift our
solutions from GF(2) to the general non-commutative setting.
However, our lifting technique sometimes is not efficient and
is not able to lift the solutions. As future work we will
improve our lifting techniques so that we will be able to obtain
similar compact representations which hold over arbitrary non-
commutative rings.

ACKNOWLEDGMENT

We would like to thank the anonymous referees of this paper
who helped us a lot to improve it.

REFERENCES

[1] R.W. Johnson and A.M. McLoughlin, Noncommutative Bilinear Algo-
rithms for 3 x 3 Matrix Multiplication In SIAM J. Comput., vol. 15 (2),
pp.595-603, 1986.

[2] G.V. Bard, N.T. Courtois and C. Jefferson, Efficient Methods for Conver-
sion and Solution of Sparse Systems of Low-Degree Multivariate Poly-
nomials over GF(2) via SAT-Solvers Presented at ECRYPT workshop
Tools for Cryptanalysis, 2007.

[3] R. Brent, Algorithms for matrix multiplication Tech. Report Report TR-
CS-70-157,Department of Computer Science, Stanford, 52 pages, 1970.

[4] N.T. Courtois, G.V. Bard2, and D. Hulme, A New General-Purpose
Method to Multiply 3x3 Matrices Using Only 23 Multiplications At
http://arxiv.org/abs/1108.2830, 2011.

[5] N.T. Courtois, D. Hulme, and T. Mourouzis, Solving Circuit Optimisation
Problems in Cryptography and Cryptanalysis Appears in electronic
proceedings of 2nd IMA Conference Mathematics in Defence, UK,
Swindon, 2011.

[6] R. Anand, G. Bajpai and V. Bhaskar, Real-Time Symmetric Cryptography
using Quaternion Julia Set IJCSNS International Journal of Computer
Science and Network Security, VOL.9 No.3, 2009

[7] W.R. Hamilton, On quaternions, or on a new system of imaginaries in
algebra Philosophical Magazine. Vol. 25, n 3. p. 489495, 1844

[8] G. Bard, New Practical Approximate Matrix Multiplication Algorithms
found via Solving a System of Cubic Equations A draft paper submitted
to a journal, can be found at: http://www-users.math.umd.edu/ bardg/

[9] J.D. Laderman, A Non-Commutative Algorithm for Multiplying 3x3
Matrices Using 23 Multiplications ull. Amer. Math. Soc. Volume 82,
Number 1, 1976

[10] W. Smith, Fast Matrix Algorithms And Multiplication Formulae Avail-
able at:https://math.cst.temple.edu/ wds/matgrant.ps.

[11] N. Burr, An investigation into fast matrix multiplication done under
supervision of Nicolas T. Courtois, and submitted as a part of BSc Degree
in Computer Science at Univesity College London, 2010

[12] G. Bard, New Practical Approximate Matrix Multiplication Algorithms
found via Solving a System of Cubic Equations A draft paper submitted
to a journal, can be found at: http://www-users.math.umd.edu/ bardg/

[13] G. Bard, Algorithms for Solving Linear and Polynomial Systems of Equa-
tions over Finite Fields with Applications to Cryptanalysis Submitted
in Partial Fulfillment for the degree of Doctor of Philosophy of Applied
Mathematics and Scientific Computation, 2007

[14] D. Coppersmith and S.Winograd On the asymptotic complexity of matrix
multiplication SIAM Journal Comp., 11, pp 472-492 , 1980

[15] E. Prouff, C. Giraud, and S. Aumonier Provably Secure S-Box Imple-
mentation Based on Fourier Transform In CHES 2006, Springer LNCS
4249, pp: 216-230, 2006

[16] M. Albrecht, N.T. Courtois, D. Hulme. and G. Song Bit-Slice Imple-
mentation of PRESENT in pure standard C , 2011

[17] H. Cohn, R. Kleinberg, B. Szegedyz and C. Umans Grouptheoretic
Algorithms for Matrix Multiplication In FOCS05, 46th Annual IEEE
Symposium on Foundations of Computer Science, pp. 379, 2005

[18] J. Boyar and R. Peralta A New Combinational Logic Minimization
Technique with Applications to Cryptology In SEA 2010: 178-189, 2009

[19] J. Boyar, P. Matthews and R. Penalta, On the Shortest Linear Straight-
Line Program for Computing Linear Forms In MFCS, 2008

[20] J. Boyar and R.Peralta A depth-16 circuit for the AES S-box
http://eprint.iacr.org/2011/332

[21] C. Fuhs and P. Schneider-Kamp Synthesizing Shortest Linear Straight-
Line Programs over GF(2) Using SAT In SAT 2010, Theory and
Applications of Satisfiability Testing, Springer LNCS 6175, pp. 71-84,
2010
Volker Strassen, ,

[22] V. Strassen Gaussian elimination is not optimal Numerische Mathe-
matik 13 pp. 354-356, 1969

[23] N. Sorensson and N. Een Minisat v1. 13-a sat solver with conflict-clause
minimization SAT journal pp. 53, 2005

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 33 / 63

UPC-CompilerCheck: A Tool for Evaluating Error Detection Capabilities of UPC
Compilers

Marina Kraeva†, James Coyle‡, Glenn R. Luecke∗, Indranil Roy§, Elizabeth Kleiman‖, and James Hoekstra¶

High Performance Computing Group, Iowa State University,
Ames, Iowa 50011, USA

Email: †kraeva@iastate.edu, ‡jjc@iastate.edu, ∗grl@iastate.edu,
§iroy@iastate.edu, ‖ekleiman@mtmercy.edu and ¶hoekstra@iastate.edu

Abstract—The ability of system software to detect compile-
time errors and issue messages that help programmers quickly
fix these errors is an important productivity criterion for
developing and maintaining application programs. To evaluate
this capability for Unified Parallel C (UPC) compilers, 3141
Compile-Time Error Detection (CTED) tests and a CTED
evaluation tool, called UPC-CompilerCheck, have been devel-
oped. UPC-CompilerCheck assigns a score from 0 to 5 for
each compiler-generated error message based on the usefulness
of the information in the message to help a programmer fix
the error quickly. This tool also calculates average scores for
each error category and then prints the results. Compiler
vendors could use UPC-CompilerCheck to evaluate and im-
prove the compile-time error detection capabilities of their UPC
compilers. All tests, UPC-CompilerCheck and test results for
the Berkeley, Cray, GNU and HP UPC compilers are freely
available.

Keywords-Languages; UPC; compile-time error detection.

I. INTRODUCTION

Unified Parallel C (UPC) is an extension of the C pro-
gramming language for parallel execution on shared and
distributed memory parallel machines [1], [2]. UPC uses
a single shared, partitioned address space, where shared
variables may be directly read and written by any thread.
Shared variables are stored in the memory of the thread for
which they have affinity. “UPC combines the programmabil-
ity advantages of the shared memory programming paradigm
and the control over data layout and performance of the
message passing programming paradigm” [3]. Providing
a productive programming environment for UPC will en-
courage new scientific applications to be written in UPC.
Since debugging UPC programs can be time consuming,
it is important to have UPC compilers, tools and run-time
systems that can detect both compile-time and run-time
errors and issue messages that help programmers quickly fix
the errors. A tool to evaluate error detection capabilities of
UPC run-time systems has already been developed [4]. This
paper describes the UPC-CompilerCheck tool for evaluating
error detection capabilities of UPC compilers.

Application programs are usually developed by (a) writing
the application, (b) compiling the application and fixing all
errors detected at compile time, (c) running the application

and fixing all errors detected at run-time and (d) then
validating the program using problems for which answers
are known. Compile-time tools cannot be expected to find
all errors, so run-time error detection tools such as [5], [6]
will often be needed. However, when errors can be found at
compile-time, programmer productivity will be increased.

To evaluate error detection capabilities of UPC compilers,
3141 UPC compile-time error detection (CTED) tests and
the UPC-CompilerCheck tool have been developed by ISU’s
HPC Group. Each test contains exactly one UPC compile-
time error. The UPC-CompilerCheck tool compiles these
tests, assigns a score from 0 to 5 based on the quality of
the error message, calculates the averages of these scores
for each error category and reports results.

These tests and UPC-CompilerCheck provide an easy
way to evaluate and compare compile-time error detection
capabilities of different UPC compilers and could be used
as part of a computer procurement process along with the
UPC RTED tests [4]. In addition, compiler vendors could
use the CTED tests, recommended error messages and UPC-
CompilerCheck to evaluate and improve the compile-time
error detection capabilities of their UPC compilers.

UPC compile-time tests, recommended error messages,
UPC-CompilerCheck and test results are freely available [7].
As new UPC compilers/releases become available, ven-
dors and researchers are encouraged to send results to
cted.project@iastate.edu so that they can be posted on this
web site.

The paper is structured as follows. Section II provides
background on UPC and on UPC tools. Section III de-
scribes the design of UPC-CompilerCheck, and how it is
used. Section IV shows examples of actual error messages
along with their scores, and describes why each score was
assigned. Section V provides scoring averages for each error
category for several UPC compilers. Section VI contains our
conclusions about the current state of UPC compilers for
finding the various types of errors at compile time.

II. BACKGROUND

The UPC Compiler Group at the University of California
Berkeley/Lawrence Berkeley National Laboratory actively

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 34 / 63

participated in writing of the UPC Specification and devel-
oped the first UPC compiler. This compiler is an open-source
and portable implementation of UPC [3]. Cray, HP, GNU
and IBM have also developed UPC compilers.

The UPC working group at the High Performance Com-
puting Lab (HPCL) at George Washington University is in-
volved in the UPC specification, UPC testing strategies, UPC
documentation, UPC testing suites, UPC benchmarking, and
UPC collective and Parallel I/O specification [8].

At Michigan Technological University work on UPC
includes the recent release of the MuPC run-time system
for UPC as well as collective specification development,
memory model research, programmability studies, and test
suite development [9].

Researchers at the University of Florida’s High Per-
formance Computing and Simulation Laboratory are cur-
rently involved in the research and development of a next-
generation performance analysis tool supporting UPC. This
tool helps users to identify bottlenecks in their programs and
serves as a test-bed for advanced analysis techniques aimed
at increasing programmer productivity [10].

The High Performance Computing Group from Iowa State
University has developed a run-time error detection tool
called UPC-CHECK that includes deadlock detection [5],
[11]. In addition the ROSE-CIRM tool [6] has been devel-
oped by Dan Quinlan’s group at Lawrence Livermore Na-
tional Laboratory to complement UPC-CHECK by detecting
other run-time errors. Ali Ebnenasir from the Department
of Computer Science of Michigan Technological University
developed UPC-SPIN [12], a software framework for the
model checking of the inter-thread synchronization function-
alities of Unified Parallel C (UPC) programs. A list of UPC
programming tools can be found in the Programming Tools
section of the UPC Wiki page [2].

III. METHODOLOGY

This section summarizes the methodology used to develop
compile-time error tests and UPC-CompilerCheck. For each
error, a program has been written that contains the specified
error and no other errors (each program contains one and
only one compile-time error). For each test a file with a
recommended error message was created that contains the
error name, the line number and the file name where the error
occurs along with any additional information that would
assist a programmer to find and correct the error.

The UPC compile-time error tests have been written to
cover a wide range of errors in many different situations.
The following are the UPC compile-time error categories:

• Items that the UPC specification explicitly does not
allow and that should be detected at compile-time

• Out-of-bounds shared memory access using indices
• Out-of-bounds shared memory access using pointer

references

• Out-of-bounds shared memory access in UPC library
functions

• Argument errors in UPC library functions
• Wrong order of UPC statements and function calls
• Uninitialized variables
• Deadlocks
• Race conditions
• Memory leaks and memory related errors
• Operations specifically undefined by the UPC specifi-

cation
• Warnings
The UPC CTED evaluation tool is a collection of scripts

for compiling the tests, comparing actual messages with
expected messages and then assigning a score of 0, 1, 2,
3, 4 or 5 to the message generated by each test. Scores for
messages are assigned as follows:

• A score of 0 is given when the error is not detected.
• A score of 1 is given for error messages with the correct

error name.
• A score of 2 is given for error messages with the correct

error name and line number where the error occurred
but not the file name where the error occurred.

• A score of 3 is given for error messages with the correct
error name, line number and the name of the file where
the error occurred.

• A score of 4 is given for error messages which contain
at least the information required for a score of 3 but
less information than needed for a score of 5.

• A score of 5 is given in all cases when the error message
contains all the information needed for fixing the error
quickly.

The scoring is the same as was done for the run-time
tests [4] even though for compile-time tests if a compiler
identifies the correct line number it is likely that it also
will identify the correct file name. This means for compile-
time tests that the score of 2 will likely never be given. The
information needed for scores of 4 and 5 is tailored to each
test. Examples in Section IV illustrate this.

Different compilers may issue different messages (with
different error names) for the same compile-time error. UPC-
CompilerCheck has a list of synonymous phrases for each
error so that equivalent error messages will be evaluated
appropriately. Additional synonymous phrases may need
to be added as new compilers/releases become available.
Error messages were evaluated by UPC-CompilerCheck as
follows:

• For each test and score, a scoring script was created.
• Error messages were reduced to a canonical form for

easy comparison with the recommended error messages
by first changing all text to lower case and then re-
placing selected phrases with standard phrases. Blanks,
hexadecimal addresses, and integers longer than three
digits are removed to reduce false matches.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 35 / 63

• Scoring scripts were applied to the canonical form of
each error message for evaluation.

UPC-CompilerCheck has been designed for easy usage.
To run all tests one sets up the configuration file and then is-
sues the ‘run tests all’ command. Sample configuration files
for each compiler are provided. By issuing the ‘run tests all
<error category>’ command the user can run only the tests
in the selected error category. The ‘run tests all’ command
also calculates average scores for each error category and
then prints the results. UPC-CompilerCheck also allows one
to run individual tests and to examine the output.

IV. EXAMPLES

This section contains four examples to illustrate how the
tests have been written and how messages were scored.

A. Example 1

Applying a binary operator with incorrect operands.

Example 1: c A 3 1 a A.upc
...
26 #include “upcparam.h”
27 #include <stddef.h>
28
29 shared [4] char Arr A[4*THREADS];
30
31 int main() {
32 shared [4] char *Ptr S;
33 char *Ptr L;
34 ptrdiff t diff;
35
36 Ptr S=&Arr A[4*MYTHREAD+1];
37 Ptr L=(char *)&Arr A[4*MYTHREAD];
38
39 diff=Ptr S-Ptr L;
40
41 if(MYTHREAD==0) {
42 printf(“diff = %d\n”,diff);
43 }
44
45 return 0;
46 }

The following is the recommended error message:

ERROR: incorrect operands
An attempt to apply subtraction binary
operator to pointer-to-shared ’Ptr_S’
and pointer-to-local ’Ptr_L’ is made at
line 39 in file ’c_A_3_1_a_A.upc’.
The pointer ’Ptr_S’ is declared at line
32 in file ’c_A_3_1_a_A.upc’.
The pointer ’Ptr_L’ is declared at line
33 in file ’c_A_3_1_a_A.upc’.

A score of 3 was given to the Berkeley UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

c_A_3_1_a_A.upc: In function ‘main’:

c_A_3_1_a_A.upc:39: warning: Attempt to
take the difference of pointer-to-shared
and pointer-to-private

A score of 3 was given to the GNU UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

c_A_3_1_a_A.upc: In function â:
c_A_3_1_a_A.upc:39: error: Attempt
to take the difference of shared and
nonshared pointers

A score of 0 was given to the Cray and HP UPC compilers
since they did not detect the error.

B. Example 2

Using an uninitialized pointer.

Example 2: c H 2 l.upc
. . .
25 #include “upcparam.h”
26 #define N 10
27
28 int main() {
29 shared double *ptr x;
30 double* ptr x1;
31
32 if(MYTHREAD==THREADS/2) {
33 ptr x1=(double*)ptr x;
34 ptr x=(shared double*) upc alloc(N*sizeof(double));
35 ptr x1–;
36 printf(“ptr x=%p; ptr x1=%p \n”, (double*) ptr x,

(double*) ptr x1);
37
38 upc free(ptr x);
39 }
40
41 return 0;
42 }

The following is the recommended error message:

ERROR: uninitialized pointer
An attempt to assign pointer ’ptr_x’
that is not explicitly initialized to
another pointer is made at line 33 in
file ’c_H_2_l.upc’.
The pointer ’ptr_x’ is declared at line
29 in file ’c_H_2_l.upc’.

A score of 4 was given to the Cray UPC compiler for
issuing the following message since it correctly identified
the error, file name, line number and gave the variable
name. It was not given a score of 5 since the message did
not give the line number where ptr x was declared.

CC-7212 cc: WARNING File = c_H_2_l.upc,
Line = 33

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 36 / 63

Variable ‘‘ptr_x’’ is used before it is
defined.

A score of 4 was given to the HP UPC compiler for
issuing the following message since it correctly identified
the error, file name, line number and gave the variable
name. It was not given a score of 5 since the message did
not give the line number where ptr x was declared.

‘‘c_H_2_l.upc’’, line 33: warning:
variable ‘‘ptr_x’’ is used before its
value is set.
ptr_x1=(double*)ptr_x;

∧
A score of 0 was given to the Berkeley and GNU UPC

compilers since they did not detect the error.

C. Example 3

An out-of-bounds array access error.

Example 3: c D 1 d E.upc
. . .
25 #define N 40
26 #define M 45
27
28 shared [] long double arrA[N]; /*DECLARE1*/
29 int main() {
30 long double var res;
31 int i;
32
33 upc forall(i=0;i<N;i++;&arrA[i])
34 arrA[i] = (long double)(i+1);
35 var res = 10;
36 upc barrier;
37
38 if(MYTHREAD == (THREADS-1)){
39 /*ERROR*/
40 arrA[N-M] = var res;
41 for(i=0;i<N;i++)
42 printf(“arrA[%d]=%d\n”, i, (int)arrA[i]);
43 }
44
45 return 0;
46 }

The following is the recommended error message:

ERROR: out of bounds
Index value -5 is out of bounds for
array ’arrA’ at line 40 in file
’c_D_1_d_E.upc’.
The array ’arrA’ is declared with bounds
0:39 at line 28 in file ’c_D_1_d_E.upc’.

A score of 3 was given to the HP UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

‘‘c_D_1_d_E.upc’’, line 40: warning:
subscript out of range

arrA[N-M] = var_res;
∧

A score of 3 was given to the Cray UPC compiler for
issuing the following message since it correctly identified
the error, file name and line number.

CC-175 cc: WARNING File = c_D_1_d_E.upc,
Line = 40
The indicated subscript is out of range.
arrA[N-M] = var_res;

∧
A score of 0 was given to the Berkeley and GNU UPC

compilers since they did not detect the error.

D. Example 4

An array declarator error when compiled with the dynamic
threads environment option.

Example 4: c A 4 3 b.upc
. . .
24 #include “upcparam.h”
25
26 #define SIZE 10
27
28 shared [2] int Arr A[SIZE];
29
30 int main() {
31 int i;
32
33 if(MYTHREAD==0) {
34 for(i=0;i<SIZE;i++)
35 Arr A[i]=SIZE+i;
36 printf(“Arr A[0]=%d\n”, Arr A[0]);
37 }
38
39 return 0;
40 }

The following is the recommended error message:

ERROR: invalid array declarator
THREADS is not used in the array
’Arr_A’ declaration at line 28 in file
’c_A_4_3_b.upc’.
In the dynamic translation environment,
THREADS must appear exactly once in
declarations of shared arrays with
definite block size, either alone
or multiplied by an integer constant
expression.

The Cray UPC compiler was given a score of 5 since
it contains all the information in the recommended error
message. The Cray UPC compiler issued the following
message:

CC-1560 cc: ERROR File = c_A_4_3_b.upc,
Line = 28
One dimension of an array of a shared

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 37 / 63

type must be a multiple of THREADS when
the number of threads is nonconstant.
shared [2] int Arr_A[SIZE];

∧
The Berkeley UPC compiler was also given a score of 5

for issuing the following message:

upcc: error during UPC-to-C translation
(sgiupc stage):
c_A_4_3_b.upc:28: In the dynamic
translation environment, THREADS must
appear exactly once in declarations of
shared arrays with definite block size.
Offending variable: Arr_A

The GNU UPC compiler was given a score of 3 for
issuing the following message:

c_A_4_3_b.upc:28: error: variable-size
type declared outside of any function
c_A_4_3_b.upc:28: error: variable-size
type declared outside of any function

The HP UPC compiler was given a score of 5 for issuing
the following message:

‘‘c_A_4_3_b.upc‘‘, line 28: error: one
dimension of an array of a shared type
must be a multiple of THREADS when the
number of threads is nonconstant
shared [2] int Arr_A[SIZE];

∧

V. RESULTS

Table I presents the average scores for each error category
when compiling the UPC CTED tests using the Berkeley,
Cray, GNU and HP UPC compilers. Authors were not able
to get access to the IBM UPC compiler. Current results are
listed on the web site [7].

The category “explicitly disallowed statements” contains
items that the UPC specification explicitly does not allow
and that should be detected at compile-time. The category
“undefined UPC operations” contains situations where the
outcome of certain UPC statements is stated as being un-
defined by the UPC specification. The “warnings” category
includes tests where programmers should be warned of likely
errors, e.g., use of deprecated functions, shared variables
not initialized by the program, etc. The “argument errors
in UPC library functions” category covers those situations
where inconsistent and/or incorrect information is passed as
arguments to UPC library functions. At the time this project
was done, the GNU and HP UPC compilers did not support
UPC I/O; so, they scored zero on these tests. Notice from

Error category Berkeley Cray GNU HP
explicitly disallowed 2.92 2.75 3.21 2.62
statements
out-of-bounds shared 0.00 1.00 0.00 1.27
memory access using
indices
out-of-bounds shared 0.00 0.00 0.00 0.25
memory access using
pointers
out-of-bounds shared 0.00 0.00 0.00 0.00
memory access in UPC
function calls
argument errors in UPC
functions

0.00 0.07 0.05 0.09

wrong order of UPC state-
ments and function calls

0.00 0.15 0.00 0.10

uninitialized variables 0.00 1.14 0.00 2.29
deadlocks 0.00 0.00 0.00 0.00
race conditions 0.00 0.00 0.00 0.00
memory related errors 0.00 0.00 0.00 0.09
undefined UPC operations 0.16 0.21 0.16 0.21
warnings 0.00 0.00 0.00 1.84
average of the above 0.28 0.48 0.34 0.73
scores

Table I
AVERAGE OF TEST SCORES FOR EACH ERROR CATEGORY AND THE
AVERAGE SCORE OVER ALL ERROR CATEGORIES FOR EACH UPC

COMPILER.

Table I that all the compilers achieved an average score of
nearly 3.0 in the “explicitly disallowed statements” category.

For an error message to be useful it should receive at least
a score of 3. Table II presents the number of tests in each
error category for which an useful error message was issued.
Together Tables I and II show that not only the quality of the
error messages issued is low but also that the UPC compilers
tested are not able to detect many of the errors.

The authors consider that all tests from the “explicitly
disallowed statements” category should receive at least a
score of 3. Table III shows in detail how the compilers scored
on these tests including the number of tests that received a
score of at least 3. Notice that many of these errors were
not recognized by UPC compilers. The total number of tests
in this category is 164.

VI. CONCLUSION

The ability of system software to detect compile-time
errors and issue messages that help programmers quickly fix
these errors is an important productivity criterion for devel-
oping and maintaining application programs. To evaluate this
capability for Unified Parallel C (UPC), 3141 compile-time
error tests and a UPC-CompilerCheck tool have been devel-
oped. For each error message issued, UPC-CompilerCheck
assigns a score from 0 to 5 based on the usefulness of the
information in the message to help a programmer quickly
fix the error. If no error message is issued the test gets score
of 0. UPC-CompilerCheck calculates average scores over
each error category and then prints the results. All tests and
UPC-CompilerCheck are freely available [7].

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 38 / 63

Error Category Number Berkeley Cray GNU HP
of tests

explicitly
disallowed
statements

164 133 103 149 98

out-of-bounds 462 0 154 0 196
shared memory
access using
indices
out-of-bounds 169 0 0 0 14
shared memory
access using
pointers
out-of-bounds 324 0 0 0 0
shared memory
access in UPC
function calls
argument errors in
UPC functions

284 0 5 5 6

wrong order of 158 0 6 0 4
UPC statements
and function calls
uninitialized 35 0 10 0 20
variables
deadlocks 18 0 0 0 0
race conditions 785 0 0 0 0
memory related 644 0 0 0 14
errors
undefined UPC 19 1 1 1 1
operations
warnings 79 0 0 0 29

Table II
NUMBER OF TESTS IN EACH CATEGORY WHICH RECEIVED A SCORE OF

AT LEAST 3

Score Berkeley Cray GNU HP
0 31 61 15 66
1 0 0 0 0
2 0 0 0 0
3 90 7 106 5
4 6 50 6 51
5 37 46 37 42

3-5 133 103 149 98
(81.1%) (62.8%) (90.1%) (59.8%)

Table III
NUMBER OF TESTS OUT OF 164 RECEIVING THE INDICATED SCORE FOR

THE “EXPLICITLY DISALLOWED STATEMENTS” CATEGORY.

The Berkeley, Cray, GNU and HP UPC compilers have
been evaluated and results posted on this same web site.
Error detection capabilities for these compilers were gener-
ally poor including the error category “explicitly disallowed
statements” where the UPC compilers should have detected
all these errors.

It is hoped that these tests and recommended error mes-
sages will be used by vendors to evaluate and improve
the compile-time error detection capabilities of their UPC
compilers. We also hope that these tests will be used by high
performance computing centers as part of their procurement
process to reward vendors whose UPC implementations pro-
vide excellent compile-time (and run-time) error detection

and issue high quality messages.

ACKNOWLEDGMENT

This work was supported by the United States Department
of Defense and used resources of the Extreme Scale Systems
Center at Oak Ridge National Laboratory.

REFERENCES

[1] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick,
UPC: Distributed Shared Memory Programming. Wiley-
Interscience, 2003.

[2] “Unified parallel C (upc wiki),” last accessed April 27, 2012.
[Online]. Available: http://upc.wikinet.org

[3] “The Berkeley Unified Parallel C,” last accessed April 27,
2012. [Online]. Available: http://upc.lbl.gov/

[4] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Xu,
E. Kleiman, and O. Weiss, “Evaluating error detection
capabilities of UPC run-time systems,” in Proceedings
of the Third Conference on Partitioned Global Address
Space Programing Models, ser. PGAS ’09. New York,
NY, USA: ACM, 2009, pp. 7:1–7:4. [Online]. Available:
http://doi.acm.org/10.1145/1809961.1809971

[5] J. Coyle, I. Roy, M. Kraeva, and G. R. Luecke, “UPC-
CHECK: A scalable tool for detecting run-time errors in
Unified Parallel C,” in Proceedings of International Super-
computing Conference (ICS), June 2012, to appear.

[6] P. Pirkelbauer, C. Liao, T. Panas, and D. Quinlan,
“Runtime detection of c-style errors in upc code,” in
Proceedings of Fifth Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’11,
2011. [Online]. Available: http://pgas11.rice.edu/papers/
PirkelbauerEtAl-UPC-Error-Detect-PGAS11.pdf

[7] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, E. Kleiman,
and I. Roy, “Compile time error detection test suite and
results for upc.” [Online]. Available: http://hpcgroup.public.
iastate.edu/CTED/UPC

[8] “The High Performance Computing Laboratory, The George
Washington University,” last accessed April 27, 2012.
[Online]. Available: http://upc.gwu.edu

[9] “UPC projects at Michigan Technological University,”
last accessed April 27, 2012. [Online]. Available: http:
//www.upc.mtu.edu/

[10] “High Performance Computing and Simulation Laboratory,
University of Florida,” last accessed April 27, 2012. [Online].
Available: http://www.hcs.ufl.edu/upc/

[11] I. Roy, G. R. Luecke, J. Coyle, and M. Kraeva, “An
optimal deadlock detection algorithm for Unified Parallel C,”
preprint (2012). [Online]. Available: http://hpcgroup.public.
iastate.edu/papers/Deadlock Dectection for UPC.pdf

[12] A. Ebnenasir, “UPC-SPIN: A Framework for the
Model Checking of UPC Programs,” in Proceed-
ings of Fifth Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’11,
2011. [Online]. Available: http://pgas11.rice.edu/papers/
Ebnenasir-UPC-Model-Checking-PGAS11.pdf

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 39 / 63

An Integrated Scientific Experiment Framework for
Numerical Analysis in e-Science Environment

Sookyoung Park∗, Hyejeong Kang∗, Yoonhee Kim∗, Chongam Kim†, Yunjung Hyun‡
∗Dept. of Computer Science, Sookmyung Women’s University, Seoul, Korea

Email: {blue, hjkang, yulan}@sookmyung.ac.kr
†School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea

Email: chongam@snu.ac.kr
‡Korea Environment Institute, Seoul, Korea

Email: yjhyun@kei.re.kr

Abstract—The analytical experiments for numerical analysis
lead a sequence of complex scientific computations composing
of numerical equations and require enormous computing re-
sources with appropriate management tools. Currently most
studies on e-Science environments for numerical studies focus
on solving specific problems to drag out the best performance
of matters and have less interest in providing a uniform
framework to apply for diverse numerical domains, especially
for fluid dynamics. This paper presents an integrated e-Science
experiment framework which could be easily applicable to
solve various numerical analyses in fluid dynamics. As a proof-
of-concept, an integrated e-Science framework with diverse
numerical analyses has been designed and implemented over
UNICORE that runs over grid computing environment.

Keywords-e-Science; PSE; scientific numerical analysis; UNI-
CORE

I. INTRODUCTION

The experimentation in numerical analysis needs highly
efficient and enormous computational resources because
these experiments are composed of computations of compli-
cated numerical equations and computation-intensive opera-
tions. Many studies and developments have been proposed to
support the various scientific computational applications in
e-Science environments. But, already developed frameworks
support e-Science environment only for analyzing specific
computational model [1][2][3][4][5]. By constructing re-
search environments which is defined per-application in spe-
cific e-Science environment, it is difficult to conduct research
efficiently and access heterogeneous resource in absence of
common interfaces even though they have similar processes.
Also, as proceeding e-Science developments, common inter-
faces, and integrated environments are required to provide
various analyze techniques to research and reuse it with
demands of other applications requirements. Our research
has focused on the integrated scientific experimental envi-
ronment for numerical analysis, especially in fluid dynamics.

UNICORE (Uniform Interface to COmputing REsources)
[6] has been developed for an integrated common environ-
ment. However, adding specific applications to UNICORE
is difficult to general scientists or researchers because they

have to develop interfaces for each their experiments using
GridBean [7].

On developing a Problem Solving Environment (PSE) for
numerical applications in fluid dynamics, we are principally
concerned with the following requirements:

• Support research execution in diverse computing envi-
ronment: it can be executed in personal computer or
grid environments.

• Support an independent experimental environment on
each research domain.

• Support pre-process for generating input files of numer-
ical analysis.

• Support post-process for visualizing analyzed results.
In this paper, we describe a design and implementation of

the PSE that aims to provide a numerical study environment
that requires seamless access into grid resources through a
common interface for diverse domains in fluid dynamics. To
support scientific computational application, we developed
a common and integrated e-Science environment based on
UNICORE Rich Client supporting a user interface to each
application using GridBean. In a precedent study [8], we
implemented just one application in a domain, i.e. 1D Euler
equation in compressible flows. It is hard to say as an
integrated framework. So, in this work, we expand our target
range of domains as compressible flows, turbulent flows and
multiphase flows in fluid dynamics.

The rest of the paper is organized as follows. In Section
2, related works are reviewed. In Section 3, an execution
scenario for numerical studies and design of PSE frame-
work architecture are described. The implementation of PSE
framework is presented in Section 4. Finally, conclusion and
future work are stated in Section 5.

II. RELATED WORK

In this section we shall briefly present some approaches
that are representative for the areas of grid computing
environment and e-Science projects which are based on
Eclipse.

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 40 / 63

A variety of scientific computational applications for
numerical study have been developed, like FLOWGRID
[5], and they have been executed on grid environment with
functions of managing and monitoring computational jobs
as well as supporting simulations. FLOWGRID is a grid ap-
plication for solving Computational Fluid Dynamics (CFD)
problems and FlowServe middleware [9] is provided for
interactions on different interfaces. FLOWGRID is carried
out targeting the specialized engineers only and limited in
terms of extensibility.

One of the most well-known Eclipse-based e-Science
environments is g-Eclipse [10], which is an integrated
workbench framework to access the power of existing grid
infrastructures. The g-Eclipse supports connectors between a
user environment and many different grid middlewares (such
as gLite, UNICORE, Globus toolkit) and provides tools to
customize users experimental environments. However, g-
Eclipse included as a plugin to existing eclipse IDE (In-
tegrated Development Environment), is uncomfortable with
complicated interfaces because there exists the irrelevance
of the functions to users experimentations.

UNICORE [6] is a Grid computing technology providing
grid software that combines resources of supercomputer
centers and makes them available through the Internet.
Within the UNICORE environment the user has a convenient
way of using distributed computing resources without having
to learn site or system specifics by a seamless way.

Also the UNICORE supports various clients for jobs
creation, submission, and monitoring, both graphical and
command-line oriented. The graphical UNICORE Rich
Client referred to as URC used in our framework offers
graphical editors for setting up job descriptions. Instead of
editing text-based job descriptions, the user is provided high
level interfaces which are tailored to the applications what
he wants to execute on remote systems. And these graphical
interfaces are developed using GridBean which provides
pluggable interfaces.

Our framework is specifically supported in the UNICORE
Rich client (URC) as adding scientific domain-specific plu-
gins. Besides, the advantage of adopting open standards in
UNICORE 6 allows for the seamless use of UNICORE
components by other technologies.

III. DESIGN OF INTEGRATED SCIENTIFIC EXPERIMENT
FRAMEWORK

A. Framework Scenario for numerical study

A numerical analysis environment for target domains such
as compressible flows, turbulent flows and multiphase flows
require pre-process, simulation process, and post-process.
Figure 1 shows a scenario of using our PSE framework.
At first, the user installs our PSE program on PC and then
selects a method of numerical studies to be performed. In
pre-process step, the user can generate or upload input files
that are proper for the selected numerical study. When it

Figure 1. Scenario for numerical study

Figure 2. Framework Architecture

is finished, in simulation process step, the user configures
solving conditions such as experiment method. The user
selects resource to submit the job and then a JSDL (Job
Submission Description Language) file which specified by
GridBean model about a job definition and attributes will be
submitted and executed at the previously selected resource.
If the job execution is finished, the user can check whether
the execution is finished, and then he can download output
files. As a post-process step, graphical view is also offered
for output files which require visualization.

B. Integrated Scientific Experiment Framework Architecture

The overall architecture of the framework based on UNI-
CORE is depicted in Figure 2. If the user submits a job or
a workflow for specific application using PSE framework
interfaces based on URC, Resource Broker receives the
requests from UNICORE Client and collects the necessary
information (such as application name, resource informa-
tion; number of nodes, number of cores) through Resource
Monitoring to choose the set of acceptable machines. If well
suited resource (s) is selected, the job with user information
is authenticated by Gateway and forwarded to web services

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 41 / 63

Figure 3. Client Architecture

interfaces offered by UNICORE/X server and executes it
on Target System Interface. The workflow job is supported
by Workflow Service module that interacts with Resource
Broker and Meta-Scheduling Service. The Meta-Scheduling
Service collects information across all pre-selected resources
about availability, user policies, and cost parameters.

Figure 3 shows entire plugins architecture in client-side,
it is made up of two layers, the one is basic UNICORE
plugins that constitute the core of the URC and the other is
Fluid Dynamics plugins that consist of applications for three
research domains. Descriptions of basic UNICORE plugins
can be found in other publication [11].

The following list contains short descriptions of Fluid
Dynamics Plugins about what each plugin does:

• HCL Euler 1D / HCL Euler 2D: Plugins for the
numerical study of compressible flows.

• Multiphase 2D / Multiphase 3D: Plugins for the numer-
ical study of multiphase flows.

• Turbulent 3D: A plugin for the numerical study of
turbulent flows.

• Mesh Generator: A plugin for generating input files and
setting up boundary conditions of pre-processing that
may be used for the applications.

• Visualization: A plugin for post-process to visualize the
experiment results.

• Resource Management Service: A module to add job
properties for specific application and provides filters
that find resources with certain types or attributes.

• Project Management Service: A module to management
history of experiments such as execution information,
simulation results, errors, log files and user descrip-
tions.

IV. IMPLEMENTATION

To implement user interfaces of PSE in three other
domains, we developed applications specific plugins per
each application using GridBean that is presented above
Section 3. Within these plugins, components are organized

Figure 4. An Integrated Scientific Experiment Tool

Figure 5. A Mesh Generator and a Visualization Tool

dynamically by providing functions to control events of the
experiment. For a specific example of user interfaces, to ex-
ecute the Multiphase 3D numerical study of the multiphase
flows is shown in Figure 4. Figure 5 depicts a mesh generator
for pre-processing and a visualization tool for post-process
in HCL 2D Euler numerical study. Moreover, with the aim

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 42 / 63

of an integrated workbench framework, applications in three
other domains can be accessed through a uniform manner
within a PSE.

Basically user interfaces of the framework consist of one
or more plugin modules and one data model depends on
each of numerical studies method. But, there are a lot of
methods and parameters which need to experiment.

For users convenience, we developed interface to be
organized dynamically by controlling event about the experi-
ment method selection. To dynamically configure parameters
when experimental methods are selected in each application,
we classified parameters as commonly applied ones and
additional ones instead of defining a set of parameters in
each experimental method. Defining parameter sets like
this, makes management of parameters more efficient and
accurate.

In case of middleware, we used most of UNICORE, and
we modified IDB (Incarnation DB) which saved applications
information such as name, version, location of an executable
file, and parameters required for the job execution. Also,
in order to provide resources among authorized users only,
we generated authorization keys for each application and its
information is managed through XUUDB.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a design of the integrated
scientific experiment framework supporting numerical anal-
ysis in fluid dynamics within e-Science environments. The
framework adopting three numerical analysis applications
is implemented as a proof-of-concept within the Eclipse-
based UNICORE Rich Client. The implementation contains
a mechanism to define sequences of simulations and the
framework can conveniently add other numerical analysis
models. A common execution environment to support var-
ious applications that are in diverse domains is important.
Hence, this framework is expected to improve their exper-
iments efficiency, convenience and reusability of technolo-
gies.

In the future, we will expand our framework to support
more complex experiments and more diverse numerical
study methods. Also we plan to develop a resource selection
algorithm reflecting requirements of application and proper-
ties of resources.

ACKNOWLEDGMENT

This work was supported by the National Institute for
Mathematical Sciences (NIMS) grant funded by the Korean
government (No. A21101).

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science, and
Technology (#2012-0002572).

REFERENCES

[1] Jung-hyun Cho, Byung Sang Kim, Eunhye Song, Yoonhee
Kim, Chongam Kim, and Min Joong JEONG, “e-AIRS : An
Integrated Aerospace Portal for Collaborative Experiments
and Dynamic Parametric Studies”, Proc. of the KIISE Korea
Computer Congress 2006, Vol. 33, No. 2 (A), pp. 552-556,
2006 (in Korean)

[2] Jung-hyun Cho, Cinyoung Hur, Yoonhee Kim, Chongam Kim,
and Kum Won Cho, “CFD Research System for e-Science
based Cyber Education”, Korean Network Operations and
Management (KNOM) Review, Vol. 12, No. 1, pp. 42 50,
June, 2009 (in Korean)

[3] Chemomentum Project,
http://www.chemomentum.org/ [retrieved: 5, 2012]

[4] Bioclipse Project,
http://www.biomedcentral.com/ [retrieved: 5, 2012]

[5] FLOWGRID Project,
http://www.unizar.es/flowgrid/ [retrieved: 5, 2012]

[6] UNICORE, http://www.unicore.eu/ [retrieved: 5, 2012]

[7] Sandra Bergmann. GridBean Developers Guide. UNICORE,
2009.

[8] Hyejeong Kang, Kyoung-A Yoon, Seoyoung Kim, Yoonhee
Kim, and Chongam Kim, “An e-Science problem solving en-
vironment for scientific numerical study”, International Con-
ference on Advanced Communication Technology, ICACT,
Gangwon-Do, Korea (South), pp. 266-269., Feb, 2011

[9] FlowServe middleware,
http://www.unizar.es/flowgrid/middleware.htm [retrieved: 5,
2012]

[10] g-Eclipse, http://www.geclipse.org/ [retrieved: 5, 2012]

[11] Bastian Demuth, Bernd Schuller, Sonja Holl, Jason Daivandy,
Andre Giesler, and Valentina Huber, “The UNICORE Rich
Client: Facilitating the Automated Execution of Scientific
Workflows”, Proceedings of 6th IEEE International Con-
ference on e-Science (e-Science 2010), pp. 238-245, IEEE
Computer Society Press, 2010.

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 43 / 63

Minimally Invasive Interpreter Construction
– How to reuse a compiler to build an interpreter –

Christoph Schinko
Institut für ComputerGraphik

und WissensVisualisierung (CGV)
Technische Universität Graz, Austria

c.schinko@cgv.tugraz.at

Torsten Ullrich1, Dieter W. Fellner1,2
1 Fraunhofer Austria, Graz, Austria

2 Fraunhofer IGD & TU Darmstadt, Germany

torsten.ullrich@fraunhofer.at
d.fellner@igd.fraunhofer.de

Abstract—Scripting languages are easy to use and very
popular in various contexts. Their simplicity reduces a user’s
threshold of inhibitions to start programming – especially, if the
user is not a computer science expert. As a consequence, our
generative modeling framework Euclides for non-expert users
is based on a JavaScript dialect. It consists of a JavaScript
compiler including a front-end (lexer, parser, etc.) and back-
ends for several platforms. In order to reduce our users’
development times and for fast feedback, we integrated an
interactive interpreter based on the already existing compiler.
Instead of writing large proportions of new code, whose
behavior has to be consistent with the already existing compiler,
we used a minimally invasive solution, which allows us to reuse
most parts of the compiler’s front- and back-end.

Keywords-JavaScript; generative modeling; procedural model-
ing; compiler; interpreter

I. INTRODUCTION

As John Ousterhout has written in Scripting: Higher Level
Programming for the 21st Century [1], ”Scripting languages
such as Perl and Tcl represent a very different style of
programming than system programming languages such as
C or Java. Scripting languages are designed for ’gluing’
applications; they use typeless approaches to achieve a
higher level of programming and more rapid application
development than system programming languages. Increases
in computer speed and changes in the application mix are
making scripting languages more and more important for
applications of the future.”

Therefore, scripting languages are not only a common
way to automate repeated tasks, but also a relevant tool
in algorithm design – gluing existing algorithms and data
structures to new solutions.

As pointed out by Ousterhout [1] conventional system
programming languages are too ’rigid’ for many tasks in
contrast to scripting languages, whose flexibility has to be
paid by performance.

In order to trade off both, we combined ahead-of-time
compilation techniques with just-in-time compilation meth-
ods to an interactive interpreter. The result is in interactive
environment, in which algorithms can be designed, tested,
etc., and whose consistent data structures can be exported

and compiled to an application at any time. In this way, we
combine the advantages of both worlds.

The field of application as well as the context of this work
is presented in Section “II. Related Work”. A description of
the used compiler has already been published [2], [3] and is
summarized in Section “III. Compiler Construction”. Based
on this compiler, Section “IV. The Interpreter as a Retrofitted
Compiler” illustrates the needed extensions to implement an
interpreter.

II. RELATED WORK

Originally, scripting languages like JavaScript were de-
signed for a special purpose, e.g., to be used for client-side
scripting in a web browser. Nowadays, the applications of
scripting languages are manifold. JavaScript, for example,
is used to animate 2D and 3D graphics in VRML [4] and
X3D [5] files. It checks user forms in PDF files [6], controls
game engines [7], configures applications, and performs
many more tasks.

A. Field of Application

Scripting geometric objects – also known as generative
and procedural modeling – has gained attention within the
last few years [8]. The main advantage of generative mod-
eling techniques is the included expert knowledge within an
object description. For example, classification schemes used
in architecture, archaeology, civil engineering, etc. can be
mapped to procedures. In combination with documentation
and annotation techniques established in software engineer-
ing, 3D objects are easily identifiable by digital library
services (indexing, markup and retrieval) on a textual basis.

From a historical point of view, the first procedural
modeling systems were Lindenmayer systems [9], or L-
systems for short. These early systems, based on grammars,
provided the means for modeling plants. The idea behind
it is to start with simple strings and create more complex
strings by using a set of string rewriting rules.

Later on, L-systems are used in combination with shape
grammars to model cities [10]. Parish and Müller presented
a system that generates a street map including geometry
for buildings given a number of image maps as input. The

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 44 / 63

resulting framework is known as CityEngine – a modeling
environment for CGA Shape.

Havemann takes a different approach to generative mod-
eling. He proposes a stack based language called Generative
Modeling Language (GML) [11]. The postfix notation of the
language is very similar to that of Adobe Postscript.

B. Programming Languages and Paradigms
Generative modeling inherits methodologies of 3D model-

ing and programming, which leads to drawbacks in usability
and productivity. The need to learn and use a programming
language is a significant inhibition threshold especially for
archaeologists, cultural heritage experts, etc., who are sel-
dom experts in computer science and programming. The
choice of the scripting language has a huge influence on
how easy it is to get along with procedural modeling.

Processing is a good example of how an interactive, easy
to use, yet powerful, development environment can open up
new user groups. It has been initially created to serve as
a software sketchbook and to teach students fundamentals
of computer programming. It quickly developed into a tool
that is used for creating visual arts [12]. Processing is
basically a Java-like interpreter offering new graphics and
utility functions together with some usability simplifications.

Offering an easy access to programming languages that
are difficult to approach directly reduces the inhibition
threshold dramatically. Especially in non-computer science
contexts, easy-to-use scripting languages are more prefer-
able than complex programming paradigms that need pro-
found knowledge of computer science. This is why we use
JavaScript – a beginner friendly, structured language.

The success of Processing is based on two factors: the
simplicity of the programming language on the one hand
and the interactive experience on the other hand. The in-
stant feedback of scripting environments allow the user to
program via “trial and error”. In order to offer our users
this kind of experience, we enhanced our already existing
compiler to an interactive environment for rapid application
development.

C. Euclides – a JavaScript platform for Cultural Heritage
In the context of Cultural Heritage, the Generative-

Modeling-Language (GML) is an established procedural
modeling environment designed for expert users [13]. The
aim of the Euclides modeling framework [14] is to offer
an easy-to-use approach to facilitate these platforms. The
translation mechanism for GML within Euclides has already
been described in “Euclides – A JavaScript to PostScript
Translator” and presented at the International Conference on
Computational Logics, Algebras, Programming, Tools, and
Benchmarking [2].

III. COMPILER CONSTRUCTION

This section focuses on the existing compilation pipeline
of the Euclides framework. The framework consists of

Generative knowledge
and procedural 3D
models in JavaScript
source files

standard XML for sustainable
documentation and long-term
archival

commonly used 3D formats
for visualization

internet file formats (HTML5)
for publishing and distribution

differentiated code
for numerical optimization

Euclides
framework:

- lexical
scanner

- grammar
parser

- translators
to various
platforms

Figure 1. The meta-modeler approach of the Euclides framework has many
advantages. In contrast to script-based interpreters, Euclides parses and
analyzes the input source files, builds up an abstract syntax tree (AST), and
translates it to the desired platform. Its platform and target independence as
well as various exporters for different purposes are the main characteristics
of Euclides. This innovative meta-modeler concept allows a user to export
generative models to other platforms without losing its main feature – the
procedural paradigm.

several stages to translate JavaScript code to a number of
target languages. Most parts are implemented in Java apart
from the parser which is generated using a third-party tool
(see Figure 1).

An editor component feeds the first stage of the frame-
work: lexer and parser. For semantic recognition of the input
source code, JavaScript syntax needs to be analyzed. All
rules, which define valid JavaScript code, form its grammar.
For each language construct available in JavaScript, this set
of rules is validating syntactic correctness. At the same time
actions within these rules create the intermediate structure
that represents the input source code – a so-called abstract
syntax tree (AST).

The resulting AST is the main data structure for the next
stage: semantic analysis. Once all statements and expres-
sions of the input source code are collected in the AST, a
tree walker analyzes their semantic relationships, i.e., errors
and warnings are generated, for instance, when they are used
but not defined, or defined but not used.

Having performed all compile-time checks, a translator
uses the AST to generate platform-specific files; e.g., java
source code for the JVM platform. In other words, this task
involves complete and accurate mapping of JavaScript code
to constructs of the target language. A translation in the
target language needs to be available for each statement or
expression found in the AST. Usually, a direct mapping to
data types or operators in the target language is not possible.

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 45 / 63

Therefore, auxiliary methods and data structures within the
target language are needed to mimic JavaScript behavior.

A. Parser

The parser for JavaScript is written using ANother Tool
for Language Recognition (ANTLR) [15]. ANTLR pro-
vides a framework for constructing recognizers, interpreters,
compilers, and translators from grammatical descriptions. It
relies on a strategy called LL(*) parsing, which extends the
LL(k) parsing strategy with lookahead of arbitrary length.
Using this framework, lexer and parser are generated to
syntactically check the provided input for JavaScript com-
pliance.

public interface ASTFactory {

public static interface Tree {
// tree traversal methods; e.g.
public Tree getUp();
public Tree[] getDown();

}

public static interface
Expression extends Tree {
// validation
public void validate(

ErrorHandler errorHandler);
}

public static interface
Statement extends Tree {
// validation
public void validate(

ErrorHandler errorHandler);
// original source code ref.
public int getLine();
public String getFileName();

}

public static interface
TryCatchBlock {
// This pure markup interface
// is used to ensure type
// compatibility.

}

// the factory methods; e.g.
public Statement statementTry(

String filename, int line,
Scope scope, Statement statement,
TryCatchBlock catchBlock,
TryFinallyBlock finallyBlock);

// the factory utility methods
// to create optional terms; e.g.
public TryCatchBlock utilTryCatchBlock(

Expression identifier,
Statement statement);

}

Source code 1. This source code excerpt shows the main components
of the abstract AST factory used by the Euclides parser to build up an
abstract syntax tree.

A first step is to convert a sequence of characters into
a sequence of tokens, which is done by special grammar
rules forming the lexical analysis. For instance, only a
limited number of characters is allowed for an identifier: all
characters A-Z, a-z, digits and the underscore are allowed

with the condition that an identifier must not begin with a
digit or an underscore. These lexer rules are embedded in
another set of rules – the parser rules. They are analyzing the
resulting sequence of tokens to determine their grammatical
structure. The complete grammar consists of a hierarchical
structure of rules for analyzing all possible statements and
expressions that can be formed in JavaScript, thus forming
the syntactic analysis. Rules can be enriched with so-called
actions. These actions create the intermediate AST structure.

Within these actions, an abstract factory, like described
in [16], called ASTFactory is used to create necessary
instances of statements and expressions for the AST. An
excerpt of the abstract factory including selected inner
interfaces is listed in Source Code 1.

The statements and expressions mentioned in the
ASTFactory are defined as static, inner interfaces
Statement and Expression within the definition of the
factory. Both interfaces extend a common interface called
Tree. The use of a factory has the advantage to be able to
replace their implementations without touching the grammar.
Additionally, markup interfaces are used to ensure type
compatibility, because during AST construction, sub-parts of
the AST are created bottom-up via utility methods. These
parts are collected and passed to the corresponding parent
rule. For example, the AST of the listing in Source Code 2
is created via the following factory calls.

try {

doSomething();

} catch (exception) {

repairSomething();

print("caught exception " + exception);

}

Source code 2. The catch-block of a JavaScript try-statement automatically
declares and defines a variable. In this example it is called exception.

The optional catch-block is parsed by a sub-rule with ac-
tions, which call the factory method utilTryCatchBlock.
This method returns an instance of the markup inter-
face TryCatchBlock, which can only be passed to a
statementTry method. This method itself is called in the
corresponding rule to match a try-statement. In this way,
complex grammar rules are split up into several simpler rules
while using the abstract factory pattern and maintaining type
safety.

The signature of the statementTry call reveals some
properties that are passed to the factory by all statements:
the source code’s file name and line together with the current
scope. In case of statementTry, the statement to try, the
optional catch-block as well as the optional finally-block are
also passed to the factory. (Please note, at least one optional
block must be non-null.)

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 46 / 63

B. Abstract Syntax Tree

In JavaScript, the top-level rule of an AST is always a
simple list of statements – no enclosing class structures,
no package declaration, no inclusion instructions, etc. Each
statement contains all included substatements and expres-
sions as well as associated comments. Furthermore, our AST
stores additional formatting information (number of new
lines, white spaces, tabs, etc.), which offer the possibility
to regenerate the original input source code just using the
AST.

During the validation step, this tree structure is extended
by reference and occurrence links; e.g., each method call ref-
erences the method’s definition and each variable definition
links to all its occurrences.

@Override

public void forRangeNoArray(String filename, int line) {

warning(filename, line,

"The range expression of this for-statement is not"

+ " an array. It will be casted automatically, "

+ "which might lead to undesired results.");

}

Source code 3. The Euclides compiler includes a simple and limited
type inference implementation. Its main purpose is to recognize common
pitfalls of JavaScript source code and to present reasonable warnings.

Having assured that all compile-time checks are carried
out, symbols are stored in a so called namespace. During val-
idation, this data structure is used to detect name collisions
(e.g. redefinition of variables) and undefined references (e.g.
usage of undeclared variables). In addition, a simple type
inference system tries to determine the variables’ types. As
this system is incomplete, it cannot be used for compile
time optimizations (e.g. mapping to native data types),
but it can be used for warnings and recommendations. To
provide meaningful error messages is an important aspect
with regard to language processing. In Euclides, an error
handler is responsible for collecting and preparing error
and warning messages. This functionality is not only used
during AST construction to deal with syntactic issues, but
also for semantic validation as well. A total of 52 different
errors and warnings can be issued. For example, if the type
inference system checks the range expression of a for-in
loop, it expects an array. If it finds a different type, the
warning routine listed in Source Code 3 is issued.

C. Translator to Java – the Compiler Backend

The translation backend for the target language Java is
not as straightforward as the similarity in names between
Java and JavaScript would suggest. Although they have some
similarities, the concepts of both languages show major
differences. Java is a statically typed, class-based, general-
purpose programming language.

Because of the conceptual differences in the typing sys-
tem, it is not only unpractical, but impossible to project
all JavaScript data types onto built-in Java data types. In
JavaScript, there is no difference between integer numbers
and floating point numbers. Just one data type called Number
holds any type of number. Other differences can be found
when comparing the remaining data types. Also dynamic
typing is not a language feature of Java – as a consequence,
each JavaScript data type is re-built in Java to match its
functionality.

A total of seven data types are implemented in classes
having a common interface called Var. These data types are:
VarUndefined, VarBoolean, VarNumber, VarString,
VarArray, VarObject, and VarFunction. A number of
access functions and conversion methods are available for
all data types. All internal functions provide an additional
parameter that always refers to a table entry, which ref-
erences the corresponding JavaScript file and line num-
ber. In this way, warnings can be generated at runtime,
if implicit conversion takes place. For example, the im-
plementation of an array access includes the statement
Log.variableTypeChangeImplicit(ii);. In the mes-
sages table (generated by the compiler) there is an entry #ii
that provides reasonable information needed for a runtime
warning.

The access functions reveal the implementation details
and the internal Java data types used:

• Boolean: The mapped Java data type is boolean.
• Number: A JavaScript number is mapped to double.
• String: String is mapped to String.
• Array: A JavaScript array is realized using the collec-

tion java.util.ArrayList<Var>.
• Object: And an object in JavaScript is mapped to
java.util.HashMap<String, Var>.

• Function: A JavaScript functor is realized in Java as a
function pointer using abstract objects.

The instantiation of variables within the generated
Java code is performed using factory methods like
Factory.initString(String text). Furthermore, all
JavaScript operators need to be recreated in Java as well.

A total of 49 operators grouped in unary, binary and
tertiary operators are available. Each operator is applied via
a method call and can therefore be exchanged easily. These
concepts are demonstrated in Source Code 4, which shows
the implementation of the binary subtraction operator found
in JavaScript. In case at least one of the operands is not of
type number, a warning is generated. The operator returns
a new number initialized with the result of the subtraction
operation of the internal Java data types used.

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 47 / 63

public static Var SUB(int ii, Var v1, Var v2) {

if (!v1.getType().equals(Type.NUMBER)

|| !v2.getType().equals(Type.NUMBER))

Log.deviantOperatorCallNoNumber(ii) ;

return Factory.initNumber(

v1.toNumber() - v2.toNumber());

}

Source code 4. During the translation of JavaScript to Java, all JS-
operators are mapped to corresponding Java-based static method calls,
which implement their behaviour.

The factory pattern has been chosen for the generated Java
code in order to easily replace the mapping of JS variables
and operators to different implementations. In this way, we
realized a compiler with included, automatic derivation; i.e.
within the generated code we can evaluate both: a function
f(x1, . . . , xk) as well as its partial derivatives df

dxi
. This

technique offers the possibility to use standard optimization
algorithms to solve numerical optimization problems [17].

All variables defined in the JavaScript source code are
collected in the namespace. The Java translator backend,
however, distinguishes between variables defined in global
scope and local variables. A single class called Variable is
created holding global variables as static objects. All other
variables, e.g. those defined in a function, are exported in-
place. Functions itself are mapped to Java functions and are
collected in a class called Function.

All expressions are exported in their respective embedding
statement. A distinction between global and local scope
is made in case of the statements. All locally defined
statements, e.g., statements defined within a function, are
exported in-place. Global statements are collected in a class
called Main and are executed from the Java main method.

IV. THE INTERPRETER AS A RETROFITTED COMPILER

As stated before, the simplicity of a programming lan-
guage is only one factor of a successful development envi-
ronment. Reasonable feedback and an interactive experience
are also important. In order to offer our users this kind of
experience, we enhanced our already existing compiler to
an interpreter. A similar approach to combine interpretation
and compilation has been presented by Anton Ertl and David
Gregg [18], but in contrast to our system, they start with an
interpreter and end up with a compiler.

A. Compilers and Interpreters

Unfortunately, there is no commonly accepted definition
of the terms “compiler” and “interpreter”. The problem is
the smooth transition between compilation and interpretation
techniques, which blur a clear distinction. On the one hand
many interpreters have integrated just-in-time compilers,
on the other hand, some compilers rely on an interpreter

integrated into each compiled unit. In combination with
virtual machines [19], which have functionality not provided
by any real machine, and CPUs, which can execute source
code directly [20], it is even more complicated to find a clear
distinction.

In our context, we differentiate between compiler and
interpreter by the number of times our ASTFactory is
called per JS-application execution. If the factory is called
every time, the system is called interpreter. Otherwise, it’s
a compiler.

B. Interpreter Design

In order to design, realize, and implement an interpreter
based on an abstract syntax tree [21], current software en-
gineering approaches recommend one of two main designs:
the interpreter pattern and the visitor pattern [22].

According to the interpreter pattern, each node of the
AST should have a specialized version of an evaluation,
respectively, interpretation method; e.g., eval(...). The
visitor pattern in contrast only needs some callback func-
tionality. In this way it can separate algorithms and actions
from the data structure it operates on. As the visitor pattern
(in combination with an iterator pattern for tree traversal) is
already used by the Euclides compiler backends, it is also
used by the interpreter.

The main idea of the interpreter implementation is based
on a property found in many scripting languages. In contrast
to, for example, Java, in which each statement is enclosed
(at minimum) by a class definition, enclosed by a file
definition, the scripting language JavaScript does not have
this “overhead”. As a consequence, the root node of the
AST is simply a list of statements: statementA, statementB,
statementC and for each statement, the list of previous
statements has to be a valid program. This linguistic property
allows to compile each top-level JS statement as a unit
of its own – a dynamic library. While this is not sensible
for regular compilations, it offers the possibility to compile
instructions statement by statement. Finally, if each unit is
executed directly after being compiled, the resulting backend
is an interpreter. Even more, additionally included callback
routines can be used for debugging purposes [23].

C. Implementation Details

Following the observation that even a single statement
can be regarded as a unit of its own, the original JavaScript
compiler is extended to reflect this property. Statements in
the AST are no longer stored in a one-dimensional array,
but a two-dimensional array is used instead. This way it is
possible to group statements, i.e., all statements passed to
the interpreter in a single evaluation call form one group and
are stored in a one-dimensional array. All groups are stored
in an array as well, thus as a consequence, the statements
are stored in a two-dimensional array. These groups can
be accessed by a new set of access functions while at the

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 48 / 63

same time retain compatibility to the compiler, e.g., the
command getAllStatements() now simply copies the
two-dimensional structure in a one-dimensional one.

In addition to the changes in the AST, the namespace is
also using a two-dimensional array for storing all symbols
the same way the AST does. It uses the same mechanism
to create units of symbols while being compatible to the
old compiler version. These changes are necessary to allow
tracking of interpretation history as well as to speed up all
operations relying on the AST such as validation and code
generation.

A small change in the runtime, not related to the inter-
preter redesign, was carried out in the process of implement-
ing the changes for AST and namespace. Function pointers
are now being ommited in the favor of using anonymous
inner classes.

V. CONCLUSION

The simplicity of scripting languages reduces a user’s
inhibition threshold to start programming. Our generative
modeling framework Euclides for non-expert users is based
on a JavaScript dialect. It consists of a JavaScript compiler
including a front-end (lexer, parser, etc.) and back-ends for
several platforms.

The main contribution is an interactive interpreter based
on the already existing compiler. Instead of creating large
proportions of new code, whose behavior has to be consistent
with the already existing compiler, we envisaged a minimally
invasive solution. It allows us to reuse most parts of the
compiler’s front- and back-end.

ACKNOWLEDGMENT

We would like to thank Richard Bubel for his valu-
able support on ANTLR and the JS grammar. In addition,
the authors gratefully acknowledge the generous support
from the European Commission for the integrated project
3D-COFORM [24] under grant number FP7 ICT 231809
and from the Austrian Research Promotion Agency (FFG)
for the research project METADESIGNER, grant number
820925/18236.

REFERENCES

[1] J. K. Ousterhout, “Scripting: Higher Level Programming for
the 21st Century,” IEEE Computer Magazine, vol. 31, no. 3,
pp. 23–30, 1998.

[2] M. Strobl, C. Schinko, T. Ullrich, and D. W. Fellner, “Eu-
clides – A JavaScript to PostScript Translator,” Proccedings of
the International Conference on Computational Logics, Alge-
bras, Programming, Tools, and Benchmarking (Computation
Tools), vol. 1, pp. 14–21, 2010.

[3] C. Schinko, M. Strobl, T. Ullrich, and D. W. Fellner, “Model-
ing Procedural Knowledge – a generative modeler for cultural
heritage,” Selected Readings in Computer Graphics 2010,
vol. 21, pp. 107–115, 2011.

[4] D. Brutzman, “The virtual reality modeling language and
Java,” Communications of the ACM, vol. 41, no. 6, pp. 57 –
64, 1998.

[5] J. Behr, P. Dähne, Y. Jung, and S. Webel, “Beyond the Web
Browser – X3D and Immersive VR,” IEEE Virtual Reality
Tutorial and Workshop Proceedings, vol. 28, pp. 5–9, 2007.

[6] F. Breuel, R. Bernd, T. Ullrich, E. Eggeling, and D. W.
Fellner, “Mate in 3D – Publishing Interactive Content in
PDF3D,” Publishing in the Networked World: Transforming
the Nature of Communication, Proceedings of the Interna-
tional Conference on Electronic Publishing, vol. 15, pp. 110–
119, 2011.

[7] M. Di Benedetto, F. Ponchio, F. Ganovelli, and R. Scopigno,
“SpiderGL: a JavaScript 3D graphics library for next-
generation WWW,” Proceedings of the 15th International
Conference on Web 3D Technology, vol. 15, pp. 165–174,
2010.

[8] T. Ullrich, C. Schinko, and D. W. Fellner, “Procedural Mod-
eling in Theory and Practice,” Poster Proceedings of the
18th WSCG International Conference on Computer Graphics,
Visualization and Computer Vision, vol. 18, pp. 5–8, 2010.

[9] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic
Beauty of Plants, P. Prusinkiewicz and A. Lindenmayer, Eds.
Springer-Verlag, 1990.

[10] Y. Parish and P. Mueller, “Procedural Modeling of Cities,”
Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, vol. 28, pp. 301–308,
2001.

[11] S. Havemann, “Generative Mesh Modeling,” PhD-Thesis,
Technische Universität Braunschweig, Germany, vol. 1, pp.
1–303, 2005.

[12] C. Reas, B. Fry, and J. Maeda, Processing: A Programming
Handbook for Visual Designers and Artists, C. Reas, B. Fry,
and J. Maeda, Eds. The MIT Press, 2007.

[13] C. Schinko, M. Strobl, T. Ullrich, and D. W. Fellner, “Model-
ing Procedural Knowledge – a generative modeler for cultural
heritage,” Proceedings of EUROMED 2010 - Lecture Notes
on Computer Science, vol. 6436, pp. 153–165, 2010.

[14] ——, “Scripting Technology for Generative Modeling,” Inter-
national Journal On Advances in Software, vol. 4, pp. 308–
326, 2011.

[15] T. Parr, The Definite ANTLR Reference – Building Domain-
Specific Languages, T. Parr, Ed. The Pragmatic Bookshelf,
Raleigh, 2007.

[16] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First
Design Patterns, E. Freeman, E. Freeman, B. Bates, and
K. Sierra, Eds. O’Reilly Media, Inc., 2004.

[17] T. Ullrich and D. W. Fellner, “Generative Object Definition
and Semantic Recognition,” Proceedings of the Eurographics
Workshop on 3D Object Retrieval, vol. 4, pp. 1–8, 2011.

[18] A. M. Ertl and D. Gregg, “Retargeting JIT compilers by
using C-compiler generated executable code,” Proceedings
of the International Conference on Parallel Architecture and
Compilation Techniques, vol. 13, pp. 41–50, 2004.

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 49 / 63

[19] T. Lindholm and F. Yellin, The Java(TM) Virtual Machine
Specification, T. Lindholm and F. Yellin, Eds. Prentice Hall,
1999.

[20] T. R. Bashkow, A. Sasson, and A. Kronfeld, “System Design
of a FORTRAN Machine,” IEEE Transactions on Electronic
Computers, vol. 16, pp. 485–499, 1967.

[21] T. Parr, Language Implementation Patterns: Create Your
Own Domain-Specific and General Programming Languages,
T. Parr, Ed. Pragmatic Bookshelf, 2010.

[22] M. Hills, P. Klint, T. van der Strom, and J. Vinju, “A Case
of Visitor versus Interpreter Pattern,” Proceedings of the
International Conference on Objects, Models, Components
and Patterns (TOOLS’11), vol. 49, pp. 1–16, 2011.

[23] J. Vraný and A. Bergel, “The Debuggable Interpreter Design
Pattern,” Proceedings of the International Conference on
Software and Data Technologies, vol. 2, pp. 22–29, 2007.

[24] D. Arnold, “3D-COFORM: Tools and Expertise for 3D Col-
lection Formation,” Proceedings of Electronic Information,
the Visual Arts and Beyond, vol. 21, pp. 94 – 99, 2009.

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 50 / 63

Implicit Nested Repetition in Dataflow for Procedural Modeling

Wolfgang Thaller, Ulrich Krispel, Sven Havemann
Institute of Computer Graphics and Knowledge Visualization

Graz University of Technology
Graz, Austria

Email: {w.thaller, u.krispel, s.havemann} @cgv.tugraz.at

Dieter W. Fellner
Fraunhofer IGD and TU Darmstadt

Darmstadt, Germany
Email: d.fellner@igd.fraunhofer.de

Abstract—Creating 3D content requires a lot of expert
knowledge and is often a very time consuming task. Procedural
modeling can simplify this process for several application
domains. However, creating procedural descriptions is still a
complicated task. Graph based visual programming languages
can ease the creation workflow, however direct manipulation
of procedural 3D content rather than of a visual program is
desirable as it resembles established techniques in 3D modeling.
In this paper, we present a dataflow language that features
a novel approach to handling loops in the context of direct
interactive manipulation of procedural 3D models and show
compilation techniques to translate it to traditional languages
used in procedural modeling.

Keywords-procedural modeling, dataflow graphs, loops, term
graphs

I. INTRODUCTION

Conventional 3D models consist of geometric information
only, whereas a procedural model is represented by the oper-
ations used to create the geometry [1]. Complex man-made
shapes exhibit great regularities for a number of reasons,
from functionality over manufacturability to aesthetics and
style. A procedural representation is therefore commonly
perceived as most appropriate, but not so many 3D artists
accept a code editor as user interface for 3D modeling, and
only few of them are good programmers. Recently, dataflow
graph based visual programming languages for 3D modeling
have emerged [2], [3]. These languages facilitate a graphical
editing paradigm, thus allowing to create programs without
writing code. However, such languages are not always easier
to read than a textual representation [4]. Therefore, the goal
is a modeler that allows direct manipulation of procedural
content on the concrete 3D model, without any knowledge
of the underlying representation (code), while retaining the
expressiveness of dataflow graph based methods.

In this paper, we present a term graph based language
for procedural modeling with features that facilitate direct
manipulation. First, we give an overview of related work
in Section 2. Then we give a summary of the requirements
for the language in Section 3. Furthermore, in Section 4 the
language is formally defined, and a compilation technique to
embed such models in existing procedural modeling systems
and examine error handling in the context of partial model
evaluation is described. Section 5 contains examples and

some benchmarks showing optimization results. The last
section concludes with some points of future research.

II. RELATED WORK

Procedural modeling is an umbrella term for procedural
descriptions in computer graphics. As a procedural descrip-
tion is basically just a computer program, there are many
possibilities to express procedural content.

One category are general purpose programming languages
with geometric libraries, for example C++ with CGAL [5] or
the Generative Modeling Language (GML) [1] which utilizes
a language similar to Adobe’s PostScript [6]. Processing [7]
is an open source programming language based on Java with
a focus on computer programming within a visual context.

As many professional 3D modeling packages contain
embedded scripting languages, these can be used to express
procedural content. Some representatives are for example
MEL script for Autodesk Maya [8] or RhinoScript for
Rhinoceros [9].

Some domain specific languages have successfully been
applied to express procedural content. For example, emerg-
ing from the work of Stiny et al. [10] who applied the
concept of formal grammars (string replacements) to the
domain of 2D shapes, Wonka et al. [11] introduced split
grammars for automatic generation of architecture. These
concepts have further been extended by Mueller et al. [12]
into CGA Shape, which is available as the commercial
software package CityEngine [13] that allows procedural
generation of buildings up to whole cities.

Visual Programming Languages (VPLs) allow to create
and edit programs using a visual editing metaphor. Many
VPLs are based on a dataflow paradigm [14]; the program
is represented by a graph consisting of nodes (which repre-
sent operations) and wires along which streams of tokens
are passed. Some examples in the context of procedural
modeling are the procedural modeler Houdini [3] and the
Grasshopper plugin for Rhinoceros [9], which both feature
visual editors for dataflow graphs. Furthermore, the work of
Patow et al. [15] has shown that shape grammars can also
be represented as dataflow graphs.

Term Graphs [16] arose as a development in the field of
term rewriting. While term graphs are intuitively similar to

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 51 / 63

dataflow graphs, there is no concept of a stream of tokens.
Term graphs are a generalization of terms and expressions
which makes explicit sharing of common subexpressions
possible. Formally, we base our work on the definitions given
in [17] rather than on any dataflow formalism.

III. LANGUAGE REQUIREMENTS

Dataflow languages have a number of properties that make
them very desirable for interactive procedural modeling.
They allow efficient partial reevaluation in order to inter-
actively respond to “localized” changes, they are expressive
enough to cover traditional domains of procedural modeling
such as compass-and-ruler constructions and split-grammars,
and they can be extended in various ways to support repeated
structures/repeated operations.

We are currently researching direct-manipulation based
user interfaces for dataflow-based procedural modeling. This
means that the dataflow graph itself is not visible to the
user; instead, the user interacts with a concrete instance of
the procedural model, i.e., a 3D model generated from a
concrete set of parameter values. The basic usage paradigm
is that the user selects objects in this 3D view and applies
operations to them; these operations are added to the graph.

The goal of keeping the graph hidden during normal user
interaction leads to additional requirements for the language
that differ from traditional approaches.

A. Repetition

Loops should not be represented explicitly, i.e., loops
should not be represented by an object that needs to be
visualized so the user can interact with it directly. Operations
should be implicitly repeated when they are applied to
collections of objects.

It must be possible to deal with nested repetitions as
part of this implicit repetition behaviour. Existing dataflow-
based procedural modeling systems use a “stream-of-tokens”
concept, i.e., a wire in the dataflow graph transports a linear
stream of tokens that all get treated the same by subsequent
operations. Nested structures are not preserved in this model.

When directly interacting with a 3D model, we expect the
user to frequently zoom to details of the model. For example,
consider a model of a building facade that consists of several
stories, each of which contains several identical windows,
which in turn contain several separate window panes. A user
will zoom in to see a single window on their screen and
then proceed to edit that archetypal window, for example by
applying some operation to two neighbouring window panes
of that same window. All operations in the modeling user
interface should always behave consistently, independent of
whether the user is editing a model consisting of just a
single window, or one of many windows. In both cases,
the system needs to remember that a collection of window
panes belongs to a single window. Thus, flat token streams
are not suited to direct-manipulation procedural modeling.

B. Failures

There are many modeling operations that do not always
succeed, e.g., intersection operations between geometric
objects. When applying volumetric split operations, a vol-
ume might become empty, rendering (almost) all further
operations on that volume meaningless.

Often, these failures have only local effects on the model,
so aborting the evaluation of the entire model is excessive;
rather, we propagate errors only along the dependencies in
the code graph — if its sources could not be calculated,
an edge is not executed. In many cases, this is exactly
the desired behaviour and allows to easily express simple
conditional behaviours such as “if there is an intersection,
construct this object at the intersection point” or “if there is
enough space available, construct an object”.

C. Side Effects

Neither dataflow graphs nor term graphs are particularily
well-suited for dealing with side-effecting operations; also,
to simplify analysing the code for purposes of the GUI, we
have a strong motivation to forbid side effects.

However, it is a fundamental user expectation to be able to
have operations that create objects, and to be able to replace
or refine objects. Both Grasshopper and Houdini use side-
effect free operations and rely on the user to pick one or
more dataflow graph nodes whose results are to be used for
the final model; this solution is not applicable to a direct
manipulation procedural modeler because it would require
interacting with the graph rather than with a 3D model.

IV. THE LANGUAGE

Below, we will first define the term graphs that form the
basis of our language; we will then proceed to discuss our
treatment of side effects, repetition and failing operations.

A. Code Graphs

The underlying data structure is a hypergraph consisting
of nodes, which correspond to (intermediate) values and
graphical objects, and hyperedges, which represent the op-
erations applied to those values as shown in Figure 1.

Note that we are following term graph terminology here,
which differs from the terminology traditionally used for
dataflow graphs. In a dataflow graph, nodes are labelled
with operations, and they are connected with edges or
wires, which transport values or tokens. In a term graph,
hyperedges (i.e., edges that may connect more or fewer than
two nodes) are labelled with operations or literal constants,
and values are stored in nodes, which are labelled with a
type.

We reuse the following definition from [17]:
Definition 1: A code graph over an edge label set ELab

and a set of types NType is defined as a tuple G =
(N , E , In,Out, src, trg, nType, eLab) that consists of:
• a set N of nodes and a set E of hyperedges (or edges),

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 52 / 63

Figure 1. A code graph (as presented by [17]) is a hypergraph that consists
of nodes that correspond to results and hyperedges that represent operations
(left). In this illustration the nodes are represented as ellipses. Hyperedges
are visualized as boxes; they can have any number of source and target
nodes. Hyperedges with no source nodes correspond to constants. This
example shows a code graph that carries out a simple construction: Two
points define a straight line; two lines yield an intersection point (right).

• two node sequences In,Out : N ∗ containing the input
nodes and output nodes of the code graph,

• two functions src, trg : E → N ∗ assigning each edge
the sequence of its source nodes and target nodes
respectively,

• a function nType : N → NType assigning each node
its type, and

• a function eLab : E → ELab assigning each edge its
edge label. �

Furthermore, we require all code graphs in our system to
be acyclic and that every node occurs exactly once in either
the input list of the graph, or in exactly one target list of an
edge.

Definition 2: Edge labels are associated with an input
type sequence and an output type sequence by the functions
edgeInType and edgeOutType : ELab→ NType∗. �

Definition 3: An edge e is considered type-correct if
edgeInType(eLab(e)) matches the type of the edge’s source
nodes, and edgeOutType(eLab(e)) matches the type of its
target nodes. A codegraph is type-correct if all edges are
type-correct. �

B. Limited Side Effects

In Section III-C, we have noted the need to be able to
model creation and replacement operations. The scene is
the set of visible objects; we define it as a global mutable
set of object references. We only allow two kinds of side-
effecting operations: (a) adding a newly-created object to
the scene, thus making it visible; and (b) removing a given
object reference from the scene.

Replacement and refinement can be modeled by removing
an existing object and adding a new one. Object removal is
idempotent and only affects object visibility, not the actual
object. Object visibility cannot be observed by operations.
Therefore, no additional constraints on the order of execution
are introduced.

C. Implicit Repetition

When an operation is applied to a list rather than a single
value, it is implicitly repeated for all values in the list; if
two or more lists are given, the operation is automatically
applied to corresponding elements of the lists (cf. Figure 2).
It is assumed that the lists have been arranged properly.

We define our method of implicitly handling repetition
by defining a translation from codegraphs with implicitly-
repeated operations to codegraphs with explicit loops.

1) Explicit Loops:
Definition 4: A codegraph with explicit loops is a code-

graph where the set of possible edge labels ELab has been
been extended to include loop-boxes. A loop-box edge label
is a tuple (LOOP, G′, f) where G′ is a code graph (the loop
body) with n inputs and f ∈ {0, 1}n is a sequence of
boolean flags, such that at least one element of f is 1. The
intention behind the flags f is to indicate which inputs are
lists that are iterated over (fi = 1), and which inputs are
non-varying values that are used by the loop (fi = 0). The
number of iterations corresponds to the length of the shortest
input list. The edge input and output types of a loop are
defined by wrapping the input and output types of the loop
body (referred to as tii and toi below) with List[· · ·] as
appropriate:

edgeOutType((G, f))i := List[toi]

edgeInType ((G, f))i :=

{
List[ti i] if fi = 1

ti i otherwise
�

2) Codegraphs with Implicit Repetition: To allow implicit
repetition, we relax the type-correctness requirement that
edge input/output types match the corresponding node types.

A codegraph with implicit repetition is translated to a
codegraph with explicit loops by repeatedly applying the
following translation; the original codegraph is considered
type-correct iff this algorithm yields a codegraph with ex-
plicit loops that fulfills the type-correctness requirement.

Consider an edge e where the type-correctness condition
is violated. If any of the output nodes is not a list, or if
any of the mis-matching input nodes is not a list, abort; in
this case, the input codegraph is considered to be invalid.
Replace the edge e by a loop edge e′. The repetition flags
fi for the new loop edge are set to 1 for every input with a
type mismatch, and to 0 otherwise. The loop body G′ is a
codegraph containing just the edge e; the types of its input
and output nodes are chosen such that the edge e′ becomes
type-correct within the outer codegraph. The translation is
then applied to the loop body G′.

3) Fusing Loops: The result of the above translation is
a codegraph that contains separate (and possibly nested)
loops for each edge. This is undesirable for two reasons,
namely performance and code readability. Performance is
relevant whenever the operations used in the codegraph
edges are relatively cheap, such as, for example, compass
and ruler constructions, as opposed to boolean operations

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 53 / 63

(a) (b) (c) (d)

Figure 2. Handling repetitions: The images show examples of simple procedural models ((b) and (d)) that create a list of line segments (blue) and their
respective code graphs ((a) and (c)). Points, lines and circles correspond to intermediate results (nodes) of the same color. makeCircle creates a circle out
of a point and a radius, pointsOnCircle creates a list of evenly distributed points on a circle and makeSegment creates a straight line segment between
two points. This operation can be implicitly repeated to create segments from a list of points (on a circle) to a single point ((b)), or between two lists of
points on circles ((d)) using makeSegment. Multiple graphical elements are represented by single nodes in the corresponding code graphs ((a) and (c)).

on 3D volumes (constructive solid geometry, CSG). Code
readability is important because a procedural model might
still need to be modified after it has been exported from our
system to a traditional script-based system.

Consecutive loops, i.e., loops where the second loop
iterates over an output of the first, can be fused if both loops
have the same number of iterations and if the second loop
does not, either directly nor indirectly, depend on values
from other iterations of the first loop.

To determine which loops have the same number of
iterations, we will annotate each occurence of List in each
node type with a symbolic item count, represented by a set
of variable names. Each variable is an arbitrary name for an
integer that is unknown at compile time. A set denotes the
minimum of all the contained variables. List{a}[t] means
a list of a items of type t, and List{a,b}[t] means a list of
min(a, b) items.

All List types that appear as outputs of non-loop edges
are annotated with a single unique variable name each. Every
loop edge is annotated with a symbolic iteration count that is
the minimum (represented by set union) of the symbolic item
counts of all the lists it iterates over. Annotations on nested
List types are propagated into and out of the loop bodies.
The resulting List types of a loop box are annotated with
a symbolic item count that is equal to the symbolic iteration
count of the loop.

Two consecutive loop edges e1 and e2 can be fused when
the symbolic iteration counts of the loops are equal, the
repetition flag fi is set to 1 for all inputs of e2 that are
outputs of e1, and e2 is not reachable from any edge that is
reachable from e1, other than e1 and e2 themselves.

If all these conditions are fulfilled for a given pair of
edges, the edges can then be replaced by a single edge (cf.
Figure 3); the fused loop body is the sequential concatena-
tion of the two individual loop bodies. The inputs for the
fused edge are the inputs of e1 and all nodes that are inputs

Figure 3. Two consecutive loops containing one operation each that gets
applied to every item of the list. Under certain conditions (see text) the
loops can be fused in order to simplify the graph.

of e2 but not outputs of e1. The flags fi for the fused edge
are equal to the corresponding flags for inputs of e1 and e2.
The outputs for the fused edge are all nodes that are either
outputs of e1 or of e2.

This fusing operation is applied until no more edges can
be fused.

D. Handling Errors

The desired error-handling behaviour can be described
by regarding ERROR as a special value which is propagated
through the codegraph. If an operation fails, all its outputs
are set to ERROR; an operation is also considered to fail
whenever any of its inputs are ERROR.

In a naive translation, all arguments need to be explicitly
checked for every single operation. To arrive at a better
translation, we use a similar method as for the loops above;
we first make the error checking explicit and then introduce
a rule for combining consecutive error-checks.

Definition 5: Opt[t] := t ∪ {ERROR} for all types t, i.e.,
Opt[t] is a type that can take any value that type t can, or
a special error token. Opt[t] is idempotent: Opt[Opt[t]] =
Opt[t]. Also note that Opt can nest with List — the types

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 54 / 63

Figure 4. Left: two consecutive if-boxes used for handling potentially-
failing operations. The input (Opt[x] at the top) is already the result of a
potentially-failing operation. Note that in this example, operation A itself
cannot fail (result type is plain y), while operation B can (result type is
Opt[z]). They can be combined by nesting the second box inside the first
(center). This often exposes opportunities for eliminating redundant error
checks (right).

Opt[List[t]] and List[Opt[t]] and Opt[List[Opt[t]]] are
three different types. �

Definition 6: An if-box edge label is a tuple (IF, G′, f)
where G′ is a codegraph with n inputs and f ∈ {0, 1}n is a
sequence of boolean flags, such that at least one element of f
is 1. The edge input and output types of a loop are defined
by wrapping the input and output types of the loop body
with Opt[· · ·] as appropriate, analogously to the treatment of
loop boxes (cf. Definition 4). When an if-box is executed, all
input values for which fi = 1 are first checked for ERRORs;
if any of the input values is equal to ERROR, execution of
the box immediately finishes with a result value of ERROR
for each output. If none of the inputs are ERROR, the body
G′ is executed; its output values are the output values of the
if-box. �

Predefined operations that can fail will return optional
values (Opt[· · ·]). For every edge in the code graph, if-boxes
have to be inserted if necessary to make the codegraph type-
consistent.

Two consecutive if-box edges e1 and e2 can be fused when
the flag fi is set to 1 for at least one input e2 that is an output
of e1, and e2 is not reachable from any edge that is reachable
from e1, other than e1 and e2 themselves.

Fusing of if-boxes happens by moving the edge e2 into
the body of the if-box e1, yielding two nested if-boxes (cf.
Figure 4). The inputs for the fused edge are the inputs of
e1 and additionally all nodes that are inputs of e2 but not
outputs of e1; the flags fi for the additional flags are all set
to 0, which means that the outer box does not need to check
these inputs against ERROR, because the inner box will do
so if necessary. For the nested if-box inside the fused edge,
we next check whether that box is still required; first, for
every input whose node type is not of the form Opt[t], the
corresponding flag fi is set to 0. If all flags are set to zero
for the inner if-box, the box is elminated by replacing the
edge with its body codegraph.

(a) (b)

Figure 5. This gothic window construction was created in our test
framework using direct manipulation without any code or graph editing.
The numnber of repetitions is an input parameter of the model.

V. EXAMPLES AND RESULTS

In this section, we describe some common modeling
operations and their realization within our framework. The
examples in this section have been created using direct
manipulation on a visible model only (without visualization
of the underlying code graph), the concrete user interface is
however still in a preliminary stage.

A. Compass & Ruler

Compass and ruler operations have long been used in
interactive procedural modeling [18]; these operations are
well suited to a side-effect free implementation, and usually
return only a single result per operation. Our addition of
repetition allows for new constructions (Figure 5).

B. Split Grammars

We can use a methodology similar to Patow et al. [15] to
map split grammars to code graphs (see Figure 6). Just as in
CGA Shape [12], volumes called Scopes are partitioned into
smaller volumes by operations split and repeat (replacement
as side-effect). split partitions the scope in a predefined
number of parts, whereas with repeat the number of parts
is determined by the size of the scope at the time of rule
application.

C. Optimization Benchmark

We benchmarked the loop fusion and error handling
optimizations on three different models. The code graphs
are compiled to GML, a language syntactically similar to
PostScript. The measurement is based on the number of ex-
ecutable statements, or tokens; this is independent of model
parameters (repetition counts) and of the implementation
quality of basic operations. See Table I for the results of
optimizing loops (Opt A) and loops and error handling (Opt
B).

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 55 / 63

Figure 6. Split grammar example: A simple shape grammar with split
and repeat operations can be expressed using a textual description (a). This
structure can be mapped to a codegraph (b) and executed (c).

Model Tokens Opt A Opt B
gothic ornament 1322 992 789
simple house 408 258 225
complex facade 69769 30846 24865

Table I
OPTIMIZATION BENCHMARK: EFFECTS OF FUSING LOOPS (OPT A) AND

LOOPS & ERROR HANDLING (OPT B) ON MODEL SIZE.

VI. CONCLUSION AND FUTURE WORK

We have presented a formal framework for the represen-
tation of procedural models, with a focus on implicit loop
representations and improved partial error handling which
is particularly suited for direct manipulation of procedural
3D content. We have further described algorithms that allow
translation of these models to traditional programming-
language based procedural modeling systems.

Using the framework presented in this paper, we believe
it will soon be possible to create procedural constructions of
medium complexity without writing code or using a visual
programming language.

There are many research opportunities for adapting ex-
isting techniques to our framework and to the context of
direct manipulation procedural modeling. Defining modules
or functions is a well-known technique, but it is unknown
how well they can be adapted to the special requirements
imposed by direct manipulation. Complex procedural 3D
models will necessarily suffer from the same problems as
complex software does in general; so at some point it will
be necessary to investigate methods of ’shape refactoring’.

REFERENCES

[1] S. Havemann, “Generative mesh modeling,” Ph.D. disserta-
tion, Technical University Braunschweig, 2005.

[2] Robert McNeel & Associates, “Grasshopper for Rhino3D,”
[retrieved: 2012, 05]. [Online]. Available: http://www.
grasshopper3d.com/

[3] Side Effects Software, “Houdini,” [retrieved: 2012, 05].
[Online]. Available: http://www.sidefx.com

[4] T. Green and M. Petre, “When visual programs are harder
to read than textual programs,” in Proceedings of ECCE-6,
1992, pp. 167–180.

[5] CGAL, “Computational Geometry Algorithms Library,”
[retrieved: 2012, 05]. [Online]. Available: http://www.cgal.org

[6] Adobe Inc., PostScript Language Reference Manual, 3rd ed.
Addison-Wesley, 1999.

[7] Processing, “Processing,” [retrieved: 2012, 05]. [Online].
Available: http://www.processing.org

[8] D. Gould, Complete Maya programming: an extensive guide
to MEL and the C++ API, ser. Morgan Kaufmann series
in computer graphics and geometric modeling. Morgan
Kaufmann Publishers, 2003.

[9] Robert McNeel & Associates, “Rhinoceros 3D,” [retrieved:
2012, 05]. [Online]. Available: http://www.rhino3d.com

[10] G. Stiny and J. Gips, “Shape grammars and the generative
specification of painting and sculpture,” in The Best Computer
Papers of 1971. Auerbach, 1972, pp. 125–135.

[11] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant
architecture,” Proc. SIGGRAPH 2003, pp. 669 – 677, 2003.

[12] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool,
“Procedural modeling of buildings,” in ACM SIGGRAPH,
vol. 25, 2006, pp. 614 – 623.

[13] Esri, “CityEngine,” [retrieved: 2012, 05]. [Online]. Available:
http://www.esri.com/software/cityengine/

[14] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances
in dataflow programming languages,” ACM Comput. Surv.,
vol. 36, no. 1, pp. 1–34, Mar. 2004.

[15] G. Patow, “User-friendly graph editing for procedural build-
ings,” Computer Graphics and Applications, IEEE, vol. PP,
no. 99, p. 1, 2010.

[16] D. Plump, “Term graph rewriting,” in Handbook of Graph
Grammars and Computing by Graph Transformation: Ap-
plications, Languages and Tools, H. Ehrig, G. Engels, H.-J.
Kreowski, and G. Rozenberg, Eds., 1999, pp. 3–61.

[17] W. Kahl, C. Anand, and J. Carette, “Control-flow semantics
for assembly-level data-flow graphs,” in Relational Methods
in Computer Science, ser. Lecture Notes in Computer Science,
W. MacCaull, M. Winter, and I. Düntsch, Eds. Springer
Berlin / Heidelberg, vol. 3929, pp. 147–160.

[18] Y. Baulac, “Un micromonde de géométrie, cabri-géométre,”
Ph.D. dissertation, Joseph Fourier University of Grenoble,
1990.

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 56 / 63

Temperature Based Embedded Programming Algorithm For Conventional
Machines Condition Monitoring

Michael Kanisuru Adeyeri
Department of Mechanical Engineering

The Federal University of Technology, Akure
Ondo State, Nigeria

sademike2003@yahoo.co.uk; mkadeyeri@futa.edu.ng

Adeyemi Adegbemisipo Aderoba
Department of Mechanical Engineering

The Federal University of Technology, Akure
Ondo State, Nigeria

babalojojo@yahoo.com

Buliaminu Kareem
Department of Mechanical Engineering

The Federal University of Technology, Akure
Ondo State, Nigeria

bkareem@futa.edu.ng

Sunday Olumide Adewale
Department of Computer Science

The Federal University of Technology, Akure
Ondo State, Nigeria

adewale_olumide@yahoo.co.uk

Abstract— A temperature-based embedded programming
algorithm for conventional machines condition monitoring is
being discussed. Machinery health deteriorates day in day out
as they are being used for production purposes. If a proper
check, maintenance activities and monitoring are not put in
place, such machinery would not perform optimally and
production efficiency would be affected. Based on this, the
present work focuses on programming a temperature sensor
AD595 and K-type thermocouple using a C programming
language as a means of embedding them into the
microcontroller with a real time clock (RTC) incorporated to
keep the time of events and temperature readings of the
machines’ components for effective maintenance plan. The
whole design is embedded in production machines to keep
monitoring the machines’ conditions and behavior as related to
temperature induced faults and breakdown matters. The
algorithm interprets and reports the fault class name to the
operator, diagnosis and proffer solutions based on the
embedded decision block. The hardware resulting from the
design was tested using a conventional elevator, silos and
hammer mill (which are parts of the production set up line for
the production of vegetable oil) for a period of four months.
The output performance is satisfactory as maintenance
decision and machines’ health monitoring are optimized.

Keywords-Temperature; thermocouple; algorithm;
conventional machines; condition monitoring; microcontroller.

I. INTRODUCTION

 Machinery is required to operate within a relatively close
set of limits. These limits, or operating conditions, are
designed to allow for safe operation of the equipment and to
ensure that equipment or system design specifications are
not exceeded. These limits are usually set to optimize
product quality and throughput (load) without overstressing
the equipment.

Conventional machines are machines which are operated
manually. These machines are controlled by cams, gears,

levers, or screws. Examples of these machines are Lathe,
grinding machine, flaking machine, extruder and just to
mention a few. They indeed needed special attention to safe
guard or vouch safe for their functionality and optimal
performance as compared to the non conventional machines
which are controlled automatically by integrated computer.

Manufacturing process objective focuses on efficient
production of products with specific shape, acceptable
dimensional accuracy and quality. Slight deviation of the
machine conditions from a prescribed plan will affect the
final product quality and standard. Global industrial
competition and the current economic conditions have
geared up many manufacturing organizations to improve
product quality and cut production costs simultaneously.
The requirements for increased plant productivity, safety,
and reduced cost on maintenance, have resulted to a growth
in popularity of methods for condition monitoring to aid the
planning of plant preventive maintenance and operational
policies [1].

Malfunctions in equipment and components are often
sources of reduced productivity and increased maintenance
costs in various industrial applications. For this reason,
machine condition monitoring is being pursued to recognize
incipient faults in striving towards optimizing maintenance
and productivity in conventional machines.

From literature, current production systems have
unsatisfactory overall availability due to excessive
downtime caused by either quality related issues or
machine/component failures [2]. Current single station’s
mean-time-to-failure (MTTF) and mean-time-to-repair
(MTTR) assessment does not reveal overall system
performance and dynamic resourcing which is not addressed

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 57 / 63

in today’s total productive maintenance (TPM) and
manufacturing execution systems (MES) [2].

In real life applications, measuring temperature is not
really a problem especially in practical applications like
medical and air conditioning systems. In industrial setting
on the other hand, temperature signal conditioning becomes
a concept that needs to be given special attention to
convention machines. That is why very high precision and
accuracy is the ultimate goal of any model that targets
programming ambient physical parameters like temperature.
In order to achieve the above, an embedded programming
model is established to ensure sensing temperature and
delivering the accurate result.

II. LITERATURE REVIEW

Condition monitoring is a maintenance process where the
condition of equipment with respect to overheating and
vibration is monitored for early signs of impending failure.
Equipment can be monitored using sophisticated
instrumentation such as vibration analysis equipment or the
human senses. Where instrumentation is used, actual limits
can be imposed to trigger maintenance activity. Condition
Monitoring (CM), Predictive Maintenance (PM) and
Condition Based Maintenance (CBM) are other terms used
to describe this process.

Machine condition monitoring involves the intermittent
or continuous collection and interpretation of data relating
to the operating condition of those critical components of a
machine. Monitoring can greatly reduce maintenance costs
by giving adequate notice on pending failures to permit
planned repairs, as opposed to costly emergency
breakdowns with their attendant lost production, overtime,
and expediting costs [3].

Failure occurs when a component, structure, or system is
unable to fulfill its intended purpose, resulting in its
retirement from usable service. Possible failure modes
include component deformation, fracture, surface changes
such as cracks, material changes, displacement, leakage, and
contamination [4]. Secondary effects, or symptoms, often
occur prior to total machine failure, providing indicators for
predicting failure onset. Frequently used indicators are
vibration signals; noise, heat generation, and particle wear
levels as measured in machine lubricants.
Condition-based maintenance is a maintenance strategy that
recommends maintenance actions based on the information
collected through condition monitoring. And the aim of this
strategy is to improve the equipment’s reliability,
availability, or its associated life cycle costs [5].

Neelam [6] researched on condition monitoring and fault
diagnosis of induction motor using motor current signature
analysis. Neelam’s research consists of experimental
characterization of rotor faults in induction motors operating
under different loading conditions in which the fault
algorithm developed monitors the amplitudes over time.
And five different faults vis a viz, rotor fault, short winding
fault, eccentricity fault, bearing fault and load fault are
practically implemented and their effects on motor’s current
are considered with help of different signal conditioning
techniques.

Condition-based maintenance is the diagnosis of
component failure or a prognosis of a component’s time to
failure [7]. Jasper et al. [7] aimed at formulation of
empirical postulates regarding the technical system,
managerial system and workforce knowledge.

Mahantesh et al. [8] developed and tested a condition-
monitoring sub-module of an integrated plant maintenance
management application based on artificial intelligence (AI)
techniques, mainly knowledge-based systems, having
several modules, sub modules and sections. The paper
collectively deals with the analysis of the state-of-the-art
expert systems for diagnosis and maintenance of general-
purpose industrial machinery.

Christian [9] researched on competing through
maintenance strategies in which the competitive factors
were examined. The research work shows that equipment
maintenance and reliability management are importantly
associated with an organization’s competitiveness and be
given adequate attention in the organization’s strategic
planning.

Liliane et al. [10] evaluated the effectiveness of
maintenance strategies under four frameworks that can
identify and evaluate the effectiveness of a given
maintenance strategy in a company. The four frameworks
implored are minimization of manufacturing’s negative
potential, achievement of parity (neutrality) with
competitors, provision of credible support to the business
strategy and aiming a manufacturing-based competitive
advantage. And it is found that the framework is applicable
and useful for the strategic management of the maintenance
function as well as enhancing the competitive advantage of
a company.

Jihong [11] modeled a prognostic algorithm for machine
performance assessment and their applications explored a
performance model through the advantage of logistic
regression analysis with maximum likelihood technique and
predict the remaining useful life, which would lead to
proactive maintenance processes in minimizing downtime

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 58 / 63

of machinery and production in various industries, thus
increasing efficiency of operations and manufacturing. They
buttress their research with two kinds of application
situations with or without enough historical data.

Today’s technology has given room for invention of
computer numerically controlled machines for production
purpose in which integrated circuits and sensors related to
maintenance information are embedded to keep track of
machines’ health for effective and optimized performance of
the machines. But there is need to bridge the gap between
these computerized and conventional machines age so that
the conventional machine users can effectively enjoy the
machines’ throughput with minimal breakdown and
compete in the industrial world without abandoning the
conventional machines. Hence the needs for this research
work to provide a medium where temperature sensors could
be embedded in conventional machines for monitoring their
health status and functionality. Therefore the present work
describes temperature algorithm for temperature sensor that
is needed in assisting, monitoring the behavior of machines’
performance or health status and the maintenance activities
required for maintaining or preventing temperature related
faults or breakdown of conventional machines such as
elevator machine, silos and hammer mill.

III. METHODOLOGY

A. Temperature Model Equation

Temperature measurement (e.g., temperature-indicating
paint, thermograph) helps detect potential failures related to
a temperature change in equipment. Measured temperature
changes can indicate problems such as excessive mechanical
friction (like faulty bearings, inadequate lubrication),
degraded heat transfer and poor electrical connections (for
examples, loose, corroded or oxidized connections). The
below equation1. is used in modeling temperature
monitoring for machines.

nt
bT

o
i

ta
i UTT]1[+= (1)

where
at

iT : the predicted value of temperature at next planned

measuring time
o

iT : the current temperature value

nt

: periodic time numbering of readings

TU : temperature deteriorating factor and it is expressed as

c
m

oi
T

T

TT
U

−
= (2)

iT : initial temperature value

oT = measured Temperature before at
iT

c
mT = Critical temperature limit level

 b : is a function of speed, environmental condition and
demand frequency.

Therefore, if at
i

c
m TT ≥ , then maintenance is required,

otherwise do not.

B. Factors influecing the choice of Temperature sensor

The difference between serial and special manufacturing
is only the mechanical structure of the sensors. The
criterions used in choosing temperature sensor are as listed
below:

• At which position is the temperature to be
measured?

• The medium at which temperature is to be
determined?

• Which diameter can be installed in the production
process?

• Mechanical process connection to be used
• The type of electrical connection

• Which mechanical and thermal stress is the sensor
subjected to?

The answers to these questions are the basis for the
choice of special temperature sensors for mechanical
machines and these have assisted in choosing k-type
thermocouple for this research.

A block diagram of the AD594/AD595 thermo-couple
signal conditioner IC is shown in Fig. 1. A Type K
thermocouple is joined to amplifier differential Pins 1 and
14 so as to reference the local temperature. With the IC also
at the local temperature, an ice point compensation circuit
develops a voltage equal to the deficiency in the locally
referenced thermocouple loop. This voltage is then applied
to a second preamplifier whose output is summed with the
output of the input amplifier. The resultant output is then
applied to the in-put of a main output amplifier with
feedback to set the gain of the combined signals. The ice
point compensation voltage is scaled to equal the voltage
that would be produced by an ice bath referenced
thermocouple measuring the IC temperature. This voltage is
then summed with the locally referenced loop voltage, the
result being a loop voltage with respect to an ice point [12].
The circuit description diagram for this thermocouple is as
shown in Fig. 2.

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 59 / 63

Figure 1. AD595 Block Diagram

Figure 2. The AD594/AD595 Circuit Description

C. Embedded interface

The following components are used in keeping track of
the system:

i. Analog Digital Converter (ADC): The output from
the sensor is usually an analog signal that needs to be
converted to a discrete signal for proper digitization. In
order to achieve this, an analog to digital conversion module
is required. For this model, a 10 bit ADC resolution is made
used of.

ii. Microcontroller: The microcontroller used for
developing this model is Atmel Atmega 16 MCU, this is an
8 bit MCU but with internal 10 bit resolution ADC module.
This makes the MCU a choice for this model.

The block diagram shown in Fig. 3 depicts the proposed
arrangement of the embedded temperature sensor interface
with the machine

Figure 3. Block diagram of proposed arrangement of temperature sensor
interface with conventional machine

D. Model Algorithm

The code for the microcontroller is developed in C
language which is not included in this paper. The
preliminary exercise carried out in order to get the basis of
the conventional machine is to:

i. study the temperature behavioural pattern of the
machine to model; and

ii. get the trend of the temperature pattern of the
machine system by recording ten to twenty
readings of the temperature over a wide period of
time and noting the performance rating of the
machine against the corresponding temperatures.

While the algorithm developed for the model is as
stated below:

Step-1 Setting up: set up display, set up real time clock and
set up the internal analog to digital converter

Step-2 Wait for responses
Step-3 Set timer T to zero second and the counter to zero
Step-4 Initialize timer
Step-5 Is timer equals 10seconds?
Step-6 If no, go back to timer initialization, else get the

ADC value
Step-7 Counter stores value to RAM
Step-8 Has counter counted to ten values?
Step-9 If no, continue with timer initialization, else counter

reset to zero
Step-10 Calculate average temperature
Step-11 Store value in EEPROM, convert temperature value

to ASCII and get real time
Step-12 Display value and time
Step-13 Use inference decision block: for example, if

at
i

c
m TT ≥ , then maintenance is required, otherwise

do not; make inference on machine parts affected
and give suggestion

Step-14 Is decision made? If yes, display decision
Step-15 Delay sets in to cater for decision displayed, else

back to reset
Step-16 Go to start

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 60 / 63

This algorithm is therefore translated into flowchart
shown in Fig. 4, so as to have a better understanding of the

system.

Figure 4. Flowchart of the Temperature sensor Model Algorithm [12]

IV. MODEL VALIDATION

The stated algorithm had been transformed into codes in
C programming so as to ensure the practicality of the model
(though this aspect will not be discussed in this submission).
The whole system is tested by using a conventional elevator,
silos and hammer mill which is a part of the production set
up line for the production of vegetable oil for a period of

four months. The readings taken are as shown in table1.
The machine components being affected by temperature are
listed with their corresponding readings. N denotes normal
machine temperature reading on on-load condition and A
connotes abnormal temperature reading.

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 61 / 63

TABLE I. GEARBOX TEMPERATURE TREND READINGS AND MAINTENANCE MODEL SUGGESTION DECISION OF
ELEVATOR, SILO AND HAMMER MILL MACHINES

Sampling
dates

Elevator’s Gear box temperature
(oC), conditions and decision

Silo’s Gear box temperature (oC),
conditions and decision

Hammer mill’s Gear box temperature
(oC), conditions and decision

Temp. conditi
ons

Model decision
suggestion on
maintenance

activities

Temp. conditions Model decision
suggestion on
maintenance

activities

Temp. conditions Model decision
suggestion on
maintenance

activities
01/11/2011 40.0 N 49.5 N 69.6 A Poor lubrication
10/11/2011 40.8 N 50.0 N 42.6 N
15/11/2011 40.8 N 50.0 N 42.7 N
20/11/2011 46.0 N 50.0 N 43.0 N
01/12/2011 46.0 N 51.0 N 43.0 N
05/12/2011 46.2 N 51.3 N 43.2 N
10/12/2011 46.1 N 52.0 N 44.1 N
15/12/2011 46.2 N 52.0 N 44.1 N
22/12/2011 46.5 N 52.0 N 44.5 N
01/01/2012 46.6 N 52.0 N 46.6 N
10/01/2012 46.7 N 52.0 N 48.9 N
20/01/2012 47.0 N 65.0 A Stop machine.

Check for
foreign materials
and dirt in ball
bearing

50.0 N

01/02/2012 45.9 N 50.0 N 45.9 N

25/02/2012 75.0 A Stop machine.
Check ball
bearing

50.0 N 46.0 N

As seen from Table 1, on the 1st of November, 2011,

the temperature readings sampled from the production
process revealed that the temperature values of the elevator
gear box, silo gear box and hammer mill gear box read 40
oC, 49.5 oC and 69.6 oC respectively. And the corresponding
health status of these machines indicated that they are
normal except that of hammer mill which is abnormal. On
this note, the model gave a maintenance suggestion clue that
the temperature abnormality is as a result of poor
lubrication. Looking through the Table 1, it has shown that
the model algorithm is correct as it could distinguish
between when the machine conditions are normal, abnormal
and display maintenance suggestion messages which are
valid and result oriented.

V. CONCLUSION AND FUTURE WORK

The efficient and optimum performances of machines
lie on the prompt and on-line monitoring of the machine
components and behavior. The research work under
discussion has really shown that temperature which is one of

the key factors affecting machine performance could be
monitored to aid maintenance plan. It is to be hoped that the
tool herein described will assist conventional equipment
maintenance and personnel in decision making as they
progress towards optimizing maintenance plans.

The present work could not give the overall true picture
of the machine health status, therefore the future work
would entail building an integrated sub-system hardware
that incorporates other machine condition monitoring
indices such as vibration and machine wear sensors which
will assist in having a full diagnosis of the machines, and
thus enhancing its functionality.

REFERENCES

[1] Y. Zhan, V. Makis, and A.K.S. Jardine, “Adaptive model for

vibration monitoring of rotating machinery subject to random
deterioration” Journal of Quality in Maintenance Engineering Vol. 9
No. 4, 2003 pp. 351-375
(http://dx.doi.org/10.1108/13552510310503222) [retrieved: July,
2012]

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 62 / 63

[2] A. Alhad, C. Xiaohui; L. Jay, N. Jun, and Y. Ziming,
“Optimized Maintenance Design for Manufacturing
Performance improvement using simulation.” Proceedings of
the 40th Conference on Winter Simulation Conference, IEEE,
2008, pp. 1811-1819.

[3] G.M. Knapp and H.P. Wang, “Machine fault classification: a
neural network approach'', International Journal of Production
Research, Vol. 30 No. 4, 1992, pp. 811-823.
(http://www.emerald-library.com) [retrieved: June, 2012]

[4] R.H. Lyon, Machinery Noise and Diagnostics, 1987,
Butterworth, Boston, MA

[5] A.K.S. Jardine, T. Joseph, and D. Benjevic, “Optimizing
Condition-based Maintenance decisions for equipment subject
to Vibration Monitoring”, Journal of Quality in Maintenance
Engineering Vol. 5 No. 3, 1999, pp. 192-202.
(http://www.emerald-library.com) [retrieved: June, 2012]

[6] M. Neelam, “Condition Monitoring and Fault Diagnosis of
Induction Motor Using Motor Current Signature Analysis” P.hD
Thesis, National Institute of Technology, Kurukshetra
(Haryana) India, 2010.

[7] V. Jasper, K. Warse, and W. Hans, “Managing Condition based
Maintenance Technology, a multiple case study in the process
industry”, Journal of Quality in

Maintenance Engineering Vol. 17 No. 1, 2011, pp. 40-62.
[http://www.emerald-library.com, June, 2012]

[8] N. Mahantesh, A. Ramachandra, and A.N. Satosh Kumar
“Artificial Intelligence-based Condition Monitoring for Plant
Maintenance; Assembly Automation Vol. 28, No. 2, 2008, pp.
143–150.

[9] N. Christian Madu, “Competing Through Maintenance
Strategies” International Journal of Quality & Reliability
Management, Vol. 17, No. 9, 2000, pp. 938-948. MCB
University Press.

[10] P. Liliane, K.P. Srinivas, and V. Ann, ‘Evaluating the
Effectiveness of Maintenance Strategies” Journal of Quality in
Maintenance Engineering Vol. 12 No. 1, 2, 2006, pp. 7-20.
Emerald Group Publishing Ltd. March, 2010

[11] Y. Jihong, K. Muammer, and L. Jay, ”A prognostic algorithm
for machine performance assessment and its application”
Production Planning & Control, Taylor and Francis Group,
Vol. 15, No. 8, December 2004, pp. 796–801.

[12] M. Joe, “Application note on Thermocouple Signal
Conditioning Using the AD594/AD595” One Technology Way
Norwood, USA [http://www.analog.com November, 2011]

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 63 / 63

http://www.tcpdf.org

