
CLOUD COMPUTING 2016

The Seventh International Conference on Cloud Computing, GRIDs, and

Virtualization

ISBN: 978-1-61208-460-2

March 20 - 24, 2016

Rome, Italy

CLOUD COMPUTING 2016 Editors

Carlos Becker Westphall, Federal University of Santa Catarina, Brazil

Yong Woo Lee, University of Seoul, Korea

Stefan Rass, Universitaet Klagenfurt, Institute of Applied Informatics, Austria

                            1 / 157



CLOUD COMPUTING 2016

Forward

The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD
COMPUTING 2016), held between March 20-24, 2016 in Rome, Italy, continued a series of
events targeted to prospect the applications supported by the new paradigm and validate the
techniques and the mechanisms. A complementary target was to identify the open issues and
the challenges to fix them, especially on security, privacy, and inter- and intra-clouds protocols.

Cloud computing is a normal evolution of distributed computing combined with Service-
oriented architecture, leveraging most of the GRID features and Virtualization merits. The
technology foundations for cloud computing led to a new approach of reusing what was
achieved in GRID computing with support from virtualization.

The conference had the following tracks:

 Cloud computing

 Computing in virtualization-based environments

 Platforms, infrastructures and applications

 Challenging features

Similar to the previous edition, this event attracted excellent contributions and active
participation from all over the world. We were very pleased to receive top quality
contributions.

We take here the opportunity to warmly thank all the members of the CLOUD COMPUTING
2016 technical program committee, as well as the numerous reviewers. The creation of such a
high quality conference program would not have been possible without their involvement. We
also kindly thank all the authors that dedicated much of their time and effort to contribute to
CLOUD COMPUTING 2016. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the CLOUD COMPUTING
2016 organizing committee for their help in handling the logistics and for their work that made
this professional meeting a success.

We hope that CLOUD COMPUTING 2016 was a successful international forum for the exchange
of ideas and results between academia and industry and to promote further progress in the
area of cloud computing, GRIDs and virtualization. We also hope that Rome provided a pleasant

                            2 / 157



environment during the conference and everyone saved some time for exploring this beautiful
city.

CLOUD COMPUTING 2016 Chairs

CLOUD COMPUTING 2016 Advisory Chairs

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany
Yong Woo Lee, University of Seoul, Korea
Alain April, École de Technologie Supérieure - Montreal, Canada
Christoph Reich, Furtwangen University, Germany

CLOUD COMPUTING 2016 Industry/Research Chairs

Wolfgang Gentzsch, The UberCloud, Germany
Tony Shan, Keane Inc., USA
Anna Schwanengel, Siemens AG, Germany
Atsuji Sekiguchi, Fujitsu Laboratories Ltd., Japan

COULD COMPUTING 2016 Special Area Chairs

Security
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

GRID
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Javier Diaz-Montes, Rutgers University, USA
Nam Beng Tan, Nanyang Polytechnic, Singapore

Autonomic computing
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing,
USA
Hong Zhu, Oxford Brookes University, UK

Service-oriented
Qi Yu, Rochester Institute of Technology, USA

Platforms
Arden Agopyan, ClouadArena, Turkey

                            3 / 157



CLOUD COMPUTING 2016

Committee

CLOUD COMPUTING Advisory Committee

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany
Yong Woo Lee, University of Seoul, Korea
Alain April, École de Technologie Supérieure - Montreal, Canada
Christoph Reich, Furtwangen University, Germany

CLOUD COMPUTING 2016 Industry/Research Chairs

Wolfgang Gentzsch, The UberCloud, Germany
Tony Shan, Keane Inc., USA
Anna Schwanengel, Siemens AG, Germany
Atsuji Sekiguchi, Fujitsu Laboratories Ltd., Japan

COULD COMPUTING 2016 Special Area Chairs

Security
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

GRID
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Javier Diaz-Montes, Rutgers University, USA
Nam Beng Tan, Nanyang Polytechnic, Singapore

Autonomic computing
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing, USA
Hong Zhu, Oxford Brookes University, UK

Service-oriented
Qi Yu, Rochester Institute of Technology, USA

Platforms
Arden Agopyan, ClouadArena, Turkey

CLOUD COMPUTING 2016 Technical Program Committee

Jemal Abawajy, Deakin University - Victoria, Australia
Imad Abbadi, University of Oxford, UK
Taher M. Ali, Gulf University for Science & Technology, Kuwait

                            4 / 157



Abdulelah Alwabel, University of Southampton, UK
Alain April, École de Technologie Supérieure - Montreal, Canada
Alvaro E. Arenas, Instituto de Empresa Business School, Spain
José Enrique Armendáriz-Iñigo, Public University of Navarre, Spain
Irina Astrova, Tallinn University of Technology, Estonia
Benjamin Aziz, University of Portsmouth, UK
Xiaoying Bai, Tsinghua University, China
Panagiotis Bamidis, Aristotle University of Thessaloniki, Greece
Ali Kashif Bashir, Osaka University, Japan
Luis Eduardo Bautista Villalpando, Autonomous University of Aguascalientes, Mexico
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Ali Beklen, CloudArena, Turkey
Elhadj Benkhelifa, Staffordshire University, UK
Andreas Berl, Deggendorf Institute of Technology, Germany
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Nik Bessis, University of Derby, UK
Peter Charles Bloodsworth, National University of Sciences and Technology (NUST), Pakistan
Alexander Bolotov, University of Westminster, UK
Sara Bouchenak, University of Grenoble I, France
William Buchanan, Edinburgh Napier University, UK
Ali R. Butt, Virginia Tech, USA
James Byrne, Dublin City University, Ireland
Massimo Cafaro, University of Salento, Italy
Mustafa Canim, IBM Thomas J. Watson Research Center, USA
Massimo Canonico, University of Piemonte Orientale, Italy
Paolo Campegiani, University of Rome Tor Vergata, Italy
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Carmen Carrión Espinosa, Universidad de Castilla-La Mancha, Spain
Simon Caton, Karlsruhe Institute of Technology, Germany
K. Chandrasekaran, National Institute of Technology Karnataka, India
Hsi-Ya Chang, National Center for High-Performance Computing (NCHC), Taiwan
Rong N Chang, IBM T.J. Watson Research Center, USA
Ruay-Shiung Chang, National Taipei University of Business, Taiwan
Kyle Chard, University of Chicago and Argonne National Laboratory, USA
Antonin Chazalet, IT&Labs, France
Shiping Chen, CSIRO ICT Centre, Australia
Ye Chen, Microsoft Corp., USA
Yixin Chen, Washington University in St. Louis, USA
Zhixiong Chen, Mercy College - NY, USA

William Cheng-Chung Chu(朱正忠), Tunghai University, Taiwan
Yeh-Ching Chung, National Tsing Hua University, Taiwan
Marcello Coppola, ST Microelectronics, France
Antonio Corradi, Università di Bologna, Italy
Marcelo Corrales, University of Hanover, Germany
Fabio M. Costa, Universidade Federal de Goias (UFG), Brazil
Sérgio A. A. de Freitas, Univerty of Brasilia, Brazil
Anderson Santana de Oliveira, SAP Labs, France
Noel De Palma, University Joseph Fourier, France

                            5 / 157



César A. F. De Rose, Catholic University of Rio Grande Sul (PUCRS), Brazil
Eliezer Dekel, IBM Research - Haifa, Israel
Yuri Demchenko, University of Amsterdam, The Netherlands
Nirmit Desai, IBM T J Watson Research Center, USA
Edna Dias Canedo, Universidade de Brasília - UnB Gama, Brazil
Javier Diaz-Montes, Rutgers University, USA
Zhihui Du, Tsinghua University, China
Qiang Duan, Pennsylvania State University, USA
Robert Anderson Duncan, University of Aberdeen, UK
Jorge Ejarque Artigas , Barcelona Supercomputing Center, Spain
Kaoutar El Maghraoui, IBM T. J. Watson Research Center, USA
Atilla Elçi, Suleyman Demirel University - Isparta, Turkey
Khalil El-Khatib, University of Ontario Institute of Technology - Oshawa, Canada
Mohamed Eltoweissy, Virginia Military Institute and Virginia Tech, USA
Javier Fabra, University of Zaragoza, Spain
Fairouz Fakhfakh, University of Sfax , Tunisia
Hamid Mohammadi Fard, University of Innsbuck, Austria
Reza Farivar, University of Illinois at Urbana-Champaign, USA
Umar Farooq, Amazon.com - Seattle, USA
Maria Beatriz Felgar de Toledo, University of Campinas, Brazil
Luca Ferretti, University of Modena and Reggio Emilia, Italy
Luca Foschini, Università degli Studi di Bologna, Italy
Sören Frey, Daimler TSS GmbH, Germany
Song Fu, University of North Texas - Denton, USA
Martin Gaedke, Technische Universität Chemnitz, Germany
Wolfgang Gentzsch, The UberCloud, Germany
Michael Gerhards, FH-AACHEN - University of Applied Sciences, Germany
Lee Gillam, University of Surrey, UK
Katja Gilly, Miguel Hernandez University, Spain
Spyridon V. Gogouvitis, Siemens AG, Germany
Abraham Gomez, École de technologie supérieure (ÉTS), Montreal, Canada
Andres Gomez, Applications and Projects Department Manager Fundación CESGA, Spain
Andrzej M. Goscinski, Deakin University, Australia
Nils Grushka, NEC Laboratories Europe - Heidelberg, Germany
Jordi Guitart, Universitat Politècnica de Catalunya - Barcelona Supercomputing Center, Spain
Marjan Gusev, “Ss. Cyril and Methodius” University of Skopje, Macedonia
Yi-Ke Guo, Imperial College London, UK
Marjan Gushev, Univ. Sts Cyril and Methodius, Macedonia
Thomas J. Hacker, Purdue University, USA
Rui Han, Institute of Computing Technology - Chinese Academy of Sciences, China
Weili Han, Fudan University, China
Haiwu He, INRIA, France
Sergio Hernández, University of Zaragoza, Spain
Neil Chue Hong, University of Edinburgh, UK
Pao-Ann Hsiung, National Chung Cheng University, Taiwan
Lei Huang, Prairie View A&M University, USA
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA
Richard Hill, University of Derby, UK

                            6 / 157



Uwe Hohenstein, Siemens AG, Germany
Luigi Lo Iacono, Cologne University of Applied Sciences, Germany
Shadi Ibrahim, INRIA Rennes - Bretagne Atlantique Research Center, France
Yoshiro Imai, Kagawa University, Japan
Anca Daniela Ionita, University "Politehnica" of Bucharest, Romania
Xuxian Jiang, North Carolina State University, USA
Eugene John, The University of Texas at San Antonio, USA
Carlos Juiz, Universitat de les Illes Balears, Spain
Verena Kantere, University of Geneva, Switzerland
Bill Karakostas, VLTN gcv, Antwerp, Belgium
Sokratis K. Katsikas, University of Piraeus, Greece
Takis Katsoulakos, INLECOM Systems, UK
Zaheer Khan, University of the West of England, UK
Prashant Khanna, JK Lakshmipat University, Jaipur, India
Shinji Kikuchi, Fujitsu Laboratories Ltd., Japan
Peter Kilpatrick, Queen's University Belfast, UK
Tan Kok Kiong, National University of Singapore, Singapore
William Knottenbelt, Imperial College London - South Kensington Campus, UK
Sinan Kockara, University of Central Arkansas, USA
Joanna Kolodziej, University of Bielsko-Biala, Poland
Kenji Kono, Keio University, Japan
Dimitri Konstantas, University of Geneva, Switzerland
Arne Koschel, Hochschule Hannover, Germany
George Kousiouris, National Technical University of Athens, Greece
Sotiris Koussouris, National Technical University of Athens, Greece
Kenichi Kourai, Kyushu Institute of Technology, Japan
Nane Kratzke, Lübeck University of Applied Sciences, Germany
Heinz Kredel, Universität Mannheim, Germany
Hans Günther Kruse, Universität Mannheim, Germany
Yu Kuang, University of Nevada Las Vegas, USA
Alex Kuo, University of Victoria, Canada
Tobias Kurze, Karlsruher Institut für Technologie (KIT), Germany
Dharmender Singh Kushwaha, Motilal Nehru National Institute of Technology - Allahabad, India
Dimosthenis Kyriazis, University of Piraeus, Greece
Giuseppe La Torre, University of Catania, Italy
Romain Laborde, University Paul Sabatier, France
Petros Lampsas, Central Greece University of Applied Sciences, Greece
Erwin Laure, KTH, Sweden
Alexander Lazovik, University of Groningen, The Netherlands
Craig Lee, The Aerospace Corporation, USA
Yong Woo Lee, University of Seoul. Korea
Grace Lewis, CMU Software Engineering Institute - Pittsburgh, USA
Jianxin Li, Beihang University, China
Kuan-Ching Li, Providence University, Taiwan
Maozhen Li, Brunel University - Uxbridge, UK
Dan Lin, Missouri University of Science and Technology, USA
Wei-Ming Lin, University of Texas at San Antonio, USA
Panos Linos, Butler University, USA

                            7 / 157



Xiaoqing (Frank) Liu, Missouri University of Science and Technology, USA
Xiaodong Liu, Edinburgh Napier University, UK
Xumin Liu, Rochester Institute of Technology, USA
Thomas Loruenser, AIT Austrian Institute of Technology GmbH, Austria
H. Karen Lu, CISSP/Gemalto, Inc., USA
Glenn R Luecke, Iowa State University, USA
Mon-Yen Luo, National Kaohsiung University of Applied Sciences, Taiwan
Ilias Maglogiannis, University of Central Greece - Lamia, Greece
Rabi N. Mahapatra, Texas A&M University, USA
Shikharesh Majumdar, Carleton University, Canada
Olivier Markowitch, Universite Libre de Bruxelles, Belgium
Ming Mao, University of Virginia, USA
Attila Csaba Marosi, MTA SZTAKI Computer and Automation Research Institute/Hungarian Academy of
Sciences - Budapest, Hungary
Keith Martin, University of London Egham Hill, UK
Gregorio Martinez, University of Murcia, Spain
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Philippe Massonet, CETIC, Belgium
Michael Maurer, Vienna University of Technology, Austria
Per Håkon Meland, SINTEF ICT, Norway
Jean-Marc Menaud, Mines Nantes, France
Andreas Menychtas, National Technical University of Athens, Greece
Jose Merseguer, Universidad de Zaragoza, Spain
Shigeru Miyake, Hitachi Ltd., Japan
Mohamed Mohamed, IBM US Almaden, USA
Owen Molloy, National University of Ireland – Galway, Ireland
Patrice Moreaux, LISTIC/Polytech Annecy-Chambéry, Université Savoie Mont Blanc, France
Paolo Mori, Istituto di Informatica e Telematica (IIT) - Consiglio Nazionale delle Ricerche (CNR), Italy
Claude Moulin, Technology University of Compiègne, France
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Masayuki Murata, Osaka University, Japan
Hidemoto Nakada, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Rich Neill, Cablevision Systems, USA
Surya Nepal, CSIRO ICT Centre, Australia
Rodrigo Neves Calheiros, University of Melbourne, Australia
Toan Nguyen, INRIA, France
Bogdan Nicolae, IBM Research, Ireland
Aida Omerovic, SINTEF, Norway
Ammar Oulamara, University of Lorraine, France
Alexander Paar, TWT GmbH Science and Innovation, Germany
Claus Pahl, Dublin City University, Ireland
Brajendra Panda, University of Arkansas, USA
Massimo Paolucci, DOCOMO Labs, Italy
Alexander Papaspyrou, Technische Universität Dortmund, Germany
Valerio Pascucci, University of Utah, USA
David Paul, University of New England, Australia
Al-Sakib Khan Pathan, International Islamic University Malaysia (IIUM), Malaysia
Siani Pearson, Hewlett-Packard Laboratories, USA

                            8 / 157



Antonio J. Peña, Barcelona Supercomputing Center, Spain
Giovanna Petrone, University of Torino, Italy
Sabri Pllana, University of Vienna, Austria
Agostino Poggi, Università degli Studi di Parma, Italy
Jari Porras, Lappeenranta University of Technology, Finland
Thomas E. Potok, Oak Ridge National Laboratory, USA
Francesco Quaglia, Sapienza Univesita' di Roma, Italy
Xinyu Que, IBM T.J. Watson Researcher Center, USA
Manuel Ramos Cabrer, University of Vigo, Spain
Rajendra K. Raj, Rochester Institute of Technology, USA
Danda B. Rawat, Georgia Southern University, USA
Christoph Reich, Hochschule Furtwangen University, Germany
Dolores Rexachs, University Autonoma of Barcelona (UAB), Spain
Sebastian Rieger, University of Applied Sciences Fulda, Germany
Sashko Ristov, “Ss. Cyril and Methodius” University of Skopje, Macedonia
Norbert Ritter, University of Hamburg, Germany
Ivan Rodero, Rutgers University, USA
Daniel A. Rodríguez Silva, Galician Research and Development Center in Advanced Telecomunications"
(GRADIANT), Spain
Paolo Romano, Instituto Superior Técnico/INESC-ID Lisbon, Portugal
Thomas Rübsamen, Furtwangen University, Germany
Hadi Salimi, Iran University of Science and Technology - Tehran, Iran
Altino Sampaio, Instituto Politécnico do Porto, Portugal
Iñigo San Aniceto Orbegozo, Universidad Complutense de Madrid, Spain
Elena Sanchez Nielsen, Universidad de La Laguna, Spain
Volker Sander, FH Aachen University of Applied Sciences, Germany
Gregor Schiele, Digital Enterprise Research Institute (DERI) at the National University of Ireland, Galway
(NUIG), Ireland
Michael Schumacher-Debril, Institut Informatique de Gestion - HES-SO, Switzerland
Wael Sellami, Faculty of Economic Sciences and Management of Sfax, Tunisia
Hermes Senger, Federal University of Sao Carlos, Brazil
Larry Weidong Shi, University of Houston, USA
Alan Sill, Texas Tech University, USA
Fernando Silva Parreiras, FUMEC University, Brazil
Luca Silvestri, University of Rome "Tor Vergata", Italy
Alex Sim, Lawrence Berkeley National Laboratory, USA
Luca Spalazzi, Università Politecnica delle Marche - Ancona, Italy
George Spanoudakis, City University London, UK
Rizou Stamatia, Singular Logic S.A., Greece
Marco Aurelio Stelmar Netto, IBM Research, Brazil
Hung-Min Sun, National Tsing Hua University, Taiwan
Yasuyuki Tahara, University of Electro-Communications, Japan
Domenico Talia, DIMES - Unical, Italy
Jie Tao, Steinbuch Centre for Computing/Karlsruhe Institute of Technology (KIT), Germany
Joe M. Tekli, Lebanese American University, Lebanon
Orazio Tomarchio, University of Catania, Italy
Stefano Travelli, Entaksi Solutions Srl, Italy
Parimala Thulasiraman, University of Manitoba, Canada

                            9 / 157



Ruppa Thulasiram, University of Manitoba, Canada
Raul Valin, Swansea University, UK
Carlo Vallati, University of Pisa, Italy
Geoffroy R. Vallee, Oak Ridge National Laboratory, USA
Luis Miguel Vaquero-Gonzalez, Hewlett-Packard Labs Bristol, UK
Michael Vassilakopoulos, University of Thessaly, Greece
Jose Luis Vazquez-Poletti, Universidad Complutense de Madrid, Spain
Luís Veiga, Instituto Superior Técnico - ULisboa / INESC-ID Lisboa, Portugal
Salvatore Venticinque, Second University of Naples - Aversa, Italy
Mario Jose Villamizar Cano, Universidad de loa Andes - Bogotá, Colombia
Salvatore Vitabile, University of Palermo, Italy
Bruno Volckaert, Ghent University - iMinds, Belgiums
Lizhe Wang, Center for Earth Observation & Digital Earth - Chinese Academy of Sciences, China
Zhi Wang, Florida State University, USA
Mandy Weißbach, University of Halle, Germany
Philipp Wieder, Gesellschaft fuer wissenschaftliche Datenverarbeitung mbH - Goettingen (GWDG),
Germany
John Williams, Massachusetts Institute of Technology, USA
Peter Wong, SDL Fredhopper, Netherlands
Christos Xenakis, University of Piraeus, Greece
Hiroshi Yamada, Tokyo University of Agriculture and Technology, Japan
Chao-Tung Yang, Tunghai University, Taiwan R.O.C.
Hongji Yang, De Montfort University (DMU) - Leicester, UK
Yanjiang Yang, Institute for Infocomm Research, Singapore
Ustun Yildiz, University of California, USA
Qi Yu, Rochester Institute of Technology, USA
Jong P. Yoon, Mercy College - Dobbs Ferry, USA
Jie Yu, National University of Defense Technology (NUDT), China
Ze Yu, University of Florida, USA
Massimo Villari, University of Messina, Italy
Vadim Zaliva, Tristero Consulting / Carnegie Mellon University (CMU), USA
José Luis Zechinelli Martini, Fundación Universidad de las Américas, Puebla (UDLAP), Mexico
Baokang Zhao, National University of Defence Technology, China
Xinghui Zhao, Washington State University Vancouver, Canada
Zibin Zheng, Sun Yat-sen University, China
Jingyu Zhou, Shanghai Jiao Tong University, China
Hong Zhu, Oxford Brookes University, UK
Wolf Zimmermann, University of Halle, Germany

                           10 / 157



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

                           11 / 157



Table of Contents

Impact of Cloud Computing on Enhancing the Use of Renewable Energy
Kwa-Sur Tam

1

Towards Using Homomorphic Encryption for Cryptographic Access Control in Outsourced Data Processing
Stefan Rass and Peter Schartner

7

Data Center Network Structure Using Hybrid Optoelectronic Routers
Yuichi Ohsita and Masayuki Murata

14

The Impact of Public Cloud Price Schemes on Multi-Tenancy
Uwe Hohenstein and Stefan Appel

22

A Novel Framework for Simulating Computing Infrastructure and Network Data Flows Targeted on Cloud
Computing
Peter Krauss, Tobias Kurze, Achim Streit, and Bernhard Neumair

30

Overcome Vendor Lock-In by Integrating Already Available Container Technologies - Towards Transferability in
Cloud Computing for SMEs
Peter-Christian Quint and Nane Kratzke

38

Cloud Data Denormalization of Anonymous Transactions
Aspen Olmsted and Gayathri Santhanakrishnan

42

Modeling Non-Functional Requirements in Cloud Hosted Application Software Engineering
Santoshi Devata and Aspen Olmsted

47

Enabling Resource Scheduling in Cloud Distributed Videoconferencing Systems
Alvaro Alonso, Pedro Rodriguez, Ignacio Aguado, and Joaquin Salvachua

51

Energy Saving in Data Center Servers Using Optimal Scheduling to Ensure QoS
Conor McBay, Gerard Parr, and Sally McClean

57

Model Driven Framework for the Configuration and the Deployment of Applications in the Cloud
Hiba Alili, Rim Drira, and Henda Hajjami ben ghezala

61

Modeling Workflow of Tasks and Task Interaction Graphs to Schedule on the Cloud
Mahmoud Naghibzadeh

69

Instruments for Cloud Suppliers to Accelerate their Businesses
Fred Kessler, Stella Gatziu Grivas, and Claudio Giovanoli

76

                               1 / 2                           12 / 157



How to Synchronize Large-Scale Ultra-Fine-Grained Processors in Optimum-Time
Hiroshi Umeo

81

Dynamic Power Simulator Utilizing Computational Fluid Dynamics and Machine Learning for Proposing Task
Allocation in a Data Center
Kazumasa Kitada, Yutaka Nakamura, Kazuhiro Matsuda, and Morito Matsuoka

87

Analysis of Virtual Networking Options for Securing Virtual Machines
Ramaswamy Chandramouli

95

Profiling and Predicting Task Execution Time Variation of Consolidated Virtual Machines
Maruf Ahmed and Albert Y. Zomaya

103

Data Locality via Coordinated Caching for Distributed Processing
Max Fischer and Eileen Kuehn

113

Enhancing Cloud Security and Privacy: The Cloud Audit Problem
Bob Duncan and Mark Whittington

119

Enhancing Cloud Security and Privacy: The Power and the Weakness of the Audit Trail
Bob Duncan and Mark Whittington

125

Online Traffic Classification Based on Swarm Intelligence
Takumi Sue, Yuichi Ohsita, and Masayuki Murata

131

Comparing Replication Strategies for Financial Data on Openstack based Private Cloud
Deepak Bajpai and Ruppa K. Thulasiram

139

Powered by TCPDF (www.tcpdf.org)

                               2 / 2                           13 / 157



Impact of Cloud Computing on Enhancing the Use of Renewable Energy 

 

Kwa-Sur Tam 

Department of Electrical & Computer Engineering 

Virginia Tech 

Blacksburg, Virginia, U.S.A. 

Email: ktam@vt.edu 

 

 

Abstract — Renewable energy has been identified as one of the 

disruptive technologies that have the potential for massive 

impact on the society for the coming years.  A major concern 

for using renewable energy such as solar photovoltaics and 

wind is its variable nature.  The importance of this concern is 

increasing in recent years as the penetration levels of 

renewable energy have been increasing rapidly in the electric 

power grids worldwide.  Forecasting is a major tool that can be 

used to address the variable nature of renewable energy.  

Cloud Computing provides the enabling technology to handle 

the complexity of renewable energy forecasting and can 

enhance more widespread and more effective utilization of 

renewable energy.  This paper presents the new applications of 

using Cloud Computing to enhance the use of renewable 

energy through the achievement of two goals.  The first goal is 

to present a Cloud Computing-enabled renewable energy 

forecasting system--the FaaS (Forecast-as-a-Service) 

framework--to demonstrate the technical feasibility. Based on 

the service-oriented architecture (SOA), the FaaS has been 

successful in generating user-specified solar or wind forecast 

on demand and at reasonable costs.  Using the FaaS as the 

starting point, the second goal of this paper is to present from a 

broader perspective the potential impact of Cloud Computing 

on the use of renewable energy.  Cloud Computing, coupled 

with other technology trends, supports the development of new 

applications and business models that could flourish the 

renewable energy industry. 

 
Keywords – Cloud Computing; services; service-oriented 

architecture; forecasting; renewable energy; cyberinfrastructure. 

I.  INTRODUCTION  

Providing almost unlimited computing resources on a 
pay-per-use basis, Cloud Computing provides new options 
for data-intensive and computation-intensive applications.  
Cloud computing not only makes possible the completion of 
complex computational tasks within shorter time frames but 
also enables such capabilities to be available at affordable 
costs.  This paper describes the impact of Cloud Computing 
on the use of renewable energy. 

Renewable energy has been identified as one of the 
disruptive technologies that have the potential for massive 
impact on the society for the coming years [1].  A major 
concern for using renewable energy such as solar 
photovoltaics and wind is its variable nature.  The 
importance of this concern is increasing in recent years as the 
penetration levels of renewable energy have been increasing 

rapidly in the electric power grids worldwide.  Forecasting is 
a major tool that can be used to address the variable nature of 
renewable energy.  Based on the forecast information, 
variability can be accommodated on the power supply side 
by implementing measures such as generation scheduling 
and storage backup, and on the power consumption side by 
implementing demand-side management and demand 
response programs.  Accurate forecasting of renewable 
energy will provide important contribution to the realization 
of smart grid and enable more widespread and efficient 
utilization of renewable energy.  Cloud Computing provides 
the enabling technology to handle the complexity of 
renewable energy forecasting.  

This paper presents the new applications of using Cloud 

Computing to enhance the use of renewable energy through 

the achievement of two goals.  The first goal is to present a 

Cloud Computing-enabled renewable energy forecasting 

system--the FaaS (Forecast-as-a-Service) framework--to 

demonstrate the technical feasibility. Based on the service-

oriented architecture (SOA), the FaaS has been successful in 

generating user-specified solar or wind forecast on demand 

and at reasonable costs.  The FaaS framework can be used 

as a software-as-a-service (SaaS) to provide prospecting or 

operational forecast for solar or wind power systems.  It can 

also be used as a platform-as-a-service (PaaS) to develop 

more capabilities or more customized functionalities. 

Using the FaaS as the starting point, the second goal of 

this paper is to present from a broader perspective the 

potential impact of Cloud Computing on the use of 

renewable energy.  Cloud Computing, coupled with other 

technology trends, supports the development of new 

applications and business models that could flourish the 

renewable energy industry. 

This paper offers contributions that are different from 

those reported in existing literature.  Although both the FaaS 

and the CloudCast [2] are concerned with forecasting, FaaS 

is different from CloudCast not only in terms of the services 

provided but also in terms of the underlying design.  Efforts 

to bring together service-oriented architecture and Cloud 

Computing have been reported in the literature [3][4].  FaaS 

is different from these efforts in that FaaS also addresses 

service pricing issues.  There are patterns for object-oriented 

software design [5] and patterns for SOA service design [6].  

The FaaS Framework may be viewed as the preliminary 

version of a Cloud Computing pattern for on-demand 

1Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           14 / 157



quantitative forecasting processes.  By improving the 

flexibility and economics of renewable energy forecasting 

services, FaaS also achieves the goal of Services Computing 

[7]. 

Section II presents the concepts and implementation of 

the FaaS framework and the forecasting results generated.  

Broader impact of Cloud Computing on the use of 

renewable energy is discussed in Section III.  Conclusions 

are contained in Section IV. 

 

II. CLOUD-ENABLED FORECASTING SYSTEM 

As shown on the top of Figure 1, a quantitative 

forecasting process may be grouped into four major steps: 

problem definition; data collection; analysis and model 

formulation; and forecast generation. .  Using the principles 

of service-oriented architecture (SOA), each of these major 

steps can be performed by a composite service.  Figure 1 

shows the layered organization of a SOA framework used in 

the FaaS framework for the forecasting of renewable 

energy.  Services in the Service Layer consist of the 

fundamental and agnostic services that are not coupled to 

any specific application.  They perform tasks such as data 

transfer over the Internet (Transfer Tools services), 

statistical analysis (Statistical Tools services), forecasting 

(Forecast Tools services), etc.  Many of these basic services 

are used in both the wind and the solar power forecasting 

processes. 

On top of the Service Layer are the Composite Service 

and Workflow Layer.  The External Data Collection 

Framework (EDCF) is responsible for gathering relevant 

data from different sources over the Internet.  These data are 

available from a variety of sources: federal agencies, 

national databases and archives, private organizations, 

universities, data vendors and equipment vendors.  From 

these sources, different types of data are rendered in 

different formats: satellite images, sensor measurement data, 

computer model data, vendor product data, etc.   

The Internal Data Retrieval Framework (IDRF) 

processes and analyses the externally collected data and 

stores the results as internal data for future uses.  The 

Forecast Generation Framework (FGF) generates the 

pertinent forecast of either wind or solar power at the 

location specified by the user.  The FaaS controller serves to 

organize the entire forecast process and orchestrates 

different services to implement the workflow. 

Each of the major steps shown on top of Figure 1 is 

performed by a composite service: the EDCF for data 

collection; the IDRF for the support of analysis and model 

formulation; the FGF for forecasting and the FaaS controller 

for problem definition and overall coordination. 

The EDCF, IDRF, FGF and the FaaS controller are all 

composite services designed by applying SOA principles 

[6][8].  They are implemented by using the Windows 

Communication Foundation (WCF) [9], Microsoft Azure 

and .NET technologies [10].   

 

EDCF
IDRF

FGF

.NET 

Services

Data Collection Analysis and Model Formulation Forecasting

Problem Definition

·   ·   ·

Internal 

Data

Sources

External

Data

Sources

Foundation 

Tools

Transfer

Tools

Forecast 

Tools

     FaaS Controller

Service Layer

Statistical 

Tools

Composite Service Layer

 
 

Figure 1.   A SOA-based framework for the forecasting process 

 
 

 
 
Figure 2.   Implementation of the FaaS framework using Windows Azure 
 

Figure 2 shows the implementation of the FaaS system 

using the Windows Azure Cloud Computing platform.  To 

initiate a forecast process, a user through a web page 

specifies the renewable energy source (solar or wind), the 

location (latitude and longitude), the kind of forecasting 

2Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           15 / 157



services (prospecting or operational), uncertainty 

quantification (with or without), and whether characteristics 

of energy conversion equipment (such as a particular model 

of a solar panel or a wind turbine from a list of 

manufacturers) should be included in the computation to 

make the forecast more realistic.  Based on the customer-

specified forecast request, the FaaS controller formulates a 

workflow consisting of all the tasks that need to be 

performed. 

If relevant data are not available in the internal database 

(bottom layer in Figure 1), the FaaS controller informs the 

EDCF to obtain the needed data from external sources over 

the Internet and store the collected data in the Azure Blob 

storage.  The FaaS system keeps a database of external data 

sources in a Meta Data Repository (MDR).  MDR stores 

information about what kind of data a data source provides, 

the web address, the protocol for data access and the data 

format.  Based on the metadata from the MDR, the EDCF 

initiates a data collection process to gather data for the 

location (or the nearest location) requested by the user from 

the pertinent data source.  The EDCF utilizes the Transfer 

Tools services (shown in Figure 1) and other basic services 

to accomplish the external data collection process. 

The IDRF takes the raw data from the Azure Blob 

storage, performs data analysis and stores the results in the 

Azure Table storage in the standardized formats for which 

the forecasting models are designed.  As a composite 

service, the IDRF utilizes the appropriate services based on 

the metadata for the raw data.  For example, the Statistical 

Tools service is used to generate statistics for long term 

historical data analysis.  The Discrete Fourier Transform 

service is used to generate frequency domain components. 

Using data prepared by the IDRF and stored in the Azure 

Table storage, the FGF generates the forecast based on the 

user’s request.  Different forecasting methods are 

implemented as services and used by the FGF.  The forecast 

results are emailed to the user. 

Because of the variety of information involved in the 

FaaS framework, it is important to have a well-organized 

Meta Data Repository (MDR) and an effective Meta Data 

Repository Management System (MDRMS) [11].  EDCF, 

IDRF, FGF and the FaaS controller all interact with the 

MDR through the MDRMS. 

Figure 3 shows an example of the results provided by the 

FaaS system in response to a request for solar power 

forecast for operational planning purpose.  The forecast is 

performed at the user-specified location in terms of latitude 

and longitude.  If data is not available internally or 

externally for the requested location, data for the nearest 

location with data will be used to generate the forecast and 

the user will be notified of this distance.  For example, 

Figure 3 shows that the distance between the requested and 

actual location for the forecast is 2.52 km.  A number of 

basic services have been developed for tasks such as the 

computation of distances based on longitude and latitude 

coordinates, calculation of sky clearness index (KD in 

Figure3), statistical analysis of data, etc.  Figure 3 shows 

that the day ahead solar energy forecast is 6.036 kWh/m
2
. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.   An example of forecast results in response to a request 

 
Due to the complexity of SOA, the costs of SOA-based 

projects are difficult to estimate although there have been 

attempts to do so [12][13].  This project attempts to develop 

a method to price services so that a customer has the option 

to decide whether to proceed with the forecast request after 

viewing the estimated cost.  The approach taken by the FaaS 

adopts the divide-and-conquer concept and product pricing 

concepts [14]. 

The price of each service is computed by using a 3-step 

process. 

Step 1: Calculate the total cost by combining the cost of 

manpower for software development, the cost of resources 

utilized, etc., and imposing an overhead rate and indirect 

costs.   

Step 2: Estimate the expected number of usage of this 

service over a time horizon before the next major update.   

Step 3:  Divide the total cost computed in step 1 by the 

expected number of usages in step 2 to obtain the service 

price per usage.  

When services are combined to form composite services, 

the prices of constituent services are included in the cost of 

resources utilized.  All the costs and prices are updated 

periodically after more usage information becomes 

available. 

You requested operational forecast data. 
Time of Report Delivery         3/24/2013 7:04:47 PM GMT 
Time of Request                 3/24/2013 7:04:44 PM GMT 
 
Cost                           16.68 dollars 
 
Location: Name            Blacksburg, Virginia 
 

Latitude   37.217    Latitude you entered     37.2 
 

Longitude  80.417 W    Longitude you entered  80.4 W 
 
State Code     VA 
 
Source of Renewable Energy   Solar 
 
Solar Panel:   Vendor       Sun Power 
                 Model        SPR-200-WHT-U 
                 Efficiency      16.08 % 
 
Distance between requested and actual location:      2.52 km 
 
Day-ahead Forecasted Energy Production:     6.036 kWh/m^2 
 
KD : 0.705 

3Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           16 / 157



To implement this pricing method, each service is 

equipped with two endpoints – one endpoint is used for 

technical functionalities and the second endpoint is used for 

pricing purposes.  When a service is consumed because of 

its technical functionalities, the pricing endpoint of the same 

service will also be incorporated into the overall pricing 

workflow.  When a certain mission is accomplished by a 

sequence (or workflow) of services, not only the technical 

requirement is met but the associated price of accomplishing 

the mission is also calculated. 

Using the economic endpoints of all services involved, 

the FaaS controller estimates the cost for the request and 

send the cost estimate to the requester.  If the requester 

accepts the estimated cost, the requester will provide the 

email address to which the forecast results will be sent.  The 

FaaS system will then perform the required tasks in the 

cloud and deliver the forecast results over the Internet after 

the work is complete. 

Figure 3 shows that the estimated cost for that particular 

forecast request is US$ 16.68.  Table I shows an example of 

the overall solar forecasting cost and the costs of the 

composite services for project prospecting and operational 

planning, respectively.  The prices for prospecting forecasts 

are usually higher than those of the operational forecasts 

because they involve data over longer time horizons and 

utilize more computational resources.  Results of this project 

indicate that the costs of prospecting forecasts are in the 

range of US$ 60-80 per request while the costs for 

operational forecasts are in the range of US$ 10-20 per 

request.  Additional services, such as uncertainty 

quantification, can be requested for additional prices in the 

order of a few dollars.  These costs are much lower than the 

monthly or annual subscription fees charged by current 

renewable energy forecast service vendors. 

Figure 4 shows the application of the FaaS system to 

solar power forecasting.  A similar diagram can be drawn to 

show the application of the FaaS system to wind power 

forecasting.  As shown in the upper half of Figure 4, a large 

volume of data is needed for solar power forecasting.  These 

data are available from a variety of sources that provide data 

of different types and in different formats.  The EDCF is 

designed to obtain data of different types from various 

sources over the Internet and store them in the Azure Blob 

storage.  The IDRF processes the raw data into a unified 

format useful for the different forecasting methods 

implemented as services.  This two-step process is the 

approach adopted by the FaaS system to handle big data.  

FaaS demonstrates that automated collection and processing 

of large amount of data in various formats and from 

different sources is a unique capability provided by Cloud 

Computing. 

As shown in the lower half of Figure 4, this framework 

delivers different types of forecasts to different types of 

users.  There are potential users who want forecasts of 

future solar power production to support the making of 

investment decisions.  Current users of solar power need to 

know the short-term forecasts to make arrangement for 

operation.  Electric utilities need to know the solar power 

forecast with quantified uncertainty to properly plan for 

their operation.  The FaaS system delivers a variety of user-

specified forecast results over the Internet to meet forecast 

needs at reasonable costs.  On-demand delivery of user-

specified services at different levels of details for various 

kinds of applications is another unique capability provided 

by Cloud Computing. 

 

TABLE I.  AN EXAMPLE OF THE COSTS OF FORECASTING SERVICES 

 

 

Power

Companies

Solar 

Photovoltaics 

Power

Producers

Forecast Generator Framework

(FGF)

External Data Collection Framework

(EDCF)

Azure

Platform

Potential

Solar 

Photovoltaics

Users/Producers

Sources of

Weather 

Information 

Sources of

Measurement

Data

Solar 

Photovoltaics 

Power

Users

FaaS 

Controller

Sources of

Historic 

Data

Sources of

Photovoltaic

System

Information

Internal 

Data

Retrieval

Framework

(IDRF)

Internal

Data

Sources

 
 

Figure 4.   Application of FaaS to solar energy forecasting 
 

III. IMPACT OF CLOUD COMPUTING 

Renewable energy forecasting is data-intensive and 

computation-intensive.  Providing almost unlimited 

computing resources on demand, Cloud Computing 

provides new options for the computation and delivery of 

different kinds of services, and opens up new opportunities 

for entrepreneurs to establish new business models.  

Creativity and innovativeness of entrepreneurship will add 

Forecast 

Type 

Service Cost  

(US $) 

Overall Cost  

(US $) 

 

Project  

Prospecting 

  

EDCF 10.55  

62.89 IDRF 32.02 

FGF 20.32 

FGF   

(with UQ) 

 

22.87 

 

65.44 

Operational 

Planning 

  

EDCF 3.84  

13.92 IDRF 3.06 

FGF 7.02 

4Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           17 / 157



new impetus to enable more widespread utilization of 

renewable energy and will hasten the fulfillment of its 

potential to meet the energy needs of human society. 

Depending on what responsibilities are shifted to the 

cloud, current and potential users of renewable energy can 

choose a service model and a deployment model most 

appropriate for their respective situations.  SaaS provides 

flexibility and cost effectiveness.  An organization only 

needs to connect to the forecast application software 

through a Web browser and use it, without the hassle and 

expense of developing, implementing, or supporting it.  

FaaS is an example of such an application. 

The FaaS framework enables different users to specify 

and pay for only the forecast services they need on demand.  

Cloud-based systems, such as the FaaS, are especially 

meaningful to individuals and small companies that would 

like to consider using renewable energy but lacks the 

resources to obtain forecast information that fits their 

particular needs.  Cloud-based systems, such as the FaaS 

framework, can provide a broad impact by removing some 

barriers for more widespread use of renewable energy.  

Although some government agencies and large research labs 

that have substantial computing resources have the 

capability to perform similar computational tasks as those 

described in this paper, these organizations do not provide 

on-demand forecasting services at affordable prices to the 

general public, especially for customized services at 

customer-specified locations.  A few commercial vendors 

provide forecasting services but they usually demand higher 

prices and long-term commitment.  Since a Cloud-based 

system, such as the FaaS system, can provide customized 

forecast services on an on-demand pay-only-what-you-need 

basis, it plays an important role in making renewable energy 

forecasting widely accessible and affordable for current and 

potential renewable energy users. 

The use of PaaS is appropriate when new capabilities 

need to be developed for a particular application.  Generic 

services delivered with the PaaS can increase the speed of 

development and reduce costs.  FaaS can function as a PaaS 

and provide these benefits by making its underlying services 

(developed as SOA services) available to developers to 

build new composite services and application-specific 

services as well as workflows.  Users that want to use FaaS 

as PaaS have access to the service libraries to develop new 

capabilities by using/modifying/adding SOA services. 

Forecasting renewable energy availability is even more 

important for isolated power systems because the forecasts 

enable the system operators to better prepare and manage 

the balance between the load demand and the power 

generation.  Convenient and cost-effective access to 

accurate renewable energy forecasting can encourage the 

use of renewable energy especially in rural areas where it is 

expensive to build electric power transmission and 

distribution infrastructures.  Efforts by the U.S. Department 

of Agriculture to develop wireless broadband access in 

small and medium-sized communities would enable the 

availability of Cloud-based forecast systems, such as the 

FaaS system, to many new renewable energy users. 

Internet access is essential for the benefits of Cloud 

Computing to materialize.  Mobile Internet technology, 

consisting largely of smartphones and tablets, has been 

undergoing fast growth in recent years not only in 

developed countries but even more remarkably in 

developing countries.  Because of the prohibitive cost of 

building conventional wired infrastructure in developing 

countries, wireless Internet is expected to grow very rapidly 

in the coming years [15].  In parallel to this development, 

Cloud-based forecasting services delivered over mobile 

Internet are especially useful for the development of 

distributed renewable energy systems in developing 

countries where electric power grids have not been 

extensively developed, especially in rural areas. 

Due to the advance in technologies such as miniature 

sensors and wireless networks, Internet of Things (IoT) will 

be widely adopted especially in health care, infrastructure 

and public-sector services in the coming years [16].  By 

using sensors to gather information which is then 

transmitted using wireless networks, IoT is bringing 

significant improvement to remote monitoring.  With more 

information gathered by using IoT on a continual basis, the 

number of information sources shown in the upper portion 

of Figure 4 will increase significantly.  Because of the 

amount of data generated, Cloud Computing technologies 

have been suggested to merge with IoT to form the Cloud of 

Things (CoT) [17].  CoT combines two of the twelve 

disruptive technologies that will transform life, business, 

and the global economy in the coming years [1].  Renewable 

energy forecasting and effective utilization of renewable 

energy can benefit greatly from the information collected by 

using IoT and processed/analyzed by using CoT.  The FaaS 

system presented in this paper may be viewed as an early 

version of a more comprehensive CoT system along this 

trend. 

Urbanization is an important factor to be included in the 

planning for sustainability.  Currently more than half of the 

world population lives in the cities.  Urban areas of the 

world are expected to absorb almost all the future 

population growth while at the same time drawing in some 

of the rural population.  To handle the issues caused by 

growing urbanization, cities need to be transformed into 

“smart cities” that manage their resources (including 

renewable energy sources) efficiently.  Internet of Things 

and Cloud Computing are enabling technologies that can 

increase the “smartness” by increasing the cities’ awareness 

of its environment and situations.  Along this direction, the 

ClouT project has been initiated as a collaborative project 

jointly funded by the 7
th

 Framework Programme of the 

European Commission and by the National Institute of 

Information and Communications Technology of Japan.  

Cloud-based data collection and analytic systems, such as 

the FaaS system, will play an important role in smart cities 

in the future. 

5Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           18 / 157



In the future, the FaaS framework may be expanded 

into an even more powerful Cyber-Infrastructure For 

Renewable Energy (CIFRE) as shown in Figure 5.  CIFRE 

will serve as a focal point for obtaining and sharing data and 

information, upgrading models by using new and shared 

data, sharing different kinds of SOA services to build new 

applications, combining forecasts obtained from using 

different approaches and from different forecasters, 

collaboration and cooperation between different 

combinations of stakeholders, education and training, etc.  

Cloud Computing will be instrumental in the development 

and deployment of CIFRE. 

 

Cyber Infrastructure For Renewable Energy 

(CIFRE)

DATA

SERVICES

Researchers

Forecasters
Educators

Electric Car Owners

Renewable Energy 

Users

Microgrid Operators

Entrepreneurs

Farmers

Others

Utilities

 
 
Figure 5.   CIFRE (Cyber infrastructure for renewable energy) in the cloud 

 

IV. CONCLUSIONS 

This paper presents a Cloud Computing-enabled 

renewable energy forecasting system--the FaaS (Forecast-

as-a-Service) framework.  Based on the service-oriented 

architecture, the FaaS has been successful in generating 

user-defined solar or wind forecast on demand at reasonable 

costs.  FaaS demonstrates that Cloud Computing offers two 

unique capabilities in the forecasting of renewable energy.  

The first one is automated collection and processing of large 

amount of data in various formats and from different 

sources.  The second one is on-demand delivery of user-

specified services at different levels of details for various 

kinds of applications. 

A service pricing method that equips each service with a 

technical endpoint and an economic endpoint has been 

developed for the FaaS framework.  When a mission is 

accomplished by a workflow, not only the technical 

requirement is met but the associated price is also calculated 

by using this method. 

The broader impact of Cloud Computing on the use of 

renewable energy is presented.  Coupled with mobile 

internet and Internet of things, Cloud Computing supports 

the development of new applications such as Cloud of 

things, smart cities, CIFRE and more widespread utilization 

of renewable energy in the rural areas. 

ACKNOWLEDGMENT  

This work is partially supported by the U.S. National 
Science Foundation under Grant 1048079.  Contribution 
from Rakesh Sehgal is acknowledged. 

 

REFERENCES 

[1] J. Manyika, et al., Disruptive Technologies: Advances That 

Will Transform Life, Business, And The Global Economy, 

McKinsey Global Institute, 2013. 

[2] D. Krishnappa, D. Irwin, E. Lyons and M. Zink, “CloudCast: 

Cloud Computing for short-term weather forecasts”, 

Computing in Science & Engineering, pp. 30-37, 2013. 

[3] Y. Wei, K. Sukumar, C. Vecchiola, D. Karunamoorthy and R. 

Buyya1, “Aneka cloud application platform and its integration 

with Windows Azure”, Chapter 27, Cloud Computing: 

Methodology, Systems, and Applications, CRC Press, 2011. 

[4] W. Tsai, X. Sun and J. Balasooriya, “Service-Oriented Cloud 

Computing Architecture”, Seventh International Conference 

on Information Technology, pp. 684-689, 2010. 

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns 

Elements of Reusable Object-Oriented Software, Addison-

Wesley, 1995. 

[6] T. Erl, SOA Design Patterns, Prentice Hall, 2009. 

[7] J. Zhao, M. Tanniru, L. Zhang, “Services computing as the 

foundation of enterprise agility: Overview of recent advances 

and introduction to the special issue”, Information System 

Front, Vol. 9, pp. 1–8, 2007. 

[8] T. Erl, SOA Principles of Service Design, Prentice Hall, 2008. 

[9] J. Lowy, Programming WCF Services, Third Edition, 

O’REILLY 2010. 

[10] D. Chou, et al., SOA with .NET & Windows Azure, Prentice 

Hall, 2010. 

[11] D. Marco and M. Jennings, Universal Meta Data Models, 

Wiley Publishing Inc., 2004. 

[12] L. Yusuf, et al., “A Framework for Costing Service-Oriented 

Architecture (SOA) Projects Using Work Breakdown 

Structure (WBS) Approach”, Global Journal of Computer 

Science and Technology, Vol. 11, Issue 15, pp. 35-47, 2011. 

[13] Z. Li and J. Keung, “Software Cost Estimation Framework for 

Service-Oriented Architecture Systems using Divide-and-

Conquer Approach”, Proc. Fifth IEEE International 

Symposium on Service Oriented System Engineering, pp. 47-

54, 2010. 

[14] H. Snyder and E. Davenport, Costing and Pricing in the 

Digital Age, Library Association Publishing, 1997. 

[15] Wireless Internet Institute, The Wireless Internet Opportunity 

for Devel oping Countries, World Times Inc, 2003. 

[16] P. Parwekar, ”From Internet of Things towards Cloud of 

Things”, Proceedings, 2nd International Conference on 

Computer and Communication Technology (ICCCT-2011), 

pp. 329 – 333,  2011. 

[17] M. Aazam, et al., “Cloud of Things: Integrating Internet of 

Things and Cloud Computing and the issues involved”, 

Proceedings 11th International Bhurban Conference on 

Applied Sciences & Technology (IBCAST), Islamabad, 

Pakistan, pp. 414-419,  2014. 

6Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           19 / 157



Towards Using Homomorphic Encryption for
Cryptographic Access Control in Outsourced Data

Processing
Stefan Rass, Peter Schartner

Universität Klagenfurt, Department of Applied Informatics
email: {stefan.rass, peter.schartner}@aau.at

Abstract—We report on a computational model for data pro-
cessing in privacy. As a core design goal here, we will focus on
how the data owner can authorize another party to process data
on his behalf. In that scenario, the algorithm or software for
the processing can even be provided by a third party. The goal
is here to protect the intellectual property rights of all three
players (data owner, execution environment and software vendor),
while retaining an efficient system that allows data processing in
distrusted environments, such as clouds. We first sketch a simple
method for private function evaluation. On this basis, we describe
how code and data can be bound together, to implement an
intrinsic access control, so that the user remains the exclusive
owner of the data, and a software vendor can prevent any use of
code unless it is licensed. Since there is no access control logic, we
gain a particularly strong protection against code manipulations
(such as “cracking” of software).

Keywords—private function evaluation; cloud computing; licens-
ing; security; cryptography.

I. I NTRODUCTION

Cloud computing is an evolving technology, offering new
services like external storage and scalable data processing
power. Up to now, most cases of data processing, such as
statistical computations on medical data, are subject to most
stringent privacy requirements, making it impossible to have
third parties process such person-related information.

A classical technique to prevent unauthorized parties from
reading confidential information is by use of encryption. Un-
fortunately, this essentially also prevents any form of process-
ing. This work concerns a generic extension [1] to standard
ElGamal encryption, towards enabling permitted parties to
process encrypted information without ever gaining accessto
the underlying data.

The core of this paper is a mechanism to endow the data and
software owner with the capability of allowing or preventing
designated parties from using either the data or the software
for any data processing application. This is to let users retain
full control over their data and software. The licensing scheme
described herein is thus a method of providing or revoking
the explicit consent to data processing in privacy. Moreover,
unlike classical access control techniques, our scheme is cryp-
tographic and as such cannot be circumvented nor deactivated
by standard hacking techniques.

 
 

 

 

provide data /
retrieve results

client

data

data
obtain/grant
license

data confidential?
(encrypted?)

cloud provider

platform software
vendor

buy/distribute
software

software (intellectual property)
protected?

access/usage control
over code and data?

software

software

Figure 1. Example Scenario – Cloud Computing.

The most general scenario to which our licensing scheme
(and computing model) applies involves three entities: first,
there is theclient (CL), who owns data that needs processing.
The second player is thesoftware vendor(SV), who owns
the code for data processing. The third party is theexecution
environment(EE), which is the place where the actual data
processing takes place (e.g., a cloud provider with sufficient
hardware resources, or similar).

Figure 1 illustrates an example scenario, in which a client
hands over its data to a cloud provider who runs third-
party software for data processing services. Security issues are
printed in italics.

Especially the client and software vendor have different
interests, which may include (but are not limited to) the
following:
● The client wants to keep its data confidential and wants

to keep control over how and where it is processed
● The software vendor wants to prevent theft of its computer

programs (software piracy), or other misuse of its software
by unauthorized parties

The execution environment can be seen as theattacker in our
setting: it is the only party that has access to both, the data

7Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           20 / 157



and the algorithms to process it. So, its main interest wouldbe
gaining access to the data, or run the program on data of its
own supply. We emphasize that the described protection does
not automatically extend to the algorithm itself. However,it is
a simple yet unexplored possibility to apply code obfuscation
in the computational model that we sketch in Section I-A.

Based on the above division, we can distinguish the follow-
ing four scenarios:

1) All three entities separated: in this setting, the EE runs
an externally provided software from the SV on data
provided by the CL.

2) SV= EE: an example instantiation of this setting would be
cloud SaaS, such as GoogleDocs. Here, the client obtains
a licence to use a particular software, but seeks to protect
his data from the eyes of the (cloud) provider.

3) CL = SV: here, the client is the one to provide the code for
data analysis, yet seeks to outsource the (perhaps costly)
computation to an external entity, e.g., a cloud provider.

4) CL = EE: the client obtains the software from the SV and
runs the code on its own data within its own premises.
Here, actually no particular licensing beyond standard
measures is required (not even encrypted code execution),
so we leave this scenario out of further investigations.

A. The Basic Idea – Outline of the Main Contributions

Briefly sketching what comes up, we will describe how
algorithms can be executed on encrypted data, using a ablind
Turing machine(BTM) [1]. Leaving the details of BTMs
aside here (for space reasons), the central insight upon which
this work is based is the fact that BTMs require a secret
encoding of the data, which establishes compatibility between
the data and the program that processes it. More specifically,
BTMs, in the way used in this paper, allow the execution of
arbitrary assembly instructions on encrypted data. Briefly(yet
incompletely) summarizing the idea posed in [1], we encrypta
data itemx into a pair(Epk1(x),Epk2(g

x)), wherepk1, pk2 are
two distinct public keys,gx is a cryptographic commitment
to x, and E is any public key encryption. The crux of this
construction is the possibility of comparing two encrypted
valuesx1

?= x2, without revealing either value, based only on
decryptions of the commitmentsx1 = x2 ⇐⇒ gx1 = gx2. Herein,
neither commitment revealsx1 or x2, if computing discrete
logarithm computations are intractable in the underlying group
of E (the trick is similar yet with a different goal as for
commitment consistent encryption; cf. [2]). Hereafter, wewill
use a subgroup of prime orderq within the setZp, when p is
a large safe prime.

Executing arithmetic assembly instructions likeadd A,
B, C, whereA←B+C andB,C are encrypted values, comput-
ing the sum (or any other operation like multiplications, logical
connectives, etc.) can be done by a humble table-lookup, based
on the equality checking of encrypted inputs. Equally obvious
is that the necessary lookup tables have to be small, i.e., we
have only a small number of inputs{x1, . . . ,xn}. Practically,n

is limited to small values ofn, to keep the lookup tables (of
sizeO(n2) feasibly small). Indeed, this is still an advantage of
many fully homomorphic encryption schemes, which work on
the bit-level (where we would haven= 2 for x1 = 0 andx2 = 1
in our setting).

The smallness of the plaintext space, together with the
equality checking of the (so-modified) encryption scheme, also
enables attacks by brute-force trial encryptions (ofx1, . . . ,xn)
and equality checks of the candidate plaintext to decipher
any register content. Thwarting this attack is simple, if the
encryption additionally uses a secret random representative a
to encode the input before encrypting it (thus taking away the
adversary’s ability to brute-force try all possible plaintexts).
That is, the encryption ofx is actually one ofa ⋅ x. To ease
notation in the following, we writeEpk(ga⋅x) as a shorthand of
the secret messagex being encoded with the random valuea,
where the encoding is

x↦ gax. (1)

As a technical condition, we require gcd(a, p−1) = 1.
Our description of the computational model is admittedly

somewhat incomplete, as we do not discuss how memory
access or control flow can be handled in the blind Turing ma-
chine model (when applied to assembly instruction executions).
We leave this route for further exploration along follow up
research, and confine ourselves to the observation that code
(involving encrypted constants like offsets for memory access,
etc.) and data can be made compatible or incompatible, based
on whether the secret encoding used for the code (a valuea)
and the data (another valueb) is equal or not.

The rest of the paper will be devoted to changing the secret
value a – the encoding– or negotiating it between two or
three parties (CL, SV, EE). The respective protocols form
the announcedlicensingscheme, which are nothing else than
the authorizationto use the encryption’s plaintext comparison
facility. Practically, knowledge ofa and the comparison keys
(the secret decryption keysk2 belonging topk2, to decrypt the
commitments) enable (or in absence disable) the ability to run
an arbitrary algorithm on encrypted data.

The authorization is thus bound to knowledge of anevalua-
tion key, which is composed from the comparison token (secret
key sk2), plus the lookup tables (for all assembly instructions).
The encodinga is excludedfrom the evaluation key, so that it
can be given to the EE without enabling it to process data of
its own interest.

Blind Turing machines provide a technical possibility to do
the following upon a combination with the licensing scheme
as described in Section III:

1) Encrypt a software in a way so that only licensed copies
of it can be run on input data. This issecurity for the
software vendor, in the sense of preventing software use
without license, e.g., by the EE.

2) Encrypt data in a way to bind its use to a single li-
censed copy of a software (so that data processing by
unauthorized parties is cryptographically prevented). This

8Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           21 / 157



is security for the client, in the sense of preventing misuse
of either her/his software license or her/his data as given
to the EE.

B. Example Applications

We briefly describe three possible applications, leaving more
of this for extended versions of this work.

Cloud Services for Data Processing:consider an online
service that offers data processing over a web-interface, using
a software that runs remotely within the cloud. The client could
safely input its data through the web-interface, knowing that
the cloud is unable to execute the program (for which the client
has obtained a license) on other data that what comes from the
client. In addition, the client can be sure that the cloud provider
does not learn any of the secret information that the customer
submits for processing.

Such services are already existing, although not at the level
of security that we propose here. One example isGoogle Docs.

En-route information processing: sensor networks and
smart metering infrastructures use decentralized data process-
ing facilities. In case ofsmart metering, data concentrators
collect and preprocess data harvested from the subscribers,
before sending properly compiled information to the head end
for further processing (such as billing, etc.). Using the proposed
licensing scheme, this processing could be done in entirely
encrypted fashion, without “opening or breaking” the encrypted
channel for the sake of intermediate processing.

A third example scenario is theprotection of intellectual
property , namely the firmware that runs inside a device. This
example is expanded in full detail in Section V.

C. Organization of the Paper

Section II discusses related work. Section III is based on the
model for private function evaluation as sketched in Section
I-A, and describes the ideas underneath the main contribu-
tion as described in Section IV. That section also completes
the description of how the authorization is implemented and
granted. Security of our protocols is discussed in Section VI,
and concluding remarks are made in Section VII.

II. RELATED WORK – COMPUTATION IN PRIVACY

Processing encrypted data is traditionally done using one of
three approaches: homomorphic encryption, multiparty compu-
tation (MPC) and garbled circuits (GC). Picking up homomor-
phic encryption as the most recent achievement, many well-
known encryption schemes are homomorphisms between the
plain- and ciphertext spaces. Prominent examples are RSA and
ElGamal encryption, which are both multiplicatively homo-
morphic. Likewise, Paillier encryption [3] enjoys an additive
homomorphic property onZn, wheren is a composite integer
(as for RSA), and the Goldwasser-Micali encryption [4], which
is homomorphic w.r.t. the bitwise XOR-operation.

Surprisingly, until 2009 no encryption being homomorphic
w.r.t. to more than one arithmetic operation was known. The

work of Gentry [5] made a breakthrough by giving an encryp-
tion that is homomorphic for both, addition and multiplication.
Ever since this firstfully homomorphic encryption(FHE), many
variations and improvements have appeared (e.g., [6]–[8] to
name a few), among these beingsomewhat homomorphic en-
cryptions, which permit several arithmetic operations, however,
only a limited number of executions of each operation (e.g.,
arbitrarily many multiplications, but only a one addition over
time).

Yao’s concept ofgarbled circuits [9] provides a way to
construct arithmetic circuits that hide their inner information
flow by means of encryption. Interestingly, this works without
exploiting any homomorphism, and is essentially doable with
most standard off-the-shelf encryption primitives (cf. [10] and
references therein).

Common to these two mainline approaches to the problem
of data processing in confidentiality is the need to construct
evaluation circuits (for both, fully homomorphic encryption
and garbled circuits) that strongly depend on the data process-
ing algorithm. In that sense, neither technique offers a fully
automated mechanism to put an arbitrary algorithm to work on
encrypted information, and compilers that take over this task
are subject of intensive ongoing research [11]–[17]. Similar
difficulties apply to multiparty computation approaches [18]–
[20] or combinations of GC and MPC [10].

In the past, encryption circuits or interactive protocols have
commonly been used as computational models, as opposed to
Turing machines, which have only recently been considered as
an execution vehicle [1], [21]. The latter of these references
proposed the concept of ablind Turing machine, which is
an entirely generic construction that uses standard ElGamal
encryption (unlike [21], which works with attribute-based
encryption). The idea relies on Turing machines as the most
powerful known computational model (up to other models
being equivalent to Turing machines), and the construction
resembles the full functionality of a general Turing machine
using encrypted content. This approach has briefly been out-
lined in Section I-A.

III. T HE L ICENSING SCHEME

The main objective of the licensing protocols is to change
the valuea that encodes the secret data itemx ∈ Zp by (1).
Hereafter, we let∈R denote a uniformly random draw from the
given set. From the construction of blind Turing machines, i.e.,
the execution of instructions by table-lookups on the data being
processed, it is evident that a program can only be executed if
the code and data obey the same encoding (since the lookup
table in the evaluation key must use the same encodinga
as the data, for otherwise the lookup will fail). Establishing
or changing the common encodinga is detailed in the next
subsection.

A. Changing the Encoding

If a is known, then, it is easy to switch to another encoding
based onb, via raising (1) to the power ofa−1b, wherea−1 is

9Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           22 / 157



computed modulop−1 (this inverse exists, as we assumeda
relatively prime top−1; see Section III). This gives

(gax)a
−1b ≡ gaxa−1b ≡ gbx (mod p). (2)

B. Negotiating an Encoding

If a given encoding of one entity (e.g., the SV) shall be
changed to a chosen encoding of another entity (e.g., the CL),
then the following interactive scheme can be used to switch
from encodinga to encodingb, while revealing neither value
to the other party. The protocol is as follows, where entityA
secretly knows the encodinga, which shall be changed into the
encodingb that entityB secretly chose. Common knowledge
of both parties are all system parameters, in particular the
generatorg and primep are known to both partiesA andB.

1) A→B: an encoded itemgax.
2) B→A: raise gax to b, and return the value(gax)b ≡ gabx

(mod p).
3) A: strip a from the exponent via(gaxb)a

−1
≡ gbx (mod p).

A can continue to work with the new encodingb, which
is in turn unknown toA.

Notice that the knowledge ofA is x,a,gx,gax andgabx, from
which b cannot be extracted efficiently.

IV. PUTTING IT TO WORK

With the encoding taking the form (1) and the encryptionE
being multiplicatively homomorphic(e.g., ElGamal), we can
apply Diffie-Hellman like protocols to change the values in
the exponentga⋅x even within an encryption. In the following,
it is important to stress that any communication between the
entities in the upcoming scenarios is encrypted, in order to
prevent external eavesdroppers from trivial disclosure ofsecret
information (an evident possibility in the protocols).

1) Licensing Scenario 1: Three Separated Parties:Suppose
that a programP written by the SV resides within the EE
under an encodinga (unknown to the EE). We assume that the
programP is encrypted under the SV’s public keypkSV for
reasons of intellectual property protection and to effectively
prevent an execution without explicit permission by the SV.

To obtain a license (permission) and execute the program,
the following steps are taken (Figure 2 illustrates the process
in alignment to Figure 1).

1) The CL initiates the protocol by asking SV for a license.
2) The SV chooses a secret valueb ∈ Zp and sends the

quantity a−1b mod(p−1) to the EE, which it can use
to “personalize” the programP by re-encoding it as

EpkSV(g
ax)a

−1b =EpkSV((g
ax)a

−1b) =EpkSV(g
bx), (3)

by virtue of the multiplicative homomorphy ofEpkSV.
3) The CL prepares the evaluation key, i.e., the respective

lookup-tables underhis ownpublic keypkCL. This implies
that all results obtained from the lookup table can only
be decrypted by CL after the computation has finished. In
particular, it assures that all internal intermediate results

ask for
license

b ∈RZp

a−1b

encoded dataEpkCL
(gby)

CL
pkCL datay

EE

EpkSV
(gax)↦ EpkSV

(gbx)

SV

a ∈Zp

prepare
evaluation key3

1

1

22

4

Figure 2. Licensing scenario involving three separated parties.

obtained over the execution ofP will be encrypted under
the CL’s public key, so that they remain inaccessible for
the EE or the SV.

4) Usingb the CL can encode and submit its data to the EE
for processing. The results are encrypted underpkCL and
hence only accessible to the CL afterwards.

It is obvious that the scheme becomes insecure if two out
of three of these entities collaborate in a hostile fashion.In
either case, the secret encoding and also the secret data could
be disclosed.

2) Licensing Scenario 2: SV= EE: Here, the EE/SV knows
the encodinga but the client can interactively change it into
his own chosen encodingb to obtain a license. Referring to
Section III-B for the details, the remaining steps comprisethe
execution of the programP, which is then compatible with
the secret encodingb under which the data has been prepared.
For personalization, the SV/EE decrypts and submits all code
items EpkSV(g

ax) to the client for re-encoding. Note that the
CL cannotrun the program, as it lacks the code itself (the CL
gets only the constants found in the code). Figure 3 illustrates
the details.

3) Licensing Scenario 3: CL= SV: This case is even more
trivial, as the CL, being the SV at the same time, simply
chooses the encodinga and submits its code and data to the
EE for processing. No change or interactive negotiation of
encoding is required here.

4) Involving a Different End-User:In some cases, the CL
may be the source but not the final end-user of the data (e.g., in
a smart meter network, where the CL is a user’s smart meter,
the EE is a data aggregator/data concentrator, and the end-user
is the energy provider’s head end system). In such cases, it
is straightforward to prepare the evaluation key for a (fourth)
party EU (end user). The change is simply by preparing the
evaluation key under the EU’s public keypkEU instead ofpkCL.
With this modification, all of the above scenarios work exactly
as described.

V. EXAMPLE APPLICATION SCENARIO

Another potentially very important application of our licens-
ing scheme concerns theprotection of firmware (intellectual
property). Suppose a manufacturer – here being the client CL –
obtains the device’s firmware from an external software vendor

10Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           23 / 157



ask for
license

EpkSV
(gax) EpkSV

(gabx)
encoded data
EpkCL

(gby)

CL

pkCL b ∈RZp, datay

EE = SV

EpkSV
(gabx)↦ EpkSV

(gbx)

1 2 3 4

Figure 3. Licensing scenario when the data processing and software remains
with the SV.

(SV). Furthermore, assume the device is equipped with an
internal unique identity, such as a physically uncloneablefunc-
tion (PUF) or other hardwired unchangeable and uncloneable
identity. We call this identityID.

As before, let the firmware be code with encrypted fragments
of the formEpkSV(g

ax), under a secret encodinga∈Zp used by
the SV, which is unknown to CL. After uploading the firmware,
the device manufacturer obtains a license by

1) choosing a secret valueβ and submitting the blinded
identity β ⋅ ID MOD p to SV, and

2) retrieving the license L′ = (gb⋅ID⋅β ,a−1
⋅ b ⋅ (ID2) ⋅

β 2MOD p) from the firmware manufacturer, where
b ∈ Zp is a secret random value chosen by the SV.
The device manufacturer then strips the factorsβ , resp.
β 2, from the contents ofL′ to obtain the final license
L = (ℓ1,ℓ2) = (gb⋅ID ,a−1

⋅b ⋅(ID2)MOD p).
We note that blindingβ is only required to avoid attackers
listening on the channel in an attempt to clone an identity and
hence a device, runnable with the same license as for the honest
manufacturer. Usingβ , the licenseL cannot be obtained from
L′ unless by the device manufacturer (or the device itself),
knowing β .

Using the licenseL, the CL can personalize the code via

(EpkSV(g
ax))

ℓ2 = (EpkSV(g
ax))

a−1bID2

=EpkSV(g
b⋅ID2⋅x), (4)

and can encode input datay accordingly by computing

ℓ
y⋅ID
1 ≡ (gb⋅ID)y⋅ID ≡ gb⋅ID2⋅y (mod p). (5)

We stress that an extracted firmware (e.g., software piracy)
will not run on a structurally identical hardware, as the other
device works with a differentID′ ≠ ID, even if the same license
L = (ℓ1,ℓ2) is brought into the device!

To see this, observe that the encoding is actuallyb ⋅ ID2,
yet the encoding information for the data is onlygb⋅ID , which
enforces an exponentiation with the internally supplied identity
(e.g., PUF-value)ID. Hence, the encoding by (5) will fail to
reproduceID2 in the exponent, asID cannot be replaced in

the second device (as coming from a PUF for example). The
exponent, in that case, will take the formgb⋅ID⋅ID′ ⋅y, which is
incompatible with the program encoded viagb⋅ID2

.

VI. SECURITY

By construction and the discussion in Section I-A, our
scheme becomes insecure under any of the following two
circumstances:

1) collaboration of at least two entities in any of the de-
scribed licensing scenarios

2) a party succeeds in extracting the constanta that defines
the secret encoding of symbols as defined in (1).

Obviously, we cannot mathematically rule out hostile cooper-
ations among any of the entities in our context, but we can
prove that the second of the above attack scenarios will fail
under usual computational intractability hypotheses.

More concretely, we prove security of our licensing scheme
by showing that the extraction of a license is at least as
hard as computing discrete logarithms in the underlying group
(see Definition VI.1). To this end, we distinguish different
potential attackers and licensing scenarios according to our
preceding discussion. Throughout this section, we assume
passive adversaries and authenticated parties (thus, we donot
discuss person-in-the-middle scenarios here).

Definition VI.1 (Discrete Logarithm Problem). Given: a
prime p, a generator g ofZ∗p and a value y∈Z∗p.

Sought: an integer x∈N, such that y= gxMOD p. We write
x= dlogg(y) and call this thebase-g-logarithm ofy.

We call this problemintractable, if there is no efficient
algorithm able to compute the base-g-logarithm of y.

Under the intractability of discrete logarithms, securityof
our scheme is easy to prove in every scenario. Observe that
the encryption wrapped around the values considered in the
following can be neglected in cases where the attacker is an
“insider”, i.e., the client CL, the execution environment EE, or
an external person-in-the-middle intruder.

A. Licensing Scenario 1: Three Separated Parties

Precluding collaborations between parties, the attacker can
either be the client, the execution environment or an external
eavesdropper. Consequently, we need to analyze security in
each case separately.

This case is essentially trivial, as the client CL gets only his
personal licenseb, but cannot access the encrypted quantity
a−1b that is sent directly to the execution environment. Asb
is chosen stochastically independent ofa, it does not provide
any information abouta.

Under a slight modification by sendinggb instead ofb in this
scenario, we can even allow an attacker to mount a person-in-
the-middle attack, in the course of which he getsa−1b andgb

in plain text. The following result asserts security even under
this modified stronger setting.

11Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           24 / 157



Proposition VI.2 (Security against external adversaries). Let
a ∈Zp be the secret license used by the software vendor, and
let I = (a−1b,gb) be the attacker’s information. Computing a
from I is at least as hard as computing discrete logarithms.

Proof. Let A be an algorithm that extractsa from I =(a−1b,gb).
We construct another algorithmA′ that computes discrete
logarithms and takes only negligibly more time for this thanA
needs. Given a valuey, algorithmA′ simply submits the pair
(z,y) to A, wherez is a uniformly random number. Asb is
uniquely determined byy= gx, there is another unique number
z′ that satisfiesz= z′ ⋅x, wherez′ is stochastically independent
of x. Hence, the pair(z,y) has the proper distribution to act as
input toA, andA returnsz′ so that the sought discrete logarithm
of y returned byA′ is x= z′ ⋅z.

By symmetry, security against a malicious execution envi-
ronment EE holds by the same line of arguments, and under
both, the modified and original licensing scenario. The problem
for a malicious EE is to compute the client’s licenseb from
its informationI = (a−1b,gby), which is even harder as before,
as there is another stochastically independent quantityy that
blindsb in that case. We hence get the following result, whose
proof is obvious from the preceding discussion:

Proposition VI.3 (Security against malicious EE). Let b∈Zp

be the secret license of the CL, and let I= (a−1b,gyb) be the
attacker’s information. Computing b from I is at least as hard
as computing discrete logarithms.

B. Licensing Scenario 2: SV= EE

Here, the problem is to extractb from (gax,gabx,gby).
Given that the software vendor is identical to the execution
environment, we can assume the attacker to know the values
x and a, so that the actual problem is to computeb from
I = (gb,gby).

Proposition VI.4 (Security in case of malicious SV=EE). Let
p,q be primes so that p= 2q+ 1 and let g generate a q-
order subgroup ofZp. Computing the client’s secret b from
I =(gb,gby) is at least as hard as computing discrete logarithms
in the subgroup⟨g⟩ ⊊Zp.

Proof. The argument is again a reduction: letA be an algorithm
that correctly returnsb upon inputI = (gb,gby). We construct
an algorithmA′ that computes discrete logarithms as follows:
given a valuey, we submit the input(y,z) to A, wherez is
a random value. Asy= gx uniquely defines a valuex, it also
uniquely defines a valuez′ so thatz= gxz′ . To see this, observe
that the solvability of the equationgby = z, by taking discrete
logarithms on both sides, is equivalent to the solvability of
congruenceby≡dloggz (mod q), which is trivial. Hence,(y,z)
has the proper input-distribution forA, which then correctly
returns the discrete logarithmx of y= gx.

We stress that working in subgroups is not explicitly as-
sumed in the previous security proofs, yet is a standard

requirement in secure instantiations of ElGamal encryptions,
such as over elliptic curves. Hence, the additional hypothesis
of proposition VI.4 is mild and will always be satisfied in
practical scenarios.

C. Licensing Scenario 3: CL= SV

Here, the problem is for the EE to extract information
from the data submitted by the client. This is equivalent to
either breaking the cipher or computing discrete logarithms,
and hence covered by known security proofs concerning the
underlying cryptographic concepts.

VII. C ONCLUSION AND OUTLOOK

This work is compilation of concepts that enable secure and
authorized processing of encrypted information. In essence,
it is a deployment scheme for private function evaluation
based on blind Turing machines, where the involved parties
can secure their interests (prevention of software piracy and
prevention of personal data misuse) by running interactive
protocols.

Along experiments with implementations of the ideas
sketched here, we identified various security issues and pos-
sible attacks, some of which were sketched in the previous
sections. Future work is on implementing the described ideas
and studies of security implications on a real prototype imple-
menting a full computing platform. To this end, the concept of
oblivious lookup tables [22] has been devised as a substitute
that does lookups without comparing encrypted plaintexts.

Unfortunately, chosen instruction attacks are not entirely
disabled in that case, since branching instructions and memory
access can be turned into a plaintext comparison facility (e.g.,
by submitting conditional branches and observe the control
flow, or by asking for two ciphertexts to address the same
memory cell, using the fact that the physical addressing is most
likely deterministic). A working prevention against such misuse
calls for additional code obfuscation (particularly on thebranch
instructions) and secure memory access techniques (such as
oblivious RAM or private information retrieval). Interestingly,
this renders the proof of security of blind Turing machines
against active adversaries (see [1]) practically void, as the
assumptions of the proof are violated in side-channel scenarios.

As an overall conclusion, however, the following points can
be made:

● Processing encrypted informationappears possibleusing
standard encryption, although this induces new vulner-
abilities like side-channel information leakage. Whether
ultimate security can be achieved in this generic con-
struction (as incompletely sketched in Section I-A) is an
interesting open issue; we hope that this article stipulates
future research in this direction.

● Authorized processing of data can be achieved in various
settings by agreeing on secret encodings and/or chang-
ing them interactively by exploiting the homomorphy of
encryption, as described in Section III.

12Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           25 / 157



● The efficiency of our licensing scheme depends on how
large the code is that we “personalize”, since every
instruction of a program and every data item has to be
(re-)encoded. The main practical bottleneck will, however,
be the underlying data processing system; in case of blind
Turing machines, this amounts to roughly 1 multiplication
and 1 exponentiation per instruction (processing up to 4
bits). See [23] for a detailed analysis and comparison to
competing approaches.

It is important to note that any of the described schemes
can be implemented in general groups; there is no need to
strictly rely on modulo-arithmetic (this particular instantiation
serves only illustrative purposes). Hence, for a practicalimple-
mentation, we recommend elliptic curve groups (elliptic curve
cryptography) or similar as a substitute for the structureZp.

Most importantly, the scheme works mostly using off-
the-shelf cryptographic primitives that have been known for
decades, are well understood and enjoy good hardware support
already.

REFERENCES

[1] S. Rass, “Blind turing-machines: Arbitrary private computations from
group homomorphic encryption,” International J. of Advanced Computer
Science and Applications, vol. 4, no. 11, pp. 47–56, 2013.

[2] E. Cuvelier, O. Pereira, and T. Peters, “Election verifiability or ballot
privacy: Do we need to choose?” Cryptology ePrint Archive, Report
2013/216, 2013, http://eprint.iacr.org/.

[3] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. of EUROCRYPT’99, ser. LNCS, vol. 1592.
Springer, 1999, pp. 223–238.

[4] S. Goldwasser and S. Micali, “Probabilistic encryption,” Special issue of
J. of Computer and Systems Sciences, vol. 28, no. 2, pp. 270–299, April
1984.

[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proc. of STOC’09. New York, NY, USA: ACM, 2009, pp. 169–178.
[Online]. Available: http://doi.acm.org/10.1145/1536414.1536440

[6] C. A. Melchor, P. Gaborit, and J. Herranz, “Additively Homomorphic
Encryption with d-Operand Multiplications,” in CRYPTO, ser. LNCS,
vol. 6223. Springer, 2010, pp. 138–154.

[7] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: attribute-based encryption and
(hierarchical) inner product encryption,” in Prof. of EUROCRYPT’10.
Berlin, Heidelberg: Springer, 2010, pp. 62–91. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13190-54

[8] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Proc. of TCC’05, LNCS 3378, 2005, pp. 325–341.

[9] A. C.-C. Yao, “How to Generate and Exchange Secrets (Extended
Abstract),” in FOCS. IEEE, 1986, pp. 162–167.

[10] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster securetwo-party
computation using garbled circuits,” in 20th USENIX Security Symp.
USENIX Assoc., 2011.

[11] N. Tsoutsos and M. Maniatakos, “HEROIC: homomorphically encrypted
one instruction computer,” in Proc. of (IEEE DATE’14), March 2014, pp.
1–6.

[12] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: a compilation chain
for privacy preserving applications,” Cryptology ePrint Archive, Report
2014/988, 2014, http://eprint.iacr.org/.

[13] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey,
“Recent advances in homomorphic encryption: A possible future for
signal processing in the encrypted domain,” Signal Processing Magazine,
IEEE, vol. 30, no. 2, pp. 108–117, March 2013.

[14] M. Brenner, J. Wiebelitz, G. von Voigt, and M. Smith, “Secret program
execution in the cloud applying homomorphic encryption,” in Proc. of
IEEE DEST, May 2011, pp. 114–119.

[15] V. Kolesnikov and T. Schneider, “A practical universalcircuit
construction and secure evaluation of private functions,”in Prof. of
FC, G. Tsudik, Ed. Springer, 2008, pp. 83–97. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85230-87

[16] W. Melicher, S. Zahur, and D. Evans, “An intermediate language for
garbled circuits,” in Poster at IEEE Symp. on Security and Privacy, 2012.

[17] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan,and
N. Zeldovich, “Reusable garbled circuits and succinct functional
encryption,” in Proc. of STOC’13. New York, NY, USA: ACM, 2013,
pp. 555–564. [Online]. Available: http://doi.acm.org/10.1145/2488608.
2488678

[18] Z. Beerliová-Trubı́niová and M. Hirt, “Perfectly-secure MPC with
linear communication complexity,” in Proc. of TCC’08. Berlin,
Heidelberg: Springer, 2008, pp. 213–230. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1802614.1802632

[19] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: Tool for Automating Secure Two-Party Computations,” in CCS.
ACM, 2010, pp. 451–462.

[20] Y. Lindell, B. Pinkas, and N. P. Smart, “Implementing two-party
computation efficiently with security against malicious adversaries,”
in Proc. of SCN’08. Springer, 2008, pp. 2–20. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85855-32

[21] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan,and N. Zel-
dovich, “How to run turing machines on encrypted data,” Cryptology
ePrint Archive, Report 2013/229, 2013, http://eprint.iacr.org/.

[22] S. Rass, P. Schartner, and M. Wamser, “Oblivious lookuptables,”
2015, accepted at the 15th Central European Conference on Cryptology
(CECC), http://arxiv.org/abs/1505.00605.

[23] S. Rass, P. Schartner, and M. Brodbeck, “Private function evaluation
by local two-party computation,” EURASIP Journal on Information
Security, vol. 2015, no. 1, 2015. [Online]. Available: http://dx.doi.org/
10.1186/s13635-015-0025-9

13Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           26 / 157



Data Center Network Structure using Hybrid Optoelectronic Routers

Yuichi Ohsita, and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

Osaka, Japan
{y-ohsita, murata}@ist.osaka-u.ac.jp

Abstract—Large data centers hosting hundreds of thousands
of servers have been built to handle huge amounts of data. In
a large data center, servers cooperate with each other, and thus
the data center network must accommodate a large amount of
traffic between servers. However, the energy consumption of large
data center networks is a major problem because several large-
capacity switches or many conventional switches are required to
handle the traffic. A low-energy hybrid optoelectronic router has
been proposed to provide high bandwidth between data center
servers. The hybrid optoelectronic router has an optical packet
switching functionality and packet buffering in the electronic
domain. The optical packet switching provides large bandwidth
communication between the optical ports. In addition, the router
can be directly connected to server racks by its electronic port.
The packets from the server racks are stored in an electronic
buffer in the router. Then, the packets are converted into optical
packets and sent to another router. Finally, when the packets
arrive at the router connected to the destination server rack,
they are stored in the buffer, converted to electronic packets,
and sent to the destination server rack. In this paper, we
discuss a data center network structure that contains hybrid
optoelectronic routers. We propose a method for constructing
a data center network that uses hybrid optoelectronic routers
efficiently. Furthermore, we discuss the effect of the network
structure on the number of routers required to accommodate a
large amount of traffic in a mega data center.

Keywords—Data Center Network; Topology; Optical Packet
Switch

I. INTRODUCTION

Large data centers with tens and even hundreds of thousands
of servers have been built to handle the vast amount of data
generated by various online applications. Data center servers
communicate with each other to handle the data. A lack of
bandwidth or large delay prevents communication between
servers and increases the time taken to retrieve data. This
degrades the performance of the data center.

The energy consumption of data centers, which increases
with the data center size, is another major problem, and the
energy consumption of the network is a substantial proportion
of total energy usage [1]. Therefore, data center networks with
high energy efficiency and high communication performance
are required [2].

Optical networking is a promising approach to constructing
networks with high energy efficiency [3]. Optical network
devices provide low latency communication with low energy
consumption because they relay optical signals without con-
version to electrical signals. Optical networking also provides
high bandwidth via technologies such as wavelength division
multiplexing (WDM).

An optical packet switch architecture called the hybrid
optoelectronic router was proposed for data centers by
Ibrahim et al. [4]. The hybrid optoelectronic router has optical
packet switching functionality and packet buffering in the
electronic domain. The optical packet switching functionality
provides large bandwidth communication between the optical
ports by relaying the optical packets without conversion to
electronic signals unless packet collision occurs. Even if a
collision occurs, the router can retransfer the packets after
storing them in the electronic buffer.

In addition, the hybrid optoelectronic router can be con-
nected directly to server racks via its electronic port. The
packets from the server racks are stored in an electronic buffer
in the router, and then converted into optical packets and sent
to another router. Finally, if the packets arrive at the router
connected to the destination server rack, the packets are stored
in the buffer, converted to electronic packets, and sent to the
destination server rack.

The network structure is important for constructing a large
data center that uses hybrid optoelectronic routers and should
use the large bandwidth of the hybrid optoelectronic routers
efficiently. However, if each server rack can be connected
to multiple routers, the connection from the server racks
may have a large effect on the network performance. We
have proposed a network structure that uses optical packet
switches and multiple connections from the server racks [5].
However, our previous work used multiple connections from
the server racks only to provide connectivity when optical
packet switches fail, and did not discuss the effect of using
multiple connections from the server racks on the performance
of the data center network.

In this paper, we propose a method to construct a data
center network structure that accommodates a large amount of
traffic by using the hybrid optoelectronic routers and multiple
connections from the server racks efficiently. We evaluate
our network structure and demonstrate that our method can
accommodate more traffic than a torus network. In addition,
we discuss the importance of using multiple links from the
server racks, and show that multiple links are necessary to
construct a large data center with sufficient bandwidth between
server rack pairs.

The rest of this paper is organized as follows. Section II
explains related work about data center networks using optical
network technologies. Section III provides an overview of
hybrid optoelectronic routers and the data center network
that uses hybrid optoelectronic routers. Section IV proposes
a method to construct data center network structures using

14Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           27 / 157



hybrid optoelectronic routers. Section V discusses building a
data center network that can accommodate more servers with-
out decreasing bandwidth based on our method of constructing
data center network structures. Finally, we conclude this paper
in Section VI.

II. RELATED WORK

Farrington et al. proposed a data center network architecture
that uses optical path switches [6]. In this network, the optical
path switches are placed at the core of the data center network
and are configured to connect the server rack pairs that are
generating a large amount of traffic. Similar architecture using
optical circuit switches was proposed by Wang [7]. However,
the configuration of the optical path switches takes time, and
this architecture cannot handle frequent traffic changes that
often occur in a data center [8].

Another approach is to use optical packet switches [4],
[9]–[13]. Optical packet switches contain arrayed waveguide
grating routers (AWGRs) and wavelength converters. Because
the output port of the input signal depends on the wavelength
of the input signal in AWGRs, the destination port is changed
by changing the wavelength. Optical packet switches relay
optical packets based on the optical labels attached to the
packets. Because optical packet switches do not require the
establishment of paths, a network constructed of optical packet
switches can handle frequent changes in traffic.

Optical packet switches with a large number of ports have
also been constructed by connecting optical packet switches
with a small number of ports. Xi et al. constructed an optical
packet switch with a large number of ports by connect-
ing the optical switches in a Clos topology [12]. Liboiron-
Ladouceur et al. built a large data center by connecting
the optical switches in a Tree topology [14]. However, they
considered only the connections between optical switches. In
a data center, servers may have electronic ports instead of
optical ports. Therefore, we need to consider the connection
from the servers or server racks that have electronic ports.

An optical packet switch architecture proposed by
Ibrahim et al. [4], called a hybrid optoelectronic router, has
electronic ports that can be connected directly to the servers.
By using the connections between optical switches, and con-
nections between optical switches and server racks, the data
center network can accommodate a large amount of traffic
between a large number of servers. However, a data center
network that efficiently uses the both of these connections
has not been reported. Therefore, we discuss a data center
network structure that accommodates a large amount of traffic
by efficiently using hybrid optoelectronic routers.

III. DATA CENTER NETWORKS WITH HYBRID

OPTOELECTRONIC ROUTERS

In this section, we introduce the hybrid optoelectronic
router, and the data center network constructed of them.

Optical
Switch

CMOS
memory

Convertor

Convertor
Convertor
Convertor

Convertor

Convertor
Convertor
Convertor

Label Processor
Label Processor
Label Processor
Label Processor

from another
Hybrid 
Optoelectronic 
Router

from another
Hybrid 
Optoelectronic 
Router

to/from server racks

Figure 1. Hybrid optoelectronic router.

Server racks

ToR switches

Core network constructed of 
hybrid optoelectronic routers

Figure 2. Network with hybrid optoelectronic routers in a data center.

A. Hybrid optoelectronic routers

Figure 1 shows a hybrid optoelectronic router. Each hybrid
optoelectronic router has ports connected to other hybrid
optoelectronic routers (hereafter called optical ports), and
ports connected to the server rack (hereafter called electronic
ports).

When an optical packet arrives through the optical port,
the label processors identify its label and destination, and the
controller controls the switching fabric to relay the packet
to the destination. If the destination port is busy, the packet
is stored in the electronic buffer after the optical packet is
converted to an electronic packet. The packet is re-sent after
it is converted into an optical packet.

Electronic packets from a server rack arrive through the
electronic port. The electronic packet is buffered and converted
into an optical packet. The converted packet is relayed in the
same way as optical packets from the other optical packet
switches. Optical packets sent to a server rack are also buffered
and converted to electronic packets that are relayed to the
server rack.

B. Data center network using hybrid optoelectronic routers

Optical networks containing hybrid optoelectronic routers
provide large bandwidth communication. Therefore, we place
an optical network containing hybrid optoelectronic routers at
the core of the data center network. Each server rack has an
ToR switch and is connected to the core network by connecting
its electronic ToR switch to multiple hybrid optoelectronic
routers. Figure 2 shows an example of a data center network
containing hybrid optoelectronic routers.

In this network structures, the connections between the
hybrid optoelectronic routers, and between the server racks
and the hybrid optoelectronic routers must be set, which is
discussed in Section IV.

15Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           28 / 157



C. Routing in the data center network by using hybrid opto-
electronic routers

In the data center, the traffic changes frequently. If the routes
are controlled by a central controller, the central controller
has to collect the traffic information about the whole network
frequently, which requires a large overhead.

Therefore, we use routing that balances the load among
the shortest paths by using only the local information. Each
hybrid optoelectronic router has a routing table, which includes
multiple next hybrid optoelectronic routers on the shortest
paths to each destination hybrid optoelectronic router. When
a hybrid optoelectronic router receives a packet, the hybrid
optoelectronic router selects the next router with the smallest
load from the routing table.

When a ToR switch sends a packet to the core hybrid
optoelectronic router network, the ToR switch encapsulates
the packet by attaching the destination hybrid optoelectronic
router. The packet is sent to one of the hybrid optoelectronic
routers connected to the ToR switch. The first and destination
router pair is selected from candidate pairs with the smallest
number of hops for the first router connected to the source
server rack and the destination hybrid router connected to the
destination server. If there are multiple candidate pairs, the
pair is selected randomly to balance the loads.

IV. CONSTRUCTION OF THE NETWORK STRUCTURE

In this section, we propose a method for constructing the
data center network structure by using hybrid optoelectronic
routers. The server racks are grouped, and the racks in each
group are connected to the same hybrid optoelectronic routers.
Each server rack is connected to R hybrid optoelectronic
routers, and each hybrid optoelectronic router is connected to
S groups of server racks. We construct a network containing
SR groups of server racks and RSR−1 hybrid optoelectronic
routers.

First, we connect the server racks to hybrid optoelectronic
routers, and then set the connections between the routers.

A. Connection from server racks

We aim to maximize the amount of traffic that can be
accommodated. A large number of hops between server racks
decreases the amount of traffic that can be handled because
hops consume bandwidths for a large number of links.

We connect server racks to hybrid optoelectronic routers to
maximize the number of server racks that can communicate
through only one hybrid optoelectronic router. We use a
network architecture similar to the BCube [15].

We separate hybrid optoelectronic routers into R layers, and
each server rack is connected to one hybrid optoelectronic
router in each layer. To determine the connections between
server racks and hybrid optoelectronic routers, we set the ID
to the server rack group. Similarly, we set the ID to the hybrid
optoelectronic routers in each layer.

We connect the ith hybrid optoelectronic router at the rth
layer to the jth server rack when � i

Sr−1 � = � j
Sr � and i mod

Sr−1 = j mod Sr−1 are satisfied. By doing so, the server

rack groups sharing hybrid optoelectronic routers are different
for the different layers.

B. Connections between hybrid optoelectronic routers

After connecting the hybrid optoelectronic routers, we con-
struct the connections between hybrid optoelectronic routers.
To search for the best connections, we generate and select
candidate connections.

1) Candidate connections: The number of available
connections between hybrid optoelectronic routers is

(RSR−1)2CPRSR−1 , where P is the number of optical ports
of each hybrid optoelectronic router. The number of available
connections is too large, and it takes a long time to select the
best one from all available connections. Therefore, we focus
on candidates for which the number of hops between server
racks is small, because networks where the number of hops
is large cannot accommodate a large number of hops because
the hops waste the bandwidth of many links. In addition, we
focus on candidates where all hybrid optoelectronic routers
play the same role, because if there are hybrid optoelectronic
routers that play a special role, such as the root node of the
tree topology, the loads on the special routers becomes large.

We construct the candidates through the following steps.

1) Set the network structure, where all server racks are con-
nected to the hybrid optoelectronic routers but no links
between hybrid optoelectronic router are constructed, as
a candidate.

2) Add one link per hybrid optoelectronic router for each
candidate if the candidate has an empty optical port. If
no candidate has an empty optical port, end the process.

3) Select N candidates based on the number of hops
between server racks.

4) Go to step 2.

In Step 2, we add links to each hybrid optoelectronic router
so that all hybrid optoelectronic routers play the same role.
After adding one link from the first hybrid optoelectronic
router, we add links that have the same properties as the first
link. In this paper, we regard the links satisfying the following
constraints as links with the same properties.

• The source router for the link is included in the same
layer.

• The destination router for the link is included in the same
layer.

• The number of hops from the source router to the
destination router on the network before adding the links
is the same.

In Step 3, we select N candidates based on the number
of hops between server racks. In this paper, we select the
candidates with the largest number of hops between the server
racks. If multiple candidates have the same largest number of
hops. we compare the average number of hops between all
server rack pairs.

Algorithm 1 shows the pseudo code for generating N
candidates. In this pseudo code, R is the set of the hybrid
optoelectronic routers, cinit is the initial candidate network

16Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           29 / 157



topology where all server racks are connected to the hybrid
optoelectronic routers, but no links between hybrid optoelec-
tronic routers are constructed. In each iteration from Line 3
to 35, we update the list of the candidates C by adding one
optical link per hybrid optoelectronic router. To add one link
per hybrid optoelectronic router, we first decide the router pair
where the new link is added at Line 10. Then, for each router,
we find target routers that have the same properties as the link
added at Line 10, and add links between found route pairs
from Line 12 to 23. At the end of each iteration, we save only
N candidates from Line 33 to 34.

In these steps, we continue the iteration from Line 3 to
35 P times. In each iteration, we generate and evaluate at
most N(RSR−1)2 where RSR−1 is the number of hybrid
optoelectronic routers. That is, to generate the candidates, we
evaluate at most PN(RSR−1)2 candidates. The number of
generated and evaluated candidates becomes large as the num-
ber of hybrid optoelectronic routers becomes large. However,
the number of hybrid optoelectronic routers is much smaller
than the number of server racks. In addition, the candidates can
be evaluated in parallel. Moreover, the candidate topologies
are generated only once before constructing a data center.
Therefore, we believe that the calculation time for generating
the candidate topologies should not be a major problem.

2) Selection of the best candidate: Finally, we select the
best candidate from the generated candidates. We simulate the
routing in the data center when traffic is generated between
all server rack pairs. Next, we select the candidate with the
smallest link utilization to construct the network structure
that can accommodate the largest amount of traffic. When
constructing the data center network, the traffic within a data
center is unknown. Thus. we set the traffic between all server
rack pairs so that traffic between all server rack pairs equal.

C. Incremental construction

Constructing a data center network with a large number
of server racks simultaneously is difficult. The data center
should be incrementally constructed by adding server racks
and routers. We propose a method to construct the data center
network structure incrementally. We first calculate a suitable
network structure including the maximum number of server
racks and hybrid optoelectronic routers. Hereafter, we call
this calculated network structure the largest network structure.
Next, we construct the subset of the largest network structure
that can connect the currently required number of server racks.
When it is necessary to add more servers to the current
network, we find the best network structure that includes the
current routers and server racks and is a subset of the largest
network structure. In the rest of this subsection, we explain
the steps to finding the best network structure in detail.

1) Construction of the network structure when the number
of the required server rack groups is given: We construct a
network structure that can connect the number of the required
server rack groups. The suitable network structure is calculated
by generating candidates for the network structure that is a

Algorithm 1 Generation of N candidates for connections
between hybrid optoelectronic routers.

1: Clear the list of candidates, C.
2: Add cinit to C.
3: while True do
4: Clear the list of newly generated candidates, C′

5: for c ∈ C do
6: Select the router, r1 ∈ R, with the largest number of

remaining ports.
7: for r2 ∈ R do
8: if r2 has remaining ports in c then
9: Clear the list of temporal candidate Ctmp

10: Construct a new candidate, cnew, by adding link
between r1 and r2 to c.

11: All cnew to Ctmp

12: for r3 ∈ R do
13: Clear the list of temporal candidate C

′tmp

14: for ctmp ∈ Ctmp do
15: for r4 ∈ R do
16: if r4 has the remaining ports in the

network, ctmp then
17: if link r3, r4 has the same property as

link r1, r2 then
18: Construct a new candidate, c

′new,
by adding a link between r3 and r4
to ctmp.

19: Add c
′new to C

′tmp

20: end if
21: end if
22: end for
23: end for
24: Ctmp ← C

′tmp

25: end for
26: Add all candidates ctmp ∈ Ctmp to C ′

27: end if
28: end for
29: end for
30: if C ′ is empty then
31: return C
32: end if
33: Constructing the list of candidates C′′ by selecting N

candidates from C ′

34: C ← C ′′

35: end while

subset of the largest network structure, and selecting one of
them. The candidates are generated by the following steps.

1) Construct the initial network. If there is a current work-
ing network, the current network is set as the initial
network. Otherwise, select the server rack group with the
smallest ID, and construct the initial network including
the selected server rack group and all hybrid optoelec-
tronic routers to which the groups are connected.

2) Add the constructed initial network to the list of incom-

17Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           30 / 157



plete candidates.
3) For each network in the list of incomplete candidates,

generate the new networks by adding one hybrid op-
toelectronic router that is not included in the network,
but has a link to one router included in the network
in the largest network structure, and by adding links
between hybrid optoelectronic routers included in the
new network. Then, save the new network in the list of
newly constructed candidates.

4) For each network in the list of newly constructed candi-
dates, count the number of server rack groups connected
to the hybrid optoelectronic router. If the number of
server racks is more than the number of required server
rack groups, add the network to the list of candidates.

5) If the list of candidates includes more than one can-
didate, end the process. Otherwise, replace the list of
incomplete candidates with the list of newly constructed
candidates, and go back to step 3.

In Step 1. we select the server rack group with the smallest
ID, because all server rack groups play the same role in the
largest network structure.

In these steps, we look for a network structure that can
connect the required number of server rack groups by adding
one hybrid optoelectronic router during each iteration. We
end the process if at least one candidate is found. As a
result, we can find candidates that can connect the required
number of server racks with the smallest number of hybrid
optoelectronic routers. The pseudo code for these steps is
shown in Algorithm 2.

Next, we select the candidate that can accommodate the
largest amount traffic through simulating the routing, similar
to Section IV-B2.

Finally, we add optical links between hybrid optoelectronic
routers or electronic links between server rack groups and
hybrid optoelectronic routers if there are unused ports. By
adding links, we can accommodate more traffic. In this paper,
we generate all patterns of added links and select the best
pattern to accommodate the largest amount of traffic through
the routing simulation.

2) Construction of the network structure when the number
of the required server racks is given: The network structure
should be constructed to accommodate any possible traf-
fic rate. To guarantee this, we use valiant load balancing
(VLB) [16]. In VLB, we select the intermediate nodes ran-
domly regardless of the destination to avoid concentrating
traffic on certain links, even when traffic volume of certain
node pairs is large. In the data center network, the intermediate
node is selected from the server racks. The packet is encapsu-
lated by attaching a header whose destination is the selected
intermediate server rack. When the intermediate server rack
receives the packet, it relays the packet to the final destination
after removing the header.

By applying VLB, the traffic rate between server rack T
satisfies the following inequality.

T ≤ 2B

N

Algorithm 2 Construction of candidate subnetworks of the
largest network structure.

1: Clear C incomplete.
2: Add the initial candidate, cinit, to C incomplete.
3: while True do
4: Clear C

′incomplete

5: for c ∈ C incomplete do
6: for r ∈ R do
7: if r is not included in c but has a link to a router

included in c then
8: Generate new candidate cnew by adding the

router, r, and the server racks connected to r
to c.

9: Add cnew to C
′incomplete

10: end if
11: end for
12: end for
13: Clear Ccomplete

14: for c ∈ C
′incomplete do

15: if c include more than the required number of server
rack groups then

16: Add c to Ccomplete

17: end if
18: end for
19: if Ccomplete is not empty then
20: return Ccomplete

21: end if
22: C incomplete ← C

′incomplete

23: end while

Here, B is the bandwidth from a server rack and N is the
number of server racks. That is, we construct a network
structure that can accommodate the flow of data with 2B

S
between all server rack pairs.

Based on this, when the number of required server racks,
N , is given, we construct the data center network that can
accommodate N server racks by the following steps.

1) Set the number of server rack groups S to the number of
the server rack groups included in the current network.
If the data center network is newly constructed, set S to
1.

2) Set the number of server racks in each server rack group
to N

S .
3) Construct a network that can accommodate S server rack

groups by the steps in IV-C1.
4) Check whether the constructed network can accommo-

date the traffic 2B
N between all server rack pairs. If yes,

designate the current network as a suitable network.
Otherwise, go back to step 2 after incrementing S.

D. Properties of the constructed data center network

1) Constructed network structure: First, we show the net-
work structure constructed by our method. Figure 3 shows
the network constructed from 10 hybrid optoelectronic routers
with four optical ports and 25 server rack groups that have two

18Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           31 / 157



Hybrid optoelectronic router

Server rack group

Figure 3. Example of the constructed network.

TABLE I
NUMBER OF HOPS IN THE CONSTRUCTED NETWORK STRUCTURE.

Number of hybrid optoelectronic
routers on the path Number of paths
1 192
2 288
3 96

electronic ports connected to hybrid optoelectronic routers.
In this network structure, all hybrid optoelectronic router
pairs can communicate without converting optical packets into
electronic packets.

In this network structure, the number of hops between
server racks is small (Table I). Most of the server rack pairs
are connected to the same hybrid optoelectronic router or to
hybrid optoelectronic routers that are directly connected to
each other. Only 16 % of the server rack pairs require three
hops to communicate with each other. In the network structure,
the server rack pairs requiring three hops have three disjoint
paths with the smallest number of hops. That is, this network
structure can provide sufficient bandwidth by balancing the
loads.

2) Delay: We investigate the delay between the server rack
pairs through a simulation. We compare the delay in our
network structure with that of the torus network constructed
from the same number of hybrid optoelectronic routers and
server racks [4]. We demonstrate the effectiveness of the data
center network constructed considering the links from the
server racks.

We model the delay for the hybrid optoelectronic router
as follows. If packet collision does not occur, the hybrid
optoelectronic router can relay the packet without buffering
it. We assume that the delay in this case is 240 ns. If packets
collide, the hybrid optoelectronic router converts the optical
packet into an electronic packet, and stores it in the buffer.
We assume that converting the optical packet into an electronic
packet, and relaying it via the buffer takes 240 ns, similar to the
case where the optical packets are relayed without collision.
Storing the packet to the buffer and reading the packet from
the buffer takes 180 ns. Converting the electronic packet into
the optical packet and relaying it to the optical switch takes
240 ns. In addition, the packets stored in the buffer wait until
the destination ports become available. We use the M/M/1
model to simulate the queuing delay in the buffer, where the
average service time is 240 ns.

 0

 2000

 4000

 6000

 8000

 10000

 0  0.5  1  1.5  2  2.5  3  3.5  4

M
ax

im
um

 d
el

ay
 [n

s]

Total traffic rate [Tbps]

Our Network
Torus

Figure 4. Comparison of the maximum delay among the server rack pairs.

 0

 5

 10

 15

 20

 25

 30

 35

 0  100 200 300 400 500 600 700 800 900 1000 1100

N
um

be
r 

of
 r

eq
ui

re
d 

ro
ut

er
s

Number of servers

Figure 5. Number of required hybrid optoelectronic routers.

We construct both kinds of the network from 20 hybrid
optoelectronic routers with four optical ports and 100 server
racks with two electronic ports connected to hybrid optoelec-
tronic routers. We generate the same traffic rate between all
server rack group pairs.

Figure 4 shows the maximum delay among the server
rack pairs. This figure indicates that our network structure
can accommodate more traffic with a smaller delay than the
torus network. This is because in our network structure, the
connections between the server racks are decided considering
the server rack groups connected to the hybrid optoelectronic
routers.

3) Incremental construction: We construct the data center
network incrementally. We set the total capacity of the elec-
tronic ports of the hybrid optoelectronic router to 32 Gbps, the
bandwidth of the optical link to 100 Gbps, and the bandwidth
of each server to 1 Gbps. That is, each hybrid optoelectronic
router can connect 32 server racks. We set the largest network
structure to the network structure constructed of 256 hybrid
optoelectronic routers with four optical ports, and 32 server
rack groups with two electronic ports. In the largest network
structure, we connect 1024 servers without congestion.

Figure 5 shows that the number of required hybrid optoelec-
tronic routers when we construct the network incrementally
by adding 64 servers at each step. This figure indicates that
we can always add 64 servers by adding only two hybrid
optoelectronic routers.

19Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           32 / 157



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  20  40  60  80  100 120 140 160 180 200

N
um

be
r 

of
 s

er
ve

rs

Number of hybrid optoelectronic routers

Number of Electronic Port=2
Number of Electronic Port=3

Figure 6. Number of hybrid optoelectronic routers vs number of accommo-
dated servers (four optical ports).

V. DISCUSSION

In this section, we discuss the network structure that is suit-
able for a large data center based on our construction method.
We investigate the relationship between the number of hybrid
optoelectronic routers and the number of servers that can be
accommodated without congestion for any traffic pattern by
using VLB. In this investigation, we set the total capacity of
the electronic ports of the hybrid optoelectronic router to a
sufficiently large value, to focus on the bandwidth provided by
the core network constructed of hybrid optoelectronic routers.
We set the bandwidth of the optical link to 100 Gbps, and the
bandwidth of the link from a server to 1 Gbps.

Figure 6 shows the relationship between the number of ac-
commodated servers and the number of hybrid optoelectronic
routers when each hybrid optoelectronic router has four optical
ports. The figure shows network structures that include server
racks with two or three electronic ports. As the number of
hybrid optoelectronic routers increases, the number of optical
links increases, which increases the capacity of the network
and the number of accommodated servers. However, as the
number of hybrid optoelectronic routers increases, the number
of hops between hybrid optoelectronic routers increases. As a
result, when the number of hybrid optoelectronic routers be-
comes sufficiently large, adding hybrid optoelectronic routers
cannot greatly increase the number of servers that can be
accommodated. In particular, when the number of electronic
ports for each server rack is two, adding hybrid optoelectronic
routers decreases the number of servers that can be accom-
modated. In contrast, the server racks with three electronic
ports can accommodate more server racks. This is because the
increase in the number of links from the server rack decreases
the number of hops between server racks.

We also investigate the case where each hybrid opto-
electronic router has 12 optical ports. Figure 7 shows the
relationship between the number of accommodated servers and
the number of hybrid optoelectronic routers when each hybrid
optoelectronic router has 12 optical ports. Compared with

 0

 5000

 10000

 15000

 20000

 25000

 0  20  40  60  80 100 120 140 160 180 200

N
um

be
r 

of
 s

er
ve

rs

Number of hybrid optoelectronic routers

Number of Electronic Port=2
Number of Electronic Port=3
Number of Electronic Port=5

Figure 7. Number of hybrid optoelectronic routers vs number of accommo-
dated servers (12 optical ports).

Figure 6, the network constructed of hybrid optoelectronic
routers with 12 optical ports can accommodate more servers
because this network can provide more bandwidth owing to
the larger number of optical links. In addition, the increase in
the optical links decreases the number of hops between optical
hybrid optoelectronic routers.

This figure also indicates that even if we use the hybrid
optoelectronic router with 12 optical ports, we cannot accom-
modate more than 20,000 servers for server racks with two
or three electronic ports. However, by connecting each server
rack to four hybrid optoelectronic routers, we can connect
25,000 servers by using 80 hybrid optoelectronic routers. That
is, to construct a large data center, multiple links from server
racks are necessary.

VI. CONCLUSION

In this paper, we discussed a data center network structure
using hybrid optoelectronic routers. We proposed a method to
construct a data center network that uses hybrid optoelectronic
routers efficiently. We investigated the effect of the network
structure on the number of routers required to accommodate
a large amount of traffic in a mega data center. The results
indicate that multiple links from server racks are necessary
to construct a large data center, even if hybrid optoelectronic
routers are used.

ACKNOWLEDGMENTS

This work was funded by the National Institute of Informa-
tion and Communications Technology (NICT) R&D program,
“Basic technologies for high-performance optoelectronic hy-
brid packet router”.

REFERENCES

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
Computer Communication Review, vol. 39, Jan. 2009, pp. 68–73.

[2] D. Abts, M. Marty, P. Wells, P. Klausler, and H. Liu, “Energy pro-
portional datacenter networks,” in Proceedings of the 37th annual
international symposium on computer architecture (ISCA 2010), June
2010, pp. 338–347.

20Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           33 / 157



[3] S. J. B. Yoo, “Optical packet and burst switching technologies for the
future photonic internet,” Journal of Lightwave Technology, vol. 24,
Dec. 2006, pp. 4468–4492.

[4] S. A. lbrahim et al., “100-Gb/s optical packet switching technologies for
data center networks,” in Proceedings of Photonics in Switching, July
2014, pp. 1–2.

[5] Y. Ohsita and M. Murata, “Data center network topologies using optical
packet switches,” in Proceedings of DCPerf, June 2012, pp. 57–64.

[6] N. Farrington et al., “Helios: a hybrid electrical/optical switch ar-
chitecture for modular data centers,” ACM SIGCOMM Computer
Communication Review, vol. 40, Oct. 2010, pp. 339–350.

[7] G. Wang et al., “c-through: Part-time optics in data centers,” in Pro-
ceedings of ACM SIGCOMM, Oct. 2010, pp. 327–338.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
Grained Traffic Engineering for Data Centers,” in Proceedings of ACM
CoNEXT, Dec. 2011, pp. 1–12.

[9] C. Guillemot et al., “Transparent optical packet switching: The european
ACTS KEOPS project approach,” Journal of Lightwave Technology,
vol. 16, Dec. 1998, pp. 2117–2134.

[10] Z. Zhu et al., “Rf photonics signal processing in subcarrier multiplexed
optical-label switching communication systems,” Journal of Lightwave
Technology, vol. 21, Dec. 2003, pp. 3155–3166.

[11] Z. Pan, H. Yang, Z. Zhu, and S. J. B. Yoo, “Demonstration of an optical-
label switching router with multicast and contention resolution at mixed
data rates,” IEEE Photonics Technology Letters, vol. 18, Jan. 2006,
pp. 307–309.

[12] K. Xi, Y. H. Kao, M. Yang, and H. J. Chao, “Petabit optical switch for
data center networks.” Technical Report, Polytechnic Institute of New
York University, http://eeweb.poly.edu/∼chao/publications/petasw.pdf.

[13] X. Ye et al., “DOS: a scalable optical switch for datacenters,” in
Proceedings of ANCS, Oct. 2010, pp. 1–12.

[14] O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and
P. Castoldi, “Energy-efficient design of a scalable optical multiplane
interconnection architecture,” IEEE Journal of Selected Topics in
Quantum Electronics, vol. 17, Mar. 2011, pp. 377–383.

[15] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM Computer
Communication Review, vol. 39, Aug. 2009, pp. 63–74.

[16] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficient and robust
routing of highly variable traffic,” in Proceedings of HotNets, Nov.
2004, pp. 1–6.

21Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           34 / 157



The Impact of Public Cloud Price Schemes on Multi-Tenancy 

 

Uwe Hohenstein, Stefan Appel  

Corporate Technology 

Siemens AG, Corporate Technology, Otto-Hahn-Ring 6  

D-81730 Muenchen, Germany 

Email: {Uwe.Hohenstein,Stefan.Appel}@siemens.com  

 
Abstract—Multi-tenancy is one key element to make Software-

as-a-Service profitable. Multi-tenancy refers to an architecture 

model where one software instance serves a set of multiple 

clients of different organizations, i.e., tenants. This reduces the 

number of application instances and consequently saves 

operational costs. This paper focuses on using relational 

databases in multi-tenant architectures, thereby stressing the 

cost aspect in public cloud environments. Investigating the 

various price schemes of cloud providers, it illustrates the 

difficulties to achieve cost-efficient multi-tenancy. As a result, 

the broad variety of price factors and schemes lead to certain, 

very different strategies and require adapting multi-tenant 

architectures to fit the respective cloud providers’ specifics. 

Keywords-multi-tenancy; databases; cost; SaaS. 

I.  INTRODUCTION 

Software is more and more becoming an on-demand 
service drawn from the Internet, known as Software-as-a-
Service (SaaS). SaaS is a delivery model that enables 
customers, the so-called tenants, to lease services without 
local installations and license costs. Tenants benefit from a 
"happy-go-lucky package": The SaaS vendor takes care of 
hardware and software installation, administration, and 
maintenance. Moreover, a tenant can use a service 
immediately due to a fast and automated provisioning [1]. 

Multi-tenancy is a software architecture principle 
allowing SaaS to make full use of the economy of scale: A 
shared infrastructure for several tenants saves operational 
cost due to an increased utilization of hardware resources 
and improved ease of maintenance [4]. Multi-tenancy is 
often considered as the key to SaaS.  

Several authors, e.g., [23], discuss architectures 
according to what is shared by the tenants: the topmost web 
frontend, middle tier application server, and underlying 
database. Concerning the database, [5] describes a number of 
patterns, which support the implementation of multi-tenancy. 
We here distinguish between a 1-DB-per-tenant and a 1-
global-DB strategy. The first one provides a database (DB) 
of its own for each tenant, thus achieving high data isolation, 
while several tenants share a common database without 
physical data isolation in the second variant. Further variants 
as discussed by [5] are irrelevant in this work. 

In this paper, we report on industrial experiences when 
deploying SaaS in public clouds. Particularly, we focus on 
cost aspects of multi-tenancy for SaaS using a database 
because we feel economical aspects not appropriately tackled 
so far in research. Indeed, economic concerns are important 

as SaaS providers need to operate with high profit to remain 
competitive. We here elaborate on the huge differences of 
price schemes for relational database systems of public cloud 
providers and the impact on multi-tenancy. Even if various 
software engineering techniques propose NoSQL databases, 
relational systems are still often used in industrial 
applications, especially if being migrated to the Cloud.  

Section II presents some related work and motivates why 
further investigations about cost aspects are necessary. We 
investigate the price models of various well-known public 
cloud providers in Section III: Amazon Web Services 
(AWS), HP Cloud, Microsoft Azure, and Oracle. The price 
information can be found at their homepages. We discuss in 
detail the impact of the price models on multi-tenancy 
strategies and the difficulties to optimize costs. In particular, 
we quantify the respective costs for implementing multi-
tenancy by comparing a 1-DB-per-tenant strategy with a 1-
global-DB. Finally, conclusions are drawn in Section IV. 

II. RELATED WORK 

The work in [4] considers performance isolation of 
tenants, scalability issues for tenants from different 
continents, security and data protection, configurability, and 
data isolation as the main challenges of multi-tenancy. These 
topics are well investigated. For instance, [17] investigates 
configurability of multi-tenant applications in case studies.  

The possible variants of multi-tenancy have been 
described, among others, by [5]. Based on the number of 
tenants, the number of users per tenant, and the amount of 
data per tenant, [25] makes recommendations on the best 
multi-tenant variant to use.  

Armbrust et al. [1] identify short-term billing as one of 
the novel features of cloud computing and [8] consider cost 
as one important research challenge for cloud computing. 
However, most works on economic issues around cloud 
computing focus on cost comparisons between cloud and on-
premises and lease-or-buy decisions [22]. For example, [9] 
provides a framework that can be used to compare the costs 
of using a cloud with an in-house IT infrastructure, and [15] 
presents a formal mathematical model for the total cost of 
ownership (TCO) identifying various cost factors. Other 
authors such as [2][10], focus on deploying scientific 
applications on Amazon, thereby pointing at major cost 
drivers. [11] performs the TPC-W benchmark for a Web 
application with a backend database and compares the costs 
for operating the web application on several major cloud 
providers. A comparison of various equivalent architectural 

22Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           35 / 157



solutions, however, using different components, such as 
queue and table storage, has been performed by [7]. The 
results show that the type of architecture can dramatically 
affect the operational cost.  

Cost aspects in the context of multi-tenancy are tackled 
by [18][19]. They consider approaches to reduce resource 
consumption as a general cost driver, looking at the 
infrastructure, middleware and application tier, and what can 
be shared among tenants.  

Another approach, discussed by [24], reduces costs by 
putting values of utilization and performance models in 
genetic algorithms. 

The authors of [13] develop a method for selecting the 
best database in which a new tenant should be placed, while 
keeping the remaining database space as flexible as possible 
for placing further tenants. Their method reduces overall 
resource consumptions in multi-tenant environments. Cost 
factors taken into account are related to on-premises 
installations: hardware, power, lighting, air conditioning, etc.   

Based on existing single-tenant applications, [3] stresses 
on another cost aspect for multi-tenant applications: 
maintenance efforts. The recurrence of maintenance tasks 
(e.g., patches or updates) raises operating cost.  

The work in [6] recognizes a viable charging model 
being crucial for the profitability and sustainability for SaaS 
providers. Moreover, the costs for redesigning or developing 
software must not be ignored in SaaS pricing. Accordingly, 
[18] discusses a cost model for reengineering measures. 

The challenges of calculating the costs each tenant ge-
nerates for a SaaS application in a public cloud are discussed 
in [21]. This is indispensable to establish a profitable billing 
model for a SaaS application. The paper shows that only 
rudimentary support is available by cloud providers. 

To sum up, the profitable aspects of multi-tenancy for 
SaaS providers are researched insufficiently. All the 
mentioned work is quite general and does mostly not take 
into account common public cloud platforms and their price 
schemes. Even best practices of cloud providers, for instance 
[16] and [19], do not support SaaS providers to reduce cost. 
As the next section illustrates, there is a strong need to 
investigate cost aspects for those platforms. 

III. COST CONSIDERATIONS  

Deploying multi-tenant applications in a public cloud 
causes expenses for the consumed resources, i.e., the pricing 
scheme of cloud providers comes into play. Unfortunately, 
the price schemes for cloud providers differ a lot and are 
based upon different factors such as the data volume, data 
transfer, etc. That is why we investigate the price schemes 
for databases of some major public cloud providers. The goal 
is to discuss variances in price schemes and how these affect 
multi-tenancy strategies for SaaS applications. We assume 
that each tenant demands a certain amount of database 
storage. We then compare storage that is provided using a 
dedicated database per tenant with a global database for all 
tenants to guide a decision.  

Please note it is not our intention to compare different 
cloud providers with regard to costs or features. That is the 
reason why we keep the providers anonymous. There is also 

no common tool offered by all providers. Furthermore, the 
price schemes of cloud providers are quite diverging and 
incorporate different factors. We rather illustrate the variety 
of price schemes and service offerings leading to different 
architectures. This also means that the discussion of each 
offering has a different structure. Moreover, the prices are 
changing frequently, while the scheme usually remains 
stable. We here refer to the state as of September 2015. 

We only consider resources that are available on-demand 
to fully benefit from the cloud. This excludes, e.g., reserved 
instances since those require long-term binding and thus 
impose a financial risk. 

TABLE I.  PRICE SCHEME FOR OFFERING 1. 

Consumption Price Additional GB 

0 to 100 MB  $4.995 (fix price)  

100 MB to 1 GB  $9.99   (fix price)  

1 to 10 GB     $9.99 for 1st    1 GB $3.996 

10 to 50 GB   $45.96 for 1st  10 GB $1.996 

50 to 150 GB $125.88 for 1st  50 GB $0.999 

A. Offering 1 

Offering 1 is a database server available as Platform-as-
a-Service (PaaS) in a public cloud. PaaS include licenses and 
seems to be reasonable for multi-tenancy. Without PaaS, 
there is no elasticity since licenses must be ordered in time.  

Table I presents the recent prices for a Microsoft SQL 
Server in the US East region. In addition, outgoing data is 
charged for each database individually with a decreasing 
rate. The first 5 GB are for free, each additional GB is 
charged with 8.7ct/GB and 8.3ct/GB above 10 TB, 
decreasing to 5ct/GB for more than 350TB. However, the 
cost reduction is insignificant unless there is extremely high 
outgoing transfer. The storage consumption is the main cost 
driver. Each database is paid for the amount of stored data. 
There is no cost difference between using one or several 
database servers for hosting the databases due to virtuali-
zation. We even could not detect any performance difference 
between placing databases on one virtual server or several 
ones. One has to pay for the consumed storage in every 
database – the number of databases and servers is irrelevant. 
At a first glance, the price scheme suggests the same costs 
for 1-DB-per-tenant and 1-global-DB (keeping all tenants). 
There seems to be no cost benefit for sharing one database 
between several tenants, since SaaS providers are charged 
for the total amount of used storage. However, there are 
indeed higher costs for individual tenant databases since 

 sizes larger than 1 GB are rounded up to full GBs; 

 smaller databases are more expensive per GB than 
larger ones due to a progressive reduction. 

Since pricing occurs in increments of 1 GB, hundred 
tenants with each a 1.1 GB database are charged with 100*2 
GB, i.e., 100 * $13.986 = $1398.60 a month. In contrast, one 
database with 100 * 1.1GB = 110 GB is charged with 
$185.82, i.e., a total difference of $1212.78 or a difference of 
$12.13 for each tenant (per-tenant difference). 

Figure 1 compares the costs of both strategies for various 
numbers of tenants (10,25,...,400). The x-axis represents the 
database size, the y-axis the per-tenant difference in US$, 

23Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           36 / 157



i.e., the additional amount of money a SaaS provider has to 
pay for each tenant compared to a 1-global-DB strategy 
(note that the prices in Figure 1 must be multiplied by the 
number of tenants for total costs). The difference stays below 
$10 for tenant sizes up to 3 GB. The number of tenants is 
mostly irrelevant. This is why the lines are superposing; only 
the “10 tenants” line is noticeable. In the worst case, we have 
to pay $50 more for each tenant with a 1-DB-per-tenant 
strategy. A linear price drop occurs after 50 GB because 
even 1-DB-per-tenant uses larger and cheaper databases. 
Anyway, a 1-DB-per-tenant strategy can become quite 
expensive compared to a 1-global-DB strategy.   

Please note the amount of used storage is charged. That 
is, an empty database is theoretically for free. However, even 
an empty database stores some administrative data so that the 
costs are effectively $4.995 per month (for < 100MB). 
Anyway, these are small starting costs for both a 1-DB-per-
tenant and a 1-global-DB strategy.  

There is no difference between provisioning a 10 GB and 
a 150 GB database from a cost point of view as the stored 
data counts. A 1-global-DB strategy, having the problem not 
to know how many tenants to serve, can start with 150 GB, 
thus avoiding the problem of later upgrading databases and 
possibly risking a downtime while having low upfront cost. 
Even for a 1-DB- per-tenant strategy, larger databases can be 
provisioned in order to be able to handle larger tenants 
without risk. 

However, there is a limitation of 150 GB per database, 
which hinders putting a high amount of tenants with larger 
storage consumption in a single database. Reaching the limit 
requires splitting the database into two. 

Along with this comes the challenge to determine a cost-
efficient placement strategy. Assume an existing 90 GB 
database and that we need 40 and 30 GB more space for two 
further tenants: Putting 60 GB into the existing 90 GB data-
base and 10 GB into a new one is the cheapest option with 
$225.75 + $45.96 = $271.71, more than $70 cheaper than 
using a new 40 GB and a new 30 GB database: $165.84 + 
$105.84 + $85.88 = $357.56. Even using a new 70 GB is 
more expensive with $311.70. An appropriate tenant 
placement strategy is to fill databases up to the 150 GB 
threshold, maybe minus some possible space for tenants’ 
expansions, e.g., $286.58 = $205.80 (90+40 GB) + $85.88 
(30 GB). 

 

Figure 1.  Price difference per tenant for Offering 1. 

TABLE II.  PRICE SCHEME FOR OFFERING 2. 

Level Price/month DB size  Session limit Transaction rate /  hour 

B ~$5 2 300 16,600 

S0 ~$15 250 600 31,260 

S1 ~$30 250 900 56,040 

S2    ~$75 250 1,200 154,200 

S3 $150 250  306,000 

P1 ~$465 500 2,400 378.000 

P2 ~$930 500 4,800 820,800 

P3 ~$3,720 500 19,200 2,646,000 

B. Offering 2 

This candidate offers three tiers (Basic, Standard, Pre-
mium). Table II shows the Microsoft SQL Server prices in 
the US East region for various performance levels inside. 

Again, each individual database is paid according to the 
price scheme. But in contrast to Offering 1, the provisioning 
of the tier is relevant, not the effective storage consumption. 

Figure 2 compares per-tenant costs for the 1-DB-per-
tenant and 1-global-DB strategies in the same way as in 
Figure 1. 1-global-DB uses S0 databases, while 1-DB-per-
tenant uses B (<= 2 GB) and S0 (> 2 GB) depending on the 
required size.  

One of the worst cases that could happen for 1-DB-per-
tenant is to have 100 tenants with 2.2 GB (S0) each, resulting 
in $1500 per month since each tenant cannot be satisfied 
with the B tier. In contrast, 1 * 220 GB (S0) for 1-global-DB 
costs $15. That is a per tenant difference of $14.85. 
However, it is unclear here whether an S0 level is sufficient 
for handling 100 tenants from a performance point of view.  

A 1-DB-per-tenant strategy is about $5 more expensive if 
the size is lower than 2GB, and about $15 otherwise. The 
difference is never higher than $14.77, and drops to $12 for 
50 GB and to $9 for 100 GB.  

For each database, we have to pay at least $5 a month for 
at most 2 GB and $15 for up to 250 GB. The costs occur 
even for an empty database. These baseline costs have to be 
paid for a 1-gobal-DB, too, starting with the first tenant.  

Especially for a 1-global-DB approach, a new challenge 
arises: Each service level determines not only an upper limit 
for the database size but also for the number of allowed 
parallel sessions and the number of (internal) worker threads. 
Furthermore, there is an impact on the transaction rate (cf.  
Table II).  We have to stay below these limits. Upgrading the 
category in case of reaching the limit happens online, i.e., 
without any downtime – in theory: if the database size limit 
is reached, no further insertions are possible until the 
upgrade has finished. According to the documentation, such 
a migration can take several minutes up to hours depending 
on the database size. If the allowed number of sessions is 
reached, no further clients can connect unless sessions are 
released by other users. And if the transaction rate is 
insufficient, the performance will degrade. Hence, a 
prediction of tenants’ data and usage behavior is required. 
The number of sessions might become the restrictive factor 
for a 1-global-DB strategy. In the following, we discuss the 
impact of the number of users and required sessions on costs 
by means of sample calculations.  

24Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           37 / 157



TABLE III.  COMPARISON OF CONFIGURATIONS. 

 Configuration 

1       vs.     2 

# sessions for 

1     vs.       2 

Transaction rate 

1000/h (1 vs. 2) 

a 5*S0 1*S2 3000 1200 156 154 

b 2*S0 1*S1 1200 900 62 56 

c 2*P1 1*P2 4800 4800 756 820 

d 4*P2 1*P3 19200 19200 3283 2646 

e 31*S0 1*P1 18600 2400 969 378 

Keeping 100 tenants in 1*S0 offers 600 sessions, i.e., 6 
sessions per tenant (which might be too small); the monthly 
costs are $15. We can scale-up to 1*P3 with 19,200 sessions, 
i.e., 192 per tenant, for a high price of $3720. To achieve the 
same number of sessions, we can also scale-out to 32*S0 for 
$480 or use 64*B for $360 if each database is smaller than 2 
GB. In contrast, a pure 1-DB-per-tenant strategy for 100 
tenants costs $500 for B: This seems to be affordable, 
especially because of 30,000 sessions. For the price of one 
P3, we also get 248*S0 databases with 148,000 sessions (6 
times more than 1*P3) and a 3 times higher transaction rate 
of 7,752,480. 

For serving 100 tenants with 20 parallel users each, we 
need 2000 sessions in total. We can achieve this by either 
7*B (for $35), 4*S0 ($60), 3*S1 ($90), 1*P1 ($465), or 2*S2 
($500) with very different prices. A pure 1-DB-per-tenant for 
B is with $500 in the price area of the last two options, but 
supporting 300 sessions per tenant instead of 20.  

Figure 3 illustrates the costs in US$ to achieve x sessions 
for 100 tenants. B1 represents a pure 1-DB-per-tenant 
strategy using B-level instances. The P levels are most 
expensive, even S2 is quite expensive. An obvious question 
is what the benefit of higher levels in the context of multi-
tenancy is. Table III compares several configurations with 
same prices. There is no consistent behavior. However, 
several smaller machines seem to be superior to same priced 
larger ones with a few exceptions. One exception is row (c) 
where 1*P2 is a little better than 2*P1. More sessions can 
usually be achieved if n smaller tiers are used instead of one 
larger one for the same price. 

Considering Table II again, we also notice that the 
session and transaction rates increase from tier to tier less 
proportional than the prices. Exceptions for transaction rates 
are S1->S2 and P1->P2. It seems to be reasonable to scale-
out instead of scaling-up to obtain more sessions and tran-
sactions.  

 

Figure 2.  1-DB-per-tenant vs. 1-global-DB for Offering 2. 

TABLE IV.  PRICE SCHEME FOR OFFERING 3. 

Instance Type RAM  Storage Price/month 

XS 1 GB 15 GB $73 

S 2 GB 30 GB $146 

M 4 GB 60 GB $292 

L 8 GB 120 GB $584 

XL 16 GB 240 GB $1,168 

XXL 32 GB 480 GB $2,336 

Another advantage is that baseline costs can be saved. A 
1-global-DB strategy requires a high-level database with a 
high price already for the first tenant independent of the 
number of eventually stored tenants. 

Indeed, it is difficult to derive a strategy for identifying a 
suitable configuration. Important questions arise: 

 Is an upgrade possible in short time, without outage? 
This would allow for 1-global-DB to start small for 
few tenants and upgrade if performance suffers or 
the number of sessions increases. For 1-DB-per-
tenant, we could start with B and upgrade to S0. 

 Are only the session and transaction rates of a level 
relevant, or are there any other (invisible) 
performance metrics to consider? The doc-
umentation mentions only that the predictability, i.e., 
the consistency of response times, is increasing from 
B to Px, however being the same within a tier.  

C. Offering 3 

Offering 3 provides a MySQL database as PaaS. The 
regular prices are for virtualized databases on an hourly 
basis. The payment is based upon the following factors: 

 The instance type, which limits the maximal data-
base size and determines the RAM (cf. Table IV). 

 The outgoing data transfer: the first GB is for free, 
we then pay 12ct/GB up to 10 TB, further GBs for 
9ct up to 40 TB, etc. 

In contrast to Offering 1, the provisioned storage is paid. 
The prices and the features increase with the instance type 
linearly, i.e., each next higher instance type doubles the 
RAM and maximal database size for a doubled price. 

Comparing the strategies, we notice that 5 tenant 
databases à 15 GB (XS) are charged with $365. One global 
database à 75 GB is more expensive (!) with $584 since we 
are forced to provision a 120GB (L) database. The difference 
per tenant is $43.80. However, using 15GB (XS) increments 
for 1-global-DB, we can achieve the cheaper price. 

 

Figure 3.  Costs to achieve x sessions per tenant for Offering 2. 

25Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           38 / 157



TABLE V.   PRICE SCHEME FOR OFFERING 4. 

Type Max database size Data Transfer  Price/month 

5GB 5 GB 30 GB $175 

20GB 20 GB 120 GB $900 

50GB 50 GB 300 GB $2,000 

Hence, we should use XS partitions in order not to pay 
for unused storage. Thus, an appropriate cost strategy for 1-
global-DB is to fill XS databases one by one with tenants. 
However, this has architectural implications in order to 
connect each tenant to the right database instances. A 1-DB-
per-tenant approach could also benefit that way. There is no 
need to use larger instances unless we do not want to spread 
tenant data across databases due to implementation effort.  

A worst case scenario is storing 15 tenants with 100MB 
each. 1-DB-per-tenant is charged with $1095 = (15*XS), 
while one global XS database costs $73 for 1.5 GB. That is a 
difference per tenant of $68.13.  

Figure 4 illustrates that 1-DB-per-tenant, compared to 1-
global-DB based upon XS databases, is more expensive for 
sizes much smaller than the storage threshold. Reaching the 
threshold, the difference diminishes. Hence, it is reasonable 
to use one database for each tenant if the storage size is near 
a threshold. In summary, we observe larger per-tenant 
differences depending on database sizes. The range where 
the difference stays below $20 is very small. Moreover, the 
variances for different numbers of tenants are small. 

An incremental acquisition of XS databases even saves 
baseline costs. However, it is an open issue to be investigated 
whether larger instances provide a better performance. The 
time for upgrading from one instance type to another is not 
important here. 

D. Offering 4 

Three database types are available, each limiting the 
maximal amount of storage. Table V shows that each type 
also limits the allowed data transfer. 

A comparison of the types gives some first insights: 
20GB is 5 times more expensive than 5GB, but offers only 4 
times more data transfer and storage. 50GB is 2.2 times more 
expensive than 20GB, but offers 2.5 times more data transfer 
and storage. And 50GB is 11 times more expensive than 
5GB, but offers only 10 times more resources. Hence, 20GB 
has the worst price ratio, 5GB the best one. Obviously, using 
5GB databases seems to be reasonable for either strategy un-
less we do not want to spread tenant data across databases.   

 
Figure 4.  Price diff. of 1-DB-per-tenant vs. 1-global-DB for Offering 3.  

TABLE VI.  COMPARISON OF SAMPLE CONFIGURATIONS 

Config #tenants database 

 size 

Costs  Data 

transfer 

Per-tenant 

costs 

100*5GB 100 1 GB 17,500 3000 175 

2*50GB 4,000 600 40 

5*20GB 4,500 600 45 

20*5GB 3,500 600 35 

200*5GB 200 4 GB 35,000 6000 175 

16*50GB 32,000 4800 160 

40*20GB 36,000 4800 180 

100*5GB 100 5 GB 17,500 3000 175 

10*50GB 20,000 3000 200 

25*20GB 22,500 3000 225 

Table VI compares a 1-DB-per-tenant configuration (the 
first lines) with others. For 200 tenants à 4GB, using 20GB 
databases is more expensive than 1-DB-per-tenant; the same 
holds for 100 tenants à 5GB.  

Figure 5 summarizes the price-per-tenant differences if 
5GB increments are used. A 1-DB-per-tenant strategy is only 
reasonable if the database size is near a multiple of 5 GB, or 
if the required data transfer is high. The larger the distance is, 
the higher will be the per-tenant costs compared to a 1-
global-DB. This saw tooth behavior is repeating. The 
number of tenants has again no impact. 

Since the data transfer is limited by the instance type, a 
challenge arises for the 1-global-DB strategy: this can stop 
several or all tenants from accessing the database. Additional 
data transfer cannot be acquired even for extra charges. 

A possible strategy for 1-global-DB is to start with 5GB 
and to add further ones later; this means less upfront costs. 
Moreover, 5GB is the cheapest category wrt. gains. Please 
note that downsizing is not possible. This causes further 
costs in case a tenant stops using the SaaS service. 

E. Offering 5 

Offering 5 provides a virtual machine (VM) with a 
Microsoft SQL Server for various operating systems. The 
price model is quite complex covering several factors.  

At first, a VM has to be chosen for hosting the database 
server. Table VII summarizes the prices for a Windows OS 
in the East US region. Each tier has a different number of 
virtual cores (vCores), RAM, and temporary disk space. A0-
A7 covers the standard tier; A0-A4 are also available in a 
basic tier with little lower prices ($13-$440) than the 
standard tier. 

 
Figure 5.  Price diff. of 1-DB-per-tenant vs. 1-global-DB for Offering 5. 

26Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           39 / 157



TABLE VII.  PRICE SCHEME FOR OFFERING 5 

Tier vCores RAM TempDisk price/month #disks 

A0  1 768 MB 20 GB $15 1 

A1  1 1.75 GB 70 GB $67 2 

A2  2 3.5 GB 135 GB $134 4 

A3  4 7 GB 285 GB $268 8 

A4  8 14 GB 605 GB $536 16 

A5  2 14 GB 135 GB $246 4 

A6  4 28 GB 285 GB $492 8 

A7  8 56 GB 605 GB $983 16 

A8  8 56 GB 382 GB $1,823 16 

A9  16 112 GB 382 GB $3,646 16 

D1  1 3.5 GB 50 GB $127 1 

D2 2 7 GB 100 GB $254 2 

D3 4 14 GB 200 GB $509 4 

D4 8 28 GB 400 GB $1,018 8 

D11 2 14 GB 100 GB $600 2 

D12 4 28 GB 200 GB $1,080 4 

D13 8 56 GB 400 GB $1,943 8 

D14 16 112 GB 800 GB $2,611 15 

A8 and A9 are network-optimized instances adding an 
InfiniBand network with remote direct memory access 
(RDMA) technology. The D-tier is compute-optimized with 
60% faster CPUs, more memory, and a local SSD. An OS 
disk space of 127 GB is available and must be paid with 
ignorable 2.4ct per GB/month. 

Furthermore, the server is charged per minute. The prices 
depend on the number of cores of the used VM: $298 for 1-4 
core machines, $595 for 8 cores, and $1190 for 16 cores for a 
SQL Server Standard Edition in a month. The Enterprise 
Edition is more expensive, e.g., $4464 for a 16-core VM.  

Additional costs occur for attached storage. There is a 
maximum of number of 1TB data disks (#disks in Table 
VII). The costs can be neglected with 5ct/GB-month for the 
first 1000 TB of consumed storage in a page blob. The costs 
are thus dominated by other factors than disk space.  

As a major difference to previous price schemes, a 
database server is provisioned and paid instead of a single 
database.  The database server offers full control like  
operated on-premises. Several databases can be managed in 
that server. This directly implies that a 1-DB-per-tenant 
strategy is feasible, i.e., each tenant can obtain a database of 
its own with individual credentials. A strong isolation is thus 
given without any extra charge. As a consequence, a strategy 
could be to use one database server and set up one database 
for each tenant until performance decreases. 

Instead of comparing 1-DB-per-tenant and 1-global-DB, 
we have to consider how many database servers (hosting 
several databases) of what tier we have to apply for the 
expected number of tenants and users. One strategy could be 
to start with a small VM and increase the instance type with 
the number of tenants. This implies that such an upgrade is 
possible within short time. 

If an upgrade could cause a downtime, we have to decide 
whether to use several small VMs or few larger ones from a 
cost perspective. There are high minimal costs of at least 
$311 per month for each database server ($13 for the 
smallest Windows VM A0 Basic plus the database server). A 
high number of tenants/databases will obviously require 
larger VMs, leading to higher baseline costs.  

TABLE VIII.  CONFIGURATIONS TO ACHIEVE 112 GB RAM. 

configuration # vCores Price (decreasing) 

8*D11 16 $4,800 

8*A4 64 $4,288 

8*D3 32 $4,072 

2*D13 16 $3,886 

A9 16 $3,646 

2*A8 16 $3,646 

D14 16 $2,611 

8*A5 16 $1,968 

2*A7 16 $1,966 

The question is what configuration is sufficient for a 
given number of tenants and amounts of data. Unfortunately, 
no performance hints are provided to ease the decision. It 
might be better to provision a larger VM since it can be used 
for other purposes as well if being idle. A brief evaluation of 
an SQL Server Standard Edition shows the following: 

a) 1*A9 costs $4836 ($3646 for the VM, $1190 for the 

SQL Server), offering 16 vCores and 112 GB RAM. 

b) For the same price we get 8.5*A3 with ~34 vCores 

and ~60 GB RAM in total.  

c) Alternatively, we can also purchase 3*A7 with 24 

vCores and 168 GB RAM. 

d) 13*A1 comes for $4745 with ~23 GB RAM and 13 

vCores.   
(d) offers the least equipment for the price because of the 

high number of database servers, each for $298. Options (b) 
and (c) favor either vCores or RAM. In general it looks 
reasonable to avoid high-class VMs and to use several 
middle-class VMs.  

An incremental provisioning can also help to reduce 
upfront baseline costs, which occur already with the first 
tenant. However, a deeper empirical performance evaluation 
is necessary due to further open questions: 

 What VM should be chosen? Table VIII shows 
several options to achieve 112 GB RAM with very 
different prices and numbers of vCores.  

 Similarly, there are many variants for 14 or 28 GB 
RAM, each yielding different vCores with prices 
ranging from $246 to $600 for 14GB RAM, and 
from $492 to $1089 for 28 GB RAM. 

 Finally, when pursuing the approach with one or few 
small servers, it is indispensable to know how long it 
last to upgrade the category of a VM. 

F. Offering 6 

Similar to Offering 5, this option again offers a VM 
running a database server, however, with several differences 
regarding pricing. Several database systems such as MySQL, 
Oracle, PostgreSQL, and SQL Server are supported in 
various database instance classes of three categories: Micro, 
Standard, and Memory-optimized.  

The prices depend on the chosen instance type, the type 
of database server, and the region. The prices for a MySQL 
database in the US East region are presented in Table IX. 
The underlying VM and the MySQL license are already 
included in the price. The instance class determines the 
number of virtual CPUs (vCPU) and the main memory. 

27Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           40 / 157



TABLE IX.  PRICE SCHEME FOR OFFERING 6. 

Category Instance type Price / month vCPU RAM 

Micro XS $12.41 1 1 

S $24.82 1 2 

M $49.64 2 4 

Standard M $65.70 1 3.75 

L $135.05 2 7.5 

XL $260.10 4 15 

XXL $520.20 8 30 

Memory-
optimized 

(MemOpt) 

L $175.20 2 15 

XL $346.75 4 30.5 

XXL $689.85 8 61 

4XL $1379.70 16 122 

8XL $2759.40 32 244 

An additional cost factor is the outgoing data transfer to 
the Internet of 9ct/GB: prices decrease with the amount, 1 
GB-month is for free. The price decrease for larger volumes 
is insignificant.  

Furthermore, the amount of data is charged according to 
two alternative classes of database storage: 

a) General purpose for 11.5ct per GB-month with a 

range from 5 GB to 3 TB; 3 IOPS per GB are included. 

b) Provisioned IOPS for 12.5ct per GB-month and 

additional $0.10 per requested IOPS/month, with a range 

from 100 GB to 3 TB and 1,000 IOPS to 30,000 IOPS.  
IOPS (IO per second) determines an upper limit for IO. 

IO itself is not charged.  
Again, we have to decide how many servers are 

reasonable. The baseline costs for each database server are 
determined by the minimal settings: The smallest installation 
in terms of cost for MySQL is Micro XS with $12.41/month. 
Provisioned IOPS storage is available at a minimum of 100 
GB and 1000 IOPS, i.e., $12.50 (100*12.5ct) plus $100 
(1000 IOPS à 10ct) ending up with costs of at least $112.50 
per server. Using alternate general purpose storage, we have 
to provision at least 5 GB for 57.5ct (5*11.5ct); but then only 
15 IOPS are available (see (a) above). Hence, setting up a 
minimal MySQL server, e.g., for each tenant, comes with at 
least $13 using general purpose storage, while provisioned 
storage is much more expensive with $125.  

A calculation and comparison of using one or several 
database servers is difficult since several factors are unclear. 
A high-end server might be more appropriate since the high 
provisioning cost for storage occur only once. According to 
the documentation, the network performance also increases 
with a higher instance class. However, many smaller servers 
avoid higher, tenant-independent upfront investments for a 
larger instance and required IOPS. 

Table X shows some configurations with similar monthly 
costs. The provided equipment differs a lot. Obviously, (a) is 
better equipped than (b). But each of (a) and (d) has an 
advantage for vCPUs or RAM, respectively.  

It is important to note that the provisioned numbers are 
relevant, not the effective usage. This means, the required 
storage for each tenant has to be estimated in order not to 
overpay for unused resources. The same holds for the IOPS 
rate. These costs occur already for the first tenant 
independently of consumed resources. 

TABLE X.  COMPARISON OF CONFIGURATIONS. 

 Configuration vCPUs RAM Costs 

a 1* 8XL (mem-opt) 32  244 $2759 

b 2 * 4XL  (standard) 16 244 $2759 

c 20 * L  (standard) 40 150 $2704 

d 42 * M  (standard) 42 157 $2759 

One strategy could be to start with small servers and 
increase the instance type and configuration if necessary. 
This implies that such an upgrade is possible within short 
time and without downtime in the meantime. Otherwise, a 
larger machine with larger storage and IOPS can be 
provisioned from the beginning, however, causing high 
starting costs already for some few tenants.  

Another strategy is to use one smaller server for each 
tenant, e.g., for $13. Then, the expenses increase tenant by 
tenant. This also gives more flexibility for provisioning IOPS 
according to tenants’ requirements. 

An important question is what IOPS rate is sufficient 
since the IOPS rate is a limiting factor: Throttling of users 
can occur if the limit is reached. Obviously, keeping several 
tenants in one server requires higher IOPS rates. It is unclear 
what the advantage of provisioned storage is compared to 
general purpose storage. From a pure cost perspective, 6000 
IOPS are charged with $600 for provisioned storage. To 
achieve 6000 IOPS with general purpose storage, we have to 
use 2TB (remind the factor in (a)), i.e., being much cheaper 
with $230 and already including storage. Since there is an 
upper database limit of 3 TB in any case, general purpose 
IOPS ends with 9,000 IOPS; provisioned storage can handle 
up to 30,000 IOPS.  

IV. CONCLUSIONS 

This paper took a deeper look into the price schemes of 
popular cloud database providers and investigated their cost 
impact on multi-tenancy. We thereby focused on storing 
tenants’ data in relational databases. We showed that a cost-
efficient database deployment for multi-tenancy heavily 
depends on providers due to very different price schemes. 
Several differences become apparent.  

 Offering 2-6 charge for provisioned storage, i.e., 
upfront costs occur even if small data is stored. In 
contrast, Offering 1 charge for storage consumption 
which avoids starting costs instead. 

 Sometimes, databases are paid (cf. Offerings 1-4); 
sometimes whole DB servers are provisioned (cf. 
Offering 5 and 6) so that several isolated databases 
can be managed with specific credentials. 

 Offerings 2 and 4 define certain limits on transaction 
rates, data transfer, or number of sessions. Reaching 
such a limit could stop a SaaS application for serving 
tenants.  

 For Offerings 3, 5, and 6, equipment such as RAM 
increases with each level, while this is not 
controllable and visible in Offerings 1, 2, and 4. 

There are direct cost factors such as storage, IOPS, 
sessions, cores, or data transfer, i.e., they are directly part of 
the price scheme. We detected indirect cost factors, too. For 
example, it might be necessary to use and pay a larger virtual 

28Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           41 / 157



machine (VM) in order to achieve a certain transaction rate, 
e.g., Offering 2.   

The broad spectrum of price schemes makes it difficult to 
find an appropriate provider-independent cost-optimized 
configuration for multi-tenant applications. However, we 
could present some analyses comparing the cost of a 1-DB-
per-tenant and a 1-global-DB strategy and displaying the 
characteristics for different tenant sizes. The results also 
have a strong impact on the cloud provider selection. For 
example, if a strong isolation is requested, a provider with 
too high prices for a 1 DB-per-tenant strategy might not be 
qualified for a selection. 

As a consequence, it is difficult to select the best provider 
from the cost perspective. But we think that our analysis 
helps architects of multi-tenant software to decide upon a 
cloud offering for the anticipated requirements. Besides 
architects, cloud providers can benefit from our analysis 
when it comes to adjust their service offerings. 

This all affects portability of SaaS applications, too. It is 
not easy to define an economic provider-independent 
strategy for multi-tenancy. Furthermore, architectures must 
take into account several aspects. For example, monitoring 
consumption becomes necessary because of thresholds such 
as a database upper limit of parallel sessions, IO limits, or 
any other type of throttling. This is indispensable to react in 
time if a threshold is reached because a service is in danger 
of being stopped. 

Future work will tackle open questions, including practi-
cal investigations. One important question is about the pro-
visioning time. This point is relevant in any strategy since 
additional databases have to be acquired. Similarly, upgrad-
ing a database level is important for saving upfront costs. 

Finally, we intend to collect further challenges from an 
industrial perspective.  

REFERENCES 

[1] M. Armbrust et al., “A View of Cloud Computing,” 
Communications of the ACM, 53(4), April 2010, pp. 50-58. 

[2] B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. 
Plavchan, “The Application of Cloud Computing to 
Astronomy: A Study of Cost and Performance,” Proc. of  6th 
IEEE Int. Conf. on e-Science, 2010, pp. 1-7.  

[3] C. Bezemer, A. Zaidman, B. Platzbeecke, T. Hurkmans, and 
A. Hart, “Enabling Multitenancy: An Industrial Experience 
Report,” in: Technical Report of Delft Uni. of Technology, 
TUD-SERG-2010-030, 2010. 

[4] C. Bezemer and A. Zaidman, “Challenges of Reengineering 
into Multitenant SaaS Applications,“ in: Technical Report of 
Delft Uni. of Technology, TUD-SERG-2010-012, 2010. 

[5] F. Chong, G. Carraro, and R, Wolter, “Multi-Tenant Data 
Architecture,“ June 2006, http://msdn.microsoft.com/en-us 
/library/aa479086.aspx [retrieved: February 2016] 

[6] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues 
and Challenges,“ in Proc. 24th Int. Conf. on Advanced 
Information Networking and Applications, 2010, pp. 27-33.  

[7] U. Hohenstein, R. Krummenacher, L. Mittermeier, and S. 
Dippl, “Choosing the Right Cloud Architecture - A Cost 
Perspective,“ in Proc. on Cloud Computing and Services 
Science (CLOSER), 2012, pp. 334-344. 

[8] A. Khajeh-Hosseini, I. Sommerville, and I. Sriram, “Research 
Challenges for Enterprise Cloud Computing,“ in Proc. 1st 

ACM Symposium on Cloud Computing, SOCC 2010, 
Indianapolis, pp. 450-457. 

[9] M. Klems, J. Nimis, and S. Tai, “Do Clouds Compute? A 
Framework for Estimating the Value of Cloud Computing,” in 
Designing E-Business Systems. Markets, Services, and 
Networks, Lecture Notes in Business Information Processing, 
Vol. 22, 2008, pp.110-123.  

[10] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. 
Anderson, “Cost-Benefit Analysis of Cloud Computing 
versus Desktop Grids,“ in Proc. of the 2009 IEEE Int. Symp. 
on Parallel&Distributed Processing, May 2009, pp 1-12. 

[11] D. Kossmann, T. Kraska, and S. Loesing, “An Evaluation of 
Alternative Architectures for Transaction in Processing in the 
Cloud,” ACM SIGMOD 2010, pp. 579-590. 

[12] R. Krebs, C. Momm, and S. Kounev, “Architectural Concerns 
in Multi-Tenant SaaS Applications,“ in CLOSER 2012, pp. 
426-431. 

[13] T. Kwok and A. Mohindra, “Resource Calculations With 
Constraints, and Placement of Tenants and Instances for 
Multi-Tenant SaaS Application,“ in Proc. Int. Conf. on 
Service-Oriented Computing, (ICSOC) 2008. LNCS, vol. 
5364, pp. 633-648.  

[14] M. Lindner, F. Galán, and C. Chapman, “The Cloud Supply 
Chain: A Framework for Information, Monitoring, 
Accounting and Billing,“ in Proc. on ICST Cloud Computing, 
2010, pp. 1-22. 

[15] B. Martens, M., Walterbusch, and F. Teuteberg, “Evaluating 
Cloud Computing Services from a Total Cost of Ownership 
Perspective,“ 45th Hawaii International Conference on 
System Sciences (HICSS-45), 2012, pp. 1564-1572. 

[16] Microsoft, “Developing Multitenant Applications on 
Windows Azure“. http://msdn.microsoft.com/en-us/library 
/ff966499.aspx [retrieved: January 2016] 

[17] R. Mietzner, F. Leymann, and M. Papazoglou, “Defining 
Composite Configurable SaaS Application Packages Using 
SCA, Variability Descriptors and Multi-Tenancy Patterns,“ in 
3rd Int. Conf. on Internet and Web Applications and Services 
(ICIW), 2008, pp. 156-161  

[18] C. Momm and R. Krebs, “A Qualitative Discussion of 
Different Approaches for Implementing Multi-Tenant SaaS 
Offerings,“ in Proc. Software Engineering 2011, pp. 139-150. 

[19] C. Osipov, G. Goldszmidt, M. Taylor, and I. Poddar, 
“Develop and Deploy Multi-Tenant Web-Delivered Solutions 
Using IBM Middleware: Part 2: Approaches for Enabling 
Multi-Tenancy,” in: IBM’s technical library, 2009. 

[20] A. Schwanengel, U. Hohenstein, and M. Jaeger, “Automated 
Load Adaptation for Cloud Environments in Regard of Cost 
Models,“ in Proc. on CLOSER, 2012, pp. 562-567. 

[21] A. Schwanengel and U. Hohenstein, “Challenges with 
Tenant-Specific Cost Determination in Multi-Tenant 
Applications,“ in 4th Int. Conf. on Cloud Computing, Grids 
and Virtualization, Valencia (2013), pp. 36-42. 

[22] E. Walker, “The Real Cost of a CPU Hour,“ Computer 2009, 
Vol. 42(4), pp. 35-41.  

[23] S. Walraven, E. Truyen, and W. Joosen, “A Middleware 
Layer for Flexible and Cost-Efficient Multi-Tenant 
Applications,“ in Proc. on Middleware, 2011 (LNCS 7049), 
pp. 370-389. 

[24] D. Westermann and C. Momm, “Using Software Performance 
Curves for Dependable and Cost-Efficient Service Hosting,“ 
in  Proc. on Quality of Service-Oriented Software Systems 
(QUASOSS), 2010, pp. 1-6. 

[25] Z. Wang et al, “A Study and Performance Evaluation of the 
Multi-Tenant Data Tier Design Pattern for Service Oriented 
Computing,” in IEEE Int. Conf. On eBusiness Engineering, 
(ICEBE) 2008, 94-101 

 

29Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           42 / 157



A Novel Framework for Simulating
Computing Infrastructure and Network Data Flows

Targeted on Cloud Computing

Peter Krauß
Karlsruhe Institute of Technology
Steinbuch Centre for Computing

76128 Karlsruhe
Email: peter.krauss@kit.edu

Achim Streit
Karlsruhe Institute of Technology
Steinbuch Centre for Computing

76128 Karlsruhe
Email: achim.streit@kit.edu

Tobias Kurze
Karlsruhe Institute of Technology

Library
76131 Karlsruhe

Email: kurze@kit.edu

Bernhard Neumair
Karlsruhe Institute of Technology
Steinbuch Centre for Computing

76128 Karlsruhe
Email: bernhard.neumair@kit.edu

Abstract— Understanding how computing infrastructure deci-
sions influence overall performance and cost can be very difficult.
Simulation techniques are an important tool to help analyse and
evaluate different infrastructure configurations and deployment
scenarios. As diversity of cloud computing resources is growing,
the space of possible infrastructure configurations becomes larger
and finding the best solution becomes harder. In our previous
paper, we presented a framework to benchmark cloud resources
to obtain objective and comparable results. Based on those results,
our simulation framework allows to model applications and to
estimate their performance. Compared to other infrastructure or
cloud simulation tools our framework excels when it comes to
the simulation of network data flows.

Keywords–Broad band networks, quality of service, infrastruc-
ture, cloud, simulation, framework

I. INTRODUCTION

Due to the rise of cloud computing during the last few
years - for a widely accepted definition of the term see [1][2] -
and its further growing adoption in commercial, industrial and
research endeavors [3][4], there are more and more different
infrastructure offerings and possible applications. Different
types of applications have different requirements on the under-
lying (virtual) hardware and are structured differently. Finding
deployment policies that deliver good performance and are
cost-efficient under varying conditions is challenging because
of multiple reasons.

First, the number of possible deployments for a given
application respectively for workload executing systems, grows
rapidly with the number of components of an application as
well as with the number of available resources to choose from.
Secondly, clouds do not always deliver the same performance
and are subject to varying demand. Further, as cloud resources
are delivered via public broadband networks, it is hard or even
impossible to reproduce identical test conditions. As it is nei-
ther practical to try out each and every possible deployment nor

feasible to reproduce an identical test environment, simulating
the respective scenarios is the better approach. Therefore, we
developed an infrastructure simulation framework that focuses
on cloud environments, but in principle it can be used for any
kind of infrastructure. The framework allows the simulation of
large-scale applications that may be deployed across different
cloud providers.

Our framework provides informations about the complete
behavior of a configured workload running on a user defined
infrastructure. During the simulation, a user can access all the
status information he might need, this includes load on disk,
CPU, memory as well as network interfaces. This allows a user
to attach e.g., cost models or simulate bad or malfunctioning
hardware. Our approach is unique in the way it models
networks and is very lightweight compared to other tools.

The paper is structured as follows:
A short overview of cloud respectively infrastructure sim-
ulation tools is given in Section II. Next, we present our
infrastructure model and introduce resource providers and our
network simulation model. Then, we give a description of how
workloads are specified, followed by the section dedicated to
the implementation of the simulator. Next, in addition to the
theoretical model, we describe how calibration of the simulator
is done and show the validity of the framework. Lastly a short
summary including a discussion of the validation’s results is
given.

II. RELATED WORK

In the field of cloud simulation, a lot of research with
varying focus has already been done. Lim et al. developed
MDCSim [5], a simulation platform for multi-tier data centers
that allows performance and power consumption analysis.
The simulator is event based and designed as a three-layer
architecture – user layer, kernel layer, communication layer.
It is able to capture details such as kernel level scheduling

30Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           43 / 157



strategies. For communication, the simulator supports IBA
and Ethernet over TCP/IP. By changing the timing parameters
other protocols can be incorporated. For kernel requests, the
simulator considers multiple CPUs as a single resource and is
modeled according to the Linux scheduler 2.6.9.

Another well known toolkit for modeling and simulating
cloud environments is CloudSim [6][7]. It is event-based and
allows to model data centers, virtual machines and resource
provisioning policies. Furthermore it is possible to model
federation of clouds resp. inter-networked clouds. Allocation
of virtual machines to hosts is done based on a First-Come-
First-Serve basis. CloudSim implements time-shared as well
as space-shared policies at host and at VM level to assign
resources. Besides aforementioned aspects, CloudSim models
the cloud market based on a multi-layered design, whereby the
first layer represents costs per unit related to the IaaS model
and the second layer comprises costs related to the SaaS model.
Network behavior is modeled using a latency matrix and a
message will be forwarded by the event management engine
after a delay specified by the according entry in the latency
matrix.

NetworkCloudSim [8] has been developed by Garg and
Buyya and is an extension for CloudSim providing a network
and generalized application model, allowing a more precise
evaluation of scheduling and provisioning policies. Network-
CloudSim adds three main entities: Switch, NetworkDatacenter
and NetworkDatacenterBroker. Also new classes to model
networks have been added to the original classes of CloudSim.
This allows a better modelling of applications that rely on
specific means of communication such as MPI for example.

DartCSim+ [9] is another enhancement of CloudSim. The
authors claim to have overcome limitations of CloudSim in
regard to three aspects: – simultaneous support of power
and network model is not possible – simulation of network
components is not power-aware – migration does not take into
account network overheads To overcame aforementioned lim-
itations, the authors developed a range of entities as extension
for CloudSim.

Wickremasinghe et al. propose another CloudSim related
tool named CloudAnalyst [10], that helps studying the be-
haviour of large-scale cloud applications. CloudAnalyst takes
into account the geographic dı̀stribution of an application and
of its users. CloudAnalyst provides a graphical user interface
that allows users to model their experimental setups.

Nunez et al. developed another cloud simulator called
iCanCloud [11][12] with focus on lage experiment setups.
iCanCloud features a global hypervisor that can integrate any
brokering policy and is configurable through a graphical user
interface. It also provides a POSIX-based API and supports
configurations for different storage systems such as remote
file systems like NFS or parallel files systems and RAID
configurations.

In our own previous work [13] we created a performance
measuring tool. The publication contains a description of the
used architecture to monitor a large amount of cloud resources
over time. We were able to show that the perfromance of
virtualized infrastructure resources does vary over time, even
though it should be constant, as well as the performance

of network interconnects between virtual machines. This as-
pect is not covered by common simulation frameworks. The
framework presented in this paper is capable of taking the
factors shown in [13] into account. We use the measured
performance values from [13] to calibrate our simulation
framework presented in this publication.

III. INFRASTRUCTURE MODEL

Our model describes an infrastructure cloud environment
as a hierarchy of entities. The entities on the lowest level
provide resources, which are in our model calculation power
in units called cpu cycles, ephemeral memory in units called
mbytes, persistent storage space in multiples of mbytes and
finally network traffic which is described by transfers between
network enabling entities characterized by a bandwidth in
units of mbytes per time step. The entities that provide those
resources are called vCPU, vMemory, vStorage and vNet which
creates instances of vTransfer objects.

On the next level, the model introduces another entity
called vMachine. This entity can be associated with any
combination and any amount of entities of the level below
and is a loose equvivalent to a virtual machine in a real cloud.
Further a vMachine can be associated with so called vWorkload
objects. Those objects contain a description of a workload and
are described in the course of this paper (see Section IV).

The next layer contains vDatacenter objects that in turn
contain vMachine objects. A vDatacenter in addition is asso-
ciated with two coordinates that express a location in a 2D-
space and can be used to position different datacenters relative
to each other. The distance between datacenters is factored in
when data transfers happen, since previous works showed that
this can affect transfers [13].

Beside those layers, the model is based on a global envi-
ronment object containing all entities related to the simulated
infrastructure. This environment provides a global, steadily
increasing counter to represent the simulation time in logical
seconds. With each step the timer advances by one and the
simulation progresses. The environment makes sure that all
objects associated with it are notified at least once per time
step about the new simulation time so they will update and
possibly advance their state.

In the following subsections, major parts of this model will
be explained in deeper detail.

A. Resource Providers

As mentioned before the model is based on four resources
that are provided by four resource providers. These entities are
always associated with a maximum capacity and a provisioning
speed. The first describes how many units of a certain resource
are provided whereas the latter expresses at what speed this
resource can be delivered. In addition, each resource can either
be ephemeral or static. Ephemeral resources reset their capacity
at the beginning of each new time step while static resources
do not. In our model the following four resource providers are
defined:

vCPU As mentioned, this object provides calculation power
in units of cpu cycles. The resource is ephemeral and
resets to its predefined maximum capacity with every

31Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           44 / 157



simulation step and the resource can be consumed at
instant speed.

vMemory To represent a machine’s internal memory, we
introduced a vMemory resource provider. In contrast to
physical RAM, this resource does reset its capacity with
every time step due to how workloads are designed
in our model: A vWorkload does not allocate and free
memory but it provides an absolute value representing
how much memory is required at a certain point in
time. All operations on a vMemory object are performed
instantly.

vStorage A vStorage object represents a comparably slow and
limited storage device for example a hard disk or solid
state drive. The provider’s operational speed is capped at
a predefined rate (throughput) which in addition is shared
among all entities currently using the resource.

vNet This object represents a network device which can
transfer a given amount of data per time step. The object’s
bandwidth is shared among all currently active transfers
and each transfer’s speed further depends on the receiver’s
bandwidth. Since proper network simulation is a major
part of our framework this will be discussed in detail
in a following section (see Section III-B). We assume a
physical network card to operate in duplex mode, sending
and receiving speeds are not correlated in any way and
are thus modeled as two independent vNet instances that
may be configured with different bandwidths.

vTransfer vTransfer objects contain all information that de-
scribe the state of ongoing data transfer, such as current
transmission speed and associated vNet instances (ori-
gin/destination). In contrast to the previously presented
objects, vCPU, vMemory, vStorage and vNet, a vTransfer
does not have a representation in real hardware and is a
completly virtual construct.

Since access to the ‘fast’ resources calculation power and
ephemeral memory is considered to be performed instantly,
no sophisticated scheduling is needed: In case those resources
are requested by one or more workloads, the resource provider
simply evenly divides the available resources among the re-
questers. In our current implementation, the scheduler follows
a round-robin manner to divide the resources. In case a request
cannot be fulfilled, an appropriate notification is sent to the
vWorkload for it to react according to its configuration. For
example, a common workload will request as many CPU
cycles as possible and a certain amount of memory. As long
as the first request does not lead to a critical error, a typical
workload can still execute even if there’s only a few cycles
assigned to it. On the other hand, a workload will most likely
crash if a memory requirement cannot be met.

In contrast, access to the ‘slow’ resources, storage and
network, has to be scheduled. We model two operations
on storage devices: write and read. Both operations are
performed equally but in the first case, the capacity of the
resource provider is decreased by the amount of transferred
data whereas in the latter case, the capacity remains constant.
When an operation on such a storage resource is initiated, the
resource provider will register the operation and evenly divide
the available bandwidth among the contenders and process
them in parallel. An operation is considered as failed, if the
requested amount of data cannot be written or read.

D

CA

B
L1 L2 L3

1,000
Interface
Bandwidth

Transfer

1,000

1,000 100
Figure 1. A simple example of a network graph.

B. Network Simulation

One of the major concerns of the simulator described
in this paper is the network simulation model. As indicated
above a proper calculation of per-transfer speeds can be
difficult due to the dependency on the sender’s as well as
the receiver’s bandwidth. The complexity increases with the
number of transfers, which, in addition, might or might not
share the same destination. A simple example is depicted in
Figure 1. The example shows four vNet objects named A,
B, C and D associated with the bandwidths bwA = 1,000,
bwB = 1,000, bwC = 100 and bwD = 1,000 and three
transfers between those (L1 = B → A, L2 = B → C
and L3 = C → D). The data transfers are represented as
instances of vTransfer. It is obvious that the bandwidth of
B has to be shared among two transfers L1 and L2 while
being capped by the available bandwidth of C after taking L3

into account. The arising challenge is to balance the transfer
speeds in a realistic manner in real-time while considering that
the network configuration might significantly change between
time steps due to added or removed nodes or transfers. Due
to those constraints known algorithms like those based on
the max-flow/min-cut-theorem [14] are not suitable for our
environment. Instead we developed an agent-based algorithm
that determines the available bandwidth per active transfer at
the current simulation time solely based on the information
provided by the receivers of the transfered data.

The algorithm we propose uses an iterative approach that
converges to a solution where an optimal data flow between all
vNet objects is achieved. This algorithm is further based on
a graph whose vertexes M = {M1, . . . ,Mn} are represent-
ing data sending or data receiving network interfaces (vNet
objects) and whose set of edges L = {L1, . . . , Ln} are repre-
senting network transfers (vTransfer objects). Each vertex Mi

is associated with a limited transfer rate bw(Mi) = bwi > 0
expressing the bandwidth of the vNet. The set of vTransfers
Ni contains all vTransfers originating from Mi and is a subset
of L.

To calculate the current transfer speed st at time t of a
vTransfer object Lk = Li→j = LMi→Mj

with Li→j ∈ Ni

originating from o(Lk) = Mi and targeted to d(Lk) = Mj , the
algorithm works in an iterative manner realistically saturating
the interfaces.

In a first step (t = 0), for each vNet instance all avail-
able bandwidth is divided proportionally among the active
vTransfers based on the theoretically possible transfer speeds
to the corresponding remote partners which is assumed to be
defined by the speed of the slowest involved vNet. This can

32Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           45 / 157



TABLE I. A SAMPLE CALCULATION FOR THE
NETWORK GRAPH SHOWN IN FIGURE 1.

L1 L2 L3

1st Iteration

A 1000 – –
B 909 91 –
C – 50 50
D – – 1000

min() 909 50 50

2nd Iteration

A 1000 – –
B 948 52 –
C – 50 50
D – – 1000

min() 948 50 50

3rd Iteration

A 1000 – –
B 950 50 –
C – 50 50
D – – 1000

min() 950 50 50

be expressed in the following equation:

s′0(Li→j) = s′t=0(Li→j) =
bwj∑

n∈Ni

bw(d(n))
× bwi (1)

In most cases, this assumption is just a rough approximation
and not exact, but it is a starting point for the algorithm to
work with. With further iterations the value will be gradually
corrected.

The result of calculation (1) represents the bandwidth a
sending vNet entity Mi could provide for a transfer Li→j to
a target Mj at maximum at time t = 0. The same value then
has to be calculated for the receiving vNet object. The speed
used for the transfer is then determined by the smaller of both
values:

s0(Li→j) = min(s′0(Li→j), s
′
0(Lj→i)) (2)

For the next steps (t > 0) the speed of a vTransfer instance
will no longer be based on the predefined bandwidth of the
involved vNets but on the previously calculated transfer speeds.
The equations to determine the speed s of a transfer Li→j at
any time t > 0 are adjusted to:

s′t(Li→j) =
st−1(Li→j)∑

n∈Ni

st−1(n))︸ ︷︷ ︸
A

×bwi (3)

st(Li→j) = min(s′t(Li→j), s
′
t(Lj→i)) (4)

With the factor A always being less or equal than 1.0 the
maximum bandwidth of source network interface is never
exceeded. Further A can only be equal to 1.0 in the case of a
single active transfer, which results in that transfer using the
maximum available capacity.

Using this algorithm we are able to determine the speed of
a transfer at any time simply by factoring in either previously
calculated transfer speeds in case of t > 0 or the neighboring
machines theoretically possible transfer speeds in case of t =
0. A sample calculation for the example discussed above is
shown in Table I. The first fours rows of the tables contain the
values for s′t for the transfer corresponding transfer expressed
by the columns. The last row of each table contains the value
of st. One can see that over time, the speeds of the transfers

TABLE II. PROPERTIES OF A WORKLOAD OBJECT.

Resource type data type description
vCPU integer Value expressing the total amount of

calculation power the workload will
use expressed in cpu cycles.

vMemory f(cpu cycles) Function returning the amount of used
vMemory when a given amount of cpu
cycles has be processed or is remain-
ing.

vStorage, vNetwork list List of triplets expressing the amount
of cpu cycles to be remaining or pro-
cessed for a defined operation to be
executed and a flag allowing parallel
execution.

converge to a final value that overall saturates the vNets A to
D.

Finally, when using the model above, the calculated trans-
mission speeds will always be based upon ideal network
connections transmitted over ideal network cables without
any kind of noise. Thus, we want to point out, that in our
implementation we add in a factor called ‘scatter’ to express
some randomness in latency and bandwidth and represent a
combination of all kind of complex signal fluctuations. Our
test show, that a variation of a few percent in transfer speeds is
realistic due to physical connections not performing perfectly
at all times.

IV. WORKLOAD DESCRIPTION

In our model, each workload is associated with a certain
amount of load related to the resources described in Subsec-
tion III-A. We do not consider workloads not associated with
any resource consumption, so the minimal defined workload
will be a workload only consuming a single cycle of calcu-
lation power. This enables the use of calculation power as a
reference for other resource usages: Instead of modeling usage
of vMemory based on the time passed since the launch of
the workload we model memory conumption as a function
of consumed calculation power. In general, the definition of
memory as a function over cpu cycles instead of processing
time is a more realistic approach: a started but not advancing
(i.e., due to missing resources) workload will not change its
state and thus not change its consumption of memory.

Since the usage of storage and network are time-consuming
processes due to the non-instant character of the underlying
resource providers we cannot transfer this mechanism par for
par. As a solution we designed storage and network usage as
triggers likewise based on the amount of cpu cycles. Those
triggers are simple integers and are executed as soon as the
number of consumed or remaining cpu cycles has reached
the configured value. Upon execution the trigger can then
instantiate new network transfers or storage operation which
are then processed. In addition the user can specify if those
operations should be processed in parallel or if the workload
should pause meanwhile.

Beside the described resource-related properties which are
summarized in Table II each workload may execute user-
defined subroutines upon reaching certain states to control the
flow of workloads. Predefined states are init which gets exe-
cuted when the workload is launched on a vMachine instance,
finish which is associated with the workload terminating and

33Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           46 / 157



error, the state that a workload changes to upon failing. In
addition a user can add other trigger and subroutines.

To start the simulation of a workload on a given infrastruc-
ture, the workload object has to be registered at a vMachine
instance. The vMachine then enables access to its resources
by reading the workload definition at the current simulation
time and passing appropriate requests to the resource providers
which then schedule the incoming requests.

V. IMPLEMENTATION

We realized the described model using Python 2.7 based
on the concepts of the object-oriented programming paradigm.
The most important components to mention are the different
resource providers vNet, vMemory, vStorage and vNetwork
along with vTransfer, the higher level entities vMachine and
vDatacentre and finally the global environment object called
env. Whereas most of the implementation can be considered
straight forward, we want to highlight some aspects we con-
sider implementation specific.

First, we implemented the resource provider’s scheduling
in case of more than one workload accessing the resource at
a time is done in a round-robin manner. Hereby, the resource
provider allocates an equal amount of the available resource
to each consumer. In the future, we plan to implement other
scheduling mechanisms.

Python natively does not offer an event handling concept,
so we based our simulator on generators. A generator function
allows to define a function that behaves like a iterator. The
details of this concept are described in [15] (PEP0289 and
PEP0342). This enables the implementation of time-dependent
actions, like network transfers and storage operations as loops.
An action requiring more than one time step to be performed is
expressed as a set of smaller parts that are one time step long
and yield at the end of their execution. We believe that using
generators leads to less error-prone code due to the simplicity
and the linear, synchronous layout.

Finally, due to the simulator not running in parallel but call-
ing subtasks subsequently one at a time, one has to make sure
that one task doesn’t change the simulation state prematurely.
We solved this by deep-copying the simulator’s state before
the execution of the subtask begins. Then, all subtasks refer
to the copy when reading values while making the changes to
the original state.

VI. CALIBRATION AND VALIDATION

To use the simulation framework, users must specify the
available infrastructure by defining resource providers as ex-
plained in Section III-A. The model can be calibrated based on
either of two correlated degrees of freedom: either the resource
provider’s performance or the workload’s resource usage can
be tuned. As soon as one dimension is set, the other has to be
picked accordingly to get consistent results.

With the model being a simplification of reality it is up to
the user to configure the infrastructure in a suitable way for
one’s use-case. Any calibration settings are workload specific,
since for example a workload might or might not benefit
from certain CPU features (i.e., Streaming SIMD Extensions

TABLE III. AVERAGE PERFORMANCE OF COMMON CPUS REGARDING
PSEUDO-RANDOM NUMBER GENERATION.

CPU name clock frequency Performance [MB/s]
Intel i3-2100 3.1 GHz 16.3 ± 0.9%

Intel i5-4288u 2.6 GHz 13.5 ± 1.4%
Intel Xeon E5520 2.27 GHz 7.2 ± 1.8%

Intel Xeon E5-2650 2.0 GHz 3.6 ± 8.5%

(SSE) [16]) or network related characteristics (e.g., delays due
to encryption settings).

In addition to this systematic calibration, performance
variations on all sorts of resources might occur due to non-
perfect behavior of hardware. Those variations are comparably
small and are covered by the aforementioned scatter factors we
added to the model in our implementation. Those aspects are
usually only known to system or software engineers or can be
obtained by benchmarking.

We provide consistent calibration values based on the
following assumptions for an Amazon EC2 environment:

• A workload that is modeled for a resource provider that
supports a certain CPU feature may need less CPU cycles
and is modeled accordingly.

• The same application that is modeled for a resource
provider that does not support a certain CPU feature may
need more CPU cycles and is modeled accordingly.

• The simulated execution of the same application using
resource providers that are n-times more powerful than the
original resource providers for which the application had
been tuned in the beginning should take in the order of a
n-th of the time when compared to the initial simulation.

• The simulated execution of an application should yield
approximately the same results when compared to real
run-time, respectively should be faster or slower in the
same order of magnitude relative to the application the
model’s parameters were derived from.

To derive calibration values, we ran a high number (approx.
560,000) of tests on different machine configurations using
a distributed benchmark suite. A detailed description of the
tests can be found in [13]. To obtain the calibration values, we
correlated the resources of the simulation environment with
the performance of the corresponding real hardware.

A. Calibration

In a first step, we calibrated calculation power based
on data of a synthetic CPU benchmark. In our case this
is the single-threaded calculation of pseudo-random numbers
for checksumming purposes on virtual machines of the EC2
instance type “t2.small” in the region “us-east-1”. For our
calibration, we set 2,000 cpu cycles =̂ 2,000MHz, which is
the average clock frequency a virtual CPU on the used EC2
instances provides as stated by Amazon. The benchmarks
showed an average random number generation rate of 3.6 ±
8.5% megabytes per second per core using an Intel Xeon E5-
2650 running at 2GHz. Table III shows the results of the same
benchmark on other CPUs for reference. Using this data, we
can state that a real-world workload using the same amount of
computing power as required for the generation of 3,600,000
pseudo-random numbers would run one second. As mentioned
above, this value might seem to be abstract compared to e.g.,

34Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           47 / 157



TABLE IV. AVERAGE PERFORMANCE OF COMMON CPUS REGARDING
PSEUDO-RANDOM NUMBER GENERATION.

Evaluated transfer distance std. deviation
us-east-1 ↔ us-west-1 3,600 km 13.4%
us-west-1 ↔ eu-west-1 8,000 km 14.5%

ap-southeast-1 ↔ eu-west-1 11,300 km 17.3%
ap-southeast-1 ↔ us-west-1 13,900 km 19.7%

GFLOPS, but since a user might not necessarily know the
amount of FLOPS his specific workload conducts as well as
he might not know what CPU features are beneficial to his
program, the description based on the benchmark results of
his actual workload is more usable.

In contrast to the calibration of calculation power, storage
and memory are less complex. The only free parameter asso-
ciated with a vStorage instance is the bandwidth per time step.
Nearly 50,000 performance tests on the aforementioned Ama-
zon EC2 instances resulted in an average of 40 ± 2.5%MB/s.
For vMemory, the only free parameter is the capacity, which
is expressed as an integer. Other parameters, like e.g., access
latency are not covered by the model.

The last parameters to be calibrated are those related to
the network simulation. The bandwidth of a network device is
primarily defined by its specifications and can usually be set
straight forward. However, due to our calibration environment
being virtualized, we had to measure the actual network capa-
bilities which resulted in a bandwidth of 350Mbit/sec±18%.
Secondarily, the model considers the distance between sender
and receiver as an influencing factor. A network transfer
will be slower proportionally to the distance between two
communicating machines. This factor can be significant and
results in variations of transfer speeds of up to 13% (for
transfers between us-east-1 situated in North Virginia, USA
and us-west-1 in California, USA) to 20% (for transfers
between us-west-1 and ap-southeast-1 in Singapore). A more
detailed listing of the influence of distance between transfer
endpoints on the fluctuation range of transfer speeds can
be found in Table IV. We assume a fluctuation of 2% per
kilometer on the first 4,000 km and 1% per kilometer above.
This is in good accordance with the measured results and,
in rough approximation, expresses that connections on the
first 4,000 km are most likely connections on mainland with
delays caused by e.g., routing devices. Longer distances can
be assumed to be oversea connections that are mostly free of
interference. The final parameter the model includes factors
in the quality of the involved hardware components. Network
transfers between the same machines on the same cable still
fluctuate in a non-negligible, statistical manner following a
gaussian curve. In our data we measured a standard deviation
of 5%.

With the values deduced from our benchmarks and pre-
sented in this section, we want to validate the simulation en-
vironment’s functionality by predicting the behavior of a real-
world scenario using the simulator and compare the results.

B. Validation

The validation of the system’s behavior regarding pure
CPU load was done by simulating the calculation of 1,000MB
of pseudo-random numbers as explained in the calibration
section. Based on the observations above, the expected runtime

A D

CT2

T3

B

T4

T1

350 350

350 100

Interface
Bandwidth

Transfer

Figure 2. The graph representing the network validation environment.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Bandwidth (normalized)

0

1

2

3

4

5

6

7

8

O
cc

ur
an

ce
(n

or
m

al
iz

ed
)

Gaussian µ = 1.0 σ = 0.05

measured data

Figure 3. Normalized histogram of the measured bandwidths.

per job is 288 s. This expectation is covered by the simulation
however, the observed values on real machines showed strong
fluctuations of up to 31% and a standard deviation of 7.9%.
A detailed description can be found in [13].

Next, we validated the behavior of the vStorage imple-
mentation. Since the system is based on a slow resource
provider equal to the one implemented to represent network
devices the validation of vStorage is shortened. The simulated
workload is a single threaded application writing 10,000MB
to disk. According to the calibration, this process should take
250 s. We were able to reproduce this value in our simulation
environment with a average deviation equal to the calibrated
2.5%. This result was then compared to the performance
values measured by bonnie++. We were able to show good
accordance between the test cases although the aforementioned
effect of varying performance biased the results. In numbers,
the deviation between simulated and observed results for the
duration of the benchmark was averaging at 5.3% with peaks
of 13.1%.

Exemplary we choose a network setup similar to the one
described in Section III-B and depicted in Figure 1 for vali-
dation of the network model. However, we slightly modified
the scenario to match the environment we used for calibration
(Amazon EC2, region us-east-1, “t2.small” instances). To be
more conclusive, in addition to a static network layout, we
assume another transfer between machine A and D to appear
after five seconds. The new scenario is depicted in Figure 2
and reads as follows:

At time t = 0, machine A initiates the transfer
of 500MB of data to machine B (T1). Meanwhile
machine C sends 500MB of data to B (T2) and
500MB of data to D (T3). A, B, D hold 350Mbit/s
network devices, C is associated with a 100Mbit/s
device. At t = 5, A initiates an additional transfer
of 500MB of data to D (T4).

We executed the scenario 100 times in reality and using

35Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           48 / 157



0

10

20

30

40

50

T1 simulated
T1 measured

0

2

4

6

8

10

ba
nd

w
id

th
[M

B/
s]

T2 simulated
T2 measured

0 5 10 15 20 25 30

simulation time [s]

−10

0

10

20

30

40

50

T4 simulated
T4 measured

Figure 4. Comparison of measured and simulated bandwidths over time.

the simulator. In our first configuration, all machines are
situated within the same data center and thus the geographical
correction factor is zero and we only expect fluctuations of five
percent due to our calibration. After dropping obvious outliers,
the results confirm the assumption of a gaussian distributed
micro-scattering as visualized in Figure 3.

The plot depicted in Figure 4 shows the transfer speeds
for each transfer at a given time averaged over all performed
benchmarks. Altogether we observed accurate accordance be-
tween simulation and reality as shown by the convergence of
the transfer speeds to the expected values. However, in the first
seconds, a large discrepancy can be seen. Since the values are
far above the specifications of the network device, we assume
the filling of caches or buffers being the cause. The transfers
T2 and T3 evidently converge to 6.25MB/s, the theoretical
maximum of the sending network card. T1 stays slightly below
the theoretical maximum sending speed of A. This is expected
since the overall bandwidth has to be shared with T4 as soon
as t ≥ 5.

In a second series of tests, we moved machine C to eu-
west-1, 3,600 km away from the other machines. This leads to
the geographical correction factor being relevant and thus to be
factored in during calculation. Again, the whole scenario was
done 100 times. This time we observed a bigger discrepancy
and larger fluctuations. As mentioned in [13], factors like time
of day respectively day of week do affect the performance of
the virtual environments and their attached network devices.
Since the deviation of the simulated results from those mea-
sured in reality is not larger than 7% at any time ttransfer > 3s
during our tests, we consider the simplification as acceptable.

VII. DISCUSSION, CONCLUSION AND OUTLOOK

As the tests show, our simulation framework provides good
results after calibration has been done. The avarage deviation
of the simulation results compared to real-world findings is
lower than 7.9 percent for CPU simulation, lower than 5.3
percent for storage simulation and lower than 7 percent for
network simulation.

The network simulation converges almost to the same mean
transfer speed, only during the first few seconds the simulation
underestimates the transfer speed that can be achived in the

real-world. Our simulation never yields results for transfer
speeds that are above the actual link speed - in contrast to
the real world due to cache effects in the first few seconds.
After around three seconds the simulated transfer rate is close
to the real-world transfer rate. As the focus of our simulation
framework is not to deliver a precise estimation of transfer
speeds at all times, but to provide good overall results, the
mentioned deviations are negligible in our case.

Our CPU simulations yielded very similar average results
when compared to real-word tests. However, there are some
deviations that can be explained by varying performance of
the cloud infrastructure. As we found in [13], the performance
of cloud infrastructure is not constant over time. Neglecting
those variations, our results were quite good.

Our simulation framework allows to model infrastructure
and workloads in a flexible way. There are two degres of
freedom that allow to set one of them conviniently while
choosing the other accordingly. The simulation framework
yields consistent results and converges quickly. As it is written
in Python, it is very lightweight and extensible with little
effort. However, during testing we noted that some facts that
are particularly important when simulating cloud infrastructure
cannot yet be captured by our framework. Most importantly:
cloud resources do not always yield the same performance.
Without knowing the exact reasons, we strongly suspect that
varying load of the providers’ infrastructure as well as varying
load of the inter-connecting networks.

Therefore, the next iteration of our simulation framework
must support resource providers that yield a time-dependent
amount of resources instead of a fixed number of, e.g., CPU
cycles. Also, multi core support as well as the ability to capture
CPU features are points to adress in future releases. Further
we plan to expand the framework in the future to support
a user when developing higher level functionalities such as
scheduling mechanisms for distributed systems or simulations
of platform services. Another aspect that is not yet covered by
our framework and that should be tackled in future releases is
a price model for infrastructure resources - something that is
of particular interest in cloud computing.

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, 2009,
p. 50.

[2] S. NIST, “800-145,“,” A NIST definition of cloud computing”,[online]
http://csrc. nist. gov/publications/nistpubs/800-145/SP800-145. pdf,
2011, [accessed 1-February-2016].

[3] Bundesverband Informationswirtschaft, Telekommunikation und neue
Medien e.V., “Cloud Computing – Ein ganzheitlicher Blick über die
Technik hinaus,” 2010.

[4] BITKOM Research, “Cloud monitor 2014,” 2014.

[5] S. hwan Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “Mdcsim:
A multi-tier data center simulation, platform,” in in Cluster Computing
and Workshops, 2009. CLUSTER ’09. IEEE International Conference
on, 2009.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, 2011, pp.
23–50.

36Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           49 / 157



[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,” Jul. 2009, [accessed 1-February-2016].

[8] S. Garg and R. Buyya, “Networkcloudsim: Modelling parallel appli-
cations in cloud simulations,” in Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on, Dec 2011, pp. 105–113.

[9] X. Li, X. Jiang, K. Ye, and P. Huang, “Dartcsim+: Enhanced cloudsim
with the power and network models integrated,” in Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on, June 2013,
pp. 644–651.

[10] B. Wickremasinghe, R. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing envi-
ronments and applications,” in Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International Conference on,
April 2010, pp. 446–452.

[11] A. Núñez and et al., “icancloud: A flexible and scalable cloud infras-
tructure simulator,” J. Grid Comput., vol. 10, no. 1, Mar. 2012, pp.
185–209.

[12] G. Castane, A. Nunez, and J. Carretero, “icancloud: A brief architecture
overview,” in Parallel and Distributed Processing with Applications
(ISPA), 2012 IEEE 10th International Symposium on, July 2012, pp.
853–854.

[13] P. Krauss, T. Kurze, and A. Streit, “Cloudbench – A Framework
for Distributed, Self-organizing, Continuous and Topology-aware IaaS
Cloud Benchmarking with Super-peer Networks,” in e-Science (e-
Science), 2015 IEEE 11th International Conference on, Aug 2015, pp.
273–278.

[14] Wikipedia, “Max-Flow-Min-Cut-Theorem — Wikipedia, the free
encyclopedia,” 2015, [accessed 1-February-2016]. [Online]. Available:
https://de.wikipedia.org/wiki/Max-Flow-Min-Cut-Theorem

[15] D. Goodger and B. Warsaw, “Index of Python Enhancement
Proposals,” 2016, [accessed 1-February-2016]. [Online]. Available:
https://www.python.org/dev/peps/

[16] R. Ramanathan, R. Curry, S. Chennupaty, R. L. Cross, S. Kuo, and M. J.
Buxton, “Extending the World’s Most Popular Processor Architecture,”
Intel Corporation, White Paper, 2006.

37Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           50 / 157



Overcome Vendor Lock-In by Integrating Already Available Container Technologies
Towards Transferability in Cloud Computing for SMEs

Peter-Christian Quint, Nane Kratzke
Lübeck University of Applied Sciences, Center of Excellence CoSA

Lübeck, Germany
email: {peter-christian.quint, nane.kratzke}@fh-luebeck.de

Abstract—Container clusters have an inherent complexity. A
distributed container application in the cloud can be complex
at planning, installation and configuration, maintenance and
search for failures. Small and medium enterprises (SMEs) are
mostly limited by their personnel and financial restrictions.
Using advanced cloud technologies like a container cluster often
requires high personnel expenses or the use of an external system
builder. In addition to economical, security- and governance
issues there is also the concern of technical vendor lock-ins.
This paper introduces C4S, an open source system for SMEs
to deploy and operate their container application with features
like elasticity, auto-scaling and load balancing. The system also
supports transferability features for migrating container between
different Infrastructure as a Service (IaaS) platforms. This paper
presents a solution for SMEs to use the benefits of cloud
computing without the disadvantages of vendor lock-in.

Keywords–Microservice; Container; Docker; Container Cluster;
Software Defined Network; Cloud Computing; SME

I. INTRODUCTION
Infrastructure as a service (IaaS) enables companies to

get resources like computational power, storage and network
connectivity on demand. IaaS can be obtained on public or
private clouds. Public clouds are provided by third parties for
general public use. Type representatives are Amazon’s Elastic
Compute Cloud (EC2) and Google Compute Engine (GCE).
Private Cloud are intended for the exclusive use by a single
organization [1]. They are mostly installed on the respective
companies own infrastructure. OpenStack is a cloud platform
for providing (not exclusively) private clouds. One big benefit
using cloud computing is the elastic scaling. Elasticity means
the possibility to match available resources with the current
demands as closely as possible [2]. Scalability is the ability of
the system to accommodate larger loads by adding resources
or accommodate weakening loads by removing resources [3].
With autoscaling, resources can be added automatically when
they are needed and removed when they are not in use [4].
The resources are allocated on demand and the customer only
has to pay for resources he really used. The system described
in this paper will support several, public and private, cloud
environments. Features like elastic scaling and transferability
will also be available. The authors define transferability as the
possibility to migrate some or all containers between different
cloud platforms. This is needed to avoid vendor lock-in by
the cloud providers, which is a major obstacle for small and
medium enterprises (SMEs) in cloud computing [5]. Only a
few research projects deal with the specific needs of SMEs in
cloud computing [6].

In the last few years, container technologies like Docker
got more and more common. Docker is an open source and
lightweight virtualization solution to provide an application

deployment without having the overhead of virtual machines
[7]. With Docker, applications can be easily deployed on
several machine types. This makes it possible to launch con-
tainers from the same application (image), e.g., on a personal
computer or a datacenter server.

Container clusters like Kubernetes (arose from Google
Borg [8]) and Mesos [9] can deploy a huge number of
containers on private and public clouds. A big benefit of cluster
technologies is the horizontal scalability of the containers, the
fast development and the contained software defined network,
which is often necessary for distributed container applications.
Container and container cluster software are mostly open
source and free to use.

SMEs are mostly financially and personnel-wise restricted
(see the European definition of SME [10]). Since the man-
agement of container cluster applications with features like
transferability and elasticity is complex, it can be very difficult
to achieve for a small (maybe only one person size) IT
department. Getting started using services like Infrastructure
as a Service (IaaS) might be very simple. But the use of
advanced cloud technologies like clusters, containers and cloud
benefits like auto-scaling and load balancing can quickly grow
into complex technical solutions. The cloud provider supplied
services (i.e., auto-scaling) might pose another issue due to
often having non-standardized service APIs. This is often
resulting in inherent vendor lock-in [11]. However, there are
products and services to manage these technologies like the
T-Systems Cloud Broker and Amazon EC2 Container Service
(ECS). These management solutions also have disadvantages.
For example, the Cloud Broker is a commercial product, which
is inherently designed for very big companies. This kind of
cloud broker services move the dependencies from the cloud
provider to the system/service provider like T-Systems. ECS
works only with Amazon EC2-instances, which means there is
still a vendor lock-in. Both solutions just shift vendor lock-in
to another company. Creating an open source system for easy
deployment and managing of cloud applications in a container
cluster would support SMEs using these technologies without
worries about vendor lock-in.

The software presented in this paper is called C4S. The
name is an acronym for Container Cluster in Cloud Computing
System. C4S is designed to (automatically) deploy an operating
container cluster application without vendor lock-in. Moreover,
the system will be able to monitor the cloud platform, the
container cluster and the containers themselves. Beside bare
reporting, the system will offer methods to keep the application
running in most failure states. Altogether, the C4S can make
container cluster cloud computing technologies usable for
SMEs without large and highly specialized IT departments.

38Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           51 / 157



C4S is not exclusively designed for SMEs. The user group
of C4S is not limited to specific company types, so (e.g.,
big international) companies with small and specific in-house-
departments can use it, too.

Section II describes the features and the requirements of
the C4S system. An overview about the C4S architecture
is given in Section III. The intended validation of concept,
which is performed at the final phase, is presented in Section
IV. Related work, several business services and products are
described in Section V. Finally, the conclusion is presented in
SectionVI.

II. GENERAL REQUIREMENTS OF C4S
C4S is designed to handle the high complexity of a

container cluster with benefits like elasticity, auto-scaling and
transferability. Feature requirements and the technical speci-
fications are explained below. By designing and developing a
generic cloud service description language, a solution to define
secure, transferable and elastic services of typical complexity
will be provided. Thus, they are deployable to any IaaS cloud
infrastructure. This work promotes the implementation of easy-
to-handle, elastic and transferable cloud applications.

A. Deploying and Controlling Applications

The basic feature of C4S is to deploy a distributed container
application on cloud environments. Therefore, the user can
easily configure the needed containers, the interfaces and the
cloud environments. According to the user set configuration,
the system will automatically deploy the application on the
container cluster and the cloud platforms. Overall, there are
three controlling levels the management solution C4S has to
support:

The Container Application can be configured, launched,
controlled, changed and stopped. Application parts (e.g., con-
tainer types) must be replaceable (e.g., changing of container
images to keep the application up to date). Details like the
status and the configuration of every single container and an
overview of all running containers should also be visible for
the customers.

The Container Cluster is used for automatic deployment
of the container on the available virtual machines (running
on IaaS platforms). Therefore, the cluster solution can create,
terminate and transfer containers. The user is able to set values
like the deployment limitations and restrictions in the container
host selection.

Virtual Machines on IaaS platforms form the host system
of the container cluster with the containers. The system should
support a management solution for monitoring the status as
well as creating and terminating virtual machines on several
cloud platforms. The user is able to set values like the
virtual machine limitations and the favored platform for each
container type.

A view with all used machines, their type, running time,
and other data is also necessary to observe, e.g., economic
information like actual costs. The system has to be able
to monitor on all controlling levels. In case of failure, the
monitoring system should trigger reports and automatic actions
to keep the application running.

B. Usage of Cloud Features
As described in Section I, cloud computing enables features

like elasticity, scalability and load balancing. C4S enables the
user to handle the inherent complexity of these features in an
easy way. Auto-Scaling containers on the cluster and virtual
machines on IaaS platforms is also featured.

C. Prevent Dependencies
To avoid vendor lock-in by the cloud provider, the

system can install a multi-cloud container cluster with transfer-
ability features. On demand, some or all containers can migrate
from one cloud provider to another. Accordingly, the user has
full control over where the containers are running.

To prevent dependencies by used software and ser-
vices, the C4S will be published under MIT license. It is
recommended that all third-party parts like the cluster software
are also open source. Thus, the consuming companies avoid
dependencies to the C4S system and adapt the source code
to their special needs. The system has to be designed generic
for several cloud platforms. A modular architecture enables
extensions for other platforms. Beside the cloud platforms, the
users should not be limited by the choice of the container
cluster. The modular architecture enables later extensions for
missing cluster connectivity.

III. C4S ARCHITECTURE
The architecture is divided into four layers. The core of

C4S is the deployment and the monitoring engine. The user
can manage the deployment and get the monitoring events over
two interfaces. The other two parts are the container cluster
and the IaaS environments.

Graphical	User	Interface	

...	

Container	
	Cluster	

Command	Line	Interface	

IaaS	
Pla:orm

s	

Deployment	
Engine	

Monitoring	
Engine	

																				Deployment	
																				language	

1	

2	

3	

4	

Virtual	
Machines	Virtual	

Machines	 Virtual	
Machines	 Virtual	

Machines	

Data	
Storage	
Engine	

Figure 1. C4S architecture overview

A. Interfaces À

The management system will provide a web-based graph-
ical user interface (GUI) and a command line interface (CLI),
see Figure 1, À. Here the user can set the the account data
and limits of the IaaS platforms, the configuration for scaling
and also set transfer orders (e.g., moving containers to another

39Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           52 / 157



cloud platform). It is also possible to set rules for creating,
terminating and moving containers on a special event. By
setting these rules, the system can deal with failures like a
cloud platform interrupt. Other features like the automatic
container cluster software installation can be started using the
interfaces. Status information about the containers, the cluster
and the cloud platform are visible, monitoring events and the
triggered actions are also reported.

B. Deployment and Monitoring Engines Á

This subsection describes the engines shown at Figure
1, Á. The deployment engine is responsible for creating
and deleting instances on the cloud platforms, managing the
container cluster and deployment of the containers on it,
making it the main core of C4S. Features like load balancing
and container transfer are also controlled by this engine. The
deployment language is designed for stating the constraints of
the configuration. All needed informations about the container
application, the cluster and the IaaS platforms can be described
by the deployment language. The monitoring engine observes
the containers on the cluster and virtual machines on the IaaS
platform. Additional to reporting states and failures, actions
can be triggered by events. For example, if the engine registers
an exceptionally high workload of a container, it reports to the
deployment engine to scale out containers, and vice versa. The
engine can deploy the application on different cloud platforms
and is able to transfer containers between them. The data
storage engine is compatible with several block and object
storage systems to avoid vendor lock-in. The engine also
enables scalability and security features for data storage.

C. Container Cluster Â

The container cluster deploys the containers on the virtual
cloud machines (see Figure 1, Â). The management system
can terminate and create the containers in the cluster network.
The system can also transfer a container from one virtual
machine to another, which is not even necessarily running on
the same cloud platform. These actions are controlled by the
deployment engine and supervised by the monitoring engine.
In combination with the container cluster, the engines make it
possible to migrate services from one private or public cloud
infrastructure to another (not necessarily compatible) cloud
infrastructure.

D. IaaS Platforms Ã

The C4S can manage several cloud platforms (see Figure
1, Ã). It is possible to create and terminate IaaS instances
accordingly on demand. Hence, it has to communicate with the
cloud platforms. Because of missing standardization [12] for
every provider API a special driver has to be designed. These
require a modular and easy to adapt software architecture. The
deployment language is designed for informations like access
data, limits and all other settings which can be set over the
described interfaces.

IV. INTENDED VALIDATION OF CONCEPT
It will be shown that SMEs can manage a container cluster

over (multi) cloud platforms. At first it will be demonstrated
that building a system, which fits all the required features, is
possible. Therefore, a working, open source C4S prototype,
which conforms the requirements set in Section II, will be

developed. The system has to be implemented in a modular
and extendable way. As cluster platform, C4S will support
Kubernetes first, other cluster environments will follow. Pre-
senting interchangeability and the open source type of C4S
will show that dependencies by the used software can be
prevented. To avoid vendor lock-in by the cloud provider,
the prototype must be able to install a multi-cloud container
cluster. First, the system will be compatible with the IaaS cloud
platform type representatives Amazon EC2, Google GCE and
OpenStack. To support other platforms, appropriate drivers
can be implemented. Transferability features like moving all
containers from one cloud platform to another will be imple-
mented. Terminating all containers and virtual machines on
one provider and creating them on another at the same time,
without changes in features like elasticity and auto-scaling, will
proof that C4S is preventing vendor lock-in. The software will
also manage container application deployment. It will deploy a
container cluster, create and terminate containers and is usable
for deploying applications. Also, workloads will be created to
test the autoscaling features. With enforced failure states, the
robustness of the system will be demonstrated. It will be shown
that the system is able to keep the applications running even
when containers and virtual machines get disconnected. In the
second part of the proof of concept, a company will employ
the software. Thus, the expense for a small business using the
container cluster manager will be evaluated. Finally, a proof of
concept will be realized by several business companies. These
companies will use the C4S system on their own for testing
a productive application deployment with real workload. Load
balancing, elasticity, auto-scaling and transferability features
will be applied in production. This way it will be shown that
SMEs can handle the complexity of a container cluster ap-
plication running on multiple cloud platforms without vendor
lock-in or dispensing with features like auto-scaling.

V. RELATED WORK
There are several solutions with overlapping features and/or

usage scenarios available. However, a system which fits all
requirements and features set in Section II for the C4S de-
ployment manager does not exist.

A. Container Cluster, Load Balancing and Scaling
A Container Cluster should run on homogeneous machine

types to provide fine-grained resource allocation capabilities
[9]. In previous work, the similarity of different cloud provider
instance types was analyzed. It was concluded that only a
few instance pairs are really similar. There are just a few
virtual machine types, which should be used when running
an application on a multi cloud platform environment [13].
Another issue to consider is the network performance impacts
using technologies like container and software defined net-
works (SDN). Previous investigations found that performance
impacts depends i.e., on the used machine types and the
message sizes [14]. Using a (encrypted) cross-provider SDN
also causes performance impacts, especially when using low-
core machines [15].

B. IaaS Management and Transferability
Container migration from one cloud provider to another is

an important feature of C4S. Vendor lock-in is caused, i.a., by a
lack of standards [12]. Currently the proprietary EC2 is the de-
facto standard specification for managing cloud infrastructure.

40Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           53 / 157



However, open standards like OCCI and CIMI are important to
reduce vendor lock-in situations [16]. C4S includes a special
IaaS driver for each supported cloud provider. Other research
approaches in cloud migration can be reviewed under [17].
There are several solutions like Apache Libcloud, KOALA
[18], Scalr, Apache jclouds and deltacloud and T-Systems
Cloud Broker for managing and deploying virtual machines on
IaaS platforms. Except for the T-Systems Cloud Broker, the
solutions are open source but have mostly payable services,
reduced functionality or limited virtual machine quantities.
These systems support features like creating, stopping and
scaling virtual machines on IaaS cloud platforms. Some of
them like the T-Systems Cloud Broker, Scalr and Apache
jclouds are designed for cross-platform IaaS deployment. In
contrast to the C4S requirements, the presented cloud managers
are limited to IaaS managing and do not offer container
deploying services. Some of them do not prevent vendor lock-
in by cloud providers or create new dependencies by itself
(e.g., T-System Cloud Broker, KOALA is limited to Amazon
AWS API compatible services).

C. Application Deployment
Peinl et al. [19] has defined requirements for a container

application deploying system. These coincide strongly with the
requirements for the C4S system, which have been discussed
in Section II-A. He also gives an overview about container
cluster managing. For easy deployment a container application
with monitoring, scaling and controlling benefits, there exist
several commercial solutions like the Amazon EC2 Container
Service (ECS), Microsoft Azure Container Service and Giant
Swarm. Limited to the providers own IaaS infrastructure,
these solutions are not designed for multi-cloud platform
usages, especially between public clouds (a requirement of
C4S). Open source cluster managers are Apache Mesos and
Kubernetes. These systems are designed to run workloads
across tens of thousands of machines. The benefits and issues
using cluster technologies are very high reliability, availability
and scalability [9] [8]. However, they are not designed to
create and terminate virtual machines (like AWS instances),
but to deploy applications on given resources. So, they cannot
prevent cloud provider dependencies on their own, but provide
essential ingredients to do so. Another cluster management
tool for increasing the efficiency of datacenter servers is
called Quasar, which is developed by the Stanford University
and designed for maximizing resource utilization. The system
performs coordinated resource allocation. Several techniques
analyze performance interferences, scaling (up and out) and
resource heterogeneity [20].

VI. CONCLUSION
The C4S is in the planning state, although some parts are

already implemented, like the cloud platform driver for fast
deploying IaaS instances. The next step is the creation of
a deployment language for dedicated containers to run on a
Kubernetes container cluster, finding solutions for container
cluster scaling problems and handling stateful tasks like file
storage. The system will be implemented in a modular and
generic way to allow an easy adaptation for different cloud
platforms and container cluster software. With C4S SMEs will
be able to deploy and operate their container applications on
an elastic, auto-scaling and load balancing multi-cloud cluster
with transferability features to prevent vendor lock-in.

ACKNOWLEDGMENT

This research is funded by German Federal Min-
istry of Education and Research (Project Cloud TRANSIT,
03FH021PX4). The author thank the University of Lübeck
(Institute of Telematics) and fat IT solution GmbH (Kiel) for
their support of Cloud TRANSIT.

REFERENCES
[1] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.
[2] M. Armbrust et al., “A view of cloud computing,” Communications of

the ACM, vol. 53, no. 4, 2010, pp. 50–58.
[3] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling

applications in the cloud,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 1, 2011, pp. 45–52.

[4] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 49.

[5] N. Kratzke, “Lightweight virtualization cluster - howto overcome cloud
vendor lock-in,” Journal of Computer and Communication (JCC), vol. 2,
no. 12, oct 2014.

[6] R. Sahandi, A. Alkhalil, and J. Opara-Martins, “Cloud computing from
smes perspective: A survey-based investigation,” Journal of Information
Technology Management, vol. 24, no. 1, 2013, pp. 1–12.

[7] J. Turnbull, The Docker Book: Containerization is the new virtualiza-
tion. James Turnbull, 2014.

[8] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

[9] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center.” in NSDI, vol. 11, 2011, pp. 22–22.

[10] Definition recommendation of micro, small and medium-sized
enterprises by the european communities. Last access 12th Nov.
2015. [Online]. Available: http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=uriserv:OJ.L .2003.124.01.0036.01.ENG

[11] N. Kratzke, “A lightweight virtualization cluster reference architecture
derived from open source paas platforms,” Open J. Mob. Comput. Cloud
Comput, vol. 1, 2014, pp. 17–30.

[12] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical review of vendor
lock-in and its impact on adoption of cloud computing,” in Information
Society (i-Society), 2014 International Conference on. IEEE, 2014,
pp. 92–97.

[13] N. Kratzke and P.-C. Quint, “How to operate container clusters more
efficiently? some insights concerning containers, software-defined-
networks, and their sometimes counterintuitive impact on network
performance,” International Journal on Advances in Networks and
Services, vol. 8, no. 3&4, 2015, (in press).

[14] N. Kratzke and P.-C. Quint, “About automatic benchmarking of iaas
cloud service providers for a world of container clusters,” Journal of
Cloud Computing Research, vol. 1, no. 1, 2015, pp. 16–34.

[15] N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” CLOUD COMPUTING 2015, 2015,
p. 180.

[16] C. Pahl, L. Zhang, and F. Fowley, “Interoperability standards for cloud
architecture,” in 3rd International Conference on Cloud Computing and
Services Science, CLOSER. Dublin City University, 2013, pp. 8–10.

[17] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research: a
systematic review,” Cloud Computing, IEEE Transactions on, vol. 1,
no. 2, 2013, pp. 142–157.

[18] C. Baun, M. Kunze, and V. Mauch, “The koala cloud manager: Cloud
service management the easy way,” in Cloud Computing (CLOUD),
2011 IEEE International Conference on. IEEE, 2011, pp. 744–745.

[19] R. Peinl and F. Holzschuher, “The docker ecosystem needs consolida-
tion.” in CLOSER, 2015, pp. 535–542.

[20] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” ACM SIGPLAN Notices, vol. 49, no. 4,
2014, pp. 127–144.

41Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           54 / 157



Cloud Data Denormalization of Anonymous Transactions 

Aspen Olmsted, Gayathri Santhanakrishnan 

Department of Computer Science 

College of Charleston, Charleston, SC 29401 

e-mail: olmsteda@cofc.edu, santhanakrishnang@g.cofc.edu 

 
Abstract— In this paper, we investigate the problem of 

representing transaction data in PAAS cloud-based systems.  

We compare traditional database normalization techniques 

with our denormalized approach.  In this research, we 

specifically focus on transactional data that is not attached to a 

specific customer.  The absence of the relationship in the 

customer object allows for the vertical merging of tuples. to be 

stored in aggregate form. The journaling features of the data 

store, allow full audits of transactions while not requiring 

anonymous data to be materialized in fine-grained levels.  The 

horizontal merging of objects is also deployed to remove detail 

lookup data instance records and replace them with business 

rule objects. 

Keywords-web services; distributed database; modeling  

I.  INTRODUCTION 

In this work, we investigate the problem of representing 
transactional data in a platform as a service (PAAS) cloud-
based system. In traditional client-server architectures, 
database normalization is used to ensure that redundant data 
is not stored in the system.  Redundant data can lead to 
update anomalies if the developer is not careful to update 
every instance of a fact when modifying data.  Normalization 
is also performed to ensure unrelated facts are not stored in 
the same tuples resulting in deleting anomalies. 

Data representation in the cloud has many of the same 
challenges as data representation in client/server 
architectures.  One challenge data representation in the cloud 
has that is not shared with client/server is the minimization 
of data because costs of cloud data storage are significantly 
higher than local storage.  We are thinking of simple costs 
for disk storage, not true costs.  Organizations budget only 
the costs of disk drives for local storage which are in the tens 
of dollars per gigabyte but cloud storage can be in the 
hundreds of dollars per gigabyte per month [1]. Often this 
storage is expressed as the number of tuples in the data store 
instead of the number of bytes on the disk drive holding the 
data. For example, force.com [2] charges for blocks of data 
measured in megabytes but they calculate usage as a flat 
2KB per tuple.    Zoho Corporation also tracks data storage 
by the tuple for serval of their cloud products including 
Creator [3] and CRM [4]. The tuple count method is used as 
it is easier to calculate in a multi-tenant system where the 
physical disk drives are shared by many clients. 

In this paper, we present an algorithm that will minimize 
the number of tuples used to store the facts for a software 
system.  We use a motivating example from a cloud software 
system developed by students in our lab.  The algorithm 
performs three main operations: 

 The horizontal merging of objects – several distinct 
relations are combined into one. 

 The vertical merging of objects – several distinct 
instances of the same type of facts is combined into 
one. 

 Business rule adoption – instead of storing tuples to 
represent availability of lookup data, we replace the 
tables with pattern based business rules  

We apply our algorithm to a system in the humanities 
application domain and show an approximately 500% 
reduction in tuple storage. 

 
Date [5] invests a good deal of his text on the definition 

of denormalization.  He argues that denormalization is when 

the number of relational variables is reduced, and functional 

dependencies are introduced where the left hand of the 

functional dependency no longer is a super key.  In our 

work, we perform many optimizations.  When we 

horizontally merge relations, then we are performing a true 

denormalization.  Other optimizations such as vertical 

merging do not fit Date’s definition of denormalization.  We 

choose to stay with the term denormalization algorithm as it 

is a set of steps taken after the normalization process.   

The organization of the paper is as follows. Section 2 

describes the related work and the limitations of current 

methods. In Section 3 we give a motivating example where 

our algorithm is useful and describe our denormalization 

algorithm.  Section 4 describes additional enhancements 

through the design of business rule objects. Section 5 

explores reporting from the denormalized objects utilizing 

the object version history stored in the journal. Section 6 

contains our comparison of the proposed method and the 

traditional database normalization method. We conclude and 

discuss future work in Section 7. 
. 

II. RELATED WORK 

Sanders and Shin [6] investigate the process to be 

followed when denormalization is done on relational data 

management systems (RDBMS) to gain better query 

performance. Their work was done before the cloud 

database offerings became prevalent.  In the cloud, database 

performance is less of an issue to storage requirements 

because the systems are designed to distribute queries across 

many systems. 

Conley and Whitehurst [7] patented the idea of 

denormalizing databases for performance but hiding the 

denormalization for the end user.  Their work focuses on 

merging two relations into one relationship to eliminate the 

processing required to join the records back together.  Their 

work uses horizontal denormalization to gain performance.  

42Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           55 / 157



Our work uses both horizontal and vertical denormalization 

to minimize storage space and increase usability. 

Most denormalization research work was done in the 

late 1990s and was focused on improvement in query 

performance over the correctness and usability of the data.  

Recently, folks like Andrey Balmin have looked at 

denormalization as a technique to improve the performance 

of querying XML data.  Like the previously mentioned 

research, this work differs from our work in the desired end 

goal of minimized data storage and end user usage. 

In Bisdas’ [8] blog, he demonstrates ways that end users 

can improve data visualization by vertically merging 

hierarchical data in the Salesforce, data model.  He takes 

advantage of the trigger architecture to create redundant 

data in the hierarchy.  Taber [9] also recommends 

denormalization to improve data visualization.  The problem 

with both solutions is that data storage requirements are 

increased while correctness is jeopardized by the redundant 

data. 

In our previous work [10], we study UML models from 

the perspective of integrating heterogeneous software 

systems.  In the work, we create an algorithm to sort cyclical 

UML class data diagrams to enable transaction reformation 

in the integration.  In the process, discoveries were made on 

the freshness of data at different layers in the UML graph.  

The knowledge is useful in this study when considering 

anomalies that can happen in response to data updates. 

Additional semantics for models can be added by the 

integration of the matching UML Activity and Class 

diagrams. UML provides an extensibility mechanism that 

allows a designer to add new semantics to a model.  A 

stereotype is one of three types of extensibility mechanisms 

in the UML that allows a designer to extend the vocabulary 

of UML to represent new model elements [11].  

Traditionally these semantics were consumed by the 

software developer manually and translated into the 

program code in a hard coded fashion. 
Developers have implemented business rules in software 

systems since the first software package was developed. 
Most research has been around developing expert systems to 
process large business rule trees efficiently.  Charles Forgy 
[12] developed the Rete Algorithm, which has become the 
standard algorithm used in business rule engines.  Forgy has 
published several variations on the Rete Algorithm over the 
past few decades. 

 
 

III. DENORMALIZATION 

We demonstrate our work using a Tour Reservation 

System (TRS).  TRS uses web services to provide a variety 

of functionalities to the patrons who are visiting a museum 

or historical organization.    We use the UML specification 

to represent the meta-data. Figure 1 shows a UML class 

diagram for an implementation of this functionality. The 

Unified Modeling Language includes a set of graphic 

notation techniques to create visual models of object-

oriented software systems [13].  In this study, we use data 

collected by the Gettysburg Foundation on visitors to their 

national battlefield.  The system is modeled and 

implemented on the force.com [2] cloud platform. 

Figure 1 shows a normalized UML class model of 

reservation transactions of visitors to the Gettysburg 

National Battlefield.  In the model the central object ticket 

represents a pass for an entry that is valid for a specific date 

and time and a specific activity.  Activities are itinerary 

items the visitor can be involved in while visiting the 

battlefield.  In the normalized model, each ticket is linked to 

a specific activity schedule entry that will designate the date 

and time the pass is valid for entry.  Each activity schedule 

is linked to an activity object that designates the name and 

location of the activity. 

Each ticket is linked to a user in the Gettysburg 

organization who was responsible for the transaction.  Each 

ticket can be linked to a patron object.  In the case of 

advanced reservations, there will be a valid patron object 

linked to the ticket.  Advanced reservations are transactions 

that take place through the organization's website or over 

the phone to a reservation agent. In the case of walk-up 

transactions, there will not be a linked patron.  A walk-up 

transaction is a transaction that takes place when a visitor 

arrives on the site without a prior reservation and pays for 

the ticket at the front desk. 

In Figure 1, the multiplicity of the association between 

the patron and the ticket is a zero or one to many.  A 

multiplicity that can be zero represents anonymous data.  

Anonymous data is data that does not need to be specified in 

order for the transaction to be valid.  In the example 

transaction, the patron can remain anonymous but still visit 

the battlefield and partake in the activities.  In the case of 

the sample Gettysburg data, 60 percent of ticketing 

transactions were anonymous. 

In the case of the force.com [2] PAAS, data storage is 

charged by the tuple.  With an enterprise license to the 

platform, the organization is granted access to one gigabyte 

of data storage.  The storage is measured by treating every 

tuple as two kilobytes.  This form of measurement  allows 

Figure 1. Normalized Transaction Model 

43Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           56 / 157



the organization 500,000 tuples in the enterprise data 

storage option.  The data collected for the normalized data 

model would allow the Gettysburg organization to store 

around nine months’ worth of data.  With the anonymous 

transaction, the ticket and the payment data is only 

important on the original transaction level for auditing.  For 

example, the accounting department may want to see the 

details behind a specific ticket agent’s cash total for the day.  

Another example would be the marketing department wants 

to see the ticket price patterns within an hour of the day. 

The force.com [2] platform uses an Oracle relational 

database to deliver the data storage services but adds a 

journal feature so history can be stored on all changes to an 

object over time.  This journal can be used at no additional 

data storage cost.  The field level changes stored in the 

journal would allow aggregate data to be stored for 

anonymous transactions and still have the detail to perform 

the audits mentioned earlier. 

If an object is used between two other objects where the 

middle object is the “many” side of the one-to-many 

relationship and the one side of the other relationship, then 

the same data can be represented by moving the attributes to 

the object on the composition side of the relationship.  The 

middle object is then able to be removed, reducing the 

number of tuples representing the same amount of data.  In 

Figure 1, the “Activity Schedule” object fits this profile and 

can be horizontally merged with the “Ticket” object.  In our 

previous work [10], we study UML data model freshness 

requirements and document the relationship between data 

changes and location in the UML graph.  In our findings, we 

see that middle object nodes are less predisposed to changes 

than leaf nodes.  The lower amount of data changes reduces 

the change of update anomalies. 

In Figure 1, we also designate objects that are updated in 

transactions differently than objects that are navigated for 

transactional lookup values.  Two stereotypes are added to 

the diagram: 

 Transactional – The classes designated with the 

orange color and the <<Transactional>> tag are 

updated during transactional activities. 

 Lookup – The classes designated with the green 

color and the <<Lookup>> tag are not updated 

during transactional activities.  The data in these 

classes are created by administrative activities.  

During transactions, the data is searched for the 

proper values. 

The Denormalization Algorithm, Algorithm 1, 

transforms a normalized model stored in a UML class 

diagram into a denormalized model represented as an entity-

relationship diagram.  The algorithm assumes input and 

output of the models in the XMI [14] format.  XMI is a 

standard exchange format used to represent structural 

models in a non-proprietary way. 

The algorithm first loops through each object in the 

normalized model and adds the object and attributes as 

entities in the denormalized entity-relationship diagram. If 

the object has the transactional stereotype, then the 

attributes are marked unique.  Surrogate identifier fields are 

added to each object’s definition to be used as an auto-

incrementing primary key. 

The next pass of the algorithm is to find objects that can 

be eliminated from the middle relationship of two “one-to-

many” relationships.  The original model, in Figure 1, had 

an activity schedule object that consumed a lot of data space 

by storing a lot of tuples to represent the occurrences an 

activity can take place.  We use a stereotype of “PK” 

applied to attributes in the original model to designate the 

primary identifier for instances of an object.  This 

designation allows us to shift the attribute down the 

association and swap the positioning of the objects.  In this 

iteration over the objects, we also look for date-time data 

Figure 2 Denormalized Transaction Model 

Algorithm 1. Denormalization Algorithm 

INPUT: normalizedObjects (XMI representation of 

UML class diagram) 

OUTPUT: denormalizedEntities (XMI representation 

of denormalized entities) 

foreach object in normalizedObjects 

    add entity to denormalizedEntities 

    foreach attribute in object 

       add attribute to entity 

       if object is transactional 

          mark attribute as unique 

    add id attribute as primary key 

    mark id as autoincrement 

 

foreach entity in denormalizedEntities 

    if entity is both a many side and a one side of two 

relationships            

     and  a lookup object 

       foreach attribute in object 

          if attribute is PK 

             add attributes to many side entity  

             if attribute is a datetime type expand date pattern 

       swap graph location entity of the one sides 

  

foreach association in normalizedObjects 

    if association is one-to-may and many side is transactional 

        add foreign key to many side entity 

        add quantity field to entity on many side              

44Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           57 / 157



types that are part of the primary key.  When we locate an 

occurrence, we replace the attribute with a date-time 

specification occurrence.  The date-time specification 

includes a starting date, ending date, starting time, ending 

time and day of the week pattern. 

The final pass of the algorithm adds foreign keys and 

aggregation counters.  The aggregation significantly reduces 

the count of tuples stored.  An example of this is shown in 

Figure 1. Instead of having an instance of each ticket, we 

add the quantity field to store the aggregate count for the 

unique attributes. 

Figure 2 shows an entity-relationship diagram of a 

transformed model of Figure 1. Unique attributes have been 

applied where aggregations should be performed.  The 

activity schedule entity has been shifted out in the graph, 

and the quantity fields have been added to the aggregated 

transactional objects. 

 

IV. BUSINESS RULES 

Business rule engines have sprung up to allow the 

separation of business rules from the core application code.  

The systems are designed to allow the end users to change 

the business rules freely without changing the original 

application code. In 2007, International Data Corporation 

implemented a survey where they asked 'How often do you 

want to customize the business rules in your software?’. 

Ninety percent of the respondents reported that they 

changed their business rules annually or more frequently.  

Thirty-four percent of the respondents reported that they 

changed their business rules monthly [15]. 

Figure 2 shows two tables that implement business rules:  

 Activity Schedule – This table implements the 

date-time pattern mentioned earlier to store the 

business rules for when a particular activity is 

valid. 

 Price Schedule – This table implements the 

date-time pattern mentioned earlier to store the 

business rules for when a particular price is 

available. 

In each case objects in Figure 1, that inserted instances to 

represent availability, are replaced with rule instances to 

represent the availability.  So instead of having a tuple per 

availability instance, a single tuple can represent the pattern. 

In the case of activity schedules, the example year had over 

26,000 instances of availability that were replaced with 30 

instances of the business rule. 

 

V. OBJECT HISTORY ANALYSIS 

One of the main reasons enterprises develop or purchase 

software solutions to allow the organization to increase their 

knowledge of their operations through the analysis of the 

data collected in the software solution.  The denormalization 

solution presented earlier may limit the data available from 

the denormalization process.  The data is presented to the 

users through dashboards, reports or exports.  A dashboard 

is presented as a graphical chart to measure where the 

organization stands compared to a goal.  Examples of these 

would be sales to date compared to same period last year.  A 

report has a set of input parameters that control the data 

displayed.  The data displayed in the report tends to include 

tables with aggregated values.  Exports allow for the 

exporting of data into a two-dimensional table saved as a 

comma separated value (CSV) format.  In this format, 

attributes represent the columns of the data.  Columns are 

escaped with double quotes and separated by commas.  For 

our purposes, we will refer to all three categories generically 

as reports. 

Current state and historical comparison are the two 

categories of reports a user may want to pull in their 

analysis. In current state reports only the latest version of 

the object is needed.  In historical comparison reports, all 

versions of an object may be needed depending on the level 

of aggregation. An example of a historical comparison 

report would be a report that compares sales for the month 

compared to sales last year in the same month. 

In our work, we developed Algorithm 2 to create an in-

memory copy of all historical versions of a specific object.  

We use code to generate the data and then generate the 

report output. If the organization wanted to allow end users 

to report on historical versions, they could modify 

Algorithm 2 to write records as temporary tuples and then 

call the reporting tool. 

 

VI. EMPIRICAL RESULTS 

The empirical results demonstrate the success of 

representing the example transaction data with significantly 

lower cloud storage costs. TABLE 1 shows the tuple counts 

for the original data model and the denormalized data 

model.  Both data models represent the complete 2014 

calendar year of visitor transactions for the Gettysburg 

National Battlefield. The denormalized model creates a 78% 

reduction in the number of tuples. In the specific case of the 

Algorithm 2. History Creation Algorithm 

INPUT: object 

OUTPUT: collection of object’s version history 

 

Set thisObject = newest version of object 
Set objectVersions = empty list 

Set fieldVersions = distinct saveDates values from object journal  

Sort fieldVersions by saveDate descending 
Set lastDate = maximum(saveDate) 

Foreach version in fieldVersions 

     If lastDate = version.saveDate 
        objectVersions.add(thisObject) 

    Set thisObject.[version/attribute] = version.value 

    Set lastDate = version.saveDate 
Return objectVersions 

 

45Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           58 / 157



force.com [2] platform, the reduction in number of tuples 

allows the organization to store nearly three years of 

transaction data in the data storage provided without 

additional subscriptions costs.  In the minimal data storage 

provided to an enterprise customer of force.com [2], the 

organization receives 500,000 tuples. Additional data 

storage is available to the organization for a monthly 

subscription price of 2,000 tuples per dollar. Using the 

normalized data model, the organization would not be able 

to store a complete year of data without needing to purchase 

more data storage. 

VII. CONCLUSION 

In this paper, we propose an algorithm for object 

denormalization when transforming an application domain 

object model to a data model used in a cloud PAAS data 

store. Our solution is based on navigating the relationships 

in a UML class diagram and horizontally compressing 

classes between multiple one-to-many relationships, 

aggregating relationships on anonymous relationships and 

using temporal offering patterns. 

In this research, we studied a specific application 

domain related to humanities organizations.  The algorithms 

can be applied to similar application domains that contain 

entity objects representing transactions and customers. 

Future work needs to test our algorithms in other application 

domains to ensure the work applies across different 

application domains.    

 
REFERENCES 

[1]  brainsell blog, "Salesforce, SugarCRM and SalesLogix — 

Data Storage Costs Compared," 2016. [Online]. Available: 

https://www.zoho.com/creator/pricing-comparison.html. 

[Accessed 03 02 2016]. 

[2]  Salesforce.com, inc, "Run your business better with Force.," 

2006. [Online]. Available: 

http://www.salesforce.com/platform/products/force/?d=701

30000000f27V&internal=true. [Accessed 03 02 2016]. 

[3]  Zoho Corporation, "Creator Pricing Comparison," 2016. 

[Online]. Available: https://www.zoho.com/creator/pricing-

comparison.html. [Accessed 03 02 2016]. 

[4]  Zoho Corporation, "Compare Zoho CRM editions," 2016. 

[Online]. Available: 

https://www.zoho.com/crm/comparison.html. [Accessed 03 

02 2016]. 

[5]  C. J. Date, "Denormalization," in Database Design and 

Relational Theory, O'Reilly Media, 2012.  

[6]  G. L. Sanders and S. Shin, "Denormalization Effects on 

Performance of RDBMS," in Proceedings of the 34th 

Hawaii International Conference on Systems Sciences, 

2001.  

[7]  J. D. Conley and R. P. Whitehurst, "Automatic and 

transparent denormalization support, wherein 

denormalization is achieved through appending of fields to 

base relations of a normalized database". USA Patent 

US5369761 A, 29 November 1994. 

[8]  A. Bisda , "Salesforce Denormalization Delivers New 

Power for Nurtures," DemandGen, 29 07 2014. [Online]. 

Available: http://www.demandgen.com/salesforce-

denormalization-delivers-new-power-nurtures/. [Accessed 

09 11 2015]. 

[9]  D. Taber, Salesforce.com Secrets of Success: Best Practices 

for Growth and Profitability, Prentice Hall, 2013.  

[10]  A. Olmsted, "Fresh, Atomic, Consistent and Durable 

(FACD) Data Integration Guarantees," in Software 

Engineering and Data Engineering, 2015 International 

Conference for, San Diego, CA, 2015.  

[11]  Object Management Group, "Unified Modeling Language: 

Supersturcture," 05 02 2007. [Online]. Available: 

http://www.omg.org/spec/UML/2.1.1/. [Accessed 08 01 

2013]. 

[12]  C. L. Forgy, "Rete: A fast algorithm for the many 

pattern/many object pattern match problem," Artificial 

Intelligence, vol. 19, no. 1, p. 17–37, 1982.  

[13]  Object Management Group, "Unified Modeling Language: 

Supersturcture," 05 02 2007. [Online]. Available: 

http://www.omg.org/spec/UML/2.1.1/. [Accessed 08 01 

2013]. 

[14]  Object Management Group, "OMG Formal Versions of 

XMI," 06 2015. [Online]. Available: 

http://www.omg.org/spec/XMI/. [Accessed 11 11 2015]. 

[15]  Ceiton Technologies, "Introducing Workflow," [Online]. 

Available: 

http://ceiton.com/CMS/EN/workflow/introduction.html#Cus

tomization. [Accessed 15 09 2014]. 

 

 

TABLE 1. EMPIRICAL RESULTS 

Table Normalized 

Tuples 

Denormalized 

Tuples 

user 31 31 

patron 17,610 17,610 

ticket 738,981 157,780 

activity 

schedule 

26,697 30 

price schedule 220 24 

activity 17 17 

Total 783,556 175,492 

 

46Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           59 / 157



Modeling Non-Functional Requirements in Cloud Hosted Application 

Software Engineering 

 

Santoshi Devata, Aspen Olmsted 

Department of Computer Science 
College of Charleston, Charleston, SC 29401 

e-mail: devatas@g.cofc.edu, olmsteda@cofc.edu 

Abstract- Functional Requirements are the primary focus 

of software development projects for both end users and 

developers.  The Non-Functional Requirements (NFR) are 

treated as a secondary class requirement, ignored until the 

end of the development cycle. They are often hidden, 

overshadowed and therefore, frequently neglected or 

forgotten. NFRs are sometimes difficult to deal with and 

are the most expensive in certain cases. NFRs become even 

more important with cloud architectures because the 

concurrent load and response latency are more vulnerable 

using public networks than they were on private networks. 

More wok is needed on mapping NFR models into software 

code. Developing a cloud based system with functional 

requirements only is not enough to build a good and useful 

software. NFRs should become an integral part of software 

development. In this paper, we focus on the modeling of 

NFRs and the transformations from UML models into the 

source code.  Specifically, we choose three NFRS: response 

time, concurrency, user response time for a Theater 

Booking system. 

Keywords - Non-Functional Requirements; NFRs; 

Response time; Concurrency 

I. INTRODUCTION 

The software engineering process is intended to 

produce software with specific functionality that is 

delivered on time, within budget and satisfying 

customer’s need. Bruegge and Dutoit [1] dedicate the 

first chapter of their text book to these outcomes and 

budget constraints. These demands mean that the 

software development is focused and driven by the 

functional requirements. The software market is 

changing every day increasing its demands for providing 

best quality software that not only implements all the 

desired functionality but also satisfies the NFRs. 

Including NFRs in the model, leads to a complete 

software capable of handling not just the requirements 

associated with the product but also provides the 

usability according to the current standards. NFRs 

(sometimes also referred to as software qualities) 

indicate how the system behaves and includes 

requirements dealing with system performance, 

operation, required resources and costs, verification, 

documentation, security, portability, and reliability.  

Thus, satisfying NFRs is critical to building good 

software systems and expedites the time-to-the-market 

process, since errors due to not properly dealing with 

NFR, which is usually time-consuming and complex, 

can be avoided. However, software engineers need to 

know whether the performance cost of the algorithms 

that deal with the various NFRs will violate the basic 

performance requirements or conflict among 

themselves. 

Failing to address NFRs in the design phase can lead 

to a software product that may meet all the functional 

requirements but fail to be useful because it cannot be 

used.  In the United State, the federal government 

contracted a 3rd party vendor to develop an application 

for individuals to register for health care coverage.  The 

designers failed to specify the NFRs for concurrency, 

and the application could not be used because of the 

mistake. [2] 

NFRs are sometimes not intuitive to the developers, 

so implementing and including them in the development 

cycles is challenging. There are different approaches to 

handling the NFRs, but the best way is to model them 

and implement for each case. Rahman and Ripon [3] 

describe a use case and the challenge of integrating the 

NFRs into the design models.   

The organization of the paper is as follows: Section 

2 describes the related work and the limitations of 

current methods. In Section 3 we give a motivating 

example and explain our proposal, present our 

algorithms and show how they are used in our research.  

We conclude and discuss future work in Section 4. 

 

II. RELATED WORK 

Functional requirements are defined and represented 

in many ways. These functional requirements are the 

basis of software development, but NFRs are the ones 

that supply the rules when implementing the code. Many 

authors have looked at NFRs and the problems of their 

inclusion in the design process. Pavlovski and Zou [4] 

define NFRs as specific behaviors and operational 

constraints, such as performance expectations and policy 

constraints. Though there are many discussions about the 

NFRs, they are not taken as seriously as they should be. 

Glinz [5] suggest the notion of splitting both functional 

and NFRs into a set of categories and make groups of 

47Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           60 / 157



them so that they are inherently considered while 

developing the applications. Alexander [6] suggests 

looking at the language used to describe the 

requirements. Words ending in ‘-ility’ are often the 

NFRs.  Examples of these words are reliability and 

verifiability.  All of their work focuses on identification 

of the NFRs.  Our work builds on theirs by applying 

domain specific models using extensibility mechanisms 

built into standard modeling notations. 

Ranabahu and Sheth [7] explore four different 

modeling semantics required when representing cloud 

application requirements. These include data, functional, 

non-functional and system. Their work focuses on 

functional and system requirements.  There is a small 

overlap with our work, but only with nonfunctional 

requirements from the system perspective.  They build 

on work done by Stuart [8] in his workshops where he 

defined semantic modeling languages to model cloud 

computing requirements in the three phases of the cloud 

application life cycle.  The three phases are development, 

deployment, and management.   Our work adds to the 

missing semantic category of NFRs. 

In Ranabahu and Sheth [7] work they use Unified 

Markup Language (UML) [9] to model the functional 

requirements only. UML is a standardized notation for 

representing interactions, structure and process flow of 

software systems.  UML consists of many different 

diagram types.  Individual diagrams can be linked 

together to model different perspectives of the same part 

of a software system.  We utilize UML to express the 

NFRs also. 

Additional semantics for models can be added by the 

integration of the matching UML Activity and Class 

diagrams. UML provides an extensibility mechanism 

that allows a designer to add new semantics to a model.  

A stereotype is one of three types of extensibility 

mechanisms in the UML that allows a designer to extend 

the vocabulary of UML to represent new model elements 

[10].  Traditionally the semantics were consumed by the 

software developer and manually translated into the 

program code in a hard coded fashion. 

Object Constraint Language (OCL) [11] is part of the 

official Object Management Group (OMG) standard for 

UML. An OCL constraint formulates restrictions for the 

semantics of the UML specification. An OCL constraint 

is always true if the data is consistent. Each OCL 

constraint is a declarative expression in the design model 

that states correctness. Expression of the constraint 

happens on the level of the class, and enforcement 

happens on the level of the object. OCL has operations 

to observe the system state but does not contain any 

operations to change the system state. 

Our contribution in the domain of cloud computing 

software modeling is in the use of modeling standards 

such as UML and OCL with their extensibility 

mechanism of stereotypes to model the NFRs.  We 

demonstrate these models can be transformed into 

application source code through the application of three 

application domain constraints. 

 

III. RESEARCH PROPOSAL 

Our contribution in this work is to look at application 

domain specific NFRs that are useful for cloud based 

application architectures.  We model the NFRs using the 

extensibility mechanisms built into the standard 

modeling notations of UML and OCL to specify those 

NFRs.  We then auto-generate code for NFRS using 

Java. We demonstrate the NFRs using a theater booking 

system example. A theater booking system is an online 

application used by theatres to sell their entrance tickets. 

Figure 1 shows an activity diagram for a theatre booking 

system where the NFRs are represented using UML 

stereotypes. We chose to focus on three NFRs for this 

study: response time, concurrency, and pick seat time to 

implement the theater booking system.  For each NFR, 

we model in UML and OCL utilizing stereotypes to 

apply the additional required semantics.  We then 

generate code from the model to enforce the NFRS. The 

code is generated for these NFRs for use in a cloud 

application that uses the threads on the server side for 

each client. 

Request response time is one of the key performance 

measures in a theater booking system. It is an NFR that 

is represented as a ‘Response time’ stereotype in the 

UML activity diagram (Figure 1). This stereotype is 

related to every interaction between the client and the 

server. In general terms, response time can be defined as 

the amount of time system takes to process a request after 

it has received one. A control flow in an activity diagram 

can be assigned the stereotype. In the algorithm that is 

used to enforce for this stereotype, the time is noted right 

before the request is sent to the server and the difference 

is measured once the response is received. The 

difference between the send and receive time gives the 

response time for the request. Specific stereotypes are 

used to represent different latency requirements.  

Examples are “low latency: and “high latency”.  Runtime 

configuration can define the allowable time for each 

stereotype.  Response time for each request from the 

users is measured, and the average response is calculated 

for the overall system. This is particularly useful to 

measure the overall system performance and compare it 

over time. If the average response time increases, we can 

further get the average response of each module/type of 

requests and find the bottlenecks. Algorithm 1 shows the 

algorithm implemented to guarantee this NFR.  In the 

algorithm, the client notifies the server when the timeout 

occurs to enable the server to rollback any partial work 

completed. 

48Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           61 / 157



Concurrency is a robustness measure of applications, 

and especially for any online booking system. This is 

represented as ‘Concurrent Users’ stereotype in the 

UML activity diagram (Figure 1). We represent the 

threshold concurrency as the ‘Concurrent Users’ 

stereotype in the UML activity diagram (Figure 1). We 

implemented this by spawning a thread pool with the size 

based on stereotype. The server then handles the request 

by creating a queue.  Requests are pulled from the queue 

and assigned a thread from the pool to process the 

request.  In the implementation of this stereotype, we 

measure the latency of the request by noting the time 

right before the request is sent to the server also when the 

response is received. This difference between the two 

values gives the latency for that request. This latency for 

each request is measured and the queue time is appended 

to the log. The log of measurements is particularly useful 

to measure the overall system performance and compare 

it over time. If the average latency time increases, we can 

further get the average latency of each module/type of 

requests and find the bottlenecks.  When handling the 

concurrency stereotype, the bottleneck is often caused by 

a pool of threads that is smaller than the demand on the 

server.  Algorithm 2  shows the algorithm implemented 

to guarantee this NFR. 

Handling the situation where a user does not respond 

to a form in an appropriate amount of time is another 

important NFR for many systems.  In the theater booking 

system, while the user is picking a seat, resources are 

locked from other users. The time the locks are held 

needs to be minimized. We represent the form response 

time requirement as ‘Limited user time’ stereotype in the 

UML activity diagram (Figure 1). The stereotype is 

specific to the pick seats activity in the ticketing 

application domain. The user should be given a limited 

time to respond when selecting the seats. We 

implemented this by binding an event to the request 

submission of the client. When the user tries to pick the 

seats, the client application polls continuously to check 

if the request is sent during the specified time. When 

there is a delay of more than the time specified by the 

stereotype, then the user gets a message indicating that 

Algorithm 1. Request Response Timeout  

INPUT: XML of Send to Server, timeout 

OUTPUT: XML of response with server 

Send request to server 

Set timer to fire every second 

Set timeExpired = 0 

Do 

     Check if response is received 

While timeExpired < timeout or response received 

If not response received 

    Set response to time expiration error 

    Set response to timeout error 

     Notify server of timeout   

End if 

Return response 

Figure 1 Activity Diagram for A Theater Booking System 

Algorithm 2. Concurrency 

INPUT: XML of request, timeout 

OUTPUT: XML of data entered or XML with error 

Check if anythreads in pool 

If no threads in pool 

    Set timer to fire every second 

    Set timeExpired = 0 

    Do 

         Check if thread available in the pool 

    While timeExpired < timeout or thread received 

If not thread received 

    Set response to timeout error 

ELSE 

     Execute request in thread  

End if 

Return response 

49Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           62 / 157



there locks have been released. If the request is sent 

before the specified time, then the user will proceed to 

next activity. Algorithm 3 shows the algorithm 

implemented to guarantee this NFR.  

 

IV. CONCLUSION/FURTHER RESEARCH 

In this work, we show that it is possible to model 

many cloud based software NFRs using UML 

stereotypes.  UML diagrams have been used for years to 

model the functional requirements of the application.  

We extended the modeling of functional requirements by 

using UML stereotypes to model the NFRs in the same 

design model. The UML stereotype is transformed to 

application code that guarantees the NFR will be 

enforced.  Future work will enhance our work to include 

OCL constraints to broaden the type of NFRs that can be 

modeled and transformed into cloud application code.  

REFERENCES 
 

[1]  B. Bruegge and A. Dutoit, Object-Oriented 

Software Engineering, Prentice Hall, Inc, 2010.  

[2]  T. Mullaney, "Obama adviser: Demand 

overwhelmed HealthCare.gov," USA Today, 06 

10 2013. [Online]. Available: 

http://www.usatoday.com/story/news/nation/201

3/10/05/health-care-website-repairs/2927597/. 

[Accessed 24 02 2016]. 

[3]  M. M. Rahman and S. Ripon, "Elicitation and 

Modeling Non-Functional Requirements – A POS 

Case Study," International Journal of Future 

Computer and Communication, vol. 2, no. 5, pp. 

485-489, 2013.  

[4]  C. J. Pavlovski and J. Zou, "Non-functional 

requirements in business process modeling," 

Proceedings of the Fifth on Asia-Pacific 

Conference on Conceptual Modelling, vol. 79, 

2008.  

[5]  M. Glinz, "Rethinking the Notion of Non-

Functional Requirements," Third World Congress 

for Software Quality, Munich, Germany, 2005.  

[6]  Alexander, I, "Misuse Cases Help to Elicit Non-

Functional Requirements," Computing & Control 

Engineering Journal, 14, 40-45, 2003.  

[7]  R. Ajith and A. Sheth, "Semantic Modeling for 

Cloud Computing, Part I," Computing, vol. 

May/June, pp. 81-83, 2010.  

[8]  S. Charlton, Model Driven Design and operations 

for the Cloud, Towards Best Practices in Cloud 

Computing Workshop, 2009.  

[9]  Object Management Group, "OMG Formal 

Versions of UML," 06 2015. [Online]. Available: 

http://www.omg.org/spec/UML/. [Accessed 11 

09 2015]. 

[10]  Object Management Group, "Unified Modeling 

Language: Supersturcture," 05 02 2007. [Online]. 

Available: 

http://www.omg.org/spec/UML/2.1.1/. [Accessed 

08 01 2013]. 

[11]  Object Management Group, "OMG Formally 

Released Versions of OCL," 02 2014. [Online]. 

Available: http://www.omg.org/spec/OCL/. 

[Accessed 09 11 2015]. 

 
 

 

Algorithm 3. User Response Timeout 

INPUT: XML of form to display, timeout 

OUTPUT: XML of data entered or XML with error 

Show form to user 

Set timer to fire every second 

Set timeExpired = 0 

Do 

     Check if response is received 

While timeExpired < timeout or response received 

If not response received 

    Notify user of time expiration 

    Set response to timeout error  

End if 

Return response 

50Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           63 / 157



Enabling Resource Scheduling in Cloud Distributed Videoconferencing Systems

Álvaro Alonso, Pedro Rodrı́guez, Ignacio Aguado, Joaquı́n Salvachúa
Departamento de Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid
Madrid, Spain

email:{aalonsog, prodriguez, iaguado, jsalvachua}@dit.upm.es

Abstract—When deploying videoconferencing systems in
Cloud based infrastructures, one of the most complex challenges
is to distribute Multipoint Control Units (MCUs) among dif-
ferent servers. By addressing this challenge, we can improve
the flexibility and the performance of this type of systems.
However, to actually take advantage of the Cloud possibilities
we have also to introduce mechanisms to dynamically schedule
the distribution of the MCUs across the available resources.
In this paper, we propose a resource scheduling model for
videoconferencing systems and, starting from an existing MCU
distribution architecture, we design a solution to enable the
resource scheduling basing on custom criteria. These criteria can
be based on the characteristics of each server or in their status in
real time. We validate the extended model by setting up a typical
videoconferencing deployment among a set of Cloud providers
and testing a decision algorithm. We conclude that the proposed
model enables the use of a wide range of algorithms that can be
adapted to the needs of different Cloud deployments.

Keywords—cloud computing; videoconferencing; distributed
MCU; scheduling

I. INTRODUCTION

Nowadays, a very important part of the applications and
services we consume over Internet are provided in Cloud [1]
infrastructures. The main advantage of using this technology
is that one can adapt the amount of provisioned resources for
a service based on the demand. In traditional deployments,
one has to forecast the demand before obtaining the hardware
and this involves a lack of flexibility that can result in a
waste of resources. However, using Cloud based deployments
one can dynamically scale a service in almost real time by
adding or removing computing capacity. In other words, Cloud
Computing provides the illusion of infinite computational
power on a pay-per-use basis.

In addition to this advantage, this flexibility enables easier
and more efficient ways to distribute the services among dif-
ferent servers. Thus, one can balance the system load, replicate
instances or geographically distribute them. These operations
are done almost instantaneously with a click or by calling an
API. Even some public Cloud providers offer components that
automatically distribute the load between servers. However,
these mechanisms are usually designed to be used by request-
response services such as RESTful or web services.

In videoconferencing systems, the communication between
participants is usually performed via a central server called
Multipoint Control Unit (MCU). MCUs are used to address
the signalling and to interchange the media streams between
peers. Furthermore, in advanced configurations they are used
to record sessions or to transcode video and audio flows.

Today, thanks to technologies such as Adobe Flash [2] and
HTML5 [3] with its real-time communications standard Web

Real Time Communications (WebRTC) [4], videoconferencing
systems are accessible from web applications and mobile
devices and its use is open to a higher number of users than
ever before. On the other hand, the demand of these services
can vary dynamically in short periods of time. The fluctuation
in the number of users and the managed sessions results in
substantial changes in the computing capacity consumed by
the MCUs. Hence, and this is strengthened in [5], deploying
MCUs in Cloud infrastructures offers several advantages. One
of them is the already mentioned idea of distributing a service
among several servers. But, as anticipated, the standard solu-
tions for resource scheduling do not apply to the specific case
of MCU distribution.

In traditional web services based on HTTP, it is usually
enough with a distribution of the users requests using load
balancers. These components are adapted to the requirements
of complex web services. However, we argue no general
solution for distributed videoconferencing systems is available.
Here, the resource use in each of the distributed nodes may
depend on several parameters besides the number of users.
This can be understood with a very easy example. Suppose an
scenario with an MCU distributed in two servers and managing
six users each. In the first MCU the six users are connected to
the same videoconferencing room and in the second one each
user is connected alone to a different room. Obviously, the
first MCU is consuming more resources because it is receiving
packets from each user and broadcasting them to all of the
rest while the second one is only receiving packets from the
users without any processing to do. Furthermore, to address the
scheduling challenge in this scope we first need to understand
which type of criteria we need to take into account and then
we must enable a way to schedule the load distribution taking
those criteria into account.

In the next Section, we analyse the existing solutions
regarding resource scheduling in the Cloud and why they do
not cover the videoconferencing scenario. Then, in Section III
we describe our scheduling model and extend an existent dis-
tributed architecture to cover the needed requirements. Then, in
Section IV we validate the solution with a real implementation
and a typical use case. Finally, in Section V we enumerate
the main conclusions obtained and we analyse the different
research lines we open to continue the work.

II. RELATED WORK

Scheduling Cloud Computing resources has always been
a subject under study. Being able to dynamically adapt and
change the available resources depending on the demand of
the users is a key point in services deployed in the Cloud.
Many strategies have been designed in order to solve this

51Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           64 / 157



problem, using techniques like the Genetic Algorithm [6],
Particle Swarm Optimization (PSO) [7], Ant Colony Optimiza-
tion (ACO) [8] or Load Balancing Ant Colony Optimization
(LBACO) [9]. All of them try to find an optimal resource
allocation for workload in a generic Cloud architecture.

In spite of all of this work, there is not any solution
specifically designed for a videoconferencing service. How-
ever, there exists a model which, if properly developed, could
be useful. The model described in [10] could be the first
step of Scheduling a videoconference service in the Cloud.
There, the authors propose an architecture that allows to easily
divide an MCU in atomic parts called One To Many (OTMs).
An OTM is a software component that basically broadcasts
a video/audio stream to many participants. And these OTMs
can be distributed among different servers without introducing
extra latency in the communications.

It is important to define a valid and efficient algorithm for
this kind of services to obtain better performance and more
flexibility. However, in order to achieve this goal it is essential
to propose a mechanism that allows us to implement it in the
model described above. No other solutions have been defined
for this new layer of functionality in a videoconference service,
but this work defines, implements and tests one.

We extend the OTM model by adding the layer that allows
us to decide how to schedule the resources among the dis-
tributed OTMs (dOTMs). These decisions are customisable and
can be based on the characteristics or the status of the servers
where the OTMs are deployed. As an example case we also
provide a basic algorithm. With this mechanism, specifically
designed for a videoconferencing service architecture, it is
possible to define new algorithms, grouping different criteria.

III. VIDEOCONFERENCING RESOURCE SCHEDULING

We have concluded that the first thing we need to start
working for an efficient videoconferencing services distribu-
tion is to design a model that allows us to introduce custom
decisions to schedule the resources. In this section, we describe
the model we propose by analysing the main characteristics it
has to cover. We also design an architecture that extends the
existing MCU distribution model dOTMs to comply with those
requirements.

A. Model description
As introduced above, distributed MCU servers differ from

common web services in many aspects. Videoconferencing is
not a request-response service and the amount of resources
needed per user depends on the size of the videoconferencing
sessions. According to this, we cannot distribute the users
homogeneously among distributed MCUs. When connecting
a new user, we need to know certain information about the
current status of each of the available servers to decide which
to use. Once the decision is taken, we need to be able to assign
the connection to the selected MCU. Thus, the model we are
proposing needs to cover three main aspects:

1) Decision layer: Having a distributed MCU, we need
a central component in charge of deciding where to allocate
each connection. This component has to be configurable with
custom decision algorithms that take as input the list of
available MCUs and their information and return the selected
one. Once the decision is taken this component has to be able
to communicate directly with the selected MCU to allocate the

resources there. Moreover, the algorithms can be automatically
modified in real-time taking into account the feedback received
from the MCUs.

2) MCU registration: To be able to communicate with a
specific MCU, the decision layer must have a list with all
the available ones. So, an MCU has to be registered in the
central component when it is added to the pool of available
MCUs. In the registration, the MCU can specify a set of fixed
characteristics of itself that can be used by the algorithms at
decision time.

3) MCU report: The fixed information set at registration
time is not enough. In the decision layer we also need real-time
information about the status of the MCUs. Thus, the algorithms
can decide also basing on parameters such us the CPU or
Memory use of each MCU. Therefore, we also need a returning
channel between the decision layer and each MCU.

B. Architecture design
To put these three requirements in a real MCU distribution

model we have designed an architecture that extends the one
described in [10]. The key of this architecture is the design of
a mechanism to split a traditional software MCU into smaller
components called OneToManys (OTMs). A OTM receives
packets from a source and forwards it to many destinations,
usually participants in a videoconferencing session. If all the
participants of a session are sharing their media with the others,
the MCU receives the media packets from each participant
and forwards them to the rest. Thus, with the dOTMs model,
we can manage a session using a OTM for each participant.
Running each OTM in a single process we can distribute the
same session among different servers. To achieve this it is
necessary to isolate the media layer of the MCU.

The dOTMs model proposes the division of a traditional
MCU into three layers: signalling, control and media. There-
fore, as detailed in [11], this separation results in an architec-
ture with three main components:

• OTM: the software unit in charge of receiving media
packets from a participant and broadcast it to many.

• Agent: the component in charge of managing OTMs.
We have an Agent per each machine in which we want
to host OTMs.

• Controller: manages videoconference rooms and inter-
changes the signalling messages between clients and
OTMs. It also communicates with Agents to start and
stop OTMs.

To perform the signalling, these components communicate
between them using a Message Bus. When a new participant
joins a videoconferencing session and wants to publish media,
the Controller asks an Agent to create a new OTM and estab-
lishes the signalling between the client and the created OTM.
When they are connected the media communication takes
place directly between them. When other participant wants
to subscribe to the published media, the Controller searches
the corresponding OTM and establishes the connection in the
same way.

If we start Agents in different servers we can distribute even
the same videoconferencing session in different infrastructures
taking advantage of the Cloud benefits exposed before. How-
ever, the dOTMs model does not specify how to schedule the
resources between the available Agents. We have to adapt the
model to the requirements explained above modifying the way

52Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           65 / 157



in which the Controller and the Agents communicate between
them.

Reviewing the three requirements explained in the model
description and analysing the current dOTMs architecture we
can observe the following:

1) Agent decision: When a new OTM is required in a
session, the Controller selects the Agent in round-robin mode
sending the creation request to one of the available Agents
each time. We need to support the creation of OTMs in
specific Agents basing on custom algorithms. In order to
enable that, we have to introduce a way to allow the Controller
to communicate directly with a specific Agent.

2) Agent registration: The Controller does not really have
awareness about the existing Agents. To communicate with
them sends a message to a message bus and the bus is the
one that redirects it to one of the subscribed Agents. We need
to add a mechanism to provide the Controller a list of the
available Agents in every moment. In other words, every Agent
has to be registered in the Controller.

3) Agent report: To take the decision of which Agent
select to create a new OTM, the Controller needs information
of the available Agents. It is specially interesting to have
information of the status of each Agent in real time. In the
current configuration, once an OTM is created the Controller
sends messages directly to it and does not need to communicate
with the Agent anymore. To support a real time report from the
Agents we need to enable a persistent communication channel
between each Agent and the Controller.

Figure 1 illustrates the extensions we propose in this paper.
We introduce a new message queue for each of the Agents
(Agent id). These queues are configured in a direct unicast
mode and used by the Controller to communicate directly with
an Agent. When a new Agent is added to the environment it
creates a new queue to be able to receive messages. All the
Agents are still subscribed to the common queue (Agent) but
now that queue is able to send broadcast messages to all the
Agents. This queue is used by the Controller to send a periodic
message that will be answered by the existing Agents. In the
response of these messages each Agent includes three types of
information:

• Contact information: the needed information to con-
tact the Agent. It basically includes the id of the queue
created by the Agent.

• Fixed information: constant information that is con-
figured when creating the Agent.

• Realtime information: information about the state of
the Agent in each moment.

With this information sent periodically, the Controller has
an updated list of the available Agents. Furthermore, when a
new OTM is needed it can use the information (both fixed and
real-time) of the Agents to decide to which of them delegate
the creation. Once decided it sends the creation message using
the specific queue. The broadcast queue is still configured to be
able to send messages in round robin mode. Thus, if one does
not want to specify which Agent to use and wants to evenly
distribute the connections between all of them, the system can
be used as before. Finally, the periodic broadcast messages
are also used as a heartbeat to ensure that an Agent is still
available and reachable. The Controller stores a count of the
not responded messages to determine when an Agent is not
usable anymore.

Machine 1 

Message Bus 
 
 

Controller 

Agent 1 

agent_1 agent_2 agent 

Machine 2 

Agent 2 

Figure 1: Message Bus configuration

TABLE I: MESSAGES FROM THE CONTROLLER TO THE AGENTS

createOTM

Requests a new OTM to an Agent. The Agent is selected in round
robin mode.

Queue Agent

Type unicast

Parameters -

Returns OTM id

createOTM

Requests a new OTM to a specific Agent.

Queue Agent id

Type unicast

Parameters -

Returns OTM id

deleteOTM

Forces the destruction of an OTM. The message is sent to all the
Agents and only the Agent that owns the OTM deletes it.

Queue Agent

Type broadcast

Parameters OTM id

Returns Result code

getAgents

Requests information to all the Agents available in the system.

Queue Agent

Type broadcast

Parameters -

Returns Stats object

In Table I, we can see the detailed specification of the
messages we need to enable the proposed mechanism. The
two original messages (createOTM and deleteOTM) are the
same, but we need a new createOTM message to create in a
specific Agent (sent to the unicast queue of the Agent) and
the getAgents broadcast message to obtain the status of each
Agent.

53Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           66 / 157



IV. VALIDATION

We have proposed a mechanism that, having a videocon-
ferencing system distributed between several nodes, allows us
to dynamically decide how to schedule the load among them.
In this section, we validate the mechanism testing a working
implementation of the model in a real videoconferencing
deployment.

A. Implementation
To validate the solution we use an open source project

named Licode [12]. Licode is developed by the authors of this
paper and provides a WebRTC compatible videoconferencing
system with three main parts.

The first one is an MCU built on top of the WebRTC
standard that implements a signalling protocol based on SDP
exchange. For the establishment of the media connection it
implements the Interactive Connectivity Establishment (ICE)
[13] standard and for the encryption of all the media data Se-
cure Real-time Transport Protocol (SRTP) [14] and Datagram
Transport Layer Security (DTLS) [15] protocols. The second
part is a JavaScript client API that wraps the WebRTC API
facilitating the development of videoconferencing applications
and adding the necessary modules to communicate with the
MCU. Finally, to ensure the security in the signalling between
clients and MCU, Licode includes an authorisation module
based on Nuve [16]. This module is also in charge of the
management of rooms and it is able to start entire MCUs in
different machines in order to scale the system.

The current Licode version implements the mechanism
exposed in this work using the Advanced Message Queuing
Protocol (AMQP) [17] protocol for the message bus, more
specifically the RabbitMQ implementation. To send the unicast
messages we have implemented an Remote Procedure Call
(RPC) mechanism using direct exchanges and for the broadcast
messages we use topic exchanges.

When the Controller sends the getAgents broadcast mes-
sage to get the information about the existing Agents, they
respond with the following information:

• Agent id: a unique identifier of the Agent.
• rpc id: the identifier of the AMQP queue to which

the Agent is subscribed.
• Metadata object: a JSON object used to store fixed

information when starting the Agent.
• Stats object: a JSON object with realtime information

about the state of the Agent. It includes CPU and
memory usage.

• Keep Alive counter: a counter used to ensure that
the Agent is still responding to the requests. When
the counter reaches an established limit, the Agent is
unregistered in the Controller.

To take the decision of which Agent choose to create
a new OTM, the Controller uses the round robin mode as
default. Custom policies can be configured by introducing
programmatic scripts. A custom script receives as a parameter
an object with the Agents information, performs the decision
based on it and returns the selected Agent.

B. Experiment description
Using Licode project and its implementation of the model

proposed, we have performed an experiment to prove that
the solution works in a real use case. We propose a very

Message Bus 

Controller 

AWS EC2 VM 

Agent 3 

Web 
Application 

Authorization 
Server 

Google Cloud VM 

Agent 2 

Openstack VM 

Agent 1 

Figure 2: Deployment configuration

TABLE II: INSTANCES USED FOR THE AGENTS

Cloud Platform Instance Type CPU Memory

Openstack m1.small 1 vCPU 2 GB

Google Cloud f1-micro 1 vCPU (Shared GCPU) 0.60 GB

Amazon EC2 t2.micro 1 vCPU (Variable ECU) 1 GB

common scenario in which we (as supposed videoconference
as a service provider) need to provide videoconferencing rooms
on demand to a variable number of users.

To host the needed resources we own a set of physical
computers in which, to facilitate the deployment, we have set
up a private cloud environment to deploy virtual machines.
If we eventually need more resources we have the possibility
of hosting them in two different public cloud providers. The
component that we will deploy in the public cloud providers
is the Agent in charge of creating new OTMs. In this case
the Agent is the bottleneck when it comes to resources use.
As seen in [10], dOTMs are limited by CPU, bandwidth
or memory are not a limiting factor in public clouds’ low
processing power instances. Thus, for the purpose of this
experiment we will replicate the conditions and simplify load
metrics to only take into account CPU measurements.

The deployment of resources in those public Clouds im-
plies an economic cost so the criteria is to prioritise the use
of the private Cloud and only when we do not have compute
capabilities there, we use the public ones. However, in this case
we always want to reserve a part of the computing power of
the private Cloud to host private meetings so we will configure
a use threshold below the maximum computational level.

Once the set up is ready, we start connecting clients to
videoconferencing rooms. First clients will be handled in the
private cloud and when the configured threshold is reached, we
will start handling the new ones in the public Clouds. To decide
which of the two available public Clouds we will select, we
will follow load criteria, using in each moment the one that
is consuming less resources. We also define a weight factor
between both public clouds that can be used to set a priority
taking into account different criteria.

C. Deployment set up
To deploy the needed component for the experiment we

have chosen Openstack Compute [18] as the private cloud and
Amazon Web Services EC2 [19] and Google Compute Engine
[20] as the public ones. In Figure 2 we can see a diagram of
the configuration.

54Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           67 / 157



0 

10 

20 

30 

40 

50 

60 

70 

80 

0 35
 

70
 

10
5 

14
0 

17
5 

21
0 

24
5 

28
0 

31
5 

35
0 

38
5 

42
0 

45
5 

49
0 

52
5 

56
0 

59
5 

63
0 

66
5 

70
0 

73
5 

77
0 

80
5 

84
0 

87
5 

91
0 

94
5 

98
0 

10
15

 
10

50
 

10
85

 
11

20
 

11
55

 
11

90
 

12
25

 
12

60
 

12
95

 
13

30
 

13
65

 
14

00
 

14
35

 
14

70
 

15
05

 
15

40
 

15
75

 
16

10
 

16
45

 
16

80
 

C
PU

 U
sa

ge
 (%

) 
 

Time (sec) 

Google OS EC2 

Figure 3: Cloud Providers CPU Usage

Algorithm 1 Agent decision
Require: cpuThreshold , weightFactor , osAgent ,

googleAgent , ec2Agent
1: osCPU  getCurrentCPU (osAgent)
2: if osCPU < cpuThreshold then
3: return osAgent

4: else
5: googleCPU  getCurrentCPU (googleAgent)
6: ec2CPU  getCurrentCPU (ec2Agent)
7: if googleCPU ⇤ weightFactor < ec2CPU then
8: return googleAgent

9: else
10: return ec2Agent

11: end if
12: end if

We have deployed the Controller in a separate virtual
machine. In other virtual machine we have deployed the
Authorisation Server (Nuve), the Web Application server and
the RabbitMQ server. The infrastructure in which these com-
ponents have been deployed is not relevant for this experiment.
Nor the capabilities of the virtual machines. On the other
hand we have deployed an Agent in a virtual machine of each
of the mentioned cloud providers, Openstack, Google Cloud
and Amazon EC2. The characteristics of the selected virtual
machines are described in Table II. The operating system used
is Ubuntu 14.04 LTS for all of them.

The small size and computing power of the selected virtual
machines is not a problem in the scope of the scenarios we
designed. It is very convenient to have a low enough processing
power that we can saturate easily to test the ability to allocate
OTMs. Regarding the amount of bandwidth available for this
type of instance, we have tested it is enough to handle the
amount of users we are going to connect.

To host the clients we have used the same instance type as
the Amazon EC2 Agent. They connect using Chromium [21]
browser (the open-source project behind the Google Chrome)
version 45.

Algorithm 1 shows the decision policy we have configured
in the Controller. The algorithm is executed everytime we need
a new OTM. In the Metadata object of each Agent, we can
find the cloud provider where it is running. This way we obtain
the values of osAgent , googleAgent and ec2Agent . We set this
parameter in each Agent at boot time. On the other hand, the
Stats object allows as to get the current CPU consumption of
each Agent (getCurrentCPU () method). In this experiment
we have configured the following constants:

• cpuThreshold : 60 %
• weightFactor : 1
With this threshold value we ensure that a 40% of the

private cloud computing capability is reserved for special
rooms that we need to host internally. In this experiment
we have set a neutral weight factor. This means that there
is no priority between the public cloud providers. When the
public part is needed, we always create the Agent in the
infrastructure that is consuming less CPU. However, using
this factor we could design algorithms that establish priorities
taking into account advanced criteria such us the pricing, the
geographical location, etc. Furthermore, we can use algorithms
with feedback that modify the value of that factor taking into
account real-time aspects, such as the fluctuation of the pricing.

D. Results
We have created six videoconferencing rooms and con-

nected clients to a random one every 35 seconds, starting in
second number 110. This dynamic is only changed in second
number 1320, when five clients disconnect from their rooms.
The results of the experiment are showed in Figure 3.

As it can be observed, on one hand the CPU usage in
the Openstack vitual machine keeps growing as new clients
connect to the service. On the other hand, the activity in the
Google Cloud and Amazon EC2 ones is almost null. The
first key point can be found at second number 875, where
the threshold of 60% is first exceeded. From that moment
the CPU Usage in Google Cloud and Amazon EC2 virtual
machines starts growing, while the Openstack one suffers
minor variations but remains almost constant. The growth of

55Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           68 / 157



Google Cloud and Amazon EC2 stops at second 1330 as a
consequence of the disconnection of five clients explained
before. From that moment, the CPU usage of the Openstack
virtual machine stops exceeding the threshold, so new clients
start connecting again to it instead of connecting to Google
Cloud or Amazon EC2 ones. Finally, in second number 1410
the threshold is exceeded again, so the Openstack CPU usage
remains constant and the Google Cloud and Amazon EC2
starts growing again until the end of the measures in second
1680.

V. CONCLUSIONS AND FUTURE WORK

Cloud Computing provides numerous benefits to scalable
and distributed services. There are several studies regarding
how to efficiently distribute web services or databases taking
advantage of the Cloud. But in relation with videoconferencing
systems and MCU servers the literature is not so extensive.
This type of systems has particular characteristics that make
the traditional load balancers not optimal.

In this paper, we have defined a model for scheduling
resources in videoconferencing Cloud deployments and de-
signed an architecture that enables this scheduling basing
on the realtime status of the MCUs that are managing the
sessions. Thanks to this new model, we can design cloud-
based scenarios in which we distribute the load according
to advanced decision algorithms. To validate that the model
actually covers the requirements of videoconferencing scalable
systems, we have set up a real deployment using a set of well
known Cloud providers and illustrating a very common use
case. For this we have used a complete implementation of the
model configuring it with an algorithm prototype that simulates
the requirements of a videoconferencing as a service provider.

The main conclusion after the experiment is that the pro-
posed model actually works and offers a customisable way to
distribute a videoconferencing service according to the specific
requirements of each deployment. Once we have the tools to
enable this custom decisions, the main challenge is to study
algorithms that could standardise the requirements of typical
videoconferencing scenarios. Thus, multiple lines of research
are opened from this point. The immediate one is to test other
kind of algorithms that take into account different criteria than
the load of the virtual machines. For instance, a scheme based
on the pricing of each Cloud provider should be explored.

If we geographically distribute the Agents, we can also take
into account latency constraints to improve the quality of the
communications connecting each client to the closer Agent.
Furthermore, if the Agents can be connected between them
using trees we can improve the latencies even more. As we
can see in [22] using hybrid clouds also offers cost saves in
many cases.

Other interesting line is the design of algorithms with
feedback that are modified in real-time taking into account
the status of the Agents. Finally and putting all of these things
together, it is interesting the study of common characteristics
of videoconferencing deployments that allow us to generalise
the requirements and design a global procedure to schedule
the resources.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
[retrieved: March, 2013], 2009.

[2] Adobe Flash Player. [Online]. Available:
http://get.adobe.com/en/flashplayer/ (retrieved: January, 2016)

[3] HTML5 W3C. [Online]. Available: http://dev.w3.org/html5/spec/
(retrieved: January, 2016)

[4] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “Webrtc
1.0: Real-time communication between browsers,” August 2012.

[5] A. Alonso, P. Rodriguez, J. Salvachua, and J. Cerviño, “Deploying a
multipoint control unit in the cloud: Opportunities and challenges,” in
CLOUD COMPUTING 2013, The Fourth International Conference on
Cloud Computing, GRIDs, and Virtualization, 2013, pp. 173–178.

[6] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent tasks
scheduling based on genetic algorithm in cloud computing,” in Wireless
Communications, Networking and Mobile Computing, 2009. WiCom
’09. 5th International Conference on, Sept 2009, pp. 1–4.

[7] S. Pandey, L. Wu, S. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Advanced Information Networking
and Applications (AINA), 2010 24th IEEE International Conference on,
April 2010, pp. 400–407.

[8] X. Lu and Z. Gu, “A load-adapative cloud resource scheduling model
based on ant colony algorithm,” in Cloud Computing and Intelligence
Systems (CCIS), 2011 IEEE International Conference on, Sept 2011,
pp. 296–300.

[9] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in Chinagrid Con-
ference (ChinaGrid), 2011 Sixth Annual, Aug 2011, pp. 3–9.

[10] P. Rodriguez, A. Alonso, J. Salvachua, and J. Cervino, “dOTM: A
mechanism for distributing centralized multi-party video conferencing
in the cloud,” in The 2nd International Conference on Future Internet
of Things and Cloud (FiCloud-2014). IEEE, 2014, pp. 61–67.

[11] P. Rodrı́guez, A. Alonso, J. Salvachúa, and J. Cervino, “Materialising
a new architecture for a distributed mcu in the cloud,”
Computer Standards & Interfaces, pp. –, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0920548915001014
(retrieved: January, 2016)

[12] Licode. [Online]. Available: http://lynckia.com/licode (retrieved:
January, 2016)

[13] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” Internet Requests for Comments, RFC Editor, RFC
5245, April 2010. [Online]. Available: http://tools.ietf.org/html/rfc5245
(retrieved: January, 2016)

[14] M. Baugher, “The Secure Real-time Transport Protocol (SRTP),”
Internet Requests for Comments, RFC Editor, RFC 3711, March
2004. [Online]. Available: http://tools.ietf.org/html/rfc3711 (retrieved:
January, 2016)

[15] E. Rescorla, “Datagram Transport Layer Security,” Internet Requests
for Comments, RFC Editor, RFC 4347, April 2006. [Online]. Available:
http://tools.ietf.org/html/rfc4347 (retrieved: January, 2016)

[16] P. Rodrı́guez, D. Gallego, J. Cerviño, F. Escribano, J. Quemada, et al.,
“Vaas: Videoconference as a service,” in Collaborative Computing:
Networking, Applications and Worksharing, 2009. CollaborateCom
2009. 5th International Conference on. IEEE, 2009, pp. 1–11.

[17] “OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0,”
OASIS Standard, Tech. Rep., October 2012.

[18] Openstack. [Online]. Available:
http://www.openstack.org/software/openstack-compute/ (retrieved:
January, 2016)

[19] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2
(retrieved: January, 2016)

[20] Google Compute Engine. [Online]. Available:
http://cloud.google.com/compute (retrieved: January, 2016)

[21] Chromium. [Online]. Available: http://www.chromium.org/ (retrieved:
January, 2016)

[22] J. Cervino, P. Rodriguez, I. Trajkovska, F. Escribano, and J. Salvachua,
“A cost-effective methodology applied to videoconference services over
hybrid clouds,” Mobile Networks and Applications, vol. 18, no. 1, pp.
103–109, 2013. [Online]. Available: http://dx.doi.org/10.1007/s11036-

012-0380-4 (retrieved: January, 2016)

56Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           69 / 157



Energy Saving in Data Center Servers Using Optimal Scheduling to Ensure QoS 

Conor McBay, Gerard Parr and Sally McClean 

School of Computing and Information Engineering 

Ulster University 

Northern Ireland, United Kingdom 

Email: mcbay-c1@email.ulster.ac.uk, {gp.parr, si.mcclean}@ulster.ac.uk 

 

 
Abstract— With the rise in popularity of cloud computing the 

amount of energy consumed by the cloud computing data centres 

has increased dramatically. Cloud service providers are aiming 

to reduce their carbon footprint by reducing the energy their 

data centres produce, while maintain an expected Quality-of-

Service adhering to set Service Level Agreements. In this paper, 

we present our suggested approach for using previously 

researched energy efficiency techniques, particularly Dynamic 

Voltage/Frequency Scaling and sleep states, more efficiently 

through the aid of an SLA-based priority scheduling algorithm, 

and the results we expect from our research. 

Keywords—cloud computing; energy; DVFS; sleep mode; 

scheduling; quality-of-service. 

I.  INTRODUCTION 

As the use of ICT continues to become an essential aspect 
of modern life its increased usage has caused the high 
production of greenhouse gases, contributing 2-3% of global 
emissions, and is rising each year [1]. The recent popularisation 
of cloud computing is a contributing factor to this heightened 
usage. Cloud service providers aim to maintain an expected 
Quality-of-Service (QoS) and meet set Service Level 
Agreements (SLAs) while attempting to be cost effective. One 
of the biggest costs to providers is energy consumption in 
cloud data centers. Servers, essential for operations within the 
data center, consume vast amounts of energy. At times large 
amounts of energy is being wasted on servers that are not 
operating at their full capacity and may in fact be in an idle 
state, doing nothing. 

The problem faced by cloud service providers is how to 
reduce the energy consumption within their data centers, while 
also maintaining the expected QoS and SLA requirements. 
There has been a lot of research into ways of dealing with the 
relationship between energy consumption and expected 
performance, but there are few incentives for providers to use 
the methods suggested. Reasons for this are that most have not 
been tested on real world applications and the providers fear 
that such approaches may lead to breaches in SLAs with 
corresponding loss of customers [2]. 

Our proposed solution to this problem is to create a cloud 
data center infrastructure taking advantage of existing energy 
saving techniques. Our solution will feature servers that have 
had these techniques applied to them, while there will be a 
small number of servers operating as standard as an incentive 
for providers, by allowing high priority jobs to be completed 
quickly and by acting as a buffer in case of losing operating 
servers. An algorithm will be created to allocate incoming tasks 

to either the standard or energy efficient servers dynamically 
based on priority scheme. 

The rest of this paper is structured as follows. In Section II, 
we discuss the existing literature and research in this area. In 
Section III, we expand on our planned architecture and explain 
our proposed approach. In section IV, we discuss our 
simulation setup. In Section V, we display the results we have 
found thus far and what results we expect from our final 
version. Finally, in Section VI, we present our conclusions 
found at this point and outline our planned future work. 

II. LITERATURE REVIEW 

Various studies have been carried out into improving the 
energy efficiency of cloud computing [1, 3-4], some of which 
mentioned in Table I. Among the most frequently suggested 
methods are sleep modes, dynamic speed scaling, DVFS, 
virtualization, resource allocation, virtual machine migration, 
green routing, and workload optimization [3]. Our research 
focuses on a combination of sleep modes and DVFS, as well as 
introducing a scheduling algorithm to help optimize the 
process. 

Sleep modes, wherein servers can be put into low power 
states, are one of the most common approaches in order to 
reduce energy consumption. The basis for this approach is 
saving energy by powering down servers when they are not 
needed. By turning off idle servers within a data centre, energy 
consumption is reduced. However, continually switching 
servers on and off can cause a time delay and energy penalties. 
Testa et al. propose a controller in addition to IEEE 802.az 
Energy Efficient Ethernet to manage transitions between low 
powered and standard powered states [5]. Using traffic 
forecasting to manage sleep modes has been suggest by Morosi 
et al. [6]. Their forecasting based algorithm, forecasting based  
sleep mode algorithm (FBSMA), allows for daily calculations 
of approximate traffic.  
Another common suggested method of improving energy 
efficiency is DVFS. This technique allows for the frequency of 
the CPU to be reduced in times when the CPU load is low, 
meaning less voltage of power can be consumed [7]. Meisner 
et al. propose the PowerNap system using DVFS in 
conjunction with dynamic power management [8]. The Power 
Aware List-based Scheduling and the Power Aware Task 
Clustering algorithms suggested by Wang et al use DVFS to 
propose that non-critical jobs can be run slowly over time to 
allow the CPUs’ frequencies to be reduced [9]. 

There are various scheduling schemes suggested in research 
aiming to improve energy efficiency in data center servers. 
Dong et al. propose a scheduler that will select the most energy   

 

57Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           70 / 157



  
TABLE I.   TABLE OF ENERGY EFFICIENCY METHODS IN LITERATURE 

Method 
Uses 

Ref 
Sleep Mode DVFS Scheduling 

IEEE 802.az Energy Efficient Ethernet Yes No No [5] 

Forecasting Based Sleep Mode Algorithm Yes No No [6] 

Dynamic Voltage/Frequency Scaling No Yes No [7] 

PowerNap Yes Yes No [8] 

PALS & PATC Algorithms Yes Yes No [9] 

Most Energy Efficient Server First No No Yes [10] 

Vacation Queueing Model Yes No Yes [11] 

Separate Scheduling Algorithms No No Yes [12] 

Intelligent scheduling with DVFS Yes Yes Yes [13] 
 

efficient server first [10]. This method allocates tasks based on 
server energy profiles, and is shown to outperform random 
scheduling and least-allocated-server-first scheduling. Cheng et 
al. suggest a method that uses a vacation queueing model to 
model task schedule, then analyse task sojourn time and energy 
consumption of computation nodes to create algorithms [11]. 
Reddy and Chandan’s method of using three processors to each 
run a different scheduling algorithm (earliest-deadline-first, 
earliest-deadline-late, and first-come-first-served) found energy 
savings when compared to existing stand-by sparing for 
periodic tasks, but their savings do not show in all their 
experiments [12]. Calheiros and Buyya propose a method that 
combines intelligent scheduling with DVFS for minimum 
frequency and power consumption, and for completion before 
user-defined deadline [13]. This approach focuses on urgent, 
CPU intensive tasks, and their results show between a 2% and 
29% improvement on the baseline energy consumption [14]. 

III. PLANNED ARCHITECTURE 

As mentioned previously, our proposed solution is to create 
a cloud data center infrastructure taking advantage of existing 
energy saving techniques. Within our infrastructure, we plan to 
have a combination of servers using energy efficiency 
techniques, along with servers that operate as normal as fall 
back to incentivize cloud service providers. Using the 
literature, we have decided to tackle the issue using a 
combination of sleep modes, DVFS, and energy efficient 
scheduling, however unlike the intelligent scheduling with 
DVFS method, our solution will be applied to all tasks as 
opposed to CPU intensive tasks only. 

Our planned architecture will be made up of two sets of 
servers: standard servers, that is servers running as normal with 
no energy efficiency methods applied, and ‘green’ servers, that 
will be running using sleep modes and DVFS in order to 
reduce their energy consumption. A simple outline can be seen 
in Fig 2. Sleep modes will activate if the incoming traffic to the 
data center is light and a smaller number of servers can be 
utilized to handle the workload. DVFS will be used in much 
the same way, where the traffic allows for the frequency of the 
processers to be reduced, thereby lowering the energy 
consumption of the servers. In addition, the green servers will 
be running with lower processing speeds as we also believe 
that this will lead to reduced energy consumption. 

Currently, we plan on having 90% of the servers within the 
data center operate using our green model. The final 10% will 
be running as normal. We believe that with most of the servers 
using our reduced energy method the energy savings should be 
sizeable. The remaining 10% will help to ensure that the QoS 
does not suffer. These values are just a starting point, from 
which we plan to experiment with different ratios to find the 
most beneficial setup. 

In addition to the energy efficiency techniques applied to 
the servers, we plan to implement a scheduling algorithm that 
will direct tasks to the appropriate servers based on a priority 
scheme within the task’s SLA requirements and maintain 
expected QoS rates for users. Outlined in Fig. 1, at a basic level 
we envision that tasks will have at least one of the following 
requirements: 

• High priority requirement, meaning the task is of the 
highest urgency and to be completed as soon as 
possible with no regards to energy consumption. 

• Time requirement, meaning the task can either be on a 
quick time limit or that it can be run slowly over time 
on a ‘slow burn’. 

• Energy requirement, meaning the task is to be as 
energy efficient as possible while meeting all its other 
SLA requirements. 

The scheduling algorithm will use these requirements to 
decide which server the task should be assigned to as follows. 
As each task arrives on the network, information on whether it 
is a priority task, has a time limit, or has an energy limit will be 
found. If the task is a priority task then it is immediately 
assigned to the next available server in order to meet its priority 
requirements. If the task has a time limit, or can be run at a 
lower processing rate over a longer time period, then first the 
target completion time will be found. For each server currently 
on the network, its 95 percentile completion time will be found. 
The first server to return a completion time that is within range 
of the target completion time will be assigned the task. Finally, 
if the task has a preferred energy limit then the energy target 
will be found first. Following that, the 95 percentile energy 
consumption per task will be found, however unlike for the 
time limit, only low energy servers will be used. The task will 
be assigned to the first low energy server to return an energy 
consumption per task within range of the target consumption. 

58Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           71 / 157



 

Figure 1. Flow chart of proposed algorithm functionality

 

IV. SIMULATION SETUP 

After testing out a range of simulation software, including 
CloudSim, DCSim, and iCanCloud [14], for our experiments 
we decided to use the Greencloud simulator [15]. Greencloud 
is a packet-level simulator for energy-aware cloud computing 
in data centers and an extension of the ns-2 simulation 
software. 

 

 
 

Figure 2. Outline of planned architecture. 

We decided to use Greencloud as it is a simulator designed 
specifically for measuring the energy efficiency of cloud 
computing data centers. Greencloud uses a three-tier data 

center design, seen in Fig. 3, consisting of a core layer, an 
aggregation layer, and an access layer. 

Currently our simulation setup consists of 144 servers, all 
of the same specification, with 1 core switch, 2 aggregation 
switches, and 3 access switches. The servers’ specification 
contain commodity processors with 4 cores, 8GB of memory, 
and 500GB of disk storage, giving the data center a total of 
576057600MIPS (Millions of Instructions Per Second) of 
processing power.  

To examine QoS in our simulation, we are using round-trip 
time. We have self-imposed a limit of 2 seconds on single 
tasks. Tasks exceeding the 2 second limit are in breach of QoS, 
however we have also decided on a 5% trade-off, allowing for 
5% of tasks within the experiments to exceed this limit without 
being in breach of SLAs. 

V. RESULTS 

Using the simulator, we have tested the energy 
consumption of the data center when servers are run as normal 
and when DVFS and sleep modes have been applied. For this 
experiment, we used a random assignment scheduler and aimed 
or a data center workload of around 30%.  This created 32689 
tasks for the data center to process. 

We found that using DVFS and sleep modes in a data 
center can reduce the energy consumption. As seen, the data 
center consumes 495.3 W*h using standard servers, with the 
servers consuming 332 W*h of that. In comparison, when 
DVFS and sleep modes are applied, the data center consumes 
472.1 W*h, with the servers consuming 308.8 W*h. That is a 
percentage difference of 7.24% without any optimisation 
applied. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented our idea to introduce a cloud 
data center infrastructure taking advantage of existing energy 
saving techniques combined with a priority scheme based 
scheduling algorithm in order to optimise the process and 
maintain QoS. We have suggested an approach wherein a 
major number of servers within the data center are run using 

59Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           72 / 157



energy efficiency methods, such as DVFS and sleep modes, 
and a small minority are left to run as standard as an incentive 
to cloud service providers. We outlined the structure for our 
scheduling algorithm based upon SLA requirements and how 
we think it can improve the energy efficiency of cloud data 
centers. 

 

 

Figure 3. Example of a simple three-tier data centre architecture in Greencloud. 

The results from our experiments thus far have shown that 
by using DVFS and sleep modes in cloud data centers the 
energy consumption of the servers can be reduced, and that 
there is still room for improvement, and we aim for our 
scheduling algorithm to help do this. 

In the future, we aim to accomplish several key issues. 
Firstly, we will expand our simulation model to create our two 
distinct types of servers. Using our original 144 servers, 
approximately 10% will be left to run using the initial 
specifications with no energy efficiency methods applied. The 
remaining 90% will be run with slower processing speeds, as 
well as DVFS and sleep modes to allow for the servers to be 
placed into a lower power state then the incoming traffic is 
low. 

The next step in our planned work is to amend our 
simulated tasks with our new SLA priority scheme. Tasks will 
be assigned at least one of the three priority requirements 
discussed previously. Once the priority scheme is in place we 
will work to implement our scheduling algorithm that will 
assign incoming tasks to the relevant servers based upon the 
priority scheme. Using this algorithm we hope to find that the 
energy efficiency methods enacted can be optimised to achieve 
the best energy reduction results possible while maintaining the 
QoS through measuring task completion time, failed tasks, and 
dropped packets. 

Finally, as another incentive for cloud service providers, we 
are aiming to create realistic simulated workloads based on 
Google cluster data that was released in 2011 [16]. This data 
has been collected over a period of three months in one of 
Google’s cloud data centers and offers real world information 

that can be adapted for our simulations. We hope that the 
inclusion of this data in our workload generation will show 
how our optimised approach would react if placed in a real 
world situation. This would act as another incentive for cloud 
service providers, along with the standard powered servers, to 
implement more ‘green’ energy applications. 

REFERENCES 

[1] A. Hameed et al., “A Survey and Taxonomy on Energy Efficient 
Resource Allocation Techniques for Cloud Computing Systems,” in 
Computing, 2014, pp. 1–24. 

[2] Y. Georgiou, D. Glesser, K. Rzadca, and D. Trystram, “A Scheduler-
Level Incentive Mechanism for Energy Efficiency in HPC,” in 2015 
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid 
Computing, 2015, pp. 617–626. 

[3] A. Kulseitova and A. T. Fong, “A Survey of Energy-Efficient 
Techniques in Cloud Data Centers,” in 2013 International Conference on 
ICT for Smart Society (ICISS), 2013, pp. 1–5. 

[4] G. L. Valentini et al., “An overview of energy efficiency techniques in 
cluster computing systems”, Cluster Computing, vol. 16, no. 1, pp 3-15, 
2013. 

[5] P. Testa, A. Germoni, and M. Listanti, “QoS-aware sleep mode 
controller in ‘Energy Efficient Ethernet,’” in 2012 IEEE Global 
Communications Conference (GLOBECOM), 2012, pp. 3455–3459. 

[6] S. Morosi, P. Piunti, and E. Del Re, “Sleep mode management in 
cellular networks: a traffic based technique enabling energy saving,” 
Trans. Emerg. Telecommun. Technol., vol. 24, no. 3, pp. 331–341, 
2013. 

[7] A. Hammadi and L. Mhamdi, “A survey on architectures and energy 
efficiency in Data Center Networks,” Comput. Commun., vol. 40, no. 1, 
pp. 1–21, Dec. 2013. 

[8] D. Meisner, B. T. Gold, and T. F. Wenisch, “The PowerNap Server 
Architecture,” ACM Trans. Comput. Syst., vol. 29, no. 1, pp. 1–24, Feb. 
2011. 

[9] L. Wang et al. , “Energy-aware parallel task scheduling in a cluster,” 
Futur. Gener. Comput. Syst., vol. 29, no. 7, pp. 1661–1670, Sep. 2013. 

[10] Z. Dong, N. Liu, and R. Rojas-Cessa, “Greedy scheduling of tasks with 
time constraints for energy-efficient cloud-computing data centers,” J. 
Cloud Comput., vol. 4, no. 1, pp. 1-14, 2015. 

[11] C. Cheng, J. Li, and Y. Wang, “An energy-saving task scheduling 
strategy based on vacation queuing theory in cloud computing,” 
Tsinghua Sci. Technol., vol. 20, no. 1, pp. 28–39, 2015. 

[12] H. K. S. Reddy and S. P. Chandan, “Energy aware scheduling of real-
time and non real-time tasks on cloud processors (Green Cloud 
Computing),” in 2014 International Conference on Information 
Communication and Embedded Systems (ICICES), 2014, no. 978, pp. 
1–5. 

[13] R. N. Calheiros and R. Buyya, “Energy-Efficient Scheduling of Urgent 
Bag-of-Tasks Applications in Clouds through DVFS,” in 2014 IEEE 6th 
International Conference on Cloud Computing Technology and Science, 
2014, pp. 342–349. 

[14] W. Zhao, Y. Peng, F. Xie, and Z. Dai, “Modeling and simulation of 
cloud computing: A review,” in Proceedings - 2012 IEEE Asia Pacific 
Cloud Computing Congress, APCloudCC 2012, 2012, pp. 20–24. 

[15] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: A packet-level 
simulator of energy-aware cloud computing data centers,” J. 
Supercomput., vol. 62, pp. 1263–1283, 2012.  

[16] C. Reiss, J. Wilkes, and J. J. L. Hellerstein, “Google cluster-usage 
traces: format+ schema,” 2011.   

 

60Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           73 / 157



Model Driven Framework for the Configuration and the Deployment
of Applications in the Cloud

Hiba Alili, Rim Drira and Henda Hajjami Ben Ghezala
RIADI Laboratory, National School of Computer Sciences,

University of Manouba, 2010 la Manouba, Tunisia
E-mail: {alilihiba,drirarim,hhbg.hhbg}@gmail.com

Abstract—Cloud computing offers a distributed computing envi-
ronment where applications can be deployed and managed. Many
companies are seeing substantial interest to extend their technical
infrastructure by adopting cloud infrastructures. Although the
choice of such an environment may seem advantageous, users are
faced with many challenges, especially with regard to deployment
and migration of applications in the Cloud. To address some of
these challenges, we propose a new approach based on model-
driven engineering techniques (MDE), called MoDAC-Deploy,
for the assistance to the configuration and the deployment of
applications in the Cloud. This paper focuses on the design and
the implementation of our approach. In fact, we developed a
model-driven Framework with generative mechanisms to simplify
and to automate cloud services deployment process, to overcome
APIs heterogeneity, to minimize the vendor lock-in and to enable
application portability among different cloud infrastructures by
reusing configurations/deployments ”Model a configuration once
and deploy it anywhere”. We conducted also a case study
in order to validate our proposed approach. Our empirical
results demonstrate the effectiveness of our MDE Framework
to seamlessly deploy services in the cloud and to migrate easily
between different Cloud Service Providers (CSPs) without any
programming efforts.

Keywords-Deployment; Cloud Computing; Model Driven Engi-
neering.

I. INTRODUCTION

Cloud Computing is a paradigm shift that involves dynamic
provisioning of shared computing resources on demand. It is a
pay-as-you-use billing model that offers computing resources
as a service in an attempt to reduce IT capital and operating
expenditures [1].Particularly, Infrastructure as a Service (IaaS)
allows users to allocate computational, storage and networking
resources from Cloud Service Providers (CSPs). It offers to
users the ability to customize the environment to suit their
applications and even it supports the deployment of legacy
applications without any modification in their source code. In
order to make efficient use of such an environment, tools are
needed to automatically deploy, configure and run services in
a repeatable way. In this context, we focus in this paper on
the deployment of applications in IaaS environment.

Deploying applications in cloud infrastructures is not a
trivial task, as it relies on handcrafted scripts and it requires
increased complexity and additional effort. Doing so is time
consuming and error prone, especially for deployments with a
large number of nodes. Moreover, the growing trend towards
migrating applications and services to the cloud has led to
the emergence of different CSPs, in turn leading to different
specifications of provided resources and to heterogeneous
APIs. These challenges make it hard for cloud customers to
seamlessly transition their services to the cloud or migrate

between different CSPs. These challenges can be classified
into three main categories:

• Deployment Complexity: the deployment in the cloud
is a very complex process given the large number
of operations required to finish with a successful
deployment (e.g., the restructuring of each application
layer for the cloud, the auto-scaling of services, the
monitoring and the optimization of the application
services to take advantage of the cloud benefits) [2].
In fact, to successfully deploy an application in the
cloud, a good preparation of the target environment is
essential to be compatible with its architecture.

• Programming and Deployment Heterogeneity: CSPs
such as Amazon Web Services [3], Google Cloud
Platform [4], Rackspace, and Microsoft Azure [5] pro-
vide different APIs to their customers to manage their
resources on the cloud, which is often carried out pro-
grammatically using this APIs. This API heterogeneity
imposes a steep learning curve for cloud customers
[6]. To overcome this concern, CSPs often provide a
web-based management console. Unfortunately, these
user interfaces are very specific to the CSP and hence
do not resolve the original problem.

• Vendor lock-in and Portability: The fear of vendor
lock-in is often cited as a major impediment to cloud
service adoption. In fact, the proprietary APIs pro-
vided by each CSP are incompatible with those of
other CSPs and as a result it limits the ability of
cloud customers to seamlessly migrate their services
between different CSPs. For that reason, many cus-
tomers stay with a provider that doesnt meet their
needs, just to avoid the cumbersome process.

Addressing these challenges requires a framework that
holistically focuses on the core set of the deployment prob-
lems. In parallel, MDE has emerged as a software engineering
paradigm for dealing with the problem of system interoperabil-
ity and portability across different execution platforms. Model
Driven Architecture (MDA) does this separating business and
technical concerns and proposing techniques to integrate them.
In addition, MDA techniques allow generating automatically
code from models. Thus, we believe that MDE techniques are
promising to address the challenges outlined above (automat-
ing the deployment process and ensuring the portability across
different cloud infrastructures).

In this context, we propose in this paper an intuitive
abstraction, based on MDE standards, to cloud customers to
model software deployment in the cloud and to enable various
CSP-agnostic. This abstraction is realized as a modeling tool
based on a domain specific modeling language (DSML) with

61Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           74 / 157



generative capabilities. Our proposal, which we call MoDAC-
Deploy (Model Driven Framework for the Assistance to Cloud
Deployment), includes three key artifacts: (1) IaaSEditor, a
modeling tool which provides an intuitive user interface that
allows cloud customers to define the deployment model of
their applications in the cloud. It presents an abstraction layer
isolating applications from the underlying cloud provider and
hiding APIs. This tool is based on (2) IaaSMetaModel, a meta-
model that captures all the concepts needed to specify an
accurate cloud deployment. And finally (3) ScriptGenerator,
a generative tool that concludes automatically the deployment
script from the deployment model created within IaaSEditor.
Our framework shields cloud users from having to manually
write scripts using low-level APIs and enables applicaion
portability among different CSPs.

This paper is organized as follows: Section 2 briefly
discusses scientific works closely related to ours. In Section 3 ,
we introduce the MDE basis, especially we describe the MDA
process. Section 4 describes our model driven framework for
the configuration and the deployment of applications in the
cloud. In Section 5, we illustrate a case study to evaluate and
to demonstrate the effectiveness of our deployment framework
and finally, Section 6 provides concluding remarks and outlines
future works.

II. RELATED WORKS

Our work has taken shape in the context of a rich literature
focused on simplifying the deployment of applications in
the cloud. In fact, several works have shown an interest
to automate the deployment process and to deal with API
heterogeneity. We propose in this section to analyze the state
of the art about software deployment and identifying the good
practices to be reused in our own solution.

Juve and al. [7] have developed a system called Wrangler to
provision, configure and manage virtual machine deployments
in the cloud. Wrangler allows users to specify the layout of
their application declaratively using an eXtensible Mark-up
Langage (XML) format and then to send this deployment
description to a web service that manages the provisioning
of virtual machines, the installation and the configuration
of software and services. This system is able to interface
with different resource providers,as it currently supports only
Amazon EC2 [8], Eucalyptus [9] and OpenNebula [10]. But
authors haven’t talk about the possibility to extend this system
in order to support other CSPs. While our solution is designed
specifically to support multiple CSPs and to easily add new
cloud artifacts. Our approach intends also to completely shield
software designers from any programming efforts contrary to
Wrangler that requires the preparation of an XML description
of the deployment model.

Caglar and al. [11] have proposed a solution based on
MDE, including a domain-specific modeling language (DSML)
for automating deployment of applications in the cloud and
generative technologies. The meta-model of the deployment
model in this DSML was designed in order to overcome
the challenges resulting from heterogeneity in CSP APIs
and deployment policies. It consists of Print, Sleep, Up-
load, Download, RunApp, Terminate, CreaeInstance, Waitfor-
Startup, Connect, Entity, and Keyfile model components,
which are used during the deployment process. Connections
between components are also defined in the meta-model.

The interpretation of the created deployment model generates
the appropriate deployment script in Python, which contains
and execute the deployment steps. Just like Wrangler [11],
this work is limited to VM management, while our work
supports also storage and network connectivity management.
In addition, it allows users to specify resources into groups
(availability group, security group and auto-scaling group).

In [12], the authors describe their automatic deployment
platform that they developed for the Microsoft Azure cloud,
driven by the need of a chemistry application performing
Quantitative Structure-Activity Relationship (QSAR) analysis.
The main goal was to enable the execution of existing non-.Net
software in the Azure infrastructure which was designed only
for applications based on the .Net framework, and which sup-
ports a specific, queue-based software architecture. By using
the proposed deployment framework, the QSAR application
was successfully running in the Azure infrastructure. However,
this solution is dedicated only to the Azure cloud and it needs
to be generalized.

Shekhar and al. [13] have proposed a framework for con-
ducting price/performance tradeoffs in executing MapReduce
jobs at various CSPs, selecting the best option and deploying
and executing the job on the selected CSP infrastructure. All of
these capabilities are driven by an MDE framework. However,
the MDE abstractions are being developed and the realization
as a web-hosted service is still under development. While this
efforts is promising, they need to be tested and evaluated.

Other recent efforts like Deltacloud [14], Libcloud [15] and
jclouds [16] have been developed to deal with API hetero-
geneity. These libraries hide away differences among multiple
cloud provider APIs and allow users to manage different cloud
resources through a unified common API. This has solved
the multi-cloud problem in a very detailed manner, but the
complexity is therefore even larger (i.e., users need to learn
how to program using these APIs).

A model-driven approach for automating cloud deployment
is also presented in [17]. Hamdaqa et al. have proposed a
(5+1) architectural view model, where each view corresponds
to a different perspective on cloud application deployment.
This view model enables cloud stakeholders (e.g., providers,
developers, administrators and financial managers) to leverage
cloud platform capabilities. The (5+1) view model has been
realized as a layered, domain specific modeling language
(DSML), called StartusML, and the capabilities of this lan-
guage have been illustrated using a representative domain
example. The model was derived by investigating the process
of architecting cloud applications, and then providing a set
of meta-models to describe cloud applications within their
ecosystem: an availability meta-model, an adaptation meta-
model, a performance meta-model, a service meta-model, a
workflow meta-model and finally a provider meta-model. Each
meta-model in the (5+1) view model is dedicated a layer in
StratusML. Our work has synergies with this work in the
context of providing a user interface in order to facilitate the
configuration and the description of the deployment model of
applications in the cloud. Our deployment framework presents
a fairly comprehensive DSML that allows the users to describe
their applications deployment architecture in terms of services
and interactions. It clarifies the cloud service model and its
requirements in terms most cloud customers would understand.
We developed also generative technologies to automate the de-

62Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           75 / 157



ployment process and to resolve the problem of the repetition
of tedious tasks.

In the reminder of this paper, we will focus on present-
ing and evaluating our proposed contribution with respect to
related work.

III. DEFINITIONS
This section gives a short overview of Model-Driven En-

gineering and its related concepts.

A. Model Driven Engineering
MDE is becoming an emergent software engineering

paradigm to specify, develop and maintain software systems.
In MDE, models are the primary artifact of the engineering
process and are used, for instance, to (semi)automatically
generate the implementation of the final software system.

According to the Object Management Group [6] MDE
is a specific approach to software engineering that defines
a theoretical framework for generating a code from models
using successive model transformations [18]. The main goal
of this approach is to separate the business side of a system
from its implementation. The business model of a system can
therefore drive its implementations on different platforms. In
this way, we can expect to obtain better coherence between
implementation and interoperability.

In brief, MDE aims to raise the level of abstraction in
program specification and increase automation in program
development. The best-known MDE initiative is the MDA
proposed by the OMG [19].

B. Model Driven Architecture
MDA states that it models the environment and the require-

ments for a system in a Computational Independent Model
(CIM). A CIM does not show the details of system structure.
Thus, a CIM can be used to build a Platform Independent
Model (PIM). A PIM focuses on the operation of the system
while hiding details related to the use of a particular platform.
PIM maintains platform independence in order to be suitable
for use with different platforms. The transformation of a
PIM into a Platform Specific Model (PSM) is based on the
associated Platform Model (PM). A PSM is a system model
for a specific platform. It combines PIM specifications with the
details that specify how that system uses a particular platform.
Figure 1 shows the main concepts used in MDA.

C. MDE for the Cloud deployment
Considerable attention has been focused recently on MDE

as an alternative solution to overcome some of the deployment
concerns in the cloud. In fact, the MDE approach holds
promise in:

1) Simplifying and (semi)automating the process of
deployment of applications in the cloud, by cre-
ating specific modeling languages/ tools that hide
development complexity while also significantly re-
ducing the learning curve involved in moving to a
cloud platform. They allow accurate descriptions with
a semantic precision.

2) Ensuring portability and interoperability of sys-
tems across different platforms, by developing

Figure 1. Main concepts of the MDA approach

generic and extensible cloud artifacts. This shields
the users from the variabilities in CSPs.

In the literature, a number of recent papers have already
explored this possibility as StartusML [17] and works done
in [11][12][13]. Nevertheless, all of these works have focused
only on resolving the heterogeneity problem. Our current
research focuses on resolving all of the challenges mentioned
above in Section 1 and on providing a complete solution for
an automated deployment in the cloud.

IV. MODAC-DEPLOY: A MODEL DRIVEN
FRAMEWORK FOR THE ASSISTANCE TO CLOUD

DEPLOYMENT
Our goal is to provide a complete solution that assists

software designers to configure and to deploy successfully their
applications in the Cloud. In this section, we present more
details about the MoDAC-Deploy architecture, giving the main
steps required for deploying an application in the cloud and
its capabilities.

A. Overview

The key idea of the MoDAC-Deploy framework is to
simplify as much as possible the deployment process in the
cloud by proposing an abstraction layer isolating applications
from the underlying environment and hiding API details. In
fact, shielding users from having to manually write scripts
using low-level APIs hides the deployment complexity and
dramatically reduces manual efforts and the time required to
configure cloud resources. In addition, our framework has
been designed specifically to support multiple CSPs in order
to enable application portability among different CSPs. So
applications can be easily moved from one cloud infrastructure
to another which would satisfy more their needs without
any additional efforts: ”model the software deployment once
and deploy it anywhere”. In fact, users have only to change
the selected provider from the available list presented in our
framework and then reuse the same deployment model to

63Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           76 / 157



deploy their applications in the new chosen cloud infrastruc-
ture. Figure 2 shows our framework architecture. It includes
three main modeling tools: IaaSEditor, IaaSMetaModel and
ScriptGenerator. We have used Eclipse Modeling Framework
to develop the DSML and the generative capabilities within
our framework.

Figure 2. Overview of the MoDAC-Deploy approach

Both IaaSEditor and ScriptGenerator use the deployment
meta-model IaaSMetaModel in order to guarantee the creation
of a valid model and the generation of an executable deploy-
ment script.

B. Deployment process
Following MDA practices, an application deployment is

achieved in three-step process:
First, users specify and define the hosting architecture of

their applications through creating a new deployment model
under IaaSEditor. The deployment model is saved as an
XMI description consisting of several nodes (components).
Each node may correspond to a virtual machine or to a
storage medium, then it would be associated to a named
group, namely a SecurityGroup, an AutoScaling-Group or an
AvailibilityGroup. This deployment model is defined using the
meta-model IaaSMetaModel. A simple validation should be
done at this level to guarantee a valid deployment model and
then an executable deployment script.

Second, a model transformation engine with specific rules
is used to transform the preceding model into a CSP-specific
model.

Finally, ScriptGenerator ensures the generation of the
deployment script script.sh from the XMI document generated
within IaaSEditor. The generated script presents an executable
bash script which should be token later and executed on
the command line interface of the underlying provider. Users
have access to the generated script and they can identify
possible values as wanted. Figure 3 illustrates the process that
the MoDAC-Deploy framework goes through to facilitate and
semi-automate the deployment into cloud infrastructures.

C. IaaSMetaModel
IaaSMetaModel is depicted in Figure 4. This meta-model

captures all the concepts that are needed to specify a cloud

Figure 3. Deployment Process

deployment. It comprises multiple extensible and customiz-
able classes, all of these classes are generic cloud artifacts,
describing the functioning and the dependence of the different
components and application services to be deployed on the
cloud. The meta-model components and their responsibilities
are as follows:

• Hosting Architecture: is the main class of our de-
ployment meta-model. It presents the hosting ar-
chitecture of the application to be deployed in the
cloud. Through this class, users can specify the cloud
provider and their authentication credentials required
by the provider. A good design of the hosting archi-
tecture is essential to have a successful deployment.

• Application: presents the name of the application to
be deployed, its version, the URL designated by the
developer to access to this application. It contains also
entities named File such as text file, executable file, or
any other library files to be uploaded onto the VMs
that it is connected to. The application’s set up and
log files are copied from a local directory to another
directory on a VM in the cloud.

• VirtualMachine: is used to define requested VMs from
clients and to specify their characteristics such as
the image ID, the VM size, the availability zone
and the number of instances required to execute the
application in the cloud. Through this class, we can
also enable the monitoring of our instances VM.

• StorageMedium: we classify the storage mediums
into three categories: DataBaseStorage, SimpleStorage
and VolumeStorage. DataBaseStorage offers both rela-
tional and NoSQL database infrastructure. SimpleStor-
age provides a persistent storage of large amounts
of distributed object, highly scalable, sustainable and
available while VolumeStorage provides disk support,
we can associate multiple disks to a virtual machine.

• Group: designates a collection of virtual machines
or storage mediums with common characteristics, we
distinguish between three group categories: Availi-
bilityGroup, AutoScalingGroup and SecurityGroup. A
SecurityGroup consists of a set of access control
rules that describe traffic filters to our VMs. It is
analogous to an inbound network firewall, for which
we specify the protocols, ports, and source IPs ranges
that are allowed to reach the VM instances. An
AutoScalingGroup presents scaling factors to apply
on a set of virtual machines. The number of running
VM instances can be dynamically scaled out and in,
according to certain conditions in order to handle
changes in traffic: it is possible to increase the size
of a group of instances to meet a load peak or to

64Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           77 / 157



Figure 4. IaaSMetaModel

reduce the executing park in the case of the decrease of
traffic. Finally, an AvailibilityGroup nests components
which need to be hosted in the same location. It is a
superclass for the three geolocation groups (i.e., Zone
Region and Datacenter).

• EndPoint: handles incoming network traffic to cloud
components. An endpoint is a URL that is the entry
point for a web service. For each endpoint, we as-
sociate a range of IP addresses and the port through
which a cloud component/ task can connect to others.
An endpoint uses a specific protocol that determine
the syntax and semantics of the messages that are
exchanged between the two communication parties.
An endpoint can be external if it is publicly visible
or internal if it is only accessible within the cloud
application. Also, each endpoint has a public port
and a private port: the public port is used to listen
for incoming traffic to the virtual machine from the
Internet while the private port is used to listen for
incoming traffic, typically destined to an application
or service running on the virtual machine.

This meta-model was developed after inspecting manually
three cloud infrastructures, namely Amazon Web Services,
Windows Azure and Google Cloud Platform. Furthermore,
adding additional provider concepts is designed to be relatively
simple.

D. IaaSEditor
As described above, IaaSEditor provides an intuitive user

interface that allows cloud customers to define their application
services and to configure the target environment through a
simple graphical modeling, shielding them from programming
efforts. Once users have created the deployment model of their
applications, they can choose any CSP supported by our frame-
work and the created deployment model can then be reused
to move the application into another Cloud infrastructure by
changing only the selected CSP under IaaSEditor and some
CSP-specific properties such as the VM image ID.

Figure 5 presents the editor IaaSEditor. it is composed of
three layouts:

• Design workspace : Here users can design and
validate their deployment models, and ask for the
generation of the script deployment.

• Palette : it contains the different components to use
in creating the deployment model, grouped together
in different categories (Resources, Groups, Relations)
according to their role.

• Configuration Tabs : Each tab opens a view that
displays the properties of the selected element in the
design workspace. These properties can be edited to
change or set the parameters related to a particular
component.

E. ScriptGenerator
We have used Acceleo, a code generation tool under the

framework Eclipse, to implement our ScriptGenerator.

Figure 5. Generation of the deployment script

65Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           78 / 157



Figure 6. IaaSEditor

Users launch the generation of the deployment script with
a simple click as shown in Figure 5.

Through a set of model transformation templates, Script-
Generator synthesizes the deployment script from the de-
ployment model created within the editor IaaSEditor for the
underlying CSP (cf. Figure 6). In fact, templates convert data
from the input model into the deployment script to configure
cloud environment and to deploy the application.

In this Section, we described how the modeling capabilities
are used to implement our framework and how the developed
modeling tools can help to facilitate the deployment of services
into cloud infrastructures. In the next Section, we will illustrate
a case study in order to evaluate our deployment framework
and to demonstrate its effectiveness.

V. CASE STUDY
We consider here a stock management application, suffi-

cient to demonstrate the effectiveness of our deployment solu-
tion. we deployed this application across two different cloud
infrastructures: Amazon Web Services (AWS) and Google
Cloud Platform in order to underline the deployment porta-
bility among different CSPs.

To provision and to configure all necessary infrastructure,
we need first to design the application architecture in order
to ensure that it meets our requirements. This application is
structured into logical tiers. The first tier is the web browser,
which is responsible for presenting the user interface. The
middle tier is an application server, which is responsible for the
application’s functionality. The third tier is a database server,
which is responsible for data storage.

To this end, we defined two virtual machines and the
number of instances to create from each one, one instance for

MySQL (the database server) and 3 instances for Apache/PHP
(application servers). In fact, we decided to deploy the MySQL
database on an independent machine to properly manage the
scalability of the application. Then we created a security group
for each virtual machine to control and to filter the traffic
allowed to reach the instances and we specified rules to each
security group. In our case, we enabled inbound HTTP access
from anywhere and inbound SSH traffic from our computer’s
public IP address so that we can connect to our instances.
MySQL port was only opened for the Apache/PHP instances.
In addition, an AutoScalingGroup is associated to PHP Servers
in order to launch or terminate instances as demand on the
application increases or decreases. So we configured auto-
scaling to launch an additional Apache/PHP instance whenever
CPU usage exceeds 60 percent for ten minutes and to terminate
an instance whenever CPU usage under 30 percent. Every new
added instance connect to the same MySQL database. Once
our system was setup and configured, we installed needed
repositories such as Apache 2 and PHP and we deployed our
code to the application servers (PHP servers) and finally we
associated a domain name with our web application. The final
deployment model is presented in Figure 6.

Thanks to MoDAC-Deploy, all these steps are simply
conducted by drag and drop operations and by filling properties
in the tab ”Configuration Tabs”.

Figure 7 depicts the deployment script of the underlying
application in AWS. The captured lines of code creates a
MySQL instance and defines the characteristics of the virtual
machine to be provisioned. We chose a linux image-32 bits
for the MySQL server. It creates also a Key Pair, which
presents the credentials we used to SSH into the box. Then,
we opened the SSH port (22) and the HTTP port (80) for the

66Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           79 / 157



MySQL server. And finally, we imported the database backup
file ”stockProduits.sql” and we started the MySQL instance.

Figure 7. The deployment script in Amazon Web Services

We reused the same deployment model to move the man-
agement stock application into the Google Cloud Platform. All
what we did is to change the CSP as illustrated in Figure 8.

Figure 8. Cloud Services Provider Selection

We modified also the VM imageID from ”ami-0c87ad78”
in AWS to ”https://www.googleapis.com/compute/v1/projects/
ubuntu-os-cloud/global/images/ubuntu-1404-trusty-v20150316
” in Google Cloud Platform.

Figure 9. The deployment script in Google Cloud Platform

The generated deployment script is depicted in Figure 9.

VI. CONCLUSION AND FUTURE WORK
This paper presented the results of investigations on the

main challenges of the deployment of applications in the cloud
and on the modeling capabilities that can help to implement
our proposed solution.

So, we have developed a model-driven framework for
cloud deployment, which facilitates and semi-automates the
deployment of services to cloud infrastructures. This reduces
the deployment complexity and errors that can occur during
manual configurations as well as costs. It helps also to shield
users from complex programming efforts, the low- level API

details and from the heterogeneity in cloud providers. In
addition, our solution enables application portability between
different clouds and allows to minimize the vendor lock-in.
Generated script can be executed only on unix machine, we are
currently working on generating deployment scripts running on
windows.

As a minority of providers that offer autoscaling capabil-
ities to automatically add or remove virtual machines from
an instance group based on increases or decreases in load
as Amazon Windows Azure (within an Auto Scaling group),
Google Cloud Platform (i.e., define the autoscaling policy and
the autoscaler performs automatic scaling) and Windows Azure
(through configuring the autoscale status), our next research
thread will definitely revolve around this feature, we plan to
develop algorithms and techniques for dynamically scaling
deployments in response to application demand in other IaaS
and for re-configuring deployments. Cloud computing comes
with a cost where the accounting is based on a utility model.
Making decisions on how many cloud resources to use to host
a service, and when and how much to autoscale is a significant
challenge for the cloud customers. Understanding what will the
impact of these decisions be on both the expected performance
delivered to the service and cost incurred by the customer
is even harder. In that context, developing mechanisms for
estimating deployment performance and cost and selecting the
proper cloud deployment is an issue to be addressed in ongoing
work.

Besides, the current capabilities presented by this frame-
work can be extended further to handle complex architectures
such as network applications by adding new cloud artifacts
and why not make it able to deploy multi-cloud architectures
(i.e., deploying applications across multiple cloud providers,
e.g., deploy a single workload on one provider, with a backup
on another). We plan also to move in the direction of making
the deployment DSML as mature and complete by covering
new CSPs as well as private IaaS.

REFERENCES

[1] M. Hamdaqa, T. Livogiannis, and L. Tahvildari, “A reference model for
developing cloud applications,” in CLOSER, 2011, pp. 98–103.

[2] R. Gadhgadhi, M. Cheriet, A. Kanso, and S. Khazri, “Openicra: Towards
a generic model for automatic deployment and hosting of applications
in the cloud,” in IJ-CLOSER, 2013, pp. 249–275.

[3] Amazon Web Services, http://aws.amazon.com, [Accessed 09 Novem-
ber 2015].

[4] Google Cloud Platform, http://cloud.google.com, [Accessed 24 October
2015].

[5] Windows Azure, http://azure.microsoft.com, [Accessed 04 November
2015].

[6] OMG, Object Management Group, http://www.omg.org.
[7] G. Juve and E. Deelman, “Automating application deployment in

infrastructure clouds,” in CLOUDCOM ’11, pp. 658–665.
[8] Amazon, Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2,

[Accessed 09 November 2015].
[9] D. Nurmi et al., “The eucalyptus open-source cloud-computing system,”

in CCGRID ’09, 2009, pp. 124–131.
[10] OpenNebula, http://www.opennebula.org, [Accessed 27 October 2015].
[11] F. Caglar, K. An, S. Shekhar, and A. Gokhale, “Model-driven perfor-

mance estimation, deployment, and resource management for cloud-
hosted services,” in DSM ’13, 2013, pp. 21–26.

[12] J. Cala and P. Watson, “Automatic software deployment in the azure
cloud,” in Distributed Applications and Interoperable Systems, 2010,
vol. 6115, pp. 155–168.

67Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           80 / 157



[13] S. Shekhar et al., “A model-driven approach for price/performance
tradeoffs in cloud-based mapreduce application deployment,” in MOD-
ELS, 2013, pp. 37–42.

[14] Deltacloud, https://deltacloud.apache.org/, [Accessed 18 September
2015].

[15] Libcloud, http://libcloud.apache.org/, [Accessed 22 September 2015].
[16] jclouds, http://jclouds.apache.org/, [Accessed 28 September 2015].
[17] M. Hamdaqa and L. Tahvildari, “The (5+1) architectural view model

for cloud applications,” in 24th CSSE, 2014, pp. 46–60.
[18] J. Bézivin, “Model driven engineering: An emerging technical space,” in

Generative and Transformational Techniques in Software Engineering,
2006, pp. 36–64.

[19] MDA, Model Driven Architecture, http://www.omg.org/mda, [Accessed
27 November 2015].

68Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           81 / 157



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 69

Modeling Workflow of Tasks and Task Interaction Graphs to Schedule on the
Cloud

Mahmoud Naghibzadeh
Department of Computer Engineering

Ferdowsi University of Mashhad
Mashhad, Iran

Email: naghibzadeh@um.ac.ir

Abstract-Many composite computational activities are
modeled as directed acyclic graphs called workflows in which
each vertex is a task and each directed edge represents both
precedence and possible communication from its originating
vertex to its ending vertex. When the execution of a task is
completed, the communication with its successor(s) starts and
anticipated data are transferred. Only after all parents of a
task are completed and their results (if any) are received by
the task its execution can start. These constraints restrict a
more general case in which some tasks could communicate
during their executions. In this paper, a task-model composed
of both interaction and precedence of tasks is introduced. It is
shown that this kind of graph can be transformed into an
extended directed acyclic graphs, called hybrid directed
acyclic graph, composed of tasks and super-tasks. Super-
tasks need not be recognized manually and the proposed
method automatically finds them. This can simplify the design
of complex workflows. Validity conditions of hybrid directed
acyclic graphs are investigated and a verification algorithm is
developed. Also, scheduling aspects of hybrid workflows on
the cloud is highlighted and some results are reported. This
inventive idea can open a whole new area of research and
practice in the field of workflow modeling and scheduling.

Keywords-Task interaction-precedence graph; hybrid DAG;
hybrid workflow; Cloud computing.

I. INTRODUCTION

Activities of many composite processes such as
likelihood propagation using Bayesian network, family trees
(actually graphs) in genealogy, and scientific and industrial
workflows, are modeled as Directed Acyclic Graphs
(DAGs) in which many vertices are connected via directed
edges [1]. As the name suggests, an important property of
such graphs is that there is no cycle in a DAG. This model is
applicable where there is control and data dependencies and
a partial precedence relation between tasks and if a task has
to transfer data to one (or more) of its successors it can do
so at the end of its execution, i.e., in the middle of execution
it is not possible for two or more tasks to interact. This
resembles an assembly line in which one station has to
complete its job and then pass the object to the next station.
In any case, a DAG represents a partial ordering of tasks
that must be obeyed for their executions. Figure 1 shows a
DAG composed of 11 vertices and 15 edges. The number
next to a vertex shows its required execution time averaged
on all applicable resource types. The real resource type for
the execution of each task will be determined during the
actual scheduling of the workflow, before the execution of
the workflow starts. Consequently, the exact execution time
of each task will be computed using the average execution

time given on the workflow and the relative processing
power of the resource to be used to the average processing
power of the resource types. Likewise, the number on an
edge shows the average data transfer time from the
originating vertex of the edge to the ending vertex of the
edge. The exact transfer time will be computed during the
scheduling time when the actual resources for source and
destination tasks are determined, hence, the communication
link and its baud rate is known. The transfer takes place at
the end of the execution of the originating task of the edge.

Figure 1. A DAG of precedence-communicating tasks

On the other hand, a Task Interaction Graph (TIG) is
used to show which tasks of an application interact during
their executions [2]. All tasks of a TIG can start
simultaneously and each task can continue its execution so
far as it does not need to synchronize or communicate with
any other task. Only two directly connected tasks, i.e.,
neighbors, could interact and it is possible that they may not
do so depending on the logic of the corresponding programs
and the current values of data objects. Also, even the
interaction may be one sided, in some circumstances. The
nature of interaction depends on the parallel problem being
solved; it may be an actual information transfer or an
indirect communication to use a shared data object. For
example, suppose a parallel program is designed to multiply
a sparse Matrix M with m rows and n columns by vector V
with n rows. Suppose Task i’s responsibility is pairwise
multiplication of elements of Row i, i=1,2,…m of Matrix M
and corresponding elements of Vector V and computing
their sum, Formula (1),

ܶ ݏܽ݇ : ܯ [ ,݅ ]݆ ∗ ܸ[ ]݆
ଵஸஸ, ெ [,]ஷ

(1)

T9

24

T2 T3 T8

36

T1

25

T4 T11

15
8 12

4

5

16

15

T6

16 31

T5 T10T7

1014
7

9 6

1230 48

28

13

24

8

18

                           82 / 157



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 70

Here, Task k, k=1,2,..n and Task l, l=1,2,…n, lk
conflict on elements of Vector V for which both M[k,j] and
M[l,j] are nonzero [3]. These two tasks cannot
simultaneously access the same memory location. The
nature of task interaction in this example is indirect. In the
context of scheduling DAGs and TIGs, and now the Task
Interaction-Precedence Graph, a task is a piece of work that
is completely assigned to one processor to do.

The cloud, provides wide varieties of resources and
software in the forms of Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS) for public use [4]. Users can lease these services for
the needed periods of time and pay as they are used. This is
a great opportunity for many users who are short of required
resources to run their computational jobs. Scheduling
scientific workflows on the cloud is an ongoing research
activity with continuous improvements on their quality of
services such as make-span, price to be paid, energy
efficiency, and fairness. Fairness is related to workloads of
workflows belonging to one enterprise where it wants to be
nondiscriminatory in assigning resources to different
workflows [5]. A workflow, if modeled as a DAG, is
unable to handle task interactions that can happen any time
during their executions. In this paper, a new task modeling
approach called Task Interaction-Precedence Graph
(TIPG) is introduced in which all types of task precedence,
dependency, and interaction is possible, subject to passing
validity tests. Difficulties involved in the scheduling of
applications which can be modeled using TIPG is studied.
Some scheduling results are presented which shows the
success rate of scheduling is improved. However, the
originality of this work is on the introduction of a new task
model which allows tasks of a workflow to directly or
indirectly interact during their execution.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 formulates the
problem being studied. Section 4 discusses the validity
verification of a given TIPG and its scheduling on the
cloud, including the designed algorithms for both
verification and scheduling. Section 5 concludes.

II. RELATED WORK

In scheduling workflows on the cloud, we are faced
with different quality of services needed by users. Optimal
scheduling of a workflow represented by a general DAG is
an NP-hard problem [6]. Therefore, different approaches
such as integer linear programming [7], genetic algorithms
[8], and heuristic algorithms [9], are proposed to produce
close to optimal solutions. The objective is often meeting a
user-defined deadline, minimizing the computational cost
of the workflow, minimizing the make-span, and/or
maximizing the success rate of the proposed algorithm. Of
course, some algorithms are multi-objective which means
that they are designed to optimize more than one objective,
such as minimizing timespan and cost at the same time
[10]. Here, make-span is defined to be the time length from
when the workflow is submitted to the cloud to the time
when its execution is completed. Success rate is the ratio of
the number of workflows successfully scheduled to the

total number of workflows examined. There are many other
aspects to scheduling workflows such as data and
computation privacy [11] and simultaneous scheduling of
many workflows belonging to one organization [12].

Scheduling TIGs is another field which makes the
foundation of this paper’s scheduling extended workflows.
In a connected TIG, it is not possible to complete one (or
many but not all) task at a time but the whole TIG must
complete at one time. For example, the whole sparse matrix
and vector multiplication is one super-task and computing
each element of the resulting vector can be organized as
one task. Tasks of such a super-task can simultaneously run
on different hardware resources of the cloud. However, it is
possible to assign more than one task to one processor to be
executed in some specified order. Figure 2 shows a TIG
graph for accomplishment of the parallel multiplication of a
small-size sparse matrix and a vector. A TIG may represent
a complete independent application or it may be part of a
larger application. For example, it can be matrix
multiplication using matrix-vector product to reduce the
number of operations as part of solving a system of linear
equations. The latter is widely used in many applications.

Figure 2. The TIG of matrix-vector multiplication

TIGs are traditionally scheduled on multiprocessors and
computer clusters. Nowadays, distributed systems and the
clouds provide favorable platforms for solving parallel
applications [13]. A TIPG is neither a simple DAG nor a
TIG but a new graph model in which both interaction and
precedence is allowed. The closest model to this could be a
DAG (or workflow) of simple (sequential) tasks and
parallel tasks. Nevertheless, there are many differences
between the two. (1) Before the production of a DAG of
tasks and parallel tasks (which will be called TPDAG for
short) parallel tasks of the application being modeled have
to be recognized and to be considered as indivisible units,
similar to simple tasks within the model. However, a TIPG
model starts with (simple) tasks only and there is no
composite task in the beginning. Two different types of
relations are allowed between each pair of tasks, interaction
and communication. Interaction resembles concurrency of
tasks and information exchange during execution, while
communication resembles precedence and data transfer
from one task to the other at the end of execution of the
former. The recognition of super-tasks in the TIPG is
automatic and without the interference of users. This
increases ease of workflow design and at the same time the
possibility to recognize parallel tasks in their smallest
possible size. (2) Parallel tasks of a TPDAG are co-
scheduled to run in parallel, i.e., all subtasks of a parallel
task start simultaneously and the whole parallel task

85
34
76
96
17

12 25
10 8

4 5 9
7 42
2 11



T1 T2

T5

T3
T4

                           83 / 157



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 71

completes at one time. This means, a child of a parallel task
cannot start until the whole parallel task is completed and
its data (if any) is received [8]. On the other hand, tasks of
a super-task within a TIPG can run concurrently, i.e., they
can start at different times and complete at different times
as long as interactions are possible. Besides, any child of a
super-task can start its execution as soon as its parent tasks
(not the whole super-task) are completed. This can have a
great impact on the time span of the TIPG and as a result
on the price to be paid for running the TIPG on the Cloud.
(3) Inputs to a parallel task are receive by the parallel task
itself and outputs are also sent by the parallel task. For a
super-task of a TIPG, any input from external tasks of a
super-task is independently received by the receiving task
within the super-task and any output from a task within the
super-task is sent directly by the sending task within the
super-task. As a result, parallel communication from/to
tasks of a super-task is the norm. This is another flexibility,
which can have a great impact on the quality of scheduling
services. Our work could be considered as an extension of
workflows of tasks and parallel tasks which have been used
by many applications. A well-known such application is
Proteomics workflow [14]. Many workflow management
software such as Pegasus have the capability to handle
parallel tasks.

III. PROBLEM FORMULATION

A directed acyclic graph, when used to model
workflows, prohibits tasks to directly or indirectly interact
during their executions. We propose an extended model
called TIPG which allows interaction, communication, and
precedence capabilities, simultaneously.

A TIPG, G(V, U, D), consists of a set of vertices, V, a
set of undirected edges, U, and a set of directed edges, D.
Each edge, directed or undirected, connects one vertex to
another and there could be at the most one edge between
any pair of vertices. Note that, the transfer of information
between two interacting tasks could occur any time during
their executions or even, at the end of the execution of one
task it could send information to another task (which is not
completed yet) for the last chance. Because we want TIPGs
to be extensions of DAGs, considering directed edges only,
a TIPG must be acyclic, i.e., it should not be possible to
start from some vertex and follow a sequence of directed
edges and reach back to the same vertex. For undirected
edges only, cycles are not forbidden. For a TIPG graph to
be valid it must be acyclic with respect to directed edges
and also conflict-free.

Definition 1: A TIPG is conflict-free if there is no directed
path between any pairs of vertices of any connected
component of the TIPG where only undirected edges are
considered to obtain these connected components.
Definition 2: In the rest of this paper, wherever we talk
about connected components of a TIPG graph G(V, U, D)
we mean, a sub-graph G(V, U)  G(V, U, D), V  V,
and UU, i.e., U is composed of only undirected edges of
the TIPG.

Definition 2 complies with the classical definition of
connected components for undirected graphs when all
directed edges of the TIPG are ignored. Recall that, in
computer science, for a directed graph, the concept of
strongly connected components is used rather than
connected components.

If there is any conflict in a TIPG graph it means that
there is at least one pair of vertices that one vertex precedes
the other and at the same time they can interact during their
executions. This is definitely impossible because parallel
and precedence constraints may not intermix, hence the
design of such a system is incorrect and it should be fixed
before going about running it. Therefore, conflict detection,
which will be discussed later, could be thought of one type
of design verification.

For example, sparse matrix and vector multiplication is
seldom a complete application and it can be part of solving
a greater problem such as matrix multiplication using
matrix-vector product to reduce the number of operations
and solving a system of linear equations. Although, in some
workflows, cycles composed of two or more tasks are
possible, whenever the control flow reaches one of these
tasks it should start executing from the beginning. This is
not the case for a TIG which is part of a workflow. If an
undirected edge connects two vertices vi and vj it is
represented by either (vi, vj) or (vj, vi), with no distinction.
However, if a directed edge connects two vertices vk and vl

it is represented by <vk, vl>, where vk is the starting vertex
and vl is the ending vertex of the edge. A directed edge
between a pair of tasks, <vk, vl>, means that the execution
of task vk must precede the execution of task vl and that vk

can transfer information to vl once at the end of vk’s
execution.

Suppose for the DAG of Figure 1, tasks T3 and T4, T4

and T5, and T9 and T10 have to interact during their
executions. The resulting TIPG is shown in Figure 3. In this
figure, all execution and communication times are removed
only to increase clarity of the graphical representation of
the TIPG, but they are implicitly in place.

Figure 3. A sample task interaction-precedence graph

Later it will be shown that this TIPG is conflict-free,
which means it could be a valid model for tasks of a real
application. Such an application cannot be modeled by
neither a DAG nor a TIG graph and nor a workflow of
tasks and parallel tasks. To represent a TIPG graph an NN
matrix, M, where N is the number of vertices, is used. In
this matrix, which is usually very sparse, if there is no edge
between vi and vj, i, j =1,2,3,…N then M[i,j] =Null; if there

T9

T2 T3 T8

T1 T4 T11T6

T5 T10T7

                           84 / 157



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 72

is an undirected edge from vertex vi to vertex vj then M[i,
j]=0; otherwise M[i, j] is set to the average data transfer
time from vi to vj, i.e.,

ܯ [ ,݅ ]݆ = ቐ

,݈݈ݑ݊ ݂݅ ݀݁݊ ܾ݃݁݁ ݁݁ݓݐ ݊ ܸܽ݊ ݀ ܸ

0, ݂݅ ݀݊ݑ ݎ݅݁ ݐܿ݁ ݀ ݁݀ ܾ݃݁݁ ݁݁ݓݐ ݊ ܸܽ݊݀ ܸ

ݐܽܽ݀ ݎܽݐ ݏ݂݊ ݉ݐ݅ݎ݁ ݁ ݉ݎ݂ ܸݐ ܸ, ℎݐ ݓݎ݁ ݏ݅݁

IV. VALIDITY VERIFICATION AND
SCHEDULING

In the context of this research a TIPG must pass three
test to become a valid Hybrid Directed Acyclic Graph
(HDAG), i.e., A DAG of tasks and super-tasks. (1) The
original TIPG must be acyclic with respect to directed
edges, i.e., ignoring all undirected edges. (2) The TIPG
must be conflict-free. (3) Considering each connected
component as being an indivisible super-task with one
entry and one exit, such a graph must be acyclic. Condition
2 is an absolute must satisfy statement, otherwise the model
is not valid. Condition 1 is the restriction of our research
meaning that, this research aims at eventually scheduling
workflows which can be modeled as DAGs and no other
models of workflows such as iteration structure. Condition
3 is a complementary to Condition 1.

An algorithm has to be designed to systematically
perform these tests. After the first test is successful, it has
to find all connected components of the graph considering
only undirected edges. A connected component should
include at least two vertices. For every pair of vertices of
every connected component we have to make sure there is
no directed path from one to the other, i.e., considering
only directed edges of the TIPG in this stage. This is called
conflict-freeness of the TIPG. Using notations of Definition
2, if for any two vertices (vi, vj)U there is at least one
path, PU, from vi to vj the TIPG is not conflict-free and
hence the model is not valid. Then the whole TIPG is
restructured in the form of a directed graph by considering
each whole connected component as one indivisible super-
task. For this phase, communications to all tasks of a super-
task are received by the super-task itself and all
communications from the tasks of a super-task are from the
super-task itself. The final check is to make sure that the
new directed graph of tasks and super-tasks is acyclic. It is
worth mentioning that restructuring action is only for the
purpose of making sure that there is no cycle in the model.
After this checking action is completed, the
communications to/from a task within a super-task would
directly go to/from the task itself. Algorithm 1 shows the
steps to be taken for transformation of a TIPG to a directed
graph and verifying its validity as a hybrid DAG. At the
start of the algorithm, Matrix M is the representation of the
TIPG as it is explained earlier. This matrix will be
augmented with new rows and columns corresponding to
the connected components found. The number of elements
in vector V is equal to the number of vertices on the
original TIPG. At the end, Vector V represents which
vertex belongs to which component, i.e.,

ܸ= ൜
0, ݂݅ ݒ݁ ݐ݁ݎ ݅ݔ ݊݅ݐ݊ݏ݅ ݕ݊ܽ ݊ܿ ݊݁ܿ ݐ݁ ݀ ݉ܿ ݊ ݁݊ ݐ
݅݀ ݂ ݊ܿ ݊݁ܿ ݐ݁ ݀ ݉ܿ ݊ ݁݊ ℎݐ,ݐ ݓݎ݁ ݏ݅݁

Since algorithms for finding cycles (if any) in a directed
graph (Test 1) is not a new topic, we will assume that the
given TIPG graph is already acyclic. Algorithm 1 first
produces all connected components and then proceeds with
the validity tests. See Figure 4.

-------------------------------------------------------------------------
1:Boolean procedure HDAG_Production&Validity(M, V)
2: while (exists new connected component, C)
3: Update vector V to represent this component
4: end while /*from here on components are connected*/
5: for every (pair of vertices (vi,vj) of every component) do
6: if (exists a directed path from vi to vj or vj to vi)
7: return false
8: end if
9: end for
10: for every (component, C) do
11: add a new row and column to M and

fill its entries using Rules 2 to 5
12: end for
13: for every (vertex v of every component) do
14: replace all positive values of row v by null
15: replace all positive values of column v by null
16: end for
17: if (cycle (M, V)) return false
18: else return true
19: end procedure
-------------------------------------------------------------------------

Figure 4. Algorithm 1- producing a potential Hybrid DAG (HDAG) from
a TIPG and checking its validity

In Lines 2 to 4 all connected components of the given
TIPG are found, one by one. From Line 4 on any reference
to component means connected component. Vector V is set
to represent which tasks of the original TIPG are parts of
which component, if any. The conflict-freeness of each
connected component is then checked in Lines 5 to 9 and if
there is at least one conflict in any connected component
there is a design error and the original TIPG must be
redesigned. Conflict-freeness of all connected components
implies conflict-freeness of the whole TIPG. Each
component is called a super-task, in its entirety, is now a
new object in the model. To represent connections of each
of these new objects with other objects, for every
component a new row and a new column is amended to the
Matrix M, i.e., super-tasks are represented in the same
structure where tasks are represented. The values of
elements of these rows and columns are filled with respect
to communication times between tasks and super-tasks to
this super-task (and vice versa) using Rules 2 to 5 that are
discussed later. Lines 10 to 12 of the algorithm have this
responsibility. There should not be any edge from a task or
a super-task outside a given super-task to a task inside this
super-task and vice versa. Such edges have to be changed
to/from the super-task itself. Lines 13 to 16 are intended to
serve this purpose. What remains is that we have to make
sure the resulting graph of tasks and super-tasks, where
each super-task, as a whole, is considered an indivisible
unit of work in this stage, is acyclic. Line 17 will take care
of this job and if a violation is diagnosed the graph is not
acyclic. Otherwise, the hybrid DAG is valid. In the body of
Algorithm 1 the following rules are used.

Rule 1: All vertices and undirected edges of every
connected component are separately grouped and
encapsulated as a super-task, before going about checking
the correctness of the model.

                           85 / 157



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 73

Rule 2: Any data sent from an external task or super-task to
a task within a super-task is sent to the super-task itself.
Rule 3: Any data to be sent from a task within a super-task
to an external task or super-task is sent by the super-task.
Rule 4: If an external task or super-task wants to send data
to more than one task within a super-task the average of the
data volumes over all receiving tasks is sent to the super-
task. It is assumed that there are independent
communication links between each pair of resources. This
assumption enables us to consider average of data instead
of sum of data. There are two points to be cleared with
respect to sending data to more than one task within a
super-task: (1) message processing time is negligible
compared to message transfer time, hence the sender can
handle parallel sends simultaneously, and (2) each receiver
task can immediately start its execution after the expected
data from its parent(s) is received. These two points justify
using the average data volume instead of the sum of data
volume on a link which connects an external task or super-
task to many tasks within a super-task.
Rule 5: If more than one task within a super-task want to
send data to an external task or super-task the average of
the data volume is sent by the super-task. The justification
for using the average of data volume, instead of the sum of
data volume, is similar to the reasoning used for Rule 4.

A. Time complexity of Algorithm 1

The number of operations needed for lines 2 to 4 of
Algorithm 1 is proportional to (N+E), i.e., C1(N+E), where
C1, N, and E, are a constant, the number of vertices, and the
number of edges in the original TIPG, respectively. The
number of operations for Lines 5 to 9 is proportional to the
number of pairs of vertices times NlogN+E, i.e.,
C2N

2(NlogN+E). The number of operations for line 17 is
C3(N+E). Therefore, the time complexity of the algorithm is
dominated by the time complexity of Lines 5 to 9.
Consequently, the time complexity of the algorithm is
O(N2(NlogN+E)). For the TIPG of Figure 3, Vector V will
be filled as in Formula (2).

V
T
=(0,0,0,1,1,1,0,0,0,2,2,0)

T
(2)

There are two connected components, (1) the TIG of
tasks T3, T4, and T5, and (2) the TIG of tasks T9 and T10.
There are no directed paths from T3 to T4, T4 to T5, T3 to
T5, T4 to T3, T5 to T4, T5 to T3, T9 to T10, or T10 to T9.
Therefore, the TIPG of Figure 3 is conflict-free. The
algorithm checks and makes sure that there is no cycle in
the whole new graph of tasks and super-tasks when each
super-task is considered indivisible. The new graph is a
valid hybrid workflow. The resulting hybrid DAG is shown
in Figure 5.

Figure 5. Hybrid DAG obtained from TIPG of Figure 3

An actual implementation of Algorithm 1 could include
a preliminary stage of finding the reachability matrix of the
graph by considering only directed edges. This can be done
using the Floyed-Warshall algorithm [15]. The matrix can
be accessed in Line 6 of the algorithm many times. The
complexity of the preliminary stage of the algorithm is
O(N3), where N is the number of vertices. This is a lower
time complexity than the time complexity of the algorithm
which we produced earlier, hence the time complexity of
the algorithm is still O(N2(NlogN+E)).

B. Scheduling hybrid workflows

Conventionally, workflow schedulers assume that tasks
are non-preemptable hence, each processing resource runs
the current task in a single-programming fashion. With the
extension of workflows to include super-tasks called TIGs
multiprogramming becomes more attractive and beneficial
to the cloud users. Tasks of a TIG may have quite different
execution times, on the one hand and, they should be co-
scheduled to be able to interact during execution. We are
faced with three options, (1) allocation of as many
processing resources as there are tasks and assigning each
task to one resource, (2) assigning all tasks of each TIG to
one fast enough processing resource and running then in a
multiprogramming fashion, and (3) clustering tasks and
allocation of as many processing resources as there are
clusters and assigning each cluster to one resource then
running each cluster in a multiprogramming fashion.

By selecting Option 1 we are aware that all tasks should
start simultaneously in order to be able to interact during
execution since otherwise resources’ time could be wasted
due to tasks wanting to interact with others which are not
available. It is not always the case that whenever we want
to schedule a TIG in the midst of scheduling a workflow it
would be beneficial to lease new resources from the cloud.
Furthermore, at the time of assigning a TIG, the finish time
of already leased resources may not be the same hence
waste of some resource’s time is inevitable. Depending on
the nature of the application being scheduled, we might
want to start a descendent task or super-task when all tasks
of a TIG are completed. For this case the scheduler should
make use of simultaneous completions of tasks if it is
beneficial towards the scheduling objectives. These kind of
applications are called parallel TIGs.

Option 2 can be useful in many cases for example,
when the objective is to minimize cost of running the
workflow on the cloud and the given relative deadline is
not very short. A relative deadline is a duration of time-
interval that is given to a workflow to complete as opposed
to an absolute deadline which is an exact moment of time
before or at which the workflow must be completed. A
major benefit of this approach is that the interaction time is
negligible because the common main memory could be
used for data and results sharing.

Option 3 is applicable when Option 2 is not useable
with respect to the scheduling objectives. In any case, we
cannot simply say that the time-span of executing a super-
task is for example equal to the sum of execution times of
its included tasks. It depends on the approach that the TIG

T9

24

T2 T3 T8

36

T1

25

T4 T11

15
8 17

32 16

15

T6

16 31

T5 T10T7

1014

9 6

1230

18

20

24

S1 S2

8

48

                           86 / 157



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 74

is modeled considering aforementioned models. An
estimate of execution time is needed before we can go
about designing a hybrid workflow scheduler. Although
there are differences between scheduling hybrid workflows
and simple workflows, the guidelines are already
developed.

To make the paper short, a brief summary of what has
been done with respect to scheduling TIPGs and the results
obtained up to now follows. The base of our two
experiments was the graph of Figure 1. Primarily, Edges
<T4, T3>, <T5, T4>, and <T9, T10> were added to the graph.
Six hundred TIPGs were randomly generated from the
topology of this modified graph. That is, all execution
times and communication times were first removed from
the graph but vertices and edges were not changed. The
execution time of each vertex was then randomly selected
from the interval [0, 50] and communication time of each
edge was randomly generated from the interval [0, 30]. An
integer number between zero to eight (exclusive) was
randomly selected and that many vertices of the graph were
randomly selected and were changed to undirected edges. If
the graph was a valid Hybrid DAG it was selected for
scheduling. A list scheduling heuristic with the objective of
minimizing timespan [16], while the deadline is respected
was developed to schedule the workflow. The deadline
parameter was randomly selected within the interval [CPL,
1.4*CPL], where CPL is the Critical Path Length of the
workflow. The CPL was calculated in a different way
which is usually calculated. All communication times were
ignored in the calculation of the critical path because the
whole critical path could be assigned to one processor,
hence communications are zeroed. This kind of critical path
represents the absolute minimum timespan for running the
workflow, with regards to the resource type being used.
Five types of the cloud processing resources with
performances 1.0, 1.2, 1.6, 2.4, and 3.0 with price factors
equal to their performances were assumed. The ready task
(or super-task) with the highest rank was scheduled next.
The two experiments differ in the way a super-task is
scheduled. The objective of the experiments was to
compare parallel and concurrent execution of super-tasks.
See Figure 6 (Algorithm 2.) In this algorithm,
lease_appropriate(1) will lease one new resource with
proper processing power, considering the current state of
the scheduler. Similarly, lease_appropriate(Ni-available)
leases as many as the difference of Ni, i.e., the number of
tasks in the ith super-task, and the number of available
resources, if Ni is greater than the number of available
resources. The procedure assign_task(task) assigns the task
to the resource which completes it the soonest. On the other
hand, assign_stask(super-task) assigns all tasks of the
super-task to as many processors as needed by the super-
task.

Experiment 1 followed Option 1 guideline. For this
case, effective execution time of each task is equal to the
maximum execution time of the tasks of the super-task.
Experiment 2 also followed Option 1 with the possibility of
each task of a super-task to complete and sent its data to its
children vertices, independently. A simple heuristic (not
necessarily optimal) was used to assign tasks within a
super-task to resources. If Super-task Si needed Ni

simultaneous resources, Ni resources with earliest
availability time were found, first. If there were not enough

available resources new resources were leased. Then the
task with the longest execution time (with respect to the
processor’s performance) was assigned to the resource
which can complete it the earliest time. This task and the
corresponding processor were removed and the process
continued until allocation is completed.

-------------------------------------------------------------------------------
1: Retrieve cloud resources’ availability and prices
2: Rank tasks and super-tasks and enqueue (Q)
3: mark the entry task as ready
4: While (exists ready task in Q)
5: remove (highest ranked ready task T (Q))
5: case 1: regular task Ti (T, V) //A simple task
6: begin
7: lease_appropriate (1)
8: call assign_task (Ti)
9: remove father-son links of Ti

10: if a child becomes orphan mark it ready
11: end begin
12: case 2: super-task Si (T, V) // A super-task
13: begin
14: if available resources are not enough
15: lease_appropriate(Ni-available)
16: end if
17: call assign_stask(Si)
18: remove father-son links of Si

19: if a child becomes orphan mark it ready
20: end begin
21: end while
22: end algorithm
-------------------------------------------------------------------------------

Figure 6. Algorithm 2- scheduling hybrid workflows of tasks and TIGs

For these experiments the success rate of the second
experiment was 7% higher (with respect to the total number
of generated workflows) than that of the first experiment.
From the 600 workflows with the assigned deadlines, 276
cases were successfully scheduled in the second experiment
whereas 235 were successfully scheduled in the first
experiment. The success rate of the second experiment was
0.46 and that of experiment one was approximately 0.39. It
is a good indication that TIPGs should have their own
schedulers rather than using schedulers of workflows of
tasks and parallel tasks. It is worth mentioning that a TIPG
can handle both parallel and concurrent super-tasks. Having
applied the ideas on small-scale TIPGs it can be extended
to large-scale scientific workflows with thousands of tasks
and super-tasks. Scheduling, and then running, such
workflows requires powerful supercomputers or a Cloud
environment composed of thousands of Virtual Machines
(VM).

V. SUMMARY AND FUTURE WORK

A new task model called task interaction-precedence
graph is presented in this paper. Tasks, in this model, not
only can communicate information at the end of their
executions but they can also interact during their executions.
A validity algorithm is developed to check the correctness
of the design of such a model. Furthermore, a procedure for
transforming a conflict-free TIPG into a hybrid DAG, i.e., a

                           87 / 157



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 75

DAG composed of simple tasks and super-tasks is
established in order to be able to check that the final graph is
acyclic. Problems involved in scheduling TIPGs on the
cloud are investigated. This new modeling technique allows
us to model many more complex applications which were
not possible to model using DAGs or TIGs alone. The
novelty claim of this paper is in the introduction of a new
task model in which precedence, interaction, and
communication are all simultaneously possible. Hybrid
workflows, Hybrid DAGs, and even hybrid graphs become
meaningful and very useful. The scheduling algorithm
developed in this paper is the first step in this regard and
much work has to be done. The experiments of this paper
focused on the scheduling aspects of TIPG workflows. It is
predictable that starting with a graph in which both directed
and undirected edges, i.e., communications and interactions,
are allowed and the granularity of all tasks are the same and
the recognitions of TIGs are automated, the model designing
is simpler and less time consuming. However, the actual
performance is left to be evaluated in the future.

REFERENCES

[1] D. C. Kozen, The Design and Analysis of Algorithms. Springer,
1992.

[2] D. L. Long and L. A. Clarke, “Task interaction graphs for
concurrency analysis,” [1988] Proceedings. Second Work. Softw.
Testing, Verif. Anal., 1988.

[3] A. Grama, A. Gupta, G. Karypis, and V. Kumar, “Introduction to
Parallel Computing; 2nd Edition,” Search, 2003, pp. 856.

[4] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-
constrained workflow scheduling algorithms for Infrastructure as a
Service Clouds,” Futur. Gener. Comput. Syst., vol. 29, no. 1, 2013,
pp. 158–169.

[5] L. F. Bittencourt and E. R. M. Madeira, “Towards the Scheduling of
Multiple Workflows on Computational Grids,” J. Grid Comput., vol.
8, 2010, pp. 419–441.

[6] O. Sinnen, Task Scheduling for Parallel Systems. John Wiley &
Sons, 2007.

[7] T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira, “Using time
discretization to schedule scientific workflows in multiple cloud
providers,” in IEEE International Conference on Cloud Computing,
CLOUD, 2013, pp. 123–130.

[8] J. Yu and R. Buyya, “Scheduling scientific workflow applications
with deadline and budget constraints using genetic algorithms,” Sci.
Program., vol. 14,, 2006, pp. 217–230.

[9] S. Abrishami and M. Naghibzadeh, “Budget Constrained Scheduling
of Grid Workflows Using Partial Critical Paths,” in International
Conference on Grid Computing and Applications, GCA, 2011, pp.
1o8–114.

[10] E. Juhnke, T. Dörnemann, D. Bock, and B. Freisleben, “Multi-
objective scheduling of BPEL workflows in geographically
distributed clouds,” in Proceedings - 2011 IEEE 4th International
Conference on Cloud Computing, CLOUD 2011, 2011, pp. 412–419.

[11] S. Sharif, J. Taheri, A. Y. Zomaya, and S. Nepal, “MPHC:
Preserving Privacy for Workflow Execution in Hybrid Clouds
International Conference on Parallel and Distributed Computing,” in
Applications and Technologies (PDCAT), 2013, pp. 272–280.

[12] A. Hirales-Carbajal, A. Tchernykh, R. Yahyapour, J. L. González-
García, T. Röblitz, et al., “Multiple Workflow Scheduling Strategies
with User Run Time Estimates on a Grid,” Grid Comput., vol. 10,
no. 2, 2012, pp. 325–348.

[13] I. D. Falco, U. Scafuri, and E. Tarantino, “Two new fast heuristics
for mapping parallel applications on cloud computing,” Futur.
Gener. Comput. Syst., vol. 37, 2014, pp. 1–13.

[14] G. Mehta, E. Deelman, J. A. Knowles, T. Chen, Y. Wang, J.
Vöckler, et al., “Enabling data and compute intensive workflows in
bioinformatics,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2012, vol. 7156, LNCS, PART 2, pp. 23–32.

[15] R. W. Floyed, “Algorithm 97: Shortest path,” Commun. ACM, vol.
5, no. 6, 1962, pp. 345–345.

[16] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3,2002, pp. 260–274.

                           88 / 157



Instruments for Cloud Suppliers to Accelerate their Businesses  

The Need for Unleashing Business Potential and Boosting Cloud Economics 

Fred Kessler 

InnovationLeaders Academy 

fk@innovationleaders.ceo 

 

Stella Gatziu Grivas, Claudio Giovanoli  

Institute for Information Systems 

University of Applied Science Northwestern Switzerland 

{stella.gatziugrivas, claudio.giovanoli}@fhnw.ch 

 

 
Abstract—Major IT suppliers like HP, IBM, Microsoft and 

Oracle are pushing their cloud services and technologies to the 

global markets. Their success varies considerably, especially in 

Europe. From a Microsoft perspective, the Scandinavian 

countries are far ahead in adopting cloud services, and the 

German speaking countries are far behind. Distribution 

channel partners (also IT-suppliers) and customers refuse to 

buy in. In addition, IT suppliers´ communication is mainly 

technical and as a result, customers do not understand how 

cloud service adoption would bring any profitable strategic 

advantage.  This also inhibits the use of Electronic 

Marketplaces for Cloud Services (EMPCS), Cloud Service 

Brokerage (CSB) or Electronic Market Places (EMP). 

Suppliers need instruments and support for anticipating, 

communicating and measuring the business potential of and 

with their customers. Cloud transformation for suppliers 

means changing their approach to cloud services, in order to 

increase their competitiveness and cash flow, as well as that of 

their customers`. 

Keywords - business potential reference model; cloud 

services; customer value orientation; open innovation; 

transformation process. 

I.  INTRODUCTION 

In Austria, Germany and Switzerland, Cloud business got 
stuck before it even really started. Besides other obstacles, 
like legal and security issues, customers do not buy cloud 
services, mainly because IT-suppliers fail to communicate 
the business value to business decision-makers.  

One major reason for their dysfunctional attempts is their 
inability to identify and analyze customers´ business 
potential. In this context our empirical research and 
conversations with more than 300 executives of Microsoft 
partner companies in Austria, Germany and Switzerland 
reveal that they do not even try to measure the business 
impact of their IT-solutions, which means that they are not 
even interested in monetary customer business value [8]. 
Instead, suppliers talk (in their marketing) about technologies 
like azure, hyper-v, high availability, fault tolerance, big 
data, predictive analytics and so forth instead of projecting 
the achievable customer results of their service bundles in 
terms of cash flow and competitiveness. Customers are 
confused and do not sign cloud services contracts. Cloud 
business in these countries is far behind other European and 

global countries. There are also other reasons for not buying 
cloud solutions, which are linked to the customers 
themselves. The banking and insurance industries for 
instance, who would derive major and profitable strategic 
advantages from adopting cloud services, refuse to bring 
their sensitive information to the cloud. 

With this positioning paper, we structure the problem and 
introduce an approach to resolve the situation. Starting with 
assessing the IT-suppliers with regard to their customer-
value-orientation [8], we then introduce a business potential 
reference model as a common denominator for customers 
and IT-suppliers. With such a model in place, we then 
develop a sound innovation process as the central instrument 
for IT-suppliers to create, sell, implement, and measure 
monetarily valuable cloud solutions, with, for and to 
customers.  

Various attempts have been made to define the term 
“Cloud Economics” in the literature [27][28][29]. The one 
that we perceive as closest to our understanding is: “Cloud 
economics is a branch of knowledge concerned with the 
principles, costs and benefits of cloud computing” [30]. In 
our research, we develop instruments that help leverage 
financial transactions between providers and consumers of 
cloud services. 

 The main objective of our research is to answer the 
question of how the business transformation of cloud 
suppliers can be performed successfully. Finally, we 
introduce a 9-stage end-to-end transformation process [8] 
with all relevant instruments to help IT-suppliers master the 
inevitable change, associated with the process. 

In Section II, we focus on the definition of customer 
value orientation, regarding the expected advantages of cloud 
services usage, by defining a catalog of indicators to measure 
the advantages. In Section III, we discuss our model for 
defining the business potential on the customer side, which 
can be achieved by the enabling technologies on the IT-
Supplier side. In Section IV, we introduce some initial 
elements of the transformation process that must be 
undertaken by IT-Suppliers, so that their services can help 
customers unleash business potential. 

76Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           89 / 157



II. ASSESSING IT-SUPPLIERS´ CUSTOMER VALUE 

ORIENTATION  

Initially, we need to define customer value orientation. 
The main components are customer value and orientation. 
The next step would be to revisit the conceptualization and 
operationalization of the customer value orientation to make 
it fit the modern needs of cloud economics. With this in 
mind, we can assess IT-suppliers´ current customer value 
orientation status, in order to help them focus on the right 
target (see Figure 1. Misaligned customer value orientation).  

 

         
 

Figure 1. Misaligned customer value orientation 

A. Customer value  

We asked executives from the customer side for their 
criteria when judging capital expenditures (CapEx) or major 
operational expenditures (OpEx), which would both also 
apply to cloud services. Their answers were all about Return 
on Investment (ROI), Break Even, Net Present Value (NPV), 
etc., being very clearly determined and at the same time 
predictable. We conclude that the customer value they are 
looking for is something that helps them either generate a 
better interest rate on their invested capital or helps them 
increase competitiveness. 

B. Orientation 

In the literature, there are various definitions of the term 
“orientation” and, depending on the discipline, there are 
different perspectives. At least three relevant aspects refer to 
the main characteristics of orientation. First, there is the 
environmental positioning and information collection, 
second, there are values, guidelines and principles and third, 
there are intended behavior and targeted activities [8].  

When it comes to organizational orientation with IT-
suppliers, we have, without exception, encountered implicit 
technological orientations but no explicitly described models 
with other objectives.  

There are various forms of orientation described in the 
literature and there are also very diverse definitions of value, 
but only one orientation form focusses on monetarily 
measurable customer value [8]. It seems reasonable to orient 
or realign an entire IT-suppliers´ organization around 
providing exactly the value that executive business decision- 
makers on the customer side are looking for. 

C. Conceptualization and operationalization of customer 

value orientation  

Organizational orientation is often conceptualized with 
the same pattern.  There are success factors on a corporate 
level, on an interaction level and on a service level (see 

Figure 2. Levels and success factors of customer value 
orientation). 

Each factor is subsequently described by formative 
and/or reflective indicators with underlying values, usually 
measured on a scale from 0-100. 

        
Figure 2. Levels and success factors of customer value orientation [8] 

 

Implementing customer value orientation in an IT-
supplier organization means synchronizing each individual 
success factor with the main objective. For instance, with 
Goals, the organization would express and document the 
customer value it wants to create and provide, Strategies 
would express how the organization will create the customer 
value, HR would define how members of the organization 
are hired, measured and fired in the process of creating 
customer value, Marketing/PR would communicate customer 
value, Individual skills would be developed with members of 
the organization to create and deliver customer value and, 
last but not least, Customer value measurement would ensure 
having leading indicators in place to control, prove and 
finally document the customer value. 

The success factors´ individual level of sync with the 
customer value orientation is measured and depicted in a 
diagram (see Figure 3. Customer value orientation status). 

 

         
 

Figure 3. Customer value orientation status 

 

D. Current customer value orientation status  

We have created an initial catalogue of indicators to 
measure the current customer value orientation of IT-
suppliers (see Figure 3. Customer value orientation status). 

77Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           90 / 157



The results reveal the enormous potential for IT-suppliers to 
grow their businesses because typically, we encounter values 
below 50 for all success factors. Whenever we had the 
opportunity to conduct such measurement with members of 
different hierarchical levels within an organization, we could 
also observe that higher-ranking people would rate the 
orientation status more positively than the lower levels. 

Finally, we found, with all IT-suppliers that they do not 
measure the customer value potentially obtained from using 
their solutions. 

III. BUSINESS POTENTIAL REFERENCE MODEL 

A “business potential” is a chance to generate a higher 
operating cash flow, either by reducing outgoing cash flows 
or increasing incoming ones. Investing and financing cash 
flows are designed to leverage the operating cash flow. 
Therefore, they are not important to the genuine business 
potential. Basically there are inhibitors (I) from I1 to In, 
preventing this currently happening. To unleash the business 
potential, these inhibitors need to be addressed individually 
and appropriately with enablers (E) from E1 to En. The total 
monetary value of both inhibitors and enablers can be 
calculated with the following formula: resources x time x 
value (in any freely convertible currency). This way, the total 
value of a business potential is the sum of the values that 
each Inhibitor (I1 to In) generates on the one side. On the 
other side, the total value of the offering is the sum of the 
values that each enabler (E1 to En) generates. Altogether, 
this constitutes a solution (see Figure 4. Business potential 
reference model).   

The real value of this solution is the total value of the 
inhibitors minus the total value of the enablers. If this value 
is positive, it indicates that the solution generates a positive 
impact on the operating cash flow of the owner of the 
business potential. Ideally, this is the customer, but the IT-
supplier should also be able to generate a higher operating 
cash flow for himself, if he is able to determine the customer 
value. 

 
   

 
 

Figure 4. Business potential reference model 

 
Looking at elements of a business potential, reveals the 

lever for making cloud services more effective and efficient. 
The customer business potential, with its current inhibitors, 
needs to be revealed and examined, making this the common 
denominator between IT-suppliers and customers. By 

contrast, our observation from over 12 years of working with 
over 11.000 people from over 450 IT-suppliers, is that 
suppliers and customers use technologies as a common 
denominator, although none of them has properly analyzed 
the inhibitors or even a defined business potential as a target. 
Looking at the web sites and marketing collateral of IT-
suppliers and requests for proposals (RFP) or requests for 
information (RFI) from customers, it is evident that this has 
not changed at all over time. We will not try to figure out 
which side is responsible for such dysfunctional behavior. 
Instead, we will establish the business potential, with its 
inhibitors and enablers, as the most effective common 
denominator. Understanding, analyzing and quantifying the 
individual inhibitors of a business potential is crucial to 
defining appropriate individual enablers and to specifically 
addressing the inhibitors. Only this way can both sides of a 
solution be measured and controlled. Finally, a solution is 
intended to help the customer generate more operating cash 
flow and hence increase his competitiveness. The advantage 
for the supplier would be a value-added pricing approach. 

We conclude that the current state of play requires both 
parties to fundamentally change the way they approach and 
create cloud services as intended solutions. A challenge is 
that leaders on both sides are not prepared. Neither 
transformational leadership, nor transformation 
methodology, nor innovation methodology, nor innovation 
processes, were taught at university or other training to the 
majority of people who are currently in leading positions on 
either side. There is a massive skill gap to close.  

 

IV. TRANSFORMATION PROCESS 

IT-suppliers are able to manage the complexity of IT, but 
are still unable to map it to customers´ business potentials, 
because they do not have insight into their target customers´ 
business processes. Fundamentally changing their approach 
to innovation management (creating, communicating/selling, 
implementing and controlling) of Cloud-Services is what we 
perceive as the core of the so-called cloud transformation, in 
order to boost cloud economics in our target countries.  

 

A. The need for innovation processes 

Cloud technology itself is not a solution and does not 
provide value. Identifying business challenges or desired 
results is essential before modifying technologies. IT-
suppliers in our focus countries are still technology oriented. 
Innovative is, ex post, what has successfully penetrated a 
market. We recommend integrating the customers into the 
innovation process (Open Innovation) of cloud services. 
According to our conversations with the executives of IT-
suppliers, this needs to be the focus of our research. From 
over 300 CEO conversations, we have observed that IT-
suppliers do not have an innovation process in place. It may 
seem incredible, but while process management and process 
modeling techniques [10] have impacted on a lot of 
processes even in the academic world (see Figure 5. The 
Nobel price process), for example, by making them visible, 

78Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           91 / 157



repeatable, measurable and controllable, the innovation 
process still evidently remains a black box.  

 

 
Figure 5. The Nobel price process [9] 

 
In the literature, innovation processes [11][12] are only 

described as a series of specified sub-processes [13] and 
rarely end-to end [14][15], which ultimately contributes to 
failure in innovation [16][17]. There is a demand for new 
management priorities [18], management responsibilities 
[14], management models [19], core processes [20][21][22], 
process activities, process roles and process resources 
[16][23]. 

Designing a simple innovation process that IT-suppliers 
can use to create cloud-based hybrid service bundles is a 
research gap and thus the subject of our future research and 
publications.   

 

B. Conducting successful transformation 

The term change is used so variously in the literature that 
some misunderstanding is inevitable. There is no copyright 
on expressions like “Organizational Development”, 
“Evolution”, “Change Management” or “Transformation 
Management” [1][7]. An early version of a change 
management model introduced in 1947 proposed that change 
in an organization requires unfreezing, changing/moving and 
(re)freezing [4]. Although the theory was criticized for being 
too simplistic and for not being operationalizable, Lewin´s 
model still is relevant and can be found at the cores of many 
major approaches to change.  

We will therefore introduce the major concepts 
(Transformation management, Enterprise Transformation 
and Transformation of Management) before introducing our 
own transformation model. In addition, the success of a 
transformation is fundamentally determined by its extent. 
Too big could make it too long and costly, whereas too small 
could mean failing to achieve the objectives. In general, 
there are three types of transformation (see Figure 6. Types 
of transformation) 

 

 Type 1: Transforming the organization as an entity 

 Type 2: Having a small team pilot and role model the   
              transformation within the organization 

 Type 3: Establishing a new entity outside the  
              organization and starting from scratch [5]. 

 

    
 

Figure 6. Types of transformation 

 
We will have to analyze and develop recommendations, 

and determine with IT-suppliers which type of 
transformation will be most effective/efficient and under 
which circumstances. Also, we would need to define the 
three dimensions of transformation, Ends: Describing 
objectives that need to be achieved through initiatives, 
Means: Describing resources needed to achieve objectives, 
Scope: Describing the extent and direction of the 
transformation (see Figure 7. Dimensions of transformation) 

  

               
 

Figure 7. Dimensions of transformation [6] 
 

The transformation approaches in both the literature and 
in practice have matured over the past decades. Nevertheless, 
leading or managing transformation is still not common in 
the curricula of graduate and post-graduate studies. When 
conducting transformations in the past, the author has 
identified this issue and already introduced a new stage in 
Kotter´s transformation process [3] “Stage 3: Empowering 
the guiding coalition” (Figure 8). Educating the key people 
in transformation methodology and about the original core of 
their transformation, has already helped hundreds of people 
to drive their transformations successfully. 

 

  
 

Figure 8. The 9-Stage process [8] 

79Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           92 / 157



V. SUMMARY AND RECOMMENDATIONS 

Customers of cloud solutions want to achieve positive, 
monetarily measurable results. Making them aware of their 
business potentials would leverage the sale and use of cloud 
solutions. IT-suppliers do yet not speak the language of 
business. They are talking bits and bytes, which currently 
leads to poor business in the focal area. Business potential is 
the most effective common denominator for customers and 
suppliers of cloud solutions. The major objective of our 
research is therfore to create a methodology and tools, 
enabling IT-suppliers to conduct their transformation 
successfully, which will in turn contribute to driving cloud 
economics. 

 

VI. FUTURE RESEARCH 

On the one hand, we strongly recommend conducting 
future research on innovation processes in order to enable 
customers and suppliers to measurably and repetitively 
create innovations. An alignment of these processes would 
together lead to better and faster results. On the other hand, it 
is questionable whether the majority of suppliers and 
customers are really able to transform with a reasonable 
scope of objectives, within a reasonable period of time and at 
an acceptable level of costs. The critical element is time to 
market. Therefore, we recommend future research in 
methodology and cloud-based technology to help both 
parties exploit business potential as the most effective 
common denominator. 

 

REFERENCES 

[1] A. Janes et al., “Transformation-Management – Changing 
Organisations Inside Out,“ Vienna: Springer, 2001. 

[2] W. B. Rouse, “Enterprise Transformation - Understanding 
and Enabling Fundamental Change,” Wiley, 2006. 

[3] J. P. Kotter, “Leading Change,” Boston: Harvard Business 
Review Press, 1996. 

[4] K. Lewin, “Change Management Model,” New York: 
McGraw Hill. 

[5] J. P. Kotter, “Accelerate: Building Strategic Agility for a 
Faster Moving World (XLR8),” Boston: Harvard Business 
Review Press, 2013. 

[6] W. B. Rouse, “Enterprise Transformation - Understanding 
and Enabling Fundamental Change,” Wiley, 2006, p. 39. 

[7] R. Lessem et al., “Transformation Management - Towards the 
Integral Enterprise,” Farnham: Gower, 2009. 

[8] F. Keßler, “Enterprise Transformation Management – 
Development of a Concept of Customer Value Orientation for 
IT_Companies, B2B, as a Path to Longterm Profitable 
Growth ”, 2011.  

[9] Author not named, in 
http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf, p. 
26, retr.: Feb. 2016 

[10] G. Schewe et al., „Innovation for Medium Size Companies – 
A Process Oriented Guideline for SME,“ Wiesbaden:  Gabler, 
2009, pp. 124. 

[11] Fraunhofer Institut für Arbeitswissenschaft und Organisation 
“Cross-Industry Innovation,“ in 
http://wiki.iao.fraunhofer.de/index.php/Cross_Industry-
Innovation, 2012, retrieved: Oct. 2012. 

[12] Author not named, Gabler Wirtschaftslexikon, “Open 
Innovation,“ in 
http://wirtschaftslexikon.gabler.de/Archiv/81584/open-
innovation-v3.html, 2012, retrieved: Oct. 2012. 

[13] B. Wirtz, “Business Model Management – Design – 
Instrumente – Success Factors of Business Models,“ 
Wiesbaden: Gabler, 2011, pp. 214. 

[14] J. Hauschildt et al., “Innovation Management,“ 5. überarb., 
erg. und akt. Aufl., Munich: Vahlen, 2011. 

[15] T. Stern et al., “Successful Innovation Management – Success 
Factors, Basic Patterns, Cases,“ 4., überarb. Aufl., 
Wiesbaden: Gabler, 2010, p. 18. 

[16] M. Disselkamp, “Innovation Management - Instruments and 
Methods for Implementation in Companies,“ 2., überarb. 
Aufl., Munich: Springer Gabler, 2012, pp. 56. 

[17] M. Zollenkop, “Business Model Innovation,“ Wiesbaden: 
Deutscher Universitäts-Verlag, 2006, p. 49. 

[18] T. Bieger et al., “Innovative Business Models - Fundamental 
Concepts, Creative Areas and Entrepreneurial Practice,“ 
Heidelberg: Springer, 2011, pp. 81. 

[19] N. Tomaschek et al.,  “Management & Consulting in 
Transformation- und Innovation-Processes - Research in 
Progress,“ Munich: Rainer Hampp, 2010. 

[20] C. Hentschel, et al.,  “TRIZ – Systematic Innovation,“ 
Munich: Hanser, 2010. 

[21] B. Maurer et al., “World Champions in Innovation – How our 
Companies become Unbeatable,“ Weinheim: Wiley, 2011. 

[22] J. O. Meissner, “Introduction to systemic Innovation-
Management,“ Heidelberg: Carl-Auer-Systeme, 2011. 

[23] O. Gassmann et al., “Practical Knowledge Innovation 
Management – From Idea to Market Success,“ 2. erw. und 
überarb. Aufl., München: Hanser, 2011. 

[24] H. Österle et al., “Memorandum for Creation Oriented 
Wirtschaftsinformatik, in Österle et al.: Creation Oriented  
Wirtschaftsinformatik: A Pleadoyer for Rigor und 
Relevance,“ infowerk Verlag, 2010, pp. 1 – 6. 

[25] A. R. Hevner et al., “Design Science in Information Systems 
Research,” in MIS Quarterly, Vol. 28, No. 1, (2004)3 

[26] A. R. Hevner, “A Three Cycle View of Design Science 
Research,” Scandinavian Journal of Information Systems, 
19(2007)2, pp. 87 – 92. 

[27] M. Yamartino, “The Economics Of The Cloud,” in 
http://news.microsoft.com/download/archived/presskits/cloud/
docs/the-economics-of-the-cloud.pdf, 2010, (retr. Feb. 2016) 

[28] H. Okin, “Cloud Economics,” in https://www.kpmg-
institutes.com/institutes/advisory-institute/events/2014/09- 
/podcast-cloud-economics.html, 2014,  retr.: Feb. 2016 

[29] D. Reeves et al., “The Truth About Cloud Economics,” in 
https://hbr.org/2012/04/the-truth-about-cloud-economic/, 
2012, retr.: Feb. 2016 

[30] o. V. TechTarget, in http://searchcio.techtarget.com/ 
definition/ cloud-economics, 2013, retr.: Feb. 2016 

80Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           93 / 157



How to Synchronize Large-Scale Ultra-Fine-Grained
Processors in Optimum-Time

Hiroshi Umeo
School of Information Engineering

University of Osaka Electro-Communication
Neyagawa-shi, Hastu-cho, 18-8, Osaka

Email: umeo@cyt.osakac.ac.jp

Abstract—We introduce a new class of FSSP (firing squad syn-
chronization problem) algorithms based on recursive-halving and
construct a survey on recent developments in FSSP algorithms for
one-dimensional cellular arrays. We present herein a comparison
of the quantitative aspects of the optimum-time FSSP algorithms
developed so far. Several state-efficient new implementations
and new insights into synchronization algorithms and multi-
dimensional expansions are also given.

Keywords—cellular automata, synchronization

I. INTRODUCTION

Synchronization of large-scale networks is an important
and fundamental computing primitive in parallel and dis-
tributed systems. The synchronization in ultra-fine grained
parallel computational model of cellular automata, known
as firing squad synchronization problem (FSSP), has been
studied extensively for more than fifty years, and a rich
variety of synchronization algorithms has been proposed. In the
present paper, we introduce a new class of FSSP algorithms
based on recursive-halving and construct a survey on recent
developments in FSSP algorithms for one-dimensional cellular
arrays. The algorithms being compared are Balzer [1], Gerken
[2], Waksman [20], a number of revised versions thereof, and
their generalized versions such as Moore and Langdon [8],
Settle and Simon [10], Szwerinski [11], all included in the
proposed new class of FSSP algorithms. We present herein a
survey and a comparison of the quantitative aspects of the
optimum-time synchronization algorithms developed so far.
Several state-efficient new implementations, new insights into
synchronization algorithms and multi-dimensional expansions
are also given.

Specifically, we attempt to answer the following questions:

• First, are all previously presented transition rule sets
correct?

• Do these sets contain redundant rules? If so, what is
the exact rule set?

• How do the algorithms compare with each other?

• Can we expand those 1D FSSP algorithms proposed
so far to 2D, 3D arrays, or more generally to multi-
dimensional arrays?

• How can we synchronize multi-dimensional arrays in
optimum-time?

In Section 2 we give a description of the FSSP and review
some basic results on the FSSP for 1D arrays. Section 3
introduces a new class of FSSP algorithms based on recursive-
halving and presents multi-dimensional generalizations of the
algorithms. In the last section we give a summary of the paper.

II. FIRING SQUAD SYNCHRONIZATION PROBLEM

In this section, we define the FSSP and introduce some
basic results on FSSP.

A. Firing Squad Synchronization Problem

Figure 1 illustrates a finite one-dimensional (1D) cellular
array consisting of n cells. Each cell is an identical finite-state
automaton. The array operates in lock-step mode in such a
way that the next state of each cell is determined by both its
own present state and the present states of its left and right
neighbors. All cells (soldiers), except one general, are initially
in the quiescent state at time t = 0 with the property that the
next state of a quiescent cell with quiescent neighbors is the
quiescent state again. At time t = 0, one general cell C1 is
in the fire-when-ready state, which is the initiation signal for
the synchronization of the array. The FSSP is to determine
a description (state set and next-state function) for cells that
ensures all cells enter the fire state at exactly the same time and
for the first time. The set of states and the next-state function
must be independent of n.

C1 C2 C4 Cn

...

C3

Soldiers

Genaral

Fig. 1. One-dimensional cellular automaton

A formal definition of the FSSP is as follows: A cellular
automaton M is a pair M = (Q, δ), where

1) Q is a finite set of states with three distinguished
states G, Q, and F. G is an initial general state, Q is
a quiescent state, and F is a firing state, respectively.

2) δ is a next state function such that δ : Q∪{∗}×Q×
Q ∪ {∗} → Q. The state * /∈ Q is a pseudo state of
the border of the array.

3) The quiescent state Q must satisfy the following
conditions: δ(Q, Q, Q) = δ(∗, Q, Q) = δ(Q,Q, ∗) = Q.

A cellular automaton of length n, Mn consisting of n
copies of M is a 1D array of M, numbered from 1 to n.

81Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           94 / 157



Each M is referred to as a cell and denoted by Ci, where
1 ≤ i ≤ n. We denote a state of Ci at time (step) t by St

i, where
t ≥ 0, 1 ≤ i ≤ n. A configuration of Mn at time t is a function
Ct : [1, n] → Q and denoted as St

1S
t
2 .... St

n. A computation of
Mn is a sequence of configurations of Mn, C0, C1, C2, ...., Ct,
..., where C0 is a given initial configuration. The configuration
at time t + 1, Ct+1, is computed by synchronous applications
of the next transition function δ to each cell of Mn in Ct such
that:

St+1
1 = δ(∗, St

1, S
t
2), S

t+1
i = δ(St

i−1, S
t
i, S

t
i+1), and St+1

n =
δ(St

n−1, S
t
n, ∗).

A synchronized configuration of Mn at time t is a config-
uration Ct, St

i = F, for any 1 ≤ i ≤ n.

The FSSP is to obtain an M such that, for any n ≥ 2,

1) A synchronized configuration at time t = T (n),

CT (n) =

n︷ ︸︸ ︷
F, · · · , F can be computed from an initial

configuration C0 = G

n−1︷ ︸︸ ︷
Q, · · · , Q.

2) For any t, i such that 1 ≤ t ≤ T (n) − 1, 1 ≤ i ≤
n, St

i �= F.

The generalized FSSP (GFSSP) is to obtain an M such
that, for any n ≥ 2 and for any k such that 1 ≤ k ≤ n,

1) A synchronized configuration at time t = T (n),

CT (n) =

n︷ ︸︸ ︷
F, · · · , F can be computed from an initial

configuration C0 =

k−1︷ ︸︸ ︷
Q, · · · , Q G

n−k︷ ︸︸ ︷
Q, · · · , Q.

2) For any t, i, such that 1 ≤ t ≤ T (n) − 1, 1 ≤ i ≤
n, St

i �= F.

No cells fire before time t = T (n). We say that Mn is
synchronized at time t = T (n) and the function T (n) is a
time complexity for the synchronization.

B. A Brief History of the Developments of Optimum-Time
FSSP Algorithms

The problem known as the firing squad synchronization
problem was devised in 1957 by J. Myhill, and first appeared
in print in a paper by E. F. Moore [7]. This problem has
been widely circulated, and has attracted much attention. The
firing squad synchronization problem first arose in connection
with the need to simultaneously turn on all parts of a self-
reproducing machine. The problem was first solved by J.
McCarthy and M. Minsky who presented a 3n-step algo-
rithm. In 1962, the first optimum-time, i.e., (2n − 2)-step,
synchronization algorithm was presented by Goto [3], with
each cell having several thousands of states. Waksman [20]
presented a 16-state optimum-time synchronization algorithm.
Afterward, Balzer [1] and Gerken [2] developed an eight-
state algorithm and a seven-state synchronization algorithm,
respectively, thus decreasing the number of states required
for the synchronization. In 1987, Mazoyer [5] developed a
six-state synchronization algorithm which, at present, is the
algorithm having the fewest states.

C. Complexity Measures for FSSP Algorithms

• Time
Any solution to the original FSSP with a general at
one end can be easily shown to require (2n− 2) steps
for synchronizing n cells, since signals on the array
can propagate no faster than one cell per one step, and
the time from the general’s instruction until the final
synchronization must be at least 2n − 2.

Theorem 1 The minimum time in which the firing
squad synchronization could occur is 2n − 2 steps,
where the general is located on the left end.

Theorem 2 There exists a cellular automaton that can
synchronize any 1D array of length n in optimum 2n−
2 steps, where the general is located on the left end.

• Number of States
The following three distinct states: the quiescent state,
the general state, and the firing state, are required in
order to define any cellular automaton that can solve
the FSSP. Note that the boundary state for C0 and
Cn+1 is not generally counted as an internal state.
Balzer [1] and Sanders [9] showed that no four-state
optimum-time solution exists. Umeo and Yanagihara
[17], Yunès [21], and Umeo, Kamikawa, and Yunès
[14] gave some 5- and 4-state partial solutions that
can solve the synchronization problem for infinitely
many sizes n, but not all, respectively. The solution
is referred to as partial solution, which is compared
with usual full solutions that can solve the problem for
all cells. Concerning the optimum-time full solutions,
Waksman [20] presented a 16-state optimum-time
synchronization algorithm. Afterward, Balzer [1] and
Gerken [2] developed an eight-state algorithm and
a seven-state synchronization algorithm, respectively,
thus decreasing the number of states required for the
synchronization. Mazoyer [5] developed a six-state
synchronization algorithm which, at present, is the
algorithm having the fewest states for 1D arrays.

Theorem 3 There exists a 6-state full solution to the
FSSP.

Theorem 4 There is no four-state full solution that
can synchronize n cells.

Yunès [21] and Umeo, Yunès, and Kamikawa [14]
developed 4-state partial solutions based on Wolfram’s
rules 60 and 150. They can synchronize any array/ring
of length n = 2k for any positive integer k. Details
can be found in Yunès [21] and Umeo, Kamikawa,
and Yunès [14].

Theorem 5 There exist 4-state partial solutions to the
FSSP.

• Number of Transition Rules
Any k-state (excluding the boundary state) transition
table for the synchronization has at most (k − 1)k2

entries in (k − 1) matrices of size k × k. The number
of transition rules reflects a complexity of synchro-
nization algorithms.

82Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           95 / 157



• State-Change Complexity
Vollmar [18,19] introduced a state-change complexity
in order to measure the efficiency of cellular automata,
motivated by energy consumption in certain SRAM-
type memory systems. The state-change complexity
is defined as the sum of proper state changes of
the cellular space during the computations. A formal
definition is as follows: Consider an FSSP algorithm
operating on n cells. Let T (n) be synchronization
steps of the FSSP algorithm. We define a matrix C
of size T (n)×n (T (n) rows, n columns) over {0, 1},
where each element ci,j on ith row, jth column of the
matrix is defined:

ci,j =
{

1 Sj
i �= Sj−1

i

0 otherwise.
(1)

The state-change complexity SC(n) of the FSSP
algorithm is the sum of 1’s elements in C defined
as:

SC(n) =
T (n)∑
j=1

n∑
i=1

ci,j. (2)

Vollmar [19] showed that Ω(n log n) state-changes are
required for synchronizing n cells in (2n − 2) steps.

Theorem 6 Ω(n log n) state-change is necessary for
synchronizing n cells in minimum-steps.

Gerken [2] presented a minimum-time, Θ(n log n)
minimum-state-change FSSP algorithm with a general
at one end.

Theorem 7 Θ(n log n) state-change is sufficient for
synchronizing n cells in 2n− 2 steps.

III. A CLASS OF FSSP ALGORITHMS BASED ON
RECURSIVE-HALVING

Here we introduce a new class of FSSP algorithms based
on recursive halving.

A. Recursive-Halving Marking

In this section, we develop a marking schema for 1D arrays
referred to as recursive-halving marking. The marking schema
prints a special mark on cells in a cellular space defined by
the recursive-halving marking. It is based on a 1D FSSP syn-
chronization algorithm. The marking will be effectively used
for constructing multi-dimensional FSSP algorithms operating
in optimum-time.

Let S be a 1D cellular space consisting of cells Ci, Ci+1,
..., Cj , denoted by [i...j], where j > i. Let |S| denote the
number of cells in S, that is |S| = j − i + 1. A center cell(s)
Cx of S is defined by

x =
{

(i + j)/2 |S|: odd
(i + j − 1)/2, (i + j + 1)/2 |S|: even.

(3)

The recursive-halving marking for a given cellular space S
= [1...n] is defined as follows:

Recursive-Halving Marking: RHM

Algorithm RHM(S)
begin

if |S| ≥ 2 then
if |S| is odd then

mark center cell Cx in S
SL:= [1...x]; SR:= [x...n]
RHML(SL); RHMR(SR);

else
mark center cells Cx and Cx+1 in S
SL:= [1...x]; SR:= [x + 1...n]
RHML(SL); RHMR(SR);

end

Left-Side Recursive-Halving Marking: RHML

Algorithm RHML(S)
begin

while |S| > 2 do
if |S| is odd then

mark center cell Cx in S
SL:= [1...x]; RHML(SL);

else
mark center cells Cx and Cx+1 in S
SL:= [1...x]; RHML(SL);

end

The marking RHMR for the right-side space can be defined
in a similar way. As an example, we consider a cellular space
S = [1...15] consisting of 15 cells. The first center cell is C8,
then the second one is C4, C5 and C11, C12, and the last one
is C2, C3, C13, C14, respectively. In case S = [1...17], we get
C9, C5, C13, C3, C15, and C2, C16 after four iterations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G O B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G O K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G O K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G O O C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G E O Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G E O Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G E O O C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G E K O Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G E K O Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G E K O O C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

12 G E K C O Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

13 G E E C O Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

14 G E E C O O C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

15 G E E C K O Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

16 G E E Q K O Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

17 G E E Q K O O C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

18 G E E Q K C O Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

19 G E E Q C C O Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

20 G E E E C C O O C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

21 G E K E C C K O Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

22 G E K E C Q K O Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

23 G E K E Q Q K O O C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

24 G E K E Q Q K C O Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

25 G E K E Q Q C C O Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

26 G E K E Q C C C O O C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

27 G E K E E C C C K O Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

28 G E K C E C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

29 G E E C E C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

30 G E E C E Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

31 G E E C E Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

32 G E E C E Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

33 G E E C E Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

34 G E E C E E C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

35 G E E C K E C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

36 G E E Q K E C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

37 G E E Q K E Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

38 G E E Q K E Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

39 G E E Q K E Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

40 G E E Q K E Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

41 G E E Q K E E C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

42 G E E Q K C E C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

43 G E E Q C C E C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

44 G E E E C C E Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

45 G E K E C C E Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

46 G E K E C C E Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

47 G E K E C C E Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

48 G E K E C C E E C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

49 G E K E C C K E C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

50 G E K E C Q K E C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

51 G E K E Q Q K E Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

52 G E K E Q Q K E Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

53 G E K E Q Q K E Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

54 G E K E Q Q K E Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

55 G E K E Q Q K E E C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

56 G E K E Q Q K C E C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q

57 G E K E Q Q C C E C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q

58 G E K E Q C C C E Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q

59 G E K E E C C C E Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q

60 G E K C E C C C E Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q

61 G E E C E C C C E Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q

62 G E E C E C C C E E C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q

63 G E E C E C C C K E C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q

64 G E E C E C C Q K E C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q

65 G E E C E C Q Q K E Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q

66 G E E C E Q Q Q K E Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q

67 G E E C E Q Q Q K E Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q

68 G E E C E Q Q Q K E Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q

69 G E E C E Q Q Q K E E C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q

70 G E E C E Q Q Q K C E C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C G

71 G E E C E Q Q Q C C E C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B G

72 G E E C E Q Q C C C E Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D G

73 G E E C E Q C C C C E Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K E G

74 G E E C E E C C C C E Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K E G

75 G E E C K E C C C C E Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D E E G

76 G E E Q K E C C C C E E C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q E E G

77 G E E Q K E C C C C K E C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q E E G

78 G E E Q K E C C C Q K E C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D E E E G

79 G E E Q K E C C Q Q K E Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q E K E G

80 G E E Q K E C Q Q Q K E Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q E K E G

81 G E E Q K E Q Q Q Q K E Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D E E K E G

82 G E E Q K E Q Q Q Q K E Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q E D K E G

83 G E E Q K E Q Q Q Q K E E C C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q E D E E G

84 G E E Q K E Q Q Q Q K C E C C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D E E D E E G

85 G E E Q K E Q Q Q Q C C E C Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q E K D E E G

86 G E E Q K E Q Q Q C C C E Q Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q E K Q E E G

87 G E E Q K E Q Q C C C C E Q Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D E E K Q E E G

88 G E E Q K E Q C C C C C E Q Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q E D K Q E E G

89 G E E Q K E E C C C C C E Q C C C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q E D D Q E E G

90 G E E Q K C E C C C C C E E C C C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D E E D D E E E G

91 G E E Q C C E C C C C C K E C C Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q E K D D E K E G

92 G E E E C C E C C C C Q K E C Q Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q E K Q D E K E G

93 G E K E C C E C C C Q Q K E Q Q Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D E E K Q Q E K E G

94 G E K E C C E C C Q Q Q K E Q Q Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q E D K Q Q E K E G

95 G E K E C C E C Q Q Q Q K E Q Q C C C C Q Q Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q E D D Q Q E K E G

96 G E K E C C E Q Q Q Q Q K E Q C C C C Q Q Q Q C C C C Q Q Q K C O Q Q C C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q D E E D D D Q E K E G

97 G E K E C C E Q Q Q Q Q K E E C C C Q Q Q Q C C C C Q Q Q Q C C O Q C C Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q Q E K D D D E E K E G

98 G E K E C C E Q Q Q Q Q K C E C C Q Q Q Q C C C C Q Q Q Q C C C O O C Q Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q D D Q E K Q D D E D K E G

99 G E K E C C E Q Q Q Q Q C C E C Q Q Q Q C C C C Q Q Q Q C C C C K O Q Q C C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q Q D E E K Q Q D E D E E G

100 G E K E C C E Q Q Q Q C C C E Q Q Q Q C C C C Q Q Q Q C C C C Q K O Q C C Q Q C B D K Q D D Q Q D D Q Q D D Q Q D D Q Q E D K Q Q Q E D E E G

101 G E K E C C E Q Q Q C C C C E Q Q Q C C C C Q Q Q Q C C C C Q Q K O O C Q Q C B K D D Q Q D D Q Q D D Q Q D D Q Q D D Q E D D Q Q Q E D E E G

102 G E K E C C E Q Q C C C C C E Q Q C C C C Q Q Q Q C C C C Q Q Q K C O Q Q C B D K Q D D Q Q D D Q Q D D Q Q D D Q Q D E E D D D Q Q E D E E G

103 G E K E C C E Q C C C C C C E Q C C C C Q Q Q Q C C C C Q Q Q Q C C O Q C B K D D Q Q D D Q Q D D Q Q D D Q Q D D Q Q E K D D D D Q E D E E G

104 G E K E C C E E C C C C C C E E C C C Q Q Q Q C C C C Q Q Q Q C C C O O B D K Q D D Q Q D D Q Q D D Q Q D D Q Q D D Q E K Q D D D E E D E E G

105 G E K E C C K E C C C C C C K E C C Q Q Q Q C C C C Q Q Q Q C C C C K M K D D Q Q D D Q Q D D Q Q D D Q Q D D Q Q D E E K Q Q D D E K D E E G

106 G E K E C Q K E C C C C C Q K E C Q Q Q Q C C C C Q Q Q Q C C C C Q A M A Q D D Q Q D D Q Q D D Q Q D D Q Q D D Q Q E D K Q Q Q D E K Q E E G

107 G E K E Q Q K E C C C C Q Q K E Q Q Q Q C C C C Q Q Q Q C C C C Q A C M D A Q D D Q Q D D Q Q D D Q Q D D Q Q D D Q E D D Q Q Q Q E K Q E E G

108 G E K E Q Q K E C C C Q Q Q K E Q Q Q C C C C Q Q Q Q C C C C Q A C Q M Q D A Q D D Q Q D D Q Q D D Q Q D D Q Q D E E D D D Q Q Q E K Q E E G

109 G E K E Q Q K E C C Q Q Q Q K E Q Q C C C C Q Q Q Q C C C C Q A C Q Q M Q Q D A Q D D Q Q D D Q Q D D Q Q D D Q Q E K D D D D Q Q E K Q E E G

110 G E K E Q Q K E C Q Q Q Q Q K E Q C C C C Q Q Q Q C C C C Q A C Q Q Q M Q Q Q D A Q D D Q Q D D Q Q D D Q Q D D Q E K Q D D D D Q E K Q E E G

111 G E K E Q Q K E Q Q Q Q Q Q K E E C C C Q Q Q Q C C C C Q A C Q Q Q Q M Q Q Q Q D A Q D D Q Q D D Q Q D D Q Q D E E K Q Q D D D E E K Q E E G

112 G E K E Q Q K E Q Q Q Q Q Q K C E C C Q Q Q Q C C C C Q A C Q Q Q Q Q M Q Q Q Q Q D A Q D D Q Q D D Q Q D D Q Q E D K Q Q Q D D E D K Q E E G

113 G E K E Q Q K E Q Q Q Q Q Q C C E C Q Q Q Q C C C C Q A C Q Q Q Q Q Q M Q Q Q Q Q Q D A Q D D Q Q D D Q Q D D Q E D D Q Q Q Q D E D D Q E E G

114 G E K E Q Q K E Q Q Q Q Q C C C E Q Q Q Q C C C C Q A C Q Q Q Q Q Q Q M Q Q Q Q Q Q Q D A Q D D Q Q D D Q Q D E E D D D Q Q Q Q E D D E E E G

115 G E K E Q Q K E Q Q Q Q C C C C E Q Q Q C C C C Q A C Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q D A Q D D Q Q D D Q Q E K D D D D Q Q Q E D D E K E G

116 G E K E Q Q K E Q Q Q C C C C C E Q Q C C C C Q A C Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q D A Q D D Q Q D D Q E K Q D D D D Q Q E D D E K E G

117 G E K E Q Q K E Q Q C C C C C C E Q C C C C Q A C Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q D A Q D D Q Q D E E K Q Q D D D D Q E D D E K E G

118 G E K E Q Q K E Q C C C C C C C E E C C C Q A C Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q D A Q D D Q Q E D K Q Q Q D D D E E D D E K E G

119 G E K E Q Q K E E C C C C C C C K E C C Q A C Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q D A Q D D Q E D D Q Q Q Q D D E K D D E K E G

120 G E K E Q Q K C E C C C C C C Q K E C Q A C Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q D A Q D E E D D D Q Q Q Q D E K Q D E K E G

121 G E K E Q Q C C E C C C C C Q Q K E Q A C Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q D A Q E K D D D D Q Q Q Q E K Q Q E K E G

122 G E K E Q C C C E C C C C Q Q Q K E A C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q D A E K Q D D D D Q Q Q E K Q Q E K E G

123 G E K E E C C C E C C C Q Q Q Q K U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U K Q Q D D D D Q Q E K Q Q E K E G

124 G E K C E C C C E C C Q Q Q Q Q A U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U A Q Q Q D D D D Q E K Q Q E K E G

125 G E E C E C C C E C Q Q Q Q Q A C U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U D A Q Q Q D D D E E K Q Q E K E G

126 G E E C E C C C E Q Q Q Q Q A C Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q D A Q Q Q D D E D K Q Q E K E G

127 G E E C E C C C E Q Q Q Q A C Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q D A Q Q Q D E D D Q Q E K E G

128 G E E C E C C C E Q Q Q A C Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q D A Q Q Q E D D D Q E K E G

129 G E E C E C C C E Q Q A C Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q D A Q Q E D D D E E K E G

130 G E E C E C C C E Q A C Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q D A Q E D D D E D K E G

131 G E E C E C C C E A C Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q D A E D D D E D E E G

132 G E E C E C C C U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U D D D E D E E G

133 G E E C E C C B U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U B D D E D E E G

134 G E E C E C B C U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U D B D E D E E G

135 G E E C E B C Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q D B E D E E G

136 G E E C I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I D E E G

137 G E E B I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I B E E G

138 G E I Q I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I Q I E G

139 G I I Q I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I Q I I G

140 I I I Q I Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q M Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q U U Q Q Q Q Q Q Q U U Q Q Q I Q I I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 G O B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 G O K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 G O K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 G O O C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 G E O Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G E O Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 G E O O C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 G E K O Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 G E K O Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

11 G E K O O C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

12 G E K C O Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

13 G E E C O Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

14 G E E C O O C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

15 G E E C K O Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

16 G E E Q K O Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

17 G E E Q K O O C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

18 G E E Q K C O Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

19 G E E Q C C O Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

20 G E E E C C O O C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

21 G E K E C C K O Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

22 G E K E C Q K O Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

23 G E K E Q Q K O O C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

24 G E K E Q Q K C O Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

25 G E K E Q Q C C O Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

26 G E K E Q C C C O O C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

27 G E K E E C C C K O Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q Q Q

28 G E K C E C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q Q Q

29 G E E C E C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q Q Q

30 G E E C E Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q Q Q

31 G E E C E Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q Q Q

32 G E E C E Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q Q Q

33 G E E C E Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q Q Q

34 G E E C E E C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q Q Q

35 G E E C K E C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q Q Q

36 G E E Q K E C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q Q Q

37 G E E Q K E Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q Q Q

38 G E E Q K E Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q Q Q

39 G E E Q K E Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K B Q Q

40 G E E Q K E Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q K C B Q

41 G E E Q K E E C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C K G

42 G E E Q K C E C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A G

43 G E E Q C C E C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A D G

44 G E E E C C E Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A K E G

45 G E K E C C E Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A D K E G

46 G E K E C C E Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q Q C C Q Q C C Q A K D E E G

47 G E K E C C E Q C C C C Q Q K O O C Q Q C C Q Q C C Q Q C C Q Q C C Q A D K Q E E G

48 G E K E C C E E C C C Q Q Q K C O Q Q C C Q Q C C Q Q C C Q Q C C Q A K D D Q E E G

49 G E K E C C K E C C Q Q Q Q C C O Q C C Q Q C C Q Q C C Q Q C C Q A D K Q D E E E G

50 G E K E C Q K E C Q Q Q Q C C C O O C Q Q C C Q Q C C Q Q C C Q A K D D Q Q E K E G

51 G E K E Q Q K E Q Q Q Q C C C C K O Q Q C C Q Q C C Q Q C C Q A D K Q D D Q E K E G

52 G E K E Q Q K E Q Q Q C C C C Q K O Q C C Q Q C C Q Q C C Q A K D D Q Q D E E K E G

53 G E K E Q Q K E Q Q C C C C Q Q K O O C Q Q C C Q Q C C Q A D K Q D D Q Q E D K E G

54 G E K E Q Q K E Q C C C C Q Q Q K C O Q Q C C Q Q C C Q A K D D Q Q D D Q E D E E G

55 G E K E Q Q K E E C C C Q Q Q Q C C O Q C C Q Q C C Q A D K Q D D Q Q D E E D E E G

56 G E K E Q Q K C E C C Q Q Q Q C C C O O C Q Q C C Q A K D D Q Q D D Q Q E K D E E G

57 G E K E Q Q C C E C Q Q Q Q C C C C K O Q Q C C Q A D K Q D D Q Q D D Q E K Q E E G

58 G E K E Q C C C E Q Q Q Q C C C C Q K O Q C C Q A K D D Q Q D D Q Q D E E K Q E E G

59 G E K E E C C C E Q Q Q C C C C Q Q K O O C Q A D K Q D D Q Q D D Q Q E D K Q E E G

60 G E K C E C C C E Q Q C C C C Q Q Q K C O Q A K D D Q Q D D Q Q D D Q E D D Q E E G

61 G E E C E C C C E Q C C C C Q Q Q Q C C O A D K Q D D Q Q D D Q Q D E E D D E E E G

62 G E E C E C C C E E C C C Q Q Q Q C C C W W D D Q Q D D Q Q D D Q Q E K D D E K E G

63 G E E C E C C C K E C C Q Q Q Q C C C B W W B D D Q Q D D Q Q D D Q E K Q D E K E G

64 G E E C E C C Q K E C Q Q Q Q C C C B C W W D B D D Q Q D D Q Q D E E K Q Q E K E G

65 G E E C E C Q Q K E Q Q Q Q C C C B C Q W W Q D B D D Q Q D D Q Q E D K Q Q E K E G

66 G E E C E Q Q Q K E Q Q Q C C C B C Q Q W W Q Q D B D D Q Q D D Q E D D Q Q E K E G

67 G E E C E Q Q Q K E Q Q C C C B C Q Q Q W W Q Q Q D B D D Q Q D E E D D D Q E K E G

68 G E E C E Q Q Q K E Q C C C B C Q Q Q Q W W Q Q Q Q D B D D Q Q E K D D D E E K E G

69 G E E C E Q Q Q K E E C C B C Q Q Q Q Q W W Q Q Q Q Q D B D D Q E K Q D D E D K E G

70 G E E C E Q Q Q K C E C B C Q Q Q Q Q Q W W Q Q Q Q Q Q D B D E E K Q Q D E D E E G

71 G E E C E Q Q Q C C E B C Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q D B E D K Q Q Q E D E E G

72 G E E C E Q Q C C C I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I D D Q Q Q E D E E G

73 G E E C E Q C C C B I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I B D D Q Q E D E E G

74 G E E C E E C C B C I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I D B D D Q E D E E G

75 G E E C K E C B C Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q D B D E E D E E G

76 G E E Q K E B C Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q D B E K D E E G

77 G E E Q K I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I K Q E E G

78 G E E Q A I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I A Q E E G

79 G E E A C I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I D A E E G

80 G E U U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U U E G

81 G I U U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U U I G

82 I I U U Q I Q Q Q Q I Q Q Q Q Q Q Q Q Q W W Q Q Q Q Q Q Q Q Q I Q Q Q Q I Q U U I I

1 .  .  .  . n

1/1

1/3

1/7

t  = 0

t = 2n-2

1/1

1/1

w1

w3

w2

w1

w2

w3

1/7

1/15

w4

1/3

1/1

1/1

1/1

t = n-1

t  = -1 n+n1

Fig. 2. Recursive-halving marking

Figure 2 (left) shows a space-time diagram for the marking.
At time t = 0, the leftmost cell C1 generates a set of signals
w1, w2, ..., wk, .., each propagating in the right direction at
1/(2k−1) speed, where k = 1, 2, 3, ..., . The 1/1-speed signal
w1 arrives at Cn at time t = n − 1. Then, the rightmost cell
Cn also emits an infinite set of signals w1, w2, ..., wk, .., each
propagating in the left direction at 1/(2k − 1) speed, where
k = 1, 2, 3, ..., . The readers can find that each crossing of
two signals, shown in Figure 2 (left), enables the marking at
middle points defined by the recursive-halving. A finite state
realization for generating the infinite set of signals above is a
well-known technique employed in Balzer [1], Gerken [2], and
Waksman [20] for the implementations of the optimum-time
synchronization algorithms on 1D arrays.

We have developed a simple implementation of the
recursive-halving marking on a 13-state, 314-rule cellular
automaton. In Figure 2 (middle and right) we present several

83Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           96 / 157



snapshots for the marking on 42 and 71 cells, respectively. We
have:

Lemma 8 There exists a 1D 13-state, 314-rule cellular au-
tomaton that can print the recursive-halving marking in any
cellular space of length n in 2n − 2 steps.

An optimum-time complexity 2n − 2 needed for synchro-
nizing cellular space of length n in the classical WBG-type
(Waksman [20], Balzer [1], and Gerken [2]) FSSP algorithms
can be interpreted as follows: Let S be a cellular space of
length n = 2n1+1, where n1 ≥ 1. The first center mark in S is
printed on cell Cn1+1 at time t1D−center = 3n1. Additional n1

steps are required for the markings thereafter, yielding a final
synchronization at time t1D−opt = 3n1 + n1 = 4n1 = 2n− 2.
In the case n = 2n1, where n1 ≥ 1, the first center mark
is printed simultaneously on cells Cn1 and Cn1+1 at time
t1D−center = 3n1 − 1. Additional n1 − 1 steps are required
for the marking thereafter, yielding the final synchronization
at time t1D−opt = 3n1 − 1 + n1 − 1 = 4n1 − 2 = 2n − 2.

t1D−center =
{

3n1 |S| = 2n1 + 1,
3n1 − 1 |S| = 2n1.

(4)

Thus, additional tsync steps are required for the synchro-
nization for a cellular space with the recursive-halving marks:

tsync =
{

n1 |S| = 2n1 + 1,
n1 − 1 |S| = 2n1.

(5)

1 n

1/1

1/1

t = 0

1/1

1/1

1/1
1/1

1/1

1/1

1/1

1/1

G

1/1

1/1

1/1

1/1

1/1
1/1

1/1

1/1

1/1

1/1

 t = tsync

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 G I I Q I Q Q Q M2 Q Q Q I Q I I G

1 G I I Q I Q Q Q2 M2 C2 Q Q I Q I I G

2 G I I Q I Q Q2 Q2 M2 C2 C2 Q I Q I I G

3 G I I Q I Q2 L2 Q2 M2 C2 R2 C2 I Q I I G

4 G I I Q M2 A2 L2 Q2 M2 C2 R2 B2 M2 Q I I G

5 G I I Q2 M2 B2 Q2 Q2 M2 C2 C2 A2 M2 C2 I I G

6 G I M2 Q2 M2 C2 M2 Q2 M2 C2 M2 Q2 M2 C2 M2 I G

7 G M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 G

8 F F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 G U U U U Q Q U U Q Q Q Q Q Q M2 M2 Q Q Q Q Q Q U U Q Q U U U U G

1 G U U U U Q Q U U Q Q Q Q Q Q2 M2 M2 C2 Q Q Q Q Q U U Q Q U U U U G

2 G U U U U Q Q U U Q Q Q Q Q2 Q2 M2 M2 C2 C2 Q Q Q Q U U Q Q U U U U G

3 G U U U U Q Q U U Q Q Q Q2 L2 Q2 M2 M2 C2 R2 C2 Q Q Q U U Q Q U U U U G

4 G U U U U Q Q U U Q Q Q2 A2 L2 Q2 M2 M2 C2 R2 B2 C2 Q Q U U Q Q U U U U G

5 G U U U U Q Q U U Q Q2 L2 A2 Q2 Q2 M2 M2 C2 C2 B2 R2 C2 Q U U Q Q U U U U G

6 G U U U U Q Q U U Q2 A2 L2 L2 Q2 Q2 M2 M2 C2 C2 R2 R2 B2 C2 U U Q Q U U U U G

7 G U U U U Q Q U MM L2 A2 A2 L2 Q2 Q2 M2 M2 C2 C2 R2 B2 B2 R2 MM U Q Q U U U U G

8 G U U U U Q Q M2 M2 L2 L2 A2 Q2 Q2 Q2 M2 M2 C2 C2 C2 B2 R2 R2 M2 M2 Q Q U U U U G

9 G U U U U Q Q2 M2 M2 C2 L2 L2 Q2 L2 Q2 M2 M2 C2 R2 C2 R2 R2 Q2 M2 M2 C2 Q U U U U G

10 G U U U U Q2 Q2 M2 M2 C2 C2 L2 Q2 L2 Q2 M2 M2 C2 R2 C2 R2 Q2 Q2 M2 M2 C2 C2 U U U U G

11 G U U U MM L2 Q2 M2 M2 C2 R2 C2 Q2 L2 Q2 M2 M2 C2 R2 C2 Q2 L2 Q2 M2 M2 C2 R2 MM U U U G

12 G U U M2 M2 L2 Q2 M2 M2 C2 R2 M2 M2 L2 Q2 M2 M2 C2 R2 M2 M2 L2 Q2 M2 M2 C2 R2 M2 M2 U U G

13 G U MM M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 C2 Q2 M2 M2 MM U G

14 G M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 G

15 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F

Fig. 3. Synchronization based on recursive-halving

In this way, it can be easily seen that any cellular space
of length n with the recursive-halving marking initially with
a general on a center cell or two generals on adjacent center
cells can be synchronized in 	n/2
 − 1 optimum-steps.

Lemma 9 Any 1D cellular space S of length n with the
recursive-halving marking initially with a general(s) on a
center cell(s) in S can be synchronized in 	n/2
−1 optimum-
steps.

In Figure 3, we illustrate a space-time diagram for synchro-
nizing a cellular space with recursive-halving marking (left)
and some snapshots for the synchronization on 17 (middle)
and 32 (right) cells, respectively.

As was seen, the first marking of center cell(s) plays
an important role. In order to use the marking scheme for
the design of multi-dimensional FSSP algorithms, we print a
special mark only on the first center cell(s) of a given cellular
space, where the center cells thereafter will be marked with a
different symbol from the first one.

 Q State 

1: Q Q Q Q
2: Q Q B0 Q
3: Q Q B1 Q
4: Q Q R0 R0
5: Q Q R1 Q
6: Q Q P0 A000
7: Q Q P1 A100
8: Q Q A000 A001
9: Q Q A001 A000

10: Q Q A100 A101
11: Q Q A101 A100
12: Q Q A010 R0
13: Q Q A110 Q
14: Q Q * Q
15: B0 Q Q Q
16: B0 Q B0 Q
17: B0 Q R0 R0
18: B0 Q P1 A100
19: B0 Q A000 A001
20: B0 Q A101 A100
21: B0 Q A010 R0
22: B0 Q A110 Q
23: B1 Q Q Q
24: B1 Q B1 Q
25: B1 Q R0 R0
26: B1 Q R1 Q
27: B1 Q P0 A000
28: B1 Q A001 A000
29: B1 Q A100 A101
30: R0 Q Q Q
31: R0 Q B1 Q
32: R0 Q P0 A000
33: R0 Q A000 A001
34: R0 Q A001 A000
35: R0 Q A011 Q
36: R1 Q Q R1
37: R1 Q B0 R1
38: R1 Q B1 R1
39: P0 Q Q A010
40: P0 Q B1 A010
41: P0 Q R1 A010
42: P0 Q * P1
43: P1 Q Q A110
44: P1 Q B0 A110
45: A000Q Q R1
46: A000Q B0 R1
47: A001Q R1 Q
48: A100Q Q Q

49: A100Q B0 Q
50: A010Q Q A011
51: A010Q B0 A011
52: A010Q R1 A011
53: A010Q * P0
54: A011Q Q A010
55: A011Q B1 A010
56: A011Q R1 A010
57: A011Q * P1
58: A110Q Q A111
59: A110Q B1 A111
60: A111Q Q A110
61: A111Q B0 A110

 B0 State 

62: Q B0 Q B0
63: Q B0 R0 R0
64: Q B0 P0 B0
65: Q B0 P1 B0
66: Q B0 A001 P1
67: Q B0 A100 P1
68: B1 B0 P0 B0
69: B1 B0 P1 B0
70: R1 B0 Q R1
71: R1 B0 P0 R1
72: R1 B0 P1 R1
73: P0 B0 Q B0
74: P0 B0 B1 B0
75: P0 B0 R0 R0
76: P0 B0 P0 P0
77: P0 B0 P1 P0
78: P0 B0 A100 P1
79: P0 B0 A011 B0
80: P1 B0 Q B0
81: P1 B0 B1 B0
82: P1 B0 R0 R0
83: P1 B0 P0 P0
84: P1 B0 A100 P1
85: A001B0 P0 B0
86: A011B0 Q P1
87: A110B0 Q P1
88: A110B0 P0 P1
89: A110B0 P1 P1

 B1 State 

90: Q B1 Q B1
91: Q B1 B0 B1
92: Q B1 R0 Q

93: Q B1 R1 B1
94: Q B1 A000 P0
95: Q B1 A101 P0
96: B0 B1 Q B1
97: B0 B1 R0 Q
98: B0 B1 A000 P0
99: B0 B1 A101 P0

100: R0 B1 Q B1
101: R0 B1 A000 P0
102: R1 B1 Q Q
103: R1 B1 B0 Q
104: A010B1 Q P0
105: A010B1 B0 P0
106: A010B1 R1 P0
107: A111B1 Q P0
108: A111B1 B0 P0

 R0 State 

109: Q R0 Q Q
110: Q R0 B1 Q
111: Q R0 A111 Q
112: B0 R0 Q B1
113: B1 R0 Q B0
114: P0 R0 B1 B0
115: P1 R0 B1 B0
116: P1 R0 A111 B0

 R1 State 

117: Q R1 Q Q
118: Q R1 B0 B1
119: Q R1 B1 B0
120: B1 R1 Q Q
121: B1 R1 P0 B0
122: B1 R1 P1 B0
123: A101R1 Q Q
124: A101R1 P1 B0

 P0 State 

125: Q P0 Q P0
126: Q P0 P0 P0
127: Q P0 * P0
128: B0 P0 B0 P0
129: B0 P0 P0 P0
130: B0 P0 * P0
131: R1 P0 R0 P0
132: R1 P0 P0 P0
133: R1 P0 * P0

134: P0 P0 Q P0
135: P0 P0 B0 P0
136: P0 P0 R0 P0
137: P0 P0 P0 T
138: P0 P0 P1 T
139: P0 P0 A010 P0
140: P0 P0 * T
141: P1 P0 P0 T
142: P1 P0 P1 T
143: P1 P0 * T
144: A000P0 P0 P0
145: A000P0 A010 P0
146: A000P0 * P0
147: * P0 Q P0
148: * P0 B0 P0
149: * P0 R0 P0
150: * P0 P0 T
151: * P0 P1 T
152: * P0 A010 P0

 P1 State 

153: Q P1 Q P1
154: Q P1 P1 P1
155: Q P1 * P1
156: B0 P1 B0 P1
157: B0 P1 P1 P1
158: B0 P1 * P1
159: R1 P1 R0 P1
160: R1 P1 P1 P1
161: R1 P1 * P1
162: P0 P1 P0 T
163: P0 P1 P1 T
164: P0 P1 * T
165: P1 P1 Q P1
166: P1 P1 B0 P1
167: P1 P1 R0 P1
168: P1 P1 P0 T
169: P1 P1 P1 T
170: P1 P1 A110 P1
171: P1 P1 * T
172: A100P1 P1 P1
173: A100P1 A110 P1
174: A100P1 * P1

 A000 State 

175: Q A000Q Q
176: Q A000P0 B0
177: B1 A000Q Q

178: B1 A000P0 B0

 A001 State 

179: Q A001Q Q
180: Q A001B0 Q
181: B0 A001Q Q
182: B0 A001B0 Q

 A100 State 

183: Q A100Q R1
184: Q A100P1 R1
185: B0 A100Q P1
186: B0 A100P1 P1

 A101 State 

187: Q A101R1 Q
188: B1 A101R1 P0

 A010 State 

189: Q A010Q Q
190: Q A010B1 Q
191: P0 A010Q B0
192: P0 A010B1 B0

 A011 State 

193: Q A011Q Q
194: Q A011B0 Q
195: B0 A011Q Q
196: B0 A011B0 Q

 A110 State 

197: Q A110Q R0
198: Q A110B0 P1
199: P1 A110Q R0
200: P1 A110B0 P1

 A111 State 

201: R0 A111Q Q
202: R0 A111B1 P0

Fig. 4. Waksman’s FSSP

L Right State
L A B C M Q R *

Left State

L L L L L
A A Q
B R Q
C C C R Q C M
M C C C M C M
Q L L L
R A B A Q
*

A Right State
L A B C M Q R *

Left State

L L L
A A A A
B C C R C
C C C Q C
M B B B
Q A A Q A
R L L
*

C Right State
L A B C M Q R *

Left State

L L L
A
B R C R M C
C R M C R M C
M C L C M M C
Q
R B C B M C
*

M Right State
L A B C M Q R *

Left State

L M M M
A M M M M
B M M M
C M M M M
M M M M M F M F
Q M M M M
R M M M M
* M M M M F M F

B Right State
L A B C M Q R *

Left State

L
A
B R Q B B A Q R
C R Q B B A Q R
M L C C
Q
R Q B B A Q
*

Q Right State
L A B C M Q R *

Left State

L Q Q Q Q
A Q Q Q
B R M R
C M M M M R
M M
Q A L Q L
R A L Q L
*

R Right State
L A B C M Q R *

Left State

L
A
B R Q Q R
C C C R Q Q R
M B C M C
Q A L Q L
R B B R Q Q R
* M M R

Fig. 5. Balzer’s FSSP

B. Waksman’s 16-state Algorithm

Waksman [20] proposed a 16-state firing squad synchro-
nization algorithm. Umeo, Hisaoka, and Sogabe [13] corrected
all errors in Waksman’s original transition table. In Figure 4,
we give a snapshot of the synchronization processes on 20 cell
and a list of transition rules for Waksman’s algorithm. The list
is a revised version presented in Umeo, Hisaoka, and Sogabe
[13]. The state-change complexity of the algorithm is O(n2).

C. Balzer’s Eight-state Algorithm

Balzer [1] constructed an eight-state, 182-rule synchro-
nization algorithm and the structure of which is completely
identical to that of Waksman [20]. In Figure 5, we give

84Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           97 / 157



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 > / / / / / / / / / / / / / / / / / / /

1 > ] / / / / / / / / / / / / / / / / / /

2 > ] > / / / / / / / / / / / / / / / / /

3 > ] ^ ] / / / / / / / / / / / / / / / /

4 > ] ^ / > / / / / / / / / / / / / / / /

5 > ] > ^ ^ ] / / / / / / / / / / / / / /

6 > ] > ^ ^ / > / / / / / / / / / / / / /

7 > ] > ^ / ^ ^ ] / / / / / / / / / / / /

8 > ] > ] ^ ^ ^ / > / / / / / / / / / / /

9 > ] ^ ] ^ ^ / ^ ^ ] / / / / / / / / / /

10 > ] ^ ] ^ / ^ ^ ^ / > / / / / / / / / /

11 > ] ^ ] > ^ ^ ^ / ^ ^ ] / / / / / / / /

12 > ] ^ / > ^ ^ / ^ ^ ^ / > / / / / / / /

13 > ] > ^ > ^ / ^ ^ ^ / ^ ^ ] / / / / / /

14 > ] > ^ > ] ^ ^ ^ / ^ ^ ^ / > / / / / /

15 > ] > ^ ^ ] ^ ^ / ^ ^ ^ / ^ ^ ] / / / /

16 > ] > ^ ^ ] ^ / ^ ^ ^ / ^ ^ ^ / > / / /

17 > ] > ^ ^ ] > ^ ^ ^ / ^ ^ ^ / ^ ^ ] / /

18 > ] > ^ ^ / > ^ ^ / ^ ^ ^ / ^ ^ ^ / > /

19 > ] > ^ / ^ > ^ / ^ ^ ^ / ^ ^ ^ / ^ ^ <

20 > ] > ] ^ ^ > ] ^ ^ ^ / ^ ^ ^ / ^ ^ [ <

21 > ] ^ ] ^ ^ ^ ] ^ ^ / ^ ^ ^ / ^ ^ < [ <

22 > ] ^ ] ^ ^ ^ ] ^ / ^ ^ ^ / ^ ^ [ / [ <

23 > ] ^ ] ^ ^ ^ ] > ^ ^ ^ / ^ ^ < ^ / [ <

24 > ] ^ ] ^ ^ ^ / > ^ ^ / ^ ^ [ / / < [ <

25 > ] ^ ] ^ ^ / ^ > ^ / ^ ^ < ^ / / < [ <

26 > ] ^ ] ^ / ^ ^ > ] ^ ^ [ / / ^ / < [ <

27 > ] ^ ] > ^ ^ ^ ^ ] ^ < ^ / / / [ < [ <

28 > ] ^ / > ^ ^ ^ ^ ] [ / / ^ / / [ / [ <

29 > ] > ^ > ^ ^ ^ ^ < > / / / ^ / [ / [ <

30 > ] > ^ > ^ ^ ^ [ < > ] / / / < [ / [ <

31 > ] > ^ > ^ ^ < [ < > ] > / / < ^ / [ <

32 > ] > ^ > ^ [ / [ < > ] ^ ] / < / < [ <

33 > ] > ^ > < ^ / [ < > ] ^ / > < / < [ <

34 > ] > ^ [ ] / < [ < > ] > ^ [ ] / < [ <

35 > ] > < [ ] > < [ < > ] > < [ ] > < [ <

36 > ] [ ] [ ] [ ] [ < > ] [ ] [ ] [ ] [ <

37 > < > < > < > < > < > < > < > < > < > <

38 F F F F F F F F F F F F F F F F F F F F

Fig. 6. Gerken’s FSSP

a snapshot of the algorithm and a list of transition rules
for Balzer’s algorithm. The state-change complexity of the
algorithm is O(n2).

D. Gerken’s Seven-state Algorithm

Gerken [2] reduced the number of states realizing Balzer’s
algorithm and constructed a seven-state, 118-rule synchroniza-
tion algorithm. In Figure 6, we give a list of the transition rules
for Gerken’s algorithm and its snapshots. The state-change
complexity of the algorithm is O(n2).

E. An Optimum-Time 2D FSSP Algorithm A
We assume that an initial general G is on the north-west

corner cell C1,1 of a given array of size m×n. The algorithm
consists of three phases: a marking start phase for 2D arrays,
pre-synchronization phase and a final synchronization phase.
An overview of the 2D synchronization algorithm A is as
follows:

Step 1. Start the recursive-halving marking for cells on each
row and column, find a center cell(s) of the 2D array, and
generate a new general(s) on the center cell(s). Note that a
crossing(s) of the center column(s) with the center row(s) is a
center cell(s) of the array.

Step 2. Pre-synchronize the center column(s) using Lemma
6, which is initiated by the general in step 1. Every cell(s) on
the center column(s) acts as a general at the next Step 3.

Step 3. Synchronize each row using Lemma 6, initiated
by the general generated in Step 2. This yields the final
synchronization of the array.

Thus, we have:

Theorem 10 The synchronization algorithm A can synchro-
nize any m × n rectangular array in optimum m + n +
max(m, n) − 3 steps.

Theorem 11 There exists an optimum-time synchronization
algorithm that can synchronize any three-dimensional array of
size m× n × � with a general at C1,1,1 in optimum m + n +
� + max(m, n, �) − 4 steps.

Theorem 12 There exists an optimum-time synchronization
algorithm that can synchronize any kD array of size n1 ×
n2 × ... × nk with a general at C1,1,...,1 in optimum n1 +
n2+, ..., +nk + max(n1, n2, ..., nk) − k − 1 steps.

F. A Comparison of Quantitative Aspects of Optimum-Time
Synchronization Algorithms

Here, we present a table based on a quantitative comparison
of optimum-time synchronization algorithms and their tran-
sition tables discussed above with respect to the number of
internal states of each finite state automaton, the number of
transition rules realizing the synchronization, and the number
of state-changes on the array.

TABLE I. COMPARISON OF FSSP ALGORITHMS

Algorithm # of states # of transition State change
rules complexity

Goto [3] many thousands — Θ(n log n)

Waksman [20] 16 202 O(n2)
Balzer [1] 8 165 O(n2)

Gerken I [2] 7 105 O(n2)
Mazoyer [5] 6 119 O(n2)
Gerken II [2] 155 2371 Θ(n log n)

G. O(1)-bit vs. 1-bit Communication FSSP

In the study of cellular automata, the amount of bit-
information exchanged at one step between neighboring cells
has been assumed to be O(1)-bit data. An O(1)-bit CA is
a conventional CA in which the number of communication
bits exchanged at one step between neighboring cells is as-
sumed to be O(1)-bit, however, such inter-cell bit-information
exchange has been hidden behind the definition of conventional
automata-theoretic finite state description. On the other hand,
the 1-bit inter-cell communication model is a new CA in which
inter-cell communication is restricted to 1-bit data, referred
to as the 1-bit CA model. The number of internal states of
the 1-bit CA is assumed to be finite in the usual sense. The
next state of each cell is determined by the present state of
that cell and two binary 1-bit inputs from its left and right
neighbor cells. Thus, the 1-bit CA can be thought of as one
of the most powerless and the simplest models in a variety
of CA’s. A precise definition of the 1-bit CA can be found
in Umeo and Yanagihara [17]. Umeo and Yanagihara [17]
constructed an optimum-time synchronization algorithm on a
1-bit CA model, based on Waksman’s algorithm. In Figure 7,
we show a configuration of the 1-bit synchronization algorithm
on 15 cells. Each cell has 78 internal states and 208 transition
rules. The small black triangles � and � indicate a 1-bit signal
transfer in the right or left direction, respectively, between
neighboring cells. A symbol in a cell shows internal state of
the cell.

[Theorem 13] There exists a 1-bit CA that can synchronize n
cells in optimum 2n − 2 steps.

85Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           98 / 157



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 PW Q Q Q Q Q Q Q Q Q Q Q Q Q QW

1 PW AR’ Q Q Q Q Q Q Q Q Q Q Q Q QW

2 PW BR01 AR’ Q Q Q Q Q Q Q Q Q Q Q QW

3 PW BR00 sub AR’ Q Q Q Q Q Q Q Q Q Q QW

4 PW BR0S odd sub AR’ Q Q Q Q Q Q Q Q Q QW

5 PW QR0S BR11 QRB sub AR’ Q Q Q Q Q Q Q Q QW

6 PW BR0u1 BR10 QRC odd sub AR’ Q Q Q Q Q Q Q QW

7 PW BR0u0 BR1S QRD QRC QRB sub AR’ Q Q Q Q Q Q QW

8 PW BR0uS QR10 BR01 QRD QRC odd sub AR’ Q Q Q Q Q QW

9 PW BR0v0 QR11 BR00 QRA QRD QRC QRB sub AR’ Q Q Q Q QW

10 PW BR0v1 QR10 BR0S QRB QRA QRD QRC odd sub AR’ Q Q Q QW

11 PW BR0v0 RL1 QR00 BR11 QRB QRA QRD QRC QRB sub AR’ Q Q QW

12 PW BR0vS QR1S QR01 BR10 QRC QRB QRA QRD QRC odd sub AR’ Q QW

13 PW QR0S BR1u1 QR00 BR1S QRD QRC QRB QRA QRD QRC QRB sub AR’ QW

14 PW BR0u1 BR1u0 RL0 QR10 BR01 QRD QRC QRB QRA QRD QRC odd sub PW

15 PW BR0u0 BR1uS QR0S QR11 BR00 QRA QRD QRC QRB QRA QRD QRC AL0 PW

16 PW BR0u1 BR1v0 QR01 QR10 BR0S QRB QRA QRD QRC QRB QRA AL BL01 PW

17 PW BR0u0 BR1v1 QR00 RL1 QR00 BR11 QRB QRA QRD QRC AL QLA BL00 PW

18 PW BR0u1 BR1v0 RL0 QR1S QR01 BR10 QRC QRB QRA AL QLA QLB BL0S PW

19 PW BR0u0 BR1vS QR0S QR11 QR00 BR1S QRD QRC AL QLA QLB BL11 QL0S PW

20 PW BR0uS QR10 BR0u1 QR10 RL0 QR10 BR01 AL QLA QLB QLC BL10 BL0u1 PW

21 PW BR0v0 QR11 BR0u0 RL1 QR0S QR11 P1s QLA QLB QLC QLD BL1S BL0u0 PW

22 PW BR0v1 QR10 BR0uS QR1S QR01 AL P1 AR QLC QLD BL01 QL10 BL0uS PW

23 PW BR0v0 QR11 BR0v0 QR11 AL QLA P1 QRA AR QLA BL00 QL11 BL0v0 PW

24 PW BR0v1 QR10 BR0v1 AL QLA BL01 P1 BR01 QRA AR BL0S QL10 BL0v1 PW

25 PW BR0v0 QR11 P1d PA QLB BL00 P1 BR00 QRB PA P1d RR1 BL0v0 PW

26 PW BR0v1 AL P1 P1 AR BL0S P1 BR0S AL P1 P1 AR BL0vS PW

27 PW P1 PA P1 P1 PA P1 P1 P1 PA P1 P1 PA P1 PW

28 T T T T T T T T T T T T T T T

Fig. 7. FSSP on 1-bit CA

IV. CONCLUSION AND FUTURE WORK

In the present paper, we have given a survey on recent
developments in FSSP algorithms for one-dimensional cellular
arrays. We focus our attention on a new class of FSSP
algorithms based on recursive-halving. It is shown that the
recursive-halving marking has been used in the design of many
optimum-time FSSP algorithms and can be generalized and ex-
panded to multi-dimensional arrays. Several multi-dimensional
generalizations of the algorithms are also given. As a future
work an FSSP for growing multi-dimensional arrays would be
interesting.

REFERENCES

[1] R. Balzer: An 8-state minimal time solution to the firing squad synchro-
nization problem. Information and Control, vol. 10, pp. 22-42, 1967.

[2] Hans-D. Gerken: Über Synchronisations - Probleme bei Zellularauto-
maten. Diplomarbeit, Institut für Theoretische Informatik, Technische
Universität Braunschweig, pp. 50, 1987.

[3] E. Goto: A minimal time solution of the firing squad problem. Dittoed
course notes for Applied Mathematics 298, Harvard University, pp. 52-
59, with an illustration in color, 1962.

[4] J. Mazoyer: An overview of the firing squad synchronization problem.
Lecture Notes on Computer Science, Springer-Verlag, vol. 316, pp. 82-
93, 1986.

[5] J. Mazoyer: A six-state minimal time solution to the firing squad
synchronization problem. Theoretical Computer Science, vol. 50, pp.
183-238, 1987.

[6] M. Minsky: Computation: Finite and infinite machines. Prentice Hall,
pp. 28-29, 1967.

[7] E. F. Moore: The firing squad synchronization problem. in Sequential
Machines, Selected Papers (E. F. Moore, ed.), Addison-Wesley, Reading
MA., pp. 213-214, 1964.

[8] F. R. Moore and G. G. Langdon: A generalized firing squad problem.
Information and Control, 12, pp. 212-220, 1968.

[9] P. Sanders: Massively parallel search for transition-tables of polyau-
tomata. In Proc. of the VI International Workshop on Parallel Process-
ing by Cellular Automata and Arrays, (C. Jesshope, V. Jossifov and W.
Wilhelmi (editors)), Akademie, 99-108, 1994.

[10] A. Settle and J. Simon: Smaller solutions for the firing squad. Theoret-
ical Computer Science, 276, 83-109, 2002.

[11] H. Szwerinski: Time-optimum solution of the firing squad synchro-
nization problem for n-dimensional rectangles with the general at an
arbitrary position. Theoretical Computer Science, vol. 19, pp. 305-320,
1982.

[12] H. Umeo: Firing squad synchronization problem in cellular automata.
In Encyclopedia of Complexity and System Science, R. A. Meyers (Ed.),
Springer, Vol.4, pp.3537-3574, 2009.

[13] H. Umeo, M. Hisaoka, and T. Sogabe: A survey on optimum-time
firing squad synchronization algorithms for one-dimensional cellular
automata. Int. J. of Unconventional Computing, vol. 1, pp.403-426,
2005.

[14] H. Umeo, N. Kamikawa, and J.-B. Yunès: A family of smallest
symmetrical four-state firing squad synchronization protocols for ring
arrays. Parallel Processing Letters, Vol.19, No.2, pp.299-313, 2009.

[15] H. Umeo, N. Kamikawa, K. Nishioka, and S. Akiguchi: Generalized
Firing Squad Synchronization Protocols for One-Dimensional Cellular
Automata - A Survey. Acta Physica Polonica B, Proceedings Supple-
ment. Vol.3, pp.267-289, 2010.

[16] H. Umeo, K. Kubo, and K. Nishide: A class of time-optimum FSSP
algorithms for multi-dimensional cellular arrays. Communications in
Nonlinear Science and Numerical Simulation, 21, pp.200-209, 2015.

[17] H. Umeo and T. Yanagihara: Smallest implementations of optimum-
time firing squad synchronization algorithms for one-bit-communication
cellular automata. Proc. of the 2011 International Conference on
Parallel Computing and Technology, PaCT 2011, LNCS 6873, pp. 210-
223, 2011.

[18] R. Vollmar: On Cellular Automata with a Finite Number of State
Change. Computing, Supplementum, vol. 3, pp. 181-191, 1981.

[19] R. Vollmar: Some remarks about the “Efficiency” of polyautomata.
International Journal of Theoretical Physics, vol. 21, no. 12, pp. 1007-
1015, 1982.

[20] A. Waksman: An optimum solution to the firing squad synchronization
problem. Information and Control, vol. 9, pp. 66-78, 1966.

[21] J. B. Yunès: A 4-states algebraic solution to linear cellular automata
synchronization. Information Processing Letters, Vol. 19, Issue 2, pp.71-
75, 2008.

86Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                           99 / 157



Dynamic Power Simulator Utilizing Computational Fluid Dynamics and
Machine Learning for Proposing Task Allocation in a Data Center

Kazumasa Kitada∗, Yutaka Nakamura†, Kazuhiro Matsuda‡ and Morito Matsuoka‡ §
∗School of Information Science and Technology, Osaka University, Osaka, Japan

Email: k-kitada@ane.cmc.osaka-u.ac.jp
†Graduate School of Engineering Science, Osaka University, Osaka, Japan

Email: nakamura@is.sys.osaka-u.ac.jp
‡Cybermedia Center, Osaka University, Osaka, Japan

Email: kazuhiro.matsuda@ane.cmc.osaka-u.ac.jp
§Advanced Telecommunications Research Institute International, Kyoto, Japan

Email: matsuoka@cmc.osaka-u.ac.jp

Abstract—A dynamic power simulator for a data center was
demonstrated by combining computational fluid dynamics (CFD)
and machine learning. The total power consumption of the data
center was simulated. The sensitivity of the temperature distri-
bution along the virtual machine (VM) allocation was analyzed
using a non-parametric process for the CFD. An allocation of
server tasks was proposed for reducing the power consumption
of the air conditioner installed in the data center. This simulation
showed that the optimum operating temperature increases with
the power usage effectiveness. These results indicate that the
power simulator developed in this study is a powerful tool for
dynamic power simulation and for estimation of better operation
parameters, including VM allocation, from the aspect of power
consumption.

Keywords–Data center; power simulator; computational fluid
dynamics; virtual machine allocation; machine learning.

I. INTRODUCTION
In recent years, many data centers have been built to

support the increased popularity of services such as video on
demand and cloud storage. In line with this trend, the power
consumption of data centers has increased sharply [1]. As a
result, the power consumption of data centers has become a
serious social problem, and studies on energy-efficient data
centers have attracted considerable attention [2]–[6]. Various
proposals have been put forward for reducing the power
consumption of data center equipment such as air conditioners,
power supply units, and servers [7]–[9]. Considering the total
power consumption of a server, Khuller et al. proposed an
energy management system in which the workload of all
servers was concentrated in a portion of the servers and the
other servers were turned off [10]. Iyengar et al. improved the
energy efficiency of data centers by configuring the fan speed
of air conditioners or shutting off air conditioners according to
the temperature distribution in the data center [11]. However,
reducing the power consumption of individual units without
coordination among them is insufficient for reducing the total
power consumption of the data center, in which various types
of equipment operate in a strongly interrelated way.

ICT equipment and air conditioners account for most
of the power consumption in a data center [12]. Therefore,
cooperative control, such as simultaneous optimization of the
server workload assignment and air conditioners, is essential
for improving the energy efficiency of the data center. The
power consumption of each piece of equipment depends not
only on its own operational conditions but also on those of

others. For example, the server power consumption depends
on the inlet air temperature, which is in turn affected by the
air-conditioner setting. The server workload assignment and
operation set points of the air conditioners must be controlled
in a coordinated manner to minimize the total energy consump-
tion of the data center. To reduce the total power consumption,
it is necessary to predict the state of the data center, such as
its temperature distribution, given by the operational conditions
such as virtual machine allocation. Because the heat emitted
from the servers accounts for most of the heat emitted from
the data center, it is essential to predict the temperature of the
exhaust heat from the servers for predicting the total power
consumption of the data center. However, predicting the heat
emitted from the servers is difficult because many factors are
interdependent. For example, the temperature of the exhaust
heat from the server depends on the air volume passing through
the server and the server’s power consumption. Moreover, as
the intake temperature and air volume vary according to the
position of the server in the data center, the temperature of the
exhaust from the server changes with the location even when
the same workload is assigned to servers with the same power
consumption.

Computational fluid dynamics (CFD) is a representative
technique for simulating the temperature distribution when
various parameters are interrelated [13]–[15]. However, CFD
estimates only the temperature distribution and normally does
not simulate the power consumption directly.

In this study, we developed a novel simulator that estimates
the power consumption of the data center. This simulator
was demonstrated by combining the temperature distribution
simulation using CFD and machine learning techniques to pre-
dict the power consumption of the server and air conditioner.
Power consumption of the servers and the air conditioner was
estimated by regression models, such as a neural network.
Their parameters were trained so that the estimates fit the
exact power consumption of the data center in operation. The
air temperature and fan rotational speed of the air conditioner
were measured as learning data to build the power consumption
model of the air conditioners. The procedure for estimating
the total power consumption of the data center is as follows.
First, the exhaust temperature for the servers is simulated
using a CFD simulator with a task. Then, the total power
consumption of the data center is calculated as a summation of
the individual equipment power consumptions obtained from
the CFD simulation results and the power consumption model

87Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         100 / 157



of each equipment.
By combining the proposed simulator and a sensitivity

analysis of CFD, VM allocation optimization from the aspect
of power consumption was demonstrated to equalize the ex-
haust temperature in the rack plane. Through VM allocation,
we increased the blowing temperature of the air conditioner
and reduced its power consumption. In addition, we evaluated
the optimum temperature set point of the air conditioner to
minimize the total power consumption of the data center with
several power usage effectiveness (PUE) [12] values.

The remainder of this paper is organized as follows. Section
II describes the power consumption simulator. Section III de-
scribes the procedure for VM allocation. Section IV discusses
the evaluation of the proposed power consumption simulator.
Finally, Section V presents our conclusions and possible areas
of future work.

II. ENERGY SIMULATOR

Our research group manages an experimental data center
as a test bed to demonstrate energy-saving technologies for
a green data center. Figure 1(a) shows a general view of the
testbed data center. In this data center, a system that reuses
exhaust heat from the servers is implemented to reduce power
consumption efficiency [16]. Figure 1(b) shows the equipment
arrangement and airflow of a conventional data center with one
hot aisle (HA) and one cold aisle (CA). On the other hand, the
testbed data center has a conventional arrangement with cold
and hot aisles and an additional super-hot aisle (SHA) to raise
the exhaust heat temperature to around 50◦C. The heat reuse
efficiency reaches practical levels at this temperature.

A. Summary of power simulator
Figure 2(a) shows a conceptual diagram of the power simu-

lator for the data center. In our previous study, the temperature
prediction and power estimation were demonstrated using only
the machine-learning-based power simulator [17] [18]. In that
system, sensor data are required for temperature prediction as
well as estimation of the power consumption of the data center.

In this study, the power consumption simulator consists
of the CFD simulator and external programs to estimate the
power consumption of individual pieces of equipment in the
data center. Figure 2(b) shows a conceptual diagram of the
power simulator, which comprises CFD and a power predictor,
for the data center. It is not necessary to install sensors
across the entire data center because the sensor data are not
required for estimating the power consumption. As a result,
this system is more practical than a power simulator based
on machine learning alone. The server’s power consumption
is estimated by a neural network whose inputs are the CPU
usage, intake temperature, and rotational speed of the fan of
the air conditioner. The exhaust temperature of each server is
estimated by the CFD simulator according to the predicted
heating value. The power consumption of each server and
that of the air conditioner are estimated using the calculation
result of the CFD simulation. By using the CFD simulation
result, the power consumption is estimated by the power model
for the server and CFD simulation. The CFD simulation and
power consumption estimation are performed in turn. The total
power consumption of the data center is estimated by the
power consumption of the servers and air conditioners. The
power consumption of the air conditioner is also estimated by

(a) Tandem arrangement with cold aisle, hot aisle, and super-hot aisle to reuse
exhaust heat from servers

(b) Conventional arrangement with cold aisle and hot aisle

Figure 1. Equipment arrangement in data center

using the learning data on the total power consumption of the
servers, temperature from the air conditioner, air conditioner
fan rotational speed, and fresh air temperature and humidity.
After estimating the power consumption of all servers, the
power consumption of the air conditioner is estimated using
the air conditioner model. As a result, the power consumption
of the entire data center and the temperature distribution in the
data center were determined.

B. CFD simulation

CFD is an analytical technique for numerically solving a
hydrodynamic governing equation [19]. For the CFD simula-
tion, we follow the steps described below. First, the simulation

88Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         101 / 157



Power	  Predictor	

Temperature	  Predictor	

Total Power Simulator	

Air	  Condi3oner	  
Power	  Model	

Server	  Power	  Model	

Equipment Power Modeler	

(a) Machine-learning-based power simulator

Power	  Predictor	

CFD	  simulator	

Total Power Simulator	

Air	  Condi5oner	  
Power	  Model	

Server	  Power	  Model	

Equipment Power Modeler	

(b) CFD-based power simulator (this study)

Figure 2. Block diagrams of the power consumption simulator for a data
center constructed using only machine learning and using the hybrid CFD

and machine learning method

model is built, in which servers acting as heat sources and
an air conditioner are emulated. Next, parameters including
the heat value of the server, intake air temperature, and air
volume are set. Then, the required estimation is done using the
CFD simulator (Flow Designer Ver. 12; Advanced Knowledge
Lab., Inc.). As a result of the simulation, the temperature at
any point in the entire analysis domain can be evaluated. Two
models are used for CFD analysis: steady-state analysis for the
state in which the temperature is stable and unsteady analysis
for the transition state before converging to a steady state.
In this study, a simulation based on steady-state analysis is
demonstrated.

C. Server power consumption model

This section describes the construction of the server power
consumption model. The CPUs, Memory, hard disc drive
(HDD) and internal fans account for most of the power
consumption of a server. The power consumption of an HDD
is almost constant, and additional power consumption occurs
when the HDD is accessed. Memory also consumes a certain
amount of energy only when it is accessed. As a result of
our experiment to analyze the server power consumption, we
found that the power consumption was around 4 W at most
when 1 GB of memory is accessed. The change in the power
consumption of the HDD is almost negligible even when the
drive is accessed. Therefore, we assumed that the change in
the server power consumption mainly depends on the CPU
and internal fan in this case, because the amount of memory
installed in each server was 1 GB at most.

The power consumption of the CPU changes with the usage
ratio and its temperature. The CPU temperature depends on the
CPU usage ratio, intake temperature of the server, and air speed
passing through the server. The air speed passing through the
server mainly depends on the rotational speed of the internal

TABLE I. SERVER INFORMAITON FOR POWER MODEL

CPU Intel(R) Xeon(TM) CPU 3.80 GHz
Memory 1 GB
Storage 500 GB

 0
 20

 40
 60

 80
 100

 15
 20

 25
 30

 150

 200

 250

 300

Se
rv

er
 p

ow
er

 (W
)

Server CPU usage (%)Server intake temperature (°C)

Se
rv

er
 p

ow
er

 (W
)

Figure 3. A typical server power model constructed by the neural network
method

fans. The rotational speed of the internal fan is controlled
by using the CPU temperature and intake temperature of the
server. In this way, the power consumption of the server is
determined by several parameters that depend on each other.
As a result, a simple linear regression model is not suitable
for constructing the power model in the data center.

In this study, we use a neural network to construct the
server power consumption model. The parameters of the neural
network were determined by using the operation data of a
server in the testbed data center. Table I shows the specifica-
tions of the server’s measured operation data. The CPU usage
ratio and intake temperature were adopted as the explanatory
variables to estimate the server power consumption. We also
adopt the blowing temperature and fan rotational speed of the
air conditioner as explanatory variables. The network shape
and hyperparameters of learning are optimized. As a result, the
server power consumption model is constructed. The root mean
square error (RMSE) between the measured and the estimated
values of the test data set is 8.41 kW. Figure 3 shows a server
power model constructed by the neural network method. This
figure shows the typical relationships among the measured
power consumption of the server, its CPU usage ratio, and
its intake temperature. The estimated error of the server power
consumption reaches 6.7% for the test data.

D. Air-conditioner power model
Coefficient of performance (COP) is an index that indicates

the power consumption efficiency of an air conditioner [20],
and it is defined as follows:

COP =
c

Pconsume
(1)

where c and Pconsume are the coolability and total power
consumption of the data center, respectively. Figure 4 shows
the COP against the operational parameters of outlet air
temperature and fan speed of the air conditioner as estimated
by a support vector regression model. This support vector

89Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         102 / 157



COP	

Fa
n 

sp
ee

d 
(%

)	

Air temperature (˚C)	

Figure 4. Air-conditioner power model constructed by support vector
regression method

regression model is trained by using the recorded data from
our experimental data center [21] [22]. From this figure, it is
clear that the COP dynamically changes against the operational
parameters of the air conditioner. Therefore, this suggests that
controlling the air conditioner using the prediction method
enables the power consumption to be reduced.

III. TASK ALLOCATION

A. Procedure for Task Allocation

This section describes the procedure for determining the
quantity of tasks to assign to each server when some workload
is assigned to the entire data center. A VM is assigned and
moved to each server as a task unit. We do not distinguish
between different types of VMs, and we assume that there
is no difference in the load between VMs. Turning off servers
with no assigned task to reduce power consumption is not done
in this allocation method.

VM allocation follows the steps described below.

1) Calculate the temperature distribution subject to a
given initial allocation of workloads by order analysis
of CFD simulation.

2) Conduct sensitivity analysis against the given ob-
jective with respect to the generated heat at each
server. In this study, the objective is to achieve a
uniform exhaust temperature distribution, and thus,
the objective function is defined using the variance
of the exhaust temperatures.

3) Find the “local optimal” heat pattern to minimize the
variance using the sensitivity analysis result.

4) Find the VM allocation pattern that produces a gener-
ated heat pattern that is closest to the local optimum.

5) Reallocate VMs to realize the allocation pattern.

The VM allocation procedure for the data center model with
a conventional arrangement is described in the following
subsections.

Figure 5. Temperature distribution in the exhaust-side plane of the rack
when VMs are assigned to servers randomly

Sensitivity 

Figure 6. Sensitivity map of each server for temperature distribution in the
case of the randomly assigned VM shown in Fig. 5

B. Order analysis of the initial pattern of generated heat
As preparation for sensitivity analysis, order analysis for

the initial workload is demonstrated. The initial pattern of
generated heat is obtained for the VM allocation randomly
assigned to the servers. Figure 5 shows the temperature distri-
bution in the exhaust-side plane of the rack. CFD simulation
is applied for the initial pattern of generated heat.

C. Sensitivity analysis for exhaust temperature in rack plane
A sensitivity analysis is a non-parametric process to es-

timate the intensity of the influence (sensitivity) of a small
change in each parameter [23]. In this process, the variance
with the temperature of each server in the exhaust-side plane
is used as an objective function. The sensitivity analysis for the
objective function is demonstrated, and then, the sensitivities
for the variance in the rack exhaust temperature of each server
are obtained. Figure 6 shows the value of the sensitivity of
each server in a color bar. This sensitivity shows exhaust
temperature variance in the rack plane when the heating value
increases to 1 W.

D. Calculate target pattern of generated heat
By using the sensitivity, we find the servers’ allocation

pattern of generated heat that equalizes the exhaust temperature
in the rack plane. The local optimal generated heat pattern that
does not require VM reallocation is the target pattern. The
target amount of generated heat target Poweri of server i

90Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         103 / 157



TABLE II. EXHAUST TEMPERATURE VARIANCE WHEN USING FIVE
COEFFICIENTS FOR PATTERN OF GENERATED HEAT

Coefficient Variance
0 (initial ) 0.175
15000 0.479
30000 0.256
45000 0.107
60000 0.103

is calculated, and it changes in proportion to the sensitivity
of the current amount of generated heat Poweri, as shown in
(2). After finding the local optimum, we do not recalculate to
find a better allocation pattern because the exhaust temperature
distribution hardly improves from the viewpoint of the power
consumption.

target Poweri = Poweri + Sensitivityi × α (2)

Here, coefficient α in (2) is a proportionality constant. The
coefficient α is set to an appropriate value, and a pattern
of generated heat that reduces the rack exhaust temperature
variance is obtained.

The difference between the intake and the exhaust air
temperature is ∆Tempi, and it depends on the heating value of
a server Poweri, speed of air passing over a server AirSpeedi,
and the heat transfer coefficient between the air and the server
ηheat transfar, as shown in (3) [24].

∆Tempi =
Poweri

Air Speedi
× ηheat transfar (3)

Assuming that the speed of air passing over a server
is constant, ∆Tempi is proportional to the server heating
value. The exhaust temperature variance in the rack plane is
almost proportional to the square of the server heating value.
As with the temperature, the objective function of sensitivity
analysis is proportional to the square of the coefficient α. The
order analysis for the patterns of generated heat calculated
using two values of α is shown, and the exhaust temperature
variance in the rack plane is calculated. Table II shows the
exhaust temperature variance in the rack plane as estimated
by order analyses using at least three patterns of generated
heat, including the initial pattern. A quadratic function of
the exhaust temperature variances in the rack plane and a
coefficient using at least three pairs of variances are calculated.
As a result, a coefficient is estimated so that the quadratic
function approaches a local minimum. Figure 7 shows the
quadratic curve for the five points shown in Table II and the
local minimum of the quadratic curve. Here, an appropriate
value for α is 57676 in the initial pattern of generated heat.
Then, the target heating value of each server using this value
of α and equation (2) is obtained.

E. VM reallocation

VM reallocation is demonstrated to make each server’s
amount of generated heat close to the target pattern. The
difference between them is shown in equation (4).

diff i = Poweri − target Poweri (4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  15000  30000  45000  60000  75000

V
ar

ia
nc

e

Coefficient
Simulation result Fitted line     Minimum point

Figure 7. Quadratic function of rack exhaust temperature variances and
coefficient

∑
|diff i| (5)

Here, serverj means that the decrease in diff i becomes a
maximum when one VM is removed from the server. serverk
means that the decrease in diff i becomes a maximum when
one VM from the server is moved using the server power
model. Then, a VM is moved from serverj to serverk. This
procedure is repeated until (5) does not decrease. As a result,
this procedure greedily assigns server VMs.

IV. EVALUATION

A. Power estimation using proposed simulator
We estimated the power consumption of the data center

by using the developed power simulation with the measured
CPU usage ratio of each server and the air-conditioner setting
in the testbed data center. We compared the result of the
power simulation with the measured power consumption of
the testbed data center. Our testbed data center includes many
types of servers, including the servers for which a power
model was constructed. Table III shows information about
these servers. The power model of each server was constructed
in the same manner as in the previous section. Table IV
shows the power consumption of each piece of equipment,
total power consumption estimated for the data center, and
power consumption measured in the testbed data center. The
power simulator estimated the power consumption of the data
center with an average error rate of 5.34%.

B. VM allocation in data center
We describe the VM allocation procedure for the data

center model with a conventional arrangement (Fig. 1(b)).
This data center model comprises six racks with 40 servers
per rack and air conditioners. RX300S4 servers in tableI are
constructed in this data center model. The maximum number of
VMs maxVM that each server runs is eight. The CPU usage
cpu usagei of serveri was calculated by using the assigned
number of VMs VMi and (6).

cpuusagei =
inVMi

maxVM
× 100 (6)

91Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         104 / 157



TABLE III. SERVER INFORMATION FOR THE TESTBED DATA CENTER

Server CPU Memory HDD storage
Server A Intel(R) Xeon(R) CPU 2.40 GHz 1 GB 200 GB
Server B Intel(R) Xeon(TM) CPU 3.20 GHz 1 GB 200 GB
Server C Intel(R) Xeon(TM) CPU 3.80 GHz 1 GB 500 GB
Server D Intel(R) Xeon(R) CPU 1.60 GHz 1 GB 250 GB
Server E Intel(R) Xeon(R) CPU 2.00 GHz 1 GB 400 GB
Server F Intel(R) Xeon(TM) CPU 3.80 GHz 1 GB 400 GB
Server G Intel(R) Xeon(R) CPU 3.00 GHz 1 GB 1 TB
Server H Intel(R) Xeon(TM) CPU 3.80 GHz 1 GB 500 GB

TABLE IV. POWER CONSUMPTION OF EACH DEVICE ESTIMATED BY SIMULATION AND MEASUREMENT IN TESTBED DATA CENTER

Server power Air-conditioner power Data center total power
Testbed data center 57.15 kW 5.85 kW 65.70 kW
Simulation result 56.63 kW 5.74 kW 62.37 kW

Temp 

Figure 8. Air temperature distribution of the data center with random pattern
of generated heat (RMSE: 0.82)

The average utilization rate of the data center is 20%–30%;
therefore, 650 VMs are assigned to 240 servers for the initial
pattern of generated heat so that the mean utilization rate of
the servers is 33%. Figure 8 shows the temperature distribution
of the rack exhaust side as obtained from a CFD simulation
using this pattern of generated heat. The rack exhaust tem-
perature variance for this temperature distribution was 0.76.
The proposed VM allocation procedure was implemented for
this initial pattern of generated heat. 140 VMs were migrated,
and a new pattern was obtained. Then, a CFD simulation
was conducted using the newly obtained pattern of generated
heat. The new temperature distribution of the rack exhaust
side was obtained, and then the rack exhaust temperature
variance decreased to 0.23. Figure 9 shows this temperature
distribution. Table V shows the temperature distribution of
the rack exhaust side from the analysis results before and
after reallocation. The maximum rack exhaust temperature
decreased from 38.4◦C to 36.2◦C by using the proposed VM
allocation procedure. This indicates that the air-conditioner
temperature can increase by 2.2◦C relatively in comparison
with that before the VM reallocation, and then the power
consumption of the air conditioner might decrease by around
5%.

C. Minimizing total power consumption of data center
1) Suitable operation point of air conditioner: The power

consumption of a server depends on its CPU usage, its intake

Temp 

Figure 9. Air temperature distribution of the data center after VM
reallocation (RMSE: 0.23)

TABLE V. RACK EXHAUST TEMPERATURE VARIANCE AND
MAXIMUM RACK EXHAUST TEMPERATURE BEFORE AND AFTER

VM REALLOCATION

Initial (random) After reallocation
Exhaust temperature variance 0.82 0.23
Maximum exhaust heat temperature 38.4◦C 36.2◦C

temperature, and other factors, and it increases when the
intake temperature increases. The power consumption of the
air conditioner depends on its blowing temperature and fan
rotational speed, and it increases when the blowing temperature
is reduced. Therefore, increasing the air conditioner’s blowing
temperature reduces its power consumption. On the other
hand, as the intake temperature of the servers increases, the
total power consumption of the servers increases because the
leakage current at the processors or rotational speed of the
internal fans increase. Therefore, it is expected that operational
temperature has the most suitable operation point from the
aspect of power consumption of the data center which is
the sum of the power consumption of all servers and air
conditioners. A reduction in the power consumption of the
entire data center is expected by operating the air conditioner
at the abovementioned blowing temperature. Figure 10 shows
the total power consumption of the servers, power consumption
of the air conditioner, and total power consumption of the data
center as described in when the air temperature is varied from
15◦C to 30◦C and the air conditioner is operated. Figure 11

92Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         105 / 157



 0

 10

 20

 30

 40

 50

 16  18  20  22  24  26  28  30

Po
w

er
(k

W
)

Blowing temperature (°)
Server power AC power Total power

Figure 10. Power consumption of servers, power consumption of air
conditioner, and total power consumption of data center versus

air-conditioner blowing temperature

 40

 41

 42

 43

 44

 45

 16  18  20  22  24  26  28  30

Po
w

er
(k

W
)

Blowing temperature (°C)
Total power

Figure 11. Total power consumption of data center versus air temperature,
showing the temperature that minimizes the power consumption

shows an enlarged view of the total power consumption of the
data center shown in Figure 10. The total power consumption
of the data center is given by a concave function, and it
reaches a minimum when the air blowing temperature of the air
conditioner is set to 20.5◦C and operated. In this manner, the
air-conditioner blowing temperature that minimizes the power
consumption of the data center was calculated by the power
consumption simulator. A reduction in the power consumption
of the data center is expected by using the abovementioned
value of the air blowing temperature.

2) Change in operation point of air conditioner for PUE:
We evaluate the change in the air conditioner’s blowing
temperature that minimizes the total power consumption of
the data center for different PUE values. The PUE is an index
that indicates the power consumption efficiency of the data
center, and it is calculated by using the power consumption of
all servers Powerserver and the total power consumption of
the data center PowerDC , as given in (7).

PUE =
PowerDC

Powerserver
(7)

According to the power simulation result, when the air
temperature was set to 20.5◦C as calculated in IV-C1, the PUE

 0

 10

 20

 30

 40

 50

 16  18  20  22  24  26  28  30

AC
 P

ow
er

(k
W

)

Blowing temperature (°C)
PUE=1.2 PUE=1.3 PUE=1.5 PUE=1.7 PUE=2.0

Figure 12. Power consumption of the air conditioner for PUE values of 1.2,
1.3, 1.5, 1.7, and 2.0

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 16  18  20  22  24  26  28  30

To
ta

l d
at

a 
ce

nt
er

 p
ow

er
(k

W
)

Blowing temperature (°C)
PUE=1.2 PUE=1.3 PUE=1.5 PUE=1.7 PUE=2.0

Figure 13. Total power of the data center and the air temperature that
minimizes the power consumption of the data center for PUE values of 1.2,

1.3, 1.5, 1.7, and 2.0

was 1.18. We estimate and compare the power consumption of
the data center for PUE values of 1.3, 1.5, 1.7, or 2.0 when the
air conditioner blowing temperature was set to 20.5◦C. Figure
12 shows the power consumption of the air conditioner for
each PUE value when the air conditioner blowing temperature
was varied.

The air-conditioning power that gives each PUE was cal-
culated on the assumption that the power to give the PUE
(1.18 at 20.5◦) obtained in an actual data center varies in
proportion to each temperature. It is assumed that the server
power did not change in this case. In addition, Figure 13 shows
the change in the total power consumption of the data center
at each PUE versus the air-conditioner blowing temperature
using the air-conditioner power shown in Fig. 12. The red
points show the operating temperature point at which the data
center’s total power is minimized for each PUE. In this manner,
an air conditioner’s operation point that minimizes the total
power consumption of the data center changes with the PUE.
Moreover, it was found that the air temperature that minimizes
the power decreases so that the PUE value is small. In other
words, it is advantageous from the viewpoint of the power
consumption to set a lower air temperature when the power
efficiency is high. Thus, the developed power simulator is a
powerful tool for VM allocation to reduce an air conditioner’s

93Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         106 / 157



power consumption. Furthermore, it can be used to determine
the most suitable operation point from the viewpoint of the
power consumption of the data center through the dynamic
simulation of the power consumption.

V. CONCLUSION AND FUTURE WORK

A novel power simulator was developed for the dynamic
and real-time estimation of the power consumption of a data
center. This simulator estimates the data center’s power con-
sumption through a combination of CFD and machine learning.
The prediction error was suppressed to around 5.3% for the
power consumption. A VM assignment policy was proposed
to reduce the power consumption of the air conditioners by
narrowing the distribution of exhaust heat from the servers. In
addition, the optimum operation temperature was proposed to
reduce the power consumption by using the power simulator.

These results indicate that the power simulator developed
in this study shows promise as a real-time and dynamic power
simulation tool.

In this study, learning data were obtained from a real server
located in a data center. However, several interactions occur
between servers in a real environment. In future work, it is
necessary for the power simulator to take the relationships
among the servers.

ACKNOWLEDGMENT

This work was supported by a CO2 emission reduction
project of the Japanese Ministry of the Environment and NICT.
A part of this work was collaborative research with NTT
Network Innovation Laboratories. We thank Advanced Knowl-
edge Laboratory, Inc., for support with the CFD techniques.
We thank Takasago Thermal Engineering Inc. for support
with the air conditioner and aisle arrangement. We also thank
Fujitsu Ltd. for supporting server management and sharing
information about the characteristics of the servers.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010,” A
report by Analytical Press, completed at the request of The New York
Times, Aug. 2011.

[2] A. Banerjee, T. Mukherjee, G. Varsamopoulos, and S. Gupta, “Cooling-
aware and thermal-aware workload placement for green hpc data
centers,” in Proceedings of International Green Computing Conference,
Aug. 2010, pp. 245–256.

[3] T. D. Boucher, D. M. Auslander, C. E. Bash, C. C. Federspiel, and
C. D. Patel, “Viability of dynamic cooling control in a data center
environment,” Journal of electronic packaging, vol. 128, no. 2, Jun.
2006, pp. 137–144.

[4] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future generation computer systems, vol. 28, no. 5, May
2012, pp. 755–768.

[5] B. Battles, C. Belleville, S. Grabau, and J. Maurier, “Reducing data
center power consumption through efficient storage,” NetApp Technical
Report, Feb. 2007.

[6] L. Parolini, B. Sinopoli, and B. H. Krogh, “Reducing data center
energy consumption via coordinated cooling and load management,”
in Proceedings of the Conference on Power Aware Computing and
Systems, Dec. 2008.

[7] M. Norota, H. Hayama, M. Enai, T. Mori, and M. Kishita, “Research on
efficiency of air conditioning system for data-center,” in Proceedings of
International Telecommunications Energy Conference 2003, Oct. 2003,
pp. 147–151.

[8] C. Ge, Z. Sun, and N. Wang, “A survey of power-saving techniques
on data centers and content delivery networks,” IEEE Communications
Surveys Tutorials, vol. 15, no. 3, Jul. 2013, pp. 1334–1354.

[9] D. Cavdar and F. Alagoz, “A survey of research on greening data cen-
ters,” in Proceedings of Global Communications Conference Exhibition
and Industry Forum 2012, Dec. 2012, pp. 3237–3242.

[10] S. Khuller, J. Li, and B. Saha, “Energy efficient scheduling via par-
tial shutdown,” in Proceedings of Society for Industrial and Applied
Mathematics 2010, Jan. 2010, pp. 1360–1372.

[11] M. Iyengar, R. Schmidt, and J. Caricari, “Reducing energy usage
in data centers through control of room air conditioning units,” in
Proceedings of 12th IEEE Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems, Jun. 2010, pp.
1–11.

[12] The Green Grid, “Guidelines for energy-efficient data centers,” avail-
able at http://www.thegreengrid.org/ .

[13] C. D. Patel, C. E. Bash, C. Belady, L. Stahl, and D. Sullivan, “Compu-
tational fluid dynamics modeling of high compute density data centers
to assure system inlet air specifications,” in Proceedings of The Pacific
Rim/ASME International Electronic Packaging Technical Conference
and Exhibition, Jul. 2001, pp. 1–9.

[14] C. Patel, R. Sharma, C. Bash, and A. Beitelmal, “Thermal consid-
erations in cooling large scale high compute density data centers,”
in Proceedings of Proceedings of IEEE Intersociety Conference on
Thermal and Thermomechanical Phenomena in Electronic Systems,
June 2002, pp. 767–776.

[15] U. Sing, A. Singh, and A. Sivasubramaiam, “CFD-based operational
thermal efficiency improvement of a production data center,” in Pro-
ceedings of the First USENIX Conference on Sustainable Information
Technology, ser. SustainIT’10, Feb. 2010, pp. 6–6.

[16] Y. Taniguchi and et al., “Tandem equipment arranged architecture with
exhaust heat reuse system for software-defined data center infrastruc-
ture,” IEEE Transactions on Cloud Computing, vol. PP, no. 99, June
2015, pp. 1–13.

[17] Y. Tarutani and et al., “Temperature distribution prediction in data
centers for decreasing power consumption by machine learning,” in
Proceedings of IEEE 7th International Conference on Cloud Computing
Technology and Science, Dec. 2015.

[18] S. Tashiro and et al., “A network model for prediction of temperature
distribution in data centers,” in Proceedings of IEEE 4th International
Conference on Cloud Networking (CloudNet), Oct. 2015, pp. 261–266.

[19] J. D. Anderson and J. Wendt, Computational fluid dynamics. Springer,
1995, vol. 206.

[20] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Making
scheduling” cool”: Temperature-aware workload placement in data
centers.” in USENIX annual technical conference, General Track, 2005,
pp. 61–75.

[21] T. Deguchi and et al, “Impact of workload assignment on power con-
sumption in software-defined data center infrastructure,” in Proceedings
of IEEE CloudNet 2014, Oct 2014, pp. 440–445.

[22] T. Deguchi and et al., “A workload assignment policy for reducing
power consumption in software-defined data center infrastructure,”
IEICE Transactions on Communications, vol. E99B, no. 2, Feb. 2016,
pp. 347–355.

[23] K. Momose and K. Ikejima, “Development of sensitivity-based decision
support system for heat and fluid flow design : Variational approach to
sensitivity analysis,” in The society of Heating, Air-Conditioning and
Sanitary Engineers of Japan, vol. 18, no. 1, 2006, pp. 403–406.

[24] Y. Cengel, Ed., Heat transfer: a practical approach 2nd edition.
Mcgraw-Hill, Oct. 2003, ISBN: 978-0072458930.

94Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         107 / 157



 

Analysis of Virtual Networking Options for Securing Virtual Machines 

Ramaswamy Chandramouli 

Computer Security Division, Information Technology Laboratory 

National Institute of Standards & Technology 

100 Bureau Drive, Gaithersburg, MD, USA 

E-Mail: mouli@nist.gov 

  

Abstract – Virtual Machines (VMs) constitute the primary 

category of resources to be protected in virtualized 

infrastructures. Out of the two types of protection for VMs – 

Host-level and Network-level – it is the approaches for the 

Network-level protection that are different in virtualized 

infrastructures as compared to those for non-virtualized 

environments. This is due to the fact that the VMs are end 

nodes of a virtual network as opposed to being end nodes of a 

physical network. In this paper, we provide a detailed analysis 

(in terms of advantages and disadvantages) of some of the key 

approaches for two Network-level protection measures for 

virtualized infrastructures – Network Segmentation and 

Traffic Control using Firewalls. The choice of these two 

Network-level protection measures is due to the fact that they 

form the foundation for the network configuration of the entire 

virtualized infrastructure. We also provide the overall 

conclusions from the analysis in the form of recommended 

deployment choices based on approaches for these two 

network-level protection measures for securing VMs. 

Keywords - Virtual Machine; VLAN; Hypervisor; VXLAN; 

Virtual Firewall. 

I.  INTRODUCTION 

     Virtualized hosts (also called hypervisor hosts) are 

increasingly deployed in data centers because of efficiency, 

scalability and cost considerations. The virtualized 

infrastructure resulting from the deployment of virtualized 

hosts has three main categories of components - Hypervisor 

Software, Virtual Machines (VMs) and Virtual Networking 

components such as Virtual Network Interface Cards 

(vNICs), Virtual Switches and Virtual Firewalls.  

     Out of the three categories of components above, the 

VMs constitute the fundamental resource to be protected in 

a virtualized infrastructure, since they are the compute 

engines on which business/mission critical applications of 

the enterprise run. These VMs are virtual counterparts of 

physical servers and hence just like their physical 

counterparts, security for these VMs has to be provided 

through host-level and network-level measures. These 

measures may also vary depending upon whether the overall 

virtualized infrastructure (in which the VM resides) is used 

for in-house enterprise applications or for offering cloud 

services to external entities (e.g., Infrastructure as a Service 

Public Cloud). We provide a brief overview of the two types 

of protection mentioned above. (a) Host-level protections 

required for VMs include features for robust authentication, 

access using secure access protocols and secure session 

establishment. The mechanisms required for providing these 

features are no different for VMs compared to their physical 

counterparts (i.e., physical servers). (b) Network-level 

protections required for VMs are feature-wise similar to 

those that are required by their physical counterparts. 

However, the mechanisms or approaches required for 

providing these protections are different due to the fact that 

the VMs are end nodes of a virtual network as opposed to 

being end nodes of a physical network. 

     For any type of datacenter infrastructure (virtualized or 

non-virtualized), there is a general consensus that the 

following are some of the key Network-level protection 

measures [1]. They are: (a) Network segmentation or 

isolation, (b) Traffic control using firewalls, (c) Creating 

Redundant communication pathways, and (d) Traffic 

Monitoring and Prevention using IDS/IPS. 

     Out of the above four network-level protection measures, 

the first two - Network Segmentation and Traffic Control 

using Firewalls - form the foundation for the network 

configuration of the entire virtualized infrastructure. Hence, 

in this paper, we have chosen to focus on different 

approaches or mechanisms used for these two network-level 

protection measures, by performing a detailed analysis of 

the advantages and disadvantages of each of the approaches.  

95Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         108 / 157



     Before we describe the organization of the rest of the 

paper, a few observations regarding our chosen network-

level protection measures in the context of virtualized 

infrastructure are in order. In a virtualized infrastructure, the 

distinguishing networking environment is the virtual 

network. Hence the network segmentation approaches 

discussed in this paper have to involve some virtual network 

components such as virtual switches. Similarly, a viable 

approach for traffic control using firewalls has to use a 

virtual firewall instead of a physical firewall. In Section II, 

we focus on two network segmentation approaches and 

discuss the advantages and disadvantages of each. Control 

of virtual network traffic using two different types of virtual 

firewalls and the advantages and disadvantages of each are 

analyzed in Section III.  In Section IV, we provide the 

overall conclusions from the analysis, in the form of 

deployment choices based on approaches for the two 

network-level protection measures for securing VMs.  

II. NETWORK SEGMENTATION IN VIRTUAL 

NETWORKS 

     The approaches to network segmentation in the context 

of virtualized infrastructures are the same as those used in 

physical network with some variations (these variations are 

underlined in our description below): (a) Using a 

combination of firewalls – the firewalls used are virtual 

firewalls (as opposed to a physical firewall) and are 

implemented as Virtual Security Appliance (VSA) and 

hosted on security hardened VMs with multiple Virtual 

Network Interface cards (vNICs). Each vNIC may be 

connected to a different network segment [2]. (b) Isolated 

network segments created as logical segments on top of a 

physical network segment – one is the VLAN approach that 

is based on tagging packets and switch ports with a unique 

identifier called VLAN ID, and the other is overlay-based 

virtual networking technology that creates an overlay 

network by encapsulating packets with IDs depending upon 

the type of overlay technology. Both approaches (VLAN 

and Overlay) rely on the capabilities in virtual switches of 

the virtualized host.  

     The three approaches for network segmentation in 

virtualized infrastructures outlined above are discussed in 

Sections A, B and C below. After a brief description of each 

approach, an analysis of each approach is provided with the 

relative advantages and disadvantages. Where ever 

applicable, the distinct advantage of a particular approach is 

also brought out. 

A. Network Segmentation Using a Combination of Firewalls 

     Let us now consider a virtualized host with 4 VMs – 

VM1, VM2, VM3 & VM4. We can form a network segment 

(say a DMZ) using two virtual firewalls, one each on any 

two VMs - say VM1 & VM4. These firewalls are VM-based 

Virtual Security Appliances residing on VMs defined with 

multiple vNICs – each one connected to a different network 

segment. The firewall in VM1 then will have one vNIC 

connected to an external network (say the public Internet)  

of the enterprise and  the other vNIC connected to the DMZ 

segment in the virtualized network within a virtualized host.  

Correspondingly the firewall in VM4 has to have one vNIC 

connected to the internal network of the enterprise and the 

other vNIC connected to the DMZ.  The vNIC connection to 

the DMZ (from both firewall VMs - VM1 & VM4)  is 

established by their pathway to an internal-only virtual 

switch. This internal-only virtual switch has no uplink 

connection to any physical NIC of the virtualized host and 

hence traffic from any VM connected to it cannot travel 

directly outside the virtual network segment (not to speak of 

outside the virtualized host). The internal-only switch can 

only forward traffic directly to VMs connected to it - say 

VM2 &, VM3. All incoming and outgoing traffic into the 

VMs connected to the internal-only virtual switch whose 

source/target is an internal/external network, has to go 

through the firewall in VM1 or in VM4. The firewalls in 

VM1 & VM4 thus form the gatekeepers for the virtual 

network segment (i.e., DMZ). 

A.1 Analysis 

     The advantages of network segmentation within the 

virtualized network of a virtualized host using a 

combination of virtual firewalls are: (a) Simplicity of 

Configuration:  It can be configured with commodity 

firewall VSAs hosted on multi-vNIC VMs. (b) Flexibility 

within a Virtualized host: More than one isolated network 

segment can be created within the virtual network of the 

virtualized host by simply adding another firewall VM.  

     The limitations of this approach to network segmentation 

in a virtualized network are the following: (a) The logical 

network segment created inside a virtualized host can 

neither be extended to the physical network of the data 

center nor to the virtual network in another virtualized host 

(since segmentation is obtained by virtual firewalls inside 

the virtualized host). This makes the approach to network 

segmentation non-scalable. (b) A consequence of creating a 

non-scalable  network segment is that the migration of a VM 

in the network segment to any other virtualized host (due to 

96Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         109 / 157



performance or availability or load balancing reasons) is out 

of the question, unless a network segment (with identical 

configuration) exists on the target virtualized host.  

 B. Network Segmentation Using Virtual LAN (VLAN) 

Technology 

     The second approach to network segmentation in 

virtualized infrastructures is broadcast-containment 

networking technologies, such as VLAN. The requirement 

for this is that the hypervisor should have capabilities to 

define virtual switches that are VLAN-aware [3][4].  The 

segmentation is obtained by assignment of an identifier 

called the VLAN ID to one or more ports of a switch and 

connecting the VMs designated for that VLAN segment to 

those ports. VMs on one VLAN can only communicate 

directly with VMs on the same VLAN and a router is 

needed for communication between VMs on different 

VLANs [5]. Assignment of a VM to a particular VLAN can 

be based on the application tier it is hosting (e.g., Web 

Server, DBMS server, etc.) or the client to which the VM 

belongs (in cloud data centers). These VLAN-capable 

virtual switches (VS) can perform tagging of all packets 

going out of a VM with a VLAN tag (depending upon 

which port it has  received the packet from) and can route an 

incoming packet with a specific VLAN tag and MAC 

address to the appropriate VM by sending it through a port 

whose VLAN ID assignment equals the  VLAN tag of the 

packet. An example of a VLAN-based virtual network 

segmentation inside a virtualized host is given in Figure 1. 

B.1 Analysis 

     The advantages of a VLAN-based network segmentation 

approach are: (a) Network segments can extend beyond a 

single virtualized host (unlike the segment defined using 

virtual firewalls) since the same VLAN ID can be assigned 

to ports of virtual switches in different virtualized hosts. (b) 

The number of network segments that can be configured is 

reasonably large since a single virtual switch can typically 

support 64 ports and the 12-bit VLAN ID address space 

enables creation of 4000 VLAN segments. 

     The disadvantages of VLAN-based network 

segmentation approach are: (a) The configuration of the 

ports in the physical switch attached to a virtualized host 

must exactly match the VLANs defined on the virtual 

switches inside that virtualized hosts. This results in tight 

coupling between virtual network and physical network of 

the data center.  The consequence of this tight coupling is 

that the port configuration of the physical switches has to be 

frequently updated since the VLAN configuration of the 

virtual network of the attached virtualized host may 

frequently change due to migration of VMs among VLANs 

as well as among virtualized hosts. (b) Another consequence 

of frequent migration of VMs among VLANs, as well as 

among virtualized hosts is that the VLAN configuration of 

ports in the physical switch may not match with that of the 

connected virtualized host. This may result in a situation 

where a particular hypervisor (or a virtualized host) may end 

up processing messages for every VLAN on the network, 

even when it is not hosting any active VM belonging to that 

VLAN [6] and (c) Segments created using broadcast-

containment technologies cannot be allowed to have a large 

span since they will result in greater traffic in the overall 

data center due to multicast and broadcast traffic. But 

greater VM mobility (due to load balancing and availability 

reasons) may require VLANs with a large span resulting in 

an undesirable phenomena called VLAN sprawl [6].  

C. Network Segmentation Using Overlay-based Virtual 

Networking Technology  

     In the VLAN-based approach, the logical network 

segments were created on a physical LAN using portgroups 

of virtual switches inside virtualized hosts. These logical 

network segments did span multiple virtualized hosts. The 

total number of these segments possible is limited to around 

4000 due to the 12 bit address space of VLAN ID. Another 

limitation is the lack of independence between the physical 

and virtual networking infrastructure, since the port 

configuration of the physical switches attached to the 

virtualized hosts have to be consistent with the VLANs 

defined on the port groups of virtual switches inside those 

virtualized hosts. The overlay-based virtual networking 

approach to network segmentation overcomes these two 

limitations in the following two ways [7].  

 

 

 

97Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         110 / 157



 

 

 

Figure 1 - VLAN-based Network Segmentation 

  

(a) Overlay-based virtual networking technologies have a 

larger address space enabling larger number of virtual 

network segments. An example is the 24 bit VXLAN ID of 

the VXLAN overlay scheme that can enable 16 million 

virtual network segments to be defined, and (b) The overlay 

schemes by their definition, create a logical Layer 2 network 

(called the overlay network) over the physical Layer 3 

backbone of the data center  (called the underlay network). 

Since this scheme does not warrant any modifications to the 

physical network, it provides physical-logical network 

independence. As already alluded to, overlay-based virtual 

networking schemes achieve segmentation by creating a 

logical Layer 2 network over the physical Layer 3 network. 

The overlay network is created by encapsulating a native 

Layer 2 packet with another Layer 2 identifier. There are 

three common encapsulation schemes – VXLAN, GRE and 

STT [8].    

    Let us now look at the encapsulation process in VXLAN 

[9] through components shown in Figure 2. The Ethernet 

frame  originating from a VM, that just holds the MAC 

address of the destination VM is encapsulated in two stages: 

(a) First with the 24 bit VXLAN ID (virtual Layer 2 (L2) 

segment) to which the sending/receiving VM belongs and 

(b) Second, with the source/destination IP address of the 

VXLAN tunnel endpoints called VTEPs. [10]. VTEPs are 

logical network endpoints (nodes) for the encapsulated 

VXLAN packets and they reside in the kernel of a 

hypervisor. A VXLAN-encapsulated packet originates at the 

VTEP in the kernel of the hypervisor where the source VM 

resides (carrying the VTEP’s address as the source IP 

address) and terminates at the VTEP in the kernel of the 

hypervisor where the destination VM resides (carrying this 

VTEP’s address as the destination IP address). Thus, we see 

that VXLAN encapsulation enables creation of a virtual 

Layer 2 segment that can span not only different hypervisor 

hosts but also different IP subnets within the data center. 

C.1 Analysis 

     The advantages of  a network segmentation approach 

based on Overlay-based networking technology are: (a)  

98Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         111 / 157



 
 

Figure 2 – Overlay-based Virtual Network Segmentation 

 

 

Because of independence between the virtual network and 

the physical network, there is greater VM mobility 

compared to a VLAN- based virtual network environment, 

(b) The physical-logical network independence, together 

with the bigger overlay segment ID address space (e.g., a 

VXLAN ID is 24 bits as opposed to 12 bit VLAN ID 

allowing for 16 million segments compared to 4096 for 

VLAN), makes the overlay based network segmentation 

infinitely scalable. Another factor contributing to scalability 

of the overlay scheme is that the encapsulating frame is an 

IP/UDP packet. Hence, the number of virtual network 

segments is limited only by the size of IP subnets that can be 

defined within the data center and not by the number of 

ports in virtual switches as in the case of VLAN-based 

network segmentation.  Further, by using internal, non-

routable IP addresses for VMs (using DHCP and NAT 

capabilities) running within virtualized hosts, the number of 

virtual networks that can be realized is even higher and (c)  

The VLAN scheme uses the Spanning Tree Routing 

Protocol to forward packets, VXLANs can use the ECMP 

protocol of Layer 3 [11], thus efficiently utilizing all 

available network links in the network fabric of the data 

center. 

    The disadvantage of a network segmentation approach 

based on Overlay-based networking technology  is that it 

requires large mapping tables in each virtual switch level in 

order to generate overlay packets – since the MAC address 

of the destination VM could be located in any IP subnet and 

any host in the data center.  Building these mapping tables 

using just a flooding technique is inefficient. Hence, a 

control plane needs to be deployed in the virtualized 

infrastructure to populate the mapping tables for use by the 

overlay packet generation module in the hypervisor. This 

creates an additional layer of control and adds to the 

complexity of network management [11]. 

III. TRAFFIC CONTROL IN A VIRTUAL NETWORK 

     Traffic control in a virtual network can be performed 

using either a virtual firewall or a physical firewall. 

However, in a virtualized infrastructure, the computing 

nodes (whose incoming/outgoing traffic needs to be 

controlled) are VMs and are end nodes of a virtual network. 

Hence, the deployment of a physical firewall will require the 

traffic from the virtual network to be diverted into the 

physical network (where the physical firewall resides) and 

  

99Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         112 / 157



then back into the virtual network. This extra route travelled 

by communication packets will result in latency and 

consequently reduced performance of applications hosted on 

VMs. Hence, in this paper, we consider only virtual 

firewall-based solutions for traffic control in virtual 

networks for securing VMs. 

     Earlier in this paper (Section 2), we saw that two or more 

virtual firewalls can be used to create network segments in a 

virtual network. Since the focus of this Section is on traffic 

control, we are going to analyze the use of virtual firewalls 

only for controlling inter-VM traffic. 

     Inter-VM traffic can be of two kinds: the traffic between 

two VMs residing on the same virtualized host (either 

connected to the same or different virtual switches) and 

traffic between two VMs hosted on different virtualized 

hosts. Traffic between two VMs residing on the same 

virtualized host can only be enabled  if each VM has at least 

one vNIC (a VM can have multiple vNICs just like a 

physical server can have multiple physical network interface 

cards or network adapters) connected to a common virtual 

switch. This is due to the fact that two virtual switches in a 

virtualized host cannot be connected to each other. 

Although, theoretically, a pathway between two VMs on the 

same virtualized host can be establishing by routing the 

traffic from one VM (say VM1) to the physical network 

(through one physical NIC) and back into the same 

virtualized host (through another physical NIC) to the target 

VM (say VM2), this is not a viable option in most 

situations, due to the latency issue referred to above. Of 

course, for enabling traffic between two VMs residing on 

two different virtualized hosts, the traffic has to travel from 

the virtual network (in the originating virtualized host) 

where the originating VM resides, through the physical 

network of the data center and back again into the virtual 

network of the target VM (in the target virtualized host). 

     Virtual firewalls come in two flavors: (a) VM-based – 

this class of virtual firewalls, comes packaged as a virtual 

security appliance on a specially-configured VM and (b) 

Hypervisor Kernel-based – this class of firewalls operates as 

a kernel loadable module in the kernel of the hypervisor. 

A. Traffic Control using VM-based Firewalls 

     A VM-based firewall, as the name indicates, is a firewall 

software that runs in a VM. It can be installed as a software 

module on a guest VM already running in a virtualized host 

or it can be packaged as a virtual security appliance on a 

specially prepared VM instance. Its location within the 

virtual network of a virtualized host is critical as its function 

is to monitor, drop or forward packets between sets of VMs 

belonging to different security zones. This is the reason that 

this class of firewalls is called bridge-mode firewalls as it 

also acts as a bridge between zones (since the only link 

between VMs connected to two different virtual switches is 

through a VM with vNICs connected to both virtual 

switches). 

A.1 Analysis 

     The advantage of VM-based firewall for traffic control is 

that since it is available as a Virtual Security Appliance, it is 

easy to deploy and configure in a virtualized host. Its initial 

location within the virtual network of the virtualized host is 

relatively easy as it is dictated by the layout of the security 

zones based on the various virtual switches and this type of 

firewall only monitors and filters packet flows between one 

virtual switch and another. 

     The disadvantages of VM-based firewalls are: (a) It 

cannot monitor and filter traffic flowing between two VMs 

connected to the same virtual switch, (b) Its performance is 

limited by the number of virtual CPU cores allocated to the 

VM it is residing or packaged in, and (c) All traffic flowing 

into and out of all portgroups and virtual switches associated 

with zones pertaining to this firewall, has to be redirected to 

this firewall causing unnecessary traffic (a phenomena 

called Traffic Trambones [12]). 

 

B. Traffic Control using Hypervisor Kernel-based Firewalls 

     Hypervisor kernel-based firewalls are also called 

hypervisor-mode firewalls and VM NIC firewalls. These 

firewalls install as a hypervisor module along with a VSA, 

the latter used purely for initial configuration (and re-

configuration) for the hypervisor module. Hence, the main 

firewall functions of monitoring and packet filtering are 

done in the hypervisor kernel-module with the VM hosting 

the VSA portion playing the role of a Control or Service 

VM. Logically residing between a VM vNIC and the 

hypervisor virtual switch, this type of firewall provides a 

vNIC-level firewall enforcement point for traffic to and 

from VMs. Thus they can be used for selectively protecting 

a given subset or all the VMs in a host or a cluster. Because 

of the visibility at the vNIC level, these firewalls can protect 

traffic flowing between two VMs connected to the same 

virtual switch, unlike the bridge-mode firewalls.  Another 

distinguishing feature of this type of firewalls is that the 

firewall does not require any changes 

100Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         113 / 157



to the virtual network configuration inside a virtualized host 

(such as additional network pathways for redirecting traffic 

to the VM hosting firewall) or modification to IP addresses 

of VMs. 

B.1 Analysis 

     The advantages of hypervisor kernel-based firewalls are: 

(a) Their performance is of an order of magnitude much 

higher than bridge-mode firewalls since they perform packet 

inspection from within the kernel at native hardware speeds 

rather in a VM where the performance is limited by the 

capacity of virtual CPU allocated to it [13], (b) These 

perform monitoring at the VM NIC (vNIC) level and hence 

all firewall rules (or ACLs) and state are logically attached 

to the VM interface. Hence these rules and state move with 

the VM when it migrates from one virtualized host to 

another, thus providing continuity of security protection for 

a VM irrespective of its location [12], and (c) 

Implementations that support firewall rules at a higher level 

of abstraction than IP addresses or ports, can be used to 

filter packets at data center, host cluster and port group 

levels. 

     The disadvantages of hypervisor kernel-based firewalls 

are: (a) This class of firewalls works as a managed kernel 

process and is therefore neither a VM resident program nor 

is part of the virtual network of the hypervisor. Hence 

conventional management tools having access only to VMs 

or virtual networks cannot be used to monitor this class of 

firewalls and (b) Some of the implementations of this class 

of firewall support only 5-tuple based rules (Source and 

Destination IP Address, Source and Destination Ports and 

Protocol). They do not support higher level abstractions 

such as Security Groups, Zones or Containers. However, 

some of the latest offerings do support firewall rules based  

On higher level abstractions and flow statistics as well. 

 

IV. SUMMARY & CONCLUSIONS 

    In this paper, we performed a detailed analysis of two 

network segmentation approaches and two virtual firewall 

types for the protection of VMs in virtualized 

infrastructures. Comparing the features of the two network 

segmentation techniques, we find that the only distinct 

advantage that overlay-based network segmentation (such as 

VXLAN) holds over the VLAN-based approach is its 

infinite scalability. Hence, unless the number of VMs in the 

data center is in the order of thousands, the VLAN-based 

approach provides a satisfactory outcome in terms of 

performance and for meeting the goal of securing VMs. 

Because of this, the VLAN approach is economically 

justifiable in many environments. Further justification 

comes from the fact that overlay-based network 

segmentation schemes require sophisticated virtual switches, 

large mapping tables and the overhead of creating a control 

plane using SDN controllers. 

     Analyzing the relative advantages and disadvantages of 

the two firewall types – VM-based and hypervisor kernel-

based – we find that the hypervisor kernel-based firewall is 

superior to the VM-based one in terms of three features. 

They are: (a) Performance (executes in the hypervisor kernel 

instead of in a VM), (b) Reduced network traffic (no 

diversion of traffic needed from various switches to the VM 

hosting the firewall) and, (c) Firewall rules are associated 

with the VM interface (since it is placed between a VM NIC 

and the virtual switch) and move with VM. The third feature 

is very critical from the point of view of the security of the 

VM, since it provides continued protection to it even when 

it migrates to different virtualized hosts or host clusters 

within the data center, without any additional re-

configuration. It is this overwhelming security assurance 

feature that makes the hypervisor kernel-based firewall, the 

security software of choice in many virtualized 

infrastructures. 

 

REFERENCES 

[1] D. Shackleford, Virtualization Security – Protecting Virtualized 

Environments, Wiley Publishing Inc, Indianapolis, IA, USA, 2013  

[2] “DMZ Virtualization with VMware Infrastructure”. [Online]. 

http://www.vmware.com/files/pdf/dmz_virtualization_vmware_inf

ra_wp.pdf [retrieved: Jan, 2016]. 

[3] “MAC Bridges and Virtual Bridged LANs”. [Online]. 

https://www.ietf.org/meeting/86/tutorials/86-IEEE-8021-

Thaler.pdf [retrieved: Dec, 2015]. 

[4] “IEEE 802.1Q Virtual LANs (VLANs)”. [Online]. 

http://www.ieee802.org/1/pages/802.1Q.html 

 [retrieved: Dec, 2015]. 

 

 

[5] A. Hameed, and A. N. Mian, “Finding Efficient VLAN 

Topology for better broadcast containment,”  

Third International  Conference on the Network of the Future 

(NOF), Gammarth, Nov 2012, pp.1-6. 

[6] Introduction to Virtualized Networking. [Online]. 

http://www.ipspace.net/Introduction_to_Virtualized_Networking 

[retrieved: Dec, 2015].  

[7] Overlay Virtual Networking. [Online]. 

http://www.ipspace.net/Overlay_Virtual_Networking 

[retrieved: Dec, 2015].  

 

101Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         114 / 157



[8] “Overlay Virtual Networking and SDDC”.  [Online]. 

http://my.ipspace.net/bin/list?id=xSDNOverlay  

[retrieved: Jan, 2016].  

[9] “Virtual eXtensible Local Area Network (VXLAN): A 

Framework for Overlaying Virtualized Layer 2 Networks over 

Layer 3 Networks”. [Online].     https://tools.ietf.org/html/rfc7348 

[retrieved: Jan, 2016].  

[10] “VXLAN Overview: Cisco Nexus 9000 Series Switches”. 

[Online]. 

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-

9000-series-switches/white-paper-c11-729383.pdf 

[retrieved: Dec, 2015].  

[11] “Scaling Overlay Virtual Networks”. [Online]. 

http://content.ipspace.net/get/Scaling%20Overlay%20Virtual%20

Networks.pdf 

[retrieved: Jan, 2016].  

[12] Virtual Firewalls. [Online]. 

http://www.ipspace.net/Virtual_Firewalls [retrieved: Dec, 2015].  

[13] Virtual Firewall. [Online]. 

https://en.wikipedia.org/wiki/Virtual_firewall 

[retrieved: Dec, 2015].  

 

 

 

 

102Copyright (c) The Government of USA, 2016. Used by permission to IARIA.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         115 / 157



Profiling and Predicting Task Execution Time Variation of
Consolidated Virtual Machines

Maruf Ahmed, Albert Y. Zomaya
School of Information Technologies, The University of Sydney, Australia

Email: mahm1846@uni.sydney.edu.au, albert.zomaya@sydney.edu.au

Abstract—The task execution time variation (TETV) due to
consolidation of virtual machines (vm), is an important issue
for data centers. This work, critically examines the nature
and impact of performance variation from a new angle. It
introduces a simple and feasibly implementable method of using
micro and syntactic benchmarks to profile vms. It is called,
the Incremental Consolidation Benchmarking Method (ICBM). In
this method, server resources are systematically incremented,
in order to quantitatively profile the effects of consolidation.
Resource contention due to basic resources, like CPU, memory
and I/O, have been examined separately. Extended experiments
have been done on the combinations of those basic resources,too.
All experiments have been done and data are collected from real
virtualized systems, without using any simulator. Theleast square
regression (LSR) is used on the profiled data, in order to predict
the TETV of vms. To profile the TETV data, the server has been
consolidated with different types and levels of resource loads. The
prediction process, introduced here is straightforward and has
low overhead, making it suitable to be applied on a wide variety
of systems. The experimental results show that, the LSR models
can reasonably well predict TETV of vms under different levels of
consolidation. Theroot mean square error (RMSE) of prediction
for combination of resources, like CPU-Memory, CPU-I/O and
Memory-I/O, are within 2.19, 2.47 and 3.08, respectively.

Keywords–virtualization; consolidation; performance; variation;
prediction.

I. I NTRODUCTION

The virtualization is an essential part of modern data
centers. It is required for running many day-to-day operations,
like deploying a fault tolerance scheme, or providingCloud
services. A virtual machine (vm) is a self-contained unit
of execution, usually created with the help of a hypervisor
running on top of a physicalhost. The vms are immensely
important for data centers, as they help to implement the pay-
as-you-go model for the Cloud. Usually, a number of vms
are run on a host to reduce the operational cost. All the
simultaneously running vms of a physical host are collectively
known, as theco-located vms. The Cloud users can rent vms
and have complete control over the rented vms. However, they
do not have access to the underlaying physical hardware.

Theconsolidation of vms, is generally done to increase the
resource utilization of virtualized servers. However, it imposes
a performance penalty, which manifest itself through the
task execution time variation (TETV) of co-located vms [1]–
[3]. This performance variation happens because of resource
contention among the vms. It is an obstacle to efficiently
scheduling parallel applications on virtualized systems,for
several reasons: (i) The variation depends on the server load
and resource contention among the vms. The result is that, the
same task may take different amount of time to be completed
on different vms. At present there is no well accepted method
to predict this variation; (ii)To schedule a task of any parallel

application, the execution finish time of all the parents tasks
must be known. It becomes difficult due to the TETV. Thus,
it is an important issue to address, if parallel applications are
to be scheduled on virtualized clusters, efficiently.

Most of the previous works on this area fall into two main
categories. The first one, is to explore the cost-performance
models of parallel applications on public Clouds [4]–[13].
The other one, is virtualized server consolidation benchmark-
ing [14]–[19]. Nonetheless, one can easily identify several
weaknesses of those works: (i) They do not explore the
resource contention and performance variation of co-located
vms explicitly; (ii) Experiments have been done, mainly with
parallel applications. Those have complex internal structure of
their own, usually represented by a task graph. The virtual-
ization involves so many layers of abstraction and hardware
indirection. The complex internal structures of an application
can make it difficult to accurately capture the relationship
among the co-located vms; (iii) They do not provide the
option to control usages of different computing resources,
either individually or granularly during experiments. In this
case such an ability is very desirable; (iv) Consolidation
benchmarks are designed to provide an overall average pointof
some combination of tests, not details about different levels of
consolidation; (v) The consolidation benchmarks are hugely
dependent on vendors and their applicability for comparing
different virtualization technologies are not well defined. For
example, theVMmark benchmark is designed for VMware
ESX servers; (vi) Most works use complex mathematical
optimization tools, which have high overhead. The perfor-
mance modeling greatly depends on system configuration, and
changes to system configuration may require model retraining,
which in turn becomes hugely time consuming process due
to high overhead; (vii) Many works deal with theoretically
derived model of the Cloud and simulation is used for verifi-
cation. Those simulations often do not take virtualizationinto
consideration, hence does not always portray the reality.

It is clear that, a new design for the consolidation bench-
mark is required, to address above limitations. TheIncremen-
tal Consolidation Benchmarking Method (ICBM) overcomes
above issues, using micro and syntactic benchmarks. Some of
the design features of the ICBM are discussed next, in order
to explain how does it overcome above issues:

1) Micro and syntactic benchmarks suites have been used
instead of parallel applications. This gives the ability to
manipulate basic resources, like CPU, memory and I/O, both
individually and granularly during experiments. This makes it
possible to analyze the effect of consolidation on each resource
type more discretely than the previous works;

2) The ICBM, at its core is agnostic to both virtualization
technology and system configuration. First and foremost, itis

103Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         116 / 157



a methodology that can be applied to any system in general,
making it suitable to compare a wide range of systems;

3) The TETV prediction models for combinations of re-
sources have been built from profiled vm data. Separately
collected TETV data due to basic resources, like CPU, memory
and I/O, have been used to predict TETV for combination of
resources, like CPU-Memory, CPU-I/O and Memory-I/O. The
prediction results have a good level of accuracy, demonstrating
that profiling for every combination of resource load is not
necessary. It can potentially save a huge amount of time while
profiling a large data center;

5) All experiments have been done on actual virtualized
servers rather than using simulators. All results presented here
are real system data. The results show that, the ICBM can
predict TETV of real virtualized systems quite accurately;

4) Prediction models have been built using theLeast Square
Regression (LSR), which has very low overhead. Use of LSR
instead of a complex mathematical tool, makes the training
and prediction process much faster. Often, changes in system
configuration may require retraining of models, in such cases
a low overhead process can save a lot of time;

5) Analysis of profiled data reveals some interesting pat-
terns. For example, it shows that certain types of resource
combinations can cause the task execution time of consolidated
vms to degrade more rapidly than the others. This indicates
that resource contention is one of the main factors, behind the
average utilization of virtualized servers being so low.

The micro and syntactic benchmarks suites play an impor-
tant part in the design of the ICBM. They are important tools
for server performance analysis, and a lot of studies have been
done on their design. These benchmarks are the result of long
time analysis of commercially successful applications. They
are inspired by an interesting phenomenon that, the applica-
tions spend both 80% of their time and resources, executing
just 20% of the code [20]. The micro and syntactic benchmark
suites are carefully crafted to mimic such important parts rather
than running the entire application. Each benchmark suite
consists of several individual applications. These applications
are grouped together in a well-thought-out pattern.

The benchmarks suites are used here, to get a finer control
on the individual server resource types. Without using these
benchmark suites, such controlling of resources is not possible.
Experimental results show that, the benchmark suites can cause
significant amount of resource contention and TETV on vms.
Thus, the benchmark suites can be a set of powerful tools for
studying the performance variation of virtualized servers. The
experiments that are done here, are very comprehensive and
provide some interesting results.

Rest of the paper is structured as follows. The main
objectives of experiments are discussed in the Section II,
followed by the methodology described in the Section III. Sec-
tions III-B and III-A briefly discuss the benchmarks used in the
experiments and experiential setup, respectively. Detailresults
of experiments and prediction are given in the Section IV.
Finally, Section V concludes the paper, with an overview of
the future work.

II. PROBLEM DESCRIPTION

This section describes the objectives of the experiments.
The first objective, is to quantitatively measure the effectof

consolidation on the task execution time of vms. The logical
view of a virtualized server is shown in the Figure 1a. Here,
a typical situation has been considered. Usually, a physical
server hosts vms of the same configuration, however number of
simultaneously running vms may change over time. Different
vms may also have different types of resource requirements.
Some of them may be CPU or memory intensive, while others
may be multiple resources intensive. As the number of vms
increase or decrease on a physical host, it is important to know
the TETV of individual vms. The objective here, is to offer a
systematic way to record the TETV due to different numbers
of vms, and find a way to predict the TETV.

The second objective, is to establish a relationship between
TETV due to basic types of resource contention and that of
combination of resources. Figure 1b depicts the situation of a
server from resource usages point of view. In each graph, the
x-axis represents the number of vms simultaneously running
on the host. The y-axis represent the task execution time of
a vm. As the number of co-located vms increase, the task
execution time starts to vary.

The actual amount of variation depends on types and
amount of resource loads. For three basic resources types,
namely CPU, memory and I/O (Figure 1b(i-iii)), the amount
of TETV are excepted to be different. Again for combination
of resources, like CPU-memory, CPU-I/O and memory-I/O
(Figure 1b(iv-vi)), the TETV would be different, too. Profiling
a virtualized system is difficult for many reasons. A server may
be running different number of vms, with different amount
of loads at different points. That makes it impractical, to
profile all vms, for all combination of resources. Establishing a
relation, among the TETV due to basic resource types and that
of combination of resources, would save a lot of time while
profiling a large data center. Next, the procedure used in the
ICBM is discusses in details.

III. M ETHODOLOGY

This section introduces the terminologies and methodology
that have been used for rest of the paper. One of the vms
of host, is designated as the target vm (vt), while rest are
designated as co-located (vco) vms. Thevt has been used to
run different tasks to record their TETV. On the other hand,
vco have been used to collectively create resource contention.

In Cloud, the data is generally stored on dedicated nodes
over the network. However, before processing, all data is
retrieved into the local node. For example, a MapReduce
worker node performs all the mapping and reducing steps on
local data. In fact, MapReduce nodes rely more on local data,
and try to consume as little bandwidth as possible [21]. That
way, local I/O contention has much more impact compared
to that of network I/O. What is more, in order to address the
overall I/O contention issue, it is necessary to address thelocal
I/O contention first [22]. This work provides a quantitativeway
to measure the I/O contention of vms of a node. The network
I/O system consists of several such nodes. Taking this work as
a basis, the issue of network I/O contention can be addressed
through extended experiments.

A parallel application can have many different data flow
paths. As mentioned in the introduction, such an application
can be decomposed into a set of tasks. Then, those tasks need
to be scheduled on different vms individually. This work lays
ground, for understanding the effect of consolidation at vm

104Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         117 / 157



Stage 7

Vco Vco Vco Vco Vco
Vco VcoVco Vco Vco Vco VcoVt

1 4 5 10 11 122 3 6 7 8 9
Hypervisor

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

(a) Stages of the ICBM.

(iv) Combined resources: CPU & Mem (v) Combined resources: CPU & I/O (vi) Combined resources:  Mem & I/O

cococo

t

E
xe

ct
u

io
n

 T
im

e
 o

f 
V

E
xe

ct
u

io
n

 T
im

e
 o

f 
V

E
xe

ct
u

io
n

 T
im

e
 o

f 
V

E
xe

ct
u

io
n

 T
im

e
 o

f 
V

E
xe

ct
u

io
n

 T
im

e
 o

f 
V

 Basic resource on VM      : I/O Basic resource on VM      : Mem Basic resource on VM      : CPU 

E
xe

ct
u

io
n

 T
im

e
 o

f 
V

ttt

tt

(iii)(i) (ii)

(b) Task time variation from resource point of view.

Figure 1. Experimental setup and objective of ICBM.

level. Without this understanding, it is not possible to formulate
the effect on consolidation at a higher level.

The micro and syntactic benchmarks used here, are actually
application suites. They are combinations of several appli-
cations, patterned together to execute such a way that they
put maximum pressure on a particular system resource. For
example, the Filebench includes several different categories of
tests, including a file-server test [23]. Similarly, the Unixbench
consists of many tests, including the System Call Overhead,
Pipe-based Context Switching and Execl Throughput test [24].
The Nbench includes, a task allocation algorithm, Huffman
compression, IDEA encryption, Neural Net and LU Decom-
position test [25]. There are many more test components on
those suites, and all of them are designed to mimic the steps of
commercial applications. Thus, together they can put the vms
under stress like a real application. Also the experimentalre-
sults from real systems show that, these benchmarks cause the
task execution time to vary significantly. Thus, they are well
capable of creating resource contention like a real application.

Initially, vt run one task alone on the host (stage 1 in
Figure 1a) and execution finish time is recorded. In successive
stages, co-located vms are added in a particular pattern to
create resource contention. Manipulating each co-locatedvm,
independently at each step, makes it possible to increase a
particular type of resource load at a desired quantity. In the
experimental setup, twovco are added at each stage until the
server reaches the saturation point. Depending on the configu-
ration, a host can simultaneously run only a certain number of
vms, without becoming unresponsive. That is considered to be
the saturation point. As co-located vms with different resource
types are added at each stage the TETV of all vms are profiled.

Figure 2 provides the pseudo code of ICBM for basic
resource types. The ICBM repeats the same steps for each
resource type, on co-located vms. Therefore, it is not necessary
to explain the steps, for each resource type. Next, these steps
are explained for one type of resource load, the CPU load.

Let t be a task whose TETV due to CPU intensive co-
located vms is going to be investigated. First, thet is run
alone on a single vm (vt) of the host (stage 1 of Figure 1a),
in order to obtain the execution finished time, without any
interference from co-located vms. Next, (stage 2) thet is run
again, this time along with two simultaneously running co-

T ← A set of tasks.
Bcpu ← A set of CPU intensive benchmarks.
Bmem ← A set of memory intensive benchmarks.
Bi/o ← A set of I/O intensive benchmarks.
vt ← A target vm.
vco ← A set of co-located vms.
for Each taskt ∈ T do

Add vt to the host.
Run t on vt alone and record the execution finish time.
for Each benchmark type B← Bcpu, Bmem, Bi/o do

while All the vms of host are respondingdo
Add two extravco with benchmark of type B to host.
Run vt simultaneously with the addedvco, and
record the execution finish time of each.

end while
Remove allvco and free related system resources.

end for
end for

Figure 2. Basic steps of ICBM.

located vms (v1co and v
2
co). Both the new vms, run oneBcpu

type benchmark each, thus only increasing CPU intensive load
on the system. This gives the execution time oft on vt, which
is now consolidated with two co-located CPU intensive vms.
Afterwards, two more CPU intensivevco are added (stage 3),
increasing the number of CPU intensive co-located vms to
four. The execution finish time ofvt is profiled again for this
setting. This way, two newvco are added at each stage, until
the co-located vms stop responding.

The maximum number of vms, that can be simultaneously
run on a host without making it non-responsive, is dependent
on the system configuration. In the experiments, the host had
oneIntel i7-3770 processor, with four cores and eight hardware
threads. Assigning, a logical CPU to each vm, the system could
run maximum of fourteen such vms, simultaneously. Adding
anymore vm, would made the whole system non-responsive.
With one vm designated asvt, and two more newvco added
at each stage, the final stage (stage 7) of the experiment
had thirteen simultaneously running vms (onevt along with
twelve vco). The vms are created with least possible subset of
CPU resources, so that CPU load can be increased with fine
granularity. However, vms with larger number of logical CPU

105Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         118 / 157



can be also created, if such is required.
The same steps are repeated for memory intensivevco, too.

However, in this case memory intensive benchmarks are run
on co-located vms instead of CPU intensive benchmarks. All
vms are configured to have 1 GB of RAM. The experiment
starts (stage 1) with a single vm (vt) running the task, whose
TETV due to memory intensive co-located vms is going to
be investigated. Next, (stage 2)vt is run again, along with
two new co-located vms (v1co and v

2
co), each running one

memory intensive benchmark. Similarly, two more vms (v
i
co

and v
i+1
co ) are added at each stage until the system reaches

a predetermined point of memory load. In this case, adding
a newvco makes the host memory load to be increased by 1
GB. It was done so that, the host memory load can be changed
granularly. The host has 16 GB of RAM. By restricting the
number of vms to thirteen at the final stage, maximum of 13
GB RAM is allocated to the co-located vms, leaving rest for
the hypervisor. As with the CPU load, this predetermined load
is also not a fixed number. Afterwards, for I/O load the same
steps are repeated by adding two I/O intensive benchmarks on
two vco, at each stage. Thus, the TETV for three basic resource
types (CPU, memory and I/O) are collected.

Next, the procedure is repeated forresource combinations.
The combinations are made by choosing two resource types
at a time, from previously mentioned basic three. Those are
CPU-Memory, Memory-I/O and I/O-CPU. Experiments for
combination of loads are done exactly the same way. That is,
start with one vm (vt), and at each stage add two co-located
vms (vico and v

i+1
co ) to increase the load. Difference is that,

now two new vms run two different types of benchmarks. Both
of them, together create the effect of load combinations. For
example, to increase CPU-Memory load, twovco are added at
each stage. One (vico) runs a CPU intensive benchmark, while
the other one (vi+1

co ) runs a memory intensive benchmark.
Above experiments demonstrate, how the execution time of

vt is varied due to co-located vms (v
i
co). However, there is an-

other angle to this problem, that is how thevco are collectively
effect the execution times of each other. To examine this, the
execution finish times of all thevico, are also recorded at each
stage. Finally, the whole procedure is repeated without thevt

altogether. That is, all the experimental steps are repeated, by
adding only load (onvico) at each stage.

Advantage of the ICBM is that, the server load can be
changed granularly, for each basic resource type or their com-
binations. Furthermore, there is no need to know the internal
structure of a complex application, which is running on the vm.
Establishing a relationship between task execution time and
the server load would be helpful for a virtualized data-center
in many ways, including designing heuristic algorithms for
scheduling, consolidation and live-migration of vms [26][27].

A. Experimental setup
A Dell XPS-8500 system has been used in the experiments.

It has one Intel i7-3770 processor and 16GB of RAM. The i7-
3770, has four cores and eight hardware threads, each clocked
at 3.4 GHz. The host is deployed with Xen 4.2 over Fedora 17
core. Fourteen vms have been setup, one to acts asvt, while the
rest arevico. Each vm run Fedora 16, have one logical CPU, 1
GB of RAM and 30 GB virtual disk. The vms are not pinned to
the logical cores. Total of 13 GB RAM is allocated to the vms,
rest are available for the hypervisor. All the benchmarks are

installed on vms beforehand, and a concurrent java application
manages all benchmarks and vms from a remote node.

B. Benchmarks used

This section gives an overview of the benchmark suites,
used in the experiments. A data center may be running
thousands of servers. While designing an algorithm for consol-
idation or live migration scheme, the internal structures of all
the parallel applications may not be known. It is more realistic
to characterize the servers by their loads. Micro and syntactic
benchmark suites are well suited for such purposes.

Three different categories of benchmarks have been used
for three categories of resources, namely CPU, memory and
I/O. The Nbench [25] and Unixbench [24], are the two CPU
intensive benchmark suites used here. Two memory benchmark
suites used here, are theCachebench [28] andStream [29][30].
Finally, three I/O benchmark suites have been used, they are
the Dbench [31], Filebench [23] and Iozone [32]. For each
benchmark, several different parameters are need to be set.
Owing to the space limitation, it is not possible to list all the
parameters here. A fuller discussion about the benchmarks,is
out of scope for this paper. Interested readers are encouraged to
refer to the citations of respective benchmark suites for details.

IV. RESULTS

The results for prediction are given in the Section IV-C.
However, to interpret the prediction results, it is necessary to
discuss some observations of the experimental results. It will
also help to clarify the training and testing data format, which
has been used during the training and prediction phrases.

A. Execution time variations of the target vm (vt)

Three graphs of Figure 3, show the TETV ofvt due to
three basic types of resource loads. They are being, CPU
(Figure 3a), memory (Figure 3b) and I/O (Figure 3c). In each
graph, the x-axis shows the total number of vms running on
the system, while y-axis presents the task completion time on
vt. First point of the graph, shows the execution time ofvt,
when it is run alone on the server. At this stagevt is free
from any interference from co-located vms. As explained in the
Section III, two co-located vms (vco) are added to the server
at successive stages. In the final stage, there were twelvevco,
simultaneously running besides thevt. In other words, from
left to right along the x-axis, the interference from co-located
vms increases. The first point of each graph, gives execution
time of the task without any interference from co-located vms.
On the other hand, the last point gives the execution time with
maximum interference from co-located vms. Results clearly
show that different types and number ofvco, make the task
execution time to vary at a different rate.

Figure 3a shows that, the TETV ofvt with the increase
of CPU intensivevico, is the minimum among all types of
workloads. On the other hand, for memory intensivevco
(Figure 3b), two CPU intensive tasks (Nbench and Unixbench)
on vt show less variation compared two memory intensive
tasks (Cachebench and Stream) under the same situation. As an
example, in isolation the Nbench takes 10.1 minute to execute
on vt. With other 12 memory intensive co-located vms (vco)
it extends to 12.83 minutes, which is only 27.02% longer. In
contrast, the Cachebench under the exact same setup takes
587.58% longer to execute (execution time goes from 11.76

106Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         119 / 157



min to 80.68 min). Figure 3c shows the TETV due to I/O
intensivevco. Here, CPU intensive tasks do not show much
performance degradation, while both the memory and I/O
intensive tasks do. For example, the Cachebench (a memory
intensive task) have 1057.311% increase in execution time,
while Iozone (an I/O intensive task) have 1482.93%.

Next, Figure 4 shows the TETV onvt, when combination
of loads have been used onvco. The combinations are being
CPU-Memory (Figure 4a), CPU-I/O (Figure 4b) and Memory-
I/O (Figure 4c). Figure 4a shows the TETV onvt due to a

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm with CPU load 

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(a) Basic resource type: CPU.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm with Memory load 

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(b) Basic resource type: Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm with I/O load 

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(c) Basic resource type: I/O.

Figure 3. The TETV ofvt due to various basic types of resource load on
vco.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm with both CPU and Mem load

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(a) Combination of resources: CPU-Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm with both Mem and I/O load 

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(b) Combination of resources: Memory-I/O.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm with both CPU and I/O load 

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(c) Combination of resources: CPU-I/O.

Figure 4. The TETV ofvt due to different combinations of resource load on
vco.

mix of CPU and memory intensivevco. Here, CPU intensive
tasks onvt show least amount of degradation just as observed
previously. Among the memory intensive benchmarks, the
Cachebench shows highest rate of performance degradation
(542.74%). However, for I/O intensive tasks the effect of CPU-
Memoryvco combination, is less adverse compared to memory
intensive tasks. Figures 4c and 4b, show the performance
degradation ofvt, when I/O intensivevco is coupled with CPU
and memory intensivevco, respectively.

In both cases, memory and I/O intensive tasks onvt

show comparatively more performance degradation. In the case

107Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         120 / 157



of CPU-I/O load (Figure 4c), the Cachebench and Iozone
show increase of execution time by 1907.21% and 1991.67%,
respectively. Again for Memory-I/O load (Figure 4b), the
same two benchmarks show worse performance degradation
(1100.09% and 1502.56%, respectively). Table I shows the
standard deviation (SD) of execution times of all seven tasks
on vt through stage 1 to 7.

TABLE I. STANDARD DEVIATION OF TASK EXECUTION TIMES (MIN ).

Task
type

CPU intensive Mem. intensive I/O intensive

L
oa

d
ty

pe

N
be

nc
h

U
ni

xb
e

nc
h

C
a

ch
e

be
nc

h

S
tr

e
a

m

D
be

nc
h

F
ile

be
nc

h

Io
zo

ne

CPU 3.66 0.05 0.99 2.42 0.00 0.41 1.51

B
a

si
c Memory 2.58 0.05 25.28 16.89 0.01 2.97 14.18

I/O 0.01 0.15 46.59 0.12 0.02 15.16 54.70

CPU-
Memory

4.12 0.05 23.51 1.43 0.00 3.06 9.89

C
om

bi
ne

d

CPU-I/O 0.88 0.08 83.85 0.35 0.01 17.33 71.62

Memory-
I/O

3.82 0.06 49.40 0.82 0.01 13.17 56.62

The results of this section show, how the degradation of
task execution time for each resource can be presented in
a quantitative way. At present, there is no standard way to
compare the effect of consolidation, for different types of
resources or different classes of servers. The straightforward
method presented here, can be used to compare the effect of
consolidation on wide varieties of systems.

B. Execution time variations of the co-located vms (vico)

Execution finish time of all the co-located vms, at each
stage are also profiled. This data is used for predicting the
TETV of vt. Figures 5 and 6 show the arithmetic mean of
execution times of allvico, at each stage, separately. During
experiments, it was observed that, the arithmetic mean of
execution time of all thevico follow a pattern, for each resource
type. Even though, individualvico execution time might not
have such characteristic. This, clearly indicates that overall
resource usages of all vms, is what ultimately shapes the
performance degradation curve during consolidation.

Both in Figures 5 and 6, the first point of each graph is
always zero, as there is novico running on the host at stage
1 (see Figure 1a). At stage 2, twovico are running, therefore
second point is the arithmetic mean of task execution times
of two vms (v1co, v2co). Similarly, third point is the arithmetic
mean of values of four vms (v1co, v2co, v3co andv4co) and so on.

Using above procedure, each subgraph has seven arithmetic
mean variation plotting ofvco, for seven different tasks running
on vt. Furthermore, arithmetic mean of those seven values are
also shown (in black). Increase of different types of workloads
causes the arithmetic mean of execution times to change
differently. It can be seen that, the variation is the minimum
for CPU intensive load (Figure 5a), among all three basic types
of resources. Among the three combination of resources, the
CPU-Memory (Figure 6a) intensivevco combination shows
least amount of performance degradation. On the other hand,
the combination of Memory-I/O intensivevco (Figure 6b) have

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n 
tim

e 
of

 v
co

 (m
in

)

No of vm with CPU load 

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(a) Basic resource type: CPU.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n 
tim

e 
of

 v
co

 (m
in

)

No of vm with Memory load 

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(b) Basic resource type: Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n 
tim

e 
of

 v
co

 (m
in

)

No of vm with I/O load 

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(c) Basic resource type: I/O.

Figure 5. Arithmetic mean of TETV ofvco with respect to three basic
resource types load changes.

debilitating effect on the system as the arithmetic mean of
execution time rises rather quickly, compared to other cases.

In order to obtain above execution time values, each
experiment has been repeated at least three times. The order
of adding vms has been shuffled, in order to observe their
effect. However, no significant difference between the results
have been observed. Two vms are added at each stage, only to
conduct the experiments in a uniform way. In our observation,
the order of adding vms do not change the results ultimately,
rather it depends on the cumulative resource usages of vms.

108Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         121 / 157



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n 
tim

e 
of

 v
co

 (m
in

)

No of vm with both CPU and Mem load 

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(a) Combination of resources: CPU-Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n 
tim

e 
of

 v
co

 (m
in

)

No of vm with both Mem and I/O load 

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(b) Combination of resources: Memory-I/O.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n 
tim

e 
of

 v
co

 (m
in

)

No of vm with both CPU and I/O load 

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(c) Combination of resources: CPU-I/O.

Figure 6. Arithmetic mean of TETV ofvco with respect to three
combinations of resource load changes.

C. Task execution time variation prediction
Four benchmarks have been used as tasks for training. They

are the Nbench, Unixbench, Cachebench and Stream. Three
other benchmarks have been used for testing. They are the
Dbench, Filebench and Iozone. All of the test benchmarks have
different levels of performance degradation. Therefore, they
can help to evaluate the prediction process better. Training and
testing have been done on different sets of data. No training
data have been used for testing, and vice versa.

The nine subgraphs of Figure 8, separately show prediction
results for three resources of three test tasks onvt. Each

subgraph, contains two sets of predictions, obtained from
two separate data sets, which are described next. First set of
predictions, are shown in blue on Figure 8. In this case, the
TETV data ofvt for basic resource types, has been used to
predict TETV of vt for combination of resources. First, the
TETV data ofvt for CPU (Figure 3a), Memory (Figure 3b) and
I/O (Figure 3c) intensivevco are recorded, separately. Those
are used as inputs. Then, three resource combinations have
been used as three separate targets, which are CPU-Memory
(Figure 4a), CPU-I/O (Figure 4c) and Memory-I/O (Figure 4b).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

C
ac

he
be

nc
h 

ex
ec

ut
io

n 
tim

e 
on

 v
t (

m
in

)
No of co-located vm 

CPU load
Mem load

I/O load

CPU-Mem load
Mem-I/O load
CPU-I/O load

(a) Vt training data: Cachebench.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

Fi
le

be
nc

h 
ex

ec
ut

io
n 

tim
e 

on
 v

t (
m

in
)

No of co-located vm 

CPU load
Mem load

I/O load

CPU-Mem load
Mem-I/O load
CPU-I/O load

(b) Vt & Vco testing data: Filebench.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

C
ac

he
be

nc
h:

 A
vg

. e
xe

cu
tio

n 
tim

e 
of

 a
ll 

v c
o 

(m
in

)

No of co-located vm 

CPU load
Mem load

I/O load

CPU-Mem load
Mem-I/O load
CPU-I/O load

(c) Vco training data: Cachebench.

Figure 7. Examples of input and target data used for both training and
testing.

109Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         122 / 157



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Dbench CPU-Mem

(a) Prediction for Dbench: CPU-Mem load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Filebench CPU-Mem

(b) Prediction for Filebench: CPU-Mem load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Iozone CPU-Mem

(c) Prediction for Iozone: CPU-Mem load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Dbench Mem-I/O

(d) Prediction for Dbench: Mem-I/O load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Filebench Mem-I/O

(e) Prediction for Filebench: Mem-I/O load.

 0

 25

 50

 75

 100

 125

 150

 175

 200

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Iozone Mem-I/O

(f) Prediction for Iozone: Mem-I/O load.

 0

 25

 50

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Dbench CPU-I/O

(g) Prediction for Dbench: CPU-I/O load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Filebench CPU-I/O

(h) Prediction for Filebench: CPU-I/O load.

 0

 25

 50

 75

 100

 125

 150

 175

 200

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n 
tim

e 
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Iozone CPU-I/O

(i) Prediction for Iozone: CPU-I/O load.

Figure 8. Task execution time prediction fromvt andvco data.

Input & target data example. In above Figures 3 and 4,
data is grouped according to resource loads. It is done to
demonstrate that, different types of resources influence the task
execution time differently. Thus, it is important to study the
effect of each resource type separately. However, for training
and prediction, input data needs to be grouped benchmark
wise. It is required, because during training, the TETV data
due to basic resources of a task, needs to be linked to the
TETV data due to combination of resources of the same task.
Otherwise, training would not be done with a consistent data.

Figure 7a shows an example, of this rearranged input
and target data set that is used for training. It combines the
TETV data of the Cachebench onvt, for three basic and three
combined types ofvco loads from Figures 3 and 4, respectively.
All benchmarks data are rearranged similarly. During training,
three basic resources data (CPU, Memory and I/O) are used as
inputs and three combination of resources data (CPU-Memory,
CPU-I/O and Memory-I/O) as targets. From the training data
set, three sperate models have been generated, for three sets
of target data (CPU-Memory, CPU-I/O and Memory-I/O). All
three targets use the same three basic resources data as inputs.

An example of test data set is shown in Figure 7b. It
combines six TETV data of the Filebench, from Figures 3
and 4. Prediction results for three resources (CPU, Memory
and I/O) of three test benchmarks (Dbench, Filebench and
Iozone) are shown in Figure 8. Theroot mean square error
(RMSE) for this set of predictions are shown in Table II.

Training with cco data. The second set of predictions
(shown in red on Figure 8), are obtained by training the
models only withvco data. This demonstrates an interesting
phenomenon, that models generated through use of co-located
vm (vco) data only, can predict the execution time variations
of target vm (vt), too. During training the CPU (Figure 5a),
memory (Figure 5b) and I/O (Figure 5c) data ofvco are used
as inputs, while CPU-Mem (Figure 6a), Mem-I/O (Figure 6b)
and CPU-I/O (Figure 6c) data ofvco used as targets. On the
other hand, during testing thevt data are used as both input
and target. All testing have been done with the same three
benchmarks (Dbench, Filebench and Iozone), that have been
used in the previous section for testing. That is, in this case
models are generated using only co-located vms data, while
testing is done with target vm data.

110Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         123 / 157



T t

cpu−mem,i = −20.415 + 4.795 ∗ (T t

cpu,i)
0.7 + 0.752 ∗ (T t

mem,i)
0.9 + 0.579 ∗ (T t

io,i)

−0.119 ∗ (T t

cpu,i)
0.7

∗ (T t

mem,i)
0.9

− 0.035 ∗ (T t

cpu,i)
0.7

∗ (T t

io,i) + 0.002 ∗ (T t

mem,i)
0.9

∗ (T t

io,i)
(1)

T t

cpu−io,i = −16.393527 + 0.802 ∗ (T t

cpu,i) + 0.282 ∗ (T t

mem,i) + 1.769 ∗ (T t

io,i)

−0.020 ∗ (T t

cpu,i) ∗ (T t

mem,i) − 0.023 ∗ (T t

cpu,i) ∗ (T t

io,i) + 0.003 ∗ (T t

mem,i) ∗ (T t

io,i)
(2)

T t

mem−io,i = −16.549 + 2.104 ∗ (T t

cpu,i) + 7.920 ∗ (T t

mem,i)
0.2

− 0.169 ∗ (T t

io,i)
0.96

−0.957 ∗ (T t

cpu,i) ∗ (T t

mem,i)
0.2 + 0.031 ∗ (T t

cpu,i) ∗ (T t

io,i)
0.96 + 0.455 ∗ (T t

mem,i)
0.2

∗ (T t

io,i)
0.96

(3)

Figure 9.TETV models for resource combinations (CPU-Memory, CPU-I/O & Memory-I/O) built from vt data.

T t

cpu−mem,i = −0.009 + 0.190 ∗ (T co

cpu,i)
1.2 + 0.220 ∗ (T co

mem,i)
1.2 + 0.250 ∗ (T co

io,i) (4)

T t

cpu−io,i = −0.102 + 4.217 ∗ (T co

cpu,i)
3.25

− 0.034 ∗ (T co

mem,i) + 1.383 ∗ (T co

io,i)
0.7

+0.544 ∗ (T co

cpu,i)
3.25

∗ (T co

mem,i) − 5.394 ∗ (T co

cpu,i)
3.25

∗ (T co

io,i)
0.7 + 0.163 ∗ (T co

mem,i) ∗ IO0.7
(5)

T
t

mem−io,i = 3.720 ∗ (T
co

cpu,i)
0.325

+ 2.376 ∗ (T
co

mem,i) − 0.020 ∗ (T
co

io,i)
0.05

+1.079 ∗ (T co

cpu,i)
0.325

∗ (T co

mem,i) − 4.394 ∗ (T co

cpu,i)
0.325

∗ (T co

io,i)
0.05

− 3.144 ∗ (T co

mem,i) ∗ (T co

io,i)
0.05

(6)

Figure 10.TETV models for resource combinations (CPU-Memory, CPU-I/O & Memory-I/O) built from vco data.

An example of the training data, used here is shown on
Figure 7c. It is a collection of six differentvco workload TETV
data of the Cachebench, from six graphs of Figures 5 and 6.
During training, the variation of arithmetic mean ofvco TETV
due to CPU, memory and I/O are used as inputs. The CPU-
Memory, Memory-I/O and CPU-I/O data are used as targets.
Three models have been generated in this way, with threevco

target data set. However, testing is done withvt test data like,
the example shown in the Figure 7b. Recall that, it was also
used for testing in the previous section. Table III shows the
RMSE for this set of prediction. It shows that, the prediction
results have a good level of accuracy.

Root mean square error (RMSE) for prediction. The
RMSE of predictions for above two sets of data, are shown
separately on Table II and Table III. To the best knowledge of
the authors, there exist no approximation algorithm to estimate
the TETV of co-located vms. Therefore, there is no acceptable
theoretical bound for the RMSE values [33]. Generally, a lower
value of RMSE means better prediction accuracy.

In each case, the prediction is better, when all three basic
resources have been used to generate the model rather than
two. For example, while predicting the TETV of CPU-Memory
load combination, the model build using CPU, memory and I/O
(all 3 basic resources) data produces better results, than that
generated by using only CPU and memory (2 resources) data.

Parametric model. Lastly, the Figures 9 and 10 show
model parameters and coefficients, as they are trained from
profiled vt and vco data, respectively. They demonstrate the
relation between input and prediction data formats. Three
equations of the Figure 9, are for three resource combina-
tion targets. The terms are self-explanatory. For example,
T

t
cpu−mem,i denotes predicted task execution time of a task

on vt, when it is consolidated with total ofi number of CPU
and memory intensive co-located vms. Similarly,T

t
cpu−io,i

and T
t
mem−io,i represent the predicted task execution time

for CPU-I/O and Memory-I/O load combinations, respectively.

The same input parameters have been used for all equations.
T

t
cpu,i represents the task execution time onvt when server

is consolidated withi number of CPU intensive co-located
vms. Similarly,T t

mem,i andT t
io,i represent the task execution

time when the server is consolidated with the same number of
memory and I/O intensive co-located vms, respectively.

The equations of Figure 10 have the same targets, however
inputs are different. Here, arithmetic mean of execution times
of co-located vms have been used as inputs. For example,
T

co
cpu,i represents the arithmetic mean of execution times of

i number of CPU intensive co-located vms. In this case,
arithmetic mean of execution times of co-located vms have
been used to predict the TETV of target vm.

TABLE II. ROOT MEAN SQUARE ERROR(RMSE)FOR PREDICTION
USING TARGET VM (vt) DATA .

CPU-Memory CPU-I/O Mem-I/O
Prediction Prediction Prediction

Ben
ch

m
ar

ks With all 3 Only 2 With all 3 Only 2 With all 3 Only 2
resources:resources: resources:resources: resources:resources:
CPU, CPU, CPU, CPU, CPU, Mem,
Mem, I/O Mem Mem, I/O I/O Mem, I/O I/O

Dbench 0.036 2.516 0.146 0.506 0.011 0.468
Filebench 0.771 2.628 2.131 11.933 2.605 3.022
Iozone 2.193 10.505 2.475 21.566 3.083 3.588

TABLE III. ROOT MEAN SQUARE ERROR(RMSE)FOR
PREDICTION USING CO-LOCATED VM (vco) DATA .

CPU-Memory CPU-I/O Mem-I/O
Prediction Prediction Prediction

Ben
ch

m
ar

ks With all 3 Only 2 With all 3 Only 2 With all 3 Only 2
resources:resources: resources:resources: resources:resources:
CPU, CPU, CPU, CPU, CPU, Mem,
Mem, I/O Mem Mem, I/O I/O Mem, I/O I/O

Dbench 0.006 0.317 0.020 17.621 0.014 20.182
Filebench 0.657 4.515 1.841 10.607 1.475 47.797
Iozone 2.083 43.546 4.572 87.725 3.898 59.863

111Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         124 / 157



Changes in basic configuration of vms, may require some
modification of model parameters. The public Cloud offers
vms for renting in certain number of predefined configurations.
Therefore, number of such models required in reality, are
limited. What is more, since LSR has low overhead, building
or rebuilding of a limited number of such models would not
be time consuming.

V. CONCLUSION AND FUTURE WORK

This work addresses an important issue of virtualization,
the performance variations due to consolidation. A straight-
forward methodology has been introduced here, that is prac-
tically feasible to implement. It is different from most of the
complementary works on virtualization, that employ complex
mathematical tools and rely on simulation. In contrast, this
work introduces a low overhead prediction process, and results
are collected from real virtualized systems.

Micro and syntactic benchmark suites have been used
here in a step by step process, to manipulate various vm
resources individually. The methodology introduced here is
unique, and results prove the effectiveness of this method.
Experimental results from real virtualized systems show that,
in this way it is possible to predict the TETV of vms quite
accurately. It provides a new and quantitative way to explore
the mutual performance interference of co-located vms. The
results also provide some valuable inside into the nature of
resource contention due to consolidation of vms.

The experimental results encourages one to continue work-
ing along this direction. For future work, experiments would
need to be extended to a wider range of virtualization tech-
niques and server configurations, to derive a more generalized
model. More questions related to this method, can be addressed
in details in future works.

REFERENCES

[1] T. Janpan, V. Visoottiviseth, and R. Takano, “A virtual machine con-
solidation framework for CloudStack platforms,” in ICOIN,2014, pp.
28–33.

[2] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila,and H. Tenhunen,
“Utilization Prediction Aware VM Consolidation Approach for Green
Cloud Computing,” in CLOUD, 2015, pp. 381–388.

[3] A. Tchana, N. D. Palma, I. Safieddine, D. Hagimont, B. Diot, and
N. Vuillerme, “Software Consolidation as an Efficient Energy and Cost
Saving Solution for a SaaS/PaaS Cloud Model,” in Euro-Par, 2015, pp.
305–316.

[4] M. Dobber, R. D. van der Mei, and G. Koole, “Effective Prediction of
Job Processing Times in a Large-Scale Grid Environment,” inHPDC,
2006, pp. 359–360.

[5] V. E. Taylor, X. Wu, J. Geisler, and R. L. Stevens, “Using Kernel
Couplings to Predict Parallel Application Performance.” in HPDC,
2002, pp. 125–134.

[6] W. Gao, Y. Li, H. Lu, T. Wang, and C. Liu, “On Exploiting Dynamic
Execution Patterns for Workload Offloading in Mobile Cloud Applica-
tions,” in ICNP, 2014, pp. 1–12.

[7] A. Gupta, L. V. Kalé, F. Gioachin, V. March, C. H. Suen, B.Lee,
P. Faraboschi, R. Kaufmann, and D. S. Milojicic, “The who, what, why,
and how of high performance computing in the cloud,” in CloudCom,
Volume 1, 2013, pp. 306–314.

[8] J. Simão and L. Veiga, “Flexible SLAs in the Cloud with a Partial
Utility-Driven Scheduling Architecture,” in CloudCom, Volume 1, 2013,
pp. 274–281.

[9] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. D. Gill, O. Sokolsky, and I. Lee,
“Real-time multi-core virtual machine scheduling in Xen,”in EMSOFT,
2014, pp. 27:1–27:10.

[10] J. Zhao, J. Tao, L. Wang, and A. Wirooks, “A Toolchain ForProfiling
Virtual Machines,” in ECMS, 2013, pp. 497–503.

[11] A. Iosup, “IaaS Cloud Benchmarking: Approaches, Challenges, and
Experience,” in HotTopiCS, 2013, pp. 1–2.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in SoCC, 2010,
pp. 143–154.

[13] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and B. B.Zhou,
“Profiling Applications for Virtual Machine Placement in Clouds,” in
CLOUD, 2011, pp. 660–667.

[14] R. McDougall and J. Anderson, “Virtualization performance: Perspec-
tives and challenges ahead,” SIGOPS Oper. Syst. Rev., vol. 44, no. 4,
Dec. 2010, pp. 40–56.

[15] V. Makhija, B. Herndon, P. Smith, E. Zamost, and J. Anderson,
“VMmark: A Scalable Benchmark for Virtualized Systems,” VMware,
Tech. Rep. TR-2006-002, 2006.

[16] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A.Shah, and
B. Rao, “Quantitative comparison of Xen and KVM,” in Xen summit.
Berkeley, CA, USA: USENIX association, Jun. 2008.

[17] P. Apparao, R. Iyer, and D. Newell, “Towards Modeling & Analysis of
Consolidated CMP Servers,” SIGARCH Comput. Archit. News, vol. 36,
no. 2, May 2008, pp. 38–45.

[18] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling Virtual
Machine Performance: Challenges and Approaches,” SIGMETRICS
Perform. Eval. Rev., vol. 37, no. 3, Jan. 2010, pp. 55–60.

[19] H. Jin, W. Cao, P. Yuan, and X. Xie, “VSCBenchmark: Benchmark for
Dynamic Server Performance of Virtualization Technology,” in IFMT
’08, 2008, pp. 5:1–5:8.

[20] G. G. Shulmeyer and T. J. McCabe, “Handbook of Software Quality
Assurance (3rd Ed.),” G. G. Schulmeyer and J. I. McManus, Eds.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999, ch. ThePareto
Principle Applied to Software Quality Assurance, pp. 291–328.

[21] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, 2008, pp. 107–113.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[22] S. Ma, X.-H. Sun, and I. Raicu, “I/O throttling and coordination for
MapReduce,” Illinois Institute of Technology, Tech. Rep.,2012.

[23] OpenSolaris Project, “Filebench,” URL:
http://filebench.sourceforge.net/wiki/index.php/
Main_Page, Retrieved: February, 2016.

[24] “Unixbench: BYTE UNIX benchmark suite,” URL:
http://github.com/kdlucas/byte-unixbench, Retrieved:
February, 2016.

[25] C. C. Eglantine, NBench. TypPRESS, 2012, iSBN: 9786136257211.

[26] W. Hu, A. Hicks, L. Zhang, E. M. Dow, V. Soni, H. Jiang, R. Bull,
and J. N. Matthews, “A Quantitative Study of Virtual MachineLive
Migration,” in CAC, 2013, pp. 11:1–11:10.

[27] S. Nathan, P. Kulkarni, and U. Bellur, “Resource Availability Based
Performance Benchmarking of Virtual Machine Migrations,”in ICPE,
2013, pp. 387–398.

[28] P. J. Mucci, K. London, and P. J. Mucci, “The CacheBench Report,”
URL: www.earth.lsa.umich.edu/ keken/benchmarks/
cachebench.pdf, Retrieved: February, 2016.

[29] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current
High Performance Computers,” IEEE CS TCCA Newsletter, Dec.1995,
pp. 19–25.

[30] ——, “STREAM: Sustainable Memory Bandwidth in High Perfor-
mance Computers,” University of Virginia, Charlottesville, Virginia,
Tech. Rep., 2007.

[31] A. Tridgell, “The dbench benchmark,” URL:http://samba.org
/ftp/tridge/dbench/README, 2007, Retrieved: February, 2016.

[32] W. Norcott and D. Capps, “IOzone Filesystem Benchmark,” URL:
www.iozone.org, Retrieved: February, 2016.

[33] Z. A. Mann, “Allocation of Virtual Machines in Cloud Data Cen-
ters&Mdash;A Survey of Problem Models and Optimization Algo-
rithms,” ACM Comput. Surv., vol. 48, no. 1, Aug. 2015, pp. 11:1–11:34.

112Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         125 / 157



Data Locality via Coordinated Caching
for Distributed Processing

Max Fischer and Eileen Kuehn
Karlsruhe Institute of Technology

76344 Karlsruhe, Germany
Email: {max.fischer, eileen.kuehn}@kit.edu

Abstract—Modern data analysis methods often rely on data
locality. Processing applications are executed directly where data
is stored. Frameworks enabling this require their own specialised
environment and modifications. We propose an alternative ap-
proach using coordinated caching integrated into classic batch
systems. A custom middleware layer provides relevant data locally
on worker nodes. Most importantly no modifications are needed
to add data locality to existing workflows. However, considerably
more factors must be addressed by distributed caches compared
to isolated ones. We investigated our approach with theoretic
modelling, simulations, and a prototype implementation. Our
evaluations show promising results for both applicability and
performance.

Keywords–Cooperative caching; Coordinated caching; Dis-

tributed caching; Batch production systems; Distributed processing.

I. INTRODUCTION

Caching as an enabler for data locality is an important
topic for distributed data processing. As workflows usually
process only a fraction of data frequently. It is thus inefficient
to provide all data locally. In addition, changing workflow re-
quirements in batch systems require a dynamic but coordinated
caching approach.

Motivated by this, our approach enables data locality for
batch systems with minimal requirements. The basis for our
efforts are batch clusters which read data via network from
dedicated fileservers. To make remote data available locally,
a series of caches on worker nodes can be used. We propose
a coordination layer that combines individual caches into a
single pool.

Our approach stands out from existing caches by its scope
and subject: for one, individual caches work on the scale of
single machines. We target the entire batch system as a sin-
gle entity. Also, distributed caches commonly target resource
providers, e.g. web caches. In contrast, our approach targets
the batch system as a resource consumer.

In this paper, we exemplarily consider the High Energy
Physics (HEP) data analysis workflows of groups at the Karl-
sruhe Institute of Technology [1]. In general, HEP experiments
of the Large Hadron Collider [2] are amongst the largest
producers of scientific data in terms of data volume. Handling
this data is performed in iterative workflows at different scopes.
This ranges from reconstruction of raw data at a global
scope [3] to the analysis of subsets of data at the scope of
university groups.

In theory, HEP analyses conform to principles of data
locality based processing. Analysis workflows execute multiple

instances of an analysis application in a distributed environ-
ment. Each instance extracts the same set of variables from
its share of an input data set. All sets of extracted variables
are then merged. This corresponds to the map reduce method
employed by frameworks such as Hadoop.

However, the wide range of HEP workflows and number
of collaborating scientists dictate the use of established appli-
cations and frameworks. This also implies constraints, which
are not satisfied by modern analysis frameworks. For example,
HEP data is commonly stored in the ROOT binary file format.
This format cannot be easily split or read from a stream, as
is common in the Hadoop framework. The largest volume of
data is used infrequently for validation and crosschecking.

We have performed modelling (Section II) and simulations
of the situation (Section III). The estimates on architecture
and scale are motivated by our own working experiences with
the HEP analysis groups. From this, we conclude that classic
batch processing can be considerably improved with cache
based data locality. Our approach for data locality is based
on a concept for coordinated caching (Section IV). To test
our conclusions, we implemented a prototype of a caching
middleware for batch systems (Section V). First experiences
show promising improvements regarding performance and
throughput (Section VI).

A. Related Work
Many individual sub-topics of our work have been focus

of past research. In general, the approaches show considerable
advantages over naive caching. However, no existing work
matches the scope and applicability that is needed for HEP
workflows.

Distributed caching has been studied extensively. For ex-
ample, simulations on distributed caching with centralised
control [4] show considerable improvements in hit ratio and
throughput compared to independent caches. However, re-
search usually focuses on the perspective of data providers,
not consumers. Usage metadata is thus not taken into account,
limiting the granularity required for data locality.

The CernVM File System (CVMFS) uses independent
caches for software provisioning [5]. It is used to make shared
software frameworks available in grid and cloud environments.
The prototypical CacheD service of the HTCondor batch
system caches binaries executed by jobs [6]. This minimises
traffic, considerably speeding up deployment of multiple jobs
on low-throughput networks. Both of these approaches show
that caching is beneficial for batch processing. It improves
throughput and allows deployment on resources without high

113Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         126 / 157



throughput network. However, these approaches target only
items which are the same for all jobs.

User communities have made attempts to introduce data lo-
cality and/or caching to their workflows. On the one hand, the
ATLAS collaboration demonstrated analysis speedup by using
a central SSD cache for network attached HDD storage [7].
In this setup, data locality is improved but the cache is still
accessed remotely.

On the other hand, attempts have been made to deploy
HEP workflows on Hadoop [8], [9]. This provides advanced
performance and scalability. However, extensive compromises
have to be made. For example, applications have to be adapted
to the I/O model and jobs may access only single files. The
automatic distribution of data by the infrastructure is severely
limited to ensure data integrity.

II. MODELLING DISTRIBUTED CACHING

The modelling of distributed caches involves more aspects
than using local caches on a single host. It therefore increases
the complexity. Though the data to cache remain the same,
factors such as location, replication, or even splitting, and
grouping need to be considered.

We model caching statistically to estimate the probability
of cache hits, following cache hit rate. Using a factorised
approach, we describe issues individually and combine them
to a single probability. This allows to assess a detailed cost of
naively applying caching to a distributed system.

As shown in Figure 1, a distributed cache can be fun-
damentally viewed as a single entity. This is an ideal case,
where a fraction of the global data volume is replicated on the
cache volume. However, each worker node (WN) is actually
limited to its local scope. In addition, jobs in a batch system
are scheduled without knowledge about cache content. In the
worst case, data and job placement may be perpendicular.

Figure 1. Scopes of distributed caching

To simplify the model, we make two assumptions: First, the
volume of individual caches is large compared to items that are
cached. Second, the volume of all items is large compared to
both the individual and total cache volume. This allows us to
treat volumes as continuous, avoiding quantisation and fringe
effects. These assumptions mainly simplify the mathematical
description. The general conclusions are not changed by this.

A. A Priori Hit Rate
As with regular caches, we employ a general probability

that an item is cached. The choice of this is arbitrary and
mainly serves for expressiveness. Without loss of generality,
we assume a naive caching approach: the cache is filled with
an equal fraction of all data. Thus the probability of an item
being cached P base

cache is the fraction of cache volume Vcache and
data volume Vdata.

P base
cache /

Vcache

Vdata
(1)

B. Item Locality
A distributed cache has no single cache volume but actually

several separate ones. Cached items can only be accessed
efficiently on the host they are located on. We therefore
introduce a second probability for item locality, namely that
an item is cached on the host it is accessed from, the local hit
rate P item

local.
If the batch system is not aware of the contents of indi-

vidual caches, job scheduling is random in relation to item
placement. The probability of executing on the correct host
is inversely proportional to the number of hosts Nhosts. In
contrast, creating a number of replicas Nreplica on multiple hosts
automatically increases the local hit rate. However, replicas
reduce the effective total cache volume and thus the overall
cache hit rate. Both hit rates combine to the expected hit rate
P item

expect.

P item
local /

Nreplica

Nhosts
Nreplica  Nhosts (2a)

P item
cache /

1

Nreplica
(2b)

P item
expect = P item

cache · P item
local /

1

Nhosts
(2c)

For naive caching of individual items and no aligned
scheduling, we thus expect neither positive nor negative effect
from replication. There is no naive approach to mitigate the
penalty from distribution over multiple hosts.

In contrast, if we actively align job scheduling and cache
locality, the local hit rate becomes a constant – the effec-
tiveness of scheduling. In this case, the positive effect of
replication is reduced and ideally eliminated with perfect
scheduling. The negative effect of reducing the effective cache
volume remains, however. Therefore, the penalty from dis-
tributed execution can be mitigated by active scheduling and
avoiding replication.

C. Item Grouping
For efficiency, it is common for any single batch job to

process groups of files. In classic batch systems, this grouping
is done externally on job submission.

The benefit for each job is proportional to the number of
processed items cached locally. We can express the expected
efficiency Ejob

local as the fraction of expected local files
⌦
N local

items
↵

to total processed files Nitems. This resolves directly to the local
hit rate without aligned scheduling.

Ejob
local =

D
P job

local

E
/

⌦
N local

items
↵

Nitems
=

1

Nitems

X

items

P item
local (3a)

= P item
local (3b)

For naive caching with unrelated items, this result is trivial.
There are implications if aligned job scheduling is attempted,

114Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         127 / 157



however. Even when directing jobs to cached items, the frac-
tion of locally available items limits the achievable efficiency.
In this context, aligned job scheduling and replication are only
useful if cache content is aligned as well.

D. Access Concurrency
For the scope of our work, a common caching assumption

does not hold true: cache access is not always superior to
remote access. For example, modern SSDs provide throughput
at the same order as a 10Gbit/s network. The difference is
concurrency of accesses: caches are accessed only by local
processes, whereas remote data sources can be accessed by all
processes.

Modelling accesses for a distributed system in general is
beyond the scope of this paper. However, the fact that both
local and shared data sources have limited throughput allow for
some basic statements. Ideally, both local and shared resources
are used to their limit. This automatically implies that perfect
cache hit rates are not desirable: a fraction of accesses should
always make use of the shared resources available.

III. ESTIMATES AND SIMULATION

To estimate the benefit of coordinated caching, we have
simulated multiple circumstances. The scope and estimates
correspond to that of our associated HEP analysis groups.

We model the workflow as a set of application instances,
each reading the same amount of data. We have benchmarked
common HEP analysis applications to assess realistic limi-
tations. The measurements show a maximum throughput of
20MB/s for each instance. This is a technical limit induced
by the software frameworks and data formats in use. The total
input volume is estimated as 640GB. This corresponds to the
volume of a 2 months data taking period.

For the processing environment, we model our current
analysis infrastructure: a set of worker nodes connected to a set
of fileservers via a dedicated network, as shown in Figure 2.
We assume infinite bandwidth for the fileservers, but model
the shared network with its limited throughput of 10Gbit/s.
For processing, we model a number of worker nodes of equal
configuration: 32 execution slots, a 4Gbit/s SSD cache and a
10Gbit/s network connection to the fileservers. For simplicity,
we assume that as many instances as execution slots are
deployed.

Figure 2. Simulated infrastructure

The results of the simulation can be seen in Figure 3.
To rate performance, we have chosen the total processing
time. For this observable, lower values are desirable. The
cache hit rate to the local cache is used as a free parameter
in the simulation. This is motivated by assuming adequate
selection of cache content by existing algorithms. Thus, the
hit rate is only determined by the scheduling of data and

.

Figure 3. Simulation of workflow runtime

jobs. Dashed, vertical lines indicate the expected local hit rate
without coordination.

There are two major results from our simulations (see Fig-
ure 3): on the one hand, caching enables to scale the infras-
tructure horizontally. This is especially important since remote
access is a bottleneck even with few worker nodes. On the
other hand, perfect cache hit rate is actually not desirable.
Instead, there is a range of cache hit rates that give best
performance. This range is defined by the points where either
local or remote throughput is maximized.

Notably, even for perfect caching the expected local hit rate
P item

expect is in this range only for the smallest setup. Therefore,
we must coordinate caches to benefit from data locality.

IV. CONCEPT FOR COORDINATED CACHING

Our approach for coordinated caching distinguishes be-
tween local and global view as known from batch systems. The
local view refers to the individual worker nodes where batch
jobs are running. The global view is given by the managing
layer where queuing and scheduling of batch jobs is performed.

Based on this scheme, the functionality of a cache can be
split into three layers, illustrated in Figure 4:

• the data provisioning on local scale,
• the data access on global as well as local scale, and
• the caching algorithm and distribution logic on global

scale.

Figure 4. Layers of the distributed cache concept

A. Provisioning Layer
The provisioning layer handles the actual data on worker

nodes. The worker nodes are the only elements with guaranteed

115Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         128 / 157



access to remote source data. They are therefore the logical
place to retrieve and store both actual data and its metadata.

The provisioning layer implements the data provisioning
associated with caches: remote items are copied to local cache
devices, periodically validated, and potentially removed as
needed. In addition, metadata of items, such as size and
creation time, can only be collected on the worker node.

Since cache content is by design volatile, the layer also
handles content metadata. This ensures that content metadata
is as volatile as the actual content: the provisioning layer is the
first to notice changes and invalidation of items. In the context
of opportunistic resources, worker nodes shutting down neatly
remove their allocation information as well.

Every worker node of the provisioning layer is limited to
its local scope. Thus, major decisions are outsourced to the
global scale. Every worker node exposes information required
for cache decisions. The information are composed of its own
metadata, such as size of caches, and metadata of items. In
return, worker nodes rely on being notified of new items to
cache and their relevance.

B. Coordination Layer

The coordination layer is responsible for decision making.
Since it is not co-located with any active component, there are
no restrictions on resource usage. It can thus fetch, aggregate,
and process metadata without impacting other components.

The most important task of the layer is the selection of
items to cache. This is fundamentally the same as in other
caches. For example, scores can be calculated from access
times. Given that arbitrary processing power can be provided,
algorithms may be more complex than common. Both metadata
and processing resources can be extended as needed.

The additional responsibility of the coordination layer is
item placement. This means the deliberate assignment of
items to elements of the provision layer. Common features
of distributed systems, such as load balancing, must be taken
into account. In addition, item relations must be considered for
this. For example, common input groups should be assigned
together.

C. Access Layer

The benefit of caches depends on low overhead for ac-
cessing items. Obviously, executed applications require local
access to cached items. On the global scale, the batch system
must receive information on item location.

Implementing access to cached items for executed appli-
cations on worker nodes depends on the actual setup of batch
jobs. Primarily, the access protocol is the deciding factor. In
principle, local redirection to cached items is sufficient.

Similarly, details of integrating with a batch system are
setup specific. In any case, information on item location must
be provided to the batch system. This is the responsibility of
thin front ends, which forward information from coordination
and cache layer. Functionally, this is similar to lookup services
in distributed file systems, e.g. the NameNode of Hadoop FS.
However, since all information originates in coordination and
cache layer, our front ends are expendable.

V. HTDA MIDDLEWARE PROTOTYPE

We have implemented a prototype of the coordinated
caching concept: the High Throughput Data Analysis (HTDA)
middleware [10]. The test environment and community are
the HEP analysis groups of our university. We have delib-
erately kept dependencies on HEP software small, however.
The prototype supports the HTCondor batch system [11] and
applications performing POSIX I/O.

Architecturally, we build on a general purpose framework
for a pool of worker nodes. Every instance of our application
represents an individual node. The nodes are loosely coupled.
They form a pool using stateless communication. Every node
hosts component plugins, which collaborate in the abstracted
pool. The component plugins implement the actual layers
described in the previous chapter.

We currently use three node types that directly correspond
to each layer:

• Provisioning nodes represent the provisioning layer.
They stage, maintain, and validate cached files on
worker nodes.

• Coordinator nodes represent the coordination layer.
They aggregate metadata, and select and assign files
for caching.

• Locator nodes provide locality information for the
access layer. They act as proxies to the provisioning
nodes.

In addition, we enforce access with hooks in the batch system
and a redirection layer in each worker node’s virtual file
system.

A. Coordination of Provisioning Nodes
Coordination of provisioning nodes is based on the scoring

mechanism of files. We use a 1-dimensional score to express
the relevance for caching. The score is simple to transmit,
unambiguous to interpret, and simplifies many algorithms with
clear break conditions.

The file score caries an implicit command: files rated
higher are assigned with higher priority to provisioning nodes.
If space is required for new files, existing files with low
scores are discarded first. However, relations between files are
not apparent from the score. They are purely handled at the
coordination level.

The score of files is calculated inside the coordinator
node. A factorised approach is used to express multiple per-
spectives. Usage prediction is performed using a Least Re-
cently/Frequently Used (LRFU) algorithm [12]. The algorithm
is staged as a plugin. Other scoring algorithms can be used
if needed. Additionally, we exemplarily model adequacy for
caching: exceptionally small and large files are penalised to
ease allocation and overhead.

Assignment of files to provisioning nodes is performed
separately. Files accessed by the same job are grouped together.
These groups are spread evenly amongst all provisioning
nodes. Since files may belong to multiple groups, approaches
such as distributed hash tables are not adequate. Instead, we
exploit that grouping is deterministic and certain groupings are
more likely to occur. This allows us to use a heuristic approach,
which has proven itself adequate for our target community.

116Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         129 / 157



Groups scored highest are allocated first. If any files of
a group are already allocated, the node with the highest file
count is chosen. Otherwise, a node is chosen at random. This
is performed until all files are allocated or no free space is
left. Finally, the allocated files and their scores are pushed to
each provisioning node individually.

Provisioning nodes only operate on the limited set of
assigned files. Since they perform the actual data access, they
are the final authority for staging files. This requires limited
autonomy for internal allocation and rearranging of files. Thus
provisioning nodes expose their allocation to the coordination
layer. This allows to iteratively adjust local allocation and
global distribution.

B. Application Access
A major motivation for our development is to preserve ex-

isting workflows. Therefore, all accesses must be implemented
in a transparent way. To be generally applicable, we must also
avoid dependencies on HEP specific software.

The HTCondor batch system natively allows to insert
hooks into batch job handling. On batch job submission and
finalisation, various job metadata is extracted: this includes
input files, resource usage, owner and workflow identifiers.
During handling of the batch job, job requirements are updated
to prefer hosts caching required input files. This entire process
is completely transparent to users.

We exploit HTCondor’s rank based scheduling. Users can
provide rating functions for worker nodes, e.g. to prefer faster
machines. We add our own rating, based on file locality. Thus,
locality is preferred in general but can still be overruled by
users if hosts are not interchangeable. In addition, we use
dynamic requirements to avoid jobs waiting indefinitely for
a perfect host. We require worker nodes to satisfy a specific
locality rating, which decreases over time.

Application file access on worker nodes is performed using
POSIX system calls. Therefore, accesses must be redirected in
the virtual file system layer of the operating system. We use
a union file system, specifically AUFS [13], to squash cache
file systems on top of network file systems. This redirects read
access preferably to caches, with write-through to the network
storage.

VI. BENCHMARKING AND EXPERIENCES

We made overall positive experiences with our concept
and prototype. Our test deployment is in operation since 6
months. The integration into infrastructure and workflows is
fully transparent. Applications subject to caching show notable
improvements in runtime.

Our test cluster features four worker nodes (see Table I).
Each has 32 logical cores, 512GB SSD cache and a 10Gbit/s
network interface. A total of 7 fileservers is available on each
worker node. The global services for the middleware and batch
system are on separate machines.

A. Middleware and Infrastructure
The overhead from our middleware is well acceptable. On

worker nodes, the software consumes (20± 5)% of a single
CPU. We consider this to be a reliable worst case estimate:
first, the frequency of file validation and allocation is very high
for testing purposes. This is the majority of actions performed

TABLE I. TEST CLUSTER WORKER NODE

OS Scientific Linux 6 (Kernel 2.6.32)
CPU 2x Intel Xeon E5-2650v2 @ 2.66GHz

( 8 cores, 16 threads)
Memory 8x 8GB RAM

SSD 1x Samsung SSD 840 PRO 512GB or
2x Samsung SSD 840 EVO 256GB

HDD 4x WDC WD4000 4TB
Network 1x Intel X540-T1 (10GigE/RJ45)

on worker nodes. A factor 2 to 10 less is reasonable for
production. Second, our prototype is written in python 2.7 and
interpreted with CPython. An optimised implementation in a
compiled language is guaranteed to be faster in production. We
also investigate other interpreters, e.g. pypy, which provide 3
to 5 times better efficiency in our tests.

The metadata is negligible compared to the actual data. A
500GB cache with 7000 cached files has (3.0± 0.5)MB of
persistent metadata. The memory footprint of the application
is of the same magnitude. The metadata aggregated in the
coordination layer is on the order of 250MB. Communication
overhead between nodes is unnoticeable compared to data
transfers.

The experience with the access layer using AUFS is
mixed. There is virtually no overhead on reading performance
compared to direct access. Even during concurrent accesses the
full cache device performance is available. However, we have
repeatedly observed spontaneous performance degradation and
crashes of the union mount service.

We assume the deficiencies to be caused by the old kernel
of the Scientific Linux 6 [14] operating system required by our
target community. To validate this assumption, we performed
tests on the same hardware using CentOS 7 [15] with kernel
4.4.1. The tests revealed none of the deficiencies experienced
with Scientific Linux 6. Still, a redirection layer tailored
to our access pattern may be more suitable for production
deployment.

B. Integration and Performance
Our prototype operates transparently to users. Applications

executed on our worker nodes require no changes. Workflows
need to be adapted in one single point: required input files
have to be reported explicitly to the batch system to benefit
from caching. Since users delegate job submission to tools, we
are able to automatise this.

The number of metrics which can be used to assess
performance are numerous. A simple and illustrative method
is to track individual reference workflows. These are regular
end user analyses, extended to collect lightweight performance
statistics. Figure 5 shows the distribution of execution times
of individual jobs for one workflow. Lower execution times
are better. The blue area represents jobs run with the cache
disabled. The green area represents jobs run with the cache
enabled.

Considerable improvements in execution time indicate ap-
propriate data provisioning and batch job scheduling. Indeed
we observe consistently improved execution times when our
HTDA middleware is enabled. Highly data driven workflows
have been sped up by a factor of 4. Workflows without cached

117Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         130 / 157



data also benefit from this, as cluster and network utilisation
is lower.

Figure 5. Performance of reference analysis

VII. CONCLUSION AND OUTLOOK

Modern science is able to collect vast amounts of data.
Analysing the increasing volumes is a challenge in itself,
however. Solutions exist but are not necessarily applicable.
We have therefore investigated an alternative to transparently
provide data locality, specifically in batch systems.

We propose a dedicated cache on the scope of an entire
batch system. Modelling shows that using individual caches
on worker nodes is not efficient. Simulations reveal that high
cache hit rates do allow for improved throughput. This is only
feasible when actively coordinating individual caches.

Our approach to coordinated caches uses three layers. The
provisioning layer is composed of agents on worker nodes,
handling data directly. The coordination layer acts on a global
scale, coordinating caches based on available metadata. The
access layer wraps around workflows on both scales to provide
an interface to our system.

To test our estimations and concept, we implemented a
prototype of the proposed system – the HTDA middleware.
The current implementation handles several aspects of our
considerations. This system has already proven to speed up
data analysis by a notable factor.

The concept allows room for further research. As our
simulations show, perfect hit rate is not desirable. This may be
considered in the selection or distribution algorithm to increase
effective cache volume. Compared to other cache solutions,
our scope is at magnitudes more of processing resources and
magnitudes less of turnaround time. Data selection algorithms
may therefore be drastically expanded. Furthermore, arbitrary
sources for local and external metadata can be considered.

ACKNOWLEDGMENT

The authors would like to thank all people and institu-
tions involved in the project Large Scale Data Management
and Analysis (LSDMA), as well as the German Helmholtz
Association, and the Karlsruhe School of Elementary Particle
and Astroparticle Physics (KSETA) for supporting and funding
the work.

REFERENCES
[1] J. Berger, F. Colombo, R. Friese, D. Haitz, T. Hauth, T. Müller,

G. Quast, and G. Sieber, “ARTUS - A Framework for Event-based
Data Analysis in High Energy Physics,” ArXiv e-prints, Nov. 2015.

[2] The Large Hadron Collider. [Online]. Available: http://home.cern/
topics/large-hadron-collider [retrieved: Nov 12, 2015]

[3] The Worldwide LHC Computing Grid. [Online]. Available: http:
//wlcg-public.web.cern.ch [retrieved: Nov 13, 2015]

[4] S. Paul and Z. Fei, “Distributed caching with centralized control,”
Computer Communications, vol. 24, no. 2, 2001, pp. 256 –
268. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0140366400003224

[5] J. Blomer and T. Fuhrmann, “A fully decentralized file system cache for
the cernvm-fs,” in Computer Communications and Networks (ICCCN),
2010 Proceedings of 19th International Conference on, Aug 2010, pp.
1–6.

[6] D. Weitzel, B. Bockelman, and D. Swanson, “Distributed caching using
the htcondor cached,” in Proceedings for Conference on Parallel and
Distributed Processing Techniques and Applications, 2015. [Online].
Available: http://stacks.iop.org/1742-6596/513/i=3/a=032054

[7] W. Yang, A. B. Hanushevsky, R. P. Mount, and the Atlas Collaboration,
“Using solid state disk array as a cache for lhc atlas data analysis,”
Journal of Physics: Conference Series, vol. 513, no. 4, 2014, p. 042035.
[Online]. Available: http://stacks.iop.org/1742-6596/513/i=4/a=042035

[8] S. A. Russo, M. Pinamonti, and M. Cobal, “Running a typical root
hep analysis on hadoop mapreduce,” Journal of Physics: Conference
Series, vol. 513, no. 3, 2014, p. 032080. [Online]. Available:
http://stacks.iop.org/1742-6596/513/i=3/a=032080

[9] S. Lehrack, G. Duckeck, and J. Ebke, “Evaluation of apache hadoop
for parallel data analysis with root,” Journal of Physics: Conference
Series, vol. 513, no. 3, 2014, p. 032054. [Online]. Available:
http://stacks.iop.org/1742-6596/513/i=3/a=032054

[10] M. Fischer, C. Metzlaff, and M. Giffels. HPDA middleware
repository. [Online]. Available: https://bitbucket.org/kitcmscomputing/
hpda [retrieved: Nov 12, 2015]

[11] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing
in practice: The condor experience,” Concurrency and Computation:
Practice and Experience, vol. 17, 2005, pp. 2–4.

[12] D. Lee, J. Choi, J.-H. Kim, S. Noh, S. L. Min, Y. Cho, and C. S. Kim,
“LRFU: a spectrum of policies that subsumes the least recently used
and least frequently used policies,” Computers, IEEE Transactions on,
vol. 50, no. 12, Dec 2001, pp. 1352–1361.

[13] J. R. Okajima. AUFS project homepage. [Online]. Available:
http://aufs.sourceforge.net [retrieved: Nov 12, 2015]

[14] S. Linux. Scientific linux. [Online]. Available: {https://www.
scientificlinux.org} [retrieved: Feb 10, 2016]

[15] C. Project. Centos project. [Online]. Available: {https://www.centos.
org} [retrieved: Feb 10, 2016]

118Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         131 / 157



Enhancing Cloud Security and Privacy: The Cloud Audit Problem

Bob Duncan
Computer Science

University of Aberdeen
Aberdeen, UK

Email: bobduncan@abdn.ac.uk

Mark Whittington
Accounting and Finance
University of Aberdeen

Aberdeen, UK
Email: mark.whittington@abdn.ac.uk

Abstract—Many people assume that cloud audit is no more
difficult than IT audit in general. We provide an outline of the
evolution of cloud, providing an explanation of how it differs
from conventional IT. We then discuss some of the benefits
and drawbacks of cloud, particularly in connection to audit
challenges, highlighting the dangers and shortcomings of many
approaches.

Keywords—security; privacy; standards; compliance; audit.

I. INTRODUCTION

Cloud computing offers the possibility of a substantial
economic benefit to firms and governments, yet at the same
time, increases complexity and risk. This results in an inter-
esting dilemma. On the one hand, potential cost savings of
50 - 90% [1] are possible, which is highly attractive, but on
the other hand, complexity can increase exponentially, placing
significant increasing risk on business and government alike.

In previous work [2] on enhancing cloud security and
privacy, we addressed issues of the cloud service provider’s
(CSP) lack of accountability in the standard service level
agreement (SLA). We mentioned the importance of the role
assurance plays, and the two main mechanisms used to achieve
this, namely compliance and audit. In this paper, we will
address some of the issues relating to audit. In order to
understand how the use of cloud impacts on the audit process,
and how it differs from conventional IT audit, we need to first
understand what audit is, why we need to do it, who should be
doing it and how it should be done. We must also understand
what special difficulties the use of cloud brings to audit. We
therefore revisit our definition of audit.

Audit (OED [3]: “To make an official systematic examina-
tion of (accounts), so as to ascertain their accuracy”) requires
outsiders who are deemed to be both objective and expert to
form their own opinion of what is being audited and then to
publicly state their confidence (or otherwise) in the reliability
of what they have investigated. Auditing is not straightforward
or easy. Just as with accounting auditors, objectivity is difficult
when companies pay auditors directly and auditors would
also like to be retained for the following year. Audit is also
potentially very expensive if done well by the best experts in
the field and there is a temptation to reduce the experts’ role
to one of advising, often writing checklists to be administered
by qualified technicians.

We start by considering the purpose of audit, who should be
carrying it out, and how it should be done, which we address in
Section II. The remainder of the paper is organised as follows:
Looking at past corporate computing models, Section III
provides us with an understanding of how corporate computing
has evolved over recent years, how these stages of evolution

have developed, and how they compare and impact on cloud
computing. In Section IV, we look at how audit is currently
performed. In Section V, we question whether there are any
weaknesses in this approach and; in Section VI, we touch on
some of the cloud security compliance issues. Section VII,
considers how to tackle these weaknesses; and finally, in
Section VIII, we discuss our conclusions.

II. THE PURPOSE OF AUDIT

We consider three main purposes of audit, the most widely
understood of which is the statutory requirement for financial
statements to be audited by an independent external auditor,
which has been a cornerstone of confidence in global financial
systems since auditing was introduced. It provides assurance
that company managers have presented a “true and fair” view
of a company’s financial performance and position, underpin-
ning the trust and obligation of stewardship between company
management and the owners of the company, the shareholders.

A second purpose of audit is IT systems audit. Traditional
audit approaches often involved treating IT systems as “black
box” systems, meaning trust was placed in the IT systems, and
looking at the functioning of the IT system was not considered
part of the statutory audit. The obvious shortcoming of this
approach was addressed by conducting a specific IT based
audit of the IT systems, to ensure these systems performed
exactly as expected. These audits are usually conducted by
IT specialists, often in conjunction with accounting audit
professionals to ensure the functioning of these systems are
properly understood. However, these are not mandated under
statute, which presents a weakness. In addition, there is no
requirement for an annual audit to be undertaken.

A third purpose of audit is compliance, either with regula-
tions, or more often with standards. This is often undertaken
to assure shareholders and other stakeholders that the company
is using best practice in its operations. This is particularly
the case in cloud computing, where systems are operated by
third parties beyond the control of the cloud user. Currently,
the difficulties associated with performing an adequate cloud
audit present one of the key barriers to cloud adoption [33].
These audits are not mandated under statute, which presents a
weakness, and there is no requirement for an annual audit to
be undertaken.

Statutory audit is an area which is well understood and
which benefits from over a century of research and experience.
Despite this, there remain differences of opinion and a number
of problems are yet to be resolved. Duncan and Whittington
provide some useful background in [5]. One of the main issues
concerns the independence of the auditor. The auditor is meant
to be independent, yet is paid by the firm they are auditing.

119Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         132 / 157



There may also be additional links between the auditor and
the firm, such as other non-audit consulting work undertaken
by the auditor. An audit firm is keen to remain auditor of the
firm for a long period of time to ensure continuity of income
and enhancement of profit. The firm is often keen not to change
auditor too frequently, lest their reputation suffer damage by
being unable to retain an auditor, as well as trying to keep costs
to a reasonable level. Audit firms are keen to undertake non-
audit consultancy work in order to further maximise revenue
and profits. The firm is generally keen for this practice to
take place, due to perceived cost savings to the firm. These
arrangements can potentially create tensions, which in some
cases might affect the impartiality of the auditor, hence some
jurisdictions seek to limit consultancy by auditors. Despite
issues, financial auditors are heavily regulated, audits are
mandatory and must be carried out every year.

Some industries are regulated and often the regulator will
assure themselves of compliance with regulations through the
use of audit. In the UK, organisations such as The Office of
Gas and Electricity Markets (Ofgem); The Office of Water Ser-
vices (Ofwat); The Office of Telecommunications (Oftel); The
Postal Services Commission (Postcomm); The Civil Aviation
Authority (CAA); The Office of the Rail Regulator (ORR); The
Office for the Regulation of Electricity and Gas in Northern
Ireland (Ofreg); and The Office of Communications Ofcom)
will often use reports given by the company’s auditor. These
will generally be carried out based on the requirements of
the licence granted by the regulator. The Financial Conduct
Authority (FCA) and the Prudential Regulation Authority
(PRA) usually take this view, although requirements here are
often more onerous. Some regulators, such as those responsible
for the regulation of professional services, may conduct the
audit using their own auditors, and frequency of audit is usually
less regular than with financial accounting.

Cloud audit difficulties have long been seen as a potential
barrier to cloud adoption [33] [6], and there is certainly a belief
that trust and privacy issues [7] [8] [9] [10] also need to be
borne in mind. A common theme is the recognition that cloud
audit is far harder to perform than for non-cloud systems.

Audit may be required to test internal control systems,
particularly where they involve financial reporting. This can
extend to IT audit, where rather than treat the IT systems
as black box components of the company systems, the IT
systems themselves are audited to provide assurance that they
are capable of delivering what is needed by the company. Audit
may also be required where a company is involved in a joint
venture project with another company or companies. The audit
requirements will usually be built in to the terms of the joint
venture agreement, specifying who will have what rights to
conduct the audit. Audit will not necessarily be mandatory, nor
will the auditors and audit process necessarily be regulated.

Another facet of audit is internal audit, where a company
seeks to assure itself of how well its internal processes are
running. Often this is continuous in nature, rather than spo-
radic. It is not mandatory and there is no regulation of the
auditors or the audit process. In previous work with Pym [11],
we developed a cloud assurance model which uses continuous
internal audit to help achieve the required security goals.
Audit can be used to test for fraud. Forensic audit is used
if fraud is discovered, to find and collect suitable evidence for
presentation in a court case, whether criminal or civil.

While auditing in the accountancy world has enjoyed the
benefit of over a century of practice and experience, cloud
computing audit can not be considered a mature field, and
there will be some way to go before it can catch up with
the reflection and rigour of work done in the accounting
profession. An obvious area of weakness arises when taking
audit professionals from the accounting world out of their
comfort zone, and placing them in a more technical field.
Whilst the use of people with a computing background can
overcome some of these issues, their lack of audit background
presents another weakness. Clearly further research will be
needed in this area.

Thus we see that there is more than one purpose for
conducting audit. We can have: statutory audit, which might
extend to audit of internal control over financial reporting and
fraud audit; IT audit, which covers the audit of IT systems; and
compliance audit, which will include regulatory compliance,
standards compliance, joint venture compliance, internal audit
and forensic audit. This list is not exhaustive. Of all the
purposes of audit, statutory audit is the most rigorous and
highly regulated, and for cloud, we could do well to learn
from this wealth of experience and rigour. In today’s world,
information can be just as valuable as money. The impact
of compromise, leakage, or theft of information can have a
catastrophic impact on cloud users, thus it makes sense to
consider applying equal rigour to the protection of information.

III. HOW DID CLOUD COMPUTING EVOLVE?
Corporates have long understood the potential benefits to be

gained from embracing information technology ever since the
early days of computing, when expensive mainframes were the
only option — open only to the largest corporates. Since those
days, modern information systems have evolved considerably,
leading to the development of complex, highly distributed
information systems and the need to police them properly. The
need to address traditional security issues of confidentiality,
integrity and availability (CIA) has increased this complexity
further, due to the need for scalability and redundancy. We have
seen a relentless explosion in performance, cost reductions and
wider accessibility for more and more corporates. Massive cap-
ital and operating costs no longer present the barrier they once
did. Technology has brought about major change in operational
efficiency. The invention of the internet has provided new
opportunities and increased exposure to new markets, yet at
the same time, threats to security and privacy have increased at
a frightening rate. The following list highlights nine evolutions
of corporate computing, with a brief explanation on each:

• Distributed Systems
• Business Process Management
• Service Oriented Architecture
• Grid Computing
• Utility Computing
• Virtualization
• Corporate Outsourcing
• Cloud Computing
• Economics of Cloud Computing

Distributed systems can be described as a software system
in which components located on networked computers com-
municate and coordinate their actions by passing messages, in
order to achieve a common goal. Early interest from military

120Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         133 / 157



and defence agencies has contributed greatly to the benefits to
industry [12]. Early research effort from industry [13] [14] has
also been evident. This is still an active research area today,
with Lenk and Tai [15] addressing disaster recovery, Orgerie et
al. [16] seeking to reduce energy costs of distributed systems,
and Gottinger [17] who addresses the management issues of
improving economic mechanism design of distributed systems.

Business process management (BPM) is a subset of op-
erations management, which focuses on improving corpo-
rate performance by managing and optimising a company’s
business processes. Information technology (IT) can play an
important role in helping with this continual process of im-
provement, in which three basic elements are involved —
people, process and technology. This interaction between the
three elements perfectly describes the business architecture of
a company. Instead of adapting business processes to fit rigid
and intractable software, software could now be developed
to align with business practices. This allowed a better fit to
the way a firm did business, ensuring greater efficiencies. A
rich area of research for over three decades, from the early
work of Zachman [18], Norman et al. [19] through to later
work by Zhu et al. [20] and Herzberg et al. [21], it has
attracted great interest from a wide range of disciplines. The
opportunities offered by the development of business process
architecture would lead to issues in trying to communicate with
different computing systems. This lead to the development of
the term “Service Oriented Architecture (SOA)” [22]. SOA
was defined as “a software architecture that starts with an
interface definition and builds the entire application topology
as a topology of interfaces, interface implementations and
interface calls”. SOA didn’t get much traction until 2001 when
web services technology became widely adopted. In many
respects, web services gave SOA the foundation it needed to
become widely accepted. Again a healthy research area, still
very much active today, with Girbea et al. [23] addressing
optimisation of industrial manufacturing processes and Picard
et al. [24] presenting several alternative systems for enhancing
collaboration at inter-organisational level.

Grid computing is a varied collection of computer re-
sources spread over multiple locations designed to achieve a
common goal. Grid computing differs from conventional high
performance computing systems such as cluster computing.
Grid computers have each node loosely coupled and highly
distributed over a wide geographical area, whereas high perfor-
mance cluster computing generally has all the nodes physically
connected in the one location. Grid computers tend to be highly
heterogeneous, whereas a cluster will usually comprise a set
of identical hardware. Grid computing nodes can be owned
by a diverse range of organisations who share access to these
resources, whereas a cluster tends to be owned by a single
organisation. Grid computing started to gain traction in the
mid to late 1990s. Utility computing is a service provisioning
model in which a service provider makes computing resources
and infrastructure management available to the customer as
needed, and charges them for specific usage rather than a flat
rate. This model differs from grid computing as the service
provision comes from a single service provider, rather than
from a network of service providers. The model is not new,
evolving during the 1960s and 1970s. To facilitate this business
model, mainframe operating systems evolved to include pro-
cess control facilities, security, and user metering. The model

re-surfaced in the late 1990s with a number of large players
offering their own flavour. The development of virtualisation
software helped move the model towards cloud computing.

Virtualisation is the creation of a virtual (rather than
actual) version of something, such as an operating system,
a server, a storage device or network resources. It began in
1960s mainframe computers as a means of logically dividing
system resources provided by mainframes between different
applications, although its meaning has considerably broadened
in scope since then. Virtualisation allows spare capacity in
large server systems to be partitioned into self standing virtual
servers, which can provide “Chinese walls” between instances
to improve security where different customers use each of the
virtual instances. By 2003, the process of virtualisation had
become much more developed, yet few had offered resource
isolation or performance guarantees; most provided only best-
effort provisioning, risking denial of service. Large corporates
have traditionally had a high focus on efficiency and maximis-
ing profits. Consequently, they have long explored the potential
for cost savings to be had from outsourcing non core activities.
Indeed, they have also used extended outsourcing techniques
such as off-shoring which allow them to potentially reap far
greater cost savings than with normal outsourcing methods.
In the early days of mainframe computing, with no internet
to worry about, security was much less of an issue. However,
this would radically change with the arrival of the internet.

Cloud computing offers the possibility of a substantial
economic benefit to firms, yet at the same time, increases
complexity and risk further. This results in an interesting
dilemma. On the one hand, potential cost savings of 50 -
90% [1] are possible, which is highly attractive, but on the
other hand, complexity can increase exponentially, placing
significant increasing risk on business and government alike.

It will be useful to understand how the economics of
cloud computing has helped it to achieve such rapid market
penetration and deployment. While the incentives to use cloud
are very attractive, it brings with it other issues, such as
accountability, assurance, audit, availability, confidentiality,
compliance, integrity, privacy, responsibility and security, all
of which need to be properly addressed. Cloud computing
is the most agile of these systems, yet the most technically
challenging to secure, due to the multiplicity of relationships
within the cloud ecosystem.

IV. HOW IS AUDIT CURRENTLY PERFORMED?
We provide a brief outline here of how the approach to

financial audit evolved over the past century. Then, vouching
was the common mechanism utilised to conduct an audit. Here,
the auditor checked every single transaction in the company
books to vouch its authenticity. This was extremely cumber-
some, and expensive, to conduct, and in ignoring management
control systems, proved to be very inefficient. As companies
grew larger, this technique could no longer be supported.

A move to statistical sampling of transactions, together
with consideration of the effectiveness of internal controls,
allowed for a more efficient approach to the audit of larger
companies. Sometimes, fraud audit would also be carried out
to detect the possibility of fraud having occurred, whether from
external or internal sources. The use of checklists became
popular. Eventually companies started to use IT for their
financial systems. At first, the IT systems were treated as black

121Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         134 / 157



box systems, where auditors merely considered how the input
was transformed into the expected output. Ultimately, this led
to the need to check the integrity of the systems themselves
and these too, were audited, creating a need for auditors to
broaden the scope of their learning. Over time, there was
a move towards a more risk based approach, with a greater
emphasis on performing due diligence, and less emphasis on
the use of the checklist. Discussing financial audit in more
detail is impossible within the constraints of this paper, but
provides a brief outline of how things have changed.

IT audit is not the same as financial audit. Financial audit’s
purpose is to evaluate whether an organisation is adhering
to standard accounting practices, and to ensure the financial
statements present a true and fair view of the information
contained in the financial reports. The purpose of an IT
audit is to evaluate the system’s internal control design and
effectiveness, through studying and evaluating controls and
testing their effectiveness. IT audit can be carried out by the
company’s internal audit department, an external agency, or
by the company’s own auditors. IT auditors are not regulated
to the same extent as financial auditors. Many of the large
auditing firms have set up specialised departments to handle
IT audits, with the benefit that they have access to the financial
audit expertise of the firm. Many IT audit firms do not have
financial audit experience. In general, there is a greater move
towards a checklist based approach in performing IT audits,
as with compliance audit, including security standards audit,
which traditionally use the checklist approach.

Joint venture audit is conducted in accordance with the
terms of the joint venture agreement, often by the internal audit
department of the partners, although some will use their exter-
nal auditors for this. Internal audit is sometimes performed by
employees with limited experience of how external financial
audit is conducted, resulting in a less risk based approach. This
can be useful in that their work can better inform the external
auditors when they arrive to carry out their audit. Forensic
audit will usually be carried out in response to the discovery
of a systems breach, usually by forensic IT specialists.

V. ARE THERE ANY WEAKNESSES IN THIS APPROACH?

We address some of the cloud security standards issues in
Section VI. The frequency of compliance auditing is generally
quite relaxed, in that reassessment need take place only when
system changes take place, or every few years, otherwise.
This completely fails to grasp the rapidly evolving nature of
security threats. There exists a clear need to employ some
method of continuous monitoring when it comes to security
management. Reports from global security companies, which
do not differentiate between cloud and non-cloud using com-
panies [25]–[27], suggest that over 85% of security breaches
involve a low level of technical competence, facilitated in-
stead by lack of understanding, lack of competence, or poor
configuration of systems on the part of victims. It would
be very useful to the research community if security breach
reporting companies were to publish cloud specific data. While
CSPs are very reluctant to publicise security breaches, last
year’s cloud breaches on iCloud, Target, Home Depot, Sony
and the US Internal Revenue Service (IRS) may have more
to do with slack security culture and poor internal control
processes than cloud security weaknesses. Nonetheless, this

clearly illustrates the importance of the link between people,
process and technology.

Vouk [28] suggests a key element of SOA is an ability to
audit processes, data and results, i.e. the ability to collect and
use provenance information. Since SOA is not always included
in what is run on the cloud, there is a possibility that this
may present a weakness if steps are not taken to address this
shortcoming. Both Leavitt [29] and Wang et al. [30] suggest
the use of third party auditors, yet many CSPs to this day
are reluctant to offer this service. Armbrust et al. [33] suggest
lack of cloud audit-ability presents the number three barrier
to cloud take-up, and that more needs to be done to ensure
compliance with new legislation such as Sarbanes-Oxley Act
(SOX) and the Health and Human Services Health Insurance
Portability and Accountability Act (HIPAA) regulations.

Chen and Yoon [31] suggest that an exceptionally robust
approach to cloud audit is required in order to ensure compli-
ance with all necessary legislation, regulation and standards.
Ramgovind et al. [32] suggest the question of whether the CSP
is willing to undergo audit represents a key security issue for
cloud use. Wang et al. [34] propose a publicly audited cloud
environment to ensure proper privacy is maintained. Zhou et
al. [35] in conducting a survey of CSPs and SLAs suggest
availability, audit, confidentiality, control, and data integrity
should be added to standard SLAs.

Grobauer et al. [36] suggest that without proper audit
provisions in SLAs, security and privacy will be compromised.
Doelitzscher et al. [37] propose a technical solution to this
issue using Security Audit as a Service (SAaaS) in conjunction
with software agents and a neural network to detect anomalies
and misuse of systems. Early results are promising, although
the system has yet to run live. Ruebsamen and Reich [38]
propose the use of audit agents to patrol a cloud environment
to ensure proper accountability. Lopez et al. [39] propose the
use of Somewhat Homomorphic Encryption (SHE) and Public-
Key Searchable Encryption (PEKS) in conjunction with audit
agents to ensure proper accountability in the cloud.

The approaches to financial audit and IT audit are well
understood, subject to our earlier comments, and are generally
perceived as fit for purpose. But, when using cloud computing,
everything changes. Instead of working on systems under the
control of the company being audited, these systems belong
to others, such as the CSP and any one of a number of other
actors involved in the cloud ecosystem. In previous work [2]
on enhancing cloud security and privacy, we drew attention to
the shortcomings in the standard SLA offerings of many CSPs.
Most lack any serious level of accountability, assurance, audit,
confidentiality, compliance, integrity, privacy, responsibility
or security, merely concentrating on availability as the only
measure of performance provided. Many are reluctant to allow
third party auditors into their premises, making effective audit
difficult, if not impossible.

One of the fundamental benefits of cloud computing,
agility, presents auditors with a very difficult challenge. Main-
taining an effective audit trail presents a serious challenge
when cloud instances are spooled up or down, sometimes by
the thousand, as needed. We address this specific issue in [40].

VI. CLOUD SECURITY STANDARDS COMPLIANCE ISSUES

Cloud security standards compliance presents a number of
interesting issues. First, in today’s global economy, an effective

122Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         135 / 157



standard needs to be internationally accepted, which introduces
jurisdictional problems to the mix, coupled with the fact that
the pace of evolution of new technology far outstrips the
capability of international standards organisations to keep up
with the changes [41]. Second, standards compliance is not
mandatory, but merely a voluntary practice. While many large
organizations are keen to be compliant in order to provide
assurance to their clients, there is no legal obligation to do so.
Third, compliance with standards is also generally not required
by regulators, although there are signs that this attitude may
be changing. Fourth, compliance procedures will usually allow
a degree of latitude to the compliant company in respect
of the level of compliance they wish to achieve. Fifth, the
audit mechanisms used by compliance auditors can be flawed
[42]. Sixth, compliance auditors are not heavily regulated, as
they are for financial audit. Seventh, there are a great many
cloud security standards organisations in existence, often with
differing agendas, or merely concerning themselves with an
area of narrow focus. Eighth, no complete cloud security
standard yet exists. Nine, very few early standards took a
risk based approach, relying instead on the checklist approach
to compliance. Ten, knowing that a prospective company is
compliant is not enough. It is necessary to understand exactly
what level of compliance has been achieved, and this detailed
level of information is seldom disclosed.

Will compliance with a standard ensure security? In [5] we
argued that compliance with a cloud security standard is more
likely to ensure compliance with a security standard, rather
than achieve a meaningful level of security. We take a brief
look at some of the larger standards organisations.

The International Standards Organization (ISO) have done
excellent work on global standards, yet the benefit of this
approach is also a weakness. Seeking agreement across the
globe, prevents them from keeping standards fully up to date,
taking up to eight years to publish a fully agreed new standard.
It has taken some time, but it is encouraging that the ISO has
changed approach on ISO 27000 series standards to a risk
based approach, which started to filter through in 2014, and
this is very welcome. A few cloud standards are also starting to
filter through, but a full range of cloud standards is still some
way off. It is also encouraging to note that as new standards
are published, they are adopting a risk based approach.

The National Institute of Standards and Technology
(NIST), who produced one of the earliest clear definitions of
what cloud computing is, have long been of the view that a
risk based approach to cloud security would be more effective.
The US government finally accepted last year that this was a
sensible approach [43], and NIST have developed an excellent
risk based security standard. NIST produce excellent work,
but compliance with NIST standards often only extends to US
companies and those doing business with the US.

The Cloud Security Alliance (CSA) have been very active
in promoting cloud security standards. Their work is good,
but the weakness lies in the approach used for the method of
achieving compliance.

AICPA have produced a number of standards, including for
cloud. Their SOC2 standard for cloud has seen many CSPs
attain compliance, including across the globe. However, this
does not cover the case where the cloud service will potentially
affect the statement of financial information, for which a SOC

1 will be required. Where assurance on trust is required, a
SOC 3 report should be sought. While these standards apply
the same criteria for both cloud and non-cloud situations, it
would be naı̈ve to believe that non-cloud security measures
would be suitable for a cloud deployment.

Considerable work has been done on addressing legal
issues with cloud deployment [44] [45] [46] [47] [48]. With
the global reach of both cloud users and CSPs, this will help
to tackle outstanding issues of sovereignty and jurisdiction.

VII. HOW DO WE TACKLE THESE WEAKNESSES?
There needs to be a proper understanding of precisely why

a cloud audit is being performed. Different types of audit
require different approaches and it is important not to forget
the fundamental rationale for an audit. No matter what type
of audit is being carried out for whatever purpose, the auditor
needs to keep the fundamental requirements of the audit firmly
in mind throughout the audit.

The cloud security standards issue is a particularly difficult
challenge. We address this challenge in future work and make
some helpful suggestions here to address this problem.

The CSP problem with the standard SLA needs to be
addressed as an area of added risk. It is important to realise
just what this additional risk will mean to the company under
review. While it can be said that the standard SLA can offer a
better level of security than is available to the average small to
medium sized enterprise (SME) [49], it cannot be considered
foolproof. Companies, and their auditors, should recognise the
weaknesses inherent in the standard SLA and address these
specifically as an added risk to the company. We hope that, in
time, the changes we seek in [2] will come to pass.

The audit trail issue requires companies and their auditors
to recognise that the problem exists. In [40], we address this
issue and make some useful suggestions on how to tackle these
weaknesses.

VIII. CONCLUSION

Even centuries of experience of financial audit have not
solved all the problems of conflict of interest, or the clear
understanding and interpretation of the role of audit, hence the
need to consider some of the more fundamental issues facing
companies today. We must bear in mind that information is
now as valuable to companies as money, and deserves serious
thought and action to safeguard it.

We have looked at some of the challenges facing companies
who seek to obtain good cloud security assurance through au-
dit. We have seen how weaknesses in standard CSP SLAs can
impact on cloud security. We have identified issues with cloud
security standards, and how that might impact on cloud secu-
rity. Achieving compliance with cloud security standards is a
worthwhile goal, but success will only guarantee compliance
with the standard, not necessarily a useful level of security.
We have considered how the lack of accountability can impact
on security. We have also considered how misconceptions in
the purpose and scope of audit can also impact on security.

We have touched on how these difficult areas of security
might be approached as part of a comprehensive security
solution based on our proposed framework. Clearly, companies
could benefit from further research in several of these areas. In
particular, cloud audit could benefit from applying the rigour

123Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         136 / 157



used by auditors in the accounting world when carrying out
statutory audit. However, we would caution that action is
needed now, not several years down the line when research
reaches a more complete level of success in these areas. The
threat environment is too dangerous. Companies have to act
now to try to close the door, otherwise it may be too late.

REFERENCES
[1] P. Mell and T. Grance, “Effectively and Securely Using the Cloud

Computing Paradigm,” Tech. Rep., 2009.
[2] B. Duncan and M. Whittington, “Enhancing Cloud Security and

Privacy: Broadening the Service Level Agreement,” in Trust-
com/BigDataSE/ISPA, 2015 IEEE. Vol. 1. IEEE, 2015, pp. 1–6.

[3] OED, “Oxford English Dictionary,” 1989. [Online]. Available: www.oed.
com [Retrieved: Feb 2016].

[4] M. Armbrust et al., “A view of cloud computing,”Commun. ACM,
vol. 53, no. 4, 2010, pp. 50–58.

[5] B. Duncan and M. Whittington, “Compliance with Standards, Assurance
and Audit: Does this Equal Security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77–84.

[6] H. S. Herath and T. C. Herath, “IT security auditing: A performance
evaluation decision model,” Dec. Supp. Sys., vol. 57, 2014, pp. 54–63.

[7] R. K. L. Ko, P. Jagadpramana, and B. S. Lee, “Flogger: A File-
Centric Logger for Monitoring File Access and Transfers Within Cloud
Computing Environments,” Proc. 10th IEEE Int. Conf. Trst. Sec. Priv.
Comp. Com. Trst., 8th IEEE Int. Conf. Emb. Soft. Sys. ICESS, 6th Int.
Conf. FCST 2011, pp. 765–771.

[8] R. K. L. Ko, B. S. Lee, and S. Pearson, “Towards achieving accountabil-
ity, auditability and trust in cloud computing,” Commun. Comput. Inf.
Sci., vol. 193 CCIS, no. Part 4, 2011, pp. 432–444.

[9] S. Pearson, “Taking Account of Privacy when Designing Cloud Comput-
ing Services 2 . Why is it important to take privacy into,” Chall. Cloud
Comp., 2009, pp. 44–52.

[10] S. Pearson and A. Benameur, “Privacy, Security and Trust Issues Arising
from Cloud Computing,” 2010 IEEE Second Int. Conf. Cloud Comput.
Technol. Sci., 2010, pp. 693–702.

[11] B. Duncan, D. J. Pym, and M. Whittington, “Developing a Conceptual
Framework for Cloud Security Assurance,” in Cloud Comput. Technol.
Sci. (CloudCom), 5th Int. Conf. (Vol. 2). IEEE, 2013, pp. 120–125.

[12] J. Parker et al., “Detection of Mutual Inconsistency in Distributed
Systems,” in IEEE Tra. Soft. Eng., vol. SE-9, no. 3, 1983, pp. 240–248.

[13] J. Kramer and J. Magee, “Dynamic Configuration for Distributed
Systems,” IEEE Trans. Softw. Eng., vol. SE-11, no. 4, 1985, pp. 424–436.

[14] F. Mattern, “Virtual Time and Global States of Distributed Systems,”
Event London, vol. pages, no. 23, 1989, pp. 215–226.

[15] A. Lenk and S. Tai, “Cloud Standby: Disaster Recovery of Distributed
Systems in the Cloud,” Serv. Cloud Comput., 2014, pp. 32–46.

[16] A.-C. Orgerie, M. Dias de Assuncao, and L. Lefevre, “A Survey
on Techniques for Improving the Energy Efficiency of Large Scale
Distributed Systems,” ACM Comput. Surv., vol. 46, no. 4-47, 2013, pp.
1–35.

[17] H. W. Gottinger, “Internet Economics of Distributed Systems,” in Soc.
Sci. Educ., vol. 2, no. 6, 2015, pp. 55–70.

[18] J. A. Zachman, “A Framework for Information Systems Architecture,”
IBM Syst. J., vol. 26, no. 3, 1987, pp. 454–470.

[19] T. J. Norman, N. R. Jennings, P. Faratin, and E. H. Mamdani, “Design-
ing and Implementing a Multi-Agent Architecture for Business Process
Management,” in PreProceedings ECAI96 Work. Agent Theor. Archit.
Lang. ATAL96, N. R. Müller, Jörg P and Wooldridge, Michael J and
Jennings, Ed., vol. 1193. New York: Springer, 1997, pp. 261–275.

[20] W. Zhu, L. Vizenor, and A. Srinivasan, “Towards a Reference Ar-
chitecture for Service-Oriented Cross Domain Security Infrastructures,”
Internet Distrib. Comput. Syst., 2014, pp. 275–284.

[21] S. Bülow, M. Backmann, and N. Herzberg, “Monitoring of Business
Processes with Complex Event Processing,” Bus. Process Manag. Work.,
2014, pp. 277–290.

[22] W. R. Schulte and Y. V. Natis, “Service Oriented Architectures, Part 1,”
Gartner, SSA Res. Note SPA-401-068, 1996.

[23] A. Girbea, C. Suciu, S. Nechifor, and F. Sisak, “Design and Imple-
mentation of a Service-Oriented Architecture for the Optimization of
Industrial Applications,” IEEE Trans. Ind. Informatics, vol. 10, no. 1,
2014, pp. 185–196.

[24] W. Picard, Z. Paszkiewicz, S. Strykowski, R. Wojciechowski, and
W. Cellary, “Application of the service-oriented architecture at the inter-
organizational level,” Stud. Comput. Intell., vol. 499, 2014, pp. 125–201.

[25] PWC, “UK Information Security Breaches Survey - Technical Report
2012,” PWC2012, Tech. Rep. April, 2012.

[26] Trend, “2012 Annual Security Roundup: Evolved Threats in a ‘Post-PC’
World,” Trend Micro, Tech. Rep., 2012.

[27] Verizon, “2013 Data Breach Investigation Report: A study conducted
by the Verizon business risk team.” Tech. Rep., 2013.

[28] M. Vouk, “Cloud computing - Issues, research and implementations,”
ITI 2008 - 30th Int. Conf. Inf. Technol. Interfaces, vol. 16, no. 4, 2008,
pp. 235–246.

[29] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?”
Computer (Long. Beach. Calif)., vol. 42, no. January, 2009, pp. 15–20.

[30] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud computing,”
in IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, 2011, pp. 847–859.

[31] Z. Chen and J. Yoon, “IT Auditing to Assure a Secure Cloud Comput-
ing,” in 2010 6th World Congr. Serv., 2010, pp. 253–259.

[32] S. Ramgovind, M. M. Eloff, and E. Smith, “The management
[33] M. Armbrust et al., “A view of cloud computing,”Commun. ACM,

vol. 53, no. 4, 2010, pp. 50–58.of security in cloud computing,” in Proc.
2010 Inf. Secur. South Africa Conf. ISSA 2010, 2010, pp. 1–7.

[34] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Secure Cloud Storage in Cloud Computing,” in IEEE
Trans. Comput., vol. PP, no. 99, 2012, pp. 1–14.

[35] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and
Privacy in Cloud Computing: A Survey,” in 2010 Sixth Int. Conf. Semant.
Knowl. Grids, 2010, pp. 105–112.

[36] B. Grobauer, T. Walloschek, and E. Stöcker, “Understanding cloud
computing vulnerabilities,” IEEE Secur. Priv., vol. 9, no. 2, 2011, pp.
50–57.

[37] F. Doelitzscher, M. Knahl, C. Reich, and N. Clarke, “Anomaly Detec-
tion In IaaS Clouds,” in CloudCom, 2013, pp. 387–394.

[38] T. Ruebsamen and C. Reich, “Supporting cloud accountability by col-
lecting evidence using audit agents,” in Proc. Int. Conf. Cloud Comput.
Technol. Sci. CloudCom, vol. 1, 2013, pp. 185–190.

[39] J. M. López, T. Ruebsamen, and D. Westhoff, “Privacy-Friendly Cloud
Audits with Somewhat Homomorphic and Searchable Encryption,” in
Innov. Com. Serv. (I4CS), 14th Int. Conf., 2014, pp. 95–103.

[40] B. Duncan and M. Whittington, “Enhancing Cloud Security and Pri-
vacy: The Power and the Weakness of the Audit Trail,” in press.

[41] G. T. Willingmyre, “Standards at the Crossroads,” StandardView, vol. 5,
no. 4, 1997, pp. 190–194.

[42] B. Duncan and M. Whittington, “Reflecting on Whether Checklists
Can Tick the Box for Cloud Security.” in Cloud Comp. Tech. Sci.
(CloudCom), IEEE 6th Int. Conf. Singapore: IEEE, 2014, pp. 805–810.

[43] R. Holland et al., “Quick Take : 12 Lessons For Security & Risk Pros
From The US OPM Breach,” 2015, pp. 1–10.

[44] C. Millard, K. Hon, and I. Walden, “The Problem of ’ Personal Data ’
in Cloud Computing - What Information is Regulated ?” 2011.

[45] W. K. Hon, C. Millard, and I. Walden, “Who is Responsible for
’Personal Data’ in Cloud Computing? The Cloud of Unknowing, Part
2,”Leg. Stud., no. 77, 2011, pp. 1–31.

[46] W. K. Hon, J. Hörnle, and C. Millard, “Data Protection Jurisdiction and
Cloud Computing When are Cloud Users and Providers Subject to EU
Data Protection Law?” Leg. Stud., 2011, pp. 1–40.

[47] J. Prüfer, “How to govern the cloud? Characterizing the optimal
enforcement institution that supports accountability in cloud computing,”
Proc. Int. Conf. Cloud Comp. Tech. Sci., vol. 2, pp. 33–38, 2013.

[48] J. Prufer, “Trusting Privacy in the Cloud,” 2014.
[49] M. Quinn, E. Strauss, and G. Kristandl, “The effects of cloud technology

on management accounting and business decision-making,” Fin. Man.,
vol. 10, 2014, pp. 54–55.

124Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         137 / 157



Enhancing Cloud Security and Privacy: The Power and the Weakness of the Audit Trail

Bob Duncan
Computer Science

University of Aberdeen
Aberdeen, UK

Email: bobduncan@abdn.ac.uk

Mark Whittington
Accounting and Finance
University of Aberdeen

Aberdeen, UK
Email: mark.whittington@abdn.ac.uk

Abstract—Information security in the cloud presents a serious
challenge. We have identified fundamental weaknesses when
undertaking cloud audit, namely the misconceptions surrounding
the purpose of audit, what comprises a proper audit trail, what
should be included, and how it should be achieved and main-
tained. A properly specified audit trail can provide a powerful
tool in the armoury against cyber-crime, yet it is all too easy
to throw away the benefits offered by this simple tool through
lack of understanding, incompetence, mis-configuration or sheer
laziness. Of course, merely having an effective audit trail is not
enough — we actually have to examine it regularly to realise the
potential benefits it offers.

Keywords—security; privacy; audit; audit trail.

I. INTRODUCTION

Achieving information security is not a trivial process.
When this involves a cloud setting, the problem intensifies
exponentially. Let us first consider how we go about achieving
security. Usually, it is achieved by means of compliance
with standards, assurance or audit. We provide some useful
background on this in [1]. In a non-cloud setting, we have
a range of established standards which are well understood
by industry. However, when we move to cloud, everything
changes. There are an extensive range of cloud standard setting
bodies, yet there remains no definitive cloud security standard.

Assurance in non-cloud settings is well understood, but
assurance in a cloud setting is less well understood. There are
many challenges to overcome and, with Pym, we addressed
some of those in earlier work [2] developing a conceptual
framework for cloud security assurance, where we addressed:
standards, proposed management method and complexity.

One of the fundamental tools that can be used to help
ensure cloud security is the simple audit trail. There are,
of course, many other challenges, and we revisit these in
Section II, where we look at the definition of security goals,
compliance with cloud security standards, audit issues, the
impact of management approaches on security, and how com-
plexity, the lack of responsibility and accountability affect
cloud security. The remainder of the paper is organized as
follows: in Section III, we discuss cloud audit, state of the art;
in Section IV, we consider misconceptions prevalent across
different disciplines of what exactly the audit trail is; in
Section V, we discuss how we might improve audit trails in a
cloud setting. In Section VI, we discuss our conclusions.

II. CLOUD SECURITY CHALLENGES

A number of challenges need to be addressed in order
to achieve the goal of good security. The fundamental con-
cepts of information security are confidentiality, integrity, and

availability (CIA), a concept developed in an environment
using agency theory to manage director self-interest and inter-
corporate transactions. Agency theory recognizes the need to
align the objective of agent with principal, though this has been
shown to be difficult to achieve in practice. Cloud security is
no different, which suggests a different approach is needed.

Ten key security issues have been identified, namely:

• The definition of security goals;
• Compliance with standards;
• Audit issues;
• Management approach;
• Technical complexity of cloud;
• Lack of responsibility and accountability;
• Measurement and monitoring;
• Management attitude to security;
• Security culture in the company;
• The threat environment.

Looking at the definition of security goals, we recog-
nise that the business environment is constantly changing,
as are corporate governance rules and this would clearly
imply changing security measures are required to keep up
to date. More emphasis is now placed on responsibility and
accountability [3], social conscience [4], sustainability [5] [6],
resilience [7] and ethics [8]. Responsibility and accountability
are, in effect, mechanisms we can use to help achieve all the
other security goals. As social conscience and ethics are very
closely related, we can expand the traditional CIA triad to
include sustainability, resilience and ethics. This expansion of
CIA can help address some of the shortcomings of agency
theory, but also provides a perfect fit to stewardship theory.
Stewardship carries a broader acceptance of responsibility than
the self-interest embedded in agency, extending to acting in the
interests of company owners, society and the environment as
a whole. Broadening the definition of security goals gives a
more effective way to achieve successful cloud audit, but the
added complexity cloud brings may complicate the audit trail.

In earlier work with Pym [2], we developed a conceptual
framework to address cloud security. We identified three barri-
ers to good cloud security: standards compliance, management
method and complexity. We addressed compliance with stan-
dards in [1]. The lack of coherent cloud standards undermines
the effectiveness of cloud audit and highlights a fundamental
weakness in that process [9] — the use of checklists.

We also considered management method [10], where we
addressed the cloud security issue with management method,
arguing that historic reliance on agency theory to run compa-
nies can undermine effective security. We addressed complex-
ity along with the difficulties in addressing measurement [11],

125Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         138 / 157



which can complicate effective audit. In [12], we addressed
the lack of responsibility and accountability in standard service
level agreements (SLAs). This area has been much neglected,
but there are signs that it is being taken more seriously.

On the matter of achieving compliance with standards in
practice, we have identified the use of assurance to achieve
security through compliance and audit. Turning first to com-
pliance, there are a number of challenges to address. Since
the evolution of cloud computing, a number of cloud security
standards have evolved, but the problem is that there is still no
standard which offers complete security — there is no “one
size covers all”, which is a limitation. Even compliance with all
standards will not guarantee complete security, which, presents
another disadvantage [1]. The pace of evolution of new tech-
nology far outstrips the capability of international standards
organisations to keep up with the changes [13], adding to the
problem and meaning it may not be resolved any time soon.
We have argued that companies need to take account of these
gaps in the standards when addressing compliance. Reliance on
compliance alone will undermine effective security. Some key
areas above we will not address here. Management attitude to
security, the importance of developing a strong security culture
in the company, and looking at the threat environment are all
areas that merit more extensive and specific research.

We have also considered weaknesses in the approach to
cloud audit [14], and we expand on that work here. It is
certainly the case that cloud audit is not a mature field, and
much early work on cloud audit has focussed on addressing
technical issues. We have long held the view that focussing
on technical issues alone can never solve cloud security. The
business architecture of a company comprises people, process
and technology [15], not technology alone, thus focussing on
a technical solution alone is likely to undermine security.

III. CLOUD AUDIT, THE STATE OF THE ART

Vouk [16], in an early description of cloud computing
issues, suggests there must be an ability to audit processes, data
and processing results, but does not propose a solution. Wang
et al. [17] address how the cloud paradigm brings about many
new security challenges, which have not been well understood.
The authors study the problem of ensuring the integrity of data
storage in cloud computing, in particular, the task of allowing
a third party auditor (TPA), working on behalf of the cloud
client, to verify the integrity of the dynamic data stored in the
cloud. The authors identify the difficulties, potential security
problems and show how to construct an elegant verification
scheme for seamless integration of these features into protocol
design, but this relies on the willingness of the cloud service
provider (CSP) to permit the TPA entry to their systems.

Leavitt [18] suggests CSPs will not be able to pass
customer audits if they cannot demonstrate who has access
to their data and how they prevent unauthorised personnel
from retrieving information. Again, there is no detail given
on how to address this. Some CSPs address this by appointing
TPAs to audit their systems in advance, and by documenting
procedures designed to address customers’ data security needs.
Bernstein et al. [19] are excited by the prospect of a “cloud of
clouds”, but are worried about the security processes used to
ensure connectivity to the correct server on the other clouds,
suggesting some kind of audit-ability would be needed. The

authors stress the need for cloud systems to provide strong and
secure audit trails, but do not suggest how this might be done.

Pearson and Benameur [20] recognise that achieving proper
audit trails in the cloud is an unresolved issue. Wang et al.
[21] address privacy preserving public auditing for data storage
security in cloud, and are keen to prevent TPA introduced
weaknesses to the system, presenting a mechanism to enable a
more secure approach to public audit by TPAs. Development
of the algorithms is at an early stage and the authors note
further improvement needs to take place. Zhou et al. [22]
carry out a survey on security and privacy in cloud computing,
investigating several CSPs about their concerns on security
and privacy issues, and find those concerns are inadequate.
The authors suggest more should be added in terms of five
aspects (i.e., availability, confidentiality, data integrity, control
and audit) for security, but do not provide any detail. Chen and
Yoon [23] present a framework for secure cloud computing
through IT auditing by establishing a general framework
using checklists by following data flow and its life-cycle. The
checklists are made based on the cloud deployment models and
cloud services models, see [9] for our views on checklists.

Armbrust et al. [24] present a detailed description of what
cloud computing is, and note that the possible lack of audit-
ability presents the number three barrier to implementation,
without proposing any solution. Ramgovind et al. [25] provide
an overall security perspective of cloud computing with the aim
of highlighting the security concerns that should properly be
addressed and managed to realise the full potential of cloud
computing. The authors note that possible unwillingness of
CSPs to undergo audit presents a real barrier to acceptance and
take up. Grobauer et al. [26] note that discussions about cloud
computing security often fail to distinguish general issues from
cloud-specific issues. The authors express concern that many
CSPs do not do enough to ensure the provision of good cloud
audit practice and hence evidence proper security.

Doelitzscher et al. [27] present a prototype demonstration
of Security Audit as a Service (SAaaS) architecture, a cloud
audit system which aims to increase trust in cloud infrastruc-
tures by introducing more transparency to both user and cloud
provider on what is happening in the cloud. This system aims
to keep track of changes to the infrastructure as VMs are
deployed, moved or shut down. Hale and Gamble [28] note
that current SLAs focus on quality of service metrics and lack
the semantics needed to express security constraints that could
be used to measure risk. The authors present a framework,
called SecAgreement (SecAg), that extends the current SLA
negotiation standard to allow security metrics to be expressed
on service description terms and service level objectives. The
framework seeks to provide a lightweight approach, which can
leave some weaknesses not fully addressed.

Pappas et al. [29] present CloudFence, a framework that al-
lows users to independently audit the treatment of their private
data by third-party online services, through the intervention
of the cloud provider that hosts these services. The authors
demonstrate that CloudFence requires just a few changes to
existing application code, while it can detect and prevent a
wide range of security breaches, ranging from data leakage
attacks using SQL injection, to personal data disclosure due to
missing or erroneously implemented access control checks. It
addresses data held by a CSP, but does not claim to provide
a complete audit trail. Xie and Gamble [30] outline a tiered

126Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         139 / 157



approach to auditing information in the cloud, but with little
detail provided. The approach provides perspectives on audit-
able events that may include compositions of independently
formed audit trails. Zhu et al. [30] propose the use of provable
data possession (PDP), a cryptographic technique for verifying
the integrity of data, without retrieving it, as part of a means of
carrying out audit on the data. This tool can prove the integrity
of data, but does not consider who has accessed the data.

Ruebsamen and Reich [31] propose the use of software
agents to carry out continuous audit processing and report-
ing. The authors propose continuous audit to address the
dynamically changing nature of cloud use, so as to ensure
evidence concerning vital periods of use are not missed. The
use of a separate evidence store is a major plus, and the tools
developed look very interesting. The authors note that an audit
of the cloud layer alone will not be enough. Doelitzscher
et al. [32] propose the use of neural networks to analyse
and learn the normal usage behaviour of cloud customers, so
that anomalies which originate from a cloud security incident
caused by a compromised virtual machine can be detected.
While retrospective tests on collected data have proved very
effective, the system has yet to reach a sufficient level of
maturity to be deployed in a live environment.

Doelitzscher et al. [33] present a cloud audit policy lan-
guage for their SAaaS architecture. The authors describe the
design and implementation of the automated audit system of
virtual machine images, which ensures legal and company
policies are complied with. They also discuss how on-demand
software audit agents that maintain and validate the security
compliance of running cloud services are deployed. Thorpe et
al. [34] present a framework for forensic based auditing of
cloud logs. The authors explore the requirements of a cloud
log forensics service oriented architecture (SOA) framework
for performing effective digital investigation examinations in
these abstract web services environments. Of course, these
services need to be activated and protected before these tools
can be deployed. Wang et al. [35] propose a secure cloud
storage system supporting privacy-preserving public auditing.
The authors further extend their proposal to enable the TPA
to perform audits for multiple users simultaneously and effi-
ciently, an improvement on earlier work.

Lopez et al. [36] propose privacy-friendly cloud audits
by applying Somewhat Homomorphic Encryption (SHE) and
Public-Key Searchable Encryption (PEKS) to the collection
of digital evidence. The authors show that their solution can
provide client privacy preserving audit data to cloud auditors.
Whilst good for privacy, this does not cover all angles.
Shameli-Sendi and Cheriet [37] propose a framework for
assessing the security risks associated with cloud computing
platforms, but propose no solution on how to achieve a
high standard of audit. Xiong and Chen [38] consider how
to allocate sufficient computing resources, but not to over-
provision them, to process and analyse audit logs for ensuring
the guarantee of security of an SLA, referred to as the SLA-
based resource allocation problem, for high-performance cloud
auditing. This is interesting because of the tools developed.
However, it is geared toward enforcement of SLAs in high
performance computing, rather than for security auditing.

The common theme running through much of this work is
that there is a recognition of the need for proper audit, but
little idea of how to go about it. Where tools are developed,

many are excellent for what they are designed for, but do not
offer a complete solution to the problem. It is clear that the
consistent lack of input from the accounting profession is not
helping advance the state of the art, and we would call for more
input from the accounting profession. Cloud computing is such
a radical change from traditional computing approaches, that
we now need to involve a wider range of disciplines, working
together to try to address what represents a major challenge.

IV. THE AUDIT TRAIL

Auditing in the accountancy world has enjoyed the benefit
of over a century of practice and experience, yet there re-
main differences of opinion with a number of problems yet
to be resolved. Duncan and Whittington [1] provide some
background on this issue. Cloud computing audit can not be
considered a mature field, and there will be some way to go
before it can catch up with the reflection and rigour of the
accounting profession. An obvious area of weakness arises
when taking audit professionals from the accounting world out
of their comfort zone, and placing them in a more technical
field. Equally, the use of people with a computing background
can overcome some of these issues, but their lack of audit
background presents another weakness.

A fundamental element of the audit process is the audit
trail, and having two disciplines involved in providing cloud
audit services means we have two different disciplines to
contend with, namely accounting professionals and security
professionals. An obvious concern is what is meant by the term
“audit trail”. It is easy to assume that everyone is talking about
the same thing, but is that actually the case? To an accounting
professional, the meaning of an audit trail is very clear.

The Oxford English Dictionary (OED) [39] has two useful
definitions of an audit trail: “(a) Accounting: a means of
verifying the detailed transactions underlying any item in an
accounting record; (b) Computing: a record of the computing
processes which have been applied to a particular set of
source data, showing each stage of processing and allowing the
original data to be reconstituted; a record of the transactions
to which a database or a file has been subjected”. This
suggests common understanding, but often this is not evident
in computing research.

Some 20 years ago, the National Institute of Standards and
Technology (NIST) [40] provided, in the context of computing
security, a very detailed description of what an audit trail is,
and this is wholly consistent with the OED definition. When
we look at the definitions in use in some cloud audit research
papers, we start to see a less rigorous understanding of what
an audit trail is. For example, Bernstein [19] suggests the audit
trail comprises: events, logs, and analysis thereof, Chaula [41]
suggests: raw data, analysis notes, preliminary development
and analysis information, processes notes, etc.

Pearson et al. [20] recognise that achieving proper audit
trails in the cloud is an unresolved issue. Ko et al. [42]
explicitly note that steps need to be taken to prevent audit
trails disappearing after a cloud instance is shut down. Ko
[43] recognises the need to collect a multiplicity of layers of
log data, including transactional audit trails in order to ensure
accountability in the cloud. The EU Article 29 Working Party
[44] raises several cloud-specific security risks, such as loss of
governance, insecure or incomplete data deletion, insufficient

127Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         140 / 157



audit trails or isolation failures, which are not sufficiently
addressed by existing Safe Harbor principles on data security.

The audit trail can be a very powerful tool in the fight
against attack. Just as the audit trail offers forensic accountants
a means to track down fraudulent behaviour in a company, so
the audit trail in a cloud setting, providing it can be properly
protected against attack, offers forensic scientists an excellent
basis to track intrusions and other wrongdoing. In the event
of a catastrophic attack, it should be possible to reconstruct
the system that has been attacked, in order to either prove the
integrity of the system values, or in a worst case scenario,
reconstruct the system from scratch. The redundancy offered
by the simple audit trail, often seen by many as an unnecessary
duplication, will prove invaluable in the event of compromise.

Many cloud users are punctilious about setting up proper
audit trails, but sometimes forget that when a virtual machine
(VM) running in the cloud is shut down, everything, includ-
ing the audit trail data they have so assiduously collected,
disappears as soon as the VM shuts down [42], unless steps
are taken to prevent this loss. In real world conditions, most
database software ships with inadequate audit trail provision
in the default settings. Anderson [45] states that the audit trail
should only be capable of being read by users. While it is
simple enough to restrict users to read-only access, this does
not apply to the system administrators. This presents an issue
where an intruder gets into a system, escalates privileges until
root access is obtained, and is then free to manipulate, or delete
the audit trail entries in order to cover their tracks.

Cloud users often assume that the VMs they are running
will be under their sole control. However, the VMs run on
someone else’s hardware — the CSP’s, who also employ
system administrators, and sometimes employ temporary staff,
some of whom are also system administrators. While the CSP
may vet their own staff to a high level, this is often overlooked
with temporary employees. Network connections too are often
virtualised, opening up yet more avenues of attack.

A cloud user can take as many steps to secure their business
as they wish, but a key ingredient in the equation is the fact
that all cloud processes run on somebody else’s hardware, and
often software too — the CSP’s. The cloud relationship needs
to include the CSP as a key partner in the pursuit of achieving
security [12]. Unless and until CSPs are willing to share this
goal, technical solutions will be doomed to failure.

V. HOW CAN WE IMPROVE THE AUDIT TRAIL?
These vulnerabilities are not new, and are well known

to security professionals, and while many companies do use
security professionals, many do not. Regardless, companies
continue to be breached. As stated in the introduction, achiev-
ing information security is not a trivial process, but in a
cloud setting, this becomes far more difficult, due to the
complexity of relationships between myriad actors involved
in cloud ecosystems, as well as the other issues discussed in
Section II. Audit is difficult. Cloud audit is far more difficult,
with far more weaknesses to overcome. Proper audit trails
alone will not solve cloud security, but will go a long way
to helping with this goal if some simple steps are taken.

In the accounting world, an understanding of exactly what
is meant by an audit trail, and its importance, is a fundamental
part of the training every accountant undertakes. Looking at the

literature on cloud audit, it is obvious that there is a need for
input from the accounting profession, and the authors would
wish to encourage and see more input from that source. It is
clear that there is no shortage of input on the technical side, but
the authors believe there is room for a valuable contribution
to be made by the accounting profession, with many lessons
learned over many decades. There is also no doubt that further
work is needed, and work on audit trails can prove to be both
cost effective and productive in helping with security.

Some interesting work is being done on information flow
control and legal issues in cloud [46] [47] [48] [49] [50] [51]
which we believe, while a little light on the audit side, has the
potential to offer good improvements to cloud users to enhance
their security and privacy, and to achieve compliance.

In looking at the current approach to the use of the audit
trail, there are three fundamental weaknesses which need to
be addressed, yet which are relatively simple to address. First,
inadequate default logging options can result in insufficient
data being collected for the audit trail. Second, there is a lack
of recognition that the audit trail data can be accessed by a
malicious user gaining root privileges, which can lead to the
removal of key data showing who compromised the system,
and what they did once they had control of it. Third, failure to
ensure log data is properly collected and moved to permanent
storage can lead to loss of audit trail data, either when an
instance is shut down, or when it is compromised. These
weaknesses apply equally to cloud and non-cloud systems.

On the first point, we look at one of the most popular
open source database programmes in general use today —
MySQL. The vast majority of implementations use standard
default settings on installation, or install the programme as part
of a standard Linux, Apache, MySQL and PHP (LAMP) server.
With a LAMP server, all four of the constituent elements are
set up using the default settings. This works very well for
easy functionality “out of the box”, which is the aim of a
LAMP server. But, this does not adequately address security
in the four elements of the LAMP server, and applies equally
to cloud and non-cloud systems.

MySQL offers the following audit trail options:

• Error log — Problems encountered starting, running, or
stopping mysqld;

• General query log — Established client connections and
statements received from clients;

• Binary log — Statements that change data (also used for
replication);

• Relay log — Data changes received from a replication
master server;

• Slow query log — Queries that took more than
long query time seconds to execute;

• DDL log (metadata log) — Metadata operations per-
formed by Data Definition Language (DDL) statements.

By default, no logs are enabled, except the error log on
Windows. Some versions of Linux send the Error log to syslog.

Oracle offer an audit plugin for Enterprise (paid) Editions
of MySQL. This allows a range of events to be logged,
but again, by default, most are not enabled. The MariaDB
company, whose author originally wrote MySQL, have their
own open source audit plug-in, and offer a version suitable for
MySQL. It has the following functionality:

128Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         141 / 157



• CONNECTION — Logs connects, disconnects and failed
connects (including the error code);

• QUERY — Queries issued and their results (in plain
text), including failed queries due to syntax or permission
errors;

• TABLE — Which tables were affected by query execu-
tion;

• QUERY DDL — Works as the ‘QUERY’ value, but
filters only DDL-type queries (CREATE, ALTER, etc);

• QUERY DML — Works as the ‘QUERY’ value, but
filters only Data Manipulation Language (DML) DML-
type queries (INSERT, UPDATE, etc).

By default, logging is set to off. Thus, those users who rely
on default settings for their systems are immediately putting
themselves at a severe disadvantage.

On the second point, as Anderson [45] states, the audit trail
should only be capable of being read by users. This presents
a problem in a cloud setting, where the software being used
is running on someone else’s hardware. There is a risk of
compromise from an outside user with malicious intent. There
is also a risk of compromise by someone working for the CSP.
While the CSP may well take vetting of staff seriously, there
may be situations that arise where a temporary contract worker
is engaged at short notice who is subject to lesser scrutiny. This
applies equally to cloud and non-cloud systems.

Looking at the third point, where MySQL data logging is
actually switched on, all data is logged to the running instance.
This means the data remains accessible to any intruder who
successfully breaches the system, allowing them to cover
their own tracks by deleting any entries which relate to their
intrusion of the system, or to simply delete the entire audit
trail files. And, when the running instance is shut down, all
the data disappears anyway. In a non-cloud situation, the data
is still visible to the attacker, but the forensic trail may still be
left for investigation. However, in a cloud instance, if the data
is not safely stored and the running instance is shut down, the
forensic trail is more likely to be permanently lost.

These three points are not generally considered, yet they
present a serious weakness to the success of maintaining the
audit trail. Yet, these are relatively trivial to address by simply
turning on data logging and sending all log output to an
independent secure server under the control of the cloud user.
Adding an Intrusion Detection system (IDS) is also a useful
additional precaution to take, and this should be run on an
independent secure server under the control of the cloud user.
Using an audit plug-in in addition to all the basic logging
capabilities, is also a useful thing to do. While there may be
some double processing involved, it is better to have more data
than none at all. Where the MySQL instance forms part of a
LAMP server, it would be prudent to make some elementary
security changes to the setup of the Linux operating system,
the Apache web server, and to harden the PHP installation.

It is rather worrying that in 2012, [52] report an average of
6 months between breach and discovery, a clear indication that
very few firms scrutinise their server logs, with most discovery
being advised by external bodies, such as customers, financial
institutions or fraud agencies. It is encouraging to see that
three years later [53], the time between breach to discovery
has been drastically reduced. This still leaves a large gap
where compromised systems may still be under the control of

malicious users, which is a worry. Thus, in addition to making
the simple suggestions we propose above, cloud users should
also make sure they actually review their audit trail logs. It is
vital to understand when a security breach has occurred, which
records have been accessed, compromised or stolen. While this
is not a foolproof method of achieving cloud security, it is an
effective first step to help deliver far higher affordable security
than many companies currently achieve.

The authors have over 50 years of experience of audit and
internal audit in industry between them, and this knowledge
has been brought to bear in addressing this work. This initial
review of the state of the art raises serious concerns over how
little is being done. With some input from and partnership
with the accounting profession, it may be possible to work to
achieve far more effective levels of cloud audit, which in turn,
can lead to better levels of security being achieved.

VI. CONCLUSION

We have looked at some of the challenges facing companies
who seek to obtain good cloud security assurance. We have
seen how weaknesses in standard CSP SLAs can impact on
cloud security. We have identified cloud security standards
issues, and how that might impact cloud security. We have
considered how the lack of accountability can impact security.
We have discussed how these issues must also be addressed.

The practice of using default settings when installing
software in a cloud environment is clearly asking for trouble,
yet still persists. The simple steps proposed by the authors
are relatively easy to implement, need not be particularly
expensive to implement and maintain, and providing some on-
going monitoring of the audit trail logs is carried out, will
certainly prove beneficial. Inspecting the logs need not be
challenging or costly — there are many software solutions
available to address this task. Complicated solutions generally
lead to complex problems, as the more complex the solution,
the more the risk of ineffective configuration and maintenance
can lead to compromise in security. Yet all too often, the simple
steps that can really help improve security are ignored.

We certainly believe that more work needs to be done
in this area, and it would be beneficial to encourage the
accounting audit profession to get involved. After all, it is
their neck on the block when they sign off an audit, and
anything that can reduce risk to themselves, as well as their
clients, has to be a good thing. We have touched on how
these difficult areas of security might easily be approached
as part of a comprehensive security solution using simple
and inexpensive methods. Clearly, companies could benefit
from further research in several of these areas. It is also
clear that no one profession is equipped to deal with this
challenge. However, we would caution that action is needed
now, not several years down the line when research reaches
a more complete level of success in these areas. The threat
environment is too dangerous. Companies have to act now to
try to close the door, otherwise it may be too late.

REFERENCES

[1] B. Duncan and M. Whittington, “Compliance with Standards, Assurance
and Audit: Does this Equal Security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77–84.

129Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         142 / 157



[2] B. Duncan, D. J. Pym, and M. Whittington, “Developing a Conceptual
Framework for Cloud Security Assurance,” in Cloud Comp. Tech. Sci.
(CloudCom), 2013 IEEE 5th Int. Conf. (Vol. 2). Bristol: IEEE, 2013,
pp. 120–125.

[3] M. Huse, “Accountability and Creating Accountability: a Framework
for Exploring Behavioural Perspectives of Corporate Governance,” Br.
J. Manag., vol. 16, no. S1, 2005, pp. S65–S79.

[4] A. Gill, “Corporate Governance as Social Responsibility: A Research
Agenda,” Berkeley J. Int’l L., vol. 26, no. 2, 2008, pp. 452–478.

[5] C. Ioannidis, D. Pym, and J. Williams, “Sustainability in information
stewardship: Time Preferences, Externalities and Social Co-Ordination,”
in Weis 2013, pp. 1–24.

[6] A. Kolk, “Sustainability, accountability and corporate governance: Ex-
ploring multinationals’ reporting practices.” Bus. Strateg. Environ.,
vol. 17, no. 1, 2008, pp. 1–15.

[7] F. S. Chapin, G. P. Kofinas, and C. Folke, Principles of ecosystem stew-
ardship: Resilience-based natural resource management in a changing
world. Springer, 2009.

[8] S. Arjoon, “Corporate Governance: An Ethical Perspective,” J. Bus.
Ethics, vol. 61, no. 4, 2012, pp. 343–352.

[9] B. Duncan and M. Whittington, “Reflecting on Whether Checklists
Can Tick the Box for Cloud Security.” in Cloud Comp. Tech. Sci.
(CloudCom), IEEE 6th Int. Conf., Singapore: IEEE, 2014, pp. 805–810.

[10] B. Duncan and M. Whittington, “Company Management Approaches
- Stewardship or Agency: Which Promotes Better Security in Cloud
Ecosystems?” in Cloud Comput. 2015, Nice: IEEE, 2015, pp. 1–6.

[11] B. Duncan and M. Whittington, “The Importance of Proper Measure-
ment for a Cloud Security Assurance Model,” in Cloud Comp. Tech. Sci.
(CloudCom), 2015 IEEE 7th Int. Conf., Vancouver, 2015, pp. 1–6.

[12] B. Duncan and M. Whittington, “Enhancing Cloud Security
and Privacy: Broadening the Service Level Agreement,” in Trust-
com/BigDataSE/ISPA, IEEE. Vol. 1. IEEE, Helsinki, 2015, pp. 1–6.

[13] G. T. Willingmyre, “Standards at the Crossroads,”StandardView, vol. 5,
no. 4, 1997, pp. 190–194.

[14] B. Duncan and M. Whittington, “Enhancing Cloud Security and Pri-
vacy: The Cloud Audit Problem,” in press.

[15] PWC, “UK Information Security Breaches Survey - Technical Report
2012,” PWC Tech. Rep. April, 2012.

[16] M. Vouk, “Cloud computing- Issues, research and implementations,”
ITI 2008 - 30th Int. Conf. Inf. Technol. Interfaces, vol. 16, no. 4, 2008,
pp. 235–246.

[17] L. Wang, J. Zhan, W. Shi, Y. Liang, and L. Yuan, “In cloud, do MTC or
HTC service providers benefit from the economies of scale?” Proc. 2nd
Work. Many-Task Comp. Grids Supcomp. - MTAGS, 2009, pp. 1–10.

[18] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?”
Computer (Long. Beach. Calif)., vol. 42, no. January, 2009, pp. 15–20.

[19] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud - Protocols and formats for cloud computing
interoperability,” in Proc. 2009 4th Int. Conf. Internet Web Appl. Serv.
ICIW 2009, 2009, pp. 328–336.

[20] S. Pearson and A. Benameur, “Privacy, Security and Trust Issues Arising
from Cloud Computing,” 2010 IEEE Second Int. Conf. Cloud Comput.
Technol. Sci., 2010, pp. 693–702.

[21] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Secure Cloud Storage in Cloud Computing,” in IEEE
Trans. Comput., vol. PP, no. 99, 2012, pp. 1–14.

[22] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and
Privacy in Cloud Computing: A Survey,” in 2010 Sixth Int. Conf. Semant.
Knowl. Grids, 2010, pp. 105–112.

[23] Z. Chen and J. Yoon, “IT Auditing to Assure a Secure Cloud Comput-
ing,” in 2010 6th World Congr. Serv., 2010, pp. 253–259.

[24] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, 2010 pp. 50–58.

[25] S. Ramgovind, M. M. Eloff, and E. Smith, “The management of security
in cloud computing,” in Proc. Inf. Sec. S. A. Conf. ISSA, 2010, pp. 1–7.

[26] B. Grobauer, T. Walloschek, and E. Stöcker, “Understanding cloud
computing vulnerabilities,” IEEE Secur. Priv., vol. 9, no. 2, 2011, pp.
50–57.

[27] F. Doelitzscher et al., “Validating cloud infrastructure changes by cloud
audits,” in Proc. - 2012 IEEE 8th World Congr. Serv. Serv. 2012, 2012,
pp. 377–384.

[28] M. L. Hale and R. Gamble, “SecAgreement: Advancing security risk
calculations in cloud services,” in Proc. - 2012 IEEE 8th World Congr.
Serv., 2012, pp. 133–140.

[29] V. Pappas, V. Kemerlis, A. Zavou, M. Polychronakis, and A. D.
Keromytis, “CloudFence: Enabling Users to Audit the Use of their
Cloud-Resident Data,” 2012.

[30] Y. Zhu, H. Hu, G.-J. Ahn, and S. S. Yau, “Efficient audit service
outsourcing for data integrity in clouds,” J. Syst. Softw., vol. 85, no. 5,
2012, pp. 1083–1095.

[31] T. Ruebsamen and C. Reich, “Supporting cloud accountability by col-
lecting evidence using audit agents,” in Proc. Int. Conf. Cloud Comput.
Technol. Sci. CloudCom, vol. 1, 2013, pp. 185–190.

[32] F. Doelitzscher, M. Knahl, C. Reich, and N. Clarke, “Anomaly Detec-
tion In IaaS Clouds,” in CloudCom, 2013, pp. 387–394.

[33] F. Doelitzscher et al., “[DRKK+13] Sun Behind Clouds - On Automatic
Cloud Security Audits and a Cloud Audit Policy Language,” J. Adv.
vol. 6, no. 1, 2013, pp. 1–16.

[34] S. Thorpe et al., “Towards a forensic-based service oriented architecture
framework for auditing of cloud logs,” in Proc. - 2013 IEEE 9th World
Congr. Serv. Serv. 2013, 2013, pp. 75–83.

[35] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Trans. Com-
put., vol. 62, no. 2, 2013, pp. 362–375.

[36] J. M. López, T. Ruebsamen, and D. Westhoff, “Privacy-Friendly Cloud
Audits with Somewhat Homomorphic and Searchable Encryption,” in
Innov. Com. Serv. (I4CS), 14th Int. Conf., 2014, pp. 95–103.

[37] A. Shameli-Sendi and M. Cheriet, “Cloud Computing: A Risk Assess-
ment Model,” Cloud Eng. (IC2E), IEEE Int. Conf., 2014, pp. 147–152.

[38] K. Xiong and X. Chen, “Ensuring Cloud Service Guarantees Via Service
Level Agreement (SLA) -based Resource Allocation,” in Dist. Comp.
Sys. Work. (ICDCSW), IEEE 35th Int. Conf., 2015, pp. 35–41.

[39] OED, “Oxford English Dictionary,” 1989. [Online]. Available: www.
oed.com [Retrieved: Feb 2016]

[40] D. Gollmann, “Computer Security,” NIST, Tech. Rep. 800, 2011.
[41] J. Chaula, “A Socio-Technical Analysis of Information Systems Secu-

rity Assurance: A Case Study for Effective Assurance,” Ph.D. thesis,
2006.

[42] R. K. L. Ko et al., “TrustCloud: A framework for accountability and
trust in cloud computing,” Proc. - IEEE World Cong. Serv., 2011, pp.
584–588.

[43] L. F. B. Soares, D. A. B. Fernandes, J. V. Gomes, M. M. Freire, and
P. R. M. Inácio, “Security, Privacy and Trust in Cloud Systems,” in Secur.
Priv. Trust Cloud Syst. Springer, 2014, ch. Data Accou, 2014, pp. 3–44.

[44] Eu, “Unleashing the Potential of Cloud Computing in Europe,” 2012.
[45] R. J. Anderson, Security Engineering: A Guide to Building Dependable

Distributed Systems, C. A. Long, Ed. Wiley, 2008, vol. 50, no. 5.
[46] T. Pasquier, B. Shand, and J. Bacon, “Information Flow Control for a

Medical Records Web Portal,” Cl.Cam.Ac.Uk, 2013, pp. 1–8.
[47] J. Bacon et al., “Information flow control for secure cloud computing,”

IEEE Trans. Netw. Serv. Manag., vol. 11, no. 1, 2014, pp. 76–89.
[48] T. F. J. Pasquier, J. Singh, J. Bacon, and O. Hermant, “Managing Big

Data with Information Flow Control,” in Cloud Comput. Technol. Sci.
(CloudCom), 2015 IEEE 7th Int. Conf., vol. 2, 2015, pp. 1–8.

[49] J. Singh et al., “Regional Clouds: Technical Considerations,” no.
UCAM-CL-TR-863, 2014.

[50] J. Singh, J. Powles, T. Pasquier, and J. Bacon, “Seeing through the
clouds: Management, control and compliance for cloud computing,”
Cloud Comput., 2015, pp. 1–12.

[51] W. Hon, E. Kosta, C. Millard, and D. Stefanatou, “Cloud Accountabil-
ity: The Likely Impact of the Proposed EU Data Protection Regulation,”
Queen Mary Sch. Law Leg. Stud. Res. Pap., no. 172, 2014, pp. 1–54.

[52] Trustwave, “2012 Global Security Report,” Tech. Rep., 2012.
[53] Verizon, “Verizon 2015 Data Breach Investigation Report,” Tech. Rep.,

2015.

130Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         143 / 157



Online Traffic Classification Based on Swarm Intelligence

Takumi Sue, Yuichi Ohsita, and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

Osaka, Japan
{t-sue, y-ohsita, murata}@ist.osaka-u.ac.jp

Abstract—In this paper, we propose a new traffic classification
method which constructs hierarchical clusters using the features
of uncompleted flows. By constructing the hierarchical groups,
we can identify the similarity of the groups. If flows of a
new application construct a new group in the lower layer, but
they are classified in an existing group in the upper layer, the
manager can estimate the characteristic of the new application
from the characteristic of the existing group. In our method,
the hierarchical groups are constructed based on the clustering
method called AntTree; the each flow moves over the tree and find
the nodes whose similarity to the nodes exceeds the threshold. By
setting the threshold based on the number of monitored packets
of the flow, we classify the flow if the features of the flow become
sufficiently accurate. Otherwise we wait another packets that
improve the accuracy of the features.

Keywords—Traffic Classification; Hierarchical Clustering;
Swarm Intelligence

I. INTRODUCTION

As the Internet has become playing an important role in our
society, the number of types of services provided through the
Internet increases. The requirements to the network depend
on the type of the service. The video streaming application
requires enough bandwidth according to the bit rate of the
video. On the other hand, the interactive application such as
online game requires the communication with low latency
instead of the large bandwidth.

The network managers should manage their network so as to
provide sufficient network performance required by each ser-
vice. For example, Miyamura et al. [1] proposed a method that
constructs a virtual network for each service. In this method,
each virtual network is dynamically reconfigured so as to
provide a performance required by the service corresponding
to the network. To manage the network based on the types
of the service, we need to classify the traffic based on the
application.

The traditional classification of the traffic uses the port
numbers [2]. However, in recent years, a large number of types
of the applications, such as YouTube and network game, have
become provided through HTTP [3]. All of these applications
uses 80 or 443 port. As a result, the traffic classification using
the port numbers is no longer applicable in the Internet.

Therefore, the traffic classification methods based on the
features of the traffic have been proposed [2], [4]–[6]. The
packet sizes and packet arrival intervals depend on the types of
the application, and the protocol used by the application. The
traffic classification methods based on the features monitors
the packet size or packet arrival intervals for each flow. Then,
they classify the flows based on the monitored features by

using the clustering methods, in which the flows are grouped
so that the flows with the similar features belongs to the same
group.

The traffic classification should be performed as soon as
possible after the flow arrives. Even if the network manager
sets the rule to relay the flow according to the types of the
application, the rule cannot work before the classification of
the flow is completed. The existing method, however, cannot
classify the flow before monitoring the flow is completed. One
approach is to classify the flow after the predefined number
of packets are monitored. By setting the required number of
packets to the small value, we can classify the flow soon after
the flow arrives. However, the features of the flow obtained by
monitoring the small number of packets may be inaccurate,
and some application may be difficult to classify based on
such inaccurate information.

Another problem in the existing traffic classification is that
the group constructed by the classification methods does not
imply the characteristic of the group. When flows of a new
application comes, the flows are classified into a new group.
However, the existing classification methods do not provide
the information whether the newly constructed group has the
similar characteristic to the existing other groups. As a result, it
is difficult to estimate the characteristic of the new application.

In this paper, we propose a new traffic classification method
to solve the above problems. Our method is based on the
hierarchical clustering [7]. In the hierarchical clustering, the
groups of the flows are hierarchically constructed; the flows
are clustered into a small number of groups in the upper
layer, and the flows belonging to the same group in the upper
layers are clustered into several groups in the lower layer.
By constructing the hierarchical groups, we can identify the
similarity of the groups. If flows of a new application construct
a new group in the lower layer, but they are classified in an
existing group in the upper layer, the manager can estimate the
characteristic of the new application from the characteristic of
the existing group.

In our method, the hierarchical groups are constructed
based on the clustering method called AntTree [8]. AntTree
is inspired by the behavior of ants constructing the tree. In
the AntTree, an ant, which corresponds to an item required
to be classified, walks on the tree constructed by the other
ants. Then, if the ant find the ant whose similarity exceeds the
threshold, the ant is connected to the similar ant. If the nearby
ants do not have the similarity exceeding the threshold, the ant
updates the threshold and goes to another place on the tree.
By continuing this process, the hierarchical tree, where similar

131Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         144 / 157



ants are connected, is constructed.
In our method, we extend AntTree to consider the accuracy

of the features. The features of the flow become accurate as
the number of monitored packets increases. We classify the
flow if the features of the flow become sufficiently accurate.
Otherwise we wait another packets that improve the accuracy
of the features. To achieve this, we extend the AntTree by
setting the threshold of the similarity to connect the ants
considering the number of monitored packets. By doing so,
if the quite similar group to the newly arrived flow exists,
the flow is classified soon after the flow starts. Otherwise, our
method waits another packet to improve the accuracy, and the
flow is classified after the sufficient packets are monitored.

The rest of this paper is organized as follows. Section II
explains the related work. Section III explains our online
hierarchical traffic classification method. In Section IV , we
conduct an experiment with real traffic data. The conclusion
and future work are mentioned in Section V.

II. RELATED WORK

This section explains the related work.

A. Traffic Classification

There are several papers proposing a method to classify the
traffic using the features of the monitored traffic.

Roughan et al. proposed a method to classify the traffic
through the supervised machine learning [4]. In this method,
the newly obtained data is classified as the class of its nearest
neighbor from the training data set. Zhang et al. improved the
accuracy of the nearest neighbor approach when the number of
the training data set is small by incorporating the correlation
information of the flows [9]. Moore et al. also proposed a
method to classify the traffic based on the supervised machine
learning [5]. In this method, the traffic is classified by using
the Naı̈ve Bayes classifier. Nguyen et al. also used the Naı̈ve
Bayes to classify the traffic [10]. This method uses the features
of a small number of most recent packets to obtain the
features. Then, applying the Naı̈ve Bayes, this method classify
the current flows. Zhang et al. also used the Naı̈ve Bayes
classifier [11]. In this method, flow correlation information
is modeled by bag-of-flow. Then, the features are extracted
for the represent traffic flows. The traffic is classified by
aggregating the output of the Naı̈ve Bayes classifiers using the
extracted features. Li et al. proposed a method to construct the
decision tree from the training data set [12]. Then the traffic
is classified based on the constructed decision tree. Jin et al.
proposed a traffic classification method using multiple simple
linear binary classifiers [13]. In this method, each classifier
can be easily trained. Then, combining the multiple classifiers,
we can accurately classify the traffic.

The supervised machine learning methods described above
require the training data set. However, as we discussed in
Section I, it is difficult to prepare the training data set including
the suitable labels for the traffic, because the new applications,
which are unknown when the system to classify the traffic
starts, emerge.

The methods to classify the traffic based on the clustering
have also been proposed.

Erman et al. applied the clustering method to the traffic clas-
sification [14]. They used the K-means method, DBSCAN, and
AutoClass, and demonstrated that these clustering algorithms
can classify the traffic accurately. Bernaille et al. proposed
a method to classify the traffic online using the K-means
method [6]. In this method, the clusters are constructed offline
by using the training data set. Then, flows are classified online
by searching the cluster corresponding to the flow. However,
this approach cannot classify the traffic which corresponds to
the application, which was not included in the training data
set. The clustering method can be used to solve this problem.
Zhang et al used the K-means method to detect the unknown
flows [15].

Recently, Wang et al. extended the K-means method to
improve the accuracy of the traffic classification [16]. In
this method, the accuracy is improved by considering the
information of the flow inferred from the packet headers as
the constraint on the clustering.

However, the existing traffic classification methods based
on the clustering have the following two problems. (1) These
methods do not consider the case that the new applications
emerges. Though the method proposed by Zhang et al [15] can
detect the unknown flows, it cannot estimate the characteristic
of the new flow. (2) These methods assume that the accurate
features of the flow are obtained before classifying the traffic.
However, the accurate features may not be able to be obtained
before the flow is completed.

In this paper, we propose a clustering method which solves
the above problems. Our clustering method can be applicable
to the existing traffic classification method based on the
clustering; our clustering method can be run by using any
features of the flows.

B. Clustering

There are many algorithms to construct the clusters.
K-means is one of the most popular clustering algorithms.

In the K-means method, the number of clusters k is given
as a parameter. Then, the k clusters are constructed so as to
minimize the distance from each data point to the center of
the cluster the data point belongs to, which is defined by the
mean of the data points within the cluster. However, the result
of the K-means only indicates the cluster which each data
point belongs to. Thus, we cannot understand the similarity of
the data points belonging to different clusters.

The hierarchical clustering methods can solve the above
problem. In the hierarchical clustering methods, the data points
are clustered into a small number of groups in the upper layer,
and the data points belonging to the same group in the upper
layers are clustered into several groups in the lower layer.
By constructing the hierarchical groups, we can identify the
similarity of the groups.

The ClusTree is one of the hierarchical clustering methods,
which allow to update the clusters online [7]. This method
constructs the tree, including two kinds of nodes, inner node

132Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         145 / 157



and leaf node. The leaf node indicates a fine-grained cluster,
and has the pointer to the feature values of the corresponding
data points. The inner node corresponds to the coarse-grained
cluster, which includes the data points included in its children
nodes. The inner node has the pointer to the aggregated
features of the data points included in its children nodes. In
the ClusTree, the clusters can be updated by (1) searching the
leaf node corresponding to the new data point from the root
node, and (2) updating the features on the path from the root
node to the leaf node.

The ClusTree can be updated online, but does not consider
the case that the features are inaccurate. Therefore, in this
paper, we propose a new clustering method based on the
ClusTree, considering the case that the features are inaccurate.

AntTree [8] is another hierarchical clustering method.
AntTree is a method inspired by the behavior of the ants
constructing a tree. In this process, each data point acts as an
ant; each data point walks around the tree to find the node
similar to the flow, and connects it to the found node. In
the AntTree, the nodes in the constructed tree are the data
points. Therefore, it is difficult to interpret the constructed
tree hierarchically; we need to determine the data points
corresponding to the inner nodes when constructing the fine-
grained flow. However, the idea of the AntTree is useful to
handle the inaccuracy of the features. In the AntTree, each
data point has a threshold to determine whether the other data
points are similar to it. Then, each data point walks around
the tree based on the threshold. Though the original AntTree
updates the threshold based on the number of nodes the data
points visited, we can consider the inaccuracy of the features
by setting the threshold based on the accuracy of the features.
Therefore, in this paper, we introduce the method based on
the AntTree to search the cluster each data point belongs to.

III. ONLINE HIERARCHICAL TRAFFIC CLASSIFICATION
METHOD

This section explains our online hierarchical traffic classifi-
cation method.

A. Overview

In this paper, we develop the traffic classifier, which clas-
sifies the flow passing the classifier. The flow is defined by
the set of packets between the same IP address pairs using
the same server port. We regard the well-known ports as the
server ports, and the other ports as the client ports. In this
paper, the packets using the same server port is regarded as
the packets belonging to the same flow even if the packets
have the different client port, because some application such
as Web browser uses the multiple TCP connections for the
same transaction.

The traffic classifier monitors the flows. When the traffic
classifier receive a packet, it identifies the flow the packet
belongs to. Then, it stores the information of the packet. The
traffic classifier updates the features of the flow each time a
packet of the flow are monitored.

The traffic classifier classifies the flow based on its features.
To classify the flow, we use the hierarchical clustering meth-
ods. In the hierarchical clustering, the groups of the flows are
hierarchically constructed; the flows are clustered into a small
number of groups in the upper layer, and the flows belonging
to the same group in the upper layers are clustered into several
groups in the lower layer. By constructing the hierarchical
groups, we can identify the similarity of the groups.

Each time the features of the flow is updated, the traffic
classifier runs the clustering method. That is, the clustering is
performed before the flow completed by using the inaccurate
features, which leads to wrong classification. Therefore, we
use the clustering method considering the accuracy of the
features. The accuracy of the features of the flow increases
as the number of monitored packets becomes large. Thus, we
classify the flow if the features of the flow become sufficiently
accurate. Otherwise we wait another packets that improve the
accuracy of the features.

To achieve this, we extend the AntTree. In the AntTree, an
ant, which corresponds to an item required to be classified,
walks on the tree constructed by the other ants. Then, if the
ant find the ant whose similarity exceeds the threshold, the ant
is connected to the similar ant.

If the nearby ants do not have the similarity exceeding the
threshold, the ant updates the threshold and goes to another
place on the tree. By continuing this process, the hierarchical
tree, where similar ants are connected, is constructed.

In this paper, we set the threshold of the AntTree based on
the number of received packets; the flow with a small number
of monitored packets is connected to the node only if the very
similar node exists. On the other hand, the flow with a large
number of monitored packets is easier to be connected.

B. Data structure

In this paper, we construct the hierarchical cluster based
on ClusTree [7]. Figure 1 shows the data structure of the
constructed cluster.

In this data structure, the feature values of the flows are
stored in a table, and updated each time a packet corresponding
the flow arrives. We denote the feature value of the flow f as
the vector Ff .

This cluster has two kinds of nodes, inner node and leaf
node. The leaf node indicates a fine-grained cluster, and
includes l toL flows. Each leaf node has the pointer to the
feature values of the corresponding flows.

The inner node corresponds to the coarse-grained cluster,
which includes the flows included in its children nodes.
That is, by constructing the tree of inner nodes, we can
hierarchically construct clusters; the inner node near root node
corresponds to the coarser-grained cluster, and the node near
leaf corresponds to the finer grained node.

The inner node construct the tree structure by connecting
it tom to M children. Each inner node has the entries
corresponding to its children. Each entry has the abstracted
clustering features and the pointer to the corresponding child.

133Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         146 / 157



The abstracted clustering features corresponding to the child
node c have the following values.

• The number of flows included in the abstracted features
nc

• The sum of the features Slinear, which is calculated by

Slinear
c =

∑
f∈Fc

Ff

where Fc is the set of flows included in cluster of the
node c.

In our method, there are flows that have not been classified
into any clusters. We maintain such flows in a list called
unclassified flows.

A flow	  feature

Clustering	  feature

Figure 1. Data structure of the hierarchical cluster

C. Process to update the tree

When the traffic classifier receives a packet, it identifies the
flow of the packet, and stores the packets. Each time a packet
of the flow arrive, the features of the flow are updated. At the
same time, the data structure of the tree is updated.

The process to update the tree depends on whether the flow
is already classified into one of the clusters or included in the
unclassified flows.

1) Update the data of the flows that is included in the
unclassified flows: We denote the flow finding the cluster by
fnew, the location of fnew by pfnew , the node whose feature
is the most similar to fnew among the children of pfnew by
cpfnew . T sim

f and T dissim
f are the thresholds for the flow f .

Sim(f, c) indicates the similarity between the flow f and the
node c, which is calculated by

Sim(f, c) = 1− distance(f, c)− distancemin

distancemax − distancemin
(1)

where distance(f, c) is defined by

distance(f, c) =

∣∣∣∣Ff +
Slinear
n

nc

∣∣∣∣ .
In this paper, the flow fnew moves over the tree by per-

forming the following rule once per one arrival packet.
• If pfnew is the root node

1) if the root node has no children, make a leaf node
and insert the pointer to fnew to the newly added
node

2) Otherwise, go to cpfnew

• If pfnew is not the root node
1) If Sim(fnew, cpfnew ) ≥ T sim

fnew ,
a) Go to cpfnew

b) If cpfnew is a leaf node,
i) Insert the pointer to fnew to cpfnew

ii) Update the abstracted clustering features of
the ancestors a of cpfnew by adding Ff to
Slinear
a and 1 to na

iii) If there exists a node whose number of
children exceeds the upper limit (L or M ),
add new a node

2) If Sim(fnew, cpfnew ) < T sim
fnew

a) Sim(fnew, cpfnew ) < T dissim
fnew , go back to the

parent node of cpfnew

b) Otherwise, stay at cpfnew

In the above steps, T sim
fnew and T dissim

fnew is updated by

Tsim(ai) = Tsim(ai)× α1, (2)

and
Tdissim(ai) = Tdissim(ai)× α2, (3)

where α1 and α2 are the parameters.
Addition of the new node in the above steps is done by the

following steps. First, we calculate
∑

c∈Ca

Slinear
n

nc
where a is a

node whose number of entries exceeds the upper limit, and Ca

is a set of the children of a. Then, we select the cmax whose
Slinear
n

ncmax
is the most different from

∑
c∈Ca

Slinear
n

nc
. Finally, we

remove the entry for cmax from a and add the node including
the entry for cmax. The parent of the newly added node is set
to the parent of a. If the parent of a also has more entries than
the upper limit after the above process, we perform the same
process for the parent again.

IV. EXPERIMENT

In this paper, we used our traffic classifier to classify the
flows from one computer in our laboratory, where 43 flows are
monitored. The computer accessed Web servers, an Exchange
server, and so on through the 80 or 443 port. To classify the
flows, we use the features shown in Table I. In this features, we
define the downstream packets as the packets from the servers
whose port number is a well-known port, and the upstream
packets as the packets to the servers.

In this experiment, we set the initial values of Tsim(ai)
and Tdissim(ai) to 1.0. We set α1 and α2 to 0.7. We started
the classification after 5 packets per flow were received. The
features of each flow were updated until more than 100 packets
of the flow were received. We stopped updating the features
after 100 packets were received, because the features do not
change significantly after a sufficient number of packets are
monitored.

Figure 2 shows the tree constructed by our classification.
Table II shows the features of the flow grouped by the cluster
in the lowest layer. Tables III and IV show the abstracted
clustering features divided by the number of flows included in

134Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         147 / 157



TABLE I
FEATURES USED IN OUR EXPERIMENT

Name Description

E(sdown) Average of the size of the downstream packets
E(sup) Average of the size of the upstream packets
σ(sdown) Standard deviation of the size of the downstream packets
σ(sup) Standard deviation of the size of the upstream packets
E(idown) Average of the interval of the arrival of the downstream packets
E(iup) Average of the interval of the arrival of the upstream packets
σ(idown) Standard deviation of the interval of the arrival

of the downstream packets
σ(idown) Standard deviation of the interval of the arrival

of the upstream packets

the abstracted clustering features. To illustrate the result of the
clustering, we plot the scatter graph of the clustering features
of each flow. In Figures 3 and 4, we colored the flows based
on the group constructed in the 2nd layer and the 3rd layer of
the tree, respectively.

These figures show that our clustering method can group
flows into clusters so that the flows with the similar feature are
included in the same cluster, in any layers. That is, our method
can classify the flows even before the flow is completed.

These figure also indicates that the constructed clusters are
mainly based on the packet sizes, and packet arrival interval
does not have a large impact on the cluster.

Node 0	Node 1	Node 2	 Node 3	Node 4	Node 5	 Node 10	Node 9	Node 7	Node 8	Node 6	 Node 11	Node 12	Node 13	Node 14	Node 15	Node 16	

Depth 4	

Depth 3	

Depth 2	

Depth 1	

Node 3	

Node 1	 Node 2	
Node 4	

Node 0	

Node 5	

Node 6	

Node 0	 Node 1	 Node 2	

Root	

Figure 2. Tree constructed by our classification

V. CONCLUSION

In this paper, we proposed a new traffic classification
method that construct hierarchical groups of the similar flows.
Through the experiment, we demonstrated that our classifi-
cation method enables grouping similar flows into the same
clusters. That is, our method can classify the flows even
before the flow is completed. Results also indicates that the
constructed clusters are mainly based on the packet sizes, and
packet arrival interval does not have a large impact on the
cluster.

Our future work includes further verification of our method
using larger traffic data and discussion on more appropriate
features calculated from packet information.

REFERENCES

[1] Takashi Miyamura, Yuichi Ohsita, Shin’ichi Arakawa, Yuki Koizumi,
Akeo Masuda, Kohei Shiomoto, and Masayuki Murata, “Network vir-
tualization server for adaptive network control,” in Proceedings of
20th ITC Specialist Seminar on Network Virtualization - Concept and
Performance Aspects, May 2009.

[2] A. Callado, C. Kamienski, G. Szabo, B. P. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A survey on internet traffic identification,” Communica-
tions Surveys & Tutorials, IEEE, vol. 11, pp. 37–52, Aug. 2009.

[3] L. Popa, A. Ghodsi, and I. Stoica, “Http as the narrow waist of the future
internet,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, Hotnets-IX, (New York, NY, USA), pp. 6:1–6:6,
ACM, 2010.

[4] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service
mapping for QoS: A statistical signature-based approach to IP traffic
classification,” in Proceedings of the 4th ACM SIGCOMM Conference
on Internet Measurement, IMC ’04, (New York, NY, USA), pp. 135–
148, ACM, 2004.

[5] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 33, pp. 50–60, June 2005.

[6] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application iden-
tification,” in Proceedings of the 2006 ACM CoNEXT Conference,
CoNEXT ’06, (New York, NY, USA), pp. 6:1–6:12, ACM, 2006.

[7] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The ClusTree: indexing
micro-clusters for anytime stream mining,” Knowledge and Information
Systems, vol. 29, no. 2, pp. 249–272, 2011.

[8] H. Azzag, N. Monmarche, M. Slimane, and G. Venturini, “AntTree: a
new model for clustering with artificial ants,” Evolutionary Computation,
2003. CEC ’03. The 2003 Congress on, vol. 4, pp. 2642–2647, Dec.
2003.

[9] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan,
“Network traffic classification using correlation information,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 24, pp. 104–117,
Jan 2013.

[10] T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely
and continuous machine-learning-based classification for interactive ip
traffic,” IEEE/ACM Trans. Netw., vol. 20, pp. 1880–1894, Dec. 2012.

[11] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet
traffic classification by aggregating correlated naive bayes predictions,”
Information Forensics and Security, IEEE Transactions on, vol. 8, pp. 5–
15, Jan 2013.

[12] W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application
identification and the temporal and spatial stability of classification
schema,” Comput. Netw., vol. 53, pp. 790–809, Apr. 2009.

[13] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang, “A
modular machine learning system for flow-level traffic classification in
large networks,” ACM Trans. Knowl. Discov. Data, vol. 6, pp. 4:1–4:34,
Mar. 2012.

[14] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using
clustering algorithms,” in Proceedings of the 2006 SIGCOMM workshop
on Mining network data, pp. 281–286, 2006.

[15] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. Vasilakos, “An effective
network traffic classification method with unknown flow detection,”
Network and Service Management, IEEE Transactions on, vol. 10,
pp. 133–147, June 2013.

[16] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, G. Wei, and L. Yang, “In-
ternet traffic classification using constrained clustering,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 25, pp. 2932–2943,
Nov 2014.

135Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         148 / 157



TABLE II
FEATURES OF THE FLOWS: DEPTH 4

flow number E(sdown) E(sup) σ(sdown) σ(sup) E(idown) E(iup) σ(idown) σ(iup)
Node 0
1 0.72084 0.0982946 0.42354 0.114737 1.01073e-005 1.51213e-005 3.37173e-005 3.97892e-005
2 0.627727 0.106697 0.426203 0.126686 5.652e-005 0.000123704 9.43008e-005 0.000106826
3 0.713851 0.0930637 0.381509 0.123607 0.000609879 0.000972389 0.00136518 0.00154726
4 0.804338 0.0884975 0.378517 0.112426 2.81074e-005 6.92139e-005 6.58568e-005 8.45793e-005
5 0.763775 0.116724 0.386436 0.159844 0.0123994 0.0198522 0.0582105 0.072384
Node 1
6 0.546043 0.101218 0.4561 0.115731 5.26767e-005 0.000108162 8.91574e-005 8.57252e-005
7 0.547945 0.104547 0.454592 0.128433 0.000902717 0.00128282 0.00165487 0.00184167
Node 2
8 0.715821 0.144243 0.396433 0.246516 2.88237e-005 3.63364e-005 8.34268e-005 9.56236e-005
Node 3
9 0.427973 0.293015 0.349902 0.284289 3.13866e-005 3.08145e-005 5.17207e-005 4.05901e-005
10 0.541256 0.504292 0.431807 0.441602 0.0011992 0.000964186 0.00186101 0.00159072
Node 4
11 0.361422 0.248002 0.384193 0.309865 0.000404118 0.000285903 0.000602977 0.000354651
12 0.335109 0.277778 0.378048 0.320403 0.000174889 0.000145212 0.000162109 0.000161237
Node 5
13 0.463263 0.20624 0.429613 0.281791 0.00074491 0.000975223 0.00158266 0.0018436
14 0.463263 0.226884 0.429613 0.292398 0.000326853 0.000513898 0.000358468 0.000505234
Node 6
15 0.378691 0.0986175 0.412466 0.0966242 9.41781e-005 7.83116e-005 0.000343073 0.000214059
16 0.384721 0.0927376 0.397592 0.0789838 1.71589e-005 1.75337e-005 5.07459e-005 4.32654e-005
17 0.32715 0.165906 0.398255 0.151882 0.00278449 0.00313977 0.00231127 0.00203568
18 0.406562 0.102182 0.422961 0.0993938 0.000132655 0.000113818 0.000257254 0.000232465
19 0.402588 0.143075 0.437178 0.194868 6.77042e-005 0.00115388 0.00010484 0.0017407
Node 7
20 0.274734 0.109589 0.369642 0.132467 0.000220875 0.000434846 0.000330604 0.00039426
Node 8
21 0.479959 0.10624 0.441488 0.125773 0.0506274 0.0633271 0.101089 0.109396
Node 9
22 0.0570776 0.0593607 0.0114155 0 0.0222335 0.0500198 0.0248326 6.13253e-006
23 0.105784 0.0410959 0 0 0.250259 0.250248 3.545e-006 6.00934e-005
24 0.105784 0.0410959 0 0 0.250257 0.250257 7.90377e-006 0.000219129
25 0.167047 0.328767 0.121385 0 0.323694 0.727734 0.36831 0.121438
Node 10
26 0.0456621 0.0410959 0 0 0.0105705 0.00906027 0.022708 0.0213338
Node 11
27 0.1207 0.0628615 0.0339138 0.0021309 0.00817775 0.00833702 0.00765219 0.00837687
Node 12
28 0.293715 0.10136 0.342828 0.0946878 0.000162252 0.000128599 0.000429047 0.000293705
29 0.3431 0.128742 0.420671 0.191927 0.000136547 0.00013721 0.000158327 8.46613e-005
30 0.256722 0.0967783 0.350721 0.120472 0.00795401 0.00795477 0.00984362 0.0097643
31 0.222 0.107827 0.309717 0.0900621 0.000672249 0.000859237 0.00212733 0.00252721
Node 13
32 0.153349 0.174458 0.190907 0.148768 2.02533e-005 2.86792e-005 5.66575e-005 6.71647e-005
33 0.102055 0.181602 0.0811775 0.176932 9.99759e-005 7.07622e-005 0.000182625 0.000142923
34 0.140665 0.171487 0.131139 0.178177 2.1e-005 1.51033e-005 2.84602e-005 1.38837e-005
35 0.150158 0.132479 0.151779 0.146517 8.32722e-005 8.31819e-005 0.000175796 0.000215069
36 0.100761 0.199391 0.107929 0.277773 0.0292866 0.023471 0.0504462 0.0461822
Node 14
37 0.122273 0.129427 0.0958468 0.102736 0.044121 0.0536464 0.127781 0.138994
Node 15
38 0.226636 0.0888128 0.170655 0.0909378 0.0431425 0.0196648 0.0638903 0.0455347
Node 16
39 0.946356 0.0748792 0.208481 0.156522 3.45042e-005 0.000112505 6.80385e-005 0.000201225
40 0.756059 0.0831219 0.380303 0.112472 0.000272307 0.000536175 0.000593526 0.000963796
41 0.895826 0.0653595 0.278181 0.0857372 7.59293e-005 0.000120305 0.000233297 0.000279578
42 0.862609 0.0769847 0.324408 0.0999886 6.9086e-006 1.35787e-005 1.75598e-005 2.69238e-005
43 0.899784 0.088946 0.292179 0.123184 3.14463e-005 7.06452e-005 5.85814e-005 6.59837e-005

136Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         149 / 157



TABLE III
FEATURES OF THE FLOWS: DEPTH 3

flow number E(sdown) E(sup) σ(sdown) σ(sup) E(idown) E(iup) σ(idown) σ(iup)
Node 0
1-5 0.726106 0.100655 0.399241 0.12746 0.0026208 0.00420653 0.0119539 0.0148325
6-7 0.546994 0.102882 0.455346 0.122082 0.000477697 0.00069549 0.000872014 0.000963698
8 0.715821 0.144243 0.396433 0.246516 2.88237e-005 3.63364e-005 8.34268e-005 9.56236e-005
Node 1
9-10 0.484614 0.398653 0.390854 0.362946 0.000615291 0.0004975 0.000956365 0.000815653
11-12 0.348266 0.26289 0.38112 0.315134 0.000289504 0.000215557 0.000382543 0.000257944
13-14 0.463263 0.216562 0.429613 0.287094 0.000535882 0.00074456 0.000970564 0.00117442
Node 2
15-19 0.379942 0.120503 0.41369 0.12435 0.000619237 0.000900662 0.000613436 0.000853234
20 0.274734 0.109589 0.369642 0.132467 0.000220875 0.000434846 0.000330604 0.00039426
21 0.479959 0.10624 0.441488 0.125773 0.0506274 0.0633271 0.101089 0.109396
Node 3
22-25 0.108923 0.11758 0.0332002 0 0.211611 0.319565 0.0982885 0.0304309
26 0.0456621 0.0410959 0 0 0.0105705 0.00906027 0.022708 0.0213338
27 0.1207 0.0628615 0.0339138 0.0021309 0.00817775 0.00833702 0.00765219 0.00837687
Node 4
28-31 0.278884 0.108677 0.355984 0.124287 0.00223127 0.00226995 0.00313958 0.00316747
Node 5
32-36 0.129397 0.171883 0.132586 0.185633 0.00590221 0.00473374 0.0101779 0.00932424
37 0.122273 0.129427 0.0958468 0.102736 0.044121 0.0536464 0.127781 0.138994
38 0.226636 0.0888128 0.170655 0.0909378 0.0431425 0.0196648 0.0638903 0.0455347
Node 6
39-43 0.872127 0.0778583 0.29671 0.115581 8.42191e-005 0.000170642 0.0001942 0.000307501

TABLE IV
FEATURES OF THE FLOWS: DEPTH 2

flow number E(sdown) E(sup) σ(sdown) σ(sup) E(idown) E(iup) σ(idown) σ(iup)
Node 0
1-8 0.680042 0.106661 0.412916 0.140997 0.00176102 0.0028075 0.00769962 0.00952319
9-14 0.432048 0.292702 0.400529 0.321725 0.000480226 0.000485873 0.000769824 0.000749338
15-21 0.379201 0.116907 0.411369 0.125713 0.00770635 0.00975218 0.0149268 0.0162938
Node 1
22-27 0.100342 0.0957128 0.0277857 0.00035515 0.144199 0.215943 0.0705857 0.025239
28-31 0.278884 0.108677 0.355984 0.124287 0.00223127 0.00226995 0.00313958 0.00316747
32-38 0.142271 0.153951 0.132776 0.160263 0.0166821 0.0138543 0.0346516 0.0330214
Node 2
39-43 0.872127 0.0778583 0.29671 0.115581 8.42191e-005 0.000170642 0.0001942 0.000307501

137Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         150 / 157



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

up

down

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

(a) E(sup) vs. E(sdown)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

up

down

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

(b) σ(sup) vs. σ(sdown)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

up
 

down 

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

(c) E(iup) vs. E(idown)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

up

down

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

(d) σ(iup) vs. σ(idown)

Figure 3. Features distribution: depth 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

up
 

down 

node 0 node 1 node 2

(a) E(sup) vs. E(sdown)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
up

down

Node 0 Node 1 Node 2

(b) σ(sup) vs. σ(sdown)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

up

down

Node 0 Node 1 Node 2

(c) E(iup) vs. E(idown)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

up

down

Node 0 Node 1 Node 2

(d) σ(iup) vs. σ(idown)

Figure 4. Features disribution: depth 2

138Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         151 / 157



Comparing Replication Strategies for Financial Data on Openstack
based Private Cloud

Deepak Bajpai, Ruppa K. Thulasiram
Computer Science department

University of Manitoba
Winnipeg, Canada

Email: {bajpaid, tulsi}@cs.umanitoba.ca

Abstract—Private Cloud has substituted the traditional in-
frastructure due to its flexible model and privacy in the form
of administration control and supervision. In this study, we
have built a private Cloud using openstack Cloud based open-
source software solution. We deployed financial application on
VMs and generated a disaster recovery solution using openstack
component Cinder and Swift. We presented an experimental
analysis of two strategies, block storage and object storage, to
derive the best solution for an organization using private Cloud.
From the set of experiments considered Cinder proved preferable
over Swift.

Keywords- Cloud Computing, Private Cloud, Replication, Disas-
ter Recovery, Block Storage, Object Storage

I. INTRODUCTION

With the exponential growth of Information Technology (IT)
Infrastructure and increasing cost of IT from small scale to
high end enterprise sectors, a workaround to effectively reduce
the cost associated with infrastructure has become essential.
Also, as the uncontrolled data growth raised concerns for the
enterprise environment, storage moved outside the servers to
individual identity that provided a significant solution [1].
Integration of Virtual Machines (VM) in the virtualization
layer to the operating system environment added a robust
and effective measure to share the CPU load and processing
time [2]. With more advancement in technology, more cost
effective solutions were required. It was this time when Cloud
computing came into emergence.

Cloud computing is a major shift on how the information
is stored and shared on the distributed platform to provide
services to customer as per customer demand. Cloud has been
defined as ”pay-as-you-go” architecture where customer pays
for the resources when used. Introduction of Cloud service by
Amazon, Microsoft and other Cloud service providers induced
leading technology hubs like Oracle, HP, IBM, Adobe, etc.,
to expand their service areas for Cloud technology. When
it comes to financial, health and defense services, public
Clouds have several vulnerabilities, including security and
privacy issues, and this is where private Cloud comes into
the picture. Private Cloud has shown reliable solutions for
these components of business and hence many organizations
have jumped into private Cloud [3]. A private Cloud is more
independent as the organisation build their own infrastructure,
use their own data storage blocks and servers, and at times

private Cloud owners may also outsource their requirement to
the third party.

In public Clouds, the service provider has control of the IT
infrastructure and, eventually, they control customers sensitive
data which reside in their datacenter. Even though there could
be regulatory procedures (such as Service Level Agreement)
in place that ensures fair management and supervision of the
customers privacy, this condition can still be perceived as
a threat or as an unacceptable risk that some organizations
are not willing to take. In particular, institutions such as
government and military agencies will not consider public
Clouds as an option for processing or storing their sensitive
data [4]. When we put financial application and operations in
public Cloud then there is severe threat of vulnerability as all
the data is stored with third party Cloud vendor. To address this
issue we built private Cloud and deployed financial application
to provide security and privacy.

The main problem in the market of Cloud services is im-
plementation and performance evaluation for the critical data.
IT infrastructure organization has a central data repository
that contains all the important data required for the proper
functioning of the organization. This data can be classified
as critical on the basis of usage by the users. In a Cloud
environment, data remains at different geo-locations; VMs at
different geo-locations hold that data which can be migrated
from one host to another host as per the requirement of load
balancing [5].

Some of the replication techniques which are used by
market leaders are object storage or block storage replication.
A cost effective dynamic replication management (CDRM)
scheme has been introduced for storage clusters in Cloud [6]
which has used Hadoop data filesystem. However, in CDRM,
filesystem should be in a mounted state for initiating the
replication. Various object storage replication techniques have
been in market [7] and they are efficient, but for block storage
replication in Cloud storage cluster, there is still demand for
cutting edge strategy.

In this paper, we have proposed a new replication strategy
for the duplication of data in openstack based private Cloud.
In this strategy, we created the VM using the block storage
component of openstack called Cinder. After the testing of
VM on a financial application, we created snapshots and used
them for later recovery process. This strategy is new, and we

139Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         152 / 157



show that this is 53% better in time than object storage based
replication technique. Rest of the paper describes the attributes
of openstack, the deployment of private Cloud and the empir-
ical analysis of the replication strategy all in the related work
section. Implementation and disaster recovery mechanism are
described in Section III. We did experimental comparison with
object based replication using Swift component of openstack
as described in Section IV. After comparing these action
plans, we have analyzed the results on the basis of best
strategy available in Section V. We present our conclusions
in Section VI. One of the financial applications we have
considered is option pricing. Note that due to space limitation
we are not describing the financial option pricing application
and the data related to this application, brief description on
which are available in [2].

II. RELATED WORK

There are multiple software sources available to build a
Cloud. CloudStack is an open source software that allows
for a Private Cloud and Hybrid Cloud deployment [8]. The
main functionality of CloudStack is to operate a large scale
deployment of a virtual infrastructure by managing a large
number of virtual machines. Eucalyptus is an open source
software used to build Private Clouds and Hybrid Clouds that
are compatible with Amazon Web Services [9]. Eucalyptus
manages resources that allow for some dynamic allocation of
resources. OpenNebula is an open source software that allows
for the deployment of Public Clouds, Private Clouds, and
Hybrid Clouds [10]. The main functionality of OpenNebula
is to manage data that is distributed among datacenters and to
ensure that these datacenters are able to exchange information
with each other regardless of their infrastructure. OpenStack is
an open source software that is primarily used to manage a vir-
tual infrastructure using the Dashboard or the OpenStack API.
What makes OpenStack advantageous compared to the other
options is that OpenStack supports small scale deployment.
OpenStack supports deployment onto a single, local machine
for rapid application development and testing with minimal
setup required. For this reason, OpenStack was selected in
this study as the Cloud computing software to develop the
disaster recovery application.

A. Openstack

Originally OpenStack was a project which was developed
by Rackspace and NASA [11]. In 2010, OpenStack was
released under the name Austin. Austin initially had very
limited features. At the time Austin had support for object
storage only. Companies started to contribute to OpenStack
because they began to see its potential in the virtualization
market. As contributors added more features to OpenStack,
eventually in 2012 support for Cinder was integrated [3].
OpenStack provides a means for small companies to provide
their customers with services without the need of a significant
investment initially. It became easier for new service providers
to start out who did not have a lot of investors. At the same

time, OpenStack provided a means for big organizations to
implement private clouds within their corporation without the
need of big investments into physical hardware. OpenStack
is currently an open source project and has hundreds of
contributors. What makes OpenStack so advantageous is that if
there is a need for a feature there are contributors constantly
available to implement them and fix them if any bugs are
discovered. Another reason OpenStack is advantageous is that
it is an open source project and it does not require any
subscription or an annual fee to use.

All of the modules contribute various components to Open-
Stack. Of the nine modules listed in Figure.1, only three of
those modules provide storage mechanisms for OpenStack.
Each of these three modules provide a different storage
mechanism. The three modules are, Swift, Cinder, and Glance.
Swift provides an object storage capability, Cinder provides
a block storage capability, and Glance provides a repository
to store the virtual machines a user creates in OpenStack or
downloads them from the internet.

1) Cinder: Block storage was a fundamental milestone for
Cloud computing because it provides the capability to store
virtual machines along with the data those virtual machines
use. Before block storage was integrated into OpenStack vir-
tual machines used something called ephemeral storage [11].
Virtual machines using ephemeral storage have a significant,
fundamental flaw. The flaw is that when the virtual machine
powers down, all of the data and contents of the virtual
machine are lost. This is a problem because a virtual machine
may contain important data required to provide services to
customers. Say the service being provided is banking transac-
tions. If the virtual machine powers down, all of the customers
banking information is lost. The organization wont know
what the last balance on the customers account was if that
information wasnt backed up. Simply powering on the virtual
machine wouldnt solve the problem because even though we
have the environment to provide the service, we need the data
of past transactions. Finding a solution to ensure a virtual
machine never powers down is not a realistic answer to the
problem.

There was a need to provide a mechanism that allows
data to persist in the event a virtual machine powers down.
Block storage provides one possible solution to this problem.
The data persists within the volume even though the virtual
machine may power down and the data is available the next
time the virtual machine powers up. Cinder was developed and
integrated into OpenStack to provide access to and manage-
ment of a block storage created by a user.

2) Swift: In OpenStack, the module named Swift provides
the object storage component in the application. Swift is used
to implement something called an OpenStack cluster. The
OpenStack cluster is used to provide a distributed object store.
The object store uses HTTP protocols PUT to update an object
or GET to retrieve the most recent version of the object. Swift
implements something called an OpenStack ring. This ring
consists of a proxy server and a storage node. These two

140Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         153 / 157



components are used to store and retrieve objects upon a
users request. The main functionality of the proxy server is
to track the location of the most recent version of the object
and to determine which storage server it should send the most
recent version of the object. These OpenStack rings can be
divided in various ways. The reason for the division is if in the
event a request for an object fails, then there is another entity
available who can fulfill this request. Four common divisions
of OpenStack rings are by disk drive, server, zone, or region.

Within each of these divisions the data is replicated in the
event one of the providers has a failure so another entity can
fulfill the request. Through various testing it was determined
maintaining three replicas was sufficient for reliability so by
default OpenStack maintains three replicas of the data [3].
Swift implements eventual consistency. This means that when
an object is updated not all of the storage servers are updated
immediately to contain the most recent version of the object.
Only one of the storage servers receives the most recent
version of the object from the proxy server and then the
storage server propagates that object to the rest of the storage
servers as a background task. A risk with eventual consistency
is that a storage server may receive an updated object but
then may fail before it has a chance to propagate that updated
object to another storage server. In a future updated versions
of OpenStack, code named Grizzly, allowed users to maintain
as many replicas as they wanted within the OpenStack ring.
Another feature implemented was time based sorting where the
proxy server would request the most recently updated object
from the fastest responding storage server. The main reason
time based sorting was implemented was because storage
servers were beginning to be distributed over larger areas, for
example, the other side of the country. A major advantage
Swift provided was that it allows the capability to store objects
on different platforms for example, Cleversafe, Scality, and
Amazon S3[5].

Figure. 1. Internal component connection in openstack.

III. DISASTER RECOVERY AND IMPLEMENTATION

”Disaster recovery (DR) is defined as the use of alternative
network circuits to re-establish communications channels in

the event that the primary channels are disconnected or mal-
functioning, and The methods and procedures for returning a
data center to full operation after a catastrophic interruption
(e.g., including recovery of lost data). Disaster recovery in-
volves in restoring the technology aspect of a service. In 1978,
Sun Information Systems was the first American company to
provide a hot site to organizations [12]. A hot site is a facility
that an organization can relocate to in the event of a system
failure due to a natural disaster or a human induced disaster
to resume the operation of a service.

As businesses became more reliant on their IT infrastructure
during the late 20th century, there was pressure for organiza-
tions to have a disaster recovery plan in place in the event a
service becomes unavailable. As a result different mechanisms
were being provided as solutions. Data centers were being built
because on site recovery was no longer necessary due to the
development of the internet. It has been statistically proven
that spending one dollar on disaster recovery planning will
save you four dollars in the long run when trying to recovery
from a disaster[12]. An important step in disaster recovery
planning is to identify which services are considered vital for
an organization, how long can they afford to keep the service
unavailable and identify which systems are associated with
providing the service [12].

There are multiple strategies in designing an efficient disas-
ter recovery plan, here are a few strategies. Backups of systems
can be made and transported to an offsite location. A second
alternative is to only forward data to an offsite location instead
of copying the entire system. A third alternative is to use a
Private Cloud to replicate virtual machines, disks, templates
and store them in the Private Cloud. A fourth alternative is
to use a Hybrid Cloud to back up the data stored onsite and
offsite and in the event of a disaster launch the system from
within the Cloud. A fifth alternative is to backup both the
system and the data at an offsite location. For the purposes of
this current study, a backup will be made of both the state of
the system and the data it contains.

Implementation of private Cloud is a complex and
cumbersome process. Its architecture is same as distributed
system but the association of various components to make
it service oriented architecture brings the complexity in
design. After the implementation it is important to test
the performance on the basis of various performance
parameters such as response time, replication status, data
integrity, accessibility on the data critical and time constraint
application. The most suitable application are financial
application where data is critical and time is also a big
constraint. We built Openstack private cloud on three node
architecture as shown in Figure 2. Below are the description
of each nodes.

1) Controller node- Controller node is responsible for run-
ning the basic openstack services required for private Cloud
environment to function. These nodes: (a) Access to API
which is accessible by user for various functionality. It is also

141Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         154 / 157



entry point for the accessibility; (b) Run numerous services
in high availability, utilizing components such as Pacemaker
and HAProxy to provide a load-balancing and virtual server
allocation functions so the controller node is being used;
(c) Provide highly available ”infrastructure” services, such
as MySQL and RabbitMQ that combine all the services; (d)
Provide what is known as ”persistent storage” through services
runs on the host as well. This persistent storage is backed onto
the storage nodes for reliability.
2) Compute Node- Compute nodes host the virtual machine
instances in OpenStack environment. They: (a) Run the min-
imum of services required to run these instances; (b) Use
local defined storage on the nodes for the VM so that disaster
recovery in case of node failure is possible.
3) Network Node- Network nodes provide communication
channel and the virtual networking needed for users to create
public or private networks. It also provide uplink to their
virtual machines into external networks. (a) Form the only
ingress and egress point for access and security feature of
the Openstack running instance; (b) Run the environment’s
networking services other than networking API service. Virtual

Figure. 2. Architecture of Openstack based Cloud.

machine provisioning is an important step for the private
Cloud. Following are the basic components required for the
VM provisioning:1) Block Storage (Cinder)- Provides persis-
tence block storage for running VMs and create VMs as well
using images, 2) Object Storage (Swift)-Stores and retrieve
arbitrary unstructured data objects via a RESTful, Http based
API, 3) Network (Neutron)-Provide communication channel as
a service for Openstack services, such as Openstack compute,
4) Authorization(Keystone)-Provides an authorization and au-
thentication service for all Openstack services, 5) VM Image
(Glance)-Stores and retrieve VM disk images, 6) Provisioning
(Nova-Compute, KVM hypervisor integrated), 7) Controller
provisioning (Nova-Controller). Openstack provide all these as
separate components as shown in Figure 1. These components
help to establish services within the framework. The VMs
on the compute nodes are working on arbitrary computation
algorithms which is be memory intensive. After that, we used
snapshot based technology to capture the state of VM image
and these snapshots are scheduled to be triggered in a timely

manner [13]. Along with the snapshots, block replication is
initiated on the VMs, which captures the raw data on the
data blocks and store them on other passive systems. These
data blocks can be retrieved in case of disaster and which
will provide same data as an active node. With snapshot and
synchronous replication, data will be more secure.

IV. EXPERIMENTS

To build a private Cloud, we used Dell R420 servers with
multiple Ethernet ports. All servers have 4GB RAM and 8
Intel Xeon processors on each of them. Ubuntu 14.04 server
was used as the operating system running on each of them.
After the setup of virtual machines, IP association is done and
testing for the connection is done using Address resolution
protocol (ARP). Java runtime environment and MYSQL are
deployed on all the nodes for multiple operations. After the
setup of all three nodes using Openstack with VMs, we run the
arbitrary computation tasks on the multiple VMs hosted on the
compute node. The snapshots are captured as per pre-defined
schedule using scripts. After that extensive testing is performed
on financial application, where one of the VMs are triggered
with configuration errors that is followed by powering off that
VM. At that point, snapshot are retrieved for that VM and
passive data block are activated. This produce a replicated
system of powered off VM. By using this method, we are able
to test the reliability of time constraint data and data critical
application.

In our disaster recovery experiments, we checked if the data
can be retrieved by using snapshot and volume replication
technique then it will generate the model for disaster recovery
within the Cloud. On the basis of data retrieval following the
VM failures, we also analysed the best replication strategy that
can be used in Cloud environment. A typical comparison of
snapshot and volume replication will be part of the evaluation
process that will yield best disaster recovery solution. The
baseline used to check the best replication strategy would be
synchronous data recovery.

There were four VMs deployed in the Cloud. Three of
them were virtual machines instances and the fourth system
was an instance being launched using a volume block created
containing the Ubuntu image. Of the three virtual machine
instances deployed, two of them were clients and the third was
a server. The fourth instance was used as a server as well, but
deployed using a volume block. Cinder would be used to take
a snapshot of the instance deployed from the volume block and
Swift would be used to take a snapshot of the server virtual
machine instance. After the systems were deployed, a simple
RMI application was developed and deployed on the instances
to ensure they could communicate and transfer data between
each other.

We created multiple shell scripts for automation of snapshot
and recovery process. These scripts were helpful to generate
timely triggers to create and delete snapshots. We also created
script for meaningful data generation on Linux system. Scripts
that take snapshots of each instance at timed intervals and

142Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         155 / 157



maintain a specified number of backups were needed to
perform the experiment. For object storage, there were three
scripts created for taking a snapshot of the instance. The first
script would maintain the iterations, decide which instance to
target for the snapshot, and finally launch the other two scripts
over every iteration which performed the actual snapshot. The
second script would first delete any old snapshots exceeding
their lifespan and then create a new snapshot. The third script
was used to force the data to be written into memory and
prevent the instance from accepting input while the snapshot
is taken to prevent any data inconsistencies as this was
documented as best practice in the OpenStack documentation
[14]. For taking a snapshot using block storage, there were
two scripts associated with the process.

Again, one script was used to maintain the iterations,
which volume to target, and to launch the other script at
timed intervals. The second script would delete old snapshots
exceeding their lifespan and then create a new snapshot of
the volume. Generating data for the experiment manually
would have been a time consuming process. For this reason a
script was developed in order to create text files with readable
information within in order to have sample data during each
iteration. Due to the time it took to create the script for
generating the data, a snapshot was taken every two hours
instead of every three hours. Here is a tabular form of the
data collected during the experiment.

TABLE I
VM ACCESS AND PREPARATION

Iteration Test-Mem Mem-G ST VT SD VD
I-1 100 MB 105.4 MB 108 1 143 13
I-2 200 MB 207.6 MB 128 2 147 13
I-3 300 MB 309.8 MB 151 2 150 13
I-4 400 MB 411.0 MB 170 3 153 13
I-5 500 MB 513.2 MB 193 3 155 13

Table-1 is used to determine which methodology, object
storage or block storage, is faster in terms of the time it takes
to create a snapshot, the time it takes to deploy a snapshot and
the amount of data associated with each iteration. Here Test-
Mem denotes Test memory used as financial data block size,
Mem-G denotes memory generated after taking snapshot, ST
refers to time taken to create VM snaphsot(in seconds), VT
is time taken to create Volume snapshot(in seconds), SD and
VT are the time taken to deploy Vm and volume snapshot
respectively.

TABLE II
VM RECOVERY DATA

Iteration Tot-Bytes V-Snap Lost-Vm V-vm Lost-vol
I-1 10538598 10538598 0 10538598 0
I-2 20762214 20762214 0 20762214 0
I-3 25480806 25480806 0 25480806 0
I-4 15257190 15257190 0 15257190 0
I-5 26929875 26929875 0 26929875 0

Table-2 is used to determine which methodology, object
storage or block storage, is better at preserving consistent

data by measuring how many bytes of data are lost at each
iteration.In this table, V-snap refers to bytes in Vm snapshot,
Lost-Vm denotes bytes lost in Vm snapshot after deploying as
new Vm, V-Vm refers to bytes in volume snapshot and Lost-
V as bytes lost after deployment of new Vm using volume
snapshot.

V. RESULTS

Analyzing the results from Figure 3. we can see that in
terms of creating a backup, and deploying the backup, block
storage (Cinder) is much faster than object storage (Swift). For
an organization, this is a significant factor to consider when
creating a disaster recovery plan because we want to make
backups quickly to minimize overhead on the system so there
is minimal interference with service quality. The system can
be recovered a lot quicker using Cinder instead of Swift which
means the system will be down for shorter periods of time.
After some statistical calculations it was determined that using
Cinder to deploy a backup is approximately 53 times faster
than deploying a backup using Swift. As more data is stored
on these systems we can expect the time to create a backup
and backup deployment to increase. Let us assume the ratio
calculated holds for various sizes of data. If it takes one minute
to deploy a backup using block storage, then we can expect
a deployment using object storage to take approximately 53
minutes. This is a significant difference and having a service
down for approximately an hour may not be acceptable to an
organization who relies heavily on their IT infrastructure. In
terms of recovering a system from a disaster, it appears using
block storage is the better option.

Figure. 3. VM preparation analysis

Analyzing the results in Figure 4. we can observe that both
components, Cinder and Swift, experienced no data loss. As
the amount of data increases on each system, it would be
expected Swift and Cinder would begin to experience some
data loss. Therefore we can conclude, based on the results, that
both Cinder and Swift are effective in preserving small sets of
data. In future experiments, bigger sizes of data would be used
to test how much data we can have before we experience loss
from using Cinder and Swift. We would expect to lose data
when more data is stored on the system when using Swift or

143Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

                         156 / 157



Cinder but the goal would be to determine which component
provides more consistent data when it gets large. In terms of
providing consistent data, for this experiment, both Swift and
Cinder performed equally well.

Figure. 4. VM data recovery analysis

Based on the results from Table 1 and 2, we can conclude
that if our main objective of a disaster recovery plan is to
restore service as quickly as possible then Cinder would be
the correct path to go down. We can also conclude that both
components function with equal reliability if our system is
small. At the beginning all systems begin relatively small
therefore if we have 2 options with both providing equal
reliability and Cinder being 53 times faster than Swift, then
Cinder would be the optimal choice at that particular point
in time. As the system grows, more experiments could be
performed to help determine which provides more consistent
data as the size of the data grows and determine the trade-offs
if any.

VI. CONCLUSION

This paper shows how private cloud built on Openstack
platform was used to identify new unique strategy of vol-
ume replication. It provides efficient storage mechanism in
comparison to object based replication. In consideration with
strategies used in recent times, this study can help derive
an effective replication solution for openstack private cloud.
Given the following mechanism, we can implement simi-
lar strategies in different private Cloud platforms such as
Cloudstack, OpenNebula and Eucalyptus. We can see some
limitations in public clouds as datacenters can be situated in
different geo-locations which can add to hop count wait time
and produce delay in replication.

In conclusion, the experiment was a success for the reason
being that we wanted to find which method, block storage
or object storage, provided the best disaster recovery plan.
In this particular environment with a relatively small dataset
Cinder was proven to be the preferable choice as it held no
additional advantage over Swift in terms of data consistency
but it had a significant advantage in terms of the time it takes to
create a backup and deploy it. Overall, we have achieved both
goals for this study. We were able to build an environment

for the purposes of deploying a Private Cloud, deploying a
financial application utilizing RMI, and creating scripts for
the purpose of managing backups of systems deployed in the
Private Cloud. This work can be explored in future for the
other private Clouds and Inter-Clouds. This strategy can also
be used on Bigdata, which can produce interesting result.

ACKNOWLEDGMENT

The first author acknowledges graduate enhancement of tri-
council stipends (GETS) from the Faculty of Graduate Studies,
University of Manitoba. The second author acknowledges
Natural Sciences and Engineering Research Council (NSERC)
Canada and University of Manitoba for partial financial sup-
port for this research through Discovery Grant and University
Research Grant Programs.

REFERENCES

[1] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based storage,”
Communications Magazine, IEEE, vol. 41, no. 8, pp. 84–90, 2003.

[2] A. N. Toosi, R. K. Thulasiram, and R. Buyya, “Financial option
market model for federated cloud environments,” in Proceedings of the
2012 IEEE/ACM Fifth International Conference on Utility and Cloud
Computing. IEEE Computer Society, 2012, pp. 3–12.

[3] G. Suciu, E. G. Ularu, and R. Craciunescu, “Public versus private
cloud adoptiona case study based on open source cloud platforms,” in
Telecommunications Forum (TELFOR), 2012 20th. IEEE, 2012, pp.
494–497.

[4] S. Srirama, O. Batrashev, and E. Vainikko, “Scicloud: scientific com-
puting on the cloud,” in Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing. IEEE
Computer Society, 2010, pp. 579–580.

[5] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load bal-
ancing of virtual machine resources in cloud computing environment,”
in Parallel Architectures, Algorithms and Programming (PAAP), 2010
Third International Symposium on. IEEE, 2010, pp. 89–96.

[6] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A cost-
effective dynamic replication management scheme for cloud storage
cluster,” in Cluster Computing (CLUSTER), 2010 IEEE International
Conference on. IEEE, 2010, pp. 188–196.

[7] M. J. Brim, D. A. Dillow, S. Oral, B. W. Settlemyer, and F. Wang,
“Asynchronous object storage with qos for scientific and commercial
big data,” in Proceedings of the 8th Parallel Data Storage Workshop.
ACM, 2013, pp. 7–13.

[8] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” Internet com-
puting, IEEE, vol. 13, no. 5, pp. 14–22, 2009.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[10] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud
management tool,” IEEE Internet Computing, no. 2, pp. 11–14, 2011.

[11] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[12] V. Chang, “Towards a big data system disaster recovery in a private
cloud,” Ad Hoc Networks, vol. 35, pp. 65–82, 2015.

[13] V. Padhye and A. Tripathi, “Scalable transaction management with snap-
shot isolation on cloud data management systems,” in Cloud computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012,
pp. 542–549.

[14] K. Pepple, Deploying openstack. ” O’Reilly Media, Inc.”, 2011.

144Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Powered by TCPDF (www.tcpdf.org)

                         157 / 157

http://www.tcpdf.org

