
CLOUD COMPUTING 2013

The Fourth International Conference on Cloud Computing, GRIDs, and

Virtualization

ISBN: 978-1-61208-271-4

May 27- June 1, 2013

Valencia, Spain

CLOUD COMPUTING 2013 Editors

Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany

Dariusz Król, Academic Computer Center CYFRONET - Krakow, Poland

Yong Woo Lee, University of Seoul, Korea

Aida Omerovic, SINTEF, Norway

 1 / 263

CLOUD COMPUTING 2013

Foreword

The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization
(CLOUD COMPUTING 2013), held between May 27 and June 1, 2013 in Valencia, Spain,
continued a series of events intended to prospect the applications supported by the new
paradigm and validate the techniques and the mechanisms. A complementary target was to
identify the open issues and the challenges to fix them, especially on security, privacy, and
inter- and intra-clouds protocols.

Cloud computing is a normal evolution of distributed computing combined with Service-
oriented architecture, leveraging most of the GRID features and Virtualization merits. The
technology foundations for cloud computing led to a new approach of reusing what was
achieved in GRID computing with support from virtualization.

We take here the opportunity to warmly thank all the members of the CLOUD
COMPUTING 2013 Technical Program Committee, as well as the numerous reviewers. The
creation of such a broad and high quality conference program would not have been possible
without their involvement. We also kindly thank all the authors who dedicated much of their
time and efforts to contribute to CLOUD COMPUTING 2013. We truly believe that, thanks to all
these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the CLOUD COMPUTING 2013
organizing committee for their help in handling the logistics and for their work to make this
professional meeting a success.

We hope that CLOUD COMPUTING 2013 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of
progress in the areas of cloud computing, GRIDs and virtualization.

We are convinced that the participants found the event useful and communications very
open. We hope that Valencia, Spain provided a pleasant environment during the conference
and everyone saved some time to explore this historic city.

CLOUD COMPUTING 2013 Chairs:

CLOUD COMPUTING General Chair

Maria Dolores Cano Banos, Polytechnic University of Cartagena, Spain

 2 / 263

CLOUD COMPUTING Advisory Chairs

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany
Yong Woo Lee, University of Seoul, Korea
Alain April, École de Technologie Supérieure - Montreal, Canada

CLOUD COMPUTING 2013 Industry/Research Chairs

Wolfgang Gentzsch, Senior HPC Consultant, Germany
Tony Shan, Keane Inc., USA
Donglin Xia, Microsoft Corporation, USA

CLOUD COMPUTING 2013 Research Institutes Chairs

Jorge Ejarque, Barcelona Supercomputing Center, Spain
Leslie Liu, IBM T.J Watson Research, USA

COULD COMPUTING 2013 Special Area Chairs

Virtualization
Toan Nguyen, INRIA, France

GRID
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Javier Diaz, Indiana University, USA

Autonomic computing
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing,
USA
Hong Zhu, Oxford Brookes University, UK

Service-oriented
Qi Yu, Rochester Institute of Technology, USA

Security
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

Platforms
Arden Agopyan, IBM Central & Eastern Europe, Russia, Middle East & Africa (CEE & MEA),
Turkey
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland

 3 / 263

CLOUD COMPUTING 2013

Committee

CLOUD COMPUTING General Chair

Maria Dolores Cano Banos, Polytechnic University of Cartagena, Spain

CLOUD COMPUTING Advisory Chairs

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany
Yong Woo Lee, University of Seoul, Korea
Alain April, École de Technologie Supérieure - Montreal, Canada

CLOUD COMPUTING 2013 Industry/Research Chairs

Wolfgang Gentzsch, Senior HPC Consultant, Germany
Tony Shan, Keane Inc., USA
Donglin Xia, Microsoft Corporation, USA

CLOUD COMPUTING 2013 Research Institutes Chairs

Jorge Ejarque, Barcelona Supercomputing Center, Spain
Leslie Liu, IBM T.J Watson Research, USA

COULD COMPUTING 2013 Special Area Chairs

Virtualization
Toan Nguyen, INRIA, France

GRID
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Javier Diaz, Indiana University, USA

Autonomic computing
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing, USA
Hong Zhu, Oxford Brookes University, UK

Service-oriented
Qi Yu, Rochester Institute of Technology, USA

Security
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

 4 / 263

Platforms
Arden Agopyan, IBM Central & Eastern Europe, Russia, Middle East & Africa (CEE & MEA), Turkey
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland

CLOUD COMPUTING 2013 Technical Program Committee

Jemal Abawajy, Deakin University - Victoria, Australia
Imad Abbadi, University of Oxford, UK
Alain April, École de Technologie Supérieure - Montreal, Canada
Alvaro E. Arenas, Instituto de Empresa Business School, Spain
Marcelo Atenas, Polytechnic University of Valencia, Spain
Panagiotis Bamidis, Aristotle University of Thessaloniki, Greece
Luis Eduardo Bautista Villalpando, Autonomous University of Aguascalientes, Mexico
Ali Beklen, CloudArena, Turkey
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Nik Bessis, University of Derby, UK
Stefano Bocconi, Delft University of Technology, Netherlands
William Buchanan, Edinburgh Napier University, UK
Ali R. Butt, Virginia Tech, USA
Massimo Canonico, University of Piemonte Orientale, Italy
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Carmen Carrión Espinosa, Universidad de Castilla-La Mancha, Spain
Simon Caton, Karlsruhe Institute of Technology, Germany
Hsi-Ya Chang, National Center for High-Performance Computing (NCHC), Taiwan
Rong N Chang, IBM T.J. Watson Research Center, USA
Antonin Chazalet, Orange, France
Shiping Chen, CSIRO ICT Centre, Australia
Ye Chen, Microsoft Corp., USA
Yixin Chen, Washington University in St. Louis, USA
Zhixiong Chen, Mercy College - NY, USA

William Cheng-Chung Chu(朱正忠), Tunghai University, Taiwan
Antonio Corradi, Università di Bologna, Italy
Marcelo Corrales, University of Hanover, Germany
Fabio M. Costa, Universidade Federal de Goias (UFG), Brazil
Yuri Demchenko, University of Amsterdam, The Netherlands
Nirmit Desai, IBM Research - Bangalore, India
Edna Dias Canedo, Universidade de Brasília - UnB Gama, Brazil
Javier Diaz, Pervasive Technology Institute/Indiana University, USA
Qiang Duan, Pennsylvania State University Abington College, USA
Jorge Ejarque Artigas , Barcelona Supercomputing Center, Spain
Atilla Elçi, Suleyman Demirel University - Isparta, Turkey
Khalil El-Khatib, University of Ontario Institute of Technology - Oshawa, Canada
Erik Elmroth, Umeå University, Sweden
Mohamed Eltoweissy, Virginia Tech, USA
Javier Fabra, University of Zaragoza, Spain
Umar Farooq, Amazon.com - Seattle, USA
Maria Beatriz Felgar de Toledo, University of Campinas, Brazil
Sören Frey, University of Kiel, Germany

 5 / 263

Wolfgang Gentzsch, Senior HPC Consultant, Germany
Michael Gerhards, University of Applied Sciences, Germany
Katja Gilly, Miguel Hernandez University, Spain
Andres Gomez, Applications and Projects Department Manager Fundación CESGA, Spain
Nils Grushka, NEC Laboratories Europe - Heidelberg, Germany
Jordi Guitart, Universitat Politècnica de Catalunya - Barcelona Tech, Spain
Marjan Gusev, “Ss. Cyril and Methodius” University of Skopje, Macedonia
Weili Han, Fudan University, China
Haiwu He, INRIA, France
Neil Chue Hong, University of Edinburgh, UK
Kenneth Hopkinson, Air Force Institute of Technology - Dayton, USA
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA
Anca Daniela Ionita, University "Politehnica" of Bucharest, Romania
César A. F. De Rose, Catholic University of Rio Grande Sul (PUCRS), Brazil
Qiang Duan, Pennsylvania State University, USA
Luca Foschini, Università degli Studi di Bologna, Italy
Song Fu, University of North Texas - Denton, USA
Spyridon Gogouvitis, National Technical University of Athens, Greece
Yi-Ke Guo, Imperial College London, UK
Richard Hill, University of Derby, UK
Uwe Hohenstein, Siemens AG, Germany
Benoit Hudzia, SAP Research, France
Shadi Ibrahim, INRIA Rennes - Bretagne Atlantique Research Center, France
Yoshiro Imai, Kagawa University, Japan
Ming Jiang, University of Leeds, UK
Xuxian Jiang, North Carolina State University, USA
Eugene John, The University of Texas at San Antonio, USA
Foued Jrad, KIT - Universität des Landes Baden-Württemberg, Germany
Carlos Juiz, Universitat de les Illes Balears, Spain
Sokratis K. Katsikas, University of Piraeus, Greece
Prashant Khanna, JK Lakshmipat University, Jaipur, India
Shinji Kikuchi, Fujitsu Laboratories Ltd., Japan
Tan Kok Kiong, National University of Singapore, Singapore
William Knottenbelt, Imperial College London - South Kensington Campus, UK
Sinan Kockara, University of Central Arkansas, USA
Joanna Kolodziej, University of Bielsko-Biala, Poland
Kenji Kono, Keio University, Japan
Arne Koschel, University of Applied Sciences and Arts - Hannover, Germany
George Kousiouris, National Technical University of Athens, Greece
Sotiris Koussouris, National Technical University of Athens, Greece
Nane Kratzke, Lübeck University of Applied Sciences, Germany
Heinz Kredel, Universität Mannheim, Germany
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland
Hans Günther Kruse, Universität Mannheim, Germany
Eric Kuada, Aalborg University - Copenhagen, Denmark
Pierre Kuonen, College of Engineering and Architecture - Fribourg, Switzerland
Tobias Kurze, Karlsruher Institut für Technologie (KIT), Germany
Dharmender Singh Kushwaha, Motilal Nehru National Institute of Technology - Allahabad, India

 6 / 263

Dimosthenis Kyriazis, National Technical University of Athens, Greece
Romain Laborde, University Paul Sabatier, France
Erwin Laure, KTH, Sweden
Alexander Lazovik, University of Groningen, The Netherlands
Grace Lewis, CMU Software Engineering Institute - Pittsburgh, USA
Jianxin Li, Beihang University, China
Kuan-Ching Li, Providence University, Taiwan
Maik A. Lindner, SAP Labs, LLC. - Palo Alto, USA
Maozhen Li, Brunel University - Uxbridge, UK
Xiaoqing (Frank) Liu, Missouri University of Science and Technology, USA
Xumin Liu, Rochester Institute of Technology, USA
H. Karen Lu, CISSP/Gemalto, Inc., USA
Ilias Maglogiannis, University of Central Greece - Lamia, Greece
Shikharesh Majumdar, Carleton University, Canada
Attila Csaba Marosi, MTA SZTAKI Computer and Automation Research Institute/Hungarian Academy of
Sciences - Budapest, Hungary
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Philippe Massonet, CETIC, France
Michael Maurer, Vienna University of Technology, Austria
Reinhard Mayer, Universität Heidelberg, Germany
Aaron McConnell, University of Ulster Coleraine, UK
Andreas Menychtas, National Technical University of Athens, Greece
Jose Merseguer, Universidad de Zaragoza, Spain
Louise Moser, University of California - Santa Barbara, USA
Owen Molloy, National University of Ireland – Galway, Ireland
Claude Moulin, Technology University of Compiègne, France
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Hidemoto Nakada, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Surya Nepal, CSIRO ICT Centre, Australia
Toàn Nguyên, INRIA Grenobel Rhone-Alpes/ Montbonnot, France
Bogdan Nicolae, IBM Research, Ireland
P-O Östberg, Umeå University, Sweden
Alexander Paar, TWT GmbH Science and Innovation, Germany
Massimo Paolucci, DOCOMO Labs, Italy
Alexander Papaspyrou, Technische Universität Dortmund, Germany
Valerio Pascucci, University of Utah, USA
Aljosa Pasic, Atos Research, Spain
David Paul, University of Newcastle, Australia
Siani Pearson, Hewlett-Packard Laboratories, USA
Giovanna Petrone, University of Torino, Italy
Sabri Pllana, University of Vienna, Austria
Agostino Poggi, Università degli Studi di Parma, Italy
Jari Porras, Lappeenranta University of Technology, Finland
Thomas E. Potok, Oak Ridge National Laboratory, USA
Francesco Quaglia, Sapienza Univesita' di Roma, Italy
Rajendra K. Raj, Rochester Institute of Technology, USA
Christoph Reich, Hochschule Furtwangen University, Germany
Dolores Rexachs, University Autonoma of Barcelona (UAB), Spain

 7 / 263

Sebastian Rieger, University of Applied Sciences Fulda, Germany
Sashko Ristov, “Ss. Cyril and Methodius” University of Skopje, Macedonia
Norbert Ritter, University of Hamburg, Germany
Philip Robinson, SAP Research - Belfast, UK
Ivanm Rodero, NSF Center for Autonomic Computing, Rutgers the State University of New Jersey -
Piscataway, USA
Daniel A. Rodríguez Silva, Galician Research and Development Center in Advanced Telecomunications"
(GRADIANT), Spain
Kyung Dong Ryu, IBM T.J. Watson Research Center, USA
Majd F. Sakr, Carnegie Mellon University in Qatar, Qatar
Iñigo San Aniceto Orbegozo, Universidad Complutense de Madrid, Spain
Elena Sanchez Nielsen, Universidad de La Laguna, Spain
Volker Sander, FH Aachen University of Applied Sciences, Germany
Gregor Schiele, Digital Enterprise Research Institute (DERI) at the National University of Ireland, Galway
(NUIG), Ireland
Igor Sfiligoi, University of California San Diego-La Jolla, USA
Alan Sill, Texas Tech University, USA
Raül Sirvent, Barcelona Supercomputing Center, Spain
Luca Spalazzi, Università Politecnica delle Marche - Ancona, Italy
George Spanoudakis, City University London, UK
Jie Tao, Steinbuch Centre for Computing/Karlsruhe Institute of Technology (KIT), Germany
Orazio Tomarchio, University of Catania, Italy
Stefano Travelli, Developer at Cyntelix Corporation BV, Netherlands
Matteo Turilli, University of Oxford, UK
Raul Valin, Swansea University, Spain
Geoffroy R. Vallee, Oak Ridge National Laboratory, USA
Luis Vaquero, HP Labs Bristol, UK
Michael Gr. Vassilakopoulos, University of Central Greece - Lamia, Greece
Jose Luis Vazquez-Poletti, Universidad Complutense de Madrid, Spain
Salvatore Venticinque, Second University of Naples - Aversa, Italy
Mario Jose Villamizar Cano, Universidad de loa Andes - Bogotá, Colombia
Salvatore Vitabile, University of Palermo, Italy
Eugen Volk, High Performance Computing Center Stuttgart (HLRS) - Stuttgart, Germany
Andy Ju An Wang, Southern Polytechnic State University - Marietta, USA
Cho-Li Wang, University of Hong Kong, China
Lizhe Wang, Center for Earth Observation & Digital Earth - Chinese Academy of Sciences, China
Zhi Wang, Florida State University, USA
Martijn Warnier, Delft University of Technology, Netherlands
Mandy Weißbach, University of Halle, Germany
Philipp Wieder, Gesellschaft fuer wissenschaftliche Datenverarbeitung mbH - Goettingen (GWDG),
Germany
John Williams, Massachusetts Institute of Technology, USA
Yong Woo Lee, University of Seoul. Korea
Christos Xenakis, University of Piraeus, Greece
Hiroshi Yamada, Tokyo University of Agriculture and Technology, Japan
Chao-Tung Yang, Tunghai University, Taiwan R.O.C.
Hongji Yang, De Montfort University (DMU) - Leicester, UK
Yanjiang Yang, Institute for Infocomm Research, Singapore

 8 / 263

Jinhui Yao, CSIRO ICT Centre, Australia
Ustun Yildiz, University of California, USA
Qi Yu, Rochester Institute of Technology, USA
Jong P. Yoon, Mercy College - Dobbs Ferry, USA
Jie Yu, National University of Defense Technology (NUDT), China
Massimo Villari, University of Messina, Italy
Baokang Zhao, National University of Defence Technology, China
Zibin (Ben) Zheng, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
Jingyu Zhou, Shanghai Jiao Tong University, China
Hong Zhu, Oxford Brookes University, UK
Wolf Zimmermann, University of Halle, Germany

 9 / 263

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 263

Table of Contents

An Architecture for a Heterogeneous Private IaaS Management System
Rodrigo Garcia-Carmona, Mattia Peirano, Juan C. Duenas, and Alvaro Navas

1

A Look at Cloud Architecture Interoperability through Standards
Claus Pahl, Li Zhang, and Frank Fowley

7

K Means of Cloud Computing: MapReduce, DVM, and Windows Azure
Lin Gu, Zhonghua Sheng, Zhiqiang Ma, Xiang Gao, Charles Zhang, and Yaohui Jin

13

A Novel Cloud Hybrid Access Mechanism for Highly Sensitive Data Exchange
Elhadj Benkhelifa and Dayan A Novel Cloud Hybrid Access Mechanism for Highly Sensitive Data Exchange

19

Eliciting Risk, Quality and Cost Aspects in Multi-cloud Environments
Victor Munte ?s-Mulero, Peter Matthews, Aida Omerovic, and Alexander Gunka

25

Moonstone: A Framework for Accelerating Testing of Software
Atsuji Sekiguchi, Tomohiro Ohtake, Toshihiro Shimizu, Yuji Hotta, Taichi Sugiyama, Takeshi Yasuie, and
Toshihiro Kodaka

31

Challenges with Tenant-Specific Cost Determination in Multi-Tenant Applications
Anna Schwanengel and Uwe Hohenstein

36

Community Clouds a centralized approach
Claudio Giovanoli and Stella Gatziu Grivas

43

Using MapReduce to Speed Up Storm Identification from Big Raw Rainfall Data
Kulsawasd Jitkajornwanich, Upa Gupta, Ramez Elmasri, Leonidas Fegaras, and John McEnery

49

A RESTful Approach for a Cloud Gateway
Chang Ho Yun, Jong Won Park, Hae Sun Jung, Yong Woo Lee, and Haeng Jin Jang

56

Adaptive Multimedia Learning Delivered in Mobile Cloud Computing Environment
Aleksandar Karadimce and Danco Davcev

62

Digital Signature as a Cloud-based Service
Wojciech Kinastowski

68

Cloud-Enabled Scaling of Event Processing Applications
Irina Astrova, Arne Koschel, and Ahto Kalja

73

 1 / 3 11 / 263

Cloud Computing Services Potential Analysis
Giuseppe Ercolani

77

Context-Aware Data-Flow in the Cloud
Mandy Weissbach, Wolf Zimmermann, and Welf Lowe

81

A Coordinated Reactive and Predictive Approach to Cloud Elasticity
Laura Moore, Kathryn Bean, and Tariq Ellahi

87

Elastic-TOSCA: Supporting Elasticity of Cloud Application in TOSCA
Rui Han, Moustafa M. Ghanem, and Yike Guo

93

OpenStack Cloud Security Vulnerabilities from Inside and Outside
Sasko Ristov, Marjan Gusev, and Aleksandar Donevski

101

Seamlessly Enabling the Use of Cloud Resources in Workflows
Michael Gerhards, Volker Sander, and Adam Belloum

108

Collaborative Autonomic Resource Management System for Mobile Cloud Computing
Ahmed Khalifa and Mohamed Eltoweissy

115

SLA Template Filtering: A Faceted Approach
Katerina Stamou, Verena Kantere, and Jean-Henry Morin

122

CPU Utilization while Scaling Resources in the Cloud
Marjan Gusev, Sasko Ristov, Monika Simjanoska, and Goran Velkoski

131

Evaluating Computation Offloading Trade-offs in Mobile Cloud Computing: A Sample Application
Jorge Luzuriaga, Juan Carlos Cano, Carlos Calafate, and Pietro Manzoni

138

Massively Scalable Platform for Data Farming Supporting Heterogeneous Infrastructure
Dariusz Krol, Michal Wrzeszcz, Bartosz Kryza, Lukasz Dutka, and Jacek Kitowski

144

Fuzzy Controled QoS for Scalable Cloud Computing Services
Stefan Frey, Claudia Luthje, Vitali Huwwa, and Christoph Reich

150

Scalable Store and Forward Messaging
Ahmed El Rheddane, Noel De Palma, and Alain Tchana

156

Towards a Method for Decision Support in Multi-cloud Environments
Aida Omerovic, Victor Muntes-Mulero, Peter Matthews, and Alexander Gunka

162

A DSL For Logistics Clouds 169

 2 / 3 12 / 263

Bill Karakostas and Takis Katsoulakos

Deploying a Multipoint Control Unit in the Cloud: Opportunities and Challenges
Alvaro Alonso, Pedro Rodriguez, Joaquin Salvachua, and Javier Cervino

173

An Approach to Assure QoS of Machine Translation System on Cloud
Pawan Kumar, Rashid Ahmad, Banshi D Chaudhary, and Mukul K Sinha

179

Defining Intercloud Federation Framework for Multi-provider Cloud Services Integration
Marc X. Makkes, Canh Ngo, Yuri Demchenko, Rudolf Stijkers, Robert Meijer, and Cees de Laat

185

A Cloud Platform to support User-Provided Mobile Services
Vincenzo Catania, Giuseppe La Torre, Salvatore Monteleone, and Daniela Panno

191

CloudState: End-to-end WAN Monitoring for Cloud-based Applications
Aaron McConnell, Gerard Parr, Sally McClean, Philip Morrow, and Bryan Scotney

195

Transparent Access on Encrypted Data Distributed over Multiple Cloud Infrastructures
Luca Ferretti, Michele Colajanni, Mirco Marchetti, and Adriano Enrico Scaruffi

201

Forensics-as-a-Service (FaaS): Computer Forensic Workflow Management and Processing Using Cloud
Yuanfeng Wen, Xiaoxi Man, Khoa Le, and Weidong Shi

208

Fuzzy Subtractive Clustering Based Prediction Approach for CPU Load Availability
Kadda Beghdad Bey, Farid Benhammadi, and Faouzi Sebbak

215

On the analytical characterization of a real life Virtual Network Function: the Italtel Virtual Session Border
Control
Sergio Montagna and Pietro Paglierani

221

Trusted Computing on Heterogeneous Embedded Systems-on-Chip with Virtualization and Memory Protection
Marcello Coppola, Miltos Grammatikakis, George Kornaros, and Alexander Spyridakis

225

Using Cloud-based Resources to Improve Availability and Reliability in a Scientific Workflow Execution
Framework
Sergio Hernandez, Javier Fabra, Pedro Alvarez, and Joaquin Ezpeleta

230

Eliciting Risk, Quality and Cost Aspects in Multi-cloud Environments
Victor Munte ?s-Mulero, Peter Matthews, Aida Omerovic, and Alexander Gunka

238

Towards a Method for Decision Support in Multi-cloud Environments
Aida Omerovic, Victor Muntes-Mulero, Peter Matthews, and Alexander Gunka

244

Powered by TCPDF (www.tcpdf.org)

 3 / 3 13 / 263

An Architecture for a Heterogeneous Private IaaS Management System

Rodrigo Garcı́a-Carmona, Mattia Peirano, Juan C. Dueñas, Álvaro Navas
Departamento de Ingenierı́a de Sistemas Telemáticos

ETSI Telecomunicación, Universidad Politécnica de Madrid
Madrid, Spain

rodrigo@dit.upm.es, peirano.m@gmail.com, jcduenas@dit.upm.es, anavas@dit.upm.es

Abstract—Cloud computing and, more particularly, private
IaaS, is seen as a mature technology with a myriad solutions to
choose from. However, this disparity of solutions and products
has instilled in potential adopters the fear of vendor and
data lock-in. Several competing and incompatible interfaces
and management styles have given even more voice to these
fears. On top of this, cloud users might want to work with
several solutions at the same time, an integration that is
difficult to achieve in practice. In this paper, we propose a
management architecture that tries to tackle these problems;
it offers a common way of managing several cloud solutions,
and an interface that can be tailored to the needs of the user.
This management architecture is designed in a modular way,
and using a generic information model. We have validated
our approach through the implementation of the components
needed for this architecture to support a sample private IaaS
solution: OpenStack.

Keywords-private IaaS; cloud management; management ar-
chitecture; cloud interoperability; OpenStack.

I. INTRODUCTION

Cloud computing has, during recent years, gained traction
both in the enterprise world and the academia. Among all
possible cloud service models, one in particular, the private
IaaS, has experienced an exceptional growth in the number
of solutions available [1]. Several competing products, both
open-sourced and proprietary, are contending for attaining
relevance and are constantly trying to surpass each other.
This fact creates a climate in which the user has the
possibility of choosing among a huge array of possible
solutions.

However, this ample offer of private IaaS cloud tech-
nologies also involves an important drawback: each one
is managed using different abstractions (sometimes for the
same concepts) and through different management inter-
faces. This is aggravated by the use of different technologies
for these interfaces. This presents problems for a more
widespread adoption of private IaaS cloud computing, since
potential users fear of being locked-in with a particular
solution that falls behind the others in terms of features
or support. The infrastructure’s owner should be able to
change his previously chosen technology for private IaaS
without having to modify the management interfaces, a fact
that sometimes incur in expensive retraining and even more
expensive errors during production deployments. Vendor and

data lock-in are considered two of the bigger factors that
hinder the development of cloud computing [2] [3].

Moreover, an enterprising private IaaS user could have the
desire of deploying two or more different cloud offerings,
leveraging the strong features of each for a solution better
tailored to his or her specific needs. In this situation the
user would benefit greatly from an integrated management
interface that could wrap this mixture of products in a uni-
form whole. Another reason for deploying two private IaaS
solutions at the same time is to compare their performance
side to side or ease the migration from one to the other.

With this problem in mind, we propose a generic man-
agement system for private IaaS clouds, decoupled from any
particular solution but able to work with all of them, and
using a set of common abstractions that could be translated
to the specifics of each targeted product. This management
system should also be able to provide its interface through
the use of different technologies (like a REST web service,
a command line, or a web page), to better suit the user’s
needs.

To achieve this goal, we have defined a modular archi-
tecture, in which components for both different private IaaS
technologies and interfaces can be developed and plugged as
needed. In this paper, we present this architecture, validating
it through the implementation of the components needed for
the management of OpenStack clouds.

The next section of this paper features a brief view
of existing private IaaS management solutions and related
research. After it, in Section 3, we show the general architec-
ture of the proposed management system. Section 4 covers
the specifics related to the OpenStack implementation of the
management system. Finally, the last section of this paper
summarizes our achievements and what was learned in the
experience, while also exposing some possible future lines
of work.

II. PRIVATE IAAS MANAGEMENT SOLUTIONS

There are a multitude of management interfaces for
cloud infrastructure and storage services. Every solution has
at least one, and they can be found in multiple shapes:
command-line tools, locally installed management applica-
tions with a GUI, web browser extensions, online tools, etc.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 14 / 263

All private IaaS solutions offer their own management
interfaces, tailored to its specific needs and features, and
rarely able to interact with other solutions, or even other
cloud deployments of the same solution. The only exceptions
to this fact are not by design: it is just that some private
IaaS solutions try to replicate the same capabilities and
abstractions offered by more popular public offerings, like
Amazon AWS. And, in doing so, they develop very similar
or even identical interfaces. Among these the more extended
are Eucalyptus, Nimbus, OpenNebula and OpenStack. Com-
parisons between the IaaS solutions usually include a com-
parison between their management interfaces [4]–[6]. All
considered, these management systems are usually solutions
particularized to work only with a specific cloud technology,
and they are not compatible with others.

Third party solutions for managing private IaaS clouds
also exist, some of them suited to just one cloud solution
[7], while others support several technologies. KOALA
(Karlsruhe Open Application (for) cLoud Administration)
is a web based application able to manage and control AWS
compatible cloud services [8]. It allows to work with a
large variety of services of various public and private cloud
providers in a seamless and transparent way [9]. KOALA
innovative characteristic is that it does not require a local
installation since itself could be deployed in the cloud. The
user interface allows customers to start, stop and monitor
their instances or volumes in various cloud infrastructure
regions, and have access to the console output of virtual
machines. KOALA supports S3, Google Storage and Walrus
storage services.

Scalr is a cross platform, cloud management software that
provides auto scaling disaster recovery and server manage-
ment [10]. It is open source, available at Google Code but
a hosted version is available as paid service. The manager
is able to scale the virtual infrastructure according to the
load. Scaling strategies could be based on CPU, RAM, disk,
network or date. The latter can be useful in case of an
increase in traffic is expected, like during scheduled public
events. The code is distributed under Apache 2 license.

Puppet is an IT automation software that helps system
administrators manage infrastructure throughout its lifecycle,
easing the automation of the repetitive tasks [11]. This con-
figuration management tool is written in Ruby and provides
some specific modules for cloud management. The software
is distributed for free with some utilization restrictions. The
paid version offers a solution without limits.

Finally, there are open source initiatives like Libcloud
[12], jcloud [13] or deltacloud [14], but they are more
concerned with the management of public IaaS providers,
even if they include support for some private IaaS solutions.
They are centred in the management of virtual instances,
and do not give much attention to the physical underlying
infrastructure while doing so. Also, they are limited to a
specific programming language or interface.

As can be seen, none of them offers a true solution-
agnostic view. The academia has produced systems that offer
a generic management interface that could potentially be
adapted to any particular product. However, they present
an important drawback: their interface is fixed, since their
generic model and interface are built with a specific tech-
nology in mind, like REST [15] or SOAP [16] web services.
Therefore, it is difficult to extend them to provide other kind
of interfaces, like command-line tools or web pages.

In the end, the fact that the existing management interfaces
are focused in exposing low-level infrastructure elements
makes working with several solutions or migrating from one
to another a complex affair, since there is no exact match
between the features and abstractions being used by each
one [17]. This is mainly because they are focused in the
management of resources, not applications.

III. MANAGEMENT SYSTEM ARCHITECTURE

The first step for developing a technology-independent
management system is to have a generic information model
that covers all the elements that need to be managed in
a private IaaS. We have developed a model that bridges
the gap between the applications deployed into a cloud
and the actual resources allocated to them. This way the
user of the management infrastructure can have a view of
the big picture. This model has already been accepted for
publication [18] and, therefore, will not be the topic of this
paper. However, its elements related to the IaaS resources are
summarized in Figure 1. They are mostly self-explanatory,
but it is important to note the fact that all elements are
Resources (and because of that are managed uniformly),
and that there are relationships between the physical and
virtual Resources, enabling traceability. The VirtualMachine
element represents the VMs managed.

This model is able to cover every solution, but none
of them are able to work with it without modification; a
transformation from this model to the internal representation
specific for each cloud technology is necessary. Similarly,
a translation between the generic management actions and
the operations enabled by each cloud technology must be
provided. This two tasks are fulfilled by the management
system, and these needs determine its architecture, which is
shown in Figure 2. The management system is divided in
three separate layers:

• The topmost layer, named Control Layer, is responsible
of providing an interface to the outer world, and makes
use of the set of services provided by the Management
Layer to execute the management actions.

• Under it lies the Management Layer, which is the heart
of the system. This layer is composed by a set of
interfaces that define the capabilities of the system and
one or more implementations of them, providing man-
agement over specific functional areas of a particular
private IaaS cloud technology.

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 15 / 263

Figure 1. Generic Information Model

• The lowest layer is the Client Layer, which connects
the system to the cloud solution itself.

The target of this division is to support a) several inter-
faces for the same management system, b) several cloud
solutions, and c) several client technologies for the same
cloud solution. We will analyse each of this layers in detail
in the following subsections.

A. Control Layer

This layer is divided in 2 other: the Control Interface and
the High-Level Managers.

The Control Interface is the outward interface that con-
nects the system to the manager. This layer is designed to
be interchangeable and support several interface implemen-
tations at the same time. The motivation for this schema
is that different users could prefer different management
interfaces. Moreover, the user does not need to be a human
operator at all, it can be other system, and therefore there is a
need for interfaces more suited to this task. Samples of these
interfaces could be command-line tools or an administration
web page for a human operator, and a web services interface
for an autonomic system that keeps care of the private cloud
infrastructure.

Under the Control Interface lies the High Level Managers,
which intermediate between the aforementioned interface
implementations and the Management Layer. The High
Level Managers sublayer provides to the Control Interface
two components: an Infrastructure Manager for controlling
the cloud through a set of management actions defined in
our information model (and therefore technology-agnostic),
and an Authentication Manager in charge of monitoring
and enforcing the security model for the private cloud. This
component deserves to be separated from the Infrastructure

MANAGEMENT ARCHITECTURE

CONTROL LAYER

CLIENT LAYER

MANAGEMENT LAYER

HIGH-LEVEL

MANAGERS

CLOUD

TECHNOLOGY

A

CONTROL INTERFACE

COMMAND LINE

WEB INTERFACE

REST INTERFACE

INFRASTRUCTURE

MANAGER

AUTHENTICATION

MANAGER

GENERAL

INTERFACES

MANAGEMENT

INTERFACES

MANAGER IMPLEMENTATION

CLIENT TECHNOLOGY B

CLIENT TECHNOLOGY A

CLOUD

CLIENT

VM

INTERFACE

CHECK

INTERFACE

RETRIEVE

INTERFACE

MODIFY

INTERFACE

AUTH

INTERFACE

VM

MANAGER

INTERFACE

XX

MANAGER

INTERFACE

AUTH

MANAGER

INTERFACE

IMPLEMENTATION TECHNOLOGY B

IMPLEMENTATION TECHNOLOGY A

XX

MANAGER

VM

MANAGER

AUTH

MANAGER

CLOUD

TECHNOLOGY

B

Shell RESTWEB

Figure 2. Management System Architecture

Manager because of the high importance of security in a
cloud environment, where there could be multiple tenants,
and the different implementations of the security system
that each cloud solution features. It is necessary to have
a common interface that abstracts from this differences and
complexities.

B. Management Layer

This layer is again divided in 3 other: General Interfaces,
Management Interfaces and Manager Implementations.

The General Interfaces sublayer offer three interfaces
which provide management primitives that can be applied
to every Resource as defined in our information model.
These primitives are very simple, and the more complex
management activities are built upon them:

• Retrieve, which encompasses the actions to obtain data
from the cloud: getList and getSpecific.

• Modify, which includes the actions tailored to modify

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 16 / 263

the state of the cloud: create and delete. Modification
is just a deletion followed by a creation.

• Check, used to check if a element already exists in the
cloud. It includes just one action of the same name:
check. This feature is needed to be kept up to date
with the state of the environment.

The General Interfaces also include two other interfaces:

• VM, for controlling Virtual Machines, one of the most
important elements of our model. It provides the actions
Suspend, Resume, Resize and Migrate.

• Authentication, which does not perform actions over
entities at all. Instead, it controls who can perform them
and under what circumstances.

Under the General Interfaces lie the Management Inter-
faces. This sublayer particularises the primitives of the upper
level to specific Resources of the infrastructure. We have
defined the following interfaces, whose responsibility can
be easily inferred from their names: VM Manager, Image
Manager, Virtual Appliance Manager, Compute Manager,
Network Manager, Host Manager, Key Manager, Group
Manager, Tenant Manager and Authentication Manager.
These interfaces extend one or more of the General Inter-
faces level interfaces.

These interfaces are in turn implemented in the remaining
sublayer: Manager Implementation. Since this implementa-
tion has to be tailored for each cloud technology, it is here
where the adaptation between our generic information model
and the solution’s specific one is performed. Therefore,
we must implement the General Interfaces for each cloud
technology we desire to support. If this is done correctly
several solutions could be used at the same time, without
each one being conscious of the others.

C. Client Layer

Finally, in the Client Layer is where the adaptation
between the management system and the real infrastructure
is realised. This is done through one or more modules,
each designed to work with a particular access technology
and cloud solution. These modules connect each with the
appropriate Manager Implementation and interact with the
private IaaS itself.

IV. OPENSTACK MANAGEMENT

To validate our proposal, we decided to create an imple-
mentation of the management architecture able to interface
with one of the existing private IaaS solutions: OpenStack.
We chose this product because its open sourced nature would
help us in solving any problems that might arise. On top of
that, it is a relatively mature solution that is seeing intense
development at the moment.

To adapt a cloud solution to our proposal, we had to
complete three tasks: 1) specify a translation between our

TABLE I. MAPPING BETWEEN INFORMATION MODELS

Generic Model OpenStack Model
Virtual Instance Virtual Machine (Server)

Image
Flavor

Virtual Appliance Name
Security Group

Metadata
Virtual Memory Flavor (RAM)
Virtual Storage Flavor (Disk)

Volume
Processing Unit Flavor (CPU)

Virtual Network Iface. Virtual Network
Owner Tenant

Physical Machine Host
- User

Initial Configuration Key Pair
- Floating IPs

generic information model and the solution’s own, 2) de-
velop a corresponding set of Manager Implementations, and
3) create at least one interface for the Client Layer.

Table I shows the mapping between our generic infor-
mation model and the OpenStack representation that we
developed. Each column includes some elements that are not
present in the other. For example the Virtual Appliance ele-
ment is not defined in the OpenStack environment. However,
a correspondence between several disparate elements of the
OpenStack model to it can be made. Even if they are placed
in different relative places inside their own model, most
components of every private IaaS can be traced to elements
of our information model. There are exceptions, though, like
the User and Floating IPs. But in these cases the culprits are
always relevant to specifics of each implementation, and can
be managed inside the Manager Implementation sublayer
without hampering the view of the environment.

After the mapping is defined the grunt work of the adap-
tation to OpenStack lies in the development of the Manager
Implementations and Client Layer. Most of this work is
just programming and is no relevant to this text, but one
aspect of it took a special importance during the process: an
OpenStack component named Quantum. Quantum provides
advanced high level network management, enabling the
definition of L2 and L3 network topologies and multiple
networks across different VMs and tenants. Quantum was
still in its early stages of development while we were
validating our proposal and, in fact, there was no complete
support for it in the OpenStack interface. Therefore, the
development of our ClientLayer involved modifying the
OpenStack code itself. Also, Quantum forced us to rethink
some aspects of the network-related elements in our model,
to support its more advanced capabilities. The Client Layer
was designed to use the OpenStack REST interface.

To illustrate how the different managers interact among
themselves, encompassing both operations over the generic
information model and the actual infrastructure, we repro-

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 17 / 263

Check Authentication

[Authorized] [Not Authorized]

[Conform]
Create the instance and

return VM reference
Parameters Exception

Send Authentication
Exception

[Not Conform]

Handle
Authentication
Manager Exception

Handle Manager
Exception

Check Cloud Parameters and retrieve VA

Check Keypair
Check

Networks
Check Host

Retrieve VA

Figure 3. Starting a Virtual Machine

duce here a sample activity, the process of starting a VM
(see Figure 3). This activity involves an authentication check
(to be sure that the tenant can perform the creation), a state
of the environment check (to ensure that the intended action
is feasible), and the start of the VM action itself.

To complement our work with OpenStack and have a
complete and usable management system, we have also
developed two Control Interfaces: a REST service and a web
page. The latter is intended to used by a human operator and
the former is connected to an autonomic system of our own
creation. The whole system was written in Java.

V. CONCLUSION AND FUTURE WORK

In this paper, we have established the need for a man-
agement architecture for private IaaS clouds that support
several solutions (to avoid data and vendor lock-in), working
alone or together, and several user interfaces. To this end, we
have proposed the use of a generic information model that
captures all the relevant information for the infrastructure,
and a modular architecture that can be adapted to fit several
IaaS products and needs. We have detailed this architecture,
making a special emphasis in how it achieves the desired
results. In doing that, we have explained its three layers and
how they fit inside the big picture.

To validate our approach, we have developed and tested a
sample implementation with support for one cloud solution
(OpenStack) and two interfaces (REST services and a web
page). In this text, we have explained the aspects of this
implementation more relevant to the development of the
modules needed to support other cloud technologies.

In this process, we had to confront the realities of actual
products and how to apply our proposal to them. This gave
us some interesting realizations, like the pressing need for
a more fine-grained network configuration support in clouds
(already established in the literature [19]), and how to use

the improved network customization features offered by
solutions like Quantum to achieve this end.

Therefore, our next efforts will be focused on this topic.
In the future, we also want to develop support for at least
another cloud solution: This way we will be more able to
test a federation of several private clouds and achieve a
true working common management interface for multiple
technologies. This matter will include the difficult topic of
deciding where to physically put the management interface
itself when working with several infrastructures. This inte-
gration will definitely test if our generic approach to security
is suitable for use with different cloud solutions at the same
time.

Finally, another line of work we want to follow is the
application of our architecture to the management of public
cloud offerings, since the interest in hybrid clouds that mix
public and private IaaS is steadily growing.

REFERENCES

[1] B. Sotomayor, R. Montero, I. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,”
Internet Computing, IEEE, vol. 13, no. 5, sept.-oct. 2009,
pp. 14–22.

[2] N. Leavitt, “Is cloud computing really ready for prime time,”
Computer, vol. 42, no. 1, 2009, pp. 15 –20.

[3] M. Armbrust et al., “A view of cloud computing,” Commun.
ACM, vol. 53, no. 4, Apr. 2010, pp. 50 –58.

[4] A. Lonea, D. Popescu, and O. Prostean, “A survey of
management interfaces for eucalyptus cloud,” in Applied
Computational Intelligence and Informatics (SACI), 2012 7th
IEEE International Symposium on, may 2012, pp. 261 –266.

[5] S. Wind, “Open source cloud computing management plat-
forms: Introduction, comparison, and recommendations for
implementation,” in Open Systems (ICOS), 2011 IEEE Con-
ference on, sept. 2011, pp. 175 –179.

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 18 / 263

[6] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison
of open-source cloud management platforms: Openstack and
opennebula,” in Fuzzy Systems and Knowledge Discovery
(FSKD), 2012 9th International Conference on, may 2012,
pp. 2457 –2461.

[7] L. Xu and J. Yang, “A management platform for eucalyptus-
based iaas,” in Cloud Computing and Intelligence Systems
(CCIS), 2011 IEEE International Conference on, sept. 2011,
pp. 193 –197.

[8] C. Baun, M. Kunze, and V. Mauch, “The koala cloud man-
ager: Cloud service management the easy way,” in Cloud
Computing (CLOUD), 2011 IEEE International Conference
on, july 2011, pp. 744 –745.

[9] C. Baun and M. Kunze, “The KOALA cloud management
service: a modern approach for cloud infrastructure manage-
ment,” in Proceedings of the First International Workshop on
Cloud Computing Platforms, ser. CloudCP ’11. New York,
NY, USA: ACM, 2011, p. 1:1–1:6.

[10] “Scalr,” http://code.google.com/p/scalr/, retrieved: 28th March
2013. [Online]. Available: http://code.google.com/p/scalr/

[11] “Puppet labs: IT automation software for system
administrators,” http://puppetlabs.com/, retrieved: 28th March
2013. [Online]. Available: http://puppetlabs.com/

[12] “Apache libcloud,” http://libcloud.apache.org/, retrieved: 28th
March 2013. [Online]. Available: http://libcloud.apache.org/

[13] “jcloud,” http://www.jclouds.org/, retrieved: 28th March
2013. [Online]. Available: http://www.jclouds.org/

[14] “Apache deltacloud,” http://deltacloud.apache.org/, retrieved:
28th March 2013. [Online]. Available: http://deltacloud.
apache.org/

[15] H. Han et al., “A restful approach to the management of
cloud infrastructure,” in Cloud Computing, 2009. CLOUD
’09. IEEE International Conference on, sept. 2009, pp. 139
–142.

[16] Z. Lu, J. Wu, and W. Fu, “A novel cloud-oriented ws-
management-based resource management model,” in Web
Services (ICWS), 2010 IEEE International Conference on,
july 2010, pp. 676 –677.

[17] T. Harmer, P. Wright, C. Cunningham, J. Hawkins, and
R. Perrott, “An application-centric model for cloud manage-
ment,” in Services (SERVICES-1), 2010 6th World Congress
on, july 2010, pp. 439 –446.

[18] R. Garcı́a-Carmona, F. Cuadrado, A. Navas, A. Celorio, and
J. Dueñas, “Multi-level monitoring approach for the dynamic
management of private iaas platforms,” Journal of Internet
Technology, vol. Special Issue on Dynamic Intelligence for
Sustainable Computing, no. to appear, 2013, p. to appear.

[19] J. Wickboldt, L. Granville, F. Schneider, D. Dudkowski, and
M. Brunner, “A new approach to the design of flexible cloud
management platforms,” in Network and Service Management
(CNSM), 2012 8th International Conference on, oct. 2012, pp.
155 –158.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 19 / 263

A Look at Cloud Architecture Interoperability
through Standards

Claus Pahl, Li Zhang and Frank Fowley
School of Computing, Dublin City University, Dublin, Ireland

Email: [cpahl|lzhang|ffowley]@computing.dcu.ie

Abstract—Enabling cloud infrastructures to evolve into a
transparent platform while preserving integrity raises interop-
erability issues. How components are connected needs to be
addressed. Interoperability requires standard data models and
communication encoding technologies compatible with the exist-
ing Internet infrastructure. To reduce vendor lock-in situations,
cloud computing must implement universal strategies regarding
standards, interoperability and portability. Open standards are of
critical importance and need to be embedded into interoperability
solutions. Interoperability is determined at the data level as
well as the service level. Corresponding modelling standards and
integration solutions shall be analysed.

Keywords - Cloud Architecture; Interoperability; Standards.

I. INTRODUCTION

Enabling cloud infrastructures to evolve into a transparent
platform while preserving integrity raises interoperability is-
sues [2], [5]. Interoperability requires standard data models
and communication encoding technologies compatible with
the existing Internet infrastructure. The need to scale and
provide cost-effective time-to-market. Public cloud services are
available to the public and owned by an organisation selling
cloud services, e.g. Microsoft or Amazon are major providers.
Hybrid clouds are an integrated cloud services arrangement
that includes provision of compute resources from more than
one source (e.g. either private or public). Hybrid architectural
models may be vertically partitioned (e.g. data stored privately)
or horizontally partitioned (e.g. using public cloud to prototype
a new device view of a service in parallel with an existing
implementation). These architectural scenarios define the need
for interoperability solutions if flexible composition, migration
and portability are sought [1], [3].

To reduce vendor lock-in situations, cloud computing must
implement universal strategies regarding standards, interoper-
ability and portability. Open standards are of critical impor-
tance and need to be embedded into interoperability solutions
[9], [10]. Standardisation efforts linked with intelligent pro-
cessing techniques shall be given particular attention. Interop-
erability is determined at the data level as well as the service
level [11], [4], [13]. Corresponding modelling standards and
integration solutions shall be analysed.

The objectives of this investigation include the review of
relevant standards for cloud architecture interoperability (look-
ing at their background, usage and analysing their importance
for this context) and analysing the overall maturity of the
technology and determining current trends and shortfalls.

We start with an architectural scenario, the definition of
stakeholders and interoperability concerns in Section 2. In

PaaS Interface

IaaS Interface NaaS Interface DaaS Interface

Resource Manager

M
an
ag
am

en
t&

 M
on

ito
rin

g

M
ar
ke
tp
la
ceLifecycleManager

Fig. 1. Layered Architecture for Cloud-based Software Components.

Section 3, we categorise existing standards and review a
selection, before ending with some discussions.

II. CLOUD ARCHITECTURE AND INTEROPERABILITY

A. Cloud Architecture

A cloud architectural framework consists of the classical
three cloud layers infrastructure (IaaS), platform (PaaS and
software (SaaS) as service-oriented offerings [2], [5], [6]. In
addition, we can differentiate between (hardware or software)
resources provided in a traditional way, and the . . . as a Service
version of them, which considers virtualization, multi-tenancy
and elasticity as the concerns [3]. A platform product can
be deployed over IaaS (or a network provided as a service
NaaS) or over real hardware infrastructure. A platform product
can be offered as a Service (PaaS) for the application layer.
The application software can be deployed either on top of
a platform product (cloud-less), or making use of platform
services (PaaS). Finally, an application product can be offered
as a Service (SaaS) for external customers.

Different usage models can be derived from the combina-
tions of the layers. We take into account that some software (or
hardware) is provides as a service, other components are di-
rectly interfaced: application over a platform, SaaS over a plat-
form, or pure platform over IaaS. These different usage models
rely on interoperability solutions. Some are service-based
abstractions (APIs) that need, consequently, to be aligned with
common (Internet/Web-based) service description, modelling
and composition standards. However, also more technology
(or layer) specific standards are also important.

A stakeholder can play more than one role within the plat-
form scenario according to the usage. For instance, a Software
Provider in the Application Software layer can be at the same
time a PaaS or Platform Software customer. Service providers

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 20 / 263

and users rely more on service-related standards, whereas non-
service interfaces for software providers and developers might
be more layer-specific.

B. Stakeholder Roles

Different stakeholders can be associated with the architec-
tural scenarios. These can be categorised into roles that reflect
their activities and needs. These roles are based on suggestions
from the EU FP7 Projects SLA@SOI (for general roles in the
services context) and 4CaaSt (for cloud-specific roles).

A Service Provider (or application provider) supplies ser-
vices to one or more internal or external customers. A Software
Manager defines software-based services, takes care of their
management (business focus) and administration (technical
focus) A Service Aggregator is a reseller that contracts and
aggregates services or applications by third parties in order to
create a new ones A Service Maintainer maintains a service
after it has been deployed A Context Provider provides context
information about the underlying infrastructure components
(e.g. telecoms or sensor network) A Data Provider owns,
manages and provides data to a service

A Cloud Provider is a resource provider that provides an
integrated platform or infrastructure services based on possibly
heterogeneous cloud offerings. A Platform Provider offers a
technical platform to Service Provider to host their software
services. A Platform Manager manages a platform from a
business perspective. An Infrastructure Provider is a cloud IaaS
provider. An Infrastructure Manager measures and controls
infrastructure properties.

A Software Provider produces software which might be
used by a Service Provider to assemble services. In this
context, a Software Designer designs/develops the architecture
and components of a specific SLA-based application.

A Service Customer orders services and defines and agrees
service-level targets (SLA). A Service Consumer is the person
who actually consume/use the provided services.

C. Interoperability Concerns

Interoperability concerns arise in different situations. In-
teroperability between cloud layers needs standardised APIs
to allow higher cloud layers to link to a range of services
provided at the lower layers, e.g. platform implementations
to uniformly link to IaaS offerings. Roles of importance are
service provider and service user. Interoperability within layers
needs suitable standards to allow components in a layer to
interact and be exchangeable. Non-service interactions need
to be supported, e.g. where, as explained in the third scenario
above, a Software Developer combines different platforms in
the development of a new system. Figure 1 indicates some of
these components and their connectivity for the infrastructure
and platform concerns. The architecture in Figure 1 should
only be indicative of these concerns, but captures some agreed
components in this context.

III. INTEROPERABILITY-RELATED STANDARDS

Standards are necessary to consolidate efforts in a technol-
ogy domain and to enable interoperability. An overview and

a categorisation of standards relevant to interoperability in the
cloud computing context that we cover here is:

• Web services: WSDL (description), SOAP (protocol),
WS-BPEL (composition), UDDI (repository)

• Service modelling: Open-SCA (service composition
and interaction), USDL/SoaML/CloudML (multi-view
services), EMML (mashups)

• Service interfaces: OCCI (infrastructure management),
CIMI (infrastructure management), EC2 (de-facto
standard), TOSCA (portability), CDMI (data)

• Infrastructure: OVF (virtual machines); specific con-
cerns: memcached (data caching), VEPA (network)

• Security: OAuth, SCAP

For each standard, we provide background about origins,
support and purpose, the intended usage, and an analysis of
the relevance for interoperability considerations. Providing a
comprehensive overview of all standards is not the objective.
We have singled out those that represent specific aspects well.

A. Core Web Services Standards

Service-based provision needs Web services alignment.
Thus, relevant standards are SOAP, WSDL, WS-BPEL and
UDDI (not discussed due to space considerations). As all cloud
layers (infrastructure, platform, software, processes) can be
provided in an . . .-as-a-service form, these classical services
standards form the foundation of cloud interoperability. Al-
though not standardised as such (and thus not covered here),
RESTful services have become a similar, more lightweight
major architectural style for services.

B. Service Modelling and Interface Standards

We separate more advanced modelling and interface de-
scription standards from the core Web services standards in
this context, i.e. WSDL and WS-BPEL, as the ones covered
here have not gained as much recognition.

Open Composite Services Architecture (Open-CSA)
The OASIS Open Composite Services Architecture (CSA)
specifications provide standards to simplify SOA application
development [21]. OASIS brought together vendors and users
from to collaborate on the development and adoption of the
Service Component Architecture (SCA) and Service Data Ob-
jects (SDO) families of specifications. Usage: As an example,
the SCA Assembly Model is a framework to describe service
coordination and interaction that ties in service composition
with common software architecture concerns. Analysis and
Recommendation: The CSA standards can be utilised as is or
can serve as input for any composition and assembly language
for interoperability concerns. It can serve a guide for the
specification of services and cloud configurations. It can also
facilitate the development of visual tools for assembling of
components and service references during application design.

The specifications on the SCA Assembly Model are very
relevant for interoperability. Application development using
SCA should result in the following advantages. It promotes
decoupling of application business logic from the details of
the invoked services. Target services in a range of languages

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 21 / 263

(like C++, Java, and PHP) are supported. Different commu-
nications constructs including One-Way, Asynchronous, Call-
Return, and Notification are considered. Legacy components
or services, accessed as Web Services, EJB, JMS, JCA, RMI,
or CORBA can be included. Quality of Service requirements
are considered, such as security, transactions and the use of
reliable messaging

Data interoperability is an equally important concern in
Open-CSA. Data could be represented in Service Data Objects.

The value proposition of SCA is, therefore, the flexibility
for composite applications to incorporate reusable components
in an SOA programming style. The overhead of business
logic concerns regarding platforms, infrastructure, plumbing,
policies and protocols are removed.

Enterprise Mashup Markup Language (EMML) En-
terprise Mashups combine and remix data from databases,
spreadsheets, websites, Web Services, RSS/Atom feeds, and
unstructured sources that deliver actionable information. The
Open Mashup Alliance (OMA) is in charge of the Enterprise
Mashup Markup Language (EMML) [20]. It can support enter-
prise mashup implementations, improve mashup portability of
mashup designs, and increase the interoperability of mashup
solutions. OMA provides an EMML schema and a reference
runtime environment as the technology framework. Usage:
EMML is a Domain Specific Language (DSL) designed to
address the creation and reuse of mashups. EMML is, how-
ever, not a general-purpose language - EMML was designed
to be complimentary to and integrated with languages like
JavaScript, Java, Groovy, and Ruby via scripting. EMML is a
declarative XML-based language and, as such, leverages and
complements existing XML capabilities inherent in XQuery,
XPath, and XSLT. EMML is an open language specification.
This free-to-use language (and technologies that embed or use
it) have a much better chance of meeting the needs of en-
terprise developers than a proprietary language. Analysis and
Recommendation: It is particularly suited for interoperability
issues related to mashup creation. It is supportive of a strong
trend towards lightweight and integrative content and service
assembly and is therefore representative of a specific modelling
and integration concern.

Unified Service Description Language (USDL) The aim
of the Unified Service Description Language (USDL) team, an
W3C Incubator Group, is to define a language for describing
general, generic parts of technical and business services to
allow services to become tradable and consumable [19].

• Technical services are considered software services
based on WSDL, REST or other specifications.

• Business services are defined as business activities
that are provided by a service provider to a service
consumer to create value for the consumer.

The business services are more general and comprise man-
ual and technical services. The USDL definition aims at
complementing the technical language stack by adding re-
quired business and operational information. The targeted
cloud stakeholders for USDL are service providers, infras-
tructure providers, service assemblers and service consumers.
Industry-specific and general-purpose attributes of a service
are derived based on use cases, taking into account the target

groups. The USDL group aims to derive best practices and
learning from testing cycles that can then be deployed in
a number of use cases. These use cases serve as refer-
ences and proof-of-concept of USDL. Usage: The language
is usable for any purpose and implementation scenario of
business services on a general level. However, it is also
extendable for industry-specific aspects. USDL defines an
interoperability-centric language that enables its users to model
arbitrary services and to integrate with existing standards.
Analysis and Recommendation: Particularly the aim to
address service modelling and support this with mappings
to different standards makes this a worthwhile framework
for interoperable cloud service modelling. This enables new
business models in the field of service brokerage because
services can automatically be offered, delivered, executed, and
composed from services of different providers. Business-IT
alignment is an ongoing concern. Another development to
be considered in this context includes SoaML (standardised
by OMG, see http://www.omg.org/spec/SoaML/), which falls
into the same category as USDL in our categorisation as
a service description and modelling language. While still
under development (and thus far from being standardised),
CloudML (http://www.cloudml.org/) is a language more spe-
cific to clouds, developed by the same group as SoaML.

Open Cloud Computing Interface (OCCI)

OCCI (infrastructure lifecycle management) is now the first
of four cloud-specific standards, also including CIMI (like
OCCI on infrastructure management), TOSCA (portability and
cloud-bursting), and CDMI (data management).

Cloud computing currently is organised into three models
or layers offering Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS), which
all involve the on-demand delivery of computing resources.
Providers offer IaaS solutions to enhance elastic capacity,
where server instances are executed in their proprietary in-
frastructure and billed on a utility computing basis. For the
infrastructure layer this means that typically virtual machines
on a per-instance per-hour basis are the units. For the software
(SaaS) layer, software application instances are the correspond-
ing units, managed and billed with similar mechanisms. There
are also both commercial and open source products that repli-
cate this functionality in an in-house setting, but also exposing
compatible interfaces as a hybrid cloud environments can be
realised. The OGF OCCI working group provides an API spec-
ification for the management of cloud computing infrastructure
[18]. Usage: The scope is a comprehensive range of high-level
functionality for life-cycle management of virtual machines
(or workloads) running on virtualization technologies (such as
containers). OCCI provides an API for interfacing IaaS cloud
computing facilities, which is sufficiently complete to facilitate
the implementation of interoperable implementations:

• Consumers to interact with cloud computing infras-
tructure (e.g. deploy, start, stop, restart)

• Integrators to offer advanced management services

• Aggregators to offer a single common interface to
multiple providers

• Providers to offer a standard interface that is compat-
ible with available tools

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 22 / 263

• Vendors to offer standard interfaces for dynamically
scalable service delivery in their products.

Analysis and Recommendation: OCCI is a step towards
matching cloud-specific interoperability needs through stan-
dards. While targeting IaaS concerns, it can foster interoper-
ability endeavours at higher levels. The scope of OCCI is high-
level functionality for lifecycle management. This is in part
realised through coverage of existing proprietary APIs. Storage
details beyond creation and mapping of mount points is specif-
ically excluded. Networking details are similarly excluded
beyond creation and mapping of interfaces, assignment of these
to public or private networks and assignment of dynamic or
static IPs. While the focus is on the upper cloud stack layers
for the section presented in Figure 1, it is nonetheless a suitable
framework for interoperability at the interface of infrastructure
services. OCCI allows, as an additional interoperability con-
cern, the development of interoperable tools for common tasks
including deployment, autonomic scaling and monitoring.

Cloud Infrastructure Management Interface (CIMI)
Similar to OCCI, the CIMI - Cloud Infrastructure Management
Interface from DMTF addresses infrastructure management.
CIMI which addresses the runtime maintenance and provision-
ing of cloud services. The scope of the CIMI standard covers
core IaaS functionality, addressing deploying and managing
virtual machines and other artifacts such as volumes, networks,
or monitoring. Once interfaced to the IaaS provider, the infor-
mation that needs to be processed to manage a cloud service
can be discovered iteratively, including the metadata describing
capabilities and resource constraints. Usage: The model behind
CIMI describes resources (systems or collections of resources
managed as a whole, e.g. as an OVF file - which is covered
below): machines (resource with CPU and memory), volumes
(storage), and networks (representing layer 2 broadcasts). It
also describes meters, which are metrics for some property, and
event logs. Most developers use with the CIMI REST/HTTP-
based protocol, the current interface binding to the model
(others are expected later). This delivers standard HTTP status
codes and supports JSON and XML serialization formats.
Analysis and Recommendation: CIMI, if widely used, would
allow organisations to design cloud-based business solutions
being assured that management (and governance) processes
will not be compromised if the business solution is moved to
another (standards-based) IaaS provider.

Amazon Elastic Compute Cloud (EC2) While OCCI and
CIMI are similar standards, in a wider context, Amazon EC2
as a proprietary solution and OpenStack as an open-source
solution need to be considered in this context as well. Amazon
Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizeable computing capacity servers in Amazon’s
data centers. These can be used use to build and host software
systems. EC2 follows a pay-as-you-go for the capacity that
is needed. Usage: They allow access to components and
features using a web-based GUI, command line tools, and
APIs . At the core is an Amazon Machine Image (AMI),
which is a template that contains a software configuration
(operating system, application server, and applications). An
AMI is used to instantiate (create) a virtual machine; it is
an AMI is a filesystem image which includes an operating
system (e.g., Linux, UNIX, or Windows) and any additional
software required to deliver a service. From an AMI, instances

are launched, which are running copies of the AMI. You
can launch multiple instances of an AMI. Instances run until
you stop or terminate them, or until they fail. Analysis and
Recommendation: EC2 is a de-facto standard and comes
with a rich ecosystem, including for instance monitoring tools
such as CloudWatch or libraries for a range of programming
languages. Some open-source standards are pushed by Amazon
AWS competitors to regain market shares.

Topology and Orchestration Specification for Cloud
Applications (TOSCA) Supported by OASIS, the TOSCA
framework aims to enhance the portability of cloud applica-
tions and services. TOSCA enables interoperable description of
application and infrastructure cloud services, the relationships
between parts of the service, and the operational behaviour of
these services (such as deploy, patch, shutdown) independent
of the supplier creating the service, and any particular cloud
provider or hosting technology. TOSCA also aims to support
higher-level operational behaviour to be associated with cloud
infrastructure management. Usage: Through service and ap-
plication portability in vendor-neutral settings, it enables:

• Portable deployment to any compliant cloud

• migration of existing applications to the cloud

thus adding to consumer choice and dynamic, multi-cloud
provider applications. Analysis and Recommendation: The
core concept behind TOSCA is cloud bursting, which is the
ability to move workloads between public and private cloud
infrastructures in a transparent way. There seems to be some
discussion, with large IaaS providers not having joined the
consortium yet. The core to the solution would be a hypervisor-
agnostic portability mechanism, which requires IaaS compli-
ance. TOSCA also needs to be observed as a vendor initiative
in the context of open-source activities like OpenStack gaining
momentum.

Cloud Data Management Interface (CDMI) The
CDMI, the Cloud Data Management Interface by SNAI (see
http://www.snia.org/cdmi), targets cloud storage. The Cloud
Data Management Interface is a standard for self-provisioning,
administering and accessing cloud storage. CDMI defines
RESTful HTTP operations for accessing the capabilities of the
Cloud storage system, including allocating and accessing con-
tainers and objects, managing users and groups, implementing
access control, attaching metadata, making arbitrary queries,
using persistent queues, specifying retention intervals and
holds for compliance purposes, logging, billing, moving data
between Cloud systems, and exporting data via other protocols.
Transport security is via SSL/TLS. Usage: CDMI defines the
functional interface that applications use to create, retrieve,
update and delete data elements from the cloud. As part of
this interface, a client can discover the capabilities of the cloud
storage offering and use this interface to manage containers
and the data that is placed in them. In addition, metadata can
be set on containers and their contained data elements through
this interface. Analysis and Recommendation: Compared to
OCCI and OVF, CDMI specifically targets data moving and
format immigration. Although CDMI can also be used for
task management, this would need more extensive rules to be
defined.

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 23 / 263

C. Infrastructure Standards

The OCCI is cloud-specific and addresses interoperability
and interface concerns for the infrastructure level. We include
here three further cloud standards that are specific to the
cloud infrastructure level, of which OVF is the most critical
and successful so far. This reflects the current activity and
maturity in this context. Again, these are representative of
a number of concerns and this selection is not meant to be
exhaustive. Memcached and VEPA are representative of other
concerns, but for instance as far as protocols are concerns,
AMQP (Advanced Message Queuing Protocol) or STOMP
(Simple (or Streaming) Text Orientated Messaging Protocol)
could have been included.

Open Virtualization Format (OVF) The Open Virtual-
ization Format (OVF), submitted to DMTF as a standard,
describes an open, secure, portable, efficient, and flexible
format for the packaging and distribution of one or more virtual
machines [14], [16]. OVF features include:

• It enables optimized distribution and portability of
virtual appliances.

• It aims to support robust installation. Compatibility
with the local virtual hardware ia also verified.

• It supports both single and multi-virtual machine
configurations. With OVF, Software Developers can
configure complex multi-tiered services consisting of
multiple interdependent virtual appliances.

• It enables portable VM packaging. OVF is virtualiza-
tion platform independent.

• It supports a wide range of virtual hard disk formats
used for virtual machines today, and is extensible to
deal with future formats that are developed.

It supports vendor and platform independence as it does not
rely on the use of a specific host platform, virtualization
platform, or host/guest operating system. It is also designed
to be extended as the industry moves forward with virtual
appliance technology. Usage: VMDK is a popular file format
that encodes a single virtual disk from a virtual machine.
However, a VMDK does not contain information about the
virtual hardware of a machine, like CPU, memory, disk,
and network information, making manual configuration costly.
OVF provides a complete specification of a virtual machine.
This includes the full list of required virtual disks plus the
required virtual hardware configuration, including CPU, mem-
ory, networking, and storage. An administrator can quickly
provision a virtual machine into virtual infrastructures with
little or no manual intervention. Analysis and Recommenda-
tion: OVF is a portable format that allows users to deploy
virtual machines in any hypervisor that supports OVF. As
such, it sits at the core of resource management in the infras-
tructure provisioning layer, overcoming previous deficiencies
in standardised solutions such as VMDK. Despite, supporting
interoperability as a standard for this specific technical context,
other features of OVF are important for cloud architecture.
For instance, the localisation support is important for cloud
services to be offered across different locales. If these locales
can be defined and adapated supported by standards, a hurdle
for exploitation is overcome.

D. Security Concerns

Authentication and identity management is a primary con-
cerns for controlling access to cloud resources. Thus, OAuth
shall be covered in a brief overview of security concerns.
SCAP is a protocol to deal with downloading security content.
OAuth as an identity management and SCAP as a security
content related standard are covered in the security context.

OAuth is an open standard for authorization. It allows users
to share resources across sites. (e.g. photos, videos, contact
lists) stored on one site with another site without having to
hand out their credentials, typically supplying username and
password tokens instead. OAuth uses username and password
tokens. A token grants access to a specific site for specific
resources and for a specified duration. OAuth runs on top of
HTTP or HTTPS. The OAuth mechanism allows users to grant
a third party access to their resources (information) stored with
another service provider (which could be a cloud provider), but
without sharing access permissions. Twitter is one of the users
of OAuth, as is Facebook. OAuth is a service complementary
to other identity management mechanisms such as OpenID.

SCAP is the Security Content Automation Protocol. It
is a protocol to enable automated vulnerability management,
measurement, and policy compliance evaluation. It actually
combines a number of open standards that deal with software
flaws and configuration issues related to security. NIST is
in charge of SCAP. SCAP validation focuses on evaluating
versions of vendor products, based on the platforms they sup-
port. Validation certificates will be awarded on a platform-by-
platform basis for the version of the product that was validated.
As it attempts to standardize the automation of the linkage
between computer security configurations, it is interesting from
a cloud interoperability perspective. Trustworthy cloud systems
is the aim within which SCAP can be applied. SCAP provides
tools that can, e.g., help determine compliance of security
requirements implemented in Cloud provider OS images.

IV. DISCUSSION AND CONCLUSIONS

Interoperability between clouds, cloud services and compo-
nents is vital for the further development of the cloud ecosys-
tem and market. While standards for the Web Services context
are abundant, more specific standards for the cloud computing
domain reflect the current maturity. Firstly, a number of
standards for the lower infrastructure layers apply to respective
cloud computing technologies. They address interoperability
solutions for specific aspects like virtual machine management
or data management. It reflects initiatives for interoperability
for large offerings provided by multinational organisations.
Secondly, for platforms and services, the respective (Web)
service standards are still of relevance. Standards exist, be-
yond the core Web services platform, that can further the
development of platform and software services from existing
offers. Generic service solution can provide a starting point
where cloud-specific standards are lacking. This indicates
more development in the second category. In addition, it is
worth looking at a number of different concerns that help
us to judge the state of standardisation and it’s impact on
interoperability: (i) organisations behind standards and their
domain, (ii) stakeholders involved through standards and (iii)
standards and open-source/proprietary solutions.

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 24 / 263

Firstly, by looking at the organisations behind the stan-
dards, we can also observe that while the Web services domain
is primarily dominated by W3C and OASIS in terms of stan-
dardisation, the situation in cloud computing is more diverse.
Some of the organisations active include DMTF (management
of distributed IT systems), the OGF (grid computing), the
OMG (middleware), SNIA (storage), OASIS (services), OCC
(cloud), as well as national (e.g. NIST) and sector-specific (e.g.
ETSI - telecoms) organisations. Currently, there is a dominance
of infrastructure and lower-level management, i.e. enabling
concerns for cloud computing, reflecting predictions made in
reports such as the EU report on cloud computing and its
development time lines [3].

Secondly, stakeholders are yet another perspective that we
can look at. We have referred to stakeholders in the review
and discussion of standards where relevant to differentiate
the different interoperability needs of stakeholders in clouds
as multi-organisational, multi-role environments. While the
infrastructure standards target clearly software developers,
the more generic service-oriented standards are more at the
interface (as-a-service) level, targeting service providers and
consumers. Particularly combined roles, such as prosumers
or aggregators that are providers and consumers by combing
and brokering between more basic offerings and somehow
extended or advanced needs of end-users, benefit from the
recent service description and modelling standards.

Thirdly, while standards can achieve interoperability, often
de-facto standards emerge from open-source or proprietary
solutions. We dicussed OCCI and CIMI as standards in a
context where OpenStack is a strong open-source framework,
all competing with Amazon EC2 as the dominant solution.

Our observations do not reflect to a full extent concerns
raised by actual and potential cloud users, such as security,
privacy and trust [1], but rather indicate more technology
concerns in relation to development and deployment activities.
By looking at the standards we reviewed here for indications of
future standardisation needs, emerging from the categorisation
of standards are the following observations:

• Modelling under incorporation of a variety of stan-
dards can support migration and, consequently, the
uptake of cloud computing solutions.

• Composition, e.g. mashups, is becoming of impor-
tance to provide a market for basic and composite
offering where providers and aggregators compete.

• Quality of Service and Service Level Agreement stan-
dardisations beyond security concerns in the cloud are
actually largely lacking.

Open-SCA and other standards in this context are examples of
the emergence of programming and interoperation models for
services, which will be instrumental for the composition and
customisation of cloud services. Adding more semantics to ser-
vice descriptions is a direction that can further the composition
and brokerage in cloud architectures. Interoperability is, once
platform stability has been reached, of increasing concern.
Migration and interoperability for service offerings are con-
sidered for instance in modelling frameworks such as USDL.
The need to support composition, brokerage and mediation is
also reflected by EMML, which addresses mashups.

ACKNOWLEDGMENT

A number of research project, particularly the EU FP7
projects SLA@SOA, 4CaaSt and Remics, provided invaluable
input for this investigation.

REFERENCES

[1] 451 Group. Report on Cloud Computing ’As-a-service’ market sizing -
Report II. 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin and I. Stoica. A view of cloud computing.
Communications of the ACM, 53(4):50–58. 2010.

[3] EU Commission. Report on The Future of Cloud Computing - Opportu-
nities for European Cloud Computing Beyond 2010. EU. 2010.

[4] K. Boukadi, C. Ghedira, S. Chaari, L. Vincent and E. Bataineh. How
to employ context, web service, and community in enterprise collabo-
ration. Proceedings of the 8th Intl Conference on New Technologies in
Distributed Systems. ACM, 1-12. 2009.

[5] R. Buyya, J. Broberg, and A. Goscinski. Cloud Computing - Principles
and Paradigms. Wiley. 2011.

[6] P. Fingar. Cloud computing and the promise of on-demand business
innovation. Intelligent enterprise. 2009.

[7] C. Pahl, S. Giesecke and W. Hasselbring. An Ontology-based Approach
for Modelling Architectural Styles. European Conference on Software
Architecture ECSA 2007. Springer. 2007.

[8] M.X. Wang, K.Y. Bandara and C. Pahl. Integrated constraint violation
handling for dynamic service composition. IEEE Intl Conf on Services
Computing. pp. 168-175. 2009.

[9] DMTF Distributed Management Task Force: Interoperable Clouds.
http://www.dmtf.org/sites/default/files/ standards/documents/DSP-
IS0101 1.0.0.pdf. Accessed April 2013.

[10] GICTF Global Inter-Cloud Technology Forum: Use cases
and functional requirements for inter-cloud computing.
http://www.gictf.jp/doc/GICTF Whitepaper 20100809.pdf. Accessed
April 2013.

[11] OMG Object Management Group: Cloud Interoperability
Roadmaps Session. http://www.omg.org/news/meetings/tc/ca/special-
events/Cloud Interop Roadmaps.htm. Accessed April 2013.

[12] CloudCom 2011 Workshop: Market Implementation of Cloud
Interoperability and Portability Research in IaaS and PaaS.
http://www.cloud4soa.eu/workshop2011. Accessed April 2013.

[13] Cloud Standards Overview. http://cloud-
standards.org/wiki/index.php?title=Main Page. Accessed April 2013.

[14] DMTF istributed Management Task Force. Open
Virtualization Format Specification Version 1.0.0.
http://www.dmtf.org/standards/published documents/
DSP0243 1.0.0.pdf. Accessed April 2013.

[15] Memcached Project web site. http://memcached.org/. Accessed April
2013.

[16] OVF Open Virtualization Format. http://www.dmtf.org/sites/default/files/
standards/documents/DSP0243 1.1.0.pdf. Accessed April 2013.

[17] VEPA Virtual Ethernet Port Aggregator.
http://www.ieee802.org/1/files/public/docs2008/new-congdon-vepa-
1108-v01.pdf. Accessed April 2013.

[18] OCCI Open Cloud Computing Interface. http://occi-wg.org/. Accessed
April 2013.

[19] USDL Unified Service Description Language.
http://www.w3.org/2005/Incubator/usdl/. Accessed April 2013.

[20] EMML Enterprise Mashup Markup Language.
http://www.openmashup.org/omadocs/v1.0/index.html. Accessed April
2013.

[21] Open CSA - Open Composite Services Architecture. http://www.oasis-
opencsa.org/. Accessed April 2013.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 25 / 263

K Means of Cloud Computing: MapReduce, DVM,
and Windows Azure

Lin Gu Zhonghua Sheng Zhiqiang Ma
Xiang Gao Charles Zhang

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Kowloon, Hong Kong SAR
Email: {lingu,szh,zma,xgaoaa,charlesz}@cse.ust.hk

Yaohui Jin
State Key Lab of Advanced Optical Communication
Systems and Networks, Shanghai Jiaotong University

800 Dongchuan Road, Minghang District
Shanghai, China

Email: jinyh@sjtu.edu.cn

Abstract—Cloud-based systems and the datacenter computing
environment present a series of challenges to system designers for
supporting massively concurrent computation on clusters with
commodity hardware. The platform software should abstractthe
unreliable but highly provisioned hardware to provide a high-
performance platform for a diversity of concurrent program s pro-
cessing potentially very large data sets. Toward this goal,a num-
ber of solutions are designed or proposed. Among these products
and systems, we elect three technologies, MapReduce/Hadoop,
DVM, and Windows Azure, as representatives of three different
approaches to constructing the infrastructure and instructing
the programming in the cloud. We empirically study these
technologies using a well-known and widely used application,
k-means, and analyze their performance data in relation with
the abstraction layers they establish. The implementations of k-
means on the three platforms are presented with sufficient details
to show the design patterns with these technologies. We analyze
the evaluation results in the context of the design goals and
constraints of the technologies, and show that the instruction-
level abstraction can provide flexible programming capability as
well as high performance.

Keywords—Cloud computing; k-means; parallel programming;
MapReduce; DISA; big data processing

I. I NTRODUCTION

We entered the cloud computing era without a consensus
on how large-scale distributed computing systems should be
constructed. As many problems remain unsolved for systems
with hundreds of loosely-coupled nodes, leading Internet firms
have constructed datacenters orders of magnitude larger than
typical “large-scale” systems around 2000’s. To system de-
signers, datacenter systems present new technical challenges
for the following reasons.

• First, the scale of a datacenter can reach hundreds
of thousands of compute servers, which is out of the
scope of many distributed algorithms.

• Second, constructing a loosely coupled system at
such a scale with commodity hardware inevitably
introduces faults in the system to the extent that
failures of components are “norm” [1]. This design
context departs significantly from traditional high-
performance computing systems.

• Third, the applications in datacenters typically require
extremely high availability and process very large

data with high throughput [2]. Moreover, a number
of computing tasks require deterministic output to
ensure correctness, which is well accepted practice
in computations of smaller scale but turns out to be
very difficult in datacenter systems without noticeably
affecting performance.

• Finally, a datacenter is a shared environment where
a number of applications run concurrently and may
interact with each other. In contrast, a typical high-
performance computing (HPC) environment can run
in a dedicated or isolated manner. In fact, many HPC
users desire to have their application run in relatively
isolated resource compartments.

In this context, the cloud computing infrastructure should
abstract the unreliable but highly provisioned hardware to
provide a high-performance platform for a diversity of con-
current programs processing potentially very large data sets.
The programs should be easy to write, worry-free to deploy,
and fast to execute.

Several technologies are developing towards this goal–
besides earlier solutions developed by Google, Yahoo!, and
other industry firms, integrated solutions start to emerge and
combine existing software development practices.In addition, a
few academic research systems exhibit excellent performance
and potentially indicate future directions of innovation in this
area.

Among these products and systems, we elect three tech-
nologies, MapReduce/Hadoop [3], DVM [4], and Windows
Azure [5], as representatives of three different approaches to
constructing the infrastructure and instructing the program-
ming in the cloud. We empirically study these technologies
using a well-known and widely used application, k-means, and
analyze their performance data in relation with the abstraction
layers they establish. The implementations ofk-means on the
three platforms are presented with sufficient details to show
the design patterns with these technologies. Our study reveals
some characteristics of the design space of cloud computing,
and sheds light onto how to construct and program cloud-based
systems and applications.

The rest of the paper is organized as follows. Section II
introduces the background of the technologies discussed in
this paper. Section III presents the k-means programming on

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 26 / 263

MapReduce/Hadoop, DVM and Windows Azure. Section IV
evaluates the performance of k-means computation on the three
platforms, and analyzes the experimental results. The related
work is discussed in Section V, and we provide concluding
remarks in Section VI.

II. BACKGROUND

When Internet datacenters were first multiplexed to con-
duct serious data-intensive processing, it became obviousthat
there lacked a method to orchestrate the numerous compute
nodes in such systems to conduct effective computation. In
spite of immense work on distributed computing and parallel
processing, traditional approaches are ill-suited for thenew
computing platform. Consequently, several technologies have
been developed to enable large-scale distributed processing in
datacenters, pioneered by Google’s MapReduce [3]. Recently,
Microsoft’s Windows Azure integrated a full set of cloud-
related technologies, including not only distributed execution
but also programmable resource provisioning and data-layer
abstractions, in the existing development frameworks [5],[6].
Another important trend is to conduct in-memory computation
on commodity-hardware-based clusters. As one of the earliest
approaches in this category, the DVM technology constructs
an instruction-level abstraction to enable programs distribute
computation in a large shared memory space [4].

A. MapReduce-style computation

MapReduce is perhaps the most widely recognized cloud
computing technology. It simplifies the data dependence and
regulates the semantics of the tasks (e.g., tasks should be
idempotent) so that it is easy to implement “embarrassingly
parallel” programs and utilize the large number of processor
cores in a cluster [3]. Although multiple implementations
extend the MapReduce framework to multicore and GPGPU
processing [7], [8], MapReduce is mainly design for massively
parallel data-intensive processing on a cluster of compute
nodes.

While MapReduce is a computational framework, its de-
sign is highly dependent on the underlying filesystem ab-
straction, GFS [1]. First, the replicated data chunks in the
filesystem effectively enhance the scheduling efficacy and the
I/O bandwidth. Second, the filesystem provides a means of
maintaining very large program state and providing a “global”
namespace. Finally, atomic operations (e.g., rename) in the
filesystem ensures the correctness of the MapReduce com-
putation. The performance of MapReduce computation also
relies on a datacenter-wide “meta-scheduler”. The open source
variant of MapReduce, Hadoop, has implemented a filesystem,
HDFS, with similar semantics to those provide by GFS and a
application-level task scheduler.

B. Languages, virtual machines, and DVM

Virtualization is considered part of the technical foundation
of cloud computing. In fact, virtualization can take place at
several different system layers, and the level of abstraction
makes significant difference in generality, expressiveness, and
performance. X10 represents an approach of abstracting com-
putation at the language level [9]. Similar approaches include

Fig. 1. Organization of two DVM virtual machines on three computers. Each
DVM virtual machine utilizes computing resources providedby one single
computer or many computers.

Fortress, Google App Engine, and Chapel. The language-
level approach gives the programmers more precise control
of the semantics of parallelization and synchronization, and
X10’s PGAS approach (Partitioned Global Address Space) can
potentially support very large data for sophisticated processing.
Amazon EC2, on the other hand, abstracts the platform at
the instruction level, and builds on existing VMM (Virtual
Machine Monitor) technology.

The DVM technology represents a new virtualization func-
tion, which provides a low-level abstraction but enables it
to support large-scale clusters and sophisticated parallelizable
processing [4]. It introduces a new ISA, Datacenter Instruction
Set Architecture (DISA), which can be easily emulated on
existing hardware. Above such a general architecture, a large
virtual machine, DVM, can coordinate resources from a large
number of physical hosts and support various programming
languages.

Fig. 1 shows the organization of a DVM system composed
of two virtual machines spanning three physical hosts. The
instruction-level abstraction provided by DISA is very close
to typical machine instructions directly supported by processor
hardware. However, the semantics of the instructions and the
memory model enable multiple tasks, each called a runner, to
reside in a large shared memory space, conduct computation
and orchestrate massively parallel processing in the abstraction
of a “single computer”. The runners resolve their dependence
upon each other through a watcher mechanism provided by
the DVM. In particular, a latter task depending on an earlier
task’s output can be implemented as a “watcher” that monitors
the memory area where the former task writes the output data.
Once the watched area is modified, the latter task is activated
and allowed to proceed with its computation.

C. Windows Azure

The Windows Azure Platform, developed by Microsoft,
provides a full set of abstractions and programming tools
for developing cloud-based applications. It also uses several
related technologies, e.g., VMM, scalable key value store,
and datacenter-oriented programming languages, to construct
a fairly complete solution.

An application materializes as services hosted in Windows
Azure, consisting of one or multiple web roles together with
a set of optional worker roles. The program running in the
roles may invoke distributed key value store or database

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 27 / 263

services via well-defined APIs to meet the requirements of
a spectrum of applications, including commercial applications
requiring strict transactional semantics. Similar to DVM,Azure
allows programmers to use programming languages of their
choice, given that the language is supported by the program
development environment (e.g., Microsoft Visual Studio) and
the Windows Azure SDK.

III. K-MEANS PROGRAMMING AND SYSTEM SUPPORT

k-means is a well-known data clustering application used
in many areas such as data mining, computing vision and
information retrieval.It partitions a data set intok clusters
iteratively, and has been implemented in various software
systems and applications.Moreover,k-means is widely used
for evaluating cloud-based technologies, and, with its clear
algorithmic design and adjustable problem size, presents a
manageable workload with which various cloud-related tech-
nologies can be studied [10], [11].

The k-means process starts withk initial cluster centroids
and iteratively refines the clusters by reassigning points to
the closest centroids and updating the clusters’ centroids.
We implement thek-means algorithm with a similar iterative
workflow to the one used in Mahout and X10, and optimize
the algorithm to achieve better performance in the distributed
environment. Similar optimizations are also used in some prior
work [10], [12].

A. MapReduce and Hadoop

The iterative computation ofk-means does not directly fit
into the MapReduce framework, which mandates a reduce
stage following a map stage. However, the computation in
each iteration is similar with different cluster centroidsand
the two phases (assigning points to clusters and calculating
the new centroids) in each iteration can be expressed as
one MapReduce job—we use the map tasks to perform the
distance computation and point assignment to clusters as the
distance computation between one point and the centroids is
irrelevant to the computation for other points in one iteration,
and the distance computation can be executed in parallel. The
calculation of the new centroids can be performed by the
reduce tasks. Hence, we can iteratively run MapReduce jobs
and each MapReduce job performs the computation in each
iteration of thek-means algorithm. As the distance computa-
tion is the most intensive calculation ink-means algorithm, the
computation is effectively parallelized using the MapReduce
programming model.

Alg. 1 shows thek-means clustering algorithm on Hadoop.
The input data are initially stored in files of roughly equal
sizes. The input files contain data points’ coordinates as a
sequence of<key, value>pairs where the coordinates are
stored in the value field. To share the centroids which are read
and updated by each MapReduce job, we store the centroids
in files in HDFS so that they are read by the map tasks for
distance computation and are updated by reduce tasks with the
new centroids. Hence, the final output of thek-means cluster
program is the centroid files after the last iteration.

The combine function minimizes the communication
among map and reduce tasks. Using multiple MapReduce jobs,
we are able to implement the iterative computation requiredby

Algorithm 1 k-means clustering using Hadoop
1: create currentcentroids and newcentroids in the file system
2: write new centroids with the firstk points in the input files
3: repeat
4: delete currentcentroids, rename newcentroids to cur-

rent centroids, and create empty newcentroids
5: for all map tasksdo
6: read the data points from the input files
7: read currentcentroids
8: for all data pointsdo
9: calculate the distances between the data point and each

centroid
10: n= the identity of the cluster with the closest centroid
11: v=coordinates of the data point
12: output the<n, v>(assign data point v to cluster n)
13: end for
14: end for
14: Run the combine function to sum the values of data points

assigned to the same cluster and output<n, V>for each
distinct n where V is a composite value of the coordinates
of the centroid of the data points being combined and the
number of data points associated with n

15: for all reduce tasksdo
16: sum all the intermediate values generated by the combine

functions and compute the new cluster centroids.
17: write the new centroids to file newcentroids
18: end for
19: until the difference between the centroids in currentcentroids

and newcentroids is less than a threshold or the number of
iterations reaches the maximum value

k-means. However, the transition between successive MapRe-
duce jobs cannot be expressed inside the MapReduce frame-
work itself, and external “glue” language must be employed
to make such transition happen. It is also noteworthy that the
external logic forces the program to use the distributed file
system as the media for recording program state. These issues,
although tolerable in “embarrassingly parallel” programs, re-
sults in non-trivial burden in programming and performance
for this slightly sophisticated application.

B. DISA and DVM

DISA presents a generic programming platform, and DVM
is constructed above this generic abstraction layer. Hence, it is
not difficult to implement thek-means algorithm on a DVM.
The program flows are instantiated to runners in DVM and
the dependence between the iterations and phases inside each
iteration is expressed with watchers. Thek-means program
on DVM reads its input from disks through one of its I/O
channels. Alg. 2 shows thek-kmeans clustering algorithm on
DVM.

It may appear to be an unnecessary overhead that the
program createsM dist_cal_runners in each iteration.
In fact, this design results from the snapshotted memory
semantics in DISA–the runners see data in its snapshot created
upon the runner’s instantiation, and the new centroids created
at the end of one iteration are visible to runners created at
the beginning of the next iteration. It is very efficient to
spawn new runners on a DVM, and this makes the overhead
of creating runners practically negligible. In comparison, the
MapReduce-style programming also requires the program to

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 28 / 263

Algorithm 2 k-means clustering on DVM
1: read data points from the I/O channel and store them in desig-

nated memory areas
2: new centroids = the firstk data points
3: repeat
4: current centroids = newcentroids;
5: createM (a program parameter)dist_cal_runners, each

responsible for one partition of data points, and one
dist_cal_runner_watcher.

6: for all dist_cal_runner and its associated partition Pdo
7: for all data point p in Pdo
8: calculate the distances between p and each centroid in

current centroids
9: assign p to the closest centroid n

10: add p to the sum for centroid n in P – store n, the sum
with p included and the number of data points, including
p, associated with n in P

11: end for
12: dist_cal_runner_watcher is activated each time a

dist_cal_runner exits and commits.
13: dist_cal_runner_watcher checks whether all

dist_cal_runner runners have completed
14: if all dist_cal_runner runners have completedthen
15: the watcher creates thecentroid_cal_runner
16: centroid_cal_runner sums all the intermediate val-

ues generated bydist_cal_runners for each centroid,
computes the new cluster centroids and assigns them to
new centroids

17: else
18: exit the watcher
19: end if
20: end for
21: until the difference between the centroids in currentcentroids

and newcentroids is less than a threshold or the number of
iteration reaches the maximum value

create numerous map and reduce tasks in each iteration, but the
tasking overhead is very heavy in the current implementations.

C. Windows Azure

The web and worker roles in Azure are general enough
to implement almost any computational jobs with Windows
Azure-enabled languages, with web roles incorporated with
built-in web servers. However, it is still a technical challenge
to use the distributed data services to construct a reliable
mechanism for recording program state and enabling web and
worker roles to exchange intermediate data. Alg. 3 shows the
design ofk-means on Windows Azure.

To implementk-means on Windows Azure, we use the
Windows Azure blob storage to store the input dataset and the
output results. The communication between different rolesre-
lies on the Windows Azure queue service. We build two types
of worker roles – amaster role and aslave role. There is only
one master worker role (henceforth calledmaster) instance
which is responsible of partitioning the dataset, assigning tasks,
and collecting results. There are one or multiple slave worker
role (henceforth calledslave) instances. They consume the
tasks in the task queue, generate the intermediate results in
its data partition, and write back to the result queue.

Algorithm 3 k-means clustering on Windows Azure
1: new centroids = the firstk data points in the input
2: repeat
3: current centroids = newcentroids
4: master partitions the dataset
5: master writes centroids together with the task control infor-

mation (e.g., the number of concurrent tasks) into the task
queue

6: for all slaves do
7: retrieve the tasks from the queue and compute the intermedi-

ate results consisting of the centroid assignment, the sum of
the coordinates of the data points assigned to a cluster in its
partition and the number of data points in the corresponding
cluster and partition

8: end for
8: master collects the intermediate results, computes the new

centroids, and assigns them to newcentroids
9: until the difference between the centroids in currentcentroid and

new centroids is less than a threshold or the number of iteration
reaches the maximum value

IV. PERFORMANCE, PROGRAMMABILITY, AND
EMPIRICAL EXPERIENCE

With k-means implemented on Hadoop, DVM, and Azure,
we conduct an empirical study on these implementations
to study the performance of these solutions, and link the
observed performance data to the design choices in cloud
computing technologies. To ensure the applicability of our
observations, we run the experiments on both research testbeds
and industrial platforms such as industrial computing clusters
and the Windows Azure platform.

Fig. 2 presents the execution time fork-means on DVM
and Hadoop on 16 working nodes. From the results, we can
see that DVM is at least 13 times faster than Hadoop. We
believe this indicates that instruction-level abstractions can lead
to more efficient computation and less tasking overhead. While
an optimized language-layer construct, such as a MapReduce
implementation using memory as the main data storage, can
significantly increase the performance, such optimizationis
unlikely to close the gap between the language and instruction-
layer abstractions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Research testbed Industrial testbed

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Hadoop
DVM

Fig. 2. Execution time fork-means on 16 nodes

Illustrating the speedup, Fig. 3 shows the relative perfor-
mance fork-means on DVM and Hadoop on the research
testbed (“/R” in the figure) and industrial testbed (“/I” in the
figure) as we scale the number of compute nodes. The relative
performance is calculated with respect to execution time on
Hadoop with one node. Fig. 4 presents the execution time and

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 29 / 263

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of nodes

DVM/R
DVM/I

Hadoop/R
Hadoop/I

Fig. 3. Relative performance ofk-means

 100

 1000

 10000

128 256 512 1024 2048
 30

 35

 40

 45

 50

 55

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

T
hr

ou
gh

pu
t (

10
00

 p
oi

nt
s

pe
r

se
co

nd
)

Size of the dataset (x100,000 points)

Execution time
Throughput

Fig. 4. Execution time and throughput ofk-means

throughput ofk-means on DVM with 50 compute nodes as we
scale the dataset from 12,800,000 to 204,800,000 points. The
throughput is calculated through dividing the number of points
by the execution time. The result shows that the throughput
increases with the data size, which reflects that DVM scales
well with the data size.

Since DVM shows excellent scalability and efficiency, it
may appear that the instruction-level abstraction represents the
best choice for constructing the cloud technology. However,
similar to the situation with traditional ISAs, the instruction
layer is mainly defining the interface between hardware and
software, and may not provide a complete solution to program-
ming. In fact, our experience of developing programs in the
DISA assembly language verifies the challenge of developing
programs at a level close to the instruction set, and has
prompted us to start developing a compiler for DISA. The goal
of the DVM is to provide a powerful foundation, rather than
the completion, of the cloud computing technology, and new
software tools and supportive routines shall be added to the
platform to fully utilize its capability and enhance productivity.

To provide a complete programming environment, Win-
dows Azure integrates the distributed data and processing
services with the familiar Visual Studio based development
environment. Fig. 5 shows the performance ofk-means on
Windows Azure platform with 1master and 1 to 4slaves. The
worker roles reside on small instances in Windows Azure, and
both the roles and the Azure storage service are located in the
“South Central US” region. We also uses the local emulator to
evaluate and compare the execution ofk-means. The Windows
Azure emulator runs on a server with 4 CPU cores and 6GB
of memory.

We observe that, when the number ofslaves increases

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

number of slave worker role instances

ex
ec

ut
io

n
tim

e
(m

s)

Azure
Emulator

Fig. 5. Execution time of k-means computation on Windows Azure

from 3 to 4, the speedup becomes low or even negative.
Based on our study, this is likely due to the sharing of CPU
resources— 3slaves and 1master can each use 1 CPU core
almost exclusively. However, when we have 1master and 4
slaves, totally 5 worker role instances share the 4 CPU cores
on the physical host, and this serializes a significant part of
the computation. Similarly, on the Windows Azure platform,
we also observed the same phenomenon. Such hardware-
coupling overhead can be mitigated by better scheduling or
more resources. Looking at the performance data, we can
also conclude that, without the hardware-coupling overhead,
k-means exhibits obvious speedup on Windows Azure. This
verifies that the Windows Azure platform, although designed
to provide an easy-to-program methodology in a familiar
development environment, can potentially support parallelized
scientific computing with the worker roles.

The evaluation clearly shows that the instruction-level
abstraction, DISA and DVM, exhibits superior performance
in the computation. More importantly, the Turing-complete
instruction set of DISA presents a model that can express a
wide range of applications. We believe that such generality
is a key advantage in the future design of cloud computing
systems. Meanwhile, MapReduce has been proved an effective
solution to data-intensive computing when the processing
logic and data dependence relation fit its specific computation
model. Windows Azure, although optimized for Web-based
applications, also exhibits a significant amount of flexibility
in supporting scientific computation.

V. RELATED WORK

Many programming frameworks and languages are pro-
posed and designed to exploit the computing power of the large
number of compute servers inside today’s gigantic datacenters.
Dean et al. have created the MapReduce programming model
for Google’s datacenter environment [3]. Dryad takes a more
general approach, using a “communication DAG (directed
acyclic graph)” to depict the dependency among multiple
task instances [13]. While these frameworks are successful
in large data processing, the restricted programming model
makes it difficult to design sophisticated and time-sensitive
applications [11], [14], [15], [16].

DVM, on the other hand, allows programmers to easily
design general-purpose applications running on a large number

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 30 / 263

of compute nodes by providing a more flexible programming
model [4]. DVM and DISA, the instruction set of DVM,
represent a virtualization technology different from widely
used virtualization systems, such as Xen and VMware on
the x86 ISA [17], [18]. As comparison, VMware pioneered
the virtualization of the x86 ISA, and vNUMA extends IA-
64 to multiple hosts connected through an Ethernet network
that provides “sender-oblivious total-order broadcast” [19].
The new DISA instruction set allows programs to scale up
to much larger clusters. Currently, optimization of programs
running on a DVM is programmer-driven. Although it has been
shown that the performance of DISA programs are very high,
optimizing compilers will make it much easier to harness such
optimization techniques.

In the meantime, the instruction-level abstraction must
combine with high-order languages and compilers to fully
release its capability. High-level languages, such as X10,
Sawzall and DryadLINQ, which are implemented on top of
programming frameworks (MapReduce and Dryad), make the
data-processing programs easier to design [9], [20], [21].To
implement their linguistic features efficiently, the language-
level approach gives also calls for an underlying computing
infrastructure that is capable of supporting general-purpose
programs, follows a storage-computing coupled architecture,
and provides measures for system-wide optimization. Towards
these requirements, DVM provides a foundation upon which
language-level instruments can be built.

VI. CONCLUSION

Our study shows that DVM has the best performance for
computation in a datacenter, but higher-order languages and
compilers must be used to make instruction-level abstraction
easy to program. Meanwhile, Windows Azure provides a
relatively full set of data services, language support, andde-
velopment and deployment tools. The role constructs together
with the queue-based communication can support a variety
of applications, including scientific workloads, on Windows
Azure.

ACKNOWLEDGMENT

This work was supported in part by the Huawei Tech-
nologies research grant HUAW17-15G00510/11PN, HKUST
research grants REC09/10.EG06, DAG11EG04G and SJTU
research grant 2011GZKF030902. We thank Microsoft for
providing computing resources and support for the research
on the Windows Azure platform.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google filesystem,”
In Proc. of the 9th ACM Symposium on Operating Systems Principles
(SOSP’03), 2003, pp. 29–43.

[2] L. Barroso, J. Dean, and U. Hoelzle, “Web search for a planet: The
Google cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28,
2003.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” In Proc. of the 6th Symp. on Opearting Systems Design
& Implementation (OSDI’04), Berkeley, CA, USA, 2004, pp. 137–149.

[4] Z. Ma, Z. Sheng, L. Gu, L. Wen, and G. Zhang, “DVM: Towards
a datacenter-scale virtual machine,” in Proceedings of the8th ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environments,
2012, pp. 39–50.

[5] “Windows Azure,” http://www.windowsazure.com/, [last access:
3/31/2013].

[6] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum, “Fast crash recovery in ramcloud,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, ser. SOSP
’11, 2011, pp. 29–41.

[7] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang, “Mars:a
MapReduce framework on graphics processors,” in Proceedings of the
17th international conference on parallel architectures and compilation
techniques, 2008, pp. 260–269.

[8] R. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable
mapreduce on a large-scale shared-memory system,” in Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium
on. IEEE, 2009, pp. 198–207.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in ACM SIGPLANNo-
tices, vol. 40, no. 10, 2005, pp. 519–538.

[10] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-Reduce for machine learning on multicore,” in Proc.
of NIPS’07, 2007, pp. 281–288.

[11] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce fordata inten-
sive scientific analysis,” in Fourth IEEE International Conference on
eScience, 2008, pp. 277–284.

[12] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in roceedings of the First International Conference on
Cloud Computiong (CloudCom), 2009, pp. 674–679.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems, 2007, pp. 59–72.

[14] Z. Ma and L. Gu, “The limitation of MapReduce: A probing case
and a lightweight solution,” in Proc. of the 1st Intl. Conf. on Cloud
Computing, GRIDs, and Virtualization, 2010, pp. 68–73.

[15] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for multi-core and multiprocessor systems,” in
Proc. of the 2007 IEEE 13th Intl. Symposium on High Performance
Computer Architecture, 2007, pp. 13–24.

[16] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-Reduce-
Merge: simplified relational data processing on large clusters,” in
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, 2007, pp. 1029–1040.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM symposium on Operating Systems
Principles, 2003, pp. 164–177.

[18] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, 2002.

[19] M. Chapman and G. Heiser, “vnuma: A virtual shared-memory mul-
tiprocessor,” in Proceedings of the 2009 USENIX Annual Technical
Conference, June 2009, pp. 15–28.

[20] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with Sawzall,” Sci. Program., vol.13, no. 4, pp.
277–298, 2005.

[21] Y. Yu, M. Isard, D. Fetterly, M. Budiu,́U. Erlingsson, P. K. Gunda, and
J. Currey, “DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language,” in the 8thConference
on Symposium on Operating Systems Design & Implementation,2008,
pp. 1–14.

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 31 / 263

A Novel Cloud Hybrid Access Mechanism for Highly Sensitive Data Exchange

Elhadj Benkhelifa

Faculty of Computing, Eng and Sciences
University of Staffordshire

Staffordshire, UK

e-mail: e.benkhelifa@staffs.ac.uk

Dayan Abishek Fernando

Faculty of Computing, Eng and Sciences
University of Staffordshire

Staffordshire, UK

e-mail: d.fernando@staffs.ac.uk

Abstract— This paper presents a research contribution from a

significant Business-University collaborative Project. The aim

of the project is to develop a new disruptive approach for

Digital Forensics service provision to enable the creation of

new value chains via the Cloud technology. The project is

highly complex and multidimensional. The project is

concerned with the manipulation and service provision for

highly sensitive data via a secure Cloud Service Delivery

Platform. This paper reports on one aspect of a long running

research program, concerned with Security. The paper

presents a relatively novel solution adopted in the project for

enhanced security to be implemented as part of the intended

Cloud Service Delivery Platform. This solution is a hybrid

approach between a Single-Sign-On and Multi-Factor

Authentication in Federated Settings. Consideration of

implementing this solution in the presence of Multi-Tenancy is

also discussed in this paper, An aspect which has not been
attempted yet, to the best of the authors’ knowledge.

Keywords- Cloud Computing, Single-Sign-on; Multi-Factor

Authentication; Cloud Federation; Cloud Security, Multi-

Tenancy

I. INTRODUCTION

Cloud computing is fast becoming a mainstream
technology replacing the current practices in IT resource
provisioning. The Cloud technology is a disruptive model as
it represents a major change to the IT services landscape.
Cloud Computing describes a new way of delivering IT
services based on Internet protocols, and it typically involves
provisioning of dynamically scalable and often virtualized
resources [1]. Cloud services offer great benefit to
organizations by eliminating complexity of service
designing, deploying and configuring. Cloud Computing
enables the delivery of services through the on-demand
service-provisioning model to end users on a pay as you go
basis over a network such as the Internet [1, 2].

Using the Cloud, companies can drive a more efficient,

effective, and consumer led commercial that helps them
continually reinvent and transform the way they do business,
focusing on what makes sense from a business delivery,
consumer satisfaction and growth model [1]. Enabling the
underlying IT allows businesses to rapidly deliver services,
integrate across technological divides, and increase

efficiencies; where cost reduction and increased efficiency is
a major feature; along with the ability to affect reach,
reliability and availability no matter where you are or what
time it is. In short, Cloud technology offers a wide spectrum
of new digital value chains. However, security is often cited
as one of the major concerns in adopting the technology.

Cloud services are mainly delivered through three main

delivery models Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS) [1, 2,
3]. Table 1 summarises the main security concerns for each
of the delivery models.

TABLE I. MAIN SECURITY CONCERNS ON CLOUD DELIVERY MODELS

Delivery

Models

Security Concerns Examples

SaaS Data Security

App Security

Identity Authentication

Google Apps,

Oracle SaaS,

NetSuite

Salesforce

PaaS Data & Computing

Availability

Data Security

Disaster Recovery

Google App

Engine, RedHat,

Microsoft Azure

Heroku

IaaS Data center construction

Physical Security

Network Security

Transmission Security
System Security

Amazon EC2,

Verizon, IBM,

Rackspace,

Nimbus

As defined by the American National Institute of

Standards and Technology (NIST), Cloud can be deployed in
four models: Public and Private Clouds together with less
commonly used models, Community and Hybrid Clouds;
private Cloud; community Cloud; and hybrid Cloud; [3, 4].

This paper presents a relatively novel solution adopted in a
real business case project; funded by a UK research Council
to develop a complex Cloud Service Delivery Platform for
Digital Forensics [15]. This solution is a hybrid approach
between a Single-Sign-On and Multi-Factor Authentication
in Federated Settings.

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 32 / 263

Figure 1. Delivery models vs. Deployment models.

Consideration of implementing this solution in the presence
of Multi-Tenancy is also discussed in this paper; an aspect
which has not been attempted yet, to the best of the Authors’
Knowledge (Section IV). The paper also was an opportunity
to review the area of Cloud service provision and reflect on
the current practices for Cloud access management (Section
III) and classifies Security challenges (Section II).
Conclusions and direction for future research are
summarised in Section V.

II. CLOUD SECURITY AND PRIVACY CHALLENGES

This section provides a concise summary of the current
security and privacy challenges in a Cloud environment
based on state of the art classification under five main
categories, as illustrated in Figure 2.

There are number of security and privacy concerns for
today’s cloud computing landscape as it incorporates with
various technologies including virtualization (i.e. virtual
servers, virtual networks), on demand service provisioning,
shared resource pools (i.e. data, memory), concurrent access,
load balancing and distributed data are some examples [5].
Also big data in cloud has always been a security and
privacy challenge due to the velocity, volume and variety of
data. As shown in Figure 2, cloud security and privacy
challenges can classified in to five main categories.

.

Figure 2. Cloud Security and Privacy Challenges.

Authentication and Identity Management

 Interoperability challenges in between service

providers

 Inherent limitations in passwords

 Lack of clarification of multi-tenancy

 Multi-jurisdiction issues

Trust Management and Policy Integration

 Semantic heterogeneity

 Jurisdiction issues

 Trust and interaction/sharing requirements

 Composition of multiple services to enable

bigger application services

Secure Service Management

 Issues such as price, QOS, and SLAs

 Automatic and systematic service provisioning;

and a composition framework that considers

security and privacy issues

Privacy and Data Protection

 Storing data and applications on systems that

reside outside of on-premise datacentres

 Shared infrastructure, risk of potential

unauthorized access and exposure.

 Privacy-protection mechanisms must be

embedded in all security solutions.

 Balancing between data provenance and privacy

Organizational Security Management

 Shared governance

 Dependence on external entities

 Insider threat is significantly extended when

outsourcing data and processes to Clouds.

III. CLOUD ACCESS MANAGEMENT

The Cloud Data Management Interface (CDMI) defines

the functional interface: to implement strong access controls;
provide data encryption; and storage media for secure multi-
tenant Cloud environments; [6] CDMI supports most of
standard protocols like File Transfer Protocol (FTP), Storage
Area Network (SAN), Network Attached Storage (NAS) and
Web Distributed Authoring and Versioning (WebDAV) [7].

Preventing un-lawful access to data resources in the
Cloud is a key challenging deliberation. The most significant
issue is that the digital identification and framework may not
naturally extend into a Cloud environment, thus re-
engineering the existing framework to support Cloud
services may prove to be difficult [8]. Employing two
different authentication protocols, one for the internal
systems and another for external Cloud-based systems, leads
to technical difficulty that can become unusable over time.
Identity federation, supported by the introduction of Service
Oriented Architectures (SOA), is one solution. Identity
federation allows both Cloud service provider and service
organisation to trust and exchange digital identities and

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 33 / 263

attributes across both domains. As shown in Figure 3, for
federation to succeed, identity and access management
transactions must be interpreted carefully and
unambiguously, and protected against attacks [8, 9].
Federation is enabled by an Authorisation Exchange
Standard [10].

Authentication and Authorization Standards

Federated Identity Solutions

Cloud Federation

Figure 3. Single Sign-on based Cloud federation framework.

A. Authentication /Authorisation Standards

The Authentication and Authorisation Standard for Cloud

computing defines a set of principles for exchanging
authentication and authorisation between security domains.
There are a number of protocols like OpenID, UMA, Radius
and SAML which provide support to build the authentication
and Authentication frameworks [10]. The Security Assertion
Markup Language (SAML) is the most widespread standard
that integrates digital security tokens containing assertions
which pass information about a user, protocols and profiles
so as to implement authentication and authorisation scenarios
which allow secure data exchange between domains [11].

B. Single Sign-On (SSO)

As shown in Figure 4, Single Sign-On (SSO) is a

process that enables a user to have single user credentials to

gain access to multiple applications and resources which

have been assigned for the user. SSO allows users to switch

between different applications more effectively without any

additional authentication requests [11].

Numerous researches have shown the prompt impact of

SSO within Cloud industry. Shibboleth IDP, oxAuh OP,

UMA PDP and LDAP cache are some of the architectures

that refer to frameworks to build SSO environments [10,

11].

 According to JANET, Shibboleth is the most widely

adopted open source federated identity solution developed

by the Internet2 middleware group [12]. The latest

Shibboleth (V 2.0) builds on top of the SAML 2.0

authentication and authorization standards.

Siingle Login

User

 Access
Gateway

Internal
Applications

Corporate
Database

Public
Resources

Web
Applications

Figure 4. Single Login – Multiple Applications.

C. Multi-Factor Authentication

The multi-factor authentication is an authentication
method, which requires two or more authentication factors to
allow access to the IT resources [13]. As shown in Figure 5,
there are three factors involved in establishing the multi-
factor authentication framework.

Figure 5. Multi-Factor Authentication.

Research studies have shown that a traditional username

and password based Single-factor authentication is no longer
strong/scalable enough to support the present security
demands of the cloud. This is because compromise of a
single factor results in a breach; whereas multi-factor
authentication decreases the chance of subversion by having
an increase in likelihood of correct identification with every
additional factor. The current and widely used trend is two-
factor authentication; it is widely spread amongst large
financial institutions in Europe [8]. Two-factor
authentication can also be found in a number of user-facing
applications, such as social networks (Facebook) and Google
Applications. Although the two-factor is currently
considered the most efficient and very secure scheme,
research continues to explore other more effective solutions
as Two-factor authentication is already seen being breached.
Therefore, an increased factor authentication (eg. three-
factor) or hybrid approaches [9, 10], are currently being
tested and researched.

This paper is an attempt to implement a hybrid
authentication approach, using Single-Sign-On together with
two-factor authentication whilst considering the multi-
Tenancy Scenario (Section IV). This approach is proposed
for direct application in a real business case.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 34 / 263

IV. SECURE CREDENTIAL FEDERATION FOR HIGHLY

SENSITIVE DATA EXCHANGE

Finding a balance between security and

simplicity/accessibility is very important [13]. The proposed
multi-level, hybrid authentication mechanism based on
Single Sign-on (SSO) and two-factor authentication, enables
not only Cloud federated access among multiple applications
and organizations but also allowing sensitive data exchange
between different domains (Figure 7).

Authentication and Authorization Standards

Federated Identity Solutions

Cloud Federation

Two Factor Authentication
Highly Sensitive

Resources

Federated Resources

Figure 6. Proposed - Multi-Level Hybrid Authentication Mechanism

Single-Sign-On provides a unified mechanism to manage
and monitor user interactions and business rules, determining
user access to Cloud applications and data resources through
the internet. Some industries require extra levels of security
and identity protection over SSO settings in order to precede
some specific secured tasks such as extremely sensitive
application/data access, cross-border investigations, and
remote data manipulation activities. Therefore, this paper is
inspired to introduce a hybrid Cloud access framework by
combining multifactor authentication with SSO in order to
protect enterprise identities and thus enable a strong
authentication method. Figure 6 and 7 illustrate the basic
idea of the proposed solution.

Single Sign On

User

Federated Resources

Highly Sensitive Data

Two Factor Authenticaion

Resources from multiple
domains and multipal locations

Figure 7. Resource Access through Multi-Level Hybrid Authentication.

The proposed hybrid solution comprises of two levels of
security access layers providing access to federated resources
and further sensitive resources within the federation agenda.
The proposed solution defines federated resources as
combined Cloud environments and applications for the
purpose of resource sharing using single sign on to access
multiple applications from multiple locations. Also, this
solution allows access to highly sensitive resources within
federation settings. Table 2 displays the access matrix vs.
authentication of the proposed framework.

TABLE II. DIFFERENT RESOURCE ACCESS THROUGH MULTI-LEVEL

HYBRID AUTHENTICATION

Data Access \

Authentication

Federated

Resources

Highly Sensitive

Resources

Single Sign-on √ √
Two Factor

Authentication
X √

Figure 8 shows the high level access flow of the

proposed hybrid access mechanism. The cloud access
gateway acts as the doorman at the enterprise perimeter to
cloud services and service users. The users can gain access to
federated resources simply by providing SSO credentials. If
the user need to access sensitive data within the federated
settings, then they will be diverted to the two factor
authentication for further credentials in order to gain access.
Figure 9 illustrates the interaction between cloud
components and users, showing how processes operate with
one another and the direction in which federated resources
are accessed. In a similar manner, Figure 10 displays the
enhanced version of accessing sensitive data through two
factor authentication.

(1) (5) (9) (11) (15)

User

Cloud Access
Gateway

WAYF
(2) (6)

(4) (8) (14)

(3) (7)

Identity
Provider

Single Sign on

Federated
Resources

Highly Sensitive
Data

Two Factor
Authentication

(12) (16)

(13) (17)

(10)
(18)

Figure 8. Hybrid SSO-Two-Factor Authentication Framework.

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 35 / 263

A. Cloud Access Process flow

1. Request to access federated resources

2. Redirected to the SSO WAFS (Where are you

from)

3. IDP Request

4. Request User Credentials

5. Provide Credentials

6. Authentication

7. If success – Generate SSO User Session and pass

into the Access Gateway

8. Prompt Authentication Status and redirect to

federated resource pool
9. Access to Federated Resources

10. Federated Resources

11. User Request to access Highly Sensitive Data

12. Redirected to the Two Factor Authentication

Service

13. Generate Security Token and pass into the Access

Gateway

14. Send Security Token via SMS / Email

15. Enter Security Token

16. Pass token for verification

17. Update SSO session
18. Access to Highly Sensitive Data

B. Considering Multi-Tenancy with the Proposed Solution

Multi-tenancy is a method of sharing a single instance of

data and applications among multiple customers (tenants) by

allocating a unique profile for each tenant. Multi-tenancy
presents a number of benefits such as: reduced operation

cost by sharing resources (software/hardware); increased

utilisation /optimisation rate in data centres and instant

service provisioning for new clients [14]. However, despite

the above-mentioned benefits, multi-tenancy is not widely

deployed in the Cloud industry. The balance between

resource sharing and security is very constrained and

conflicting within a multi-tenancy framework. Also, the

present multi-tenancy delivery models (Dedicated resource

model, Metadata map model) are either less flexible or less

secure (Table 3). The future developments of the proposed

hybrid authentication solution will attempt to embed the
multi-tenancy architecture where it is believed a mix of

dedicated resources and metadata map architectures will

deliver stronger security and greater flexibility. To the best

of the authors’ knowledge, this work is unprecedented, due

to its complexity and limitations in the current Cloud

Technology.

TABLE III. MULTI-TENANT DELIVERY MODELS

Dedicated resource model Metadata map model

Increased Security Increased Flexibility

Lower Flexibility Lower Security

User Cloud Access Gateway Federated Resources

Request - Federated Resources

Redirect - Shibboleth

SSO Manager

IDP Request

Request - User Credentials

Credentials

Authentication

SSO Session

Prompt - Resource Portal

Request - Federated Resource Portal

Federated Resource Portal

Figure 9. Sequence Diagram – Access to Federated Resources.

User Access Gateway

Request - Sensitive Resources

Redirect - Shibboleth

SSO Manager

IDP Request
Request - User Credentials

Credentials

Authentication

SSO Session

Send Security Token

Redirect - Two Factor Auth

Security Token

Sensitive Resources2 Factor Manager

Enter Security Token

Pass Token for verification

Update - SSO Session

Request - Sensitive Resources Portal

Sensitive Resources Portal

Prompt - Resources Portal

Figure 10. Sequence Diagram – Access to Sensitive Resources.

V. CONCLUSION

This paper proposes a novel hybrid solution for increased
security to be implemented as part of a real business case
project. The project is concerned with highly sensitive data,
hence a more complex security approach is needed. The
proposed hybrid solution, Single-Sign-On and two-factor
authentication, is accepted by the project consortium and
end-users to be a state-of-the-art and highly secure
authentication approach. The proposed framework is
currently being tested as part of the project deliverables, and
results will be shared in future publications. Immediate
future work will investigate the implementation of the
proposed framework in the presence of Multi-tenancy, in
federated Cloud settings. Another direction for future
research is to evaluate the feasibility of implementing more
than two factors for authentication. This evaluation will
include the readiness of the current Cloud technologies for
such enhancement in security and working out the balance
under different constraints.

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 36 / 263

REFERENCES

[1] C. M. DaSilva, P. Trkman, K. C. Desouza, J. Lindic,

Disruptive Technologies: A Business Model Perspective on
Cloud Computing, 2013.

[2] C. Chapman, et al., Software architecture definition for
ondemand cloud provisioning, Cluster Computing, 2011: pp.
1-21.

[3] P. Mell and T. Grance, The NIST Definition of Cloud
Computing, 2011

[4] M. Armbrust, et al., A View of Cloud Computing,
Communication of ACM, 2010

[5] A. Lenk., et al., What is Inside the Cloud? An Architectural
Map of the Cloud Landscape, in Workshop on Software
Engineering Challenges of Cloud Computing, Collocated with
ICSE 2009, IEEE Computer Society: Vancouver, Canada ,
2009.

[6] SNIA Cloud Data Management Interface (online). Available
at URL: http://cdmi.sniaCloud.com [Retrieved: Feb 2013]

[7] JSON-RPC project (online). Available at URL: http://json-
rpc.org [Retrieved: Feb 2013]

[8] P. A. Boampong, L. A. Wahsheh, Different facets of security,
Proceedings of the 15th Communications and Networking
Simulation Symposium, 2012.

[9] L. Peterson et al., Slice-based federation architecture, v2.0.
http://groups.geni.net/geni/attachment/wiki/SliceFedArch/SF
A2.0.pdf [Retrieved March 2013]

[10] K. D. Lewis, J. E. Lewis, “Web Single Sign-On
Authentication using SAML,” IJCSI- International Journal of
Computer Science Issues, 2009.

[11] D. Raywood, Google adds two factor authenticationton Gmail
via SMS one time passwords, 2010.

[12] L. M. Vaquero, L. Rodero-Merino, J. Caceres, M. A. Lindner,
Break in the Clouds: towards a Cloud definition, 2009.

[13] M. Trojahn and F. Ortmeier, Biometric authentication through
a virtual keyboard for smartphones, in International Journal of
Computer Science & Information Technology (IJCSIT),
2012.

[14] S. Walraven, T. Monheim, E. Truyen, W.J. Sdsd, Towards
performance isolation in multi-tenant SaaS applications,
Proceedings of the 7th Workshop on Middleware for Next
Generation Internet Computing, 2012.

[15] E. Benkhelifa and D. Fernando, Developing a Complex
Cloud Service Delivery Platform: Practical Lessons From
Real Business Case. International Conference of Cloud
Computing and Services Science (ICCCSS’13), Dubai. 29-31
Jan 2013.

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 37 / 263

Eliciting Risk, Quality and Cost Aspects in
Multi-cloud Environments

Victor Muntés-Mulero and Peter Matthews
CA Technologies
CA Labs Europe

Email: {Victor.Muntes, Peter.Matthews}@ca.com

Aida Omerovic
SINTEF

Oslo, Norway
Email: aida.omerovic@sintef.no

Alexander Gunka
BOC Information Systems

Austria
Email: alexander.gunka@boc-eu.com

Abstract—With the increasing number of providers offering
cloud-based services, new opportunities arise to build applications
capable of avoiding vendor lock-in issues. Such applications
are developed in multi-cloud environments that allow replacing
services with those offered by alternative providers. While this
may improve quality and provide independence from a single
cloud service provider, it also brings new risks. Being able to
assess risks and those quality aspects that are specifically related
to multi-cloud environments is essential in order to design reliable
applications based on the use of cloud services. Although a lot of
work has been done to study risks and quality aspects for cloud
services, this is usually focused in single-provider scenarios. In
this position paper, we discuss several risks and quality aspects
that are specifically related to multi-cloud environments.

Keywords- Multicloud, Risk assessment, Quality predic-
tion, Cost prediction

I. INTRODUCTION

Many applications and Cloud Service Providers (CSPs)
replicate or combine services from multiple clouds or multi-
clouds (also called cloud mashups [9]) to avoid the risk of ven-
dor lock-in. New architectures, technologies, and standards are
being proposed to support collaboration among multiple cloud
systems [1], [2], [6], [7]. Although direct collaboration among
applications hosted by different clouds is still restricted [9],
the adoption of these proposals will improve the ease of
migration from one provider to another and increase open
competition. Nevertheless, the current environment already
offers many opportunities for collaboration among services
offered by different providers without requiring standards or
important changes to the delivery model.

In multi-cloud environments, it is essential to provide tools
that guide multi-cloud application architects to choose the ser-
vices providing the necessary quality and ensuring acceptable
level of risk. Previous work has focused on describing quality
aspects and metrics to measure the suitability of a cloud service
from a multi-dimensional perspective. An example of this
is the Service Measurement Index (SMI) [10], a framework
designed to allow for quick and reliable comparison of IT
business services. SMI establishes the basis for comparing
isolated services in regard of several categories such as for
instance accountability, agility or assurance. However, they do
not explicitly analyze these aspects in a multi-cloud context.

Based on this quality aspects and other factors, model-
based decision making system help application designers to
choose the cloud components that better fit their needs. Some

of these major factors include functional and non-functional
properties, as well as cost and the added value. A trade-off
between such factors is the basis for decision making. This
trade-off is particularly complex between the non-functional
factors, the variable parts of the architecture, and the cost of
the selected solutions. The variability, as well as incomplete
information or knowledge, are also sources of risk. Since
functional requirements are less flexible and specified rather
early, and since the added value is strongly related to functional
properties, the factors that are tuneable and highly interrelated
are risk, quality and cost.

In this paper, we discuss the risks related to cloud services
in a multi-cloud environment, the quality aspects that are spe-
cific to that environment and make some cost considerations.
We analyze three important issues which are essential in multi-
cloud environments: interoperability issues between services
offered by different providers, the ease of migration from a
current service to a new equivalent service, and the security
issues that arise from the fact that confidentiality, integrity,
availability, etc. does not depend on a single provider.

This paper is organized as it follows. Section II presents
related work. Section III briefly describes multi-clouds es-
cenarios and describes the aspects considered in this paper.
Section IV presents a summary of quality aspects to be
considered. Section V provides a brief description of costs
that must be taken into account in this type of environment.
In Section VI, we discuss risks that must be considered in a
multi-cloud. Finally, Section VII presents the conclusions and
draws some future work.

II. RELATED WORK

As a basis for the elicitation of the adequate quality
characteristics, the software product quality standard ISO/IEC
9126 defines quality as the totality of features and character-
istics of a software product that bear on its ability to satisfy
stated and implied needs. The ISO 9126 standard provides
an established specification of decomposed quality notions
with their qualitative and quantitative definitions. The standard
defines a quality model for external and internal quality, and for
quality in use. The characteristics of the internal and external
quality model are functionality, reliability, usability, efficiency,
maintainability and portability. These are in turn decomposed
into a total of 34 sub-characteristics.

SMI [10] is a standardization effort from the Cloud Ser-
vices Measurement Index Consortium (CSMIC) consisting of

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 38 / 263

Fig. 1: Examples of two different multi-cloud scenarios

academic and industry organizations. The Service Measure-
ment Index (SMI) uses a series of characteristics and measures
to create a common means to compare different services from
different suppliers. The characteristics are categorized as Us-
ability, Performance, Agility, Security and Privacy, Financial,
Assurance and Usability. Each of these characteristics has a
number of measures that can be used to evaluate the risk in
using a service. For example in the accountability category
one of the measured attributes is Compliance and another is
Service-Level Agreements (SLA) verification both of which
can be used to create a risk measure for the service and the
provider. The work presented in this paper is based both on
the ISO standard and SMI conclusions.

In order to enable risk monitoring based on indicators
or metrics, there is a need not only to identify the relevant
indicators, but also to understand how to relate the indicators
to potential risks, and how to aggregate the monitored values
into risk levels [5]. In this paper, we identify both risks
and quality aspects related to multi-cloud environments. To
our knowledge, none of the previous work has been focused
on jointly analysing risk, quality and costs in a multicloud
environment.

III. MULTI-CLOUD SPECIFIC NEEDS AND CHALLENGES

We define a multi-cloud application as any piece of soft-
ware using several cloud services hosted by two or more differ-
ent providers. Usually, two different scenarios are considered
when referring to multi-cloud environments. Figure 1 depicts
these two cases. In the first case (a), an application is replicated
to improve resilience, and may also be used to avoid vendor
lock-in. This means that the application has two independent
instances using the same type of cloud services (A, B, C in the
figure) in two different cloud providers. In the second case (b),
a single instance of the application runs different cloud services
hosted by two or more cloud providers. In this latter case,
it is also possible to replicate services to ensure availability.
This would also imply synchronization. Because of the need
for high interoperability between services offered by different
providers, scenario (b) is in general more complex to manage
and may potentially involve larger risk compared to (a). In fact,

scenario (a) may be considered a particular case of scenario
(b). Because of this, we focus on scenario (b) in this paper.

The use of multiple cloud services from multiple providers
adds a new dimension of complexity to an already complex
cloud computing scenario. Heterogeneity caused by the ex-
istence of independent providers that have created their own
business models, protocols, processes and formats generates
an increasing number of risks to be taken into account when
creating a new application using a multi-cloud strategy. In
this paper, we emphasize three essential aspects that must be
considered in a multi-cloud environment:

• Heterogeneity of services offered by different
providers results in reduced interoperability: the
lack of standard interfaces for services in different
clouds and the creation of independent proprietary
systems by each provider, make multi-cloud environ-
ments very heterogeneous. Interoperability problems
may range from technical issues, such as messaging
interfaces or quality of service, to semantic, orga-
nizational or legal issues. This heterogeneity is an
important risk to consider at design time, since it will
influence the capacity of an application architect to
decide between one service and another. In terms of
quality, a service will be highly interoperable with
other systems if it can be combined in collaboration
with many other services, from the same or other cloud
service providers.

• Migration between services offered by different
CSPs is an essential operation to ensure the com-
pliance with the application requirements: one of
the most common reasons to deploy an application in
a multi-cloud environment may include increasing the
cloud service catalog and increasing the capacity of
users to migrate from one service to another in case
the requirements on the application are not fulfilled.
We call this capacity replaceability, and it represents
the ease to migrate from one service to another to
replace the first one. It will be essential to decompose
migration processes from one cloud service to another
into several finer-grained steps, and analyze the quality

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 39 / 263

aspects to be considered in the process.

• Security threats are increased in multi-cloud com-
puting environments: increasing the number of ser-
vices and providers, will increase the complexity of
the overall system and the number of potential attacks.
Control over customers data decreases, especially
because of potential migration between services of
different providers. The continuous communication
of data between services in different clouds may
also result in storing data in intermediary less secure
external storage systems, increasing the overall vul-
nerability and potentially compromising confidential
information. In terms of data privacy, multitenancy
makes it more difficult to guarantee confidentiality of
sensitive information.

These three aspects have been selected and prioritized after
several interviews with industrial and academic partners. They
have been chosen based on experience and from studying
different migration processes. They represent three essential
requirements in a multi-cloud environment: coordination be-
tween services offered by different providers, capacity to re-
place a service by another one, and the increase of complexity
in the system increasing possible points of failure in terms of
security. Note that, we do not claim this to be a comprehensive
list of possible aspects to analyze, but we believe they are a
good starting point to establish the basis to define risk and
quality in multi-clouds.

IV. QUALITY ASPECTS IN MULTI-CLOUD ENVIRONMENTS

In this section, we analyze those quality aspects related to
the issues detected in Section III that must be considered in
a multi-cloud environment: interoperability, replaceability and
security. Figure 2 summarizes the quality aspects considered
related to these three issues.

A. Interoperability

The interoperability problems of cloud services in the con-
trolled environment of a single CSP, are exacerbated by mixing
services from different providers and may imply incompat-
ibilities in other areas of a mixed service implementation.
From the point of view of a developer, it will be important
to know the degree of interoperability of a certain service
with respect to other services it must interact with. Figure 3
depicts the scenario studied in this case. Figure 2 divides these
incompatibilities in four different areas: technical, semantic,
organizational and legal. The Technical interoperability quality
aspects refer to the capacity of two or more services offered by
different providers to communicate through common protocols
and to jointly guarantee a certain quality of service. For
instance, possible indicators that might be used to evaluate
the degree of technical interoperability might be the number
of standardized interfaces that can be compared towards the
total number of interfaces used by the service, or the average
recovery time of the service or other performance aspects.
Semantic aspects refer to aspects related to the data syntax
consistency and the data quality. These data related aspects are
relevant for interoperability since only two or more services
offering mechanisms to guarantee global data properties might
be combined in the same application. Organizational aspects

Fig. 3: Interoperability in a multi-cloud environment: services
offered by different providers interacting with each other.

indicate how adaptable a service is to several work processes.
Since each of these work processes might be established by
different providers, it is important that a service in a multi-
cloud environment is adaptive to fit the requirements of each
work process in each case. Changes in a work process may
require changes in a specific cloud service that is already
used. In a migration process, choosing a new cloud service
candidate to replace an existing service may depend on the
capacity of this new service to adapt to the existing work
process. Compliance with existing cloud service standards in
terms of role and functionality of that specific cloud service
will be essential to ensure good organizational interoperability.
Regarding legal aspects, we focus on regulatory compliance.
Compliance in this case may be understood as a list of laws
that are observed by the service provider. Some may be
mandated by the customer such as Sarbanes-Oxley [8], some
by government, e.g. Data Protection act [3]. It is the presence
or absence of compliance that is of interest. A purchasers
compliance officer will provide a number of regulations that
any service would have to observe and these would be part of
the requirements gathering.

Several aspects are likely to be difficult to measure. A
good example is the number of standards in the communication
capability aspect. Standards for cloud service communications
are evolving and several attempts have been made to create an
agreed list of them. NIST has a list of recommended standards
and the European Commission has created a Cloud Standards
Coordination (CSC) that is being administered by ETSI [4].
The requirements of multi-cloud applications may need some
or all of the relevant standards to be adhered to.

B. Intercloud Replaceability

Migration is an essential operation linked to multi-cloud
environments. The capacity of a software architect to redesign
an application and replace existing services by other services
with the same or similar functionalities defines in fact the
realism of considering cloud mashups. For instance, a cloud
database service may integrate application building tools that

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 40 / 263

Fig. 2: Quality aspects related to multi-cloud environments

might be used by our system, such as APIs based on web
services standards. If the other services interacting with this
cloud database service assume that these tools exist, moving
to a new cloud database that it does not provide these tools
will require reengineering part of our system and it may have
an unaffordable cost. In this subsection, we define and analyse
the migration process to find the quality aspects that make
a service easy to migrate from. We focus on the case where
a service is replaced by one or more services offered by a
different cloud provider. We consider two situations:

• The current cloud service does not fulfill the require-
ments of the system: this may happen for instance
when the service is updated or modified, when the
amount of information handled by the application
grows making it impossible to comply with certain
pre-established SLAs, etc. Usual examples may range
from a variation in the cost that makes the service not
competitive compared to other services of the same
type, to a change in policies and functionalities that
affects security, availability, resilience, or any other
important aspect.

• The requirements of the system have changed: one
or more cloud services may not fulfill these new
requirements and need to be replaced.

Figure 4 depicts a generic process of service-to-service
migration. First, a cloud service is selected for migration.
Depending on the reason for migration, it may be necessary
to review the requirements defined at design-time. After this,
one or more new candidate cloud services must be selected.
In order to simplify this step, Figure 4 considers a single
candidate in the process. Once we have found a candidate
target service to migrate to, we can export both data and
the configuration from the original service. At this point, it
is usually necessary to enter an intentional contract with the
new service provider. In some cases, it will be also necessary
to inform the old service that we are initiating a process to
retire it. In this situation, the old service and the new one

may be active at the same time during the testing and training
process. This will depend on the availability requirements of
the application migrating one of its cloud-based components.
In the next step, it is important to adjust or define a new
workflow for the application. This might be necessary if the
new service is not perfectly compatible with the old one or if
the application was redesigned in a way that the workflow
was altered. After this, we can start preparing the testing
environment and the new service. Usually, the testing process
will be divided in several phases.

In general, it is necessary to carry out functionality and
performance testing in a test environment. In this situation,
data needs to be kept synchronised. Following successful
functionality and performance testing, the service may move
to a modification of A/B testing so that the application is
tested with the new service in production before switching
over completely. In case requirements are not satisfied, we
must start the process again. If they are fulfilled, we can start
the users training process and eliminate the old service if this
is still active. Once this has been done, the application can be
deployed again using the new cloud service.

Figure 2 shows several quality aspects related to replace-
ability. Possible indicators of quality related to intercloud
replaceability may include the number of proprietary configu-
rations that can be exported or imported based on a standard
format, completeness, precision and relevance of tests, time
required to migrate large amounts of data, etc.

C. Security

Preserving security becomes more complex in a multi-
cloud environment. Trust among the different cloud service
providers is essential. It is difficult to handle the heterogeneity
of the different security rules established by each provider,
making it complex to monitor security policies in composite
services. Besides, an additional challenge involves data and
identity privacy preservation when several services from dif-
ferent providers collaborate.

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 41 / 263

Fig. 4: Description of a generic migration process

In Figure 2, we classify quality aspects related to security
in the usual areas: confidentiality, integrity, availability, non-
repudiation, accountability and authentication and authoriza-
tion. In order to preserve data privacy, it is crucial to establish
agreements with other providers on the level of privacy of
data and identities. Trust in general must be guaranteed by
explicit agreements or shared protocols between providers.
An alternative solution involves using reliable proxies for
communication, but services still need to be able to establish
agreements on the fly and secure delegation with these proxies.
Finally, it will be important to evaluate services depending on
the need to store data in public storage system in order to share
this data with other services. In this case, data are exposed to
a larger number of threats

V. COST IN MULTI-CLOUD ENVIRONMENTS

Besides risk and quality, we consider another essential
dimension: cost. SMI and other previous proposals describe
cost-related aspects in cloud computing environments. In a
multi-cloud environment, an extra cost appears that may be
also considered in the decision-making process: the cost of
migration. Migrating from one cloud service to another may
involve several economic costs that must be considered at
design time. These costs may depend on the personnel involved
in the migration process, the cost incurred by keeping the
old and the new cloud services running in parallel during the
migration process, the cost of the hardware or other resources
necessary to perform the migration, or the cost of training the
users of the application (note that this cost is also necessary
in other situations, but it is usually unavoidable in a migration
process).

VI. SPECIFIC RISKS IN MULTI-CLOUD ENVIRONMENTS

In this section, we sketch a list of possible potential risks
that may be found in a multi-cloud system. These risks are
based on the analysis of the elicited quality aspects that make
multi-cloud environments different from clouds provided by a
single provider.

1) Risk of unexpected lack of replacement and consequent
vendor lock-in: a certain cloud service may not fulfill require-
ments, or requirements may change. In this situation a different
service may be needed but it may not be possible to find a
new service provided by another vendor which is interopera-
ble with the other services of the system. Two theoretically
equivalent services might differ in several relevant aspects.
The heterogeneity between different CSPs is usually high as
they typically use proprietary interfaces and configurations.
Services are also highly integrated with lower-level services
offered by the same CSP. Examples of this may be lack of
common SLA enforcement systems, use of non-compatible
technologies, lack of compatibility in the communications
protocol, lack of shared mechanisms to ensure data consistency
and quality, the existence of services which are not strictly
equivalent and miss some important functionalities, or the lack
of services compliant with certain regulations. If this problem
appears and the need for migrating from the original service is
real, this may even force the migration of other services apart
from the service which is not compliant with requirements.

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 42 / 263

2) Risk of new security breaches due to the increased
complexity of the system and new communications: data needs
to flow from one service to another, hosted by different
providers. This creates new points of failure and potential
security issues. For instance, this may be caused by the lack of
shared security protocols and data integrity mechanisms, lack
of forensic mechanisms to be compliant with regulations, the
lack of shared authentication systems, etc.

3) Risk of non-viable migration due to migration costs and
complexity: a developer may not be aware of the cost and
complexity of migrating from a certain service chosen to be
part of the application to other similar services (see Figure 4).
This might become a risk if it is necessary to migrate from that
service to another one. As we have discussed, a usual problem
in a migration process is the lack of compatible data formats,
making it necessary to perform transformations that require
time and resources. A related problem might be the lack of
information of the new service regarding a certain quality
aspect. In this case, uncertainty may also impact a migration
process negatively. Note also, that a technical aspect to be
considered is whether two services are implemented using the
same technology, which might also be a blocking factor for
a fast and easy migration. Complexity in the setup migration
may also be an important problem. Beyond compatibility in
terms of data storage and access, the configuration of a cloud
service may also be essential to guarantee the compliance
with user requirements. An excessively complex migration
of configurations between two services may also result in
a time-consuming and expensive migration process. Besides,
ease of testing a service and total downtime are two aspects
that may largely impact the suitability of a certain migration.
Several possible methodologies may be used for developing
and support this testing. For instance, modified A/B may be
used where only one service is changed and a number of
different grades of testing are performed. Finally, depending on
the requirements of the application, it might be necessary for
the two cloud services, the original one and the replacement,
to coexist during a certain period of time, during the testing
process of the migration. Complexity to synchronize data
between the two services might make the coexistence difficult
and using the new service as a hot backup of the first is
inefficient.

4) Risk of costs unpredictability: by using services from
different providers, it may become more and more complex to
predict costs.

5) Risk of lack of provider interest in collaboration:
business agreements are usually required for two CSP to
collaborate. For instance, the service delivery model requires
customers to register to a service. Because of this, a service
in a certain CSP will not allow customers from other CSPs to
use it without going through the necessary registration process,
unless the right agreements are put in place. Besides, vendors
may try to retain customers at any cost to be more competitive.
Contracts and other legal issues may be blockers to migrate
from one service to an equivalent one. In other words, there
is a risk of unfair customer retention and consequent vendor
lock-in.

6) Risk of unavailability of evidences in case of fraudulent
actions: this is a potential risk that may be caused by the lack
of forensic tools and global tracking mechanisms.

7) Risk of lack of negotiation on SLAs: large organizations
using a single supplier can negotiate terms. SMEs or compa-
nies using multiple services from multiple vendors are unlikely
to have the power or the time to negotiate. This will create an
increasingly unstable cost and terms and conditions problem.

Note that a more formal risk analysis might be performed
to consider this a final list of risks.

VII. CONCLUSIONS AND FUTURE WORK

In this position paper, we have discussed some essential as-
pects to establish the necessary baseline for a decision support
method aimed at facilitating the selection of cloud services
and providers in a multi-cloud environment. In particular, we
argue that risk, quality and cost are among the main factors in
such a selection process. We believe that a trade-off analysis
between risk, cost and quality based on a consolidated view
of the three will provide a useful basis for a decision maker in
assessing the possible choices through a cost-benefit analysis.
For this, we have reported the results of an elicitation of the
risk, cost and quality aspects that are specific to multi-cloud
environments. We argue that security, interoperability and ease
of migration are among the main quality aspects in a multi-
cloud environment.

Beyond this initial analysis, we plan to develop a compre-
hensive study on risk and quality aspects to be considered in a
multi-cloud. With this, we aim at creating a decision support
tool able to help multi-cloud applications architects to design
their systems. This tool will be implemented based on a new
methodology that integrates risk, quality and cost dimensions.

ACKNOWLEDGMENT

This work has been conducted as a part of the MODA-
Clouds project (Grant Agreement FP7-318484) funded by the
European Commission within the 7th Framework Programme.

REFERENCES

[1] D. Bernstein and D. Vij, Intercloud Security Considerations, Proc. 2nd
Intl Conf. Cloud Computing (CloudCom 10), IEEE Press, 2010, pp. 537-
544.

[2] R. Buyya et al., Market-Oriented Cloud Computing: Vision, Hype, and
Reality of Delivering Computing as the 5th Utility, Proc. 9th IEEE/ACM
Intl Symp. Cluster Computing and the Grid (CCGRID 09), IEEE CS,
2009, pp. 599-616.

[3] Data Protection Act 1998.
http://www.legislation.gov.uk/ukpga/1998/29/contents

[4] European Telecommunications Standards Institute (ETSI).
http://www.etsi.org

[5] Ligaarden, O. S.: A Framework for Analyzing and Monitoring the Impact
of Dependencies on Quality. PhD thesis, University of Oslo (2013)

[6] M.P. Papazoglou and W. van den Heuvel, Blueprinting the Cloud, IEEE
Internet Computing, Nov./Dec 2011, pp. 74-79.

[7] B. Rochwerger et al., ReservoirWhen One Cloud Is Not Enough, Com-
puter, Mar. 2011, pp. 44-51.

[8] Sarbanes-Oxley Act of 2002 (Pub.L. 107204, 116 Stat. 745,
enacted July 30, 2002). http://www.gpo.gov/fdsys/pkg/PLAW-
107publ204/html/PLAW-107publ204.htm

[9] Singhal, M.; Chandrasekhar, S.; Tingjian Ge; Sandhu, R.; Krishnan,
R.; Gail-Joon Ahn; Bertino, E., ”Collaboration in multicloud computing
environments: Framework and security issues,” Computer, vol.46, no.2,
pp.76-84, Feb. 2013

[10] Cloud Services Measurement Index Consortium: CSMIC Website
http://csmic.org/. Accessed, March 2013

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 43 / 263

Moonstone: A Framework for Accelerating Testing of Software

Atsuji Sekiguchi, Tomohiro Ohtake, Toshihiro Shimizu,

 Yuji Hotta, Taichi Sugiyama, Takeshi Yasuie and Toshihiro Kodaka

Cloud Computing Research Center

FUJITSU LABORATORIES LIMITED

Kawasaki, Japan

e-mail: {sekia, ohtake.tomohiro, shimizut, yhotter, sugiyamataichi, yasuie.takeshi, and tkodaka}@jp.fujitsu.com

Abstract—Enterprises must speed up software development

and releases so that they can quickly verify business ideas. We

have developed a framework called “Moonstone” that can be

used to speed up the testing that is included in a release

operation. Moonstone has the following two functions to

support testing. 1) Function to construct test environment: this

function is used to automatically construct test and production

environments on a cloud platform. This function uses hint

information of a system configuration included in source code

and configuration files, and templates of system configurations.

2) Function to prepare and execute test: this function is used to

automatically create and run test scenarios by replaying

captured network packets. Because testing in a release

operation phase can be done efficiently with these functions,

the time required for a release operation can be reduced. We

used Moonstone in a trial environment and obtained the

following results: 1) a reduction of more than 80% of the time

required for the construction of a test environment, 2) a

reduction of 33% of the time required for the testing.

Keywords-continuous delivery; software development;

software test; cloud platform; traffic replay

I. INTRODUCTION

Global business competition has been intensifying with
the spread of Internet and cloud computing [1]. Enterprises
must therefore realize business ideas as products and services
and then improve them so that they can survive this
competition.

Lean Startup [2] describes a method of carrying out
product development by verifying business ideas
(hypothesis) quickly in the market. In this method, the
effects of each hypothesis are quantitatively measured while
verifying one hypothesis at a time in the market. An
enterprise can learn which hypothesis is effective because the
method can individually measure the effect of each
hypothesis. Because one hypothesis is verified in the market
in a certain period, the amount of development needed to
prove the hypothesis decreases, and development can be
sped up. Moreover, because the product or service can be
quickly released to the market with this method, the
enterprise can change its business direction according to the
result of the verification.

However, there is the following problem in practicing
“lean startup” in software development and release. The
release operation contains testing and deployment processes

[3]. Testing is done to inspect software, configurations, and
environments from functional [4] and non-functional [5]
aspects (such as execution time, performance, quality of
service, and security). Deployment is carried out to distribute
software and configurations to test and production
environments. Even if the system will be slightly changed,
testing of the entire system is required to confirm that the
changed system will run correctly. Thus, the release
operation imposes a constant workload, which is not in
proportion to the amount of development. If the amount of
development is not changed, the workload increases when
the number of releases increases. Thus, the hypothesis cannot
be verified quickly.

Therefore, we have developed a framework called
“Moonstone” to speed up the release operation. Moonstone
has the following two functions to support testing. 1)
Function to construct a test environment: this function is
used to automatically construct test and production
environments on a cloud platform. This function uses hint
information of a system configuration included in source
code and configuration files, and templates of system
configurations. 2) Function to prepare and execute a test: this
function is used to automatically create and run test scenarios
by replaying captured network packets. Because testing in a
release operation phase can be done efficiently with these
functions, the time required for the release operation can be
reduced. Furthermore, reproducibility of testing can be
increased.

The rest of this paper is organized as follows. First, we
describe the Moonstone architecture in Section II. Next, we
explain the method and result of an evaluation in a trial
experiment that uses Moonstone in an environment on a
cloud platform in Section III. In Section IV, we discuss
related work. Finally, we end with the conclusion and future
work in Section V.

II. MOONSTONE ARCHITECTURE

To support phases from development to release of
applications, Moonstone can cooperate with various
functions such as an issue tracker (Redmine [6]) for
development task management, a version control system
(Subversion [7] or git [8]) for management of an
application's source code, and a continuous integration [10]
tool (Jenkins [9]) as shown in Figure 1. In addition, to speed
up the testing, Moonstone has two functions: a function to
construct a test environment, and a function to prepare and

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 44 / 263

Moonstone

Application

developer
Continuous integration

(Jenkins)

Task management

(Redmine)

Version control system

(Subversion/git)

A. Function to construct

test environment

B. Function to prepare

and execute test

Cloud platform

Production

environment

Test

environment

Figure 1. Moonstone architecture

1. Application

characteristics extraction

2. System template

selection

3. System construction

System templates

System construction

scripts

Cloud platform

Environment

Application characteristics

Selected templates

Configuration

information

Source code / configuration files Function to construct

test environment

Extraction patterns

Figure 2. Function to construct test environment

execute a test. Moonstone can realize continuous delivery
[11] with these cooperative actions and functions.

A. Function to construct test environment

Application developers generally develop their
application in consideration of the characteristics of a system
(such as a web server type, an application server type, a
database server type, or their connectivity), but they cannot
change configurations of the system without permission
(such as changing the configuration of a database server
from one server to a master-slave configuration). System
construction operators are responsible for changing the
system. To cooperate with the system construction operators,
the application developers must make many preparations
such as documentation. Thus, system configuration cannot
be changed quickly when a change of system configuration
is needed because of the growth of the application.

We have developed a function that extracts the
characteristics of an application from its source code and
configuration files, and automatically constructs a system by
using the most suitable template for the characteristics. The
proposed function enables the system to be changed quickly
because the application developers can change the system by
themselves without needing to have cooperation from the
system construction operators.

We will explain the flow of processing on the basis of
Figure 2.

1. Application characteristics extraction: In this process,
the proposed function extracts the characteristics of an
application from its source code and configuration files by
using extraction patterns. In many cases, when middleware is
used in a system, descriptions for the middleware exist in the
source code and the configuration files (e.g., if JDBC (Java
Database Connectivity) [12] and MySQL [13] is used in the
system, the name of JDBC driver for MySQL appears in the
source code or the configuration files, such as
“com.mysql.jdbc.Driver”). So, to detect the used middleware,
we wrote a pattern beforehand to detect the middleware as an
extraction pattern (e.g., detection of “com.mysql.jdbc.Driver”
in the source code or the configuration files). As a result, the
proposed function can detect the characteristics of
middleware composition such as a mail server, a message
queuing server, and a cache server. Moreover, we wrote hint
information in the source code beforehand for the

characteristics that could not be detected by the above-
mentioned process. The proposed function only supports the
Java language currently. In Java, the function utilizes some
of the annotations [14] in the source code as hint information.
For instance, the hint information is described as the ratio of
reading and writing in a class that operates the database, such
as “@ReadWriteRatio”. The proposed function extracts the
middleware used and the hint information as characteristic
information of the application.

2. System template selection: We defined system
configuration patterns (such as AWS Cloud Design Pattern
[15]) on a cloud platform as “system templates” beforehand.
Each system template contains its characteristic information.
In this process, this function selects a template that matches
the characteristics of the application. For instance, when a
name of a database is detected from the configuration files,
the proposed function selects a template that installs and sets
up the database (e.g., “MySQL”). When hint information
such as “@ReadWriteRatio (value = 5.0)” (means “the
reading frequency of the database is five times the writing”)
is extracted from the source code, the proposed function
decides on a template of a composition that suits such
purpose (e.g., a database template for a master-slave
configuration).

3. System construction: The proposed function constructs
a system on the basis of the selected system template. In each
system template, we associated the template with scripts that
automatically construct the system beforehand. We wrote
construction scripts for each server type such as Web,
application, and database using Chef [16]. For example, in a
case of Web server, our construction script prepares virtual
machines (VMs) through the cloud platform's API, and
deploys Web server program (e.g., httpd) and contents to
each VM.

This function is useful not only for constructing a test
environment for confirming an application behavior but also
for constructing a production environment. Furthermore, this
function can increase the recyclability of the automation
scripts because the function calls the scripts to suit the
application’s characteristics.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 45 / 263

1. Packet capture

Captured packets

Function to prepare

and execute testTranslation rules

Cloud platform

Production

environment

Test

environment

3. Result comparison

Clients

2. Traffic replay Translated packets

Response message

Figure 3. Function to prepare and execute test

B. Function to prepare and execute test

A system that has begun providing services for customers
should be stable. When an application or its system will be
changed, the correctness of the behavior of the application
should be checked (tested). To test operations in the entire
system, load test tools [17] or devices [18] are usually used
to run a test efficiently. The test contains two steps:
preparation and execution. In the preparation step, these tools
or devices require preparation of test scenarios. In the
execution step, the test is executed on the basis of the test
scenarios, and success or failure is judged from the results of
the test scenarios. The test scenario consists of definitions
such as access patterns to the system, request messages for
access to the system, and response messages that the system
should make in response to the requests. There is a problem
that making test scenarios requires a great deal of skill and
much time.

Therefore, we have developed a function that automates
the test scenario making and the test execution [19]. In the
preparation step, a module of this function captures network
packets of the request/response messages that are exchanged
between clients and servers in the production environment.
The request/response messages and their access timing are
used as the test scenarios. In the test execution step, the
proposed function replays the request messages in the
captured packets and compares response messages between
the captured packets and the test environment. While
replaying, the proposed function translates
network/application data of the packets from data in the
original environment to data in the test environment. Thus,
because the test scenario can be made without a need for
much skill or time, the test can be sped up. We implemented
the proposed function as a C program on Linux.

We will explain the flow of processing on the basis of
Figure 3.

1. Packet capture: In this process, the proposed function
captures packets between clients and servers of the system
using a packet capture tool (such as Wireshark [20]). At this
time, the environment of servers is the production or the test.
Users of IaaS (Infrastructure as a Service) [1], which is one
of the cloud platforms, cannot capture the packet in the
network layer because the network layer is usually hidden in

IaaS. Thus, the proposed function captures the packets in
each server and collects them. The packet capture tool can
capture packets on various networks (such as Ethernet or
Infiniband) because it captures packets OS obtained.

2. Traffic replay: The proposed function generates access
loads for the test in the test environment. The access loads
are generated based on the test scenario that consists of the
request/response messages and their access timing on the
captured packets. While sending the packets, the proposed
function translates the packets from environment-dependent
data in the captured packets to data for the test environment.
The translation is based on translation rules. This rule is a
definition of how to rewrite data. The data are of the network
layer such as Ethernet/IP headers, TCP connections, and
HTTP headers, and of the application layer such as session
information and authentication tokens. When a response of a
server contains session information, the proposed function
dynamically rewrites sending packets with the information.
We made rules beforehand to match the captured packets to
the test environment.

3. Result comparison: The proposed function compares
two response messages of the test environment and the
response messages in the captured packets. The function
regards the test as a success when these responses are the
same, and regards the test as a failure when these responses
are different. The function can also compare both of access
timing of the response messages, and can regard the test as a
success when the response time of the test response is less
than a threshold time.

When these two functions are combined, the test can be
executed on demand. Thus, when testing is needed, the
proposed functions construct the test environment on a cloud
platform, execute the test, and return the environment after
finishing the testing.

III. EVALUATE

To evaluate the two functions described in Section II, we
tried these functions in the following environment.

A. Evaluation environment

This environment is a system on a cloud platform to
provide a service for consumers through the Internet. The
system was constructed for starting the service. The system
uses FGCP/S5 (Fujitsu Global Cloud Platform) [21], which
is one of IaaS. The system is a typical three-tier one that
consists of tens of VMs such as Web servers, application
servers, database servers, and load balancers.

B. Evaluation method

To examine the proposed function described in II.A, we
constructed a test environment of the same composition as a
production environment with the proposed function and via
manual operation respectively, and measured the respective
elapsed times. Manual operation was executed by experts,
who are the system construction operators. We calculated the
reduction time and reduction rate by using the proposed
function from the result. The construction targets were Web
servers, application servers, and databases. Strictly, installed
software and settings of each server were a little different

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 46 / 263

TABLE I. SERVER CONSTRUCTION TIME, REDUCTION TIME, AND
REDUCTION RATE

Server

type

Elapsed

time

(manual)

[A]

Elapsed

time (trial)

[B]

Reduction

time

[A−−−−B]

Reduction

rate

[(A−−−−B)/A]

Web 5h 40m 1h 7m 4h 33m 80%

Applicati
on

10h 46m 1h 48m 8h 58m 83%

Database 8h 17m 0h 55m 7h 22m 89%

TABLE II. ELAPSED TIME OF TEST, REDUCTION TIME, AND
REDUCTION RATE

Operatio

n type

Elapsed

time

(manual)

[A]

Elapsed

time (trial)

[B]

Reduction

time

[AB]

Reduction

rate

[(A−−−−B)/A]

Test

scenario
making

40h 16h 24h 60%

Test

execution
32h 32h 0h 0%

Total 72h 48h 24h 33%

from each other. Then, we grouped the tens of servers to
three types with the rough role such as Web. Constructing
these servers involves starting VMs, making settings for an
OS, installing and making settings for middleware such as
HTTP server, Java EE server and database server, and
installing Web contents and applications. We measured the
elapsed time of construction in each type of server. We
calculated the average value for the same type of server. The
elapsed time of the system was calculated from the type of
server and each number.

To examine the proposed function described in II.B, we
made and ran the test with the function and via manual
operation respectively, and measured the respective elapsed
times. Manual operation was also executed by the experts.
We calculated the reduction time and reduction rate by using
the proposed function from the result. The test contained
many test scenarios to confirm the correctness of software,
configurations, and environments from functional [4] and
non-functional [5] aspects (such as execution time, quality of
service, security, usability, and safety). For the manual
operation, we made the test scenarios for JMeter [17]. To use
the proposed function, the function makes it possible to
make the test scenarios automatically by capture and replay
of the traffic between clients and servers in the production
environment. However, in this trial, we made the test
scenarios as follows to clarify a comparison in these two
cases: we manipulated a Web browser through each test
scenario in manual operation, captured packets through the
manipulation, and treated the packets as each test scenario.

C. Evaluation result

The results of the evaluation of II.A are shown in Table I.
“Server type” means the type of server such as Web,
application, or database. “Elapsed time (manual) [A]” means
the elapsed time in the case of manual operation. “Elapsed
time (trial) [B]” means the elapsed time in the case of using
the proposed function. “Reduction time” is the difference
between the elapsed time (manual) and the elapsed time

(trial), and is calculated as A−B. “Reduction rate” is the ratio
of the reduction time to the elapsed time (manual), and is

calculated as (A−B)/A.
An elapsed time of 80% or more was able to be reduced

in any server type as shown in Table I. The reduction time of
one server was between 4.5 and 9 hours. Because the
environment consisted of tens of servers, we were able to
reduce the elapsed time of hundreds of hours in total.

The result of the evaluation of II.B is shown in Table II.

“Operation type” means an operation of the test such as test
scenario making and test execution, and also contains their
total. “Elapsed time (manual)”, “Elapsed time (trial)”,
“Reduction time” and “Reduction rate” mean the same as
those in Table I.

An elapsed time of 60% (24 hours) was able to be
reduced in the making of test scenarios. The elapsed time of
the test execution was the same as the manual operation, and
the reduction rate was 0%. As a result, the elapsed time of
33% (24 hours) was able to be reduced in total.

IV. RELATED WORK

Continuous integration [10] is the practice of enhancing
the quality of source code by automatically integrating,
compiling, and testing the source code every day during
development. Continuous delivery [11] is a practice that
automates deployment of the application in addition to
continuous integration. Tools that support these practices
exist [9][22]. However, activities such as constructing a test
environment and making a test scenario are not being offered
by those tools.

There are several approaches to constructing an
environment. Tools to support automation of the
construction exist [16][23], and a method to automatically
construct an environment from a policy-based environment
definition is also known [24]. Those approaches require a
great deal of skill and much time, because the user has to
describe the definition of the composition of the environment
correctly. Our method detects the characteristics of the
application by using information on system configuration
contained in source code and configuration files, and hint
information written in the source code as annotations [14].
Then, the method determines the most suitable system
template for the characteristics, and automatically constructs
an environment based on the selected template. In the case of
our method, the user does not need to describe the definition
of the composition of the environment.

An approach of the abstraction of clouds' API [25], and
an approach of the definition of common data model [26]
exist. Though we used the cloud's own API and data model,
these approaches can be helpful for portability.

Tools to help automate the making of the contents of the
testing exist [17][27][28]. These require a great deal of skill
and much time to create a test scenario for the automation.
Moreover, it is difficult to imitate real clients’ traffic load
patterns. Therefore, because some problems are often

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 47 / 263

overlooked, serious troubles occur when the application runs
on the production environment. Traffic replay is an approach
that captures packets in the production environment and uses
the captured packets for testing [29][30][31][32][33].
However, it is not easy to conduct traffic replay in an ad hoc
test environment on a cloud platform. Because the test
environment is different from the environment in which the
packets are captured, various parameters such as MAC
addresses, IP addresses, or TCP port numbers are different.
Packets cannot reach servers if the captured packets are
simply replayed. In the case of testing an application,
application-specific information such as HTTP session IDs
and timestamps should be also adjusted to the environment
and the time of the testing. Our method can test a long
transaction by carrying out a traffic replay with a packet
conversion by using not only the difference between these
environments but also application-specific information.

V. CONCLUSION AND FUTURE WORK

We have developed a framework called “Moonstone” for
speeding up testing that is included in a release operation.
Moonstone has two functions: 1) a function to construct a
test environment, and 2) a function to prepare and execute a
test. In our trial, we confirmed that these functions make it
possible to reduce the elapsed time for the testing.

We will tackle the following problems in the future. In 1),
when a production environment has a lot of servers, a long
elapsed time is required to construct a test environment that
is similar to the production environment. In 2), when the
proposed function replays captured packets, we must
synchronize databases of the test environment beforehand.
When the size of the databases is large, the synchronization
requires a long elapsed time.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M.
Lindner, "A break in the clouds: towards a cloud definition",
ACM SIGCOMM Computer Communication Review, Vol.
39 Issue 1, Jan. 2009, pp. 50-55.

[2] E. Ries, “The Lean Startup: How Today's Entrepreneurs Use
Continuous Innovation to Create Radically Successful
Businesses”, Crown Business, 2011.

[3] Cabinet Office, "ITIL Service Transition 2011 Edition (Best
Management Practices)", The Stationery Office, 2011.

[4] W. E. Howden, "Functional Program Testing", Software
Engineering, IEEE Transactions on, Vol. SE-6, Issue 2, Mar.
1980, pp. 162-169.

[5] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of
search-based testing for non-functional system properties",
Information and Software Technology, Vol. 51, Issue 6, Jun.
2009, pp. 957-976.

[6] Redmine, Available: http://www.redmine.org/, retrieved: Mar.
2013.

[7] Subversion, Available: http://subversion.apache.org/,
retrieved: Mar. 2013.

[8] git, Available: http://git-scm.com/, retrieved: Mar. 2013.

[9] Jenkins, Available: http://jenkins-ci.org/, retrieved: Mar. 2013.

[10] P. M. Duvall, S. Matyas, and A. Glover, “Continuous
Integration: Improving Software Quality and Reducing Risk”,
Addison-Wesley Professional, 2007.

[11] J. Humble and D. Farley, “Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation”, Addison-Wesley Professional, 2010.

[12] JDBC (Java Database Connectivity), Available:
http://www.oracle.com/technetwork/java/javase/jdbc/index.ht
ml, retrieved: Mar. 2013.

[13] MySQL, Available: http://dev.mysql.com/, retrieved: Mar.
2013.

[14] Java Annotations, Available:
http://docs.oracle.com/javase/1.5.0/docs/guide/language/annot
ations.html, retrieved: Mar. 2013.

[15] AWS Cloud Design Pattern, Available:
http://en.clouddesignpattern.org/, retrieved: Mar. 2013.

[16] Chef, Available: http://www.opscode.com/chef/, retrieved:
Mar. 2013.

[17] JMeter, Available: http://jmeter.apache.org/, retrieved: Mar.
2013.

[18] Avalanche, Available:
http://www.spirent.com/Products/Avalanche/Avalanche_Late
st_Release, retrieved: Mar. 2013.

[19] T. Sugiyama, T. Yasuie, and Y. Nomura, “A Study for
System Verification with Captured Packets” [in Japanese],
Proc. of the Society Conference of IEICE 2011
Communication (2), Aug. 2011, p.392.

[20] Wireshark, Available: http://www.wireshark.org/, retrieved:
Mar. 2013.

[21] FGCP/S5 (Fujitsu Global Cloud Platform), Available:
http://welcome.globalcloud.global.fujitsu.com/, retrieved:
Mar. 2013.

[22] IBM SmaterCloud Continuous Delivery, Available:
http://www-
142.ibm.com/software/products/us/en/continuousdelivery/,
retrieved: Mar. 2013.

[23] Puppet, Available: https://puppetlabs.com/puppet/puppet-
open-source/, retrieved: Mar. 2013.

[24] A. Sahai, S. Singhal, R. Joshi, and V. Machiraju, "Automated
Policy-Based Resource Construction in Utility Computing
Environments", Proc. of Network Operations and
Management Symposium, Vol. 1, Apr. 2004, pp. 381-393.

[25] Deltacloud, Available: http://deltacloud.apache.org/,
retrieved: Mar. 2013.

[26] Cloud Infrastructure Management Interface (CIMI) Model
and RESTful HTTP-based Protocol, Available:
http://dmtf.org/sites/default/files/standards/documents/DSP02
63_1.0.1.pdf, retrieved: Mar. 2013.

[27] JUnit, Available: http://junit.org/, retrieved: Mar. 2013.

[28] Selenium, Available: http://seleniumhq.org/, retrieved: Mar.
2013.

[29] Tcpreplay, Available: http://tcpreplay.synfin.net/, retrieved:
Mar. 2013.

[30] S. Hong and S. Wu, “On Interactive Internet Traffic Replay”,
Proc. Eighth International Symposium on Recent Advances in
Intrusion Detection, Sept. 2005, pp. 247-264.

[31] IBM Rational Test Virtualization Server, Available:
http://www-01.ibm.com/software/rational/products/rtvs/,
retrieved: Mar. 2013.

[32] CA LISA, Available:
http://www.ca.com/us/products/detail/CA-LISA.aspx,
retrieved: Mar. 2013.

[33] Oracle Enterprise Manager: Application Quality
Management, Available:
http://www.oracle.com/technetwork/oem/app-quality-
mgmt/index.html, retrieved: Mar. 2013.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 48 / 263

Challenges with Tenant-Specific Cost Determination in Multi-Tenant Applications

Anna Schwanengel and Uwe Hohenstein

CT RTC ITP SYI-DE, Siemens AG
Munich, Germany

{anna.schwanengel.ext, uwe.hohenstein}@siemens.com

Abstract— One key element to make Software-as-a-Service
(SaaS) successful is so called multi-tenancy, which refers to
an architecture model where one software instance serves a
set of multiple clients of different organizations (tenants).
Hence, it reduces the number of application instances and, in
that way, operational costs in a Cloud. The problem SaaS
providers are faced within everyday’s business is how to
define a billing model that has the chance to make profit in a
public Cloud. Being profitable with SaaS, the art is to bill
tenants in such a way that covers the costs for resources for
the underlying PaaS/IaaS provider. This paper discusses
some challenges with metering the consumption of tenants as
a prerequisite for defining a profitable billing model.

Keywords - Software-as-a-Service; Multi-Tenancy; Billing;

Costs; Resource Utilization

I. INTRODUCTION

Since many years a paradigm shift how software is
delivered to customers occurs. It changed from installing
developed software applications at the customer in-house
and operating it on-premise, to a more consumer-based
model. Software became an on-demand service drawn
from the Internet, i.e., Software-as-a-Service (SaaS) [1].
SaaS is a delivery model that enables customers to rent
services without local installation and license costs.

In this context, multi-tenancy is a key element to
achieve a successful SaaS business, though not being the
guarantor for more revenue. Multi-tenancy means multiple
tenants from different organizations share a system
operated by one company. The respective application is
used by several tenants of a SaaS provider [2]. Thereby,
each tenant serves plenty of users who actually use the
software. A multi-tenant architecture postulates that the
application is able to partition its data and procedures
virtually. Each tenant gets a virtual instance, which can be
customized according to his wishes, running on the same
physical instance, while not being influenced or even
aware of the other tenants working concurrently.

In single-tenant systems, each tenant obtains its own
instance running the application (or database), which
reduces management efforts regarding the mapping of the
resources to each tenant. However, looking at the overall
efficiency, one can observe some drawbacks, as in a lot of
cases many server instances will be low utilized at most
time points [3]. This system utilization can be improved by
operating a multi-tenant service, where fewer instances are
used to serve tenants in a shared environment. Moreover,

operational costs can be saved when the SaaS provider
deploys an application on the PaaS or IaaS layer of a
Cloud provider. A SaaS provider pays for the resources his
SaaS application uses. That means being charged by CPU
time, number of transactions, database space etc. The more
payable resources are shared, the less costs an application
produces. One important aspect is to design the
architecture in a way that uses the resources efficiently [4].

In this paper, we focus on another economical problem
of SaaS providers, which has been paid less attention in
the research area. On the one hand, we have cost models
defined by IaaS/PaaS providers, a SaaS provider has to
pay for when running applications. But a SaaS provider
has also to define a billing model to charge his tenants for
application usage. Both models have to be balanced in a
way that SaaS providers obtain a suitable return of
investment and are able to make profit while having an
attractive billing model for tenants. The investment covers
both, the Cloud operational costs and costs for application
development or SaaS-enabling of existing applications.

We are approaching this aspect from a technical view.
A lot of billing methods have been discussed in the literat-
ure such as pay-as-you-go, pay-per-user, pay-per-feature,
or a fixed monthly fee [5]. All have in common that a SaaS
provider has to keep an overview over total costs and
tenant-specific costs in order to offer a profitable billing
model. Section II stresses this point and motivates the need
for tenant-specific metering of resource consumption.

We present challenges for SaaS providers to balance
outgoing costs for the underlying PaaS/IaaS provider and
ingoing revenue from the tenants. We choose Windows
Azure for this investigation because of its PaaS offering
that ships with a complete development and deployment
environment. There are no problems with product
licensing, as this is part of the platform and the cost model,
which makes the cost calculation easier – see Section III.

Section IV gives some insight into cost reasoning for
multi-tenancy within Azure. Section V discusses what
technical concepts of Azure can be used to monitor tenant-
specific resource consumption. A prerequisite, how tenants
can be identified, is explained in Section VI. Section VII
provides an overview of related work in the multi-tenancy
area before Section VIII concludes and names future work.

II. PROBLEM SPACE

It is commonly agreed that a well-economical SaaS
provider has to support multi-tenancy, i.e., giving tenants a
tailored, best-fitting application satisfying their specific

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 49 / 263

requirements by customization, while sharing as much
resources as possible to achieve higher capacity utilization.
Thereby, SaaS provider have to reflect upon easy imple-
mentation (as in single-tenant systems, where every tenant
holds its own application) and costs (which is more ad-
justed in multi-tenant systems serving all tenants by one
instance). That is in accord with economy of scale sharing
both the underpinning infrastructure as well as the hereon
running software. This point can also be seen in [6] and
[7], where several architectures are distinguished regarding
what is shared by tenants: the topmost web frontend,
middle tier application servers, and underlying database.
Nevertheless, when supporting all tenants by one instance
in a multi-tenant system, the question is how to charge
each tenant, while targeting at profit. Defining a billing
model is easy but how to monitor whether it is reasonable?

Several billing models have been proposed. Most of
them are post-paid models. Thereby the tenant receives a
bill and pays for usage periodically [8]. To invoice the
consumption costs, usage of each tenant is observed and
aggregated [9]. The safest method from a SaaS provider’s
perspective is to charge tenants the same pay-as-you-go
way as PaaS/IaaS providers do for their resources, i.e.,
OPEX are directly forwarded to tenants, plus an additional
charge. Such a model is very technical and not cost-
transparent for tenants. From a SaaS provider’s view, this
situation is complicated when several tenants are served by
one instance. Therefore, it is important to estimate or even
compute the resource costs (e.g., for consumed storage, or
CPU), in particular how many resources one tenant uses.
This implies the monitoring of each tenant and logging the
way they use the application. More precisely, it requires
observing the resource usage of the applications for each
tenant, and raising an invoice based on usage metrics.

Alternatively, billing models can be based upon factors
that are better understandable by tenants, like usage time.
The problems for SaaS providers remain the same, and the
Cloud cost model must be transformed to a billing model.

A SaaS provider can also charge its tenants by a fixed
rate, e.g., per month. However, it is difficult to predict the
costs a tenant’s usage will produce. Moreover, exhaustive
usage by one tenant could reduce the SaaS providers’
revenue, even to minus. On these grounds, a precise cost
control of each tenant can be used to throttle frequent users
to reduce this risk – if SLAs are defined accordingly.

In a pay-per-user billing model, users must be
registered and the number is then known. However, there
is again a risk of undercharging over-utilizing tenants.

Billing may also be conducted in a pre-paid method.
Pre-paid clients load a deposit onto their accounts previous
to any consumption. During the usage, this credit is
debited and in case of reaching a limit, the tenant has to
reload money for service use. Although the pre-paid model
sounds promising to SaaS providers offering profit-ability,
the post-paid model is more common. Anyway, one has to
check whether a tenant’s limit has been reached.

All this comes along with a big problem for the SaaS
provider: he has no clue whether his offering is profitable.
A detailed monitoring of costs produced by tenants is

necessary, independent of the billing method. Besides, cost
models of IaaS/PaaS providers are quite complex and take
technical parameters into account. This makes it not only
difficult to estimate the costs for a given application [10],
but also to derive costs for each tenant. The different cost
factors that PaaS/IaaS providers charge (which differ
enormously from provider to provider) make it difficult to
run a clear-cut course. Several systems (e.g., EC2) bill
according to a usage-of-instance charge and raise the price
additionally based on the absolute number of transferred
bytes and not adapted on duration or network activity [11].

Another aspect, which requires closer attention, is that
an overview of the total amount of used resources and
resulting costs is usually only given on a monthly basis.
With only getting a monthly bill from a PaaS/IaaS
provider with an aggregated cost report over the consumed
resource capacity for his tenants, a SaaS provider could not
get any detailed data about the cash accounting. Thus, a
SaaS provider could not counteract in time, when his
service is getting unprofitable by tenants with frequently
active users. There is a strong need for a tenant-specific
accurate cost model, which is required for:

• a consumption-based model that charges back
tenants for their consumed resources;

• a tenant-specific profit-making check, which
illustrates, whether the chosen business model for
one/all customer(s) is appropriate to make profit;

• a timely reaction in order to throttle frequent and
too expensive tenants; Throttling just at the end of
a month will be too late to compensate losses.

This paper deals with these challenges of estimating costs
on a per-tenant basis. In particular, costs have to be con-
ducted in an efficient manner that only means a minimal
amount of extra burden, to avoid latency and costs.

III. MICROSOFT AZURE AND ITS COST FACTORS

Since we base our investigation on a concrete PaaS
platform, Microsoft Azure, we here briefly present basic
concepts and the cost model of the Azure Cloud platform
according to the status quo when writing this paper [12].

Compute instances (VMs including equipment), called
Web and Worker Roles, are charged for the number of
hours they are deployed. As seen in Table I, there are
several instance categories: A small instance (default)
costs $0.12 per hour; the more powerful medium, large,
and extra large instances have twice the price as the
preceding category, i.e., an extra large instance is charged
for $0.96 per hour (i.e., factor 8 compared to a small
instance). The instance categories scale in a linear manner
with regard to equipment. That is, a medium instance (M)

TABLE I: PRICES FOR COMPUTE INSTANCES

 CPU RAM HDD
(GB)

MBps $ / h I/O
performance

XS Shared 768MB 20 5 0.04 Low

S 1,6GHz 1,7 GB 225 100 0.12 Moderate

M 2 x 3,5 GB 490 200 0.24 High

L 4 x 7 GB 1000 400 0.48 High

XL 8 x 14 GB 2040 800 0.96 High

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 50 / 263

has double of CPU, disk etc. than a small instance (S)
resulting in a double price. The exception is an extra small
instance (XS) category. The prices are taken on an hourly
basis. Even if a compute instance is used for only 5
seconds, a full hour has to be paid.

For Azure table, blob and queue storages, costs depend
on bandwidth, storage consumption and transactions.

Storage is billed based upon the average usage during a
billing period. If, e.g., 10 GB of storage are used for the
first half of a month and none for the second half, 5 GB of
storage are billed for average usage. Azure measures the
consumption at least once a day. Each GB of storage is
charged with $0.07. Please note that storage consumption
takes into account the physical storage, which consists not
only of raw data; the length of property names, and the
property data types also affect the size of actual data [13].

Any access to storage by transactions has to be paid:
100,000 transactions cost $0.01. Bulk operations, which
bundle inserts, count as one transaction.

The outbound transfer to the North America and
Europe regions is charged with $0.12 per outgoing GB, the
Asia Pacific Region is more expensive. It is important to
note that the transferred data has some typical XML
overhead according to the protocol. Data transfer is for
free within the same affinity group, e.g., for compute
instances that run in the same data center. All inbound data
transfers to the Azure Cloud are also at no charge.

The costs for an Azure SQL Database, a virtualized
SQL Server, are also based on monthly consumption. Up
to 100 MBs are charged with $4.995 a month. Up to 1 GB,
the overall price is $9.99. Any GB exceeding 1 GB costs
$3.996. Having reached 10 GB, the prices again decrease
to $1.996 per additional GB, and beyond 50 GB, a GB
costs only $0.999. This means, a 10 GB is charged with
$45.954: $9.99 for the first GB, and 9 * $3.996 for the
remaining 9 GB. Azure instance is charged monthly for
the number of databases and amount of data used a day.
Further charged services exist, e.g., for authentication by
Azure Access Control, but they are out of scope here.

These cost factors are important for SaaS providers to
determine the price for a deployed application in a rented
PaaS/IaaS environment. Knowing the precise costs for the
SaaS application is the core element when a SaaS provider
forms a billing model for its tenants. Only in this case, the
SaaS provider can create an economical billing method of
accounting with high profit.

IV. REASONING FOR MULTI-TENANCY

Multi-tenancy is often presented as a solution to make
profit or to deploy SaaS applications economically. The
statement is more or less generally accepted. Anyway, we
want to provide some calculations to show the effect of
multi-tenancy in case of Microsoft Azure.

At first, we consider storing data in an Azure SQL
Database. The costs are primarily based on storage
consumption. But there is no cost difference between
storage in one or in several databases, no matter whether
placed on one database server. Hence, there seems to be no
cost-benefit for sharing one database or server between

several tenants. Hence, a question is arising: Are several
databases (one per tenant) really more expensive than
keeping all tenants’ data in one large database?

First, pricing in Azure occurs in increments of 1 GB.
Thus, four 1.1 GB databases are charged with 4*2 = 8 GB,
i.e., 8 * $9.99 = $79.92 a month, while a single database of
4.4 GB is charged with 5 GB. Next, the storage price
decreases with the size. Assume there are 4 tenants with
databases à 3.1 GB, 4.3 GB, 38.3 GB, and 87.2 GB
respectively. The monthly storage costs for having for
each tenant a database of its own are:

3.1 GB: 1*$9.99 (1st GB) + 3*3.996 = $ 21.978
4.3 GB: 1*$9.99 (1st GB) + 4*3.996 = $ 25.974
38.3 GB: $45.954 (1st 10 GB) + 19*$1.996 = $ 83.878
87.2 GB: $125.874 (1st 50 GB) + 38*$0.999 = $163.836

This is in total $295.666. In contrast, a single database for
all the 132.9 GB costs

$125.874 (1st 50 GB) + 83*$0.999 = $208.791.

This means a 26% cost reduction of $87. However, that
rough comparison does not take into account that record
sizes increase slightly for the one-in-all database due to the
tenantID for distinguishing tenants. Keep also in mind that
there is a limitation of 150 GB per database, which hinders
putting a higher amount of tenants with larger storage
consumption in one database!

The constellation is similar for table storages, albeit,
the cost decrease is much lower: Here, 1 GB costs 7ct.
Any additional GB exceeding 1 TB is charged with 6.5ct.
Beyond 50 TB, the price is 6ct. Storing 10 TB in ten 1-TB
tables ($700) makes a difference to one 10-TB table
($655). This plays a role only for larger data volumes.

For compute instances, 12 ct per hour are charged for a
small instance, i.e., $1,051.20 per year. Saving instances
by sharing services is, therefore, reasonable. There is a real
cost difference when the provider could serve ten tenants
with one instance ($1,051.20) instead of giving each tenant
an instance of its own (10 * $1,051.20).

We are faced with an additional hard decision in
determining whether to rent a higher amount of less
capable computing instances or to take rather fewer high
performing instances. From the cost’s view point at a first
glance, it makes no difference whether a SaaS provider
rents four small (S) instances or one large (L) instance; the
SaaS provider has to pay the same price for the same
capacity. However, if additional instances are required,
due to heavy load by tenants or serving an increasing
number of new tenants, a SaaS provider has to add extra
instances. In this process, however, the type of instance
(XS, S etc.) is already determined at deployment of the
application. If applications are designed for L instances,
the SaaS provider has to start a further L instance, even
though a cheaper S instance would have been sufficient to
serve the additional tenants’ users. That will result in a less
profitable service provisioning and in less revenue.
Generally, constant system utilization is improbable and
high variations in service usage often occur [14].

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 51 / 263

V. CHALLENGES FOR TENANT-SPECIFIC COST

ESTIMATION

In Section II, we motivated why monitoring tenant-
specific consumption costs are useful. In this section, we
discuss the features Microsoft Azure provides to this end,
thereby concentrating on real multi-tenant systems with
tenants sharing instances. We give some insight in what
support is available, to what extent, and what is missing.

A SaaS provider has only some basic support by
Azure. He gets a bill once a month for the monthly
consumption of all cost factors: CPU time, storage,
database units, outgoing data transfer, and number of
transactions. Furthermore, there is a management API
giving access to the recent deployment including
information about the number of instances of what size
and the starting time. Enabling performance counters
allows for tracking aggregated usage for Blobs, Tables and
Queues [15]. Please note all this is consolidated for one
storage account; the limit is 5 for Azure subscribers. Hence
giving each tenant a subscription of his own is unfeasible.

The structure of this section follows the Azure cost
factors and distinguishes some multi-tenancy approaches.

A. Azure SQL Database

1) Each tenant obtains a physical DB of its own
In this case, the database size can easily be determined by
means of a SQL query using the dictionary information.
However, one important question remains: When should
be the consumed storage measured?

The cost model says that the storage consumption is
measured once a day by Azure, but the time point is
unknown, because Azure argues that the charge amortizes
during the month. However, the storage consumption
might vary a lot day by day and in fact within one day.
According to this, even if we periodically check the
consumption each day, we do not know when Azure is
measuring, and this is relevant for our bill. If we take the
values for the consumption at noon, the consumption
might be completely different to midnight; maybe this is
the time Azure measures our occupancy. To solve this
point, Azure’s internal measuring must be laid open.

In addition to the storage consumption, Azure also
charges for the outgoing data transfer. Outgoing means
leaving the data center. This cost fact can be ignored
unless the SaaS application offers tenants a direct access to
the database, which is albeit rather unusual, e.g., due to
isolation and security issues [16].

2) Tenants share a common database
If a common database is shared by multiple tenants, it is
more difficult to determine a tenant’s part of the database.
Assuming that each tenant is maintained by a unique
tenant identifier (tenantID), it is possible to count the
number of records in each table in order to get a rough
impression. Nevertheless, this number does not reflect the
storage consumption since the length of records might
vary from tenant to tenant. A more complex and time-
consuming query can sum up the length of all values.
Furthermore, the storage for indexes remains unknown.

Moreover, the same questions as above remain about
when to measure the numbers for database consumption;
we again do not have any information at which time point
Azure’s measurement takes place.

B. Azure Table Storage

The table storage usage is charged by outgoing data
transfer, memory usage, and the number of transactions.

1) Each tenant obtains a physical table set of its own
Unfortunately, there is no efficient way to measure the
physical table size. The management API does not yield
concrete measurements or consumption numbers, but only
a monthly summary for a complete storage account (with
several tables). To counteract this lack in tenant-specific
billing, some solutions are possible, even though problems
remain. First, tenant records can be counted, which means
accessing the complete table. This can raise transactional
costs, and performance impacts may occur. Besides, still
some uncertainly remains due to unknown record sizes.

A more efficient approach is to enumerate records
during insert. Then, we are able to ask for the latest record
by a timestamp-query; this is approximately the number of
records. However, we have no numbers for already deleted
records. More cost-intensive is to maintain two counters
for insert and delete operations, which doubles the
transactional costs. Nonetheless, the number of records is
only a rough estimation, and the problem how to compute
the specific record sizes still remains.

Consequently, there is a strong need to add further
tracing for tenant-specific storage actions. A modular
possibility may be to use aspect-orientation to intercept
operations [17], however, we are then only able to measure
accesses via the C# storage library, but cannot quantify
REST calls to the storage. A simpler form is to register
event handlers for inserts, which is a rather rudimentary,
limited mechanism. When implementing event handlers to
observe storing and deleting operations in the table
storage, the event handler requires the tenantID as a
prerequisite for enabling a tenant-specific billing. Anyway,
the best way is to add some kind of monitoring in the
application, whereby one important problem still remains:
When to measure the tenant’s consumption?

2) Tenants share a common table storage

In the case of tenants sharing a table, we find the same
problem as above. We have to query complete tables to
count records, now for one tenant. The counting can be
conducted more efficiently if the tenantID is taken as the

PartitionKey. Then, calculation can be done in one
partition, reducing search space and raising performance.

3) Transactions
Another cost factor is the number of transactions on the
table storage. Charging 100,000 transactions with 1ct
appear like micro-costs at a first glance. But investigations
show that transactions could be the dominating cost factor
in Azure [10]. Moreover, the term transaction must be
taken carefully. Every operation to the storage, even
asking for the list of tables, is considered as a transaction.
Some operations can be performed in bulks; each bulk is

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 52 / 263

then a transaction. And finally, each query is a transaction
whereby a continuation token is returned if the result is too
large or runs too long. Then, successive queries become
necessary, which are counted as transactions as well.

There exist performance counters (Azure storage
metrics) which however track only the number of trans-
actions for one storage account. This might be an efficient
way to compute the overall transactions on a daily basis,
but does not yield any tenant-specific information. Further,
tracking the number of transactions must again be done by
introducing specific tracing in order to get precise data.

4) Outgoing data transfer

The final cost factor is the outgoing data transfer (leaving
the data center). These costs are presumably irrelevant
unless queries on the table storage are directly performed
by tenants, which is rather unusual.

C. Blob and Queue Storage

Principles and techniques for handling cost aspects for
blobs and queues are quite similar to Azure table storage
and the same mechanisms as explained in B can be
applied. However, the queue storage consumption seems
to be irrelevant since queues will usually not keep large
amounts of data, unless there is some congestion in the
system. The dominant cost factor will be the transactions.

D. Compute Instances

In Azure, computing power is organized by means of
Web and Worker Roles, as described in Section III. The
major cost factor is the number of hours a role runs. Any
application can be distributed over several Web and
Worker Roles. Furthermore, an application can scale out
by setting up additional instances of an implemented role
to handle sporadic load peaks [14] with a load balancer.

The Azure management API yields some information
that can be used to monitor costs such as the size of a role
(S, M, L etc.), the number of instances for each role, their
status (running, suspended etc.), the starting time, etc. In
principal, it is enough to poll the data when the current
consumption is needed. However, we are not aware of
removed instances and roles since they silently disappear
from the report. In order to get notice of any decrease of
instances, it is necessary to poll periodically. Some
uncertainty remains as an instance can run only for one
minute, being charged with one hour. This event will
presumably get lost unless we check within that minute.

Generally, this data does not reveal any tenant-specific
information; it just shows values of the overall
consumption of a multi-tenant application. If there is a
relationship between Web/Worker Roles and tenants, such
a separation would be possible, however, thwarting
principles of multi-tenancy. To obtain tenant-specific
information, additional logging should monitor the number
of requests. This kind of data is available in performance
counters, but again only covers the whole application.

Please note, there is no obvious relationship between
VM operation costs and how much a tenant contributes to

these by measuring CPU time etc. Hence, these are only
rough indicators for a tenant’s portion of usage.

E. Further Notes

It is important to note that measurements themselves
could affect the costs. Consequently, there is a trade-off
between collecting precise data and being cost-efficient.
This basically concerns the frequency of periodical
measurements, the efficiency of queries etc.

VI. DETERMINING A TENANT

One important issue for the previous discussion is how
to extract a tenant, which uses the application, from the
service URL. The following discussion summarizes
relevant aspects. Thereby, we investigate four ways of
defining SaaS URLs [18] and how to extract a tenant.

A. Using a General URL

A SaaS provider may offer a general URL in the
manner of http://www.SaaSprovider.com. Each tenant has
to register all of his users for the specific services with
user and password; particularly, each user obtains a unique
tenant identifier (tenantID). The assumption is that each
user is exclusively associated with a single tenant. Using a
service such as http://www.SaaSprovider.com/Service1, a
tenant’s user has to log in with his credentials. A central
component is then able to determine the user’s tenantID.
While this implementation is rather simple, several
fundamental problems are obvious in this approach.

At first, the service itself must be generic and
unbranded until the user has logged in. Similarly, a tenant-
specific customization can only take place after login.
Before login, the service can only be general due to the
unknown tenantID. As a direct consequence, it is difficult
to have more than one identity provider (such as an own
Active Directory). The identity provider cannot be known
before the tenant is known. But in most cases, tenants want
to specify the identity provider fitting to their
infrastructure. Next, it is immediately visible that the user
is accessing a multi-tenant application because the URL
does not contain the tenant. Furthermore, there is no way
to allow for anonymous users that have no account and
consequently no relationship with a tenant. Hence, SaaS
providers are restricted to supporting all solvent users.
Finally, a user cannot have a relationship with more than
one tenant unless they have different credentials.

To sum it up, although a tenant can easily be identified
by picking up the login credentials of the users, this
approach has some drawbacks and is unsatisfying. For that
reason, we consider further possibilities as following.

B. Tenant Parameter in the URL

As an alternative to the first approach for URL design,
the URL can per default contain the tenant’s name as an
identifier in two different ways, for instance:

• http:// www.SaaSprovider.com /tenant1

• http:// www.SaaSprovider.com?t=tenant1
Now, the application knows immediately who the
accessing tenant is, and customization can take place for a

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 53 / 263

tenant just as various identity providers are possible for
authentication. Furthermore, we can observe the advantage
that anonymous users are possible as they do not depend
on an identifiable relationship to a tenant. Additionally,
users can have accounts with more than one tenant,
because their access is scoped by tenant.

Unfortunately, there are still some problems. At first, it
is still obvious that this approach is a multi-tenant
application, because the URL specifies a host
SaaSprovider that has no meaning to the user. That is why
the user cannot deduce the service, which he actually
wants to use, from the given URL. Next, both of the above
provided URLs are difficult to guess, i.e., users will be
unable to find the application by means of ‘URL surfing’.
If the user just haphazardly tries out random URLs such as
www.tenant1.com/service1 or http://service1.tenant1.com,
he will never score a hit, because the service is URL-
invisible. It is to note that the URL is an important part of
a company’s brand. Having URLs such as http://www.
SaaSprovider.com/tenant1 with someone else’s host name
in a URL (here SaaSprovider.com) is only a “second
class” branding and insufficient for big companies.

However, identifying a tenant with an ID in the URL is
possible by extracting the tenant’s name by means of
ASP.NET MVC URL Routing.

C. Tenant in a Sub-Domain

A better approach is to embed the tenant identifier
(tenantID) in the URL as a sub-domain: http://tenant1.
SaaSprovider.com. Moreover, it is possible to apply a
DNS alias to redirect the URL to www.SaaSprovider.com.
Advantages of this proposal are obvious: It is still possible
to identify every single tenant, whilst the URL is branded
since the tenant name, tenant1, appears directly within the
URL, and it is now less obvious that tenant1 is one of
many tenants that are using the application. The URL can
be found out with URL guessing and by trial and error.

Even the technical challenge of extracting tenants from
the URLs can be solved, since the tenant is passed with the
HTTP request in the Host Header, albeit it is more
complicated.

D. Tenant in a Domain

Finally, a tenant may use its domain, e.g., http://www.
tenant1.com. The URL can be mapped to www.SaaS
provider.com in the tenant’s DNS configuration. Here, the
tenant can be identified by using the Request.Url C# class.

In summary, it can be stated that tenant identification is
possible for all four approaches; this is the basis for our
considerations to realize tenant-specific billing. However,
the approaches are characterized by different quality and
accordingly efforts and costs. This has to be considered
when deciding how to conduct tenant identification.

VII. RELATED WORK

A lot of research is done in the field of multi-tenancy,
where also traditional aspects of distributed computing
remain important. Fehling et al. come up with prospects
for the optimization of multi-tenants by the distribution of

the tenants regarding Quality of Service [18]. Additionally,
security and privacy issues should also be regarded for
multi-tenancy. To this end, Jensen et al. present an
overview of technical security problems [20]. Besides,
requirements for efficient multi-tenancy regarding
performance or isolation are explored by Guo et al. They
present a design and implementation framework to support
multi-tenant services [2]. Since multi-tenancy is linked to
large client amounts, economic concerns raise importance,
too, as providers need to operate with high profit to remain
competitive. To reduce overall resource consumptions in
multi-tenant environments, [21] introduces a method for
implementing cost-efficient multi-tenancy by optimized
tenant placement. Also [22] puts values of utilization and
performance models in genetic algorithms to reduce there-
by costs, albeit, they do not concern tenant-specific billing.

Other researchers consider solutions to implement
cost-efficient multi-tenancy, looking at the infrastructure,
middleware and application tier, which all can be shared
among tenants [23][24]. However, for fault-tolerance, one
still needs an existence of the same application on different
instances – regardless of the particular tier. So, if an
application transparently moves to another instance, this
must be traced and considered in the bill to fit a tenant-
specific pricing. This problem is not considered there.

In general, providers bill their tenants in different
models. The most common pricing models are either the
tenants paying a fixed monthly fee, or in a pay-per-use
model, where the tenant only pays for the resources he had
used, or even the resources may be charged usage-based
[25]. With multi-tenancy, SaaS providers’ profit may be
increased, but on the other hand, one has to monitor each
tenant resource usage and relate this to his monthly bill.
Therefore, Cheng et al. set up a monitoring framework to
trace tenants’ allocations at runtime and to observe the
performance of each tenant based on the individual SLAs
[26]. However, they do not provide a tenant billing model.

Bezemer and Zaidman, discuss, based on existing
single-tenant applications, another aspect of costs
associated with multi-tenant applications: maintenance
efforts. The recurrence of maintenance tasks (e.g., patches
or updates) raise operating costs and show the demand of
exact planning of maintenance costs, which must be
apportioned among the tenants [27][28].

Nevertheless, the profitable aspects for the SaaS
providers are researched insufficiently in the field of multi-
tenancy. Reflections about their balancing act between
making revenue through tenants’ charges and paying for
the tenants’ used capacity at the PaaS/IaaS provider are
extremely understudied until now. Therefore, we came up
with an overview of the remaining challenges for the SaaS
providers, which want to offer their services to multiple
tenants in an economical business model.

VIII. CONCLUSION

In order to save costs and run economical businesses,
SaaS providers rely on multi-tenancy, albeit it is no recipe
for more revenue. By building multi-tenant applications, a
SaaS provider can support multiple tenants from different

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 54 / 263

organizations with shared instances, being simultaneously
used. This and a better utilization by tenants through re-use
may lead to higher revenue for SaaS providers.

Within the paper, we depict considerations that enable
SaaS providers to succeed in balancing outgoing costs for
the PaaS/IaaS resources and ingoing revenue from tenants
to operate economical business. We motivate why it is
necessary to monitor the detailed costs per each tenant in a
more fine-granular manner. We focused on Microsoft
Azure and came up with reasoning for multi-tenancy and
discussed features of the Azure infrastructure. Until now,
SaaS providers receive monthly bills from Azure about the
past resource usage by its tenants. This is insufficient
because no precise and in time tracking of tenant-specific
costs is available. Although some tenant-specific costs can
be determined with more or less effort, they might be
expensive and lead to additional costs for the SaaS
provider. Anyway, for multi-tenant SaaS providers some
uncertainty about costs remains and their challenge is still
to observe how much a tenant uses of a specific resource
type in order to achieve high profitability.

As future work, we plan to also analyze other Cloud
platforms such as Amazon IaaS/PaaS regarding its
support to trace costs by each tenant. Further, we want to
conduct experiments and analyze the corresponding data
to give some concrete suggestions how to integrate
tenant-specific billing in new and even already existing
applications. We will also investigate and compare multi-
tenant application built upon a PaaS Cloud and an IaaS
platform in order to give an even more precise insight in
cost factors. We think the PaaS version will produce more
expensive bills, but will also decrease development costs
than the IaaS version. Moreover, we work on adequate
possibilities for application-specific logging. All this work
should finally lead to a consumption-monitoring system.

REFERENCES

[1] A. Dubey and D. Wagle, “Delivering software as a
service,” In: The McKinsey Quarterly, 2007, pp. 1-12.

[2] C. Guo, et al., “A framework for native multitenancy
application development and management,” Proc. on
Enterprise Computing, E-Commerce and E-Services, 2007,
pp. 551-558.

[3] B. Wilder, “Cloud Architecture Patterns: Using Microsoft
Azure,” Sebastopol: O'Reilly Media Inc., 2012, pp. 77-79.

[4] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented
clouds: Vision, hype, and reality for delivering IT services
as computing utilities,” Proc. on HPC, 2008, pp 5-13.

[5] http://apprenda.com/library/software-on-demand/saas-
billing-pricing-models [retrieved: March 2013]

[6] S. Walraven, E. Truyen, and W. Joosen, “A middleware
layer for flexible and cost-efficient multi-tenant
applications,” Proc. 12th Middleware, 2011, pp. 370-389.

[7] S. Walraven, E. Truyen, and W. Joosen, “Towards
performance isolation in multi-tenant SaaS apps,” Proc. on
Middleware for Next Generation Internet, 2012, pp.1-6.

[8] M. Lindner, F Galán, and Clovis Chapman, “The cloud
supply chain: A framework for information, monitoring,
accounting and billing,” Proc. on Cloud Computing, 2010.

[9] I. Ruiz-Agundez, Y.K. Penya, and P. Bringas, "A flexible
accounting model for clouds," SRII, 2011, pp. 277 - 284.

[10] U. Hohenstein, R. Krummenacher, L. Mittermeier, and S.
Dippl, “Choosing the right cloud architecture - A cost
perspective,” Proc. on Cloud Computing and Services
Science (CLOSER), 2012, pp.334-344.

[11] S. Seetharaman, “Energy conservation in multi-tenant
networks through power virtualization,” Proc. on Power
aware computing and systems, USENIX, 2010, pp. 1-8.

[12] Azure Pricing, 2013, www.windowsazure.com/en-us/
pricing/details [retrieved: March 2013]

[13] B. Calder, “Windows Azure Storage billing,” http://blogs.
msdn.com/b/windowsazurestorage/archive/2010/07/09/und
erstanding-windows-azure-storage-billing-bandwidth-
transactions-and-capacity.aspx [retrieved: March 2013]

[14] A. Schwanengel, U. Hohenstein, and M. Jäger, “Automated
load adaptation for cloud environments in regard of cost
models,” Proc. on CLOSER, 2012, pp.562-567.

[15] J. Haridas, M. Atkinson, and B. Calder, “Azure Storage
metrics,” http://blogs.msdn.com/b/windowsazurestorage/ar
chive/2011/08/03/windows-azure-storage-metrics-using-
metrics-to-track-storage-usage.aspx [retrieved: Mar. 2013]

[16] J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Aßmann,
“Towards modeling a variable architecture for multi-tenant
SaaS applications,” Proc. on Variability Modelling of
Software-Intensive Systems, 2012, pp. 111-120.

[17] U. Hohenstein and M. Jaeger, “Using Aspect Orientation in
Industrial Projects: Appreciated or Damned?”, Proc. on
Aspect-Oriented Software Development, 2009, pp.213-222.

[18] Designing Multitenant Applications on Windows Azure:
http://msdn.microsoft.com/en-us/library/windowsazure/hh6
89716.aspx [retrieved: March 2013]

[19] C. Fehling, F. Leymann, and R. Mietzner, “A Framework
for Optimized Distribution of Tenants in Cloud Appli-
cations,” Proc. on Cloud Computing, 2010, pp. 252-259.

[20] M. Jensen, J. Schwenk, N. Gruschka, and L. Iacono, „On
technical security issues in cloud computing,” Proc. on
Cloud Computing, 2009 pp. 109-116.

[21] T. Kwok and A. Mohindra, “Resource calculations with
constraints, and placement of tenants and instances for
multi-tenant SaaS applications,” Proc. on Service-Oriented
Computing, 2008, pp. 633-648.

[22] D. Westermann and C. Momm, "Using software
performance curves for dependable and cost-efficient
service hosting," Proc. on Quality of Service-Oriented
Software Systems (QUASOSS), 2010, pp. 1-6.

[23] C. Osipov, G. Goldszmidt, M. Taylor, and I. Poddar,
“Develop and deploy multi-tenant web-delivered solutions
using IBM middleware: Part 2: Approaches for enabling
multi-tenancy,” In: IBM’s technical Library, 2009.

[24] C. Momm and R. Krebs, “A qualitative discussion of
different approaches for implementing multi-tenant SaaS
offerings,” Proc. Software Engineering 2011, pp. 139-150.

[25] M. Armbrust, et al., “A view of cloud computing,”
Communications of the ACM, 53(4), April 2010, pp. 50-58.

[26] X. Cheng, Y. Shi, and Q. Li, “A multi-tenant oriented
performance monitoring, detecting and scheduling
architecture based on SLA,” Proc. on Joint Conferences on
Pervasive Computing (JCPC) 2009, pp. 599-604.

[27] C. Bezemer and A. Zaidman, “Multi-tenant SaaS apps:
Maintance dream or nightmare,” In: Technical Report of
Delft Uni. of Technology, TUD-SERG-2010-031, 2010.

[28] C. Bezemer, A. Zaidman, B. Platzbeecke, T. Hurkmans,
and A. Hart, “Enabling multitenancy: An industrial
experience report,” In: Technical Report of Delft Uni. of
Technology, TUD-SERG-2010-030, 2010.

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 55 / 263

Community Clouds

A centralized approach

Claudio Giovanoli, Stella Gatziu Grivas

Institute for Information Systems

University of Applied Science Northwestern Switzerland

Olten, Switzerland

{claudio.giovanoli, stella.gatziugrivas}@fhnw.ch

Abstract— Community cloud is one of the rising ideas in the

area of cloud computing. Many companies do not move into

the cloud, as they need tailored solutions to ensure industry

specific security and regulatory requirements. A community

cloud can perfectly fulfill this requirement and costs can be

spread among several organizations. Providing a community

cloud involves aspects like security, privacy, identification and

access management that includes lot of organization. This

prevents providers and users to build a community cloud

despite its advantages. However, until now it is not as widely

spread as other deployment models like public or private

clouds. One reason is that providing a community cloud needs

a lot of organizational effort and communication. Additionally

no standard concept for doing this is elaborated so far. Some

providers are offering community clouds or certain

organizations build one. Nevertheless, each community cloud

underlies a different approach. This paper discusses the

federated and brokered approaches. Additionally, a

centralized approach on how a community cloud can be built

will be introduced.

Keywords-Cloud Computing; Community Clouds; Service

Market; Brokering Service

I. INTRODUCTION

Cloud computing has become a significant technology

trend and provides new possibilities and advantages. It has
open new opportunities to businesses on how to improve the
usage, efficiency and reduce spending of their IT systems.
According to NIST (National Institute of Standards and
Technology of the US) several service and deployment
models are proposed [1]. As a deployment model beyond
private and public clouds, the concept of a community cloud
is proposed. Community clouds are a union of private
clouds, which are tailored to a specific vertical industry, such
as government, healthcare or finance, offering a range of
services including infrastructure, platform or software.
Often, organizations that have shared concerns (e.g., mission,
security requirements, policy, and compliance
considerations) need to fulfill specific security and
regulatory requirements [1].

The use of community clouds is not widespread yet, but
there is definitely interest. Gartner shows with its Hype
Cycle for Cloud Computing that Community Clouds are in
its advent. Nevertheless, Gartner sees a high potential for the
topic within the upcoming two to five years [2].

But what are the reasons community clouds are not

widely used? Community cloud is a way of congregating
users under an umbrella of services. Some businesses may
hesitate to share common resources with competitors. A first
obstacle on the way to a community cloud is to identify the
appropriate community and to convince possible community
mates to cooperate with. A second big drawback of this
deployment model is to define the management, roles and
responsibilities within all stakeholders. For interested
customers, these additional efforts can be very discouraging
to use such a shared cloud environment.

Despite the fact that community clouds are not yet
established, there are some examples in the market. In
particular, the industries of health, finance and government
are early adopters of community clouds rollouts.

Most advantages of a community cloud are covered in

the general benefits of cloud computing such as cost

reduction and the shift from capital expenditures to

operational expenditures.

Nevertheless, a community cloud offers special advantages

compared to other deployment models [3], [4]:

• Secure, private multi-tenant cloud computing satisfies

demanding requirements of the organizations

• Flexible solutions to differing market needs

• Matching market fluctuations in demand

Figure 1. Gartner's Hype Cycle for Cloud Computing 2012 [2]

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 56 / 263

Figure 2. Customers' concerns entering a Cloud [5]

• Application or sensitive data can remain in the

community network

• Less management than a private cloud

• Cost reduction by eliminating owned infrastructure and

software licenses needs

• More efficient and potentially lower cost than existing

systems and less cost than building an own private

cloud or data center.

Several studies are showing that most of customers’

concerns regarding clouds are compliance related issues.

For example, a study published in early 2011 by KPMG [5]

explains that companies are currently facing most often

legal challenges. So, there are issues like security,

uncertainty about the future control of their own data and to

meet legal compliance, which hint potential users.

 Thus, an important benefit of a community cloud is to

address compliance requirements for specific groups like

similar industries and to offer appropriate solutions to its

concerns.
The aim of this paper is to discuss the different

management models (federated, brokered and centralized)
for such community clouds. After the introduction,
challenges of community clouds will be discussed. The third
section gives a short overview on current management
models and introduces a centralized model. Thus, in the
fourth section, a high level architecture of a centralized
system will be suggested. The subsequent parts, sections V –
IX, are explaining the different layers of the introduced
models, from infoplace, to quality gate, over a brokering
service, the cloud service management to finally the concept
of a service market. The last section concludes the paper and
gives a short overview on future work and next steps.

II. CHALLENGES OF COMMUNITY CLOUDS

Besides the introduced drivers, we see some key

challenges within the idea of community clouds, which need

to be considered before building up such kind of cloud.

1) Organizational Structures and management models

for building community clouds

By building up a community cloud, different

stakeholders are involved. Thus, when considering a

community cloud, at least as a special form of private cloud,

two roles can be identified: the service providers and the

service users.

Going one step further, a community deployment model

can consist of several users and several providers, offering

different services with some times similar functionality.

This is mandatory to be able to prevent the well-known

vendor lock-in effect [6]. However, this requires appropriate

organizational structures and management models to avoid

the loss of advantages. Several models will be discussed in

the upcoming section.

2) Communications

Already before planning a community cloud,

communications between the different stakeholders are

crucial. Customers need to understand the advantages and

risks of cloud services within such a closed environment.

But, also, provider(s) have to understand the specific

requirements each community has.

Even at an earlier stage, while thinking about the idea to

build up a community cloud, an appropriate community has

to be identified. Communications have to be initialized with

first community members (clients and users). Thus, we

suggest that the first step for building a community cloud is

the establishment of an appropriate community. This

community should create the business case, set the rules and

organization form, and choose other members and

providers.

But, communications between customers and providers,

like announcements of common SLA adjustments, are

playing also a key role during the cloud operations. To

ensure a good cooperation between the community network,

rules and responsibilities have clearly to be defined and

announced to all stakeholders.

3) Ease of use

While establishing the cloud environment, not only

security, efficiency and compliance issues have to be

considered. As cloud promises fast and on-demand

provision of IT services, customers have to decide easily,

which services they need and want to use. Also ordering and

service termination processes have to be allocated in such a

way that users care able to access and execute services as

easy as possible.

III. MANAGEMENT MODELS FOR COMMUNITY CLOUDS

Management models for community clouds follow either
a federated or a brokered approach [7]. In a federated
approach all institutions (members of the community cloud)
share their own resources, whereas in a brokered approach
sharing of the resources takes place through a third party, the

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 57 / 263

so-called broker. This means, the broker procures the
resources (services) to the community cloud members.

Today the implementation of a federated management
model most often faces challenges mainly due to two main
reasons. First, it is difficult to tackle liability issues like the
legal impact of a service outage or responsibilities. Secondly,
it is hard to provide cost transparency. Questions about the
responsibility of paying support, maintenance and
operational costs are arising. However, such a federated
model comes with its benefits. The vendor lock-in issue does
not exist, risks are distributed and costs are reduced.
Furthermore, it offers full control of the community
members who can share best practice and their industry
specific services.

Today, the brokered model is the usually deployed one,
when implementing a community cloud. In the brokered
model, institutions share provider resources through a so-
called broker. The broker acts as an intermediary and should
provide expert advice to the community. It takes care of trust
establishment and contract settlement. The institutions only
have one party to trust and one contract to sign. The brokers
can also handle disputes in the cloud [8]. This model is
transparent in terms of operation and accountability,
awareness raising, guidance on expectations regarding the
use of the community cloud, levels of security, and meeting
legal obligation (compliance). Operations can be spread
across multiple cloud providers whereby continuity is given.
The broker is fully responsible for security issues, it forces
specific security and regulatory requirements. Participating
institutions do not need to test whether a cloud provider is
effectively mitigating risks. It is the role of the broker to
assure such aspects for the community. At last, a broker can
provide value-adding services like federated identity
management or resource federation [7].

Contrariwise, a third model, the centralized one, has only
one IaaS provider and one broker. The model foresees an
IaaS provider as the leading party, which is responsible for
(i) establishing the infrastructure platform of the cloud
including services such as
- Computational Power
- Networking
- Storage
- Virtualization
- etc.

and (ii) for procuring PaaS and SaaS providers. The broker is
responsible for expert advice and acts as an intermediary. In
this model the broker has different duties, as described in the
brokered model. Operations are spread across multiple
service providers.

With regards to performance aspects, it has to be
considered that a centralized model is highly dependent of a
sole IaaS provider. Thus, we are expecting that in a worst
case scenario, the centralized approach can be less
performing compared to the other models. While the
federated and brokered models are offering the opportunity
to change the provider in such a case, the centralized one
does not.

IV. ARCHITECTURE OF A CENTRALIZED APPROACH

Following a centralized approach opens a wide range for
the establishment of architecture of a community cloud.
Besides choosing an IaaS provider for the leading provider
role, we recommend five layers within the community cloud
architecture. These layers support customers and service
providers through different stages of the service lifecycle.

The cooperation between each of the five components
establishes a trustworthy usage of the different cloud services
within the community. It offers flexibility to the community,
with regards to organization and communication aspects.

Figure 4. A centralized approach

Figure 3. Two main models for Community Clouds [7]

Figure 5. Proposed components of a centralized community model

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 58 / 263

Figure 6. The CLiCk Infoplace [9]

Additionally, it ensures that users can easily get the needed
services with a low commitment to time, money and
management resources. Each of these five layers from
infoplace, Quality Gate, to Brokering Service, Cloud Service
Management and Service Market will be introduced within
the following sections.

V. INFOPLACE

A so-called infoplace builds the entry point for the

community members and can clearly support the

establishment of the communication between the members of

a community cloud.

Whereas potential cloud customers are facing several

challenges and open questions like

- Which services are appropriate to obtain from the

cloud environment?

- Do Cloud Services fit to the IT of my company?

- What are the advantages and benefits, given through

Cloud services?

- Is my company prepared for the cloud?

the infoplace offers assistance to the customer, e.g. readiness

assessments to evaluate potential technical or organizational

gaps within the company.

An additional advantage of the infoplace is the use case

repository. The use case repository enables to store the

collected cloud use cases within the community. It follows a

developed framework, which defines different areas of

interest inside such a use case. Following this scheme also

establishes that use cases can be compared on the different

topics like the service model but also on technical and

management issues.

The use cases should be (i) a viable source for the user to

see how other have compete their cloud projects and (ii) to

support the user by identifying different workloads / process

areas, which are predestined to run in a cloud.

For realizing these infoplace requirements the University

of Applied Science Northwestern Switzerland is building a

platform for guiding users through the cloud life cycle. For

this need, they introduce a project named CLiCk (Cloud Life

Cycle).

The vision of the CLiCk-Infoplace is the provision of self

-services and supportive information, which can be accessed

on an appropriate platform through the accordant enterprises

[9].

VI. QUALITY GATE

All actors within the community cloud need to fulfill
certain criteria. Not everyone is allowed to use the services,
not every application will be offered in the cloud, and not all
service providers fulfill the compliance requirements of the
users. Therefore a quality gate service has to be provided.
The Quality Gate describes an independent service within
the community cloud. Its main purpose is to assess the
general and industry specific criteria, which have to be
followed by all stakeholders in a community cloud (users
and providers). General criteria could be for example the
ability of auditing. Industry specific criteria can dictate e.g.

form, location and minimal duration of storage for digital
records [10]. The quality gate includes:

- Quality of Service Providers: The quality of service

providers needs to be assured because the
community has to follow certain legal restrictions.
E.g. the service provider needs to prove, that their
company obeys to according laws or that they
handle sensitive data with needed concern. Another
aspect is the sustainability of the service provider, it
is important for the success that the company will
exist further. To ensure the quality of service
providers certain standards need to be fulfilled.
These standards can be ISO standards or other
certifications.

- Quality of Services: The offered services need to
have a certain quality. For example a finance
application for financial administration has the
restriction that it needs to be certified by the
government. The quality assurance service should
elaborate a list of criteria, which an application
needs to fulfill. This list of criteria differs depending
on the type of application. For example an
application for wage payment has other criteria than
an application for drawing mind maps.

- Quality of Customers: The third category of the
quality assurance process concerns the users. Goal
is to assess candidates for community membership.
While establishing the introduced community it is
important to setup the conditions for entering the
community and using the services out of the cloud.

To ensure a high level of trust, the role of assessing the
introduced quality criteria within the gate should be executed
by an independent actor.

Criteria should be defined and collected continuously
through a consortium of community members and project
independent advisories.

VII. BROKERING SERVICE

Cloud brokering is not yet finally defined. Several
opinions about what, who and how cloud brokering services
should be able to fulfill exist. One perspective of brokering

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 59 / 263

has been explained in Section III within the brokered
community cloud model. A more generic view, applicable
for most cloud deployment models is given by Buyya [11].
It can be understood as a part of a global marketplace, where
service providers and consumers join to find suitable match
for each other. It provides various services to its customers
such as resource discovery, meta-scheduler, reservation
service, queuing service, accounting and pricing services
[11]. Gartner explains cloud brokering as a “cloud services
brokerage (CSB) is a service provider that plays an
intermediary role in cloud computing” [12]. They see three
different types of brokerage scenarios: aggregation,
intermediation and arbitration [13].

Within the introduced community cloud approach,
brokering services are understood as a provision and convey
of the available services. The cloud broker has knowledge
about the used services by each customer and the available
services in the market. If a customer needs a new service,
e.g. additional software, or an altered quantity of a service,
the brokering service executes the new requirement
immediately and orders it from the service market. Like in
the brokered community model, the broker can also take a
leading role for contracting.

VIII. CLOUD SERVICE MANAGEMENT

The fourth layer deals with service management aspects.

The cloud service management denotes the implementation

and management of additional services that meet the needs

of the community members and includes facilities like:

a) Installation and Configuration: executes

administrative tasks that occur primarily in the

introduction, the transition or the early use of cloud

computing. It includes, for example, adjustments of

organizational processes and structures, and descriptions

of specific cloud projects or complex issues and how

these can be overcome.

b) Resource Management: This topic deals with the

distribution of the (hardware) resources (e.g. based on

best practices) - also with regard to high scalability and

flexibility. It also includes interoperability aspects, so far

by defining standards for higher compatibility between

different services is provided.

c) Service Monitoring and Reporting: offers automated

services to control if agreed parameters like availability,

speed and quality of provided services are accordantly to

Service Level Agreements. This includes also a

customer service for reporting current figures about

usage, costs and delivered performance of services.

A cloud service management can be provided through an

appropriate mix of people, process and information

technology.

IX. SERVICE MARKET

The final element of a community cloud is the

provision of the individual cloud services independent from

IaaS, PaaS or SaaS.

On a so called service market, customers are able to

compare, select, buy and review applications. Users choose

out of a set of qualified cloud services. Any offered service

is tested and approved in the quality gate through an

independent consortium. Usage of the service market has to

be as simple and easy as other well know application stores

like, e.g., Apples iTunes or Google’s Play.

While the infoplace supports customers to find the

appropriate service, the service market leads the client to the

final purchase of a service. A service market model is

potentially valuable for any sort of IT product or service that

is sufficiently industrializes and packaged in order to be

consumed by a non-expert end-user. Such kind of

application store can become the marketplace to access

cloud, commercial software products, skills, as well as to

finally succeed reusing and exchanging software across

different companies. The goal of a service market is to make

IT offerings transparent, unambiguous and comparable.

Furthermore, reduced procurement times, increased user

satisfaction, and reduced costs should be the outcomes of

such a marketplace.

The idea behind a marketplace is not explicitly bound to

a community cloud. But according to Buyya et al. [14] it is

predestinated to be applied for a specific industry

respectively community similar to the logistics clouds.

X. CONCLUSION AND FUTURE WORKS

Cloud Computing is still in its advent, and the number of

interested business and depending business models is

increasing. But many institutions, whether potential

customers or consultancies are hesitating to consume IT

services in a cloud approach. As shown, many issues

concern security and compliance areas. IT has not yet been

successful in getting these issues out of the way to the

cloud.

To decrease such security and compliance issues, a

community cloud is one approach to face these challenges

and to use the advantages of the cloud approach like

reducing costs, faster time to market at the same time.

While a community cloud can improve the security and

compliance issues, it also brings additional challenges.

Compared to other deployment models, organizational and

communication efforts within a community cloud are

increasing as a whole. As other deployment models, like

public and private, commonly are describing a business to

business (customer to provider) dependency. A community

approach opens relations to the entire community

(customers and providers). To ensure the success and proper

management of a community cloud the stated increased

organizational and communication efforts is essential.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 60 / 263

In a good working cooperation the additional effort can

be spread over all community members and will not cause

more effort for the single instance then using other

deployment models.

For the process of establishing a community cloud we

propose as a first step to identify and coin a proper

community with specific similar concerns. This community

shall define the requirements, goals, organizational and

management approaches of the cloud. As concerns

regarding compliance most often are related with the cloud

data center location, the introduced centralized approach,

including one leading IaaS provider, should enlighten the

given regulatory requirements and ensure that Platform- and

Software providers are in line with the community concerns

too.

The introduced layered approach of the centralized

solution supports the community to establish a vendor

independent (excluding the infrastructure provider), flexible

and high quality shared IT environment, where advantages

of cloud computing can be gained. Thus, community

members are able to focus on core businesses instead of

handling with IT issues.
Whether a brokered, federated or centralized approach,

community clouds in general are offering a considerable
option for businesses with sensible IT issues. We see the
community deployment model as a serious suggestion for
future IT services in areas with special security and
compliance needs.

As the introduced centralized approach is only a first
high level architecture, the authors are currently identifying
different domains to initiate a first pilot. Goal is to find few
partners for establishing a pilot of a centralized community
cloud. First talks are held with partners from energy, health
and public industries. Based on their feedback funding and
further partners in the industries for a pilot project will now
be identified. As a first step of such a pilot program, the
domain specific requirements will be assessed to setup the
base for the different layers.

REFERENCES

[1] Mell, P. and Grance, T., “The NIST Definition of Cloud Computing”

Recommendations of the National Institute of Standards and
Technology, NIST Special Publication 2011.

[2] Gartner Inc. , “Hype Cycle Cloud Computing 2012”, Gartner
Incorporate, Stamford: 2012.

[3] Nussbaum, C., “Dissecting the Cloud IV – Community Clouds”.,
2012, Retrieved from
http://www.atomrain.com/it/technology/dissecting-cloud-iv-
community-clouds 07.04.2013.

[4] Butler, B. , “Will community cloud services be the next big thing?”
Digital Publication, Computerworld.uk, 2012, Retrived from
http://www.computerworlduk.com/in-depth/cloud-
computing/3341808/will-community-cloud-services-be-the-next-big-
thing/ 07.04.2013.

[5] KPMG, “Clarity in the Cloud: A Global study of the Business
adoption of Cloud”, KPMG International, Switzerland: 2012

[6] Armbrust et al., “ A View of Cloud Computing: Clearing the clouds
away from the true potential and obstacles posed by this computing
capability” , ACM Communications, University of Berkeley: 2010

[7] Teunissen, H. et al., “Community Clouds; Shared Infrastructre as a
Service”, University of Utrecht, Cloud Seminar, 2011, Retrieved from
http://de.slideshare.net/SNKN-CloudComputing/110616-community-
cloudsseminar-cloud-computing 03.04.2013.

[8] Koelliker, C., “Community Clouds in Domains with Specific Needs:
The Example of Swiss Government Cloud”, Master Thesis,
University of Applied Arts and Sciences Northwestern Switzerland,
Januray 2013, unpublished

[9] Giovanoli, C. and Gatziu Grivas, S.” Building a Knowledge Base for
Guiding Users through the Cloud Life Cycle”, CLOSER Conference
Paper, 2013, to be published.

[10] Duranti, L., Rogers, C., “Trust in digital records: An increasingly
cloudy legal area”, Elsevier, University of British Columbia, Canada:
2012.

[11] R. Buyya et al., “Cloudbus Toolkit for Market-Oriented Cloud
Computing”, Manjrasoft Pty Ltd, Melbourne, Australia, 2012.

[12] Gartner Inc. , “Gartner Outlines Five Cloud Computing Trends That
Will Affect Cloud Strategy Through 2015”, Gartner Incorporate,
Stamford, 2012

[13] Gartner Inc. , “Three types of Cloud Brokerage will enhance Cloud
Services”, Gartner Incorporate, Stamford: 2009.

[14] Buyya, R., Pandey, S. and Vecchiola, C., “Cloudbus toolkit for
market-oriented cloud computing.” Cloud Computing, pp. 24–44,
2009, Retrieved from http://link.springer.com/chapter/10.1007/978-
3-642-10665-1_4 03.04.2013.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 61 / 263

Using MapReduce to Speed Up Storm Identification from

Big Raw Rainfall Data

Kulsawasd Jitkajornwanich*, Upa Gupta*, Ramez Elmasri*, Leonidas Fegaras*, and John McEnery

*Computer Science and Engineering Department

University of Texas at Arlington

{kulsawasd.jitkajornwanich, upa.gupta}@mavs.uta.edu,

{elmasri, fegaras}@cse.uta.edu

Department of Civil Engineering

University of Texas at Arlington

mcenery@uta.edu

Abstract— This paper describes an efficient MapReduce

algorithm for converting raw rainfall data into meaningful

storm information, which can then be easily analyzed and

mined. Our previous work proposed a method to identify

relevant storm characteristics from raw rainfall data. The

original storm identification system takes too long to produce

the summarized storm characteristics, because: (1) the raw

rainfall data, which is considered as big data, is stored in a

traditional relational database based on CUAHSI (Consortium

of Universities for the Advancement of Hydrologic Science,

Inc.) ODM (Observations Data Model), which leads to

substantial disk I/O; (2) the storm identification algorithm is

based on recursion and regular depth-first-search (DFS),

which leads to multiple retrievals for parts of the data. In this

paper, we obtain a substantial improvement in performance by

utilizing MapReduce. We also utilize the original raw rainfall

data text files instead of using the data in the relational

database. In our experiments, the performance of the new

storm identification system is significantly improved compared

to the previous one. With this new system, it will dramatically

benefit hydrologists in helping them performing rainfall-

related analysis (both location-specific and storm-specific) such

as flood prediction using our identified storms.

Keywords-storm analysis; rainfall; big data; MapReduce;

distributed computing; CUAHSI

I. INTRODUCTION

This paper describes an efficient MapReduce algorithm

for converting raw rainfall data into meaningful storm

information, which can then be easily analyzed and mined.

Our previous work [1] proposed a method to identify

relevant storm characteristics from raw rainfall data. The

original storm identification system takes too long to

produce the summarized storm characteristics, because: (1)

the raw rainfall data, which is considered as big data [7][8],

is stored in a traditional relational database based on

CUAHSI (Consortium of Universities for the Advancement

of Hydrologic Science, Inc.) ODM (Observations Data

Model) [17][18][9], which leads to substantial disk I/O; (2)

the storm identification algorithm is based on recursion and

regular depth-first-search (DFS), which leads to multiple

retrievals for parts of the data. In this paper, we obtain a

substantial improvement in performance by utilizing

MapReduce. We also utilize the original raw rainfall data

text files instead of using the data in the relational database.

In our experiments, the performance of the new storm

identification system is significantly improved compared to

the previous one. With this new system, it will dramatically

benefit hydrologists in helping them performing rainfall-

related analysis (both location-specific and storm-specific)

such as flood prediction using our identified storms.

Our raw rainfall data, called MPE (Multi-sensor

Precipitation Estimates) [19][20][21], is estimated by using

combination of radars and physical rain gauges (multi-

sensors) and is retrieved from National Weather Service

(NWS) - West Gulf River Forecast Center (WGRFC) [19].

The raw data is supplied as hourly text files using the HRAP

(Hydrologic Rainfall Analysis Project) standard grid

coordinate system [20][17]. The raw rainfall data is

converted into a relational database in order to follow the

CUAHSI ODM standard, which was required for the

HydroDesktop system [22] that allows hydrology users to

search the rainfall data.

Our previous storm identification system used the

relational data as input. Due to the relational database I/O

overhead, and the tremendous amount of data, system

performance was too slow. The data covers 17 years (1996 -

2012) of historical hourly precipitation, which is translated

to 8.004123763 billion records in the database. We receive

the rainfall data on an hourly basis covering 4 states (Texas,

Colorado, New Mexico, and Louisiana) (mainly Texas) and

part of Mexico (see Figure 1) covering 69,830 site locations.

The number of records inserted per hour, day, month, and

year is 69,830, 1,675,920, 50,277,600, and 603,331,200,

respectively.

In this paper, we develop more efficient storm

identification algorithms using the original text file formats,

and the MapReduce framework to parallelize the

processing.

Figure 1. Coverage of WGRFC observations [19][21]

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 62 / 263

siteID
(x, y)

siteID + 1701
(x, y+1)

(siteID + 1701) - 1
(x-1, y+1)

(siteID + 1701) + 1
(x+1, y+1)

1701 sites different

 425 sites

 3
9
0
 site

s

15599

(290, 10)

17300

(290, 11)

19001

(290, 12)

677288

(290, 399)

677712

(714, 399)

16023

(714, 10)

 3
9
0
 site

s

Figure 2. Relationships among neighboring sites

MapReduce is a programming paradigm developed by

Google in 2004 [5] and now becoming a new standard for

distributed computing. Our previous storm identification

algorithms, based on recursion and depth-first-search,

traverse the data exhaustively without taking advantage of

the known regular grid structure of the raw rainfall data. We

greatly improved the performance by using the original raw

rainfall data and applying MapReduce to every component

of the storm identification process. However, only local

storm and hourly storm identifications (also known as event

separator and sub storm identification in [1]) are discussed

in this paper. The details of each component are described in

Sections IV and V, which are MapReduce for local storm

and hourly storm identifications, respectively. First, we

review the storm identification concepts from [1] in

Sections II and III. Section VI discusses experimental

results. Related work is discussed in Section VII.

II. INPUT DATA STRUCTURE

The raw rainfall data is supplied as text files. The file

name indicates a particular date and time (hourly, e.g.,

2011041323_2011041400), and includes the precipitation

data for all sites during that hour. Each row consists of row

number, site id, and precipitation value (inches). The data is

ordered by site id in a row major order from west to east and

south to north. Sites are in an HRAP regular grid and four

kilometers apart to north, south, east, and west. Each row in

the grid has 425 sites and each column has 390 sites as

shown in Figure 2. Because of the systematic grid structure,

given any site, we can determine the neighboring sites by

using the formulas in Figure 2. Moreover, given any site id,

we can determine its HRAP local X and Y coordinates, and

vice versa using the following equations: (1) and (2).

 (()) ()

 (()) ()

III. STORM-RELATED CONCEPTS

In this section, we review some key components of the

previous work [1] that are needed for this paper. Two main

components are: (1) storm formalization and (2) storm

identification process.

A. Storm Formalization

We formalize storms into three different categories

(local storms, hourly storms, and overall storms), the goal of

which is to develop a storm identification process and storm

characteristics analysis. The following is some terminology

needed for the storm formalization.

- storm duration: the time length over which

precipitation occurs (hours) [23].

- storm coverage: the number of sites covered by a

storm.

- storm area: the total area of a storm.

1) Local Storms

Generally speaking, local storm is a site-specific storm,

which considers each site location independently when

analyzing a storm. An example of local storms is the set of

storms that occurred at site location 586987 last month.

Local storm is one type of storm, which was researched by

most hydrologists [11][12][13][14]. This may be due to the

traditional way of storm analysis, which does the analysis

primarily based on how raw rainfall data are collected and

stored without applying distributed computing technology.

Formally, a local storm is a set of time points and

associated rainfall data at a particular spatial site. Two

distinct local storms are separated by at least h consecutive

time points with zero precipitation, where h is called the

inter-event time [11][12][16]. In this paper, inter-event time

(h) is set to 6 hours as suggested in [11][12]. Several

consecutive time points with zero precipitation within a

local storm, however, are allowed as long as it is less than h

time points. For any local storm, there will not be a

subsequence of h or more consecutive zeroes in the series.

Figure 3 shows some examples of local storms at site id,

586987. Some storm characteristics for this storm type

include:

Time

(hourly)

Precipitation (inches)

0

1 2 3 4 5 6 7 8

0.05

0.10

0.15

0.20

..
.

...

inter-event

time > 6 hrs.

Figure 3. Examples of local storms at site id, 586987

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 63 / 263

654321 60000 70000 45321

50000

9:00 am, 4/1/12

654321 60000 70000 45321

50000

10:00 am, 4/1/12

654321 60000 70000 45321

50000

11:00 am, 4/1/12

grouping-window = 1 hour 1 hr.

Figure 4. Examples of hourly storms at different hours on 4/1/12

- storm depth: the amount of precipitation occurring

throughout the storm duration at a particular site

[23].

- storm intensity: the storm depth divided by the

storm duration (inches per hour) [23].

2) Hourly Storms

Informally, hourly storm is a time-specific storm, which

has an orthogonal concept to local storm. It considers each

hour independently when analyzing a storm. An example of

hourly storms is the set of storms that occurred between

9:00 am and 10:00 am today. Hourly storm considers a

specific time point (an hour) instead of considering a

particular site location. In other words, local storm fixes one

site and covers its data over many time points, whereas

hourly storm fixes a time point and covers its data over

many adjacent sites. Figure 4 shows some examples of

hourly storms at different hours on April 1, 2012.

Formally, an hourly storm is a set of adjacent sites of

local storms at a particular hour. However, a more relaxing

definition can also be applied as discussed in our previous

work [1] as space-tolerance. The concept of space-tolerance

is to allow indirect neighboring sites to be considered as part

of the same hourly storm. In this paper, we use the original

definition of hourly storm, which takes into account only

direct neighboring sites when identifying hourly storms. The

following are storm characteristics that are applicable for

this type of storm:

- storm sites total: the total amount of precipitation

occurring at a particular hour for the sites of an

hourly storm.

- storm average: the average precipitation (per site)

for an hourly storm.

3) Overall Storms

Unlike local storm and hourly storm that consider either

a site location or time (an hour) independently, it considers

both location and time together when analyzing a storm. So,

the result is the capture of storm as a whole, called overall

storm, which can capture storm movement and other storm

characteristics that could not be found in most hydrology

papers [11][12][13][14]. An overall storm is built upon

hourly storms. Some examples of overall storms are shown

in Figure 5.

Formally, an overall storm is a set of hourly storms that

meet two requirements: (1) grouping-window and (2)

spatial-window. Grouping-window is the maximum time

654321 60000 70000 45321

50000

Overallspatial-window = 1

Figure 5. Examples of overall storms

interval within which hourly storms will be considered to be

part of the same storm whereas spatial-window is the

minimum number of common site(s) shared between two

hourly storms. This formalization allows hourly storms that

go to the same direction be considered together. However,

in a rare situation, it is also possible that two different paths

of hourly storms with different origins and/or destinations

could end up being part of the same overall storm. In such

case, the final path of the overall storm will be averaged

based on those two paths. In this work, grouping-window

and spatial-window are set to 1 hour and 1 site, respectively.

Overall storm characteristics include:

- storm overall depth: the total amount of

precipitation occurring throughout the storm

duration across the hourly storms.

- storm overall intensity: the storm overall depth

divided by the storm duration (inches per hour).

- storm overall average: the average precipitation

(per site) for an overall storm.

B. Storm Identification Process

The main goal of our storm identification system is to

analyze storms as a whole. Since a storm can start at one

place and stop at another, we slice the whole storm into

several pieces by hour. We then assemble each slice back

together into the original overall storm. Each slice of storm

is, in fact, an hourly storm. Figure 6 shows architecture of

our previous storm identification system.

The storm identification process can be divided into

three main components: (1) event separator (to identify local

storms), (2) sub storm identification (to identify hourly

storms), and (3) main storm identification (to identify

overall storms). The architecture of our new storm

identification system is shown in Figure 7.

Event

Separator

Sub Storm

Identification

Main Storm

Identification
Hourly Rainfall

Data (MPE)

Identified

Storms
Analyze

Relational Database

Relational Database

Users

Location

Proximity Creator

Storm Identification System

Figure 6. Architecture of previous storm identification system

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 64 / 263

Check within the row &

update prev. array

Check within and across

the row & update curr. array

1
s
t s

c
a

nF
ro

m
 2

n
d
s
c
a

n
 o

n

IV. MAPREDUCE FOR LOCAL STORM IDENTIFICATION

The local storm identification identifies the storms at a
particular site and specifies each storm duration (in hours) at
that site. The previous implementation of local storm
identification required the selection of data from the
relational database and then sorting them. The computation
is done based on the selected sorted data and the result is
inserted back to the database. The selection, sorting, and
insertion required substantial execution time, making it
impractical to analyze the whole raw data.

Our new algorithms utilize MapReduce, and use the
rainfall data text files as input. Each raw rainfall file contains
the precipitation value of all the sites for a particular hour
and hence, for the analysis of local storm, we need to group
all the precipitation values by site and order them by time.
Once all the values for a site are grouped together and
ordered, then we can find all the local storms that occurred at
that site. Thus, the local storm analysis contains two steps:
(1) grouping precipitation values by site and ordering them
by time and (2) finding the local storms for a site from the
grouped values. In the MapReduce framework, there are
three main phases: (1) map phase, (2) sorting and shuffling
phase, and (3) reduce phase. The first two phases of
MapReduce are used to perform the first step of our local
storm identification and the reduce phase is used to find the
local storms at the particular site.

Algorithm 1. Local Storm Identification

Input:
- Text file-format rainfall data

Output:
- Local storms data in text file format

1: class MAPPER

2: function MAP(key object, value line)

3: key <-- (line.siteId, line.time)

4: value <-- (line.precipValue, line.time)

5: Emit(key, value)

6: class REDUCER

7: function REDUCE(key siteId, [val1, val2, …])

8: timeList, precipRec <-- null //timeList.size = inter-event + 2

9: interEventTime <-- 0, lsId <-- 1

10: timeList.Add(firstNonZeroPrecip.GetTime())

11: precipRec.Add(firstNonZeroPrecip.GetPrecipValue())

12: for all val  values [val1, val2, …] do

13: precipRec.Add(val.GetPrecipValue())

14: if (val.GetPrecipValue() = 0) then

15: timeList.Add(val.GetTime())

16: interEventTime++

17: else

18: tempTime <-- timeList[0], Clear(timeList)

19: timeList.Add(tempTime; val.GetTime())

20: end if

21: if interEventTime ≥ 6 then

22: initialTime, finalTime <-- timeList[0], timeList[1]

23: value.Set(initialTime, finalTime, precipRec)

24: Emit(siteId, lsId, value)

25: Clear(timeList; precipRec), lsId++

26: end if

27: end for

Figure 7. Architecture of current storm identification system

The pseudo code for the implementation for local storm
analysis in the MapReduce framework is shown in
Algorithm 1. Each of the map tasks takes one raw rainfall
file and processes it line by line emitting the site and time
together as the key and time and precipitation value together
as the value. We take advantage of the key-comparator class
and grouping-comparator class of MapReduce to group the
data on the basis of site id and then sort them by time. The
reducer gets a site id as a key and list of precipitation values
sorted by time. This list is processed sequentially to identify
all the local storms at that particular site.

V. MAPREDUCE FOR HOURLY STORM IDENTIFICATION

The second main component is hourly storm

identification, the goal of which is to identify hourly storms

for each particular hour.

In the previous approach [1], we assume that any non-

zero precipitation site can be part of the hourly storm,

meaning it can start at one site and stop at a very farther site

as long as there are some connections among them. As a

result, we implemented DFS to keep track of every possible

site and perform site node revisiting when needed. This,

however, led to a high time complexity problem. In

addition, the algorithm interacts with the data in the

relational database, which causes a large overhead.

In the new approach, the program is designed

specifically to take full advantage of the original raw rainfall

data text file structure. Since the grid (HRAP) is known and

we know exactly which site is a neighbor of which, only

those candidate neighboring sites need to be checked.

Unlike previous approach which uses DFS to keep track of

node, we use linked lists and append them together as we

scan when necessary. Moreover, since the data in each text

file is stored in row major order, we scan each grid row

once. An overview of the hourly storm identification

process is shown in Figure 8.

Figure 8. Overview of hourly storm identification process

Local Storm

Identification

Hourly Storm

Identification

Overall Storm

Identification
Identified

Storms
MPE

Hourly Rainfall

Data Text Files

Analyze

Users

Storm Identification System

HDFS

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 65 / 263

Algorithm 2. Hourly Storm Identification

Input:
- Text file-format rainfall data

Output:
- Hourly storms data in text file format

1: class MAPPER

2: function SETUP()

3: prev.InitializeArray(), curr.InitializeArray()

4: hourlyStorms.InitializeArrayOfLinkedList()

5: id <-- 0

6: function MAP(key object, value r)

7: if r  first bottom grid sites then

8: if r.precip = 0 then

9: prev[r.site].hsId <-- 0 //no hourly storm

10: else

11: if r.site = first site or r.leftNeighborPrecip = 0 then

12: prev[r.site].hsId <-- id++

13: temp <-- CreateLinkedList(r.site)

14: hourlyStorms.AddLinkedList(temp)

15: else

16: prev[r.site].hsId <-- id

17: hourlyStorms.GetLinkList(id).Add(r.site)

18: end if

19: end if

20: else if r  next above grid sites then

21: if r.precip ≠ 0 then

22: if r.site = first site or r.leftNeighborPrecip = 0 then

23: CheckPrevious(r, id, prev, curr, 1)

24: else

25: CheckPrevious(r, id, prev, curr, 0)

26: end if

27: else

28: curr[r.site].hsId <-- 0 //no hourly storm

29: end if

30: else

31: prev <-- curr

32: end if

33: function CLOSE()

34: Emit(hourlyStorms)

35: function CHECKPREVIOUS(r, id, prev, curr, flag)

36: if flag = 1 then

37: if hsIds of all 3 neighbors of r in prev. array = 0 then

38: curr[r.site].hsId <-- id++

39: temp <-- CreateLinkedList(r.site)

40: hourlyStorms.AddLinkedList(temp)

41: else

42: minId <-- MinHsId(r.all3Neighbors in prev. array)

43: curr[r.site].hsId <-- minId

44: hourlyStorms.GetLinkedList(minId).Add(r.site)

45: UpdateHsId(r.neighbors, minId)

46: minId <-- 0 //reset minId

47: end if

48: else

49: curr[r.site].hsId <-- id

50: hourlyStorms.GetLinkedList(id).Add(r.site)

51: if hsId of r’s southeast neighbor in prev ≠ id then

52: UpdateHsId(r.southeastNeighbor, id)

53: end if

54: end if

The program starts from the very bottom grid row to the

top by calling map function for each line in the text file. It

begins to identifying hourly storms as soon as it reads in the

data in order to minimize the number of checking. The data

are then kept in two arrays called previous and current

arrays, which are two-dimensional arrays and contains site

ids and hourly storm ids. The current array always does the

identification based on the previous array. There are two

main parts of the program. The first part (line: 7-19) is

executed only once for the very bottom row in a grid

whereas another part (line: 20-32) is executed for the rest.

The first part identifies hourly storms within the same row

whereas the other part identifies hourly storms within and

across the rows simultaneously. At the end of each row

scan, the hourly storms so far are identified and are kept in

an array of linked lists called hourly storms list, in which

index of array indicates hourly storm id and linked list

contains a set of adjacent non-zero precipitation sites of the

hourly storm. When reached the last row, the final hourly

storms are produced and already kept in the hourly storms

list.

Since the raw rainfall data files are independent from

each other, in which each file records hourly precipitation

for an individual hour, MapReduce can easily be applied.

Each hourly file is sent to different mapper nodes for the

identification of hourly storms. At the closing of mapper, all

hourly storms identified within the hour will be written back

to a disk. Currently, no reducer is needed because there is no

need to group the data or sort them in any order. The raw

files, by themselves, are already grouped and sorted by site

id in a row-major order as mentioned in Section II. An

algorithm for hourly storm identification is shown in

Algorithm 2.

VI. EXPERIMENTAL RESULTS

In the previous approach, the experiment was performed

on the rainfall dataset, resided in a relational database, using

a single server. The server runs on Microsoft
®
 Windows

Server
®
 2008 Enterprise operating system with 2.83 GHz

Intel
®
 Xeon

®
 quad-core processors, 20 GB of RAM, 500

GB of local disk, and 10 TB of external disk. In the new

approach, the experiment was performed on the same

dataset that is in the original text file format rather than

relational format using a Hadoop
®
 cluster [6] of 1 frontend

server and 18 worker nodes. Each worker node contains 3.2

GHz Intel
®
 Xeon

®
 quad-core processors, 4 GB of RAM and

1.5 TB of local disk allocated to HDFS. The server has the

same specification but with 3 TB of local disk. The cluster

is set up by using ROCKS Cluster 6.3 OS and then

installing Hadoop
®
 1.0.3 on every node.

Both local storm and hourly storm identifications are

analyzed over 16 months of data. The data has 11,488 hours

and is 10 GB in size. The raw files are in text format. Each

file is for all sites during a single hour and is zipped into one

gunzip file. These files are fed into to the MapReduce job

for the storm analysis. There are separate map tasks for each

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 66 / 263

of the files because each file is gunzipped into separate .gz

files.

The comparison between the time taken by the previous

implementations and the new MapReduce implementations

is shown in Table I. Please also note that the processing

time does not include the time taken to load the data into

HDFS/SQL. In addition, each experiment was performed 10

times and an average processing time is calculated.

The experiments of the new approach give the same

results for both local storms and hourly storms as the

previous approach but is executed significantly faster. The

new approach allows programs to be executed distributedly

on multiple machines and hence the efficiency of the storm

analysis is increased. For local storm (LS) identification, the

time improved to 2.79 hours, compared to 53.44 hours in

the previous approach. For hourly storms (HS), the

MapReduce (MR) took 0.45 hours, compared to 6.78 hours

in the previous method (DFS).

VII. RELATED WORK

There are two main parts of related work: (1) storm

characteristics analysis and (2) MapReduce framework for

spatial data computing.

A. Storm Characteristics Analysis

In most hydrology papers, most rainfall data analysis is

either site-specific or region-specific and only few do storm

analysis by integrating them across sites

[10][11][12][13][14][15][16]. Asquith et al. [11][16][15]

studies storm statistical characteristics by looking at the

means of storm inter-event time, depth, and duration. In

[10][12][14], Overeem and Asquith study storm

characteristics through their DDF (depth-duration-

frequency) properties. Lanning-Rush [13] studies storm

characteristics by focusing on their extreme precipitation

(EP) values. Within these, only a small amount of data and

limited number of gauges were used. The storm analysis

was conducted mainly based on how raw rainfall data is

collected and stored, which is by location stored in different

folders. This might be a reason why there are not many

programs developed to process rainfall data across sites.

Consequently, the flexibility in analyzing overall storm

characteristics was lacking.

Our work, on the other hand, allows rainfall data to be

analyzed in both location-specific (site-specific and region-

specific) and storm-specific. Additionally, a much larger

amount of data across a large number of gauges on HRAP

standard grid coordinates can be analyzed. Our efficient

algorithms were custom designed to take advantage of the

format of the original raw rainfall data, as well as adopt

renowned distributed computing technology, called

MapReduce, to analyze storms in a storm-specific manner.

TABLE I. EXPERIMENTAL RESULTS

Regions / Number

of Raw Data

Sites

Processing Time (in hours)

Previous work Current work

LS

(sec/site)

HS

(DFS)

LS

(sec/site)

HS

(MR)

1. East Texas

(48,953,130)

4,643

8.67

6.72s/site

1.44

<
--

--
--

--
--

 2
.7

9
 h

o
u

rs
 f

o
r

a
ll

 1
0

 r
eg

io
n

s
(0

.2
7

se
co

n
d

s/
si

te
)

 -
--

--
--

--
->

<
--

--
--

--
--

--
--

--
--

--
--

 0
.4

5
 h

o
u

rs
 f

o
r

a
ll

 1
0

 r
eg

io
n

s
 -

--
--

--
--

--
--

--
--

--
--

>

2. Edwards Plateau

(73,415,532)

6,962

8.72

4.51s/site

1.23

3. High Plains
(31,711,927)

3,008

4.50
5.39s/site

0.32

4. Low Rolling Plains
(24,965,521)

2,368

3.35
5.10s/site

0.28

5. North Central

(59,082,957)

5,604

8.66

5.56s/site

1.17

6. South Central

(31,102,334)

2,949

4.28

5.22s/site

0.67

7. South Texas

(31,949,386)

2,933

3.97

4.87s/site

0.48

8. Lower Valley

(5,324,898)

601

0.55

3.32s/site

0.07

9. Trans-Pecos

(65,136,216)

6,177

6.86

4.00s/site

0.55

10. Upper Coast

(22,863,789)

2,168

3.88

6.45s/site

0.57

TOTAL

37,413
53.44

5.14s/site

6.78

This enables flexibility in analyzing overall storm

characteristics.

B. MapReduce Framework for Spatial Data Computing

MapReduce has become the de-facto framework for the

data-intensive applications. It is now being used for big data

related to geography, sciences, humanities, statistics, etc.

There has been previous work for spatial data analysis in

MapReduce. Cary [2] shows the construction of R-Tree

index from spatial data in MapReduce. It uses the mappers

to partition the data and then every partition is sent to a

different reducer which in turn build the R-Tree index on

the input. Google used the MapReduce framework to study

road alignments by combining satellite and vector data [3].

The work focused more on the complexity of the problem

than the implementation in MapReduce. Hadoop
®
 was also

used to build octrees for later use in earthquake simulations

at a large scale [4]. Octrees were built in the bottom up

fashion in their approach. Mappers were used to first

generate the leaf nodes and then reductions were performed

to merge two homogeneous leaf nodes into a sub tree. This

was done in iterations to build the final sub tree.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 67 / 263

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this work, we use the MapReduce framework to

analyze large amounts of raw rainfall data. With this new

system, the original input data structure was fully utilized in

order to create more efficient algorithms for storm

identification. It eliminates the major performance issue

with the previous system, which mostly has to do with the

retrieval of relational data overhead. The experimental

results show significant improvement on both local storm

and hourly storm identifications processes. This will allow

hydrologists to perform: (1) storm analysis (both location-

specific and storm-specific) such as storm frequency and

characteristics analysis and flood prediction and (2) storm

mining such as clustering on types of the storm and

trajectory analysis, more efficiently.

B. Future Work

We will work on the computation of overall storm

identification using the MapReduce framework. We will

also be working on parallelizing the computation of storm

area, storm center, and within storm variations [24] by the

use of MapReduce framework.

REFERENCES

[1] K. Jitkajornwanich, R. Elmasri, C. Li, and J. McEnery, “Extracting
Storm-Centric Characteristics from Raw Rainfall Data for Storm
Analysis and Mining,” Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data (ACM
SIGSPATIAL BIGSPATIAL’12), 2012, pp. 91-99.

[2] A. Cary, Z. Sun, V. Hristidis, and N. Rishe, “Experiences on
Processing Spatial Data with MapReduce,” Proceedings of the 21st
International Conference on Scientific and Statistical Database
Management (SSDBM’09), 2009, pp. 302-319.

[3] X. Wu, R. Carceroni, H. Fang, S. Zelinka, and A. Kirmse,
“Automatic Alignment of Large-Scale Aerial Rasters to Road-maps,
Geographic Information Systems,” Proceedings of the 15th ACM
International Symposium on Advances in Geographic Information
Systems (ACM GIS’07), 2007.

[4] S. W. Schlosser et al., “Materialized Community Ground Models for
Large-Scale Earthquake Simulation,” Proceedings of the 2008
ACM/IEEE International Conference for High Pergormance
Computing, Networking, Storage and Analysis (SC’08), 2008.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI’04), 2004.

[6] C. Lam, Hadoop in Action. Dreamtech Press, New Delhi, 2011.

[7] B. Franks, Taming The Big Data Tidal Wave: Finding Opportunities
in Huge Data Streams with Advanced Analytics. John Wiley & Sons,
Inc., Hoboken, New Jersey, 2012.

[8] DevZone, Big Data Bibliography. O’Reilly Media, 2011.

[9] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 6th
ed. Pearson Education, Massachusetts, 2010.

[10] A. Overeem, T. A. Buishand, and I. Holleman, “Rainfall Depth-
Duration-Frequency Curves and Their Uncertainties,” Journal of
Hydrology, vol. 348, 2008, pp. 124-134.

[11] W. H. Asquith, M. C. Roussel, T. G. Cleveland, X. Fang, and D. B.
Thompson, “Statistical Characteristics of Storm Interevent Time,
Depth, and Duration for Eastern New Mexico, Oklahoma, and
Texas,” Professional Paper 1725. U.S. Geological Survey (USGS),
2006.

[12] W. H. Asquith, “Depth-Duration Frequency of Precipitation for
Texas,” Water-Resources Investigations Report 98-4044. U.S.
Geological Survey (USGS), 1998.

[13] J. Lanning-Rush, W. H. Asquith, and R. M. Slade, “Extreme
Precipitation Depth for Texas, Excluding the Trans-Pecos Region,”
Water-Resources Investigations Report 98-4099. U.S. Geological
Survey (USGS), 1998.

[14] W. H. Asquith and M. C. Roussel, “Atlas of Depth-Duration
Frequency of Precipitation Annual Maxima for Texas,” Scientific
Investigations Report 2004-5041 (TxDOT Implementation Report 5-
1301-01-1). U.S. Geological Survey (USGS), 2004.

[15] W. H. Asquith, D. B. Thompson, T. G. Cleveland, and X. Fang,
“Synthesis of Rainfall and Runoff Data used for Texas Department of
Transportation Research Projects 0-4193 and 0-4194,” Open-File
Report 2004-1035. U.S. Geological Survey (USGS), 2004.

[16] W. H. Asquith, “Summary of Dimensionless Texas Hyetographs and
Distribution of Storm Depth Developed for Texas Department of
Transportation Research Project 0-4194,” Report 0-4194-4. U.S.
Geological Survey (USGS), 2005.

[17] J. S. Horsburgh, D. G. Tarboton, D. R. Maidment, and I. Zaslavsky,
“A Relational Model for Environmental and Water Resources Data,”
Water Resources Research, 2008.

[18] Consortium of Universities for the Advancement of Hydrologic
Science, Inc. (CUAHSI), “ODM Databases,” retrieved: October 26,
2011, from: http://his.cuahsi.org/odmdatabases.html.

[19] National Oceanic and Atmospheric Administration (NOAA),
“National Weather Service River Forecast Center: West Gulf RFC
(NWS-WGRFC),” retrieved: December 31, 2011, from:
http://www.srh.noaa.gov/wgrfc/.

[20] NOAA’s National Weather Service, “The XMRG File Format and
Sample Codes to Read XMRG Files,” retrieved December 31, 2011,
from: http://www.nws.noaa.gov/oh/hrl/dmip/2/xmrgformat.html.

[21] J. McEnery, “CUAHSI HIS: NWS-WGRFC Hourly Multi-sensor
Precipitation Estimates,” retrieved: December 31, 2011, from:
http://hiscentral.cuahsi.org/pub_network.aspx?n=187.

[22] Consortium of Universities for the Advancement of Hydrologic
Science, Inc. (CUAHSI), “HydroDesktop,” retrieved: October 26,
2011, from: http://his.cuahsi.org/hydrodesktop.html.

[23] Virginia Department of Conservation and Recreation, “Stormwater
Management: Hydrologic Methods,” retrieved: May 2, 2012, from:
http://dcr.cache.vi.virginia.gov/stormwater_management/documents/
Chapter_4.pdf.

[24] A. Suyanto, P. E. O’Connell, and A. V. Metcalfe, “The Influence of
Storm Characteristics and Catchment Conditions on Extreme Flood
Response: A Case Study Based on the Brue River Basin,” U.K.
Surveys in Geophysics, vol. 16, 1995, pp. 201-225.

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 68 / 263

A RESTful Approach for a Cloud Gateway

Chang Ho Yun, Jong Won Park, Hae Sun Jung,

Yong Woo LEE

School of Electrical & Computer Engineering

The Ubiquitous-City (Smart City) Consortium, the

University of Seoul

Seoul, South Korea

{touch011, comics77, banyasun, ywlee}@uos.ac.kr

Haeng Jin Jang

Korea Institute of Science and Technology Information

Seoul, South Korea

hjjang@kisti.re.kr

Abstract— Polar research is active nowadays since it gives us

many kinds of information about global climate change so that

we can respond to it more properly. We found that the

research can have much benefit by using a data farm approach,

which gives high performance computing power without limit.

Here, we are interested in providing more convenient and

useful interface to use the high performance computing power

in the polar research. This paper presents a cloud gateway,

that is, a science research gateway which supports cloud and

grid computing in a unique REST architecture. It provides

facilities and interfaces which enable polar researchers to do

computer supported remote collaborative work as well as to

use data farms.

Keywords-Cloud Computing; Grid Computig; REST; Web

Service; Science Gateway; Polar Research.

I. INTRODUCTION

Recently, the change of global climates has emerged as a
global agenda [1]. It has attracted much attention so far and
would do so more and more in future. Korea has been doing
polar research to cope with the problem as well as many
other useful issues which are global issues nowadays. Cloud
computing and Grid computing can significantly help the
polar research experts. We develop a scientific research
gateway, called as Cloud Gateway, which enables the polar
research experts to use the technologies with easiness and
efficiency.

The Cloud Gateway also provides a collaboration
environment for the various kind of polar research. Polar
researchers can do computer supported cooperative work and
share data among interesting research groups beyond
geographical gaps and regardless of different working times.
The management of polar metadata can be easy and efficient
with it.

The Cloud Gateway consists of three tiers - Infrastructure
Tier, Processing Tier and Presentation Tier - to support the
distributed environment. It uses RESTful Web services [2]
for the data transmission and service request between each
tier. Also, it collects, processes and provides many kinds of
information such as Portable Batch System (PBS) accounting
information, information of file system, CPU information
and slave node information to users.

The Cloud Gateway was designed to meet the following
two requirements. Firstly, it should support geographically
scattered multiple computing facilities such as clusters, web
servers, databases, etc. through integrated service. Secondly,
the service should be provided in a user-transparent way.
That is, it should enable polar researchers to use the
computing resources without pushing them to know any
detailed knowledge of the underlying technologies of the
Cloud Gateway.

The Cloud Gateway also has the following three
distinctive factors. Firstly, it has three-tier architectures as
explained before. Secondly, it uses REST technologies so
that users can access geographically scattered multiple
computing facilities through a single interface as explained
before. Thirdly, the web portal is used as the user access
point to the Cloud Gateway in order to meet the user
transparency requirement.

The outline of the paper is organized as follows: Section
2 investigates related works. Section 3 outlines the design of
the Cloud Gateway. Section 4 explains how it was
implemented. Finally, Section 5 gives conclusions and our
plan to the future works.

II. RELATED WORKDS

Currently existing science gateways usually provide high
end resources to a community of users, scientists, and
engineers through web-based graphical interface [3]. A
common approach in the previous generation was to adopt
the JSR 168 portlet component model and WSDL/SOAP
style web services.

The TeraGrid User Portal serves as a launch pad for new
users and a control panel for current users by integrating
TeraGrid Resource Provider, services, and information into a
single web interface serving a national community of
computational researchers [4][5].

The Linked Environments for Atmospheric Discovery
(LEAD) Portal is a science application portal which was
designed to enable effective use of Grid resources in
exploring mesoscale meteorological phenomena [6].

WLCG provides graduate and accurate verification of
performance of hardware resources such as CPU, storage,
and network. It also provides the middleware services for

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 69 / 263

Grid projects and the LHC experiment-specific software
applications [7].

PolarGrid portal added current social networking
techniques to a typical science gateway model to enable a
scientific collaboration [8]. It uses a RESTful Web-service
and Web 2.0 technologies. However, it just uses them for
user interface, not for managing computing resources.

World Wide Web was usually chosen as preferred
infrastructure. Thus, most initiatives adopted Web
technologies such as CORBA (Common Object Request
Broker Architecture) [9], OLE/DCOM [10], SOAP (Simple
Object Access Protocol), etc. Especially, SOAP is the de
facto standard in current science gateways.

REST is widely used because of its simplicity and
lightweight [11]. McFaddin et. al. [12] and Christensen [13]
proposed RESTful service for mobile environments. Volkel
[14] proposed RESTful wiki architecture. Twitter [15],
Flickr [16], Amazon Simple Storage Service (Amazon S3)
[17], Amazon Elastic Compute Cloud (Amazon EC2) [18],
and others provide a REST application programming
interface (API) to their users. However, the RESTful
approach has been seldom applied to the management of
science gateways. Contrastingly, our Cloud Gateway
provides RESTful Web services to manage it.

III. ARCHITECTURE

Our Cloud Gateway uses the three tier Architecture and
RESTful Web service technologies in order to support a
distributed computing environment. There, technologies of
Java platform was used in order to make the Cloud Gateway
be independent of computing platform.

Figure 1. The architecture of the Cloud Gateway.

Figure 1 shows the architecture of the Cloud Gateway.
The tier 1 of the Cloud Gateway is the Cloud Gateway Agent.
The Cloud Gateway Agent is installed on PBS Clusters. It’s
role is to communicates with the Cloud Gateway Manager. It
collects information of CPU, file system, accounting, etc. in
the PBS system and passes an asynchronous message to the
Cloud Gateway Manager when accounting information is

updated. The tier 2 of the Cloud Gateway is the Cloud
Gateway Manager. It does logical processing. It determines
whether the data exist in the metadata database or not. If the
data does not exist, then it collects the data from the Cloud
Gateway Agent when the Cloud Gateway Portal requests
information of accounting or file system. The Cloud
Gateway Portal shows information of accounting and system
resources in the PBS clusters through graph or table. It
provides interface to manage the file system of each node.
Because the Cloud Gateway uses 3 tier architecture, users
can easily manage the scatted resources in cloud computing
environments and/or grid computing environments. Figure 2
shows the operational concept of our three-tier architecture
that can manage multiple clusters.

Figure 2. The multiple cluster management of the Cloud Gateway.

A. Cloud Gateway Agent

The Cloud Gateway Agent gives RESTful web service
and is installed on the master node of the PBS cluster system.
The components of the Cloud Gateway Agent are the
Management Backend, the Management Agent and the
Asynchronous Event Sender.

The Management Backend provides a management
interface to the Management Agent and the Asynchronous
Event Sender. It returns proper responses such as the CPU
information, the file system information, the accounting
information and the detail information of slave nodes of the
PBS system to the Management Agent according to requests
from the Management Agent. The Asynchronous Event
Sender receives an event from the Management Backend and
sends a notification of the event to the Asynchronous Event
Acquirer of the Cloud Gateway Manager. And, it also sends
the request message when the Cloud Gateway Agent is
added to the Cloud Gateway Manager in a first time. The
Management Frontend returns the response according to
requests of the Management Client of the Cloud Gateway
Manager through RESTful web service interface. The
resource managed by the Cloud Gateway Agent can be
accessed through HTTP methods such as GET, POST, PUT,
and DELETE.

Figure 3 shows RESTful web service interface of the
Cloud Gateway Agent. It consists of the ci (Common
Information) and the pi (PBS Information).

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 70 / 263

Figure 3. RESTful web service interface of the Cloud Gateway Agent.

B. Cloud Gateway Manager

The components of the Cloud Gateway Manager are the
Frontend, the Management Broker, the Management Client,
The Asynchronous Event Acquirer, the Metadata Manager,
the Data Visualizer, the Metadata Database and the Image
Server.

The Frontend provides a RESTful web service-based
interface for the Cloud Gateway Portal. It receives requests
from the Cloud Gateway Portal, passes them to the
Management Broker, and returns responses. Figure 4 shows
the RESTful web service interface of the Frontend. It can
also be accessed through HTTP methods such as GET,
POST, PUT, and DELETE.

The Management Broker is accessible by the Frontend
and the Asynchronous Event Acquirer and provides them
with the response according to the request from them. It
manages the agents, obtains monitoring information from the
Metadata Manager and the Management Client. The
Management Broker cannot access other tiers and the Meta
database and uses the Management Client to access other
tiers. The Metadata Manager accesses the Meta database.

The Management Client and the Asynchronous Event
Acquirer communicate with the Cloud Gateway Agent. They
do not do any logical behaviors and pass the event to the
Management Broker. The Management Client requests the
necessary data such as the status of PBS slave nodes to the
Cloud Gateway Agent which uses them to perform the
service of the Management Broker.

The Asynchronous Event Acquirer receives the
asynchronous event from the Asynchronous Event Sender of
the Cloud Gateway Agent. The Metadata Manager can only
access the Metadata Database. The Data Visualizer processes
images for collaboration among polar researchers. These
images are stored in the Image server. In request of the
Cloud Gateway Portal, they are provided through the
Frontend.

Figure 4. REST web service interface of the Cloud Gateway Manager.

C. Cloud Gateway Portal

The Cloud Gateway Portal is a user transparent web
portal. Its components are the REST Facade, the Job
Running Status, the Storage Capacity and the File
Management. The Cloud Gateway Portal uses
Springframework and Ajax/Javascript.

The REST Façade manages the requests and the
responses from the Cloud Gateway Portal to the Cloud
Gateway Manager. The Job Running Status requests
accounting information of PBS cluster using the REST
Façade, translates the response to contents such as the chart
and the table and shows them. The Storage Capacity
component requests the storage and the file system
information of PBS cluster using the REST Façade,
translates the response to contents such as the chart and the
table and shows them. The File Management requests the
information of the file systems in PBS cluster using the
REST Façade, help download and upload and modify the
files.

IV. IMPLEMENTATION

We implemented the Cloud Gateway on a Linux system
using Java language. However, the Cloud Gateway Manager
and the Cloud Gateway Portal can be installed on any
operating system with Java and Tomcat. MySQL was used
as the Metadata database. We used the Restlet package [19]
to build the RESTful Web services. Jnotify package [20] was
used to monitor PBS accounting as a tool [21] for the Cloud
Gateway Agent.

The operations of the Cloud Gateway can be one of the
following three types. First, the response result for request
from the Cloud Gateway Portal exists in the Metadata
Database of the Cloud Gateway Manager. Second, it does
not exist in the Cloud Gateway Manager, so the Cloud
Gateway Manager queries the request to the Cloud Gateway
Agent. Third, the Cloud Gateway Agent sends the
notification of changing the status of the PBS cluster to the
Cloud Gateway Manager.

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 71 / 263

Figure 5. The processing of Job accounting.

An example of the first type is shown in Figure 5. When
the user requests job accounting information, the REST
Façade of Cloud Gateway Portal requests URL of
“/monitoring/report/jobcount” to the RESTful web service
interface of the Frontend of the Cloud Gateway Manager.
Then, the Frontend sends the message to the Management
Broker and the Management Broker analyses the request.
Because the Management Broker can find response result in
the Metadata Database, the Management Broker collects
accounting information by using the Metadata Manager and
returns the result to the REST Façade through Frontend.

Figure 6. The processing of qnodes request.

An example of the second type is shown in Figure 6.
When the user requests the information of slave nodes in
PBS cluster, the REST Façade requests the URL of
“/realtime/qnodes” to the RESTful web service of the
Frontend of the Cloud Gateway Manager. The Frontend
sends the request to the Management Broker and the
Management Broker analyses it. Because the data are not in
the metadata database, the Management Broker requests the
URL of “/agnetinfo/pi/qnodes” to the Management Frontend
of the Cloud Gateway Agent through the Management Client.
The Management Frontend sends the received request to the
Management Backend and the Management Backend queries
the request to PBS cluster. The result of the query is returned
to the Management Client through the Management Frontend.
The Management Client sends it to the Management Broker.
The Management Broker returns the result to the REST
Façade of the Cloud Gateway Portal.

Figure 7. The processing of asynchronous event.

An example of the third type is the asynchronous event in

the Management Backend. The Management Backend of the
Cloud Gateway Agent monitors the accounting logs of PBS
cluster. If the logs are found to be changed, then the
Management Backend sends the asynchronous event to the
Asynchronous Event Acquirer through the Asynchronous
Sender. The Asynchronous Event Acquirer sends the event
to the Management Broker. The Management Broker
analyses it and checks the need to update the Metadata
database. If the Metadata Database is needed to be updated,
then the Management Broker requests the data to the
Management Frontend of the Cloud Gateway Agent through
the Management Client. The Management Frontend returns
the result that is acquired from the Management Backend.
Then the Management Client sends the result to the
Management Broker. Now the Management Broker updates

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 72 / 263

the Metadata Database using them through the Metadata
Management.

Figure 8, 9, and 10 show the snapshot of job running
status, the snapshot of job status, the snapshot of file
management respectively.

Figure 8. The snapshot of job running status.

Figure 9. The snapshot of job status.

Figure 10. The snapshot of file management.

V. CONCLUSION

This paper proposed our cloud gateway model and its
RESTful approach in order to support cloud computing, Grid
computing, computer supported collaboration, etc. for the
polar research. The Cloud Gateway uses the three tier
architecture to provide the RESTful web service. Therefore,
users can access geographically scattered multiple
computing facilities such as clusters, web servers and
databases through a single interface easily, efficiently and
user-transparently. The future works are planned to add
analysis tools for geospatial query components and
visualization components.

ACKNOWLEDGMENT

This study was supported by the Ministry of Education,
Science and Technology in Korea and KISTI (Korea
Institute of Science and Technology Information). This study
was also supported by the Seoul Research and Business
Development Program, Smart (Ubiquitous) City Consortium
(10561) and Seoul Grid Center. This work was also
supported by the 2011 research fund of the University of
Seoul (Yong Woo LEE : the corresponding author).

REFERENCES

[1] M. Kok, W. Vermeulen, A. Faaij, and D. Jager, Global Warming and

Social Innovation: The Challenge of a Climate Neutral Society,
Earthscan Publications Ltd, 2002.

[2] R. T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures, doctoral dissertation, 2000.

[3] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and S.
Pamidighantam, “TeraGrid Science Gateways and Their Impact on
Science,” IEEE Computer, vol. 41, Nov. 2008, pp. 32-41, doi:
10.1109/MC.2008.470.

[4] M. Dahan, E. Roberts, and J. Boisseau, “TeraGrid User Portal v1.0:
Architecture, Design, and Technologies,” Proc. International
Workshop on Grid Computing Environments, Nov. 2006.

[5] J. Basney, V. Welch, and N. Wilkins-Diehr, “TeraGrid Science
Gateway AAAA Model: implementation and lessons learned,” Proc.
The 2010 TeraGrid Conference, Aug. 2010, pp. 1-6, doi:
10.1145/1838574.1838576.

[6] M. Christie and S. Marru, “The LEAD Portal: a TeraGrid gateway
and application service architecture,” Concurrency and Computation:
Practice and Experience, vol. 19, Apr. 2007, pp. 767-781, doi:
10.1002/cpe.1084.

[7] D. Bonacorsi and T. Ferrari, “WLCG Service Challenges and Tiered
architecture in the LHC era,” IFAE 2006, pp. 365-368,
doi:10.1007/978-88-470-0530-3_68.

[8] Z. (G.) Guo, R. Singh, and M. Pierce, “Building the PolarGrid Portal
Using Web 2.0 and OpenSocial,” Proc. The fifth Grid Computing
Environments Workshop, 2009, article no.5, doi:
10.1145/1658260.1658267.

[9] Object Management Group, Inc, Cobra [retrieved: Mar. 2013],
http://www.corba.org/

[10] Microsoft, DCOM [retrieved: Mar. 2013], http://www.microsoft
.com/COM/

[11] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. “big” web services: making the right architectural decision,” Proc.
The 17th international conference on World Wide Web (WWW 08),
2008, pp. 805-814, doi: 10.1145/1367497.1367606.

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 73 / 263

[12] S. McFaddin, D. Coffman, J. H. Han, H. K. Jang, J. H. Kim, J. K. Lee,
M. C. Lee, Y. S. Moon, C. Narayanaswami, Y. S. Paik, J. W. Park,
and D. Soroker, “Modeling and Managing Mobile Commerce Spaces
Using RESTful Data Services,” Proc. The Ninth International
Conference on Mobile Data Management (MDM 08), Apr. 2008, pp.
81-89, doi: 10.1109/MDM.2008.38.

[13] J. H. Christensen, “Using RESTful web-services and cloud
computing to create next generation mobile applications,” Proc. The
24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications (OOPSLA 09),
2009, pp. 627-634, doi:10.1145/1639950.1639958.

[14] M. Volkel, “Semwiki: a restful distributed wiki architecture,” Proc.
The 2006 international symposium on Wikis (WikiSym 06), 2006, pp.
141-142, doi:10.1145/1149453.1149486.

[15] Twitter, Twitter REST API [retrieved: Mar. 2013],
https://dev.twitter.com/docs/api

[16] Yahoo, flickr REST API [retrieved: Mar. 2013],
http://www.flickr.com/services/api/response.rest.html

[17] Amazon, Amazon Simple Storage Service REST API [retrieved: Mar.
2013], http://docs.amazonwebservices.com/AmazonS3/latest/API/
APIRhest.html

[18] Amazon, Amazon Elastic Compute Cloud REST API [retrieved: Mar.
2013], http://docs.amazonwebservices.com/AWSEC2/latest/APIRefe
rence/Welcome.html

[19] Noelios Technologies, Restlet [retrieved: Mar. 2013],
http://www.restlet.org.

[20] O. Yadan, jnotify [retrieved: Mar. 2013],
http://jnotify.sourceforge.net/

[21] R. Mach, PBS XML Accounting Toolkit [retrieved: Mar. 2013],
http://pbsaccounting.sourceforge.net/

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 74 / 263

Adaptive Multimedia Learning Delivered in Mobile Cloud Computing Environment

Aleksandar Karadimce, Danco Davcev

Faculty of Computer Science and Engineering, University Ss Cyril and Methodius

Skopje, R. Macedonia

akaradimce@ieee.org, danco.davcev@finki.ukim.mk

Abstract— The process of integrating multimedia files, such as

different types of learning objects (video, images, audio,

animation, etc.) to m-learning systems requires more

computational resources than mobile devices can provide.

Considering mobile device limitations, such as storage,

computing power and bandwidth, we propose a mobile cloud

computing in order to deliver adaptive multimedia learning

courses to students. In this paper, we propose a PaaS cloud-

based framework, which offloads the process of dynamically

adapting the multimedia content to the context-aware mobile

learning environment. Hence, the student is provided with

multimedia that is tailored to his or her cognitive style and the

content is adapted according to context – aware network

conditions.

Keywords- mobile computing; cloud computing; adaptive

multimedia learning; user profile; context-aware.

I. INTRODUCTION

Incorporation of mobile devices during m-learning is
done in order to improve and increase the scalability,
collaboration and availability of learners. Multimedia
learning systems typically include different kinds of
multimedia resources such as audio, video, images, text etc.,
since they provide an efficient learning environment. There
are always newer multimedia functionalities available on
mobile devices that need to be exploited during the process
of m-learning.

Mobile language learning with multimedia using the

image and audio-based training has opened the opportunity

to develop mobile augmented and virtual reality spheres [1].

However, on the other hand, we can see the opportunities

that mobile cloud computing architecture has provided for

mlearning, with different cloud service models in university

education, using a Software-as-a-Service (SaaS) cloud

model, as in [2]. Similar related work has been done in [3],

with the promotion of potential of m-learning using cloud

computing for talent training in universities. In [4], X. Bai

presented an application for interactive learning through

mobile devices combined with the new technology of cloud

computing where live lectures from the instructor’s webcam

are streamed to the cloud. Hence, the students interact with

the lecturer and this increases the collaboration between

them.
In [12], D. Kovachev et al. introduce the future prospects

of web and mobile multimedia development for creating the
next generation of mobile web applications and the new
standards and protocols like HTML5 and XAML [16].

Similar to the research done in [8], we have also used the
web browser that is an integral part of mobile devices to be
used for accessing the adaptive multimedia learning system.
The main contribution of this paper is exploiting the
processing power of mobile cloud computing to adapt the
multimedia content to the cognitive style and context –
aware network conditions of the mobile user.

This paper is organized as follows: Section II presents
our proposed architecture of the adaptive multimedia
learning framework. Section III describes the data workflow
for provisioning multimedia learning requests. Section IV
presents the results from our experimental mobile
multimedia learning system. Finally, Section V concludes
the paper.

II. ARCHITECTURE OF ADAPTIVE MULTIMEDIA LEARNING

SYSTEM

Existing m-learning systems typically include different
kinds of multimedia resources because they help learners to
be more interactive and interested for collaboration. Using
the existing services on mobile devices, students are able to
send their requests to be processed within the mobile cloud
computing environment, in order to receive diverse
multimedia learning resources. One of the first generic
frameworks for mobile learning through cloud computing
designed for education practitioners was presented by X. Bai
[4]. They have adapted the course material for a mobile
device in the form of learning content and developed a
prototype of mobile-based assessment as a proof-of-concept
for mobile learning. A similar framework could be found in
[5]. That research has introduced an interactive mobile live
video learning system in a cloud environment. Using a
camera, the instructor’s video presentation was captured and
then was uploaded on a private cloud. Later, students using
GPRS/WiFi connectivity on mobile devices are able to
progressively download or replay the video [5].

The proposed adaptive multimedia learning framework
(see Figure 1) in this research adopts the multimedia content
to the cognitive style and context – aware network conditions
of the mobile user. All of the requests from student’s mobile
device are sent to the mobile cloud and the response is
appropriate multimedia content. The mobile cloud
computing role is to offload and to reduce the workload of
mobile devices by exploiting the remote multimedia
processing resources in the cloud. That way, all the SQL
queries that are sent from students and professors and the
heavy-duty processing tasks will be executed in the mobile
cloud.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 75 / 263

Figure 1. Architecture of adaptive multimedia learning framework

Processing of the requests in the mobile cloud starts with
gathering the context-aware information from the mobile
user. Firstly, the mobile request is processed by the Request
broker and scheduled for execution in the cloud. Next,
Content adaptation component is analyzing the request and
checks that the multimedia content is adapted to the context-
aware conditions and user cognitive style. The proposed m-
learning development environment is based on the Platform
as Service (PaaS) cloud model that comes with integrated
developer tools, a database management system and a web
server. The web browser platform can work on different
operating systems for mobile devices, and, in that manner,
students and professors simultaneously can access the multi-
tenant cloud-based platform from any location, at any time.
The students can work on their application independently
and efficiently without additional problems with software
installation and compatibility issues.

Depending on the context-aware network conditions and
the cognitive style estimation, the multimedia files are
adapted and the request is sent to the Content delivery
component to broadcast the appropriate information. The
main advantage of the proposed architecture is that it offers a
direct and flexible connection between the student and the
mobile cloud environment. Different kinds of mobile devices
(iPhone, HTC, Nokia etc.) using the diversity of access
networks can connect to the Internet or telecommunication
networks (using WiFi, WiMAX, UMTS, GPRS, HSDPA,
4G or LTE) and provide access to the needed service. The
intention is to provide a set of mobile services that will allow
mobile devices to communicate with the mobile cloud.

III. DATA WORKFLOW FOR PROVISIONING MULTIMEDIA

LEARNING REQUESTS

The main focus of the proposed adaptive multimedia
learning framework are the multimedia files. Initially, their
delivery depends on context-aware network conditions and
the type of mobile device that the students are using.
Therefore, multimedia files need to be adapted according to
the available bandwidth of the network connection and they
should be encoded with the corresponding format and coding
of the user’s mobile device. Because of existing mobile
device limitations, such as storage, computing power and
bandwidth, we propose to use mobile cloud computing in
order to deliver adaptive multimedia learning content. The
results from our research have provided the data workflow
diagram for provisioning multimedia learning requests in the
adaptive multimedia learning framework.

The advantage of the proposed architecture is that all of
the encoding and adaptation of the multimedia learning
content is done in the mobile cloud and the ready multimedia
data (MM data) is streamed back to the user. The top layer of
the data workflow is dedicated to the mobile device. From
there, the request is sent to the cloud. The collection station
gathers all necessary context-aware information: type of
mobile device, OS of mobile device and bandwidth settings
of the network connection (see Figure 3).

Before users start using an application for the first time,
cognitive style estimation will be conducted. We have used
the Verbal-Visual Learning Style Rating (VVLSR)
questionnaire, intended to tap the cognitive perception style
[15]. The VVLSR questionnaire is an original one-item
rating task used to estimate visualizer-verbalizer style
dimension using a single question [15]. The question is: “In a
learning situation sometimes information is presented
verbally and sometimes information is presented visually.
Please check mark indicating your learning preference” [15].
The answers rate the preference for visual versus verbal
learning on a 7-point scale, as shown in Figure 2. The
process of collecting of all VVLSR answers from the
application users will fill the user profiles database that is
stored in the mobile cloud. Verbalizers are users that have
provided answers counted -3,-2,-1; visualizers are users with
answers counted +3,+2,+1; and bimodal users provide count
0, which are saved in the user profiles database.

Hereafter, the user of mobile device can easily send his
or her requests to be processed within the mobile cloud
computing environment. After processing the received
requests in the Analysis/Estimation engine we will have
adapted multimedia content ready to be delivered to the user.

Figure 2. Verbal-Visual Learning Style Rating 7-point scale [15]

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 76 / 263

Figure 3. Data workflow for provisioning multimedia learning requests

Using the proposed cloud-based framework the CSE
(computer science engineering) students have taken the role
of main developers. They have created database objects,
have written SQL request queries and have developed the
web-based application. The proposed multi-tenant mobile
cloud computing environment provides delivery of the
distance learning environment where all of the participants
are grouped by different roles. The professor has a
supervisory role that allows him to be able to access the
development environment. He can provide scaffolding and
propose more efficient solutions or can interactively support
error debugging in the application development progress. In
the proposed data workflow, students and professors have
independent access to the same development environment,
while the end users have access only to the application level.

The main benefit of this proposed architecture is that no
software download is required for CSE students to start
development on any mobile device with its own web browser
that is integral part of the device. The Web service reference
is based on a Web Services Description Language (WSDL)
document that describes the target Web service. When you
create a Web service reference using a wizard, first it
analyses the WSDL and collects all the necessary
information to create a valid SOAP (the Simple Object
Access Protocol) message. Using web-based mobile
services, users of mobile devices easily send their requests to
be processed within the mobile cloud computing
environment. The received HTTP requests can then be
managed and scheduled for processing in the mobile cloud.

Using the context – aware network conditions, presented
by QoS and the user profile database, which takes into
consideration the user cognitive perception style measured
by QoE, we have the mapping settings given in Table 1.

TABLE I. MAPPING BETWEEN QOS AND QOE METRICS

QoS

Bandwidth

QoE- cognitive perception style

Visual perception Verbal perception

High HQ images, audio

and video

3D graphics,

text and audio

Low Icons and images Text and audio

The mobile cloud is the development platform that

contains the user profile database and the bandwidth network
QoS estimator. The mobile devices provide information for
current bandwidth. If that bandwidth is above the QoS
threshold (1000 KB/s) than the user is in high bandwidth
region; otherwise, below the QoS threshold, the user is
considered to be in low QoS bandwidth region.

Depending on the available QoS factors, the framework
can adapt to low or high bandwidth scenarios. The proposed
mapping, given in Table 1, considers at the same time the
user cognitive perception style. For better network
conditions, in high bandwidth, the system can deliver more
dynamic and high quality information. However, in low
bandwidth conditions we have estimated that more static
media is delivered (icons, images, text and audio). Therefore,
according to the context –aware preferences, the system is
providing adaptive change of the multimedia type [6]. In the
last step, the requested multimedia learning content is
streamed back to the mobile device. The mobile user
receives dynamically adapted multimedia content to the
given context compatible with its mobile device.

IV. EXPERIMENTAL MOBILE MULTIMEDIA LEARNING

SYSTEM

Cloud computing is a real benefit for young and
developing universities that do not have diverse computer
laboratory facilities. With the integration of cloud computing
technology for the courses, such as Distributed Database
systems, requirements for dedicated development platform
and intensive computational resources are inevitable. There
already have been different related studies for cloud service
models in the university, using a Software-as-a-Service
(SaaS) cloud model, as in [2]. Similar related work has been
done in [3], with the promotion of the potential for m-
learning using the cloud computing, and the stress is put on
virtualization, using the Infrastructure-as-a-Service (IaaS)
cloud model.

We have proposed an experimental mobile multimedia
learning system that is based on the Platform as Service
(PaaS) cloud model, and it will extend the potential for
developing web applications that require database
background. The Oracle APEX [13] platform is a
comprehensive web-based SQL and application development
environment that delivers platform for fast, reliable
development and running on web applications [7].

The Oracle APEX web-based platform in a mobile cloud
environment allows us to write our custom SQL query and
generate reports according our needs directly from the
mobile device, see Figure 4.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 77 / 263

Figure 4. Running SQL query on Oracle APEX using HTC.

After we have compiled the configuration of the
application, we have run experiments with three most used
mobile devices: iPhone, HTC, Sony Ericsson and Nokia,
which can access the Oracle APEX framework. Using the
APEX platform, university students have used a simple use
case web-based application for online shopping. The
database system consisted of 3 tables: Customers, Products
and Orders.

Figure 5 provides a comparison overview of the Products
table which contains multimedia content, presented on
iPhone, HTC and Nokia mobile devices. Using this
overview, we cannot distinguish any significant difference
when presenting the multimedia content between the three
types of mobile devices.

We have done similar comparisons for the Customers
and Orders database tables. There was also no difference in
the display of information between the three mobile devices.
Significant dissimilarity between the mobile devices was
noticed in the Reports in Figure 6, where a web-based OLAP
report is executed. Here, Nokia and iPhone mobile devices
did not provide the expected multimedia graphs for the
Report of Sales by Category/Month. The Sony Ericsson
mobile device that uses Android mobile OS, on the other
hand created a colorful histogram for the Report of Sales by
Category/Month, as seen in Figure 6.

We noticed from our research that there was also a
different adaptation of the multimedia content for different
interfaces, depending on the web browser used by the mobile
device because they displayed the same code page
differently. Adapted multimedia content is usually
compressed using compression algorithms or codecs in order
to achieve smaller file size for faster transmission or more
efficient storage [12]. The results from the experiments have
shown that using different mobile devices to access a single
cloud computing platform, in this case Oracle APEX,
produces different user experiences.

Figure 5. Comparison of database tables for Oracle APEX with HTC

(top), Nokia (middle) and iPhone (bottom).

We have used OPNET for our simulations. It provides a
comprehensive development environment with a full set of
tools including model design, simulation, data collection,
data analysis and support on the modeling of communication
networks [14]. This simulator provides a way to model the
network behaviors by calculating the interactions between
modeling devices. We have used the Discrete Event
Simulation (DES) because it enables modeling in a more
accurate and realistic approach. It creates an extremely
detailed, packet-by-packet model for predicting the activities
of the network. The simulation models of individual mobile
device were developed using the OPNET network simulation
software that provides a virtual network communication
environment.

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 78 / 263

Figure 6. Comparison of reports for Oracle APEX with Sony Ericsson

(top) and iPhone (bottom).

The network simulator was configured to run one hour of
multimedia learning content, and the comparison of the
results is presented in Figure 7. The dark blue line measures
the performance from laptop using a classical web-based
application without any mobile cloud environment, which
takes most of the performance load. The red line measures
the HTC mobile device, the green line measures the Nokia
mobile device and light blue line measures the iPhone
mobile device. For all mobile devices we have used the
mobile cloud environment to show the decreased
performance load. The simulation results from the
multimedia performance load analysis clearly show that
mobile devices using applications in a mobile cloud
environment have a decreased performance load compared to
the classical web-based application.

A. Manjunatha et al.[16] are exploring the data intensive
calculations for mobile and cloud computing landscape.
Similarly, S. Wang et al.[17] are addressing the adaptive
mobile cloud computing techniques for graphic rendering.
The integration of mobile and cloud is used for adaptive
display virtualization [18]. Similarly, R. S. Khune et al.[19]
proposed a cloud-based intrusion detection system for
Android mobile devices that provides continuous in-depth
forensic analysis to detect any misbehavior in network. In
our case study mobile devices with Android mobile OS have
presented the complete report with multimedia information.
On the other hand, mobile devices that have Symbian and
Apple mobile OS have not displayed completely the needed
multimedia content. The multimedia content is usually
compressed using compression algorithms or codecs, in
order to achieve smaller file sizes for faster transmission or
more efficient storage [12].

Figure 7. Comparison of performance load in OPNET simulator.

TABLE II. COMPARISON OF DIFFERENT MOBILE DEVICE MEDIA

PLATFORMS

Type of

media format

and codecs

support

Android 3.0

[9]

Symbian S60

[10]

Apple mobile

OS [11]

Audio AAC, MP3,

MIDI, OGG

(vorbis), WAV

MP3, OGG

(vorbis), AAC,

WMA

AAC, HE-

AAC, MP3,

MP3 VBR,

AIFF, WAV

Image JPEG, GIF,

PNG, BMP

JPEG, GIF,

PNG, BMP,

MBM

JPG, TIFF, GIF

Video H.263, H.264

AVC, MPEG-

4, VP8

WMV, FLV,

MP4, OGG,

3GP

H.264, MPEG-

4, Motion JPEG

 In Table 2, a comparison of the different mobile device

media platforms is based on different formats and coding

protocols for Apple, Android and Symbian mobile OS [9-

11]. This represents another major challenge that m-learning

faces, to adapt multimedia contents in order to be

compatible with different mobile devices. Future mobile

cloud computing applications should be able to provide

conversion of media types to a compatible media format and

codecs support for present mobile devices.

V. CONCLUSION

Mobile multimedia learning systems provide an intuitive
and collaborative environment where users can experience
the advantages of flexibility, portability and scalability.
Mobile cloud computing can reduce the workload of mobile
devices by exploiting the remote multimedia processing
resources in the cloud. Therefore, all the services need to be
designed in order to put less workload on the mobile device
and allow heavy-duty processing tasks to be done in the
cloud.

We have developed a framework for mobile adaptive
multimedia learning systems that is delivered using a mobile
cloud computing environment. This kind of environment
provides users with the appropriate mapping settings
between the type of context – aware network conditions
presented by QoS and user profile estimation, which takes
into consideration the user’s cognitive perception style stated

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 79 / 263

by QoE. The experiments done using three different types of
mobile devices have heightened the importance of choosing
the appropriate device to be used in mobile multimedia
learning systems.

REFERENCES

[1] S. Joseph, and M. Uther, “Mobile language learning with
multimedia and multi-modal interfaces,” Proceedings of the
IEEE International Workshop on Wireless and Mobile
Technologies in Education. (ICHIT’06), 16-17 Nov. 2006, pp.
124-128, DOI:10.1109/WMTE.2006.30.

[2] S. Xiaojuan, R. Guang-wen, and W. Zhe, “The application of
cloud computing SaaS delivery model in university talents
training,” Proceedings of the IEEE Digital Manufacturing and
Automation (ICDMA), 5-7 August 2011, pp. 1203–1205.
DOI:10.1109/ICDMA.2011.296.

[3] Q. Shuai, and Z. Ming-quan, “Cloud computing promotes the
progress of M-learning,” Proceedings of the IEEE conference
of Uncertainty Reasoning and Knowledge Engineering
(URKE), 4-7 August 2011, pp. 162–164, DOI:
10.1109/URKE.2011.6007934.

[4] X. Bai, “Affordance of Ubiquitous Learning through Cloud
Computing,” Proceedings of 2010 Fifth International
Conference on Frontier of Computer Science and Technology,
978-0-7695-4139-6/10, 2010 IEEE, pp. 78-82, DOI:
10.1109/FCST.2010.109.

[5] S.Mohana Saranya, and M.Vijayalakshmi, “Interactive mobile
live video learning system in cloud environment,”
Proceedings of the IEEE International Conference on Recent
Trends in Information Technology, ICRTIT 2011. 3-5 Jun.
2011. Chennai, pp. 673-677, DOI:
10.1109/ICRTIT.2011.5972458.

[6] A. Karadimce, and D. Davcev, “Personalized Multimedia
Content Generation Using the QoE Metrics in Distance
Learning Systems,” Proceedings of Fourth International
Conference on Adaptive and Self-Adaptive Systems and
Applications. ADAPTIVE 2012. 22-27 Jul. 2012. Nice,
France, pp. 1-6, ISBN: 978-1-61208-219-6.

[7] J. Wang, and J. L. Kourik, “Delivering database knowledge
with web-based labs,” Proceedings of American Society of
Business and Behavioral Sciences. ASBBS in Las Vegas.
Volume 19 Number 1. February 2012, pp. 923-931.

[8] L.J. Zhang, “EIC Editorial: Introduction to the Body of
Knowledge Areas of Services Computing,” Proceedings of
IEEE Transactions on services computing, Vol. 1, No. 2.
April-June 2008. pp. 62-74.
http://tab.computer.org/tcsc/tsc2008020062.pdf [retrived:
February, 2013]

[9] Android Supported Media Formats.
http://developer.android.com/guide/appendix/media-
formats.html [retrived: February, 2013]

[10] Symbian OS - News, Tutorial and Development Updates.
http://symbian-os-development.blogspot.com/ [retrived:
February, 2013]

[11] Apple iPhone specification.
http://www.apple.com/iphone/specs.html [retrived: February,
2013]

[12] D. Kovachev, Y. Cao, and R. Klamma, “Mobile Multimedia
Cloud Computing and the Web,” Proceedings of the 2011
Workshop on Multimedia on the Web. MMWEB '11. Graz,
Austria, September 8, 2011, pp. 21-26,
DOI:10.1109/MMWeb.2011.16.

[13] D. Baker, and T. Jennings, Oracle Database 2 Day +
Application Express Developer's Guide, Release 4.0. E15516-
04.Oracle, 2010.
http://docs.oracle.com/cd/E17556_01/doc/appdev.40/e15516.
pdf [retrived: February, 2013]

[14] Z. Lu, and H. Yang. Unlocking the Power of OPNET
Modeler. Cambridge University Press, January 2012.

[15] R. E. Mayer, and L. J. Massa, “Three facets of visual and
verbal learners: Cognitive ability, cognitive style and learning
preference,” Published in Journal of Educational Psychology.
833-846. DOI: 10.1037/0022-0663.95.4.833.

[16] A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan,
"Power of Clouds In Your Pocket: An Efficient Approach for
Cloud Mobile Hybrid Application Development," Published
in 2nd IEEE International Conference on Cloud Computing
Technology and Science. 496-503.DOI
10.1109/CloudCom.2010.78.

[17] S. Wang, and S. Dey, “Adaptive Mobile Cloud Computing to
Enable Rich Mobile Multimedia Applications,” Published in
IEEE Transactions on Multimedia. January 2013. 1-14.
ISSN:1520-9210.

[18] S. Sridhar, G. Satish, G. Raja, and Sumalatha Ramachandran,
"Adaptive display virtualization and dataflow model selection
(ADVADAMS) for reducing interaction latency in thin
clients," in 2012 International Conference on Recent Trends
In Information Technology (ICRTIT). April 2012. 233-238.
ISBN: 978-1-4673-1599-9.

[19] R. S. Khune, and J. Thangakumar, "A Cloud-Based Intrusion
Detection System for Android Smartphones," in 2012
International Conference on Radar, Communication and
Computing (ICRCC). December 2012. 180-184. ISBN:978-1-
4673-2756-5.

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 80 / 263

Digital Signature as a Cloud-based Service

Wojciech Kinastowski
Institute of Control and Information Engineering

Poznan University of Technology
Poznan, Poland

wojtek@kinastowski.pl

Abstract—Cloud-based digital signature can be seen as a model
for reliable, convenient, on-demand network access to security
infrastructure that performs cryptographic operatio ns of
digital signature. This study proposes a protocol for data
exchange between signer and signing-enabled cloud
environment in the cloud-based digital signature model. It also
covers performance results and implementation notes of Signer
entity.

Keywords-Digital Signature; Cloud Computing; Cryptography.

I. INTRODUCTION

Recently, cloud has become a new paradigm for
delivering computing as a utility. Although the theory behind
cloud computing is based on decades of the existing
technologies and research, enthusiastic response from
developers and widespread acceptance among users confirms
that cloud computing is here to stay and likely to play an
even more important role as a concept in many fields of
information technology, including encryption. Defining
cloud computing as a “model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [1], and digital signature as “the
result of a cryptographic transformation of data which, when
properly implemented, provides the services of: origin
authentication, data integrity and signer non-repudiation” [2],
cloud-based digital signature can be seen as a model for
reliable, convenient, on-demand network access to security
infrastructure that performs cryptographic operations of
digital signatures.

The main difference between a standard digital signature
system and a cloud-based one is that, while the first operates
in the “close” environment of a personal computer and
plugged-in dedicated devices (microchip card and card
reader), the cloud-based system involves network data
exchange between signer and signing-enabled cloud
environment. This paper proposes a protocol for this data
exchange and, as a result, outlines Software as a Service
(SaaS) cloud that performs digital signature.

The paper is organized as follows. Section 2 describes
some basic requirements for cloud-based digital signature
system. Next, in Section 3, the protocol's entities and data
flow are analyzed. Section 4 details each step in the protocol.
Section 5 is based on the implementation of Signer entity

and covers performance results and implementation notes.
Finally, the related work and motivation for future work are
discussed at the end of the paper.

II. REQUIREMENTS

Requirements for cloud-based digital signature protocol
are associated with the demands for newly designed public-
key cryptosystems reported in the literature [4,5,6].

A. Security

Security of cloud-based digital signature system simply
refers to the protection of user’s private key from being
retrieved and/or used without authorization. Each time the
private key is restored in the cloud it can be extracted and
used outside the system (attack on key). Other threats are
related to unauthorized use of the private key inside the
system, which may be affected by a modification of data sent
for signing (attack on data) or being impersonated online
(impersonation attack).

Considering the source of risk to the system’s security,
we can identify two main groups of threats. The system can
be compromised by vulnerabilities in supporting software
(including operating system, web browser, web server,
database server etc.). This kind of threats can be called
indirect because they are not related to the process of cloud
signature itself. The affected system may disclose
confidential data or allow unauthorized modification to data
flow. The ability to protect the system against indirect threats
is obviously limited. Therefore, when designing a secure
cloud signature system, it is necessary to analyze the effects
of a successful attack using vulnerability in supporting
software. In such a case, security of user’s private keys must
be preserved.

The other group of risks is directly related to
vulnerabilities in the system’s protocols and procedures
(direct threats). They may occur in each component of the
system and at each stage of the process. In contrast to the
indirect risks, a successful attack using the features and
characteristics of the protocols and procedures of designed
system results in disruption of the signature process and
often allows an attacker to compromise private keys restored
in the cloud. Therefore, a secure cloud signature system must
prove its resistance to direct threats.

When analyzing security of centralized cloud signature
system, all the involved protocols and procedures need to be
examined to understand the scope of potential attacks. When
only a single private key can be compromised, we are talking

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 81 / 263

about local-scope threats. The attacks which threaten all
private keys and any signing process are considered global-
scope.

B. Usability

ISO [23] defines usability as "the extent to which a
product can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction in a
specified context of use” (ISO 9241-11:1998). The emphasis
placed on this requirement stems from the belief that current
systems do not correspond with modern standards of
usability (well known from electronic payment systems and
e-banking) and that high usability is always at odds with the
requirement of high security level [3,7].

A radical method of achieving high usability is to
eliminate dedicated devices for digital signature (microchip
cards, card readers) and propose data e-signing as in-cloud
service. By transferring processing logic to infrastructure
provider (cloud) and providing a simple access interface, the
process of digital signature can be reduced to standard
authentication and secure data transfer.

C. Cross-platform and integration capabilities

In order for any kind of digital system to be considered
cross-platform, it must be able to operate in any hardware
and software configuration. Dedicated hardware in
conventional digital signing solutions impose mandatory
system requirements. It makes porting the system to new
platform (e.g., mobile devices) very complicated. It also
makes it difficult to integrate digital signing services with
other electronic services.

Providing an interface for digital signature services
through standard network protocols has multi-platform
capabilities at both the hardware and software level. Transfer
of processing logic to cloud also offers great opportunities
for integration with other electronic services residing in the
cloud.

III. PROTOCOL BASICS

We can identify four basic protocol entities:

A. Signer

Signer (User) is the client for signature service, whose
private key is restored in the cloud in digital signing process.
Considering the complexity of the digital signature process,
the system requirements for signer are minimal. They
encompass a mobile device with an active SIM card (e.g.,
phone) and a device with Internet access (e.g., Internet
enabled PC with modern web browser). These very basic
requirements allow processing regardless of hardware and
software platforms. For the mobile device, it means
flexibility in terms of architecture and operating system as
well as services offered by the mobile operator. For the
Internet enabled device, there are no operating system and
web browser restrictions. Nevertheless, there are computing
power and web browser supported technologies issues
related to client-side cryptographic operations. This is
discussed in Section 5.

The concept of moving processing to the cloud eliminates
the need for dedicated hardware and software. Signer does
not have to deal with a microchip card, a card reader and pre-
installed software.

B. Issuer

Issuer is an entity that owns or creates data signed by
Signer in digital signing process. In this paper, the most basic
model is presented, which assumes that Issuer and Signer are
the same user. However, it should be noted that more
complex models with separation of these roles can be
presented. Regardless of role separation, issuing data is also
characterized by “cloud-based processing logic”. Thus, the
system requirement remains the same for both Signer and
Issuer.

C. Proxy

Proxy provides the interface for the digital signature
service in cloud. The device consists of a single server or a
group of servers with software that supports HTTP
communications protocol (web server), database
management system and dedicated applications. The role of
proxy server is reduced to managing and monitoring user
access to a hardware security module (HSM) where
cryptographic operations of cloud-based digital signature are
implemented. Process management includes user’s
authentication as well as collecting and formatting data sent
to the HSM. Proxy also performs monitoring and logging
system events.

D. Hardware Security Module (HSM)

HSM is a device with built-in secure cryptoprocessor
dedicated to managing cryptographic keys and carrying out
cryptographic operations of cloud-based digital signature.
The HSM certified by NIST [24] is considered tamper-
resistant, which is why the environment of this protocol
entity is assumed secure in both the logical and physical
layer.

As mentioned earlier, the basic model of cloud-based
signature service assumes that Signer signs data he owns.
The model describes the interaction of three entities
(Signer/Issuer, Proxy and HSM). Signer/Issuer and Proxy
communicate with HTTP protocol. In order to provide a
higher level of security, this communication should be made
over a secure TLS channel. HSM can be connected to
Proxy as a built-in device (e.g., PCI device) or reside as a
standalone cryptoserver. The detailed configuration of cloud
environment (Proxy and HSM) is beyond the scope of this
paper.

IV. PROTOCOL DETAILS

User, in addition to unique identifier �name� and
password �pass�, has a mobile phone with active SIM card
and corresponding phone number. This device is used to
receive text messages, sent from the signing system,
containing the value of one-time password (OTP).

Each user is assigned an asymmetric public-private key
pair (kpub

user
, kprv

user) representing electronic signature keys. Key

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 82 / 263

kprv
user is used to digitally sign data, which is why its protection

is critical from a security point of view.
Hardware security module maintains its own asymmetric

key pair (kpub
hsm

, kprv
hsm

) , symmetric key K, the value of
OTPsecret for the one-time password generation algorithms
and implements the following:

• Gen - password-based key derivation function [8],
• Symenc, Symdec - encryption and decryption

algorithm of symmetric cipher working in
Authenticated Encryption (AE) mode [9,10],

• Asym - asymmetric cipher,
• Sign

Asym
 - digital signature algorithm,

• GenOTP - one-time passwords generator [11,12].

Proxy stores k�
user

 necessary to restore the user's private key:

 k�
user

=	Sym
K

enc(Sym
Gen�pass�
enc 	kprv

user
) (1)

In order to sign a document (doc), the following steps are
performed:
1. User connects to the Proxy and pre-authenticates. In

order to keep the protocol as simple as possible, Signer
uses only one password in the system. Although the pre-
authentication process is used mainly for phone number
identification, it uses the same password that secures
users private key. That’s why security requirements for
this process should be relaxed, for example, by using
collision-rich functions [7]. Another idea is to allow
clients to pre-authenticate to servers using zero-
knowledge proofs.

2. The server identifies the phone number of the
authenticated user and initiates the process of providing
one-time code OTP.

3. The user downloads the software, necessary for protocol
communication, as a dynamic website. Using the
supplied implementation of algorithms User generates:

 doc� = Sym
Gen(pass||OTP)

enc (doc) (2)

 pass� = Asym
kpub

hsm(pass) (3)

 and sends (login, pass,
 doc�) to Proxy.
4. Proxy forwards (pass,
 doc�) dataset received from user

together with k�
user

 suitable for an authenticated user to
the security module (HSM).

5. HSM restores:

 pass=Asym
Kprv

hsm(pass�) (4)

 OTP=GenOTP(k�
user

 || OTPsecret) (5)

 doc=Sym
Gen(pass||OTP)

dec (doc�) (6)

 kprv
user

= Sym
Gen�pass�
dec (Sym

K

dec(k�
user

)) (7)

As the algorithm Sym���operates in AE mode, operation
(6) confirms the integrity and authenticity of the
document and verifies the one-time password. Similarly,
operation (7) also authenticates User by verifying (pass).

6. Security module (HSM) signs a document using the
user's private key kprv

user

 docsign= Sign
kprv

user(doc) (8)

Fig. 1 depicts a detailed view of the protocol flow by
describing the sequence of actions in a process. The key
features can be summarized as follows:

• Independent proofs. Security of the user's private
key relies on two independent proofs of identity:
something the user has (registered SIM card and the
phone receiving one-time passwords) and something
the user knows (password).

• 'Sole control'. The private key remains under the
user’s 'sole control'. Key data is encrypted with
password known only by Signer. It is impossible to
restore even by the service provider. The only person
who can do that is Signer. The concept of 'sole
control' is discussed in detail in [14].

• Security functions in HSM. All main security
functions are moved to a secure environment of
Hardware Security Module. Outside the HSM
private keys and data to be signed are always
encrypted. Verification of independent proofs
(password and one-time password) is also
implemented in HSM by using a symmetric cipher in
AE mode.

• High usability level. From Signer’s point of view
digital signature process has been reduced to
standard authentication and secure data transfer (see
Fig. 1). Signer does not need any dedicated devices
for digital signature.

• Event logging. Proxy can be used as an event logger
in the system, which meets the requirement to
include generating digital signature into the security
process of public key infrastructure (PKI) pointed
out in [6].

V. SIGNER ENTITY IMPLEMENTATION NOTES

As mentioned earlier, there are some implementation
issues related to client-side cryptographic operations that
must be analyzed in order to estimate the additional
computational overhead of the proposed protocol when
comparing to basic server-side digital signature protocol,
with no client-side encryption (e.g., one proposed in [16]).

First of all, the client-side cryptographic operations,
performed in step 3 of the protocol, are executed
transparently in browser environment and will probably be
implemented in JavaScript. Most web programmers agree
that the biggest challenge in web design lies in dealing with
the variety of browsers. While the majority of active page
elements are reliably rendered in most browsers, each
browser has its own quirks when it comes to the
implementation of JavaScript engine. This might cause

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 83 / 263

different overhead for the same machine when performing
cryptographic computation in different browsers. Secondly,
client-side data encryption requires loading local files. Such
feature is not supported by older browsers. A standard way
to interact with local files was introduced in HTML5
specification, so an up-to-date, HTML5-enabled browser is
required to interact in the protocol. Although this entails
additional restrictions, the need to use an up-to-date browser
also meets the security requirements mentioned in Section 3.

Further notes are based on Signer entity implementation,
prepared as dynamic HTML page with SJCL library for
cryptography in JavaScript [20]. For asymmetric encryption
256-bit ElGamal ECC was used. Symmetric encryption is
performed with 128-bit AES in CCM mode. Table I shows
the average execution time for step 3 (see Section 4) for
different sizes in different browsers.

It has been observed that performing symmetric
encryption on larger files causes browser to freeze. This
behavior is unacceptable in terms of usability. To avoid this,
larger files should be split into smaller parts and encrypted
separately. When choosing the size of file splitter the
following factors must be taken into consideration. Still,
encryption of large file parts might cause the browser to
freeze on older machines. Small file parts increase the
number of iterations in encryption loop, which influences
overall performance.

Table II shows the average execution time of encrypting
10 MB file with different splitter size. The test was
performed on two different computers with high and low
computing power, respectively.

In addition to computation overhead, there is also the
additional download size of required scripts. Using well-
known optimization techniques this size can be reduced to
approximately 50kB, which is negligible from the user’s
point of view.

VI. RELATED WORK

A secure digital signature creation environment, based on
mobile devices and smart cards, is defined and analyzed by
A. Mana et al. [15]. Storing private key on signer's SIM card
is proposed by H. Rossnagel [16]. A more server-side
approach with encrypted private keys is presented by M.
Centner et al. [17]. The same authors in [18] designed a
digital signature service based on smartcard-reader
middleware as a Java applet. A proof-of-concept prototype
of this approach has been implemented as a web-based
signing service. A signing scheme for thin clients, with
server based processing is presented by Y. Lei et al. [13]. J.
Anderson et al. [7] proposes a protocol, which allows users
to store secrets, such as private keys, in the cloud, using the
services of several key recovery agents.

On-going work on novel signing service schemes is also
related to European Commission's mandate M/460. The UE
standardization platform is prepared by two European
standardization organizations, CEN [25] and ETSI [26]. In
[19], the Commission indicates new perspectives and
challenges for the platform. Many of them (e.g., cross-border
compliance) can be implemented with cloud-based
processing logic.

TABLE I. AVERAGE EXECUTION TIME FOR DIFFERENT DOC SIZES IN
DIFFERENT BROWSERS

File
size

Execution time(ms)

Chrome Firefox IE

100kB 688 344 186

200kB 814 392 245

500kB 1186 559 422

1MB 1521 820 688

10MB 11183 5825 5188

20MB 23634 11564 9932

TABLE II. AVERAGE EXECUTION TIME FOR DIFFERENT DOC SIZES IN
DIFFERENT BROWSERS

Splitter size
Execution time(ms)

Computer 1 Computer 2

100kB 6246 15319

500kB 5955 14452

1MB 5884 13747

5MB 5673 freeze

Things to consider when moving digital signature model,

or, more general Public Key Infrastructure into cloud are
addressed by H. Kharche et al. [4]. Brown and Robinson [5]
show how existing security protocols (like TLS) can derive
from cloud computing. Important cloud-specific security
issues are also pointed out by R. Chow et al. [22].

VII. CONCLUSION AND FUTURE WORK

The proposed cloud-based digital signature protocol
meets the usability and cross-platform requirements laid
down in Section 2. Although the protocol was designed
taking into account the security requirements, future studies
are required in order to prove its security.

As the proposed protocol is mainly focused on signer-
cloud communication, further studies are require to show
how such digital signature model can exploit cloud benefits.
Moreover, the protocol can be extended to handle more
complex models (e.g., with Signer and Issuer role
separation). Advanced digital signature services can be also
developed based on the proposed protocol (e.g., Forward-
Time Public Key proposed in [21]).

The cloud-based digital signature can also be analyzed
for compliance with law and regulations of the qualified
electronic signature. When it comes to EU regulations,
similar studies are presented by M. Centner et al. [17].

REFERENCES
[1] P. Mella and T. Grance, “The NIST Definition of Cloud Computing”.

Special Publication 800-145, NIST, Sep. 2011.

[2] Security requirements for cryptographic modules, FIPS PUB 140-2,
NIST, Dec. 2002.

[3] D. Davis, “Compliance Defects in Public-Key Cryptography”, Proc.
6th Usenix Security Symp., Jul. 1996, pp.171-178.

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 84 / 263

[4] H. Kharche and D. S. Chouhan, “Building Trust In Cloud Using
Public Key Infrastructure -A step towards cloud trust”, International
Journal of Advanced Computer Science and Applications, vol. 3, no.
3, Mar. 2012, pp. 26-31.

[5] J. Brown and P. Robinson, “PKI Reborn in the Cloud”, conference
slides, RSA Conference Europe, Oct. 2011,
http://365.rsaconference.com/docs/DOC-3037 [retrieved: March
2013].

[6] C. Ellison and B. Schneier, “Ten Risks of PKI: What You're not
Being Told about Public Key Infrastructure”, Computer Security
Journal, vol. 16, no. 1, 2000, pp. 1–7.

[7] J. Anderson, F. Stajano, “On Storing Private Keys 'In the Cloud'
Extended Abstract”, unpublished,
http://www.cl.cam.ac.uk/~jra40/publications/2010-SPW-key-
storage.pdf [retrieved: March 2013].

[8] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification
Version 2.0”, RFC 2898, IETF, Sep. 2000.

[9] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC
(CCM)”, RFC 3610, IETF, Sep. 2003.

[10] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A Block-
Cipher Mode of Operation for Efficient Authenticated Encryption”,
ACM Transactions on Information and System Security (TISSEC),
vol. 6, no. 3, Feb. 2003, pp. 365-403.

[11] D. M'Raihi, S. Machani, M. Pei, and J. Rydell, “TOTP: Time-Based
One-Time Password Algorithm”, RFC 6238, IETF, May 2011.

[12] D. M'Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen,
“HOTP: An HMAC-Based One-Time Password Algorithm”, RFC
4226, IETF, Dec. 2005.

[13] Y. Lei, D. Chen, and Z. Jiang, “Generating Digital Signatures on
Mobile Devices”, Proc. 18th International Conference on Advanced
Information Networking and Applications, Mar. 2004, pp. 532-536.

[14] Public Statement on Server Based Signature Services (Forum of
European Supervisory Authorities for Electronic Signatures), Forum
of European Supervisory Authorities for Electronic Signatures
(FESA), October 2005, http://www.fesa.eu/public-
documents/PublicStatement-ServerBasedSignatureServices-
20051027.pdf [retrieved: March 2013].

[15] A. Mana and S. Matamoros, “Practical Mobile Digital Signatures”,
Prec. EC-WEB '02 Proceedings of the Third International Conference
on E-Commerce and Web Technologies, Sep. 2002 ,pp.224-233.

[16] H. Rossnagel, “Mobile Qualified Electronic Signatures and
Certification on Demand”, Proc. 1st European PKI Workshop
Research and Applications, Jun. 2004, pp.274-286.

[17] M. Centner, C. Orthacker, and C. Kittl, “Qualified Mobile Server
Signature”, Proc. 25th International Information Security Conference,
Sep. 2010, pp. 103-111.

[18] M. Centner, C. Orthacker and W. Bauer, “Minimal-footprint
Middleware for the Creation of Qualified Signatures”, Proc. WEBIST
2010 International Conference on Web Information Systems and
Technologies, Apr. 2010, pp. 64-69.

[19] Proposal for a regulation of the European Parliament and of the
Council on electronic identification and trust services for electronic
transactions in the internal market, Commision staff working paper,
Jun. 2012.

[20] E. Stark, M. Hamburg, and D. Boneh, “Symmetric cryptography in
javascript”, Proc. ACSAC '09 Annual Computer Security
Applications Conference, Dec. 2009, pp.373-381.

[21] J. Riordan and B. Schneier, “Environmental Key Generation towards
Clueless Agents. Mobile Agents and Security”, G. Vigna, ed.,
Springer-Verlag, 1998, pp. 15-24.

[22] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina, “Controlling data in the cloud: outsourcing,
computation without outsourcing control”, Proc. 2009 ACM
workshop on Cloud computing security, Nov. 2009, pp.85-90

[23] International Organization for Standardization, http://www.iso.org
[retrieved: March 2013]

[24] National Institute of Standards and Technology, http://www.nist.gov
[retrieved: March 2013]

[25] European Committee for Standardization, http://www.cen.eu
[retrieved: March 2013].

[26] European Telecommunications Standards Institute,
http://www.etsi.org [retrieved: March 2013].

Figure 1. UML activity diagram for cloud-based digital signature protocol.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 85 / 263

Cloud-Enabled Scaling of Event Processing Applications

Irina Astrova Arne Koschel Ahto Kalja
Institute of Cybernetics Faculty IV, Department for Computer Science Institute of Cybernetics

Tallinn University of Technology University of Applied Sciences and Arts
Hannover

Tallinn University of Technology

Tallinn, Estonia Hannover, Germany Tallinn, Estonia
irina@cs.ioc.ee akoschel@acm.org ahto@cs.ioc.ee

Abstract—Event processing is an important established concept
for event-driven system development – with database triggers
and event processing engines being typical examples of event
processing technology. With nowadays movement into cloud
computing, highly flexible scalability in cloud environments
becomes an important challenge for event processing
applications as they have many event sources and events to be
processed there. As the core contribution of our work, we
propose a novel approach to providing event processing
applications with cloud-enabled scalability transparently to
users (viz., the application developers) as part of an event-
driven system itself.

Keywords—Infrastructure-as-a-Service (IaaS) clouds; IaaS
scalability; event processing applications; agents; event-driven
systems.

I. INTRODUCTION

 Traditional applications execute in a sequential way. But
the real world is driven by events, which can come from
several event sources. So how can these events be caught by
traditional applications? One can create threads, which run in
loops to catch the events and dispatch them to event
consumers that can perform actions in response to the events.
The biggest problem with this approach is that the
applications can waste a lot of resources with otherwise not
needed loops. Another big problem is an increased time
between the raise of the events and their catch. Event
processing applications provide a solution to these problems.

Event processing applications can be defined as sense-
and-respond applications, i.e., the applications that can react
to and process events. An event processing application can
play the role of an event source, an event sink, or both. Event
sources can handle off events to event sinks. It should be
noted that an event source does not necessarily generate an
event, nor an event sink is necessarily an event consumer.
Furthermore, event sources and event sinks can be
completely decoupled from each other: one can add and
remove event sources and event sinks as needed without
impacting other event sources and event sinks.

Event processing applications use the following
concepts:

 Event: In an event processing application, every
event is represented as an event object. This object
holds all information about the event such as the
timestamp when the event was caught, the event
type, the event source, etc. After the catch of an

event and transforming it to an application object, it
is handed to an event stream.

 Event stream: An event stream is like a FIFO (First
In, First Out) queue. Application objects in the
stream are handled sequentially in the order of their
arrival. The speciality of this type of queue is that an
agent can subscribe to the stream and select which
events it wants to receive.

 Agent: The drivers of an event processing
application are one or more agents. They get the
events from an event stream and react to or operate
on those events. Examples of operations on events:
selection, aggregation and composition. To structure
agents and create a high cohesion with loose
connections, an event processing network is used.

 Event Processing Network (EPN): An EPN models
an event processing application as a set of
interconnected application components whose
execution is driven by events. Therefore, it is
typically represented as a directed graph, where
events are flowing through edges into nodes, which
in their turn represent application components.

 Event channel: This is typically a messaging
backbone, which transports the (formatted) events
between event sources and event sinks. Because of
the variety of event sources, not all events will be
created in the format required for processing them
by agents. In those cases, the events need to be
formatted prior to being deposited them in an event
channel.

Next we are presenting an example of event processing
applications. This example is a door access log into a
company, which uses a radio frequency identification (RFID)
transponder to control the work time of its employees.

1. Employee A comes to work and activates the RFID
transponder at the door with his chip, thus generating
an access event.

2. The information on the chip is scanned and given to
the adapter of an event processing application.

3. The application creates an event object and injects
the data into it.

4. With a bundle of the subscriptions, the application
knows which agents are interested on this event type
(say Agents A and B) and put the event into the
agent's event streams.

5. Agent A only reacts to the access event and logs the
timestamp of the event and the information on the
employee's chip to a database.

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 86 / 263

6. Agent B waits for another access event by the same
employee in a time window of 10 hours.

7. Employee A activates the RFID transponder at the
door with his chip again, when leaving work.

8. The application creates an another event object with
the information on the employee's chip and passes it
to the agents.

9. Agent A logs this event to the database.
10. Between the first and the second access events,

Agent B produces a new event with the time which
has passed between them.

11. Due to some other subscription, Agent B knows
another agent, say Agent C, which is interested in the
new event because it needs to gain the employee's
work time out of it.

Step 6 shows how the agent uses a selection operation to
get the information it needs. In this case, the agent also uses
a technique, which is called windowing. It is possible to
define a window by time (as it is in the example) or by the
number of events in an event stream. Step 10 is an example
of the composition of events. Here two events are merged
into a new one. Once the new event has been composed, any
agent in the application can use that event.

The remainder of this paper is organized as follows. The
next section gives the motivation for our approach. This is
followed by a description of our approach and a brief
overview of the work related to the combination of event
processing and cloud computing. The final section concludes
the paper.

II. MOTIVATION

Event processing applications are important because the
real world is event-driven [12]. With great demand on high-
speed and cost-efficient processing of events, event
processing applications are calling for IaaS (Infrastructure-
as-a-Service) scalability. IaaS scalability lets the applications
make optimum utilization of resources such as CPU and
RAM at different workload levels in order to avoid over-
provisioning (i.e., having too many resources), under-
utilization (i.e., not using resources adequately) and under-
provisioning (i.e., having too few resources) [1]. In
traditional environments, over-provisioning and under-
utilization can hardly be avoided [2]. There is an observation
that in many companies the average utilization of servers
ranges from 5 to 20 percent, meaning that many resources
are idle at no-peak times [3]. On the other hand, if the
companies shrink their infrastructures to reduce over-
provisioning and under-utilization, the risk of under-
provisioning will increase. While the costs of over-
provisioning and under-utilization can easily be calculated,
the costs of under-provisioning are more difficult to calculate
because under-provisioning can lead to a loss of users and
zero revenues [3].

Since event processing applications experience
variability in utilization of resources, they are calling for an
infrastructure that can dynamically scale according to the
application demand. IaaS scalability is one of the major
advantages offered by IaaS clouds. This gives rise to the idea

to deploy event processing applications into IaaS clouds.
However, IaaS scalability is not just about having a scalable
(virtual) infrastructure, but also about writing scalable
applications. Valuable rules of thumb have been provided by
Amazon.

Amazon provides a best practices guide [4] on how to
write applications for the best fit for IaaS clouds. The most
important guidelines are: an application should be divided
into loosely coupled components that can be distributed
across several servers and executed in parallel. Furthermore,
the application should be as stateless as possible. If an
application component fails or is temporarily not available,
the application should continue to run. This can be achieved
by developing the component as self-rebooting and using a
message queue [5]. If the component is temporarily not
available, messages will be stored in the queue and delivered
later when the component comes alive again. These rules
clearly indicate that IaaS scalability depends on the
application design as well as the communication mechanism
used to implement the application components. Therefore,
IaaS scalability cannot be achieved by simply deploying
applications into IaaS clouds. Rather, an IaaS cloud can
guarantee an infrastructure equal to the application demand
only when applications are designed properly or their design
is amenable to appropriate scaling (horizontal or vertical).

However, event processing applications typically rely on
a centralized event coordinator and could easily become a
scalability bottleneck as a result of that [11]. Event
processing applications are inherently stateful, which implies
that services cannot be migrated or located anywhere,
without affecting the application performance. Therefore, the
deployment of event processing applications to IaaS clouds
typically requires redesigning the applications for leveraging
on-demand resource utilization. Therefore, the biggest
problem is how to minimize the changes need to be done to
the application design.

Another big problem is how to scale EPNs in IaaS
clouds. An event-driven application can specify an EPN,
which assembles the other components (e.g., event sources,
event sinks and event streams) together. Virtual machines in
IaaS clouds can scale horizontally by cloning a virtual
machine or vertically by adding more resources to a virtual
machine. Besides the scaling of virtual machines, the
virtualization technologies inherent to IaaS clouds allow for
the scaling of EPNs. Unfortunately, this very desirable
feature is not supported by IaaS clouds yet, thus further
complicating the deployment of event processing
applications into IaaS clouds.

As an attempt to solve the problems above, in our
previous work [6][10] we proposed to make event processing
applications scalable through the integration of an event
processing engine into a cloud architecture. In this paper,
however, we propose a different approach.

III. OUR APPROACH

IaaS scalability is important for event processing
applications because these applications experience variability
in resource utilization. Therefore, our approach is aimed at

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 87 / 263

providing event processing applications with IaaS scalability.
IaaS scalability is service-oriented, meaning that scaling
decisions are made on the basis of infrastructural metrics
such as CPU and RAM utilization [1].

The basic idea behind of our approach was to bring IaaS
scalability into an event–driven system itself. An event-
driven system can generally be comprised of several event
sources, event processing applications and event sinks. Event
sinks have the responsibility of applying a reaction as soon
as an event occurs. The reaction might or might not be
completely provided by the sink itself. For example, the sink
might just have the responsibility to filter, transform and
forward the event to another component or it might provide a
self-contained reaction on such an event.

Event sources, event processing applications and event
sinks can be decoupled of each other; one can add or remove
any of these components without causing changes to the
others. However, an event-driven system could get quiet
complex due to a large number of agents and event sinks to
synthesize events out of aggregated data. Moreover, the
agents are independent of each other – they can be
distributed across several servers and executed in parallel.
The problem is that it is very difficult for a scaling
mechanism to decide which agents should use which rules to
produce which output. Also how could this decision be made
when the cloud should scale itself? Therefore, it was not an
easy task to bring IaaS scalability into an event–driven
system.

Figure 1 gives an overview of our approach, which
includes the following components:

 Load Balancing Agent (LBA): Each EPN has its
own LBA monitoring and interpreting (internal)
technical events occurring in an Event-Processing-
as-a-Service cloud and their data. LBAs ensure the
performance and the availability of each EPN (or its
agents), as they are the ones, which perceive the
need to provision or decommission resources.
Scaling decisions are made by LBAs on the basis of
the current resource utilization and calculated by
LBAs themselves. The resource utilization is
aggregated out of technical events. For example, if
the minimum or maximum threshold is crossed,
scaling rules will be fired and a scaling mechanism
will kick in.

 Scaling Agent (ScA): In addition to the LBA, each
EPN has its own ScA, which can clone the EPN for
horizontal scaling or restart it on a bigger virtual
machine for vertical scaling.

 Central Scaling Agent (CScA): The CScA
evaluates technical events against scaling rules.
Scaling actions may include, e.g., the invocation of a
service or the triggering of a scaling process. In
addition, the CScA maintains the EPN topology.

Figure 1. Cloud-enabled scaling of event processing applications

 Central Load Balancing Agent (CLBA): If the
CScA defines how to scale, the CLBA defines what
to scale. The CLBA takes the load of each EPN into
account. Each LBA has to periodically send the
information on the current resource utilization of its
EPN to the CLBA. The CLBA then instructs the
CScA to provision or decommission resources. This
allows the CScA to foresee critical situations and to
make scaling decisions beforehand. The CLBA is
also responsible for all external events. An exposed
interface (e.g., web services) make the interaction
between the outside world and the cloud possible.

 Configuration Agent (CA): The CA allows for the
configuration of the whole scaling mechanism (e.g.,
scaling rules and thresholds) and the EPN topology
through the cloud API. The CA could be
implemented as an agent fitting into the idea of a
Dynamic Control Plane [7], which gives users (viz.,
the application developers) the possibility to
configure the cloud through an easy-to-use
administrative interface.

 Cloud-Scaling EPN: The CLBA, the CScA and the
CA are “networked” together to form an EPN for the
scaling of an Event-Processing-as-a-Service cloud.
This cloud hosts services to be leveraged by event
processing applications as needed. As a result, the
cloud can scale up and down according to the
application demand.

Our architecture can be used by the following event
processing applications:

 Disaster management, where the input data need to
be gathered from various heterogeneous distributed
sources (e.g., scientific sensors) and processed using
the event processing technology to react on disasters.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 88 / 263

 Online business development, where the clicks of
website visitors need to be processed as events to
identify the interest to the website.

IV. RELATED WORK

Technical events occurring in an IaaS cloud are related to
resource utilization. Event processing engines can help in
monitoring and high-speed processing of these events.
Therefore, recently it was proposed to integrate an event
processing engine into an elastic controller in order to
enhance IaaS scalability [8][9].

An IaaS cloud requires that applications are designed
especially for the cloud. The scaling of traditional
applications is typically easy. The question is how to scale
event processing applications. These applications follow
their own design rules and thus, they have to be tailored to
the cloud. Therefore, in our previous work [6][10] we
proposed to integrate an event processing engine into a cloud
architecture itself, providing scaling decisions out of scaling
rules through the cloud API.

However, in this paper we decided to move from a
different direction – we tried to adapt IaaS scalability to an
event-driven system.

V. CONCLUSION AND FUTURE WORK

Event processing applications need to handle a lot of
information. Thus, the ability to process this information
quickly is important for those applications. But processing
the information quickly implies processing it efficiently,
which in turn implies spending less money on an
infrastructure. And this is the point where event processing
applications could benefit from the deployment into IaaS
clouds whose scalability enables efficient and cost-saving
event processing. However, a cloud architecture that allows
event processing applications to benefit from IaaS scalability
is currently missing [6][10]. Therefore, with our approach
and its components described below, we aim to fill this gap.

Each EPN will have a Load Balancing Agent (LBA),
which periodically sends the load of its EPN to the Central
Load Balancing Agent (CLBA). If the minimum or
maximum thresholds specified by users through the
Configuration Agent (CA) are crossed, the CLBA will
instruct the Central Scaling Agent (CScA) to provision or
decommission resources. In addition to the LBA, each EPN
will have a Scaling Agent (ScA) acting on behalf of the
CScA. The CScA will translate the CLBA's instructions into
an appropriate scaling action taken by the ScA to adjust the
load of its EPN. It should be noted that users will be kept
totally unaware of these scaling actions and delivered with
the illusion of a scalable infrastructure, the infrastructure that
can scale horizontally (by cloning an EPN) or vertically (by
restarting an EPN on a bigger virtual machine).

Our approach is geared to make event processing
applications scalable, while minimizing changes to be done

to the application design and allowing for the scaling of
EPNs as if they were virtual machines.

In the future, we are going to implement our approach
and evaluate its performance.

ACKNOWLEDGMENT

Irina Astrova’s and Ahto Kalja’s work was supported by
the Estonian Centre of Excellence in Computer Science
(EXCS) funded mainly by the European Regional
Development Fund (ERDF). Irina Astrova’s and Ahto Kalja’s
work was also supported by the Estonian Ministry of
Education and Research target-financed research theme no.
0140007s12.

REFERENCES

[1] J. Cáceres, L. Vaquero, L. Rodero-Merino, Á. Polo, and J. Hierro.
Service scalability over the cloud, Handbook of Cloud Computing,
eds. B. Furht and A. Escalante, Springer Verlag, Berlin, Heidelberg,
2010

[2] C. Braun, M. Kunze, J. Nimis, and S. Tai. Cloud Computing, Web-
based dynamic IT-Services. Springer Verlag, Berlin, Heidelberg, 2010

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4), 2010, pp. 50–
58

[4] J. Varia. Architecting for the cloud: best practices. last accessed:
January 2013,
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pd
f

[5] P. Marshall, K. Keahey, and T. Freeman. Elastic site: Using clouds to
elastically extend site resources, Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid, IEEE,
2010, pp. 43–52

[6] I. Astrova, A. Koschel, and M. Schaaf. Automatic scaling of complex-
event processing applications in Eucalyptus. Proceedings of the 15 th

IEEE International Conference on Computational Science and
Engineering (CSE), IEEE, 2012, pp. 22–29

[7] L. MacVittie, A. Murphy, P. Silva, and K. Salchow. Herscheruber die
wolke: Anforderungen an cloud-computing. Technical report, 2010

[8] H. Lim, S. Babu, and J. Chase. Automated control for elastic storage,
Duke University, 2010

[9] L. Vaquero, L. Rodero-Merino, and R. Buyya. Dynamically scaling
applications in the cloud. ACM SIGCOMM Computer
Communication Review, 41, 2011, pp. 45–52

[10] A. Koschel, I. Astrova, M. Schaaf, S. Gatziu Grivas, S. Priebe, J.
Raczek, J. Reehuis, and K. Scherer. Integrating complex event
processing into Eucalyptus, Proceedings of the 3rd IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, 2011

[11] N. Shalom. Interview with Michael Di Stefano from Integrasoft on
their complex event processing cloud services using Esper
GigaSpaces. last accessed: January 2013,
http://blog.gigaspaces.com/interview-with-michael-di-stefano-from-
integrasoft-on-their-cep-cloud-services-using-esper-gigaspaces/

[12] M. Schaaf, A. Koschel, S. Gatziu Grivas, and I. Astrova. An active
DBMS style activity service for cloud environments. Proceedings of
the 1st International Conference on Cloud Computing, GRIDs, and
Virtualization, IARIA, 2010, 80–85

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 89 / 263

Cloud Computing Services Potential Analysis

An integrated model for evaluating Software as a Service

Giuseppe Ercolani

Universidad de Murcia - Facultad de Comunicación y Documentación

Campus Universitario de Espinardo - 30100 - Murcia, Spain

e-mail: giuseppe.ercolani@um.es

Abstract— This paper address, in a practical and integrated

model, a possible solution of issues concerning the Software as

a Service (SaaS) introduction and evaluation. A selective top-

down analysis is proposed to guide the overall assessment. The

construction of the Potential Adoption Index (PAI), in the last

stage of the process, aims to facilitate the evaluation and

comparison process of the acceptance of this technology by

evaluating: the functional requirements, the total cost of

ownership (TCO) and the related concerns and benefits from

technical and business perspective.

Keywords-Cloud Computing; SaaS; adoption; evaluation

I. INTRODUCTION

In recent years, the term cloud computing has been used
to identify an evolution paradigm in the computer industry.

This refers to a set of advanced technologies that affect
the focus of the organizations and businesses in plan,
management and use of its technology infrastructure in the
near future.

As noted by [1] the base of the cloud computing is the
evolution of three phenomena: virtualization, grid computing
and web services

The increasing bandwidth availability of Internet
connection and the accessibility from mobile and portable
devices has encouraged the spread of applications created for
this environment and the access to available resources
exclusively through internet (both often offered free of
charge for a basic or private usage).

In this way everyone can connect to a website with a
browser, fill out a form to access the service, select the
available options, the most convenient form of payment and
start working with the program or service contracted, without
requiring a server, Information Technology (IT) staff,
software licenses, installing applications or arrange a
backups strategy.

Still, despite the availability of SaaS solution, the main
question is that if it is convenient to adopt a solution based
on cloud computing.

This article examines the pros and cons described in
scientific literature and the potentials that this form of
computing may have inside an enterprise.

The topic of this research may be found in the line of
"Technology adoption and implementation research" in the
business-technology framework defined by [2].

An integrated model for calculating the Potential
Adoption Index (PAI) will be presented in order to quantify
the benefits and disadvantages of cloud computing adoption.

The PAI, which includes the evaluation of features,
benefits and concerns from the business perspective and the
technical fit from cloud experts’ viewpoint, indicates the
overall adoption utility level.

The structure of the paper is as follows. Firstly, the term
cloud computing will be referenced. Then an integrated
model analysis is presented in three stages. The computation
of the PAI synthesizing, in a numerical result, benefits and
disadvantages of adopting a cloud computing SaaS solution.
A numerical example is presented in order to explain the
construction of the PAI and the interrelation between the
different elements of the model.

II. TOP-DOWN SELECTIVE ANALYSIS

There are a multitude of definitions of cloud computing
as in [2], [3], and [4] the one taken as a reference for this
paper is the one proposed by [5].

The proposed evaluation model for the development of
the PAI, consists of three consecutive steps, related to each
other, in order to consider:

A. a functional analysis, that explores the features of the

SaaS solution the company would like to implement/

deploy or integrate;

B. an economic analysis, that quantifies the costs of

implementation and maintenance;

C. an attribute analysis, that evaluates characteristics,

benefits and concern also needed for the PAI

calculation.

The top down process, guide the reader from a rough
overall assessment to a more defined quantification of the
analytical aspects of the Saas analyzed.

A. Functional analysis: identifying cloud candidate

Primarily the company must decide which business
functions want to move into the cloud and the type of data
that will be stored and shared in order to be able to monitor,
develop, analyze and use these actions for their growth,
implementing services that meet business needs.

If there is at least one alternative to consider in order to
facilitate the comparison between different products “white

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 90 / 263

papers”, reviews or comparisons papers, that examine the
functional features of the programs offered by the providers
could be downloaded.

In addition, most of the SaaS providers, normally, offer
full product evaluation for a limited period of time which
facilitates the analysis and comparison without any
installation or additional cost. Other providers allow some
interaction with the support staff, via email, chat or phone for
free. This helps the evaluation of the products offered and to
clarify the software functionalities.

For an adequacy SaaS selection, the software
functionalities are first inspected because some of the
features of Cloud Computing do not lend themselves to an
easy customization [3], [6], and multitenant application
customization should be made through configuration [7].

In this stage, the suggested methodology (see Table I)
include to:

• Identify one or more Saas solutions available on the
market for the specific aspect that the company
would like to implement (Collaboration, CRM, ERP,
SFA, etc.);

• Identify the functionalities that are required for the
company, tagging each of them with a label
“Required”, “Nice to have” and “Not required”;

• After having investigated the specific functionality
in any specific SaaS or using professional experts for
the specific software, mark each of the functionality
attribute with a tag indicating if is it available:

� “Yes”;
� “Yes but need to be configured”;
� “Yes can be customized”;
� “Not Available”

Candidates for the functional evaluation are key users,
managers-owners and product experts.

TABLE I. FUNTIONAL SUITABILITY TABLE IN SUPPORT OF

FUNCTIONAL ANALYSIS WITH QUALITATIVE ORDINAL SCALE

Each level of suitability will have an immediate
repercussion at this stage (e.g., if a required functionality is
not available imply the rejection of the Saas solution) or in
will be penalized/rewarded in the further assessment (e.g., in
the economic analysis with integration and customization
costs evaluation).

The main purpose of this process is to verify the overall
fit of the analyzed SaaS package to meet the functional
requirements needed by the company.

This relatively simple process helps formal selection of a
SaaS without any deep or wide expertise in Cloud
Computing. This aims at reducing the number of candidates
by selecting some of them very quickly based on a brief
review of key functionality and company needs. This also
keeps additional costs to a minimum level and stays in line
with specific characteristics of cloud computing.

At the end of the first stage will be one or more programs
offered as SaaS that should be at least functionally
compatible with the essential requirements of the company,
with an explicit level of integration and customization
required for its adoption. The essential requirement
identified, which will need configuration or customization,
will be economically estimated in the next phase.

B. Economic analysis: identifying the costs

An assessment could be obtained using the Total Cost of
Ownership (TCO) formulation proposed by [8] based on the
combination of three costs types, in order to determine the
financial impact of SaaS adoption.

Alternatively the proposed TCO method in [9], where a
mathematical modeling of cost types is introduced along
with a case study, could be used for the same purpose.

The identified economic values will be evaluated within
the financial dimension in the next phase (attribute analysis).

C. Attribute analysis and the Potential Adoption Index

(PAI) calculation

The evaluation of attributes as features, benefits and risks
associated with a SaaS solution will be analyzed in order to
calculate the "Potential Adoption Index" (PAI).

In order to determine the SaaS benefits and concern the
taxonomies proposed in [10] has been used to generate an
evaluation matrix:

• the three main dimensions of cloud related benefits
(deployment advantages, financial savings, and
functional aspects) have been integrated with the
main cloud characteristics (on demand self-services,
broad network access, resource polling, rapid
elasticity, measured services) in Table II;

• the three main dimensions of cloud related concerns
(alignment with existing operating model in
organization, management and control of
organizational data and services, and legal aspects)
have been incorporated in Table III.

For each dimension, underlying category and attributes
has been specified to improve the level of detail to offer a
more analytic evaluation.

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 91 / 263

In Table II are exposed the essential characteristics of
cloud computing, with cloud deployment, financial and
functional benefits.

TABLE II. ASSESSING KEY FEATURE AND MAJOR BENEFITS

ASSOCIATED WITH THE CLOUD

The financial dimension in the category saving will be

used if the SaaS solution replaces a non-cloud application
(dismission) with identifiable economies or if a different
deployment method (other than public cloud) is adopted in
order to evaluate the economies from moving some of the
company resources (IT staff, hardware, infrastructure,
maintenance, energy, management) in the cloud provider
domain.

Table III includes the list of concerns attributes
evidenced when implementing a cloud computing solution.

TABLE III. ASSESSING KEY FEATURE AND MAJOR BENEFITS

ASSOCIATED WITH THE CLOUD

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 92 / 263

The evaluation of cloud computing characteristics
included in Table II, looks to verify the need for this new
technology for the company while the supplier's ability to
provide a product according to the commonly accepted basic
general requirements. In fact, quite often, for marketing
reasons and without considering the essential features, web-
based solutions are advertised as cloud computing solution,
also known as "cloud washing" [11].

Two columns, “Weight” and “Rating”, must be evaluated
to measure the relevant factors in cloud computing
environment during the SaaS product evaluation analysis:

• "Weight": considers the importance, relevance or
interest of the company to the examined
characteristic in a Cloud Computing context to meet
the business needs (with a decimal valuation
between 0 and 1, with 0="not important" and
max.value < 1). The total sum of the values given in
this column for the two tables must be equal to 1.
Candidates for evaluation are stockholders having
reviewed the functional and economic analysis
results of the Saas under evaluation.

• "Rating": estimates the SaaS solution predisposition
of addressing the specific attribute in conformity
with the specific company context (with values
between 1 and 4. With the following evaluations
1="compliance is poor", 2="the compliance is less
than average ", 3="above average ", 4="top").
Candidates for evaluation are SaaS experts having
analyzed the functional and economic analysis
results of the Saas under evaluation.

A third column "Weight * Rating" or calculated weighted
score contains the multiplication result between the "Weight"
and "Rating" of each row.

The "Potential Adoption Index" (PAI) is the result of the
sum of the weighted score calculated (column "Weight *
rating") in Table II and Table III.

Regardless the number of aspects analyzed (or rows) and
included in Table II and Table III, the PAI may range from a
minimum of 1 and a maximum of 4. The total average score
is 2.5.

If the PAI value exceeds 2.5 this means there is a positive
balance between economic components, characteristics, risk
factors and benefits of cloud computing in the adoption of
the analyzed SaaS solution for the particular company. The
results, in the proposed example presented in Table III, PAI
= 2.71 indicates this event.

In case of multiple comparison, the Saas solution with
the highest PAI indicates the product that has greater
potential for the company.

III. CONCLUSIONAND FUTURE WORK

This paper presents an integrated top-down selective
analysis for calculating the PAI index representing the
adoption potential of a SaaS solution for a company.

Functional analysis, economic analysis (TCO) and a
detailed attribute analysis are evaluated and linked together
in the integrated model.

These attributes (characteristic, benefit and concern) are
estimated from stakeholders for their specific relevance in

regard to the company and the cloud environment; and from
SaaS experts for their willingness to generate benefits that
could be made in the specific business context.

The joint result determines the PAI value, which could be
conveniently used to select or assess the SaaS adoption.

The presented framework has not been tested or applied
in any real case study. After these preliminary findings, in
order to confirm the validity of the proposed solution a more
in depth study should be conducted. A case study or other
research strategy must also be completed and the results need
to be verified and validated.

REFERENCES

[1] N. G. Carr, “The End of Corporate Computing,” MIT Sloan
Management Review, vol. 3, 2005, pp. 67–73.

[2] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang,, and A.
Ghalsasi, “Cloud computing — The business perspective,”
Decision Support Systems, vol. 1, 2011, pp. 176–189,
doi:10.1016/j.dss.2010.12.006.

[3] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su, “Software as
a Service: Configuration and Customization Perspectives,”
Proc. IEEE Congress on Services Part II, 2008, pp. 18–25,
doi:10.1109/SERVICES-2.2008.29.

[4] S. Leimeister, M. Böhm, C. Riedl, and H. Krcmar, “The
Business Perspective of Cloud Computing: Actors, Roles and
Value Networks,” ECIS 2010 Proceedings, 2010, Available
at: http://aisel.aisnet.org/ecis2010/56 [retrieved: 03, 2013].

[5] P. Mell and T. Grance “The NIST Definition of Cloud
Computing,” 2011.

[6] C. P. Bezemer, and A. Zaidman, “Multi-tenant SaaS
applications: maintenance dream or nightmare?” Proc. Joint
ERCIM Workshop on Software Evolution (EVOL) and
International Workshop on Principles of Software Evolution
(IWPSE), ACM, 2010, pp. 88–92, doi:10.1145/1862372.
1862393.

[7] M. Nitu, “Configurability in SaaS (software as a service)
applications,” ACM Press, 2009, pp. 19-26, doi:
10.1145/1506216.1506221.

[8] S. Bibi, D. Katsaros, and P. Bozanis, “Business Application
Acquisition: On-Premise or SaaS-Based Solutions?” IEEE
Software, 29(3), 2012, pp. 86–93, doi:10.1109/MS.2011.119.

[9] B. Martens, M. Walterbusch, and F. Teuteberg, “Costing of
Cloud Computing Services: A Total Cost of Ownership
approach,” Proc. of the Annual Hawaii International
Conference on System Sciences, 2011, pp. 1563–1572.

[10] P. Géczy, N. Izumi, and K. Hasida, “Cloudsourcing:
managing cloud adoption,” Global Journal of Business
Research (GJBR), vol. 6, 2012, pp. 57–70.

[11] A. Adamov and M. Erguvan, “The truth about cloud
computing as new paradigm in IT,” Proc. International
Conference on Application of Information and
Communication Technologies (AICT 2009), 2009, pp. 1–3,
doi:10.1109/ICAICT.2009.5372585.

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 93 / 263

Context-Aware Data-Flow in the Cloud

Mandy Weißbach and Wolf Zimmermann
Institute of Computer Science

University of Halle
Halle (Saale), Germany

Email: {weissbach, zimmermann}@informatik.uni-halle.de

Welf Löwe
Software Technology Group

Linnaeus University
Växjö, Sweden

Email: welf.lowe@lnu.se

Abstract—In the last few months, clients of services running
in a cloud are getting more and more aware of storing and
processing their data in the cloud. In this paper, we present a
context-aware data-flow analysis approach to allow clients to
negotiate services that store or process (directly or indirectly)
their data in undesired locations. The approach is context-
aware to satisfy the stateless character of services in a multi-
tenant cloud. We show that the use of a dynamic context-aware
data-flow analysis ensures that the clients’ data does not reach
undesired locations in the cloud.

Keywords-context-aware; data-flow; service-oriented; data
security;

I. INTRODUCTION

Undoubtedly, Cloud Computing is one of the most grow-
ing internet technologies worldwide. The preparatory study
undertaken for the European Commission estimates that the
public cloud would generate EUR 250 billion in GDP (Gross
domestic product) in 2020 [1].

Reasons for the popularity of Cloud Computing are ob-
vious: IT-departments can be outsourced, investments in
resources, e.g., hardware, software or space, become no
longer necessary, energy costs can be reduced and cloud
services are available from everywhere.

Cloud Computing also plays an important role in the
private sector. About 56 % of the internet users store private
data, e.g., pictures, music or documents, in the cloud.

Because of the private and commercial use of Cloud
Computing sensitive data may be stored and processed by
cloud services. Unfortunately, encryption of data is not an
option to keep sensitive data secure. When data needs to be
processed by the used cloud services, it needs to be available
in decrypted form [4](research in the field of processing
encrypted data is just at the beginning). The abstracted
infrastructure of a cloud makes it impossible for the user
to know the exact location their applications or data are
running on [2], [3]. So, one major obstacle in using cloud
services is that clients have no control where their data are
being stored and processed [2].

However, if cloud servers are located at different loca-
tions, they obey national laws on the server’s location. These
might be rather different than the location of the cloud user.
Therefore there might be unauthorized access to clients’ data

that might be legal in the country of the server of the cloud
service, e.g., through [5], but illegal in the client country [6].
Despite this fact, we focus on data-security in the cloud.

In our previous work [6], we described an approach that
enables a client to control the data-flow in the cloud. Data-
flow to undesired locations could be negotiated by the client.
Cloud services were allowed to use other services in desired
locations and so on. Even callbacks between cloud services
installed at desired locations are allowed [6].

Our previous work assumes that there is one client, which
has a list of undesired locations. This client uses the cloud
services by its own. So, there exists only one view on the
cloud services. In this work, we generalize to cloud services
used by several clients where each client may have its own
wish of undesired locations.

Suppose client X has country wLoc as its undesired
location and client Y has country vLoc as its undesired
location, cf. Figure I. Client X calls service Z which is
installed on a server located in country xLoc. Service Z
can use service W or service V . Service W is installed on
a server located in country wLoc. Service V is installed
on a server located in country vLoc. Since the Service Z
is installed on a server in country zLoc, both clients are
going to use service Z. While the static data-flow analysis
for client X is done, service Z can use service V , because V
is located in country vLoc. Service W would be negotiated
by client X , because W is installed on a server located in
country wLoc. The same data-flow analysis is done for client
Y . Now, service Z can not use service V because service
V is installed on a server in country vLoc, an undesired
location of client Y , cf. 1(a). Service Z can use service
W , because service W is a desired location of client Y .
However, client X wants to use service Z, service Z can not
derive whether client X or client Y is calling and therefore
service Z does not know which service (service V or service
W) to use (One-View-Problem described in Figure 1(b)). So,
our approach is extended to support different views from
different clients to support multi-tenant services.

We realized this approach with a context-aware data-flow
analysis in the cloud. The used static data-flow analysis
is an conservative approach [6], which can guarantee in
the case of an positive answer that no sensitive data flow

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 94 / 263

undesired

no undesired no undesired

locations locations

locations?

Service W

uses uses

Client X Client Y

Service Z

Service V

=Locs {wLoc} Locs =

myLoc = zLoc

myLoc = vLocmyLoc = wLoc

{vLoc}

(a) Static Data-Flow-Analysis.

use cloud service

Service W

Client X

Service Z

??

Service V

Client Y

myLoc = zLoc

myLoc = vLocmyLoc = wLoc

Z

(b) One-View-Problem.

Figure 1. Conrolling Data-Flow in the Cloud.

/∗@return : true− > data-flow to undesired location(s)
false− > data-flow only to desired locations∗/

/∗UnDesX,S,L : data-flow from service B over provided
functions S to service X in countries L∗/

BOOL undesired(SET(ProvidedB) S,SET(Locations) Locs) {
if myloc ∈ Locs return true;
foreach service X used by B do

if UnDesX,S,L return true;
return false;

}

Figure 2. Implementation of undesired [6].

direct or indirect to services installed on servers in undesired
locations. In the case of a negative answer, there could be a
direct or indirect data-flow to services installed on servers in
undesired locations. Instantiation of one service on several
servers in different countries are not considered. This work
follows the service-level-agreement principle (SLA). So,
based on the result of the context-aware data-flow analysis,
the client can negotiate a service that is installed on a
server at an undesired location. In order to increase trust
in the given answer, we assume the use of the proposed
cryptographic approach in [6].

The paper is organized as following: In Section II, we
introduce a service model example. The context-aware data-
flow analysis with respect to the presented example is given
in Section III. Section IV discusses related work and Section
V concludes this work.

II. SERVICE MODEL EXAMPLE

This section gives a short overview of our service model
and states the problems that could occur if we are not aware
of the context.

We assume that each service A provides a set of functions,
denoted by ProvidedA. This might be given as a WSDL-
Description (Web Service Description Language). Further-
more, each service A must use another service. We assume
that this is not hard-coded in the implementation of A,
but there is a pair of variables I x where I contains the
set of functions that is called on x, and x can be bound
(dynamically) to a service X that provides at least I , i.e.,
I ⊆ ProvidedX . Functions in I are called required functions
of A w.r.t. x. The set of candidate services must be published
and we assume that a registry Reg maintains all published
services. We also assume an acyclic use structure of the

services. Section III shows how this assumption can be
dropped.

Example 1: Multi-Tenant Clients
Consider services A, B and C in Figure 3. A.b can be bound
to service B and also C.b can be bound to service B. The
provided interface of B is ProvidedB = {x, undesired}.
The required functions of A w.r.t. b are {x, undesired}.
The required functions of C w.r.t. b are also {x, undesired}.
The required functions of B w.r.t. d are {f, undesired}. So
service B can simultaneously be used by service A and by
service C. �
A client would like to negotiate an agreement that a selected
service guarantees to avoid data-flow from the clients’ data
to a set Locs of undesired locations. For the purpose of
negotiation, service B may offer a function undesired ∈
ProvidedB that returns true iff data flows via some op-
erations o from the provided interface of B to services at
undesired locations, cf. with Figure 2.

Remark: It is sufficient to take into account only the set
S ⊆ ProvidedB of operations used by the client. �

If service A uses service B, it needs to ask B (via
B’s function undesired) whether it can guarantee that its
data do not flow to a location in l ∈ Locs (undesired
locations). Obviously, this needs only to be guaranteed for
those operations of B where B passes (possibly processed)
data of A. For simplicity, we assume that each service X
knows its location and this location is stored in a constant
X.myLoc.

Example 2: Negotiation of Undesired Locations
Consider services A, B, C, D, E and F in Figure 3. Service
A would like to use service B. Service B is located in
BLoc. B can also be used by service C. B itself uses
service D located in DLoc. Service D uses service E or
F . E is located in ELoc. F is located in FLoc. We assume
that all services (except possibly client A and client C) are
published.
Suppose that client (service) A wants to avoid storing its data
(neither in original nor in processed form) at servers in FLoc.
Before client A actually uses service B it would like to know
whether data passed to B are never stored at a server in
FLoc. Let Locs be the set of servers in FLoc. The procedure
negotiate searches for a published service B offering at least
the operations specified in IB (IB is the set of functions of
the required service that are called from client A). For the
purpose of negotiation, client A calls undesired(IB ,Locs)
because client A calls b.x(mydata), if b is bound to service
B. Service B calls function f ∈ ProvidedD, if d is bound
to service D. So, a call of b.x(mydata), if b is bound to
service B, implies that data of client A flows to service
D by the call d.f(data) of service B, if d is bound to
service D. Thus, the call undesired(IB ,Locs) must return
false only if B .myLoc 6∈ Locs and undesired(ID,Locs)
returns false . The functions f ∈ ProvidedD calls g and
g ∈ ProvidedE or g ∈ ProvidedF , it depends on whether

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 95 / 263

DI

d
_
ID

_
 kIEF

negotiate () {VOID

until

repeat

and
}

main() {
T

read(mydata);

}

mydata;

b =

b.hasInterface(undesired);

Reg.choose(I);

Cnegotiate () {VOID

until

repeat

and
}

main() {
T

read(mydata);

}

mydata;

b =

A

b.hasInterface(undesired);

Reg.choose(I);

b.x(mydata);b.x(mydata);

VOID

B

B B

B

B

}

{
B

}

VOID

d.f(data);

{
x(T data)

private LOC myLoc = BLoc;

SET(I)r, SET(LOC)

_
b

_

BB II IB IBb

BOOL
VOID

}

{
BOOL

}

VOID

{

private LOC

}

{
BOOL

}

VOID

{

private LOCEmyLoc = ELoc;

g(T data)

//processing data

E

DmyLoc = DLoc;

f(T data)

k.g(data);

D

}

{
BOOL

}

VOID

{

private LOC myLoc = FLoc;

g(T data)

//processing data

FSET(I)r, SET(LOC) SET(I)r, SET(LOC)

F

IF kIEF

_

EI

b.undesired(I , Locs);

undesired(Locs)

b.undesired(I , Locs);

SET(I)r, SET(LOC) undesired(Locs)undesired(Locs) undesired(locs)

//Discussed in Section II and III

//Discussed in Section II and III//Discussed in Section II and IV //Discussed in Section II and III

Figure 3. Storing Data at undesired locations: Two-View-Example

k is bound to service E or F . The argument of the call
d.f(data) flows to the call k.g(data) of service E if k
is bound to service E or k.g(data) of service F if k is
bound to service F , respectively. So, if k is bound to service
E, there is a data-flow from client A over services B and
D to service E. Service E is located in ELoc, which is
not a undesired country. Therefore B.undesired(IB ,Locs)
returns false , because D.undesired({f},Locs) returns false
i.e., client A can use service B. But if there is a data-
flow from client A over service B and D to service
F , located in FLoc, B.undesired(IB ,Locs) returns true .
Because client A does not want to store or process data in
FLoc. D.undesired({f},Locs) returns true and therefore
B.undesired(IB ,Locs) returns true , i.e., client A cannot
use service B. �

Because the service model architecture is multi-tenant,
service B can simultaneously be used by client A and by
client C. The set LocsA of undesired locations of client A
might be different from the set LocsC of undesired locations
of client C. If B uses service D, it needs to ask D (via D’s
function undesired) whether it can guarantee that A’s data
do not flow to a location in LocsA. Obviously, the data-flow
needs to be guaranteed in context of the clients. If the context
is not considered, service D can not distinguish between the
calling services A and C. So if A calls B and B calls D,
it is possible that a later call of D by B which was called
by C is not detected as a call from C. So the undesired
countries LocsA may be applied for client C.

Example 3: Context-Aware Data-Flow
Consider the services A, B, C, D, E and F in Figure 3.
Service A would like to use service B. Service B is located
in BLoc. B itself uses service C located in CLoc while C
uses service D or E. D is located in DLoc. E is located
in ELoc. F is located in FLoc. Client A wants to avoid
storing its data (neither in original nor in processed form) at
servers in FLoc. C wants to avoid storing its data (neither
in original nor in processed form) at servers in ELoc.

Suppose the negotiation process starts. Service B, D
and E will be accepted by A because undesired(IB ,Locs)
returns false. Before client A starts to use service B, client
C tells service B it also wants to use service B. A starts
the negotiation process and for service B, D and F , the
negotiation process will succeed. However, service A starts
to use service B. Service B calls function f of service D.
But service D can not distinguish between clients A and
C. So it is possible, that service D binds to service F . But
the undesired countries LocsA include the location FLoc of
service F .

To distinguish between client A and client C, we need to
introduce a context-aware data-flow analysis mechanism to
know or compute the chain of used services by a client in
the service model.

III. CONTEXT-AWARE MECHANISM

We introduce the principle of context-aware attributes.
Lists of context-dependent attributes are created. If the
function undesired of a service B, called by client A, returns
false , the call id of the caller and the called service is added
to the attribute list, e.g., cl of service B. However, service B
can distinguish with the help of the call id, whether client
A or client C was the original caller.

Example 4: Context-Aware Multi-Tenant Clients
Consider the services A, B, C, D, E and F in Figure
3. Client A would like to use service B and specifies
a set LocA = {FLoc,XLoc} of undesired locations. Also,
client C would like to use service B and specifies a set
LocB = {ELoc,XLoc} of undesired locations. Service B is
located in BLoc. B calls service D located in DLoc while
D uses service E or F . Both, service E and service F offer
the same functionality. The only difference is, that service
E is located in ELoc and F is located in FLoc.

Suppose, the following scenario: client A wants to bind
to service B. The negotiation process starts. Service B uses
service D and service D finds through a Registry Reg

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 96 / 263

A

analyze

undesired
Client

I

A

Service

Program Analysis
PA

list: cl

Figure 4. Architecture of the Context-Aware Mechanism.

service E and F . Since service F is located in FLoc, an
undesired location, the call undesired(IF ,Locs) will return
true . Client A will negotiate the use of B and client A
will start to find via the Reg new services. A is going to
bind to service B again. This time B is going to ask D
and D is calling service E. The call undesired(IE ,Locs)
by service D will return false because ELoc is not in
LocsA. However, service D wants to bind to service E in
context of service A (service A called B, B called D).
So, the call id, computed with the service use chain, can
be stored in a context attribute list cl. Before service D
calls function g ∈ ProvidedE , service D checks if the
call id of E is registered for A. If there is a call id of E
registered, service D knows that service E can be used.
Now, if service C wants to use service B, a new negotiation
process starts. Now, the call of undesired(IB ,LocsC) and
the call of undesired(ID,LocsC) will return false. The call
of undesired(IE ,LocsC) will return true and no call id is
set and the list with the used service chain will be discarded.
Client C will negotiate service B and the negotiation process
starts as described before. This time, service D calls F . The
function undesired(IF ,LocsC) will return false. So, the
call id of B, D and F will be added to the context attribute
list cl of client C. However, if client C calls service B and
service B calls service D, service D can choose with respect
to the context attribute service F .

To implement the context-aware data-flow analysis, we
need a trusted third party which
• can compute the resource information (location) of the

used cloud service,
• ensures that the used cloud services act according to

promised behavior of undesired and
• maintains the information of the chain of used services

by a certain client.

Example 5: Context-Aware Mechanism
The first requirement is satisfied by every service itself, cf.
section II. Every service stores its location information. The
second and third requirement can be given by an independent
certified program analysis service PA. PA performs the
program analysis, computes the result of undesired and
will be extended to maintain the information of the chain
of used services by a certain client. For more details of the
work of the unextended PA, we refer to [6].

We propose a context-aware mechanism described by the

following algorithms in pseudo code and a sequence diagram
in Figure 5. To start the negotiation the client calls a registry
to ask for a service with the required Interfaces by providing
the set of undesired locations Locs, the callID of the client
A and the required Interface IreqA :

Algorithm 1: negotiate
INPUT: callID , Locs, IreqA
OUTPUT: true, service can be used

false, service can not be used

repeat Service b = Registry.choose(IreqA)
until ¬ b.undesired(IreqA , Locs, callID)

end
return true

However, the used service B selects a Program Analyzer pa
and starts the data-flow analysis, by calling analyze, cf. 5.

Algorithm 2: undesired
INPUT: IreqA , Locs, callID
OUTPUT: true, data − flow to undesired locations

false, ¬data − flow to undesired locations

pa ← choose();
return pa.analyze(Locs, callID , IreqA , sourceTextB)

Besides the data-flow analysis the Program Analyzer pa also
stores the context-aware attribute callID of the client to
keep track of the used services by client A.

Algorithm 3: analyze
INPUT: Locs, callID , IreqA , sourceTextB
OUTPUT: true, data − flow to undesired locations

false, ¬data − flow to undesired locations

callID ← computeCallID(callID)
for each location in Locs do

if (location == sourceTextB .myLoc) then return true;
end

end
cl ← cl.add(callID))
IreqB ← doDataF lowAnalysis(IreqA , sourceTextB)
return negotiate(callID, Locs, IreqB)

Remark:
As the PA is able to keep track of the analysis requests

of client A, it can check for cycles before processing the
analysis request. In particular, it checks whether a query
undesired(callID , Locs, IreqB) for client A is currently
being analyzed, i.e., whether there is an open analysis
request undesired(S′, Locs) with S′ ⊆ S. If yes, it can
return immediately false . This is valid because if there is a
data-flow from S′ to an undesired location loc, then there
must be another call of a provided function to service B
with a data-flow to an undesired location. �

Now, with the help of the computed list containing the
chain of used services of client A, this information can be
used to guarantee, that the data of client A flows only to
undesired locations. Before every service connects to another
service it can be checked asking the used PA if in the
context of the client this connection is allowed.

Remark: We assume a IAAS in a trusted cloud envi-
ronment [7]. This approach depends on trust in a trusted
cloud federation and we are using the encryption mechanism

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 97 / 263

[¬ b.undesired()]

repeat choose()

undesired()

choosePA()

 analyze() computeCallID()

:Registry :Service :Program Analysis:Client

Figure 5. Sequence Diagram of the Context-Aware Mechanism.

described in [6]. �

IV. RELATED WORK

[6] considers data security in the cloud. In contrast to
our work, this approach is not context-aware. [8] monitors
data-flow between services in order to detect malicious
services. They do not do a static data-flow analysis but they
assume a multi-tenant cloud infrastructure. Also, context-
awareness with respect to the client is not assumed. [9]
investigates data-flow analysis in the context of service
computing. Compared to our work, they focus on static
process adaptation to investigate if a service gets all the
data it needs. [10], [11] focus on data security within smart-
phone applications. While we allow sensitive data to leave
the client, they forbid sensitive data to leave the smart-phone.

There are also many works on context-aware service-
oriented systems. Truong and Dustdar [12] present a couple
of projects, e.g., CA-SOA [13], CoWSAMI [14], WASP
[15] and inContext [16], [17], to make service-oriented sys-
tems context-aware. CoWSAMI [14] is an interface-aware
context-gathering-environment. CA-SOA [13] formalizes an
ontology-based context model. Different views of different
clients using a chain of web services were not considered.
[18] proposes a multi-tenant service-oriented architecture
middleware for Cloud Computing. They focus on multiple
users sharing an instance and native multi-tenancy. In con-
trast to our work, using certain services in context of the
location is not considered.

Baldauf et al. also states some requirements that need
to be supported by a context-aware system. In contrast
to our work, [13], [14], [15], [16], [17] assume, that the
context information of the user has to be collected by some
mechanism, e.g., polling [16], [13]. In our work, the client
itself supports the system with context information, the list
of undesired locations, mechanisms like polling are not
needed. [19] also presents techniques to compute, with the
help of context information, the right service to get coupled
to. In our work, the client itself can decide whether a context

is given or not. A computation of contextual information [20]
to find the best fitting service does not need to be done.

Focusing data security in the cloud is done by [3]. Brandic
et al. guarantee data security by data fragmentation. A data
analyst or the domain expert decide where data can be stored
and which data need to be fragmented and stored in different
geographical regions. The client itself can not decide where
its data is stored or processed.

To the best of our knowledge, there exist no paper that
is using the context information of a client to control the
data-flow in the cloud and enables the client to negotiate
services.

V. CONCLUSION

In this work, [6] was extended to allow different views
on a service-oriented system in the cloud. The extended
work allows multiple clients to decide where their data
is stored, processed and transferred within the cloud. Our
approach supports different views to fit into multi-tenant
service-oriented architectures.

We have two context information: the client information
of used services and a list of undesired countries specified
by the client. With the extended static data-flow analysis
and the contextual information, the coupling of services in
context of the user can be computed at runtime. We obtain a
multi view or multi-tenant environment with loosely coupled
services, which will be coupled on demand in context of the
client.

Techniques to collect contextual information, e.g., polling,
are not an issue. Every service is supported with the list of
undesired countries by the client itself (direct or indirect).
Information of the used services are stored by a program
analysis service.

To evaluate the proposed approach, the implementation of
a tool is in process and subject for future work.

In this work, we considered data-flow analysis on the SaaS
(Software as a Service) level. Subject of further work will
be the generalization of the data-flow analysis to IaaS (In-
frastructure as a Service) and PaaS (Platform as a Service).

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 98 / 263

Due to the complexity of the IaaS and PaaS, we expect
on this level that data-flow analysis becomes more complex
and maybe some new abstraction mechanisms are needed
for feasibility. Another opportunity for program analysis is
to analyze the conformance to compliance rules as they have
similar characteristics as data-flow: the client cannot always
check the conformance or may even not observe violations
of compliance.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] Quantitative Estimates of the Demand for Cloud Computing
in Europe and the Likely Barriers to Up-take, Final
Report, IDC Std. D4, July 2012. [Online, retrieved:
03.2013]. Available: http://ec.europa.eu/information society/
activities/cloudcomputing/docs/quantitative estimates.pdf

[2] D. Durkee, “Why cloud computing will never be free,” Queue,
vol. 8, no. 4, 2010, p. 20.

[3] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F. Ley-
mann, and R. Konrad, “Compliant cloud computing (c3):
Architecture and language support for user-driven compliance
management in clouds,” in IEEE CLOUD, 2010, pp. 244–251.

[4] L. Wei, H. Zhu, Z. Cao, W. Jia, and A. Vasilakos, “Sec-
cloud: Bridging secure storage and computation in cloud,” in
Distributed Computing Systems Workshops (ICDCSW), 2010
IEEE 30th International Conference on, Jun 2010, pp. 52 –61.

[5] “Uniting and strengthening america by providing appropriate
tools required to intercept and obstruct terrorism act of
2001 (usa patriot act),” Oct 2001, effective February
1, 2002. [Online, retrieved: 03.2013]. Available: http:
//thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:

[6] M. Weissbach and W. Zimmermann, “Controlling data-flow
in the cloud,” in The Third International Conference on Cloud
Computing, GRIDs, and Virtualization, W. Zimmermann,
Y. W. Lee, and Y. Demchenko, Eds. ThinkMind, 2012, pp.
24–29.

[7] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
trusted cloud computing,” in HOTCLOUD. USENIX, 2009.

[8] J. Du, W. Wei, X. Gu, and T. Yu, “Runtest: assuring
integrity of dataflow processing in cloud computing
infrastructures,” in Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security,
ser. ASIACCS ’10. New York, NY, USA: ACM, 2010,
pp. 293–304. [Online, retrieved: 03.2013]. Available: http:
//doi.acm.org/10.1145/1755688.1755724

[9] W. Song, X. Ma, S. Cheung, H. Hu, and J. Lu, “Preserving
data flow correctness in process adaptation,” Services Com-
puting, IEEE International Conference on, vol. 0, 2010, pp.
9–16.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on
smartphones,” in Proceedings of the 9th USENIX conference
on Operating systems design and implementation, ser.
OSDI’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 1–6. [Online, retrieved: 03.2013]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[11] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting privacy leaks in iOS applications,” in Proceedings
of the 18th Annual Network & Distributed System Security
Symposium (NDSS), Feb. 2011. [Online, retrieved: 03.2013].
Available: http://www.isoc.org/isoc/conferences/ndss/11/pdf/
9 2.pdf

[12] H. Truong and S. Dustdar, “A survey on context-aware web
service systems,” International Journal of Web Information
Systems, vol. 5, no. 1, 2009, pp. 5–31.

[13] I. Y. L. Chen, S. J. H. Yang, and J. Zhang, “Ubiquitous
provision of context aware web services,” in Proceedings of
the IEEE International Conference on Services Computing,
ser. SCC ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 60–68. [Online, retrieved: 03.2013].
Available: http://dx.doi.org/10.1109/SCC.2006.110

[14] D. Athanasopoulos, A. V. Zarras, V. Issarny, E. Pitoura, and
P. Vassiliadis, “Cowsami: Interface-aware context gathering
in ambient intelligence environments,” Pervasive Mob.
Comput., vol. 4, no. 3, Jun. 2008, pp. 360–389. [Online,
retrieved: 03.2013]. Available: http://dx.doi.org/10.1016/j.
pmcj.2007.12.004

[15] M. Zuidweg, J. Goncalves Filho, and M. van Sinderen,
“Using p3p in a web services-based context-aware application
platform,” in Proceedings of EUNICE 2003 9th Open
European Summer School and IFIP WG6.3 Workshop
on Next Generation Networks, E. Halasz, C. Lukovszki,
and T. Marosits, Eds. Budapest: Budapest University of
Technology and Economics, Sep. 2003, pp. 238–243. [Online,
retrieved: 03.2013]. Available: http://doc.utwente.nl/66531/

[16] H.-L. Truong, L. Juszczyk, S. Bashir, A. Manzoor, and
S. Dustdar, “Vimoware - a toolkit for mobile web services and
collaborative computing,” in Proceedings of the 2008 34th
Euromicro Conference Software Engineering and Advanced
Applications, ser. SEAA ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 366–373. [Online, retrieved:
03.2013]. Available: http://dx.doi.org/10.1109/SEAA.2008.42

[17] H.-L. Truong, S. Dustdar, D. Baggio, S. Corlosquet, C. Dorn,
G. Giuliani, R. Gombotz, Y. Hong, P. Kendal, C. Melchiorre,
S. Moretzky, S. Peray, A. Polleres, S. Reiff-Marganiec,
D. Schall, S. Stringa, M. Tilly, and H. Yu, “incontext:
A pervasive and collaborative working environment for
emerging team forms,” in Proceedings of the 2008
International Symposium on Applications and the Internet,
ser. SAINT ’08. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 118–125. [Online, retrieved: 03.2013].
Available: http://dx.doi.org/10.1109/SAINT.2008.70

[18] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwar-
dana, D. Leelaratne, S. Weerawarana, and P. Fremantle,
“Multi-tenant soa middleware for cloud computing,” in IEEE
CLOUD, 2010, pp. 458–465.

[19] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on
context aware systems,” Int. J. Ad Hoc Ubiquitous Comput.,
vol. 2, no. 4, Jun. 2007, pp. 263–277. [Online, retrieved:
03.2013]. Available: http://dx.doi.org/10.1504/IJAHUC.2007.
014070

[20] A. Danylenko, C. Kessler, and W. Löwe, “Comparing ma-
chine learning approaches for context-aware composition,” in
Proceedings of the 10th international conference on Software
composition, ser. SC’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 18–33. [Online, retrieved: 03.2013]. Avail-
able: http://dl.acm.org/citation.cfm?id=2025951.2025954

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 99 / 263

A Coordinated Reactive and Predictive Approach to Cloud Elasticity

Laura R. Moore, Kathryn Bean and Tariq Ellahi

SAP Next Business and Technology

SAP (UK) Ltd

Belfast, UK

Email: {laura.moore, kathryn.bean, tariq.ellahi}@sap.com

Abstract—Based on pay-per-use service-oriented architec-
tures, the cloud computing paradigm promises cost-efficient IT
solutions. To meet fluctuating demands efficiently, Platform-as-
a-Service solutions offer shared environments with on-demand
scalability. It remains an open challenge for service providers to
implement elastic scalability mechanisms capable of optimally
utilizing resource whilst simultaneously guaranteeing that ap-
plication performance continues to meet Quality of Service
metrics. Typically, cloud providers offer only reactive rule-
based mechanisms for triggering scaling actions. We introduce
a new elasticity management framework that combines reactive
and predictive controllers. Our elasticity controller builds pre-
dictive models online based on the reactive rules, representing
a natural extension to the common offering. We discuss the
underlying architecture of the framework and describe how the
controllers operate in tandem and complement each other. We
present a case study based on real datasets that demonstrates
the feasibility of our real-time cloud capacity framework.

Keywords-elasticity; predictive; auto-scaling; platform-as-a-
service.

I. INTRODUCTION

Cloud computing, with its promise of cost-effective com-

puting for end-users and improved resource utilization for

cloud providers, continues to grow in popularity. A recent

Gartner report predicts a compound annual growth rate of

36% for Infrastructure-as-a-Service (IaaS) and Platform-as-

a-Service (PaaS) from $7.6B in 2011 to $35.5B in 2016 [1].

This increase in user demand, coupled with new technolo-

gies, is driving a dramatic increase in cloud infrastructure

scale, heterogeneity and complexity [2][3]. To efficiently

handle their resources, cloud providers require intelligent

methods of automated dynamic infrastructure management.

One of the key features of cloud computing is elasticity.

Elasticity refers to the ability of a system to grow and

shrink dynamically such that it only uses resources that

are necessary to cope with the current load. This paper

presents details of the design and current implementation

of a real-time cloud capacity framework, Platform Insights.

The particular contribution of the paper is the design of an

elasticity controller that:

• Couples reactive and predictive elasticity management

techniques and coordinates auto-scaling requests

• Can be used without off-line training

• Utilizes multi-timeframe information to allow short-

term auto-scaling decisions to be made in the context

of the expected longer-term workload demand

The rest of the paper is organized as follows. Section II

presents a summary of related work. Section III gives details

on the architecture of Platform Insights. Section IV describes

the implementation of Platform Insights, giving an overview

of the configuration options and the integrated predictive

models. Section V presents a case study in which the

ClarkNet [4] and the 1998 World Cup data access logs

[4][5] are used to simulate driving the SPECjEnterprise2010

benchmark. Resulting QoS statistics and resource provision-

ing decisions are evaluated. Concluding remarks are given

in Section VI.

II. RELATED WORK

Auto-scaling techniques can be classified as either reactive

(the system reacts to changes but does not anticipate them)

or predictive (the system tries to predict future resource

requirements in order to ensure sufficient resource is avail-

able ahead of time) [6]. Reactive rule-based methods define

scaling conditions based on a target metric reaching some

threshold and are offered by several cloud providers such as

Amazon [7] or third party tools such as RightScale [8] or

AzureWatch [9]. Beyond static thresholds, [10] proposes a

regression method to dynamically adapt thresholds to meet

QoS targets, but does not predict future workload.

Predictive auto-scaling approaches tend to be based on

time series analysis, control theory, reinforcement learning,

or queuing theory. One strategy is to use a workload pre-

dictor and then use a performance model to determine the

number of servers required to service the predicted demand.

A variety of performance models has been proposed in the

literature. Examples include the use of splines to map the re-

quest rate to the observed percentage of slow requests given

the number of active servers [11], queuing networks [12],

and cost optimization models [13]. The predictive controller

component of Platform Insights also uses workload forecasts

and performance models: the workload forecast is used to

estimate a mid-term trend in demand, which is used as an

input to a performance model mapping workload-per-server

to future QoS.

87Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 100 / 263

Hybrid methods, coupling reactive and predictive con-

trollers, have also been proposed. Proposals include using a

predictive method and a reactive method to determine when

to provision resource over a long time-scale (hours and days)

and a short time-scale respectively [14], or using a predictive

controller to control scale in and a reactive controller for

scale out [15][16]. In [15] a regression-based method is used.

In [16] the authors base their models on queuing theory and

they find that SLA violations are reduced by a factor of 2

to 10 compared to a purely reactive controller.

We also implement a hybrid approach, but our reactive

and predictive controllers are both capable of triggering

scale in and scale out actions. Auto-scaling decisions are

coordinated and conservative policies are applied to avoid

premature decommissioning of resource.

III. ARCHITECTURE OF PLATFORM INSIGHTS

Typical enterprise applications are composed of a number

of services that run on multi-tier architectures. To provide

adequate resource to handle client demand, each tier requires

monitoring and elasticity. Platform Insights monitors each

component of the platform stack individually and evaluates

appropriate elastic scaling actions. In Section III-A the archi-

tecture of the reactive controller is described, and this is then

extended in Section III-B to show how a predictive controller

operates in conjunction with the reactive controller.

A. Reactive Elasticity Management

Reactive elasticity management takes place by monitoring

scaling rules, which are configured by application architects

and administrators. The form of the scaling rules is discussed

later in Section IV. This section is dedicated to describing

the software agents that make up the reactive auto-scaling

alerter component of Platform Insights. Figure 1 shows the

steps taken by the system to register a new elasticity rule

when it is submitted by an administrator. In its current

form, Platform Insights allows rules to be submitted or

deleted at any time for running applications, but does not

take responsibility for checking that rules do not conflict;

this functionality is left to future work. Figure 2 shows the

operation of the reactive auto-scaling alerter component. The

two figures show the agents that are involved at each stage

and their interactions. Each agent is now discussed in turn.

• The Request Manager receives requests submitted to

the platform by users of the web portal. The web portal

has facilities for the application architect to a) monitor

resource usage consumed by each instance (real-time

or historical), b) configure and manage elasticity rules,

c) monitor utilization metrics associated with elasticity

rules, and d) receive relevant alerts and/or log messages.

• The Rule Creator receives instructions from the Request

Manager to set up new elasticity rules. When it receives

a new scaling rule, it liaises with other components to

coordinate the instantiation of the new rule.

Figure 1. Scaling rule submission sequence diagram.

Figure 2. Reactive auto-scaling sequence diagram.

• The Rule Translator is responsible for translating the

configured attributes of a newly submitted scaling rule

into EPL (Event Processing Language) statements that

can be monitored by the Rule Processor. It maintains

a dictionary of pre-set statement templates and parses

the incoming data against these templates.

• The Rule Manager is responsible for the lifecycle

management of elasticity scaling rules. It maintains a

repository of scaling rules for each application land-

scape and of associated EPL statements registered with

the Rule Processor.

• The Rule Processor is based on a complex event

processing (CEP) engine. Currently Esper is used as

the CEP engine as it is lightweight, can be easily

embedded in a Java application and allows new queries

to be registered dynamically so that scaling rules can

be submitted at any time [17].

• The Rule Alerter is responsible for determining what

scaling action should be taken upon violation of a

scaling rule and broadcasting any relevant information

to enable the platform to execute the scaling action.

• The Landscape State Manager stores and monitors

the application state throughout its entire lifecycle.

88Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 101 / 263

Four states are defined for each application landscape:

offline, starting, operational and repairing.

• The Decision Manager is a centralized component re-

ceiving requests from both the Rule Alerter and the Tier

Manager (predictive component, see Section III-B). It

is responsible for ensuring coordination of auto-scaling

requests; this process is described in more detail in

Section IV-D below. Validated requests are broadcast

over the messaging bus.

• The System Orchestrator listens for the broadcast auto-

scaling requests. It is responsible for executing the

requests by provisioning and removing server instances.

The particular form of the scaling rules used by Platform

Insights is discussed in Section IV below. Rule-based elastic-

ity management only enables the system to scale after some

condition has already been met, and so predictive elasticity

management is also utilized in Platform Insights.

B. Predictive Elasticity Management

The Platform Insights predictive analysis engine estimates

the resource requirements needed by the workload in the

near future to satisfy QoS constraints. Platform monitoring

data is aggregated on each tier prior to being fed in to

the predictive models. Aggregating data at the tier level

is acceptable as the platform components are assumed to

have load balancers. Esper [17] is used to perform this pre-

aggregation of the data (both workload and QoS metrics).

More information on the specific data aggregations and pre-

dictive models will be given in Section IV-C. Esper listens

to the underlying stream of monitoring data, aggregates

it as appropriate, and then publishes the aggregated data

using the messaging system. Listeners for the predictive

models subscribe for all relevant data. The predictive engine

comprises the following software agents:

• The Data Listener subscribes for relevant data that

has been aggregated by Esper and published over the

messaging bus and distributes it to the Data Processor.

• The Data Processor has the responsibility of feeding

the data to the appropriate Model Updater.

• The Model Updater deals with the new data by updating

its model and/or doing a prediction using the new data.

On the basis of the prediction, it may decide an auto-

scaling action is necessary, in which case it sends a

request to the Tier Manager for assessment.

• The Tier Manager evaluates all auto-scaling actions

requested for the tier by the Model Updater. If the Tier

Manager agrees that the scaling action is appropriate

then a request is sent to the Decision Manager (see

Section III-A above).

This section has described the underlying architecture of

both the reactive and predictive components of the Platform

Insights elasticity management framework; the next section

gives details on their implementation.

IV. IMPLEMENTATION OF PLATFORM INSIGHTS

This section discusses the nature of the predictive models

built from the scaling rules and how they enable auto-scaling

decisions to be made. Section IV-A describes the configura-

tion of the scaling rules, Sections IV-B and IV-C describe the

implementation of the rule processing and predictive models

respectively, and Section IV-D describes how the Decision

Manager coordinates auto-scaling requests.

A. Configuration of Scaling Rules

The scaling rule strategy is to first perform some ag-

gregation of metric data pertaining to each server instance

over some time window. These per-server values are then

further aggregated to a single tier value, which is compared

against a threshold value. If the rule condition is met then

an action is triggered to add or remove some number of

instances whilst staying within some limits. The rules are

composed of the following elements. Metric: one of the

metrics exposed on the server and monitored by the system.

Operator: the comparison operator to be used in evaluating

the metric value; allowed operators are ‘EQ’, ‘LT’, ‘LTE’,

‘GT’and ‘GTE’. Value: the value threshold for the metric

being observed. Aggregate Function: the statistical aggregate

function to be used for metric evaluation; allowed values

are ‘average’, ‘sum’, ‘median’and ‘raw’(which indicates no

aggregation). Scope: the metric scope with respect to the

all the server instances in the tier; allowed values are ‘min’,

‘max’and ‘sum’. Time Window: the length of the sliding time

window over which to continuously monitor the metrics and

evaluate whether or not they meet the scaling rule condition.

Min Time Between Alerts: the minimum time between auto-

scaling actions. Limit: specification of the maximum or

minimum number of instances allowed in the tier. Scale By

Type: used to indicate that scaling should be implemented

by changing the number of currently running instances by

either a set number or by a given percent; allowed values are

‘Number’and ‘Percent’. Scale By Value: the value in units of

Scale By Type by which to change the number of currently

running instances when scaling. Rule Type: used to specify

whether the rule is based on metric values or on projected

values calculated through a linear regression; allowed values

are ‘Static’and ‘LinearRegression’. Time Ahead: for rules

based on projected metric values, this element defines how

far into the future to extrapolate the linear fit.
Scale out rules have a further element, Use As QoS with

allowed values of true or false. If it is true then the scaling

rule is additionally used by Platform Insights to form a

QoS condition to be taken account of by the predictive

controller, and in this case a predictive rule must also be

submitted with the following elements. Workload Metric:

a metric representing workload demand exposed on the

server and monitored by the system. Aggregate Function: the

statistical aggregate function to be used for workload metric

evaluation; allowed values are ‘average’, ‘sum’and ‘median’.

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 102 / 263

Time Window: the length of the batch time window over

which the aggregate function is to be applied to the workload

metric. Min Instances and Max Instances: the minimum and

maximum number of instances in the tier. Confidence Level:

the confidence level used by the time series forecaster to

compute confidence bounds on the predictions it makes.

B. Rule Processing

Upon submission of a scaling rule, the sequences of events

depicted in Figures 1 and 2 take place. If the scaling rule is to

be used as the basis of a QoS condition, then a prediction

rule is also submitted, which triggers the creation of data

aggregation statements and their registration with the Esper

engine. These aggregation statements cover the workload

metric aggregated over the batch time window requested in

the prediction rule and both the workload and QoS metrics

aggregated over the sliding time window requested in the

scaling rule. The Esper engine again subscribes for relevant

data and outputs aggregated data for use as input to the

predictive models.

C. Predictive Models

The predictive auto-scaling algorithm currently employed

in Platform Insights comprises three models operating on

mid-term and short-term timescales. The first model is a time

series forecaster that estimates the workload at some future

point in time. The model takes as input the total number

of requests made by the application (Workload Metric is

‘number of requests’, Aggregate Function is ‘sum’) and

predicts the future workload some time later; typically the

prediction horizon is set to one hour (Time Window is ‘one

hour’). The Confidence Level is set to 95% and used to

calculate confidence intervals on the forecast.

By comparing the forecast value against the four-hour

moving average value this model also classifies the cur-

rent workload trend as ‘Increasing’(if >10% difference),

‘Decreasing’(<-10% difference) or ‘Steady’(otherwise).

Changes in enterprise workload demand should be observ-

able over a four hour period since typical workload cycles

exhibit daily or weekly trends [18].

The second model is an updateable Naive Bayes model

that learns the relation between the current workload per

server and the current QoS classification. The QoS classifica-

tion is a binary classification according to whether or not the

QoS condition is met or violated. The threshold for making

this classification is set to 5% below the actual QoS target

value to reduce the risk of under-provisioning, an approach

also adopted by others [19]. This model is used to predict

mid-term resource requirements taking as input the forecast

confidence interval output from the first model.

The third model is also an updateable Naive Bayes

model and it maps the total workload per server to a QoS

classification some time into the future, typically 30 minutes

as this will allow time to build confidence in any output auto-

scaling requests and to provision additional servers. This

model takes as input the current workload and the trend

output from the first model. It is used to estimate the optimal

number of server instances required to handle the short-term

workload, by finding the minimum number of servers such

that there is less than 5% chance of QoS violation in the

next 30 minutes. If this estimate, NEst, differs to the current

number of servers, N , then an auto-scaling decision is made

to add NEst −N server instances.

The Weka machine learning library is used to implement

the predictive models [20]. One of the main reasons for

choosing Weka is that it provides classifiers that are update-

able incrementally. Because such classifiers can be updated

one training instance at a time, in line with the arrival of the

new data, this feature is particularly relevant for Platform

Insights in analysing steady streams of monitoring data.

Platform Insights uses the time series forecasting plug-in

and incrementally updateable Naive Bayes models. An in-

depth discussion of the implementation and performance of

these algorithms is presented in [21]; the focus of this paper

is to demonstrate the feasibility of the approach.

D. Coordination of Controllers

When an application starts running, both controllers are

activated. The predictive controller can be used without off-

line training because it takes advantage of online incremental

learning techniques. If the predictive controller is uncertain

of what action to take then it does not make any auto-scaling

decisions, instead it continues to learn. In these cases auto-

scaling decisions can still be made by the reactive controller

since it is always running as a stand-by.

Both controllers are capable of triggering scale in and

scale out actions. The reactive controller is only able to do

so if sufficient time (Min Time Between Alerts) has passed

since the previous scaling action and if the landscape state

is ‘operational’. The predictive controller can submit scaling

requests at any time. Both controllers act independently but

forward their requests to the centralized Decision Manager

to deliver a coordinated elasticity mechanism.

The Decision Manager validates received requests with

information it has access to, or can obtain from the Land-

scape State Manager, regarding the current number of

instances running, any outstanding scaling requests currently

being executed, and specified limits on the number of

servers. This validation process may revise the request in

several ways. Firstly, the request may be rejected. This can

occur if it duplicates a request already being executed, or if

it instructs to scale in whilst a scale out action is currently

being executed. We choose to implement a conservative

policy stipulating that scale out takes precedence over scale

in so as to minimize QoS violations. Secondly, the requested

number of servers may be modified. This can happen to

enforce the specified limits. It will also happen if a) the

90Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 103 / 263

1 2 3 4 5 6 7
Day

1

2

3

4

5

6

N
u
m

b
er

 o
f

in
st

an
ce

s Number of instances

0 1 2 3 4 5 6 7
Day

0

200

400

600

800

N
u
m

b
er

 o
f

re
q
u
es

tsNumber of requests

Figure 3. Auto-scaling simulation using ClarkNet traces.

request would result in the number of server instances going

outside the mid-term resource requirements predicted from

the forecast confidence interval, or b) the request instructs

the addition of n2 servers whilst an earlier scale out action

instructing the addition of n1 servers is still being executed,

in which case the request is revised to max(n2 − n1, 0).

Upon successful validation, the Decision Manager for-

wards the (possibly revised) request to the System Orchestra-

tor for execution. It also updates the time of the last scaling

action and updates the state of the application landscape held

by the Landscape State Manager to ‘repairing’. The land-

scape state only returns to ‘operational’once the Landscape

State Manager detects the requested change in the number

of current running instances, indicating that the request has

been successfully carried out.

V. CASE STUDY

To evaluate the performance of the elasticity controller,

a simulation of the elasticity of the application server tier

has been carried out. Two real datasets, the ClarkNet web

server trace logs [4] and the FIFA 1998 Word Cup Access

logs [4][5], were used to simulate the incoming load to

the system. The log files were summarized to extract the

number of requests arriving every 2 minutes and then used to

simulate driving the SPECjEnterprise2010 benchmark. The

benchmark response times were observed to be in excess

of the target time of 2 seconds when the CPU utilization

went beyond 80%. A scale out rule was configured as: if

the minimum median value of CPU utilization over the past

40 minutes is > 80% then increase the number of instances

by 1. Similarly for scale-in: if the maximum median value

of CPU utilization over the past 60 minutes is < 50%

then decrease the number of instances by 1. After auto-

scaling, a period of at least the same time window again

must pass before the next auto-scaling decision can be made.

In the simulation it is assumed that the provisioning of a

new instance takes 10 minutes [22]. The QoS condition

extracted from the scale out rule was: minimum median CPU

utilization over a window of 40 minutes must be < 80%.

The number of requests using the August ClarkNet trace

together with the number of simulated running instances are

6 9 12 15 18 21 24
Day of trace

0

2

4

6

8

10

N
u
m

b
er

 o
f

in
st

an
ce

s

6 9 12 15 18 21 24
Day of trace

0

2000

4000

6000

N
u
m

b
er

 o
f

re
q
u
es

ts

6 9 12 15 18 21 24
Day of trace

Hybrid
Reactive only
Reactive decisions in hybrid

Figure 4. Auto-scaling simulation using 1998 FIFA World Cup trace. Grey
line: number of requests in each two minute interval (right axis).

0 20 40 60 80 100
CPU utilization (%)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n Hybrid
Reactive only

Figure 5. Cumulative distribution of CPU utilization.

shown in Figure 3. In this simulation, the reactive controller

was only responsible for the first two scaling actions; all

subsequent scaling actions were generated by the predictive

controller. The figure demonstrates that the hybrid controller

is capable of making appropriate scaling actions and is

stable. The QoS metric is monitored throughout the course

of the run: less than 1% of all collected QoS values violated

the QoS condition. To quantify this fully, there were 28 two

minute periods where the QoS metric went above 80%, all

of which were at the very start of the run.

The FIFA World Cup access logs exhibit a higher degree

of burstiness than do the ClarkNet logs. Figure 4 shows

the auto-scaling decisions made by both the hybrid and the

purely reactive controllers, for days 6 to 25 of the logs. Day

26 in the figure is a repeat of day 6. The actions initiated

by the reactive controller in the hybrid model (blue circles)

are generally taken at times when the workload is different

to historical workload, and hence the predictive controller

has not built sufficient confidence in its online models, or

when the workload exhibits more burstiness than normal,

highlighting the advantage of operating the reactive and

predictive controllers in a coordinated parallel manner. The

figure suggests that the hybrid controller dynamically adjusts

resource more appropriately, and hence will result in better

utilization, than does the purely reactive controller. Figure 5

verifies this: CPU utilization is consistently maintained

within the target range of 50% to 80% (<50% less than

3% of the time and >80% less than 5% of the time). Again,

there are only a few QoS violations: 41 in total, which relate

to 3 separate incidents characterized by bursty workloads.

91Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 104 / 263

VI. CONCLUSION AND FUTURE WORK

In this paper, we described the architecture, design and

implementation of a new real-time cloud capacity frame-

work, Platform Insights. Platform Insights is a hybrid elas-

ticity controller employing both reactive rule-based and

predictive model-based elasticity mechanisms together in a

coordinated manner. The approach has been validated by

using traces based on two real datasets to simulate driving a

benchmark application. In both cases, Platform Insights was

able to provision resource for the application server tier more

appropriately than the reactive controller alone, yielding very

few QoS violations and maintaining consistently high CPU

utilization.

In the short-term, we will carry out further comparisons of

our approach with other auto-scaling methods and integrate

our framework in a real cloud infrastructure. For future

work, we intend to extend Platform Insights to handle mul-

tiple QoS objectives at once and to incorporate an algorithm

to detect change in workload mix.

ACKNOWLEDGMENT

This research is funded by the CumuloNimbo project in

the European Community’s Seventh Framework Programme

[FP7/2007-2013] under grant agreement no. FP7-257993.

REFERENCES

[1] Gartner, “Market Trends: Platform as a Service, World-
wide, 2012-2016, 2H12 Update,” http://www.gartner.com/
id=2188816 Accessed 12th March 2013.

[2] IDC, “Quantitative Estimates of the Demand for Cloud
Computing in Europe and the Likely Barriers to Up,
SMART 2011/0045, Final Report,” 2012 http://ec.europa.
eu/information society/activities/cloudcomputing/docs/
quantitative estimates.pdf Accessed 12th March 2013.

[3] L. Schubert and K. Jeffery, “Advances in Clouds: Research
in Future Cloud Computing,” Expert Group Report, Pub-
lic Version 1.0, 2012 http://cordis.europa.eu/fp7/ict/ssai/docs/
future-cc-2may-finalreport-experts.pdf Accessed 12th March
2013.

[4] The Internet Traffic Archive http://ita.ee.lbl.gov/html/traces.
html Accessed 12th March 2013.

[5] M. Arlitt and T Jin, “Workload Characterization of the 1998
World Cup Web Site,” Technical Report HPL-1999-35R1, HP
Laboratories, 1999. The trace is available from [4].

[6] T. Lorido-Botrán, J. Miguel-Alonso and J.A. Lozano, “Auto-
scaling Techniques for Elastic Applications in Cloud Environ-
ments,” Technical Report EHU-KAT-IK-09-12, 2012.

[7] Amazon Elastic Compute Cloud http://aws.amazon.com/ec2/
Accessed 12th March 2013.

[8] RightScale http://www.rightscale.com/ Accessed 12th March
2013.

[9] AzureWatch http://www.paraleap.com/azurewatch Accessed
12th March 2013.

[10] D. Breitgand, E. Henis and O. Shehory, “Automated and
adaptive threshold setting: enabling technology for autonomy
and self-management,” in Proceedings of the 2nd International
Conference on Automatic Computing (ICAC ’05), 2005, pp.
204-215.

[11] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan and D. Pat-
terson, “Statistical machine learning makes automatic control
practical for internet datacenters,” in Proceedings of the 2009
conference on Hot topics in cloud computing (HotCloud’09),
2009, Article No. 12.

[12] R.N. Calheiros, R. Ranjan and R. Buyya, “Virtual machine
provisioning based on analytical performance and QoS in
cloud computing environments,” in Proceedings of the 2011
International Conference on Parallel Processing (ICPP ’11),
2011, pp. 295-304.

[13] N. Roy, A. Dubey and A. Gokhale, “Efficient autoscaling in
the cloud using predictive models for workload forecasting,”
in Proceedings of the 2011 IEEE 4th International Conference
on Cloud Computing (CLOUD ’11), 2011, pp. 500-507.

[14] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal and T. Wood,
“Agile dynamic provisioning of multi-tier internet applica-
tions,” ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), vol. 3, no.1, pp. 1-39, 2008.

[15] W. Iqbal, M.N. Dailey, D. Carrera and P. Janecek, “Adaptive
resource provisioning for read intensive multi-tier applications
in the cloud,” Future Generation Computer Systems, vol. 27,
no. 6, pp. 871-879, 2011.

[16] A. Ali-Eldin, J. Tordsson and E. Elmroth, “An adaptive hybrid
elasticity controller for cloud infrastructures,” in Network Op-
erations and Management Symposium (NOMS), IEEE, 2012,
pp. 204-212.

[17] EsperTech Event Stream Intelligence http://esper.codehaus.
org/index.html, a product of EsperTech Inc. Accessed 12th
March 2013.

[18] D. Gmach, J. Rolia, L. Cherkasova and A. Kemper, “Re-
source pool management: Reactive versus proactive or let’s be
friends,” Computer Networks, vol. 53, no. 17, pp. 2905-2922,
2009.

[19] Z. Gong, X. Gu and J. Wilkes, “Predictive elastic resource
scaling for cloud systems,” in 2010 International Conference
on Network and Service Management (CNSM), 2010, pp. 9-16.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann
and I.H. Witten, “The WEKA Data Mining Software: An
Update,” SIGKDD Explorations, vol. 11, no. 1, pp. 10-18,
2009.

[21] L.R. Moore, K. Bean and T. Ellahi, “Transforming reactive
auto-scaling into proactive auto-scaling,”. Accepted for publi-
cation, 2013.

[22] A. Li, X. Yang, S. Kandula and M. Zhang, “CloudCmp:
comparing public cloud providers,” in Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement (IMC
’10), 2010, pp. 1-14.

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 105 / 263

Elastic-TOSCA: Supporting Elasticity of Cloud Application in TOSCA

Rui Han, Moustafa M. Ghanem, Yike Guo*
Department of Computing
Imperial College London

London, UK
{r.han10, mmg, y.guo}@imperial.ac.uk

Abstract— The Topology and Orchestration Specification for
Cloud Applications (TOSCA) is an emerging framework
aiming at enhancing the portability of cloud applications by
standardizing their life cycle management in a vendor-neutral
way. TOSCA captures the description of cloud application and
infrastructure services, the relationships between parts of the
services, and the operational behavior of these services (e.g.,
deploy, patch, shutdown). However, it lacks support for the
equally important aspect of managing elasticity, i.e., managing
the dynamic scaling of cloud applications at run-time. In this
work we present the Elastic-TOSCA framework, which
extends TOSCA to address this issue. We then describe how
Elastic-TOSCA can be used to support a variety of analytical
model-based approaches for elasticity management in complex
cloud applications. We further provide a detailed example
describing how Elastic TOSCA can be used to support easily a
dynamic scaling approach based on a queueing system model.
Using a case study for managing the elasticity of a multi-tier e-
commerce service, we demonstrate the effectiveness of both the
Elastic-TOSCA framework and the scaling approach used.

Keywords-TOSCA; cloud; elasticity; scaling approaches;
queueing system

I. INTRODUCTION
Cloud computing has gained unquestionable commercial

success in recent years. Key value propositions promoted by
cloud IaaS (Infrastructure-as-a-Service) providers such as
Amazon AWS (Amazon Web Services) [1] and GoGrid [2]
include the user’s ability to scale up or down resources used
based on their computational demand, thus letting
application owners (software service creators or developers)
pay only for the resources used. This model is appealing for
deploying complex applications that provide services for
third parties or end users. Some examples of such services
include traditional e-commerce sites, online healthcare
applications, gaming applications, and media applications. In
such applications, if the workload of the service increases
(e.g., more end users start submitting requests
simultaneously), the application owner ideally needs to scale
up the resources used to maintain the Quality of Service
(QoS) offered to the end users. When the workload eases
down, the application owner ideally needs to scale down the
resources used to reduce the cost incurred for service
provision. Within this context, supporting dynamic (on-
demand) scaling, also known as elasticity, has become one of

* Please direct your enquiries to the communication author Professor Yike Guo.

the most important features that need to be supported in a
cloud platform.
 The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is an emerging framework for
describing components’ dependencies and deployment plans
of cloud applications. Proposed by the Organization for the
Advancement of Structured Information Standards (OASIS)
[3, 4], TOSCA is designed to simplify the life cycle
management of cloud applications in a vendor-neutral way so
as to enhance their portability. Such portability is enabled
through specifying the operational behaviours of cloud
applications, e.g., how servers are deployed or removed and
how they are connected, in a uniform way independent of the
cloud platform used. This uniform description provides
application owners with flexibility when deploying and
migrating their applications and associated components
across different IaaS providers.

Currently, TOSCA supports the specification of key
activities required for the initial deployment of cloud
applications and also the activities required to shut down the
application. However, it does not provide support for the
equally important aspect of specifying how application
elasticity can be managed at run-time, e.g., by enabling the
specification of how resources can be added or removed at
run-time based on workload variation. Our motivation in this
paper is to enrich and extend the existing TOSCA framework
to support such elasticity management activities in a vendor-
neutral way. In particular, our contributions are summarized
as follow:

Elastic-TOSCA: We provide extensions to TOSCA that
support the specification of dynamic scaling plans and that
enable guiding scale-up/down of cloud applications at run-
time.

Supporting model-based application scaling
approaches using Elastic-TOSCA: The Elastic-TOSCA
framework is generic and can support a wide class of
dynamic scaling approaches based on analytical models [1, 2,
5-14]. The key requirement for using the framework is that
the implemented scaling approach should be able to access
its inputs from the Elastic-TOSCA server templates, and to
feed its outputs to the template that enables the auto-scaling
of applications. We describe and demonstrate how this can
be achieved easily using a scaling approach based on a
queuing system model [5].

Example implementation and evaluation: We extend
the Imperial Smart Scaling engine (iSSe) [10, 15], an
intelligent platform designed to automate the deployment and
scaling process of cloud applications, to support the Elastic-

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 106 / 263

TOSCA framework. Using iSSe, we evaluate the
effectiveness of both Elastic TOSCA and the proposed
scaling approach using a multi-tier e-commerce service as an
example application.

The remainder of this paper is organized as follows:
Section II presents basic concepts on cloud applications and
how auto-scaling of such applications can be achieved using
analytical model-based approaches. Section III defines the
Elastic-TOSCA framework and describes its key
components. Section IV describes how a queueing system
model-based approach can be supported by Elastic-TOSCA.
Section IV introduces the architecture of the iSSe and
describes the extensions implemented to support Elastic-
TOSCA. It also provides an experimental evaluation of the
proposed approach. Finally, Section VI summarises the work
presented in this paper and describes avenues for future
research.

II. BACKGROUND
In this section, we first describe the structure of a

traditional multi-tier application to illustrate how many
applications benefit from dynamic scaling in a cloud
environment and then discuss existing dynamic scaling
techniques that are based on analytical models.

A. Illustrative Example of Multi-tier Cloud Applications
The main objective of this paper is to investigate the

enrichment of TOSCA to support elasticity management of
cloud applications. Addressing this issue effectively requires
taking a closer look at the structure of common services and
applications that can benefit from dynamic scaling when
deployed on IaaS clouds so as to cope with varying
workloads. Many such services are typically complex multi-
tier applications running on distributed software platforms.
Figure 1, shows the logical structure of one such application
implemented using four tiers of servers: a frontend
HAProxy load balancer for accepting and distributing end
users’ requests, an Apache web server for handling HTTP
requests; a middle-tier Tomcat application server for
implementing business logic; and a backend database with
data store and processing. These servers work together to
handle end users’ requests. Depending on the application
workload, the servers at each tier can be stressed at different
times and the implementation ideally needs to scale up or
down the resources at the appropriate tier so as to maintain
the overall QoS requirement of the application while
minimizing the cost of resources used.

Figure 2(a) shows the lifecycle of the e-commerce
application as an example of such dynamic scaling. When
the application is initially deployed (see Figure 1), five
servers are deployed to support a small number of
customers. If the demand increases, the application can be
scaled up to add new servers. For example, in the scaling up
of Figure 2(b), one Apache server and two Tomcat servers
are added to maintain performance. Alternatively, if the
demand decreases, some servers can be removed to reduce
the cost of service provision. For example, in the scaling

down of Figure 2(c), one Tomcat server is removed from
Figure 1’s initially deployed application.

Figure 1. An example multi-tier cloud application.

Figure 2. An e-commerce service. We can see (a) the lifecycle of a e-
commerce service, (b) the service after a scaling up, and (c) the service

after a scaling down.

It should be noted that most scaling approaches for cloud
applications, whether used in practice or described in the
literature [1, 2, 5-14], are typically based on controlling
(increasing or decreasing) the number of Virtual Machine
(VM) instances that host the applications’ server
components. Without loss of generality, we assume that
each server component is installed in a stand-alone VM.
Accordingly, the scaling up/down the application discussed
in this work typically involves adding/removing extra
software servers, and hence extra VMs in a cloud
environment.

B. Cloud Scaling Techniques Using Analytical Models
A variety of approaches that are suitable for auto-scaling

multi-tier applications have been proposed in the literature.
Many of those employ analytical modelling techniques based
on queueing systems [5]. For example, in [6], Xiong et al.
model an application by a network of queueing systems and
conduct the performance analysis to show relationships
among workloads, number of servers and QoS level. In [7],
Bacigalupo et al. model an application by a queueing
network with three tiers, namely application, database and
database disk tiers. Each tier is then solved to analyse the
mean response time, throughput and utilisation of a server. In
[8], Bi et al. break down an application’s end-to-end
response time to each tier. They then calculate the number of
servers allocated at each tier subject to constraints on the
average response time and arrival rate. In [9], Hu et al.
consider two allocation strategies using queueing systems: 1)
shared allocation (SA) strategy where all incoming requests
have the same queueing; 2) dedicated allocation (DA)
strategy where requests with different arrival rate are divided
into multiple queues. An algorithm is then proposed to

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 107 / 263

decide which strategy (SA or DA) results in a smaller
number of servers being used to satisfy the QoS requirement.
In addition, in [10], Han et al. consider the cost of VMs and
introduce cost-aware criteria to detect and analyse the
bottlenecks of multi-tier applications. They then present an
adaptive scaling algorithm to lower cost by scaling up or
down only at the bottleneck tiers. In [11], Pal et al. propose a
pricing framework with economic models designed for
multiple cloud providers in the marketplace, where each IaaS
provider is modelled as a queueing system. Using this
queueing system, the framework aims at informing
application owners of the available price and its related QoS
level.

Various other stochastic model-based approaches have
been studied and used. For example, in [12], Ghosh et al.
divide an application into three types of sub analytical
model: the resource provisioning decision model, VM
provisioning model and run-time model. By iteratively
solving each individual sub-model, their analysis obtains two
results: response time and service availability. In addition, in
[13] Ghosh et al. utilise a stochastic reward net to model an
application and provide two analysis results: job rejection
rate and response delay. In [14] Li et al. use a network flow
model to analyse applications and introduce an approach to
assist service providers in making a trade-off between cost
and QoS requirements.

It should be noted that the analytical models described
here are mainly based on mathematical representations of the
application and servers used. Their use in practice requires
capturing the structure of the application itself to generate the
mathematical representation. Furthermore, their
implementation also needs interfacing with the run-time
system so as to obtain the parameters used in the models at
run-time and also to guide the system in implementing the
computed scaling decisions.

III. ELASTIC-TOSCA
In this section, we first introduce the basic TOSCA

framework briefly, and then describe how it is extended to
define Elastic-TOSCA.

A. Basic Introduction of TOSCA
TOSCA server templates are described in XML and can

be used for describing cloud application, including server
components and their linking relationships [3, 4]. Figure 3
shows the high-level structure of a TOSCA server template
describing an e-commerce service with four sections:
Topology template, Node types, Relationship type and Plans.
The “Topology template” section specifies the dependency
between different server components. The “Node types”
section defines the properties of one server, e.g., its owner
and the configuration of its hosted VM (CPU numbers,
memory size, disk capacity and operating system). A
“Relationship type” section specifies the relationship
between two servers. In the shown example, an Apache
server and a Tomcat server are connected, where the Apache
is the source node and the Tomcat is the target node. Finally,
the “Plans” section defines the process model for initially

deploying a new application and also for removing a running
application.

B. Elastic-TOSCA: Extensions to Support Elasticity
We extend the basic TOSCA framework and enrich it

with the information required for guiding dynamic scaling of
cloud applications, allowing application owners to specify
different scaling strategies. For example, an owner could
define a scaling up/down strategy based on performance
requirements, budgets and QoS requirements specified in
service-level agreements (SLAs).

Using the Elastic-TOSCA framework, we generate a new
Elastic-TOSCA-based XML document that includes
monitoring information structures and new plans for scaling
up/down. Figure 4 shows an example server template in
Elastic-TOSCA, including two new sections (“Monitoring
Information” and “SLA&Constraints”) as well as extensions
to the “Plans” section, corresponding to three components
needed for guiding dynamic scaling of an e-commerce
service. Note that the specification and extension of these
sections follows TOSCA extensibility mechanism [3, 4],
which guarantees that the extended sections are independent
of cloud IaaS providers.

The “Monitoring Information” section mainly specifies a
running application’s current status and underlying
infrastructures. In the example fragment in Figure 5, this
section records the detected response time and the request
arrival rate, as well as the utilisation of resources of the
application’s hosted VMs.

Figure 3. An example server template in basic TOSCA

Figure 4. An example server template in Elastic-TOSCA.

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 108 / 263

Figure 5. An example “Monitoring Information” section in Elastic-

TOSCA.

The “SLA&Constraints” section describes QoS
requirements and any constraints on quality, budget, and
other aspects of the application. In the example shown in
Figure 6, this section specifies the end users’ required QoS:
the maximal response time and the application owner’s
constraints: the minimal resource utilisation (a resource is
considered as idle if its utilisation is smaller than this
requirement) and budget (the maximal cost to support the
running of the service).

Finally, we extend the “Plan” section in basic TOSCA to
define more types of plans that handle the application’s
dynamic scaling cases. Figure 4 shows the Elastic-TOSCA
definition of two types of scaling plans — “Scale up
applications” and “Scale down applications”. Each type can
have multiple scaling plans and each plan describes a
specific scaling scenario. For example, Figure 7 shows a
fragment of a plan for scaling up an e-commerce service.
This plan is used for adding one Apache server and two
Tomcat servers to the application.

A scaling plan in Elastic-TOSCA server template defines
a list of scaling tasks, where each task corresponds to a
deployment action. Based on Elastic-TOSCA, this
deployment action is independent of any cloud platform, thus
enabling applications an IaaS-neutral scaling process. In
Figure 8, we provide two example segments in Elastic-
TOSCA server templates for specifying a deployment action
in two different cloud platforms. These specifications contain
all the parameters needed to call an auto scaling API of IC-
Cloud [16] (Figure 8(a)) and Amazon AWS [1] (Figure 8(b))
in order to deploy a new Tomcat server when scaling up.
Note that for each scaling case, a scaling plan and its scaling
tasks are generated dynamically. The information needed to
generate documents describing the scaling tasks (e.g., a
server’s user name, password and VM configuration) is
obtained from the “Node types” section of Elastic-TOSCA.

Figure 6. An example “SLA&Constraints” section in Elastic-TOSCA.

Figure 7. An example scaling up plan in Elastic-TOSCA.

IV. SUPPORTING SCALING APPROACHES BASED ON
ANALYTICAL MODELS USING ELASTIC-TOSCA

 In this section, we first explain the basic steps of scaling
approaches using analytical models and how these steps are
supported by Elastic-TOSCA. We then employ a queueing
system as a typical example of analytical model to
demonstrate these steps.

A. Analytical Model-based Scaling Approaches Using
Elastic-TOSCA

Typically, an analytical model-based approach for scaling
an application consists of four steps, which are preformed
using information maintained in different sections of
Elastic-TOSCA server templates as illustrate in Figure 9.

Figure 8. Two example scaling tasks for deploying a new server in two

cloud platforms: (a) IC-Cloud and (b) Amazon AWS.

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 109 / 263

Figure 9. Elastic-TOSCA server templates: for supporting scaling

approaches using analytical model.

At step 1, the approach continuously checks the
“Monitoring Information” and “SLA&Constraints” sections
to check where a scaling up/down is needed. The approach
proceeds to step 2 if scaling up/down is triggered. At step 2,
an analytical model is constructed according to the
application topology, configurations of servers and their
linking relationships. At step 3, the approach employs
analytical modelling techniques to transform the high level
QoS requirements into the number of servers to be
deployed, and generates a scaling plan for meeting QoS
requirements. Finally, step 4 executes the scaling plan.

B. Basic Introduction to Queueing Systems
Typically, a queueing system can be described using

!/!/!, where ! represents the arrival process, ! represents
the distribution of service time and ! is the number of servers
[5]. In the example queueing system of Figure 10(a), !/!/! =
!/!/! (G for general). This !/!/! queueing system includes
! parallel and independent servers and one request waiting
queue, where both requests’ interarrival time ! (the
reciprocal of requests’ arrival rate) and servers’ service time
follow arbitrary distributions. The !/!/! queueing system of
Figure 10(a) is used to model a tier of Tomcat servers.
Furthermore, the whole !-tier application is modelled as a
network of ! !/!/! queueing systems and each queueing
system represents a tier in the application. Take Figure
10(b)’s 4-tier e-commerce service as an example, which is
modelled by a queueing network of four ! /! /! queueing
systems. The queueing system of the first tier (HAProxy
servers) only receives requests from end users, and the
departure requests of one tier are the incoming requests of its
following tier.

C. Scaling Approach Using Queueing Systems
Queueing theory [5] has been successfully applied in

many cloud scaling algorithms [5-11] to perform capacity
planning for dynamic scaling. Typically, the overall scaling
approach can be described in Figure 11’s pseudocode. This
scaling approach described in this pseudocode corresponds to
Figure 9’s four generic steps:

Figure 10. Queueing model and neiworks. We can see (a) a G/G/n

queueing system to describe a tier of Tomcat servers, and (b) a queueing
network to describe a e-commerce service.

At step 1 (line 3 and 4), the approach decides whether to
trigger a scaling up/down according to the latest monitoring
information of the running application maintained in the
“Monitoring Information” section of Elastic-TOSCA server
templates and QoS requirements and constraints to be
satisfied in the “SLA&Constraints” Section. For example, if
the monitored response time (e.g., 3 seconds) exceeds the
maximal required response time (e.g., 2 second), a scaling
up is triggered. In contrast, if the detected resource
utilisation (e.g., 20%) is below the minimal resource
utilisation (e.g., 30%), a scaling down is conducted to
remove some idle servers.

At step 2 (line 6 and 10) and step 3 (line 7 and 11), the
approach applies a queueing network to model the
application and generate a scaling up or down plan (line 7
and 11). This plan is then added to the “Plan” section of
Elastic-TOSCA server templates. Section IV.D explains
these two steps in detail.

Finally, at step 4 (line 8 and 12), the approach performs
the scaling according to the generated plan.

Figure 11. Pseudocode of a dynamic scaling approach using queueing

systems.

97Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 110 / 263

Figure 12. The capacity planning using server templates in Elastic-TOSCA

and queueing systems.

D. Supporting the Scaling Approach using Elastic-TOSCA
server templates
The key component of a scaling approach using queueing

systems as an analytical modelling technique is the capacity
planning. This planning involves two steps: constructing a
queueing network of a multi-tier application (step 2 in Figure
9) and solving the analytical model to generate a scaling plan
(step 3 in Figure 9).

Figure 12 illustrates how the information maintained in a
server template of Elastic-TOSCA maps to the corresponding
part of a queueing network (dashed lines). The information
maintained in the “Topology template” and “Relationship
type” sections describe the topology of the queueing network
and the linking relationship of different queueing systems.
For each queueing system, ! / ! / ! , the information in
“Monitoring Information” section specifies the arrival
process ! , the information in the “Node types” section
decides distribution of service time ! and server number !.

After a queueing network representing the multi-tier
application is constructed, the approach applies queueing
theory to perform capacity planning using information in the
“Monitoring Information” and “SLA&Constraints” sections.
This planning estimates the number of servers to be deployed
at each tier of the application and generates a scaling plan.
The plan is then added to the “Plans” section to guide the
scaling of the application (solid lines).

Take the e-commerce service in Figure 1 for example,
using information in the “Topology templates” and
“Relationship type” sections, the approach first constructs a
queueing network of four queueing systems to describe the
four tiers of servers in the service, and decides the linking
sequence of these four queueing systems. The “Monitoring
Information” and “Node type” sections then decide the three
components of each queueing system. For example, the
queueing system ! / ! / ! of Tomcat servers has arrival
requests ! with arrival rate 150 requests/second, each
Tomcat server has service rate 70 requests/second, and the
number of Tomcat servers is 1. Using the constructed
queueing network, capacity planning is conducted according
to the detected response time (3.5 seconds) in the

“Monitoring Information” section and the required response
time (2.0 seconds) in the “SLA&Constraints” section. The
detected response time is larger than the required one, so a
scaling up plan is generated: the tier of Tomcat should be
added two servers and the tier of the Apache should be added
one server.

V. IMPLEMENTATION AND EVALUATION
In this section, we first introduce iSSe and describe how

it has been extended to interact with Elastic-TOSCA and the
analytical models. We then describe the experiments
conducted to illustrate both the effectiveness of the queueing
system based scaling approach and the interaction of iSSe
with Elastic-TOSCA.

A. Extension of iSSe to Support Elastic-TOSCA
We extended iSSe (see [10, 15] for detail), an intelligent

scaling engine, to support the Elastic-TOSCA framework.
As shown in Figure 13, iSSe acts as middleware between
cloud IaaS providers and application owners. It provides a
Application owner portal to assist application owners to
configure their services, allow them to select servers from
the iSSe Repository of Servers, define VM configurations,
and design their topology. This portal also allows them to
specify the required QoS and constraints. To enable
interaction with Elastic-TOSCA, the information is stored in
the “Topology template”, “Node types”, “Relationship types”
sections in Elastic-TOSCA server templates.

The iSSe Monitoring service monitors each running
application using two types of monitors. The first is the entry
monitor, which examines the incoming requests over a finite
interval (e.g., 60 seconds) and records information such as
the requests’ arrival rate and average response time. This
information is used to decide whether a scaling up/down is
needed. The second is the server monitor installed on each
server to monitor its resource usage (e.g., CPU utilisation),
and to analyse tier-specific values, such as response time.
The collected information is then used to update the
“Monitoring information” section in Elastic-TOSCA server
templates.

Figure 13. iSSe for supporting dynamic scaling using Elastic-TOSCA.

98Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 111 / 263

Note that the iSSe monitors are generic and independent
of the IaaS providers. Existing providers usually provide
users with standalone VM images. iSSe packages the VM
images with pre-developed monitors as server templates that
can be deployed in any cloud platform. The iSSe monitors
hence only depend on the underlying operating systems, e.g.,
Linux Ubuntu and Centos, supported by iSSe. When a
scaling is triggered, the iSSe Capacity planning service
applies a scaling approach to generate a scaling up/down
plan. When using Elastic-TOSCA, the information is
maintained in the server templates. More concretely, the
approach estimates the type and number of servers to be
scaled, and then updates the “Plans” section by adding the
generated scaling plan. Using the generated scaling plan, the
iSSe Deployment service implements the required actions by
calling interfaces of the underlying cloud platforms.

B. Evaluation of the Scaling Approach
Our evaluation is designed to illustrate the feasibility and

effectiveness of Elastic-TOSCA in enabling dynamic scaling
using a queueing system. The scaling approach itself is
described in detail in [10], where it had been applied in an
iSSe version not based on Elastic-TOSCA.

Our experiments are conducted in a data centre running
IC-Cloud platform [16]. The configuration used has four
physical machines (PMs), each with eight CPUs and 32 GB
memory. The version of each processor is Quad-Core AMD
Opteron(tm) Processor 2380, with 2.5GHz clock frequency
and 512 KB cache size. All four PMs share a 4.1 Tb
centralised storage and are connected through a switched
gigabit Ethernet LAN with speed 1000mbs.

The e-commerce service in Figure 1 was implemented
and its scaling up and down was tested. For convenience,
each server of the service is installed on a single dedicated
VM running Linux Centos 5.4. In deployment, different
servers have different VM configuration details, as listed in
Table I. Two versions of the MySQL database (Master and
Slave) are implemented to support a data replication model.
A MySQL Master is initially deployed and, when the tier of
MySQL is scaled up, extra MySQL Slaves are added and
configured with replication from the MySQL Master. Given
a fixed VM configuration, the deployment of the Tomcat and
Apache servers can be completed in a constant time. In the
evaluation, the database has a fixed amount of data to be
replicated, i.e., the data replication time of MySQL slave is
fixed. Thus, the deployment time of MySQL databases is
also a constant time.

TABLE I. FIVE TYPES OF SERVERS’ VM CONFIGURATIONS

Service name CPU RAM (GB) Software version

HAProxy 2 2 haproxy-1.4.8

Apache 2 2 Apache 2.2.20

Tomcat 1 1 Tomcat 7.0.22

MySQL Master 4 4 MySQL 5.5

MySQL Slave 1 1 MySQL 5.5

We used a client emulator to simulate a number of
concurrent end users. Each end user continuously generates a
sequence of requests to stress the server-side application. We
divide the test into nine periods, where each period lasts 600
seconds. The first five periods of simulations stepwise
increase in the number of end users so as to initiate scaling
up. The remaining four periods gradually decrease this
number to trigger scaling down. More concretely, the number
of simulated concurrent users in the nine periods are: 200,
400, 600, 900, 1200, 900, 600, 400, and 200, respectively.
This variance of end user numbers denotes the changing
workload volume. The first testing period starts at time = 0
second. During the whole testing period, the application is
monitored once every 60 seconds and Figure 14(a) displays
the observed arrival rates of incoming requests. These
observed arrival rates can be used to derive the mean and
variance values of the request’s interarrival time used in the
queueing system.

Figure 14(b) lists the numbers of servers at each tier
during scaling. Note that the numbers of HAProxy servers
and MySQL Master database do not change. For the first
period (the number of concurrent users is 200), the e-
commerce service is initially deployed with one HAProxy,
Apache, MySQL Master server and two Tomcat servers.
When the concurrent users increase to 400 at time = 600
seconds and saturate the Apache and Tomcat tiers, dynamic
scaling is triggered and one Apache and two Tomcats servers
are added. When the number of concurrent users is increased
at time=1200, 1800 and 2400 seconds, the cycle repeats. In
contrast, when this number decreases at time =3000, 3600,
4200 and 4800 seconds, the service is scaled down by
removing idle servers.

Note that, once scaling up or down is triggered, the
construction of the application’s queueing network model
and executing the capacity planning are completed within
few seconds to generate a scaling plan. Using the plan,
servers are added or removed in parallel using the iSSe
Deployment service. In the IC-Cloud platform [16], the
deployment actions are completed within 1 or 2 minutes.

In the evaluation, we checked the monitoring information
(request arrival rate and response time) every 60 seconds. We
can observe in Figure 14 that there are 10 observation values
for response time in each test period of 600 seconds.
Typically, in each scaling up the first and second observed
response time values violate the required constraint because
scaling up is not yet completed. In other words, response
recovery can be detected only after 1 to 2 minutes.

Figure 14(c) demonstrates the fluctuation of the end-to-
end response time observed in the nine testing periods. In the
first five periods, the response time is violated whenever the
number of concurrent users is increased. For instance, when
the number of users is increased to 400 at time = 600 seconds
it saturates the Apache and Tomcat servers. Scaling up is
then triggered and two Tomcat and one Apache servers are
added. In contrast, in the last four periods, the scaling
approach scales down the service while meeting the required
response time.

99Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 112 / 263

Figure 14. Evaluation of the scaling approach: (a) requests’ arrival rate, (b)

number of servers in each tier, (c) the end-to-end response time.

Result. The Elastic-TOSCA framework is able to support
the scaling approach based on queueing systems for
dynamically scaling up and down cloud applications to meet
their QoS requirements.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented extensions to the TOSCA

framework to enable platform-independent specification of
dynamic scaling for cloud applications. The extensions
covered three sections, corresponding to three types of
information used in guiding dynamic scaling. The Elastic-
TOSCA framework is generic and supports a wide class of
analytical mode-based scaling algorithms. We illustrated the
effectiveness of Elastic-TOSCA framework by using a
scaling approach based on a queueing system model. We also
described how the framework can be supported easily in a
scaling engine and conducted experiments to demonstrate the
practicality of the framework using an example e-commerce
service.

Our direct future work is to evaluate supporting Elastic-
TOSCA on different cloud platforms and also to evaluate
using other scaling techniques and approaches such as
lightweight scaling at the VM level itself (CPUs, memory,
I/O, etc) [17]. We will also test our approach using more
complex scenarios such as considering the amount of data to
be replicated in the MySQL slave databases in the e-
commerce application, as well as by using other multi-tier
applications.

REFERENCES
[1] Amazon Web Services (Amazon WS):

http://aws.amazon.com/ec2/ [retrieved: 03, 2013]
[2] GoGrid: http://www.gogrid.com/ [retrieved: 03, 2013].

[3] Binz, T., Breiter, G., Leyman, F. and Spatzier, T., "Portable
Cloud Services Using TOSCA," Internet Computing, IEEE,
vol. 16, pp. 80-85, 2012.

[4] Topology and Orchestration Specification for Cloud
Applications (TOSCA), OASIS specification:
https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca
[retrieved: 03, 2013].

[5] R. B. Cooper, Introduction to queueing theory, second edition
ed. New York: North-Holland, 1981.

[6] K. Xiong and H. Perros, "Service performance and analysis in
Cloud computing," in 2009 Congress on Services - I, Los
Angeles, CA 2009, pp. 693-700.

[7] D. A. Bacigalupo, et al., "Managing dynamic enterprise and
urgent workloads on clouds using layered queuing and
historical performance models," Simulation Modelling
Practice and Theory, vol. 19, pp. 1479-1495, 2011.

[8] Bi, jin, Zhu, Zhiliang, Tian, Ruixiong and Wang, Qingbo,
"Dynamic Provisioning Modeling for Virtualized Multi-tier
Applications in Cloud Data Center," in 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD'10),
Miami, Florida, 2010, pp. 370-377.

[9] Hu, Y., Wong, J., Iszlai, G. and Litoiu, M., "Resource
provisioning for cloud computing," in Proceedings of the
2009 Conference of the Center for Advanced Studies on
Collaborative Research (CASCON '09), 2009, pp. 101-111.

[10] R. Han, M. Ghanem., L. Guo, Y. Guo, and M. Osmond,
"Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications," Future Generation Computer Systems,
2012, pp. 1-17, doi:10.1016/j.future.2012.05.018.

[11] R. Pal and P. Hui, "On the Economics of Cloud Markets," ,
Technical Report, University of Southern Californi, Los
Angeles, 2011, pp. 1-7.

[12] Ghosh, R., Trivedi, K.S., Naik, V.K. and Kim, D.S., "End-to-
end performability analysis for infrastructure-as-a-service
cloud: An interacting stochastic models approach," in 2010
IEEE 16th Pacific Rim International Symposium on
Dependable Computing, Tokyo, Japan, 2010, pp. 125-132.

[13] Ghosh, R., Longo, F., Naik, V.K. and Trivedi, K.S.,
"Quantifying resiliency of IaaS cloud," in 2010 29th IEEE
Symposium on Reliable Distributed Systems, New Delhi,
Punjab India, 2010, pp. 343-347.

[14] J. Z. Li, "Fast Optimization for Scalable Application
Deployments in Large Service Centers," Doctor of
Philosophy, Department of Systems and Computer
Engineerin, Carleton University, Ottawa, Ontario, 2011.

[15] R. Han, L. Guo, Y. Guo, and S. He, "A Deployment Platform
for Dynamically Scaling Applications in The Cloud," in the
3rd IEEE International Conference on Cloud Computing
Technology and Science (CloudCom'11), Athens, Greece,
2011, pp. 506-510.

[16] L. Guo, Y. Guo, X. Tian, "IC Cloud: A Design Space for
Composable Cloud Computing," in 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD'10),
Miami, Florida, 2010, pp. 394-401.

[17] R. Han, L. Guo, M. Ghanem., and Y. Guo, “Lightweight
Resource Scaling for Cloud Applications,”, in 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2012), Ottawa, Canada, 2012, pp.
644-651.

100Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 113 / 263

OpenStack Cloud Security Vulnerabilities from Inside and Outside

Sasko Ristov, Marjan Gusev and Aleksandar Donevski
Ss. Cyril and Methodius University,

Faculty of Information Sciences and Computer Engineering,
Skopje, Macedonia

Email: sashko.ristov@finki.ukim.mk, marjan.gushev@finki.ukim.mk, aleksandar.donevski@outlook.com

Abstract—As usage of cloud computing increases, customers
are mainly concerned about choosing cloud infrastructure
with sufficient security. Concerns are greater in the multi-
tenant environment on a public cloud. This paper addresses
the security assessment of OpenStack open source cloud so-
lution and virtual machine instances with different operating
systems hosted in the cloud. The methodology and realized
experiments target vulnerabilities from both inside and outside
the cloud. We tested four different platforms and analyzed
the security assessment. The main conclusions of the realized
experiments show that multi-tenant environment raises new
security challenges, there are more vulnerabilities from inside
than outside and that Linux based Ubuntu, CentOS and Fedora
are less vulnerable than Windows. We discuss details about
these vulnerabilities and show how they can be solved by
appropriate patches and other solutions.

Keywords-Cloud Computing; Security Assessment; Virtualiza-
tion.

I. INTRODUCTION

Infrastructure as a Service (IaaS) is the most offered
cloud service layer by public cloud service providers and
also the most used by customers. There are lots of open
source cloud solutions that offer building IaaS framework
over Internet. Selecting a proper IaaS framework is a difficult
task since the customers have different requirements and
all IaaS frameworks offer various advantages [1]. System
administrators mostly care about easy deployment, scalabil-
ity, supporting different operating systems, hypervisors, and
licensing. However, the main concern of cloud computing
customers is the security. New challenges arise due to multi-
tenancy, virtualization, data and application transfer to third
party.

Building a private cloud is a good approach that might
solve most of the security challenges, since it mitigates the
security risks. However, private clouds lack scalability and
elasticity [2]. Therefore, most customers will make their de-
cisions in favor of public clouds, since they offer scalability,
elasticity and cost reduction. For example, public clouds
reduce the cost up to 85% for disaster recovery compared to
on-premise resources [3]. It could provide better Recovery
Point Objective (RPO) due to layered backup strategy and
also Recovery Time Objective (RTO) due to built-in geo-
graphic redundancy. Nevertheless, the cloud service provider
maybe has not defined these objectives or they do not meet

with the customer’s one [4]. Most discussions and related
papers conclude that the main obstacle for public cloud
solutions is the security [2]. Confidentiality, integrity and
availability are the biggest security concerns faced by the
customers in public cloud solutions [5].

Security evaluation of the cloud architecture and cloud
service provider should be realized before migrating the
customer virtual machines in public cloud. Traditional se-
curity incident handling procedures are applicable for cloud
computing with some modification to function optimally [6].
Security assessment and comparison of commercial clouds
might be a difficult task because of the limited access rights.
Therefore, many public cloud service providers use open
source clouds.

In this paper, we are interested in analyzing the security
vulnerabilities from private or public networks both on vir-
tual machine instances and OpenStack [7] cloud nodes. We
focus on OpenStack open source cloud since it is a scalable
solution and more than 60 leading companies participate in
its development. The goal of this research is to check the
validity of the following hypotheses:

H1 The cloud solution is more vulnerable from inside
than outside. Inside vulnerabilities subsume the
outside vulnerabilities;

H2 The multi-tenant environment raises new security
vulnerabilities risks from inside the cloud, both for
the tenants and the OpenStack cloud provider; and

H3 Windows based virtual machine instances are more
vulnerable than Linux based CentOS [8], Ubuntu
[9] and Fedora [10].

The hypotheses are set since the tenants in the cloud
are exposed not only from outside, but also from inside
the cloud. That is, there is a threat from other tenants, but
also from the cloud provider. The cloud provider has also
threats from inside, i.e., the tenants. The systems are more
vulnerable if the attacker is in the same LAN [11].

We installed the OpenStack cloud with default installation,
where the virtual machine instances are installed with default
operating systems. Our goal is to determine all possible risks
that arise from inside and outside the OpenStack cloud,
the OpenStack cloud architecture vulnerabilities, as well
as to propose measures to mitigate the security risks by
securing detected vulnerabilities. Our analysis is focused

101Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 114 / 263

toward operating system vulnerabilities of virtual machine
instance hosted in the cloud and the cloud controller where
the OpenStack cloud services are deployed. We assess the
OpenStack product weaknesses, possibilities of unauthorized
access, ensuring data confidentiality, integrity and availabil-
ity, risk of DoS (Denial-of-Service) or even Distributed DoS
(DDoS) attacks, man-in-the-middle attack, etc.

The rest of the paper is organized as follows. Related
work is presented in Section II. Section III briefly describes
the OpenStack cloud architecture and its components. The
methodology for security assessment is presented in Sec-
tion IV. In Section V, we present assessment results both for
inside and outside vulnerabilities. We discuss and conclude
our work, and present future work in Section VI.

II. RELATED WORK

There are a lot of open source cloud solutions to build
a private cloud with IaaS cloud service layer. Voras et
al. [12] devise a set of criteria to evaluate and compare
most common open source IaaS cloud solutions. Mahjoub
et al. [13] compare the open source technologies to help
customers to choose the best cloud offer of open source
technologies. Most common open source cloud computing
platforms are scalable, provide IaaS, support dynamic plat-
form, Xen virtualization technology, linux operating system
and Java [14]. However, they have different purposes. For
example, Eucalyptus [15] fits well to build a public cloud
services (IaaS) with homogeneous pool of hypervisors, while
OpenNebula [16] fits well for building private/hybrid cloud
with heterogeneous virtualization platforms [17].

Many authors have analyzed the cloud security challenges
and propose methodologies for security evaluation of the
cloud solutions. Cloud Security Alliance (CSA) announce
Cloud Control Matrix Version 1.3 [18] which can assist
the potential cloud customers to assess the overall security
risk of a cloud service providers classifying the security
controls according to cloud service layer and architecture. A
methodology for security evaluation of on-premise systems
and cloud computing based on ISO 27001:2005 [19] is pro-
posed in [20]. The authors in [4] evaluate ISO 27001:2005
control objective importance for on-premise and the three
cloud service layers IaaS, PaaS (Platform as a Service) and
SaaS (Software as a Service). International Organization for
Standardization (ISO) is developing new guidelines ISO/IEC
WD TS 27017 [21] that will recommend relevant secu-
rity controls for information security management system
(ISMS) implementation in cloud computing. Eucalyptus and
CloudStack [22] have integrated the maximum security level
in front of OpenNebula and OpenStack open source cloud
solutions [23].

III. THE OPENSTACK CLOUD ARCHITECTURE

Open source clouds have similar architecture [24]. Each
open source cloud has, at minimum:

Figure 1. The three components of OpenStack cloud [7]

• cloud controller - several services are deployed on
this server that control the system, network, schedule
the virtual machine instances and act as administrator
interface; and

• cloud node - this server hosts the virtual machine
instances of virtual machines. It communicates with the
cloud controller.

This section briefly describes the architecture of the
newest Folsom release of OpenStack cloud, its components,
networking and features.

A. OpenStack Components

Figure 1 depicts the three main components of OpenStack
cloud: Compute, Object Storage, and Image Service.

Compute Infrastructure (Nova) is the core part of the
OpenStack cloud that manages instances of virtual machines
and networking. Object Storage is the subsystem that stores
the objects in a massively scalable, large capacity system. It
back ups and archives data, stores secondary or tertiary static
data, stores data when predicting storage capacity is difficult,
and creates the elasticity and flexibility of cloud-based
storage for customer web applications. Image Service is
lookup and retrieval subsystem for virtual machine images.

B. OpenStack Deployment

OpenStack can be deployed and runs on Linux Ubuntu,
CentOS and RedHat operating systems. It supports KVM
[25], Xen [26], UML [27], and Hyper-V [28] hypervisors.
Nova services can be deployed either on the same physical
server or they can be installed on separate servers. The
OpenStack cloud can be deployed in three different modes:

• Single Node: All nova-services are deployed on only
one physical server which hosts also all the virtual
machine instances.

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 115 / 263

Figure 2. OpenStack networking example [7]

• Dual Node: This deployment consists of two physical
servers, i.e., the Cloud Controller Node (CCN) and the
Compute Node (CN). The former is used as cloud con-
troller which runs all the nova-services except for nova-
compute. The latter is deployed with nova-compute to
instantiate virtual machine instances.

• Multiple Node: Particular number of CNs can be in-
stalled resulting in a multiple node installation. Vol-
ume controller and a network controller can be added
as separate nodes in a more complex, multiple node
installation.

We deployed the OpenStack in the Single Node since
we are not interested in performance, but for security. The
choice for Single Node is based on the fact that the security
vulnerabilities of OpenStack services do not depend on the
number of physical nodes.

C. OpenStack Networking
OpenStack network consists of two networks, public and

private, as depicted in Figure 2. IP addresses from the public
network are associated with virtual machines instances to
be accessed from the public Internet. The private network is
used for internal cloud web service communication.

In this paper, we are interested in analyzing the security
vulnerabilities from private or public networks both on vir-
tual machine instances and OpenStack cloud node deployed
in Single Node.

IV. METHODOLOGY FOR SECURITY ASSESSMENT

This section presents the methodology for security assess-
ment on OpenStack cloud and virtual machine instances. It
is based on two assessments with two groups of test cases for
different targets. The goal of the assessments is to determine
the vulnerabilities of the OpenStack cloud nodes (Compute
and Controller deployed in one physical server) and virtual
machine instances with different operating systems, both
from inside and outside the OpenStack cloud.

A. The Targets

Two different target groups will be assessed. The first
target group covers the assessment of physical OpenStack
server node which is installed with Ubuntu Server 12.04
64-bit operating system. The second target group covers the
assessment of virtual machine instances hosted in the cloud
with operating systems:

• Windows 2008 R2 Standard 64 bit;
• CentOS 6 64 bit;
• Ubuntu 10.04 Server Edition 64 bit; and
• Fedora 17 64 bit.
The virtual machine instances are installed with default

configuration in order to detect all possible vulnerabilities.
We will address which vulnerabilities can be secured after
implementing additional patches or reconfigurations.

B. Security Assessment Plan

The security assessment basic goal is to determine the
security vulnerabilities of the targets from inside and outside
the OpenStack cloud. Therefore, we realize two different
assessments using Nessus 5 vulnerability and configuration
assessment scanner [29] using External Network Scan pol-
icy. Nessus scans all TCP (Transmission Control Protocol)
and UDP (User Datagram Protocol) ports, as well as the
vulnerabilities of the services that work on certain opened
port.

Each vulnerability is rated as derived from the associated
Common Vulnerability Scoring System (CVSS) [30] score:

• Info if CVSS score is 0;
• Low for CVSS score ∈ {1, 2, 3};
• Medium for CVSS score ∈ {4, 5, 6};
• High for CVSS score ∈ {7, 8, 9}; and
• Critical if CVSS score is 10.
Figure 3 depicts the test cases of security assessment from

inside and outside the OpenStack cloud, i.e., on private and

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 116 / 263

CCN/CN

P
u

b
li

c
N

et
w

o
rk

P
ri

va
te

 N
et

w
o
rk

C

F

W

U

Figure 3. Inside and outside security assessment

public network. U denotes the Ubuntu operating system,
while F, C and W denote the Fedora, CentOS and Windows
operating systems, correspondingly.

1) Inside Security Assessment: The Nessus client is de-
ployed on one virtual machine instance. It scans the four
virtual machine instances with different operating systems
and cloud physical server node (both CCN and CN are the
same physical server in our case). This assessment from
inside simulates the tenant and its goal is to assess the
vulnerabilities that arise from the cloud multi-tenancy. Open-
Stack private network is used to communicate among the
target inside virtual machine instances, the cloud physical
node and the virtual machine instance with Nessus client.

2) Outside Security Assessment: The Nessus client is
deployed on a workstation outside the OpenStack cloud,
i.e., on a public network. It also scans the same four
virtual machine instances with different operating systems
hosted in the OpenStack cloud and the cloud physical server
node. This assessment goal is to assess the vulnerabilities
that arise for virtual machine instances and the OpenStack
cloud services outside the cloud. OpenStack public network
and floating IP addresses are used for communication with
virtual machine instances and cloud physical server node.

V. THE RESULTS OF THE ASSESSMENT

This section presents the results of both assessments for
both target groups defined in previous Section IV. We omit
the results of the assessments with CVSS score 0 since they
are informative, rather than real vulnerabilities. The values

Figure 4. Summary results of OpenStack security assessment

for critical vulnerabilities are also omitted since we have not
found any critical vulnerability during the assessments.

A. OpenStack Node Vulnerabilities

Figure 4 depicts the summary results of the security
assessment of the cloud node.

The results confirm the hypothesis H1 that there are more
inside vulnerabilities which subsume the outside vulnerabili-
ties. 13 medium and 3 low vulnerabilities are detected from
inside and only 1 low and 12 medium vulnerabilities are
detected from outside. High vulnerabilities are not detected
neither from outside, nor from inside.

Let us assess detected vulnerabilities in more detail. 6
Web Server Generic XSS (Cross-site scripting) and 6 Web
Server Generic Cookie Injection vulnerabilities (medium)
are detected by both assessments on several ports. We
conclude that the web server is prone to cross-site scripting
and cookie injection attacks. Therefore, new patches must
be developed in order to secure two assessed vulnerabili-
ties. Common low vulnerability is the usage of plain text
authentication forms which should be transmitted encrypted
over secured HTTPS.

Assessment of inside vulnerabilities detected 1 additional
medium vulnerability, i.e., the DNS (Domain Name System)
server is vulnerable to cache snooping attacks. DNS software
vendor should fix it.

Two additional low vulnerabilities are detected, as well.
DHCP (Dynamic Host Configuration Protocol) server may
expose information about the associated network and ap-
plying filtering will keep the information off the network
and mitigate the risk of this vulnerability. The web server
leaks a private IP address that is usually hidden behind
a NAT (Network Address Translation) Firewall or proxy
server. However, this is not a real vulnerability since our
private IP address will be a public IP in real world scenario.

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 117 / 263

Figure 5. Summary results of outside security assessment on instances

B. Virtual Machine Instance Vulnerabilities

In this section we present and analyze the results of the
assessment of the four instances, each with different oper-
ating system, both from inside and outside the OpenStack
cloud.

1) Vulnerabilities from Outside: Figure 5 depicts the
summary results of the outside security assessment on virtual
machine instances. U denotes the Ubuntu operating system,
while F, C and W denote the Fedora, CentOS and Windows
operating systems, correspondingly.

The Nessus client has not detected any vulnerability
neither on Ubuntu, nor on Fedora, nor on CentOS operating
system. 1 high and 1 medium vulnerabilities are detected on
Windows operating system with the assessment from outside
the OpenStack. Windows could allow arbitrary code execu-
tion (high vulnerability) in the implementation of the Re-
mote Desktop Protocol (RDP). The problem with Windows
lies in the requirement to activate remote desktop to connect
to Windows, instead of secured SSH (Secure Shell) protocol
to connect on Linux based operating systems. However,
installing the existing patch will secure the vulnerability.
Network Level Authentication (NLA) on the remote RDP
server is not configured (Low vulnerability) by default and
should be enabled.

2) Vulnerabilities from Inside: Figure 6 depicts the sum-
mary results of the inside security assessment on virtual
machine instances hosted in OpenStack.

Linux based operating systems are not detected with any
security vulnerability from outside the OpenStack cloud,
as well. The same 1 high and 1 medium vulnerabilities
are detected from inside the virtual machine instance with
Windows operating system. However, 3 additional medium
vulnerabilities are detected. The first, Windows is using
weak cryptography by default for RDP and changing RDP
encryption level to ”High” or ”FIPS Compliant” will mit-
igate this vulnerability. The second, the virtual machine
instance is vulnerable to a man-in-the-middle attack. Forcing

Figure 6. Summary results of inside security assessment on instances

SSL (Secure Sockets Layer) or RDP with NLA will secure
the vulnerability. The last detected medium vulnerability is
”man-in-the-middle attack against the Server Message Block
(SMB) server” which can be secured by enforcing message
signing.

FIPS-140 incompliance for terminal services encryption
level is the additional low vulnerability which can be secured
changing RDP encryption level to ”FIPS Compliant”.

VI. CONCLUSION AND FUTURE WORK

We have realized security assessments of OpenStack cloud
services and four virtual machine instances with different
operating systems Fedora, Ubuntu, CentOS and Windows.
The experiments addressed the security vulnerabilities both
from inside and outside the OpenStack cloud.

The results of the assessments proved hypothesis H2 that
cloud multi-tenant environment raises new security vulner-
abilities risks from inside the cloud, both for the tenants
and the OpenStack cloud provider. Inside vulnerabilities
subsume the outside vulnerabilities for the cloud node and
each operating system, which proves the hypothesis H1.

Vulnerabilities on Linux operating systems are not de-
tected, neither from outside, nor inside. The assessment of
Windows operating system shows additional 1 low and 3
medium security vulnerabilities, which proves the hypothesis
H3. All these vulnerabilities are not detected from outside
since the OpenStack cloud denies all TCP and UDP ports
from outside by default. They still exist because of the
Windows default installation (configuration) and the require-
ments of creating Windows image.

Although Windows based virtual machine instances with
default configuration are less secure than Linux based
instances, all Windows vulnerabilities can be secured by
implementing existing patches or reconfiguration. Only then
RDP port 3389 should be opened to outside.

OpenStack cloud is also more vulnerable from inside the
cloud with additional 1 medium and 2 low vulnerabilities

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 118 / 263

which can be secured with reconfiguration. However, we
detect that OpenStack cloud has 2 medium vulnerabilities on
6 different ports that can not be secured with reconfiguration,
but with new patches that should be developed. All detected
OpenStack security vulnerabilities do not depend on creating
different virtual machine images, but they exist with default
OpenStack deployment.

This paper realizes the security assessment of OpenStack
open source cloud and virtual machine instances hosted with
different operating systems. We will continue the security
assessment on the other open source clouds and bring
relevant conclusions about their security vulnerabilities. This
will help the customers to select the most appropriate cloud
solution regarding the security.

REFERENCES

[1] G. von Laszewski, J. Diaz, F. Wang, and G. Fox, “Com-
parison of multiple cloud frameworks,” in Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, june
2012, pp. 734 –741.

[2] M. Shtern, B. Simmons, M. Smit, and M. Litoiu, “An archi-
tecture for overlaying private clouds on public providers,” in
8th Int. Conf. on Network and Service Management, CNSM
2012, Las Vegas, USA, 2012.

[3] T. Wood, E. Cecchet, K. K. Ramakrishnan, P. Shenoy,
J. van der Merwe, and A. Venkataramani, “Disaster recovery
as a cloud service: economic benefits & deployment chal-
lenges,” in Proc. of the 2nd USENIX conf. on Hot topics in
cloud comp., ser. HotCloud’10, USA, 2010, pp. 8–8.

[4] S. Ristov, M. Gusev, and M. Kostoska, “Cloud computing
security in business information systems,” International Jour-
nal of Network Security & Its Applications (IJNSA), vol. 4,
no. 2, March 2012, pp. 75–93.

[5] S. Chaves, C. Westphall, C. Westphall, and G. Geronimo,
“Customer security concerns in cloud computing,” in Pro-
ceedings of the 10-th Int. Conf. on Networks, ser. ICN 2011.
IARIA, 2011, pp. 7–11.

[6] A. TaheriMonfared and M. G. Jaatun, “As strong as the weak-
est link: Handling compromised components in OpenStack,”
in Proceedings of the 2011 IEEE Third International Con-
ference on Cloud Computing Technology and Science, ser.
CLOUDCOM ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 189–196.

[7] O. C. Software. Openstack cloud. [Retrieved: March, 2013].
[Online]. Available: http://openstack.org

[8] T. C. Enterprise, “Centos,” [Retrieved: March, 2013].
[Online]. Available: http://www.centos.org/

[9] Canonical, “Ubuntu,” [Retrieved: March, 2013]. [Online].
Available: http://www.canonical.com/

[10] A. R. H.-S. C. Project, “Fedora,” [Retrieved: March, 2013].
[Online]. Available: http://fedoraproject.org/

[11] H.-C. Li, P.-H. Liang, J.-M. Yang, and S.-J. Chen, “Analy-
sis on cloud-based security vulnerability assessment,” in e-
Business Engineering (ICEBE), 2010 IEEE 7th International
Conference on, Nov. 2010, pp. 490–494.

[12] I. Voras, B. Mihaljevic, and M. Orlic, “Criteria for evaluation
of open source cloud computing solutions,” in Information
Technology Interfaces (ITI), Proceedings of the ITI 2011 33rd
International Conference on, june 2011, pp. 137 –142.

[13] M. Mahjoub, A. Mdhaffar, R. B. Halima, and M. Jmaiel, “A
comparative study of the current cloud computing technolo-
gies and offers,” in Proceedings of the 2011 First International
Symposium on Network Cloud Computing and Applications,
ser. NCCA ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 131–134.

[14] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and
Q. Li, “Comparison of several cloud computing platforms,”
in Proceedings of the 2009 Second International Symposium
on Information Science and Engineering, ser. ISISE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
23–27.

[15] Eucalyptus. Eucalyptus cloud. [Retrieved: March, 2013].
[Online]. Available: http://www.eucalyptus.com/

[16] OpenNebula. Opennebula cloud software. [Retrieved: March,
2013]. [Online]. Available: http://Opennebula.org

[17] T. D. Cordeiro, D. B. Damalio, N. C. V. N. Pereira, P. T.
Endo, A. V. de Almeida Palhares, G. E. Goncalves, D. F. H.
Sadok, J. Kelner, B. Melander, V. Souza, and J.-E. Mangs,
“Open source cloud computing platforms,” in Proceedings of
the 2010 Ninth International Conference on Grid and Cloud
Computing, ser. GCC ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 366–371.

[18] CSA, “Cloud security alliance,” [Retrieved: March, 2013].
[Online]. Available: http://cloudsecurityalliance.org/

[19] ISO/IEC, “ISO/IEC 27001:2005, Information Security Man-
agement Systems - Requirements,” [Retrieved: March, 2013].
[Online]. Available: http://www.iso.org/iso/iso catalogue/
catalogue tc/catalogue detail.htm?csnumber=42103

[20] S. Ristov, M. Gusev, and M. Kostoska, “A new methodology
for security evaluation in cloud computing,” in MIPRO,
2012 Proc. of the 35th Int. Convention, IEEE Conference
Publications, 2012, pp. 1808–1813.

[21] ISO/IEC, “WD TS 27017, Guidelines on infor-
mation security controls for the use of cloud
computing services,” [Retrieved: March, 2013]. [On-
line]. Available: http://www.iso.org/iso/home/store/catalogue
tc/catalogue detail.htm?csnumber=43757

[22] CloudStack. Cloudstack opens source cloud comput-
ing. [Retrieved: March, 2013]. [Online]. Available:
http://cloudstack.org

[23] S. Ristov, M. Gusev, and M. Kostoska, “Security assessment
of openstack open source cloud solution,” in Proceedings of
the 7th South East European Doctoral Student Conference
(DSC2012), 2012, pp. 577–587.

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 119 / 263

[24] C.-H. Ng, M. Ma, T.-Y. Wong, P. Lee, and J. Lui, “Live
deduplication storage of virtual machine images in an open-
source cloud,” in Proceedings of the 12th ACM/IFIP/USENIX
international conference on Middleware, ser. Middleware’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 81–100.

[25] KVM, “Kernel based virtual machine,” [Retrieved: March,
2013]. [Online]. Available: http://www.linux-kvm.org/page/
Main Page

[26] C. Systems, “Xen hypervisor,” [Retrieved: March, 2013].
[Online]. Available: http://www.xen.org/

[27] UML, “User-mode linux kernel,” [Retrieved: March, 2013].
[Online]. Available: http://user-mode-linux.sourceforge.net/

[28] Microsoft, “Microsoft hyper-v server 2012,” [Retrieved:
March, 2013]. [Online]. Available: www.microsoft.com/
hyper-v-server/

[29] Tenable, “Nessus 5,” [Retrieved: March, 2013]. [Online].
Available: http://www.tenable.com/products/nessus

[30] N. V. Database, “Common vulnerability scoring system,”
[Retrieved: March, 2013]. [Online]. Available: http://nvd.nist.
gov/cvss.cfm

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 120 / 263

Seamlessly Enabling the Use of Cloud Resources in Workflows

Michael Gerhards, Volker Sander

Faculty of Medical Engineering & Technomathematics

FH Aachen, University of Applied Sciences

Jülich, Germany

{M.Gerhards|V.Sander}@fh-aachen.de

Adam Belloum

Institute of Informatics

University of Amsterdam

Amsterdam, The Netherlands

A.S.Z.Belloum@uva.nl

Abstract—The hosting of large on-premise computational

resources is common practice. Cloud Computing offers a

promising, alternative infrastructure for using scalable on-

demand off-premise resources. However, outsourcing whole

applications is not a cost optimal solution in some scenarios,

because the already existing on-premise resources are not

considered. A flexible integration of additional resources from

the cloud to compensate a shortage of suitable on-premise

resources is a tradeoff between costs and efficiency. This paper

provides a light-weight approach that focuses on seamlessly

enabling cloud resources for workflow-based applications

without requiring installing a rather complex software stack.

The approach is evaluated by running an example workflow.

Keywords-cloud economics; dynamic resource allocation;

cloud computing; cross-cloud workflows; on-demand computing

model; service oriented architecture; workflow; workflow

orchestration.

I. INTRODUCTION

Refactoring on-premise computational resources to form
a computer center is common practice. However, it is not
reasonable to provide a solution for all requested resource
types in such a center. First of all, the initial purchase costs
are very high. For small and medium enterprises (SME) it is
nearly impossible to bear these costs alone. Even after a
purchase the disadvantages still occur, mainly due to the
operational costs. The hosting company is bound to the
resources for many years, even if the computational power is
no longer required. The old hardware does not benefit from
new technologies, which were developed in the meantime. If
specific resources are used with unbalanced load, there is the
risk of underuse. An overprovisioning is also required for
load peaks which also increase the costs.

Cloud computing offers a promising alternative
infrastructure for using scalable on-demand resources.
Providers such as Amazon allow users to allocate virtualized
computational resources. Of course, those providers allow
for porting the full application. However, this might not be
the most cost-effective solution, because the already existing
on-premise resources are not considered. Therefore, for
many scenarios it appears to be opportune to integrate cloud
resources with easy-scale and dynamic provisioning into the
local environment for the execution of computation intensive
application parts whereas the other application parts are

executed on local available general-purpose computational
resources. An example is a highly parallelized application
which could use a Graphics Processing Unit (GPU) in the
cloud, while the remainder of the program is executed
locally.

This paper will briefly present existing complex software
stacks which combine on-premise resources with cloud
resources. Then it introduces our light-weight approach that
focuses on seamlessly enabling cloud resources for
workflow-based applications without requiring installing a
rather complex software stack. The paper will focus on
workflows because the division of applications into parts is
natively supported. The basic ideas apply to a much broader
application domain.

The paper is organized as follows: The second section
presents the cloud-enabled workflow environment. It
introduces the challenges for such an environment and
provides solutions. The third section evaluates the presented
solutions by describing a run of an example workflow in a
specific workflow management system under the use of
cloud resources. The last section concludes the lessons
learned and provides future work. For simplicity reasons we
omitted to refer to related work in an isolated section. Instead
we provide references when the according context is
discussed.

II. CLOUD-ENABLED WORKFLOW ENVIRONMENT

Many publications deal with cloud computing since it is
the greatest IT hype of the last ten years. Surprisingly the
combination of cloud computing with workflows is little
addressed. "With the emerging of the latest cloud computing
paradigm, the trend for distributed workflow systems is
shifting to cloud computing based workflow systems [1].” In
comparison to the mobile smart domain, approaches like
CloneCloud already exists to dynamically partition
applications between weak devices and clouds [2]. Nephele
is another approach that claims to be “the first data
processing framework to explicitly exploit the dynamical
resource allocation offered by today’s compute clouds for
both, task scheduling and execution [3].” Nephele itself is
focused on performance in full cloud environments but does
not consider available on-premise resources which results in
a lower performance but a cost reduction. A tradeoff between
costs and performance is missing.

108Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 121 / 263

Workflows in cloud computing are addressed by several
EU projects. “BREIN takes the e-business concept
developed in recent grid research projects, namely the
concept of so-called "dynamic virtual organizations" towards
a more business-centric model, by enhancing the system with
methods from artificial intelligence, intelligent systems,
semantic web etc. [4].” BREIN can enhance some cloud
features like automatic resource allocation and outsourcing
of resources to third party. The approach presented in this
paper also focuses on resource allocation and outsourcing but
from a more technical sight by combining existing
lightweight technologies. It does not consider collaboration
between companies. The required components of the overall
architecture are similar: A workflow framework with service
broker and registry.

A. Service layers and deployment models

The National Institute of Standards and Technology
(NIST) distinguishes the three service layers: Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS) and four different
deployment models: Private Cloud, Community Cloud,
Public Cloud, and Hybrid Cloud [5]. The cloud-enabled
workflow environment differs dependent of the used service
layer and deployment model. A detailed comparison of the
different service models and deployment models is given in
[6]. The rest of the paper will therefore focus on Public
Cloud IaaS resources to assume the minimum of
requirements. This should not limit the generic aspects of the
proposed solution since other service layers and deployment
models can be used instead with less effort.

B. Security and Governance

This paper assumes that the workflow management
system runs on-premise or in a private cloud and is used only
by users of a single organization. This assumption simplifies
the security handling since the organization is interfacing
with the cloud service providers as a whole. Cross-
organizational environments can be addressed by applying
the concept of virtual organizations [7].

While incurred costs would be billed against the
organization, the actual costs still have to be mapped to cost
units within the organization. Therefore, an AAAA
(Authentication, Authorization, Admission control, and
Accounting) is required. Actually, an AAAAA mechanism is
demanded, i.e. an additional auditing mechanism like
described in Section II.L.

During application runtime off-premise cloud resources
will access on-premise data for calculations. To protect the
data against unauthorized access credentials are required.
These credentials are entered by the user at the start of the
application. If a native support is not guaranteed, the
credentials can be entered during a WS-HumanTask, which
stores credentials in a secured short-lived repository with
limited life time [8]. This procedure is used by our approach.
The integration of tasks is detailed in Section II.F.

To assure authentication and authorization, we extend the
idea of using WS-HumanTask for credentials and propose an
architecture we presented in the context of our publication of

a security framework for our WS-HumanTask
implementation. This publication “presents a generic
framework that supports a pull-based work distribution
strategy in distributed environments with the help of a task
repository that mediates tasks between resources and
workflow instances [9].” It provides an implementation for
Role Based Access Control (RBAC) based authorization. To
provide a certificate repository, we follow the concept of
MyProxy which is an authentication technology from the
grid domain which lets the workflow impersonating the user
[10].

C. Conditions on applications

A condition for executing different parts of the same
application on different premises is an application which is
divisible into parts. Modeling a complex application as
workflow supports its division into simpler individual parts
that are executed as interacting tasks by a workflow
management system that takes care of the individual tasks’
progress and dependencies [11].

The Generic Workflow Execution Service (GWES) is an
open source workflow management system which was
developed by Frauenhofer-Gesellschaft for the management
and the automation of complex workflows in heterogeneous
environments [12]. GWES was originally developed basing
on grid technologies like Globus Toolkit as Grid Workflow
Execution Service (also GWES) and was then adjusted to the
cloud domain. To conclude GWES is a specific workflow
management system with an own workflow description
language.

In contrast, the interoperable approach presented in this
paper bases on an extension for existing arbitrary workflow
management systems by its loosely coupled connection to a
cloud broker to enable the use of additional cloud resources.
By choosing a workflow management system independent
approach the benefit of using the already known system is
given for the end-user.

AMOS is “a system that combines grid and cloud
technologies in a novel way to support on-demand execution
of e-Science applications [13].” The e-Science applications
handled in this paper are also modeled as workflow and
executed in the cloud. The main idea is the creation of a
“transient grids by automatically installing and configuring
grid middleware on the purchased resources“. In contrast the
approach of this paper provides a light-weight approach that
focuses on seamlessly enabling cloud resources for
workflow-based applications without requiring installing a
rather complex software stack.

“OPTIMIS deliverables will enable clouds to be
composed from multiple services and resources. It will
support service brokerage via interoperability, and is
architecture-independent [14].” It provides “a toolkit for
supporting service provisioning using Cloud eco-systems
consisting of multiple Cloud infrastructures from different
providers with guaranteed Quality of Service (QoS)”. A
direct integration of workflows is not part of the project but
as a future work the usage of OPTIMIS as underlying cloud
infrastructure in combination with the workflow tools of this
paper could be tested.

109Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 122 / 263

D. Resource independent modeling of workflows

The various tasks from a workflow are of different task
types. Most task types like control flow or script tasks are
executed on the workflow management system’s computer.
But service tasks are computation demanding and therefore
executed as service - or other remote procedure call (RPC) -
on suitable hardware resources. The workflow will run in a
Service Oriented Architecture (SOA) in a combination of
services, which are deployed on-premise and in the cloud.
The invocation of the cloud services must be protected
against unauthorized usage using a system like described in
Section II.B. The data flow for large data sets is not
integrated into the workflow but in the service software
directly. Since pushing the data in a web service invocation
message results in bad performance through marshaling the
data, only the data location and an authorization ticket is
send to the service. The service then loads the data using a
third party high performance file transfer mechanism like
GridFTP. The security aspect is handled in Section II.B. This
paper presents how these script tasks can be executed on
enabled cloud resources without workflow modification. If
additional cloud resources are enabled is decided during
runtime.

The concept of considering only physical resources is
gone in the cloud vision of elastic resources, which can be
instantiated on-demand. Therefore, workflows are modeled
independently of specific resources by abstracting service
endpoints as service names. This enables the easy exchange
of an on-premise endpoint with an off-premise endpoint, e.g.,
in the cloud. The binding of workflow tasks to endpoints is
done at runtime by dissolving the service names. The service
registry contains assignments between all service names to
available service endpoints independent if the endpoint is
located on-premise or off-premise in the cloud. In Figure 1
both tasks “T1” and “T2” fetches their endpoints from the
service registry. A so modeled workflow can be executed in
the usual way without disadvantages.

Enterprise service buses (ESB) like Mule or Fiorano are
also able to manage dynamic endpoints independently of the
endpoint location [15]. However, compared to our solution,
ESBs are rather heavyweight software products which
increase the complexity of the architecture. Connectors
between workflows and ESB are application dependent.

This paper provides a light-weight approach that focuses
on seamlessly enabling cloud resources for workflow-based
applications without requiring installing a rather complex
software stack. Such an approach lowers the entry barrier.
This empowers workflow users to benefit from the cloud in
an easy way.

E. Enabling cloud resources using a broker

In cloud economics, resources are frequently provided
following a pay-per-time billing structure. The time is billed
when they are available even when the resources are not
used. Therefore these resources are shut down when idling.
If a shutdown resource is required at the service registry the
resource must first be instantiated. According to the National
Institute of Standardization (NIST) Cloud Computing
Reference Architecture [5], the dynamic allocation of cloud

resources is done by a cloud broker. The cloud broker is “an
entity that manages the use, performance and delivery of
cloud services, and negotiates relationships between cloud
providers and cloud consumers [5].” The cloud broker
publishes endpoints of instantiated cloud resources at the
service registry.

F. Connection between workflow and cloud broker

The connection between workflow management system
and cloud broker can be established at different locations in
the overall workflow environment. Possible locations are
tasks, called functions of tasks, the workflow, and the
workflow management system itself is the source code is
available. The advantages and disadvantages of the different
connection locations are discussed in [1].

To not change the workflow management systems source
code, the cloud broker connection is integrated into the
workflow template itself. The workflow template can be seen
as the source code of the workflow but not of the invoked
services. A preprocessor creates a new extended workflow
template out of the original workflow template. It consists of
all original tasks in the given order but with interposed
administrative tasks to handle the cloud broker connection
for service tasks which should be executed in the cloud. The
preprocessing process is also used to customize the
workflow execution like described in Section II.G and to
feed the provenance service of Section II.L.

The additional administrative tasks are similar to ESB
adapters or cloud connectors. This new extended workflow is
executed instead [16]. In Figure 1 the administrative task
“AT” connects to the cloud broker to enable the cloud
resource before its service is invoked by the service task
“T2”.

G. Identification of cloud tasks

Before the start of the workflow, the scheduler has to
check if enough suitable on-premise resources are available.
To realize this task, a resource description language like the
Job Submission Description Language (JSDL) can be used to
describe the different requirements for each individual task
[17]. If not enough suitable local resources are available
some tasks have to be redirected to cloud resources. Here,
the scheduler must have all information about all constraints
that apply to tasks that might be handled by cloud resources.

The user has the ownership of the data and decides which
individual tasks are allowed for execution on integrated
cloud resources. One possibility to model that is the usage of
JSDL task annotations in the workflow template. This is
similar to MAUI where developers annotate which methods
of an application can be offloaded for remote execution [18].
If annotations are not supported in the workflow modeling
language, another possibility is outsourcing the annotations
to a workflow or task dependent configuration in a separate
file with references to the original workflow template. Figure
1 illustrates the input of the scheduler and the annotation
files together with the original workflow template to the
preprocessor, which forms the extended workflow template.
The administrative tasks of Section II.F are customized
evaluating the annotations described above.

110Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 123 / 263

Figure 1. Cloud-enabled workflow environment. Components with bright

background are the legacy system and components with dark background

are extensions.

All tasks that will stay on-premise for execution are
called local tasks whereas the tasks executed off-premise in
the cloud are called cloud tasks. The cloud tasks get
administrative predecessors and successors to connect to the
cloud broker to enable the cloud resources. So all tasks are
now arranged in one of these two categories. Since cloud
tasks cause administrative overhead, they should only be
used for computation intensive tasks like service tasks.

H. Endpoint selection strategy

At this point the workflow itself is prepared for an
execution across organizational boundaries. The binding of
service tasks to service endpoints is done at runtime by
dissolving the service names at the service registry. Since the
number of idling active cloud resources is kept to a
minimum to avoid costs it is not guaranteed that the service
registry holds an entry for the required service. The decision
making plan to select an endpoint is illustrated in Figure 2
and explained in the following paragraphs.

The simplest case is illustrated in the first two branches:
The service is already available and registered at the service
registry. This is common if it is deployed on on-premise
resources or in the cloud, e.g., from a previous run or as SaaS
solution.

If the required web service is not available at the service
registry, the service broker checks if a suitable underutilized
or idling resource is running which represents the 3

rd
 branch

of Figure 2. The cloud broker re-installs the required
software from a repository on that resource and publishes the
new endpoint at the service registry. The installation process
is described in Section II.I. This procedure is most suitable
for workflows with different cloud tasks that can then be
executed in a pipeline on the same cloud instance. It also
reduces the data movement.

If neither suitable service nor resource is available a new
resource representing the last branch of Figure 2 must be
instantiated.. This process is presented in Section II.J. The
instantiation takes time during provisioning and software
installation which pause the task execution. It also causes
new costs for renting an additional cloud resource.

Independent of the endpoint provisioning variant, the
endpoint is now available and registered at the service
registry. Like illustrated in Figure 1 the service tasks fetches
their endpoints from the service registry and invokes the
service directly. This proceeding is implemented in the
workflow management system in its natural way.

Figure 2. Endpoint selection decision process. Steps with bright

background are optional and depend on the implementation.

I. Deployment of software on a running machine

The deployment of the web service including its required
container can be done simply by using scripting (SCP / SSH |
PowerShell). Password prompts can be suppressed using
public/private key based authentication. The required keys
are stored by the user in a secure key repository as provided
for file transfer. The workflow is empowered to read these
key using the mechanism described in Section II.B. A more
sophisticated solution in comparison to scripting is to use
cloud agnostic interfaces such as the Open Cloud Computing
Interface (OCCI) or the compute API tool of jclouds
[19][20]. The OCCI Working Group has highlighted the
need for machine-readable Service Level Agreements
(SLAs) associated with the dynamic provisioning of cloud
computing resources.

J. Instantiation process of a new cloud resource

Preconfigured machine images contain only the required
software for immediate use to speed up the instantiation.
Each abstract cloud task uses its own machine image which
is identified evaluating the abstract task’s description in the
workflow template. The cloud instance loads its machine
image from its storage system. After startup, the web service
endpoint is published to the service registry. An alternative is
the use of a generic machine image which only contains the
rudimentary software and is customized at runtime by
additional software installation like described in Section II.I.

The billing period of a public cloud provider would start
now together with the instantiation of the cloud resource
instance.

K. Cloud Provider selection strategy

The flexible enabling of resources of the most suitable
cloud provider for each individual task is an optimization to
form a cross-cloud workflow with intra- and inter-cloud
communications. The selection process can be modeled
similar to the three-phase cross-cloud federation model
described in [21]. In the discovery phase, the cloud broker
collects information about assured properties offered by the

111Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 124 / 263

cloud providers. Each abstract cloud task specifies its
requirements. “Each object is characterized by a set of
properties/attributes; each property is a tuple (name, value),
with name a string of characters and value [22].” In the
match-making phase, the cloud broker compares the cloud
task’s requirements with the cloud providers’ assured
properties. The cloud providers that assure all requirements
of the requesting task are potential task owners. In the
authentication phase, the cloud broker selects the cheapest
potential owner as the current owner for each cloud task.
Matchmaking between requirements and properties was
already handled in the grid domain. A “formal definition of
matchmaking, overview algorithms to evaluate different
matchmaking expressions, and develop a matchmaking
service for an intelligent grid environment” is presented in
[22].

One challenge arises if the workflow execution depends
on large data because the data movement costs and time have
to be considered. In [23], “a Network and Data Location
Aware job scheduling has been proposed for data intensive
jobs. The proposed scheduling algorithm takes into account
network characteristics, disk read speed of data sources, and
data locations of input files, as well as other computational
factors (CPU power, memory, CPU load, etc.) when making
scheduling decisions.”

L. Provenance

The importance of auditing the outcome of computation
processes is a fundamental quality characteristic to many
application domains. The automated tracking and storing of
provenance information during workflow execution could
satisfy this requirement [24]. The required data can be
pushed out of the workflow by the administrative tasks
introduced in Section II.F. Provenance traces enable the
users to see what has happened during the execution of the
workflow. This enables failure analysis and future
optimization. Provenance becomes even more important in
distributed environments because workflow tasks are loosely
bound to computational resources. Using provenance in the
cloud-workflow domain enables the identification of task to
cloud assignments so that it is visible where the cloud task
has been executed and where its data have been stored.

Provenance also shows at which time the cloud instance
was running and therefore causing costs. Based on
provenance traces, statistics can be created showing which
workflows cause which costs, which users cause which
costs, which clouds cause which costs, which users
instantiate which workflows, which clouds execute which
cloud task, etc.. A detailed comparison of two possible
provenance models is done in [25].

III. EVALUATION

The prototype of [26] following the ideas of Section II is
evaluated in this section. First an example workflow was
modeled. Then required software products were chosen and
deployed together with the self-developed cloud broker to
form the cloud-enabled environment illustrated in Figure 1.
Finally the example workflow was executed in the
established testing environment. This evaluation shows how

the lightweight system works basing on an example
workflow. Not all components of the prototype were ready
when this paper was written. Therefore, some are simulated
using a mock like indicated at the corresponding place.

One advantage of combining on- and off-premise
resources is a cost reduction attributable to the performance.
Since cost structures vary they are not considered in this
evaluation.

A. Example Workflow

The example BPMN 2.0 workflow illustrated in Figure 3
is taken from [26] where additional information like the
source code is given. It solves a linear equation system. To
not repeat previous work, only the minimum required
information to understand this paper is given here.

The workflow consists of two script tasks, two service
tasks, two parallel gateways, and the start as well as the end.
The arrows indicate the task dependencies and the data flow
which define the execution order of the tasks. A task can
only start its execution after its predecessor has finished its
own execution. The two script tasks are executed on the local
computer. The two service tasks are executed on high-
performance computation resources which can be on-
premise or off-premise, e.g., in the cloud. The two parallel
gateways split and merge the service tasks “Gauss” and
“LuDecomposition”. That means that they can be executed
independent of each other in an arbitrary order with no
dependencies between them or even in parallel on different
computers.

B. Used Software

The open-source flexible Business Process management
(BPM) Suite jBPM of the JBoss community was used to
evaluate the approach by running the example workflow of
Figure 3. It provides an application server, a workflow
engine to run workflows, an Eclipse Integrated Development
Environment (IDE) with a Business Process Model and
Notation 2.0 (BPMN 2.0) conform editor as plugin to model
workflows, a data base to persist workflow runs, and a WS-
HumanTask implementation to integrate human interactions
into workflows in a standard conform way [8].

OpenNebula is an open-source software toolkit that
enables the creation of Private, Public, and Hybrid Clouds
[27]. This evaluation uses OpenNebula for local tests to
simulate a Public Cloud provider on local resources to avoid
expenses.

Figure 3. The example workflow consists of two script tasks, two service
tasks, and two parallel gateways.

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 125 / 263

RESERVOIR is a FP7 project which bases on
OpenNebula. “RESERVOIR’s open-source approach
supports the definition of open standards for Cloud
computing in order to break the lock-in imposed by vendors
today and allowing any organization to build its own local or
public cloud infrastructure [28].” It allows building “on-
demand infrastructure services, reducing investment and
operational costs, increasing energy efficiency and elasticity
while ensuring security and Quality of Service” (QoS).
Future versions of our prototype could replace OpenNebula
with RESERVOIR to get access to a more advanced toolkit
and to integrate public cloud infrastructure resources in a
standard conform way.

The clients for the equation solver web services are
created by Java API for XML Web Services (JAX-WS)
using the Java interface, the web service endpoint, and the
web service description language (WSDL) file.

The software implementation to extend workflows is
presented in [16]. The cloud service broker was self-
developed following the prototype described in [26].

C. Workflow run

Before the instantiation of the workflow, the
preprocessor requests the workflow template, the workflow
annotations, and the information about available resources of
the scheduler. The workflow annotations allow both service
tasks to be executed off-premise. The scheduler was
configured to indicate only enough available resources for
one of the service tasks, the “LuDecomposition”. That means
that the “Gauss” task must be executed in the cloud which
resources will be enabled during workflow runtime. The
preprocessor then inserts the two administrative tasks
“create” and “destroy” as predecessor and successor of the
“Gauss” script task into the workflow template as only
communication points between workflow and cloud broker.
This new modified workflow template is then forwarded to
the workflow management system for execution. The first
script task reads the input data and forwards it to both service
tasks. The “LuDecomposition” service task requests its
service endpoint from the service registry. Since the endpoint
is available on on-premise resources, the execution behavior
of this service task is not influenced by the new
architecture’s components. The merge control flow task
stops the execution branch until the “Gauss” service task
finishes execution. The administrative “create” task connects
to the cloud broker and forwards the execution requirements
of its assigned “Gauss” service task. The cloud broker
performs the decision making algorithm described in Section
II.H. Suppose neither a service nor a computer is available.
So the cloud broker selects the best cloud provider,
instantiates a resource, and deploys the software. In this
example only the private OpenNebula cloud was available
and therefore chosen. The cloud broker requests the endpoint
of the cloud resource and publishes it at the service registry.
Now the “create” administrative task finishes execution. The
“Gauss” service task first requests the endpoint from the
service registry to invoke the service. The service task does
not know that it is executed off-premise because of the
design decision to abstract endpoints with service names,

which are replaced during runtime. After the service returns
the result to the workflow, the administrative task “destroy”
notifies the cloud broker, that the service is no longer
needed. The cloud broker terminates the cloud resource
because no future cloud requests are predicted. Now all
execution braches finished and the merge task starts the final
script task which compares both results on the local
computer.

IV. CONCLUSION AND FUTURE WORK

This paper presented a general concept for the hybrid
execution of workflows by enabling Cloud resources to
compensate a shortage of on-premise resources. The
proposed prototype has the advantage that it neither depends
on a particular workflow management system nor on a
particular workflow description language. It follows the
approach of automatically modifying workflow templates to
incorporate the steps for dynamically enable the appropriate
off-premise resources in a flexible manner. The cloud broker
automatically selects the most suitable cloud resource to
guarantee the fulfillment of all task requirements. The end
users’ interfaces are not changed so that workflows can be
used the same way as before.

Next steps of work will be an analysis of an according
selection metric for the cloud broker to select the most
suitable cloud service provider. The incurred costs of a
partial off-premise execution will be compared with the costs
of a full off-premise execution to calculate a costs reduction
ratio and a cost-performance tradeoff. The time overhead for
migrating tasks across cloud and organizational boundaries
has to be measured for different providers and set it into
relation with the avoided costs. Additionally, in the
meantime developed technologies will be analyzed for a
possible integration to benefit from related work.

ACKNOWLEDGMENT

This work was carried out in the context of HiX4AGWS
[29]. HiX4AGWS is supported of the Federal Ministry of
Education and Research in Germany. Grant No.: 17N3409.

REFERENCES

[1] X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen,
and Y. Yang, “The Design of Cloud Workflow Systems,”
SpringerBriefs in Computer Science, November 2011

[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic Execution between Mobile Device and
Cloud,” Proceedings of the sixth conference on Computer
systems (EuroSys11), pp. 301-314, April 2011

[3] D. Warnecke and O. Kao, “Nephele: Efficient Parallel Data
Processing in the Cloud,” Proceedings of the 2nd Workshop
on Many-Task Computing on Grids and Supercomputers
(MTAGS09), pp. 8:1-8:10, November 2009

[4] Business objective driven REilable and Intelligent grids for
real busiNess (BREIN) FP7 project http://www.eu-brein.com/
[retrieved: March, 2013]

[5] P. Mell and T. Grance, National Institute of Standards and
Technology (NIST), “The NIST Definition of Cloud
Computing”, Special Publication 800-145, September 2011

[6] M. Gerhards, V. Sander, and A. Belloum, “About the flexible
Migration of Workflow Tasks to Clouds: Combining on- and
off-premise Executions of Applications,” Proceedings of the

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 126 / 263

Third International Conference on Cloud Computing, GRIDs,
and Virtualization (CLOUD COMPUTING 2012), pp. 82-87,
July 2012

[7] I. Foster and C. Kesselman, The Grid 2, ISBN 1-55860-933-4

[8] Web Service HumanTask V1.1 Committee Specification,
August 2010, http://docs.oasis-open.org/bpel4people/ws-
humantask-1.1.pdf form [retrieved: March, 2013]

[9] M. Gerhards, S. Skorupa, V. Sander, P. Pfeiffer, and A.
Belloum, “Towards a Security Framework for a WS-
HumanTask Processor,” 7th International Conference on
Network and Service Management (CNSM 2011), pp. 1-5,
October 2011

[10] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V.
Welch, R. Ananthakrishnan, B. Baker, M. Goode, and K.
Keahey, "Identity Federation and Attribute-based
Authorization through the Globus Toolkit, Shibboleth,
Gridshib, and MyProxy," 5th Annual PKI R&D Workshop,
April 2006

[11] J. Yu and R. Buyya, “A Taxonomy of Workflow Management
Systems for Grid Computing,” Journal of Grid Computing,
Vol. 3, Issue 3-4, pp. 171-200, September 2005

[12] Generic Workflow Execution Service (GWES)
http://www.gridworkflow.org/kwfgrid/gwes/docs/ [retrieved:
March, 2013]

[13] R. Strijkers, W. Toorop, A. van Hoof, P. Grosso, A. Belloum,
D. Vasuining, C. de Laat, and R. Meijer, “AMOS: Using the
Cloud for On-Demand Execution of e-Science Applications,”
Sixth International Conference on e-Science (e-Science), pp.
331–338, December 2010

[14] OPTIMIS FP7 project http://www.optimis-project.eu/
[retrieved: March, 2013]

[15] R. Woolley, “Enterprise Servcie Bus (ESB) Product
Evaluation Comparisons”, October 2006

[16] M. Gerhards, A. Belloum, F. Berretz, V. Sander, and S.
Skorupa, “A History-tracing XML-based Provenance
Framework for Workflows”. The 5th Workshop on
Workflows in Support of Large-Scale Science (WORKS),
New Orleans, pp. 1-10, November 2010

[17] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
S. McGough, D. Pulsipher, and A. Savva, Job Submission
Description Language (JSDL) Specification, Version 1.0, 7
November 2005

[18] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of
Mobile Cloud Computing: Architecture”, Applications, and

Approaches, Wireless Communications and Mobile
Computing, Oktober 2011, DOI: 10.1002/wcm.1203

[19] Open Grid Forum (OFG), Open Cloud Computing Interface
(OCCI), June 2011

[20] jclouds
http://www.jclouds.org/documentation/gettingstarted/what-is-
jclouds/ [retrieved: March, 2013]

[21] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to
Enhance Cloud Architectures to Enable Cross-Federation”,
3rd International Conference on Cloud Computing (CLOUD),
pp. 337-345, 2010

[22] X. Bai, H. Yu, Y. Ji, and D. Marinescu, “Resource Matching
and a Matchmaiking Service for an Intelligent Grid”, World
Academy of Science, Engineering and Technology 1, pp. 666-
669, 2005

[23] S. Kumar and N. Kumar, “Network and Data Location Aware
Job Scheduling in Grid: Improvement to GridWay
Metascheduler”, International Journal of Grid and Distributed
Computing, Vol. 5, No. 1, pp. 87-100, March 2012

[24] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science”, SIGMOD RECORD, vol. 34, pp.
31-36, 2005

[25] M. Gerhards, V. Sander, T. Matzerath, A. Belloum, D.
Vasunin, A. Benabdelkader, “Provenance Opportunities for
WS-VLAM: An Exploration of an e-Science and an e-
Business Approach”, The 6th Workshop on Workflows in
Support of Large-Scale Science (WORKS), pp. 57-66,
November 2011

[26] M. Gerhards, M. Jagodzinska, V. Sander, and A. Belloum,
“Realizing the flexible Integration of Cloud Resources into
Workflows”, Systemics and Informatics World Network
(ISSN 2044-7272), Special Issue on Cloud Computing and
Services, Dezember 2012 (in-press)

[27] OpenNebula Enterprise Cloud and Datacenter Virtualization
http://www.opennebula.org [retrieved: March, 2013]

[28] RESERVOIR (Resources and Services Virtualization without
Barriers FP7 project http://www.reservoir-fp7.eu/ [retrieved:
March, 2013]

[29] History-tracing XML for an Actor-driven Grid-enabled
Workflow System (HiX4AGWS), http://www.fh-
aachen.de/en/research/projekt-hixforagws/ [retrieved: March,
2013]

114Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 127 / 263

Collaborative Autonomic Resource Management System for Mobile Cloud
Computing

Ahmed Khalifa¹,², Mohamed Eltoweissy¹
¹ The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, USA

² Switching Department, National Telecommunication Institute, Cairo, Egypt
e-mail: {akhalifa, toweissy}@vt.edu

Abstract— Mobile cloud computing promises more effective
and efficient utilization of the ever-increasing pool of
computing resources available on modern mobile devices. To
support mobile cloud computing, we propose a Collaborative
Autonomic Resource Management System (CARMS), which
automatically manages task scheduling and resource allocation
to realize efficient cloud formation and computing in a
dynamic mobile environment. CARMS utilizes our previously
proposed Global Resource Positioning System (GRPS) to track
current and future availability of mobile resources. In this
paper, we present CARMS architecture and its associated
Adaptive List-based Scheduling and Allocation AlgorithM
(ALSALAM) for adaptive task scheduling and resource
allocation. ALSALAM uses the continually updated data from
the loosely federated GRPS to automatically select appropriate
mobile nodes to participate informing clouds, and to adjust
both task scheduling and resource allocation according to the
changing conditions due to the dynamicity of resources and
tasks in an existing cloud. Our simulation results show that
CARMS offers effective and efficient support for mobile cloud
computing that has not yet been adequately provided by prior
research.

Keywords- Mobile cloud computing; Resource management;
Dynamic resource maps;Autonomic computing; Collaborative
computing.

I. INTRODUCTION

Cloud computing enables the delivery of computing
resources as a utility. This utility concept is expected to
drastically bring down computing costs. Moreover, the
computation resources of mobile devises are increasing, for
example quad-core platforms and significantly enhanced
storage and memory capabilities. Recently, principles of
cloud computing have been extended to the mobile
computing domain, leading to the emergence of Mobile
Cloud Computing (MCC). A MCC system (MCCS) has been
defined from different views in the literature [1]. One of
these perspectives defines a MCCS as a way of outsourcing
the computing power and storage from mobile devices into
an infrastructure cloud of fixed supercomputers. Here, a
mobile device is simply a terminal which accesses services
offered in the cloud. Another view defines a MCCS as an
infrastructure-less cloud that is formed locally by a group of
mobile devices, sharing their computing resources to run
applications. This paper adopts and extends the latter
definition as follows: A MCCS is a shared pool of
configurable computing resources that are harvested from
available or potentially available local or remote nodes that

are either mobile or fixed over a network to provide on-
demand computational services to users.

Mobile devices in MCCS are expected to have
reasonably powerful capabilities, for example exploiting the
virtually unlimited power supply in our vehicles making
them good candidates for housing powerful on-board
computers augmented with huge storage devices that may act
as networked computing centers on wheels [15].

MCC has a dynamic nature as nodes, usually having
heterogeneous capabilities, may join or leave the formed
cloud varying its computing capabilities. Also, the number of
reachable nodes may vary according to the mobility pattern
of these nodes. Resource management systems for MCCS
should support this dynamicity, hide the heterogeneity of
resources, provide users with unified access, evaluate and
predict the availability and performance of resources, and
guarantee the quality of service to meet users’ requests.

Research in resource management systems and
algorithms for mobile cloud computing is still in its infancy.
In [4], authors proposed a preliminary design for a
framework to exploit resources of a collection of nearby
mobile devices as a virtual ad hoc cloud computing provider.
In [5], a mobile cloud computing framework was presented.
Experiments for job sharing were conducted over an ad-hoc
network linking a user group of mobile devices. The Hyrax
platform [6] introduced the concept of using mobile devices
as resource providers. The platform used a central server to
coordinate data and jobs on connected mobile devices. Task
scheduling and resource allocation algorithms were reported
in [7-11]. These algorithms used cost, time, reliability and
energy as criteria for selection.

Most of the existing resource management systems [4-6]
for MCC were designed to select the available mobile
resources in the same area or those follow the same
movement pattern to overcome the instability of the mobile
cloud environment. However, they did not consider more
general scenarios of users’ mobility where mobile resources
should be automatically and dynamically discovered,
scheduled, allocated in a distributed manner largely
transparent to the users. Additionally, most current task
scheduling and resource allocation algorithms [7-11] did not
consider the prediction of resource availability or the
connectivity among mobile nodes in the future, or the
channel contention, which affects the performance of
submitted applications. Consequently, there is a need for a
solution that effectively and autonomically manages the high
resource variations in a dynamic cloud environment. It
should include autonomic components for resource

115Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 128 / 263

discovery, scheduling, allocation and monitoring to provide
ubiquitously available resources to cloud users.

In an apparent departure from previous work, our
Collaborative Autonomic Resource Management System
(CARMS) provides a more general distributed solution to
cloud formation and management based on dynamic
calendars of available or potentially available resources. Our
main contributions in this paper are:

(1) The CARMS architecture which provides system-
managed cloud services such as configuration, adaptation
and resilience through collaborative autonomic management
of dynamic cloud resources, services and membership; and

(2) Adaptive task scheduling and resource allocation
algorithm to map applications' requirements to the currently
or potentially available mobile resources. This would support
formed cloud stability in a dynamic resource environment.

The rest of the paper is organized as follows. Section II
presents the architecture of CARMS. Section III presents
ALSALAM; our proposed adaptive task scheduling and
resource allocation algorithm. Section IV discusses the
performance evaluation. Finally Section V concludes the
paper and outlines future work.

II. COLLABORATIVE AUTONOMIC RESOURCE

MANAGEMENT SYSTEM (CARMS)

In [12], we proposed the PlanetCloud concept to enable
MCC to tap into the otherwise unreachable resources, which
may be located on any opt-in reachable node, rather than
being exclusively located on a static cloud service providers’
side. A key PlanetCloud component was the Global
Resource Positioning System (GRPS) that we presented in
detail in [13]. GRPS adopts a spatiotemporal calendaring
mechanism with real-time synchronization to support
dynamic real-time recording and tracking of idle mobile or
fixed resources. The calendar consists of records including
data about time, location, and computing capabilities of
GRPS participants. GRPS also forecasts the availability of
resources, anytime and anywhere. GRPS makes use of the
analysis of calendaring data coupled with data from other
sources such as social networking to improve the prediction
accuracy of resource availability. In addition, the GRPS
provides hierarchical zone architecture with a
synchronization protocol between different levels of zones to
enable scalable resource-infinite computing.

In this paper, we describe and evaluate our CARMS
integral to PlanetCloud. In PlanetCloud, a cloud application
comprises a number of tasks. At the basic level, each task
consists of a sequence of instructions that must be executed
on the same node. Tasks of a submitted application are
represented by nodes on a directed acyclic Graph (DAG)
which is addressed in the next section. The set of
communication edges among these nodes show the
dependencies among the tasks. The edge , joins nodes

and , where is called the immediate predecessor of
, and is called the immediate successor of . A task

without any immediate predecessor is called an entry task,
and a task without any immediate successors is called an exit

task. Only after all immediate predecessors of a task finish,
that task can start its execution.

CARMS manages clouds of mobile or hybrid resources
(resources of mobile and fixed nodes). A CARMS-managed
cloud consists of resources on virtual nodes that meet the
cloud applications’ requirements. Each virtual node is
emulated by a subset of the real physical mobile nodes. The
subset locally stores the state of the emulated virtual node.
The real nodes perform the tasks assigned to their emulated
virtual node. If a mobile node fails or leaves the cloud, it
ceases to emulate the virtual node; a mobile node that joins
the cloud attempts to participate in the emulation. CARMS
attempts to provide each subset with a sufficient number of
real mobile nodes, such that in case of failure, a redundant
node can be ready to substitute the failed node.

A Cloud Agent, as a requester to form a cloud, manages
the formed cloud by keeping track of all the resources
joining its cloud using the updates received from the GRPS.

We design our CARMS architecture using the key
features, concepts and principles of autonomic computing
systems. As shown in Fig. 1, components of the CARMS
and GRPS architectures interact with each other to
automatically manage resource allocation and task
scheduling to affect cloud computing in a dynamic mobile
environment.

CARMS interacts with the information-base which
maintains the necessary information about a requested cloud.
The information-base includes user information, e.g.,
personal information and subscribed services, etc. Also, it
contains information about the formed cloud, e.g., SLAs,
types of resources needed, the amount of each resource type
needed, and billing plan for the service.

CARMS comprises two primary types of nodes: Cloud
Agent and participant nodes. CARMS performs all required
management functions using the components detailed below.

1) Controller: In order to obtain a self-controlled
operation, a controller is needed to automatically take
appropriate actions. These actions are taken according to
results of the evaluation received from the Performance
Analyzer, described below, due to variations in the
performance and workload in a cloud environment. The
Controller manages interactions to form, maintain and
disassemble a cloud. Besides, it makes decisions according
to the applied policies. The Controller provides both policy
and participant control functions. The policy control
function prevents conflicts and inconsistency when policies
are updated due to change inthe demands of a cloud. In
addition, it distributes policies to other CARMS
components. On the other hand, the participant control
function manages the interaction between a cloud requester
and resource providers, the cloud participants, to perform a
Service Level Agreement (SLA) negotiation. Once the
negotiation is successful, the participant control function
updates the billing information and SLA of a participant in
the information-base. Then, the Controller sends a cloud
activation request to a Cloud Manager component.

116Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 129 / 263

Figure 1. CARMS Architecture.

Participants

Cloud Agent

2) Cloud Manager: decomposes the requested
application, in a Cloud Agent, upon receiving a cloud
activation request, to a set of tasks. This component can
create some policies on the fly and assign a set of virtual
resources to these tasks according to the received SLA
information from the controller component. Then, the
information of thevirtual resources is sent to the resource
manager component for the appropriate real mobile
resources allocation or de-allocation.

3) Resource Manager: Real mobile resources need to be
allocated to the requested application. On the other hand,
tasks of a requested application need to be scheduled. The
Resource Manager component handles the resource
allocation and task schedulingprocesseson real mobile
nodes.The Resource Manager consists of two main units:

a) Resource Allocator: allocates local real resources
for a task. Also, the resource allocator obtains the required
information about the available real resources
from(potential) participants by interacting with a GRCS of
GRPS system. The Resource Allocator interacts with
theregistry of Cloud Agentto store and retrieve the
periodically updated data related to all participants within a
cloud.

b) Task Scheduler: distributes tasks to the appropriate
real mobile nodes and keeps a copy of these tasks in an
image registry to retrieve them as needed such as in case of

failure.
4) Monitoring Manager: consists of the following two

units:
a) Performance Monitor: monitors the performance

measured by monitoring agents at resource providers. Then,
it provides the results of these measurements to the
Performance Analyzer component.

b) Workload Monitor: The workload information of
the incoming request is periodically collected by the
Workload Monitor component.

5) Performance Analyzer:continually analyzes the
measurements received from the Monitoring Manager to
detect the status of tasks and operations, and evaluate both
the performance and SLA. The results are then sent to both
the Controller and the Account Manager.

6) Account Manager: In case of violation of SLA,
adjustments are needed to the bill of a particular participant.
These adjustments are performed by the Account Manager
component depending on the billing policies negotiated by
the requester of cloud formation.

III. ADAPTIVE TASK SCHEDULING AND RESOURCE

ALLOCATION ALGORITHM

A. Application Model

For simplicity, we start with a basic application model.
The load of submitted application is defined by the following

117Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 130 / 263

parameters: the number of submitted applications, the
number of tasks per application, and the settings of each task.
For example, the input and the output file size of a task
before and after execution in bytes, the memory and the
number of cores required to execute this task, and the
execution time of a task.

Based on the criteria for selection, we mainly define two
matrices: Criteria costs matrix, C, of size v ×p, i.e., c , gives
the estimated time, cost, or energy consumption to execute
task on participant node ; and a R matrix, of size p × p,
which includes criteria costs per transferred byte between
any two participant nodes. For Example, time or cost to
transfer n bytes of data from task , scheduled on , to task

, scheduled on .
As an example of time-based selection criteria, a set of

unlisted parent-trees is defined from the graph where a
critical-node (CN) represents the root of each parent-tree. A
CN refers to the node that has zero difference between its
earliest start time (EST) and latest start time (LST).The EST
of a task is shown in (1). It refers to the earliest time that
all predecessor tasks can be completed. ET is the average
execution time of a task.EST (v) = max∈ (){ EST (v) + ET(v)} (1)

Where () is the average execution time of a task
, and pred() is the set of immediate predecessors of .

The LST of a task is shown in (2).LST (v) = max∈ (){ LST (v)} − ET(v) (2)
Where succ(v) is the set of immediate successors of .

B. Resource Model

Our cloud system represents a heterogeneous
environment since the mobile nodes have different
characteristics and capabilities, The total computing
capability of the real mobile nodes, hosts, within a cloud is a
function of the number of hosts within a cloud and the
configuration of their resources, i.e., memory, storage,
bandwidth, number of CPUs/Cores, and the number of
instructions a core can process per second.

C. Proposed Algorithm

We propose a generic GRPS-driven algorithm for the
task scheduling and resource allocation: Adaptive List-based
Scheduling and Allocation AlgorithM (ALSALAM) for
mobile cloud computing. ALSALAM supports the stability
of a formed cloud in a dynamic resource environment.
Where, a certain resource provider is selected to run a task
based on resource discovery and forecasting information
provided by the GRPS. The algorithm consists of two phases
as follows.

1) Initial static scheduling and assignment phase
After, the information of virtual resources is sent to the

Resource Manager for the appropriate real mobile nodes’
resource allocation, the Resource Manager uses its Resource
Allocator unit, which interacts with the GRPS to find the
available resources of every possible node a Cloud Agent
could reach. The information of location, time and the
computing capabilities of these resources, which match the

application requirements, are obtained from GRPS. This
information affects matrices of criteria for node selection.
Based on the next waypoint, a destination obtained from
GRPS, of each mobile node and the updated location of the
Cloud Agent, we can estimate which mobile nodes will pass
through the transmission range of the Cloud Agent.

A priority is assigned to a node depending on the criteria
of selection. For example, in a time-based approach, we may
select a host such that the highest priority is given to the
nodes which are located inside the transmission range of a
Cloud Agent, followed by the nodes which are located
outside this transmission range and will cross it, and finally
to the rest of the nodes. Within each group, nodes are listed
in descending order according to the available computing
capabilities, e.g. their number of cores or central processing
units (CPUs). Nodes, with the same computing capabilities,
are listed in descending order according to the time they will
spend in the transmission range of a Cloud Agent. This could
minimize the overall execution and communication time.As
a result, a host list, H, is formed based on the priorities as
shown in Algorithm 1 presented in Appendix.

The Cloud Agent sends the cloud formation requests,
through its Communicator unit, to all resource providers to in
the list of hosts H. According to the (earliest) responses
received about resource available time from all responders
and the criteria of selection, the responders’ IDs are pushed
by the Resource Manager in increasing order of parameters
which reduce their costs. For example, CPUs in use in time-
based approach, i.e. the responding node, , with
maximum free CPUs is on the top of responders stack RS,
top(RS). This could reduce the queuing delay and therefore
enhance the overall execution time.

The Task Scheduler unit of the resource manager assigns
and distributes the task at the top of the list of tasks L, top(L)
to the host at the top of responders stack RS, top(RS).

2) Adaptive scheduling and reallocation phase
The actual measures, e.g., time, cost or energy, required

to finish a task may differ from the estimated due to both the
mobility of hosts and the resource contention. For example,
the mobility of hosts affects the actual finish time of a task
due to the delay a host takes to submit task results to other
hosts in a MCCS.

The Estimated Finish Time of a task on a node ,(,) , is shown in (3), where ERAT is the earliest
resource available time.EFT (v , p) = ERAT (v , p) + ET(v , p) (3)

We propose an adaptive task scheduling and resource
allocation phase to adjust the resource allocation and
reschedule the tasks dynamically based on both the updated
measurements, provided by the Monitoring Manager, as well
as the evaluation results performed by the Performance
Analyzer. The Monitoring Manager aggregates the
information about the current executed tasks periodically, as
a pull mode. Due to the dynamic mobile environment, hosts
of a cloud update the Monitoring Manager with any changes
in the status of their tasks, as a push mode. Also, hosts
periodically update the cloud registry of a Cloud Agent with
any changes in the status of resources. Consequently, the

118Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 131 / 263

Figure 2. Average Execution Time of Application Vs Number of nodes at
different number of submitted tasks/application and number of cores/host.

TABLE I. PARAMETERS

Parameters Values Parameters Values

Density of nodes
4-40

(Nodes/Km²)
Communication

range
0.1-1 (km)

Number of
Hosts/Cloud

4-24

Application
Arrival Rate

(Poisson
distribution)

7
(Applications/sec)

Number of hosts
/Application

2-20
Expected

execution time
for a task

800
(Sec)

Number of
tasks/Application

4 – 140

Number of
CPUs/Cores

per host
(Uniform

distribution)

1-8

Number of
applications/Cloud 1 – 14

Average Node
Speed

(Uniform
distribution)

1.389,10,20
(m/sec)

Performance Analyzer could re-calculate the estimated
measures of the submitted tasks. As a result, tasks and
resources could be rescheduled and reallocated according to
the latest evaluation results and measurements.

IV. EVALUATION

To simulate the MCCS environment, we have extended
the CloudSim simulator [14] to support the mobility of nodes
by incorporating the Random Waypoint (RWP) model. A
mobile node moves along a line from one waypoint to the
next . These waypoints are uniformly distributed over a
unit square area. At the start of each leg, a random velocity is
drawn from a uniform velocity distribution.

In our evaluation model, an application is a set of tasks
with one primary task. Each task, or cloudlet, runs in a single
virtual machine (VM) which is deployed on a mobile node.
VMs on mobile nodes could only communicate with the VM
of the primary task node and only when a direct ad-hoc
connection is established between them. For simplicity, a
primary node collects the execution results from the other
tasks which are executed on other mobile nodes in a cloud.
There is only one cloud in this simulation. For scheduling
any application on a VM, first-come, first-served (FCFS) is
followed. We only considered the initial static scheduling
and assignment phases through this part of the evaluation.

For calculating the collision delay, we consider the worst
case scenario, a saturation condition, where each node has a
packet to transmit in the transmission range.

A. Assumptions

 Communication between nodes is possible within a
limited maximum communication range, x (km).
Within this range, the communication is assumed to
be error free and instantaneous.

 The distribution of speed is uniform.
 Every mobile node can always function well all the

time with high reliability and does not fail.

B. Metrics and Parameters

Preliminarily, the evaluated metric is the average
application execution time, which is the time elapsed from
the application submission to the application completion.

We set parameters in the simulation according to the
maximum and minimum values shown in Table I. The
number of hosts represents the mobile nodes that provide
their computing resources and participate in the cloud.

C. Experiments

We started our evaluation by studying the effect of
collision delay due to channel contention on the performance
of the submitted application. In this evaluation, all nodes
have the same computing capabilities, i.e. homogeneous.
Fig. 2 shows the average execution time of an application at
a different number of nodes, ranging from 4 to 24 nodes, in a
unit square area. The average speed of a mobile node equals
10 (m/sec). We set the transmission range to be 0.8 (km),
which has been obtained from an evaluation not presented
here due to space limitation. At this value, we can neglect the
effect of the connectivity, i.e. a node is almost always

connected with others. Fig. 2 shows that the worst
performance is obtained when a host has a minimum number
of cores, i.e. 1 core, and at a maximum number of tasks per
application, i.e. 30. This is because at a small number of
nodes, e.g. 4, most of the submitted tasks will be queued in a
waiting list since just one core is available per task. The
more the available nodes participate in the formed cloud, the
more available cores to execute these tasks. Consequently,
the average execution time of an application decreases with
the increase of the number of mobile nodes. The collision
delay should increase with node density, while results show
that the collision delay is negligible if we compare it with the
queuing delay. The results at 1 and 8 cores per host are very
close to each other at a small number of tasks per
application, at 4 tasks/application, since there is no effect of
the queuing delay. Noticeable differences between these
results and the others appear at a higher number of submitted
tasks/application equals 15, at a number of cores/host equals
8, due to the significant effect of the mobility of hosts. The
reason is that these tasks are assigned to more nodes in the
formed cloud, and this leads to increase in the
communication time until the primary node collects results
from the other nodes. These results show that the collision
delay is also negligible if we compare it with the
communication delay. Conversely, the average execution
time of an application decreases when the number of nodes

119Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 132 / 263

Figure 4. Average Execution Time of Applications Vs number of submitted
tasks at different number of hosts and Comm. Ranges.

Figure 5. Average Execution Time of Applications Vs number of hosts per
application at different number of applications.

Figure 3. Average Execution Time of Applications Vs number of
submitted tasks at different number of hosts.

increases from 4 to 8 at a number of tasks per application
equals 30, and at a number of cores/host equals 8. This is
because the more the number of hosts, the more cores to
execute these tasks. This reduces the queuing delay.

In the next experiments, we compare results of two cases:
Using ALSALAM algorithm, which is based on the
information obtained from GRPS, e.g. location and available
processors, in resource scheduling and assignment and the
random-based algorithm, which does not use this
information, where a random mobile nodes are selected to
execute the submitted application.

Let all 40 mobile nodes have a random number of cores,
heterogeneous resources, ranging from 1 to 8 cores. Fig. 3
shows that the average execution time of an application
when we consider one application is submitted to be
executed. Each node has a transmission range equals 0.4 km,
and its average speed equals 1.389 (m/sec). As expected, this
evaluation provides significant differences between results of
the two cases, with/without using the ALSALAM. The
results of this figure show that executing the application on a
smaller number of nodes, e.g. 8 hosts, has better performance
in terms of average execution time of an application than in
case of results at a larger number of hosts, i.e. 24 hosts. The
higher number of submitted tasks per application leads to
make some tasks waiting the previous ones in a waiting list
to be executed. The total delay becomes higher if these tasks
are distributed on a higher number of nodes, e.g. 24 hosts.
This is because the communication delay is dominant.

We repeat our evaluation at a different number of hosts
equals 4, 8 and 24 hosts, and at a different value of
transmission ranges equals 0.4, and 1 (km). Fig. 4 shows that
the average execution time of an application at a
transmission range equals 1 (km) almost has a better
performance than the case of a transmission range equals 0.4
(km) at the same number of hosts. Also, we can see that at a
small transmission range, e.g. 0.4 (km), and a large number
of hosts, e.g., 24 hosts, a worst performance is obtained.
While, it has a better performance, at a number of hosts
equals 8, than in case of a number of hosts equals 4. This
observation is quite obvious because at this large number of
tasks, greater than the total computing capabilities of the
selected 4 hosts, the queuing delay is dominant. On the other
hand, the larger the value of a number of hosts, at a high
transmission range equals 1 (km), the better average

execution time of an application is, e.g. at 24 hosts.
The results of Fig. 5 show that the smaller the number of

submitted applications, e.g. 7 applications, the better
performance is obtained. Applications arrive into the system
following a Poisson process with arrival rate 7. Also, the
results show that the execution of submitted applications on
a smaller number of hosts, e.g. 2 hosts/application, has a
worst performance than of executing them on larger number
of hosts, e.g. 8 hosts/application. This is because at a small
number of hosts, e.g. 2, the queuing delay is dominant. The
more the available number of hosts participated in the
formed cloud the more available cores to execute these tasks.
Consequently, the average execution time of an application
decreases with the increase of a number of mobile nodes, e.g.
8 hosts/application. On the other hand, the larger the value of
a number of hosts/application, the worst average execution
time of an application is, e.g. at 20 hosts/application. This is
because the communication delay is dominant.

D. Findings

Our findings can be summarized as follows.
1) There is a tradeoffbetween the communication delay

and the queuing delay as a number of hosts per submitted
application is varied.The higher number of hosts per an
application, the higher total computing capability within the
cloud is. Therefore, the queuing delay of a task is decreased.
While, this leads to increase the time until the primary node
collects results from other resource provider nodes, and
therefore this increases the communication delay.

120Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 133 / 263

Algorithm 1
Initial task scheduling and assignment based on

priorities
1:
2:
3:
4:

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

16:

17:
18:

19:
20:
21:
22:
23:
24:

The EST of every task is calculated.
The LST of every task is calculated.
Empty list of tasks L and auxiliary stack S.
Push tasks of CN tree into stack S in decreasing order of
their LST.
while the stack S is not empty do

If there is unlisted predecessor of top(S) then
Push the predecessor with least LST first into stack S

else
enqueue top(S) to the list L

pop the top(S)
end if

end while
while the list L is not empty do
dequeue top(L).

Send task requests of top(L) to all participant nodes in
the list of hosts H which match the task requirements.
Receive the earliest resource available time responses
for top(L) from all responders.
Empty auxiliary responders stack RS.
Push IDs of hosts which respond to requests into
responders stack RS in increasing order according to
their CPUs in use.
while the host stack RS is not empty do

find the responder R with less CPUs in use.
assign task top(L) to responder R .
remove top(L) from the list L.

end while
end while

2) A better performance may be obtained, at a shorter
transmission range, if we select the smallest number of hosts
that have computing capabilities which minimize the
queuing delay to participate in a cloud. While at long
transmission range of nodes, where the communication
delay could be neglected, we have to select the highest
number of hosts to maximize the computing capability and
reduce the queuing delay.

3) The average execution time of an application is
impacted by the connectivity among hosts of a cloud, the
load of submitted applications, and the total resources,
computing capabilities, confined in these hosts. The major
factors affecting connectivity are hosts’ transmission range,
node mobility, and node density. The mobility is impacted
by the hosts’ speed and movement direction (relative to
primary nodes).

V. CONCLUSION AND FUTURE WORK

We presented CARMS, a distributed autonomic resource
management system to enable resilient dynamic resource
allocation and task scheduling for mobile cloud computing.
In addition, we proposed the GRPS-driven ALSALAM, an
adaptive scheduling and allocation algorithm implemented in
the resource manager of CARMS to enable efficient
selection of cloud participants and to provide a stable cloud
in a dynamic resource environment. Results have shown that
CARMS enables effective and efficient cloud formation and
maintenance over mobile devices.

Our ongoing research extends CARMS to enhance the
resilience and cost efficiency of cloud management by
considering the reliability and security aspects of mobile
resources in the selection of cloud nodes while minimizing
the execution and communication costs.

REFERENCES

[1] I. Chandrasekaran, “Mobile computing with cloud,”
Advancesin Parallel Distributed Computing, Communications
in Computer and Information Science, vol. 203, 2011, pp.
513–522.

[2] Y. Yuan and W. Liu, “Efficient resource management for
cloud computing,” International Conference on System
Science, Engineering Design and Manufacturing
Informatization (ICSEM), China, 2011, pp.233-236.

[3] Z. Liu, W. Tong, Z. Gong, J. Liu, Y. Hu, and S. Guo, “Cloud
Computing Model without Resource Management Center,”
International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, 2011, pp.442–446.

[4] G. Huerta-Canepa and D. Lee, “A virtual cloud computing
provider for mobile devices,” Proc. 1st ACM Workshop on
Mobile Cloud Computing & Services: Social Networks and
Beyond, California, USA, 2010, pp.1-5.

[5] N. Fernando, S.W. Loke, and W. Rahayu, “Dynamic mobile
cloud computing: Ad hoc and opportunistic job sharing,”
Fourth IEEE International Conference on Utility and Cloud
Computing (UCC), Australia, 2011, pp.281-286.

[6] E. Marinelli, “Hyrax: cloud computing on mobile devices
using MapReduce,” Master thesis, Carnegie Mellon
University, 2009.

[7] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost
optimization algorithm for workflow scheduling in hybrid

clouds,” Journal of Internet Services and Applications, vol. 2,
Dec 2011, pp. 207–227.

[8] C. Lin, S. Lu, “Scheduling scientific workflows elastically for
cloud computing,” in IEEE 4th International Conference on
Cloud Computing, USA, 2011, pp. 746 - 747.

[9] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan,
“Bi-criteria workflow tasks allocation and scheduling in cloud
computing environments,” 5th International Conference on
Cloud Computing, USA, 2012, pp. 638-645.

[10] B. Yang, X. Xu, F. Tan, and D. H. Park, “An utility-based job
scheduling algorithm for cloud computing considering
reliability factor,” International Conference on Cloud and
Service Computing (CSC), Hong Kong, 2011, pp. 95-102.

[11] L. Wang, G. von Laszewski, J. Dayal, and F. Wang,
“Towards energy aware scheduling for precedence
constrained parallel tasks in a cluster with DVFS,” Proc. 10th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID’10, Australia, 2010, pp. 368–377.

[12] A. Khalifa, R. Hassan, and M. Eltoweissy, “Towards
ubiquitous computing clouds,” in The Third International
Conference on Future Computational Technologies and
Applications, Rome, Italy, September, 2011, pp. 52–56.

[13] A. Khalifa and M. Eltoweissy, “A global resource positioning
system for ubiquitous clouds,” in the Eighth International
Conference on Innovations in Information Technology (IIT),
UAE, March, 2012, pp. 145–150.

[14] S. K. Garg and R. Buyya, “NetworkCloudSim: modelling
parallel applications in cloud simulations,” Proc. 4th IEEE
International Conference on Utility and Cloud Computing
(UCC 2011), Melbourne, Australia, Dec. 2011, pp.105–113.

[15] M. Eltoweissy, S.Olariu, and M.Younis, “Towards
autonomous vehicular clouds,” Ad Hoc Networks, Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol.
49, 2010, pp 1-16.

APPENDIX

121Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 134 / 263

SLA Template Filtering: A Faceted Approach

Katerina Stamou, Verena Kantere and Jean-Henry Morin
Institute of Services Science, University of Geneva - HEC, Switzerland
Email: aikaterini.stamou, verena.kantere, jean-henry.morin @unige.ch

Abstract—With the commoditization of cloud computing,
more and more companies prefer to outsource IT resources
into virtual infrastructures. Service Level Agreements (SLAs)
can be helpful to make the right investment decision. A
SLA template represents the pre-agreed SLA state. A service
provider proposes the SLA content and submits the template
to a marketplace for customer consideration. Customers use
SLA template views as ”What You See Is What You Get”
(WYSIWIG) snapshots prior to service selection and before
agreement initialization. The paper proposes a filtering frame-
work that is based on a faceted approach and that uses SLA
templates to guide marketplace customers through available
services. The framework design is presented along with the
data-model of SLA templates. We report the results from
testing the faceted filtering with two different SLA storage
approaches and evaluate their appropriateness for the web
application layer.

Keywords-cloud marketplaces; SLA templates; SLA modu-
larity; faceted filtering; document database.

I. INTRODUCTION

A Service Level Agreement (SLA) accurately depicts how
a service is going to be provisioned. Its explicit definition
is necessary for both providers and consumers to measure
and assess actual consumption of resources during service
execution. The SLA description allows customers to have
a clear idea before service commitment on how resources
will be served. Hence SLAs can be helpful to make more
informed investment decisions. Customers of service mar-
ketplaces can use SLA templates as ”What You See Is What
You Get” (WYSIWIG) snapshots when they navigate through
available offers. We consider a SLA snapshot as a high level
summary of a pre-agreed SLA.

Our discussion begins with the current role of SLAs
in cloud marketplaces and with research challenges whose
completion can advance the SLA utilization for IT services.
The paper continues with the presentation of our filtering
framework that uses the SLA template content to provide
a multi-faceted navigation tool for customers. We position
the framework within a service marketplace. A customer
can filter views of available offers according to provisioning
requirements. The goal of the faceted filtering is to gradually
lead a customer to a reduced service offer list that is in
accordance with customer requests, thus helping in the final
service selection activity.

We describe the SLA template data model and the filtering
framework design. Our analysis concentrates on how SLA

information is stored and managed by a marketplace to
help customers orient their navigation according to their
provisioning requirements. To examine the applicability of
the proposed framework, we simulate its operation using
two different data storage approaches and evaluate their
appropriateness for the web marketplace setting.

The paper is organized as follows: in Section II we
formalize our problem setting and elaborate on SLA research
challenges that we consider towards a large scale reality of
efficient SLA content manipulation. Section III presents the
data model for SLA templates, their construction process,
the design of the filtering framework and the proposed
database schemas. Section IV describes our experimentation
and reports on preliminary results. Section V acknowledges
related scientific work that tries to answer relevant research
questions around SLA manipulation. The paper concludes
with on-going work.

II. PROBLEM FORMALIZATION

A. SLA and SLA template role in cloud markets

In the following, the terms ’SLA template’ and ’service
offer’ are used interchangeably. A Service Level Agreement
(SLA) identifies the exact measurement and enables the
auditing of described resource parameter values. The SLA
definition provides an explicit view on how the provisioning
of a service is planned. It also indicates precise bounds of
service levels that a provider can supply.

Providers use SLAs during service execution to monitor
service measurable attributes. Currently, SLAs hardly appear
in cloud marketplaces. Promotion of IT offers to customers
relies primarily on high-level service descriptions. The role
of SLAs is peripheral and they are often materialized by
documents of ”terms-and-conditions” that typically do not
involve functional service aspects.

In the literature, a SLA template represents a pre-
instantiated agreement that is submitted by a service provider
to a marketplace for customer consideration. The SLA
template describes the agreement content that a provider is
willing to accept during communications with customers.
Thus a template describes precisely a provider’s resource
availability and provisioning plan. To decide which provi-
sioning is more suitable for their needs, customers review
SLA templates as service offers and proceed with either
agreement initialization or negotiation with one or more
providers.

122Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 135 / 263

We consider SLA templates as dynamic information that
is updated at frequent time intervals. A marketplace or
equivalently a service aggregator platform can use such
templates as customer drivers for service selection since
SLA templates enclose all details on how services are to be
provisioned. SLA templates can be efficiently manipulated
given that they follow a modular structure. Template content
modularity allows viewing service offer sections as facets.

According to [10], a facet represents a category of ordered
information data. It may contain flat or hierarchical informa-
tion and can be divided into subcategories or sub-hierarchies.
Moreover, a facet is described by attributes. In [10] the
authors analyze how they have used hierarchical faceted
categories (HFC) to organize the information structure of a
navigational interface [5] for large data collections. Faceted
navigation is a design pattern that enables flexible browsing
through a web interface. Big market vendors have employed
this pattern as it allows friendly navigation through multiple
data hierarchies simultaneously. The ordering of information
in multi-hierarchies makes the faceted-navigation pattern
suitable to use with SLA templates also, since the native
SLA structure is represented in the literature as a tree
hierarchy [2], [9]. Figure 1 illustrates a high-level overview
of the SLA schema proposed by [2].

In a SLA tree structure, facets represent SLA branches
that describe ordered aspects of provisioning details. Rep-
resentation of SLA facets can be combined with filters
to facilitate the customization of facet attributes. In addi-
tion, filters generate new SLA facets by following selected
traversing routes in the SLA tree path. Motivated by the
faceted navigation pattern and its noticeable suitability with
the SLA tree structure, we provide a framework that manip-
ulates modular SLA templates to enable service customer
navigation through available service offers.

Figure 1. SLA tree structure according to WS-Agreement specification

Prior to service selection and agreement initialization,
customers search through submitted offers to find services
that match their business needs. The goal of SLA faceted
filtering is to enable flexible service navigation that is
driven by customer (either users or automated processes)
provisioning requirements. The filtering process narrows
down service offer views to only desired ones that fulfill
requested provisioning parameters. A faceted navigation tool
should provide filters that help customers indicate their

service provisioning requirements according to existing offer
availability. Filtered navigation facilitates rapid traversing
between different offer views.

B. SLA manipulation challenges

In the scientific literature, SLAs are hardly viewed as
end user documents, but merely as automated processes
that assist the monitoring and scheduling of resources. In
contrast, cloud marketplaces treat SLAs as static documents
that do not allow for any processing. One challenge is to find
the right equilibrium between these two orthogonal aspects
and combine machine-readable with user friendly SLAs into
a uniform process that can be used by both backend systems
and front-end web services.

SLAs represent nested tree structures that include het-
erogeneous characteristics and are unbounded in terms of
length and content. In the cloud business setting, diver-
sified services are offered. Description characteristics and
provisioning guarantees vary considerably, even if they de-
scribe similar services in different contexts. Providers from
different business domains use customized terminology to
describe service parameters, metric functions and guaran-
tee definitions. Terms like ”availability”, ”throughput” or
”performance” are usually included in ambiguous ways in
service descriptions, which may be confusing for service
customers. Various vocabularies of provisioning terms rep-
resent a primary cause for SLA heterogeneity. On a wide
scale, SLA semantic and structural heterogeneity represents
a challenge because it complicates SLA template comparison
thus hindering any attempt to efficiently manipulate SLAs
in open marketplaces.

SLA formulation highly depends on resource availability.
Hence to manipulate SLA templates for customer interest,
we need to first ensure that the template content can be
updated dynamically. As the SLA depth is unbounded,
frequent updates may cause performance delays in the in-
formation exchange between customers and providers. Thus,
the storage schema of SLA templates represents a challenge.
On one hand, one may argue that since SLA templates
represent dynamic information objects, they should not be
stored at all. Instead, they should be kept in-memory for as
long as they are valid and then be immediately replaced. On
the other hand, a modular SLA data model allows to persist
SLA templates for longer time periods and to run frequent
content updates according to provider resource capacity and
provisioning availability. In this paper we work on the latter
aspect.

Viewed as a tree hierarchy, the SLA content may include
nested branching, which may lead to alternative information
content. A challenge for the manipulation of SLA templates
is to select a content structure that facilitates quick travers-
ing within nested information routes. A modular structure
provides independence between inner SLA components thus
helping the exploitation of finer grained information. Mod-

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 136 / 263

ularity allows for categorization of SLA parts and indicates
data management structures that may apply for diverse types
of SLA formats.

SLA content heterogeneity addresses issues that deal with
scientific opportunities for data management, information
retrieval and language processing research. In addition,
it highlights the need for SLA standardization. Currently,
SLA formalization is not supported by a standard to allow
classification of key performance indicators (KPIs) or to
mandate inclusion of specific functions per business domain.

The scientific computing community has primarily used
the WSLA [9] and WS-Agreement [2] language speci-
fications to express SLAs. The GRAAP working group
proposed the WS-Agreement specification [2] as a language
and a protocol to conduct SLAs. The WSLA [9] language
specification has been proposed by IBM research on utility
computing. Both approaches denote SLA language seman-
tics in XML notation. According to [9], a SLA complements
a service description. Moreover, both specifications suggest
the use of customer and provider templates for the exchange
of counter offers in the process of agreeing on service levels.

III. FILTERED NAVIGATION AND TEMPLATE REPOSITORY

We propose a filtering process that is different from
direct comparison and exchange of SLA templates. The
process uses provider templates to construct filters, based
on which customers express their provisioning preferences.
The outcome of the filtering process does not represent the
final selection decision of a customer, but rather a subset of
available service offers that satisfy the imposed filters.

We assume homogeneity of template structure with re-
spect to the ordering of sections and terms as proposed by
[2]. Filters are created according to SLA facets. The fol-
lowing paragraphs describe the SLA template construction,
the design of the filtering framework and the SLA template
storage schema.

A. SLA template construction

[2], [9] propose that a SLA consists of three primary
sections:
(i) service description,

(ii) guarantees or obligations and
(iii) an informative section regarding involved parties and/or

the provisioned service
[2] names the latter section SLA context. To construct SLA

templates, we follow the WS-Agreement guidelines, but
express the template content in JSON [8] notation. The SLA
template construction steps can be summarized as following:

1) Parse XML sample into JSON
2) Use (1) to create SLA template data model
3) Create database schema according to (2)
4) Retrieve service descriptions from marketplace
5) Order data from (4) into service types
6) Create fictional information, order according to (5)

7) Shuffle information from (5) and (6) into randomly
generated data lists

8) Load (7) into CSV files
9) Load (8) into database
The native WS-Agreement format comes in XML nota-

tion. Hence we initially parse a WS-Agreement template
sample from XML to JSON. We use the JSON sample to
create the data model for our SLA templates. From the native
WS-Agreement specification, we employ the proposed sec-
tions of guarantees, description terms and agreement context,
but order them accordingly to address the filtering need for
modularity. Moreover, we extend the context section that
we refer to as non-obligation attributes, and add information
regarding the provider infrastructure and the customer data-
storage location. We keep the service description joined with
associated metrics and guarantees. Furthermore, we add a
separate section for guarantees that apply to the overall
service and that may or may not be measurable. We use this
section to include customer monitoring options and provider
obligations that indicate QoS bounds, e.g., service helpdesk
availability. Customers typically need to be aware of such
options before service commitment. Figure 2 illustrates the
deduced SLA data model that we use to create the database
schema for our templates.

The proposed SLA data model exploits information gran-
ularity by categorizing data into distinct SLA modules.
This ordering allows for isolation of internal SLA root
components, without depriving their inner depth in terms of
nested branching. Nesting within a SLA template module
depends on the information content. For example, non-
obligation terms do not contain additional branches and
remain consistent for all templates, regardless of service
type. Service description and associated guarantees expand
to multiple branches. The depth-level of nesting is of interest
as it affects the template storage schema and hence the
filtering flow process. Moreover, the suggested data model
allows expanding the SLA content into distinct themes.
Figure 2 depicts SLA data modularity with the letter N to
indicate granularity of themes.

Figure 2. SLA data-model

Following, we retrieve information of service descriptions
from the Amazon WS marketplace [1]. In particular, we
derive service profiles that relate to storage, network and
virtual machines. We order this information into nested

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 137 / 263

lists according to service type. Wherever necessary, we re-
formulate the retrieved data and complete them with ficti-
tious information to cover the content of our SLA template.

We iteratively call a Python process to generate lists
whose elements are assigned randomly from the classifica-
tion of ordered data. We intentionally apply variations in
the nesting depth of lists. Generated data are not skewed.
Still, we aknowledge that in real market conditions services
do not share the same level of popularity, thus customer
preference. The Python process loads the generated data lists
into comma separated value (CSV) files and from there to
the database management system (DBMS) in use.

In this manner we create template sets for all three derived
service profiles. Generated templates follow the proposed
SLA data model, but differ in depth level and content. The
template construction procedure simulates provider submis-
sions of service offers into a cloud marketplace.

B. Filtered navigation through service offers

Figure 3 illustrates our proposed filtering framework. The
framework design consists of two layers. One tier depicts all
possible combinations of cloud stack layer [4], service type
and offer validity as a three dimensional Cartesian coordi-
nate system. The other tier presents the proposed SLA tree as
a cube, where cubic sides indicate root-facets of filtering and
service offer views. The cube selection is indicative of the
proposed data model because a template may contain up to
n SLA root-themes. The multidimensional structure depicts
the inner-depth volume and interconnections of nested SLA
information.

Figure 3. SLA filtering framework

Parameter combinations from the two filtering tiers indi-
cate navigation and filtering options. For the suggested cubic
representation, we point out the following entry-points:

(a) Select a combination of cloud stack layer, service
type and time interval. We take into account inter-
dependencies that may exist between cloud stack layer
and service type, since several services are mapped to
a single cloud layer.

(b) Select (a) and combine with filtering of non-obligation
attributes.

(c) Filter only non-obligation attributes.
(d) Select (a) and combine with filtering of high-level

service description terms.
(e) Select (a) and combine with filtering of overall guar-

antee parameters.
(f) Filter only overall guarantees.
The selection of entry-points designates one or more

conditional queries that are processed transparently from
customer actions, on the backend. The instantly returned
result facilitates further navigation from a refined subset of
existing offers, where deeper-level filtering options are pro-
vided. The navigation process gradually leads to a minimal
set of preferred service offers that satisfy provisioning re-
quirements according to submission of customer parameters.
The method can be also deployed as an incremental process,
where the system keeps track of customer selections on each
step and accordingly regulates the flow of results.

The inherent modularity of the proposed SLA data model
and its representation as a multidimensional structure allows
for quick and selective navigation through designated nested
information. At any point the navigation route can change
by either selecting a different combination of SLA facet
or by re-arranging filter values. The approach provides
flexibility to navigate through available service offers from
the provisioning aspect that a customer is mostly interested
in.

Thus a customer may directly navigate through service
profile attributes and associated provisioning guarantees
by selecting the type of service and by filtering initial
parameters from the description category. Alternatively, a
customer may first look into non-obligation attributes if, for
example, there is a provider or a data-location preference.
Moreover, a customer may simply search for particular
guarantee attributes that are irrelevant of service type.

Entry navigation and filtering points can be extended
accordingly to the SLA structure branches or respectively
SLA facets. Special facets can be introduced to illustrate
provisioning guarantees that deal with service provider and
customer concerns about, for example, energy efficiency or
environmental impact.

C. SLA template storage

Filters in faceted navigation translate customer choices
into conditional queries. In this work, we consider and
experiment the faceted filtering with two different data
management approaches.

In one case, SLA templates are stored and manipulated
in a relational DBMS. Service offer information is kept into
distinct tables and at a granular level of detail according
to the template data model. In [2] a unique identifier (uid),
located into the SLA context section, accompanies every
SLA template. To resemble this relationship in the relational

125Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 138 / 263

database schema, we set a uid as the primary key (PK) of the
non-obligation attributes table. Similar to [2], this PK acts
as a reference key for the identification and matching of
any incoming template. Moreover, the uid serves as foreign
key (FK) to service description and overall guarantees tables
that are associated with a specific template instance. This
relationship resembles the native SLA tree structure of [2].
Figure 4 shows the relational database schema of our design.

Figure 4. SLA template - relational database schema

To illustrate inner content branching, the PK of the service
description table acts as a FK to associated rows of metric
and guarantee tables. Similarly, the overall guarantees table
is associated to metrics and function definitions for the
measurement of referenced guarantees. In this order, the
relational schema offers an alternative to the native XML
structure proposed by [2]. This database design achieves the
necessary granularity in terms of parameter details to allow
for conditional queries on term and metric values.

We express and manipulate SLA templates using the
JSON format. This choice was driven by our objective to
test faceted filtering with a structured query language of
a relational database and with a NoSQL data processing
system, which in this work represents a document database.
Since SLAs are machine-readable documents, a NoSQL
DBMS may prove suitable for the marketplace scenario that
typically operates over HTTP.

The document database design follows a nested dictionary
structure. Compared to the relational schema, document
collections represent tables and respectively documents rep-
resent records (table rows). The database design looks a
lot like the relational one, but SLA templates are stored
as nested documents. Although, schema conformance is
not a pre-requisite for a document database, every stored
document follows a generic SLA template structure and
accurately corresponds to the information stored in the
relational database. Figure 5 illustrates the NoSQL schema
design.

Every stored document is accompanied by a unique iden-
tifier and embeds dictionaries (or sub-documents) to map FK

Figure 5. SLA template - document database schema

relationships from the relational database to the document
schema. Each document contains one dictionary that holds
non-obligation service attributes and one or more dictio-
naries to present service description parameters and overall
guarantees. Similar to the relational model, description terms
and overall guarantees enclose associated service attributes
and respectively metrics, which in turn embed additional
nested information.

IV. EXPERIMENTATION

A. Filtering simulation setup

We simulate the faceted filtering operation using the entry
navigation-points analyzed in Section III. We assume that
an IT marketplace provides SLA faceted navigation as an
interaction tool for customers to submit their criteria and
guide their browsing of service offers through provisioning
requirements. We emulate customer instances and the SLA
faceted filtering in a client - server architecture. Our goal is
to measure the server response time to incoming customer
requests and the scalability of the filtering operation as the
number of simultaneous requests increase.

We setup the simulation environment on a 24-processor
computing machine. The model of each processor is Intel
Xeon and every processor runs at 2.50 GHz. The computing
machine includes 128GB of RAM and operates on Ubuntu
12.04, Linux version 3.2.0. We deploy the Tornado web
server [14] that is natively written in Python, to represent
the server side of the simulated environment.

Filtering is accomplished by simultaneous processing of
queries and our tests target the parallel handling of client
requests. We prepare multithreaded Python scripts that use
data from SLA facet attributes, generate random parame-
ter values and pass them as HTTP GET requests to the
web server. Randomly generated parameters simulate the
customer filtering input. We keep the values of generated
parameters within the value range of existing SLOs and
description terms. This configuration does not guarantee that
customer requests are always satisfied, because every incom-
ing request submits a diverse number of SLA requirement
values, whose combinations may not map to an existing SLA
offer.

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 139 / 263

In every run the server receives parameter values from
each incoming HTTP request, generates a conditional state-
ment and sends it for processing to a DBMS. A server
process reads the returned result set from the DBMS and
updates the customer view with matching available offers.
The server handles client requests with the help of common
gateway interface (CGI) Python scripts, which are multi-
threaded to assist the concurrent request serving.

SLA templates are submitted and updated on-demand,
transparently from customer activities. Section III describes
the process of creating our SLA templates and loading their
content into a DBMS. In our simulation the marketplace uses
a centralized data repository for the SLA template storage.
Our datasets are derived from the stored template content.

We use MySQL DBMS [13] for the relational database
and MongoDB [12] for the document database. Both DBMS
are deployed on the same machine as Tornado to reduce
TCP communication overhead. Measurements are derived
from testing with each database separately. Each table in
the MySQL database is loaded with approximately 150,000
records. In MongoDB this number amounts to 35,000 doc-
uments with an average document size of 1289.44 kb.

B. Experimental setup

The experimentation simulates the process of sending
and handling concurrent client requests and returning the
results over HTTP. The entry points that we introduced in
Section III designate the main use cases of our testing.
Every entry point represents a number of query parameter
values that are passed to the server and from there to the re-
spective database. Incoming parameters represent SLA facet
attributes. Their number depends from the facet type and its
nesting depth. We range incoming submissions between 2,
10 and 20 parameters.

We start from the upper, more generic, tier of the filtering
framework (Figure 3) and submit 2 parameters to represent
an initial choice of service type and offer expiration time. We
gradually combine filtering attributes from both framework
layers and reach nested template information. Our testing
deals with different customer use cases. We simulate the
case, where a customer has a provider and a data storage
location preference and hence filters only attributes of the
non-obligation facet, which in our case represents a submis-
sion of 5 up to 10 parameters.

We also consider a customer, who wants to look into
service offers with specific description characteristics and
explicit guarantee values. The customer selects a desired
service type and filters attributes of the service description
facet. Submission to the server ranges from 10 up to 20
parameters. We use the same parameter range to deal with
the submission of overall guarantee criteria and to combine
filtering attributes from different SLA facets.

We run the same number of experiments for both
databases and categorize them in three test suites. In the

first test set we measure the total time of the faceted filtering
operation over HTTP. The total time starts from the point a
client request reaches the server up to the point the server
returns the result to the client. Timings include HTTP and
backend processing overhead.

The second test suite includes faceted filtering runs that
are processed locally on the machine where the server
and the two databases reside to avoid additional network
overhead. The third test suite is also based on local runs, but
measurements combine the query processing from filtering
and database updates. We prepare an extra set of update
statements for both databases to measure their potential over-
head on the filtering operation. In each run update queries
are processed in parallel to filtering requests and account for
an extra 10% of workload on the total database processing.
Local communication between server and DBMS is achieved
via Unix sockets for the MySQL database and over localhost
for MongoDB.

Queries in each DBMS are similar in terms of number
and type of conditions, but the values of conditional pa-
rameters are randomly generated for every query. For the
MySQL case, conditional queries take the form of SELECT
statements, where the number of conditions varies according
to the incoming parameters. For MongoDB queries are
represented in binary JSON (BSON) format. The MongoDB
alternative for SELECT statements is the formation of
queries with the find() method. For every filtering point,
we repeat the same test for 10 runs and take the average
time from their accumulation. We also gradually increase
the number of submitted HTTP requests. We begin with 100
simultaneous requests and reach up to 100,000 concurrent
requests for both MySQL and MongoDB.

C. Observations and evaluation of results

The graph in Figure 6 shows the results for both MySQL
and MongoDB from running with 2, 10 and 20 requested
parameters over HTTP. The y-axis represents the average
total time for each performed run and the x-axis indicates
the gradually increased number of incoming requests that the
web server receives. The average time is close to constant
for both MySQL and MongoDB. Derived curves for all runs
are fitted to highlight the small range of fluctuactions in the
query processing results.

The filtering operation over HTTP takes approximately
1.87 seconds less for queries that are processed in MongoDB
compared to the average time in MySQL. This approximate
time difference prevails for all HTTP runs regardless of the
number of incoming requests or the number of simultane-
ously processed queries. The difference can be justified by
the fact that when MongoDB retrieves a document from
a collection, the whole document is loaded into memory
along with any embedded dictionaries. Thus, retrieving
information from any nested dictionary comes at a minimal
cost as soon as the root document is loaded into memory.

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 140 / 263

Figure 6. Average total filtering processing time over HTTP: MySQL and
MongoDB

The embedding feature of MongoDB provides an alternative
for MySQL JOINS [12].

Figures 7 and 8 present the results from the locally
executed test sets. The average query processing time for
MySQL is illustrated in Figure 7 and for MongoDB in
Figure 8. For both graphs the y-axis represents the average
query processing time in seconds and the x-axis the gradual
increase in the number of submitted queries.

Figure 7. Average query processing time MySQL via UNIX sockets

The average query processing time for local faceted filter-
ing (both SELECT and find() statements) is almost constant
and in fact identical (0.16 seconds average) for both DBMS.
The only exception is the MySQL SELECT query with 2
conditions, where the average time is nearly 0.38 seconds
more than the SELECT queries with 10, 20 conditions and
the respective find() statements in MongoDB. In both graphs,
the curves that illustrate the average query processing time
of the local faceted filtering are fitted to designate the small
fluctuation range of the result set.

Figures 7 and 8 also illustrate the results from local
runs that combine updates and faceted filtering. For both
DBMS, updates are executed in randomly selected tables
(respectively collections) and with randomly generated con-
ditions. Updates affect multiple records of one or more tables
(collections) but not those, where the SELECT/find() query
operates. For both databases the results from the mixed

Figure 8. Average query execution time MongoDB over localhost

processing are not linear due to the random factor that affects
the volume of updates. Compared to local faceted filtering,
the cost of the update operation for MongoDB is negligible.
For MySQL the cost is nearly constant at 0.57 seconds, with
the exception of the SELECT statement with 2 conditions.

Our overall testing indicates that possibly a NoSQL
approach like the MongoDB DBMS fits better for the web
scenario, where SLA offers are manipulated over HTTP.
In the local running mode, both DBMS share comparable
performance. Still, the combination of updates with SELECT
statements appears to be more expensive for MySQL than
for MongoDB.

V. RELATED WORK

In [3], the authors propose an approach for automated
matching of customer and provider templates by discover-
ing semantically equivalent SLA parameters. The authors
highlight that the absence of SLA standardization inevitably
leads to variations in the definition of semantically related
terms. They use a machine learning methodology to illus-
trate their matching comparison. The authors assume the
existence of a knowledge repository that is responsible for
managing incoming SLA templates and template mappings.
As their work is focused on the comparison of SLA terms
from diverse templates, the authors do not go into detail
about the repository structure or the exposure of SLA
parameters through a web interface.

In [11], a decision-support framework is proposed to assist
the selection of infrastructure resources and the migration
of services from local to virtual platforms. Although the ap-
proach is not explicitly directed towards SLA manipulation,
the decision-support operation uses service attributes that are
derived from provisioning parameters. The authors do not
deal with customer navigation in a marketplace, but assume
submission of service requirements by potential customers.
Service attributes are structured in hierarchies. The authors
apply the decision-support framework into a realistic use
case to prototype the filtering of customer requirements on
available service parameters. Still, they do not elaborate on
how retrieved information is either stored or managed.

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 141 / 263

The work described in [6], [7] is a motivating schema for
SLA-aware service-oriented infrastructures. In the proposed
architecture, customer-provider interaction takes place over
a service registry. The model can be extended to current
conditions of service provisioning. SLA templates in the
form of service offers are included in marketplaces and
customers select services according to their provisioning
preferences. A marketplace can then expose SLA offers in
the same way a registry exposes service descriptions.

VI. CONCLUSIONS & ON-GOING WORK

The scope of the presented work has been to promote SLA
aspects from post-agreement monitoring instruments to pre-
agreement manipulation objects. SLA templates represent
pre-initialized agreements and describe provisioning plans
of service providers. We presented our SLA data model that
assumes structure homogeneity and is based on the WS-
Agreement language specification. Our data model supports
modularity of internal components as this feature enables
the extraction of SLA facets by categorizing information
into distinct themes.

We described how we constructed SLA templates and
used them with a faceted filtering framework that enables
customers to browse through available services according
to their provisioning requirements. Service customers utilize
facet attributes as filters to express their objectives and to get
views of preferred provisioning arrangements. We demon-
strated use cases of filtering according to facet preferences
that customers would like to be aware of before service com-
mitment. The approach can be extended to include additional
filtering criteria that influence provisioning expectations and
are derived from non-SLA related objectives (e.g., risk,
security, energy efficiency).

For the filtering experimentation we used two different
DBMS approaches, a relational one represented by MySQL
and a document one represented by MongoDB. We assumed
that customer requests arrive concurrently and need to be
served immediately. Both databases share their tradeoffs.
MySQL is a seasoned DBMS, possibly suitable for back-
end processing of SLA data. MongoDB represents a new
product that appears to more efficient in terms of query
processing time on web operations. Our results indicate
that the MongoDB approach seems more suitable for SLA
manipulation on the HTTP layer, where client requests reach
the web server in large-scale mode and need to be handled
simultaneously.

We continue the refinement of the SLA data model and the
filtering framework experimentation with alternate modes of
template persistence. An alternative to the NoSQL document
approach is a database system that supports the Resource
Description Framework (RDF) data structure. RDF encoding
enables the representation of information in a graph form,
where connections between nodes indicate semantic rela-
tionships. This attribute is of particular interest for SLAs, as

it supports the classification of SLA modules and promotes
the creation of semantic vocabularies that can be associated
in a distributed sharing mode.

Our next challenge is to extend the filtering framework
into a recommendation mechanism that provides customer-
tailored SLA suggestions by using a given user profile. The
filtering framework can be considered as a pre-requisite of
the recommendation system because it provides a tool to
keep track of customer navigation behavior and filtering
preferences.

ACKNOWLEDGEMENT

This work is supported by the Swiss National Science
Foundation (SNSF), grant number 200021E-136316/1

REFERENCES

[1] “Amazon WS Marketplace,” accessed Sep. 2012, https://aws.
amazon.com/marketplace.

[2] A. Andrieux et al., “Web Services Agreement Specification
(WS-Agreement),” retrieved Oct. 2011, from http://www.ogf.
org/documents/GFD.192.pdf, Open Grid Forum, Grid Re-
source Allocation Agreement Protocol (GRAAP) Working
Group.

[3] C.Redl, I.Breskovic, I.Brandic, and S.Dustdar, “Automatic
SLA Matching and Provider Selection in Grid and Cloud
Computing Markets,” in Proc. of the 2012 ACM/IEEE 13th
International Conference on Grid Computing (GRID ’12).
IEEE Computer Society, 2012, pp. 85–94.

[4] Fang Liu et al., “SP 500-292 Cloud Computing Reference
Architecture,” retrieved Oct. 2011, from http://www.nist.gov/
manuscript-publication-search.cfm?pub id=909505, National
Institute of Standards and Technology (NIST), Sep 2011.

[5] “The Flamenco Search Interface Project,” accessed Oct. 2012,
http://flamenco.berkeley.edu.

[6] H.Ludwig, “WS-Agreement Concepts and Use of Agreement-
Based Service-Oriented Architectures,” IBM Research, Tech.
Rep., 2006.

[7] H.Ludwig, A.Dan, and R.Kearney, “Cremona: an architecture
and library for creation and monitoring of WS-agreements,” in
Proc. of the 2nd International Conference on Service Oriented
Computing (ICSOC ’04). ACM, 2004, pp. 65–74.

[8] “JavaScript Object Notation,” accessed Aug. 2012, http://
www.json.org.

[9] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web
Service Level Agreement (WSLA) Language Specification,”
retrieved Oct. 2011, from http://www.research.ibm.com/, IBM
Corporation, Tech. Rep., Jan 2003.

[10] M.A.Hearst, “Clustering versus faceted categories for infor-
mation exploration,” Commun. ACM, vol. 49, no. 4, pp. 59–
61, Apr. 2006.

129Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 142 / 263

[11] M.Menzel and R.Ranjan, “CloudGenius: decision support for
web server cloud migration,” in Proceedings of the 21st
international conference on World Wide Web (WWW ’12).
ACM, 2012, pp. 979–988.

[12] “MongoDB manual,” accessed Sep. 2012, http://docs.
mongodb.org/manual.

[13] “MySQL,” accessed Sep. 2006, http://www.mysql.com.

[14] “Tornado web server,” retrieved Sep. 2012, from http://www.
tornadoweb.org.

130Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 143 / 263

CPU Utilization while Scaling Resources in the Cloud

Marjan Gusev, Sasko Ristov, Monika Simjanoska, and Goran Velkoski
Faculty of Information Sciences and Computer Engineering

Ss. Cyril and Methodius University
Skopje, Macedonia

Email: marjan.gushev@finki.ukim.mk, sashko.ristov@finki.ukim.mk, m.simjanoska@gmail.com, velkoski.goran@gmail.com

Abstract—CPU utilization in a virtual machine instance
directly impacts the overall cost for the cloud service provider
since it generates costs for power consumption and cooling.
We are interested to determine the total CPU utilization
behavior while scaling the number of CPU cores using the
same server load. The experiments are based on two simple
web services to utilize the virtual machine instance varying
the number of concurrent messages and their size. The goal
is to check if the total CPU utilization while scaling will
be sublinear (smaller than the number of cores), and if it
is greater than the CPU utilization when executed without
scaling (using only one CPU core) due to task scheduling,
coherence, etc. The experiments prove only that the total CPU
utilization will be sublinear. We observe a region (workload
with smaller number of concurrent messages) where the total
CPU utilization decreases while scaling, compared to the case
without scaling. We also determine the correlation between
the CPU utilization with message size and the number of
concurrent messages.

Keywords-Cloud Computing; Performance; Web Services; Web
Server.

I. INTRODUCTION

Cloud computing is a recent technological trend in which
resources, such as CPU and storage, are provided as general
utilities that can be leased and released on-demand by users
according to their requirements [1]. The cloud is a promising
approach for delivering ICT services by improving the uti-
lization of data centre resources [2]. Scalability and elasticity
are quality features in the cloud, since the cloud adjusts
itself to achieve better performance whenever it detects a
change in the environment [3]. Scaling the performance for
growing problem size is an imperative [4], [5]. However,
the resulting performance is not always acceptable for all
applications hosted in the cloud [6].

While the cloud customer cost depends on the resources
leased time, the cloud service provider cost mostly de-
pends on CPU utilization of the active (leased) resources.
That is, greater CPU utilization will increase not only the
cost for power electricity, but also for cooling. Activating
and utilizing more computing resources will increase the
monthly costs of cloud data-center (approx.40% of costs are
generated by power electricity and cooling). Reallocation
of virtual machines and switching off the idle servers will
save substantial energy [7]. Optimal resource allocation can

improve the performance using the same resources in the
cloud [8]. Saleh et al. [9] have demonstrated that using some
CPU utilization threshold to autoscale the resources is not
an accurate measure since it can provide high cost and poor
resource utilization.

Scaling the resources will reduce the CPU utilization per
core, but we are interested if total CPU utilization will be
also reduced or increased. We have set two hypotheses which
we would like to check:

H1 the total CPU utilization while scaling is sublinear
(smaller than the number of cores); and

H2 the total CPU utilization while scaling is greater
than the CPU utilization when executed without
scaling due to task scheduling, coherence, etc.

That is, we expect that the total CPU utilization will be in the
range of (U1, U1 ·n), where U1 denotes the CPU utilization
of virtual machine instance with one CPU allocated.

We realize several experiments to find the behavior of
CPU utilization when scaling is applied, i.e., more powerful
virtual machine instances (using more processor cores) are
activated. The experiments are based on measurement of the
CPU utilization while scaling from 1 to 2 and 4 CPU cores in
a virtual machine instance. We use two simple web services
to load the web server in virtual machine instances, i.e.,
Concat and Sort. The former concats two strings and the
latter sorts the concatenation of two input strings. Both are
memory demanding, and the second is also computationally
intensive. We analyze the CPU utilization by varying the
server load with different number of concurrent messages
and input string size.

The rest of the paper is organized as follows. Related
work is presented in Section II. In Section III, we describe
the methodology used for testing. The experiments and the
results are discussed in sections IV and V. In Section VI,
we derive conclusion and we present future work.

II. RELATED WORK

Several papers analyzed CPU utilization on-premise and
in the cloud, while loaded the same web services with
various number of concurrent messages and message size.
Gusev et al. [10] determined that the number of concurrent
messages impacts directly to the CPU utilization for memory

131Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 144 / 263

demanding web services (Concat), while both the number
of messages and their size impact the CPU utilization for
both memory demanding and computation intensive web
services (Sort). They determined that CPU utilization is
always greater while hosted in the cloud compared to on-
premise, for the same load and maximum allocated resources
(4 CPUs). In this paper, we confirmed the same correlation
of CPU utilization and the input parameters, and not only
when maximum resources are allocated in particular virtual
machine instance, but also when allocated with 1 or 2
CPUs. Velkoski et al. [11] analyzed the CPU utilization for
the same (maximum) total amount of cloud resources, but
orchestrated in different number of virtual machine instances
with different size. They determined that allocating all
resources into one ”huge” virtual machine instance provides
greater CPU utilization compared to the case where the
same amount of resources are allocated to many ”small”
virtual machine instances for huge (the same) server load
(number of concurrent messages) regardless of their size. In
this paper, we analyze the CPU utilization of virtual machine
instances with different number of CPUs, i.e., scaling the
resources from 1 CPU to 2 and 4 CPUs, using the same
server load for each virtual machine instance.

The CPU utilization is important factor for overall system
performance and cost. Greater CPU utilization produces
higher response times for load dependent resources [12]. A
CPU bottleneck appears if its utilization goes beyond 80%
for a sustained period of time [13]. De Sousa et al. [14]
evaluated the CPU utilization of different virtual machine
instances on Eucalyptus [15] platform considering different
workloads with LINPACK as benchmark which solves dense
system of linear equations. In this paper, we load web
services hosted in different virtual machine instances on
OpenStack cloud.

Many factors impact the CPU utilization and different
server loads do not utilize the CPU equally. Even more,
not all virtualized CPUs share the whole physical CPU. The
small virtual machine instances of Amazon EC2 always get
40-50% of the physical CPU, while the most of medium
virtual machine instances get 100% CPU sharing [16]. Hov-
estadt et al. [17] found that CPU utilization are not displayed
accurately inside virtual machines instantiated with XEN,
KVM, and in Amazon EC2.

Vilutis et al. [18] propose some of the project executions
to be postponed in order to minimize the utilized resources
and thus to reduce the overall cost. Balancing the load
among more CPUs will also decrease their particular uti-
lization. Jayasinghe et al. [19] analyzed the scalability of
n-Tier applications while migrating in the cloud. They de-
termined variations in CPU utilization in different tiers while
scaling the resources. In this paper, we provide experimental
research to find the behavior of total CPU utilization for the
same load, but scaling the resources.

III. THE METHODOLOGY

This section presents the testing methodology used to
obtain reliable results in each test case.

A. Technical Details

Client-server web service architecture is used as a testing
environment. The server is deployed in OpenStack cloud
[20] using KVM (Kernel-based Virtual Machine) hypervisor
to instantiate virtual machine instances. The cloud nodes
are installed with Ubuntu Server 12.04 operating system.
Hardware computing resources consist of Intel(R) Xeon(R)
CPU X5647 @ 2.93GHz with 4 cores and 8GB RAM.
Virtual machine instances platform is Ubuntu Server 12.04
with Apache Tomcat 6.

The client uses SoapUI [21] to generate different server
load. The client and the virtual machine instances are placed
in the same LAN segment to minimize network latency [22].

B. Test Cases Definition

The Concat web service is memory demanding only
service. It accepts two input strings and returns their concate-
nation. The Sort web service accepts two strings and returns
their concatenation, alphabetically sorted, which makes it
computationally intensive besides the increased memory
demands.

Three test cases are defined scaling the number of CPUs
per virtual machine instance that hosts the web services, with
the following configuration:

• Test Case 1 - virtual machine instance with 1 CPU
(m1.small);

• Test Case 2 - virtual machine instance with 2 CPUs
(m1.medium); and

• Test Case 3 - virtual machine instance with 4 CPUs
(m1.large).

Each test case runs for 60 seconds. The test is repeated if
the server replies with an error. Web server is loaded with N
messages with parameters size of M bytes each. The range
of parameters M and N is selected such that web server
in virtual machine instance works in normal mode without
replying error messages. Parameter M is measured in KB
with the following values 0, 1, · · · , 9 for Concat web service
and 0, 1, · · · , 6 for Sort web service. Both web services are
loaded with N = 12, 100, 500, 750, 1000, 1250, 1500, 1750
and 2000 requests per second for each M . The values are
selected to avoid CPU saturation.

C. Test Data

The CPU utilization is measured for each parameter size
M , for different web service loads per second N , in each
test case. While testing, we use top Ubuntu based utility to
capture Tomcat process CPU utilization each 3 seconds, i.e.
20 values per test. An average utilization is calculated of all
20 values for eache test case for both Concat and Sort web
services distinctively.

132Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 145 / 263

Figure 1. Normalized CPU utilization U1 for Concat web service

D. Analysis of CPU Utilization

We use (1) to normalize CPU usage in range from 0% up
to 100%. The nominator is the sum of CPU usage Ui(n) of
all n CPU cores, and the denominator n denotes the scaling
factor, i.e., the number of CPUs used in particular test case
(n ∈ {1, 2, 4}).

Un =

∑i=n
i=1 Ui(n)

n
(1)

Furthermore, we define Relative Scaled CPU utilization
S(n) in (2) and calculate it for each test case in order to
test both hypotheses, i.e., if 1 < S(n) < n. U1 denotes the
CPU utilization without CPU scaling.

S(n) =

∑i=n
i=1 Ui(n)

U1
(2)

We also define Relative Multi-core Scaled CPU Uti-
lization in (3) and calculate it using relative scaled CPU
utilization of test cases with scaling factors n = 2 and n = 4.

Sm = S(4)/S(2) (3)

IV. EXPERIMENTS AND RESULTS

In this section, we exhibit the CPU utilization results
of testing the web services for each test case in order
to determine the correlation of CPU utilization with both
parameters M and N for both web services hosted on virtual
machine with particular number of CPU cores.

A. Test Case 1 - Without Scaling

Concat and Sort web services are hosted on 1 virtual
machine instance with 1 CPU core in this test case.

Figure 2. Normalized CPU utilization U1 for Sort web service

1) Concat Web Service: Figure 1 depicts the normalized
CPU utilization U1 for Concat web service.

The results show that the CPU utilization depends on the
number of concurrent messages N with huge increasing fac-
tor, and it proportionally increases when the input parameter
M increases, but with small increasing factor. The minimum
CPU utilization of U1 = 1.735% occurs for N = 12 and
M = 0, whereas maximum CPU utilization U1 = 99.23%
is measured for N = 2000 and M = 9, as expected.

2) Sort Web Service: Figure 2 depicts the normalized
CPU utilization U1 for Sort web service.

The results show that the CPU utilization strongly depends
on both input parameters N and M . The dependence is
expressed with huge increasing factor when changing the
parameter M from 0KB to 1KB, and also for M ≤ 2
and N ≤ 500. For the rest of the parameters, the increasing
factor is small and continuously incremental. The minimum
CPU utilization of U1 = 1.70% is measured at M = 0
and N = 12, whereas the maximum CPU utilization
U1 = 99.85% is measured for M = 6 and N = 2000.

B. Test Case 2 - Scaling Factor 2
Both web services are hosted on a virtual machine in-

stance with scaling factor 2, i.e., allocated with 2 CPU cores.
1) Concat Web Service: Figure 3 depicts the normalized

CPU utilization U2 for Concat web service.
The results show a minimum CPU utilization U2 = 1%

and maximum CPU utilization U2 = 85.43% for parameters
N = 12 and M = 0, and N = 1000 and M = 9,
respectively. The dependence is the same as for U1, except
for a small message size where it performs with decreased
CPU utilization.

2) Sort Web Service: Figure 4 depicts the normalized
CPU utilization U2 for Sort web service.

The normalized results show a minimum CPU utilization
U2 = 0.88% for M = 0 and N = 12, and maximum CPU
utilization U2 = 86.40% for M = 1 and N = 2000. The
dependence is also expressed as for U1.

133Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 146 / 263

Figure 3. Normalized CPU utilization U2 for Concat web service

Figure 4. Normalized CPU utilization U2 for Sort web service

C. Test Case 3 - Scaling Factor 4

Both web services are hosted on 1 virtual machine in-
stance with scaling factor 4, i.e., allocated with 4 CPU cores.

1) Concat Web Service: Figure 5 depicts the normalized
CPU utilization U4 for Concat web service.

Similar increasing factor is observed compared to U1 and
U2. The minimum CPU utilization U4 = 0.54% is measured
for N = 12 and M = 0, and maximum U4 = 63.18% is
measured for N = 1500 and M = 9. For small message size
it performs with decreased CPU utilization in comparison to
the both U1 and U2.

2) Sort Web Service: Figure 6 depicts the normalized
CPU utilization U4 for Sort web service.

The results show a minimum CPU utilization U4 = 0.33%
for M = 0 and N = 12, and maximum CPU utilization
U4 = 72.46% for M = 2 and N = 1750. The dependence
and the increasing factor are similar as for U1 and U2.

V. RELATIVE SCALED CPU UTILIZATION

In this section, we analyze the relative scaled CPU uti-
lization while scaling the resources in test cases for both

Figure 5. Normalized CPU utilization U4 for Concat web service

Figure 6. Normalized CPU utilization U4 for Sort web service

web services.

A. Relative Scaled CPU Utilization for Concat Web Service

This section presents the relative scaled CPU utilization
and relative multi-core CPU utilization for Concat web
service for scaling factors n = 2 and n = 4.

1) Scaling Factor 2: Figure 7 presents the results for
relative scaled CPU utilization S(2) for Concat web service.

We observe that S(2) < 2 for each N and M , i.e.,
the hypothesis H1 is satisfied. However, very unexpected
result is the region for smaller N regardless of M where
S(2) < 1, i.e., the total CPU utilization with scaling factor 2
is reduced compared to CPU utilization without scaling. We
can conclude that there is a region where the hypothesis H2
is not satisfied. Minimum and maximum values for relative
scaled CPU utilization are S(2) = 0.87 and S(2) = 1.73,
respectively.

2) Scaling Factor 4: Relative scaled CPU utilization S(4)
is depicted in Figure 8.

We also observe similar results, i.e., S(4) < 4 for each N
and M , i.e., the hypothesis H1 is satisfied. The same region

134Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 147 / 263

Figure 7. S(2) for Concat web service

Figure 8. S(4) for Concat web service

is observed where S(4) < 1 and the total CPU utilization
with scaling factor 4 is reduced compared to CPU utilization
without scaling. That is, the hypothesis H2 is not satisfied
in the same region as scaling with 2 CPUs. Minimum and
maximum values for relative scaled CPU utilization are
S(4) = 0.79 and S(4) = 2.56, respectively.

3) Relative Multi-core Scaled CPU Utilization Sm: Fig-
ure 9 depicts the relative multi-core scaled CPU utilization
Sm for Concat web service.

The similar conclusions can be derived as S(2) and S(4).
We found that Sm < 2 for each value of parameters M
and N , and also there is the similar region for smalled
N where Sm < 1. That is, the hypothesis H1 is satisfied
always, while the hypothesis H2 is not satisfied for smaller
N . Minimum and maximum values for relative multi-core
scaled CPU utilization are Sm = 0.87 and Sm = 1.54,
respectively.

B. Relative Scaled CPU Utilization for Sort Web Service

This section presents the relative scaled CPU utilization
and relative multi-core CPU utilization for Sort web service

Figure 9. Sm for Concat web service

Figure 10. S(2) for Sort web service

for scaling factors n = 2 and n = 4.
1) Scaling Factor 2: Figure 10 depicts the relative scaled

CPU utilization S(2) for Sort web service hosted on a
virtual machine with 2 cores.

We observe that the hypothesis H1 is also satisfied for
each N and M as for Concat web service, i.e., U2 < 2.
However, opposite to Concat web service, U2 > 1 for
Sort web service, i.e., the total CPU utilization is always
greater while scaling with 2 CPU cores. We can conclude
that the hypothesis H2 is also satisfied for each N and
M . The relative scaled CPU utilization is the smallest for
smaller parameters M and N . Minimum and maximum
values for relative scaled CPU utilization are S(2) = 1.03
and S(2) = 1.76, respectively.

2) Scaling Factor 4: The results for relative scaled CPU
utilization S(4) are depicted in Figure 11.

We can conclude that S(4) < 4 for all values of N
and M , i.e., the hypothesis H1 is also satisfied. Even
more, S(4) < 3 for each M and N . We found a region
for the smallest M and N where S(4) < 1, i.e., the
hypothesis H2 is not satisfied in this region. That is, the

135Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 148 / 263

Figure 11. S(4) for Sort web service

Figure 12. Sm for Sort web service

total CPU utilization is smaller while scaling the CPUs with
factor 4. The relative scaled CPU utilization increases for
greater M or N . Minimum and maximum values for relative
scaled CPU utilization are S(4) = 0.76 and S(4) = 2.92,
respectively.

3) Relative Multi-core Scaled CPU Utilization Sm: The
similar results are observed for relative multi-core CPU
utilization for Sort web service, as depicted in Figure 12.

There is a region for smaller M and N where Sm < 1,
i.e., the hypothesis H2 is not satisfied. For all other values
for N and M the relative multi-core CPU utilization is in
the range 1 < Sm < 2. That is, both hypotheses H1 and H2
are satisfied. A local extreme exists in point (M , N) = (1,
750) where Sm = 2.37 > 2. Minimum and maximum values
(excluding local extreme) for relative multi-core scaled CPU
utilization are Sm = 0.74 and Sm = 1.73, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we measured and analyzed the CPU uti-
lization with two web services (Concat and Sort) hosted
on a virtual machine instance on the cloud, while the

number of CPUs was scaled from 1 to 2 and 4 CPU cores.
Web services were tested with different load determined
with various message parameter size M , and number of
concurrent messages N .

We have introduced a relative scaled CPU utilization
measure and a relative multi-core scaled CPU utilization for
the same server load over scaled resources. The methodology
is based on measurement of real CPU utilization and calcu-
lation of new relative measures to make better conclusions
for scaling.

The results show that normalized CPU utilization depends
mostly on the number of concurrent messages for Concat
web service, while Sort web service depends on both input
parameters.

Both expected and unexpected results are achieved for
relative scaled CPU utilization. It is sublinear for each
values of parameters N and M , proving the hypothesis H1.
However, contrary to the hypothesis H2, the results show
that there is a region where relative scaled CPU utilization
is smaller than 1, i.e., the total CPU utilization is even
smaller than unscaled test case. This region is determined
for smaller N regardless of M for Concat web service,
while the region for Sort web service is determined when
both input parameters are small.

CPU utilization has directly impact to the power con-
sumption, both for CPU working and cooling, which is a
significant part of cloud total cost. Therefore, reducing the
CPU utilization will greatly reduce the overall cost. In this
paper, we determine the correlation between CPU utilization
(cost) with the number of concurrent messages N and their
parameter size M using two different web services Concat
and Sort.

We will analyze the other performance parameters, such
as response time for both web services in order to determine
the tradeoffs between performance, cost and CPU utilization
while scaling the resources on the cloud. Another important
analysis will be performed to determine the platform impact
(various operating systems and web servers) on CPU utiliza-
tion in the cloud, using different clouds and hypervisors.

REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, 2010, pp. 7–18.

[2] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani,
H. De Meer, M. Dang, and K. Pentikousis, “Energy-efficient
cloud computing,” The Computer Journal, vol. 53, no. 7,
2010, pp. 1045–1051.

[3] L. Mei, W. Chan, and T. Tse, “A tale of clouds: Paradigm
comparisons and some thoughts on research issues,” in Asia-
Pacific Services Computing Conf., 2008. APSCC ’08. IEEE,
2008, pp. 464 –469.

136Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 149 / 263

[4] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “A performance analysis of EC2 cloud com-
puting services for scientific computing,” Cloud Computing,
2010, pp. 115–131.

[5] K. Xiong and H. Perros, “Service performance and analysis
in cloud computing,” in Services-I, 2009 World Conference
on. IEEE, 2009, pp. 693–700.

[6] D. Durkee, “Why cloud computing will never be free,” Queue,
vol. 8, no. 4, Apr. 2010, pp. 20:20–20:29.

[7] A. Beloglazov and R. Buyya, “Energy efficient allocation of
virtual machines in cloud data centers,” in Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM Interna-
tional Conference on, may 2010, pp. 577 –578.

[8] M. Gusev and S. Ristov, “The optimal resource allocation
among virtual machines in cloud computing,” in CLOUD
COMPUTING 2012, The Third International Conference on
Cloud Computing, GRIDs, and Virtualization, 2012, pp. 36–
42.

[9] K. Saleh and R. Boutaba, “Estimating service response time
for elastic cloud applications,” in 2012 IEEE 1st Inter-
national Conference on Cloud Networking (CLOUDNET)
(IEEE CloudNet’12), Paris, France, Nov 2012, pp. 12–16.

[10] M. Gusev, G. Velkoski, S. Ristov, and M. Simjanoska, “Web
service CPU overutilization in the cloud,” in the 6th Interna-
tional Conference on Information Technology, ser. ICIT 2013,
Amman, Jordan, in press.

[11] G. Velkoski, M. Simjanoska, S. Ristov, and M. Gusev, “CPU
utilization in a multitenant cloud,” in EUROCON - Interna-
tional Conference on Computer as a Tool (EUROCON), 2013
IEEE, in press.

[12] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Gui-
touni, S. Ganti, and Y. Coady, “Dynamic resource alloca-
tion in computing clouds using distributed multiple criteria
decision analysis,” in Proceedings of the 2010 IEEE 3rd
International Conference on Cloud Computing, ser. CLOUD
’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 91–98.

[13] E. Ciliendo and T. Kunimasa, Linux Performance and Tuning
Guidelines, 1st ed. ibm.com/redbooks, Jul. 2007.

[14] E. T. G. de Sousa, P. R. M. Maciel, E. M. Medeiros,
D. S. L. de Souza, F. A. A. Lins, and E. A. G. Tavares,
“Evaluating eucalyptus virtual machine instance types: A
study considering distinct workload demand,” in CLOUD
COMPUTING 2012, The Third International Conference on
Cloud Computing, GRIDs, and Virtualization, 2012, pp. 130–
135.

[15] Eucalyptus Systems. Eucalyptus cloud. [Retrieved: March,
2013]. [Online]. Available: http://www.eucalyptus.com/

[16] G. Wang and T. S. E. Ng, “The impact of virtualization
on network performance of amazon EC2 data center,” in
Proceedings of the 29th conference on Information commu-
nications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE
Press, 2010, pp. 1163–1171.

[17] M. Hovestadt, O. Kao, A. Kliem, and D. Warneke, “Evalu-
ating adaptive compression to mitigate the effects of shared
I/O in clouds,” in Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, 2011, pp. 1042–1051.

[18] G. Vilutis, L. Daugirdas, R. Kavaliunas, K. Sutiene, and
M. Vaidelys, “Model of load balancing and scheduling
in cloud computing,” in Information Technology Interfaces
(ITI), Proceedings of the ITI 2012 34th International Confer-
ence on, june 2012, pp. 117 –122.

[19] D. Jayasinghe, S. Malkowski, Q. Wang, J. Li, P. Xiong, and
C. Pu, “Variations in performance and scalability when mi-
grating n-Tier applications to different clouds,” in Proceedings
of the 2011 IEEE 4th International Conference on Cloud
Computing, ser. CLOUD ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 73–80.

[20] OpenStack Cloud Software, “Openstack cloud,” [Retrieved:
March, 2013]. [Online]. Available: http://openstack.org

[21] SoapUI, “Functional testing tool for web service testing,”
[Retrieved: March, 2013]. [Online]. Available: http://www.
soapui.org/

[22] M. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Her-
icko, “Comparison of performance of web services, WS-
security, RMI, and RMI–SSL,” Journal of Systems and Soft-
ware, vol. 79, no. 5, 2006, pp. 689–700.

137Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 150 / 263

Evaluating Computation Offloading Trade-offs in Mobile Cloud Computing: A Sample

Application

Jorge Luzuriaga, Juan Carlos Cano, Carlos Calafate, Pietro Manzoni
Universitat Politècnica de València

Dept. of Computer Engineering
Valencia, SPAIN

Emails: jorlu@posgrado.upv.es, jucano@disca.upv.es, calafate@disca.upv.es, pmanzoni@disca.upv.es

Abstract—Mobile cloud computing is generally referred to
as the infrastructure where both the data storage and the data
processing happen outside of the mobile device. The nature of
the connection between the cloud servers and the mobile host are
anyway much less reliable than in classical cloud computing with
static devices. A compromise must be found between local versus
remote computation so to cope with the reduced performance of
the data connection and with the characteristics of the mobile
device, basically its power availability limitations. In this paper,
we evaluate the tradeoffs of computation offloading using as a
case study a facial recognition application for smartphones where
recognition is a service in the cloud. We present a specifically
designed application for mobile devices developed as a component
of the proposed evaluation system. The intensive calculus needed
for the image manipulation is compared in terms of speed and
accuracy both when we delegate it to cloud computing and when
we perform it locally on the mobile device. These two alternatives
and the intermediate options are compared to determine the
optimal settings to take better advantage of integrating these
two technologies.

Keywords—Cloud Computing; Facial Recognition; Mobile de-
vices Applications; Process Outsourcing; Mobile Cloud Computing.

I. INTRODUCTION

The latest advances in mobile communication networks and
the increasing penetration of smartphones and other mobile
devices, like tablets and portable computers, are transforming
the mobile Internet and allowing the users to improve their mo-
bile experience. However, the limited computing and informa-
tion/energy storage capabilities of mobile devices are delaying
their abilities to support increasingly sophisticated applications
demanded by users. The emerging cloud computing technology
offers a natural solution to extend the limited capabilities of
mobile devices. The resulting new paradigm of mobile cloud
computing is being adopted by researchers as a powerful new
way to extend the capabilities of mobile devices and mobile
platforms, which has the potential of a deep impact on the
business environment and people’s daily life.

The decision of where to place the execution (local or
remote mode) should be anyway made based on the quantity
of computation and communication that is required by the
application. A little amount of communication combined with
a large amount of computation should be performed preferably
in remote mode, while a large amount of communication
combined with a little amount of computation should be
performed preferably in local mode.

In this work, we chose face recognition as a sample
application to evaluate the tradeoff of offloading computation
with the intuitive idea of the required intensive calculus puts
in commitment the hardware features of the mobile device.
Whereas that, if the same calculus are executed by other
systems with better hardware features, these processes are
realized with less effort and in much less time.

We analyze the intensive calculus dividing it in sub pro-
cesses that are distributed between the mobile device and the
cloud infrastructure using a cascade of classifiers based on the
Adaboost algorithm [19] to detect the presence of faces in an
image and the Eigenfaces algorithm [11] to make the training
and recognition of these faces.

Finally, we emulate the wireless channel between the
mobile device and the cloud server to view how the end-to-end
response time can affect at application. And also this emulation
allow us to find limitations where we can get advantage with
the use of this technique.

The rest of the paper is organized as follows: Section II
presents the works related to the topic. Section III describes
the proposed system overview, Section IV shows a sample case
study: a facial recognition application. In Section V, we present
a testbed to evaluate this proposal and in Section VI, we show
the results obtained in the tests. The article finalizes with the
conclusions in Section VII.

II. RELATED WORK

The computation off-loading from mobile devices to com-
putational cloud infrastructure is based on deciding which
methods should be remotely executed, so that benefits can be
achieved in terms of both time and use of resources that ends
up in saving energy. In the literature, we found a wide set of
proposals with frameworks that decide dynamically whether
a part of application will be executed locally or remotely
[5][8][12][13][14]. Other proposals utilize nearby computers,
also known as surrogates. These surrogates are resource-rich
computers connected to the Internet and available to use with
nearby mobile devices without incurring in WAN delays and
jitter. Their objective is similar to proxy servers [15]. More
aggressive proposals in which the entire user mobile devices
are cloned on a remote server operating in a cloud where
the execution of processes would be faster [3][4]. It enables
moving an entire operative system and all its applications
to selectively execute some processes on the clones, and
integrating the results back into the mobile device.

138Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 151 / 263

Also, we find in [10] a cost/benefit analysis focused on
energy saving for off-load computation to a server, taking
into account: the processor speed, the instruction number, the
bytes of data exchanged among server and mobile system,
the network bandwidth, the energy consumption in different
states, reaching the conclusion that energy-saved with off-load
computation is greater that the energy spent on communicating
with the cloud. So, if the computation is offloaded with
relatively low cost, the processing in remote mode may be
energy-efficient to the mobile device.

Finally, commercial proposals with applications imple-
mented in client-server model, where the data to make the
computation are transferred from a smartphone as a light
weight client to the remote heavy weight server hosted in the
cloud. These services typically have to interact with very large
databases and require maintenance costs. An example of this
type of applications is the popular Google goggles that uses
pictures to search the web [6].

However, these proposals can only be used when the user
is permanently connected to the Internet. Moreover, when we
delegate the processing to external entities in many cases
these entities follow the pay per use philosophy and their
services are offered in monthly plans with a limit number of
queries or charge for each query. These services provide a
better performance and request priority with technical support
in problematic situations. From the point of view of the
user, the condition to “pay per use” of any application adds
to the cost of the data line, making the remote processing
economically speaking more expensive compared with local
processing. Finally, it is necessary to consider the security
issues in the communication process. When the information
is transferred from the mobile device to the server in cloud
environments, the data can be sniffed from a person/machine
that listens the communication channel, then the data transfers
to remote processing is less reliable compared to process the
data locally whereas not necessary any transmission by the
wireless network.

III. FACIAL RECOGNITION

Face recognition refers to the automatically identification
of a person from a digital image. The process involves: (i) face
detection, (ii) feature extraction, (iii) creation of the database
with known faces, and the (iv) matching with the new face.

We use the Eigenfaces algorithm that applies data dimen-
sion reduction with the minimum information lost by PCA
Principal Components Analysis [8] to get the coefficients
values and is able to make the matching based on the minimum
distance.

The Eigenfaces process chooses the factors with high
correlation because with the redundant information that exists
among them it is possible to select the coefficients that contain
the maximum variability and in this form get the dimension
reduction of the data. Once selected, the principal coefficients
are representing in matrix form.

The process of automatic recognition can be clearly sep-
arated into two stages: the training and the recognition stage.
The training stage is required to learn using a classifier [19].
In our case, the learning consists in transforming the features

of human faces into the form of coefficients and to store
them in a matrix. This matrix represents a database of facial
features of known faces. In the recognition stage, the classifier
is used again to classify the data of the test image and to
get values of correlation coefficients that represent the face
found in the image; this stage realizes the features extraction.
Finally, the values obtained are compared with the matrix
values of the training stage. The minimal difference among
these comparisons is the result of recognition process.

Fig. 1: The general process of training and recognition.

In the upper part of Figure 1, we have a training set of
5 images of the same person. To work with a standard input,
these images have previously passed various sub processes:
(i) compression, (ii) grayscale, (iii) crop, (iv) resize, and (v)
equalization. The next step is to apply the process called
Principal Components Analysis (PCA) where the principal
features of each image are extracted and represented as another
set of images with ghostly aspect. These images contain only
relevant information to recognition process. The complete set
of these images is called Eigenspace. Also, the PCA creates a
common image that represents all images in the Eigenspace.
In the Eigenspace, the first image is the most dominant and
contains the representative features of all faces and the last
images are the weakest that contain common features that can
be found in any face. According to the specified threshold
the weakest images cannot be taken into account because they
are considered as noise. The last step is to get the numeric
coefficient of each image in the Eigenspace through Eigen
decomposing and represent in matrix form. So, each column of
the matrix represents one image in the Eigenspace. A complete
explanation of Eigenfaces process can be found in [11].

IV. EVALUATION APPROACH

When we delegate the processing to external entities we
benefits in terms of hardware resources use and inclusive in
terms of energy saving, but the latency in communication with
the external entity is a big overhead especially when large data
are involved. To reduce this problem a preprocessing of the
information is required so that the accuracy results in posterior
processes are not affected.

139Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 152 / 263

The cloud-based platform hosts the application in a cen-
tralized form and provides a software delivery model known
as Software as a Service or SaaS in which the customers or
users can access remotely using a thin client over the internet
[9]. The main advantages of Software as a Service is the
possibility to offer better services in a form totally scalable
with the demand.

The first step is to evaluate the baseline performance of
the application when run locally in the mobile device. Then,
we identify the application dependencies among the executed
processes identifying the parts of the code that can be executed
in the cloud. Finally, we estimate the response time of the
application in a cloud-based platform before of its deployment.

We will therefore implement and deploy applications ac-
cording to different local versus remote mix to compare their
execution performance. The different ways, modes or scenarios
describe the place where the intensive calculus are realized. We
define a first scenario where the mobile device has the capabil-
ity to process images and to make recognition locally, called
local mode. A second scenario where the recognition process
is offloaded to a cloud computing infrastructure, called remote
mode. And a third and last scenario where the recognition is
performed in a distributed environment, mixing features of the
two previous scenarios, called mix mode.

To know how the end-to-end response time can be affected,
we emulate the communication channel in different conditions,
to this end we used the Linux kernel tools of routing, fil-
ter and classification of packets to guarantee performances,
bandwidths and lower latencies respectively by the utilities
collection grouped in iproute2. Between the principal tools
and utilities we used arpd, cstat, ifcfg, ip and tc. The last two
utilities are known as LARTC of Linux Advanced Routing and
Traffic Control [7] to manage the traffic traversing a network
interface.

To add scenarios with delay and packet loss, we made use
of NetEm that is a network emulator. This network emulator
permits to convert the local area network in a slow and heavy
network as can be an extended area network. NetEm is perfect
to evaluate the behavior of protocols, applications and final
systems, which have to be used on distributed environments.
Originally NetEm behaves as a FIFO queue without delays
or packet loss. To modify its discipline and its parameters,
we can do it by the tc command in a Linux shell. To
modify the parameters, we consider that the network delay
is a variably value that depends of the amount of traffic that
fluid by the same network. Generally, the delay is represented
as a normal distribution with a medium value more/less the
standard deviation value. The next parameter that we specify
to modify the network behavior is the packet loss, here NetEm
deletes randomly as packets as needed to fit to parameter.

V. EXPERIMENTS

As a basic tool for our evaluation, we developed a mobile
client application for Android devices. A snapshot of this appli-
cation is shown in Figure 2, where the green box indicates the
face detected. In the bottom part of the screen, the characters
indicate the name of the recognized person. And if appear a
number next to the name, it indicates the age estimation of the
person as an extra detail only available in the remote mode.

Fig. 2: Snapshot of the face recognition mobile application.

This application first captures pictures of people faces in
local mode without using any communication with the external
server, as if the cloud server was unavailable, the application
makes the image processing necessary in the learning stage and
the application is ready to receive any face image of people to
make the recognition stage. In the case in which the network
and the cloud server are available, the application automatically
sent the data to remote processing. And the last function of
the application is the visualization of the results as a front-end
terminal.

The evaluation of the application has been performed
on Samsung Galaxy Ace Smartphone running Android OS
version 2.2 connected to internet by a WiFi and 3G networks.
The testbed consists of execution of the application with the
objective of getting the average execution time of each sub
process with the same workload used in different scenarios,
as shown in Figure 3. To get normalized values each test was
repeated 10 times. The face recognition process is made with
different values of people from 5 up to 20. And to each person
different face images, from 1 up to 5, getting training sets with
number of images multiples of 5.

Fig. 3: Proposed system architecture.

140Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 153 / 263

Regarding network emulation, we first estimated the real
values of latencies and packet lost experienced in a commu-
nication with a server in a cloud infrastructure, Then we used
these values as guidelines to modify the network conditions
when we make a POST request from the mobile device to
servers in cloud infrastructure. The network conditions such as
network delay, bandwidth rate, and packet loss were modified
through the NetEm parameters. These tests was realized with
virtual machines: we had a virtual machine executing a web
server as a server on a cloud infrastructure. And the request
were realized from another virtual machine, representing a
mobile phone. Here, we varied the delay parameter using the
values 2, 10, 50, 100 and 500 milliseconds and with each one
of these values we used a different value for the packet loss
parameter from 0% (emulating a perfect channel) passing for
1, 5, 10 until 20% (as a noisy channel). Each test was repeated
for 10 occasions, too.

VI. RESULTS

In all scenarios it was necessary to process the captured
image with an average cost in time of 480 ms. Then, the
average times of each of the other pre-processes are shown
in the table 1 and are graphically represented in the Figure
4. The processes that consume more time are: convert color
images to grayscale (595 ms) and the detection of faces in an
image (667 ms).

TABLE I: Time consumed for each sub-process to pre-
processing images

Pre-process Average Time in milliseconds
compression 180
gray scale 595

face detection 667
crop face 12

re-dimension 30
equalize 10

Now, please remember that processing is made of two
stages: training and recognizing. In the training stage the
overall system time is related directly to the number of images
in the training set (while more images for each person more
accurate are the recognition results). This creates a first trade-
off between the required time to make the training and the

Fig. 4: Proportion of time consumed in pre-processing an
image.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

s
)

Number of images in the training set

eigen descomposition process

Fig. 5: Time required in the learning stage of local mode
according to the number of images in the training set.

number of samples to train. As we can see in the Figure 5, a
training set of 5 images needs 1,5 seconds to train while the
case of a training set of 100 images needs 250 seconds. These
values have an quadratic growth.

Considering the time required for the application to do the
training stage can affect the user’s patience. A reasonable size
of training set can be of 50 images that requires 63 seconds of
waiting. The recognition stage need less time when compared
with the training stage, to any person whose images have been
previously trained, the facial recognition is realized in a range
of 1,5 to 2,5 seconds according the number of images per
person, as we see in Figure 6a. Here, we confirm that the
fact of using Eingenfaces converts the recognition process in
a quick process and permits to operate with wide sets of faces
in very short times [11].

The recognition accuracy rate when we use only one image
per person is unreliable because it doesn’t arrive to 50%.
With 3 images per person is over 60%, but continues being
unreliable. We reach close to 80% accuracy, when we use 5
images per person. As we can see in Figure 6b.

In remote processing, the images were sent in first place
via a WiFi network and then via a 3G network. When we
send images product of a strong pre-processing, the results are
obtained in 939 ms with WiFi and in 3908 ms with 3G. When
we send images with a lighter pre-processing we obtain the
results in 2045 ms with WiFi and in 9790 ms with 3G. As we
can see in Figure 7a.

In remote mode, the accuracy rate (Figure 7b) with images
whose size is in the range of 8 kB to 102 kB is over the
80%. With images of 160 kB the accuracy is 91%. Namely
better results with images without compression or in general
without apply the pre-processing steps. But, if we avoid the
pre-processing steps, the communication is affected by perfor-
mance loss. This scale the problem size with higher latency and
occupancy of bandwidth. To overcome these limitations, the
scenarios with mix mode, we consider that the pre-processes
of gray scale and face detection with 595 ms and 667 ms
respectively are very expensive in terms of time consumption,
then we decide not to use them. Simply the images captured

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 154 / 263

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

m
s
)

Number of persons

1 training image per person
3 training images per person
5 training images per person

(a) time consumption using different sizes of training vectors

 0

 20

 40

 60

 80

 100

 5 10 15 20

A
c
c
u
ra

c
y
 r

a
te

 (
%

)

Number of persons

1 training image per person
3 training images per person
5 training images per person

(b) face-recognition accuracy

Fig. 6: Results obtained in local mode

 0

 2000

 4000

 6000

 8000

 10000

8 16 31 45 68 159

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

m
s
)

File size (kB)

WiFi
3G

(a) time consumption using different wireless networks

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160

A
c
c
u
ra

c
y
 r

a
te

 (
%

)

File size (kB)

color images
grayscale images

(b) face-recognition accuracy

Fig. 7: Results obtained in remote mode

are compressed with JPG standard at 85%, to get a reduced
version of these images with a size of near 16 kB. Then these
images are sent to remote processing in the cloud infrastructure
preferably using the WiFi network, to obtain results in 1712
ms with an 86% accuracy. It is the best combination and it
can be considered as the optimum mode that we recommend
to use.

If these preprocessed data are sent via WiFi network the
recognition results are timeless that when are realized in local
mode inclusive including the latency and round-trip delay
time communicating with remote mode. The latter method
requires network connectivity from the mobile device to Cloud
environments. In cloud side due hardware potential and the
complex of the algorithms, this scenario can provide more
accurate results.

In the emulation of network conditions, with a 3G channel,
the time required to make the request and get the response with
an ideal channel (0% of packet loss) is 6 seconds with the
minimum delay (2 ms), and with the maximum delay (500
ms) the response is obtained in 22 seconds. In Figure 8a,
is displayed linear growth of the time necessary to receive
a reply, under the differing amounts of packet loss for some
link latencies.

Finally, we modify the latency values in WiFi channel from
2 ms up to 500 ms, the emulation deliver values from 800 ms
to 1800 ms respectively, as we can seen in the Figure 8b.

VII. CONCLUSIONS

The growth of complex applications to mobile devices
with support of cloud computing infrastructure demands better
understanding of the effects of latency and packet loss. The
communication client-server in wireless environments might
suffer more latency and are more prone to packet loss. This
communication is also affected by the Internet latency.

For this reason in this paper, we presented an application
designed to allow the isolation of each process involved in a
recognition of a face, integrated in a testbed that allowed the
control of network conditions, such as latency and packet loss.

From the obtained results, we consider that offloading com-
putation from mobile devices to cloud computing infrastructure
can be done safely only if we have a guaranteed availability
of a stable channel. In fact, with a broadband access of a WiFi
network, we have low aggregate latencies close to 1 second.
And if we use the 3G network, we have aggregate latencies
near to 4 seconds. Both options with a packet loss level under

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 155 / 263

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

s
)

Packet Loss (%)

delay 2ms
delay 10ms
delay 50ms

delay 100ms
delay 500ms

(a) with changes in percentage packet loss and link delays

 0

 500

 1000

 1500

 2000

2 10 50 100 500

L
a
te

n
c
y
 t
im

e
 (

m
s
)

milliseconds of latency injected into the WiFi network

latency-injected
latency-measured

(b) modifying the latency values in WiFi channel

Fig. 8: The times obtained in the channel emulation using NetEm

3%. These are suitable for a good performance. When the
packet loss level is over 3%, latencies are highly affected and
this can be annoying to the user’s experience. For these cases
is preferable to use the local calculus with order to keep low
latencies.

With the continuous evolution of mobiles devices and the
communication networks, it is possible to design, develop and
use applications that combine the two operational modes in
better efforts. For example, using these operational modes in
applications where we will get the results in less of one second
in autonomous mode or we will automatically use the remote
mode sending queries to remote servers and get results in 2
seconds in normal cases or in 5 seconds in the worst case.
With recognition training vectors previously charged to both
options. If these results are not correct or are unreliable is
possible to aggregate new registers manually, to future queries
in a crowd sourcing style. As the people’s identity is a delicate
theme. We can use this architectural proposal and the image
processing in other aims, following with the visual content
that can be found in an image, that requires recognition and
identification.

ACKNOWLEDGMENTS

This work was partially supported by the Ministerio de
Ciencia e Innovación, Spain, under Grant TIN2011-27543-
C03-01.

REFERENCES

[1] D.-Y. Chen and J.-T. Tsai, “Resource-limited intelligent photo man-
agement on mobile platforms,” in Machine Learning and Cybernetics
(ICMLC), 2011 International Conference on, Jul 2011, pp. 627–630.

[2] P. Angin, B. Bhargava, and S. Helal, “A mobile-cloud collaborative
traffic lights detector for blind navigation,” in Proceedings of the 2010
Eleventh International Conference on Mobile Data Management, ser.
MDM ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 396–401.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011, pp. 301–314.

[4] B.-G. Chun and P. Maniatis, “Augmented smartphone applications
through clone cloud execution,” in Proceedings of the 12th conference
on Hot topics in operating systems, ser. HotOS’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 8–8.

[5] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 49–62.

[6] Google, “Google goggles,” URL: http://www.google.com/mobile/goggles,
[retrieved: 03, 2013].

[7] T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout, P. B. Schroeder,
J. Spaans, and P. Larroy. Linux Advanced Routing & Traffic Control
HowTo. URL: http://www.lartc.org/. [retrieved: 03, 2013].

[8] Y. Guo, L. Zhang, J. Kong, J. Sun, T. Feng, and X. Chen, “Jupiter:
transparent augmentation of smartphone capabilities through cloud
computing,” in Workshop on Networking, Systems, and Applications
on Mobile Handhelds, ser. MobiHeld ’11. New York, NY, USA: ACM,
2011, pp. 2:1–2:6.

[9] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches,” in Wireless
Communications and Mobile Computing. Wiley Online Library, 2011.

[10] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” in Computer, vol. 43. IEEE
Computer Society, 2010, pp. 51–56.

[11] L. Lorente Giménez, “Representación de caras mediante eigenfaces,”
in Buran, vol. núm. 11, 1998, pp. 13–20.

[12] E. Marinelli, “Hyrax: Cloud computing on mobile devices using mapre-
duce,” Master’s thesis, Carnegie Mellon University, 2009.

[13] J. S. Rellermeyer, O. Riva, and G. Alonso, “Alfredo: an architecture
for flexible interaction with electronic devices,” in Proceedings of the
9th ACM/IFIP/USENIX International Conference on Middleware, ser.
Middleware ’08. New York, NY, USA: Springer-Verlag New York,
Inc., 2008, pp. 22–41.

[14] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “The smartphone and
the cloud: Power to the user,” in MobiCloud, vol. 28, October 2010.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for vm-based cloudlets in mobile computing,” in Pervasive Computing
IEEE, vol. 8, No. 4, 2009.

[16] Y. Taigman and L. Wolf, “Leveraging billions of faces to overcome
performance barriers in unconstrained face recognition,” CoRR, vol.
abs/1108.1122, 2011.

[17] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities
of mobile devices with cloud computing,” in Mobile Networks and
Applications, vol. 16, Jun. 2011, pp. 270–284.

[18] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recogni-
tion: A literature survey,” in ACM Computing Surveys (CSUR), vol. 35,
Dec. 2003, pp. 399–458.

[19] OpenCV, “Opencv v2.4.3 documentation,” URL:
http://docs.opencv.org/modules/ml/doc/boosting.html, [retrieved:
03, 2013].

143Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 156 / 263

Massively Scalable Platform for Data Farming Supporting Heterogeneous
Infrastructure

Dariusz Król, Michał Wrzeszcz, Bartosz Kryza,
Łukasz Dutka

AGH University of Science and Technology
Academic Computer Centre Cyfronet AGH

Krakow, Poland
{dkrol, wrzeszcz, bkryza, dutka}@agh.edu.pl

Jacek Kitowski
AGH University of Science and Technology

Department of Computer Science and Academic Computer
Centre Cyfronet AGH

Krakow, Poland
kito@agh.edu.pl

Abstract — Data farming is a scientific methodology, which
heavily depends on technical advances in high throughput
computing to generate large amounts of data with computer
simulation to investigate studied phenomena. Unfortunately,
the availability of versatile data farming systems is very limited
and none of existing tool enables integration with novel Cloud
solutions. This paper presents a flexible platform for
conducting large-scale data farming experiments on
heterogenous computational infrastructure including: clusters,
Grids and Clouds. Another important feature of the presented
platform is the support of interactive data farming
experiments, which includes an online analysis of partial
experiment results and experiment extending capabilities.

Keywords - scalability; data farming; software platform; high
throughput computing.

I. INTRODUCTION
In many disciplines of modern science, scientific

discoveries are results of collecting and analyzing large
amounts of data. In particular, an increasing popularity of
conducting experiments, both physical and virtual, to
understand studied phenomena leads to big data generation.
A physical experiment often is too expensive to conduct it
multiple times, e.g., when requires expensinve equipment
such as airplane engines or battleships, thus computer
simulations are performed instead. Technological advances
in recent years have led to significant improvements in the
computer simulation field, e.g., reduction of the required
time to run a computer simulation and refinement of
simulation models in regard to its complexity. One can now
simulate complicated phenomena in minutes or hours instead
of days or months, with an improvement of results quality
and simulation complexity.

Based on this technological progress, new forms of
scientific methodologies have emerged, which are based on
data-intensive computation and analysis. One such a
methodology is called “The Fourth Paradigm” [1], in which
new scientific findings are discovered by analyzing big
amount of data coming from various scientific experiments.
A complementary approach, which is gaining more and more
popularity in recent years, is Data Farming [2], whose main
objective is to develop a better understanding of landscape of
possibilities as well as outliers that may be discovered

through simulation. This is especially important when
concerning a decision-making process regarding complicated
nature of scenarios involving security forces. The origin of
the Data Farming methodology is in USA Marine Corps,
where it was proposed to enhance military strategies. Though
today, it is used in other disciplines of science [3-4]. The
basic idea behind Data Farming is to grow significant
amount of data by performing large number of simulations of
a studied phenomena, each with a slightly different input
values. Simulation results are described by a vector of
parameters, called Measures of Effectiveness (MoE), which
is used to evaluate each simulation. A result vector is treated
as a single point of possible output landscape. After
gathering a number of such points, a scientist can perform
analysis of existing trends or anomalies, based on which,
new insights into phenomena can be obtained.

A crucial requirement for conducting data farming
experiments effectively is usage of high performance and
throughput computer infrastructure. It is necessary to run a
large number of simulations simultaneously and gathering
output results. In addition, it is often required to integrate
many heterogeneous computational infrastructures, when an
experiment requires more computational power than a single
computer centre can provide. Moreover, as new types of
computational infrastructures are emerging, e.g., public
Clouds, integration with existing infrastructures, e.g., Grid
environments, becomes a major issue. Thus, a holistic
platform, which will virtualize computational and storage
resources, is required to conduct data farming experiment in
an efficient way. In particular, it should automate all
cumbersome technical aspects of infrastructure configuration
and simulation running. Besides fulfilling functional
requirements, such a platform should be scalable and
adaptable to a changing state of knowledge about the studied
phenomena, in order to be used in both small and large data
farming experiments.

The rest of the paper is organized as follows. In Section
II, we present existing tools, which can be utilized for
conducting data farming experiments. Section III describes
our platform, called Scalarm, its main design principles and
objectives. Then, in Section IV, an experimental evaluation
of the presented platform is depicted. We conclude this paper
in Section V.

144Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 157 / 263

II. STATE OF THE ART
Although, Data Farming is becoming a popular scientific

methodology lately, the software supporting this
methodology is rather limited. One of the very few examples
of such tools is OldMcData [5], which supports only two
parts of a data farming experiment. It can prepare input a set
of input vectors based on possible range of parameter values
and selected design of experiment methods. Afterwards, it
can schedule simulations to run on available computational
resources with the Condor software [6], which can be
configured to work with distributed resources and is able to
move simulations’ output from distributed computational
resources to a designated location. However, no method for
data analysis is provided, which means that external tools
have to be used. Moreover, running simulations is a batch-
like process, i.e., a whole package of inputs is submitted to a
scheduler at once. The user can proceed to data analysis after
the whole experiment is finished. There is no information
about any partial results and the user cannot modify the
parameter space of an experiment once submitted. Condor
supports heterogeneous infrastructure integration, but it lacks
the scaling feature in regards to application managers, which
means the infrastructure delegated to perform the experiment
has to be set before starting simulations and cannot be
changed during the runtime.

Although, data farming oriented tools are rather limited in
number, there are several tools, which can support different
phases of the data farming process independantly. One of the
most important phases of the process is simulation execution
with high throughput computational infrastructure. There are
several tools available for this task as this is a generic
problem in many computational disciplines. Distributed
Infrastructure with Remote Agent Control (DIRAC) [7] is a
platform supporting computations with heterogeneous
resources including local clusters, Grids and Clouds. It was
originally developed to provide a complete solution for using
the distributed computing resources of the LHCb experiment
at CERN for data production and analysis. DIRAC provides
an additional abstraction layer between users and various
compute resources to allow optimized, transparent and
reliable usage. It exploits the concepts of Workload
Management System with Pilot Jobs, which increase
computations efficiency and reliability. DIRAC utilizes an
agent-based architecture, where agents are deployed on the
worker nodes, building a dynamic overlay network of readily
available resources. These agents, being actually a
representation of available computing resources, intend to
reserve computational power to run actual tasks, which are
distributed using a custom scheduling method. By using the
Pilot jobs and Workload Management System concepts,
DIRAC implements redundancy at the computational task
level, i.e., DIRAC guarantees that tasks will be run, and in
case of any failure it will be rescheduled. In addition, these
concepts allow aggregating in a single system computing
resources of a different nature, such as computational grids,
clouds and clusters, transparently for the users. DIRAC
provides the data management functionality, however it is

related to data distribution in a reliable manner among
computational resources. It does not provide functionality
required to analyse job results. Also, it does not have design
of experiment methods built in for sampling input parameter
value space, based on which computational jobs should be
generated and scheduled. Thus, it can be only used as a part
of a complete data farming platform, rather than being a
complete solution for its own.

Falkon, which stands for a “Fast and Light-weight tasK
executiON framework”, is a framework for rapid execution
of many tasks on compute clusters [8]. Falkon focuses on
efficient task dispatching, and delivers dispatching
performance better than other systems, i.e., upto 440
tasks/sec. Furthermore, Falkon is highly scalable in terms of
workers, which can be utilized to perform tasks, i.e., to over
54,000. Thus, applications end-to-end run time can be
reduced in some cases up to 90% relative to versions that
execute tasks via separate scheduler submissions. To achieve
such performance and high scalability, Falkon utilizes a
concept of multi-level scheduling to separate resource
acquisition from task dispatch. Moreover, a streamlined
dispatcher is used, which improves performance but
eliminates support for features such as multiple queues,
prorities, accounting, etc. Falkon consists of a dispatcher, a
provisioner, and multiple executors. The dispatcher accepts
tasks from clients and schedules subsequent tasks to next
available executors. The provisioner is responsible for
creating and destroying executors on available computational
resources. Executors run tasks received from the dispatcher.
Each new executor registers with the dispatcher.
Components communicate via Web Services (WS)
messages, except for notifications are performed via a
custom TCP-based protocol. Although, Falkon provides high
throughtput and executors’ scalability, it lacks dispatchers’
scalability, i.e., performance of Falkon is constrainted by
capabilities of the server, which runs the dispatcher
component. Moreover, whole Falkon functionality is limited
only to dispatching, hence no functionality related to
parameter space generation or results analysis is provided.

Since data farming is still a relatively uncharted territory
none of existing tools provides functionality required for
flexible running of various data farming experiments with
different types of parameters and even simulation
implementation technologies.

III. SCALARM PLATFORM
Due to lack of versatile software for conducting data

farming experiments, we developed a new system from
scratch, called Scalarm [9], which stands for Massively
Scalable Platform for Data Farming. Scalarm intends to
fulfill the following requirements:

• support all phases of a data farming experiment,
starting from a design of experiment phase,
through simulation execution and progress
monitoring, to statistical analysis of results,

145Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 158 / 263

• support different sizes of experiments from
dozens to millions of simulations through
massive scalability,

• support for heterogenous computational
infrastructure including private clusters, Grids
and Clouds.

A. Provided functionality
Scalarm functionality focuses on conducting

experiments, which follows the Data Farming methodology.
In addition, Scalarm introduces an exploratory approach to
experiment conducting. In a batch-like experiment
execution, the user submits an experiment as a single
package, waits for all simulations to compute, and then
analyze obtained results. Based on the result analysis, new
experiments are conducted to investigate interesting cases in
more details. This loop can be reapeated several times. On
the other hand, the exploratory approach enables users to
expand the parameter space of running experiments, based
on an on-line analysis of already computed simulations, e.g.,
with regression trees and MoE histograms. Hence, the user
can specify only small parameter space at first, and expand it
on-line later on, which is a more natural way of conducting
such experiments.

Supported use cases can be divided into three groups
based on their expected results: experiment management,
analysis and platform management. The first group includes
activities related to preparation of new data farming
experiments, their further monitoring and management, e.g.,
adding computational resources to execute simulations

included in a concrete experiment. The second group, i.e.,
analysis, contains all actions, which intend to visualise and
discover knowledge from simulations' results in form of
various charts and graphs. Hence, they can be utilized to
discover meaningful insight into studied phenomena. The
last group, i.e., platform management, includes use cases,
which are important for a multi-tenant environment to
operate, but they do not support the data farming process
directly, e.g., login.

B. Architecture of the platform
Selecting an appropriate architecture style for virtual

platforms, which intend to be deployed at a large scale, is the
basic problem of modern software engineering. At a high-
level of abstraction, Scalarm follows the “master-worker”
design pattern, i.e., one part of the platform is responsible for
scheduling the actual work to the other part of the platform.

Scalarm’s architecture utilizes a service-oriented
approach with an additional modification, which addresses
the scalability requirement. To cope with the requirement,
we do not operate on the level of components and services,
which represent single instances only. Instead, we extended
the meaning of an application's modularization unit to
embrace the scalability feature. Thus, each Scalarm service
can consist internally of a number of component’s instances,
which provides exposed functionality, and a load balancer,
which constitutes a single entry point to the service. An
overview of the architecture is depicted in Fig. 1.

Figure 1. A component diagram of Scalarm.

146Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 159 / 263

The Scalarm platform includes the following
components:

• Experiment Manager, which handles all
interaction between the platform and actual
users via a Graphical User Interface. On the one
hand, it constitutes a gateway to the platform for
analysts, i.e., provides a coherent view of
information about all running and completed
data farming experiments, and enables analysts
to create new experiments or to conduct
statistical analysis on existing ones. On the other
hand, Experiment Manager is responsible for
scheduling simulations to Simulation Managers.

• Storage Manager is an equivalent of the
persistence layer concept but in a form of a
separate service. Other components, mainly
Experiment and Simulation Managers use this
service to store different types of data: structural
information about each executed simulation and
experiment, and actual results of simulations,
which may be either binary or text data. By
utilizing a built-in load balancer, Storage
Manager can be treated as a virtually centralized
but physically distributed single point of data
storage, which facilitates the client side while
preserving performance and scalability.

• Simulation Manager is an intelligent wrapper
for actual simulations, which can be deployed
on various computational infrastructures, e.g.,
private cluster, Grids or Clouds. It can be treated
as an implementation of the Pilot job concept,
i.e., a special application that intends to acquire
computational resources to run actual
applications. However, while the Pilot job
concept was created for Grid environments
only, Simulation manager is infrastructure
independent. The wrapper is responsible for
preparing whole environment for a simulation,
i.e., download necessary code dependencies and
input parameter values. After a simulation is
finished, Simulation Manager uploads results to
the "master" part, i.e., log files and other binary
outputs are sent to Storage Manager, while MoE
values are sent to Experiment Manager along
with information about simulation completion.
As it can operate in a highly dynamic and
unreliable environment, Simulation Manager
supports fault tolerance for Experiment and
Storage Managers failures as well as network
connectivity issues. Moreover, to maximize
resource utilization, Simulation Manager starts
multiple simulations in parallel based on actual
computational resource capabilities, i.e.,
additional simulations are started if it will not
significantly decrease performance of already
started simulations.

• Information Manager is an implementation of
the Service locator pattern, known from SOA-
based systems. It is a "well-known" place for

each component in the system, which stores
information about other components' locations.

• Monitoring Manager constitutes a distributed
monitoring system for the Scalarm platform. It
contains two separated elements: sensors, which
periodically sent monitoring data and a service,
which stores this information. Sensors are built
directly into each Experiment, Storage and
Simulation Managers. It collects information
about workload of Scalarm components, using
operating system metrics, e.g., CPU and RAM
memory utilization, as well as component
specific metrics, e.g., response time of various
requests.

C. Supported applications
Scalarm was originally evaluated in a multi-agent

simulation area, with a goal of supporting a training process
of security forces. A sample simulation scenario involved
controlling the access of civilians to a military base camp
during elections in a mission abroad. In this scenario,
civilians were waiting in front of a camp entrance to an
operation base with an intention to start a skirmish. From the
security forces point of view, the goal of this scenario was to
prevent the escalation of agression by effectivie negotiations.
However, civilians may act differently, depending on input
parameter values, hence actions performed by security forces
should be adjusted to a concrete behaviour. A goal of a data
farming experiment, which used this simulation scenario,
was to find out how to minimize the number of injured
civilians in such a scenario, regardless their behaviour.

Scalarm facilitated the experiment at the following
phases:

• A design of experiment phase, whose result is a
specification of the input parameter space.
Scalarm provides a set of views, where an
analyst specifies types of parametrization for
each input parameter and design of experiment
methods, which should be used.

• Simulation execution on heterogenous
computational infrastructure. Scalarm supports
different types of computational infrastructures,
i.e., common computational clusters available
via SSH, Grid environments accessible via the
gLite middleware [10], and public clouds
supporting Amazon EC2 API.

• Statistical analysis of results. Scalarm provides
a set of built-in graphs, which can be created
based on completed simulation results:
histograms, regression trees and bivariate
graphs.

For more details about conducted data farming
experiments regarding security forces, please refer to [11].
Though, Scalarm was evaluated with a particular type of
simulations, it can be used in any other science discipline,
where the Data Farming methodology can be utilized, e.g.,
materials science or life-science.

147Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 160 / 263

IV. EXPERIMENTAL EVALUATION
To evaluate Scalarm, we conducted both functional tests

of supporting different computational infrastructures and
performance tests to measure the platform’s scalability.

Functional tests concerned simulating a scenario
described in Section III. Two standard HP ProLiant worker
nodes (described in a following section) were used to run one
instance of Experiment and Storage Managers. To run
Simulation Managers, we used:

• 9 worker nodes from a private cluster,
• 50 Grid jobs scheduled to a Grid infrastructure,
• 50 High-CPU Extra Large instances from

Amazon EC2.
In the experiment design phase, 14 from 92 of simulation

input parameters (describing initial emotional state and other
attributes of simulated entities) were set to the “Range”
parametrization with 2^k method applied, which generated
16 386 different cases to simulate. The utilized set of
resources enabled us to execute more than 620 simulations
simultaneously with more then 140 simulations complete in
each minute.

An output of each simulation included: a text file with
less than 7 MB of simulation logs, and 44 different MoEs
describing aggregated emotional states of different entity
groups and statistic regarding the simulated scenario.
Compressed logs were sent to Storage Managers, which had
a disk array connected with 6 TB of total capacity.

After several minutes of computations, an analysis of
gathered results was conducted using histograms and
regression trees. Based on this analysis, the experiment was
extended with additional parameter values. A whole test was
recorded and can be found online at [12].

The second set of tests concerned the platform’s
scalability. We intended to evaluate scalability of the master
part, which includes Experiment and Storage Managers,
since running many independent workers is trivial. We used
production infrastructure, however an empty simulation was
actually performed to minimize the number of Simulation
Managers required to saturate platform’s throughput, which
was measured with completed simulations registered by
Experiment Managers in a period of time.

A. Testing scenarios
Our testing scenarios focused on evaluating how Scalarm

handles experiments of various sizes with different amount
of computational resources. The main measured parameter
was the total execution time of each experiment. Scalarm has
three main components, namely Experiment, Storage and
Simulation Managers, which can be scaled. In presented
tests, the number of Simulation Managers was
experimentally selected to saturate platform’s throughtput.
Hence, only numbers of Experiment and Storage Managers
were used as parameters of performed tests.

Regarding experiment sizes, i.e., the number of
simulations within an experiment, we used the following set
of values to present full capabilities of the platform: 100 000,
200 000, 500 000, 1 000 000, 2 000 000, 5 000 000.

Concerning computational resources, the parameter
depicted the number of servers dedicated to run Experiment
and Storage Managers. Our tests included the following
values of this parameter: 1, 2, 4 and 8. However, each
component run on a separate set of servers, which means that
in each test, the total number of servers was doubled.

B. Testing environment
In case of performance tests, we used a computing cluster

to run Experiment and Storage Managers to minimize the
network latency. Simulation Managers were scheduled to a
part of PL-Grid infrastructure located within the same site.

To run each component, we used standard HP ProLiant
worker nodes, connected with each other through a 10 GbE
network switch, while connection between a worker node
and switch was 1 GbE link. Each worker node has the
following parameters:

• 2x Intel Xeon CPU L5420 @ 2.50GHz
• 16 GB RAM
• 120 GB hard drive (5400 RPM)

C. Evaluation results
Aggregated test results are depicted in Fig. 2. Each line

on the chart denotes a separate configuration of Scalarm used
in tests, i.e., numbers of servers running Experiment and
Storage Managers represented as a pair (<experiment
managers count>, <storage managers count>). For each
configuration, we measured total execution time in seconds
for experiments of different sizes.

Figure 2. Experiments' execution time for different Scalarm configurations.

There are a few things worth noticing. First of all, the

more resources Scalarm has, the better performance it
provides. The performance gain varied depending on actual
experiment size. Let's compare configurations (1,1) and
(2,2). Execution time decreases by 53% for experiment size
100 000, but only by, 31% for experiment size 1 000 000.

The second notice concerns the execution time of
experiments with an increasing size using the same
configuration. Regardless the configuration, the execution
time of subsequent experiments with an increasing number
of simulations rises more than linearly. It is caused by an
increasing effort of simulation information management.
Each simulation is represented in Scalarm by a row in a non-
relational database. Performance of such databases depends
on the IO subsystem, especially when concerning millions of
rows. Hence, after exceeding some thresholds of a database

148Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 161 / 263

size (about a million of rows on a single server), database
operations tend to take more than expected.

Based on obtained results, we calculated speedup (1) and
efficiency (2) metric using classical formulas.

 Speedup(N) = T(1) / T(N) (1)

 Efficiency(N) = Speedup(N) / N (2)

Efficiency of Scalarm (depicted in Fig. 3) is greater than
0.7 in most cases, which is a good result, especially when
concerning a wide range of tested configurations.
Furthermore, for some experiment sizes and the
configuration consisted of 2 servers for Experiment and
Storage Managers respectively, efficiency is greater than 1,
which could be have been caused by data sharding between
instances of a database on seperated servers, which enabled
having all data in memory instead of using local disk.

Figure 3. Scalarm efficiency for configurations including more than 1

server per component.

An average throughput for the Configuration (1, 1) was

about 4776 simulations per minute. We estimated the
number of Simulation Managers, which would be required to
saturate Scalarm when running actual simulations by
comparing to the throughput of running actual simulations
and the throughput with an empty simulation. In the case of
our simulation, we should have more than 120 000 of
Simulation Managers running simultanously. This was the
main reason why the scalability evaluation was performed
with an empty simulation.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a versatile system for running

large scale data farming experiments involving processing of
a parameter space where custom design of experiment
methods and interactive fine tuning of processed parameter
space are required. The system is currently being evaluated
for military mission planning support in order to improve
behavior models for agent-based simulation component and
to allow drawing conclusions regarding selected Measures of
Effectiveness for higher echelons.

The future work will include application of the platform
in a metallurgy scenario [13], with focus on distributed
semantic-based Virtual Organization collaborations [14].

ACKNOWLEDGMENT
The authors are very grateful to Łukasz Flis, Marek

Magryś and Patryk Lasoń from Cyfronet for help in
preparing the testing environment based on the PL-Grid
infrastructure. The research is partially supported by the
POIG.02.03.00-00-096/10 “PL-Grid PLUS” project. D. Król
thanks to the National Science Centre grant no.
2012/05/N/ST6/03461 for support. AGH-UST grant no.
11.11.120.865 is also acknowledged.

REFERENCES
[1] T. Hey, S. Tansley, and K. Tolle, “The Fourth Paradigm:

Data-Intensive Scientific Discovery”, Eds., Redmond, VA:
Microsoft Research, 2009, ISBN 978-0-9825442-0-4.

[2] A. Brandstein and G. Horne, “Data Farming: A Meta-
Technique for Research in the 21st Century”, in Maneuver
Warfare Science 1998, Marine Corps Marine Corps Combat
Development Command Publication, Quantico, Virginia,
1998.

[3] D. Moses, “Data farming helps hospital keep nurses at
bedside”, HealthCareITNews, [online:
http://www.healthcareitnews.com/news/data-farming-helps-
hospital-keep-nurses-bedside as of January 14, 2013]

[4] T. Beach, et al., “Application of Design of Experiments &
Data Farming Techniques for Planning Tests in a Joint
Mission Environment”, International Data Farming Workshop
15, November 2007.

[5] S. Upton, “Users Guide: OldMcData, the Data Farmer”,
Version 1.1, United States Marine Corps Project Albert.
Quantico, Virginia, 2010.

[6] T. Tannenbaum, D. Wright, K. Miller, and M. Livny,
“Condor: a distributed job scheduler”, Beowulf Cluster
Computing with Windows, MIT Press Cambridge, MA, USA,
2002, pp. 307 – 350, ISBN:0-262-69275-9.

[7] J. Saborido, F. Gomez-Folgar, J. L. Cacheiro, and R. G. Diaz,
“DIRAC Integration with Cloud Stack”, Proc. IEEE Third
International Conference on Cloud Computing Technology
and Science, 2011, pp. 537-541. ISBN: 978-0-7695- 4622-3.

[8] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,
“Falkon: a Fast and Light-weight tasK executiON
framework”, Proc. ACM/IEEE conference on
Supercomputing, 2007, pp. 1-12, ISBN: 978-1-59593-764-3.

[9] B. Kryza, D. Król, M. Wrzeszcz, Ł. Dutka, and J. Kitowski,
„Interactive Cloud Data Farming Environment for Military
Mission Planning Support”, Computer Science Journal, vol
13(4), 2012, pp. 89-100.

[10] gLite – Lightweigt Middleware for Grid Computing website,
[online: http://glite.cern.ch/ as of January 14, 2013]

[11] S. Dlugolinsky, et al., “Using parallelization for simulation of
human behaviour”. 7th International Workshop on Grid
Computing for Complex Problems, Bratislava, 2011, pp. 258-
265, ISBN 978-80-970145-5-1.

[12] Scalarm website – overview section, [online:
http://www.scalarm.com/overview.html as of January 14,
2013]

[13] J. Kitowski and B. Kryza, “Dynamic virtual organization
management framework supporting distributed industrial
collaboration”, Computer Methods in Materials Science, vol.
11(4), 2011, pp. 514-523.

[14] A. Mylka, A. Mylka, B. Kryza, and J. Kitowski, “Integration
of Heterogenous Data Sources in an Ontological Knowledge
Base”, Computing and Informatics, vol. 31(1), 2012, pp. 189–
223.

149Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 162 / 263

Fuzzy Controled QoS for Scalable Cloud Computing
Services

Stefan Frey, Claudia Lüthje, Vitali Huwwa, Christoph Reich
Furtwangen University
Cloud Research Lab

Furtwangen, Germany
{stefan.frey,claudia.luethje,vitali.huwwa,christoph.reich}@hs-furtwangen.de

Abstract—An important characteristic of cloud infrastruc-
tures is scalability on demand. A scalability service monitors
performance load metrics and decides to scale up or down, by
provision or revoke of cloud resources. This could guarantee
Quality of Service (QoS) and enforce Service Level Objectives
(SLOs). The approach of this paper shows that with additional
imprecise information (e.g. expected daytime performance) the
up and down scale mechanism of such an infrastructure can be
improved and SLA violation can be avoided.

Keywords—Cloud Computing; Scaling Service; Fuzzy Logic;
SLA; QoS

I. INTRODUCTION

Cloud computing offers customers resources on demand on
a self-service basis and gives them access to a large pool of
computational power and storage. Customers do not have to
manage and maintain their own IT assets and get charged by
cloud providers based upon the amount of resources used or
reserved. The fly in the ointment is the minimal guarantees
of Quality of Service (QoS) for the user’s applications. It
is common that big cloud providers like Amazon offer only
rudimentary service guarantees, like for example a guarantee
for 99,95% availability of their EC2 cloud service. In most
cases providers do not give any performance guarantees at
all. Cloud computing services, like the auto scaling service
of Amazon [1], scale the capacity of virtual machines (VM)
up or down automatically according to e.g. CPU utilization.
Such a service controls the number of VMs to maintain the
performance of a service that experiences hourly, daily, or
weekly variability in usage. The architecture of such a setup
can be seen in Figure 1 inside the blue dashed box. This
obviously has the potential to guarantee Key Performance
Indicators (KPIs) indirectly but KPIs such as e.g. request
response time which are typical Service Level Objectives
(SLOs) in a Service Level Agreement (SLA) are not controlled
directly.

Therefore, SLA violations can happen especially due to
peak demands, caused by all kind of reasons (e.g. product
launches, political statements, service advertisement, weather
changes, etc.), and the up scaling delay of the infrastructure
(e.g. VM start time, LB reconfiguration, infrastructure limits,
and economical limits to prevent extraordinary costs, etc.).
Other reasons for not matching the SLA guarantees could
be limitations, like the maximum number of VMs or non-
ideal load balancing algorithms, which are not considered in
the approach of this paper. Decent scaling is very important,

because the if scale down happens to early SLA violations
occure and if its set to late the customer will pay for resources
that are not utilized.

To minimize the number of SLA violations and to guar-
antee the QoS, an behaviour, load and performance prediction
model is needed. If one could predict the usage of an service,
looking ahead further than the infrastructure delay time, one
could guarantee the QoS for that specific service.

The rest of the paper is organized as follows. In Section
II the related research efforts are discussed. Then a detailed
description of the problem of QoS in cloud computing can
be found in Section III. In Section IV, the specific approach
using fuzzy logic for controlling the scalable cloud service
is introduced. The proof of concept is reported in Section V.
Finally a conclusion is drawn and future work is suggested in
Section VI.

II. RELATED WORK

Since 2009 many teams are working on the problem to im-
prove the QoS for cloud computing. Armstrong and Djemame
tried to transfer the technologies of QoS from grid computing
to cloud computing as discussed in the paper ”Towards quality
of service in the cloud” [2]. The paper of Rochwerger et al. [3]
discuss the funded project RESERVOIR, in which pooled
resources handle peaks and slopes of resources.

Another interesting appraoch is the Q-Clouds framework
described by Nathuji et al. [4]. This framework for the man-
agement of cloud servers enables the possibility to apply and
control QoS. The introduced Q-states provide the possibility
for users to define certain metric limits of SLOs, based on a
cost model. The more the customer is ready to pay, the less
likely is a SLA violation. The controller component uses a
MIMO (multi-input, multi output) model for the calculation
VM resources. So an input vector is defined by the platform
controller. Based on that the output vector delivers the pre-
dicted QoS values. Unlike to the approach of this paper they
basically use infrastructure metrics (e.g. performance, memory,
etc.) to control the QoS.

The important next steps in the QoS for cloud com-
puting were developed by Ferretti/Ghini/Panerieri [5]. Their
paper presents an architecture, which provides cloud resources
dynamically. The developed middleware tries to avoid SLA
violations with the same use case as presented in this paper.
Therefore they split the problem into three components: The

150Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 163 / 263

host platform is an dynamic configuration, that should guar-
antee the requirement of the SLA. The monitoring component
is checking the host platform and its application to display
changes in the configuration and violation of the QoS require-
ments. The third component is responsible for the dispatching
and the load balancing. This component tries to keep the
required QoS. It is implemented in an intelligent way, to
distribute the available resources. It is distinct to load balancing
for requests and sessions. Different to this paper is that the
load balancer takes over the monitoring of the SLAs instead
of a separate module. Further the only metric that is used is the
actual request response time. Compared to our approach, there
can be considered mean value, derivation value, imprecise
information and admin control information.

Many recent works deal with computing resource allocation
in clouds focusing specific management objectives, such as
energy efficiency [6], fairness [7], economic fitness [8], and
service differentiation [9]. All of the above works however
deliver placement solutions. They do not consider the problem
of controlling a load balanced, scalable Cloud service.

Related research can be found in the area of forecasting
the load of electrical power in [10] and [11] where they use
social, economic, and weather condition factors. To achieve
QoS guarantees this paper uses such additional factors as well.

III. QOS IN CLOUD COMPUTING

A Service Level Agreement (SLA) is a contract between
customer and provider, that specifies service performance prop-
erties. These properties are called Service Level Objectives
(SLOs), which contain metrics called Key Performance Indi-
cators (KPIs) and the specific value to be guaranteed. These
performance metrics should be guaranteed over a relatively
long time interval and if a metric is violated commonly penalty
costs may have to be paid to the customer by the provider.

Compared to traditional data centers it is easier to guar-
antee QoS in cloud computing data centers, because of the
possibility to automate infrastructure administration and added
value services such as auto scaling. Today’s virtualization
technologies allow dynamic provisioning of virtual machines
(VM), networks, storage, etc. Therefore a completely auto-
matic, adaptable customer infrastructure is on the horizon to
react in real time to load changes.

Especially a scalable infrastructure can easily be provi-
sioned in the cloud service model Infrastructure as a Service
(IaaS), that allows automatic up/down scaling according the
actual load. This is a big step towards the possibility to
guarantee KPIs like the service request response time, that
is a widely used Key Performance Indicator and a common
Service Level Objective (SLO).

The approach presented in this paper improves the up and
down scaling by using additional information, like the expected
load at a certain daytime in the future, expected increase at
a specific future day because of special events, etc.. With the
additional information we trie to forecast the load and therefore
allow a better pre-acting up or down scale of the infrastructure
if needed.

IV. FUZZY CONTROL TO IMPROVE QOS CONTROL

Most approaches consider infrastructure sensor data like
bandwidth, request/response time, CPU usage, memory usage,
etc. to control the scaling infrastructure as seen in Fig. 1
dashed box. The approach of this paper is to use additional,
often imprecise information (e.g. weather) to improve the
management to meet QoS requirements stated in SLAs. These
imprecise factors (e.g. user wants scaling aggressive/moderate,
etc.), political factors (legal changes, political summits, etc.),
economic/market factors (product advertising, product launch,
etc.), other factors influencing the service usage (e.g. weather,
gossip, etc.) can not be modelled precisely.

Fuzzy logic allows to model imprecise information by the
user (service administrator) in the form of non-numeric lin-
guistic variables (e.g. age: young/old). These fuzzy inputs are
used in the fuzzy control system, that uses expert knowledge
to inference a fuzzy output. After defuzzifying this output to
a crisp value, then this controls the overall scale system how
big the up and down scale factor should be. For example,
if a customer wants to have an aggressive scaling control
the infrastructure will scaled up with e.g. 3 VMs otherwise
with only one VM at a time. The scaling domain expertise is
modelled in a knowledge base with fuzzy IF-THEN rules.

In the next Subsection IV-A the architecture of the fuzzy
scaling cloud service is described, followed by subsection
IV-B, discussing monitoring parameters, which will show the
wide variety of information to improve the cloud scaling
service. The last subsection IV-C presents the fuzzy control
module.

Fig. 1. Fuzzy Controlled Scaling Architecture

A. Fuzzy Controled Scaling Architecture

Figure 1 shows the architecture for a load balanced service
by automatically scaling up/down the infrastructure by start-
ing/stopping VMs. It consists of two new modules compared
to the traditional scaling infrastructure (blue box), the Data
Collector and the Fuzzy Control Module.

The Data Collector collects all information data, crisp (e.g.
cpu usage) and imprecise data (e.g. weather). The data is

151Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 164 / 263

categorized in infrastructure data (e.g. req./resp. time), history
data (e.g. req./resp. time 5 minutes ago), control action (e.g.
aggressive up/down scale), environment data (e.g. daytime),
and other information that might influence the load of the
service.

All collected data is input data to the Fuzzy Control
Module where the data is fuzzified, results propagated by the
fuzzy inference engine and quantified by defuzzification. The
defuzzified value (Number of VM to be started or stopped)
is put into the Scale Control module. This module generates
XML-RPC calls to the Cloud Management System.

B. Information Factors for Control

The relevant information to improve the up/down scaling
can be categorized into monitoring data: infrastructure, historic
infrastructure, time-dependent, and service-dependent sensor
data described in the following paragraphs in more detail.

a) Infrastructure Sensor Data: Table I lists factors that
can mostly be monitored using sensors placed in various lo-
cations in the cloud infrastructure. KPIs, like request response
time can easily measured at the load balancer (LB). Cloud
specific parameters, like start time of VMs, can be aquisitioned
at the cloud management system. If user service request types
should be categorized (typically a imprecise parameter), it is
best to ask the user admin of the cloud resource.

TABLE I. INFRASTRUCTURE SENSOR PARAMETER

Parameter Example Cloud Source
KPI req./resp load balancer
cloud specific VM start time, cloud management
indicators bandwidth system
request type long running req. user
...

The quality of the cloud infrastructure or service implemen-
tation can be taken into account as well. The load balancing
control might be influenced by the basic robustness of the
overall infrastructure. The infrastructure robustness can be
modelled by an imprecise parameter e.g. strong, weak.

b) History Infrastructure Sensor Data: Table II lists
parameter that have been previously collected in a history
data base. The purpose is to calculate values like, mean
values, derivation values, etc. These statistical data can be good
indicators to improve the LB management.

TABLE II. HISTORY INFRASTRUCTURE SENSOR PARAMETER

Parameter Example Source
derivation KPI derivation req./resp history DB
mean value KPI req./resp. mean value history DB
...

Imprecise history parameters can be of interest as well.
Suppose a service depends on the weather condition (e.g.
online shop for winter tires), then a sudden change of the
weather condition from try to snowy condition makes it more
likely, that the load of such a service is higher.

TABLE III. TIME-DEPENDENT SENSOR PARAMETER

Parameter Example Source
daytime end of work user input
weekday Saturday calendar
holiday Christmas country holiday cal.
product events new iPhone user input
...

c) Time-Dependent Sensor Data: Table III lists param-
eter that can influence the infrastructure management at a pre-
defined time.

The knowledge of the typical weekly usage for an service
(see Fig. 2) can be modelled and therefore the decision to scale
up or down strongly or weekly depending whether the change
is high or not.

Fig. 2. Example: Weekly Load of the HFU Learning Management Platform

d) Service-Dependent Sensor Data: Table IV lists pa-
rameter that influence the control infrastructure depending on
the related service. Political parameters, like new legal issues
enforcing more logging at the service side. Market events,
like product launches, marketing events, new prices, etc. can
influence the usage of services. Gossip, modelled as good
news or bad news is influencing service usages. Importance
of service might need a more aggressive management to make
sure, that the SLA violations can be minimized.

TABLE IV. SERVICE-DEPENDENT SENSOR PARAMETER

Parameter Example Source
politic EU summit news ticker
market price Facebook share exchange feed
gossip new Facebook mobile news ticker
service control behaviour
importance (moderate/aggressive) user
...

C. Fuzzy Control Module

The Fuzzy Control Module consists of four main fuzzy
control processes represented by the four sub-modules re-
spectively (see Fig. 1). The crisp and imprecise input data is
converted into fuzzy values for each input fuzzy set with the
Fuzzifying module. The decision making logic of the Fuzzy
Inference module determines how the fuzzy logic operations
are performed (SUP-MIN inference), and together with the
Knowledge Base module determine the outputs of each fuzzy
IF-THEN rules. Those are combined and converted to crisp
values with the Defuzzification module. The output crisp value
can be calculated by the center of gravity or the weighted
average and converted to the number of VM to started or
stopped.

It follows a closer look at the 3 processes fuzzification,
fuzzy inference and defuzzification.

152Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 165 / 263

Fuzzification: Fuzzification is the process of decom-
posing the input data into fuzzy sets, with trapezoidal shaped
membership functions. Figure 4 shows a system of fuzzy
sets for an input with trapezoidal membership functions. Any
particular input is interpreted from this fuzzy set and a degree
of membership is interpreted. If the request-response-time, for
example, it set to about 100 request-per-seconds, the fuzzy
value loaddeviation is set to low.

Fuzzy Inference: The fuzzy values gathered from the
input data are processed by the inference engine using the
expert domain knowledge modelled as fuzzy IF-THEN rules.
The following fuzzy rules are examples how to state the
domain knowledge in the area of up and down scale control.

IF ReqRespTime_rising=high AND
expected_ReqRespTime_rising=high AND
product_launch=now AND
....

THEN
up_scale=very high

...

Defuzzification: After the fuzzy reasoning the resulting
linguistic output variable (e.g. scale up = high) needs to be
translated into a crisp value (e.g. number of VMs to be started
or stopped at time). Defuzzification maps the output from the
fuzzy domain back into the crisp domain. The most common
defuzzification methods is the Center-of-Area (C-o-A) often
referred to as Center-of-Gravity used in this approach and is
defined as follows:

x∗ =

∫
µi(x)xdx∫
µi(x)dx

(1)

where x∗ is the defuzzified output, µi(x) is the aggregated
membership function and x is the output variable. The C-o-
A method calculates the area under the scaled membership
functions and within the range of the output variable and
afterwards calculates the geometric center of this area.

V. PROOF OF CONCEPT BY SIMULATION

In this section we discuss and evaluate the simulation
results. The objective of the assessment was to verify whether
or not our approach will ensure QoS for a cloud service
better than conventional procedures. Hereafter we give a short
introduction in our Simulation Environment (see section V-A)
followed by the main features of our Simulation Scenarios
(see section V-B), thereafter we discuss the results that we
have obtained during several tests.

A. Simulation Environment

For feasibility testing, we created an simulation environ-
ment to be capable of validating the general fuzzy controlled
scaling architecture proposed in this paper. The simulator
therefore consists of four major components. Firstly, a request
generator module, which simulates the generation of requests
from an application to the cloud service. Here should be
stated, that in our simulation requests are generated with
an static workload. The second module is the load balancer
which receives the generated requests of the request generator
and distributes them to the pooled virtual machines. Here,

the time is measured from the generation of the request till
the execution inside a virtual machine is completed. This
request response time then is checked by the scaler module,
which decides either based on the fuzzy or the conventional
rules whether to scale the service up, down or wait. The
conventional rule set is an simple boundary system, where
when the measured average request response hits the upper
boundary a virtual machine gets started or when the lower
boundary is hit a virtual machine is stopped. In between both
boundaries the scaler waits.

Fig. 3. Expected Load During Daytime

Fig. 4. Input Fuzzy Set for Load Deviation

The fuzzy set uses the same boundaries, but as an additional
decision factor, a prediction based on expert knowledge is
used.

Figure 3 shows the simplified load of an service during
daytime. Based on such knowledge an expert specifies whether
the load will be increasing at an high, regular or low rate. In
case of an high prediction the fuzzy scaler generally scales
up faster, which means it starts virtual machines on a lower
load and additionally starts up to two virtual machines based
on the load. Additionally it will scale down later, keeping a
higher pool of available virtual machines. The regular pre-
diction equals the conventional rule set, therefore resulting in
essentially the same behavior. A low prediction, is in principle
a reversed high prediction, which will change the behavior into
generally scale up later and scale down faster. And similar to
the high it is allowed to stop up to two virtual machines at
once.

The simulator is based on a model in which a generated
request includes a static processing time of 100ms. The KPI,
is measured as the request/response time, based on the average
of the last 10 processed requests. Thereby the time is counted
form the generation of the request, till arrival of the response
after the processing at the load balancer. The QoS limit has
been set to 2000ms in this model and the conventional rule set
regulates at an average response time of 1500ms by upscaling
and at 1000ms by downscaling one virtual machine at a
time. To eliminate the influences of the test environment, like
processor fluctuations the factor of 10 was used to all above
described values.

153Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 166 / 263

Fig. 5. Responsetime Fuzzy Sets

Figure 5 above shows the corresponding fuzzy set, where a
load of below 9,000ms is considered low and above 15,000ms
is high. In between stretches the range of normal load. These
fuzzy values are combined with the fuzzy prediction values to
create the set of fuzzy rules. To determine the suitability of
the procedure presented, different scenarios have been created
and tested with and without the fuzzy control mechanism.
Following the scenario with the specific pre-conditions and
characteristics is described and the obtained results a pre-
sented.

B. Simulation Scenarios

In the scenario the number of generated requests are
increased rapidly and kept on a high level for an minute then
to rapidly fall again. Figure 6 below shows the generated load
graph for this scenario and the settings are shown in Table V.

Fig. 6. Generated Load Scenario 1

This scenario simulates a peak load which happens when
a service is facing an sudden demand. Such as accessing the
canteen online menu just before the lunch break. Peak loads
represent a problem in the real world, as countermeasures are
most difficult.

TABLE V. SCENARIO 1 VALUES

Parameter Value
min VMs 2
max VMs 10

runtime 180s

Figure 7 shows the simulation results with the conventional
rules. Here it can be seen that the simulation begins with the
minimum of 2 virtual machines in the pool. Until about 35s in
the simulation the load is low enough for this two machines to
cope with. After this point the average response time is rising
slowly up until 50s where the load gets increased more. From
this point, the response time increases sharply, until the first

boundary limit of 15,000ms is hit and an additional virtual
machine gets started.

Fig. 7. Scenario 1 Conventional Results

The start of another VM is just not enough to improve
the response time significant. Throughout the simulation up
to 8 VMs are running simultaneously to manage the load.
Comparing these results with the fuzzy controled results,
where the prediction is set to low, shown in figure 8, it becomes
clear that they are pretty similar. This is because with an low
prediction, the limits for the up scale are corresponding to
those of the conventional rule. Therefore the regulation starts
on the same load adding VMs. When switching off VMs,
the fuzzy scaler depending on the load cuts off two VMs.
This behavior has however no effect on the in this simulation
already sinking response time, but it could save resources and
money in real life situations. In both cases the QoS limit of
20,000ms is exceeded.

Fig. 8. Scenario 1 Fuzzy Low Prediction Results

The large fluctuations seen at the peak of the load can
be explained by the forming the average response time. The
individual values between newly started and already longer
running VMs vary widely because of the waiting time of the
processing packets in the different VMs input queues.

Fig. 9. Scenario 1 Fuzzy High Prediction Results

Figure 9 shows the results for the simulation with the fuzzy
scaler and an high prediction. Compared to the other two tests

154Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 167 / 263

we can clearly see that the QoS limit of 20,000ms is respected
this time. In general, we see that the response time runs in
a similar but shallower curve. This can be attributed to the
stronger up scale of starting two VMs simultaneously. This
marginal difference is sufficient to prevent the response time
from increasing over the QoS limit. The earlier intervention,
which is already engaged at a normal load, prevents the
requests from accumulating in the input queues of the VMs.
Overall, though, more resources are used than in the other
tests.

A comparison between the conventional rules and fuzzy
scaler with regular prediction is not necessary, because these
two sets are the same and thus generate the same results.

Over the running of all tests it has show that in all the
scenarios considered, the fuzzy scaler is beneficial. Although
this scaler uses in the high prediction more resources, for
which some could argument it will cost more money, is the
benefit in comparison greater, since a service in where less
resource are needed but has no decent response times makes no
sense to use. The low prediction did not improve the archived
response time but releases the allocated resources faster than
the conventional rules, therefore making it more economical.
By the above presented tests it could be shown that by simple
means, such as a fuzzy rule set and knowledge in form of an
prediction, the response time could be improved or resources
could be saved.

VI. CONCLUSION AND FUTURE WORK

The goal of this paper was to show how a common cloud
computing scaling service could be enabled to guarantee QoS
parameters. Especially the KPI, request-response-time, has
been the focus. The extended QoS provisioning architecture
with an fuzzy control module has been delineated. A detailed
description of possible new information to improve the scaling
control system has been discussed. The proof of concept
chapter showed that violation of SLAs could been avoided.

Future work is to proof this results within a real test
environments and to develop an easy to use user interface. This
shall allow users to specify imprecise information input and
expert knowledge. Additionally the expansion to other QoS
parameters, and further fuzzy input data has to be examined.

ACKNOWLEDGMENT

This research is supported by the German Federal Ministry
of Education and Research (BMBF) through the research grant
number 03FH046PX2.

REFERENCES

[1] Amazon auto scaling service. Online. Retrived 01.2013. [Online].
Available: http://aws.amazon.com/autoscaling/

[2] D. Armstrong and K. Djemame, “Towards quality of service in the
cloud,” 2009, pp. 226 – 240.

[3] B. Rochwerger, A. Galis, E. Levy, J. Caceres, D. Breitgand, Y. Wolf-
sthal, I. Llorente, M. Wusthoff, R. Montero, and E. Elmroth, “Reservoir:
Management technologies and requirements for next generation service
oriented infrastructures,” in Integrated Network Management, 2009. IM
’09. IFIP/IEEE International Symposium on, 2009, pp. 307 –310.

[4] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing
performance interference effects for qos-aware clouds,” in Proceedings
of the 5th European conference on Computer systems, ser. EuroSys ’10,
New York, NY, USA, 2010, pp. 237–250.

[5] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “QoS-
Aware Clouds,” in Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing, ser. CLOUD ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 321–328.

[6] C.-T. Yang, K.-C. Wang, H.-Y. Cheng, C.-T. Kuo, and W. C. C.
Chu, “Green power management with dynamic resource allocation for
cloud virtual machines,” in Proceedings of the 2011 IEEE International
Conference on High Performance Computing and Communications, ser.
HPCC ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
726–733.

[7] F. Wuhib, R. Stadler, and M. Spreitzer, “A gossip protocol for dynamic
resource management in large cloud environments,” vol. 9, no. 2, 2012,
pp. 213–225.

[8] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic
resource management in virtualized data centers using fuzzy logic-based
approaches,” vol. 11, no. 3. Hingham, MA, USA: Kluwer Academic
Publishers, Sep. 2008, pp. 213–227.

[9] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “DynaQoS: model-free self-
tuning fuzzy control of virtualized resources for qos provisioning,” in
Proceedings of the Nineteenth International Workshop on Quality of
Service, ser. IWQoS ’11. Piscataway, NJ, USA: IEEE Press, 2011, pp.
31:1–31:9.

[10] Y.-M. Wi, S.-K. Joo, and K.-B. Song, “Holiday load forecasting
using fuzzy polynomial regression with weather feature selection and
adjustment,” vol. 27, no. 2, may 2012, pp. 596 –603.

[11] K.-B. Song, S.-K. Ha, J.-W. Park, D.-J. Kweon, and K.-H. Kim, “Hybrid
load forecasting method with analysis of temperature sensitivities,”
vol. 21, no. 2, may 2006, pp. 869 – 876.

155Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 168 / 263

Scalable Store and Forward Messaging

Ahmed El Rheddane, Noël De Palma, Alain Tchana
LIG/UJF, Grenoble, France

{ahmed.el-rheddane, noel.de palma, alain.tchana}@imag.fr

Abstract—Since the emergence of the Internet, and par-
ticularly with the outburst of cloud computing, the produc-
tion of reliable and scalable distributed applications is an
important area of research. Various middleware technolo-
gies were designed for that purpose, among which we find
Message-Oriented Middleware (MOM), which provides reli-
able asynchronous communication through message queueing
techniques. MOMs have been standardized using the AMQP
protocol, and in the Java world, with the JMS API.

In this paper, we extend a store and forward mechanism to
improve the scalability of an end-to-end reliable asynchronous
messaging infrastructure while remaining compliant to the
standard JMS API. We design a flow control based load
balancing policy that, on the one hand, reduces the risk of
consumer queues’ failures while maintaining a near optimal
throughput; and on the other hand, insures the scalability
of our load balancing mechanism on the producer’s side. We
report the evaluation of our solution deployed on a cloud com-
puting infrastructure and implemented within Joram, an open
source implementation of the JMS API and the AMQP queuing
protocol. This work is now part of the Joram distribution
available on the OW2 consortium.

Keywords-JMS; message queues; scalability; load balancing;
flow control

I. INTRODUCTION

Today’s applications often run on distributed resources.
One of the most commonly used ways to simply yet reliably
integrate the different components of a distributed software
system is through a message-oriented middleware (MOM).
MOMs use messages as the only structure to communicate,
coordinate and synchronize, thus allowing the components
to run asynchronously. MOMs offer two communication
paradigms: one-to-one, producers send messages to a queue
where they are stored till they are consumed by one and
only one consumer; and one-to-many or publish-subscribe,
a producer sends a message to a topic that broadcasts it to all
the subscribed consumers. Java, with a concern of providing
the community with a universal messaging interface has
standardized the Java Message Service API (JMS) [1]. This,
while making sure that all message-oriented applications
would be easily integrated, gives the developers the choice
of the implementation beneath depending on their specific
needs with regard to reliability and overall performance.

The most intuitive MOM configuration consists in hav-
ing one server, with the desired queue, generally on the
consumer’s side, thus rendering the distant communication
channel between the producer and the queue vulnerable in

the case of failures. Instead, a more reliable MOM ensures
a store and forward mechanism. This mechanism requires
a reliable communication model between producers and
queues based on the following properties:

• Asynchrony: the asynchronous property decouples pro-
ducers from queues. They do not need to be both ready
for execution at the same time. This property enables a
deferred access to queues and a loose coupling between
producers and consumers.

• Reliability: once a message is sent, it is guaranteed to
be delivered despite network failures or system crashes.

In this work, we consider the specific case of applications
with symmetric consumers, i.e., all the consumers process
the same tasks. We also position ourselves in the context
of cloud computing, where the consumers might belong
to different clouds and their performance varies depending
on the load of the cloud, since the virtual machines might
share the same physical resources thus affecting each other’s
performances. Taking this into consideration, we aim to
improve the scalability of the store and forward mechanism
with clustered queues: we propose a new load balancing
policy based on flow control, which dynamically adapts
the messages’ load on each of the cluster’s queues to its
consumption rate; this will be highlighted by comparing our
scalable store and forward solution to a static load balancing
policy such as round-robin. Load balancing is moreover done
on the producer’s side so as to allow intercloud consumers’
deployment. Last but not least, our solution includes a
failover mechanism in order to enhance its reliability.

We implemented and evaluated our solution using Joram,
for Java Open Reliable Asynchronous Messaging [2], de-
ployed on a cloud computing infrastructure. Joram is a pure
Java implementation of the JMS API. It also implements the
Advanced Message Queuing Protocol (AMQP) [3].

The rest of this paper is organized as follows: Section II
describes our store and forward mechanism and shows how
we improve its scalability; Section III formally describes the
scalability of queue messaging; in Section IV we detail the
proposed load balancing strategy, which we later evaluate in
Section V; then we present the related work in Section VI
before finally concluding this work in Section VII.

II. STORE AND FORWARD WITH LOAD BALANCING

To provide a store and forward mechanism, a MOM
must insure both the asynchrony between producers and the

156Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 169 / 263

P CAQ Q1

Joram 1 Joram 2

C: Consumer
P: Producer
AQ: Alias Queue
Q: Queue

Figure 1. Alias queue’s principle

queues deployed on consumers’ side, and the communica-
tion reliability between them. For that purpose, a solution
is to use a special destination called an alias queue. An
alias queue is a special persistent queue that automatically
forwards the messages it is sent to another, generally distant,
persistent queue on the consumer’s side (see Figure 1). It is
set to write-only mode as the “real” destination is meant
to be the queue to whom the messages are forwarded. The
alias queue would thus be an intermediate destination on the
producer’s side where messages will be stored, and visible
(i.e., can be monitored), till they successfully reach their
final destination. This persistent pair of queues enforces the
asynchronous property. To enforce reliability, the forwarding
mechanism involves a distributed transaction between the
alias queue and the related queue. This transaction insures,
despite network or system failures, that a message is either
stored on the persistent alias queue on the producer’s side
or on the persistent queue on the consumer’s side.

The aim of this paper is to improve the scalability of
this store and forward mechanism. We propose a new
load balancing policy based on flow control described in
Section IV. To implement this policy, we extended the alias
queue mechanism to support load balancing. This extension
is based on a well-known load balancing pattern similar
to Web-based system (e.g., JK Apache Tomcat Connec-
tor [4]). Each producer is assigned to an alias queue that
would distribute the messages to a set of distant clustered
queues each corresponding to a set of local consumers (see
Figure 2). We also integrated a failover mechanism that
allows messages to be re-sent to another queue if their
initial destination is unavailable. Note that this pattern is
not exactly the same as the one used for Web systems
since: (i) load balancing is achieved on the producers’ side;
and (ii) both the producers’ and the consumers’ sides can
be controlled. Also, this is different from the one-to-many
messaging paradigm provided by topics, as one message will
be forwarded to one and only one of the cluster’s queues. We
will see in the following sections how this affects MOM’s
scalability and what the different strategies of distributing
messages between our multiple destinations are.

III. SCALABLE MESSAGING

In this section, we discuss the different factors that affect
the performance of a messaging system. First, we will
start with the case of a standard queue then generalize
our approach to clustered queues using an alias queue as
a forwarding mechanism.

P CAQ Q1

QnP AQ

... ...

CCC

CCC

PP

PPP

Figure 2. Scalable queueing with enhanced alias queues

A. Standard Queues

Let p be the production rate on the queue and c the
consumption rate. l being the length of the queue, i.e., the
number of waiting messages, we have:

∆l = p− c

Depending on the result, three cases can be identified:
• ∆l > 0: This means that the queue receives more

messages than it is asked to deliver. The number of
pending messages grows and we say that the queue is
unstable and flooded.

• ∆l < 0: In this case, the consumption rate is higher
than the potential reception rate and receivers are
blocked waiting for new messages to come. The queue
is still unstable and we say that it is draining. This
means that the queue’s ressources are underutilized.

• ∆l = 0: Here, the consumption rate matches the
reception rate and the queue is stable. This is the ideal
case that we aim to achieve.

The stability of a queue is thus defined by the equilibrium
between the messages’ production and consumption.

B. Clustered Queues

In this case, our alias queue, to which the messages are
sent, is wired to n queues, on which the messages are
received. Let p be the production rate on the alias queue, ci
the consumption rates on each of the consumers’ queues, and
li their respective lengths. The scalability of our distributed
system can be discussed on two different levels:

1) Global Scalability: Let L be the total number of
waiting messages in all the consumers’ queues. We have:

L =

n∑
i=1

li and ∆L = p−
n∑

i=1

ci (1)

The overall stability of our system is given by: ∆L = 0.
This shows that, globally, our system can handle the global
production load. However, it fails to guarantee that on each
consumer queue, the forwarded load is properly handled.
This will be guaranteed by local scalability.

2) Local Scalability: Depending on how we distribute the
messages between the different queues, each would receive
a ratio ri of the total messages produced on the alias queue.
Thus, for each i ∈ {1..n} we have:

∆li = ri.p− ci (2)

157Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 170 / 263

Local scalability is then given by:

∀i ∈ {1..n}; ∆li = 0 (3)

Note that local scalability implies global scalability as:

∀i ∈ {1..n}; ∆li = 0⇒ ∆L = ∆

n∑
i=1

li =

n∑
i=1

∆li = 0

(4)
In the remaining of this paper, we will suppose that global
scalability is verified and try to achieve local scalability by
tuning our load balancing strategies.

IV. FLOW CONTROL POLICY

The main question that arises when forwarding messages
to different destinations is how to achieve load balanc-
ing, i.e., how to distribute the received messages over the
clustered destination queues. In this work, we propose a
dynamic load balancing strategy based on flow control, i.e.,
the consumption rates of our consumers. As a reference load
balancing strategy, we choose round-robin; we could also
have chosen random, which is statistically equivalent, and
would ultimately give the same results.

A. Round-Robin

The first implemented strategy is the simplest. It consists
in forwarding messages uniformly over our destinations: we
would forward the first message to the first queue, the second
to the next one etc. Till we are out of destinations, in which
case we go back to send to the first queue and so on.

If we take up the forwarding ratios introduced in the
previous section, this strategy can be described as follows:

∀i ∈ {1..n}; ri =
1

n
(5)

n being the number of queues wired to our alias queue.
While this strategy is straightforward to implement, and

can even be effective if all the consumer queues have the
same consumption rate; it can also result in local instability
if our queues have different consumption rates. Besides,
it is static, which makes it unable to follow the potential
variation of our distributed messaging system. Thus, a more
sophisticated adaptive strategy is needed.

P
C

AQ

Q1

CQ2

CQ3

.

.

.

Retrieves consumption rates

Controller

Updates forwarding ratios

AQ
Controller

P

Figure 3. Load balancing controller

Algorithm 1 Flow control’s algorithm
while TRUE do

for each consumer queue c do
rate[c] ← c.monitorConsumptionRate()
load[c] ← c.monitorLoad()

end for
for each consumer queue c do

weight[c] ← computeConsumerWeight(rate[])
if load[c] > MAX LOAD then

weight[c] ← weight[c]*9/10
end if

end for
p.updateWeights(weight[])
sleep(period)

end while

B. Flow Control Principle

Flow control is a dynamic strategy that allows a
consumption-aware message distribution. Its mechanism,
described by Figure 3, relies on a controller integrated with
our alias queues, which has a representation of their inter-
connections with the consumers’ queues. The controller’s
integration guarantees our solution’s scalability with regard
to producers since each alias queue has its own load balancer
instead of having one centralized load balancing controller.
It is also easy to use for an end-user as load balancing is
done transparently without any extra configuration.

Our controller periodically monitors the system, retrieving
particularly the consumption rates of the consumer queues,
i.e., the number of messages each of the cluster’s queues
has been asked to deliver over the last period. The decision
process can then be formally described as follows: let us say
that for the k-th period, we retrieved ci(k) as consumption
rates for our queues. In order to make sure that the more
a queue consumes messages, the more messages it will be
sent, the expression of our ri(k + 1) for the next period is:

∀i ∈ {1..n}; ri(k + 1) =
ci(k)∑n
i=1 ci(k)

(6)

As for the overload that might occur on a queue before
its forwarding ratio is regulated, we propose to define a
maximum load limit per queue, above which its forwarding
ratio will be artificially decreased so as it can handle part
of its pending messages.

Naturally, the controller executes its decision by replacing
the old ri(k) with the newly computed ri(k+1). Technically,
Algorithm 1 details the different steps that our controller
goes through, where computeConsumerWeight implements
ri(k + 1)’s expression. The weights used in our implemen-
tation are directly proportional to our forwarding ratios, they
represent the number of messages that will be forwarded to
the same queue before changing destinations.

158Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 171 / 263

The only question left to be answered is how to determine
the period of our control loop. While having a shorter
loop increases the reactivity of our system, it also induces
a greater overhead as it involves exchanging monitoring
messages more frequently. The solution we propose aims at
maximizing the reactivity of our system while controlling its
induced overhead. We do not fix the period itself, but we fix
a tolerated overhead, i.e., the ratio of monitoring messages
to the produced throughput: at each iteration, we determine
the next period based on last period’s throughput so as to
stay within the tolerated overhead.

Our consumption-aware load balancing strategy takes into
consideration the differences between our consumer queues
in terms of consumption rates, which, a priori, vary with
time, and should improve the performance of our system.
The second part of the evaluation section verifies this
assumption.

V. EVALUATION

Now that our scalable distributed messaging system is
properly geared, we have to check its efficiency. To do so,
we started by evaluating the proper overhead of the alias
queue, and we went on to compare the performances of our
two load balancing strategies. Note that overhead always
refers to the effect of using an alias queue on performance.

For our evaluation we used virtual machine instances
of type m1.small as described by Amazon EC2 [5], i.e.,
2GB memory and 1 VCPU, provisioned on a private cloud
running racks with two 6 cores Intel(R) Xeon(R) CPU
E5645 @ 2.40GHz, 32GB RAM, 1GBps isolated LAN and
managed by OpenStack [6]. All our results are computed
over campaigns of 1, 000, 000 messages of 1kB each. Our
solution has been implemented and tested using Joram.

A. Alias Queue’s Overhead

In our first set of experiments, we want to evaluate
the maximum capacity of Joram with and without using
alias queue. Our metric here is the maximum throughput,
i.e., maximum number of consumed messages per second.
Figure 4 shows the results of these experiments, presented
in pairs: either using an alias queue or not.

The first two experiments put both the consumer and
producer on the same virtual machine, and use only one
Joram server. We can see that the general throughput slightly
decreases when using an alias queue as an intermediate
message, along with its acknowledgement, is added. This
overhead is however less than 4%, as intra-server commu-
nication is highly optimized in Joram.

The experiments 3 and 4, add a new Joram server, to eval-
uate the overhead when messages go through an intermediate
server instead of directly reach their final destination; this
corresponds to the reliable set-up discussed in the store and
forward, subsection of section II, even though both servers
are co-located on the same virtual machine. We can see that,

No Configuration msg/s

1 Q1P C 2291

2 AQ Q1P C 2211

3 P CQ1 2052

4 P CAQ Q1 2001

5 P CQ1 1944

6 P CAQ Q1 1918

7 P

C

AQ

Q1

CQ2

3678

Figure 4. Alias queue’s overhead evaluation

in this case the overhead is even smaller (2.5%), as extra
messages are needed for the forwarding even without the
alias queue.

In the scenario depicted by the experiments 5 and 6,
which is the most realistic since the communication is done
between two different virtual machines, we can see that the
alias queue’s overhead drops to about 1%. Moreover, in this
particular case, the virtual machines are co-located; should
we consider the latency as well, the alias queue’s overhead
can fairly be neglected.

Now that we have established that alias queues’ utilization
has almost no overhead, the 7th experiment of Figure 4
shows how this mechanism can be used to enhance the scal-
ability of our messaging system. The resulting throughput,
which is roughly two times the previous one (experiment 6),
shows that adding consumer queues to the alias queue
linearly increases the system’s performance.

In this particular case, the consumers were both identical,
as they were both running on maximum speed, on similar
virtual machine instances. Thus, the simple round-robin
strategy was enough. In the next part, we will see how flow
control is sometimes necessary for Joram to work properly.

B. Flow Control Evaluation

To evaluate our dynamic load balancing strategy, we
regulate the sending and receiving rates of our clients and
calculate the total time needed to receive the 1, 000, 000
sent messages. We also monitor the system, particularly the
queues load during the experiments. Based on the previously

159Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 172 / 263

100 200 300 400 500
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Q1
Q2

Time (s)

N
u

m
b

e
r

o
f

p
e

n
d

in
g

 m
e

ss
a

g
e

s

Figure 5. Consumer queues’ load evolution

100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

Q1
Q2

Time (s)

N
u

m
b

e
r

o
f

p
e

n
d

in
g

 m
e

ss
a

g
e

s

Figure 6. Consumer queues’ load evolution in flow control mode

computed maximum throughput (experiment 4, Figure 4),
the production rate used for the following experiments is:
2000msgs/s. The consumption rates of the queues are given
as a percentage of the production rate and varies as follows:

1) One producer and two identical consumers: The con-
figuration with 1 producer and 2 consumers is similar to the
one set for the 7th experiment of Figure 4. Our experiments
show that round-robin takes a total time of 500.0s, whereas
our flow control policy results in a total reception time of
500.5s. This is the ideal case where both consumers receive
messages at the same rate (50% of the produced load each),
round-robin is here the perfect solution. However, we see
that even when our flow control mechanism is activated, it
gives us about the same performance. The overhead is due
to expected side-effects in the computation of weights as we
had to settle for a level of granularity.

2) One producer and two unbalanced consumers: In this
case, our consumers have significantly different consumption
rates (70% and 30%). Round-robin is not at all suited for
such a configuration, it expectedly resulted in the time-out of
the slowest consumer: it couldn’t receive all the forwarded
messages in a reasonable time. This is mainly due to the
overload on the consumer’s queue, as on each round, it
keeps 20% of the forwarded messages, which later affects its
ability to respond to the consumer’s client requests. Figure 5
shows the evolution of the slow consumer’s queue load.

We can see that the number of waiting messages on the
slowest consumer’s queue is growing linearly, and while this
queue is flooded, the other is draining. This badly affects
the overall performance of the system. Flow control, on the
other hand, achieves a total reception time of 510s, which
is not very far from the ideal 500s. The delay is due to the
fact that the flow control loop’s initial period is 10s, which
means that it takes 10s for the first flow control regulation
to take place. Figure 6 shows that flow control regulated
the forwarded messages to insure a balanced load on both
consumers’ queues.

3) Two producers and two variable consumers: Figure 7
shows the configuration set up for this experiment, which

P CAQ Q1

CQ2P AQ

Figure 7. 2 producers, 2 consumers configuration

100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

Q1
Q2

Time (s)

N
u

m
b

e
r

o
f

p
e

n
d

in
g

 m
e

ss
a

g
e

s

Figure 8. Consumer queues’ loads with changing rates

is meant to prove two things: first, that our mechanism
can work with more than one producer (i.e., alias queue);
more importantly it shows that our flow control effectively
adapts to any consumption rates’ variation as we start with
consumers receiving with 70%-30% rates and invert them on
t = t0 + 250s to 30%-70%. Figure 8 describes the queues’
loads during this experiment.

As you can see in Figure 8, the queues’ loads are
stabilized throughout the experiment, which results in a
total reception time of 506s. This surely concludes the
effectiveness of the flow control mechanism.

VI. RELATED WORK

While in our present work, we apply load balancing
policies to message-oriented middleware, many previous
works have detailed different load balancing strategies, par-
ticularly for web-based applications [7], [8], [9], [10]. These
policies have been classified as content-blind or content-
aware based on whether they take into account requests
being forwarded. Round-robin and weighted round-robin
are obviously content-blind. Other content-blind policies are
random, which dispatches messages randomly between the
worker servers; least connection and least loaded, which
forward messages respectively to the server with the least
number of connections and the one with the least load,
with regard to the server’s capacity and current utilization.
Content-aware policies aim to achieve better efficiency by
taking into account for instance the sessions established
between the clients and servers and forward the packets
belonging to the same session to the same servers, these
are then called sticky sessions [11]. Another content-aware
policy consists in taking into account the locality of the
clients and forward their requests to the nearest servers.
While these policies in general aim at optimizing the perfor-
mance of the system, other studies [12], [13] focus on the
energy efficiency of such policies. Our flow control policy
is therefore content-blind, it also differs from the previous
policies by its integrated store-and-forward mechanism.

160Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 173 / 263

Load balancing has also been widely addressed in the
context of high performance computing in grids or multi-
processor machines[14], [15], [16] where distributed load
balancing, which involves exchanging loads between neigh-
bor computing nodes is rather privileged.

Commercial message-oriented middlewares do also in-
tegrate load balancing, IBM’s WebSphere MQ [17], for
instance, provides a basic round-robin policy for its cluster
queues that can be enhanced by statically specifying weights
for queues in order to manage their priority. Another exam-
ple is HornetQ [18], which also distributes the loads over its
queue clusters on a round-robin basis, it excludes however
the queues with no connected consumer. Finally, Oracle’s
BEA WebLogic [19] JMS implementation also offers load
balancing with policies limited to round-robin and random.

In the specific case of Joram, a previous work [20]
has addressed scalability differently: producers are statically
affected each to a specific consumer queue; these consumer
queues are interconnected (clustered queues) in a way that
each draining queue will see if the the others have extra
messages and “steal” them, likewise, once a queue’s load
reach a certain limit it distributes, if possible, the extra load
over the other queues. Whereas this is a corrective policy that
handles problems when they occur, which results in extra
traffic on our system, as a message is first sent to a queue,
then it is potentially forwarded as many times as necessary;
our work is based on a predictive policy that tries to forward
the messages to the “right” queues in the first place.

VII. CONCLUSION

Message-oriented middlewares have proven to be an ef-
fective way to integrate the components of a distributed soft-
ware system, both guaranteeing asynchrony and end-to-end
reliability thanks to their store and forward mechanisms. In
this paper, we described and extended the store and forward
mechanism of a MOM infrastructure in order to improve
its scalability with regard to both the producers and the
consumers, while maintaining the JMS API compatibility.
Our extension includes the design of a flow control based
load balancing policy to insure the local stability of the
clustered queues. This has been done with the concern of
providing a scalable distributed mechanism that would be
totally transparent to the end-user. The evaluation of our
solution, carried out on a cloud computing infrastructure,
shows the effectiveness of our design compared to a basic
load balancing policy. As a future work, we intend to
enhance our solution to support the elasticity of message-
oriented middleware using the flexibility offered by cloud
computing infrastructures. We will thus go beyond the static
dimensioning the queues and develop a dynamic provision-
ing mechanism that would scale automatically the clustered
queues based on the total load of our system.

ACKOWLEDGEMENT

We’d like to thank ANR INFRA for supporting this work.

REFERENCES

[1] “JMS Concepts,” [retrieved: Mar., 2013]. Available: http://docs.
oracle.com/javaee/6/tutorial/doc/bncdq.html

[2] “Joram home page,” [retrieved: Mar., 2013]. Available: http:
//joram.ow2.org/

[3] “AMQP home page,” [retrieved: Mar., 2013]. Available: http:
//www.amqp.org/

[4] “The Apache Tomcat Connector,” [retrieved: Mar., 2013].
Available: http://tomcat.apache.org/connectors-doc/index.html

[5] “Amazon Elastic Compute Cloud home page,” [retrieved: Mar.,
2013]. Available: http://aws.amazon.com/ec2/

[6] “OpenStack home page,” [retrieved: Mar., 2013]. Available:
http://openstack.org/

[7] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari, “A scalable
and highly available web server,” in Proceedings of the 41st
IEEE Computer Conference (COMPCON), 1996, pp. 85–.

[8] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load bal-
ancing on web-server systems,” in IEEE Internet Computing,
vol. 3, May 1999, pp. 28–39.

[9] K. Gilly, C. Juiz, N. Thomas, and R. Puigjaner, “Adaptive
admission control algorithm in a qos-aware web system,” in
Inf. Sci., vol. 199, Sep. 2012, pp. 58–77.

[10] B. Yagoubi and Y. Slimani, “Dynamic load balancing strategy
for grid computing,” in Transactions on Engineering, Comput-
ing and Technology, 2006.

[11] L. Cherkasova and P. Phaal, “Session-based admission con-
trol: A mechanism for peak load management of commercial
web sites,” in IEEE Trans. Comput., vol. 51, 2002.

[12] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao, “Energy-aware server provisioning and load dispatch-
ing for connection-intensive internet services,” in Proceedings
of the 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2008, pp. 337–350.

[13] E. M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-
efficient server clusters,” in Proceedings of the 2nd Workshop
on Power-Aware Computing Systems, 2002, pp. 179–196.

[14] C. Xu and F. Lau, “Iterative dynamic load balancing in
multicomputers,” in Journal of Operational Research Society,
vol. 45, 1994, pp. 786–796.

[15] R. Diekmann, B. Monien, and R. Preis, “Load balancing
strategies for distributed memory machines,” in Multi-Scale
Phenomena and Their Simulation, 1997, pp. 255–266.

[16] Y. Li and Z. Lan, “A survey of load balancing in grid com-
puting,” in Proceedings of the First international conference
on Computational and Information Science (CIS), 2004, pp.
280–285.

[17] “WebSphere MQ V6 Fundamentals,” [retrieved: Mar.,
2013]. Available: http://www.redbooks.ibm.com/redbooks/
pdfs/sg247128.pdf

[18] “HornetQ home page.” [retrieved: Mar., 2013]. Available:
http://www.jboss.org/hornetq/

[19] “Introduction to WebLogic JMS,” [retrieved: Mar., 2013].
Available: http://docs.oracle.com/cd/E13222 01/wls/docs81/
jms/intro.html

[20] C. Taton, N. De Palma, J. Philippe, and S. Bouchenak, “Self-
optimization of clustered message-oriented middleware,” in
Proceedings of the 4th International Conference on Autonomic
Computing (ICAC), 2007.

161Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 174 / 263

Towards a Method for Decision Support in
Multi-cloud Environments

Aida Omerovic
SINTEF ICT

Norway
Email: aida.omerovic@sintef.no

Victor Muntés-Mulero and Peter Matthews
CA Technologies
CA Labs Europe

Email: {victor.muntes,peter.matthews}@ca.com

Alexander Gunka
BOC Information Systems

Austria
Email: alexander.gunka@boc-eu.com

Abstract—Providers of cloud services as well as the cloud
services themselves differ in the business models, functionality,
quality of service, cost, value, etc. which makes the choice of
a provider and a service difficult. Beyond that the complexity
and lack of transparency with respect to cost and quality render
the run-time adaptation and replacement of services almost
impossible. This position paper presents main results of our
recent efforts towards development of a decision support method
(DSM) in multi-clouds. The DSM aims at taking into account
risk, quality and cost aspects in order to assist a decision maker
in choosing providers and services in a multi-cloud environment.
We characterize the needs for the DSM in the multi-cloud context
and propose an initial version of the process for the DSM. Based
on the method proposed and the needs identified, we elaborate
to what degree the current state of the art can be leveraged and
what further multi-clouds-specific extensions are needed.

Keywords—multi-cloud; decision support; risk assessment;
quality prediction; cost prediction; architectural design; trade-off
analysis; cloud service selection; cloud provider selection.

I. INTRODUCTION

The rapidly increasing number of cloud services and cloud
service providers opens for new opportunities [1] in designing
application and enterprise architectures. It also enables new
business models and investments [2] [3] [4], new quality
levels [5], as well as new capabilities. The services can
be orchestrated and their compositions adapted even more
dynamically than earlier. Availability of similar services from
several providers opens for replaceability between services, or
redundancy of services. As a result, the quality may improve
and the risk of vendor lock-in will normally be reduced.
However, there are also significant challenges [6] involved
in realizing collaborations between clouds. One of the major
challenges regarding cloud services and their providers is that
they differ in the business models, functionality, quality of
service, cost, value, etc. Another challenge is complexity and
lack of transparency with respect to cost and quality. This
makes the choice of a provider and a service difficult and
the run-time adaptation and replacement of services almost
impossible. When selecting the cloud services and the cloud
providers, systematic support for identifying the candidate
services and understanding the implications of choosing the
different alternatives, is needed.

Decision support [7] for multi-cloud environments imposes
several challenges compared to the traditional model-based
decision support. Most notably, the dynamics of multi-cloud
require light-weight processes and tools, the decision makers

depend on easy-to-understand representations of the impacts of
the decisions, the notion of cost is to a lower degree established
in the existing approaches supporting the trade-off analysis
of enterprise and software architectures, and a merge of the
aspects of risk, cost and quality in a consolidated view imposes
a new complexity as well as methodological challenges.

The specific objective of this paper is to establish the nec-
essary baseline for a tool-supported decision support method
(DSM) aimed at facilitating selection of cloud services and
providers in a multi-cloud environment. In particular, we argue
that risk, quality and cost are among the main three factors in
such a selection process. To that end, we aim at providing
a decision support which analyses the impacts of the possible
decision alternatives in a multi-cloud environment with respect
to those three factors. We believe that a trade-off analysis
between risk, cost and quality based on a consolidated view
of the three will provide a useful basis for a decision maker in
assessing the possible choices through a cost-benefit analysis.

This position paper presents the main results of the recent
efforts towards development of a DSM for multi-cloud envi-
ronments. We characterize the needs for the DSM in the multi-
cloud context and propose an initial version of the process for
the DSM. Based on the method proposed, we elaborate on the
suitability of both the method proposed and the state of the art
for analyzing risks as well as for predicting quality and cost
in the multi-cloud context.

The paper is organized as follows. Section 2 summarizes
the state of the art regarding risk analysis, quality prediction,
and cost analysis. Section 3 characterizes the needs for the
DSM in the multi-cloud context. Section 4 proposes an initial
process for the DSM. Section 5 discusses to what degree the
state of the art can be leveraged within the DSM process
proposed. Main conclusions are provided in Section 6.

II. STATE OF THE ART

The ISO 31000 standard for risk management comes with
no specific techniques, modeling languages or recommended
tools for how to conduct risk assessment in practice. However,
most established risk management methods [8] [9] [10] [11]
follow the ISO 31000 process, and provide such additional
support. Common for these approaches is that they are de-
signed to support risk management and risk documentation
from the perspective of an organization and its policies. There
is lack of support in the state of the art for extracting the risk
picture that is relevant for specific external stakeholders, such

162Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 175 / 263

as services consumers, and to present this picture in an intuitive
and easily understandable way. There is also lack of an
approach which combines cloud modeling and risk modeling.
There exist many different approaches to service modeling
[12] [13] [14] [15], focusing on expressing relevant elements
and aspects of services, such as actors and components, roles,
activities, interfaces and contracts. However, none of these
have a risk-oriented view where stakeholders are represented
as risk owners, and where the assets at stake are made explicit.

In a model-based decision making, the decisions are made
based on a number of factors. The major ones include func-
tional and non-functional properties, as well as cost and the
added value. A trade-off between such factors is the basis
for decision making. This trade-off is particularly complex
between the non-functional factors, the variable parts of the
architecture, and the cost of the selected solutions. The vari-
ability, as well as incomplete information or knowledge, are
also sources of risk. Since functional requirements normally
are less flexible and specified rather early, and since the
added value is strongly related to the functional properties, the
factors that are tunable and highly interrelated are risk, quality
and cost. Therefore, in a model-based decision making, the
decisions are based on a trade-off assessment between risk,
quality and cost. The risk assessment, in turn, is based on
information that is gathered about assets, entities, actors, etc.
that are involved in the service event or action in question.

As a basis for the elicitation of the adequate quality char-
acteristics, we may use the software product quality standard
ISO/IEC 9126 [5]. The ISO 9126 defines quality as “the
totality of features and characteristics of a software product
that bear on its ability to satisfy stated and implied needs”.
The ISO 9126 standard provides an established specification
of decomposed quality notions with their qualitative and quan-
titative definitions. The standard defines a quality model for
external and internal quality, and for quality in use. External
quality is the totality of the characteristics of the software
product from an external view when the software is executed.
Internal quality is the totality of characteristics from an internal
view and is used to specify properties of interim products. The
characteristics of the internal and external quality model are
functionality, reliability, usability, efficiency, maintainability
and portability. These are in turn decomposed into a total
of 34 sub-characteristics. Quality in use is the user’s view
of the quality of the software product when it is used in a
specific environment and a specific context of use. The quality
in use characteristics are effectiveness, productivity, safety
and satisfaction. There is also a further decomposition of all
characteristics into the related metrics.

SMI [16] is a standardization effort from the Cloud Ser-
vices Measurement Index Consortium (CSMIC) consisting of
academic and industry organizations. The Service Measure-
ment Index (SMI) uses a series of characteristics and measures
to create an common means to compare different services from
different suppliers. The characteristics are categorized as Us-
ability, Performance, Agility, Security and Privacy, Financial,
Assurance and Usability. Each of these characteristics has a
number of measures that can be used to evaluate the risk in
using a service. For example in the accountability category one
of the measured attributes is Compliance and another is SLA
verification both of which can be used to create a risk measure

for the service and the provider. CSMIC is in negotiation with
a number of large standardization organizations to develop a
joint working group and specification.

According to Fenton and Neil [17], most prediction models
use size and complexity metrics to predict defects. Others
are based on testing data, the quality of the development
process, or take a multivariate approach. The goal/question/-
metric paradigm [18] [19] is a significant contribution to
quality control and can be used for development of quality
models and for the design of a measurement plan [20] [21].
To enable explicit risk and quality assessment, we make use
of monitoring and measurement. Risk monitoring is a means
to facilitate continuous risk assessment by the monitoring
of relevant key indicators or metrics. An indicator can be
defined as “something that provides a clue to a matter of
larger significance or makes perceptible a trend or phenomenon
that is not immediately detectable” [22]. To enable explicit
risk and quality assessment, we make use of monitoring and
measurement.

PREDIQT [23] is a tool supported method for model-
based prediction of impacts of architectural design changes
on system quality characteristics (performance, scalability,
security, etc.). PREDIQT facilitates specification of quality
characteristics and their indicators, aggregation of the indica-
tors into functions for overall quality characteristic levels, and
dependency analysis. The main objective of a PREDIQT-based
analysis is prediction of system quality by identifying different
quality aspects, evaluating each of these, and composing the
results into an overall quality evaluation. This is useful, for
example, for elicitation of quality requirements, evaluation of
the quality characteristics of a system, run-time monitoring of
quality relevant indicators, as well as verification of the overall
quality characteristic fulfillment levels. PREDIQT makes use
of models that capture the system design, the system quality
notions, as well as the relations between them. An important
aim of PREDIQT is to enable the right balance between
practical usability of the models and the soundness of the
predictions. The method is compatible with the ISO/IEC 9126
software quality standard, and has been successfully applied
in real-life industrial settings [24] [25].

CORAS [8] is a tool-supported and model-driven approach
to risk analysis that is based on the ISO 31000 risk manage-
ment standard. Whereas alternative state-of-the-art approaches
such as CRAMM [26] and OCTAVE [27] rely on text and
tables, CORAS uses diagrams as an important means for
communication, evaluation and assessment. Risk modeling is a
technique for risk identification and assessment, and the state-
of-the-art offers several tree-based and graph-based notations.
Fault tree analysis [28] (FTA), event tree analysis [29] (ETA)
and attack trees [30] are examples of the former and provide
support for reasoning about the sources and consequences
of unwanted incidents, as well as their likelihoods. Cause-
consequence analysis [31] (CCA), Bayesian network [32] and
Markov analysis [33] are examples of graph-based notations.
CCA employs diagrams that combine the features of both fault
trees and event trees, whereas the latter two serve as math-
ematical models for probabilistic and statistical calculations,
respectively.

Approaches to quality assessment, risk analysis and secu-
rity management provide support for decision making so as to

163Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 176 / 263

ensure a required quality level while managing risks. However,
while identifying and suggesting options and solutions, such
as security mechanisms, the methods often lack techniques
and tools for analyzing the associated cost and the return of
investment in the identified solutions. Franqueira et al. [2]
address this problem by proposing a method for handling
security investment decisions achieved by so-called Real Op-
tion thinking. The method is partly based on Real Option
Analysis [3] (ROA), which is a decision support technique
in the area of capital investment by means of mathematical
models to evaluate financial options. The method is supported
by a security trade-off tool called SecInvest, which is imple-
mented as a Bayesian network topology and supports decision
makers in evaluating investment options and identifying the
most suitable and cost-efficient ones. Other approaches to cost
estimation in the setting of security investments are Net Present
Value (NPV) [4], Return on Security Investment (ROSI) [34],
Architecture Trade-Off Analysis Method (ATAM) [35], the
Cost Benefit Analysis Method (CBAM) [7] and the Security
Solution Design Trade-Off Analysis [36]. These and similar
approaches can be understood as methods and techniques to
facilitate so-called security economics.

III. CHARACTERIZATION OF NEEDS

As a part of context establishment, we elicited quality
aspects and risks which are specific to a multi-cloud environ-
ments. The elicitation was based on a comprehensive model
of migration process. The model was used as a baseline and a
checklist for understanding and decomposing the risk, quality
and cost aspects. The exercise resulted in a high-level overview
of main risks, as well as a model of decomposed quality
characteristics which are specific to multi-clouds. The three
overall characteristics identified are: interoperability, intercloud
replaceability and security. In addition, cost of migration
between multi-clouds was classified into cost of personnel, cost
of time with two coexisting services, cost of compensation
for uncertainty, and cost of hardware and other resources.
Through these models, a common understanding of the main
risk, quality and cost aspects in our context, was established.
The initial experiences and results of the quality, cost and risk
classification indicate that:

• Before eliciting the quality characteristics and risks of
a multi-cloud based architecture, the context has to be
thoroughly defined. Moreover, the architecture models
of the target need to be established. This provides a
common understanding of the scope and objectives,
as well as the necessary frames for further modeling
and decision making. For example, during the context
establishment, a process model for migration was
used as the foundation for eliciting the aspects and
indicators related to quality, cost and risk.

• The decision support models should, once available,
be able to take the proposed alternatives for architec-
ture design (measures and treatments considered) and,
based on each alternative, provide the resulting risk
picture, predicted levels of fulfillment of the relevant
quality characteristics, as well as the estimated costs.
Thus, risk, quality characteristics and cost should be
treated as separate concerns.

• Ideally, in order to accommodate for a cost-benefit
analysis, the method should consider added value (or
profit) in addition to cost. Minimizing cost and risks
and maximizing quality levels is not necessarily a
realistic goal. In fact, the benefits may arise from e.g.
process improvement through the new architecture,
improved or extended functionality, or similar. Thus
the trade-offs between quality, risk and cost may vary
significantly depending on the utility function and
the risk attitude of the decision maker. In addition,
the trade-off (or “selection criteria”) should take into
account the need for balancing the cost with the added
value beyond achieving the quality and risk relevant
objectives.

• The method should be tool supported, and the tool
should at least provide a diagram editor as well as an
easy-to-understand presentation of the impacts of the
decision alternatives on quality, risk and cost. The tool
should also offer the interfaces needed for acquisition
of the data needed for evaluation of the indicators,
as well as the interfaces for the needed trace-link
information.

IV. METHOD FOR DECISION SUPPORT FOR MULTI-CLOUD
ENVIRONMENTS – A PRELIMINARY SPECIFICATION

The DSM for multi-cloud applications is a model-driven
method consisting of three main artifacts: a process, a language
and a tool. This section provides the initial specification of
the DSM process and the actors involved. The DSM process
consists of three overall phases, and each phase is decomposed
into a set of sub-phases. The DSM process is undergone while
developing, verifying and applying the comprehensive decision
support models which include the aspects of architecture, risk,
quality and cost. We assume the following four types of actors
involved in the DSM process:

• Analyst: the analyst is an expert in the DSM and has
the responsibility for leading and facilitating a DSM-
based analysis. That is, the analyst coordinates the
overall actors, collects the input for developing the de-
cision support models, interacts with the overall actors
during the model development and usage, makes sure
that the necessary steps have been conducted within
the resources allocated, and validates that the models
have the needed quality and contents.

• Decision maker: the decision maker defines the scope
and the objective of a DSM-based analysis. He/she
will provide the instructions as to what parts of the
architecture should be encompassed in the models, the
expected validity of the models, the scope and kinds of
the perspective changes/revisions of the architecture,
etc. The decision maker will also be the main user of
the decision models once they have been developed.
He will therefore specify the decision alternatives in
the decision models, and use the resulting impact
estimates with respect to risk, cost and quality as an
aid in the decision making. This actor is aware of the
business model and strategy of the company. Hence,
a decision maker may be a business expert as well,
capable of making decisions based on his knowledge

164Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 177 / 263

DSS	use	cases

1

Decision Maker

Establish context and
model the target

Analyst

Assess and verify risk, cost
and quality

Treatment and decision
making

Domain Expert

Cloud Measurement
Service

Fig. 1. The top level three phases and the actors involved in the DSM process

of the project budgets, allowable risks and the business
processes being supported by the applications. Larger
organizations may distinguish between a business ex-
pert who builds the requirements specification and
a decision maker who selects services based on the
specification. For simplicity, these two roles are in our
case represented by the decision maker who has all the
knowledge sufficient to take decisions.

• Domain expert: normally, a group of domain experts
will be involved in a DSM-based analysis in rela-
tion to the development, validation and revision of
the decision models. The domain experts will con-
tribute by providing the thorough input regarding the
current architecture, quality levels, dependencies and
processes. The analyst will actively interact with the
domain experts during all the three phases of the DSM
process.

• Cloud measurement service: this is a (partially) au-
tomatized service for retrieval of the empirical data
needed for estimating the parameters of the decision
models. We assume that the parameters are estimated
either based on the feeds from the cloud measurement
service or based on expert judgments. A parameter
may be estimated or measured either directly, or
through estimation of a measurable indicator which
then is aggregated and mapped to the decision model
through a function. The dynamics of the indicators
and the parameters as well as their relevance and
uncertainty will be among the factors for determining
whether the data acquisition should be automatic (e.g.
real-time retrieval based on a monitoring environment)
or manual, and how frequent it should be.

Figure 1 shows the overall three phases of the DSM
process, as well as the actors involved. In the first phase, the
context of the analysis is established. As a part of this, the
scope is defined, the relevant risk, cost and quality notions
are defined, and the architecture is modeled. In addition, the
expected validity as well as perspective business models and
architecture alternatives should be anticipated in order to cover
the needed scope and level of detail in the target models.
During the second phase, the decision models covering the
risk, quality and cost aspects are instantiated with respect
to target. As a part of this, the dependencies are modeled
and the parameters (with the related indicators) are estimated.

Establish	context	and	model	
the	target

2

Decision Maker

Characterize the target
and the objectives

Analyst

Characterize quality aspects

Specify architecture of the
target

Domain Expert

Characterize cost aspects

Fig. 2. Establish context and model the target phase decomposed

Assess	and	verify	risk,	cost	
and	quality

3

Create dependency
views for quality and

cost

Analyst

Identify risks

Validate the decision models

Domain Expert

Estimate risk/quality/cost
parameters

Cloud Measurement
Service

Fig. 3. Assess and verify risk, cost and quality phase decomposed

In addition, the models are validated through various kinds
of triangulation, mainly based on the empirical input, logs,
domain expert judgments, experience factories, etc. In the last
phase, the decision models are applied by first specifying the
decision alternatives, applying the alternatives on the models,
and finally obtaining the resulting impact of the respective
decisions on quality, risk and cost. The result is a consolidated
view of the quality, risk and cost picture, provided each
decision alternative.

Figure 2 shows the stages of the “establish context and
model the target” - phase. First, the target and the objectives
are characterized. Based on the initial input, the stakeholders
involved deduce a high level characterization of the target
architecture, its scope and the objectives of the DSM-based
analysis, by formulating the system boundaries, system context
(including the usage profile), system lifetime and the extent
(nature and rate) of design changes expected. In the second
stage, the quality aspects are characterized by specifying which
quality characteristics are relevant for the target, and thereafter
decomposing them down to indicators. A quantitative and
a qualitative definition should be provided for all elements.
Thirdly, a corresponding decomposition should be done for
the cost aspects. In the last stage, the architecture is modeled
with the detail level and within the frames specified during the
characterization stage.

Figure 3 shows the stages of the “assess and verify risk,
cost and quality” - phase. Firstly, the dependency views for

165Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 178 / 263

Treatment	and	decision	
making

4

Decision Maker

Specify treatment

Analyst

Quality prediction

Cost prediction

Risk evaluation

Analyze a consolidated view of
impact of the treatments w.r.t.

quality, cost and risk

Domain Expert

Cloud Measurement
Service

Apply the treatment on
the decision models

Fig. 4. Treatment and decision making phase decomposed

respectively quality and cost are developed. Secondly, assets
and risks are identified in separate decision models (“threat
diagrams”). The three types of the decision models (i.e.
quality dependency views, cost dependency views and threat
diagrams) are then annotated by the parameter values through
evaluation of indicators or direct expert judgments on the
prior parameters. Finally, triangulation is performed in order
to validate the decision models. The models are approved once
an acceptable level of uncertainty has been reached.

Figure 4 shows the stages of the “treatment and decision
making” - phase. First, the respective decision alternatives are
specified separately. Then, each alternative is applied on the
decision models. The models and the respective calculus is
used to propagate the impacts of each decision alternative
on risk, quality and cost. Finally, a consolidated view of the
impacts of the decision alternatives is presented to the decision
maker.

Figure 5 shows an activity diagram with the entire DSM
process, including the feedback loops. The right hand side
of the figure indicates the phases presented in Figure 1. The
activities are equivalent to the ones presented in relation to
Figure 2, Figure 3 and Figure 4.

V. DISCUSSION

This section elaborates to what degree the existing
PREDIQT and CORAS methods for for quality prediction
and risk analysis, respectively, can serve as a baseline for our
DSM in multi-clouds. The objective is to leverage the state of
the art decision support, while extending it and adjusting to
the special needs of the multi-clouds. Thus, the established
methods, languages and tools can be reused with the well
known properties and resources, while the efforts can be
concentrated on the multi-cloud-specific extensions.

PREDIQT is a method (process, language, and tool sup-
port) for model-based prediction of system quality. The
PREDIQT method produces and applies a multi-layer model
structure, called prediction models, which represent system rel-
evant quality concepts (through “Quality Model”), architectural
design (through “Design Model”), and the dependencies be-
tween architectural design and quality (through “Dependency

Characterize the target and the objectives

Characterize quality aspects

Characterize cost aspects

Identify risks

Specify treatment

Specify architecture of the target

Create dependency views for quality and cost

Estimate risk/quality/cost parameters

Validate the decision models

Analyze a consolidated view of impact of the treatments
w.r.t. quality, cost and risk

Risk evaluation

Quality prediction

Cost prediction

Validation
successful?

no

yes

Treatment
adopted

no

yes

Establish
context and
model the

target

Assess and
verify risk, cost

and quality

Treatment
and decision

making

Apply the treatment on the decision models

Fig. 5. The DSM process diagram with feedback loops

Views”). The Design Model diagrams are used to specify
the architectural design of the target system and the changes
whose effects on quality are to be predicted. The Quality
Model diagrams are used to formalize the quality notions and
define their interpretations. The values and the dependencies
modeled through the Dependency Views (DVs) are based
on the definitions provided by the Quality Model. The DVs
express the interplay between the system architectural design
and the quality characteristics. Once a change is specified on
the Design Model diagrams, the affected parts of the DVs are

166Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 179 / 263

identified, and the effects of the change on the quality values
are automatically propagated at the appropriate parts of the
DV.

CORAS is a method (process, language, and tool support)
for conducting model-based security risk analysis. CORAS
provides a customized language for threat and risk mod-
eling, and comes with detailed guidelines explaining how
the language should be used to capture and model relevant
information during the various stages of the security analysis.
The Unified Modeling Language (UML) is typically used to
model the target of the analysis. For documenting intermediate
results, and for presenting the overall conclusions we use
special CORAS diagrams which are inspired by UML. The
CORAS tool supports documenting, maintaining and reporting
analysis results through risk modeling.

The DSM process is based on an attempt to merge the
processes of CORAS and PREDIQT for a consolidated anal-
ysis of risk, quality and cost. Most of the stages of the
DSM process can be found in CORAS and PREDIQT. The
actors/stakeholders defined in the DSM are fully compliant
with the ones defined by CORAS and PREDIQT. The types
of the decision models proposed in the DSM are heavily based
on the modeling notations, languages and tools of PREDIQT
and CORAS, respectively. The approach to modeling of quality
and cost aspects based on the DVs is a part of the PREDIQT
method, while a language for risk modeling is provided by
CORAS. The respective approaches to modeling in PREDIQT
and CORAS are based on graphical modeling languages with
defined propagation models. Both modeling approaches are
developed with special focus on comprehensibility and ex-
pressiveness. In that manner, the models are accommodated
for fulfilling real-life needs in terms of covering the represen-
tations needed while being rather intuitive so that non-experts
should be able to relate to them in an industrial setting. The
characterization of quality proposed in DSM is by PREDIQT
addressed through the so called Quality Model. Both the
Quality Model and the intended quality characterization in
DSM are similar to the elicitation we have performed, which
is briefly presented in Section 3.

The DSM process is to a high degree a superset of the
processes of PREDIQT and CORAS. Moreover, the modeling
approaches of PREDIQT and CORAS cover the concerns of
quality and risk, as well as partially the concern of cost.
Furthermore, the existing tools of CORAS and PREDIQT may
be useful in the DSM context. Provided this baseline, we
believe that utilization of the CORAS and PREDIQT methods
including the processes, the languages and the tools, is worth
a further evaluation in the DSM context. In particular, this
means that case studies in multi-cloud environments should
be performed in order to evaluate the feasibility of DSM, as
well as the suitability of the relevant parts of PREDIQT and
CORAS in a multi-cloud context.

VI. CONCLUSION AND FUTURE WORK

This position paper aims at establishing the necessary
baseline for a DSM. The intended purpose of the DSM is
to facilitate the selection of cloud services and providers in
a multi-cloud environment. In particular, we argue that risk,
quality and cost are among the main factors in such a selection

process. We believe that a trade-off analysis between risk, cost
and quality based on a consolidated view of the three will
provide a useful basis for a decision maker in assessing the
possible choices through a cost-benefit analysis.

Decision support for multi-cloud environments imposes
however several challenges compared to the traditional model-
based decision support. Most notably, the dynamics of multi-
cloud require light-weight processes and tools, the decision
makers depend on easy-to-understand representations of the
impacts of the decisions, the notion of cost is to a lower degree
established in the trade-off analysis of enterprise and software
architectures, and a merge of the aspects of risk, cost and
quality in a consolidated view imposes a new complexity as
well as methodological challenges.

This paper presents the main results of our recent ef-
forts towards the development of a DSM for multi-cloud
environments. We characterize the needs for the DSM in
the multi-cloud context and propose an initial version of the
process for the DSM. Based on the experiences from CORAS
and PREDIQT based analyses, and relying on the existing
process descriptions and modeling approaches from CORAS
and PREDIQT, we propose a comprehensive process for a
DSM-based analysis, and present the roles of the actors/s-
takeholders involved. The DSM process consolidates the steps
necessary towards development, verification and application of
the decision support models. Based on the method proposed,
we elaborate on the suitability of both the method proposed and
the state of the art for analyzing risks as well as for predicting
quality and cost in the multi-cloud context. We argue that many
aspects of CORAS and PREDIQT, including the approaches
to modeling (the modeling languages), the processes, and the
respective tool support, should be well suited in the DSM
context, i.e. in an analysis which merges the aspects of risk,
quality and cost. However, in order to evaluate the feasibility of
both the proposed DSM in general as well as the CORAS and
PREDIQT methods in particular, in the multi-cloud context,
realistic case studies should be performed and the proposed
method adapted based on the experiences obtained.

Hence, the next steps in the development of decision sup-
port for multi-clouds should include case studies, evaluation
and development of approaches to modeling (the modeling
languages) for a consolidated model-based risk analysis, qual-
ity prediction and cost analysis. Moreover, the method should
offer an easy-to-understand visualization of the impacts of the
decision alternatives on quality, cost and risk. We also aim
at refining the method and the tool requirements for DSM,
as well as providing a prototype tool which will facilitate a
DSM-based analysis.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 318484
(MODAClouds).

REFERENCES

[1] R. Buyya, “Market-Oriented Cloud Computing: Vision, Hype, and
Reality of Delivering Computing as the 5th Utility,” in 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid. IEEE
Computer Society, 2009.

167Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 180 / 263

[2] V. N. L. Franqueira, S. H. Houmb, and M. Daneva, “Using Real
Option Thinking to Improve Decision Making in Security Investment,”
in 5th International Symposium on Information Security, LNCS 6426.
Springer, 2010, pp. 619–638.

[3] M. Amram and N. Kulatilaka, Real Options: Managing Strategic
Investment in an Uncertain World. Harvard Business School Press,
Cambridge, Massachusetts, 1999.

[4] M. Daneva, “Applying Real Options Thinking to Information Security
in Networked Organizations. CTIT Report TR-CTIT-06-11,” University
of Twente, Tech. Rep., 2006.

[5] ISO/IEC 9126 – Software engineering – Product quality – Part 1-4,
International Organization for Standardization/International Electrotech-
nical Commission, 2001-2004.

[6] M. Singhal, S. Chandrasekhar, G. Tingjian, R. Sandhu, R. Krishnan,
A. Gail-Joon, and E. Bertino, “Collaboration in Multicloud computing
Environments: Framework and Security Issues,” Computer, vol. 46,
no. 2, pp. 76–84, 2013.

[7] R. Kazman, J. Asundi, and M. Klein, “Making Architecture Design
Decisions: An Economic Approach. Technical report CMU/SEI-2002-
TR-035,” Carnegie Mellon, Tech. Rep., 2002.

[8] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis -
The CORAS Approach. Springer, 2011.

[9] Siemens, “CRAMM - The Total Information Security Toolkit,”
March 2004, accessed: January 30, 2013. [Online]. Available:
http://www.cramm.com

[10] C. J. Alberts and A. J. Dorofee, “OCTAVE Criteria. Technical Report
CMU/SEI-2001-TR-016,” CERT, Tech. Rep., 2001.

[11] T. Peltier, Information Security Risk Analysis, 3rd edn. Auerbach
Publications, 2010.

[12] R. Chinnici, J. J. Moreau, A. Ryman, and S. Weerawarana, “Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language. W3C Recommendation,” June 2007, accessed: January,
2013. [Online]. Available: http://www.w3.org/TR/wsdl20

[13] J. Farrell and H. Lausen, “Semantic Annotations for WSDL and XML
Schema. W3C Recommendation,” August 2007, accessed: January,
2013. [Online]. Available: http://www.w3.org/TR/sawsdl

[14] “Service Oriented Architecture Modeling Language (SoaML) Specifi-
cation, Version 1.0,” Object Management Group, Tech. Rep., 2012.

[15] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz,
“Reference Model for Service Oriented Architecture 1.0. ,” OASIS,
Tech. Rep., 2006.

[16] Cloud Services Measurement Index Consortium, “CSMIC,” accessed:
January 2013. [Online]. Available: http://csmic.org

[17] N. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Transactions on Software Engineering, vol. 25, pp. 675–
689, 1999.

[18] V. R. Basili, “Software Modeling and Measurement: The Goal/Ques-
tion/Metric Paradigm, Technical Report TR-92-96,” University of Mary-
land, Tech. Rep., 1992.

[19] V. Basili, G. Caldiera, and H. Rombach, The Goal Question Metric
Approach. Encyclopedia of Software Engineering, 1994.

[20] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., 1998.

[21] C. Ebert, R. Dumke, M. Bundschuh, A. Schmietendorf, and R. Dumke,
Best Practices in Software Measurement. Springer Verlag, 2004.

[22] A. Hammond, A. Adriaanse, E. Rodenburg, D. Bryant, and R. Wood-
ward, “Environmental Indicators: A Systematic Approach to Measuring
and Reporting on Environmental Policy Performance in the Context of
Sustainable Development,” World Resources Institute, Tech. Rep., 1995.

[23] A. Omerovic, PREDIQT: A Method for Model-based Prediction of
Impacts of Architectural Design Changes on System Quality. PhD thesis.
University of Oslo, 2012.

[24] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth, A. Refsdal,
K. Stølen, and J. Ølnes, “A Feasibility Study in Model-based Prediction
of Changes on System Quality. Technical report A13339,” SINTEF ICT,
Tech. Rep., 2010.

[25] A. Omerovic, B. Solhaug, and K. Stølen, “Assessing Practical Use-
fulness and Performance of the PREDIQT Method: An industrial case

study,” Information and Software Technology, vol. 54, no. 12, pp. 1377–
1395, 2012.

[26] B. Barber and J. Davey, “The Use of the CCTA Risk Analysis and
Management Methodology CRAMM in Health Information Systems,”
in 7th International Congress on Medical Informatics, 1992, pp. 1589–
1593.

[27] C. J. Alberts and J. Davey, “OCTAVE Criteria Version 2.0. Technical
report CMU/SEI-2001-TR-016,” Carnegie Mellon University, Tech.
Rep., 2004.

[28] “IEC 61025 Fault Tree Analysis (FTA),” International Electrotechnical
Commission, Tech. Rep., 1997.

[29] “IEC 60300-3-9 Dependability Management - Part 3: Application
guide - Section 9: Risk analysis of technological systems - Event
Tree Analysis (ETA),” International Electrotechnical Commission, Tech.
Rep., 1995.

[30] B. Schneier, “Attack Trees: Modeling security threats,” Dr. Dobb’s
Journal, vol. 24, no. 12, pp. 21–29, 1999.

[31] D. S. Nielsen, “The Cause/Consequence Diagram Method as Basis
for Quantitative Accident Analysis. Technical report RISO-M-1374,”
Danish Atomic Energy Commission, Tech. Rep., 1971.

[32] I. Ben-Gal, Bayesian Networks. In F. Ruggeri, R. S. Kenett, F. W. Faltin
(eds.): Encyclopedia of Statistics in Quality and Reliability. John Wiley
& Sons, 2007.

[33] R. A. Howard, Dynamic Probabilistic Systems. Volume I: Markov
Models. John Wiley & Sons, 1971.

[34] W. Sonnenreich, J. Albanese, and B. Stout, “Return on Security Invest-
ment (ROSI)-A Practical Quantitative Model,” Journal of Research and
Practice in Information Technology, vol. 38, no. 1, pp. 45–56, 2006.

[35] R. Kazman, M. Klein, and P. Clements, “ATAM: Method for Archi-
tecture Evaluation. Technical report CMU/SEI-2000-TR-004,” Carnegie
Mellon, Tech. Rep., 2000.

[36] S. H. Houmb, G. Georg, R. France, J. Bieman, and J. Jürjens, “Cost-
benefit Trade-off Analysis Using BBN for Aspect-oriented Risk-driven
Development,” in 10th International Conference on Engineering of
Complex Computer Systems. IEEE Computer Society, 2005, pp. 195–
204.

168Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 181 / 263

A DSL For Logistics Clouds

Bill Karakostas

School of Informatics, City University London

Northampton Square

London, UK

billk@soi.city.ac.uk

Takis Katsoulakos

Inlecom Ltd

Knowledge Dock Business Centre, 4-6 University Way

London, UK

takis@inlecom.com

Abstract— Cloud is a new area of specialization in the

computing world, and, as such, it has not been explicitly

addressed by traditional programming languages and

environments. Therefore, there is a need to create Domain

Specific Languages (DSLs) for it. This paper presents such a

DSL that targets logistics clouds, i.e. networked resources and

systems of logistics organisations. The DSL is implemented on

top of the functional concurrent language Erlang and its

distributed data management system Mnesia. The paper

presents features of the DSL that implement commonly

occurring use cases in the logistics cloud such as message

exchange, document sharing and notifications. We show how

program features in this DSL map to the underlying

Erlang/OTP runtime.

Keywords- DSL; Logistics Cloud; Erlang/OTP; Mnesia;
transport logistics; functional programming

I. INTRODUCTION

Community clouds are implementations of Clouds by a
community of organisations such as logistics companies that
agree to virtualise and share their computing resources. In
contrast to a generic, “horizontal cloud”, components of a
logistics cloud are custom tailored to the specific needs of
the logistics application area [7].

Effectively, a logistics cloud is a networked data and
computing infrastructure that virtualises resources
(documents, data, systems and applications) for a logistics
business network, to which nodes can dynamically be added
and removed. Physical resources in logistics (such as cargo)
are, by nature, mobile, and are handled and monitored by
multiple IT systems. For cooperative processes, it is
therefore important that the information about the state of
logistics resources remains independent from location and
physical formats of the systems that handle it. Resources
and operations on them must therefore be abstracted in an
implementation independent form, following the principles
of Representation State Transfer (REST) [6]. This allows the
participants of the logistics cloud to perform collaborative
processes without concern about the physical format and
location of data and applications, i.e. to work in a Cloud
environment. According to the iCargo project [9], such a
Cloud is a ‘parallel universe’ mirroring logistics processes,
resources and data, and offering capabilities for co-operative
synchronized and real-time management of transport
resources (i.e. intelligent planning and controlling transport
logistics chains) to optimise efficiency, quality and

environmental performance. The paper presents a Domain
Specific Language (DSL) for developing cloud applications
for logistics organizations.

The rest of the paper is structured as follows: Section 2
overviews Cloud DSLs and explains the rationale and design
objectives for the proposed DSL. Section 3 introduces the
main architectural concepts of the logistics cloud, while
Section 4 presents the main features of the language. Section
5 highlights the main use cases for the DSL as investigated
in the iCargo project. The last section highlights the plans for
further research and development.

II. DOMAIN SPECIFIC LANGUAGES AND CLOUDS

A DSL is a programming language or an executable
specification language that offers, through appropriate
notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain [3]. DSLs
have been used in many domains, particularly due to their
expressiveness, runtime efficiency and reliability due to their
narrow focus. More recently, DSLs for clouds have been
proposed for high performance computing [2] business
process management [1] and business applications [8]. Data
cloud specific DSLs, such as Pig Latin from the Apache Pig
project, are employed for analyzing large data sets [10].

Currently, logistics applications are implemented in
general purpose languages (GPL) such as Java and C# and
Web languages such as Javascript and HTML. Message
exchanges are typically implemented in XML, while system
interfaces are specified as Web services. However, logistics
organisations and chains have become increasingly
distributed and virtualised. Current development
technologies fall short in realising the full potential of
RESTful architectures and of the Cloud. The aim of our
research has been to exploit the potential of concurrent
functional languages such as Erlang [5] and distributed data
management systems such as Mnesia [5] in developing
logistics applications that take advantage of the Cloud’s
potential. The use of Erlang to develop RESTful applications
has been proposed before by S. Vinoski [13], and the
potential of functional languages on the Cloud has also been
advocated by J. Epstein et al [4]. However, the learning
curve for such technologies can be steep. A DSL could help
towards easing the adoption of functional concurrent
languages, while maintaining their expressiveness and power
in developing business applications for the Cloud.

169Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 182 / 263

A. Rationale for the Design of the DSL

One of the design goals was to preserve the benefits of
Erlang such as the built-in, actor based, concurrency model,
while easing the learning curve for the typical logistics
application developer. Erlang programming has limitations
such as the unconventional syntax, the lack of types, and the
general lack of familiarity with functional programming
styles amongst developers.

At the same time, the design of the DSL had to address
an easier to read and understand syntax (i.e. by avoiding the
excessive use of parentheses and brackets) and support for
types. To avoid designing yet another GPL, however, only
predefined types, derived from a Common Reference Model
(Framework) for logistics domain were allowed. The
Common Framework used was developed in EU projects
such as e-Freight and iCargo [9] and provided the basis for
the main domain concepts of the logistics DSL.

III. MAIN CONCEPTS

Erlang is a functional programming language used to
build massively scalable soft real-time systems [5]. A
distributed Erlang system consists of a number of nodes
(Erlang runtime systems) communicating with each other. A
node is an executing Erlang runtime system which has been
given a name. Each such runtime system is called a node.
The distribution mechanism is implemented using TCP/IP
sockets. Mnesia is a multiuser distributed data management
system written in Erlang, which is also the intended target
language. In our prototype implementation, the execution of
a program written in the DSL results in several spawned
Erlang processes. These processes communicate with other
processes across the logistics cloud, and manipulate Mnesia
tables holding information about logistics resources. In a
logistics cloud, the physical implementation and address of
resources is virtualised. Resources are identified using
logical Uniform resource identifiers (URIs) constructed from
domain names of their owners and literals such as internal
identifiers. Our approach assumes that logistics cloud
participants have unique URIs (i.e. domain names in the
Domain Name System) and all other resources acquire their
unique identifiers relatively to the URIs of their owners. This
avoids the need to assume (and agree upon) resource
identifiers that are globally unique across the whole logistics
Cloud.

We implement RESTful (PUT and GET) operations in
our approach, but with functional semantics to maintain
consistency with the Erlang underpinnings.

The code written in the DSL is translated with the use of
a pre-processor (similar to Erlang’s pre-processor) to Erlang
modules that can be loaded and executed by the Erlang
emulator. A program in the DSL is therefore an Erlang
module containing function definitions that can be compiled
and executed by the Erlang emulator. A typical execution
spawns several Erlang processes. These can run on different
nodes of the logistics cloud. As with standard Erlang, inter-
process communication is via message exchanges.

IV. GENERAL SYNTACTIC CONVENTIONS

To reduce the learning curve, the DSL has a minimal set
of constructs and relies on predefined domain types that are
manipulated in a RESTful way to create and access
resources. To distinguish between the DSL and regular
Erlang language constructs, the former must begin with an
underscore and consist of all capitals letters. Tokens that are
not recognised by the pre-processor as reserved must be
valid Erlang terms.

Reserved keywords fall under the categories of:

 Logistic Roles e.g. _CONSIGNER,
_FREIGHTFORWARDER, _CONSGINEE

 Resource Types: Business documents,
e.g.:_TEP (transport execution plan exchanged
between logistics partners), administrative
forms, etc. notification types such as
_DISPATCH_NOTICE

 Resource read and modify operations using
_NEW and _GET commands.

 Control Flows such as _FOREACH for
iteratively applying a function to the members
of a list

 Some Erlang data types such as lists
constructors (‘[]’) and operators such as ! (for
sending messages to processes) are also
explicitly supported by the DSL.

Logistics roles are implemented as Mnesia transactional

queries, while business document types are implemented as
Mnesia tables and document instances as document records.
This is further explained in the following section.

V. USE CASES

Below we show some typical use cases for this DSL,
highlighting the syntax of the commands, the effect of the
operations and an explanation of their underlying
Erlang/Mnesia semantics.

A. Defining users and roles in the Logistic Cloud

Each organisations participating in the logistics cloud
implements a (distributed) Erlang network node, for example
the following set of nodes that correspond to 4 participating
logistics organizations is defined in a logistics cloud:

consigner1@org1.com,consignee1@org2.com
freightforwarder1@org3.com, carrier1@org4.com

The above logistic cloud participants, agree, for example,

to share data between them. A participant, such as
freightforwarder1, may know all other participants (due to its
coordinating role), and can therefore, initiate the sharing of
the Mnesia database by executing the following command
locally:

mnesia:create_schema([consigner1@org1.com,
consignee1@org2.com, freightforwarder1@org3.com,
carrier1@org4.com]

More participants can be added to the logistics cloud at
any point, dynamically, by following this approach. Mnesia
tables are automatically created for each supported resource

170Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 183 / 263

type on every participant node, subject to sharing
declarations (explained below). A Mnesia table is a
collection (more precisely, a bag) of records. Records
(instances of resources) are created by participants as
explained below.

B. Sharing resources amongst participants

The general syntax for explicitly sharing resources
(tables) with other cloud participants is:

<Resource type> _SHARE_WITH <list of
participants>_AS <Qualifications>

This results in changes to the corresponding table
replication properties in the underlying Mnesia database, so
that the table can be shared as read-only, read-write, and so
on.

C. Creating new resources

The general syntax for creating records (instances of
resources) is:

 _NEW <resource type> _WITH <key-value list>
For example, to create a new arrival notice, the following

command is used:
_NEW _ARRIVAL_NOTICE _WITH {ref="12345",

status= “OK”}
The result of the operation is to add a new arrival notice

record to the Mnesia table (bag) arrival_notice.
The internal record definition in Mnesia is

record(arrival_notice, {ref :: string(), status :: string()}).
Note that _NEW does not have to specify the location of

the target database, as the record is added to the local table
of the node where the command is executed and replicated
according to the policies defined for that table.

D. Querying Resources

The general syntax for retrieving resource records is:
_GET <Resource Type> _WITH <Qualifications>

This returns a list of instances (records) of type
‘Resource Type’ that match ‘Qualifications’. If the
Qualifications part is omitted, all records (up to a maximum
system imposed limit) are returned. This list of records can
then be accessed using the _FOREACH operator.

Qualifications are logical expressions that specify range
and other logical conditions on the properties of resources
being queried.

For example, to retrieve all consignments for consigner
with id consigner1@org1.com that have status ‘dispatched’,
the following query can be used:

 _GET _CONSIGNMENT _WITH {consigner =
“consigner1@org1.com”, status = “dispatched”}

Internally, the pre-processor converts queries like the
above to Erlang ‘list comprehension’ style of queries that are
then executed as Mnesia transactions.

E. Messaging

Messaging has been inspired by REST messaging
approaches such as RESTMS [11].

The general syntax for messaging is
<Recipient List> ! _MESSAGE_TYPE _WITH {key value

list} _AS <Message Format>

Where ‘Recipient List’ can be the result of a query that
returns the identifiers of recipients. The following code for
example, sends a message (formatted as XML) containing a
dispatch notice, to the owner (consigner) and the recipient
(consignee) of a consignment:

[consigner1@org1.com, consignee1@org2.com] !
_NEW _DISPATCH_NOTICE _WITH {ref= “12345”,
status= “dispatched”} _AS _XML

Additional parameters can be specified, for example,
regarding the exact time the message is to be sent, how to
handle errors such as no replies (timeout conditions) and so
on. Internally, this is converted into message sending
operations to the message listening processes of the recipient
nodes. Such processes are automatically spawned when the
nodes join the logistics Cloud. Messages can also be sent to
recipients outside the logistics cloud by using call-back
methods.

F. Event Notifications

Logistics cloud participants can publish and subscribe to
events in the logistics cloud. This is often a more flexible
approach than direct messaging as it decouples the senders
and consumers of event notifications.

A Consigner consigner1@org1.com, for example, can
subscribe to notifications when dispatch notices are created.
The general syntax for subscriptions is:

 _SUBSCRIBE_TO <Resource Type> _WITH
<Conditions>

Internally, this is implemented by an Erlang process on
node consigner1@org1.com that subscribes to update events
on table dispatch_notice, using the command
mnesia:subscribe({table, dispatch_notice, simple}).

If the monitoring process receives a message notification
such as {write, NewRecord, ActivityId}, it will check that the
conditions are satisfied, and if they are, the process will
notify the callback process on the consigner1@org1.com
node.

VI. CONCLUSIONS AND FUTURE WORK

Functional concurrent languages have a great potential
for building the next generation of Cloud applications, due to
scalability, side effect free code and ease of transformation to
multiple representation formats (XML, JSON,…) of Cloud
resources. Our approach is at the early stages of developing
an easy to use Cloud development environment for logistics
applications. We are currently investigating security features
(authentication, authorization at organization and user role
level) for the proposed DSL, and also support for
transactional rollback and error handling both at the pre-
processing stage and at runtime. We also plan to explore
alternative target Cloud environments that support functional
programming languages, such as Scala. After we complete
the development of the pre-processor, we plan to develop a
full blown transport logistic Cloud based collaborative
application within the iCargo project. This application will
demonstrate an implementation of the Common Framework
in the DSL and the use of associated interfaces to facilitate
the connection of logistics companies to the iCargo
ecosystem.

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 184 / 263

ACKNOWLEDGMENT

The iCargo project "iCargo - Intelligent Cargo in
Efficient and Sustainable Global Logistics Operations" is co-
funded by the EU FP7 Program.

REFERENCES

[1] B. Karlis, C. Grasmanis, A. Kalnins, S. Kozlovics, L. Lace, R.

Liepins, E. Rencis, A. Sprogis, and A. Zarins. “Domain Specific
Languages for Business Process Management: a Case Study”. Proc.
the 9th OOPSLA Workshop on Domain-Specific Modeling. 25-26
October 2009.

[2] C. Bunch, N. Chohan, and K. Shams. “Neptune: A Domain Specific
Language for Deploying HPC Software on Cloud Platforms” UCSB
Technical Report #2011-02 .

[3] A. van Deursen, P. Klint, and J. Visser. “Domain-specific languages:
an annotated bibliography”. SIGPLAN Not., 35(6):26--36, 2000.

[4] J. Epstein, AP Black, and S. Peyton-Jones. “Towards Haskell in the
cloud.” Proc. The 4th ACM symposium on Haskell, ser. Haskell.
ACM, New York, NY, USA, pp. 118–129.

[5] Ericsson AB. “Erlang/OTP System Documentation 5.8.3” March 14
2011.

[6] R. Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. Ph.D. Thesis. University of California,
Irvine, 2000.

[7] B. Holtkamp, S. Steinbuss, H. Gsell, T. Loeffeler, and U. Springer.
“Towards a Logistics Cloud” Proc. 2010 Sixth International
Conference on Semantics, Knowledge and Grids Beijing, China
November 2010.

[8] M. Kumar. “Domain Specific Language Based Approach for
Developing Complex Cloud Computing Applications.” Masters
thesis. Wright State University 2011.

[9] J. Pedersen. “Frameworks and Applications for Logistics”. Proc, 2nd
European Conference on ICT for Transport Logistics (ECITL),
Venice 2009,

[10] Pig Latin Basics. Available from
http://pig.apache.org/docs/r0.10.0/basic.html [retrieved March 2013]

[11] RESTMS. Available from http://www.restms.org/ [retrieved March
2013]

[12] D. Stieger, M. Farwick, B. Agreiter, and W. Messner. “DSLs to fully
generate Business Applications”. Available from
www.jetbrains.com/mps/docs/MPSShowcase.pdf [retrieved March
2013]

[13] S. Vinoski. “RESTful Services with Erlang and Yaws”. InfoQ, March
31, 2008.

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 185 / 263

Deploying a Multipoint Control Unit in the Cloud: Opportunities and Challenges

Álvaro Alonso, Pedro Rodrı́guez, Joaquı́n Salvachúa, Javier Cerviño
Departamento de Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid

Madrid, Spain

{aalonsog, prodriguez, jsalvachua, jcervino}@dit.upm.es

Abstract—A Multipoint Control Unit (MCU) is a software
component that manages different aspects of multimedia systems:
mixing, forwarding, recording or transcoding media streams. This
paper shows how Cloud infrastructures offer new opportunities
to MCUs in a range of scenarios, scaling to a variable number
of users. However, this deployment also implies some important
challenges that need to be solved, considering the MCU function-
alities and the common scenarios in which it will be used. These
challenges are related to up and down scalability, geographic
distribution of the users and the MCU system profiling. We
provide an overview of the most effective solutions to face them
and the characterization of a previously developed MCU in
two videoconference scenarios. A Cloud-based MCU provides
important advantages to take into account and the challenges
we detected are already solved in similar environments making
its deployment a promising research area.

Keywords—Cloud Computing; MCU; multimedia.

I. INTRODUCTION

Multimedia systems have gained a relevant role within
software applications and services in the Internet over the
recent years. Thus, we daily use multimedia applications, like
video streaming or video recording. Some of these applications
have strong real time requirements, such as videoconference
or multiplayer online games.

In this type of applications we need to interconnect two
or more users that will exchange some resources like video,
audio or data. Moreover, this exchange can be made in real
time. Frequently, and specially when there are more than
two users, is necessary an intermediate device that manages
the communication between the users and the exchange of
the resources. The name of this component is Multipoint
Control Unit (MCU) and its function is to coordinate the
distribution of audio, video, and data streams amongst the
multiple participants in a multimedia session [1].

Due to MCU’s characteristics, it is possible to convert a
mesh topology of connection in a star topology. This way
the MCU acts as a central device forwarding the multimedia
streams among the participants in the session. However, it can
make some additional task that frequently reduces the compute
requirements of the devices in the final user. Also it adds
interesting features due to the fact of all data is going to go
through the MCU, allowing several operations that can provide
advanced services often requested in multiconferencing and
collaborative multimedia applications:

• Broadcasting: this is the basic operation of the MCU,
by which it sends a stream from a publisher to
multiple subscribers. These subscribers receive this

stream once and the publisher only sends it once to
the MCU, saving bandwidth in its network interface
at the expense of the MCU, which has usually better
network performance.

• Transcoding: the use of a more advanced MCU able
to mix and transcode media streams can pave the way
to solving the heterogeneity of devices and access
networks. By transcoding streams into different bit-
rates and sizes, the communication can be adapted to
diverse network conditions and screen sizes optimiz-
ing the use of network and CPU in the clients at the
expense of the MCU. This is also useful in a gateway
scenario where media streams have to be translated.

• Composing: by generating a single video or audio
stream from the available inputs, the MCU can reduce
the amount of CPU overhead and control needed to
participate in a multiuser multimedia system when
needed.

• Recording: the MCU is receiving all the streams
present in the session and, as stated in the previous
point, is able to generate a composed stream by
combining them. If a recording of the session is
required, the MCU can store that stream for future
reproductions.

All these features normally require a high computation
level in the device where the MCU is running. The computer
usually needs high level of memory and CPU power. However,
these capabilities may change dynamically with the variations
in the number of users or the different scenarios of the
applications. The requirements of this type of devices blend
very well with the Cloud Computing model because, according
to the NIST definition [2], it provides characteristics like On-
demand self-service, Broad network access, Resource pooling,
Rapid elasticity and Measured service.

In the next section we analyse the opportunities and advan-
tages that, according to these characteristics, the deployment
of an MCU in the cloud offers. However, it implies important
challenges that we describe in Section III, presenting also the
most effective solutions to them. Finally, Section IV describes
the conclusions as well as the future lines of work.

II. OPPORTUNITIES

In this section we will review the main advantages of
running an MCU on Cloud Computing systems. An MCU
component may require different computing characteristics
depending on the number of participants, session conditions

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 186 / 263

(recording, forwarding, transcoding or composing), and the
physical location of the participants.

Furthermore, these conditions of operability may vary
dynamically during the session. Thus, we will demonstrate the
benefits of deploying the MCU in a cloud scenario, where the
session can be adapted easily and dynamically to variations on
this type of conditions according to the particular requirements
in each moment.

The cloud model defined by NIST and its essential char-
acteristics illustrates these advantages and help us to better
understand them:

• On-demand self-service: Users can provision com-
puting capabilities (CPU, network, storage, etc.) as
needed.

• Broad network access: Those capabilities are available
over the network in different locations and are served
through standard mechanisms.

• Resource pooling: The cloud follows a multi-tenant
model, assigning resources to different users.

• Rapid elasticity: Capabilities can be provisioned and
released automatically to scale to user demand.

• Measured service: Resources are automatically con-
trolled, monitored and reported by metering systems.

Below we explain how these features provide new oppor-
tunites to MCU-based communications in these scenarios.

A. Scale to user demand

Multimedia systems offer their users the possibility of
joining a conference before and during the session. They could
also leave the session while it is running. Depending on the
type of session this variability could be high.

A high number of users usually means more bandwidth,
memory and CPU consumption. In other words, an MCU
would demand more capabilities from its computing infras-
tructure.

In a traditional environment the provider should previously
provision its own physical machines to tackle with the high
peaks of demand. However, this solution implies more idle
resources when the user demand is low.

In a cloud environment the multimedia provider could
dynamically provision and release virtual machines on de-
mand. This is usually done by turning on and off those virtual
machines depending on the resources needed, according to the
participants in the session.

This could also be achieved by dynamically increasing
the performance of virtual machines. We could, for example,
increase the CPU and memory capacity of a running virtual
machine. We could also improve the network performance of
these machines by changing their size. For example, Amazon
EC2 [3] offers different network performance depending on
the size of its virtual machines.

Transcoder Broadcaster Mixer

API

VM 1

Connection Manager

Recorder

API

VM 2

Connection
Manager

Streams from clients Streams to clients

Fig. 1: Example of two MCUs performing different tasks.

B. Scale to scenario requirements

MCU operation also depends on the type of session it runs,
and it could perform a variety of tasks: forwarding, recording,
mixing (composing) and transcoding. Each of these features
requires different computation capacities.

A basic MCU device only forwards streams from one
participant to others and requires low levels of computation.
However, the required level of memory and CPU increases
considerably if the MCU performs the other advanced tasks.
These additional features may change during a session depend-
ing on different factors: number of users, size of available and
generated videos, codecs, etc.

For example, a high number of users usually forces the
MCU to compose a single video from the others. Besides, in
scenarios where clients connect from different type of devices,
the MCU will transcode video and audio to adapt to their
different CPU and bandwidth requirements. Finally, the MCU
could record the entire session or part of it, including all
individual videos, a subset of them, or a composed video.

Virtualized environments of cloud systems help the MCU
to adapt to the varying requirements of such features. As in
the previous case, we could turn on a new machine when more
CPU is needed and later turn it off when this need decreases.
Moreover, we could vary the capabilities of a specific virtual
machine on the fly, by increasing or decreasing its memory,
CPU, number of cores, etc. This would allow our MCU to
adapt faster to variations on the scenario requirements.

Another workaround offered by the cloud is to configure
different types of virtual machines depending on the features
that they will perform. In the example in Figure 1 a machine
responsible for broadcasting flows will consume a lot of CPU
and memory. On the other hand, a machine responsible for
recording a videoconference session consumes low memory
and CPU if it receives a single flow with the whole composition
of the session.

Summarizing, a cloud-hosted MCU component could eas-
ily and dynamically manage the configuration of different
types of machines, adapting it to all scenarios. Thus, in a cloud
environment we could provide an adaptive multimedia service,
which efficiently uses the available resources, reducing costs
while improving overall performance in every scenario.

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 187 / 263

Fig. 2: Example of MCUs interconnection in a global multimedia session.

C. Geographic flexibility

Another critical factor in real time applications that directly
affects user experience is the latency of packets that travel be-
tween peers. This latency usually depends on the geographical
distance between them, and we should reduce it to achieve the
lowest possible latency. In multimedia scenarios all streams are
sent or received from the MCU and the geographic location
becomes crucial for decreasing latency.

Thanks to a cloud-based system we can run MCU devices
in different geographic locations, connecting each one with the
users that are using the service in each region. For example,
at the time of writing this paper, Amazon EC2 provides data
centers in North Virginia, Oregon, North California, Ireland,
Singapore, Tokyo, Sydney and São Paulo, while Rackspace [4]
owns data centers at Texas, Illinois, Vancouver, Hong Kong,
London and Slough, UK.

These cloud providers also allow to interconnect MCUs
in different regions, so we could even offer sessions around
the world, by connecting users to the closest MCUs and
interconnecting all the MCUs in the same session. An example
of this scenario is shown in Figure 2.

III. CHALLENGES

As seen in the previous section, the deployment of a
software-based MCU in the cloud can bring several key
advantages to multimedia service providers. The increased
efficiency in terms of hardware requirements together with the
flexibility in terms of geography and the possibility to adapt
the solution to different scenarios encourages the move to the
cloud. However, to make the most of the cloud and make
the most of its advantages its important to design the system
accordingly and take into account the target of the deployment.

Furthermore, we will propose strategies to scale up and
down in the cloud that differ from more general approaches
such as the one seen in [5].

This section analyses the challenges posed by the optimal
adaptation of an MCU to the cloud.

A. Characterizing the system

Characterizing the MCU’s performance is the first step
towards its efficient deployment in the cloud. Depending on

the task (recording, transcoding...) to be performed by a given
MCU, the hardware and bandwidth requirements vary signifi-
cantly. By measuring the performance in a known environment,
we can approximate the tier of the instance or the amount
of CPU, RAM and bandwidth that is going to be needed
when deploying in the cloud. For instance, transcoding needs
considerably more CPU power than just forwarding packets.
In order to optimise the deployment, we have to quantify this
type of characteristics.

Once a complete characterization of the system is made,
it is interesting to find correlations between the pure technical
resources and the more high-level, application based ones. For
example, in a web environment this would mean assessing the
increase of CPU usage for each concurrent request of a given
type. In the videoconferencing world, the number concurrent
users is the typical unit that shows the capabilities when it
comes to capacity of a system. Furthermore, we can group
these users in different conferences that coexist in the same
MCU. We will call this conferences ’rooms’. The number of
users in each room is usually limited to a fixed number in
videoconferencing systems.

Finding a correlation between the hardware resources
needed and the number of users and rooms in a system can
simplify the work we are going to do in the next subsections,
scaling the system up and down. Knowing the incidence of
each new user combined with continuously monitoring the
resources consumed by a deployed instance we can react
effectively to changes in demand. Of course, this implies
measuring the incidence of each user in the cloud instances.

However, there is still a further challenge imposed by the
deployment of a known system in the cloud. There is plenty of
literature [6][7] on the possible interferences between different
virtual machines running on the same host as well as possible
ways to characterize the problem [8]. For the purpose of
this paper we will assume that the deviation caused by these
interferences will not be big enough to invalidate the per-user
estimations.

As an example of this type of characterization we will
show and comment a real case of MCU deployed in Amazon
EC2. We have used an MCU designed by us for WebRTC [9]
compatible systems [10][11]. For the characterization we have
designed two scenarios that are the most common in videocon-
ference systems: a real time video streaming and a multiuser
videoconference. On both systems we have monitored the CPU
and memory usage and the bandwidth (incoming and outgoing)
consumption in the MCU computer during the experiment.

In the first scenario, live streaming, one of the clients
is publishing its media stream (audio and video) in the
session and subscriber clients are gradually added to view
the published stream. As we can see in Figure 3 the CPU
usage in the MCU increases linearly with the increase of
the number of users subscribed to the streaming. This occurs
because WebRTC standard uses SRTP [12] for the packet
transmission implying that the MCU has to unprotect and
protect each packet in order to make the retransmission from
the publisher to each subscriber. We can observe that the
inbound bandwidth consumption is constant during all the
session and the outbound increases linearly because of for each
new client connected is necessary to make a retransmission

175Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 188 / 263

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

Users

%

(a) CPU Usage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

100

200

300

400

500

Users

kB
/s

Inbound Bandwidth
Outbound Bandwidth

(b) Bandwidth Consumption

Fig. 3: Use of resources in the MCU when the number of users increases in a live streaming

more. About the memory used by the MCU it increases also
linearly but with a minimum variation during the experiment
(just a ten of MBytes). Finally note that in sometimes during
the test a descent is registered in the results (when user
number 8 and 13 connects). We can notice that this anomaly
is associated with a decrease of the inbound traffic so we can
deduce that it is doubt to a small bug of performance in the
publishing client computer, which is also running in a Amazon
EC2 virtual machine.

In the second scenario, multi user videoconference, each
user that connects to the service publishes its media stream
and subscribes to all the streams published previously. We
have established a limit of 6 users because this is usually
the maximum number of users in a standard videoconference
room. In Figure 3 we can observe that in this case the inbound
bandwidth consumption increases linearly with the increase of
users in the room doubt to the fact of each new user publish
its own stream to the room. However, the outbound bandwidth
and the CPU usage increase exponentially because of for each
new user the MCU has to forward the new stream to all the
rest of users. Therefore the number of outgoing flows increases
following the equation N = n(n−1), where n is the number of
users in the room. The memory usage also varies exponentially
but like in the first case the variation is irrelevant.

B. Scaling up

When the currently provisioned resources reach their limit,
we should able to take advantage of the cloud to keep providing
service as seamlessly as possible for the users. In order to do
that there are two main types of scalability: horizontal and
vertical.

To scale horizontally means to add new servers to the
existing pool of resources while scaling vertically is to upgrade
the already running servers on the fly.

When it comes to an MCU, both methods have its uses. If
the new resources are required to make some additional task in
the session like, for example, recording a videoconference talk,
the horizontal scalability may be a better solution. However, if
the resources are needed because of an increase of the number
of users in a determined session the easiest solution may be to
add more capabilities to the same computer already managing
that session. However, it has to be kept in mind that vertical

scalability is not present in all cloud platforms and not all
operative systems allow for it.

With the exception of some very specific cases that we
will explain later, the fact of have all the participants in a
session in the same MCU implies facilities in the forwarding
and composing of the media streams. As discussed in the next
subsection this is especially critical if a scale down is necessary
during a session.

So an important challenge in the case of scaling up is the
decision of which type of scalability is better to choose when
an increase of the resources in the MCU module is needed.

Both types of scaling involve a latency caused by, either
starting a new machine or modifying the existing one. In order
to have a satisfactory user experience, this has to be taken into
account so no interruptions take place in the communications.
This problem can be avoided by anticipating the rise in demand
whenever it is possible and react accordingly.

A first approach is to use algorithms to, based on a mon-
itoring of the system, calculate when it is in a limit situation
and this way anticipate the necessity for resources starting new
machines or adding more capabilities to the existing. The MCU
must monitor at all times the state of the system by the analysis
of the different factors studied above. If we have been able to
establish the limits of the system and the correlation with the
number of users and rooms it should be quite straightforward
to react whenever the deployed system is reaching its peak.

The result would be a set of thresholds that would define
when to add more processing power to the system. This
is similar to setting elasticity rules that define the system
scalability, an example of this type of approach can be seen
in [13].

We can go one step further by use predictive models to
anticipate the changes in the requirements of the MCU based
on the analysis of previous data. With these type of models
we can analyse behaviour patterns of the system to predict the
activity that will be in a determined moment. These patterns
may be obtained in two main ways. The most effective way
is to obtain it from the previous behaviour of the own system.
However, if it is not possible we can use the patterns from the
behaviour of similar systems.

A good starting point is [14] where this problem is ad-

176Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 189 / 263

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

Users

%

(a) CPU Usage

1 2 3 4 5 6
0

200

400

600

800

Users

kB
/s

Inbound Bandwidth
Outbound Bandwidth

(b) Bandwidth Consumption

Fig. 4: Use of resources in the MCU when the number of users increases in a videoconference

dressed by an algorithm that predicts resource usage by using
pattern matching.

C. Scaling down

In the same way that during a session may be necessary
to increase the available resources, it may also occur that at
any given time, the demand peak has ended and we have
provisioned more resources than needed. As discussed in
previous subsection, there are different ways to increase the
computation level of an MCU module. In scale down case
we can make the reverse operations to reduce the resources
dedicated to the MCU.

Therefore the scaling down presents a similar challenge
than scaling up. When we detect that the demand has gone
down and we have allocated more resources than necessary
we must select the closer to optimal way to reduce them. We
can reduce the capabilities of the running computers or shut
down one of more of them.

But moreover in this case the second option presents
additional difficulties. It must be taken into account that the
computer that we are going to turn off most probably is
performing tasks that we must distribute between the rest of
computers. Such redistribution is not a trivial issue.

A client participating in a session is sending and receiving
several multimedia streams to and from an MCU. If this
computer is going to be shut down, it is necessary to forward
the traffic and it should be done in a transparent way to the
user. Moreover, to optimise the use of the resources, a full
redistribution of the clients and the rooms on the system may
be in order.

A possible solution to this problem, shown in Figure 5, is
to include a proxy between the clients and the MCU module.
When a machine is going to shut down the proxy begins to
duplicate the streams between the old and new MCU. When
all the streams are prepared the proxy changes the sending and
receiving to the client from the old MCU to the new and in
this moment the old MCU can be turned off.

D. Geographic distribution

With the flexibility provided by geographically distributed
cloud providers comes the challenge of optimally placing the

MCU instances in order to get the best service as possible.
While the decision might be trivial when all users are located
in the same continent or cloud provider’s zone, deciding how
to react when users are located in distant places can greatly
determine the quality of the session.

When making the decision must be taking into account
the number of users in each geographical region but also the
quality of their connections. To characterize the links between
different regions is interesting to do measures of bandwidth,
jitter, packet loss or Round Trip Time (RTT). By testing the
connection of each user to the different regions of the cloud
we can decide where it will perform better.

As seen in [15] the network connections between Amazon
instances in different regions perform better than the average
internet connection. We should also take this into account when
designing and deploying the system.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have analysed the main opportunities that
the deployment of an MCU component offers in a cloud-based
infrastructure. As we have been seen, this alternative provides
interesting advantages to multimedia and real time systems
with high or variable number of users because these systems
usually work in scenarios in which flexibility and scalability
are required. However, the deployment is not an easy task and
its performance presents also important challenges that need
to be solved.

We have also discussed some possible alternatives to face
these challenges. The first step is to characterize the system in
order to establish relationships between the number of users
and the task that the MCU will realize with the technical
requirements of the computers. We have presented an example
of these measures in two videoconference scenarios and an
overview of the existing solutions to the challenges that
the scalability (up and down) presents and the geographic
distribution of the MCUs.

The conclusion of our work is that the Cloud provides
important advantages and that the challenges we detected are
already solved in similar environments, so the deployment
of MCUs in the Cloud is a promising research area. Our
future work is to further analyse these solutions in multimedia
scenarios and apply them to real services.

177Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 190 / 263

Proxies

Clients

MCU MCU MCU

Fig. 5: Proxies forwarding traffic to MCUs.

Finally, we will apply prediction models and algorithms
to our open source webRTC project, named Lynckia [16],
in order to research the best way to achieve a scalable and
flexible real time communication provider. We will also study
the performance of the media proxy that will manage the
forwarding of media streams when the systems need to scale
down.

REFERENCES

[1] M. Willebeek-LeMair, D. Kandlur, and Z.-Y. Shae, “On multipoint
control units for videoconferencing,” in Local Computer Networks,
1994. Proceedings., 19th Conference, 1994, pp. 356 – 364.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
[retrieved: March, 2013], 2009.

[3] Amazon AWS. http://aws.amazon.com [retrieved: March, 2013].

[4] Rackspace. http://www.rackspace.com [retrieved: March, 2013].

[5] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling
applications in the cloud,” SIGCOMM Comput. Commun. Rev. vol 41,
num 1, January 2011, pp. 45 –52.

[6] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual
machine performance: challenges and approaches,” SIGMETRICS Per-
form. Eval. Rev. January, 2010, vol. 37, no. 3, pp. 55 – 60.

[7] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,” in
Performance Analysis of Systems Software, 2007. ISPASS 2007. IEEE
International Symposium, April 2007.

[8] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Zomaya, and B. B. Zhou,
“Profiling applications for virtual machine placement in clouds,” in
Cloud Computing (CLOUD), 2011 IEEE International Conference on,
July 2011, pp. 660 –667.

[9] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “Webrtc
1.0: Real-time communication between browsers,” W3C,” Working
Draft WD, August 2012, http://www.w3.org/TR/webrtc/ [retrieved:
March, 2013].

[10] S. Loreto and S. Romano, “Real-time communications in the web:
Issues, achievements, and ongoing standardization efforts, september-
october, 2012,” Internet Computing, IEEE, vol. 16, no. 5, pp. 68 –73.

[11] P. Rodrı́guez, J. Cervino, I. Trajkovska, and J. Salvachúa, “Advanced
videoconferencing services based on webrtc,” IADIS International
Conferences Web Based Communities and Social Media 2012 and
Collaborative Technologies 2012, pp. 180–184.

[12] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The secure real-time transport protocol (srtp),” Internet Engineering
Task Force, March 2004, updated by RFC 5506.

[13] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Va-
quero, “Service specification in cloud environments based on extensions
to open standards,” in Proceedings of the Fourth International ICST

Conference on COMmunication System softWAre and middlewaRE,
ser. COMSWARE ’09, New York, NY, USA, 2009, pp. 19:1–19:12.

[14] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and cloud
computing on-demand resources based on pattern matching,” in Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference, December 2010, pp. 456 – 463.

[15] J. Cervino, P. Rodriguez, I. Trajkovska, A. Mozo, and J. Salvachua,
“Testing a cloud provider network for hybrid p2p and cloud streaming
architectures,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference, July 2011, pp. 356 –363.

[16] Lynckia. Open Source WebRTC Communications Platform.
http://www.lynckia.com [retrieved: March, 2013].

178Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 191 / 263

An Approach to Assure QoS of Machine Translation System on Cloud

Pawan Kumar
Expert Software Consultants Ltd

New Delhi, India
hawahawai@gmail.com

B. D. Chaudhary
Motilal Nehru National Institute of Technology

Allahabad, India
bdc@mnnit.ac.in

Rashid Ahmad
LTRC, International Institute of Information Technology

Hyderabad, India
rashid.ahmed@research.iiit.ac.in

Mukul K Sinha
Expert Software Consultants Ltd

New Delhi, India
mukulksinha@gmail.com

Abstract—Transfer based Machine Translation (MT) System is
a large complex functional application. When these MT
systems are deployed with increasing translation load the
Quality of Service (QoS) degrades (namely, job completion time
increases, system throughput decreases, and system
performance does not scale with increase in provision of
resources). To improve QoS of the MT system MapReduce
framework for distributed processing was explored. MT
application, which has very large code size (order of 100 MB)
of computation, transferring it across the data nodes of the
cluster would be totally antithetical to the basic goal of
throughput enhancement. To utilize the benefit of parallelism
provided by Hadoop, a very large complex MT application has
adopted a distinct approach to overcome this difficulty with no
time penalty. This paper presents an engineering approach to
delude MapReduce framework for parallelization of machine
translation tasks on a large cluster of machines to assure QoS
of MT system. This paper reports the initial results of the
experiments done in our laboratory by running MT System
under cluster of virtual machines in private cloud. Further this
paper asserts that, with the availability of elastic computing
resources in cloud environment, the job completion time for
any translation, irrespective of its size, can be assured to be
within a fixed time limit.

Keywords-Quality of Service; Machine Translation; Virtual
Appliance; Natural Language Processing.

I. INTRODUCTION
Sampark is a machine translation (MT) system that

applies transfer based approach to translate text documents
among nine pairs of Indian languages [1]. Sampark system
was deployed and released for public use at Sampark website
for interactive as well as batch usage in 2008 [27]. The
overview of this MT system comparing its transfer based
approach (comprising three steps, viz., analyze, transfer, and
generate) of machine translation to that of statistical based
approach, followed by Google and Microsoft has been
briefly reported in [2]. As the system was not designed a
priori for scaling, its performance, with the increase in
number of translation job requests, degrades sharply.
Provisioning of additional computing resources, and

employing load balancer, did not improve the overall system
performance incrementally. With increase in number of jobs
there is either degradation, or absence of improvement in the
Quality of Service (QoS) of the system, mainly in three
dimensions, viz.

a) Job completion time (solution time) increases fast
b) System throughput decreases (number of sentences

translated per unit time) and
c) System performance (with provision of additional

computing resources) does not scale linearly.
An MT system is a very complex application with a large

code size of the order of 100 MB. It is a functional
application where one sentence in the source language is
translated into one sentence in the target language. To
explain further, all the modules of a MT system produce
same result given same input text, output does not depend on
any hidden information or state as the program execution
proceeds or between different executions of the program. An
MT system treats its input text data as a list of sentences.
Translation of each sentence is done independently, and has
no effect either from its preceding or from following
sentences. Further, it is also a compute intensive application
as it takes quite a long time to translate a sentence. On an
Intel(R) Core(TM)2 Quad CPU Q8300 @ 2.50GHz, L2
Cache 2048 KB, translating a sentence (average sentence
size 10 words) takes approximately 3 seconds. As the
compute cost is the product of number of compute resources
and its utilization time to execute a job, the compute cost to
translate a single sentence is 3 seconds.

An MT system like Sampark that translates a text
document from a source language to a target language may
have jobs that have large variance in their input data size
(workload). On one end there may be a job to translate a
single sentence, to other translating a newspaper of 30 pages,
or yet another job translating a book of 500 pages. In spite of
provisioning of additional computing resources, the
completion time of a large job cannot be reduced. A large job
does not get advantage of available and unused computing
resources as a load balancer assigns each job, irrespective of
size of its workload, to a distinct computing resource. This
limitation caused due to the specific nature of MT

179Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 192 / 263

application forced us to explore the applicability of
MapReduce [3] parallelization framework to reduce the
completion time of large machine translation jobs.

The Map Reduce framework is suitable for functional
applications as it is able to split a large job into multiple job
partitions, and each job partition can run on different
computing nodes in parallel. This approach of parallel
execution of job partitions not only reduces a job’s
completion time, it also facilitates the better utilization of
available computing resources. The MapReduce
programming model has been designed for applications that
expect provisioning of on-demand service model for
computing resources. The Cloud computing platform
comprising large clusters of machines provides, on-demand,
availability of computing resources of desired size and
number that can be scaled up/down incrementally [4].

This paper presents an engineering approach, utilizing
Hadoop [5], the open source implementation of Map Reduce
framework, to partition each large MT job into multiple job
partitions, to run them, in parallel, on a given cluster of
virtual machines provided by private Eucalyptus Cloud [6]
set up in our laboratory. This parallel execution of the job
partitions reduces the job completion time, and also enhances
utilization of the given compute resources.

In the cloud computing environment, in addition to the
reduction in job completion time, there is need to enhance
the system throughput, as well. Then only it ensures the best
utilization of computing resources, resulting in increase in
the overall system performance, giving us the cost benefit of
cloud computing environment.

The set of three experiments that we conducted show
that:

a) for a large job of any size, the job completion time
can be reduced with increase in computing resources,

b) there is an optimum job partition size (described in
Section V, Experiment Two) that ensures nearly the best
system throughput (i.e., number of sentences translated per
unit time), and

c) the optimum job partition size also ensures best
utilization of available computing resources, resulting in
completion of each job with least computation cost,
assuring, in turn, very high overall system performance.

In this way, our approach assures all the three dimensions
of the QoS of the MT system. MT system is an example of
class of Natural Language Processing (NLP) applications
that are functional in nature. This engineering approach to
assure QoS can be applied to other similar applications like,
text-to-speech, speech-recognition, and text-summarization,
etc.

In Section II, an overview of the Map Reduce
Framework is given, including its strengths and limitations
while the Section III lists related works, its adaptation for
various types of applications, and also for various types of
platforms. In Section IV, our approach to employ Map
Reduce techniques is discussed that assures the QoS for the
Sampark MT system, and Section V gives the details of our
experimental results. And finally, Section VI presents our
conclusion.

II. HADOOP MAP-REDUCE FRAMEWORK: OVERVIEW,
STRENGTHS AND LIMITATIONS

A. MapReduce: An Overview
MapReduce has become the most used parallelization

framework in the data centers comprising of commodity
computers [7]. MapReduce is mostly suited for functional
applications, and its two functions that is map and reduce are
inspired from LISP, the functional programming language
[8].

The Hadoop Framework, the open source variant of Map
Reduce, is composed of Hadoop MapReduce, and Hadoop
Distributed File System (HDFS). HDFS is used to store both
input data to the map step and the output data from the
reduce step. A Hadoop installation is comprised of a cluster
of nodes, consisting of a master node, called the JobTracker,
and several worker nodes. The JobTracker is responsible for
accepting the jobs from the clients, and splitting each job
into multiple job partitions, and assigning those job partitions
to be executed by different worker nodes. Each worker node
runs a TaskTracker that executes currently assigned task to
it, and on its completion, informs the same to the
JobTracker. By communicating with each TaskTracker, the
JobTracker keeps track of all the running job partitions, and
also schedules of new job partitions to worker nodes that are
free.

In Hadoop, the input data of a job gets distributed on the
worker nodes of the cluster while it is being loaded. The
Hadoop Distributed File System (HDFS) splits the input data
into chunks, and each chunk is loaded on different nodes of
the cluster, well before the application gets initiated.

 When the JobTracker assigns a job partition to a worker
node it sends the program code to that node. It is presumed
that the time spent in transferring the program code to the
worker node is relatively very small in comparison to the
execution time of the job partition.

B. Strengths
The main advantage of MapReduce programming model

is its simplicity. The user has to specify his algorithm as a
pair of map and reduce tasks that conform to the
programming model. A functional application whose input
data can be represented as a list can always be modeled in
MapReduce framework. The rest of the details, like,
workload partitioning, distributed execution, network
communication, coordination, and fault tolerance, etc., are all
handled by the MapReduce framework itself.

This model of Map-Reduce is very efficient primarily for
batch jobs, and also for those functional applications that
have relatively smaller code sizes and operates on extremely
large input data sizes.

C. Limitations
The intrinsic limitation of MapReduce is its one-way

scalability of its design, i.e., to scale up to process very large
data sets [9]. Again, it handles large data sets that are at rest,
but is unable to handle large data in motion that can come as
stream [10].

180Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 193 / 263

In the present implementation of MapReduce in Hadoop,
the program code gets transmitted across the worker nodes
of the cluster. And hence, for an application that has very
large code size transferring it across the worker nodes would
completely drain its job completion time enhancement due
to parallel processing of its job partitions. Thus, the main
limitation of Hadoop MapReduce is that it is completely
unsuitable for jobs with large code size.

To utilize the benefit of parallelism provided by Hadoop,
a functional application with large code size is required to
evolve a distinct approach to overcome this difficulty with
no transfer time penalty.

III. RELATED WORK
The MapReduce framework that was originally proposed

by Google is being utilized by it to process more than 10
petabytes of data per day [3]. After the release of Hadoop
implementation of the MapReduce framework more than
hundred organizations, including large companies and
academia are using it for various types of applications. This
has also resulted intense research and development activities
in various directions [11]. Some researchers have developed
of many distinct MapReduce algorithms for processing of
different types of massive data [12, 13], some have simulated
well known parallel processing algorithm in MapReduce
framework [14], while some others are involved in
developing schemes for implementing MapReduce
framework in distinct types of physical platforms [15, 16],
and in optimizing the scheduling problem in its context [17].

The quality of output of Statistical Machine Translation
(SMT) Systems increases with the increase in amount of
their training data [18, 19]. Good SMT systems usually train
their translation engines on 5-10 million sentences pair
corpora, and to train engine on such massive volume of data,
even on good processing platforms, takes couple of days to
even a week. And hence, many efforts are being pursued to
use MapReduce framework to execute such training module
over large corpora on a large distributed systems, bringing
down the training time within couple of hours [20]. Hadoop
MapReduce framework has been used to study throughput
improvement of SMT system [18, 19, 20, 21]. Open source
toolkits capable of training phrase based SMT models on
Hadoop cluster [22] and grammar based SMT on Hadoop
cluster [23] have been reported.

IV. TO ASSURE QOS OF SAMPARK MT SYSTEM: AN
ENGINEERING APPROACH

First, we have tried to abstract those distinguishing
features of our application, viz., the transfer based MT
system Sampark, that makes it an attractive application for
MapReduce framework, and they are:

 A transfer based MT system is a functional
application, and hence, MapReduce framework
would be applicable to it,

 Any text document file that is required to be
translated, i.e., data input to the MT system, can
always be abstracted as a list of paragraphs, or a set
of sentences of any required size, and hence, it can

be easily parallelized and executed on large cluster
of machines [24],

 The incremental scaling up of computing resources
on-demand is integral part of any MapReduce
framework, whether it is a cluster of multi-core
physical machines, or large set of virtual machines in
the cloud [4]. And hence, we would be able to assure
all the three dimensions of QoS (discussed in the
Section I: Introduction) of MT system.

A. Hurdle: To Run Application with Large Code Size on
Hadoop
The Hadoop uses strategy of moving computation to the

data site, instead of moving the data to the computation site.
This strategy allows Hadoop to achieve high data locality
which, in turn, results in high performance.

As discussed earlier, the Sampark MT system is a very
large and complex application with large code size of
approx. 220 MB. This code comprises of around 100,000+
lines of code (in various programming languages), including
the lexical resources, the rule base, and the machine learned
data, each is of very large size, required by its various
modules to perform their functionality. Transferring such a
large code to each worker node would create large
communication load draining completely the advantages
achieved by parallel processing of job partitions.

B. Solution: Sampark MT System as a Virtual Appliance
To circumvent the above problem of transferring large

code size to each worker node, the Sampark MT system is
packaged as Virtual Appliance [25]. An MT virtual
appliance is a full application stack containing the Just
enough Operating System (JeOS), the Sampark MT system,
the Hadoop system, their required dependencies, and the
configuration and data files required to run the MT system.
Everything is pre-integrated, pre-installed, and pre-
configured to run on a virtual machine.

Whenever a new VM is provisioned from cloud, an
image of the Sampark virtual appliance is actually
instantiated on the new VM. For a dedicated application
environment, this engineering approach completely avoids
the need of transferring the MT computation code to worker
nodes at run time. This technique facilitates new nodes to be
added on demand.

C. Implementation: To run Sampark MT System with
Large Code Size under Hadoop
To circumvent this problem for running MT System on a

Hadoop, we have taken following three steps:
 We have developed a program, called mtclient that

runs on the Hadoop master node. Traditional
implementation of MapReduce expects data to be
partitioned well before the MapReduce job is
executed. This mtclient partitions the workload and
submits the job for translation to the Hadoop master

 mtmap is another program that is invoked by
Hadoop master for each of the workload partition.
The code of mtmap is transported to each worker
node for execution of the map tasks.

181Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 194 / 263

 mtmap in turn calls mtmain, which is part of the
Sampark virtual appliance. mtmain is the main
translation system that takes list of sentences as input
and produces a list of sentences as translated output.

Once all the map tasks are over, Hadoop master calls
mtreduce to collate the output translation. In this way, we
have deluded Hadoop to run a large machine translation job
as set of parallel map tasks in a dedicated application
scenario.

V. THE EXPERIMENTAL SETUP, SET OF EXPERIMENTS,
AND THER RESULTS

The experiment has been done on Hindi to Punjabi
Sampark MT system to measure the various QoS dimensions
of the system. The Sampark MT system (program codes
along with lexical resources, rule bases, and machine learned
data) is packaged as a virtual appliance [25]. The Sampark
MT virtual appliance that we used for performing our
experiments was based on CentOS-5.7 as host OS, with Xen
as virtualization layer, along with Hadoop 0.20.2 as
middleware for work load partitioning.

All the experiments are performed on similar virtual
machines in the Eucalyptus cloud. Each of the virtual
machines in the cloud are 2 CPUs, 1GB RAM with CentOS-
5.3 (64-bit) as guest OS. For our experiments we had
allocated 10 worker nodes in the cloud. On each worker
node, the Sampark MT virtual appliance was pre-installed as
a part of the setup.

We conducted three different types of experiments with
different number of compute resources, and different data
sets as it was required by the experiments (for experiment
one 1500 sentences, for experiment two 3000 sentences, and
for experiment three the data set varies from 200 to 25600
sentences). As the virtual compute resources are
homogeneous in nature, and to make the data sets
homogeneous in nature, we have replicated a set of 10
sentences (with average size of 8.5 words) repeatedly, to get
the required size of experimental data sets.

A. Experiment One: To Investigate the Relation of Job
Completion Time with respect to the Amount of Compute
Resources
In this set of experiments, each experiment was done, for

a given number of virtual nodes in the cloud, and with the
fixed job size of 1500 sentences with increasing number of
job partitions (also called task). The job partition sizes used
in experiments are 5, 10, 15, 20, 25, 50, 75, 100, and 150
sentences each.

The same experiment was repeated with increasing the
number of virtual nodes in the cloud, viz., node clusters of 2,
4, 8, and 10.

The same experiment was earlier performed on a
standalone system with same virtual machine configuration
in the cloud but without Hadoop.

When we have small job partition size, for a given job
the number of job partitions would be large. And hence, for a
given number of virtual nodes, to run all job partitions (to
complete the job), it would take multiple cycles of run. In

comparison to a job partition (task) execution time, the inter-
cycle run overhead would be negligible.

Table I shows the job completion time with increasing
number of virtual nodes, and with increasing size of job
partition. From this set of experiments we conclude:

 For a given job, the job completion time
reduces with the increase in computing
resources,

 The reduction in job completion time is linear in
the beginning, but starts saturating beyond a
certain point

TABLE I. SHOWING JOB COMPLETION TIME IN SECONDS FOR 1500
SENTENCES

Partition Size
(Sentences per

Task)

Job Completion Time (in Seconds)
10

Nodes
8

Nodes
4

Nodes
2

Nodes 1 Nodes*

5 258 302 583 1150 2704
10 173 215 402 798 1979
15 139 176 312 631 1704
20 137 167 285 566 1803
25 130 171 305 528 1487
50 119 134 284 433 1275
75 152 104 174 363 1193

100 151 119 211 362 1412
150 152 194 397 324 1385

* This experiment was done on a single virtual machine without Hadoop

Figure 1. Job Completion time vs. No. of Nodes

B. Experiment Two: To Investigate the Relation of Job
Partition Size with respect to Throughput.
In this set of experiments, we increased the size of data

set to 3000 sentences, mainly to reduce the influence of
inter-cycle run overhead on the throughput. Larger is the job
completion time lesser would be the influence of inter-cycle
run overhead. Each set of experiment the job partition sizes
used were 5, 10, 15, 20, 25, 50, 75, 100, and 150 sentences
each. This variation in job partition size is the same as in
Experiment One.

Again, to focus our attention on throughput we have
conducted only two sets of experiments on two compute
resource configurations, viz., 5 and 10 virtual nodes.

Again, to focus our attention on throughput we have
conducted only two sets of experiments on two compute
resource configurations, viz., 5 and 10 virtual nodes.

Table II enumerates the results of the two sets of
experiments. The result shows that, for a given job the best

182Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 195 / 263

throughput is achieved at a particular job partition size,
irrespective of number of compute resources utilized. By
increasing job partition size, the improvement in throughput
is not very significant. As we have reached the rim of the
best throughput, we call this job partition size as the
optimum job partition size.

TABLE II. SHOWS COMPUTATION COST VS PARTITION SIZE FOR 3000
SENTENCES

No of Tasks Partition Size
(Sentences per Task) 10 Nodes 5 Nodes

600 5 35 37
300 10 49 53
200 15 59 64
150 20 63 69
120 25 68 72
60 50 86 90
40 75 93 97
30 100 82 104
20 150 101 107

Figure 2. Throughput vs partition size of task in term of number of

sentences

C. Experiment Three: To Investigate the Relation between
Job Partition Size and Throughput.
In this case, we have conducted 3 sets of experiments,

each with the same compute resource configuration of 5
virtual nodes.

As we are varying the job partition size to observe that
where the throughput is the maximum, in each set of
experiment we have maintained a fixed number of job
partitions (tasks). To keep fixed number of partitions while
varying the job partition size, we have to increase the job
size i.e., number of sentences. The 3 sets of experiments
have 40 tasks, 60 tasks and 80 tasks respectively. Figure 3
shows throughput verses partition size of task.

Table III enumerates the results of the three sets of
experiments done. These results show that for a given job the
best throughput is achieved at a particular job partition size.
It also shows that by changing the job size (i.e., the number
of sentences) hardly changes the optimum job partition size.
Increasing the partition size beyond the optimum job
partition size does not enhance the throughput significantly.
We see that, in this range, if the partition size is doubled, the
throughput increases by less than 5%.

TABLE III. SHOWS TIME TO TRANSLATE A GIVEN TASK FOR VARIOUS
PARTITION SIZES ON A 5 NODE CLUSTER FOR 25600 SENTENCES

No of
Tasks

Partiti
on Size

Total
Sentences

Total Compute
Time in seconds

Throughput
per minute

80 10 800 1055 45
80 20 1600 1475 65
80 40 3200 2340 82
80 50 4000 2620 92
80 80 6400 3750 102
80 100 8000 4455 108
80 160 12800 6665 115
80 200 16000 8240 117
80 320 25600 12920 119
60 10 600 800 45
60 20 1200 1025 70
60 40 2400 1715 84
60 50 3000 2005 90
60 80 4800 2830 102
60 100 6000 3320 108
60 160 9600 5055 114
60 200 12000 6140 117
60 320 19200 9990 115
40 10 400 570 42
40 20 800 855 56
40 40 1600 1165 82
40 50 2000 1355 89
40 80 3200 2115 91
40 100 4000 2275 105
40 160 6400 3435 112
40 200 8000 4175 115
40 320 12800 6430 119

TABLE IV. SHOWS THROUGHPUT VARIATIONS FOR VARIOUS
PARTITION SIZES

Partition Size
(Sentences per Task) 80 Task 60 Task 40 Task

10 45 45 42
20 65 70 56
40 82 84 82
50 92 90 89
80 102 102 91
100 108 108 105
160 115 114 112
200 117 117 115
320 119 115 119

VI. CONCLUSION AND FUTURE TASKS VISUALIZED
This paper presents the engineering approach that we

have developed to run a functional application like MT
system with a large code size as a dedicated application in
MapReduce Framework, to get enhanced QoS utilizing its
list homomorphism characteristics [24] for parallel

183Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 196 / 263

execution. This approach to assure QoS can be applied to a
large group of NLP applications.

We have also developed a scheme to delude Hadoop
MapReduce framework to load the MT system with large
code size (by packaging MT as a virtual appliance), a priori
on all worker nodes, to overcome the transfer cost at run
time.

Contribution of our work is threefold:
 Completion time for any large job can be reduced

with increase in computing resources,
 There exists an optimum size of job partition for

which the best system throughput is achieved,
 The minimum completion time along with the best

system throughput would incur the minimum
compute cost in the cloud environment.

In this way, our approach assures all the three dimensions
of the QoS of the MT system. In future we plan to extend
this approach to other NLP applications that exhibit list
homomorphism and can be partitioned for distributed
computing.

ACKNOWLEDGMENT
We would like to thank Prof. Rajeev Sangal for his help to
setup the experiments in their laboratory.

Figure 3. Throughput vs. partition size of task

REFERENCES
[1] R. Sangal, “Project proposal to develop Indian language to Indian

language Machine Translation System”, IIIT Hyderabad, TDIL
Group, Dept. of IT, Govt. of India, (2006).

[2] G. Anthes, “Automated Translation of Indian Languages,” CACM,
vol. 53 (1), Jan. 2010, pp. 24-26, doi: 10.1145/1629175.1629184.

[3] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data Processing
Tool,” In Proc. of OSDI'04: Sixth Symp. on Operating System Design
and Implementation, pp. 137-149, Dec. 2004.

[4] M. Armbrust, A. Fox, R. Griffith, “Above the Clouds: A Berkeley
View on Cloud Computing,” Technical Report No. UCB/EECS-
2009-28, Univ. of California, Berkeley, Feb. 10, 2009.

[5] The Apache Software Foundation, “Hadoop: MapReduce
Framework” http://hadoop.apache.org [retrieved: February, 2013]

[6] D. Nurmi, et al., “The Eucalyptus Open Source Cloud Computing
System,” In Proc. of 9th IEEE/ACM Intl. Symp. on Cluster
Computing and Grid”, pp. 124-131, 2009.

[7] L. Barroso, J. Dean, and U. Hoelzle, “Web search for a planet: The
Google cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22-28,
2003.

[8] R. S. Bird, “An Introduction to the Theory of Lists,” Oxford
University Technical Monograph PRG-S6, 1986.

[9] Z. Ma and L. Gu, "The Limitation of MapReduce: A Probing Case
and a Lightweight Solution," In Proc. of the 1st Intl. Conf. on Cloud
Computing, GRIDs, and Virtualization (CLOUD COMPUTING
2010). Nov. 21-26, 2010.

[10] V. Kumar, H. Andrade, Bugra Gedik, and K. Lung Wu, “DEDUCE:
At the Intersection of MapReduce and Stream Processing,” In Proc.
of the 13th Intl. Conf. on Extending Database Technology, pp. 657-
662

[11] J. Lin and C. Dyer, “Data-Intensive Text Processing with
MapReduce,” University of Maryland, USA, April 2010.

[12] B. He, W. Fang, Q. Luo, N.K. Govindarajan, and T. Wang “Mars: A
MapReduce Frameworks on Graphics Processing,” In Proc. of 17th
Conf. on Parallel Architecture & Compilation Techniques, pp. 260-
268, 2008.

[13] M.de Kruijf and K. Sankarlingam, “MapReduce for the Cell B.E.
Architecture”, University of Wisconsin, Comp. Sc., Tech. Report:
CS-TR-2007-1625, 2007.

[14] H. Karloff, S. Suri, and S. Varrilvitski, “A Model of Computation for
MapReduce,” In Proc. of 21st Annual ACM-SIAM Symp. on
Discrete Algorithm, 2010.

[15] G. Ananthnarayanan et al., “Reining in the Outliers in Map-Reduce
Cluster using Manti,” In Proc. of USENIX OSDI, 2010.

[16] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, “Evaluating MapReduce for Multi-core & Multi-processor
systems,” In Proc. of the IEEE 13th Intl. Sym. on High Performance
Computer Architecture, pp. 13-24. Phoenix, Arizona, 2007.

[17] H. Chang et al., “Scheduling in MapReduce like System for Fast
Completion Time”, Bell Labs Alcatel-Lucent, Purdue University,
2011.

[18] M. Banko and E Brill, “Scaling very very Large Corpora for Natural
Language Disambiguation,” In Proc. of 39th Annual Meeting of
Assoc. of Computational Linguistics (ACL 2001), pp. 26-33,
Toulouse, France, 2001.

[19] C. Collism-Burch, C. Bannard, and J Schroeder, “Scaling Phrase-
based Statistical Translation to Larger Corpora and Larger Phrases,”
In Proc. 43rd Annual Meeting of Assoc. of Computational Linguistics
ACL, pp. 255-262, Ann Arbor, Michigan, USA, 2005.

[20] C. Dyer, A. Cordora, A. Mont, and J. Lin, “Fast, Easy & Cheap:
Construction of Statistical Machine Translation Model with
MapReduce,” In Proc. of 3rd Workshop on Statistical MT at ACL,
University of Marytal, Columns, Ohio, 2008.

[21] R.M.Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth: Scalable
MapReduce on a Large Scale Shared Memory System,” Stanford
University, Computer System Laboratory, CA, USA, 2009.

[22] Q. Goa and S. Vogel, “Training Phrase-based Machine Translation
Models on the Clouds: Open Source Machine Translation Toolkit
Chanki,” The Prague Bulletin of Mathematical Linguistics, 93: pp.
37-16, 2010.

[23] V. Ashish and A. Zollnam, “Grammar Based Statistical MT on
Hadoop.An end-to-end Toolkit for Large Scale PSCFG based MT”,
The Prague Bulletin of Mathematical Linguistics (91), pp. 67-78,
2009.

[24] M.Cole, “Parallel Programming with List Homomaphism”, Parallel
Processing Letters vol. 5, No. 2, pp. 191-203, 1995.

[25] P. Kumar, R. Ahmad, B. D. Chaudhary, R. Sangal, “Machine
Translation System as a Virtual Appliance: For Scalable Service
Deployment on Cloud,” In Proc. of IEEE 7th Intl. Symp. on Service
Oriented System Engineering (SOSE 2013), pp. 304-308, 2013.

[26] R. Ahmad, et al., “Enhancing Throughput of a Machine Translation
System using MapReduce Framework: An Engineering Approach,”
In Proc. of 9th International Conference on Natural Language
Processing (ICON-2011), pp. 200-206, 2011.

[27] Sampark: Machine translation system among Indian languages,
http://sampark.org.in [retrieved: January, 2013]

184Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 197 / 263

Defining Intercloud Federation Framework for
Multi-provider Cloud Services Integration

Marc X. Makkes∗†, Canh Ngo∗, Yuri Demchenko∗, Rudolf Strijkers∗†, Robert Meijer∗†, Cees de Laat∗

∗ System and Network Engineering Group
University of Amsterdam

Amsterdam, the Netherlands
e-mail:{t.c.ngo,y.demchenko,delaat}@uva.nl

† Information and Communication Technology
TNO

Groningen, The Netherlands
{marc.makkes, rudolf.strijkers, robert.meijer}@tno.nl

Abstract—This paper presents the on-going research to define
the Intercloud Federation Framework (ICFF) which is a part of
the general Intercloud Architecture Framework (ICAF) proposed
by the authors. ICFF attempts to address the interoperability
and integration issues in provisioning on-demand multi-provider
multi-domain heterogeneous cloud infrastructure services. The
paper describe the major Intercloud federation scenarios that
in general involves two type of federations: customer-side fed-
eration that includes federation between cloud based services
and customer campus or enterprise infrastructure; and provider-
side federation that is created by a group of cloud providers to
outsource or broker their resources when provisioning services
to customers. The proposed ICFF uses cloud resources brokering
model as the main operational model in typically non-coordinated
Intercloud and multi-cloud environment. The paper analyses
federated identity management scenarios and related design
patterns that actually creates a basis for operating federations
and providing consistent federated access control infrastructure.
The paper also refers to successful virtual organisation experience
in Grids and attempts to re-use it in ICFF. The presented
work attempts to provide an architectural model for developing
Intercloud middle-ware and in the way will facilitate cloud
interoperability and integration.

Index Terms—Intercloud Federations Framework; Intercloud
Architecture; Cloud Computing Reference Architecture; Multi-
layer Cloud Services Model.

I. INTRODUCTION

Clouds are increasingly used both by industry and by
research community to outsource and/or extend their IT in-
frastructure. They are also used to offload the computationally
intensive tasks and large data volumes, thus make them easily
and globally reachable. Cloud Computing [1], [2] technologies
are evolving as a common way to provide infrastructure
services, resources virtualization and on-demand provisioning.
In addition, they bring mobility and hardware independence
to the existing distributed computing and networking applica-
tions. Despite the growth and improvement in services offered
by the cloud mega-providers such as Amazon [3], Microsoft
Azure [4], Google Cloud [5], Rackspace [6], an enlarging
number of cloud-oriented applications and global services will
require provisioning for cloud based infrastructure services
involving multi-provider and multi-domain resources. They

also need to inter-connect and integrate with legacy network
infrastructures and enterprise services.

Current cloud technologies development demonstrates
movement on developing Intercloud models, architectures and
integration tools. They support the integration of cloud infras-
tructures into existing enterprise and campus infrastructures,
and provide a common and interoperable environment to move
existing infrastructures on the cloud environment [7].

A common approach here is to use different services, re-
sources and identities federation models. However, there is no
available well-defined work to provide a common federation
model for resources and services integration from multiple
providers, which also allows users identities federation be-
tween home organizations and cloud service domains.

We refer to our ongoing research to define the general
Intercloud Architecture Framework (ICAF) [8]–[10], that in-
tends to address the multi-domain heterogeneous cloud based
infrastructure services integration and interoperability includ-
ing: integration and interoperability with the legacy IT infras-
tructure services. The ICAF defines the Intercloud Federation
Framework (ICFF) as a framework for federating indepen-
dently managed cloud and non-cloud resources and service
domains together with the customer and provider identity
services federation.

In this paper we propose a further definition of the ICFF
components supporting to create complex projects and group
oriented infrastructures on-demand provisioned across multi-
ple providers. The research presented in this paper is based
on and attempts to leverage the experience from a number of
cooperative projects where the authors actively participated
such as EGEE [11], GEANT3 [12] and, GEYSERS [13],
that have developed federated models for Virtual Organization
(VO), federated Grid resources sharing, federated access to
web and network services, and combined network and IT
resources provisioning by telecom services providers.

The remainder of the paper is organized as follows. Sec-
tion II provides analysis of the general use cases and basic
scenarios for cloud and inter-cloud federation, including short
reference to the VO based federation model in Grids. Section
III presents the summary of the Intercloud Architecture frame-
work, and section IV goes into further definitions and details

185Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 198 / 263

of the proposed Intercloud federation framework. Section V
provides information about our work to build a cloud-based
test-bed for modeling and testing the proposed federation
models. Section VI gives a short overview of the related works.
And finally, Section VII contains conclusions and describes
our further development plans.

II. GENERAL USE CASES AND BASIC SCENARIOS

A. Customer side and Provider side Federation

We define two general use cases for (1) federating cloud
resources on the provider side, or (2) creating federated multi-
provider infrastructures and services to deliver federated cloud
services to the customer. We define the following main ac-
tors and roles adopting the Resource-Ownership-Role-Action
(RORA) model proposed in [14]:

• Cloud Service Provider (CSP) as an entity providing
cloud based services to customers, on their request and
based on the business agreement that is expressed as
Service Level Agreement (SLA). We need to admit
specifies of business relation in clouds due to the fact
that majority of cloud services are self-services and they
are governed under general or individualized SLA.

• Cloud Broker is an entity that may play a role of the
third party in offering cloud service, adding value of
negotiating with many CSPs or customer groups and in
some cases managing complex multi-provider services.

• Customer is an entity that requests cloud services. In
a simple case, customer may be an end-user of the
requested services, or in more general case, may be an or-
ganization (e.g. enterprise or university) requesting cloud
based services for the members of their organisations and
manages these services.

• User is an end-user consuming cloud based services. In
cloud services provisioning model, an end-user may be
also a customer.

Note, we do not define the broker at this stage because for
the basic scenarios discussed here the broker functions can
be substituted with either CSP or Identity provider (IdP) role.
We will provide definition of the cloud broker role in section
IV for the multi-provider Intercloud environment. Figure 1
illustrates two cases when (1) the cloud based services and/or
infrastructure needs to be integrated/federated with the existing
user accounts and enterprise infrastructure, or (2) cloud based
public services can use external IDP and in this way already
existing user accounts with the single or multiple 3rd party
IDPs (such as Google+/GooglePlay, Facebook, Microsoft, or
other OpenID providers).

Figure 2 illustrates the major actors and their relation in
the provider side federation that is typically created between
cloud service providers to share and/or outsource their cloud
resources when providing a final service to the customer

B. Federated Access Control and Identity Management

Federated Identity Management (FIDM) is the main compo-
nent of the federated cloud infrastructure. This issue has been
recognized by industry and addressed by the OASIS Cloud TC

Fig. 1. Customer/user side federation for delivery of the federated cloud
services to (a) enterprise customers running their own IDP and (b) for user
access federation for public cloud based services.

Fig. 2. Provider side federation for resources sharing and outsourcing

[15]. In the typical distributed inter-cloud infrastructure, the
broker outsources the authentication and attribute management
to a 3rd party IDP, either regular or cloud-aware which we
will refer to as Federated IDP (FIDP). Similar to the general
federation scenarios, we identify two scenarios for FIDP: a
single user (actually representing individual users of the public
services) and users of a customer organization (that can also
be referred to as ”Home Organization (HO)”) that have their
accounts at their HO in which their identities are confirmed
by the HO-IDP.

1) A single-end user scenario: In this scenario, the FIDM
at broker site needs to support standardized IDP protocols such
as OpenID, SAML, OAuth to interoperate with public IDP, as
in Figure 3.

2) Company/organization scenarios: When the customer
is an organization or a company, there are possible IDP
deployments. First, due to sensitive IdP information, some

186Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 199 / 263

Public IdP

End-userCloud Broker 1

3

5

Cloud Provider
Cloud Provider

Cloud Providers

6

2

4

Fig. 3. Multi-provider federation with a Public IDP

Home IdP

End-user

Cloud Broker

1

3

2

5

Cloud ProviderCloud ProviderCloud Providers

Customer

OrgA
4

6

Fig. 4. Corporate customer running an on-site IDP service

organizations choose to deploy their own private IdP on-site,
which need to collaborate with the FIDM Broker as in Figure
4. The vital requirement here is broker need mechanisms to
discover the customer’s IDP to connect for retrieving end-
users’ attributes and logon statuses.

In other scenario, a ”light-weight” customer may want
to out-source their identity management service to a cloud
provider (i.e. IDP as a Service – IdPaaS). In this case, the IDP
services are provisioned and collaborate with the FIDM cloud
broker. The on-demand IDP service should support followings:

• Support service provisioning life-cycles.
• Manageable by the cloud customer for their own organi-

zation.
• Integrate with access control services for the cloud re-

sources.

C. Policy and Security Context Management

Policy and security context management are important com-
ponents of creating, operating and managing federated access
control infrastructure. Authors’ previous works the XACML
(eXtensible Access Control Markup Language) policy format
provides all necessary functionality for multi-domain policy
expression and attributes definition [16], [17]. XACML policy
identification and attributes format allow for using different
namespaces and attributes semantics. The proposed Generic
AAA Authorisation framework [18] allows multi-domain at-
tributes validation and mapping when evaluating access control
request. Another important component in managing federated
access control infrastructure is authorization session security
context management what can be achieved with using tickets
and tokens as session credentials. Proposed in [19], [20]
authorization tickets and pilot tokens can support inter-domain

security context communication, delegation and federation
management.

D. VO based Federation in Grids

The problem, which underlies the Computational Grid con-
cept, is coordinated resource sharing and problem solving in
dynamic, multi-institutional Virtual Organizations (VO). VO
are defined as a collection of individuals, institutions and
resources that access and share resources within the Grid
[21]. Developing Intercloud federation framework we intend
to re-use Grid community experience in building robust inter-
organisational services, in particular using VO and a federation
mechanism for managing dynamic security associations [22]
The following security services and related functionalities are
identified for the VO [22]:

1) Identity management service, normally provided by IDP.
2) Attribute management service that issues attributes

bound to user or resource identity that primary can
be used for authorization decision when accessing VO
resources or services.

3) Authorization service to enforce access control to the
resource or service based on entity’s attributes/roles and
authorisation policies.

4) Policy management service to provide VO-wide policies
related to authorisation, trust management, identity fed-
eration, mapping of identities, attributes and policies.

5) Trust management service that may include CA and
associate PKI management services that allows estab-
lishing and managing trust relations inside VO.

In contrast to clouds, all VO services may be provided
(and managed) by member organizations on behalf of the
VO. Services provisioning in clouds typically includes also
identity provisioning that may be linked to (or federated with)
the existing user identity.

III. INTERCLOUD ARCHITECTURE FRAMEWORK

The Intercloud Architecture Framework, introduced in [8],
address the interoperability and integration issues in the cur-
rent and emerging heterogeneous multi-domain and multi-
provider clouds that could host modern and future criti-
cal enterprise and e-Science infrastructures and applications,
including integration and interoperability with legacy cam-
pus/enterprise infrastructure. The ICAF consist of the flowing
components:

1) Multilayer Cloud Services Model (CSM) for vertical
cloud services interaction, integration and compatibility
that defines both relations between cloud service models
(such as IaaS, PaaS, SaaS) and other required functional
layers and components of the general cloud based ser-
vices infrastructure;

2) Intercloud Control and Management Plane (IC-
CMP) for Intercloud applications/infrastructure control
and management, including inter-applications signaling,
synchronization and session management, configuration,

187Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 200 / 263

monitoring, run time infrastructure optimization includ-
ing VM migration, resources scaling, and jobs/objects
routing;

3) Intercloud Federation Framework (ICFF) to allow
independent clouds and related infrastructure compo-
nents federation of independently managed cloud based
infrastructure components belonging to different cloud
providers and/or administrative domains; this should
support federation at the level of services, business appli-
cations, semantics, and namespaces, assuming necessary
gateway or federation services;

4) Intercloud Operation Framework (ICOF) which in-
cludes functionalities to support multi-provider infras-
tructure operation, including business workflow, SLA
management and accounting. ICOF defines the basic
roles, actors and their relations in sense of resources
operation, management and ownership. ICOF requires
support from and interacts with both ICCMP and ICFF.

The ICFF is the main framework which creates the Inter-
cloud it self. The primary focus in the paper lies on the ICFF.

IV. ICFF DEFINITION AND REQUIREMENTS

As defined in [9], [23] the ICFF allows clouds from different
administrative domains to from a federation. The federation
allows for end-users to view the cloud as one, while the
individual cloud providers can differentiate based on location,
infrastructure and network connections to the outside world.

A. Intercloud Federation Framework.

The Intercloud federation framework is responsible for
coordinating allocation of resources in a unified way. Figure
5 illustrates the main components of the federated Intercloud
Architecture, specifically underlying the Intercloud gateway
function (GW) that provides translation of the requests, pro-
tocols and data formats between cloud domains. At the same
time the federated Intercloud infrastructure requires a num-
ber of functionalities, protocols and interfaces to support its
operation:

• Trust and service brokers,
• Service Registry
• Service Discovery
• Identity provider (IdP)
• Trust manager

B. Service Broker

To overcome these shortcomings of decentralized non-
coordinated allocation of resources with in multi-provider
multi-domain heterogeneous cloud services, we introduce a
service broker to solve allocation of resources. We identify
the broker as the key component for federation, which does
not have to be exclusive. The role and responsibility of the
service broker is to solve the resource brokering problem. We
defined as the problem as follows: ”Allocation of resources
and services across the multiple cloud resources such as com-
putational clusters, parallel supercomputers, storage clusters
that belong to different administrative domains”.

!
Fig. 5. Intercloud Federation Framework, where the broker has a central role
for connecting to multi-cloud providers and presenting this as one Interface
to the end-user. In addition, it has support for dynamical trust and IdP.

To solve the brokering problem, the service broker has
interaction with both customers to allocate and de-allocation
resources across multiple cloud providers on behave of the
customers. Having a broker allocate resources on behave will
simplify administration for cloud providers, as cloud provider
only have to do accounting for service brokers, instead for
every customer.

To have a service broker as opposed to having no brokers
(such as a root directory [24]) in the federation, is to have
a unified interface to all cloud providers as opposed to have
different interfaces to each cloud provider in the federation.
In that sense, the broker together with the cloud provider’s
gateway provides and ensures the interoperability between dif-
ferent participating clouds. Thus, the brokers provide interface
for allocation of resources for their costumers.

To provide identity management over moreover the brokers
have interfaces to service registry, service discovery, identity
provider (IdP), and trust manager, see Figure (5) for details.

C. Service registry

The service registry is a directory where cloud providers can
provide information regarding IaaS, SaaS and PaaS services,
which includes details of allocation of resources as well as
service level agreements and policies. The broker can query
Service registry information about services, and can negotiate
SLA and policy with the clients. In addition, this information
can be used to allocate resources in a specific cloud provider.

D. Identity Provider

ICFF operates across security domains, which are involving
different cloud entities, from cloud providers to cloud con-
sumers [2]. In this context, ICFF needs to support and integrate
with the identity and trust management for these entities for
both provider and customer sides.

The dynamic resource provisioning in the collaboration sce-
narios of cloud providers require the trust management to carry

188Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 201 / 263

out trust establishments between them. The trust management
in the ICFF needs to support following requirements:

• Dynamic trust establishment between indirect cloud en-
tities: Current relationships between cloud entities often
rely on SLAs, which are mostly suitable for direct re-
lationships. ICFF scenarios require a cloud provider or
cloud consumer could connect to other unknown entities,
through a chain of direct SLA relationships, which is
known as dynamic trust relationship [25].

• Interoperate and extend standardized mechanisms on
multi-domain identity management and trust manage-
ment, which are SAML [26], OAuth [27] to support on-
demand provisioned clouds.

• A fine-grained trust management policy language.

ICFF should take into account federated identity manage-
ment in its operation management:

• Compatible with existing public identity management
systems.

• Interoperate between identity management with the on-
demand access control services to manage cloud re-
sources.

E. Grid vs Cloud Federation

The main idea behind cloud computing is that infrastructure
that is not used, is rented to third parties. This includes storage,
computational, and services in an on-demand and pay-as-
you-go model. Except for the on-demand and pay-as-you-go
model, the ideas of grids grid are not quite different. Grid
federation is based on institutions that want to cooperate,
such that users, can access computational resources quicker.
The hierarchy is mostly flat, with a ’super scheduler’ to
schedule all jobs on the combined resources using queue’s. To
scale vertically, i.e. creating hierarchy can only be done with
software such as [28]. Clouds on the other hand, are mostly
providing services to their customers, and have competition on
the market. Horizontal scaling and federation can both be done
with brokering. In addition, brokering allows for hierarchical
scaling as a broker of broker can be created. Clouds provide
a services oriented model, such as IaaS, PaaS and SaaS.
Together with brokering, this allow independent clouds and
related infrastructure components federation of independently
managed cloud based infrastructure components belonging to
different cloud providers and/or administrative domains; this
should support federation at the level of services, business
applications, semantics, and namespaces, assuming necessary
gateway or federation services.

The vital difference between grids and clouds is that the
amount of computation is mostly unknown with clouds, hence
it is manly used for running services while grids are to run
predefined computational jobs with budgets. While grids can
be run on clouds using grid software [22] the other way
around is not trivial task. In addition, clouds are mostly used
workloads that are not pre-defined, such as services, while
grids run mostly budget or time constrained computation jobs.

V. CLOUD FEDERATION MODELING

This section provides short overview of the test-bed that
we used for modeling overlay network and which we are
redesigning to support modeling of the basic federation models
in provisioning federated cloud resources. The test-bed con-
sists of a Broker, which connects users and Different cloud
providers, which includes Amazon AWS and Brightbox, with
each other and is such a way that users can create VM (IaaS)
over multiple provide. The broker provides an interface to
OpenID IdP provided by google [27] to provide accounting,
authentication, and authentication. The test-bed provides an
interface to the end- users such that they can instantiate a
layer 2 overlay network using VPN’s. The interface provides
also addressing IPv4 and IPv6 for created IaaS nodes in an
automated fashion. After the overlay network is created and
addressing is assigned, the interface provides an option to
enable IPv4 or IPv6 routing based on Quagga [29]. This
allows uses to create on-demand overlay network in multi
provider cloud environments. The authors believe that at the
time of conference the proposed test-bed will collect valuable
information to estimate performance of the basic federation
use-cases when realized with the AWS infrastructure.

VI. RELATED WORK

Federations of computational resources come in different
forms, but one federation that’s on large scale is grid com-
puting. The problems of federation in Grid computing shows
many resemblance with cloud computing.

The main idea behind grid computing is to use computation
and storage resources for other computational goals if they
are not used. This idea was then fully extended to multiple
locations, multiple administrative domains, different architec-
tures, etc., and link together with software. In Grid computing,
the federation problem The Grid resource brokering, also
know as super-scheduling, problem is defined as: ” scheduling
jobs across the grid resources such as computational clusters,
parallel supercomputers, desktop machines that belong to
different administrative domains”. Brokering in computational
grids is facilitated by specialized application schedulers such
as Nimrod-G [30], Condor-G [31], AppLeS [32], APST [33]
Legion and WorkFlow Engines. Grid Brokering activity in-
volves:

• Querying grid resource information services (GRIS) for
locating resources that match the job requirements,

• Coordinating and negotiating Service Level Agreements;
• and job scheduling.
The grid resources are managed by their local resource

management systems such as Condor. These systems manage
job queues, initiate and monitor their execution.

VII. FUTURE DEVELOPMENT

The paper presents an on-going research at the University
of Amsterdam to develop the Intercloud Architecture (ICA)
addresses the problem of multi-domain heterogeneous Cloud
based applications integration and inter-provider and inter-
platform interoperability. The presented research is planned

189Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 202 / 263

to be contributed to the Open Grid Forum Research Group
on Infrastructure services On-Demand provisioning (ISOD-
RG) [27], where the authors play active role. In addition, we
planned to extent our test-bed, in such away that it enables
dynamic provisioning of federation infrastructure.

VIII. ACKNOWLEDGMENTS

This project is supported by the Dutch national research
program COMMIT and the FP7 EU funded Integrated projects
The Generalized Architecture for Dynamic Infrastructure Ser-
vices (GEYSERS, FP7-ICT-248657), GEANT3 (FP7-ICT-
238875).

REFERENCES

[1] “NIST SP 800-145, ”A NIST definition of cloud computing”.”
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf,
accessed February 2013.

[2] “NIST SP 500-292, Cloud Computing Reference Architecture,
v1.0..” http://www.nist.gov/customcf/get pdf.cfm?pub id=909505, ac-
cessed February 2013.

[3] “Amazone Web Services.” http://aws.amazon.com/products/, accessed
February 2013.

[4] “Microsoft Windows Azure.” http://www.windowsazure.com/, accessed
February 2013.

[5] “Google Cloud Platform.” https://cloud.google.com/, accessed February
2013.

[6] “Rackspace Cloud.” http://www.rackspace.com/cloud/, accessed Febru-
ary 2013.

[7] R. Buyya, R. Ranjan, and R. Calheiros, “Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,” Algorithms and architectures for parallel processing, pp. 13–
31, 2010.

[8] Y. Demchenko, C. Ngo, M. Makkes, R. Strijkers, and C. de Laat,
“Defining inter-cloud architecture for interoperability and integration,”
in CLOUD COMPUTING 2012, The Third International Conference on
Cloud Computing, GRIDs, and Virtualization, pp. 174–180, 2012.

[9] Y. Demchenko, C. Ngo, C. de Laat, J. Garcia-Espin, S. Figuerola,
J. Rodriguez, L. Contreras, G. Landi, and N. Ciulli, “Intercloud archi-
tecture framework for heterogeneous cloud based infrastructure services
provisioning on-demand.,” 2013.

[10] B. Khasnabish, “Cloud reference framework.”
draft-khasnabish-cloud-reference-framework-04.txt, 2012.

[11] “European Grid Infrastructure (EGI).” http://www.egi.eu/about/EGI.eu/,
accessed February 2013.

[12] “Geant project.” http://www.geant.net/pages/home.aspx, accessed Febru-
ary 2013.

[13] “Generalised Architecture for Dynamic Infrastructure Services (GEY-
SERS Project).” http://www.geysers.eu/, accessed February 2013.

[14] J. Garcia-Espin, J. Riera, S. Figuerola, and E. Lopez, “A multi-tenancy
model based on resource capabilities and ownership for infrastructure
management,” 2012.

[15] “OASIS IDCloud TC: OASIS Identity in the Cloud TC..” http://wiki.
oasis-open.org/id-cloud/, accessed February 2013.

[16] Y. Demchenko, M. Cristea, and C. de Laat, “XACML policy profile for
multidomain network resource provisioning and supporting authorisation
infrastructure,” in Policies for Distributed Systems and Networks, 2009.
POLICY 2009. IEEE International Symposium on, pp. 98–101, IEEE,
2009.

[17] G. Garzoglio, I. Alderman, M. Altunay, R. Ananthakrishnan, J. Bester,
K. Chadwick, V. Ciaschini, Y. Demchenko, A. Ferraro, A. Forti, et al.,
“Definition and implementation of a saml-xacml profile for authorization
interoperability across grid middleware in osg and egee,” Journal of Grid
Computing, vol. 7, no. 3, pp. 297–307, 2009.

[18] Y. Demchenko, A. Wan, M. Cristea, and C. De Laat, “Authorisation
infrastructure for on-demand network resource provisioning,” in Grid
Computing, 2008 9th IEEE/ACM International Conference on, pp. 95–
103, IEEE, 2008.

[19] L. Gommans, L. Xu, Y. Demchenko, A. Wan, M. Cristea, R. Meijer,
and C. De Laat, “Multi-domain lightpath authorization, using tokens,”
Future Generation Computer Systems, vol. 25, no. 2, pp. 153–160, 2009.

[20] Y. Demchenko, O. Koeroo, C. de Laat, and H. Sagehaug, “Extending
XACML authorisation model to support policy obligations handling
in distributed application,” in Proceedings of the 6th international
workshop on Middleware for grid computing, p. 5, ACM, 2008.

[21] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” International journal of high
performance computing applications, vol. 15, no. 3, pp. 200–222, 2001.

[22] Y. Demchenko, “Virtual organisations in computer grids and identity
management,” Information Security Technical Report, vol. 9, no. 1,
pp. 59–76, 2004.

[23] Y. Demchenko, M. Makkes, R. Strijkers, and C. de Laat, “Intercloud
architecture for interoperability and integration,” in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on, pp. 666–674, Dec. 2012.

[24] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud - protocols and formats for cloud computing
interoperability,” in ICIW (M. Perry, H. Sasaki, M. Ehmann, G. O.
Bellot, and O. Dini, eds.), pp. 328–336, IEEE Computer Society, 2009.

[25] C. Ngo, Y. Demchenko, and C. de Laat, “Toward a dynamic trust
establishment approach for multi-provider intercloud environment,” in
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on, pp. 532–538, IEEE, 2012.

[26] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and protocols
for the oasis security assertion markup language,” OASIS Standard
(March 2005), 2005.

[27] “Using OAuth 2.0 to Access Google APIs.” https://developers.google.
com/accounts/docs/OAuth2, accessed February 2013.

[28] P. Andreetto, S. Borgia, A. Dorigo, A. Gianelle, M. Marzolla, M. Mor-
dacchini, M. Sgaravatto, F. Dvorák, D. Kouril, A. Krenek, et al.,
“CREAM: a simple, grid-accessible, job management system for local
computational resources,” CHEP 2006, Mumbay, India, 2006.

[29] “GNU quagga routing software.” http://www.quagga.net/, accessed
February 2013.

[30] A. Natrajan, M. Humphrey, and A. Grimshaw, “Grid resource man-
agement in legion,” INTERNATIONAL SERIES IN OPERATIONS RE-
SEARCH AND MANAGEMENT SCIENCE, pp. 145–160, 2003.

[31] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-g:
A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, no. 3, pp. 237–246, 2002.

[32] F. Berman, “High-performance schedulers,” The grid: blueprint for a
new computing infrastructure, vol. 67, pp. 279–309, 1999.

[33] Y. Yang, K. van der Raadt, and H. Casanova, “Multiround algorithms
for scheduling divisible loads,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 16, no. 11, pp. 1092–1102, 2005.

190Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 203 / 263

A Cloud Platform to support User-Provided Mobile
Services

Vincenzo Catania, Giuseppe La Torre, Salvatore Monteleone and Daniela Panno
University of Catania - Italy

first.last@dieei.unict.it

Abstract—The rapid evolution of mobile computing, together
with the spread of social networks is increasingly moving the
role of users from information and services consumers to actual
producers. Currently, since most of the critical aspects related
to user generated contents have been addressed, the main issues
related to service generation represent the next challenge. Dealing
with services, aspects like ease of creation, discovery, security and
management should always be taken into account. To cope with
this kind of problems, we propose the webinos platform, which is
based on a cloud architecture and enables user devices to share
features and services among them.

Keywords—webinos, cloud, user-provided mobile services

I. INTRODUCTION

The growing popularity of Internet-enabled devices and the
consolidation of social networks have increased the amount of
multimedia contents generated by users. Everyday people live
a second life on social networks generating original contents
such as pictures, videos, comments and so on [1]. Table I
contains some statistics about user content generation.

TABLE I. STATISTICS RELATED TO USER-GENERATED CONTENTS

Average amount of tweets per day 190 million
Average pictures uploaded to Flickr per minute 3000
Total amount of articles hosted by Wikipedia 17 million
Total pieces of content shared on Facebook each month 70 billion

This phenomenon has been encouraged by the spread of
many kinds of Internet-enabled devices such as smartphones,
tablets and entertainment devices.

Shipments of Internet-enabled devices are projected to hit
503.6 million units in 2013, up from 161 million in 2010.
By 2015, however, shipments of Internet-enabled consumer
devices are projected to break three-quarters of a billion units
- at 780.8 million units - exceeding PC shipments of 479.1
million units [2]. Mobile devices give a new experience to
users, offering them the possibility to obtain information about
the surrounding environment through several built-in sensors
(GPS, accelerometer, gyroscope). All these information let
users create context-related contents, like geolocalized photos
or tweets, which embed current user’s position. A key role in
this scenario is played by end-users, which are becoming the
main contributors of the contents available on the web. The
most likely next step in this direction will be the generation of
services by non-expert users. Generating new service implies
the creation of a set of API to interact with the service
itself. According to the Service Oriented Architecture (SOA)
paradigm, a new service could also be generated by composing
one or more existing services. The result of this operation is

commonly referred as “mashup”. In this paper, we want to
emphasize that in a not too distant future, services will be not
only generated but also provided by users, primarily through
mobile terminals. In particular, we refer to common users who
do not have an advanced computer knowledge. A series of
both software and hardware resources are necessary in order
to support the user in generating and providing a service, espe-
cially if this is provided by means of a mobile device. Devices
such as smartphones or tablets have peculiar characteristics
due to their portability and small size. Battery life, reception
problems, reduced computational and storage resources are just
an example of the limitations which characterize this kind of
devices. In addition, issues related to the publication of a new
service, its discovery, privacy and access control raise the need
of a platform to support the user in the generation and supply
of services through mobile devices. In this paper, we describe
webinos, a cloud platform for running applications and services
over heterogeneous devices belonging to different domains. In
the following, we will show how webinos can be adopted to
solve typical problems of generation and supply of mobile
services.

II. USER-PROVIDED MOBILE SERVICES

The aim of this section is to explain what is meant by
mobile services and then outline the main issues that there
are when this kind of services is provided by users through
their devices. We have already said that users are increasingly
involved in the generation of multimedia web content. The role
of users gains even more and more importance also in the field
of service generation. The emergence of Services Oriented
Computing (SOC) allows end-users to develop applications
by composing existing services. In this context, tools such as
Yahoo Pipes [3] provide users the possibility to create own
mashups composing web services. As a result, the Web is
rapidly progressing towards a highly programmable platform
and end-user programming has become a very popular and
common trend nowadays. This enables end-users to take
advantage of different Application Programming Interfaces
(APIs) to create and publish their own contents and services.
Major companies like Facebook, Google and eBay have al-
ready provided interfaces to their services extending their
market possibilities. In this article, we focus on those services
generated by users based on other applications or services
provided by other mobile devices.

Mobile services are those services designed to be accessed
through mobile devices. Their main aspect is the mobility
for what concerns both their invocation and their supply. The
difference with traditional services is remarkable: a service that

191Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 204 / 263

allows a user to view bus timetables can be provided through
a web site and can be accessed in the same way on a personal
computer or on a smartphone. The same service designed to
be used on the move will take into account the user’s context.
For example the mobile service could give information for only
those buses which route is close to the user’s position that can
be obtained through smartphone’s GPS.

The potentialities of mobile services are huge. To date,
there are already many context-aware applications for smart-
phones allowing users to benefit from mobile services. Consid-
ering the evolution of user’s role from consumer to producer
of content and services, is presumably that in the next few
years, the average user will be able to create applications
for his smartphone making a mashup of services also offered
by other devices. As an example, suppose that the mobile
phone owned by an elderly person provides the ability to be
managed remotely. In this way, using this “device ability”
a more experienced user could help the elderly to perform
operations such as the remote phonebook’s management.

There are several issues to consider in the creation and
sharing of services across multiple devices. In particular, there
would be the need of:

• A protocol to describe services and their exposed
features.

• An access control mechanism to specify, through
policies, the access / composition constraints of each
service.

• Hosting environments (service providers) where to run
services.

• Repositories where services have to be registered.

• A discovery mechanism to retrieve services (eg. by
exposed features).

• A toolkit to help users to create, deploy and manage
services.

In the next sections, we will give an overview of the state
of the art in the field of user-generated mobile services. We
will also present the webinos platform and how it can help to
satisfy the aforementioned requirements.

III. RELATED WORK

The scientific interest about User Generated Service (UGS)
and User Generated Content (UGC) fields is growing in these
last years. Zhao et al. present in [4] a comprehensive survey of
current state of art in UGSs. They give the specific description
of UGS by comparison with the concept of UGC, and then
go through different technologies to analyze the challenges of
UGS describing advantages and limitations of each approach.
Jensen et al. describe in [5] some guidelines to support users
creation and management of services. Tacken et al. investigate
in [6] the state of the art and the requirements to let the
vision of the super prosumer concept become true. They review
the current technologies for an easy creation and discovery
of mobile services and list the identified requirements for
user generated mobile services. In [7], authors discuss the
concept of mobile-services generated by the user itself. They
investigate some conceptual requirements and concluded with

an architecture proposal for IT service providers. Authors also
provide a proof-of-concept system development performed
within the European-funded project m:Ciudad. The European
FP7 research project m:Ciudad - a metropolis of ubiquitous
services - aims at the empowerment of users to create ser-
vices on mobile terminals. The project demonstrates various
scenarios in which users either act as creator of services or
interact with the system to search for services or service
construction components. m:Ciudad envisions a system for
service providers, which enables a mobile user to create and
consume mobile services on the fly on his mobile device.
m:Ciudad architecture is exhaustively described in [8]. In the
next section, we are going to introduce another European
funded project called webinos. In particular, we are going to
describe how webinos can be adopted as a platform to allow
mobile service to be created and shared among users. The
main advantages of webinos compared to other platforms will
be discussed.

IV. WEBINOS

Webinos[9] is an Open Source Cross-Device Platform for
widgets and mobile/web applications that allows developers to
write applications able to run on multiple devices belonging
to different domains (mobile devices, TV and automotive).
In fact, the main goals of the project are applications’ in-
teroperability across devices and usability in order to create
a multi-device user experience based on data synchronization
and context-awareness taking into account the related security
aspects.

Webinos provides a web runtime extension for browsers,
which supports widget and web applications written with
standard web technologies such as HTML, CSS and Javascript.
webinos further provides a set of device-specific Javascript
APIs to

• Provide access to hardware and software capabilities
offered by a device such as address book, telephony
manager, messaging manager, information about de-
vice status and so on.

• Access to capabilities on remote devices inter or intra
Personal Zones.

The first characteristic allows developers to interact with
the device, for example sending an SMS or getting geolo-
cation and contacts information using the set of Javascript
APIs. The second characteristic represents the most innovative
contribution of webinos and allows applications running on
a device to use APIs provided as services by other devices.
This mechanism will be further described in the rest of this
section along with a comprehensive description of the webinos
architecture. Webinos introduces the concept of Personal Zone
(PZ), defined as the set of all devices owned by a user.
Each PZ has a main component called Personal Zone Hub
(PZH), which is the point where the devices are registered
and also provides data synchronization, communication among
other PZs and secure access to the PZ from Internet. Multiple
PZHs, one for each user, may also be linked together creating
relationships among users as it happens in social networks.
Figure 1 describes the overall webinos architecture.

Each webinos-enabled device placed inside a PZ has two
main components called Personal Zone Proxy (PZP) and

192Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 205 / 263

Fig. 1. An overview of the webinos architecture

webinos runtime (WRT). The WRT represents the environment
where the apps are executed. webinos provides two kinds
of WRTs: the first is a browser extension for the execution
of web applications, the second is a widget runtime for the
execution of locally stored applications (widgets). Webinos
provides a WRT version for each the considered domains
(mobile, PC, in-car units and home media), this means that
the same application may run over all these domains without
the need of a code refactoring.

The PZP connects the device to the PZH and enables
the communication among devices inside the same PZ and
exposes the webinos APIs. WRT and PZP act respectively as
browser and local server, allowing each device to communicate
with each other passing through the PZH (canonical way) or
through a direct communication PZP-to-PZP in those situations
where an Internet connectivity is not available. Also devices
belonging to different PZs can communicate if their PZHs are
connected. The PZH is responsible to issue identities (through
PKI mechanism) and acts as messaging hub for devices and
as a synchronization agent for data. User’s data and services
can be shared securely with other people connecting together
multiple PZHs using a permission-based infrastructure. Both
PZP and PZH represent the main components of webinos cloud
architecture. Each user’s content, such as an address book’s
contact, a calendar’s event and so on, could be synchronized
in every devices belonging to the user. Contents thus, are not
related to a single devices but they are stored in the cloud.
Although this concept is not too distant from Apple’s iCloud,
the most significant innovation provided by webinos is the
possibility to share not only contents among devices but also
services. In such way, devices belonging to different domains,
with different OSs and produced by different manufacturers
could seamlessly interoperate with each others.

Using webinos, users get all the benefits of a cloud platform
with also the possibility to ensure privacy for their contents:
Webinos also provides to each user the possibility to get all the
benefits of a cloud platform Webinos provides users with all
the benefits of a cloud platform offering also the possibility
to ensure privacy for their contents by setting up a PZH in
a private device. Figure 2 shows a detailed representation of
PZP and WRT modules placed inside each webinos enabled
device.

Fig. 2. Personal Zone Proxy and webinos runtime

Other components inside PZH and PZP, called managers,
are responsible for authentication, policy management, context
handling, messaging, etc.

The main characteristic, which differentiates webinos from
other apparently similar platforms such as Phonegap or Tita-
nium or even respect mobile operating systems like Android
or iOS, is the possibility to consider each API as a service
provided by the device. As a consequence of this approach it
is possible to create applications by invoking API on devices
different from the one where the application is executed.

One of the demos presented in the webinos context, which
mainly stands out the potentiality offered by the platform,
is the webinos Travel application [10]. It enables user to
manage his point-of-interests while a user is traveling. POIs
are automatically synced between the user’s devices. There
is no 3rd party server integrated, where the information is
stored. Syncing mechanism of the app is based on the webinos
personal zone middleware. All data is owned by the user and
resides inside zone. The application enables the interaction
with the in-car navigation system. POIs can be pushed for
guidance to the in-car navigation software. When the vehicle
is parked, the smartphone can pick up the guidance.

V. Webinos AS A PLATFORM FOR USER-PROVIDED
MOBILE SERVICES

Webinos introduces new scenarios for the generation and
sharing of mobile services. Figure 3 shows a use-case where
user has registered a personal computer and a car inside his
PZ. Each of these devices has a PZP, which implements and
exposes the webinos geolocation API. In the case of the
example, a user is watching his car’s position through an
application running on his PC, which uses the geolocation API
provided by the car. Thus, each webinos API implemented by
a PZP can be considered as a service provided by a device. The
PZP then turns each device in a server able to accept requests
from other devices

Webinos provides both the mechanism for dynamic reg-
istration of new services and for discovering these services
by searching the devices able to provide them. For example
when a new device is added to a user’s personal zone, the PZH
registers all the services exposed by this new device and makes
them discoverable, or not, according to the security policy set

193Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 206 / 263

Fig. 3. An example of using “API as service”

by the user. All services provided by devices registered inside
a PZ could be retrieved using the webinos.discovery API. We
have said in the previous section that webinos provides the
possibility to connect each other multiple PZH. Each PZH
represents a user and his devices. Linking together multiple
PZH means that when a user search for a service (for example
the geolocation service) his PZH will query not only devices
inside his PZ but also those devices belonging to linked
PZs. M:Ciudad project considers only user generated services
provided by smartphones, webinos instead takes into account
different domains such as automotive, home-media devices
and even smart objects belonging to the domain of Internet
of Things. Especially in the case in which more PZHs are
mutually connected, a mechanism for controlling access to
services is of fundamental importance. Each PZP in fact, has an
access control module based on XACML [11] specifications,
which checks whether the request from an external device to
a certain API may or may not take place.

Besides the possibility of calling APIs as services provided
by other devices, webinos offers the possibility to create
applications that can communicate with other applications
installed on different devices. The webinos App2App mes-
saging API specification defines interfaces to create, send
and receive messages between applications in the webinos
system. It provides generic messaging primitives, which can
be applied in different application scenarios. The messaging
is indirect, meaning that applications do not directly address
each other but use a channel to route the messages to connected
applications. A unique namespace (within a PZ) is used as a
key to find and connect to channels. This API can be used
by third-party application developers to implement custom
message-based protocols by taking advantage of the features
offered by the webinos message handling system and overlay
networking model. The App2App API represents a starting
point to allow the creation of new applications in the form of
services, realized as a mashup of existing other services.

The possibility offered by webinos application to call an
API exposed by another device may give rise to some problems
of content management. Suppose that an application running
on Alice’s tablet was able to access the webinos Contacts API
provided by Bob’s smartphone to read and save locally Bob’s
contacts. In this case, which assumes that Bob had given access
control rights to Alice, privacy concerns may arise if a third
person, such as Carol, uses the Contacts API provided by
Alice’s tablet to read Bob’s contacts.

Our future work will be exploiting the potential of webinos
and in particular of the App2App API in order to make it

possible for users to create and share webinos services obtained
from the composition of services provided by multiple devices.
In particular, we would like to

• Extend the registration and discovery mechanism to
ensure that each new service created is associated with
semantic information.

• Extend the current security mechanism in order to
solve problems related to data handling and privacy
of contents.

VI. CONCLUSIONS

In this paper, we have highlighted the metamorphosis of
user’s role from a simple consumer to a producer of contents
and services in the Web. We described what is meant by mobile
services and the problems that may arise when those services
are provided through a mobile device. We also described
webinos: a European project still that aims to define a platform
for the development of user-centric applications for cross-
domain targets (mobile, PC, in-car units and home media). We
envision that, if properly extended, webinos can become the
reference platform for the generation and sharing of services
through users’ devices.

ACKNOWLEDGMENTS

The research described in this paper was funded by the EU
FP7 webinos Project (FP7-ICT-2009-5 Objective 1.2).

REFERENCES

[1] Statistic Brain. (2013, Feb.) Social networking statistics. [Online].
Available: http://www.statisticbrain.com/social-networking-statistics/

[2] TG Daily. (2013, Feb.) Internet-enabled devices
to outpace pc shipments by 2013. [Online].
Available: http://www.tgdaily.com/hardware-features/57784-internet-
enabled-devices-to-outpace-pc-shipments-by-2013

[3] Yahoo. (2013, Feb.) Pipes: Rewire the web. [Online]. Available:
http://pipes.yahoo.com/pipes

[4] Z. Zhao, N. Laga, and N. Crespi, “A survey of user generated service,”
in Network Infrastructure and Digital Content, 2009. IC-NIDC 2009.
IEEE International Conference on, Nov. 2009, pp. 241 –246.

[5] C. S. Jensen, C. R. Vicente, and R. Wind, “User-generated content: The
case for mobile services,” vol. 41, no. 12, Dec. 2008, pp. 116 –118.

[6] J. Tacken, S. Flake, F. Golatowski, S. Prüter, C. Rust, A. Chapko, and
A. Emrich, “Towards a platform for user-generated mobile services,”
in Advanced Information Networking and Applications Workshops
(WAINA), 2010 IEEE 24th International Conference on, Apr. 2010, pp.
532 –538.

[7] D. Werth, A. Emrich, and A. Chapko, “An architecture proposal for
user-generated mobile services,” in Mobile, Ubiquitous, and Intelligent
Computing (MUSIC), 2012 Third FTRA International Conference on,
Jun. 2012, pp. 142 –147.

[8] A. Emrich, A. Chapko, and D. Werth, “Context-aware recommendations
on mobile services: The m:ciudad approach,” in Smart Sensing and Con-
text, ser. Lecture Notes in Computer Science, P. Barnaghi, K. Moessner,
M. Presser, and S. Meissner, Eds. Springer Berlin Heidelberg, 2009,
vol. 5741, pp. 107–120.

[9] C. Fuhrhop, J. Lyle, and S. Faily, “The webinos project,” in Proceedings
of the 21st international conference companion on World Wide Web.
WWW ’12 Companion, New York, NY, USA, 2012, pp. 259–262.

[10] Webinos. (2013, Feb.) Webinos travel. [Online]. Available:
https://developer.webinos.org/webinos-travel

[11] OASIS. (2013, Feb.) Oasis extensible access control markup
language (xacml) tc. [Online]. Available: https://www.oasis-
open.org/committees/tc home.php?wg abbrev=xacml

194Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 207 / 263

CloudState: End-to-end WAN Monitoring for
Cloud-based Applications

Aaron McConnell, Gerard Parr, Sally McClean, Philip Morrow, Bryan Scotney
School of Computing and Information Engineering

University of Ulster
Coleraine, Northern Ireland

Email: a.mcconnell@ulster.ac.uk, gp.parr@ulster.ac.uk, si.mcclean@ulster.ac.uk, pj.morrow@ulster.ac.uk, bw.scotney@ulster.ac.uk

Abstract—Modern data centres are increasingly moving to-
wards more sophisticated cloud-based infrastructures, where
servers are consolidated, backups are simplified and where
resources can be scaled up, across distributed cloud sites, if
necessary. Placing applications and data stores across sites has
a cost, in terms of the hosting at a given site, a cost in terms of
the migration of application VMs and content across a network,
and a cost in terms of the quality of the end-to-end network
link between the application and the end-user. This paper details
a solution aimed at monitoring all relevant end-to-end network
links between VMs, storage and end-users. With this knowledge
at hand, it becomes easier to optimise the arrangement of
VMs and content with a distributed cloud environment such
that resident applications respond in a timely manner, both
between cloud-based application components and in the delivery
of the application to the end-user. Results show how this system
provides network information which influences the choice of
location for hosting applications and data.

Keywords-Cloud Computing; WAN Monitoring; Cloud Network-
ing

I. INTRODUCTION

Recent years have seen data centres, firstly adopting vir-
tualisation solutions in order to consolidate servers, and then
moving to Cloud environments where Cloud instances can be
scaled across distributed resources depending on load [12][5].
Clouds allow applications to be migrated to remote hosts
outside of the physical realm of the local data centre [1].
Applications may be statically hosted at a remote location,
or it may happen dynamically in a ”fail-over” event, i.e.,
when local data centre resources are saturated and a resource-
starved application is temporarily migrated to a remote lo-
cation where available resources are such that it performs
adequately. Depending on the network conditions between data
centre locations, moving an application to another location
may be ill-advised. It may be that the application (or service)
communicates heavily with another application at its original
location or with a particular data-store. It may also be the
case that the proposed location is further away, in network
terms, from the end-user of the application. If the network
conditions between the proposed location and the end-user
are sufficiently poor then the delivery of the application to the
end-user will not be acceptable, despite the application having
ample resources within the physical data centre.

It is therefore necessary to have a periodic, automated
means of measuring the state of the WAN link between
any two addresses relevant to the successful delivery of an
application to end-users. This measurement should be taken
periodically, with the time between polls being short enough
that sudden changes in the quality of the WAN are observed,
but far enough part so as not to flood the network with
monitoring traffic. Data collected from polls should also be
logged at a central location in order that decision-making about
application performance and placement can be made, by a
cloud management solution, with a full view of the distributed
data centre available, including WAN metrics. Intelligent use
of relevant WAN data can enable decision-making to occur
which can pre-emptively and reactively lead to action which
will ensure applications meet their Service Level Agreements
(SLAs). It is also possible, given a WAN history between
two addresses, to observe trends related to time of day and
workload.

Providing live WAN information, specifically for network-
aware placement of cloud-based applications and services, is
of commercial importance to vendors of existing cloud vendors
where hybrid cloud scenarios are used when private cloud
resources are saturated. It is envisaged that network-awareness
will be more important in future cloud topologies, where users
may frequently migrate their content between cloud vendors
in order to save money [11] or increase performance. It is
with this in mind that a new solution, called CloudState, has
been developed to provide real-time information on the state
of the end-to-end WAN link between any two communicating
entities related to the operation of the Cloud-based application
and its delivery to the end-user. The end-user is defined, during
the course of this work, as a corporate customer for a Cloud
Provider. The end-user address communicated with is one at
the edge of a customer’s LAN, typically a router with a WAN
IP address.

A. Related Work

Commercial solutions exist which monitor WAN links and
provide optimisation, both to the link and to the placement
of virtual applications at the end of a link. Ipanema’s
Ip—Engines [6] are placed at either end of a WAN link, one
entity at the data centre and one between the customer’s edge

195Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 208 / 263

router and LAN. Ipanema’s central management software
then provides monitoring data for all WAN links relevant
to an application component. Given that an Ip—Engine is
required at each end of a WAN link, the cost of installing
the Ip—Engines, and the intrinsic financial cost involved in
scaling up such a WAN monitoring system, it is clear that an
improvement may be made, in terms of a WAN monitoring
solution, in the case where a Cloud implementation can
be scaled up quickly across various locations (and cloud
providers). Work has also been carried out with a focus
on Application-Layer Traffic Optimisation (ALTO) [9] [4],
which has been developed by the Internet Engineering
Task Force (IETF). The ALTO protocol may well develop
into a standardised means of acquiring network and traffic
information, but at present it requires at least one ALTO
server to be put in place and a number of ALTO clients,
which should be integrated with end-user Web applications.
The perspective of the work presented in this paper is that
Cloud WAN monitoring system should ideally be simple,
non-invasive (i.e., require no special hardware or servers to be
configured), scalable (i.e., run inside a VM so that it can be
migrated and cloned) and low-cost, both in terms of financial
outlay and in terms of resource requirement.

GEANT’s perfSONAR provides a range of software to
monitor networks and report performance measurements [3].
PerfSONAR aims to provide monitoring data from networking
entities, e.g., routers, along the end-to-end network path. This
system assumes that, although the entities may be in different
domains of ownership, sufficient performance data will be
made available, by the commercial vendors involved, in order
that end-to-end network performance can be quantified. It
is also unlikely that detailed per-hop performance data is
required in the case where a decision is to be made about
where to place a virtual instance of an application or service.
The decision about placing the application or service is only
concerned with the quality of the end-to-end link, between
the host server and the end-user, and not with the specific
performance of each entity en route. PerfSONAR would
offer a comprehensive network monitoring solution in the
case where multiple cloud providers agree to implement the
system and where interfaces for acquiring performance data
is shared (as is the case with the OPTIMIS project [15]). An
assumption cannot be made that this communal arrangement
exists in a cloud computing scenario. Therefore, there is
scope for the design and development of a simple solution
which monitors only the end-to-end network path.

The Network Weather Service (NWS) [14] is another
distributed system for monitoring network performance,
with a focus on dynamically forecasting the performance
or networking entities. Like perfSONAR, this system
requires that, in the case where the end-to-end network path
crosses different domains of ownership, performance data
and forecasting information are made available to various
commercial cloud vendors. The NWS is quite complex in the
regard that it requires a name server, memory host, sensor
host and forecaster host. As is the case with perfSONAR,

there remains scope for a simple end-to-end monitoring
solution. The next section provides a description of the
CloudState model, followed by a section describing the
prototype solution. Experimentation and results are described
in the subsequent section and the final section discusses
conclusions and further work.

II. ARCHITECTURE DESCRIPTION

CloudState is aimed at providing a software-based VM-
embedded, scalable, migratable WAN analyser for Cloud
Computing. A full, up-to-date view of all LAN/WAN links
is possible with CloudState, with instances of the application
strategically placed throughout a cloud.
The aim of this work is to provide a means of monitoring
network capabilities across LANs and WANs, for distributed
applications on privately-owned hardware, for elements run-
ning on third-party equipment and for a continuous assessment
of the link to the end-user. The resultant data, combined with
the other cloud performance metrics, provides the means by
which QoS guarantees can be ensured, via SLA-compliance,
and for optimisation mechanisms to ultimately ensure that the
VPC is making best use of available resources.

A. A VM-Embedded Solution

CloudState is designed to reside inside a VM. The central
reason for this is because it reduces the amount of work
required to install CloudState, configure it and place it within
the VPC. Current network assessment tools require hardware
installation or special servers and clients, as mentioned in
section I-A. It is necessary, for a dynamically-changing dis-
tributed topology, that the level of installation, configuration
and engineering required is minimised. The ultimate aim with
CloudState is that it can be cloned and migrated to a remote
location and run with minimal setup. It is designed to require
a list of IP addresses, representing the other end of the links
to test, its own IP address and connectivity to a centralised
Cloud Management Database (CMDB) in order to log data.

B. Multiple Link Monitoring

CloudState is designed to communicate with a list of IP
addresses if required. These addresses may represent a number
of end-user locations which can potentially use the cloud
location where the CloudState instance is resident. These
addresses are repeatedly polled at a defined time interval and
the results stored in the CMDB. Figure 1 illustrates a typical
topology scenario. The centralised CMDB is used in order
that requests for network performance data can be made from
a single source in order to assess the suitability of numerous
sites for placing an application or service.

C. Communication Protocols

The current architecture of CloudState uses the Internet
Control Message Protocol (ICMP) protocol to send echo-
request packets to and from the destination IP address. This
approach is used in order that any IP address can be queried

196Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 209 / 263

Figure 1. CloudState locations within the cloud

and so that no specialised hardware or software is required at
the destination address.

III. CLOUDSTATE PROTOTYPE

CloudState uses BWPing [2] as a library to test each link for
bandwidth, latency and packets dropped. BWPing is used to
send a number of user-sized ICMP echo-request packets to a
destination IP address. The response from the destination, and
the volume of packets transmitted, allows bandwidth, latency
and packets dropped to be calculated.

The network metrics acquired using BWPing provides the
basic functionality of CloudState. The native BWPing C class
was converted to C++, an object of which was created in the
main CloudState class. Nokias QT signal slot libraries [13]
were used to allow BWPing to emit signals each time a ping
process was completed. It is necessary for the destination
address being pinged by CloudState to be configured so
that it responds to ICMP echo-requests, otherwise CloudState
will not provide metrics. This is an existing limitation of
CloudState, but one which will be addressed in future versions.
At present it is possible to provide an IP address to CloudState
for which ICMP packets are permitted through a firewall.

CloudState runs on a host at the same physical location
as the hosts running VM-based user applications. This means
that WAN metrics, returned by CloudState for each address,
should match those experienced by each application. From
this location, CloudState can communicate with any address
relevant to the delivery of each application, e.g., databases,
Web Services and end-users. The destination address focused
on in this work is the end-user. CloudState is used to gather
link metrics between the host, resident at the CloudState
location, and the user.

The CloudState user is presented with an interface, show

in Figure 2. From this interface the user may define opera-
tional parameters, e.g., packet size, transfer speed, transferred
volume, for the underlying BWPing echo-request operation.

CloudState provides the administrator with an interface by
which a connectivity parameters can be defined so that the
CMDB can be reached. CloudState connects to the remote
CMDB and writes the results of each poll to the CloudState
database table. Poll metrics, as shown in table I, are stored in
the CMDB, along with the address of the CloudState agent, the
destination address and a time stamp for the ping operation.
Connectivity is achieved using the QT QMySQL Linux driver.

IV. EXPERIMENTATION

A controlled test environment was created in order to
validate the metrics returned by CloudState, and to assess the
impact of CloudState on both the source host, the destination
addresses and the network. The test environment comprised
of a Dell R515 Server with two AMD 6-core processors,
16 GB of main memory and twelve 1 Gb network interface
cards (NIC). The VMWare ESX 4.1 hypervisor was installed
on this server (with load balanced across the twelve NICs)
and a CloudState VM placed on it using VMWare vCenter
4.1, which was installed on another networked machine.
CloudState was installed within a Ubuntu Linux VM with 1
virtual processor, 512 MB of RAM and a 4 GB virtual thin-
provisioned hard drive.
CloudState was used to assess the bandwidth and latency of a
known 100 Mbps link. A VM was polled, running on another
identical Dell R515 host, connected by a single 100 Mbps
switch. Results for the bandwidth returned varied depending
on the parameters used for the underlying BWPing operation.
Packet sizes ranging from 500 bytes to 1500 bytes (the largest
allowed by Ethernet at the network layer) were tested as
well as a range of transmission data volumes. The aim is to
momentarily saturate the network so that the bandwidth can
be quantified, but for the monitoring load to be create minimal
intrusion on the network and destination address.

Two methods were used to validate the results returned
by CloudState: IPerf [7] was used to ensure the bandwidth
values returned by Cloudstate were similar to those of IPerf,
when no emulated network degradation was forced, and a

TABLE I
CLOUDSTATE CMDB FIELDS

Parameter Description
Source The source IP address of the CloudState application
Host IP address of the represented host

Target The target IP address of the ping operation
PacketSize The size of each packet transmitted to the target
Totalpkts-tx The number of packets transmitted to the target
Totalpkts-rx The number of packets received from the target

Vol-tx The number of bytes transmitted (packetSize x totalpkts-tx)
Vol-rx The number of bytes received from the target

time-secs The time taken for the complete operation
Speed-kbps The bandwidth of the link

Rtt-min The minimum round-trip-time taken
Rtt-max The maximum round-trip-time taken
Rtt-mean The mean round-trip-time taken

Date/Time Date and time of ping

197Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 210 / 263

Figure 2. The CloudState user interface

simple Linux ping was used to assess the latency. Over the
native 100 Mbps link, IPerf returned a mean (of 5 polls)
bandwidth rating of 82.34 Mbps, with an average volume of
98.2 MB of data transferred at each poll. The mean (of 5
polls) latency returned by ping was 1 ms. CloudState returned
a slightly lower average bandwidth value of 78.99 Mbps with
a packet size of 1500 bytes and a volume of 10 MB. It is
acknowledged that further work is required in order to ensure
the bandwidth values returned match those returned by other
bandwidth measurement tools, but at this point there is an
argument that a less accurate measurement is acceptable given
that only 10.18% (of the volume of data IPerf used) was
loaded onto the network to return a bandwidth value which was
95.93% accurate. The inaccuracy is probably due to the fact
that the volume of data transmitted does not fill the bandwidth
available. An algorithm is required that increases the volume
at each poll until a small percentage of packets is dropped,
indicating bandwidth limitations.

The fixed values for packet size and volume currently
used proved to be most accurate in assessing bandwidth and
latency for each link tested. Figure 3 illustrates the bandwidth
returned as the packet size was changed from 500 bytes to
2000 bytes in steps of 500 bytes. A traffic volume of 10 MB
was used for each test. The graph shows a bandwidth increase
up to a packet size of 1500 bytes followed by a steep decline
in bandwidth when a packet size of more than 1500 bytes was
used. More packets are sent when the packet size is small, e.g.,
500 bytes, in order to achieve the same transfer volume. This
increases the per-packet delay because each packet must be
processed. The level of throughput in a given timeframe is
therefore reduced. Large packets can also reduce throughput
because of the time required to process the amount of data in
each packet. This is evident in Figure 3 when the packet size
is increased beyond 1500 bytes. Figure 4 shows the bandwidth
returned as the volume was increased from 5 MB to 25 MB,

Figure 3. The bandwidth values returned as the packet size is increased

with a constant packet size of 1500 bytes [8].
Figure 6 shows the latency values returned as the latency

for a given link was artificially increased using WANem [16].
Latency values returned were an average of 2 ms higher than
those set, the extra being introduced by the processing of
the WANem gateway. Similarly, Figure 7 shows the reported
bandwidth compared with the artificially-set bandwidth using
WANem. The reported bandwidth is slightly lower than that
set, except for when the set bandwidth is higher than 80 Mbps.
At this point the limitations of the 100 Mbps physical link
prevent the actual bandwidth reaching that set with WANem.

Given that a CloudState instance runs at each data centre
location within a cloud, it is important to calculate the likely
impact on a destination node when it is polled by numerous

198Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 211 / 263

TABLE II
BANDWIDTH AND LATENCY VALUES RETURNED AS THE NUMBER OF POLLED ADDRESSES IS SCALED UP

No. Targets Min Lat (ms) Max Lat (ms) Mean Lat (ms) BW (kbps) Time Taken (secs)
1 < 1 13 < 1 79956 1
2 < 1 13 < 1 79956 1
4 < 1 16 < 1 79887 2
6 < 1 13 < 1 79896 2
8 < 1 14 < 1 79920 1
10 < 1 12 < 1 79992 1
12 < 1 15 < 1 79860 1
14 < 1 13 < 1 79932 1

Figure 4. The bandwidth values returned as the data volume is increased

CloudState instances. The amount of traffic in bytes received
by a destination address for each CloudState poll will be:

U =

N∑
i=1

SiPi (1)

where U is the amount of traffic received by a destination
address given i number of CloudState instances communicat-
ing with it, each with a given packet size Si and number of
packets transmitted Pi. Figure 5 illustrates theoretical incom-
ing CloudState load trends at a destination host with which
10 CloudState instances communicate, with each CloudState
instance transmitting 10 MB of data at intervals of 5 seconds
each. Three different situations are possible, one where there
is a momentary spike in the incoming load where all of the
CloudState instances transmit at the same time. This is the
worst case scenario because it is possible that the destination
host will encounter a momentary I/O outage. This also will
affect both the delivery of the application running on the host
as well as the results returned by each CloudState instance.
The available bandwidth value will not accurately reflect the
average state of the link to that destination host. The best case
scenario is one where 2 of the 10 CloudStates poll at the same
time and the load is kept almost constant at the destination.
The expected case is that there are some spikes in CloudState
load but not an “all or nothing” scenario. The effect of the

Figure 5. Theoretical impact of CloudState load at a destination address

possible CloudState trends on application performance, at the
destination host, will differ depending on the amount and the
profile of application traffic. It is clear that the poll period for
each CloudState should be reduced if it is found to impair the
delivery of an application at any host.

V. CONCLUSIONS

Cloud Computing has become a key paradigm in the
area of distributed computing. The underlying virtualisation
means that, unlike Grid Computing, distributed host node
resources are both fragmented for application placement and
consolidated to offer more resources to facilitate a resource-
hungry application when needed. It is this dynamic, virtual
arrangement of resources that causes both a problem in terms
of the quality of the WAN link between them at any given time,
and an opportunity for intelligent placement of applications
such that their WAN needs are satisfied. CloudState provides
a low-cost, highly-scalable solution to this problem. Instances
can be easily deployed on base systems or within VMs. VM
resource usage is low - approximately 712.69 Mhz is used for
the CloudState VM under a load of 14 destination addresses.
Memory usage equates to 348.16 MB of main memory for the
entire VM under the same load of destination addresses. No

199Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 212 / 263

Figure 6. CloudState set latency vs reported latency (ms)

special hardware, servers or clients are required throughout the
distributed cloud, except for the requirements that all addresses
respond to ICMP echo requests.

A. Further Work

CloudState is currently installed within a Ubuntu 10.10
Linux VM which contains the Gnome desktop environment
and a range of applications which are installed with Ubuntu by
default. A bare-bones Linux install, e.g., Ubuntu JeOS, would
be more suitable for hosting CloudState where unnecessary
programs are not installed and the footprint, both in terms
of hard-drive space and run-time resource requirements, are
minimised. There is an argument for removing the GUI from
CloudState and having operational parameters passed as run-
time arguments and/or stored in settings files. This would mean
that a Linux desktop environment is not required and would
make CloudState a very lightweight VM.

CloudState currently transmits a user-defined data volume
at each poll. An algorithm should be included that starts off

Figure 7. CloudState set bandwidth vs reported bandwidth (Mbps)

with a small amount of data to be transmitted, which increases
with each poll until the bandwidth of the link is established.
The volume of data to be transmitted over that link should
be recorded and then only periodically checked thereafter.
There may be some scope in examining a correlation between
the volume of data sent, the link bandwidth and the number
of packets dropped at each poll. It is speculated that an
overloaded link will discard packets and the volume should
be set at the point where a small percentage of packets are
dropped. This requires further research.
CloudState may be improved by incorporating a different ap-
proach to gathering network performance statistics. Gathering
performance data at the application level is possible [10]
using Web client probes, especially with a focus on ALTO.
This approach would ensure that firewalls are not an issue in
gathering performance data and would provide data that may
be more accurate, given that it is gathered at the end-user
and not at other points on the path between the VM-hosted
application and the end-user, e.g., at a router or switch.

REFERENCES

[1] R. Buyya, Chee Shin Yeo, and S. Venugopal. Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as com-
puting utilities. In High Performance Computing and Communications,
2008. HPCC ’08. 10th IEEE International Conference on, pages 5 –13,
sept. 2008.

[2] Oleg Derevenetz. Bwping - open source bandwidth measurement tool.
http://bwping.sourceforge.net/, June 2011. [retrieved: March. 2013].

[3] GEANT. perfsonar. http://www.perfsonar.net/, 2012. [retrieved: March.
2013].

[4] V.K. Gurbani, M. Scharf, T.V. Lakshman, V. Hilt, and E. Marocco.
Abstracting network state in software defined networks (sdn) for ren-
dezvous services. In Communications (ICC), 2012 IEEE International
Conference on, pages 6627–6632, june 2012.

[5] Wei Hao, I-Ling Yen, and B. Thuraisingham. Dynamic service and
data migration in the clouds. In Computer Software and Applications
Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International,
volume 2, pages 134 –139, july 2009.

[6] Ipanema. Ip engine. http://www.ipanematech.com/en/ip-engine, June
2011. [retrieved: March. 2013].

[7] Iperf. Iperf. online, http://iperf.sourceforge.net/, December 2008.
[retrieved: March. 2013].

[8] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos.
Variable packet size buffered crossbar (cicq) switches. In Communica-
tions, 2004 IEEE International Conference on, volume 2, pages 1090 –
1096 Vol.2, june 2004.

[9] S. Kiesel, L. Popkin, S. Previdi, R. Woundy, and Y.R. Yang. Application-
layer traffic optimization (alto) requirements. Internet Engineering Task
Force, Internet-Draft draft-ietf-alto-reqs-00, 2009.

[10] Myung-Sup Kim, Young J Won, and James Won-Ki Hong. Application-
level traffic monitoring and an analysis on ip networks. volume 27, pages
22–42, 2005.

[11] Jeffrey S. Klaus. Follow-the-moon scheduling to lower en-
ergy costs. http://www.datacenterknowledge.com/archives/2012/10/22/
follow-the-moon-scheduling-to-lower-energy-costs/, 2012. [retrieved:
March. 2013].

[12] Lijun Mei, W.K. Chan, and T.H. Tse. A tale of clouds: Paradigm
comparisons and some thoughts on research issues. In Asia-Pacific
Services Computing Conference, 2008. APSCC ’08. IEEE, pages 464
–469, dec. 2008.

[13] Nokia. Qt sdk. http://qt.nokia.com/products/qt-sdk, June 2011.
[14] NPACI. Network weather service. http://nws.cs.ucsb.edu/, 2004. [re-

trieved: March. 2013].
[15] Optimis. Optimis. http://www.optimis-project.eu/, 2013. [retrieved:

March. 2013].
[16] WANem. Wanem - the wide area network emulator. online, http://

wanem.sourceforge.net, December 2009. [retrieved: March. 2013].

200Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 213 / 263

Transparent Access on Encrypted Data Distributed

over Multiple Cloud Infrastructures

Luca Ferretti, Michele Colajanni, and Mirco Marchetti

University of Modena and Reggio Emilia

Modena, Italy

{luca.ferretti, michele.colajanni, mirco.marchetti}@unimore.it

Adriano Enrico Scaruffi

Doxee SpA

Modena, Italy

ascaruffi@doxee.com

Abstract—Using cloud infrastructures to store and backup
data is becoming a popular alternative that guarantees perfor-
mance and scalability at reasonable prices. However, standard
cloud solutions could raise some concerns about data confiden-
tiality and dependency on a single provider. We aim to address
these issues by using cloud storage of multiple cloud providers.
Our solution ciphers, partitions and replicates data among
multiple cloud architectures, thus augmenting availability and
confidentiality, and avoiding lock-in of one cloud provider. The
proposed model is implemented through open source software
that leverages data storage offered by multiple providers. This
prototype demonstrates the effectiveness of the geographically
distributed architecture in several real case scenarios.

Keywords- cloud; storage; encryption; file fystem; replication

I. INTRODUCTION

Cloud storage is an interesting alternative that allows

users to leverage huge size disk spaces characterized by

high availability and scalability at pay-per-use cost models.

However, when companies outsource their information to

the cloud, there are many concerns about data confidentiality

and complete dependency on one cloud provider. Issues such

as law restrictions [1], vendor lock-in and unavailability

cases causing service interruptions and data losses (e.g., [2])

are limiting a widespread adoption of cloud storage solu-

tions.

This paper proposes a novel architecture that aims to

augment data resiliency and confidentiality, and to avoid

possible lock-in related to one cloud provider. The idea is

to implement a virtual file system where data are encrypted,

replicated and disseminated among different cloud providers.

In such a way, there is no dependence on one provider, and

adopted encryption schemes are robust even against insider

attacks and colluding providers. Moreover, we consider it

important to provide users with a transparent encrypted

access to such virtual file system. Thanks to the proposed

standard file system interface, any application operating on

files can leverage the proposed architecture without software

modifications. In this paper, we demonstrate the efficacy of

the proposed architecture by running a relational database

on top of it.

Existing solutions [3]–[5] concerning data confidentiality,

integrity and replication for untrusted storage services do

not meet all requirements about encryption, replication and

transparency. For example, data replication is not considered

in [3]. Unlike our architecture based on the Infrastructure

as a Service (IaaS) paradigm, the system described in [4]

refers to the more sophisticated and expensive Storage as

a Service paradigm. This scheme transparently provides

customers with advanced techniques for elasticity, scalability

and availability, but it requires the implementation and

maintenance of dedicated drivers for each cloud storage

API, thus causing additional cloud lock-in problems. The

interesting solution proposed in [5] has two drawbacks: it

is not quite transparent to the customer because it requires

changes at the level of application logic; moreover, it is not

resistant against colluding cloud providers.

The proposed architecture guarantees data confidentiality

and integrity at rest, in motion and in use. To provide users

with complete confidentiality of outsourced data we adopt

encryption techniques and algorithms of proven security.

Data are replicated in a multi-tenant architecture built over

multiple cloud storage services. In this paper, we describe

the overall model, the details of the architecture components,

and the guidelines for its implementation.

The remaining part of this paper is structured as following.

Section II analyzes other solutions related to our proposal.

Section III describes the architectural model and the main

requirements. Section IV reports the internal details of the

proposed architecture and the main functionalities. Section V

presents an example of a relational database that can lever-

age the proposed architecture. A summary of the results is

reported in Section VI.

II. RELATED WORK

Data confidentiality on untrusted storage was initially

guaranteed by encrypted file systems (e.g., [3], [6]) that

allow a customer to encrypt all data stored in a cloud

IaaS. However, these solutions do not allow to slice and to

replicate data among several cloud providers as provided by

previous architectures including that proposed in this paper.

Some academic and commercial proposals guaranteeing

data confidentiality and integrity by using multi-tenant cloud

services are recently appearing. The solutions most related

to this paper are iDataGuard [4] and Depsky [5]

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 214 / 263

iDataGuard is a middleware that leverages the cloud

Storage as a Service paradigm. This approach differentiates

iDataGuard from our solution that is based on the standard

IaaS paradigm. Cloud storage services can take advantage of

several benefits with respect to IaaS, because they transpar-

ently provide customers with advanced API-based solutions

for elasticity, scalability and availability. These techniques

facilitate the low level implementation of iDataGuard, but

they require the software implementation and maintenance

of dedicated drivers for each specific cloud storage API. As

a consequence, this solution limits portability and reduces

the possibility of avoiding cloud provider lock-in. We should

also observe that iDataGuard does not transparently replicate

information among the cloud storage services, but data are

managed by users as distinct storage units.

Depsky [5] proposes an interesting storage architecture

that allows key-value access to data and guarantees data

consistency also in the worst case of Byzantine faults.

Depsky requires clients to access intermediate trusted com-

ponents that provide key distribution by means of a Shamir

secret sharing scheme [7]. This does not guarantee data

confidentiality in the case of colluding cloud providers.

Another problem is that applications based on Depsky re-

quire changes at the software level, because this architecture

comes with a non-standard interface for data management.

Other papers (e.g., [8], [9]) aiming to guarantee confi-

dentiality of information stored in untrusted storage servers

can avoid data encryption. For example, they guarantee k-

anonymity [10] by splitting sensitive data among multiple

subsets, each managed by an independent cloud provider.

Since data are not encrypted, each cloud can obtain some

information on a portion of data. Moreover, such techniques

require a complete awareness of the underlying data struc-

ture, that are against our main design requirement that the

proposed solution must be transparent to the applications. In

order to guarantee data confidentiality in the cloud database

paradigm, full homomorphic encryption [11] is described as

the final solution for single client computing scenarios [12].

In practice this approach is not yet feasible because of the

prohibitive computational costs on possible operations.

A different set of proposals are oriented to cloud database

services that differ from the architecture proposed in this

paper because of the logical software level, and lack of

transparency and portability. For example, some DBMS

engines provide users with advanced proprietary techniques

to encrypt data at storage level (e.g., Transparent Data

Encryption (TDE) [13]). These features can replace the

encryption layer of the proposed architectures, and can

improve performances thanks to data caching and selective

blocks retrieval. However TDE implementation is related

to some specific DBMS, and many database services do

not propose any similar solution. On the other hand, we

remark that the proposed architecture aims to be transparent

of any specific DBMS and cloud-related solution. Cloud

database as a service (e.g., [14]–[17]) is an interesting

alternative to support database in cloud infrastructures. They

have the advantage of executing database SQL computations

directly on the cloud infrastructure and to leverage intrinsic

scalability and reliability of a cloud provider. However, there

are no proposals that are oriented to federate databases

among multiple cloud providers.

III. MODEL OVERVIEW

An architecture guaranteeing maximum availability and

security on untrusted storage services should satisfy the

following main objectives.

• Confidentiality must be guaranteed for data at rest,

in motion an in use without any risk of information

leakage due to cloud insiders and collusive providers.

• Service availability must not depend on one cloud

provider.

• The proposed architectures should be transparent to the

supported applications in the broadest sense, that is, no

modifications must be required at the application level.

To satisfy all the previous objectives we propose the

architectural model that is represented in Figure 1.

Let us consider an application that executes some oper-

ations requiring accesses to data storage. This is a plain

data scenario where the application does not provide any

solutions to guarantee data confidentiality. The application

executes virtual data operations on a file system, as if it

were on local storage. As transparency is one of the main

objectives of the proposed architecture, our solution adopts

a standard file system interface that guarantees the required

level of transparency. In practice, data are not stored in

local devices nor in a local network environment as it

is usually done in private data centers. Instead, all data

are stored in multiple cloud infrastructures. Other main

logical components of the proposed architecture are the data

encryptor, the data slicer and the data replication modules.

The combination of all of them guarantees confidentiality,

availability and resiliency of data managed by the applica-

tion.

To give a high-level description of the architecture model,

we initially identify a trusted area and untrusted areas. The

trusted area is under the direct control of the data owner,

and can be accessed by only trusted third-party subjects.

Plain data must never access the untrusted area before being

encrypted. All security policies and decryption keys must be

managed by trusted parties.

Each application executes operations on plain data and

does not require any software modifications in order to

guarantee the correct execution of the security techniques

that our solution applies. It is the proposed architecture that

provides applications with a standard file system interface

allowing them to manage data as in local storage devices,

although data are really stored on several Infrastructures as

202Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 215 / 263

Figure 1. Architectural model.

a Service (IaaS) resources that are under the direct control

of multiple cloud providers.

Cloud IaaS is not the only choice to use cloud storage

because cloud providers offer also cloud storage as a service

solutions through high level APIs facilitating data manage-

ment. Our choice of preferring cloud IaaS instead of the

cloud storage as a service paradigm was motivated by the

following three reasons.

1) The IaaS paradigm allows us to directly manage

virtual machines and disk resources that are standard;

consequently, we can install and configure the best

solutions to satisfy the architectural requirements of

transparency and data confidentiality.

2) Cloud storage as a service requires data to be managed

through proprietary APIs. This may cause some forms

of cloud lock-in and may limit the portability of the

solutions.

3) Cloud storage as a service can transparently provide

advanced replication techniques to guarantee advanced

resiliency. However, these benefits can be achieved

also through the proposed architecture without any

additional reliance on non-standard cloud services.

In our proposal, plain data received from an application

are subjected to two types of manipulations:

• encryption to guarantee information confidentiality;

• distribution over multiple cloud infrastructures to in-

crease availability and avoid dependency on one

provider.

Slicing and replication reinforce security in the worst

case scenario of collusion between a cloud provider and an

internal (theoretically trusted) subject, because it prevents a

cloud provider from accessing the whole data set. Moreover,

they are useful to increase performance because they allow

the parallelization of some data operations, and reduce space

overhead caused by replication.

In the following Section IV we describe the details of the

architecture and outline its implementation.

IV. ARCHITECTURE

The paper proposes a novel architecture that allows clients

to leverage remote storage of multiple cloud providers.

While internally managed infrastructures allow data owner

to directly control data security policies, the cloud paradigm

has the advantage to reduce costs and augment scalability,

availability and resiliency. On the other hand, it opens user

concerns in terms of data confidentiality and dependency on

one provider.

We describe the implementation of the architectural model

described in Figure 1 by referring to the architecture repre-

sented in Figure 2. A possible alternative based on a broker

implementation is outlined in Figure 5.

Users applications transparently execute data operations

on a logical file system, that is implemented by the interface

layer of the proposed solution. Data replication strategies

over multiple cloud storage servers are implemented by the

secure data management (SDM) component. It guarantees

that all data are stored in the infrastructures of at least two

cloud providers (high reliability), and no provider owns all

data (high confidentiality).

The Secure Data Management (SDM) represents the core

of the proposed architecture that is typically implemented

on an intermediate server. This proxy executes encryption

and data distribution schemes over all application data,

making use of multiple cloud providers to store encrypted

encrypted data. The main modules of the SDM component

are represented in Figure 3 and described below.

203Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 216 / 263

Figure 2. Architecture based on clients and cloud providers.

A. The file system interface implements a logical

standard layer to the client applications.

B. The cache manager uses local storage to cache

previously accessed data.

C. The disk encryptor implements well known en-

cryption algorithms, such as AES [18], guarantee-

ing data confidentiality.

D. The distributed file system operates slice and repli-

cation policies on user data over multiple cloud

providers. The possible alternatives and details are

presented below.

E. The virtual private network guarantees confiden-

tiality on untrusted channels of communication by

encrypting all data in transit and authentication

schemes for the cloud services.

Plain data of the user applications flow through the

software modules of the intermediate proxy that fulfills all

main requirements described in Section III. The most visible

interface for the client applications is a logical file system.

When stored data are accessed or modified by a client appli-

cation, the logical file system searches for a hit in its local

cache. If no match is found, then the request is forwarded to

the underlying SDM modules. The performance benefits of

caching strategies in geographically remote cloud storages

is of paramount importance as evidenced in [19].

The encryption module transparently encrypts all data

received from the logical file system. We use a software

block mapping device that maintains a unique correspon-

dence between an underlying encrypted storage and a logical

interface to an unencrypted virtual device. In this version of

our architecture, we use Dm-Crypt [20] that is a valid block

mapper solution integrated in modern Linux kernels.

The underlying encrypted data are stored in the dis-

tributed file system (DFS) that replicates data among multi-

ple cloud services. Since cloud IaaS services are commonly

accessed by a global IP address as a remote host, any DFS

Figure 3. Software modules of the Secure Data Management (SDM)
component.

can be used without any modifications. GlusterFS [21] is

the chosen DFS satisfying our requirements. It installs and

configures software components at the local side (clients)

and at the remote cloud side (servers). Different file systems

can operate different slicing and replication policies by using

data at different system levels, such as blocks, files, volumes.

The proposed architecture does not restrict the use of any

specific policy, but our implementation choice (GlusterFS)

distributes data at the file level, and guarantees integrity of

data though hashing algorithms.

A virtual private network (VPN) adds a further level

of confidentiality. It is not strictly necessary and it can be

204Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 217 / 263

Figure 4. Network configuration of the multiple cloud storages.

avoided when performance becomes an issue. Through the

VPN we can also configure the distributed cloud storages as

if they were in a local network. Administrators can configure

the network of cloud services by using common secure

network mechanisms, such as firewalls, subnets and virtual

LANs. OpenVPN [22], which is our choice for the present

version of the software, is deployed at the local (server) and

cloud sides (clients).

Benefits given by the use of the distributed file system

and the virtual private network are represented in Figure 4.

Each cloud IaaS is identified by the global IP address, and

the VPN allows the configuration of a virtual network among

the cloud services and the host that executes our software

solution. Hence, we can associate each cloud service with a

local network address. In the represented scheme, G cloud

storage are grouped in N sets. Each group of clouds n

has Mn members, such that
∑

N

n=1
Mn = G. Clouds of

the same set share the same subnet in the VPN network

and are configured on a striping replication configuration.

The striping configuration avoids that one cloud provider

can manage the entire data set. The different subnets are

configured in a mirror replication to increase availability

and to break dependency on a single cloud provider. We

notice that the possibility of using groups of different sizes

is allowed only if the distributed file system can administrate

data striping independently for each replicated data. Using

groups of different sizes can be useful to balance data among

infrastructures with different resource capabilities (we de-

pend on network bandwidth and storage) and respective

costs.

It is also important to specify that the proposed architec-

tural solution can be deployed through a third party broker

that implements the SDM components. This alternative has

the great advantage of avoiding that a customer company

must manage the complexity of the SDM, and additional

secure infrastructures. This alternative is represented in Fig-

ure 5 and outlined below. In such a case, clients communi-

cate with the broker proxy gateway through standard Internet

protocols. The broker can be a different company that has

direct contacts and contracts with multiple cloud providers.

It implements the entire virtual file system and, thanks to

Figure 6. Example of a DBMS deployed over a cloud infrastructure.

an intermediate proxy server, it provides a storage service

to the users. The trade-off of this alternative configuration

should be clear: the customer can benefit from a simplified

interface that avoids any implementation complexity; on the

other hand, the broker must be a trusted subject.

V. USAGE SCENARIO

A relational database (DBMS) is a typical application that

can take advantage of the proposed architecture. We initially

consider an existing scenario, represented in Figure 6, where

the database engine is deployed in a local environment, while

the data storage is moved to a storage service related to a

cloud provider. In a similar architecture, the data owner can

take advantage of scalability and adequate resilience, but it

does not have any guarantees about confidentiality of data

stored to an external cloud service. Moreover, availability

and data accessibility depend on one cloud provider that

must be trusted by the data owner. While this scenario could

be acceptable for some private customers using a cloud

storage to backup non-critical information, most companies

require additional guarantees about confidentiality and avail-

ability before outsourcing data.

Thanks to the proposed architecture we can guarantee that

data stored in the cloud is confidential, and that a cloud

provider cannot prevent the data owner from accessing its

data. We show the configuration related to the broker-less

solution in Figure 7.

Clients execute database operations to the local DBMS

engine that is connected to the interface of the secure

file system to manage data to/from the cloud storages.

In this example, we use four cloud providers, where two

groups of two clouds are internally organized in a striping

configuration, and two groups are configured in a mirroring

configuration. Each cloud provides us with an infrastructure

as a service paradigm (IaaS), where we can install the

distributed file system servers and the virtual private network

clients. The encryption layer encrypts all data that are sent

by the DBMS, and decrypts all requested data by imposing

the database storage in the virtual space created by the device

mapper. The distributed file system guarantees that no cloud

providers can store the entire data set, because each of them

205Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 218 / 263

Figure 5. Architecture based on clients, third party broker and cloud providers.

Figure 7. Example of a DBMS deployed over multiple cloud infrastructures (local manager).

has at most half of the entire data set, and all data are stored

in at least two cloud providers.

The virtual private network allows us to guarantee security

over the access to the clouds, and to configure the replication

as if it were in a local area network. As described in

Section IV, the clouds that are configured in a striping

distribution share the same subnet.

It is important to observe that all tools of the deployed

DBMS engine can be used as in a full local environment.

Users access policies can be managed as in a standard

unencrypted database architecture, because encrypted data

are transparently managed by the DBMS engine through the

file system interface of the proposed solution. We highlight

that this configuration performance can benefit of the DBMS

engine caching policies, in addition to the caching mecha-

nisms provided by our architecture (see Section IV).

In this example, the DBMS engine is implemented in

PostgreSQL [23], that is a well-known open-source rela-

tional database. It can be deployed in the proposed architec-

ture because it stores data in a standard directory that can

be redirected to the file system interface of the proposed

solution. Moreover, it allows us to leverage caching policies

that are aware of the structure of the database and of the

queries.

VI. CONCLUSIONS

This paper proposes a novel architecture to leverage

multiple cloud storage services while guaranteeing data

confidentiality and avoiding customer dependency on one

cloud provider.

Data confidentiality is guaranteed by means of classical

encryption schemes; data are replicated among several cloud

providers through striping and mirroring techniques. Strip-

ing increases performance and data protection, because it

prevents that one cloud provider stores the whole data set.

The proposed architecture is transparent to the application

206Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 219 / 263

layer, as it provides the client with a standard file system

interface.

We demonstrate how the proposed architecture can be

implemented through open source software components.

Moreover, we show that it is suitable to support any kind

of applications working on storage service; in this paper, we

consider the complex case of a relational database, but other

applications are supported as well. This work was focused

on the feasibility of the proposal, while performance tests for

different workload models and network latencies represent

an ongoing work.

REFERENCES

[1] W. Jansen and T. Grance, “Guidelines on security and privacy
in public cloud computing,” NIST special publication, pp.
800–144, 2011.

[2] The New York Times, “Amazon’s trou-
ble raises cloud computing doubts,”
http://www.nytimes.com/2011/04/23/technology/23cloud.html,
March 2013.

[3] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu, “Plutus: Scalable secure file sharing on untrusted
storage,” in Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, vol. 42, 2003, pp. 29–42.

[4] R. Jammalamadaka, R. Gamboni, S. Mehrotra, K. Seamons,
and N. Venkatasubramanian, “Idataguard: middleware provid-
ing a secure network drive interface to untrusted internet data
storage,” in Proceedings of the 11th international conference
on Extending database technology: Advances in database
technology. ACM, 2008.

[5] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa,
“Depsky: dependable and secure storage in a cloud-of-
clouds,” in Proceedings of the 6th conference on Computer
systems. ACM, 2011, pp. 31–46.

[6] E. Zadok, I. Badulescu, and A. Shender, “Cryptfs: A stackable
vnode level encryption file system,” Citeseer, Tech. Rep.,
1998.

[7] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[8] V. Ciriani, S. D. C. Di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati, “Keep a few: Outsourcing data
while maintaining confidentiality,” in Proceedings of the 14th
European Symposium on Research in Computer Security.
Springer, 2009, pp. 440–455.

[9] P. Samarati, “Protecting respondents identities in microdata
release,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 13, no. 6, pp. 1010–1027, 2001.

[10] L. Sweeney, “k-anonymity: A model for protecting pri-
vacy,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 10, no. 05, pp. 557–570,
2002.

[11] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[12] M. Van Dijk and A. Juels, “On the impossibility of cryp-
tography alone for privacy-preserving cloud computing,” in
Proceedings of the 5th USENIX conference on Hot topics in
security. USENIX Association, 2010, pp. 1–8.

[13] Oracle corporation, “Oracle advanced security,”
http://www.oracle.com/technetwork/database/options/advanced-
security, March 2013.

[14] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database
as a service,” in Proceedings. of the 18th International Con-
ference on Data Engineering. IEEE, 2002, pp. 29–38.

[15] L. Ferretti, M. Colajanni, and M. Marchetti, “Supporting
security and consistency for cloud database,” in Proceedings
of the 4th International Symposium on Cyberspace Safety and
Security. Springer, 2012, pp. 179–193.

[16] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing sql
over encrypted data in the database-service-provider model,”
in Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM, 2002, pp. 216–
227.

[17] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query
processing,” in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles. ACM, 2011, pp. 85–100.

[18] J. Daemen and V. Rijmen, The design of Rijndael: AES-the
advanced encryption standard. Springer, 2002.

[19] M. Vrable, S. Savage, and G. M. Voelker, “Bluesky: A cloud-
backed file system for the enterprise,” in Proceedings of
FAST, 2012, pp. 237–250.

[20] Dm-Crypt, “Linux kernel device-mapper crypto target,”
http://code.google.com/p/cryptsetup/wiki/DMCrypt, March
2013.

[21] GlusterFS, “Open source, distributed file system,”
http://www.gluster.org, March 2013.

[22] OpenVPN, “Open source vpn,” http://openvpn.net, March
2013.

[23] The PostgreSQL Global Development Group, “Postgresql,”
http://code.google.com/p/cryptsetup/wiki/DMCrypt, March
2013.

207Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 220 / 263

Forensics-as-a-Service (FaaS): Computer Forensic Workflow Management and

Processing Using Cloud

Yuanfeng Wen, Xiaoxi Man, Khoa Le and Weidong Shi
Department of Computer Science

University of Houston
Houston, Texas 77204-3010

e-mail: {wyf, xman, ktle, larryshi}@cs.uh.edu

Abstract—Digital forensics is a critical technology for obtaining
evidences in crime investigation. Nowadays, the overwhelming
magnitude of data and the lack of easy-to-deploy software are
among the major obstacles in the field of digital forensics. Cloud
computing, which is designed to support large scale data pro-
cessing on commodity hardware, provides a solution. However,
to support forensic examination efficiently using cloud, one has
to overcome many challenges such as lack of understanding and
experiences on configuring and using digital forensic analytic
tools by the investigators, and lack of interoperability among the
forensic data processing software. To address these challenges
and to leverage the emerging trends of service based computing,
we proposed and experimented with a domain specific cloud
environment for supporting forensic applications. We designed a
cloud based framework for dealing with large volume of forensic
data, sharing interoperable forensic software, and providing
tools for forensic investigators to create and customize forensic
data processing workflows. The experimental results show that
the proposed approaches can significantly reduce forensic data
analysis time by parallelizing the workload. The overhead for the
investigators to design and configure complex forensic workflows
is greatly minimized. The proposed workflow management solu-
tion can save up to 87% of analysis time in the tested scenarios.

Keywords—cloud computing; digital forensics

I. INTRODUCTION

Digital forensics is a technology to collect, examine, ana-
lyze, but still preserve the integrity of the data in modern high-
tech crimes [1]. Digital forensics were conventionally used in
physical hardware analysis, such as hard-disk, flash drives. As
the ever increasing computing and storage needs arising in the
Internet age, investigators in the public and private sectors are
facing the same growing challenge when dealing with com-
puter forensics [2], which is to examine an increasing number
of digital devices (e.g., GPS gadgets, smartphones, routers,
embedded devices, SD cards), each containing an immense
volume of data, in a timely manner and with limited resources.
At the same time, with proliferation of low cost and easy-
to-access anti-forensic techniques (sometimes open source as
well), offenders are becoming increasingly sophisticated and
skillful at concealing information.

Computer forensic investigators and examiners are con-
fronted with the problems of, (i) unacceptable backlog of
information waiting for examination; (ii) miss of critical time
window to follow the leads due to slowness of computer

forensic examination; (iii) lack of understanding of the com-
puter forensics and consequent incapability by the detectives
to take advantages of digital forensic techniques to advance
investigations; and (iv) overlook of relevant data and waste of
resources due to lack of understanding of crime investigations
by the forensic examiners.

The cloud computing model provides ideal opportunities to
solve these problems. Cloud computing is a rapidly evolving
information technology that is gaining remarkable success in
recent years. It uses a shared pool of virtualized and con-
figurable computing resources (both hardware and software)
over a network to deliver services, such as to host and analyze
large datasets immediately. These resources and services can
be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. Cloud computing
is almost everywhere. Governments, research institutes, and
industry leaders are quickly adopting the cloud computing
model to solve the increasing computing and storage demands.
This trend has significant implications for digital forensic
investigations.

However, current forensic research related to the cloud is
mainly focused on the stage of data collection (e.g., [3]).
The examination and analysis on the data are still performed
on local machines instead of in the cloud. Extending the
services to the cloud often calls for the external assistance
and professional software/applications. Researchers have made
efforts to build a forensic cloud. Sleuth-Hadoop [4] tries
to integrate different forensic analysis tools into the cloud.
However, Sleuth-Hadoop doesn’t have the flexibility for the
investigators to build and customize the desired analysis work-
flow for specific forensic datasets.

The main contribution of our work is to fill the gaps. We
propose a domain specific cloud environment for forensic
applications. We designed a cloud infrastructure framework
for dealing with large forensic datasets, sharing forensic
software, and providing a way for the investigators to build
workflows using a common interface. We proposed a schema-
based forensic analysis workflow framework. The framework
allows the forensic investigators to define their requirements
in XML configuration files. Supported with a collection of
forensic applications, the framework can select the appropriate
applications, generate the corresponding map-reduce drivers,
and set up the workflow in the cloud, automatically for the

208Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 221 / 263

users.
The rest of this paper is organized as follows. Section II

presents the system design of the forensic cloud. Section III
shows the experimental results. Related works are discussed
in Section IV. Section V concludes the paper.

II. BACKGROUND

Four categories of cloud computing are defined by NIST
(National Institute of Standards and Technology) [5], i.e.,
private cloud, community cloud, public cloud, and hybrid
cloud. Currently, most research focuses on the community
cloud and public cloud.

In the community cloud study, there are many solutions pro-
posed for data sharing and collaborations. At Hewlett-Packard
Labs, Erickson et al. [6] use a cloud-based platform to provide
content-centered collaboration in the Fractal project. Social
sharing of workflows are studied by Roure et al. [7]. Globus
Online [8] focuses on data-movement functions to deal with
new challenges brought by data-intensive, computational, and
collaborative scientific research through cloud-based services.
Compared with these studies, our work mainly concentrates on
the workflow management in computer forensics and domain
specific cloud infrastructure. Various kinds of other community
cloud are also studied, e.g., volunteer cloud [9], [10], Nebula
cloud [11], social cloud [12]. However, none of those is specif-
ically designed for computer forensics. For domain specific
applications, the one size fits all approach would not work
because the specific characteristics and requirements from
each application domain often demand customized solutions
built on top of the cloud infrastructure.

In the public cloud, since users have different purposes to
run their applications, studies mainly focus on the general-
purpose resource management. For example, public cloud such
as Amazon EC2[13] uses a scheduler in Xen hypervisor to
schedule virtual machines. Song et al. [14] proposed a multi-
tiered on-demand resource scheduling scheme to improve
resource utilization and guarantee QoS in virtual machine
based data centers.

One of the most popular programming models in the cloud
is MapReduce [15], which is for distributed processing of
large-scale data on clusters of commodity servers. Anantha-
narayanan et al. [16] proposed an optimized cluster file system
for MapReduce applications. They use metablock that is a
consecutive set of blocks of a file that are allocated on the
same disk instead of the traditional cluster file system. Apache
Pig [17] is a platform for analyzing large data sets using
MapReduce on the top of Hadoop.

Digital forensics are performed in four phases [2], i.e., col-
lection, examination, analysis and reporting. The investigators
will execute the following separately, 1) identifying, recording,
acquiring data from possible sources, while preserving the
integrity of the data; 2) processing the data with a combination
of manual and automated methods, and extracting data of
particular interest; 3) analyzing the results of the examination
with legally justifiable methods and techniques to derive useful
information; 4) describing the results of the analysis.

Forensic software provides many different kinds of tools
to investigate suspicious servers, desktops, and personal dig-
ital devices such as cell phones, GPS navigators, PDAs,
etc. The investigations mainly focus on discovering foren-
sic evidence, and identifying suspicious files and activities.
Bulk extractor [18] can scan suspicious files and email and
extract data from the disk images, files, and directories. Many
comprehensive tools, such as FTK [19], OSForensics [20],
Intella [21], etc., provide the investigation functions. However,
they are stand-alone software running on local machines.
Supports for inter-operations and large scale automated paral-
lelization are poor, or almost none. Open Computer Forensics
Architecture (OCFA) [22] is an automated system that can
extract metadata from files, create indices for the target disk
images and ultimately output a repository containing the files
and indices for further examination. OCFA is able to work
with other third part analysis software or data mining tools.
The limitation of the OCFA is that it is not integrated with
the cloud.

Sleuth Kit [23] has a cloud-based version, Sleuth Hadoop,
which integrates several forensic software and enables them
to run in the cloud. However, the analysis workflow is fixed
in Sleuth Hadoop [4] without the capabilities to configure and
construct workflow dynamically. It doesn’t support collabora-
tive software development and workflow management.

III. SYSTEM DESIGN

A. System Overview

The forensic cloud infrastructure aims to deliver the services
that go beyond today’s models of “software-as-a-service” and
“infrastructure-as-a-service”, with the goal of providing not
only elastic computing resources for on-demand computer
forensic data processing, but also an environment for in-
telligent forensic workflow management, customization, and
collaboration.

The forensic cloud comprises two main layers: a service
layer and a physical resource layer, as shown in Figure 1. The
service layer has three major components, the forensic data
manager, the forensic application manager and the forensic
workflow manager. The physical layer is composed of physical
devices such as accelerators, physical servers, and storage
servers for supporting forensic data banks. A set of virtual
machines can be allocated for serving a particular forensic
data processing task.

B. Forensic Data Manager

Forensic data manager provides supports for uploading,
storing, and retrieving the large-scale forensic data in the
cloud. Forensic data are collected from diverse sources (e.g.,
disks, cellphones, embedded devices). With elastic storage
resources provided by the cloud, forensic investigators can
process, analyze, and archive forensic data with reduced cost,
improved efficiencies, and increased productivity.

Considering the scale of the data and the fact that most
applications in the cloud use MapReduce [15] for paral-
lelizing the applications and performing the analysis on the

209Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 222 / 263

Global Resource Virtualization Layer

Global DFS

Customized

Mapreduce for

Forensic Tasks

Bigtable Like

Data Model

Support

Meta

Data

Forensic Data

Bank

Forensic App

Library/Store

Forensic Workflow Support

(Scripting/Management/Planning)

User

Interface

Collaboratio

n Interface

Developer

Interface

Digital Forensic as a Service

(Software Stack)

Digital Forensic Cloud

Data Manager

Application

Manager

Physical

Servers

Digital Forensic

Tasks

Resource

Plans

Workflow

Manager

Storage

Servers

Forensic Specific Components

General Cloud Services

VM Servers

Fig. 1. Forensic Cloud Overview and Software Stack

data, the data manager uses HDFS (Hadoop Distributed File
System) [24] to store the data. HDFS is a distributed file
system designed to work on commodity hardware maintained
as a Hadoop subproject. HDFS stores all the data in blocks.
The block size is usually 64MB or 128MB. HDFS works
more efficiently if the single file size is larger than the block
size, which, however, is not necessarily always the case for
all the files in a target disk image. To avoid the small-file
problem, the data manager organizes the files in HAR files
or SequenceFile formats [25]. Creating a working copy, is
managed by the forensic data manager as well. The forensic
data manager also flattens all the directory information, which
exports all the nested files into one folder. This can mitigate
the anti-forensic (AF) approach called, “circular references”.
The “circular references” exploit uses symbolic links to point
to a parent folder, which may make a search operation run for
ever.

In addition, the data manager also maintains the metadata of
the files in the HBase (an open-source, distributed, versioned,
column-oriented store modeled after Google’s Bigtable [26]).
The metadata contains useful data for the files, for instance, the
directory structure information before flatting, the hash values
(MD5) of the files. The information is often used in analyzing
the forensic data. For example, National Software Reference
Library (NSRL) [27] provides a comprehensive database with
the hash values for almost all the commercially available
software. This provides a Reference Data Set (RDS) of in-
formation [27], which can be used as digital signatures of the
known, good software applications. Therefore, by comparing
the hash values of the files in a target disk with the database,
the investigators can filter out all the uninterested files. This
Known File Filter (KFF) operation can significantly reduce the
sizes of the data that requires examination. All other similar
metadata are calculated by the data manager and stored in the
HBase. This is a default step when new files are uploaded to

the forensic cloud and to be ingested.
With the help of the universal management of the data,

forensic analysis and data mining experts who develop soft-
ware for forensic data processing only need to submit their
software to the cloud.

C. Forensic Application Manager

Forensic applications and software such as files/emails
search, image/videos analysis, etc. are created through collabo-
rative processes involving many forensic experts and computer
science researchers. To accelerate productivity and expedite
collaborations among them, it is necessary to reuse the soft-
ware and workflow. Forensic software vendors can distribute
the developed algorithms and software to a software/app
library, the “forensic app store” where forensic workflow can
be constructed using these software. Forensic examiners and
investigators can on-demand create, invoke, and deploy tasks
using the forensic software and workflow stored in the library.
Consequently, the infrastructure will accelerate dissemination
and deployment of new forensic techniques.

All the applications in the “forensic app store” are tagged
and categorized by the application manager. The application
manager periodically generates an XML schema and metadata
for all the available software. The schema is used to generate a
user-friendly front-end web page (maintained by the workflow
manager) and to validate the XML-based workflow configura-
tion file.

An example schema file and xml configuration file are
shown in Figure 2. In the schema file on the left of Figure 2,
all the four applications available in the “app store” are listed.
The digital forensic front-end web page can read the schema
file and generate a drop-down list with these applications
when a forensic investigator selects the applications. The
investigators only need to click several buttons to generate
an XML configuration file as shown on the right bottom of

210Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 223 / 263

Digital Forensic Front-end

Forensic

Investigator

Fig. 2. An example of the schema XML generated by application manager and the XML workflow configuration file generated by the workflow manager.
The file on the left is the schema XML listing all the four applications and the desired structure of the work configuration file; the file on the right bottom is
the XML configuration file with two tasks.

Figure 2. This configure file is used by the workflow manger
to generate MapReduce drivers and workflow assembly. For
more advanced investigators, they can directly write the XML
configuration file and use the schema to valid the file. This
will reduce the chances of creating an invalid file. In reality,
there could be more categories than the example provided.

The application manager provides a set of default categories
of the applications, including FileIndexApp, KeywordSearch
App, ImageAnalysis App, etc. Users can also add customized
tags and categories into the cloud when uploading the new ap-
plications. In addition, more tags and supplementary categories
could be created by users. Users are allowed and encouraged
to rate the applications after using. The ratings are further
used for the application recommendation. The applications are
sorted from the highest rating to the lowest in the generated
XML file. Therefore, highly qualified applications will be
presented to users at the top of the candidate application
list. The user ratings are the key criteria to evaluate the
applications.

The application manager also provides recommendations.
Currently, it is community oriented. Each application will be
rated by all the users who have tried it. When the application
manager generates the schema file, the rating information will
be included. Therefore, when users select the application, they
are aware of the information that can be used to evaluate the
candidate applications.

D. Forensic Workflow Manager

Forensic investigators can send data processing jobs to the
cloud. For example, an investigator can specify, the objectives
of data processing, the input dataset (stored in the cloud
using forensic data manager), and other constraints. The cloud
can create a workflow by decomposing the user’s request
into multiple processing steps. The workflow manager is
responsible for setting up, optimizing, executing and reporting
the workflow.

1) Workflow Setup: The workflow manager represents a
workflow using an XML configuration file. The structure of
this XML file is defined in the schema file generated by
the application manager. Generally, the schema file contains
two kinds of information. One is for all the available ap-
plications or software in the “application store”, which are
defined in a simple type (xs:simpleType) or a complex type
(xs:complexType); the other is the root element structure,
called “tasks”. The “tasks” may contain one or more “tasks”,
each of which needs the application name, input path, output
path, and parameters for execution. All the tasks on the same
level are independent and can be executed in parallel. If a user
would like to define the dependency between two tasks, the
second task should be configured as a “sequential task” of the
first task. Figure 2 shows an example. Complex workflows
can be also described by assigning the subtasks, which can
be recursively built with arbitrary levels of dependencies.To
facilitate the procedure of setting up a forensic workflow, the
workflow manager uses the schema file to generate a user-

211Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 224 / 263

Step 1:

Use National Software

Reference Library to

filter files installed by

the known-to-be-good

commercial installer

Step 2:

Check the metadata

information, filter the

files by modification

data, and only keep

the files created/

modified in a specific

range

Step 2':

Check the EXIF

(EXchangeable Image

File) header of the

output image to find

suspicious images

Step 3:

Build an inverted

index on all the text

files and search the

specified keywords on

the indexed files

Fig. 3. A Workflow Example Constructed by the Workflow Manager
friendly web portal, which allows forensic investigators to
design the workflow and select the desired applications. After
designing the workflow, the frontend will pass the workflow
to the backend engine. This engine will generate an XML
configure file and further generate the Map-Reduce drivers
for each step and the necessary synchronization codes (if
multiple steps are involved in the workflow) automatically for
the forensic investigators. The fewer lines of codes to write,
the less chance to generate errors.

2) Workflow Recommendation: Since each step could be
completed by multiple candidate software with data dependent
performance metrics, the workflow manager will try to make
optimal selection/recommendaton of software/workflow and
allocate resources accordingly with the objective of achieving
the best performance (result quality) for the input dataset with
the help of user ratings and the pre-defined workflows. For
example, the workflow manager recommends building indices
before keyword search. Another example is that by default, the
workflow manager will select the National Software Reference
Library (NSRL) to filter out the typical contents created by
the commercial installer, such as dll, exe, static data. The
recommendations are based on the user ratings and evaluation.
An example is shown in Figure 3.

3) Workflow Execution: To execute the workflow, the work-
flow manager allocates processing resources such as elastic
machine hours based on an optimized resource plan and
assigns workload to the allocated resources using the MapRe-
duce model customized for data intensive forensic compu-
tations. Then, the allocated resources execute the assigned
tasks on datasets retrieved from the cloud forensic data banks
administrated by the data manager. The workflow manager will
direct the workflow execution and track the status of each task
in the workflow.

4) Workflow Report: Finally, after finishing the workflow,
the workflow manager will generate a report to the users.
In addition, the workflow manager also stores the status and
report in its own database.

IV. EVALUATION

In this section, we present the results of a comprehensive
evaluation of our system.

A. Experimental Setup

During our evaluation, we deployed a forensic cloud
as described earlier using the Amazon’ Elastic Compute
Cloud(EC2) service. The deployment uses Medium Level-1
(M1) EC2 instances. According to Amazon, these are 64-bit
instances with 3.75 GB of memory, 410GB of harddisk and
one virtual core containing two EC2 compute units (ECU).
One ECU is equivalent to a 1.0-1.2 GHz Xeon processor. The
forensic cloud infrastructure is based on Hadoop 0.20 and
HBase 0.20, which is managed by Cloudear Manager [28].
The data from a volunteer’s hard drive image was uploaded
to the forensic cloud. Notice that, the uploading time is not
counted and evaluated in the following experiments. This is
because, as mentioned previously, the data used are collected
from different sources in a distributed way using the cloud
as well. We simplified the process by uploading a dedicated
image disk for studying purpose. Therefore, the uploading time
is not considered.

B. Experimental Results

First, we compared the system outputs and analyzed the
performance using the same disk image dataset, which is a
working disk image from volunteer users. Figure 4 shows the
forensic analysis time on the target image. The image size is
160GB. It shrinks to 10GB after applying the filer operations
mentioned in the previous sections. The number of nodes used
in the experiment increases from 1 to 10. With more nodes
involved, the analysis time is reduced from 21 minutes to only
6 minutes, i.e., 71% of analysis time is saved. However, given
a fixed size of test data, the analysis speed can’t be further
accelerated by adding more nodes. As shown in Figure 4, the
forensic cloud with more than 8 nodes has almost the same
performance. This is because when more nodes are involved,
some of the MapReduce tasks are not executed at the same
machine where the data are stored. Copying data between
nodes cuts down the benefits. Figure 5 shows the percentage
of the MapReduce tasks running locally. The percentage drops
from 100% to 40% when the number of nodes changes from
2 to 10. This explains why the speedup of analysis time is
only 3. However, when the size of data to be analyzed keeps
increasing, more time can be saved, because more data blocks
can be processed locally. As shown in Figure 6, when the size
of the data increases by 200%, i.e., the size is tripled, the
analysis time only increases by 100%. This gives us the clue
that the forensic cloud can save more time when dealing with
large amount of data.

In the second set of experiments, we compared the lines
of codes (LoC) that is needed for the configuration with
and without the workflow manager. Figure 7 shows how
much effort could be saved in terms of LoC. Workflows
with different sequential tasks are built up. Without workflow
manager, to configure one workflow task, on average 40 LoCs

212Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 225 / 263

0

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10

A
n

a
ly

si
n

g
T

im
e

 (
m

in
)

Number of Nodes

Fig. 4. Analysis Time under Different Number of Nodes in the Cloud

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 o

f D
at

a
Pr

oc
es

se
d

Lo
ca

lly

Number of Nodes

Fig. 5. Percentage of the MapReduce Tasks Processed Locally under
Different Numbers of Nodes

are needed, but only 4 LoCs are actually required for the
workflow XML file. The LoCs can be reduced by 90% when
using the workflow manager to configure a forensic data
processing task.

We further compared the performance with and without
optimization performed by the workflow manager. We have
ten similar tasks, i.e., searching for some keywords, in our
experiments. The workflow can intelligently add an extra step
of building indices before running all the ten tasks. As shown
in Figure 8, the analysis time increases linearly with the
number of tasks without the help of workflow management.
With the workflow management and optimization, the total
time is a little more than the time spent without the workflow
management if there is one task executed. However, the total
execution time increases slightly when more similar tasks are
executed. This is because when the indices are built, further
keyword search operations will be accelerated dramatically by
the indices stored in the HBase.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0% 25% 50% 75% 100% 125% 150% 175% 200%

A
n

a
ly

si
n

g
T

im
e

 I
n

cr
e

a
se

(%
)

Disk Image Size Increase (%)

Fig. 6. Percentage of the Increased Analysis Time under Different Increased
Image Sizes

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

L
in

e
 o

f
C

o
d

e
s

Total Number of Tasks

Without Workflow Manager

With Workflow Manager

Fig. 7. Line of Codes Needed to Configure Different Tasks in a Workflow
w/ and w/o the Dataflow Manager

0

50

100

150

200

250

1 2 3 4 5 6 7

To
ta

l T
im

e
 (

M
in

)

Number of Similar Tasks

Without Workflow

With Workflow

Fig. 8. Total Time Spent w/ and w/o the Workflow Manager’s Optimization

V. CONCLUSIONS

We proposed and implemented a domain specific cloud
environment for digital forensics. We designed a cloud based
framework for supporting automated forensic workflow man-
agement and data processing. A schema-based forensic work-
flow framework is proposed. The experimental results show
that using the proposed forensic cloud services can save at
least 71% of the time with only 10 virtual machine nodes.
Meanwhile, the lines of codes for specifying a workflow are
also reduced to only 10% when using the proposed workflow
management approach. For the investigators, it could be even
easier by using the web-based portal, clicking buttons and
selecting the desired applications from the dropdown lists. The
automated and optimized workflow management approach can
save 87% of the analysis time in the tested scenarios. The
proposed framework provides valuable insights on designs of
domain specific cloud environments using computer forensics
as a target field. It demonstrates that, in addition to providing
elastic computing resources, cloud can be used as an envi-
ronment for workflow management and coordinated software
development.

VI. ACKNOWLEDGEMENT

We would like to thank the reviewers for their comments
which significantly improved the paper. This research is
partially supported by the Department of Homeland Secu-
rity (DHS) under Award Number N66001-13-C-3002, and
the National Science Foundation under Award Number CNS
1205708. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
representing the opinions or policies of DHS or NSF.

213Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 226 / 263

REFERENCES

[1] A. of Chief Police Officers, “Good practice guide for computer based
electronic evidence,” ACPO, Tech. Rep.

[2] K. Kent, S. Chevalier, T. Grance, and H. Dang, “Guide to integrating
forensic techniques into incident response,” National Institute of Stan-
dards and Technology, Tech. Rep.

[3] J. Dykstra and A. T. Sherman, “Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evaluating
tools, trust, and techniques,” Digital Investigation, vol. 9, 2012, pp. S90–
S98.

[4] “Sleuth Hadoop,” http://www.sleuthkit.org/tsk hadoop/, retrieved April
2013.

[5] P. Mell and T. Grance, “The NIST definition of cloud computing,” http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[6] J. Erickson, M. Rhodes, S. Spence, D. Banks, J. Rutherford, E. Simpson,
G. Belrose, and R. Perry, “Content-centered collaboration spaces in the
cloud,” IEEE Internet Computing, vol. 13, September 2009, pp. 34–42.

[7] D. D. Roure, C. Goble, and R. Stevens, “The design and realisation
of the myexperiment virtual research environment for social sharing of
workflows,” Future Generation Computer Systems, vol. 25, no. 5, 2009,
pp. 561 – 567.

[8] I. Foster, “Globus online: Accelerating and democratizing science
through cloud-based services,” Internet Computing, IEEE, vol. 15, no. 3,
May-June 2011, pp. 70 –73.

[9] S. Caton and O. Rana, “Towards autonomic management for cloud ser-
vices based upon volunteered resources,” Concurrency and Computation:
Practice and Experience, 2011.

[10] S. Distefano, V. D. Cunsolo, A. Puliafito, and M. Scarpa, “Cloud@home:
A new enhanced computing paradigm,” in Handbook of Cloud Comput-
ing, B. Furht and A. Escalante, Eds. Springer US, 2010, pp. 575–594.

[11] A. Chandra and J. Weissman, “Nebulas: using distributed voluntary
resources to build clouds,” in Proceedings of the 2009 conference on
Hot topics in cloud computing. USENIX Association, 2009.

[12] S. Xu and M. Yung, “Socialclouds: Concept, security architecture and
some mechanisms,” in Trusted Systems, ser. Lecture Notes in Computer
Science, L. Chen and M. Yung, Eds. Springer Berlin / Heidelberg,
2010, vol. 6163, pp. 104–128.

[13] “Amazon EC2,” http://aws.amazon.com/ec2/, retrieved April 2013.
[14] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-tiered on-demand

resource scheduling for vm-based data center,” in Proceedings of the
2009 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, ser. CCGRID ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 148–155.

[15] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, Jan. 2008, pp. 107–113.

[16] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar,
M. Shah, and R. Tewari, “Cloud analytics: do we really need to reinvent
the storage stack?” in Proceedings of the 2009 conference on Hot topics
in cloud computing, ser. HotCloud’09. Berkeley, CA, USA: USENIX
Association, 2009.

[17] “Apache Pig,” http://pig.apache.org//, retrieved April 2013.
[18] “Bulk Extractor,” https://github.com/simsong/bulk extractor/wiki/

Introducing-bulk extractor, retrieved April 2013.
[19] “FTK (Forensics Toolkit),” http://www.accessdata.com/, retrieved April

2013.
[20] “OSForensics,” http://www.osforensics.com/, retrieved April 2013.
[21] “Intella,” http://www.vound-software.com/, retrieved April 2013.
[22] E. Huebner and S. Zanero, Open Source Software for Digital Forensics.

Springer, 2010. [Online]. Available: http://books.google.com/books?id=
2gl7k8PbIFYC

[23] “The Sleuth Kit,” http://www.sleuthkit.org/, retrieved April 2013.
[24] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-

tributed file system,” in Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), ser. MSST ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[25] “Apache Hadoop Wiki-Sequence File,” http://wiki.apache.org/hadoop/
SequenceFile, retrieved April 2013.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume
7, ser. OSDI ’06. Berkeley, CA, USA: USENIX Association, 2006,
pp. 15–15.

[27] “National Software Reference Library,” http://www.nsrl.nist.gov/, re-
trieved April 2013.

[28] “Cloudera,” http://www.cloudera/, retrieved April 2013.

214Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 227 / 263

Fuzzy Subtractive Clustering Based Prediction Approach for CPU Load
Availability

K. Beghdad Bey, F. Benhammadi and F. Sebbak

Laboratoire de Systèmes Informatiques, Ecole Militaire Polytechnique, 16111 Algiers, Algeria

Abstract—Distributed processing environment has emerged
as a new vision for future network based calculation,
allowing the federation of heterogeneous computing
resources to incorporate the power. Cloud computing is a
new computing paradigm composed of a combination of grid
computing and utility computing concepts. In cloud
computing, the prediction methods play a key role in
managing large scale of computation capacity. In this paper,
a modelling approach to predict the future CPU load value is
presented. The proposed approach employs a computational
intelligence technique to classify the CPU load time series
into similarity component group. This technique is based on
the Fuzzy Subtractive Clustering algorithm and a
combination of local Adaptive Network-based Fuzzy
Inference System. The results of an exhaustive set of
experiments are reported to validate the proposed prediction
model and to evaluate the accuracy of their prediction.
Experimental results demonstrate both feasibility and
effectiveness of our approach that achieves important
improvement with respect to the existing CPU load
prediction models.

Keywords-Subtractive clustering; CPU load prediction;
cloud computing; system modelling; ANFIS.

I. INTRODUCTION

 Heterogeneous computer network environments
involve effective utilization of the distributed resources to
achieve high performance computing. Cloud computing is
a new computing paradigm composed of a combination of
grid computing and utility computing concepts. Cloud
promises high scalability, flexibility and cost-effectiveness
to satisfy emerging computing requirements; therefore,
they can treat task scheduling and resource allocation over
the virtual clusters [1]. In the literature, various
architectures have been proposed to satisfy the user’s
needs in terms of computational power through the use of
distributed computing resources [2]. In distributed
environments, resources monitoring needs continual
parameters monitoring in terms of CPU load, memory size,
bandwidth and latency. Irrespective of the nature and the
type of the used distributed processing environment, the
creation of resource pools should satisfy several
requirements for each parameter quality during the
computation service. To efficiently provision computing
resources in the cloud, the ability to accurately predict
resource capabilities is of great importance since it permits
to determine how to use time-shared resources.

 Many interesting modelling strategies have been
proposed to predict available CPU load in a grid
computing environment [3,4,5]. The main contribution of
the present paper relies on the integration of the subtractive
clustering technique and the Fuzzy Inference System (FIS)
to make short and medium-term predictions of CPU
availability on time-shared environment systems. The
proposed approach predicts the future value of CPU load
based on a set of local Adaptive Network-based Fuzzy
Inference System (ANFIS) predictors to perform short-
term accurate and mid-term reliable prediction using the
selection instances in several past steps. We also propose a
deterministic approach for k-folds cross-validation that
constructs representative rather random folds. Through this
approach, we attempt to reduce the effects of using only a
few instances for training.

 The rest of this paper is organized as follows. Section 2
reviews the related works about CPU load prediction
approaches in time-shared systems. Section 3 presents the
proposed subtractive clustering-based ANFIS prediction
model. This section also describes how this software is
used to carry out experiments. Experimental results are
reported in Section 4. Conclusions and directions for future
work end the paper.

II. RELATED WORK

 A Cloud computing platform offers to users a
virtualized distributed system, where computing resources
are dynamically allocated to satisfy a user’s Service Level
Agreement. Predicting the processor availability for a new
process or task in computer network systems is a basic
problem arising in many important contexts. Making such
predictions is not easy because of the dynamic nature of
current computer systems and their workload.

 The Network Weather Service (NWS) [3] is the most
famous system designed to provide dynamic resource
performance forecasting. The predictive methods currently
used in NWS include running average, sliding window
average, last measurement, adaptive window average,
median filter, adaptive window median, α-trimmed mean,
stochastic gradient, and auto-regression (AR). Dida [6]
studied different linear series models including
autoregressive, moving average, autoregressive moving
average, autoregressive integrated moving average and
autoregressive fractionally integrated moving average
models, for predicting future loads from 1 to 30 seconds.
Huo et al. [7] evaluated four criteria to determine the

Kadda Beghdad Bey
Laboratoire de Systèmes Informatiques

Ecole Militaire Polytechnique
 Algiers, Algeria

bey_kadda@yahoo.fr

Farid Benhammadi
Laboratoire de Systèmes Informatiques

Ecole Militaire Polytechnique
 Algiers, Algeria

benhammadif@yahoo.fr

Faouzi Sebbak
Laboratoire de Systèmes Informatiques

Ecole Militaire Polytechnique
 Algiers, Algeria

faouzi.sebbak@gmail.com

215Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 228 / 263

optimal order of AR models: Final Prediction Error (FPE),
Akaike's Information Criterion (AIC), Minimum
Description Length (MDL) and Bayesian Information
Criterion (BIC). The authors claimed that the BIC criterion
performs better than other criteria. An approach based on
the Tendency-Based and Polynomial fitting method
predictor is proposed by Yang et al. [8]. Liang et al. [9],
presented a more-generic prediction scheme using both the
autocorrelation of CPU load and the cross correlation
between CPU load and free memory to achieve higher
CPU load prediction accuracy. In [10], Zhang et al. tackled
the problem of predicting available CPU performance in a
time-shared grid system. Their strategy forecasts the future
CPU load based on the variety tendency in several past
steps and in previous similar patterns. Recently, non linear
models have been tried for time series prediction
[11,12,13]. Liu et al. [13] proposed a hybrid non-linear
time-series segmentation algorithm to discover duration-
series pattern. In the experiment, they compared six
approaches including LAST, MEAN, Exponential
Smoothing, Moving Average, AR and Network Weather
Service.

 The present framework is related to our prior efforts in
CPU load prediction and complements the existing
performance CPU load prediction schemes [11, 12] with a
modification of the soft computing algorithm using a
subtractive clustering method. The new prediction system
combines the subtractive clustering method and ANFIS. A
strong point of our model is that it contains the same set of
predictors which are able to deliver accurate prediction in
peaks, switch level and regular situations.

III. SUBTRACTIVE CLUSTERING-BASED ANFIS

PREDICTION

Cloud computing has become a great solution for
providing a flexible and dynamically scalable computing
infrastructure for many applications. Cloud computing
presents a significant technology trends, and it is already
obvious that it is reshaping information technology process
[19]. To realize the next generation of distributed
computing, we need to be able to accurately predict
resource utilization. In this work, we proposed a novel
model to predict the behavior of computing resources.
Fuzzy models have been shown to be very effective
techniques for the modelling of nonlinear, uncertain and
complex systems. Subtractive Clustering is a fast one-pass
algorithm for estimating the number of clusters and
determining the cluster centres in a set of data [14]. We use
the subtractive clustering if we do not have a clear idea
about how many clusters should be used for a given data
set. After clustering the data set, the number of fuzzy rules
and premise fuzzy membership function are determined.
Then, the linear squares estimate is used to determine the
consequent in the output membership function, which
provides a valid fuzzy inference system (FIS). The
proposed approach includes three major steps: CPU load
time series clustering, the ANFIS clusters model prediction
and the combination of local ANFIS prediction model. As
shown in Fig. 1, before making predictions about future
CPU load values, subtractive clustering is applied to divide
the historic CPU load data into sub-clusters and generate
more homogeneous data.

A. CPU load time series clustering

 The purpose of this step is to identify natural groupings
of CPU time series from a large set of historic traces, and
to produce a concise representation of the system’s
behaviour. For our problem, one does not have a clear idea
about the number of clusters to be used for a given set of
data. Subtractive clustering technique, proposed by Chiu
[14], has been shown to be a fast way of estimating the
number of clusters and their centres positions. This
technique calculates the density function based on the
positions of data points, which leads to a significant
reduction of the number of calculations. Each data point is
a candidate to become a cluster centre. A density measure

at data point ix is defined as:

()∑
= 














 −
−=

n

j
a

ji

i

r
xx

D
1

2

2

2
exp

where ar is a positive constant representing a

neighbourhood radius. Hence, the more neighbouring
points a data point has, the higher is its density. The

density measure of each data point ix is defined as

follows:

() 













 −
−−=

2

2

2
exp

1

r
xx

b

ji

cii DDD

where br is a positive constant that defines a

neighbourhood that has measurable reductions in density
measure. Thus, the data points near the first cluster centre

1c
x will have significantly reduced density measure.

Figure 1. Subtractive clustering-based ANFIS prediction.

(1)

(2)

Subtractive clustering approach

Cluster J

 ANFIS1 ANFIS J
.......................

CPU Load Traces
Historic

Cross Validation based on MCE criteria

 Predicted value:

)(1 ty
∧

)(ty J

∧

)(ty
∧

)(ty

Cluster 1

Choice of the corresponding ANFIS predictor

 : CPU load time series.

 : Output from ANFIS J at time t.

MCE : Minimum Checking Error

)(ty

)(ty J

∧

216Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 229 / 263

After updating the density function, the next cluster
centre is selected as the point having the highest density
value. This process continues until a sufficient clusters
number is attainted. Fig. 2 shows an example of CPU time
series clustering based on the subtractive clustering
method.

For CPU load time series clustering, we use known
values of the dynamical situation of the historic data up to
time t. Let Y(t)={y1,y2,…,yt} be the time series at time t.

The dynamical situation ty∆ at time t is defined as

follows:

{ }12211 ,,, yyyyyyY ttttt −−−=∆ −−− L

The Subtractive clustering technique is used to cluster

all time series ty into clusters. It estimates the number of

clusters and the cluster centres. This process assigns the

CPU load data ty using the cluster membership

degree jµ that represents the degree to which ty belongs

to cluster jc . This assignment is computed using the

following objective minimization function:

()∑ ∑
=

=

=

−∆=
J

j

Tt

t
jtj ytO

1 1

2)(νµ

where jν is the centre of cluster j and J is the number of

clusters.

B. ANFIS Predictor

 The Adaptive Network-based Fuzzy Inference System
(ANFIS) proposed by Roger Jang [15] is one of the most
commonly used fuzzy inference systems. It is a universal
approximator used in various applications of predictions.

Moreover, it has been proven to be more powerful than
other models for short term prediction. ANFIS is a 5-layer
feed-forward network in which each node performs a
particular function in incoming signals, as well as a set of
parameters pertaining to that node. Similarly to ANFIS, the
compensatory neural fuzzy network with n-dimensional
input-data vector xp and one-dimensional output-data
vector yp has 5 functional layers: input layer, fuzzification
layer, pessimistic-optimistic operation layer, compensatory
operation layer (fuzzy reasoning method) and
defuzzification layer.

Let us suppose that the fuzzy inference system under
consideration has four inputs and one output. If two fuzzy
sets are associated with each entry variable, then the
system presents 16 inferences rules Rj (24), that are of the
first-order Sugeno fuzzy type:

Rj : if (x1 is A1j) and (x2 is A2j)

and (x3 is A3j) and (x4 is A4j)

Then yj=fi(x)=c1jx1+ c2jx2 + c3jx3+ c1jx1+ c4jx4=Bj

These rules correspond to the third category of fuzzy
inference systems mentioned in [16]. One of the most
important stages of the Neuro-fuzzy TSK (Takagi-Sugeno-
Kang) network generation is the establishment of inference
rules (Takagi and Sugeno 1985) [17] often used is the so-
called grid method, in which the rules are defined as the
combinations of the membership functions for each input
variable.

C. Future CPU load Prediction

In this study, Adaptive Network-based Fuzzy
Inference System based subtractive clustering has been
used to predict availability of the CPU load. In our
previous works [11, 12], a simple method for accuracy
estimation is used. The dataset is randomly portioned in
two disjoint subsets of N/2 instances. The first subset
serves as the training set and the second one as the test set.
The drawback of this method is that it makes inefficient
use of data since typically a relatively large proportion of
the instances is used for testing [18]. Cross-validation
attempts to resolve this drawback by successively
removing some instances from the initial set, treating
them as a test set. In k-fold cross-validation, the dataset is
randomly partitioned into k disjoint blocks (folds), of
approximately equal size d (d ≈ N / k). The learning
algorithm runs k times. In the i th iteration, the i th training
set is formed by the initial dataset without the i th fold,
while the test set is formed using the i th fold alone [18].
The aim of directing similar instances to different folds is
to reduce the pessimistic effects caused by the removal of
instances from the dataset. The principle for constructing
representative folds in unsupervised stratification is to
channel similar instances to different folds in order to
reduce the effects of using fewer instances for training.

 For the final decision of CPU load time series
prediction, we have used cluster predictor to select the
adequate ANFIS predictor. After the application of the
subtractive clustering method above the dataset, the
instance space is partitioned into clusters. The next step is
to determine the appropriate cluster, which aims at
predicting future CPU load cluster based upon the
observed history. The appropriate cluster for final

Figure 2. An example of CPU loads time series clustering.

(b) Time series clustering

(a) Original time series

(4)

(3)

(5)

217Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 230 / 263

decision of CPU load prediction is defined by the largest
similarity between the cluster centres and the input times
series points, as show in Fig. 3.

IV. EXPERIMENTAL RESULTS

In the previous section, we have presented a new
prediction approach for CPU load availability. In the
present one, we assess its performance with respect to
other methods. For this purpose, we carry out series of
experiments on different CPU load time series with a
variety of statistical properties collected by Dinda [19].
These CPU load traces were collected for two time
periods on roughly the same group of machines. The
traces used are in two column whitespace-delimited
ASCII format. The first column gives the time stamp in
seconds whereas the second one provides the floating
point measured load value.

A. Prediction model validation

To generate a FIS using ANFIS, it is important to
select the number of Membership Functions (MF) and the
proper parameters for the learning and refining process.
For training and testing data sets, we analyse the effect of
these parameters on the final ANFIS performance
including the training and testing minimum checking error
(MCE). We evaluate and compare our prediction model
with previous approaches using the Normalized Mean
Square Error (NMSE) defined by:

()

∑ 







∑−

∑ −

=

=

=

=
T

t

T

t

T

t
tt

tt
NMSE

yTy

yy

1

2
1

2

1

1

ˆ

where
∧

ty represents the CPU prediction value, ty the

actual measurement, and T the number of time series
points.

The proposed ANFIS prediction model is based on the
subtractive clustering process that resolves the problem of
clusters number used for each CPU load time series.
Though, this method determines the optimal number of
cluster for each CPU load traces. Table 1 summarizes the
prediction results of the CPU load time series from the
proposed prediction model for four different machines
traces collected by Yang [20]. This table shows that the

Subtractive Clustering-based ANFIS model achieves
better performance than other strategies for the same four
load traces. The converged RMSE is much smaller than
for the models reported in [11,12].

We also tested some other prediction models including
ours, ANFIS without clustering and Mixture of ANFIS.
Fig. 3 illustrates a comparison between these three
prediction models for five machines using different CPU
load time series. The Mean Error Prediction of the
proposed subtractive clustering based-model is smaller
than that of other models. The predictive results of one
traces machines using the Subtractive Clustering-based
ANFIS model are shown in Fig. 4. The obtained
prediction mean error was 0.08% whereas the RMSE is
less than 0.15%. This shows again the consistent
improvements of the proposed approach on the prediction
quality over the corresponding time series collected on
these machines.

100 150 200 250 300 350 400
0

0.5

1

1.5

2

Measurements

C
P

U
 lo

ad

Measurements

Mixture of ANFIS [11]

Our Approach

0

0,1

0,2

0,3

0,4

M
ea

n
E

rr
o

r
Pr

ed
ic

tio
n

axp0 axp1 axp2 axp3 axp4

Machines

 ANFIS without clustering

 Mixture of ANFIS

 Subtractive Cluste ring-based ANFIS

Prediction of future
value x (t+1)

NMSE
Error %

(min/max)
axp0Aug.180 0.056297 9,44 / 10,7

Abyss.1000 0.031459 1,13 / 3,06

Mystere.10000 0.26987 6,18 / 10,02

axp1Aug.120 1.185 6,38 / 45,99

TABLE 1. NMSE FOR DIVERSE CPU LOAD PREDICTION

Figure 3. Comparison of three CPU load prediction models

For each time series point Xi
 Find the cluster centres Cj
 Cc= the closest centre to Xi
 For j=1 to J J: number of cluster
 /*Calculate the similarity Sim between
 the centre Ck and Xi
 S =Sim (Xi, Ck)
 End
 /* Find the largest similarity SL between
 Xi and all other centres
 SL= Max(Sim(Xi, Ck))
 Cc=Ck
End

Figure 3. Selection of appropriate cluster

Figure 4. Comparative results of our predictor with Mixture
of ANFIS [11].

(6)

218Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 231 / 263

B. Comparisons with other models

To evaluate the performances of the proposed
prediction approach with respect to the existing ones, we
have assembled test data from multiple datasets. The
results of the subtractive clustering-based ANFIS
prediction model on all the test time series are illustrated
in Fig.5. These results show that the proposed prediction
model performs well in general. The results of the
approach based on Mixture of ANFIS [12] are better for
various host traces. Therefore, it can be concluded that our
model gives a good prediction on most of the host’s time
series and outperforms then the models reported in
[10,12].

V. CONCLUSION AND FUTURE WORK

Performance prediction is set to play a significant role
in the resource management and distributed systems.
Clouds computing are designed to provide services to
external users, providers need to be compensated for
sharing their resources and capabilities. The contribution
of this paper is a new modelling approach to predict CPU
load future value in distributed computing. This approach
employs subtractive clustering technique to classify the
CPU traces into similarity component group and a
combination of local ANFIS. The proposed prediction
model is validated and checked with a set of exhaustive
experiments performed on a set of real and representative
CPU load traces. In addition, we have shown that a
significant reduction in prediction errors is experienced
using the subtractive clustering-based ANFIS model since
it always computes accurate predictions.

Predicting resource utilization is a fundamental need
when running a virtualized system. It is necessary because
cloud infrastructures use virtual resources on demand. As
future work directions we will be building model
considering virtualization and cloud environment.
Furthermore, we will be developing prediction models
based on monitoring metrics of application and services.

REFERENCES

[1] A. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing
and Grid Computing 360-Degree Compared”, in Proc. of
the Grid Computing Environments Workshop, pp. 1-10,
December 2008.

[2] Z. Shi, H. Huang, J. Luo, F. Lin, and H. Zhang, “Agent-
based grid computing”, Applied Mathematical Modelling
30, pp. 629–640, July 2006.

[3] R. Wolski and N. Spring, “The Network Weather Service:
A distributed resource performance forecasting service for
metacomputing”, Future Generations of Computer
Systems 15, pp. 757-768, October 1999.

[4] P. A.Dinda and D. R. O’Hallaron, “Host load prediction
using linear models”, J. Cluster Computing Volume 3,
Issue 4, pp. 265–280, 2000.

[5] H. Koide, N. Yamagishi, H. Takemiya, and H. Kasahara,
“Evaluation of the resource information prediction in the
resource information server”, IPSJ Transactions on
Programming, Vol. 42, SIG3(PRO10), pp. 65–73, 2001.

[6] P. A. Dinda and D. R. O'Hallaron, “An Evaluation of
Linear Models for Host Load Prediction”, the Eighth IEEE
International Symposium on High Performance
Distributed Computing, pp. 87–96, August 1999.

[7] J. Huo, L. Liu, L. Liu, Y. Yang, and L. Li “Selection of
the Order of Autoregressive Models for host Load
Prediction in Grid”, Eighth International Conference on
Software Engineering, Parallel/Distributed Computing,
IEEE, pp. 516-521, July 2007.

[8] L. Yang, I. Foster, and J.M. Schopf, “Homeostatic and
tendency based CPU load predictions”, Proc. 17th Int’l
Parallel and Distributed Processing Symp, pp.42-50, April
2003.

[9] J. Liang, K. Nahrstedt, and Y. Zhou, “Adaptive multi-
resource prediction in distributed resource sharing
environment”, In: IEEE International Symposium on
Cluster Computing and the Grid, pp. 293–300, April 2004.

[10] Y. Zhang, W. Sun, and Y. Inoguchi, “CPU Load
Predictions on the Computational Grid”, IEICE Trans. Inf.
& Syst., Vol. E90–D, No.1, pp. 40- 47, January 2007.

[11] K. Beghdad-Bey, F. Benhammadi, Z. Guessoum, and A.
Mokhtari, “CPU Load Prediction Using Neuro-Fuzzy and
Bayesian Inferences”, Neurocomputing journal 74, pp.
1606-1616, May 2011.

[12] K. Beghdad-Bey, F. Benhammadi, A. Mokhtari, and Z.
Guessoum, “Mixture of ANFIS systems for CPU load
prediction in metacomputing environment”, Future
Generation Computer Systems 26, pp. 1003-1011, July
2010.

[13] X. Liu, Z. Ni, D. Yuan, Z. Wu, Y. Jiang, J. Chen, and Y.
Yang, “A novel statistical time-series pattern based
interval forecasting strategy for activity duration in
workflow system”, Journal of systems and software 84, pp.
354-376, March 2001.

[14] S. Chiu, “Fuzzy Model Identification Based on Cluster
Estimation”, Journal of Intelligent & Fuzzy Systems, Vol.
2, No. 3, pp. 267–278, September 1994.

[15] R. Jang, “ANFIS: Adaptive network-based fuzzy inference
system”, IEEE Transactions on Systems, Man and
Cybernetics, 23 (3), pp. 665-685, June 1993.

Figure 5. Mean error prediction of several models

0

5

10

15

20

25

M
e

a
n

 E
rr

o
r

P
re

d
ic

tio
n

1 day 5 days 10 days 15 days 20 days

CPU Load Measurement

Last measurement [9]
Tendency- based [9]
AR models [9]
NWS [9]
Polynomial Fit t ing [9]
M ixture of ANFIS [11]
Our Approach

(a)

0

5

10

15

20

25

M
e

a
n

 E
rr

o
r

P
re

d
ic

tio
n

1 day 5 days 10 days 15 days 20 days

PU Load Measurement

Last measurement [9]
Tendency- based [9]
AR models [9]
NWS [9]
Polynomial Fit t ing [9]
M ixture of ANFIS [11]
Our Approach

(b)

219Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 232 / 263

[16] L. Yang, J. M. Schopf, and I. Foster, “Conservative
scheduling: Using predicted variance to improve
scheduling decisions in dynamic environments”, In Proc.
Supercomputing 2003, vol. 11, pp 15–11, April 2003.

[17] T. Takagi and M. Sugeno, “Fuzzy identification of systems
and its application to modeling and control”, IEEE T. Syst.
Man Cyb., SMC-15(1), pp. 116–132, January 1985.

[18] N. Diamantidis, D. Karlis, and EA Giakoumakis,
“Unsupervised stratification of cross-validation for
accuracy estimation”, Artificial Intelligence 116, pp. 1-16,
January 2000.

[19] F. Borko and E. Armando, “Handbook of Cloud
Computing”, Springer Book, 2010.

[20] http://www.cs.cmu.edu/~pdinda/LoadTraces [April 2013].
[21] http://people.cs.uchicago.edu/˜lyang/Load [April 2013].

220Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 233 / 263

On the Analytical Characterization of a Real Life Virtual Network Function: The
Italtel Virtual Session Border Control

Sergio Montagna and Pietro Paglierani
Italtel S.p.A.: Product Unit Smart Networks

Settimo Milanese, Italy
sergio.montagna@italtel.it; pietro.paglierani@italtel.it

Abstract— In this paper, we analyze a real-life application
of virtualization: the Italtel Virtual Session Border
Controller (VSBC). The measurements obtained in ad
hoc loading experiments show that the VSBC
performance is not linear with respect to variations in
the call rate. Such a behavior is not in accordance with
the theoretical results predicted by standard statistical
tools based on queuing theory. As a consequence,
particular attention must be paid to accurately assess the
VSBC performance, because inaccurate estimates could
lead to undue costs, or under-performing solutions. To
overcome this problem, a novel approach to accurately
predict the VSBC performance is proposed, which
allows optimizing the system behavior and minimizing
its costs.

Keywords-Virtualization; Telephony; SBC; RTP; Erlang.

I. INTRODUCTION
In the last decade, many efforts have been devoted by the

telecommunication industry to develop in software some
fundamental network functions, which could previously be
provided only by specialized hardware equipment. Recently,
however, the rapid advances in virtualization technologies
and parallel computation have made the software
implementation of network functions not only feasible, but
also very attractive to network providers, as an effective
alternative to proprietary hardware-based applications.

The adoption of Virtual Network Functions (VNF) [1]
can significantly reduce the costs of network equipment.
VNF, in fact, typically run on commercial servers, produced
in high volumes and with large economies of scale to satisfy
the huge demand originated by the Information Technology
market. The use of a common hardware platform to
implement a variety of different applications can also
greatly simplify the network infrastructure, and therefore
reduce its maintenance costs.

Finally, it is widely acknowledged that the use of VNF
will enable scalability, rapid re-configuration and optimal
allocation of network resources; hence it will give
“elasticity” and “openness” to the network infrastructure,
now “ossified” by the deployment of a pletora of closed

appliances based on proprietary hardware architectures [1].
In this paper, we present a simple technique to analyze and
predict the performance (i.e., measurement of the virtual
machine load, defined in the following [2]) of a complex
VNF. As a case study, we consider the problem of assessing
the performance of a virtual Internet Protocol Telephony
function, namely a Session Border Controller (SBC),
implemented and commercialized by Italtel. An SBC [3]
operates at the edge of two separate networks, both on the
control plane and on the media plane. On the control plane,
it performs load balancing and call-control; on the media
plane, the SBC provides media adaptation capabilities, i.e.,
it can adjust in real time the coding format of the speech
signals transmitted by the users.

In this paper, we discuss the main problems encountered
in the experimental characterization of the VSBC. In
particular, we have observed that the standard performance
analysis based on classical queuing theory [2] can provide
inaccurate results. To overcome such a problem, we present
a novel analytical framework, which allows predicting and
optimizing the overall VSBC performance in an accurate
way. The presented analytical solution can be easily
extended to any VNF.

The structure of the paper is as follows. In the next
section we briefly describe the VSBC. In Section III we
report the experimental performance results observed in the
lab in a number of ad hoc experiments. Finally, we propose
the analytical solution and present our conclusions.

II. THE VIRTUAL SBC MODEL
In Fig. 1, we show a simplified scheme of the virtual

SBC implemented by Italtel to handle up to 2K Erlang.

Figure 1. A simplified block-scheme of the virtual SBC architecture. In
white, the active VM's, in grey, with the names in brackets, the stand-by

VM's.

221Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 234 / 263

The used hypervisor is VMWare vSphere Hypervisor 5.1,
the VM are based on the Linux operating system. The
VSBC runs on two CISCO UCS B200 servers, with hyper-
threading enabled, that in the following will be referred to as
UCS a and UCS b, respectively. Each server runs three
Virtual Machines (VM) implementing three different
functions.

a) A first VM, operating on the control plane, implements

the Load Balancing Function (LBF) and the Border
Control Function (BCF). Such a VM runs on the active
server UCS a. Two virtual Central Processing Units
(vCPU's) are assigned to this VM, which will be
indicated as VMLBiBCF. A second VM operating on the
control plane runs on UCS b. This second VM, however,
performs only the BCF, while the LBF is in stand-by,
thus protecting the LBF running on UCS a in case of
fault according to an active/stand-by protection scheme.
We will indicate this second VM as VMiBCF.

b) A second VM is dedicated to providing the SBC

Operation & Management (O&M) functions. Four vCPU
are assigned to such a VM. Also the O&M function is
implemented by adopting the active/stand-by
redundancy scheme.

c) The third VM is equipped with 4 vCPU. This VM will

be referred to as VMcodec; it performs Real Transport
Protocol (RTP) [4],[5] media packet processing, both in
the so-called Network Address Translation (NAT)
scenario, and in the transcoding scenario. In the NAT
scenario, only the media packet network address is
modified, while the RTP header and payload are left
unmodified; conversely, in the transcoding scenario the
RTP header and payload are processed, so as to change
the adopted coding scheme when forwarding the RTP
packets from one network to the other. An equivalent
stand-by VM is present on the USC b server, to provide
redundancy.

A scheme that summarizes the basic call flow is shown in
Fig. 2. One can observe that:

a) The basic call includes seven Session Initialization

Protocol (SIP) messages, {Invite,100 trying, 180 Ring,
200 OK, ACK, bye, 200 OK}

b) In this scenario, the call is processed both by VMLBiBCF

(on UCS a) and by VMiBCF (on UCS b).

c) When the calling and called users adopt different speech

codecs, namely G.711 and G.729 [4],[5], the scenario is
labeled as Transcoding otherwise as NAT.

Figure 2. Control plane: SIP/RTP message flow

III. RESULTS
Fig. 3 shows the overall CPU load of VMcodec, (ρVMcodec)
when a NAT call is considered, as a function of the “call per
second” (cps) parameter. We can deduce the following
conclusions:

a) Effects due to the RTP packet processing on VMcodec: at

equal call rates, the load observed on VMcodec can result
different, due to the difference of offered Erlang values
(520 Erlang; 260 Erlang).

b) From the observed results, we can obtain the

experimental values for {T1;h1
Erl(ptime)}, which

represent the cost of the single call, and the contribution
to the load due to the traffic expressed in Erlang in the
NAT scenario, respectively. Such values can be used to
estimating the load of VMcodec through the expression [2]:

 (1)

where:

ρteor

VM
 : is the offered load of VMcodec

ρbase : is the load of VMcodec without traffic
λ1: is the offered call rate to handle NAT
λ2: is the offered call rate to handle transcoding
T1: is the cost of the call to handle NAT
T2: is the cost of the call to handle transcoding
hold1: is the length (in seconds) of the RTP phase of the call
to handle NAT
hold2: is the length (in sec.) of the RTP phase of the call to
handle transcoding

222Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 235 / 263

Figure 3. VMcodec load as a function of the offered traffic (call per second)

h1

Erl (ptime): is the cost to manage one NAT Erlang. This
value depends on the packetization time (ptime) of the codec.
h2

Erl (ptime): is the cost to manage one transcoding Erlang.
This value depends on the packetization time (ptime) of the
codec.

The results shown in Fig. 3 highlight that the theoretical
load predicted by (1) can be significantly underestimated.
For a given load value, for instance ρVMcodec equal to 0.6, the
theoretical estimate predicts an actual call rate of 20 call per
second (caps), while the actual call rate that can be
successfully processed is 40 caps.

IV. ANALYTICAL SOLUTION
The last observation suggests that a different approach

must be adopted to predict the virtual SBC load in an
accurate way. In Fig. 4, we show a simplified scheme that
summarizes the new approach to estimate the load proposed
in this paper. The new approach is based on the use of a
reduction factor f applied to the theoretical estimate ρteorVM
of the load provided by (1). This quantity is lower bounded
by the VM load without traffic, i.e., ρbase; the upper bound
can be theoretically infinite. In our application, we assume
that the upper bound is determined by the number of vCPU
(Nvcpu) dedicated to the considered VM. Thus, the range for
the load can be defined as ρbase ≤ ρteor

VM ≤ Nvcpu.
We assume that the reduction factor f depends on the

offered load (ρteor
VM) and on the value Nvcpu. Furthermore,

we also assume that the reduction function f exhibits a linear
behavior in the range 1≤ f ≤Nvcpu, with Nvcpu≥2. As shown in
Fig. 4, the method requires that a load measurement is
performed at low traffic, so that the observed load (ρmeas)
can be considered close to the base load (ρbase

).
This measurement is performed in order to estimate the

processing cost of the single call on the considered VM. The
estimated VM processing cost thus results equal to:

Figure 4 Simplified scheme of the proposed approach to estimate the VM
load

(2)

The application of (2) to the results previously discussed is
shown in Fig 5.

Figure 5. Load of VMcodec vs offered call rate (call per second)

Figure 6. Load of VMcodec vs offered call rate

The performance estimates achieved with (2) result
significantly more accurate than those provided by (1),

223Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 236 / 263

which are linear with respect to the offered traffic.
In Fig. 6 we show the load of VMibcf as a function of the

call rate. In these tests, the quantity “offered Erlang” has
been kept constant, equal to 260 Erlang; only the NAT
scenario is considered.

The use of (1) provides over-estimated performance
values; conversely, the performance predicted by the new
approach results more accurate. The obtained measurements
also indicate that the gradient of the load curve decreases for
increasing traffic. This means that VNF's tend to optimize
the cost of processing telephony traffic. Thus, when traffic
increases, vCPU's dedicate more time to traffic handling.

V. CONCLUSIONS
The Italtel Virtual Session Border Controller (VSBC) has

been developed to handle up to 2K Erlang of Voice over IP
sessions (and in the near future, up to 4K Erlang). It has
been implemented by adopting the concept of virtualization.
The measurements carried out in our laboratory have shown
that the VSBC performance (processing load of the virtual
machines) is non-linear with respect to variations in the rate
of processed calls. It has been observed that the virtual
system tends to optimize the processing cost of the calls; as a
consequence, the overall performance results better than the
one predicted by linear models. We have also proposed a
strategy aimed at matching experimental data with analytical
predictions. The main result originated by this effort is a
technique which allows to accurately dimensioning the
deployed solutions, reducing their cost.

 The proposed analytical method allows to reliably
predicting the number of virtual CPU's that must be assigned
to the VSBC, to achieve the target performance. This way,
the cost per Erlang of the VSBC can be minimized, thus
increasing the competitiveness of the system.

ACKNOWLEDGMENT
The authors wish to thank their colleagues Roberto

Porfidio, who carried out the experiments and measurements
discussed in this work, and Marco Beccari, for his support on
the VSBC.

REFERENCES
[1] M. Chiosi, et al., "Network Functions Virtualization,"

presented at the "SDN and OpenFlow World Congress",
October 22-24,2012, Darmastadt, Germany.

[2] Leonard Kleinrock, "Queuing Systems: Volume I, Theory",
John Wiley and Sons, New York, 1975.

[3] IETF RFC 5853 “Requirements from Session Initiation
Protocol (SIP) – Session Border Control (SBC)
deployement,” April 2010.

[4] Paglierani, P.; Petri, D.; "Uncertainty Evaluation of Objective
Speech Quality Measurement in VoIP Systems,"
Instrumentation and Measurement, IEEE Transactions on ,
vol.58, no.1, pp.46-51, Jan. 2009

[5] IETF RFC 3551, “RTP Profile for Audio and Video
Conferences with Minimal Control”	

224Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 237 / 263

Trusted Computing on Heterogeneous Embedded Systems-on-Chip with
Virtualization and Memory Protection

Marcello Coppola Miltos D. Grammatikakis and George Kornaros Alexander Spyridakis
ST Microelectronics Technological Educational Institute of Crete Virtual Open Systems

Grenoble, France Heraklion, Greece Grenoble, France
marcello.coppola@st.com {kornaros, mdgramma}@cs.teicrete.gr a.spyridakis@virtualopensystems.com

Abstract—The paper examines the architecture of a secure and
trustworthy cloud platform, which ensures strong logical and
physical security on the client devices using a two-layer
security mechanism: a) a hardware security module located on
the SoC of the client device that protects incoming and
outgoing communications (e.g., to/from an external memory)
against physical attacks, and b) system software and
hypervisor extensions that isolate virtual machines from one
another and from the underlying hardware in order to protect
against logical attacks.

Keywords-cloud computing; confidentiality; integrity;
multicore SoC; protection; security; virtualization.

I. INTRODUCTION

A new era is emerging in consumer, industry, and
government areas, where traditional consumer and mobile
devices are replaced by intelligent, next generation systems,
such as smart phones, smart TVs and smart tablets that
provide innovative services, such as social networking and
on-demand multimedia (e.g., Netflix* [8]), by connecting to
the cloud. Meanwhile, content providers increase the
availability of large-scale, high-quality libraries of web data
with text, images, sounds, videos and animations. The
technology races towards new generation, powerful,
complex, smart devices promotes convergence of traditional
video and Internet-based content deployed in cloud
computing infrastructures and increases the possibility of
security breaches.

For example, devices, such as Intellectual Property (IP)
set-top boxes, residential gateways or media players, now
provide a multitude of services, such as graphical user
interfaces, digital rights management, secure transcoding
protection, network provisioning and payment. Each service
finds its physical representation in a mixture of hardware and
software components, ranging from small security-critical
software stacks running on basic processors or accelerators,
up to commodity operating system (OS) on complex
application processors. Since each of these highly
heterogeneous software stacks uses sensitive data that must
be protected, individual services must collaborate to enable
global system security [5] [11]. This leads to a significant
increase in complexity and associated development costs.

Security solutions for end-users (individuals, companies)
connecting to the cloud using client equipment are of utmost
concern in the era of cloud services and applications [1].
Cyber-secure architectural solutions for cloud environments
must offer ways to fully secure system and end user

applications and services against cyber-criminal end-users,
even for the components that will run on the client side.
Today the lack of appropriate isolation of source code and
data among trusted and untrusted applications is one the
main challenges in building a secure architectural solution.
On the other hand, offering trustworthy cloud computing
services that would prevent from rogue administrators spying
or altering end user data and computations requires
significant hardware and software modifications in data
center architecture. This implies that on the end user side,
there is no trust to the cloud provider, especially if the end
user stores confidential info. Therefore, a viable and
economical solution is to enhance the security level of the
connected smart device when accessing the cloud. This new
idea could speed up utilization of cloud infrastructure by
connected devices and allow service providers to trust
sensitive computations performed by end users and
consequently delegate processing tasks to them.

This paper describes work in progress that aims to
provide a viable solution towards protecting the integrity and
confidentiality of sensitive data (e.g., movie, photo, e-book)
and software applications in a modern cloud infrastructure
where approved devices are connected to the cloud. This
work targets protection from two kinds of adversaries: (i)
rogue applications such as virus, Trojans possibly launched
by the user himself, (ii) physical adversaries such as probing,
spying at or tampering with the communication link
connecting the device to the external cloud environment.

Section II considers the current state-of-the-art in
System-on-Chip (SoC) virtualization including existing
memory protection strategies. This section lays out the path
towards presenting the TRESCCA security approach in
Section III. Finally, Section IV concludes the paper.

II. VIRTUALIZATION AND SECURITY

 On top of a hardware platform, we have the software
stack, including the OS, the middleware and the application
layer. Security of the device that runs applications from
different sources is usually under the responsibility of the
OS. The OS uses software (e.g., virtual memory, file
permission, memory protection) and ad hoc hardware
mechanisms to isolate different applications sharing common
physical and logical resources, such as software libraries,
services and resources, e.g., printers, graphics accelerators.
The complexity of modern OSs (large number of code lines,
developed by different groups) creates different security
vulnerabilities resulting from software misbehaviors. These
are exploited by a cyber-criminal, who attempts to subvert

225Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 238 / 263

the security mechanisms supported by the OS and get control
of the device and data. For instance, overwriting data or
function pointers, dynamic memory allocation (double-
freeing, referencing or writing to free memory, zero-length
allocations, and buffer overflows are well known techniques
used to bypass any security protection imposed by the OS.

Vendors are now using virtualization technology to
isolate physical resources from applications and platforms
that use them. This is performed by introducing the virtual
machine (VM) concept that serves as a guest software
environment that supports a stack consisting of an operating
system (OS) and application software. Each VM is
independent of other VMs and uses the same interface to
processors, memory, accelerators, and I/O provided by a
physical platform. VM isolation provides the means to
regulate application access to computational resources, thus
enabling malware detection capabilities. Isolation is achieved
by inserting a hypervisor layer between the operating system
and the hardware. This enables the hypervisor layer to
govern all interactions that take place between the OS (and
the layers above it) and hardware [4] [7].

In full virtualization, the hypervisor provides the same
hardware interfaces as those in the physical platform, hence
the guest OSs and applications do not need to be modified.
Since full virtualization increases information sharing among
different system layers, security maintenance becomes very
complex. Thus, NIST has proposed security management
recommendations that involve the host OS (if applicable),
the hypervisor and the guest OS [9]. NIST best practices
(policies and checks) for a secure hypervisor layer involve
installing updates, monitoring, restricting access via
authentication, encryption and integrity mechanisms,
disconnecting/disabling unused hw/sw components and
performing clock synchronization [10]. The specified
practices affect hypervisor configuration, initiation, design
and planning, implementation, operation, maintenance and
disposition and ensure that data access and transmission
threats are thwarted.

A. Embedded Virtualization and Security

Mobile platforms and set-top boxes are in the middle of a
global transition period in which client devices manage to
support high-level operating systems and middleware,
quickly moving from a close or walled garden limited
environment to a setting where a walled garden has to
coexist with an open one. In this new scenario, devices are
able to run any third-party application that may or may not
be certified by the operator. In this context, it is crucial to
ensure that third party applications cannot break security.
Otherwise, if isolation is broken, sensitive content could be
easily stolen or edge devices could be used as a Trojan horse
to break cloud security. Hypervisors would allow vendors to
isolate important trusted services (e.g., billing,
authentication, phone service) from the open operating
system layer and run them in isolated, tamper-proof virtual
machines (VMs). Thus, trusted services are not affected even
if the open environment is compromised.

Traditional virtualization technology resolves isolation of
different applications at the processor level, but suffers from

non negligible drawbacks [7]. Indeed, it allows sharing of
processing and shared memory resources efficient and secure
on homogeneous SMP architectures that can be controlled on
a common trusted basis. However, it is not secure for
heterogeneous shared-memory multiprocessor systems-on-
chip (MPSoCs). In fact, most connected smart devices
architectures are heterogeneous, including different islands
of computation such as GPU, DSP and hardware
accelerators. Islands of computations cannot natively support
virtualization, since they lack memory management units,
and often do not offer inherent ways of establishing privilege
levels. Therefore, applications running in such systems are
able to access the whole address space, breaking the required
isolation assumption imposed by virtualization. In order to
address these issues, security hardware extensions to
processor and interconnects are being considered.

A few years ago, bi-partitioning techniques introduced in
ARM’s TrustZone [3] extended the ARMv6 architecture by
adding the concepts of "secure" and "non-secure" states and
a "secure monitor mode" used for switching between the
two. In addition, the AMBA3 AXI has been extended with
two new signals (ARPROT/AWPROT) that indicate whether
the respective read/write transaction is secure or non-secure.
Nowadays, binary bi-partitioning cannot meet the security
requirements of cloud-connected devices. Moreover,
TrustZone technology cannot protect against bus probing
which can be used to attack the software stacks.

MPSoC security must be addressed by a platform-wide
protection mechanism covering the full communication
infrastructure, instead of a processor-centric mechanism
[12]; similar approaches have also been proposed in [5] [11].
The proposed concept defines a protection domain as a set of
specific access rights to a shared address space and maps
each software stack to a specific domain. Notice that
software stacks may have right overlaps between them.

In order to make the security check the proposed
approach may suffer from long latency, especially if there is
a miss in the local permission look-aside buffer, and the
missed entry has to be loaded from external memory. Thus,
due to the granularity of the security checks, silicon cost is
unacceptable for embedded devices.

The basic concept in our approach is to implement a low-
cost solution at the Network-on-Chip (NoC network
interface. With ideal distributed co-hosting of several
protection domains, software stacks transparently and
efficiently share resources (processors, memory and
peripherals) issuing memory accesses through Direct
Memory Access (DMA) controllers.

III. THE TRESCCA APPROACH

The TRESCCA architecture secures critical data in a
fully end-user transparent way, without storing information
in centralized pools that define an attractive attack point
[13]. TRESSCA consists of a CPU cluster, on-demand
media accelerators and storage interconnected in a
heterogeneous shared memory MPSoC via a complex NoC
(STM’s Spidergon STNoC). Each CPU cluster is a
symmetric multiprocessor (SMP) hosting OS execution.

226Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 239 / 263

Figure 1. TRESCCA architecture with Hardware Security Module (HSM)

A. Secure Information Processing

TRESCCA introduces a novel security infrastructure that
aims to protect the confidentiality and integrity of sensitive
software against two types of adversaries:
 Logical adversaries like rogue applications: viruses,

Trojans or malware launched by the end-user.
 Physical adversaries like the end user himself, with

complete physical access to the system. For instance,
the end user can issue a board-level attack by probing
the bus between the SoC and its external memory or
tampering with a system communication link.

Notice that these two kinds of attacks can also be
combined, as has already been done recently against famous
game consoles and other consumer equipment.

Protecting the system against logical adversaries will rely
on virtualization techniques, while board-level physical
attacks will be prevented by input and output data encryption
and integrity checking. Both memory protection and
virtualization techniques, implemented using hardware and
tightly-coupled system drivers, will jointly reinforce a secure
hypervisor kernel that isolates critical applications and

prevents memory tampering. The following subsections
describe how TRESCCA enhances the NoC backbone by
extending its network interface and how these extensions
help the hypervisor build the required security infrastructure.

B. NoC Firewall

The NoC communication infrastructure enforces strong
isolation of VM by tagging the underlying transactions.
What this means is that a potentially compromised Guest OS
in a Virtual Machine cannot access data that is tagged by
another VM. Next, we use the term domain to refer to an
isolated environment in the platform, to which a subset of the
shared physical memory is allocated.

Using the virtualization concept, we can create a level of
indirection between physical and virtual components. Each
physical component is associated to many different virtual
instances that are allocated to a domain and are referred to as
the domain’s assigned components. For modern CPUs, this
is possible using hardware virtualization extensions [2], for
other components, such as DMA or hardware accelerators,
an IOMMU is used [6].

227Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 240 / 263

Figure 2. Partitioning of physical memory to different logical domains

Multiple domains can co-exist in a platform and a virtual
component (e.g., a virtual CPU) can be mapped to a single
domain. True domain isolation is achieved by blocking
accesses (read/write NoC transactions) from resources
outside the domain to their assigned physical memory;
ideally, network routing paths are also balanced across VMs
by assigning separate virtual circuits. This implies
establishing a set of access rights on different address
regions and ensuring that these rules are observed at each
network interface. Our solution will be processor-
independent, although interrelation to predefined processor
privileged levels is desirable (e.g., ARM v7 PL0, PL1, etc).

Each initiator transaction is tagged with a corresponding
VM and/or process identifier. The main innovation point for
defining the set of access rights for each tuple (VM id,
process id, and physical address) is introducing two levels
of memory hierarchy. These consist of hierarchy 1 cache at
all initiator interface and a hierarchy 2 cache at the target
interface (resp. H1, H2 in Figure 2). In case of H2 miss, the
NoC Firewall target interface is responsible for fetching the
required entry from the physical memory containing the
permission tables shared by the different NoC Firewall
access points. A scalable NoC Firewall will enable flexible
and efficient assignment of virtual components to an
arbitrary number of domains, proving low latency and
power-efficiency compared to past research, such as [12].
Moreover, by policing the NoC Firewall access point at the
initiators, we would be able to detect and subvert Denial-of-

Service attacks, where malicious code attempts to saturate
the NoC through massive unauthorized accesses.

At the physical level, NoC Firewall and associated
cryptography will ensure that all transactions between the
SoC and its external environment are protected through
domain isolation, confidentiality and integrity [5]. Thus, it
will be infeasible for an adversary to spy or alter sensitive
data crossing the SoC boundary without issuing an interrupt.

C. STNoC Synthesis

We have synthesized STNoC using STM 32nm
technology in order to estimate the area overhead of the
NoC Firewall. Assuming 20 domains and a NoC with 80
initiator and 68 targets, a secure AXI read-only interface
occupies 23 to 30K gate equivalent (GE), compared to 20 to
28K GE for the non secure case. Similarly an AXI write-
only interface occupies 21 to 51K GE, compared to 19 to
49K GE for the non-secure case. Hence, the area overhead
is 5 to 14% for read- and 3 to 11% for write-only interface,
depending on the precise AXI configuration .

D. Extended Hypervisor Security

At the software layer, the TRESCCA hypervisor (KVM)
must provide strict isolation by running different VMs on
the connected devices. Thus, in our methodology, a trusted
VM associated to a trusted domain, where data and code
encryption is enforced, is assigned as the security master of
the SoC resources, excluding any IO components. This VM

228Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 241 / 263

is responsible for creating and managing domains, for
allocating physical memory to all domains and for setting
up the necessary virtual and physical address mechanisms.
For example, this VM can master the rendering functionality
of a display, to avoid any malware execution that captures
authentication data. Security is further enhanced by a set of
approved applications that software encrypt (possibly via an
on-chip hardware accelerator) communication with the
external memory, provide integrity checking and dispose
any unused network connection. This way each application
is completely isolated and external attacks are not possible.

In addition, the hypervisor defines a secure VM
managing all closed or corporate “walled garden”
applications (cf., set-top box example). The secure VM is
associated to a secure domain that may include I/O
accelerators and provides services to connect to the external
world, e.g., to an untrusted VM. The main difference from
an application running on the trusted VM is that these
applications can communicate through a firewall to the
cloud for additional computing power and/or storage.

The remaining VMs can execute untrusted applications
and connect to the external cloud environment. In these
VMs there is always a risk that a downloaded application
exploits security vulnerabilities. Therefore, mandatory
monitoring and integrity control (MIC) protocols at the
underlying NoC Firewall (see Figure 2) ensure that security
policies are uniformly enforced at the hypervisor layer [1].
Our custom MIC hardware extensions are related to
software security, similar to mandatory access control
(MAC) extensions in SELinux, e.g., the Loki tagged
memory architecture [14]. Restricting different workloads
through our MIC ensures that viruses and other malicious
code cannot spread from one VM or guest OS to another,
and data cannot easily leak from an untrusted VM or guest
OS to another one even if VMs start to misbehave.

IV. CONCLUSIONS AND FUTURE WORK

Cloud computing is an emerging technology that quickly
goes mainstream, making our society increasingly online,
with consumers using browsers embedded in mobile devices
or modern TV sets to access e-mail and social media.
Besides smart phones and TVs and tablets grabbing the
headlines, in the near future game consoles, cameras, photo
frames, radios, printers and set-top boxes will also be
connected to the cloud. Depending on the nature of the
threat, cloud security must encompass three components:
confidentiality, integrity, and availability. Confidentiality is
violated whenever sensitive information is disclosed to any
unauthorized entity (human, program, or system). Integrity
is violated whenever unauthorized code is executed or
unauthorized data is used. Availability is violated when an
attacker succeeds in denying services to legitimate users.

The ongoing TRESCCA project develops a lightweight,
non-intrusive secure hardware and system software-based
infrastructure, that supports multiple domains on top of
virtualization technology, in order to realize separation
among client’s broadband services (e.g., in Android) and

global broadcast services (e.g., in NDS, HbbTV). This client-
centric, “walled garden” allows client control over its
application code and media content. Moreover, virtualization
technology will allow set-top box or smart TV to efficiently
execute (and migrate, if necessary) multiple virtual machines
enabling hardware consolidation, increased utilization and
energy savings. Thus, different middleware and OSs can run
simultaneously on a single device, laying the foundations for
reducing cost, while promoting interoperability of secure and
trustable interactive services and cross-platform application
scenarios in heterogeneous virtualized multicore systems.
Most project outcomes will be publicly released as open
source software. Functional specifications of the architecture
currently developed aim to characterize performance and
silicon overhead with typical execution scenarios that run on
top of an extended open source, secure KVM hypervisor.

ACKNOWLEDGMENT

This work is partially supported by the EC through FP7
collaborative project TRESSCA (GA No. 318036).

REFERENCES

[1] A.M. Azab, "New system security mechanisms for cloud
computing," PhD Thesis, NCSU, Dept. CS, 2011.

[2] ARM, "Virtualization is coming to a platform near you," see
http://www.arm.com/files/pdf/System-MMU-Whitepaper-
v8.0.pdf [retrieved:4/2013]

[3] ARM, "TrustZone: security foundation," available from
http://www.arm.com [retrieved: 4/2013]

[4] G.W. Chow and A. Jones, "A framework for anomaly
detection in okl4- linux based smartphones," Proc. Australian
Information Security Management Conf., 2(2), pp. 5-10,
December 2008.

[5] L. Fiorin, G. Palermo and C. Silvano, “A security monitoring
service for NoCs,” Proc. Conf. Hardware/Software Codesign
and System Synthesis, New York, NY, USA: ACM, pp. 197–
202, October 2008.

[6] G. Kornaros, M.D. Grammatikakis, and M. Coppola,
"Towards full virtualization of heterogeneous NoC-based
multicore embedded architectures," Proc. Conf. on Embedded
and Ubiquitious Computing, pp. 345-352, December 2012.

[7] S. Nanda and T. Chiueh, "A survey of virtualization
technologies," Technical Report, SUNY - Stony Brook, 2005.

[8] Netflix, http://en.wikipedia.org/wiki/netflix [retrieved: 4/2013]
[9] NIST, available from http://www.nist.org [retrieved: 4/2013]
[10] K. Scarfone, M. Souppaya, and P. Hoffman, “Guide to

security for full virtualization,” NIST standard SP 800-125,
January 2011.

[11] G. Palermo, L. Fiorin, S. Lukovic, V. Catalano, and C.
Silvano, “Secure memory accesses on networks-on-chip,”
IEEE Trans. Comput., vol. 57, no. 9, pp. 1216-1229,
September 2008.

[12] J. Porquet, A. Greiner, and C. Schwarz, "NoC-MPU: a secure
architecture for flexible co-hosting on shared memory
MPSoCs," Proc. Design Automation and Test in Europe, pp.
591-594, March 2011.

[13] TRESCCA project, http://www.trescca.eu [retrieved: 4/2013]
[14] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis,

“Hardware enforcement of application security policies using
tagged memory,” Proc. Symp. Operating Systems Design and
Implementation, pp. 225-240, December 2008.

229Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 242 / 263

Using Cloud-based Resources to Improve
Availability and Reliability in a Scientific Workflow

Execution Framework
Sergio Hernández, Javier Fabra, PedroÁlvarez, Joaquı́n Ezpeleta

Aragón Institute of Engineering Research (I3A)
Department of Computer Science and Systems Engineering

University of Zaragoza, Spain
Email: {shernandez, jfabra, alvaper, ezpeleta}@unizar.es

Abstract—Different mechanisms, such as checkpointing, task
replication, alternative tasks execution or task migration among
different resources, for instance, have been traditionally applied
in (heterogeneous) grid environments for fault-tolerance. Cloud
based resources can easily improve both availability and reliabil-
ity of a given system when used for recovering faulty tasks. In
this paper we present how cloud resources have been includedin
a framework for the execution of scientific workflows and how
this has helped in improving the framework in two different
aspects: making it more scalable and more reliable, facilitating
the application of very effective fault recovery policies.

Keywords–Fault tolerance; Scalability; Cloud computing;Het-
erogeneous computing infrastructures; Resource management
frameworks.

I. I NTRODUCTION

Grid systems are prone to faults [1][2][3]. Different fault-
tolerance mechanisms (checkpointing, task replication, alter-
native tasks, or task migration, for instance) have been tra-
ditionally integrated into Grid middlewares and management
systems in order to handle and minimize the impact of
these faults [4][5]. Nevertheless, these mechanisms do not
prevent end-users jobs from experiencing high failure rates
when they are executed in this type of distributed computing
infrastructures [6]. For that reason, users must play a vital
role in the course of detecting these faults: checking execution
logs and job outputs, for instance [1]. Undesirable behaviour
is then notified to Grid administrators so that they can adopt
the necessary steps to restore the Grid.

In the last years, the Grid computing community has con-
centrated its research efforts on integrating several heteroge-
neous Grids in order to generate more powerful computing
infrastructures. Resource management frameworks have been
developed to provide a transparent and easy-to-use access to
the set of integrated computing infrastructures. Consequently,
these heterogeneous infrastructures are viewed as a whole from
the end-users’ point of view. Some relevant examples of these
solutions are GJMF [7], P-GRADE [8], SWAMP [9], Grid-
Way [10], eNANOS [11], EMPEROR [12], or GMBS [13].
Obviously, this new model of solution requires new fault-
tolerance mechanisms at the global level because frameworks

consist of internal services (schedulers, state monitors,re-
source registries, etc.) that are also prone to faults. These
mechanisms must be compatible with the ones integrated into
each local Grid. Currently, resource management frameworks
use the monitoring and notification capabilities of their mid-
dlewares to detect faults. Then, resubmission techniques are
integrated into their fault management components to recover
the execution of failed jobs.

In [14], authors proposed an open framework for the flexible
deployment of scientific workflows in heterogeneous Grid
environments. From an architectural point of view, the frame-
work was organized as a set of components connected through
a central bus, which was used by the components as the mean
to send and receive messages. At the beginning, the fault
management was very simple and consisted of re-submitting
the faulty task (either to the same computing resource or to an
alternative one). In this paper, we try to improve framework
availability and reliability by using cloud-based resources. The
experience gained by solving complex computational problems
has also allowed us to understand a wide variety of faults
suffered by this type of distributed computing infrastructures.
The use of cloud resources can help solve some of these faults
or at least reduce their effects.

The paper is organized as follows. Section II briefly de-
scribes the architecture of the proposed framework for scien-
tific workflows execution. The description is mainly focused
on the components involved in fault management. Section III
introduces the suggested fault classification and a discussion
about their corresponding effects. Sections IV and V present
two cloud-based solutions for solving availability and relia-
bility problems. We have concentrated on situations caused
by a large performance degradation of computing resources
and bottlenecks in the common bus. Section VI describes the
main related work. Finally, Section VII summarizes the main
contributions of the paper.

II. BACKGROUND

As it was mentioned earlier, we proposed a framework
for the flexible deployment and execution of scientific work-
flows. The flexibility has been achieved at different levels:

230Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 243 / 263

from a computing point of view, the framework is able to
integrate heterogeneous computing infrastructures to create
more powerful execution environments; from a programming
point of view, workflows can be programmed independently
of the computing infrastructures where related jobs will be
executed and using different high-level languages widely ac-
cepted by the scientific community; and, finally, from a config-
uration point of view, new functionalities can be dynamically
added/removed to the framework in order to meet the different
needs of each application and user.

An integration model based on amessage busis key
to achieve the flexibility of the proposed solution. More
specifically, the cornerstone of the proposal is a bus inspired
by the Linda coordination model [15]. This component pro-
vides an application interface (API) for sending and receiving
messages in an asynchronous way, coding them as Linda
tuples. The rest of system components offer their capabilities
through the common bus, and collaborate by exchanging
messages using the bus as the communication channel. This
integration model has several advantages compared to other
more traditional approaches: (1) a bus reduces the coupling
between system components (they are connected by making
use of an asynchronous message passing mechanism); (2)
components can be dynamically added or removed without
disturbing the execution of other existing ones (to adopt new
functionalities, for example); (3) a bus favours the scalability
and distribution of the solution; and, finally, (4) a bus supports
complex message exchange patterns (publish and subscribe
mechanism, content-based message routing, etc.) that facilitate
more flexible integration strategies.

In this communication model, framework components are
not aware of other components connected to the message
bus. Each message is assigned an exclusive tag to identify
the receiver and each component identifies the messages
addressed to it with that tag. Thus, management components
and mediators can be easily replicated to improve framework
performance and reliability. Replicated components compete
for the same messages and the message bus decides which
mediator gets each message. As a consequence, components
can be easily replaced to adopt new functionalities, change
them or fix bugs.

Figure 1 shows the high-level system architecture which
is composed of three different layers. At the top, theUser
interface layeris composed of the different programming tools
that can be used to program scientific workflows (Taverna,
Triana, Kepler, Pegasus, etc.). Resulting workflows are sub-
mitted to the framework for their execution. The components
of theExecution layerare responsible to manage the workflow
execution life-cycle. Internally, this layer is composed of
the message busand the components that provide the core
functionalities. In order to provide this functionality, two
types of components have been connected through the bus:
management componentsand mediators. The first ones offer
extra functionalities to enhance workflows, task life-cycle
and framework capabilities (meta-scheduling, fault-tolerance,
monitoring, etc.). On the other hand, mediators encapsulate

Figure 1: Architecture of the proposed framework for the
execution of scientific workflows in multiple heterogeneous
computing infrastructures.

the heterogeneity of each specific computing infrastructure to
facilitate its integration into the framework (in more detail,
a mediator must interact with a specific infrastructure to
submit jobs, move input/output data, monitor job executions,
detect undesirable states, etc.). Finally, at the bottom ofthe
architecture, theComputing infrastructures layeris formed
by different and heterogeneous computing infrastructures. At
the beginning, three computing environments were integrated:
the HERMES cluster hosted by the Aragón Institute of En-
gineering Research (I3A) [16], which is managed by the
HTCondor middleware [17]; and two research and production
grids managed by the gLite middleware [18] and hosted by
the Institute for Biocomputation and Physics of Complex
Systems (BIFI) [19], namely AraGrid [20] and PireGrid [21].
A more detailed description of the architecture can be found
in [14][22].

In the first implementation of the framework, availability
and reliability issues were deliberately ignored. In this paper,
we propose the use of Cloud computing to add these require-
ments. In this Cloud-based approach the selected integration
model plays a relevant role as it will be shown in the following
sections.

III. I NTEGRATION OF FAULT HANDLING MECHANISMS

INTO THE FRAMEWORK

As we have already discussed, grids and computing clusters
are prone to faults. In this section, we present various types
of faults that can locally occur in these infrastructures and
the techniques usually used to detect and handle them. Our
discussion focuses on the user perspective and considers the
effects produced by these faults in terms of availability (the
ability of the system to be ready for successful job submission)
and reliability (the ability of the system to successfully execute
jobs even in the presence of failures during job execution).
Other fault classifications can be found in [1][2][3].

231Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 244 / 263

Additionally, the proposed execution framework could also
be affected by faults. The message bus is the most critical
component of the architecture: if the bus fails, the whole
system fails. Besides, the bus can become a bottleneck and,
as a consequence, degrade performance (for instance, when
a large number of application jobs are being executed by
the framework). For this reason, mechanisms that improve
the reliability and scalability of the framework must also be
integrated.

Let us briefly describe the faults that can affect computing
resources and introduce solution mechanisms. A more detailed
description will be presented in the two following sections.

A. Faults at the computing infrastructures level

In this work, we have considered the followinf set of faults,
identified from our experience in scientific workflows solving:

• Computing resource failures: A computing resource may
suffer hardware, network or operating system faults that
affect the jobs that are being executed on it. These
faults are not critical because they only involve individual
resources and can be easily repaired.

• Hardware upgrades and maintenance: These actions typ-
ically require shutting down the computing infrastructure
causing unavailability periods. They involve the failure
or cancellation of all jobs submitted to the infrastructure.

• Software upgrades and maintenance: Depending on the
nature of the software upgrade, it may be transparent, it
may cause some resources to be unavailable and some
job failures, or it may cause total unavailability and the
failure of all jobs. Also, it may affect only certain users.
Additionally, these actions often lead to periods when the
infrastructure is unreliable due to misconfiguration.

• Environmental failures: These faults are provoked by
causes external to the computing infrastructure (power
outages or cooling issues, for instance). The affected
computing infrastructure can become totally unavailable
and all running jobs may fail.

• Deployment and configuration of new software: The ex-
ecution of some applications may need to install and
configure new software and services. These operations
must be performed by administrators and may take a large
amount of time. Although this situation does not strictly
involve any failure, it prevents users from executing jobs
due to the deployment of new software and potential
misconfiguration. During this period, the user views the
computing infrastructure as totally unavailable.

• Application-dependant problems: When a service re-
quired for the execution of an application fails or is not
available, administrators are responsible for restartingthe
service (users do not have the required privileges [1]).
While the failure is being fixed, applications using the
broken service fail. As a consequence, the resource is
seen as unavailable for some users, while others remain
unaffected.

• Middleware failures: Due to the distributed nature of grid
middlewares, failures can involve different components

and their effects may vary. A failure in key components,
which represent a single point of failure, may cause
total unavailability and the failure of all executing jobs,
whereas a failure in a secondary component may have no
effect on users. In our particular case, since the frame-
work could be seen as a meta-middleware, these failures
may appear at the framework level and the computing
infrastructures level.

The previous faults involve different availability problems
ranging from situations where less resources are availableto
states where the complete infrastructure becomes unavailable.
From the reliability point of view, there could be no effect
at all or failures in all executing jobs. To detect and repair
some of these faults, grid middlewares integrate differentfault-
tolerant mechanisms. In general, they are only able to detect
the most simple ones (computing resource failures) and they
cannot recover from all detected faults [3]. Additionally,some
middlewares provide techniques to mitigate the effect of faults,
such as checkpointing [5] or over-provisioning [23][24]. In
any case, these techniques are only useful to recover from
computing resource failures where some resource becomes un-
available and a few jobs fail. More critical problems involving
total unavailability and unreliability are much more difficult to
manage. These problems lead to situations where users cannot
execute any job and lose a valuable time waiting for the fault
to be fixed.

B. A hierarchical strategy for handling grid/cluster faults

Once the effects caused by these faults are understood, a
strategy to handle them can be implemented and integrated.
We propose a solution based on the hierarchical management
of faults. Firstly, when the execution of a job fails, the fault
is locally managed by the computing infrastructure where the
job was being executed (a kind of local strategy). The local
fault tolerance mechanisms are responsible for detecting and
handling this kind of failures. In some cases, these mechanisms
can collaborate with the mediator component that manages the
access to the infrastructure in order to react to the fault: for
instance, if the execution of a job has failed, the mediator can
locally submit it to a different computing resource of the same
infrastructure.

If the fault persists after taking corrective actions at the
level of the computing infrastructure, it is dispatched to the
execution layer. More specifically, the mediator of the faulty
infrastructure sends a fault message to the message bus. A new
management component for fault handling has been integrated
into the framework execution layer. This component is respon-
sible for catching fault messages and guarantees the successful
execution of jobs using reliable computing resources. In our
approach, the job could be submitted to another computing
infrastructure or, as a last option, cloud computing resources
could be used by the component to execute the job.

Therefore, for these types of faults the proposed solution
consists of two levels of fault handling: firstly, at the specific
computing infrastructure level, and, secondly, at the execution
framework level.

232Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 245 / 263

C. Improving the framework reliability and scalability

The architecture of the proposed framework favours the
management of faults at the software components level (medi-
ators, management components and the message bus). When a
mediator or a management component fails, its functionality is
disabled. In the case of a mediator, the access to the computing
infrastructure managed by it is closed; whereas in the case of
a management component, the capabilities of the framework
(scheduling, data movement, fault tolerance, etc.) are reduced.
Both situations can be solved using the same solution: in-
tegrating into the framework multiple instances of the same
component. Let us remember that in the proposed solution
components can be added or removed without disturbing the
execution of other existing ones and multiple instances can
work together without interfering with each other.

On the other hand, the message bus is the core component of
the framework. How can we make this component reliable and
scalable? In order to deal with the first issue, the message bus
has been deployed in a virtual machine provided by Amazon
EC2 [25]. For the scalability issue, a new version of the
message bus has been implemented. Now, the bus is distributed
through several computing nodes (virtual machines) and new
elastic capabilities (inspired by cloud behaviour) have been
integrated into it. The bus is able to monitor its internal
state (number of messages, response time, throughput, etc.)
and predict when its performances or capabilities might be
compromised. When some of these undesired states is de-
tected, new computing nodes can be dynamically added to
host message exchanges.

In the following sections, we go deeper into these aspects.

IV. M ANAGEMENT OF AVAILABILITY AND RELIABILITY

ISSUES

The characterization presented in Section III shows that, in
large-scale distributed computing infrastructures, there are a
lot of problems leading to temporal or permanent unavail-
ability states and job failures due to reliability issues. As
a result, users experience severe delays in both submission
and termination of their jobs and unexpected end statuses.
To tackle this problem, we have extended the mediators
with monitoring capabilities. A hierarchical fault management
mechanism is proposed, enabling the framework to manage
faults at different levels using several fault recovery policies.
This reduces the overhead of the message bus and the time
required to handle failures. We also propose the use of public
clouds as reliable computing infrastructures for the execution
of jobs that systematically fail in the integrated computing
infrastructures.

A. Solution design

Mediators have been extended with anInfrastructure Mon-
itor and aLocal Fault Manager. Figure 2 shows the mediator
architecture for this approach. TheJob Submissionprocess and
its related components have been simplified (for more details
about the job submission, please refer to [14]), as we will
focus on monitoring and fault management.

Figure 2: Simplified Architectural design of a generic mediator
to lead with unavailability and failure events.

Let us briefly depict the process carried out in the media-
tor. First, theJob Submitterreceives job execution requests,
retrieves the input data required for the job execution (if
necessary) and commands its execution to the computing
infrastructure. After that, the job description and job identifier
provided by the infrastructure are stored in theJobs Pool.
When a job finishes its execution, theJob End Monitor
fetches the job description from theJobs Poolusing the job
identifier. Then, it checks the log and error stream files as
well as the existence of the output files defined in the job
description. If an error is detected or the output have not been
generated, the information about the error is passed to the
Local Fault Manager. Otherwise, the output data are moved to
the destination specified in the job description and the results
are sent to the message bus.

The mediator can detect failures and unexpected job ter-
minations. However, in order to avoid such situations, the
Infrastructure Monitorperiodically checks the status for re-
source availability. With this information, it updates theRe-
source Registryand notifies theLocal Fault Managerif any
availability problem is detected. TheLocal Fault Manager
is the component responsible for taking decisions when a
job fails or an unavailability state is detected. Its designis
similar to theGlobal Fault Managerpresented in [14]. A rule-
based engine is used as the decision maker. The set of rules
can be modified at runtime, providing adaptation capabilities
for specific scenarios. Therefore, different policies can be
used depending on the underlying computing infrastructures,
execution traces or system load, for instance.

When a job fails or an unavailable state is detected, the
Local Fault Manager can decide to either re-execute the
involved jobs or notify theGlobal Fault Manager. In the first
case, the re-execution process remains internal to the mediator.
This approach reduces the overhead of the message bus and the
time required to handle the failure. In the last case, a message
with error information and the job description is sent to the
Global Fault Manager(via the message bus).

233Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 246 / 263

Finally, theGlobal Fault Manager(namelyFault Manager
in Figure 1) retrieves messages with information about faulty
jobs and chooses a computing infrastructure to re-execute them
on or notifies to the user if the fault is not recoverable (for
example, because the server hosting input data is down). In
case of a recoverable fault, the following approach is used:if it
is the first failure, another computing infrastructure is selected;
if it is the second failure, a reliable infrastructure is selected;
finally, if the third failure is reached, the error is propagated
and the user is notified.

We propose the use of public cloud resources as reliable in-
frastructures because they provide the opportunity of executing
jobs in a well controlled and previously defined environment.
Cloud resources are less sensitive to resource failures through
virtualization and migration techniques. Clouds also provide
high availability and reliability, and they supply ”infinite” on-
demand resources in a pay-per-use model.

B. Evaluation

In collaboration with the Intelligent Systems Group of the
University of Santiago de Compostela (Spain), we have solved
a computing-intensive problem in the field of linked data.
The problem consists of extracting a set of significant terms
from learning units. Each set of terms must be semantically
annotated with relevant contextual information extractedfrom
the DBPedia [26]. This problem requires the execution of
about 20000 jobs for a whole week. As a consequence, it
is very sensitive to faults. We have used this experiment as
a benchmark for the proposed hierarchical fault management
system.

Figure 3 shows the failure rates obtained using different
policies in the local fault manager (no fault recovery, one
resubmission and two resubmissions) and the global fault
manager (no fault recovery, resubmission on an alternative
computing infrastructure, resubmission on an Amazon EC2
resource and a combination of the two last ones). As it can be
observed, using public cloud resources allows us to recover
from any failure (except failures due to unreachable input
data or bad definition of jobs). Otherwise, if we only use
the integrated local infrastructures, there are some jobs that
still fail after several executions due to unavailability and
unreliability states of computing infrastructures.

Besides, the hierarchical approach presented reduces both
the message bus overhead and the time required to handle the
fault. In the experiments, we have observed that the average
time required to handle a fault with our previous design was
1071.23 milliseconds, and the hierarchical design reducesthis
time to 143.21 milliseconds. When a job fails for the first
time in the hierarchical approach, its management remains
internal to the mediator. In the previous (non-hierarchical)
design, a message was introduced into the message bus and
then retrieved by the Global Fault Manager, which would take
the decision of resubmitting the job to the same infrastructure
(so a new message was written in the message bus and then
retrieved by the corresponding mediator in order to submit the
job again).

Figure 3: Failure rate for different fault management policies.

The percentage of faults detected by the mediator with
respect to the number of total job failures has been also
measured. Without infrastructure monitoring, some failures
were not detected because the management middleware did
not notify them, the middleware itself failed or the computing
infrastructure was down. Currently, the Infrastructure Monitor
is able to detect these situations and help mediator handle all
failures. As a result, the percentage of job failures detected
has increased from a 91.92% to a 99.99%.

V. I MPROVING FRAMEWORK SCALABILITY THROUGH AN

ELASTIC MESSAGE BUS

Scalability is one of the main challenges of any distributed
system. In cluster and grid computing, scalability focuses
on the number of computing resources available as well
as the flexibility to integrate new ones. The scalability of
the management system plays a very important role in the
improvement of the quality of service experienced by end-
users in terms of response times and system crashes.

The message bus is the backbone of the proposed architec-
ture. In order to make the system more scalable, we propose
an elastic design, taking advantage of the dynamic scaling
provided by cloud systems. As it will be shown, with respect
to the previous message bus version, the use of a cloud-based
solution improves both scalability and reliability.

A. Solution design

To deal with scalability issues, we have extended the
original design of DRLinda, a distributed message bus based
on the Linda coordination model [27]. The main idea behind
DRLinda is the use of several nodes implementing message
repositories to host messages in a distributed way. We have
extended this approach to dynamically scale the number of
nodes depending on the number of messages and message
access frequency when the system is running.

The previous implementation of DRLinda could dynami-
cally vary the number of nodes used to lead with bursts of
requests. However, these changes must be performed man-
ually and only local resources can be used. A cloud-based

234Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 247 / 263

Figure 4: Message bus architecture overview.

elastic design allows self-configuration and auto-scalingof the
number of nodes used at any moment. The new architectural
message bus design is sketched in Figure 4. The approach
includes two new components in addition to the existingLoad
Balancer[27]: a Performance Monitorand aNode Manager.

ThePerformance Monitoris a component that receives and
processes information on client requests and collects metrics
such as number of requests, response time or throughput,
averaged for the last requests. The results of these metrics
and time conditions (for example, time since the last scaling
request) can then be used to define the scaling conditions.
When a condition is satisfied (scaling up/scaling down), this
component communicates with the Node Manager to deploy
or release a node.

The Node Manageris responsible for allocating new re-
sources and releasing unnecessary ones. When a new resource
is requested, the Node Manager looks for a new local resource
that becomes a DRLinda node. If there are no available local
resources, it gets a cloud instance. In this way, physical local
resources and virtualized cloud resources can be used at the
same time to provide good quality of service. Also, when a
resource must be released, the component selects the most
appropriate one and manages message transfer between the
involved nodes, via the Load Balancer. To reduce costs, cloud
resources are only released when they are about to fulfil an
entire hour of use (due to the hourly billing model of the cloud
provider we have used). Consequently, if there is a pending
release request when a cloud resource is going to complete an
entire hour, that resource is released. Also, if a cloud resource
can be released but there is no request, a local resource (if
available) is used to replace it.

B. Evaluation

To measure the efficiency and scalability of both archi-
tectural designs, we have used the methodology proposed
in [27][28]. In these experiments, a set of clients access the
message bus. Every client warms-up the message bus by insert-
ing a random number of messages (between 1500 and 5000)
and then iterates 2000 times through the following sequence
of operations: first, it executes anout operation (send a new
message), then waits for a random time (Tdelay ∈ [200, 250]
ms), and then retrieves the same message (operationin). When
completed, the client terminates. A detailed justificationof
the parameters used for the experiment can be found in [28].
The size of the messages has been set accordingly to the
problem we are managing. JSDL messages extracted from
the experiments presented in [22] have been used, which an
average size of 63 Kbytes.

Figure 5a shows the average response time observed both in
the original DRLinda implementation and the new elastic de-
sign. In both cases, we have used m1.medium Amazon Elastic
Compute Cloud (Amazon EC2) [25] instances as resources to
host message bus components. For the experiments, the former
DRLinda was deployed over 25 nodes. On the other hand, in
the case of the elastic solution, only two nodes were initially
used, and then new nodes were added under request (up to 70
nodes were registered during the experiment). Obviously, the
dynamic scalability introduces an overhead as the message
space must be redistributed. However, the overhead is not
significant compared to the response time and the throughput
in terms of Input/Output Operations Per Second (IOPS). As
it can be seen in Figure 5a, the response time improves very
significantly when using the cloud-based solution. This is due
to a more efficient load balancing in every node. While in the
case of the former DRLinda the nodes have to support a higher
load, the use of an elastic approach allows to keep nodes at
optimum levels of occupation and CPU and memory loads.

On the other hand, the results in Figure 5b depict the
throughput in terms of IOPS. As shown, the use of a cloud-
based elastic approach reports several benefits. First, the
number of concurrent clients supported by the bus scales with
no problem over the maximum number of clients. Moreover,
the IOPS only decrease because of the overhead of space dis-
tribution, but remain in the range of [1100,1200] milliseconds
for a huge number of simultaneous clients.

The experiments have also shown how the use of an
elastic solution allows to extend the number of concurrent
clients without suffering severe delays or service interruptions.
Therefore, it is a successful mechanism to avoid bottlenecks
in the message bus.

VI. RELATED WORK

There are several works seeking to improve understanding
of failures in Grid environments. However, none of these
studies analyse failure impact on end users. In [2], a tax-
onomy for the classification of Grid faults is proposed. The
taxonomy presents several perspectives for the classification
of Grid failures (origin, duration, consequences, etc.) but

235Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 248 / 263

(a) Performance comparison (b) Throughput comparison

Figure 5: Performance comparison between former DRLinda and elastic DRLinda message bus in terms of: (a) response time
and (b) Input/Output Operations Per Second.

it lacks an analysis of causes and effects that could help
in handling failures. In [1] and [3], different surveys about
Grid failures are presented. On the one hand, in [1], failures
are classified as configuration, middleware, application and
hardware failures. The main concerns and problems regarding
fault management are studied showing that end users are
highly involved in fault detection and recovery, failures are
mostly due to misconfiguration and recovery mechanisms are
application-dependant. On the other hand, in [3], hardware,
operating system, middleware, task, workflow and user related
failures are identified. Also, detection, prevention and recov-
ering capabilities of several workflow management systems
are analysed concluding that current systems are not able to
properly manage faults.

With regard to scalability and dynamic autoscaling of re-
sources, [29] analyses existing mechanisms to dynamically
scale applications in clouds at three different levels: server,
network and platform. [30] shows a technique to dynamically
scale cloud resources up and down considering performance
and budget information. This technique is based on acquiring
enough instances to met application deadlines and shutting
down unnecessary instances when an hour is going to be
fulfilled. In [31], look-ahead optimizations are used to predict
future workloads and scaling applications while cost remains
low. However, results are limited to scenarios with few re-
sources and accurate predictions. On the contrary, in [32],
profiles are used to provide just-in-time scalability for cloud
applications in environments with unpredictable workloads.
Profiles capture application characteristics, architecture and
topology, scaling conditions and mechanisms to automate the
deployment and release of new resources.

Finally, different proposals use public Cloud resources to
improve job completion rates and to meet the deadline of QoS-
constrained jobs. In [33], a rescheduling algorithm is used

to deal with grid performance fluctuations. When a job ends
after its estimated finish time, a job waiting for execution in
the same Grid resource is selected to be executed in a cloud
resource. Meanwhile, in [23], task replication is used to reduce
the makespan and cost of workflows executed in Grids and
Clouds. An unreliable pool of resources is used to execute
jobs in first instance, while reliable resources (formed by
public Cloud instances and own resources) are used to execute
replicated jobs in the tail phase of BoTs (Bag of Tasks). A
similar approach is used in [24], where jobs are first scheduled
in clusters and Grids, then some jobs are replicated to increase
their success probability and finally public cloud resources are
used as backup if additional replication is required.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have identified and analysed several avail-
ability and reliability problems from the users’ point of view
in the context of a framework to execute scientific workflows
in heterogeneous computing environments. This analysis has
allowed us to identify common situations where job fails and
users cannot execute any job.

To increase framework availability and reliability, two
cloud-based solutions have been proposed: an elastic design
of the message bus and a hierarchical fault management. On
the one hand, the elastic design of the message bus allows
the framework to deal with bursts of requests providing high
quality of service at a low cost. On the other hand, managing
faults hierarchically results in a better treatment of faults
by applying different policies at different levels, fasterfault-
recovery and less overhead in the framework. Also, using
public clouds as reliable computing infrastructures allows the
framework to execute jobs even in total unavailability and total
unreliability situations, reducing the failure rate experienced
by end-users.

236Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 249 / 263

As future work, we will study techniques to reduce the
cost of the proposed solutions without decreasing the quality
of service and job completion rates. Also, we will define
reliable scheduling policies to increase the number of jobs
successfully completed in their first execution. Finally, we will
explore the use of Amazon Simple Queue Service (Amazon
SQS) [34] in replacement of the Linda-based message bus
to improve performance, availability and reliability of the
proposed framework.

ACKNOWLEDGMENT

This work has been supported by the research project
TIN2010-17905, granted by the Spanish Ministry of Science
and Innovation, and the regional project DGA-FSE, granted
by the European Regional Development Fund (ERDF).

REFERENCES

[1] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauvé, “Faults in grids:
Why are they so bad and what can be done about it?” inProceedings
of the 4th International Workshop on Grid Computing, ser. GRID ’03,
vol. 0, 2003, pp. 18–24.

[2] J. Hofer and T. Fahringer, “A multi-perspective taxonomy for systematic
classification of grid faults,” inProceedings of the 16th Euromicro
Conference on Parallel, Distributed and Network-Based Processing, ser.
PDP ’08, 2008, pp. 126–130.

[3] K. Plankensteiner, R. Prodan, T. Fahringer, A. Kertész, and P. Kacsuk,
“Fault-tolerant behavior in state-of-the-art grid workflow management
systems.” CoreGrid, Tech. Rep. TR-0091, 2008.

[4] C. Dabrowski, “Reliability in grid computing systems,”Concurrency
and Computation: Practice and Experience, vol. 21, no. 8, pp. 927–
959, 2009.

[5] J. Yu and R. Buyya, “A taxonomy of workflow management systems for
grid computing,”J. Grid Comput., vol. 3, no. 3-4, pp. 171–200, 2005.

[6] O. Khalili, J. He, C. Olschanowsky, A. Snavely, and H. Casanova,
“Measuring the performance and reliability of production computational
grids,” in Proceedings of the 7th IEEE/ACM International Conference
on Grid Computing (GRID 2006), 2006, pp. 293–300.

[7] P.-O. ÖStberg and E. Elmroth, “GJMF - a composable service-oriented
grid job management framework,”Future Gener. Comput. Syst., vol. 29,
no. 1, pp. 144–157, 2013.

[8] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombás, “P-grade: A grid programming environment,”J. Grid
Comput., vol. 1, pp. 171–197, 2003.

[9] Q. Wu, M. Zhu, Y. Gu, P. Brown, X. Lu, W. Lin, and Y. Liu, “A
distributed workflow management system with case study of real-life
scientific applications on grids,”J. Grid Comput., vol. 10, no. 3, pp.
367–393, 2012.

[10] E. Huedo, R. S. Montero, and I. M. Llorente, “A frameworkfor adaptive
execution in grids,”Softw. Pract. Exper., vol. 34, no. 7, pp. 631–651,
2004.

[11] I. Rodero, J. Corbalán, R. M. Badia, and J. Labarta, “eNANOS grid
resource broker,” inProceedings of the 2005 European conference on
Advances in Grid Computing, ser. EGC ’05, 2005, pp. 111–121.

[12] L. Adzigogov, J. Soldatos, and L. Polymenakos, “EMPEROR: An OGSA
grid meta-scheduler based on dynamic resource predictions,” J. Grid
Comput., vol. 3, no. 1-2, pp. 19–37, 2005.

[13] A. Kertész and P. Kacsuk, “GMBS: A new middleware service for
making grids interoperable,”Futur. Gener. Comp. Syst., vol. 26, no. 4,
pp. 542–553, 2010.

[14] J. Fabra, S. Hernández, P.Álvarez, and J. Ezpeleta, “A framework for
the flexible deployment of scientific workflows in grid environments,” in
Proceedings of the Third International Conference on CloudComputing,
GRIDs, and Virtualization, ser. CLOUD COMPUTING ’12, 2012, pp.
1–8.

[15] N. Carriero and D. Gelernter, “Linda in context,”Commun. ACM,
vol. 32, no. 4, pp. 444–458, 1989.

[16] Aragón Institute of Engineering Research (I3A). (2013)
http://i3a.unizar.es. Accessed 15 March 2013.

[17] HTCondor Middleware. (2013) http://research.cs.wisc.edu/htcondor/.
Accessed 15 March 2013.

[18] gLite Middleware. (2013) http://glite.cern.ch/. Accessed 15 March 2013.
[19] Institute for Biocomputation and Physics of Complex Systems (BIFI).

(2013) http://bifi.es/en/. Accessed 15 March 2013.
[20] AraGrid. (2013) http://www.aragrid.es/. Accessed 15March 2013.
[21] PireGrid. (2013) http://www.piregrid.eu/?idioma=english. Accessed 15

March 2013.
[22] S. Hernández, J. Fabra, P.Álvarez, and J. Ezpeleta, “A Simulation-based

Scheduling Strategy for Scientific Workflows,” inProceedings of the 2nd
International Conference on Simulation and Modeling Methodologies,
Technologies and Applications, ser. SIMULTECH ’12, 2012, pp. 61–70.

[23] O. A. Ben-Yehuda, A. Schuster, A. Sharov, M. Silberstein, and A. Iosup,
“ExPERT: Pareto-Efficient Task Replication on Grids and a Cloud.” in
Proceedings of the 26th IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’12, 2012, pp. 167–178.

[24] L. Ramakrishnan et al., “VGrADS: enabling e-Science workflows on
grids and clouds with fault tolerance,” inProceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, ser.
SC ’09, 2009, pp. 47:1–47:12.

[25] Amazon Elastic Compute Cloud (Amazon EC2). (2013)
http://aws.amazon.com/ec2/. Accessed 15 March 2013.

[26] M. Lama, J. C. Vidal, E. Otero-Garcı́a, A. Bugarı́n, andS. Barro,
“Semantic linking of learning object repositories to DBpedia,” Educ.
Technol. Soc., vol. 15, no. 4, pp. 47–61, 2012.

[27] J. Fabra, P.́Alvarez, and J. Ezpeleta, “DRLinda: A Distributed Message
Broker for Collaborative Interactions Among Business Processes,” in
Proceedings of the 8th International Conference E-Commerce and Web
Technologies, ser. EC-Web ’07, 2007, pp. 212–221.

[28] D. Fiedler, K. Walcott, T. Richardson, G. M. Kapfhammer, A. Amer,
and P. K. Chrysanthis, “Towards the measurement of tuple space
performance,”SIGMETRICS Perform. Eval. Rev., vol. 33, no. 3, pp.
51–62, 2005.

[29] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling
applications in the cloud,”SIGCOMM Comput. Commun. Rev., vol. 41,
no. 1, pp. 45–52, 2011.

[30] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling withdeadline and
budget constraints,” inProceedings of the 11th IEEE/ACM International
Conference on Grid Computing, ser. GRID ’10, 2010, pp. 41–48.

[31] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscalingin the cloud
using predictive models for workload forecasting,” inProceedings of the
IEEE 4th International Conference on Cloud Computing, ser. CLOUD
’11, 2011, pp. 500–507.

[32] J. Yang, J. Qiu, and Y. Li, “A profile-based approach to just-in-time
scalability for cloud applications,” inProceedings of the 2009 IEEE
International Conference on Cloud Computing, ser. CLOUD ’09, 2009,
pp. 9–16.

[33] Y. C. Lee and A. Y. Zomaya, “Rescheduling for reliable job completion
with the support of clouds,”Future Gener. Comput. Syst., vol. 26, no. 8,
pp. 1192–1199, 2010.

[34] Amazon Simple Queue Service (Amazon SQS). (2013)
http://aws.amazon.com/sqs/. Accessed 15 March 2013.

237Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 250 / 263

Eliciting Risk, Quality and Cost Aspects in
Multi-cloud Environments

Victor Muntés-Mulero and Peter Matthews
CA Technologies
CA Labs Europe

Email: {Victor.Muntes, Peter.Matthews}@ca.com

Aida Omerovic
SINTEF

Oslo, Norway
Email: aida.omerovic@sintef.no

Alexander Gunka
BOC Information Systems

Austria
Email: alexander.gunka@boc-eu.com

Abstract—With the increasing number of providers offering
cloud-based services, new opportunities arise to build applications
capable of avoiding vendor lock-in issues. Such applications
are developed in multi-cloud environments that allow replacing
services with those offered by alternative providers. While this
may improve quality and provide independence from a single
cloud service provider, it also brings new risks. Being able to
assess risks and those quality aspects that are specifically related
to multi-cloud environments is essential in order to design reliable
applications based on the use of cloud services. Although a lot of
work has been done to study risks and quality aspects for cloud
services, this is usually focused in single-provider scenarios. In
this position paper, we discuss several risks and quality aspects
that are specifically related to multi-cloud environments.

Keywords- Multicloud, Risk assessment, Quality predic-
tion, Cost prediction

I. INTRODUCTION

Many applications and Cloud Service Providers (CSPs)
replicate or combine services from multiple clouds or multi-
clouds (also called cloud mashups [9]) to avoid the risk of ven-
dor lock-in. New architectures, technologies, and standards are
being proposed to support collaboration among multiple cloud
systems [1], [2], [6], [7]. Although direct collaboration among
applications hosted by different clouds is still restricted [9],
the adoption of these proposals will improve the ease of
migration from one provider to another and increase open
competition. Nevertheless, the current environment already
offers many opportunities for collaboration among services
offered by different providers without requiring standards or
important changes to the delivery model.

In multi-cloud environments, it is essential to provide tools
that guide multi-cloud application architects to choose the ser-
vices providing the necessary quality and ensuring acceptable
level of risk. Previous work has focused on describing quality
aspects and metrics to measure the suitability of a cloud service
from a multi-dimensional perspective. An example of this
is the Service Measurement Index (SMI) [10], a framework
designed to allow for quick and reliable comparison of IT
business services. SMI establishes the basis for comparing
isolated services in regard of several categories such as for
instance accountability, agility or assurance. However, they do
not explicitly analyze these aspects in a multi-cloud context.

Based on this quality aspects and other factors, model-
based decision making system help application designers to
choose the cloud components that better fit their needs. Some

of these major factors include functional and non-functional
properties, as well as cost and the added value. A trade-off
between such factors is the basis for decision making. This
trade-off is particularly complex between the non-functional
factors, the variable parts of the architecture, and the cost of
the selected solutions. The variability, as well as incomplete
information or knowledge, are also sources of risk. Since
functional requirements are less flexible and specified rather
early, and since the added value is strongly related to functional
properties, the factors that are tuneable and highly interrelated
are risk, quality and cost.

In this paper, we discuss the risks related to cloud services
in a multi-cloud environment, the quality aspects that are spe-
cific to that environment and make some cost considerations.
We analyze three important issues which are essential in multi-
cloud environments: interoperability issues between services
offered by different providers, the ease of migration from a
current service to a new equivalent service, and the security
issues that arise from the fact that confidentiality, integrity,
availability, etc. does not depend on a single provider.

This paper is organized as it follows. Section II presents
related work. Section III briefly describes multi-clouds es-
cenarios and describes the aspects considered in this paper.
Section IV presents a summary of quality aspects to be
considered. Section V provides a brief description of costs
that must be taken into account in this type of environment.
In Section VI, we discuss risks that must be considered in a
multi-cloud. Finally, Section VII presents the conclusions and
draws some future work.

II. RELATED WORK

As a basis for the elicitation of the adequate quality
characteristics, the software product quality standard ISO/IEC
9126 defines quality as the totality of features and character-
istics of a software product that bear on its ability to satisfy
stated and implied needs. The ISO 9126 standard provides
an established specification of decomposed quality notions
with their qualitative and quantitative definitions. The standard
defines a quality model for external and internal quality, and for
quality in use. The characteristics of the internal and external
quality model are functionality, reliability, usability, efficiency,
maintainability and portability. These are in turn decomposed
into a total of 34 sub-characteristics.

SMI [10] is a standardization effort from the Cloud Ser-
vices Measurement Index Consortium (CSMIC) consisting of

238Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 251 / 263

Fig. 1: Examples of two different multi-cloud scenarios

academic and industry organizations. The Service Measure-
ment Index (SMI) uses a series of characteristics and measures
to create a common means to compare different services from
different suppliers. The characteristics are categorized as Us-
ability, Performance, Agility, Security and Privacy, Financial,
Assurance and Usability. Each of these characteristics has a
number of measures that can be used to evaluate the risk in
using a service. For example in the accountability category
one of the measured attributes is Compliance and another is
Service-Level Agreements (SLA) verification both of which
can be used to create a risk measure for the service and the
provider. The work presented in this paper is based both on
the ISO standard and SMI conclusions.

In order to enable risk monitoring based on indicators
or metrics, there is a need not only to identify the relevant
indicators, but also to understand how to relate the indicators
to potential risks, and how to aggregate the monitored values
into risk levels [5]. In this paper, we identify both risks
and quality aspects related to multi-cloud environments. To
our knowledge, none of the previous work has been focused
on jointly analysing risk, quality and costs in a multicloud
environment.

III. MULTI-CLOUD SPECIFIC NEEDS AND CHALLENGES

We define a multi-cloud application as any piece of soft-
ware using several cloud services hosted by two or more differ-
ent providers. Usually, two different scenarios are considered
when referring to multi-cloud environments. Figure 1 depicts
these two cases. In the first case (a), an application is replicated
to improve resilience, and may also be used to avoid vendor
lock-in. This means that the application has two independent
instances using the same type of cloud services (A, B, C in the
figure) in two different cloud providers. In the second case (b),
a single instance of the application runs different cloud services
hosted by two or more cloud providers. In this latter case,
it is also possible to replicate services to ensure availability.
This would also imply synchronization. Because of the need
for high interoperability between services offered by different
providers, scenario (b) is in general more complex to manage
and may potentially involve larger risk compared to (a). In fact,

scenario (a) may be considered a particular case of scenario
(b). Because of this, we focus on scenario (b) in this paper.

The use of multiple cloud services from multiple providers
adds a new dimension of complexity to an already complex
cloud computing scenario. Heterogeneity caused by the ex-
istence of independent providers that have created their own
business models, protocols, processes and formats generates
an increasing number of risks to be taken into account when
creating a new application using a multi-cloud strategy. In
this paper, we emphasize three essential aspects that must be
considered in a multi-cloud environment:

• Heterogeneity of services offered by different
providers results in reduced interoperability: the
lack of standard interfaces for services in different
clouds and the creation of independent proprietary
systems by each provider, make multi-cloud environ-
ments very heterogeneous. Interoperability problems
may range from technical issues, such as messaging
interfaces or quality of service, to semantic, orga-
nizational or legal issues. This heterogeneity is an
important risk to consider at design time, since it will
influence the capacity of an application architect to
decide between one service and another. In terms of
quality, a service will be highly interoperable with
other systems if it can be combined in collaboration
with many other services, from the same or other cloud
service providers.

• Migration between services offered by different
CSPs is an essential operation to ensure the com-
pliance with the application requirements: one of
the most common reasons to deploy an application in
a multi-cloud environment may include increasing the
cloud service catalog and increasing the capacity of
users to migrate from one service to another in case
the requirements on the application are not fulfilled.
We call this capacity replaceability, and it represents
the ease to migrate from one service to another to
replace the first one. It will be essential to decompose
migration processes from one cloud service to another
into several finer-grained steps, and analyze the quality

239Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 252 / 263

aspects to be considered in the process.

• Security threats are increased in multi-cloud com-
puting environments: increasing the number of ser-
vices and providers, will increase the complexity of
the overall system and the number of potential attacks.
Control over customers data decreases, especially
because of potential migration between services of
different providers. The continuous communication
of data between services in different clouds may
also result in storing data in intermediary less secure
external storage systems, increasing the overall vul-
nerability and potentially compromising confidential
information. In terms of data privacy, multitenancy
makes it more difficult to guarantee confidentiality of
sensitive information.

These three aspects have been selected and prioritized after
several interviews with industrial and academic partners. They
have been chosen based on experience and from studying
different migration processes. They represent three essential
requirements in a multi-cloud environment: coordination be-
tween services offered by different providers, capacity to re-
place a service by another one, and the increase of complexity
in the system increasing possible points of failure in terms of
security. Note that, we do not claim this to be a comprehensive
list of possible aspects to analyze, but we believe they are a
good starting point to establish the basis to define risk and
quality in multi-clouds.

IV. QUALITY ASPECTS IN MULTI-CLOUD ENVIRONMENTS

In this section, we analyze those quality aspects related to
the issues detected in Section III that must be considered in
a multi-cloud environment: interoperability, replaceability and
security. Figure 2 summarizes the quality aspects considered
related to these three issues.

A. Interoperability

The interoperability problems of cloud services in the con-
trolled environment of a single CSP, are exacerbated by mixing
services from different providers and may imply incompat-
ibilities in other areas of a mixed service implementation.
From the point of view of a developer, it will be important
to know the degree of interoperability of a certain service
with respect to other services it must interact with. Figure 3
depicts the scenario studied in this case. Figure 2 divides these
incompatibilities in four different areas: technical, semantic,
organizational and legal. The Technical interoperability quality
aspects refer to the capacity of two or more services offered by
different providers to communicate through common protocols
and to jointly guarantee a certain quality of service. For
instance, possible indicators that might be used to evaluate
the degree of technical interoperability might be the number
of standardized interfaces that can be compared towards the
total number of interfaces used by the service, or the average
recovery time of the service or other performance aspects.
Semantic aspects refer to aspects related to the data syntax
consistency and the data quality. These data related aspects are
relevant for interoperability since only two or more services
offering mechanisms to guarantee global data properties might
be combined in the same application. Organizational aspects

Fig. 3: Interoperability in a multi-cloud environment: services
offered by different providers interacting with each other.

indicate how adaptable a service is to several work processes.
Since each of these work processes might be established by
different providers, it is important that a service in a multi-
cloud environment is adaptive to fit the requirements of each
work process in each case. Changes in a work process may
require changes in a specific cloud service that is already
used. In a migration process, choosing a new cloud service
candidate to replace an existing service may depend on the
capacity of this new service to adapt to the existing work
process. Compliance with existing cloud service standards in
terms of role and functionality of that specific cloud service
will be essential to ensure good organizational interoperability.
Regarding legal aspects, we focus on regulatory compliance.
Compliance in this case may be understood as a list of laws
that are observed by the service provider. Some may be
mandated by the customer such as Sarbanes-Oxley [8], some
by government, e.g. Data Protection act [3]. It is the presence
or absence of compliance that is of interest. A purchasers
compliance officer will provide a number of regulations that
any service would have to observe and these would be part of
the requirements gathering.

Several aspects are likely to be difficult to measure. A
good example is the number of standards in the communication
capability aspect. Standards for cloud service communications
are evolving and several attempts have been made to create an
agreed list of them. NIST has a list of recommended standards
and the European Commission has created a Cloud Standards
Coordination (CSC) that is being administered by ETSI [4].
The requirements of multi-cloud applications may need some
or all of the relevant standards to be adhered to.

B. Intercloud Replaceability

Migration is an essential operation linked to multi-cloud
environments. The capacity of a software architect to redesign
an application and replace existing services by other services
with the same or similar functionalities defines in fact the
realism of considering cloud mashups. For instance, a cloud
database service may integrate application building tools that

240Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 253 / 263

Fig. 2: Quality aspects related to multi-cloud environments

might be used by our system, such as APIs based on web
services standards. If the other services interacting with this
cloud database service assume that these tools exist, moving
to a new cloud database that it does not provide these tools
will require reengineering part of our system and it may have
an unaffordable cost. In this subsection, we define and analyse
the migration process to find the quality aspects that make
a service easy to migrate from. We focus on the case where
a service is replaced by one or more services offered by a
different cloud provider. We consider two situations:

• The current cloud service does not fulfill the require-
ments of the system: this may happen for instance
when the service is updated or modified, when the
amount of information handled by the application
grows making it impossible to comply with certain
pre-established SLAs, etc. Usual examples may range
from a variation in the cost that makes the service not
competitive compared to other services of the same
type, to a change in policies and functionalities that
affects security, availability, resilience, or any other
important aspect.

• The requirements of the system have changed: one
or more cloud services may not fulfill these new
requirements and need to be replaced.

Figure 4 depicts a generic process of service-to-service
migration. First, a cloud service is selected for migration.
Depending on the reason for migration, it may be necessary
to review the requirements defined at design-time. After this,
one or more new candidate cloud services must be selected.
In order to simplify this step, Figure 4 considers a single
candidate in the process. Once we have found a candidate
target service to migrate to, we can export both data and
the configuration from the original service. At this point, it
is usually necessary to enter an intentional contract with the
new service provider. In some cases, it will be also necessary
to inform the old service that we are initiating a process to
retire it. In this situation, the old service and the new one

may be active at the same time during the testing and training
process. This will depend on the availability requirements of
the application migrating one of its cloud-based components.
In the next step, it is important to adjust or define a new
workflow for the application. This might be necessary if the
new service is not perfectly compatible with the old one or if
the application was redesigned in a way that the workflow
was altered. After this, we can start preparing the testing
environment and the new service. Usually, the testing process
will be divided in several phases.

In general, it is necessary to carry out functionality and
performance testing in a test environment. In this situation,
data needs to be kept synchronised. Following successful
functionality and performance testing, the service may move
to a modification of A/B testing so that the application is
tested with the new service in production before switching
over completely. In case requirements are not satisfied, we
must start the process again. If they are fulfilled, we can start
the users training process and eliminate the old service if this
is still active. Once this has been done, the application can be
deployed again using the new cloud service.

Figure 2 shows several quality aspects related to replace-
ability. Possible indicators of quality related to intercloud
replaceability may include the number of proprietary configu-
rations that can be exported or imported based on a standard
format, completeness, precision and relevance of tests, time
required to migrate large amounts of data, etc.

C. Security

Preserving security becomes more complex in a multi-
cloud environment. Trust among the different cloud service
providers is essential. It is difficult to handle the heterogeneity
of the different security rules established by each provider,
making it complex to monitor security policies in composite
services. Besides, an additional challenge involves data and
identity privacy preservation when several services from dif-
ferent providers collaborate.

241Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 254 / 263

Fig. 4: Description of a generic migration process

In Figure 2, we classify quality aspects related to security
in the usual areas: confidentiality, integrity, availability, non-
repudiation, accountability and authentication and authoriza-
tion. In order to preserve data privacy, it is crucial to establish
agreements with other providers on the level of privacy of
data and identities. Trust in general must be guaranteed by
explicit agreements or shared protocols between providers.
An alternative solution involves using reliable proxies for
communication, but services still need to be able to establish
agreements on the fly and secure delegation with these proxies.
Finally, it will be important to evaluate services depending on
the need to store data in public storage system in order to share
this data with other services. In this case, data are exposed to
a larger number of threats

V. COST IN MULTI-CLOUD ENVIRONMENTS

Besides risk and quality, we consider another essential
dimension: cost. SMI and other previous proposals describe
cost-related aspects in cloud computing environments. In a
multi-cloud environment, an extra cost appears that may be
also considered in the decision-making process: the cost of
migration. Migrating from one cloud service to another may
involve several economic costs that must be considered at
design time. These costs may depend on the personnel involved
in the migration process, the cost incurred by keeping the
old and the new cloud services running in parallel during the
migration process, the cost of the hardware or other resources
necessary to perform the migration, or the cost of training the
users of the application (note that this cost is also necessary
in other situations, but it is usually unavoidable in a migration
process).

VI. SPECIFIC RISKS IN MULTI-CLOUD ENVIRONMENTS

In this section, we sketch a list of possible potential risks
that may be found in a multi-cloud system. These risks are
based on the analysis of the elicited quality aspects that make
multi-cloud environments different from clouds provided by a
single provider.

1) Risk of unexpected lack of replacement and consequent
vendor lock-in: a certain cloud service may not fulfill require-
ments, or requirements may change. In this situation a different
service may be needed but it may not be possible to find a
new service provided by another vendor which is interopera-
ble with the other services of the system. Two theoretically
equivalent services might differ in several relevant aspects.
The heterogeneity between different CSPs is usually high as
they typically use proprietary interfaces and configurations.
Services are also highly integrated with lower-level services
offered by the same CSP. Examples of this may be lack of
common SLA enforcement systems, use of non-compatible
technologies, lack of compatibility in the communications
protocol, lack of shared mechanisms to ensure data consistency
and quality, the existence of services which are not strictly
equivalent and miss some important functionalities, or the lack
of services compliant with certain regulations. If this problem
appears and the need for migrating from the original service is
real, this may even force the migration of other services apart
from the service which is not compliant with requirements.

242Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 255 / 263

2) Risk of new security breaches due to the increased
complexity of the system and new communications: data needs
to flow from one service to another, hosted by different
providers. This creates new points of failure and potential
security issues. For instance, this may be caused by the lack of
shared security protocols and data integrity mechanisms, lack
of forensic mechanisms to be compliant with regulations, the
lack of shared authentication systems, etc.

3) Risk of non-viable migration due to migration costs and
complexity: a developer may not be aware of the cost and
complexity of migrating from a certain service chosen to be
part of the application to other similar services (see Figure 4).
This might become a risk if it is necessary to migrate from that
service to another one. As we have discussed, a usual problem
in a migration process is the lack of compatible data formats,
making it necessary to perform transformations that require
time and resources. A related problem might be the lack of
information of the new service regarding a certain quality
aspect. In this case, uncertainty may also impact a migration
process negatively. Note also, that a technical aspect to be
considered is whether two services are implemented using the
same technology, which might also be a blocking factor for
a fast and easy migration. Complexity in the setup migration
may also be an important problem. Beyond compatibility in
terms of data storage and access, the configuration of a cloud
service may also be essential to guarantee the compliance
with user requirements. An excessively complex migration
of configurations between two services may also result in
a time-consuming and expensive migration process. Besides,
ease of testing a service and total downtime are two aspects
that may largely impact the suitability of a certain migration.
Several possible methodologies may be used for developing
and support this testing. For instance, modified A/B may be
used where only one service is changed and a number of
different grades of testing are performed. Finally, depending on
the requirements of the application, it might be necessary for
the two cloud services, the original one and the replacement,
to coexist during a certain period of time, during the testing
process of the migration. Complexity to synchronize data
between the two services might make the coexistence difficult
and using the new service as a hot backup of the first is
inefficient.

4) Risk of costs unpredictability: by using services from
different providers, it may become more and more complex to
predict costs.

5) Risk of lack of provider interest in collaboration:
business agreements are usually required for two CSP to
collaborate. For instance, the service delivery model requires
customers to register to a service. Because of this, a service
in a certain CSP will not allow customers from other CSPs to
use it without going through the necessary registration process,
unless the right agreements are put in place. Besides, vendors
may try to retain customers at any cost to be more competitive.
Contracts and other legal issues may be blockers to migrate
from one service to an equivalent one. In other words, there
is a risk of unfair customer retention and consequent vendor
lock-in.

6) Risk of unavailability of evidences in case of fraudulent
actions: this is a potential risk that may be caused by the lack
of forensic tools and global tracking mechanisms.

7) Risk of lack of negotiation on SLAs: large organizations
using a single supplier can negotiate terms. SMEs or compa-
nies using multiple services from multiple vendors are unlikely
to have the power or the time to negotiate. This will create an
increasingly unstable cost and terms and conditions problem.

Note that a more formal risk analysis might be performed
to consider this a final list of risks.

VII. CONCLUSIONS AND FUTURE WORK

In this position paper, we have discussed some essential as-
pects to establish the necessary baseline for a decision support
method aimed at facilitating the selection of cloud services
and providers in a multi-cloud environment. In particular, we
argue that risk, quality and cost are among the main factors in
such a selection process. We believe that a trade-off analysis
between risk, cost and quality based on a consolidated view
of the three will provide a useful basis for a decision maker in
assessing the possible choices through a cost-benefit analysis.
For this, we have reported the results of an elicitation of the
risk, cost and quality aspects that are specific to multi-cloud
environments. We argue that security, interoperability and ease
of migration are among the main quality aspects in a multi-
cloud environment.

Beyond this initial analysis, we plan to develop a compre-
hensive study on risk and quality aspects to be considered in a
multi-cloud. With this, we aim at creating a decision support
tool able to help multi-cloud applications architects to design
their systems. This tool will be implemented based on a new
methodology that integrates risk, quality and cost dimensions.

ACKNOWLEDGMENT

This work has been conducted as a part of the MODA-
Clouds project (Grant Agreement FP7-318484) funded by the
European Commission within the 7th Framework Programme.

REFERENCES

[1] D. Bernstein and D. Vij, Intercloud Security Considerations, Proc. 2nd
Intl Conf. Cloud Computing (CloudCom 10), IEEE Press, 2010, pp. 537-
544.

[2] R. Buyya et al., Market-Oriented Cloud Computing: Vision, Hype, and
Reality of Delivering Computing as the 5th Utility, Proc. 9th IEEE/ACM
Intl Symp. Cluster Computing and the Grid (CCGRID 09), IEEE CS,
2009, pp. 599-616.

[3] Data Protection Act 1998.
http://www.legislation.gov.uk/ukpga/1998/29/contents

[4] European Telecommunications Standards Institute (ETSI).
http://www.etsi.org

[5] Ligaarden, O. S.: A Framework for Analyzing and Monitoring the Impact
of Dependencies on Quality. PhD thesis, University of Oslo (2013)

[6] M.P. Papazoglou and W. van den Heuvel, Blueprinting the Cloud, IEEE
Internet Computing, Nov./Dec 2011, pp. 74-79.

[7] B. Rochwerger et al., ReservoirWhen One Cloud Is Not Enough, Com-
puter, Mar. 2011, pp. 44-51.

[8] Sarbanes-Oxley Act of 2002 (Pub.L. 107204, 116 Stat. 745,
enacted July 30, 2002). http://www.gpo.gov/fdsys/pkg/PLAW-
107publ204/html/PLAW-107publ204.htm

[9] Singhal, M.; Chandrasekhar, S.; Tingjian Ge; Sandhu, R.; Krishnan,
R.; Gail-Joon Ahn; Bertino, E., ”Collaboration in multicloud computing
environments: Framework and security issues,” Computer, vol.46, no.2,
pp.76-84, Feb. 2013

[10] Cloud Services Measurement Index Consortium: CSMIC Website
http://csmic.org/. Accessed, March 2013

243Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 256 / 263

Towards a Method for Decision Support in
Multi-cloud Environments

Aida Omerovic
SINTEF ICT

Norway
Email: aida.omerovic@sintef.no

Victor Muntés-Mulero and Peter Matthews
CA Technologies
CA Labs Europe

Email: {victor.muntes,peter.matthews}@ca.com

Alexander Gunka
BOC Information Systems

Austria
Email: alexander.gunka@boc-eu.com

Abstract—Providers of cloud services as well as the cloud
services themselves differ in the business models, functionality,
quality of service, cost, value, etc. which makes the choice of
a provider and a service difficult. Beyond that the complexity
and lack of transparency with respect to cost and quality render
the run-time adaptation and replacement of services almost
impossible. This position paper presents main results of our
recent efforts towards development of a decision support method
(DSM) in multi-clouds. The DSM aims at taking into account
risk, quality and cost aspects in order to assist a decision maker
in choosing providers and services in a multi-cloud environment.
We characterize the needs for the DSM in the multi-cloud context
and propose an initial version of the process for the DSM. Based
on the method proposed and the needs identified, we elaborate
to what degree the current state of the art can be leveraged and
what further multi-clouds-specific extensions are needed.

Keywords—multi-cloud; decision support; risk assessment;
quality prediction; cost prediction; architectural design; trade-off
analysis; cloud service selection; cloud provider selection.

I. INTRODUCTION

The rapidly increasing number of cloud services and cloud
service providers opens for new opportunities [1] in designing
application and enterprise architectures. It also enables new
business models and investments [2] [3] [4], new quality
levels [5], as well as new capabilities. The services can
be orchestrated and their compositions adapted even more
dynamically than earlier. Availability of similar services from
several providers opens for replaceability between services, or
redundancy of services. As a result, the quality may improve
and the risk of vendor lock-in will normally be reduced.
However, there are also significant challenges [6] involved
in realizing collaborations between clouds. One of the major
challenges regarding cloud services and their providers is that
they differ in the business models, functionality, quality of
service, cost, value, etc. Another challenge is complexity and
lack of transparency with respect to cost and quality. This
makes the choice of a provider and a service difficult and
the run-time adaptation and replacement of services almost
impossible. When selecting the cloud services and the cloud
providers, systematic support for identifying the candidate
services and understanding the implications of choosing the
different alternatives, is needed.

Decision support [7] for multi-cloud environments imposes
several challenges compared to the traditional model-based
decision support. Most notably, the dynamics of multi-cloud
require light-weight processes and tools, the decision makers

depend on easy-to-understand representations of the impacts of
the decisions, the notion of cost is to a lower degree established
in the existing approaches supporting the trade-off analysis
of enterprise and software architectures, and a merge of the
aspects of risk, cost and quality in a consolidated view imposes
a new complexity as well as methodological challenges.

The specific objective of this paper is to establish the nec-
essary baseline for a tool-supported decision support method
(DSM) aimed at facilitating selection of cloud services and
providers in a multi-cloud environment. In particular, we argue
that risk, quality and cost are among the main three factors in
such a selection process. To that end, we aim at providing
a decision support which analyses the impacts of the possible
decision alternatives in a multi-cloud environment with respect
to those three factors. We believe that a trade-off analysis
between risk, cost and quality based on a consolidated view
of the three will provide a useful basis for a decision maker in
assessing the possible choices through a cost-benefit analysis.

This position paper presents the main results of the recent
efforts towards development of a DSM for multi-cloud envi-
ronments. We characterize the needs for the DSM in the multi-
cloud context and propose an initial version of the process for
the DSM. Based on the method proposed, we elaborate on the
suitability of both the method proposed and the state of the art
for analyzing risks as well as for predicting quality and cost
in the multi-cloud context.

The paper is organized as follows. Section 2 summarizes
the state of the art regarding risk analysis, quality prediction,
and cost analysis. Section 3 characterizes the needs for the
DSM in the multi-cloud context. Section 4 proposes an initial
process for the DSM. Section 5 discusses to what degree the
state of the art can be leveraged within the DSM process
proposed. Main conclusions are provided in Section 6.

II. STATE OF THE ART

The ISO 31000 standard for risk management comes with
no specific techniques, modeling languages or recommended
tools for how to conduct risk assessment in practice. However,
most established risk management methods [8] [9] [10] [11]
follow the ISO 31000 process, and provide such additional
support. Common for these approaches is that they are de-
signed to support risk management and risk documentation
from the perspective of an organization and its policies. There
is lack of support in the state of the art for extracting the risk
picture that is relevant for specific external stakeholders, such

244Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 257 / 263

as services consumers, and to present this picture in an intuitive
and easily understandable way. There is also lack of an
approach which combines cloud modeling and risk modeling.
There exist many different approaches to service modeling
[12] [13] [14] [15], focusing on expressing relevant elements
and aspects of services, such as actors and components, roles,
activities, interfaces and contracts. However, none of these
have a risk-oriented view where stakeholders are represented
as risk owners, and where the assets at stake are made explicit.

In a model-based decision making, the decisions are made
based on a number of factors. The major ones include func-
tional and non-functional properties, as well as cost and the
added value. A trade-off between such factors is the basis
for decision making. This trade-off is particularly complex
between the non-functional factors, the variable parts of the
architecture, and the cost of the selected solutions. The vari-
ability, as well as incomplete information or knowledge, are
also sources of risk. Since functional requirements normally
are less flexible and specified rather early, and since the
added value is strongly related to the functional properties, the
factors that are tunable and highly interrelated are risk, quality
and cost. Therefore, in a model-based decision making, the
decisions are based on a trade-off assessment between risk,
quality and cost. The risk assessment, in turn, is based on
information that is gathered about assets, entities, actors, etc.
that are involved in the service event or action in question.

As a basis for the elicitation of the adequate quality char-
acteristics, we may use the software product quality standard
ISO/IEC 9126 [5]. The ISO 9126 defines quality as “the
totality of features and characteristics of a software product
that bear on its ability to satisfy stated and implied needs”.
The ISO 9126 standard provides an established specification
of decomposed quality notions with their qualitative and quan-
titative definitions. The standard defines a quality model for
external and internal quality, and for quality in use. External
quality is the totality of the characteristics of the software
product from an external view when the software is executed.
Internal quality is the totality of characteristics from an internal
view and is used to specify properties of interim products. The
characteristics of the internal and external quality model are
functionality, reliability, usability, efficiency, maintainability
and portability. These are in turn decomposed into a total
of 34 sub-characteristics. Quality in use is the user’s view
of the quality of the software product when it is used in a
specific environment and a specific context of use. The quality
in use characteristics are effectiveness, productivity, safety
and satisfaction. There is also a further decomposition of all
characteristics into the related metrics.

SMI [16] is a standardization effort from the Cloud Ser-
vices Measurement Index Consortium (CSMIC) consisting of
academic and industry organizations. The Service Measure-
ment Index (SMI) uses a series of characteristics and measures
to create an common means to compare different services from
different suppliers. The characteristics are categorized as Us-
ability, Performance, Agility, Security and Privacy, Financial,
Assurance and Usability. Each of these characteristics has a
number of measures that can be used to evaluate the risk in
using a service. For example in the accountability category one
of the measured attributes is Compliance and another is SLA
verification both of which can be used to create a risk measure

for the service and the provider. CSMIC is in negotiation with
a number of large standardization organizations to develop a
joint working group and specification.

According to Fenton and Neil [17], most prediction models
use size and complexity metrics to predict defects. Others
are based on testing data, the quality of the development
process, or take a multivariate approach. The goal/question/-
metric paradigm [18] [19] is a significant contribution to
quality control and can be used for development of quality
models and for the design of a measurement plan [20] [21].
To enable explicit risk and quality assessment, we make use
of monitoring and measurement. Risk monitoring is a means
to facilitate continuous risk assessment by the monitoring
of relevant key indicators or metrics. An indicator can be
defined as “something that provides a clue to a matter of
larger significance or makes perceptible a trend or phenomenon
that is not immediately detectable” [22]. To enable explicit
risk and quality assessment, we make use of monitoring and
measurement.

PREDIQT [23] is a tool supported method for model-
based prediction of impacts of architectural design changes
on system quality characteristics (performance, scalability,
security, etc.). PREDIQT facilitates specification of quality
characteristics and their indicators, aggregation of the indica-
tors into functions for overall quality characteristic levels, and
dependency analysis. The main objective of a PREDIQT-based
analysis is prediction of system quality by identifying different
quality aspects, evaluating each of these, and composing the
results into an overall quality evaluation. This is useful, for
example, for elicitation of quality requirements, evaluation of
the quality characteristics of a system, run-time monitoring of
quality relevant indicators, as well as verification of the overall
quality characteristic fulfillment levels. PREDIQT makes use
of models that capture the system design, the system quality
notions, as well as the relations between them. An important
aim of PREDIQT is to enable the right balance between
practical usability of the models and the soundness of the
predictions. The method is compatible with the ISO/IEC 9126
software quality standard, and has been successfully applied
in real-life industrial settings [24] [25].

CORAS [8] is a tool-supported and model-driven approach
to risk analysis that is based on the ISO 31000 risk manage-
ment standard. Whereas alternative state-of-the-art approaches
such as CRAMM [26] and OCTAVE [27] rely on text and
tables, CORAS uses diagrams as an important means for
communication, evaluation and assessment. Risk modeling is a
technique for risk identification and assessment, and the state-
of-the-art offers several tree-based and graph-based notations.
Fault tree analysis [28] (FTA), event tree analysis [29] (ETA)
and attack trees [30] are examples of the former and provide
support for reasoning about the sources and consequences
of unwanted incidents, as well as their likelihoods. Cause-
consequence analysis [31] (CCA), Bayesian network [32] and
Markov analysis [33] are examples of graph-based notations.
CCA employs diagrams that combine the features of both fault
trees and event trees, whereas the latter two serve as math-
ematical models for probabilistic and statistical calculations,
respectively.

Approaches to quality assessment, risk analysis and secu-
rity management provide support for decision making so as to

245Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 258 / 263

ensure a required quality level while managing risks. However,
while identifying and suggesting options and solutions, such
as security mechanisms, the methods often lack techniques
and tools for analyzing the associated cost and the return of
investment in the identified solutions. Franqueira et al. [2]
address this problem by proposing a method for handling
security investment decisions achieved by so-called Real Op-
tion thinking. The method is partly based on Real Option
Analysis [3] (ROA), which is a decision support technique
in the area of capital investment by means of mathematical
models to evaluate financial options. The method is supported
by a security trade-off tool called SecInvest, which is imple-
mented as a Bayesian network topology and supports decision
makers in evaluating investment options and identifying the
most suitable and cost-efficient ones. Other approaches to cost
estimation in the setting of security investments are Net Present
Value (NPV) [4], Return on Security Investment (ROSI) [34],
Architecture Trade-Off Analysis Method (ATAM) [35], the
Cost Benefit Analysis Method (CBAM) [7] and the Security
Solution Design Trade-Off Analysis [36]. These and similar
approaches can be understood as methods and techniques to
facilitate so-called security economics.

III. CHARACTERIZATION OF NEEDS

As a part of context establishment, we elicited quality
aspects and risks which are specific to a multi-cloud environ-
ments. The elicitation was based on a comprehensive model
of migration process. The model was used as a baseline and a
checklist for understanding and decomposing the risk, quality
and cost aspects. The exercise resulted in a high-level overview
of main risks, as well as a model of decomposed quality
characteristics which are specific to multi-clouds. The three
overall characteristics identified are: interoperability, intercloud
replaceability and security. In addition, cost of migration
between multi-clouds was classified into cost of personnel, cost
of time with two coexisting services, cost of compensation
for uncertainty, and cost of hardware and other resources.
Through these models, a common understanding of the main
risk, quality and cost aspects in our context, was established.
The initial experiences and results of the quality, cost and risk
classification indicate that:

• Before eliciting the quality characteristics and risks of
a multi-cloud based architecture, the context has to be
thoroughly defined. Moreover, the architecture models
of the target need to be established. This provides a
common understanding of the scope and objectives,
as well as the necessary frames for further modeling
and decision making. For example, during the context
establishment, a process model for migration was
used as the foundation for eliciting the aspects and
indicators related to quality, cost and risk.

• The decision support models should, once available,
be able to take the proposed alternatives for architec-
ture design (measures and treatments considered) and,
based on each alternative, provide the resulting risk
picture, predicted levels of fulfillment of the relevant
quality characteristics, as well as the estimated costs.
Thus, risk, quality characteristics and cost should be
treated as separate concerns.

• Ideally, in order to accommodate for a cost-benefit
analysis, the method should consider added value (or
profit) in addition to cost. Minimizing cost and risks
and maximizing quality levels is not necessarily a
realistic goal. In fact, the benefits may arise from e.g.
process improvement through the new architecture,
improved or extended functionality, or similar. Thus
the trade-offs between quality, risk and cost may vary
significantly depending on the utility function and
the risk attitude of the decision maker. In addition,
the trade-off (or “selection criteria”) should take into
account the need for balancing the cost with the added
value beyond achieving the quality and risk relevant
objectives.

• The method should be tool supported, and the tool
should at least provide a diagram editor as well as an
easy-to-understand presentation of the impacts of the
decision alternatives on quality, risk and cost. The tool
should also offer the interfaces needed for acquisition
of the data needed for evaluation of the indicators,
as well as the interfaces for the needed trace-link
information.

IV. METHOD FOR DECISION SUPPORT FOR MULTI-CLOUD
ENVIRONMENTS – A PRELIMINARY SPECIFICATION

The DSM for multi-cloud applications is a model-driven
method consisting of three main artifacts: a process, a language
and a tool. This section provides the initial specification of
the DSM process and the actors involved. The DSM process
consists of three overall phases, and each phase is decomposed
into a set of sub-phases. The DSM process is undergone while
developing, verifying and applying the comprehensive decision
support models which include the aspects of architecture, risk,
quality and cost. We assume the following four types of actors
involved in the DSM process:

• Analyst: the analyst is an expert in the DSM and has
the responsibility for leading and facilitating a DSM-
based analysis. That is, the analyst coordinates the
overall actors, collects the input for developing the de-
cision support models, interacts with the overall actors
during the model development and usage, makes sure
that the necessary steps have been conducted within
the resources allocated, and validates that the models
have the needed quality and contents.

• Decision maker: the decision maker defines the scope
and the objective of a DSM-based analysis. He/she
will provide the instructions as to what parts of the
architecture should be encompassed in the models, the
expected validity of the models, the scope and kinds of
the perspective changes/revisions of the architecture,
etc. The decision maker will also be the main user of
the decision models once they have been developed.
He will therefore specify the decision alternatives in
the decision models, and use the resulting impact
estimates with respect to risk, cost and quality as an
aid in the decision making. This actor is aware of the
business model and strategy of the company. Hence,
a decision maker may be a business expert as well,
capable of making decisions based on his knowledge

246Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 259 / 263

DSS	use	cases

1

Decision Maker

Establish context and
model the target

Analyst

Assess and verify risk, cost
and quality

Treatment and decision
making

Domain Expert

Cloud Measurement
Service

Fig. 1. The top level three phases and the actors involved in the DSM process

of the project budgets, allowable risks and the business
processes being supported by the applications. Larger
organizations may distinguish between a business ex-
pert who builds the requirements specification and
a decision maker who selects services based on the
specification. For simplicity, these two roles are in our
case represented by the decision maker who has all the
knowledge sufficient to take decisions.

• Domain expert: normally, a group of domain experts
will be involved in a DSM-based analysis in rela-
tion to the development, validation and revision of
the decision models. The domain experts will con-
tribute by providing the thorough input regarding the
current architecture, quality levels, dependencies and
processes. The analyst will actively interact with the
domain experts during all the three phases of the DSM
process.

• Cloud measurement service: this is a (partially) au-
tomatized service for retrieval of the empirical data
needed for estimating the parameters of the decision
models. We assume that the parameters are estimated
either based on the feeds from the cloud measurement
service or based on expert judgments. A parameter
may be estimated or measured either directly, or
through estimation of a measurable indicator which
then is aggregated and mapped to the decision model
through a function. The dynamics of the indicators
and the parameters as well as their relevance and
uncertainty will be among the factors for determining
whether the data acquisition should be automatic (e.g.
real-time retrieval based on a monitoring environment)
or manual, and how frequent it should be.

Figure 1 shows the overall three phases of the DSM
process, as well as the actors involved. In the first phase, the
context of the analysis is established. As a part of this, the
scope is defined, the relevant risk, cost and quality notions
are defined, and the architecture is modeled. In addition, the
expected validity as well as perspective business models and
architecture alternatives should be anticipated in order to cover
the needed scope and level of detail in the target models.
During the second phase, the decision models covering the
risk, quality and cost aspects are instantiated with respect
to target. As a part of this, the dependencies are modeled
and the parameters (with the related indicators) are estimated.

Establish	context	and	model	
the	target

2

Decision Maker

Characterize the target
and the objectives

Analyst

Characterize quality aspects

Specify architecture of the
target

Domain Expert

Characterize cost aspects

Fig. 2. Establish context and model the target phase decomposed

Assess	and	verify	risk,	cost	
and	quality

3

Create dependency
views for quality and

cost

Analyst

Identify risks

Validate the decision models

Domain Expert

Estimate risk/quality/cost
parameters

Cloud Measurement
Service

Fig. 3. Assess and verify risk, cost and quality phase decomposed

In addition, the models are validated through various kinds
of triangulation, mainly based on the empirical input, logs,
domain expert judgments, experience factories, etc. In the last
phase, the decision models are applied by first specifying the
decision alternatives, applying the alternatives on the models,
and finally obtaining the resulting impact of the respective
decisions on quality, risk and cost. The result is a consolidated
view of the quality, risk and cost picture, provided each
decision alternative.

Figure 2 shows the stages of the “establish context and
model the target” - phase. First, the target and the objectives
are characterized. Based on the initial input, the stakeholders
involved deduce a high level characterization of the target
architecture, its scope and the objectives of the DSM-based
analysis, by formulating the system boundaries, system context
(including the usage profile), system lifetime and the extent
(nature and rate) of design changes expected. In the second
stage, the quality aspects are characterized by specifying which
quality characteristics are relevant for the target, and thereafter
decomposing them down to indicators. A quantitative and
a qualitative definition should be provided for all elements.
Thirdly, a corresponding decomposition should be done for
the cost aspects. In the last stage, the architecture is modeled
with the detail level and within the frames specified during the
characterization stage.

Figure 3 shows the stages of the “assess and verify risk,
cost and quality” - phase. Firstly, the dependency views for

247Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 260 / 263

Treatment	and	decision	
making

4

Decision Maker

Specify treatment

Analyst

Quality prediction

Cost prediction

Risk evaluation

Analyze a consolidated view of
impact of the treatments w.r.t.

quality, cost and risk

Domain Expert

Cloud Measurement
Service

Apply the treatment on
the decision models

Fig. 4. Treatment and decision making phase decomposed

respectively quality and cost are developed. Secondly, assets
and risks are identified in separate decision models (“threat
diagrams”). The three types of the decision models (i.e.
quality dependency views, cost dependency views and threat
diagrams) are then annotated by the parameter values through
evaluation of indicators or direct expert judgments on the
prior parameters. Finally, triangulation is performed in order
to validate the decision models. The models are approved once
an acceptable level of uncertainty has been reached.

Figure 4 shows the stages of the “treatment and decision
making” - phase. First, the respective decision alternatives are
specified separately. Then, each alternative is applied on the
decision models. The models and the respective calculus is
used to propagate the impacts of each decision alternative
on risk, quality and cost. Finally, a consolidated view of the
impacts of the decision alternatives is presented to the decision
maker.

Figure 5 shows an activity diagram with the entire DSM
process, including the feedback loops. The right hand side
of the figure indicates the phases presented in Figure 1. The
activities are equivalent to the ones presented in relation to
Figure 2, Figure 3 and Figure 4.

V. DISCUSSION

This section elaborates to what degree the existing
PREDIQT and CORAS methods for for quality prediction
and risk analysis, respectively, can serve as a baseline for our
DSM in multi-clouds. The objective is to leverage the state of
the art decision support, while extending it and adjusting to
the special needs of the multi-clouds. Thus, the established
methods, languages and tools can be reused with the well
known properties and resources, while the efforts can be
concentrated on the multi-cloud-specific extensions.

PREDIQT is a method (process, language, and tool sup-
port) for model-based prediction of system quality. The
PREDIQT method produces and applies a multi-layer model
structure, called prediction models, which represent system rel-
evant quality concepts (through “Quality Model”), architectural
design (through “Design Model”), and the dependencies be-
tween architectural design and quality (through “Dependency

Characterize the target and the objectives

Characterize quality aspects

Characterize cost aspects

Identify risks

Specify treatment

Specify architecture of the target

Create dependency views for quality and cost

Estimate risk/quality/cost parameters

Validate the decision models

Analyze a consolidated view of impact of the treatments
w.r.t. quality, cost and risk

Risk evaluation

Quality prediction

Cost prediction

Validation
successful?

no

yes

Treatment
adopted

no

yes

Establish
context and
model the

target

Assess and
verify risk, cost

and quality

Treatment
and decision

making

Apply the treatment on the decision models

Fig. 5. The DSM process diagram with feedback loops

Views”). The Design Model diagrams are used to specify
the architectural design of the target system and the changes
whose effects on quality are to be predicted. The Quality
Model diagrams are used to formalize the quality notions and
define their interpretations. The values and the dependencies
modeled through the Dependency Views (DVs) are based
on the definitions provided by the Quality Model. The DVs
express the interplay between the system architectural design
and the quality characteristics. Once a change is specified on
the Design Model diagrams, the affected parts of the DVs are

248Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 261 / 263

identified, and the effects of the change on the quality values
are automatically propagated at the appropriate parts of the
DV.

CORAS is a method (process, language, and tool support)
for conducting model-based security risk analysis. CORAS
provides a customized language for threat and risk mod-
eling, and comes with detailed guidelines explaining how
the language should be used to capture and model relevant
information during the various stages of the security analysis.
The Unified Modeling Language (UML) is typically used to
model the target of the analysis. For documenting intermediate
results, and for presenting the overall conclusions we use
special CORAS diagrams which are inspired by UML. The
CORAS tool supports documenting, maintaining and reporting
analysis results through risk modeling.

The DSM process is based on an attempt to merge the
processes of CORAS and PREDIQT for a consolidated anal-
ysis of risk, quality and cost. Most of the stages of the
DSM process can be found in CORAS and PREDIQT. The
actors/stakeholders defined in the DSM are fully compliant
with the ones defined by CORAS and PREDIQT. The types
of the decision models proposed in the DSM are heavily based
on the modeling notations, languages and tools of PREDIQT
and CORAS, respectively. The approach to modeling of quality
and cost aspects based on the DVs is a part of the PREDIQT
method, while a language for risk modeling is provided by
CORAS. The respective approaches to modeling in PREDIQT
and CORAS are based on graphical modeling languages with
defined propagation models. Both modeling approaches are
developed with special focus on comprehensibility and ex-
pressiveness. In that manner, the models are accommodated
for fulfilling real-life needs in terms of covering the represen-
tations needed while being rather intuitive so that non-experts
should be able to relate to them in an industrial setting. The
characterization of quality proposed in DSM is by PREDIQT
addressed through the so called Quality Model. Both the
Quality Model and the intended quality characterization in
DSM are similar to the elicitation we have performed, which
is briefly presented in Section 3.

The DSM process is to a high degree a superset of the
processes of PREDIQT and CORAS. Moreover, the modeling
approaches of PREDIQT and CORAS cover the concerns of
quality and risk, as well as partially the concern of cost.
Furthermore, the existing tools of CORAS and PREDIQT may
be useful in the DSM context. Provided this baseline, we
believe that utilization of the CORAS and PREDIQT methods
including the processes, the languages and the tools, is worth
a further evaluation in the DSM context. In particular, this
means that case studies in multi-cloud environments should
be performed in order to evaluate the feasibility of DSM, as
well as the suitability of the relevant parts of PREDIQT and
CORAS in a multi-cloud context.

VI. CONCLUSION AND FUTURE WORK

This position paper aims at establishing the necessary
baseline for a DSM. The intended purpose of the DSM is
to facilitate the selection of cloud services and providers in
a multi-cloud environment. In particular, we argue that risk,
quality and cost are among the main factors in such a selection

process. We believe that a trade-off analysis between risk, cost
and quality based on a consolidated view of the three will
provide a useful basis for a decision maker in assessing the
possible choices through a cost-benefit analysis.

Decision support for multi-cloud environments imposes
however several challenges compared to the traditional model-
based decision support. Most notably, the dynamics of multi-
cloud require light-weight processes and tools, the decision
makers depend on easy-to-understand representations of the
impacts of the decisions, the notion of cost is to a lower degree
established in the trade-off analysis of enterprise and software
architectures, and a merge of the aspects of risk, cost and
quality in a consolidated view imposes a new complexity as
well as methodological challenges.

This paper presents the main results of our recent ef-
forts towards the development of a DSM for multi-cloud
environments. We characterize the needs for the DSM in
the multi-cloud context and propose an initial version of the
process for the DSM. Based on the experiences from CORAS
and PREDIQT based analyses, and relying on the existing
process descriptions and modeling approaches from CORAS
and PREDIQT, we propose a comprehensive process for a
DSM-based analysis, and present the roles of the actors/s-
takeholders involved. The DSM process consolidates the steps
necessary towards development, verification and application of
the decision support models. Based on the method proposed,
we elaborate on the suitability of both the method proposed and
the state of the art for analyzing risks as well as for predicting
quality and cost in the multi-cloud context. We argue that many
aspects of CORAS and PREDIQT, including the approaches
to modeling (the modeling languages), the processes, and the
respective tool support, should be well suited in the DSM
context, i.e. in an analysis which merges the aspects of risk,
quality and cost. However, in order to evaluate the feasibility of
both the proposed DSM in general as well as the CORAS and
PREDIQT methods in particular, in the multi-cloud context,
realistic case studies should be performed and the proposed
method adapted based on the experiences obtained.

Hence, the next steps in the development of decision sup-
port for multi-clouds should include case studies, evaluation
and development of approaches to modeling (the modeling
languages) for a consolidated model-based risk analysis, qual-
ity prediction and cost analysis. Moreover, the method should
offer an easy-to-understand visualization of the impacts of the
decision alternatives on quality, cost and risk. We also aim
at refining the method and the tool requirements for DSM,
as well as providing a prototype tool which will facilitate a
DSM-based analysis.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 318484
(MODAClouds).

REFERENCES

[1] R. Buyya, “Market-Oriented Cloud Computing: Vision, Hype, and
Reality of Delivering Computing as the 5th Utility,” in 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid. IEEE
Computer Society, 2009.

249Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 262 / 263

[2] V. N. L. Franqueira, S. H. Houmb, and M. Daneva, “Using Real
Option Thinking to Improve Decision Making in Security Investment,”
in 5th International Symposium on Information Security, LNCS 6426.
Springer, 2010, pp. 619–638.

[3] M. Amram and N. Kulatilaka, Real Options: Managing Strategic
Investment in an Uncertain World. Harvard Business School Press,
Cambridge, Massachusetts, 1999.

[4] M. Daneva, “Applying Real Options Thinking to Information Security
in Networked Organizations. CTIT Report TR-CTIT-06-11,” University
of Twente, Tech. Rep., 2006.

[5] ISO/IEC 9126 – Software engineering – Product quality – Part 1-4,
International Organization for Standardization/International Electrotech-
nical Commission, 2001-2004.

[6] M. Singhal, S. Chandrasekhar, G. Tingjian, R. Sandhu, R. Krishnan,
A. Gail-Joon, and E. Bertino, “Collaboration in Multicloud computing
Environments: Framework and Security Issues,” Computer, vol. 46,
no. 2, pp. 76–84, 2013.

[7] R. Kazman, J. Asundi, and M. Klein, “Making Architecture Design
Decisions: An Economic Approach. Technical report CMU/SEI-2002-
TR-035,” Carnegie Mellon, Tech. Rep., 2002.

[8] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis -
The CORAS Approach. Springer, 2011.

[9] Siemens, “CRAMM - The Total Information Security Toolkit,”
March 2004, accessed: January 30, 2013. [Online]. Available:
http://www.cramm.com

[10] C. J. Alberts and A. J. Dorofee, “OCTAVE Criteria. Technical Report
CMU/SEI-2001-TR-016,” CERT, Tech. Rep., 2001.

[11] T. Peltier, Information Security Risk Analysis, 3rd edn. Auerbach
Publications, 2010.

[12] R. Chinnici, J. J. Moreau, A. Ryman, and S. Weerawarana, “Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language. W3C Recommendation,” June 2007, accessed: January,
2013. [Online]. Available: http://www.w3.org/TR/wsdl20

[13] J. Farrell and H. Lausen, “Semantic Annotations for WSDL and XML
Schema. W3C Recommendation,” August 2007, accessed: January,
2013. [Online]. Available: http://www.w3.org/TR/sawsdl

[14] “Service Oriented Architecture Modeling Language (SoaML) Specifi-
cation, Version 1.0,” Object Management Group, Tech. Rep., 2012.

[15] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz,
“Reference Model for Service Oriented Architecture 1.0. ,” OASIS,
Tech. Rep., 2006.

[16] Cloud Services Measurement Index Consortium, “CSMIC,” accessed:
January 2013. [Online]. Available: http://csmic.org

[17] N. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Transactions on Software Engineering, vol. 25, pp. 675–
689, 1999.

[18] V. R. Basili, “Software Modeling and Measurement: The Goal/Ques-
tion/Metric Paradigm, Technical Report TR-92-96,” University of Mary-
land, Tech. Rep., 1992.

[19] V. Basili, G. Caldiera, and H. Rombach, The Goal Question Metric
Approach. Encyclopedia of Software Engineering, 1994.

[20] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., 1998.

[21] C. Ebert, R. Dumke, M. Bundschuh, A. Schmietendorf, and R. Dumke,
Best Practices in Software Measurement. Springer Verlag, 2004.

[22] A. Hammond, A. Adriaanse, E. Rodenburg, D. Bryant, and R. Wood-
ward, “Environmental Indicators: A Systematic Approach to Measuring
and Reporting on Environmental Policy Performance in the Context of
Sustainable Development,” World Resources Institute, Tech. Rep., 1995.

[23] A. Omerovic, PREDIQT: A Method for Model-based Prediction of
Impacts of Architectural Design Changes on System Quality. PhD thesis.
University of Oslo, 2012.

[24] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth, A. Refsdal,
K. Stølen, and J. Ølnes, “A Feasibility Study in Model-based Prediction
of Changes on System Quality. Technical report A13339,” SINTEF ICT,
Tech. Rep., 2010.

[25] A. Omerovic, B. Solhaug, and K. Stølen, “Assessing Practical Use-
fulness and Performance of the PREDIQT Method: An industrial case

study,” Information and Software Technology, vol. 54, no. 12, pp. 1377–
1395, 2012.

[26] B. Barber and J. Davey, “The Use of the CCTA Risk Analysis and
Management Methodology CRAMM in Health Information Systems,”
in 7th International Congress on Medical Informatics, 1992, pp. 1589–
1593.

[27] C. J. Alberts and J. Davey, “OCTAVE Criteria Version 2.0. Technical
report CMU/SEI-2001-TR-016,” Carnegie Mellon University, Tech.
Rep., 2004.

[28] “IEC 61025 Fault Tree Analysis (FTA),” International Electrotechnical
Commission, Tech. Rep., 1997.

[29] “IEC 60300-3-9 Dependability Management - Part 3: Application
guide - Section 9: Risk analysis of technological systems - Event
Tree Analysis (ETA),” International Electrotechnical Commission, Tech.
Rep., 1995.

[30] B. Schneier, “Attack Trees: Modeling security threats,” Dr. Dobb’s
Journal, vol. 24, no. 12, pp. 21–29, 1999.

[31] D. S. Nielsen, “The Cause/Consequence Diagram Method as Basis
for Quantitative Accident Analysis. Technical report RISO-M-1374,”
Danish Atomic Energy Commission, Tech. Rep., 1971.

[32] I. Ben-Gal, Bayesian Networks. In F. Ruggeri, R. S. Kenett, F. W. Faltin
(eds.): Encyclopedia of Statistics in Quality and Reliability. John Wiley
& Sons, 2007.

[33] R. A. Howard, Dynamic Probabilistic Systems. Volume I: Markov
Models. John Wiley & Sons, 1971.

[34] W. Sonnenreich, J. Albanese, and B. Stout, “Return on Security Invest-
ment (ROSI)-A Practical Quantitative Model,” Journal of Research and
Practice in Information Technology, vol. 38, no. 1, pp. 45–56, 2006.

[35] R. Kazman, M. Klein, and P. Clements, “ATAM: Method for Archi-
tecture Evaluation. Technical report CMU/SEI-2000-TR-004,” Carnegie
Mellon, Tech. Rep., 2000.

[36] S. H. Houmb, G. Georg, R. France, J. Bieman, and J. Jürjens, “Cost-
benefit Trade-off Analysis Using BBN for Aspect-oriented Risk-driven
Development,” in 10th International Conference on Engineering of
Complex Computer Systems. IEEE Computer Society, 2005, pp. 195–
204.

250Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Powered by TCPDF (www.tcpdf.org)

 263 / 263

http://www.tcpdf.org

