
CLOUD COMPUTING 2011

The Second International Conference on Cloud Computing, GRIDs, and Virtualization

ISBN: 978-1-61208-153-3

September 25-30, 2011

Rome, Italy

CLOUD COMPUTING 2011 Editors

Massimo Villari, University of Messina, Italy

Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland

Yong Woo Lee, University of Seoul, Korea

Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany

 1 / 237

CLOUD COMPUTING 2011

Foreword

Cloud computing is a normal evolution of distributed computing combined with Service-oriented
architecture, leveraging most of the GRID features and Virtualization merits. The technology foundations
for cloud computing led to a new approach of reusing what was achieved in GRID computing with
support from virtualization.

The Second International Conference on Cloud Computing, GRIDs, and Virtualization [CLOUD
COMPUTING 2011], held between September 25 and 30, 2011, in Rome, Italy, intended to prospect the
applications supported by the new paradigm and validate the techniques and the mechanisms. A
complementary target was to identify the open issues and the challenges to be fixed, especially on
security, privacy, and inter- and intra-clouds protocols.

We welcomed technical papers presenting research and practical results, position papers
addressing the pros and cons of specific proposals, such as those being discussed in the standard fora or
in industry consortia, survey papers addressing the key problems and solutions on any of the above
topics short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the CLOUD COMPUTING
2011 Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to CLOUD
COMPUTING 2011. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the CLOUD COMPUTING 2011
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that CLOUD COMPUTING 2011 was a successful international forum for the exchange
of ideas and results between academia and industry and for the promotion of progress in the area of
cloud computing.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed the charm of Rome, Italy.

CLOUD COMPUTING 2011 Chairs:

Arden Agopyan, IBM Central & Eastern Europe, Russia, Middle East & Africa (CEE & MEA), Turkey
Javier Diaz, Indiana University, USA
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Wolfgang Gentzsch, Senior HPC Consultant, Germany
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

 2 / 237

Daniel S. Katz, University of Chicago & Argonne National Laboratory, USA
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland
Yong Woo Lee, University of Seoul, Korea
Leslie Liu, IBM T.J Watson Research, USA
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Toan Nguyen, INRIA, France
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing, USA
Tony Shan, Keane Inc., USA
Donglin Xia, Microsoft Corporation, USA
Qi Yu, Rochester Institute of Technology, USA
Hong Zhu, Oxford Brookes University, UK
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany

 3 / 237

CLOUD COMPUTING 2011

Committee

CLOUD COMPUTING Advisory Chairs

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany
Daniel S. Katz, University of Chicago & Argonne National Laboratory, USA
Yong Woo Lee, University of Seoul, Korea

CLOUD COMPUTING 2011 Industry/Research Chairs

Wolfgang Gentzsch, Senior HPC Consultant, Germany
Tony Shan, Keane Inc., USA
Donglin Xia, Microsoft Corporation, USA

CLOUD COMPUTING 2011 Research Institutes Chairs

Jorge Ejarque, Barcelona Supercomputing Center, Spain
Leslie Liu, IBM T.J Watson Research, USA

COULD COMPUTING 2011 Special Area Chairs

Virtualization
Toan Nguyen, INRIA, France

GRID
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Javier Diaz, Indiana University, USA

Autonomic computing
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing, USA
Hong Zhu, Oxford Brookes University, UK

Service-oriented
Qi Yu, Rochester Institute of Technology, USA

Security
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

Platforms
Arden Agopyan, IBM Central & Eastern Europe, Russia, Middle East & Africa (CEE & MEA), Turkey
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland

CLOUD COMPUTING 2011 Technical Program Committee

 4 / 237

Arden Agopyan, IBM Central & Eastern Europe, Russia, Middle East & Africa (CEE & MEA), Turkey
Ali Beklen, IBM Turkey - Software Group, Turkey
Simona Bernardi, Centro Universitario de la Defensa/Academia General Militar - Zaragoza, Spain
Athman Bouguettaya, CSIRO, Australia
Jian-Nong Cao, Hong Kong Polytechnic University, Hong Kong
Juan-Vicente Capella-Hernández, Universidad Politécnica de Valencia, Spain
Antonin Chazalet, France Télécom - Orange, France
Shiping Chen, CSIRO, Australia
Zhixiong Chen, Mercy College, USA
William C. Chu, Tunghai University Taichung, Taiwan
Bruno Ciciani, University "La Sapienza" Roma, Italy
Nirmit Desai, IBM Research - Bangalore, India
Javier Diaz, Indiana University, USA
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Khalil El-Khatib, University of Ontario Institute of Technology - Oshawa, Canada
Atilla Elçi, Middle East Technical University Northern Cyprus Campus, Cyprus
Onyeka Ezenwoye, South Dakota State University, USA
Umar Farooq, SMART Technologies, Canada
Sören Frey, University of Kiel, Germany
Yuqing Gao, IBM T. J. Watson Research Center, USA
Wolfgang Gentzsch, EU Project DEISA, Board of Directors of OGF, Germany
Dimitrios Georgakopoulos, CSIRO, Australia
Nils Gruschka, NEC Laboratories Europe - Heidelberg, Germany
Kenneth Hopkinson, Air Force Institute of Technology, USA
Ching-Hsien (Robert) Hsu, Chung Hua University, Taiwan
Cheng-Chieh Huang, Institute for information industry (III), Market Intelligence & Consulting Institute
(MIC), Taiwan
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA
Anca Daniela Ionita, University POLITEHNICA of Bucharest, Romania
Xuxian Jiang , North Carolina State University - Raleigh, Spain
Roger "Buzz" King, University of Colorado at Boulder, USA
Jacek Kitowski AGH University of Science and Technology, Cracow, Poland
William Knottenbelt, Imperial College, UK
Arne Koschel, University of Applied Sciences and Arts - Hannover, Germany
George Kousiouris, National Technical University of Athens, Greece
Michael Kretzschar, University of the Federal Armed Forces Munich, Germany
Jeffrey T. Kreulen, IBM Almaden Research Center - San Jose, USA
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland
Dharmender Singh Kushwaha, Motilal Nehru National Institute of Technology - Allahabad, India
Dimosthenis Kyriazis, National Technical University of Athens, Greece
Konstantin Läufer, Loyola University Chicago, USA
Alexander Lazovik, University of Groningen, The Netherlands
Yong Woo Lee, University of Seoul, Korea
Grace Lewis, CMU Software Engineering Institute, USA
Minglu Li, Shanghai Jiao Tong University, China
Jianxin Li, Beihang University, China
Xiaoqing (Frank) Liu, Missouri University of Science and Technology - Rolla, USA
Xumin Liu, Rochester Institute of Technology, USA

 5 / 237

Ignacio M. Llorente, Universidad Complutense de Madrid, Spain
Hanan Lutfiyya, The University of Western Ontario, Canada
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Xiannong Meng, Bucknell University - Lewisburg, USA
Andreas Menychtas, National Technical University of Athens, Greece
Jose Merseguer, Universidad de Zaragoza, Spain
Louise E. Moser, University of California - Santa Barbara, USA
Camelia Muñoz-Caro, Universidad de Castilla-La Mancha, Spain
Surya Nepal, CSIRO ICT Centre, Australia
Toan Nguyen, INRIA, France
Massimo Paolucci, DOCOMO Communications Laboratories Europe GmbH – Munich, Germany
Olivier Perrin, Nacy 2 University / LORIA, France
Thomas E. Potok, Oak Ridge National Laboratory, USA
Antonio Puliafito, University of Messina, Italy
Alfonso Niño Ramos, Universidad de Castilla-La Mancha, Spain
Sebastian Rieger, Karlsruhe Institute of Technology (KIT) / Steinbuch Centre for Computing (SCC),
Germany
Berthold Reinwald, IBM Almaden Research Center, USA
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing, USA
Ben Kwang-Mong Sim, Gwangju Institute of Science & Technology, South Korea
George Spanoudakis, City University London, UK
Vladimir Stantchev, Berlin Institute of Technology, Germany
Kerry Taylor, CSIRO ICT Centre, Australia
George Thiruvathukal, Loyola University Chicago, USA

Naohiko Uramoto (浦本直彦), IBM Research - Tokyo, Japan
Eugen Volk, University of Stuttgart, Germany
Andy Ju An Wang, Southern Polytechnic State University - Marietta, USA
Cho-Li Wang, University of Hong Kong, Hong Kong
Zhi Wang, North Carolina State University, USA
Donglin Xia, Microsoft Corporation, USA
Chao-Tung Yang, Tunghai University, Taiwan R.O.C.
Hongji Yang, De Montfort University - Leicester, England
Jong P. Yoon, Mercy College, USA
Qi Yu, Rochester Institute of Technology, USA
Michael Zapf, University of Kassel, Germany
Zibin Zheng (Ben), The Chinese University of Hong Kong, Hong Kong, China
Hong Zhu, Oxford Brookes University, UK
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany

 6 / 237

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 237

Table of Contents

A Workflow Engine for Computing Clouds
Daniel Franz, Jie Tao, Holger Marten, and Achim Streit

1

FCM: an Architecture for Integrating IaaS Cloud Systems
Attila Csaba Marosi, Gabor Kecskemeti, Attila Kertesz, and Peter Kacsuk

7

One Click to Build An On Demand Virtual Cluster in Cloud Web-based Operating System with Dynamic Loading
Prediction Scheduling Algorithm
Chang-Hsing Wu, Yi-Lun Pan, Hsi-En Yu, Hui-Shan Chen, and Ching-Wen Yu

13

Understanding Cloud Requirements - A Supply Chain Lifecycle Approach
Maik A. Lindner, Fiona McDonald, Gerard Conway, and Edward Curry

20

A Service-Level Agreement Approach Towards Termination Analysis of Service-Oriented Systems
Mandy Weissbach and Wolf Zimmermann

26

Cloud Federation
Tobias Kurze, Markus Klems, David Bermbach, Alexander Lenk, Stefan Tai, and Marcel Kunze

32

IaaS Clouds vs. Clusters for HPC: A Performance Study
Philip Church and Andrzej Goscinski

39

Introducing Federated WebDAV Access to Cloud Storage Providers
Sebastian Rieger, Harald Richter, and Yang Xiang

46

Cloud Capacity Reservation for Optimal Service Deployment
Inigo San Aniceto Orbegozo, Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente

52

Debit: A Diversity-based Method for Implicit Role Transition in RBAC Deployments
Shanshan Li, Qingbo Wu, Lianyue He, Lisong Shao, and Jie Yu

60

Trust Model for File Sharing in Cloud Computing
Edna Dias Canedo, Robson de Oliveira Albuquerque, and Rafael Timoteo de Sousa Junior

66

Security Management of a Cloud-based U-City Management System
Sung Min Kim, Jun Oh Kim, Chang Ho Yun, Jong Won Park, Hae Sun Jung, and Yong Woo Lee

74

Evaluating a Distributed Identity Provider Trusted Network with Delegated Authentications for Cloud Federation
Antonio Celesti, Francesco Tusa, Massimo Villari, and Antonio Puliafito

79

 1 / 3 8 / 237

Testing the Suitability of Cassandra for Cloud Computing Environments
Felix Beyer, Arne Koschel, Christian Schulz, Michael Schafer, Irina Astrova, Stella Gatziu Grivas, Marc Schaaf,
and Alexander Reich

86

Designing an Elastic and Scalable Social Network Application
Xavier De Coster, Matthieu Ghilain, Boris Mejias, and Peter Van Roy

92

A Social Network Approach to Provisioning and Management of Cloud Computing Services for Enterprises
Eric Kuada and Henning Olesen

98

Competitive P2P Scheduling of Users’ Jobs in Cloud
Beniamino Di Martino, Rocco Aversa, Salvatore Venticinque, and Luigi Buonanno

105

Towards Green HPC Blueprints
Goran Martinovic and Zdravko Krpic

113

A Risk Assessment Framework and Software Toolkit for Cloud Service Ecosystems
Karim Djemame, Django Armstrong, Mariam Kiran, and Ming Jiang

119

A Linear Programming Approach for Optimizing Workload Distribution in a Cloud
Vadym Borovskiy, Johannes Wust, Christian Schwarz, Wolfgang Koch, and Alexander Zeier

127

Chaavi: A Privacy Preserving architecture for Webmail Systems
Karthick Ramachandran, Hanan Lutfiyya, and Mark Perry

133

Distributed Storage Support in Private Clouds Based on Static Scheduling Algorithms
Dariusz Krol and Jacek Kitowski

141

Open Environment for Collaborative Cloud Ecosystems
Oleksiy Khriyenko and Michael Cochez

147

Measuring Elasticity for Cloud Databases
Thibault Dory, Boris Mejias, Peter Van Roy, and Nam-Luc Tran

154

Facilitating Bioinformatic Research with Mobile Cloud
Jinhui Yao, Jingyu Zhang, Shiping Chen, Chen Wang, and David Levy

161

Efficient Management of Hybrid Clouds
Sofie Van Hoecke, Tom Waterbley, Jan Devos, Tijl Deneut, and Johan De Gelas

167

Cloud Computing and its Application to Blended Learning in Engineering
Sanda Porumb, Bogdan Orza, Aurel Vlaicu, Cosmin Porumb, and Ioan Hoza

173

 2 / 3 9 / 237

On-demand Data Integration On the Cloud
Mahmoud Barhamgi, Parisa Ghodous, and Djamal Benslimane

181

UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service
Eduardo Rosales, Harold Castro, and Mario Villamizar

187

Making VM Consolidation More Energy-efficient by Postcopy Live Migration
Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi

195

Deterministic Execution of Multiprocessor Virtual Machines
Junkang Nong, Qingbo Wu, and Yusong Tan

205

A Generalized Approach for Fault Tolerance and Load Based Scheduling of Threads in Alchemi .Net
Vishu Sharma, Manu Vardhan, Shakti Mishra, and Dharmender Singh Kushwaha

211

Reducing the Human Cost of Grid Computing With glideinWMS
Igor Sfiligoi, Frank Wurthwein, Jeffrey M. Dost, Ian MacNeill, Burt Holzman, and Parag Mhashilkar

217

On the Performance Isolation Across Virtual Network Adapters in Xen
Blazej Adamczyk and Andrzej Chydzinski

222

Powered by TCPDF (www.tcpdf.org)

 3 / 3 10 / 237

A Workflow Engine for Computing Clouds

Daniel Franz, Jie Tao, Holger Marten, and Achim Streit
Steinbuch Center for Computing

Karlsruhe Institute of Technology, Germany
daniel2712@gmx.de,{jie.tao, holger.marten, achim.streit}@kit.edu

Abstract—This work developed a workflow engine that
enables the execution of workflows on existing Cloud platforms.
The workflow engine automatically delivers the computation
of each individual task to the selected Cloud and transfers
the input/output data across different platforms. Additionally,
it predicts the execution time and payment of the tasks,
helping users select the best Cloud services with respect to
the performance vs. cost tradeoff.

Keywords-Cloud Computing, Workflow Management Sys-
tem, Grid Computing

I. I NTRODUCTION

Since Amazon published its Elastic Compute Cloud (EC2)
[1] and Simple Storage Service (S3) [2] in 2008, Cloud
Computing became a hot topic in both industrial and aca-
demic areas. There exist different definitions of Cloud Com-
puting, including our earlier contribution [3]. Recently,the
National Institute of Standards and Technology (NIST) pro-
vides a specific definition: Cloud computing is a model for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction [4].

Cloud computing distinguishes itself from other comput-
ing paradigms in the following aspects:

• Utility computing model: Users obtain and employ
computing platforms in computing Clouds as easily
as they access a traditional public utility (such as
electricity, water, natural gas, or telephone network).

• On-demand service provisioning: Computing Clouds
provide resources and services for users on demand.
Users can customize and personalize their computing
environments later on, for example, software instal-
lation, network configuration, as users usually own
administrative privileges.

• QoS guaranteed offer: The computing environments
provided by computing Clouds can guarantee QoS
for users, e.g., hardware performance. The computing
Cloud renders QoS in general by processing Service
Level Agreement (SLA) with users.

As a result of these advantages, Cloud Computing is
gaining more and more customers. Currently established
Cloud infrastructures mainly deliver three kinds of services:

Infrastructure as a Service (IaaS), Software as a Service
(SaaS), and Platform as a Service. IaaS targets on an
on-demand provision of the computational resources. The
commercial computing Cloud Amazon EC2 and its non-
commercial implementation Eucalyptus [5] are well-known
examples of IaaS-featured Cloud platforms. SaaS allows the
consumers to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface [4].An
example of SaaS is Web-based email. PaaS targets on an
entire platform including the hardware and the application
development environment. Google App Engine [6] and Mi-
crosoft Azure [7] are examples of PaaS-featured Clouds.

The goal of this work is to combine different Clouds
to run a user-defined service workflow. A workflow is
a methodology that splits the computation of a complex
problem into several tasks. A well-known scenario is to
run scientific experiments on the Grid [8], where an en-
tire computation is partitioned and distributed over several
computing nodes with a result of being able to process
large data sets. This scenario can also occur on the Cloud
when scientific applications move to them. Furthermore,
there are other scenarios on the Cloud, where users require
the workflow support. For example, users may compose the
services provided by different Clouds for an overall goal.

We developed an execution engine for workflow manage-
ment on Clouds. In difference to Grid workflow implementa-
tions that target on a unified interface [9], a Cloud workflow
system has to cope with different interfaces and features
of individual Clouds. In order to enable the combination
of single workflow tasks running on various Clouds, we
implemented a Cloud abstraction and designed mechanisms
for inter-Cloud data transfer. We also established a predic-
tion model to estimate the execution time and cost of the
individual tasks on different Cloud nodes, therefore helping
users achieve maximum performance at lowest payment.

The remainder of the paper is organized as following.
Section II describes the related work. Section III analyzesthe
requirement on a Cloud workflow framework and presents
the designed software architecture. Section IV gives the
details of an initial prototypical implementation, followed
by the evaluation results in Section V. The paper concludes
in Section VI with a brief summary and several future
directions.

1

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 11 / 237

II. RELATED WORK

The concept of resource sharing in Cloud Computing is
similar to Grid Computing. Cloud Computing allows on-
demand resource creation and easy access to resources,
while Grid Computing developed standards and provides
various utilities. A detailed comparison of these two comput-
ing paradigms can be found in [10]. One utility implemented
on the Grid is the workflow management system. Production
Grids, such as WLCG [11], TeraGrid [12], and EGEE [13],
commonly support the execution of scientific workflows
on the underlying resources. There are also various imple-
mentations of workflow engines on the Grid. Examples are
ASKALON [14], Unicore [15], Kepler [16], GridAnt [17],
Pegasus [18], and GridFlow [19]. An overview of these
workflow systems is presented in [20].

The research work on workflow management systems on
the Cloud has been started. A well-known project is the
Cloudbus Toolkit [21] that defines a complete architecture
for creating market-oriented Clouds. A workflow engine is
also mentioned in the designed architecture and described
in detail in [22]. The authors analyzed the requirement and
changes needed to be incorporated when moving scientific
workflows to Clouds. They also described the visions and
inherent difficulties when a workflow involves various Cloud
services. The work presented in this paper aims at a proto-
typical implementation of a workflow engine that executes
a workflow composed of different Cloud services, because
such a tool is currently still not available. The goal is to
simply provide a new functionality rather than to investigate
a comprehensive solution.

III. A RCHITECTUREDESIGN

Grid Computing has been investigated for more than a
dozen of years and established standards. Cloud Computing,
in contrast, is a novel technology and has not been standard-
ized. The specific feature of each Cloud brings additional
challenges to implementing a workflow engine on Clouds.

A. Design Challenges

Grid workflows may be executed in several resource
centers but the involved resources are contained in a single
Grid infrastructure and hence can be accessed with the
same interface. Cloud workflows, however, run usually on
different Clouds.

Figure 1 shows a sample scenario of running workflows
on Clouds. While some tasks may be executed on the same
Cloud, e.g., Cloud C1, some others may run on different
Cloud platforms. The data are transferred from one Cloud
to another in order to deliver the output of one task to
other tasks. Unfortunately, different Clouds use also different
data format. Furthermore, existing Clouds have their own
access interfaces. A standard, called Open Cloud Computing
Interface (OCCI) [23], has been proposed but no implemen-
tation is currently available. To link the services of different

C6

C1

C2 C3 C4

C5

Figure 1. A sample execution scenario of Cloud workflows.

 Mediator

 Cloud API
Example: RunNode(User, ResourceID)

RunServer(UserID, RamSize, CPUCount)

StartNode(UserHandle, NodeHandle, ImageHandle)

Access Interface

 Cloud A

Workflow Runtime

 Cloud B

Access Interface

Figure 2. Software architecture of the workflow engine.

Clouds, an abstraction layer is required for providing an
identical view with the data and interfaces of the target
Cloud infrastructures.

Additionally, the service price varies across Cloud
providers. Cloud users usually expect an optimal perfor-
mance vs. cost tradeoff: i.e., acquiring the best service with
the lowest payment. While increasing Cloud infrastructures
are emerging, there may be several choices to run a workflow
task. A prediction model, which is capable of estimating the
performance and cost of an execution on a specific Cloud,
can help users select the best Cloud for their tasks.

Based on the aforementioned observations, we designed
a software architecture for the proposed Cloud workflow
engine and defined a performance-cost model. The following
two subsections give some details.

B. Software Architecture

Figure 2 demonstrates the software architecture of the pro-
posed workflow engine for Cloud Computing. An important
component in the architecture is the Cloud abstraction layer,
shown in the middle of the figure. The task of this layer is
to implement a unified API for accessing different Clouds.
The runtime environment of the workflow engine uses this

2

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 12 / 237

API to run the tasks in a workflow.
The abstraction layer defines common functions for Cloud

activities. It also contains a mediator that translates thefunc-
tions in the unified API to concrete calls to the underlying
Cloud platforms. For example, the function RunNode() is
provided for running a virtual machine instance on any IaaS-
featured Cloud. During the runtime the mediator replaces
the function by a Cloud specific one, in this example, either
StartNode for Cloud A or RunServer for Cloud B. It also
maps the function parameters in the functions of the unified
API to the functions of the APIs of individual Clouds. Fur-
thermore, the mediator handles the authentication/security
issues.

C. Prediction Model

Cloud users not only take care of the execution perfor-
mance but pay more attention to the payment for using
resources on the Clouds. As an initial design, we bring the
two most important metrics, application execution time and
the cost, into the prediction model. Workflows in this work
are defined as: A workflow is comprised of several tasks,
each is combined with an application/software that is either
executed on an IaaS-Cloud or hosted as a Web service on a
SaaS/PaaS-Cloud.

The execution time of a workflow (EoW in short) can be
calculated with the following mathematical form:

EoW = EoT1 + DT1 + EoT2 + DT2 + + EoTn

whereEoTi is the execution time of taski andDTi is the
time for transferring data fromTi to Ti+1. Note that we
ignore the time to start a service on the Cloud as well as
data transfers from and back to the customer environment.

The execution time of a single task depends on the
features of the host machine on which the task is running.
Roughly, it can be presented with:

EoT = f(Scomp, Fcpu, Smem, SI/O)

where the parameters are size of the computation, frequency
of CPU, size of memory and cache, and size of input/output
data. For parallel applications, an additional parameter,the
communication speed, has to be considered.

The price of a service on a Cloud is usually determined by
the node type and the location of the resource. Each Cloud
provider maintains a price table, where concrete payment (in
US$ per hour) is depicted. Based on this table, we calculate
the cost of a workflow task with:

CoT = f(EoT, $/h)

The cost of executing a workflow is then calculated with:

CoW = CoT1 + CoT2 + + CoTn

The functions for computing the execution time of a
task can be designed differently with a tradeoff between
complexity and accuracy. We implemented a simple model,
which is detailed in the following section.

IV. PROTOTYPICAL IMPLEMENTATION

Our initial implementation of a Cloud workflow manage-
ment system focused on the following components:

• Cloud abstraction
• Runtime execution environment
• Prediction model

A. Cloud Abstraction

To run a workflow on diverse Clouds, an abstraction layer
is required for the purpose of hiding the different access
interface each Cloud presents to the users. We use jClouds
[24] as the base of this work. jClouds provides a framework
for transferring programs and their data to an IaaS-Cloud
and then starting an instance to execute the program on the
Cloud. The current release of jCloud can connect several
IaaS-Clouds including Amazon EC2.

jClouds defines an API for accessing the underlying
IaaS platforms. For SaaS/PaaS-featured Clouds, however,
there exists currently no implementation for an abstraction
layer. Our main task in extending jClouds is to develop an
S+P abstraction that interacts with SaaS-featured and PaaS-
featured Clouds.

The S+P abstraction contains two kinds of functions,
GET and POST, for transferring data and service requests.
Their input and output are defined in XML documents. This
is identical to all Clouds. Each Cloud, however, requires
specific input and output formats as well as different pa-
rameters for service requests. Our solution is to use XSL
Transformation (XSLT) [25] to map the input and output of
the service functions to the required data format and service
parameters.

XSLT is a part of the Extensible Stylesheet Language
(XSL) family and often adopted to transform XML docu-
ments. An XSLT file describes templates for matching the
source document. In the transformation process, XSLT uses
XPath, an interface for accessing XML, to navigate through
the source document and thereby to extract information or to
combine/reorganize the separate information elements. For
this work an XSLT document is introduced for some data
formats, like SOAP. For others, such as binary and JSON
(JavaScript Object Notation), a data transformation is not
needed.

The process of invoking a SaaS or PaaS service with the
developed S+P abstract contains the following steps:

• Processing the input data of the service request.
• Constructing a URL for the service. Information about

Cookies, SOAP actions and other parameters, is con-
tained in the head of the protocol (HTTP), while the
content of the protocol defines the request.

• A service request is sent to the aforementioned URL,
together with the data.

• The results of the service are downloaded as raw data.
For the data formats like SOAP, where the results are

3

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 13 / 237

SaaS

T1 T2 T3 T4 T5

IaaS SaaS IaaS IaaS

Figure 3. A simple Cloud workflow.

coded, an XSLT document is defined to extract the
useful information.

B. Workflow Execution

In order to allow an easier understanding of the tasks
for a Cloud workflow execution engine, we take a simple
workflow as an example. Figure 3 demonstrates the sample
workflow consisting of five tasks, T1 to T5, which are
combined through a respective data flow. A task can be a
program or an available Web service on a SaaS or PaaS
Cloud. For the former, the program is executed on an IaaS
Cloud, while for the latter the Cloud provides resources for
running the software. The workflow and its tasks are defined
by the user in an XML file. .

The workflow execution engine is responsible for running
each task on the selected Cloud, transferring the result of one
task to its successor, and downloading the final results to the
user. The first job is performed within a single Cloud and
contains the following steps, which are all covered by the
Cloud abstraction described above:

• Transferring data (Program or service parameters) to
the target Cloud.

• Executing the program on an IaaS Cloud or invoking
the Web service on the SaaS or PaaS Cloud. In the case
of IaaS, a virtual machine instance has to be started
and some scripts are executed for configuration and
program installation.

• Extracting the results out of the Cloud.

Another task of the workflow runtime engine is to deliver
the output of one task to the next task as input. This
involves an inter-Cloud communication. We implemented
mechanisms for the following data transfer:

• IaaS to SaaS/PaaS: We use SSH to transfer data from
the IaaS node to the local host and then use HTTP to
deliver the data further to the SaaS/PaaS request;

• SaaS/PaaS to SaaS/PaaS: Data are extracted from the
HTTP stream, stored temporally on the host, and then
applied to the next HTTP request;

• SaaS/PaaS to IaaS: Locally storing the data, which
are again extracted from an HTTP stream, and then
transferring them to the IaaS node via SSH;

• IaaS to IaaS: We transfer the data directly from one
IaaS node to the other that is potentially located on a
different Cloud. This is an optimization for removing
the overhead caused by an intermediate storage.

Finally, the result of the entire execution is downloaded
to the user or stored on the last Cloud.

C. Performance & Cost Prediction

The proposed prediction model, as described in the pre-
vious section, involves several hardware parameters that can
be only acquired at the runtime by accessing the Cloud
resources. For the prototypical implementation, we devel-
oped a simple model without using the runtime resource
information of the underlying infrastructures.

Our model is based on the execution history of similar
tasks, which are tasks executing the same program. The
execution history is stored in a user database, which contains
the following main data structures:

• node class: describes a computing node with node ID,
node name, Cloud name, payment cycle, and startup
time.

• execution: describes an execution of a task on a
node with several attributes including program name,
node class, size of I/O, and execution time.

• node price: gives the per-cycle-price of the computing
nodes.

• node location: gives the country and continent the node
is located.

For each task in a new user-defined workflow, the potential
execution time is calculated for all registered Clouds and
their associated computing nodes. The payment is then
calculated according to the price published by the Cloud
providers. The first five{Cloud, node} pairs with the best
performance vs. cost tradeoff are shown to the users to help
them select the optimal target platforms.

We use the following algorithm to predict the execution
time of a new task presented witht(p,s), where the first
attribute is the program to be executed ands is the size of
the input data.

First, the average execution time of the program on a node
ns is calculated with

t(p,ns) =

n∑

i=1

ti(p,ns,si)

n

whereti(p,ns,si) is the time measured with the recorded
ith execution of programp on nodens with a data size ofsi.
Here,t(p,ns) is associated with the average data sizes(p,ns),
which is calculated in a similar way. The execution time of
the new taskt(p,s) can then be estimated with

t(p,s) =
s

s(p,ns)
· t(p,ns) · Wdata

We introduce a weight variableWdata to represent the
influence degree of the input size on the execution time.

4

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 14 / 237

Table I
EXPERIMENTAL RESULTS WITH THE3D RENDER WORKFLOW(85 CAMERA POSITIONS).

Task Node Execution time Performance vs. Cost
Measured Predicted Difference (%)

m1.small 145 138 -4.8 12.4
3dscenetopictures c1.medium 56 52 -7.1 19.03

m1.large 48 42 -12.5 17,97
m1.small 59 48 -18.6 5.01

picturetovideo c1.medium 47 37 -21.2 15.97
m1.large 44 36 -18.2 14.96

Table II
EXPERIMENTAL RESULTS WITH THE WORKFLOW OF SYNCHRONIZING A FOUR MINUTES VIDEO.

Task Node Execution time Performance vs. Cost
Measured Predicted Difference (%)

m1.small 665 688 3.4 168.04
videototext c1.medium 341 355 4.1 116.3

m1.large 257 271 5.4 87.2
translatejatoen 45 40 -11.1 0

m1.small 26 22 -15.4 1.87
texttospeech c1.medium 22 20 -9.1 7.47

m1.large 19 17 -10.5 6.46
m1.small 89 104 16.8 7.6

jointovideo c1.medium 87 94 8.04 29.6
m1.large 97 75 -12.4 33.02

V. EVALUATION RESULTS

To evaluate the developed framework, several workflows
were tested. In this section, we present the results with two
examples. The first workflow processes 3D scenes with a
result of creating a video. The second workflow performs
film synchronization whereby to translate the spoken text
from Japanese to English.

The first workflow contains two main tasks,3dscene-
topictures(the raytracer) andpicturetovideo. The raytracer
acquires a scene file and a camera file as input and splits
the scene into single pictures based on the position defined
in the camera file. The single pictures are then processed by
the second task to produce a continuous video. We apply
the Tachyon [26] raytracer for the first task, which needs
an MPI cluster on an IaaS Cloud because the software is
parallelized with MPI. To combine the pictures to a video,
the program FFmpeg [27] is applied. We run this task on
a single IaaS node. Hence, the first workflow involves only
IaaSs.

The second workflow is comprised of four components:
the language identifier (taskvideototext), a translator (task
translatejatoen), the text synthesizer (tasktexttospeech), and
the taskjointovideo. The language identifier acquires a video
file as input and outputs its text in Japanese. The output is
then delivered to the language translator, where an English
text is produced. In the following, the text synthesizer
converts the text to speech, which is combined with the video
via the last task of the workflow. We apply the language
identifier Julius [28] to process the audio that is extracted
from the video by FFmpeg. In order to speed up the process,
an audio is first partitioned and the partitions are then

processed in parallel. Hence, an MPI cluster is required for
this task. For language translation, the translation service
of Google is applied. In order to model a SaaS/PaaS to
SaaS/PaaS data transfer and to verify our Cloud abstraction,
the Japanese text is first translated to German and then to
English. The tasktexttospeechis implemented using the
speech synthesizer eSpeak [29]. Finally, the aforementioned
FFmpeg program combines the audio with the video.

For the experiments we requested an account on EC2.
The test results are shown in Table I and Table II for each
workflow. The tables show the execution time of tasks of a
single workflow on different nodes of EC2. In the case of
Google, the Web service is executed on a Google machine,
which cannot be specified by the user.

The execution time of a task is presented with the
measured time and the predicted one, where the former
was acquired at runtime and the latter was calculated using
the developed prediction model. It can be seen that the
accuracy of our model varies between the tasks, where the
value with the second workflow is relative better. For the
3D render, the model underestimates the execution time in
most cases, while an alternating behavior can be seen with
the second workflow. Altogether, we achieved the best case
with a difference of 3.4% between the real execution time
and the predicted one, while the worse case shows a value
of -21.2%. The difference is caused by the fact that the
time for executing a program can vary significantly from
one execution to the other, even though the executions are
performed successively. This indicates that a more accurate
model is required for a better prediction, which shall be our
future work.

5

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 15 / 237

The values in the last column of the tables are calculated
by multiplying the real execution time by the payment. It
is expected that both the execution time and the payment
are low. Hence, we use the values in the last column to
represent the performance vs. cost tradeoff, where a lower
value indicates a better behavior. Observing Table I it can
be seen that the nodes m1.small have a better behavior. This
may be associated with the concrete tasks, which do not
demand a high computation capacity. With larger programs,
e.g., the taskvideototextin the second workflow, a node
with higher capacity, m1.large in this case, behaves better.
However, the best choice is to use the free services provided
by some Clouds, such as the translation service on Google.

VI. CONCLUSIONS

This paper described a workflow engine, which are de-
signed and implemented for Cloud Computing. To enable
the execution of a service workflow we developed a Cloud
abstraction that mediates between different Cloud platforms.
We implemented a runtime engine to execute the single tasks
in the workflow and transfer data among them. Additionally,
a prediction model was designed to estimate the execution
time of the tasks on different Cloud nodes. Currently we
implemented a simple model that will be improved in the
next step of this work. Furthermore, we plan to develop a
search engine that automatically detects Cloud services for
a user-specified task. A graphical interface is also planned
to allow the user to define the workflows in a more intuitive
way. In addition, the workflow engine will be extended to
handle the exception/errors of the Cloud services.

REFERENCES

[1] “Amazon Elastic Compute Cloud,” [Online], June 2011, http:
//aws.amazon.com/ec2/.

[2] “Simple Storage Service,” [Online], June 2011, http://aws.
amazon.com/s3/.

[3] L. Wang, M. Kunze, and J. Tao, “Performance evaluation of
virtual machine-based Grid workflow system,”Concurrency
and Computation: Practice & Experience, vol. 20, pp. 1759–
1771, October 2008.

[4] P. Mell and T. Grance, “The NIST Definition
of Cloud Computing,” [Online], January 2011,
http://csrc.nist.gov/publications/drafts/800-145/
Draft-SP-800-145cloud-definition.pdf.

[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-
source Cloud-computing System,” inProceedings of Cloud
Computing and Its Applications, October 2008. [Online].
Available: http://eucalyptus.cs.ucsb.edu/wiki/Presentations

[6] “Google App Engine,” [Online], June 2011, http://code.
google.com/appengine/.

[7] “Windows Azure Platform,” [Online], June 2011, http://www.
microsoft.com/windowsazure/.

[8] B. Asvija, K. V. Shamjith, R. Sridharan, and S. Chattopad-
hyay, “Provisioning the MM5 Meteorological Model as Grid
Scientific Workflow,” in Proceedings of the International
Conference on Intelligent Networking and Collaborative Sys-
tems, 2010, pp. 310–314.

[9] G. Fox and D. Gannon, “Special Issue: Workflow in Grid
Systems,”Concurrency and Computation: Practice and Ex-
perience, vol. 18, no. 10, pp. 1009–1019, 2006.

[10] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computingand
Grid Computing 360-Degree Compared,” inGrid Computing
Environments Workshop, 2008. GCE’08, 2008, pp. 1–10.

[11] WLCG, “Worldwide LHC Computing Grid,” [Online], June
2001, http://lcg.web.cern.ch/lcg/.

[12] P. H. Beckman, “Building the TeraGrid,”Philosophical trans-
actions - Royal Society. Mathematical, physical and engineer-
ing sciences, vol. 363, no. 1833, pp. 1715–1728, 2005.

[13] EGEE, “Enabling Grids for E-sciencE,” [Online], June 2011,
project homepage: http://www.eu-egee.org/.

[14] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr,
and H. L. Truong, “ASKALON: a tool set for cluster and
Grid computing,”Concurrency and Computation: Practice &
Experience, vol. 17, pp. 143–169, February 2005.

[15] M. Riedel, D. Mallmann, and A. Streit, “Enhancing Scientific
Workflows with Secure Shell Functionality in UNICORE
Grids,” in Proceedings of the IEEE International Conference
on e-Science and Grid Computing. IEEE Computer Society
Press, December 2005, pp. 132–139.

[16] D. Barseghian, I. Altintas, M. B. Jones, D. Crawl, N. Potter,
J. Gallagher, P. Cornillon, M. Schildhauer, E. T. Borer, E. W.
Seabloom, and P. R. Hosseini, “Workflows and extensions to
the Kepler scientific workflow system to support environmen-
tal sensor data access and analysis,”Ecological Informatics,
vol. 5, pp. 42–50, 2010.

[17] G. von Laszewski, K. Amin, M. Hategan, N. J. Z. S. Hampton,
and A. Rossi, “GridAnt: A Client-Controllable Grid Workflow
System,” in37th Hawaii International Conference on System
Science. IEEE CS Press, January 2004.

[18] S., D. Karastoyanova, and E. Deelman, “Bridging the Gap
between Business and Scientific Workflows: Humans in the
Loop of Scientific Workflows,” inIEEE International Con-
ference on eScience, 2010, pp. 206–213.

[19] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “Grid-
Flow:Workflow Management for Grid Computing,” inPro-
ceedings of the International Symposium on Cluster Comput-
ing and the Grid, May 2003, pp. 198–205.

[20] J. Yu and R. Buyya, “A Taxonomy of Workflow Management
Systems for Grid Computing,”Journal of Grid Computing,
vol. 3, no. 3-4, pp. 171–200, September 2005.

[21] R. Buyya, S. Pandey, and C. Vecchiola, “Cloudbus Toolkit
for Market-Oriented Cloud Computing,” inProceeding of the
1st International Conference on Cloud Computing, December
2009, pp. 978–642.

[22] S. Pandey, D. Karunamoorthy, and R. Buyya,Cloud Comput-
ing: Principles and Paradigms. Wiley Press, February 2011,
ch. 12, pp. 321–344.

[23] “Open Cloud Computing Interface,” [Online], June 2001,
http://occi-wg.org/.

[24] “jclouds,” [Online], June 2001, http://www.jclouds.org/.
[25] M. Kay, XSLT 2.0 Programmer’s Reference. Wrox, 3 edition,

August 2004.
[26] J. Stone, “An Efficient Library for Parallel Ray Tracingand

Animation,” In Intel Supercomputer Users Group Proceed-
ings, Tech. Rep., 1995.

[27] “FFmpeg,” [Online], June 2001, http://www.ffmpeg.org/.
[28] “Open-Source Large Vocabulary CSR Engine Julius,” [On-

line], June 2001, http://julius.sourceforge.jp/enindex.php.
[29] “eSpeak text to speech,” [Online], June 2001, http://espeak.

sourceforge.net/.

6

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 16 / 237

FCM: an Architecture for Integrating
IaaS Cloud Systems

Attila Csaba Marosi, Gabor Kecskemeti, Attila Kertesz, Peter Kacsuk
MTA SZTAKI

Computer and Automation Research Institute
of the Hungarian Academy of Sciences
H-1528 Budapest, P.O.Box 63, Hungary

Email: {atisu, kecskemeti, keratt, kacsuk}@sztaki.hu

Abstract—Cloud Computing builds on the latest achieve-
ments of diverse research areas, such as Grid Computing,
Service-oriented computing, business processes and virtu-
alization. In this paper, we reveal open research issues by
envisaging a federated cloud that aggregates capabilities
of various IaaS cloud providers. We propose a Federated
Cloud Management architecture that acts as an entry point
to cloud federations and incorporates the concepts of meta-
brokering, cloud brokering and on-demand service deploy-
ment. The meta-brokering component provides transparent
service execution for the users by allowing the system to
interconnect the various cloud broker solutions available
in the system. Cloud brokers manage the number and the
location of the utilized virtual machines for the received
service requests. In order to fast track the virtual machine
instantiation, our architecture uses the automatic service
deployment component that is capable of optimizing service
delivery by encapsulating services as virtual appliances
in order to allow their decomposition and replication
among the various IaaS cloud infrastructures. Our solution
is able to cope with highly dynamic service executions
by federating heterogeneous cloud infrastructures in a
transparent and autonomous manner.

Keywords—cloud federation; cloud brokering; IaaS; vir-
tual appliance.

I. INTRODUCTION

Highly dynamic service environments [1] require a
novel infrastructure that can handle the on demand de-
ployment and decommission of service instances. Cloud
Computing [2] offers simple and cost effective outsourc-
ing in dynamic service environments and allows the con-
struction of service-based applications extensible with
the latest achievements of diverse research areas, such as
Grid Computing, Service-oriented computing, business
processes and virtualization. Virtual appliances (VA)
encapsulate metadata (e.g., network requirements) with
a complete software system (e.g., operating system,
software libraries and applications) prepared for exe-
cution in virtual machines (VM). Infrastructure as a
Service (IaaS) cloud systems provide access to remote

computing infrastructures by allowing their users to in-
stantiate virtual appliances on their virtualized resources
as virtual machines.

Nowadays, several public and private IaaS systems
co-exist and to accomplish dynamic service environ-
ments users frequently envisage a federated cloud that
aggregates capabilities of various IaaS cloud providers.
These IaaS systems are either offered by public ser-
vice providers (like Amazon [3] or RackSpace [4]) or
by smaller scale privately managed infrastructures. We
propose an autonomic resource management solution
that serves as an entry point to this cloud federation
by providing transparent service execution for users.
The following challenges are of great importance for
such a mediator solution: varying load of user requests,
enabling virtualized management of applications, estab-
lishing interoperability, minimizing Cloud usage costs
and enhancing provider selection.

This paper proposes a layered architecture that in-
corporates the concepts of meta-brokering, cloud bro-
kers and automated, on-demand service deployment.
The meta-brokering component allows the system to
interconnect the various cloud brokers available in the
system. The cloud broker component is responsible for
managing the virtual machine instances of the particular
virtual appliances hosted on a specific infrastructure as
a service provider. Our architecture organizes the virtual
appliance distribution with the automatic service deploy-
ment component that can decompose virtual appliances
to smaller parts. With the help of the minimal man-
ageable virtual appliances the Virtual Machine Handler
rebuilds these decomposed parts in the IaaS system
chosen by the meta-broker. As a result, the cloud broker
component uses the VM Handler to maintain the number
of virtual machines according to the demand.

Related works have identified several shortcomings
in the current cloud infrastructures [5]: e.g., feder-
ated clouds will face the issue of scalability and self-

7

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 17 / 237

management similarly to Grid systems, or users of the
cloud systems should be in control of their computing
costs. We propose an architecture that aims at both
of these problems by allowing users to utilize meta-
brokering between public and private cloud systems as
a result lowering their operation costs. Our architecture
also handles the issue of scalability by offering the cloud
brokers that manage the virtual machines according to
the actual demands of the user applications.

This paper is organized as follows: first, we introduce
the related research results in Section II. Then, we
discuss an advanced use case in Section III that involves
our proposed architecture and discusses its advantages in
contrast to previous research results. Next, we detail the
operational roles of the brokering components in our ar-
chitecture in Section III-A and Section III-B. Afterwards,
in Section IV, we discuss an optimization approach to
rebuild virtual appliances within the virtual machine
that is used to execute them. Finally, we conclude our
research in Section V.

II. RELATED WORK

Matthias Schmidt et al. [6] investigate different strate-
gies for distributing virtual machine images within a
data center: unicast, multicast, binary tree distribution
and peer-to-peer distribution based on BitTorrent. They
found the multicast method the most efficient, but in
order to be able to distribute images over network
boundaries ("cross-cloud") they choose BitTorrent. They
also propose to use layered virtual machine images
for virtual appliances consisting of three layers: user,
vendor and base. By using the layers and a copy-on-
write method they were able to avoid the retransmission
of images already present at the destination and thus
decrease instantiation time and network utilization. The
authors only investigated distribution methods within the
boundaries of a single data center, going beyond that
remained future work.

There are several related works focusing on providing
dynamic pool of resources. Paul Marshall et al. [7]
describe an approach for developing an "elastic site"
model where batch schedulers, storage and web services
can utilize such resources. They introduce different ba-
sic policies for allocating resources, that can be "on-
demand" meaning resources are allocated when a service
call or task arrives, "steady stream" assumes steady uti-
lization, thus leaves some elastic resources continuously
running, regardless of the (temporary) shortage of tasks,
or "bursts" for fluctuating load. They concentrate on
dynamically increasing and decreasing the number of
resources, but rely on third party logic for balancing load
among the allocated resources. Constantino Vázquez et

al. [8] are building complex grid infrastructures on top
of IaaS cloud systems, that allow them to adjust the
number of grid resources dynamically. They focus on
the capability of using resources from different cloud
providers and on the capability of providing resources for
different grid middleware, but meta-scheduling between
the utilized infrastructures and developing a model, that
considers the different cloud provider characteristics is
not addressed.

In 2009, Amazon Web Services launched Amazon
CloudWatch [9], that is a supplementary service for
Amazon EC2 instances that provides monitoring services
for running virtual machine instances. It allows to gather
information about the different characteristics (traffic
shape, load, disk utilization, etc.) of resources, and based
on that users and services are able to dynamically start
or release instances to match demand as utilization
goes over or below predefined thresholds. The main
shortcoming is that this solution is tied to a specific IaaS
cloud system and introduces a monetary overhead, since
the service charges a fixed hourly rate for each monitored
instance.

Mohsen Amini et al. [10] are focusing on so called
marketing-oriented scheduling policies, that can provi-
sion extra resources when the local cluster resources
are not sufficient to meet the user requirements. Former
scheduling policies used in grids are not working effec-
tively in cloud environments, mainly because Infrastruc-
ture as a Service providers are charging users in a pay-
as-you-go manner in an hourly basis for computational
resources. To find the trade-off between to buy acquired
additional resources from IaaS and reuse existing lo-
cal infrastructure resources he proposes two scheduling
policies (cost and time optimization scheduling policies)
for mixed (commercial and non-commercial) resource
environments. Basically two different approaches were
identified on provisioning commercial resources. The
first approach is offered by the IaaS providers at re-
source provisioning level (user/application constraints
are neglected: deadline, budget, etc.), the other approach
deploys resources focusing at user level (time and/or cost
minimization, estimating the workload in advance, etc.).

III. FEDERATED CLOUD MANAGEMENT
ARCHITECTURE

Figure 1 shows the Federated Cloud Manage-
ment (FCM) architecture and its connections to the
corresponding components that together represent an
interoperable solution for establishing a federated cloud
environment. The FCM targets the problem area outlined
in the Introduction, and provides solutions for most of
the listed open issues. In the following, we exemplify

8

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 18 / 237

the interaction of the main components of this solution
through a low level use case.

In this scenario we restrict our solution to sup-
port standard stateless web services described with
WSDL [11]. Using this solution, users are able to execute
services deployed on cloud infrastructures transparently,
in an automated way. Virtual appliances for all services
should be stored in a generic repository called FCM
Repository, from that they are automatically replicated
to the native repositories of the different Infrastructure
as a Service cloud providers.

When a user sends a service call to the system,
he/she submits a request to the “Generic Meta-Broker
Service” (GMBS) specifying the requested service with
a WSDL, the operation to be called, and its possible
input parameters. The GMBS checks if the service has
an uploaded VA in the generic repository, then it selects a
suitable CloudBroker for further submission. The match-
making is based on static data gathered from the “FCM
Repository” (e.g., service operations, WSDL), and on
dynamic information of special deployment metrics gath-
ered by the CloudBrokers. Currently we use the average
VA deployment time and the average service execution
time for each VA. VA deployment time assumes that the
native repository already has the requested VA, thus in-
cludes only the service provision time on a specific IaaS
cloud. The role of GMBS is to manage autonomously
the interconnected cloud infrastructures with the help of
the CloudBrokers by forming a federation.

Each “CloudBroker” has an own queue for storing
the incoming service calls (called Q1 and Q2 in Fig-
ure 1), and manages one virtual machine queue for each
VA (V Ax → V MQx). Virtual machine queues represent
the resources that currently can serve a virtual appliance
specific service call. The main goal of the CloudBroker is
to manage the virtual machine queues according to their
respective service demand. The default virtual machine
scheduling is based on the currently available requests
in the queue, their historical execution times, and the
number (n, m, o, p) of running VMs. The secondary task
of the CloudBroker involves the dynamic creation and
destruction of the various V MQs.

Virtual Machine Handler (“VM Handler”) components
are assigned to each virtual machine queue. These
components process the virtual machine creation and
destruction requests placed in the queue. The requests are
translated and forwarded to the corresponding IaaS sys-
tem (Clouda). This component is a cloud infrastructure-
specific one, that uses the public interface of the man-
aged infrastructure.

Independently from the virtual machine scheduling

process the CloudBroker also handles the queue of
the incoming service calls. As a result, these calls are
dispatched to the available VMs created in the previously
discussed manner.

In order to optimize service executions in highly
dynamic service environments, our architecture orga-
nizes the virtual appliance distribution as a background
process with the automatic service deployment compo-
nent that can decompose virtual appliances to smaller
parts. With the help of the minimal manageable virtual
appliances (MMVA – further discussed in Section IV)
the Virtual Machine Handler is able to rebuild these
decomposed parts in the IaaS system on demand, that
results in faster VA deployment and in a reduced storage
requirement in the native repositories.

In the following, subsections we detail how resource
management is carried out in this architecture. At the
top-level, a meta-broker is used to select from the
available cloud providers based on performance metrics,
while at the bottom-level, IaaS-specific CloudBrokers are
used to schedule VA instantiation and deliver the service
calls to the clouds.

A. Top-level Brokering in FCM

As we already mentioned in the scenario discussed in
the previous section, brokering takes place at two levels
in the FCM architecture: the service call is first submitted
to the Generic Meta-Broker Service (GMBS – that is a
revised and extended version of the Grid Meta-Broker
Service described in [12]), where a top-level decision
is made to that cloud infrastructure the call should be
forwarded. Then the service call is placed in the queue
of the selected CloudBroker, where the bottom-level
brokering is carried out to select the VM that performs
the actual service execution. This bottom-level brokering
and the detailed introduction of the architecture of the
CloudBroker is discussed later in Section III-B.

Now, let us turn our attention to the role of GMBS.
An overview of its architecture is shown in Figure 2.
This meta-brokering service has five major components.
The Meta-Broker Core is responsible for managing the
interaction with the other components and handling user
interactions.

The MatchMaker component performs the scheduling
of the calls by selecting a suitable broker. This decision
making is based on aggregated static and dynamic data
stored by the Information Collector (IC) component in
a local database. The Information System (IS) Agent
is implemented as a listener service of GMBS, and it
is responsible for regularly updating static information
from the FCM Repository on service availability, and ag-
gregated dynamic information collected from the Cloud-

9

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 19 / 237

Clouda Cloudb

CloudBroker bCloudBroker a

Cloudb
VMQx

Cloudb
VMQy

Q2

Cloudb VM Handler

VMx
o

VMx
2

VMx
1

VMy
p

VMy
1

VMy
2

... ...

VAx VAy

Q1
Clouda
VMQx

Clouda
VMQy

VMx
n VMy

m

VAx VAy

VMx
2

VMx
1

Clouda VM Handler

VMy
1

VMy
2

... ...

ca
ll

N
ative

R
epositoryN

at
iv

e
R

ep
os

ito
ry

Generic Meta-Broker Service

Submit

FCM
Repository

VAx VAy...

re
pl

ic
at

e

call

submitsubmit
lookup

de
pl

oy
m

en
t m

et
ric

s deploym
ent m

etrics

Fig. 1. The Federated Cloud Management architecture

FCM
Repository

VAx VAy...

Information
Collector

BPDL list

IS Agent

Meta-Broker
Core

MatchMaker Invoker

User

Cloud
Broker

Cloud
Broker

Cloud
Broker

...

Service call
(+requirements) Call result

Fig. 2. The architecture of the Generic Meta-Broker Service

Brokers including average VA deployment and service
execution times. The Invoker component forwards the
service call to the selected CloudBroker and receives the
service response.

Each CloudBroker is described by an XML-based
Broker Property Description Language (BPDL) docu-

ment containing basic broker properties (e.g., name),
and the gathered aggregated dynamic properties. The
scheduling-related attributes are typically stored in the
PerformanceMetrics field of BPDL. More information
on this document format can be read in [12]. Namely,
the following data are stored in the BPDL of each
CloudBroker:

- Estimated availability time for a specific virtual
appliance in a native repository – collected from
the FCM Repository;

- average VA deployment time and average service
execution time for each VA – queried from the
CloudBroker;

The scheduling process first filters the CloudBro-
kers by checking VA availability in the native cloud
repository, then a rank is calculated for each broker
based on the collected static and dynamic data. Finally,
the CloudBroker with the highest rank is selected for
forwarding the service request.

B. CloudBroker

The CloudBroker handles and dispatches service calls
to resources and performs resource management within
a single IaaS system, it is an extended version of the

10

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 20 / 237

system described in [13].
The architecture of the CloudBroker is shown in

Figure 1. Its first task is to dynamically create or destroy
virtual machines (V M i

x) and VM queues (V MQx) for
the different used virtual appliances. To do that, first, the
VA has to be replicated to the native repository of the
IaaS system from the FCM Repository (an alternative
method is discussed in Section IV). Alongside the ap-
pliance, the FCM Repository also stores additional static
requirements about its future instances, like its minimum
resource demands (disk, CPU and memory), that are
needed by the CloudBroker. This data is not replicated
to the native repository, rather the FCM Repository is
queried.

A VM queue stores references to resources capable
of handling a specific service call, thus instances of
a specific VA. New resource requests are new entries
inserted into the queue of the appropriate VA, while
resource destruction requests are modification of entries
representing an already running resource. The entries
are managed by the VM Handler, that is a cloud fabric
specific component designed to interact with the public
interface of a single IaaS system. It simply translates
and forwards requests to the public interface of the
IaaS system (Clouda). Each VA contains a monitoring
component deployed, that allows the CloudBroker to
monitor the basic status (CPU, disk and memory usage)
of the running resources along the average deployment
time for each VA and average service execution times.
These data can be queried by the IS Agent of the GMBS.

The service call queue (Q1 and Q2) stores incoming
service requests and, for each request, reference to a
VA in the FCM Repository. There is a single service
call queue in each CloudBroker, while there are many
VM queues. If the native repository does not contain the
requested VA it is replicated first. Dynamic requirements
for the VA may be specified with the service call:

- Additional resources (CPU, memory and disk);
- an UUID, that allows to identify service calls orig-

inating from the same entity.

The UUID will allow to meet SLA constraints later,
e.g., to enforce a total cost limit on public clouds for
service calls of the entity, or to be in compliance with
deadlines. If any dynamic requirements are present the
CloudBroker treats the VA as a new VA type, thus
creating a new VM queue and starts a VM. The service
calls may now be dispatched to the appropriate VMs.
Most IaaS systems offer predefined classes of resources
(CPU, memory and disk capacity) not adjustable by the
user, in this case the CloudBroker will select the resource
class that has at least the requested resources available.

This may lead to allocating excess resources in some
cases (e.g., the resource class has twice the memory
requested to meet the CPU number requirement).

The CloudBroker also performs the scheduling of ser-
vice call requests to VA’s and the life-cycle management
of resources. Scheduling decision is made based on the
monitoring information gathered from the resources. If
the service request cannot be scheduled to any resource
the CloudBroker may decide to start a new VM capable
of serving the request. The decision is based on the
following:

- The number of running VM’s available to handle
the service call;

- the number of waiting service calls for the VA in
the service call queue;

- the average execution time of service calls;
- the average deployment time of VA’s;
- and SLA constraints (e.g., total budget, deadline);
VM decommission is also based on the above, but

the CloudBroker takes into account the billing period
of the IaaS system, shutdown is performed only shortly
before the end of the period with regard to the average
decommission time for the system.

IV. VIRTUAL APPLIANCE DELIVERY OPTIMIZATION

IaaS systems require virtual appliances to be stored in
their native repositories. Only those virtual appliances,
that were previously stored in these repositories, can
be used to instantiate virtual machines. Our architecture
allows users to upload their virtual appliances to the
FCM Repository that behaves as an active repository and
handles the distribution of the appliances to the native
repositories according to [14]. As an active repository,
the FCM repository identifies the common parts of the
appliances and decomposes them into smaller packages
that allow appliance delivery and rebuilding from mul-
tiple repositories.

Central virtual appliance storage would require the
VM Handler to first download the entire appliance from
the FCM repository to a native one, then instantiate
the appliance with the IaaS system. To avoid the first
transfer, but keep the convenience for the users of our
architecture, we have investigated options to rebuild vir-
tual appliances in already running virtual machines. We
have identified two distinct approaches for rebuilding:
(i) native appliance reuse, (ii) minimal manageable
virtual appliances. The first approach utilizes already
available virtual appliances in the native repositories and
extends them towards the required virtual appliance. In
this article, we do not aim at this approach because
it requires the investigation of the publicly available

11

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 21 / 237

appliances in order to find the appliance most suitable
for extension.

The second approach proposes the minimal manage-
able virtual appliance that we define as basic appliance
with the following three properties:

- Offers content management interfaces to add, con-
figure and remove new appliance parts.

- Offers monitoring interfaces to analyze the current
state of its instances (e.g., provide access to their
CPU load, free disk space and network usage).

- Optimally sized: only those files present in the
appliance that are required to offer their extensibility
with the previously mentioned interfaces.

As a result, our architecture only needs to replicate
the MMVAs to every native repository. If the FCM
repository identifies high demands for specific virtual
appliance parts, then the active repository functionality
automatically replicates the appliance to those IaaS sys-
tems where most requests were originated from.

Our VM Handler is prepared to control virtual ap-
pliance rebuilding using minimal manageable virtual
appliances. Consequently, the VM Handler applies a new
strategy when it receives a virtual appliance instantiation
request for a specific appliance that is not available
in the native repository. This strategy starts with the
instantiation of the MMVA. Next, the Handler waits until
the virtual machine of the MMVA has started up. Then,
it requests the content management interfaces to add the
parts of the specific appliance that were identified as
unique during the decomposition of the MMVA and the
specific appliance. As a result, the specific appliance is
rebuilt and ready to serve the scheduled service requests
in the virtual machine instantiated for the MMVA.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a Federated Cloud Man-
agement solution that acts as an entry point to cloud
federations. Its architecture incorporates the concepts of
meta-brokering, cloud brokering and on-demand service
deployment – their interaction is exemplified through
a low-level use case. The meta-brokering component
provides transparent service execution for the users by
allowing the system to interconnect the various cloud
broker solutions managed by aggregating capabilities
of these IaaS cloud providers. We have shown how
CloudBrokers manage the number and the location of the
utilized virtual machines for the various service requests
they receive. In order to fast track the virtual machine
instantiation, our architecture uses the automatic service
deployment component that is capable of optimizing
its delivery by decomposing and replicating it among

the various IaaS cloud infrastructures. Regarding future
works, we plan to investigate various scenarios that arise
during handling federated cloud infrastructures using the
FCM architecture (e.g., the interactions and interopera-
tion of public and private IaaS systems).

ACKNOWLEDGMENT

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube) and 261556 (EDGI).

REFERENCES

[1] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl, “A journey to highly dynamic, self-adaptive service-
based applications,” Automated Software Engg., vol. 15,
pp. 313–341, December 2008. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1459074.1459084

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599–616, June
2009.

[3] Amazon Web Services LLC, “Amazon elastic compute cloud,”
http://aws.amazon.com/ec2/, 2009.

[4] Rackspace Cloud, http://www.rackspace.com/cloud/.
[5] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,

“A break in the clouds: towards a cloud definition,” SIGCOMM
Comput. Commun. Rev., vol. 39, pp. 50–55, December
2008. [Online]. Available: http://doi.acm.org/10.1145/1496091.
1496100

[6] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben,
“Efficient distribution of virtual machines for cloud computing,”
in Proceedings of the 2010 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing, ser. PDP
’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 567–574. [Online]. Available: http://dx.doi.org/10.1109/PDP.
2010.39

[7] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using
clouds to elastically extend site resources,” in Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, ser. CCGRID ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 43–52. [Online].
Available: http://dx.doi.org/10.1109/CCGRID.2010.80

[8] C. Vázquez, E. Huedo, R. S. Montero, and I. M. Llorente,
“On the use of clouds for grid resource provisioning,” Future
Gener. Comput. Syst., vol. 27, pp. 600–605, May 2011. [Online].
Available: http://dx.doi.org/10.1016/j.future.2010.10.003

[9] Amazon CloudWatch, http://aws.amazon.com/cloudwatch/.
[10] M. A. Salehi and R. Buyya, “Adapting market-oriented schedul-

ing policies for cloud computing.”
[11] The World Wide Web Consortium, http://www.w3.org/TR/wsdl.
[12] A. Kertész and P. Kacsuk, “Gmbs: A new middleware

service for making grids interoperable,” Future Gener. Comput.
Syst., vol. 26, pp. 542–553, April 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2009.10.007

[13] A. C. Marosi and P. Kacsuk, “Workers in the clouds,” in PDP,
Y. Cotronis, M. Danelutto, and G. A. Papadopoulos, Eds. IEEE
Computer Society, 2011, pp. 519–526.

[14] G. Kecskeméti, G. Terstyánszky, P. Kacsuk, and Z. Németh,
“An approach for virtual appliance distribution for service
deployment,” Future Gener. Comput. Syst., vol. 27, pp. 280–289,
March 2011. [Online]. Available: http://dx.doi.org/10.1016/j.
future.2010.09.009

12

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 22 / 237

One Click to Build An On Demand Virtual Cluster in Cloud Web-based Operating

System with Dynamic Loading Prediction Scheduling Algorithm

Chang-Hsing Wu, Yi-Lun Pan, Hsi-En Yu, Hui-Shan Chen, and Ching-Wen Yu
Software Technology Division

National Center for High-Performance Computing

Hsinchu, Taiwan

E-mail：hsing@nchc.narl.org.tw, serenapan@nchc.narl.org.tw, yun@nchc.narl.org.tw, chwhs@nchc.narl.org.tw,

cwyu@nchc.narl.org.tw

Abstract—As virtualization technologies become more

prevalent, Cloud users usually encounter the problem of how

to build his/her own virtual cluster with a friendly user

interface for virtual resource management. To help resolving

this problem, an On Demand Virtual Cluster system in Cloud

Web-Based OS has been developed by the Pervasive

Computing Team at the National Center for

High-Performance Computing (NCHC). Through the On

Demand Virtual Cluster system, with a click, Cloud users can

customize and configure the specified virtual environment.

We embedded the On Demand Virtual Cluster system into the

Cloud WebOS, an extremely lightweight approach helping

users to access virtual computing resources. The Cloud

WebOS leverages virtualization techniques and cluster

scheduling policy, which is the proposed dynamic loading

prediction scheduling algorithm.

Keywords - Virtualization Techniques; WebOS; Virtual

Cluster; Cluster Scheduling Policy.

I. INTRODUCTION

 In Cloud computing environment, there are various
important issues, including information security, virtual
computing resource management, routing, fault tolerance,
and so on. Among these issues, the virtual computing
resource management has emerged as one of the most
important ones in the past few years. Currently, Cloud users
have to manually build specified virtual cluster with the
commend line mode in order to manage or generate virtual
resources. To improve this condition, an On Demand Virtual
Cluster system in Cloud WebOS (Web-Based Operating
System) platform has been developed by the Pervasive
Computing (PerComp) Team at the National Center for
High-Performance Computing (NCHC). On this platform,
Cloud users can build on demand virtual clusters with one
click.

 The Cloud WebOS platform provides a new service
paradigm [1]. The WebOS infrastructure offers a seamless
and unified access to geographical distributed resources
connected via Internet, and it can supply most basic
operating system services [2]. The proposed Cloud WebOS
platform adopts the Asynchronous JavaScript and XML
(AJAX) as a base. The major feature of this Cloud WebOS
platform embedded with the On Demand Virtual Cluster
system is that users can easily customize and configure their

virtual environment according to their needs. It also can seek,
diagnose, and monitor Cloud computing resources
automatically. Meanwhile, the PerComp Team developed
several Cloud widgets on the Cloud WebOS platform to
control virtual clusters and virtual machines.

 An efficient scheduling policy is indispensable,
especially for distributed computing and Cloud computing.
We designed an efficient scheduling policy, a dynamic
loading prediction scheduling (DLPS) algorithm. It predicts
loading of computing resources and makes the most adaptive
resources allocation. The PerComp Team not only built the
Cloud WebOS platform with the eyeOS [3] framework, but
also incorporated the mechanism of scheduling algorithm.

 In conclusion, the ultimate target of this research is to
find a solution for scientists/researchers to painlessly run
their jobs on Clouds. This research focuses on the
development of friendly user interface, automatically
dynamic allocation technique, integrated heterogeneous
computing resources, and computing results visualization.

 The rest of the paper is organized as follows. Section II
presents related works. In Sections III, we proposed the On
Demand Virtual Cluster system in Cloud WebOS and the
dynamic loading prediction scheduling algorithm (DLPS). In
Section IV, Cloud Widgets and experimental results are
presented. Finally, the conclusion and future research
directions are presented in Section V.

II. RELATED WORKS

A. Existing Web-based Operating System (Web OS)

Projects

Recently, a famous WebOS - Chrome OS, developed
based on AJAX technique [4]. It can be used to implement a
web application that communicates with a server in the
background, without interfering with the current state of the
page. The developments of Cloud WebOS platform via
AJAX technique become practicable. However, Chrome OS
does not provide on-demand applications and computing
services to users in Clouds.

A Web-based Operating System (WebOS) project started
at the University of California, Berkeley in 1996 as part of
Network of Workstations [4]. So far, there are several typical
commercial projects of WebOS, such as FlyakiteOSX [6],

13

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 23 / 237

Glide OS [7], XIN [8], and so on. All of these systems are
online OS with Ajax and PHP techniques. However, these
projects are not open source and lack of the management of
distributed computing resources. To meet the demand of
distributed computing resource management, the Cloud
WebOS platform is developed. This development follows the
spirit of open source, open standard, and GNU/GPL license.

B. Virtualization Technologies

Our research enhances the efficiency of job scheduling
and retains the execution of parallel computing jobs via
virtual technique. To implement virtualization technology, an
additional software layer, called a virtual machine monitor or
a hypervisor, has to be inserted between the existing
operating system and hardware to manage the resources and
virtual machines. The characteristics of virtualization
technology are described as the following:

 Utilization – better utilization means various
services run on one physical machine with multiple
virtual machines (VMs);

 Isolation - better isolation means a VM can halt and
catch fire without affecting the real host or other
running VMs;

 Flexibility - the ability of the virtualization
technologies to run platforms and operating systems
that are different from the host, good flexibility
means more choices for VM platforms and the
ability to run VMs with minimal modification;

 Manageability - availability of tools and APIs for
starting, stopping and moving VMs.

Generally, modern hypervisor implementations are
divided into two categories, including Host-based and
Bare-metal approaches. The host-based approach uses
modified operating systems to provide virtual machine
monitoring, such as Linux-VServer [9], Solaris Zones [10],
and Kernel-based Virtual Machine (KVM) [11]. On the other
hand, the bare-metal approach employs small-dedicated
hypervisors to directly run on physical machines. The
VMware ESX server [12], and the XenServer [13] are the
famous examples of the bare-metal approach.

 With success of the virtual technologies, we integrate
virtualization technology – KVM and WebOS. This research
comes up with a new and lightweight approach to access
virtual computing services via the On Demand Virtual
Cluster system.

III. PROPOSED ON DEMAND VIRTUAL CLUSTER SYSTEM IN

CLOUD WEBOS

A. Research Objective

 The key idea of Cloud Computing lies in its
component-based nature, which are reusability,
substitutability and user friendly. By integrating
virtualization technologies and WebOS, we provided a web
environment to access Cloud services via Cloud Widgets in
the Cloud WebOS. This progress helps to lower the barrier

for using Clouds. In order to develop an autonomic virtual
computing resources management system based on
decentralized resource discovery architecture, we
implemented the On Demand Virtual Cluster system in
Cloud WebOS. At the same time, an efficient scheduling
policy is also important. Therefore, the dynamic loading
prediction scheduling (DLPS) algorithm is used for the
scheduling of virtual cluster and physical cluster. It predicts
loading of computing resources and makes the most adaptive
resources allocation.

As the Figure 1, it shows a high level overview of the
Cloud WebOS. In the middle of this figure, when the Cloud
WebOS receives a Cloud job request from the users via the
web browser, and then the job will be sent to the fittest
virtual cluster in the backend to process via the On Demand
Virtual Cluster system. The system will help users to
generate the fittest virtual cluster and choose/allocate the
most adaptive physical resources with a graphical interface.

Figure 1. The Overview of Cloud WebOS Platform

B. Implementation and System Architecture

 In this project, we combine the WebOS platform with
Cloud computing resources to offer users a friendlier Cloud
environment. The system architecture of the On Demand
Virtual Cluster system in Cloud WebOS is sketched in the
Figure 2. In the Cloud WebOS, upon receiving a Cloud job
request from the end users via Web Browser, the system
acquires Cloud Services via Cloud Widgets, which in turn
connect the Image Creator Widget, Virtual Machine (VM)
Creator Widget, VM Monitor Widget, and VM Control
Widget, within On Demand Virtual Cluster system. Each of
Cloud Widgets is described in Section IV. The system helps
selecting the most adaptive computing resources to create
virtual clusters automatically based on the demands from
the end users. These Widgets of On Demand Virtual Cluster
system in Cloud WebOS also drive the Cloud middleware to
operate physical computing resources and storages.

14

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 24 / 237

Figure 2. The System Architecture of On Demand Virtual Cluster System
in Cloud WebOS

 Meanwhile, as the Figure 3 is shown, the end users
connect the Application Pool to get the software services,
such as information security and Bio simulation via Cloud
WebOS easily. After connecting Application Pool, the
Cloud WebOS also can integrate the public service provider,
such as Amazon EC2 [14] and so on. Upon receiving Cloud
job request via Cloud WebOS, the On Demand Virtual
Cluster system makes communication with Cloud
Middlewares, which are Data Broker, Monitoring &
Reporting, and Dynamic Provisioning. The Data Broker
collects data from the distributed physical sensors. The
Monitoring & Reporting takes responsible for monitoring
the status of physical machines and virtual machines.
Finally, the Dynamic Provisioning provides the capability of
resource allocation automatically, and the feature of DLPS
algorithm is activated at the same time. The DLPS
algorithm can improve the performance of the dynamic
scheduling over conventional scheduling policies.

Figure 3. The Application of On Demand Virtual Cluster System

 With On Demand Virtual Cluster system in Cloud
WebOS, users can create a dynamic HPC cluster consisting

of VMs. The scale of each virtual cluster can be determined
by user’s criteria. When user needs virtual cluster no longer,
the virtual cluster can be destroyed. Then the computing
resources are released. The whole operation can be
manipulated via web browser, because we use XML-RPC
based Application Programming Interface (API). Moreover,
there are two middlewares embedded into the proposed
Cloud WebOS, as the following shown: 1) Integration with
OpenNebula – OpenNebula is used as central cloud
management [15]. It is responsible for finding available
computing resources, creating VMs based on a selected
image, and deploying the image into the physical computing
resources. It also manages unique MAC address, IP address,
and virtual network (vNet) ID. Therefore, each user’s
cluster lives on its own vNet, in order to isolate the various
virtual clusters. 2) Batch System with Torque – It is used for
the scheduling of virtual cluster and physical cluster. The
DLPS algorithm is embedded with this resource manager,
Torque [16] in the Figure 4. This development not only
makes users submit job as usual via PBS_SERVER, but also
makes resource manager have additional capabilities of
loading prediction and job scheduling with virtual
technology. The detail explanation is in Section III-C.

Figure 4. The Scheduling Policy - DLPS in Cloud WebOS

C. Scheduling Policy - Dynamic Loading Prediction

Scheduling (DLPS) Algorithm in Cloud WebOS

The presented scheduling policy is called Dynamic
Loading Prediction Scheduling (DLPS) algorithm. It can
schedule the computing resources in Clouds and even
multiple clusters. The objective function of DLPS is
achieving the minimized makespan (defined in Definition 1).
Thus, we designed the following equation to describe the
objective function, as in (1).

)](s)(dMin[=M kk minmax*

 The above equation (1) is defined in Definition 2.

Definition 1: The completion time is defined as the time

from the job being assigned to one machine until the time

the job is finished. The complete time is also called

makespan time.

15

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 25 / 237

Definition 2: *M means the minimized makespan. In order

to predict precisely, there are two parameters - kd

and kS .

kd

is the maximum job ending time of the kth job, which

means the end time of job completed. And kS is the

minimum job submitting time of the kth job, which means

the time stamp when users submit the kth job.

The each step of DLPS algorithm is descried as the

following pseudo code in Figure 5.

Figure. 5 The Pseudo of DLPS

 The logical flow chart of the DLPS is illustrated as in
the Figure 6. First, the DLPS retrieves the information of
computing resources from the local queuing system, and
then filters out unsuitable resources with the adaptive
resource allocation function. After using adaptive resource
allocation function, DLPS compares free nodes with
required nodes. If current free nodes are enough, DLPS will
give higher weight (defined in Definition 3). Otherwise, the
following step enters the dynamic loading prediction
function with EstBacklog and minimum Job Expansion
Factor (defined in Definition 4 and Definition 5) methods to
predict which computing resources respond and execute job
quickly, and then calculate the weight (defined in Definition
6). Finally, the DLPS ranks all available resources and

selects the most appropriate resources to dispatch job and
generate virtual machines.

Definition 3: When free nodes fulfill required nodes, the

weight of kth job is designed as following:

capabilitynodesnodesk M)f/R(=Weight

Where nodesR means the number of required nodes,

nodesf means the number of free nodes, and capabilityM

means the capability of each computing resources. The
capability is based on static information, such as
High-Performance Linpack Benchmark results, and HPC
Challenge Benchmark.

Figure. 6 The Logical Flow Chart of DLPS

Definition 4: The EstBacklog means estimated backlog of

queued work in hours. The general EstBacklog form is

shown as the equation (2):

EBL (
QueuePS CPUAccuracy

TotalJobsCompleted
)

)
rocHoursDedicated

rocHoursAvailable3600rocHoursTotal
(

QueuePS is the idle time of queued jobs. CPUAccuracy is
the actual run time of job. TotalJobsCompleted is the
number of jobs completed. The Toatl ProcHours is the total
number of proc-hours required to complete running jobs.
The Available ProcHours is the total proc-hours available to
the scheduler. The last variable, Dedicated ProcHours, is
the total proc-hours made available to jobs.

Some of above values are from the system historical
statistic values of queuing system loading and the others are
from real-time queuing situation. The output is divided into
two categories, running and completed. The Running

16

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 26 / 237

statistics include information about the currently running
jobs. The completed statistics are compiled using historical
information from both running and completed jobs.
Therefore, the EBL can forecast the backlog of each
computing site with above information.

Definition 5: The job expansion factor subcomponent has

an effect similar to the queue time factor but favors shorter

jobs based on the requested wallclock run time. The job

expansion factor metric is calculated by the information

from local queuing system as described in the equation (3):

JEF
QueuedTimeRunTime

WallClockLimit

Definition 6: After getting EstBacklog and job expansion

factor, the metric is calculated by the following equation

(4):

TotalEBL

EBL
)1(

TotalJEF

JEF
Weight kk

k

The kWeight means the weight of the kth job.

TotalJEF

JEFk means the JEF of kth job divided by the Total

JEF.
TotalEBL

EBLk means the EBL of kth job divided by the

Total EBL. Where λ is the modulated parameter of system,
which can be obtained from numerous trials. The
EstBacklog can be respected the dynamic situation of
queuing system generally. Therefore, it always uses the
higher λ value. Consequently, we can use above parameters
to calculate the minimum time of total deliver and response
time.

IV. CLOUD WIDGETS/EXPERIMENTAL RESULTS

A. Cloud Widgets

 In addition to the basic Widgets, more advanced
Cloud Computing Widgets are attempted as well. We have
developed many Cloud Widgets with friendly graphical user
interface in WebOS. The kernel of the On Demand Virtual
Cluster system architecture consists of four Widgets,
including Image Creator Widget, VM Creator Widget, VM
Monitor Widget, and VM Control Widget. Users without
much learning effort can easily manage all of these widgets.

 The Image Creator Widget, in the Figure 7, is to
generate the customized base image and the
on-demand/specified applications from the end users’
requirements. This Widget provides a complete and
integrated HPC software stack that consists of operating
system, management tools, resource monitor, and even
commercial package, such as the Matlab. The VM Creator
Widget - with the profile of virtual cluster demanded by the
user provided, it will generate a specification, shown in the

Figure 8, which in turn is parsed by the VM Creator engine
to create specified virtual cluster on the physical computing
resources. Thus, after completing the profile of virtual
cluster, with a click, Cloud users can customize and
configure the specified virtual environment in real time.

Figure 7. Image Creator Widget

Figure 8. VM Creator Widget

In the Figure 9, the main task of the VM Monitor

Widget is to monitor the all the status of virtual machines,
Networks, and the physical hardware. The VM Monitor also
can show the current loading of physical machines, in the
Figure 10. The VM Control Widget provides users to access,
ssh, or operate virtual machines through Cloud visualizer, as
shown in the Figure 11 and Figure 12. We used above
Cloud Widgets to implement the following two customized
applications for biological simulation and information
security simulation. The F-motif Simulation Widget
provides specialized Cloud services to search and analyze
the sequence of gene in real time, in Figure 13. The other
customized Cloud Widget about information security is
called ICAS (IDS-log Cloud Analysis System) Widget. As
long as user selects the ICAS base image, the Hadoop DB
and virtual cluster are constructed automatically, and then
users can analyze the IDS-log as the Figure 14 shown.

Figure 9. VM Monitor Widget

17

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 27 / 237

Figure 10. VM Monitor Widget – The Current Loading of Physical

Machines

Figure 11. VM Control Widget Cloud Visualizer – Linux Booting Status

Figure12. VM Control Widget Cloud Visualizer – Windows 7 Booting

Status

Figure 13. F-motif Widget

Figure 14. ICAS Widget

B. Experimental Results

 The preliminaries of experiment are needed to set up,
including the multi-sites physical computing environment,
the virtual machine – KVM, Network Speed Test [17], and
Disk I/O test tool - bonnie++ [18]. As shown in Table I, we
list the summary environment characteristics of NCHC
computing resources.

TABLE I. SUMMARY ENVIRONMENT CHARACTERISTICS OF NCHC

COMPUTING RESOURCES

Resource CPU Model
Memory

(GB)

CPU

Speed

(MHz)

#Cores Nodes
Job

Manager

Snowfox

Intel(R)Xeon(R)

CPU 2.5GHz,

E5420

16 2500 112 14 Torque

Capri

Intel(R) Xeon(R)

CPU

E5620 , 2.40GHz

32 2400 232 29 Torque

There are three scenarios, including the performance of

Network I/O, Disk I/O, and the DLPS algorithm. Moreover,
in order to improve the performance, we use the Virtio
driver [19] in the virtual machines. Virtio driver provides
paravirtualized functions for network virtualization and disk
I/O virtualization. In Figure 15, we found the Network
speed is tackled about 166 Mb/s without Virtio, because the
I/O bottleneck is between virtual machine and hypervisor.
Therefore, the Virtio is activated in the On Demand Virtual
Cluster system. The performance of Network I/O is nearly
the same with native machine. In the performance of Disk
I/O scenario, we compared with Virtio and without Virtio.
With Virtio, it can be improved write performance about
120% and read performance about 20%, as the following
Figure 16 is shown.

The performance of DLPS algorithm is compared with
several algorithms, such as Round Robin, Short-Job-First
(SJF), Big-Job-First (BJF), and First-Come-First-Serve
(FCFS). We submitted testing jobs, which were generated
randomly with the synthetic models as the Figure 17 is
shown. The vertical axis is the value of min makespan
(seconds), and the horizontal axis is the number of jobs. The
makespan of DLPS algorithm is notably less than other
algorithms, especially when a huge number of jobs are
submitted. Therefore, the objective function of DLPS
approaches the minimized makespan. The dynamic loading
prediction characteristic of presented system is proved to be
better in this experiment.

18

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 28 / 237

Figure 15. The Performance of Network I/O

Figure 16. The Performance of Disk I/O

0

100

200

300

400

500

600

700

800

900

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

of Jobs

S
e
c

DLPS

Round-Robin

SJF

BJF

FCFS

Figure 17. Compare Makespan of DLPS with Other Algorithms

When a small number of jobs are submitted, the
efficiency of DLPS may be worse than other algorithms,
especially for SJF and FCFS. This situation is reasonable,
because small jobs are easy consumed by SJF and FCFS.
When the number of jobs is increasing, the developed DLPS
is absolutely better than SJF and FCFS, because the notable
drawback of SJF and FCFS happens, which the large
numbers of jobs are queued inefficiently in the local
scheduler of cluster. Comprehensively the above efficiency
figure, the best efficiency of DLPS occurs at full usage of
each cluster.

V. CONCLUSION AND FUTURE WORK

 The research – On-Demand Virtual Cluster system in
Cloud WebOS, provides Cloud users with an interface that
is user-friendly, more straightforward, and more efficiency.
The On Demand Virtual Cluster System in Cloud WebOS
not only helps user to build virtual cluster easily and
automatically, but also provides different varieties of
computing environment such as Linux, Win7, and so on.

The Virtio driver is activated in the On Demand Virtual
Cluster system. Thus, the performance of Network I/O is
nearly the same with native machine. The performance of
Disk I/O can be improved write performance about 120%
and read performance about 20%.

 Furthermore, the research leverages virtualization
techniques combined with cluster queuing system and job
scheduling mechanism. According to the pervious
experiment, the DLPS has better efficiency than other
scheduling algorithms; especially the huge numbers of job
are submitted into the computing cluster. Finally, we obtain
an important property that the algorithm is appropriate to
deal with large amount of jobs in real Clouds or distributed
environment.

VI. REFERENCES

[1] W. Kim, “Cloud computing: Today and Tomorrow,” Journal of
Object Technology, 8, 2009.

[2] G. Gu and X. Lu, “Simple Web OS System Based on Ext
Framework and Cloud Computing,“ International Forum on
Information Technology and Applications, pp. 448-450, IEEE,
2010.

[3] http://www.eyeos.org/, [accessed: July, 2011].

[4] http://www.chromium.org/chromium-os/, [accessed: July, 2011].

[5] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
David E. Culler, Joseph M. Hellerstein, and David A, Patterson,
“Searching for the Sorting Record: Experiences in Tuning
NOW-Sort,” The 1998 Symposium on Parallel and Distributed
Tools (SPDT '98), Welches, Oregon, August 3-4, 1998.

[6] http://osx.portraitofakite.com/logon.htm, [accessed: July, 2011].

[7] http://www.glidedigital.com/, [accessed: July, 2011].

[8] http://www.xindesk.com/, [accessed: July, 2011].

[9] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
"Container-based Operating System Virtualization: A Scalable,
High-Performance Alternative to Hypervisors, " Proceedings of
ACM SIGOPS/Eurosys European Conf. on Computer Systems, pp.
275-287, Mar. 2007.

[10] D. Price and A. Tucker, "Solaris Zones: Operating Systems Support
for Consolidating Commercial Workloads, " Proceedings of 18th
Large Installation System Administration Conf., pp. 241-254, Nov.
2004.

[11] B. Zhang, X. Wang, R. Lai, Y. Liang, Z. Wang, Y. Luo, and X. Li,
"Evaluating and Optimizing I/O Virtualization in Kernel-based
Virtual Machine (KVM)," International Conference on Network and
Parallel Computing, pp. 220-231, Zhengzhou, China, September
13-15, 2010.

[12] John Paul, "VMWare ESX Server Workload Analysis: How to
Determine Good Candidates for Virtualization," 33rd International
Computer Measurement Group Conference, pp. 483-484, San Diego,
CA, USA, December 2-7, 2007.

[13] X. Ge, H. Jin; S. Wu, X. Shi, W. Gao, "A method of multi-VM
automatic network configuration," Intelligent Computing and
Intelligent Systems, pp. 309-313, 2009.

[14] http://aws.amazon.com/ec2, [accessed: July, 2011].

[15] Ignacio M. Llorente and Rubén S. Montero, “OpenNebula: A Cloud
Management Tool,” Internet Computing, IEEE, pp. 11-14,
March-April 2011.

[16] http://www.clusterresources.com/products/torque-resource-manager
.php, [accessed: July, 2011].

[17] http://vmstudy.blogspot.com/2010_04_01_archive.html, [accessed:
July, 2011].

[18] http://www.coker.com.au/bonnie++/, [accessed: July, 2011].

[19] http://www.linux-kvm.org/page/Virtio, [accessed: July, 2011].

19

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 29 / 237

Understanding Cloud Requirements - A Supply
Chain Lifecycle Approach

Maik A. Lindner
SAP Research

SAP Labs, LLC
Palo Alto, CA

m.lindner@sap.com

Fiona McDonald
SAP Research
SAP (UK) Ltd.

Belfast, Northern Ireland
fiona.mcdonald@sap.com

Gerard Conway
Innovation Value Institute

National University of Ireland,
Maynooth, Ireland

gerard.conway@nuim.ie

Edward Curry
Digital Enterprise Research Institute

National University of Ireland,
Galway, Ireland

ed.curry@deri.org

Abstract—Cloud Computing is offering competitive advantages
to companies through flexible and, scalable access to computing
resources. More and more companies are moving to cloud
environments; therefore understanding the requirements for this
process is both important and beneficial. The requirements for
migrating from a traditional computing environment to a cloud
hosting environment are discussed in this paper, considering this
migration from a supply chain lifecycle perspective. The cloud
supply chain is examined from a lifecycle perspective for the
management of the migration project. This paper illustrates the
requirements that need to be considered when adopting a cloud
migration strategy and the steps to take in order to manage this
process.

Index Terms—cloud computing; supply chain; cloud sourcing;
cloud lifecycle.

The cloud provides scalable, on-demand network access to
virtualised computing resources [1]. This is a very attractive
concept for enterprise Information Technology (IT) landscapes
to adapt. However as with any new concept or emerging tech-
nology, IT departments face challenges with the opportunities
being offered by the cloud. Some of the challenges include
security, privacy and lack of control. The physical location of
hardware in addition to who can access the data is not always
known which, can lead to security and privacy issues. As the
cloud is run by a cloud service provider, users have limited
control of factors such as maintenance or resource usage as
these are the responsibility of the cloud service provider.
Although cloud computing reduces capital expenditure by
using a pay-per-use model, there can be hidden costs in order
to ensure adequate backups and disaster recovery processes are
in place. Despite these drawbacks many companies still strive
for cloud adoption as the advantages more than compensate for
these drawbacks, e.g., the cost benefits including, scalability
and flexibility. Cloud computing resources can be ”right-sized”
to meet real-time requirements. When high capacity is needed
at peak times the cloud can provide additional resources on-
demand, these can be instantly adjusted when less capacity is
needed. The functional benefits of cloud computing consist of
increased response times as well as instant software updates
that are automatically provided. Other benefits of the cloud
include resource benefits, as employees can access information
anywhere and can focus on high priority tasks rather than the
routine maintenance tasks. These are a selection of the reasons
enterprises want to move to the cloud.

Businesses in the cloud computing area are interconnected
by what is known as the cloud supply chain [2]. This can
be defined as two or more parties linked by the provision
of cloud services, related information and funds [2]. These
businesses are involved in the end-to-end provision of products
and services from the cloud service provider for end cloud
customers. Within the cloud supply chain, there are several
components and actors. There always exists a product/service
at the beginning of the supply chain and a consumer at the
end who is requesting the product/service. E.g., on-demand
software could be the product/service that is provided by the
cloud service provider to the customer (cloud consumer) who
wants to use the software.

A well-defined cloud supply chain is needed to encourage
the adoption of cloud computing. Not only are products and
services passed through the supply chain but also information
and funds. It is important to be aware of what and who is
involved in the cloud supply chain to understand the potential
of this new technology chain and how it is used to identify
the requirements of moving to the cloud. The cloud supply
chain clarifies the process involved with both providing and
consuming cloud services. Supply chains generally serve two
functions, a physical function which, is the production of
the product and transportation of all components to the right
place and a market mediation function which, ensures the
product meets market needs. A supply chain must be classified
according to its components and the end-product it supplies.

For a business to successfully utilise the cloud, it needs to
migrate some or all of its IT services to the cloud, and then
manage the new environment. The research undertaken has
shown that by using a cloud lifecycle [3] both the migration
and the on-going management of the cloud can be planned
and controlled to ensure success. The lifecycle provides a
mechanism of breaking down all of the activities required for
a move to the cloud, into discreet manageable steps which,
allows an organisation to seamlessly migrate its services,
whilst minimising the risk to the business.

The following sections of the paper are structured as fol-
lows: In Section 1, cloud computing is discussed on a company
level from a supply chain approach, and the different cloud
types and service models are considered as well as an analysis
of the cloud supply chain by identifying the actors within the

20

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 30 / 237

chain. In Section 2, the structural setup of the supply chain
is also considered based on the identified needs. Section 3
looks at the requirements from a lifecycle approach for cloud
migration and on-going management. Section 4 includes the
conclusions and future work.

I. INTRODUCING CLOUD COMPUTING ON A COMPANY
LEVEL - A SUPPLY CHAIN APPROACH

There are various models and ways in which, cloud com-
puting can benefit a company. It is important to understand,
that there are multiple cloud types and service models that can
be adopted and these need to be considered as requirements.
Each company’s individual setup will determine the model and
the benefits of these services. Based on the identified type of
cloud to use and the services needed, a supply chain setup
needs to be established and relevant partners and distribution
channels need to be chosen.

A. Service Models and Cloud Types

In order to understand the concept of the cloud supply chain,
it is important to be aware of what it is composed of. There
are different service models that need to be considered in the
cloud such as:

• Infrastructure as a Service- this focuses on providing the
resources for the service such as, network, memory and
storage capacity which, is essentially the primary stage
of the process.

• Platform as a Service - this is the second stage that
presents the user with an additional abstraction level for
software to run on or for the user to build on [4].

• Software as a Service - this provides complete turnkey
software applications that may be of interest to the users
and allows these to be fully-utilised using the cloud.

Each of these service models can be used more than once
in the cloud supply chain. As these not only provide single
services, they can also be combined to provide value-adding
services that act as single objects in the cloud supply chain.
These aggregated services can be made up of two or more
services, e.g., Infrastructure and Platform can be combined as
a service for software developers.

The different types of clouds that can be used to consume
cloud services are public, private, hybrid and community
clouds, and the decision to use a particular cloud can depend
on the individual business needs and requirements. However,
the current position of the company also needs to be consid-
ered. Firstly, the choice of the appropriate cloud to use depends
on the prerequisites within a company; if they have an existing
data center, they may be more likely to choose a private cloud
structure as their current data center can be reconstructed.
On the other hand, a company with no data center what so
ever may go for public cloud with zero upfront spending.
In practice, consumers use different cloud instances to fulfill
different requirements, e.g., they may use a private cloud for
data storage and a public cloud for everyday processes such as
e-mail. This leads to using a hybrid model which, allows the

Figure 1. Composite Service Cloud

consumer to source from multiple clouds, therefore resulting
in better value and a customised service.

Hybrid landscapes can be defined as an IT environment that
uses both public and private clouds. This type of cloud allows
users to take advantage of the scalability and reduction in
Capital Expenditure (CAPEX) yet still have the security of
a private cloud. Effective and efficient management of hybrid
landscapes will allow for users to receive better benefits and
an optimal service from the hybrid cloud. It is important to
consider the cloud types when determining the requirements
for migrating to the cloud.

Figure 1 illustrates the transfer of the service, information
and funds through the supply chain of each cloud and shows
how a hybrid cloud is made up of a combination of two or
more of these clouds. Looking at the area of cloud computing
from different perspectives raises the issue of conflicting aims
between the provider and consumer of the cloud services. We
will look at who is involved in each of these models and the
relationship between these.

B. The Cloud Supply Chain

Once a decision on a specific cloud type and service
setup has been made, the comprehensive supply chain can be
determined and built up. For this, relevant partners have to be
identified and a clear product structure has to be established.
The cloud supply chain is illustrated in Figure 2 showing
the components and actors within the chain. The product is
passed along the supply chain to the end-customer. The service
provider can provide the end-customer with just one service
(software, platform or infrastructure) or they can act as a
service aggregator and combine these services to provide a
composite service for the customer.

Accounting, billing and monitoring should also be consid-
ered throughout the cloud supply chain when understanding
requirements, as information and funds are passed through the
chain. As a continuous example of a public cloud provider, we
will use Amazon who provide an IT company with storage
using Amazon Simple Storage Service (Amazon S3). Various

21

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 31 / 237

Figure 2. Cloud Supply Chain

actors and goods have to be considered to determine and
define a supply chain. The cloud service provider is an actor
who provides the service to the end-customer and they can
take various roles depending on whether they provide infras-
tructure, platform or software as a service. In this case the
service provider is Amazon who is providing the IT company
with storage for their data. Amazon can have direct contact
with the customer or they can act as a broker who uses the
service and combines it with other services in order to enrich
it. This depends on the needs of the IT company, so if they
know specifically the service they require, they can directly
communicate with Amazon for that service. If they are unsure
and only have an idea of what they need, they could use
a cloud broker, who will find the best suited package from
a selection of service providers for the consumer. However,
sometimes if a broker is involved, the service provider is in
contact with the broker who then deals with the end-customer.

A broker combines and enriches the services provided by
Amazon with and by others to provide a composite service
for consumers (the IT company). Therefore, the product for
the end-customer is an enhanced service provided in a flexible
manner. The broker communicates with the service provider
and the end-customer, therefore the IT company receives the
cloud service through the broker. It is important to maintain
visibility and transparency of all processes and data within
a supply network to ensure the end-product remains clear
and defined. The end-customers usually consume a product
that is a single or composite service which, is provided by a
service provider over the cloud supply chain [2]. It is important
to examine the cloud supply chain and to be aware of the
requirements in order to decide whether a broker is preferred
to receive a cloud service. With many actors involved, it is
important to maintain clarity and visibility within the supply
chain especially when it can become quite complex.

As well as the actors in the supply chain, the components
and structural setup needs to be considered when determining

the requirements of a cloud project.

II. STRUCTURAL SETUP OF THE SUPPLY CHAIN BASED ON
IDENTIFIED NEEDS

The setup of the supply chain depends on the needs and
requirements of the organisation. This section discusses the
components of the supply chain and considers the possible
complexities involved.

A. Components Within the Supply Chain

Components within the supply chain that lead to costs
include the management and restructuring of services, infor-
mation and funds. The typical payment model for cloud is pay-
per-use, however providers such as Salesforce and Microsoft
use a subscription based model for payment of their services.
The pay-per-use model is one of the key benefits that outweigh
the traditional method of fixed-rate exploitation. These funds
flow from the service provider to the cloud infrastructure
provider who provides the IT infrastructure. However it can
be considered that this can flow the opposite way in some
circumstances if there has been a violation in the Service Level
Agreement (SLA), which, would result in a compensation
penalty from the supplier.

B. Implications of a Complex Supply Chain

In order for users to receive the best possible service to
fulfill their requirements, it is important to consider that more
than one type of cloud can be used in the supply chain. Using
a number of various components such as services or types of
clouds can cause the supply chain to be complex and this needs
to be considered. Depending on user requirements or company
requirements, one cloud may not be able to offer the complete
service they have requested. For example, a user/company
could request a service in a public cloud but require some
of the data to be in a local cloud, i.e., within a certain region.
Therefore the cloud could outsource this portion of the service
temporarily to a cloud within their desired region in order to

22

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 32 / 237

be able to offer the consumer the full package. In-sourcing
of previously outsourced solutions to the cloud can also be
considered, so the data in the local cloud could be moved back
to the original when required. The different types of clouds can
work as a synergy to provide the best service for the consumer.

From a consumer perspective, the consumers are receiving
the optimal service to meet their needs as a result of the hybrid
model as well as a more efficient supply chain. By choosing
to outsource non-core service capabilities to the public cloud,
it will allow them to develop a dynamic service supply chain
[5]. Most consumers would not choose to outsource their core
service capabilities as they are more secure within their private
cloud.

On the other hand, from a provider perspective running e.g.,
a private cloud within a business, at seasonal or event-based
peak of traffic, they can move their data or applications to an
external cloud to cope with the surge of work. When the work
calms down to the normal pace, they can in-source their data or
applications back into their private cloud. This eliminates the
need to purchase additional hardware and software for those
peak times only, saving costs in the short-term and long-term.

This process of leasing compute capacity from an external
cloud in peak times is called cloud bursting. It is useful if
additional compute capacity is required in a short period of
time, as this can be leased from a cloud service provider
for the required time. The resources acquired from the cloud
service provider are, secured, provisioned, and made available
to load balancers so they then have the ability to manage
the additional requests. This can happen on an approved,
scheduled, or as-needed basis [6]. From an internal IT provider
perspective, with a setup of an internal cloud, cloud sourcing
and cloud bursting offer numerous cost and value benefits to
their business. From an end-consumer perspective, all of the
advantages of using cloud are relevant, as well as the additional
benefit of receiving the best possible solution to meet their
needs through the use of the hybrid model as long as all of
the initial requirements are fulfilled.

By analysing the cloud supply chain, the technical re-
quirements for migrating to the cloud can be identified. As
discussed, the type of clouds need to be considered and
whether more than one cloud will be used, as well as the
number of services required, what pricing model suits best
and whether to use a broker or directly contact a cloud service
provider.

III. THE CLOUD LIFECYCLE

Management of this process can be carried out by using the
cloud lifecycle. This represents the process of moving from
a traditional to a cloud infrastructure. This section describes
each of the steps in the lifecycle and how the supply chain
plays an active role in this process.

The lifecycle has four phases and eight steps that have been
proposed to follow in order to manage the process of migrating
to the cloud. It is an improvement cycle, therefore allowing
the process to be evaluated and improved continually. Each
step is explained in the following section.

Figure 3. Cloud Lifecycle

A. Steps of the Lifecycle

Phase 1: Architecture

1) Investigate
This step provides an insight and understanding of what
the organisation wants to achieve by moving to the
cloud and what goals and expectations are to be met.
This will be based on an analysis of the appropriate
industrial segment, with insights from experts and
experiences from peer organisations, together with
knowledge of potential suppliers.

Outputs:
• IT strategy for cloud computing
• Strategic intent of moving to the cloud and how it

progresses the business objectives
• Intelligence document on service offerings and

providers
• A document describing what will be achieved

by comparing the strategic requirements with the
available services and providers

2) Identify
The purpose of this step is to objectively assess what
areas of the business are appropriate to outsource to
the cloud and what impact this will have on the current
delivery model. This will require an understanding of
the current state, so that it can be compared to the
desired future state. At least, the impact on the service,
people, cost, infrastructure, stakeholders and how it will

23

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 33 / 237

be managed should be considered.

Outputs:
• List of services to be outsourced to the cloud
• Outsourcing delivery model
• The current and future states of the IT structure

3) Implementation Strategy
The aim of this step is to define at a strategic level
how the services that are to be outsourced will be
rolled out. This will document how key decisions will
be made later on, by defining strategies on staffing,
communication, program roll-out and risk assessment.

Outputs:
• Program Roll-out strategy
• Communication strategy
• Strategy to manage staff impacted by the migration

to cloud

4) Business Design
This step involves designing what is to be outsourced
to the cloud and what the future state will look like.
It will detail the new service, how it will be managed,
how it interfaces to the existing/remaining systems,
and how it will be monitored and reported. It exists to
provide requirements with sufficient detail to have a
meaningful conversation with suppliers so that they can
be objectively compared, based on cost and quality of
service.

Outputs:
External
• Contact template
• Service Level Agreement (SLA)
• Pricing model

Internal
• The future Enterprise Architecture with support and

technical interfaces
• How the contract negotiations will be managed
• How the supplier will be managed

Phase 2: Engagement

5) Selection
Based on the requirements and the other criteria defined
by the Architect phase, this step will select the best
supplier based on value, sustainability and quality.

Outputs:
• Tender process
• Evaluation criteria
• Short-list of suitable suppliers with caveats

• Due diligence report

6) Negotiation and Sign-off
The purpose of this step is to pick the preferred
supplier(s), complete the final negotiation, get internal
approval and then sign the contract.

Outputs:
• Negotiation strategy
• Results of the negotiation
• Signed final documents: Contract, SLA and Pricing

document

Phase 3: Operate

7) Operational Roll-out
This step involves putting together a transition project
team that will manage the transition of the agreed
services to the new cloud environment. This will require
the transition of the service itself, the management
of staff impacted, communication to all stakeholders,
knowledge retention / transition and acceptance sign-off.

Outputs:
• Roll-out plan
• Progress updates
• Signed acceptance document

8) Management of the Supply Chain
The aim of this step is to manage the new environment as
efficiently and effectively as possible. The organisation
will need to adapt to the new setup particularly at
management level, rather than directly managing
internal resources. The requirement will be to manage
the supplier and in particular the supplier relationship.
This will require effective monitoring and control so
that issues, variations and disputes can be resolved to
both parties satisfaction.

Outputs:
• Day to day performance metrics
• Status on issues, problems, variations and disputes
• Supplier meeting minutes
• Change management report
• Audit reports

Phase 4: Regenerate

9) Review
This step is important to review the service based on
requirements of the service itself, other changes within
the business, changes within the supplier organisation
or the need to change supplier.

24

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 34 / 237

Outputs:
• Intelligence report for next generation options
• Supplier audit results
• Business case for any proposed changes

B. Influence of the Supply Chain

The lifecycle is intended to provide an organisation with a
management structure to assess the following:

1) The readiness/maturity of an organisation to move to the
cloud.

2) Once they are migrated, assess how the organisation is
managing the new environment on a day-to-day basis.

3) Assess what new services can be moved to a cloud
environment.

The lifecycle interfaces with the supply chain in a number
of ways as follows:

• In the Architect phase when deciding what services to
move to the cloud and what suppliers can provide, this
will set the scene on what is technically viable to move
to the cloud.

• The Engage phase will determine what supplier will be
used and if they can deliver the requested services to the
required levels of reliability and quality.

• The Operate phase is the most critical as the chosen
service(s) will be migrated and then become the respon-
sibility of the chosen supplier. If the lifecycle is used
correctly this phase should run smoothly, otherwise either
the migration will fail or once migrated the service will
not be at the required levels to support the business.

• The final Regenerate phase will assess the current sup-
plier and cater for the migration of new services.

In summary the lifecycle and the supply chain are
intrinsically linked and for the lifecycle to be successful there
is a dependency on a fully functioning, flexible and robust
supply chain.

IV. CONCLUSION AND FUTURE WORK

In conclusion, the paper analyzed the requirements that
need to be considered for migrating from a traditional IT
environment to the cloud from a supply chain approach. The
paper looked at the area of cloud computing in relation to
organisations and the various benefits and problems associated
with this. The supply chain was explained as well as the
different types of cloud and different service models within
cloud computing. The cloud supply chain was illustrated
through the diagram as well as an explanation of the various
actors and components within it and how these interact. The
paper focused on the structural setup of the supply chain and
how it is composed and considered the possible complexity
of the supply chain taking into consideration the number of
clouds and services used at once within it. This introduced
the area of cloud bursting and showed the benefits from both

a consumer and provider perspective of this process. The
management of the migration process is described through
the use of a cloud lifecycle. Each of the steps within the
lifecycle were identified and the steps that were influenced
by the cloud supply chain were discussed. Overall, by using
the cloud supply chain, the technical requirements for a move
to cloud can be identified and the cloud lifecycle can be used
to manage the migration and the ongoing improvement of the
cloud environment.

Future work includes the assessment of the cloud lifecycle
process to measure how effective it is in helping organisations
move to the cloud. This would allow for further improvements
to the cycle and possibly lead to a more efficient migration
process. In relation to the supply chain, cloud supply chain
management and controlling would be a future topic of in-
terest. This would consist of the management from the cloud
service provider to the end-cloud consumer including all of the
components across the supply chain such as, cloud services,
information and funds.

V. ACKNOWLEDGEMENTS

The work presented in this paper has been funded in part by
Enterprise Ireland under Grant CC/2009/0801 and by Science
Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-
2).

REFERENCES

[1] G. Conway ”Introduction to Cloud Computing”, White Paper, Innova-
tion Value Institute, Jan 2011 http://ivi.nuim.ie/publications/IVI-Exec-
Briefing-Intro-to-Cloud-Computing.pdf, 28.06.2011

[2] M. A. Lindner et al., ”Cloud supply chain: A framework for information,
monitoring, accounting and billing,” CloudComp 2010, Springer Verlag,
2010

[3] S. Cullen, P. Seddon, and L. Willcocks, ”Managing outsourcing: The life
cycle imperative,” MIS Quarterly Executive Vol. 4, No.1, Mar 2005

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, ”A break
in the clouds: Towards a cloud definition, ACM SIGCOMM, Vol 39 No.1
Jan 2009

[5] Ca technologies, ”Can you harness clouds without creating storms,” Nov
2010, http://www.ithound.com/abstract/harness-clouds-creating-storms-
5720, 28.06.2011

[6] S. Somashekar, ”Opportunities for the cloud in the enterprise,”’
Jan 2010, http://www.ca.com/es/whitepapers/collateral.aspx?cid=230175,
28.06.2011

25

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 35 / 237

A Service-Level Agreement Approach Towards Termination Analysis of
Service-Oriented Systems

Mandy Weißbach and Wolf Zimmermann
Institute of Computer Science, University of Halle

06120 Halle (Saale), Germany
Email: {weissbach, zimmermann}@informatik.uni-halle.de

Abstract—Classical approaches for program analysis as,
e.g., termination analysis usually do not take into account
modern software approaches such as service-oriented systems
or cloud computing. Instead, they have a monolithic view on
the software system as a single completely available program.
As first step to enable such analyses also in a service-
oriented or cloud computing context, respectively, this paper
considers termination. Since termination is a service quality
attribute, we consider a service-level agreement approach
that allows dynamic bindings to software services. In contrast
to many other service-level agreements, termination is a
binary attribute that cannot be measured quantitatively (as,
e.g., reliability or response time). The proposed approach
shows how clients of services can verify the information
provided by the services.

Keywords-Termination; Software Services; Service Level
Agreement; Verification.

I. INTRODUCTION AND MOTIVATION

The vision of cloud computing is (among others) that
there are numerous software services in the cloud that
can be used by clients to fullfil their functionality. These
services are functionally equivalent in the sense of the
context of the client. However, they might differ in their
non-functional properties. Thus clients may negotiate ser-
vice level agreements on non-functional properties such
as, e.g., reliability, availability, response times, etc. The
literature on service-oriented computing and cloud com-
puting offers already numerous techniques that clients
may monitor these quality attributes, see, e.g., [1] for
an overview. However, there are other service quality
attributes such as, e.g., termination of the services and/or
the client, robustness (i.e., neither the service nor the client
aborts due to uncaught exceptions), or absence of dead-
locks. In contrast to the above mentioned service quality
attributes, these attributes have a binary character: either
the services or clients satisfy the quality attribute or not.
In this work, we consider in particular the termination of
software services and the clients using software services.
Petri-Net based approaches towards deadlock analysis are
usually based on termination of the services [2]–[4].

Remark: At first glance, it seems that there is no
need for a termination analysis in service-oriented systems
(except possibly for deadlock analysis) because one might
think that after a certain time the client might switch
to another, functionally equivalent, service in the cloud.
However, there are situations where this approach cannot
be applied. First, the approach doesn’t work if none of
the functionally equivalent services has (for the client)

satisfactory quality attributes. In this case the chosen
service becomes the single candidate and its termination
is an important property for the client. A second reason
is the choice of the time period: If the period is fixed to
just a few seconds or minutes, this might be a reasonable
approach. It might work well in business applications.
However, in scientific computing or bioinformatics there
are computation intensive applications and if these are
offered as services they might run for hours or days.
Fixing the time period to a few seconds or minutes implies
that any functionally equivalent service fails to be finished
within this time. On the other hand, it doesn’t make sense
to switch after a few hours or days to another service
that possibly requires even more execution time than the
originally chosen service. Thus, in these situations it is
better to know that the service terminates and will deliver
an answer. Third, a termination proof for clients may
require information on the effect on results of services
being called, e.g., their size. This size change information
must also be included in the analysis and has a rather
different character than simple termination. �

The techniques that enable the clients to check whether
service-level agreements are obeyed cannot be applied
in the context of binary quality attributes. Consider for
example termination: if a client has not yet a response
from a service, the client cannot conclude that the service
doesn’t terminate. The service might respond within the
next second. On the other hand, the client cannot reason
on its own termination behaviour without provision of
adequate information from the services. This information
must be correct. Thus, the challenge is how the client
can verify that the requested information is correct. The
situation becomes even more difficult if a client uses a
service A and the service A uses a service B, etc. In this
case termination of the client may indirectly depend on
service B and service A needs to request information on
termination of B as well as additional information to prove
its termination.

In this paper, we assume that there are no recursive call-
backs, i.e., recursion over service boundaries are excluded.
Furthermore, in order to use well-known termination anal-
ysis approaches, we exclude service-internal parallelism
since this is still an open issue in classical termination
analysis. Thus, we tackle in this paper termination analysis
of service-oriented systems in dynamically changing envi-
ronments where recursive call-backs and service-internal
parallelism is being excluded.

26

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 36 / 237

The paper is organized as follows: Section II intro-
duces into classical termination analysis. The following
Section III shows how this approach can be extended in a
service-oriented or cloud computing context, respectively,
using a service-level agreement approach. In Section IV,
we show how clients can verify the results by combining
the approach of Section III with approaches used for
verification of Web pages. Section V discusses related
work and Section VI concludes this work.

II. TERMINATION ANALYSIS

Although termination of programs is undecidable
(known as halting problem), there is a lot of work on
conservative analysis of program termination. A conser-
vative termination analysis guaruantees termination in the
case of a positive answer. However, a negative answer may
be false. It should be interpreted as termination cannot be
proven. Thus, termination analysis does not implement the
halting problem but it only provides a one-sided solution
(similar to model checking) . The following discussion
shows that there are a number of works (it just mentions
the most important ones) on termination analysis. Each of
them is conservative and assume that the whole program
to be analyzed is available to them.

The first works on termination analysis or the related
field of automatic complexity analysis go back to [5] for
pureLisp programs. This was generalized to first-order
functional languages [6] and to object-oriented imperative
programs [7], [8]. Works on automatic complexity analysis
as well as on termination analysis are based on the notion
of a termination function. This is a function from program
states to natural numbers that strictly decreases when
executing the body of loop or when a procedure is called
recursively. Since there is no infinite descending chain
in the natural numbers, a termination function ensures
loop or recursion termination, respectively. More recent
work on termination analysis focuses on automatic deriva-
tion of termination functions, which is often called the
size-change principle, cf. [9]–[12]. Instead introducing
into these methods, we informally demonstrate termina-
tion analysis by the example in Figure 1. In a service-
oriented architecture the four classes will be considered
as services (implemented by web services, cf. Figure 2.
Calendar contains to public procedures first() and
next(Month month) which together can be used to
iterate over all 12 months of a year. The class List
is a classical list implementation with a sentinel empty.
MSales has access to a customer database. The procedure
sales(Month month, Year year) uses this cus-
tomer database to calculate the sales of month month in
year year. Procedure sales(Year year) calculates
the sales of year year by summing up the sales of all
months of year.

Suppose the termination of procedure YSales.sales
has to be analyzed. Note that all the steps (except possibly
the provision of terminations functions which have to
annotated) can be performed automatically according to
the above mentioned works.

class YSales {
private Msales msales;
public int sales(Year year) {
Month month=Calendar.first();
int sum=0;
while (month!=Month.complete) {

int amount=msales.sales(month,year);
sum += amount;
month=Calendar.next(month);

}
return sum;

}
}
class Calendar {

public Month first() { return Month.jan; }
public Month next(Month m) {
if (m==Month.jan) return Month.feb;
· · ·
if (m==Month.dec) return Month.complete

}
}
class MSales {
private static CustomerDatabase db;
public int sales(Month month,Year year) {

List cl=db.getCustomers(month,year);
int sum=0;
while (cl!=List.empty) {
int amount=cl.hd();
sum += amount;
cl=cl.tl();

}
return sum;

}
}
class List {
private int head;
private List tail;
static List empty=new List();
public int hd() { return head; }
public List tl() {
return (tail==NULL?empty:tail);

}
}

Figure 1. Sales-Example

Step 1 Analyze each non-recursively called procedure for
termination:

Since this procedure calls procedures MSales.sales,
Calendar.first, and Calendar.next, these pro-
cedures have to be analyzed for termination.
Step 2 Analyze each loop and each recursively called pro-
cedure for termination by deriving/introducing an adequate
termination function:

The loop termination of the loop in YSales.sales
apparantly depends on the variable month. The termina-
tion function ϕ defined by

ϕ(month) , 13− sz (month) (1)

where sz (month) is the number of the month (i.e.,
sz (Jan) = 1, sz (Feb = 2), etc. and sz (complete) =
13) proves termination. This is because

ϕ(next(month))) = ϕ(month)− 1 (2)

(2) can be derived by determining a size change func-
tion for next with the notion of size defined by
(1), i.e., a function ϕ next : N → N such that
ϕ next(ϕ(month)) = ϕ(next(month))).
Step 3 Determine the necessary size change functions for
procedures:

By a simple case analysis it can be determined that
ϕ next is defined by ϕ next(n) = n − 1 thereby
proving that the termination function ϕ decreases by 1
during loop termination.

27

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 37 / 237

������

sum =sum+amount

reply sales,sum()

= getCustomerscl
sum=0

invoke

MSALES

receive

cl= invoke

sales sales

first

first

next

next

receive
reply(

receive

if)

CALDR

YSALES

receive
reply(

LIST

hd tl

hd tl

if
receive
tl==nil

else

(sales,month,year)

(month,year)

(LIST,)hd,clamount=

)tl,cl(LIST,

while cl !=empty

hd,cl.amount
hd,cl()

)

(tl,cl)
then cl=empty

cl=cl.tail
tl,clreply()

receive
=month

=0sum

sum=invoke
= +amountsum

month
sum
=invoke

(sales,year)
(CALDR,invoke first)

(MSALES,sales,month,year)

(CALDR,next,month)

while month !=complete

reply(sales,sum)

first()
first,

next,month(

Jan)

)
if month== Jan then reply (next,Feb)

month== Decthen reply (next,complete

Figure 2. A Service-Oriented Architecture for the Sales Example

The termination of Calendar.first and
Calendar.next can be derived directly as they
neither contain a loop nor a procedure call. The
termination analysis for MSales.sales must follow
the same approach as mentioned above:
Step 1: The procedure MSales.sales calls procedure
CustumerDatabase.getCustomers, List.hd,
and List.tl. The latter two terminate since they
neither call a procedure nor contain a loop. The former
terminates since it executes a database query (not shown
in Figure 1).
Step 2: The termination of the loop in MSales.sales
depends on the length of the list cl, i.e., the termination
function is recursively defined by

ψ(cl) ,

{
0 if cl = NULL

1 + ψ(cl.tail) otherwise
(3)

This termination function requires the determination of the
size change function ψ tl : N→ N such that

ψ tl(ψ(cl)) = ψ(tl(cl)) (4)

Step 3: The analysis yields that ψ tl(n) = n − 1
which completes the proof of termination of the loop in
MSales.sales

In a nutshell, the termination argument for
YSales.sales is as follows:

• YSales.sales terminates because each procedure
called in the body terminates and the loop terminates

• The loop terminates because (1) is a termination
function

• ϕ is a termination function because of (2) which
proves that ϕ strictly decreases after executing the
loop body

The steps presented in this section can be formalized as
proof rules (see [14] for a short summary). These rules are

usually the formal basis for the correctness of termination
analysis. If the proof succeeds the program terminates.
However, a program may terminate althoug a termination
analysis cannot find a proof.

III. AN SLA APPROACH FOR TERMINATION ANALYSIS

The goal of this section is to apply the approach of Sec-
tion II in a service-oriented context. It is demonstrated by
the service-oriented architecture shown in Figure 2 which
corresponds to the example in Figure 1 and is implemented
by three web services MSALES (with interface sales),
LIST (with interfaces hd and tl), CALDR (with interfaces
first and next), and a client YSALES.

Note that the implementations of the web services are
not known to their clients. Thus, a termination anal-
ysis cannot directly follow the approach as described
in Section II. In particular, Step 1 cannot analyze the
termination of services being called but it must rely
on the information of the termination provided by the
called service. For example the invocation of the services
CALDR.first , CALDR.next , and MSALES.sales require
termination, and the providing web services must know
this information. Note that the client YSALES is not aware
of the fact that the termination of MSALES.sales depends
on the termination of LIST.hd and LIST.tl . Furthermore,
in order to proof termination of the loop in YSALES, the
service CALDR must provide a strictly decreasing size
change function for next . The decision whether it must be
decreasing or increasing, or how fast it must be decreasing
or increasing for proving termination depends on the loop
body.

Thus, in a service-oriented setting, a client needs to have
the following infomation when it analyzes its termination:

• The information on the termination of each service
called

28

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 38 / 237

public key:
private key: s

k

analyze

Certified

Program Analysis

PA

info

f

WS

Client Web Service

Figure 3. Verifiable Program Analysis Information

• Adequate context-dependent size change functions
for those services whose calls influence termination
of loops or recursive calls.

While the first information can be provided by the web
service providing a called service, the latter must be
individually requested by the client while analyzing the
termination behaviour of the client. In both cases, the
client relies on the correctness of the information provided
by the web service.

IV. CERTIFICATION OF INFORMATIONS PROVIDED BY
SOFTWARE SERVICES

A problem with the approach in Section III is the
validity of the information on termination of services
as well as the validity of the size change function. In
contrast to quantitative properties such as, e.g., reliability,
availability, or response time, the client has no possibility
to check a service level such as termination or the validity
of size change functions. We first present an approach that
considers basic web services, i.e., they don’t use other Web
Services. Then, we extend the approach to web services
using other Web Services where the use-relation is acyclic.

A. Basic Web Services

Figure 3 shows an approach that may solve this prob-
lem. First, a certified program analysis service PA is
needed for the analysis of the web service. Second, a
public-key infrastructure is needed for enabling the client
to verify the results of the analysis. The program analysis
service PA must be known to the client as a certified anal-
ysis tool. With this infrastructure, a termination/program
analysis as discussed in Section III can be implemented
such that the client can verify the results from the web
service WS:
Step 1: The client requests from web service WS via the
service info information on the termination or size change
of f (as discussed in Section III).
Step 2: Web service WS encrypts its source text with the
public key of the certified program analysis service PA
and sends it via the interface analyze together with the
requested analysis to PA.

Step 3: The certified program analysis service PA decrypts
the source text of WS with its private key s, performs the
requested program analysis, signs the result with its private
key s, and returns the signed result to WS.
Step 4: Web service WS returns the signed result to
the client together with the public key k of the certified
program analysis service PA.
Step 5: The client can decrypt the information with the
key k and since the key k is unambiguous, it can verify
that the information is obtained by the certified program
analysis service PA.

With this approach, the client can verify that the
certified program analysis performed its analysis. The
encryption in Step 2 is needed because implementers of
web services don’t want to publish their implementation.
With the encryption, the source text is only available to
the certified program analysis service PA.

For this approach, the trusted base is certainly the
certified program analysis service PA. However, it is not
guaranteed that PA really analyzes the source text of WS.
A malicious web service WS might send another source
text whose analysis results errorneously indicate the client
termination or provides an adequate size change function.
Currently, we are not aware of a technology that ensures
that the WS sends the correct source text to PA.

However, it is possible to make it more difficult for WS
to be malicious by keeping the analysis request secret to
WS. This can be achieved changing the protocol of the
SLA: The client first notifies WS that it wants to perform
a program analysis. Then WS returns a public key k of a
certified program analysis service PA. The client can use k
to verify that PA is indeed certified. Finally, the analysis
request is encrypted with k. The above implementation
needs only to be changed at Step 3 where the analysis
request must be decrypted. If we trust PA and the public
key infrastructure, then it is impossible for WS to decrypt
the analysis request.

B. Composed Web Services

The approach in Section IV-A doesn’t consider the
situation as shown in Figure 4. Web service WS1 uses as a
client web service WS2 and the client is not aware of this
usage. Thus, the termination analysis (or other program
analyzes) of WS1 requires the analysis of WS2 (including
possibly the analysis of size change functions).

For the termination analysis or the analysis of size
change functions of WS1’s service, web service WS1 acts
as a client of web service WS2. Hence WS1 negotiates
termination and size change functions with WS2 as de-
scribed in Section IV-A. However, this information is
needed by the certified program analysis. For example,
if the program analysis requires for the termination of
f information on the termination of g or a size change
function for g where g is an external service call of
WS1, then this information is passed to WS1 via the
interface painfo (encrypted with the public key k1 of WS1

for security reasons). Service WS1 decrypts the analysis
request and passes it as described in Section IV-A to WS2.

29

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 39 / 237

public key:
private key: s

k

Certified

Program Analysis

PA

info

f

Client Web Service
WS2

public key:
private key:

k1

s1

Web Service
WS1

analyze

info

g

painfo

Figure 4. Program Analysis on Composed Web Services

Then, WS2 returns the information on termination of g or
the requested size change function for g, respectively. In
contrast to the approach in Section IV-A, the result is not
decrypted and verified by WS1. Instead it is passed to
the certified program analysis (as the return value of the
service info of WS2) and the certified program analysis
verifies whether the analysis results for g can be trusted.
Note, that this approach does not require that WS2 uses
the same program analysis service as WS1.

Apparently, with this approach WS2 may use a web
service WS3, etc. However, the approach is limited to
acyclic architectures. Otherwise, the termination analysis
itsself would run into an infinite loop which practically
would have the same effect as a Denial-Of-Service attack
to the services.

V. RELATED WORK

There is a need for program analysis of service-oriented
systems. Canfora, et al. [13] states it as a key chal-
lenge for software reverse engineering. Currently, there
are not many works on program analysis of service-
oriented systems – in particular we are not aware of any
work on termination analysis of service-oriented systems
except [14]. This work is based on interface descriptions
of web services containing termination information and
size change function. Furthermore, it doesn’t verify the
information provided by the interface descriptions.

One of the few works considering program analysis
is [15], [16]. They consider response time in terms of
some notion of input size. Information on response time
is provided by the web service interfaces. Their approach
generalizes the approach of [17] for the analysis of soft-
ware complexity of BPEL processes towards response
time. For invocations of other services [15], [16] use
the information provided by the corresponding service
descriptions. However, they don’t verify this information
and it seems that size change functions play no role in
their approach.

For functional verification of web service contracts,
[18] discusses a similar approach using a public key
infrastructure. Apparently, contracts should be part of web
service interface descriptions and are not part of service-
level agreements. In contrast to our approach, they require
that the analyzers are located on the same machine as the
service implementations, respectively. This one-platform

approach allows to take into account the operating system
and the compiler.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a termination analysis of
service-oriented systems in a dynamic changing environ-
ment. This goal was achieved by using an SLA approach.
It was shown that the service has to provide two kinds
of informations: its termination and size change functions
requested by the client which enables the client to prove
its termination. In contrast to quantitative service qual-
ities, these informations cannot be verified by the client.
Therefore, a certification process similar to the verification
of web pages has been added in order to ensure that the
information has been derived from certified tools.

One property of the approach is the violation of the
black-box paradigm of services because they must offer
their source to a program analysis service. However, we
consider such program analysis services as a trusted in-
stitutions (analogous to institutions certifying web pages).
In any case, the clients never see implementation details
of the used services.

Our approach may be used for the analysis of other
binary quality attributes which can be verified by pro-
gram analyses or model checking approaches. Currently,
it excludes cycles in the architecture, i.e., there are no
recursive call-backs. Such cycles would lead to an infinite
loop while negotiating the service-level agreement. We
also assume that the services have no internal parallelism.
The next steps will be to drop these assumptions and to
consider other binary quality attributes.

Another challenge is to prevent malicious analysis re-
sults from the web service to be analyzed. As pointed out
in Section IV, a web service may send the wrong source
text to the program analysis service. We have presented
an approach that keeps the requested analysis secret to the
web service but this only makes it more difficult to the web
service to cheat. A secure approach must enable the client
to verify that the source text given to the program analysis
service is identical to the source text of the web service.
A possible solution might be that the web service signs
its source text with its digital signature when sending it
to the program analysis. In this case, at least liability is
possible if the wrong source text was sent.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their helpful comments.

REFERENCES

[1] K. Candan, W. Li, T. Phan, and M. Zhou, “Frontiers in
Information and Software as Services,” in IEEE Interna-
tional Conference on Data Engineering. IEEE, 2009, pp.
1761–1768.

[2] W. M. P. van der Aalst, “The application of Petri nets to
workflow management,” The Journal of Circuits, Systems
and Computers, vol. 8, no. 1, pp. 21–66, 1998.

30

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 40 / 237

[3] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede,
and B. Kiepuszewski, “Advanced workflow patterns,” in
CooplS ’02: Proceedings of the 7th International Confer-
ence on Cooperative Information Systems. London, UK:
Springer-Verlag, 2000, pp. 18–29.

[4] W. Reisig, “Modeling- and analysis techniques for web
services and business processes,” in In FMOODS, 2005,
pp. 243–258.

[5] B. Wegbreit, “Mechanical program analysis,” Communica-
tions of the ACM, vol. 18, no. 9, pp. 528 – 539, 1975.

[6] W. Zimmermann, Automatische Komplexitätsanalyse
funktionaler Programme, ser. Informatik-Fachberichte.
Springer, 1990.

[7] H. Schmidt and W. Zimmermann, “Reasoning about com-
plexity of object-oriented programs,” in Programming Con-
cepts, Methods and Calculi, ser. IFIP Transactions, E.-R.
Olderog, Ed., vol. A–56, 1994, pp. 553–572.

[8] H. Schmidt and W. Zimmermann, “A complexity calculus
for object-oriented programs,” Journal of Object-Oriented
Systems, vol. 1, no. 2, pp. 117–147, 1994.

[9] A. M. Ben-Amram and C. S. Lee, “Program termination
analysis in polynomial time,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 29, pp. 5:1–5:37,
January 2007.

[10] A. M. Ben-Amram, “Size-change termination, monotonic-
ity constraints and ranking functions,” in Proceedings of the
21st International Conference on Computer Aided Verifica-
tion, ser. CAV ’09. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 109–123.

[11] M. Codish, C. Fuhs, J. Giesl, and P. Schneider-Kamp,
“Lazy abstraction for size-change termination,” in Pro-
ceedings of the 17th international conference on Logic
for programming, artificial intelligence, and reasoning, ser.
LPAR’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
217–232.

[12] F. Spoto, F. Mesnard, and E. Payet, “A termination analyzer
for java bytecode based on path-length,” ACM Transactions
on Programming Languages and Systems, vol. 32, pp. 8:1–
8:70, March 2010.

[13] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements
and challenges in software reverse engineering,” Commun.
ACM, vol. 54, pp. 142–151, April 2011.

[14] M. Weißbach and W. Zimmermann, “Termination analysis
of business process workflows,” in Proceedings of the 5th
International Workshop on Enhanced Web Service Tech-
nologies, ser. WEWST ’10. New York, NY, USA: ACM,
2010, pp. 18–25.

[15] D. Ivanovic, M. Carro, and M. Hermenegildo, “An initial
proposal for data-aware resource analysis of orchestrations
with applications to predictive monitoring,” in Proceed-
ings of the 2nd Workshop on Monitoring, Adaptation and
Beyond (MONA+), Lecture Notes in Computer Science.
Springer, 2010.

[16] D. Ivanovic, M. Carro, and M. Hermenegildo, “Towards
Data-Aware QoS-driven Adaptation for Service Orches-
trations,” in 2010 IEEE International Conference on Web
Services. IEEE, 2010, pp. 107–114.

[17] J. Cardoso, “Complexity analysis of BPEL web processes,”
Software Process Improvement and Practice, vol. 12, no. 1,
pp. 35–49, 2007.

[18] J. Lyle, “Trustable remote verification of web services,”
Trusted Computing, pp. 153–168, 2009.

31

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 41 / 237

Cloud Federation
Tobias Kurze∗, Markus Klems†, David Bermbach†, Alexander Lenk‡, Stefan Tai† and Marcel Kunze∗

∗Steinbuch Centre for Computing (SCC)
Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Email: {kurze, marcel.kunze}@kit.edu
†Institute of Applied Informatics and Formal Description Methods (AIFB)

Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
Email: {markus.klems, david.bermbach, stefan.tai}@kit.edu

‡FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

Email: {lenk}@fzi.de

Abstract—This paper suggests a definition of the term Cloud
Federation, a concept of service aggregation characterized by
interoperability features, which addresses the economic problems
of vendor lock-in and provider integration. Furthermore, it
approaches challenges like performance and disaster-recovery
through methods such as co-location and geographic distribution.
The concept of Cloud Federation enables further reduction of
costs due to partial outsourcing to more cost-efficient regions,
may satisfy security requirements through techniques like frag-
mentation and provides new prospects in terms of legal aspects.
Based on this concept, we discuss a reference architecture that
enables new service models by horizontal and vertical integration.
The definition along with the reference architecture serves as a
common vocabulary for discussions and suggests a template for
creating value-added software solutions.

Index Terms—Cloud Computing, Cloud Federation, Reference
Architecture, Lock-In, Hold-Up, Integration

I. INTRODUCTION

The Cloud Computing paradigm advocates centralized con-
trol over resources in interconnected data centers under the
administration of a single service provider. This approach
offers economic benefits due to supply-side economies of
scale, reduced variance of resource utilization by demand
aggregation, as well as reduced information technology (IT)
management cost per user due to multi-tenancy architecture
[1].

These benefits have contributed to the increasing industry
acceptance of Cloud services, which are seen as more af-
fordable and reliable alternatives compared to traditional in-
house IT systems and services. However, downsides of the
Cloud Computing paradigm are surfacing. Surveys show that
potential customers hesitate to outsource their business appli-
cations and data into the cloud [2]. Besides security concerns,
application users are afraid of loosing ownership and control.
The lack of standardized service interfaces, protocols and data
formats is a portent of vendor lock-in [3]. This problem can
lead to underinvestment, an economically inefficient situation,
and therefore deserves our attention.

We propose an extended concept of Cloud Federation to
enable the design of flexible and interoperable Cloud-based
software, thereby lowering the adverse effects of vendor lock-

in. We further discuss Cloud Federation as a key concept
allowing the development of new types of applications.

The paper is structured as follows: Section II provides an
overview of the state of the art on Cloud Stack and describes
economic problems related to Cloud Computing. In Section
III we state a definition of the term Cloud Federation and
explain the concept in detail. Section IV introduces our vision
of a reference architecture for federated Clouds. Finally, we
give thought to open issues in Section V before concluding in
Section VI.

II. BACKGROUND AND RELATED WORK

Cloud Computing distinguishes the service models
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS) [4] [5]. IaaS
offers infrastructure services, such as Compute Clouds,
Cloud Storage, Message Queues, etc. PaaS offers complete
platforms, solution stacks and execution environments, while
SaaS is a software delivery model driven by a multi-tenancy
architecture.

A. Cloud Stack

The principal service models IaaS, PaaS and SaaS do relate
to one another and can be arranged as a stack. The IaaS
layer represents the lowest level of the stack and is very
close to the underlying hardware. Inside the IaaS layer two
types of services can be differentiated: computational and
storage [5]. Typical representatives for infrastructure services
are Amazon’s EC2 and Amazon’s S3 (Appendix: Table A).

PaaS represents the second layer in the stack. Famous exam-
ples are Microsoft’s Azure, Google’s App Engine, SalesForce’
Force.com and Amazon’s Elastic Beanstalk (Appendix: Table
A). Elastic Beanstalk is currently in beta phase and directly
based on Amazon’s IaaS offerings.

Upper layers such as SaaS (e.g., Google Docs) and Human
as a Service (HuaaS) are directly or indirectly based on either
IaaS or PaaS. Some secondary services, such as monitoring,
accounting, authentication, metering or configuration and man-
agement are needed on multiple levels of the stack.

32

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 42 / 237

B. Cloud Software and Cloud Products

1) Private Cloud Computing Software: There is a broad
spectrum of open source software, which mimics the propri-
etary systems of Amazon, Google, & Co. For example, Euca-
lyptus, AppScale, typhoonAE, and OpenNebula (Appendix:
Table A). Users can install the open source software “in-
house” as private cloud solutions. Since such a private cloud
solution is partially compatible with the interfaces, protocols,
programming models, and deployment options of the propri-
etary public clouds, this might be an approach to create an
interoperable hybrid cloud, a composition of private and public
clouds [6].

2) Cloud Marketplaces and Federation Offerings: While
marketplaces, like Zimory or SpotCloud allow trading with
Cloud resources, offerings like CloudKick and ScaleUp pro-
vide some federation functionality, e.g., monitoring and man-
agement supporting multiple clouds (Appendix: Table A).

C. Economic Theory

1) Vendor Lock-in: Vendor lock-in has been studied in eco-
nomics research communities, for example by Robin Cowan
[7]. Cowan identifies two sources of vendor lock-in: uncer-
tainty of selecting an unknown technology, and the learning
curve of a technology. The problem with two technologies A
and B is formalized as the dynamic programming problem
“Two-armed bandit”.

We observe a growing number of Cloud Computing service
providers and service offerings, in particular Cloud Storage
and Compute services. These offerings tie users to a specific
technology, which cannot be switched or replaced without
significant switching cost. Apparently, this is the case for
PaaS offerings, e.g., Google App Engine, which are closely
integrated with proprietary services, such as Google user ac-
counts and the Google e-mail service. Offerings like Amazon
Web Services seem to have lower switching costs because
they build upon Web service standards. However, a competing
service provider would have to provide a similar technology
(distributed system) with similar quality levels (availability,
reliability, latency, throughput, etc.) and features (launch, stop,
start, etc.).

This leads to the consequence, that users depend on the
business strategy of the service provider.

2) Hold-up Problem and Underinvestment: The hold-up
problem has been described by Klein, Crawford and Alchian
[8] as being basically a contract problem. Two firms want to
start business relations. In order to do so one party has to
make an investment, which is specific in regard to the other
party. Transferred to a concrete Cloud scenario, a company
could invest in developers and applications, which are using
Amazon’s Web Services. This particular investment is of
virtually no use when not used in the context of the two
parties, i.e., the applications can not be used with Google’s
App Engine for example nor can the spezialized developers
work with Microsoft’s Azure. It is not possible to write
complete contracts, i.e., contracts containing all, even future
aspects of business relations, which might have an influence

on the returns from the investment [9]. Due to incomplete
contracts it is very likely that situations will arise that have
not been foreseen at the time of the contract writing, making
renegotiations necessary. In such future interactions one party
may take advantage of the lock-in situation.

A party, anticipating the risk of a lock-in situation, typically
takes suboptimal investment decisions, leading to underin-
vestment. [10, 11] When already facing the lock-in problem,
a company may decide to stop further investment or to
expend resources to protect itself against the lock-in. A party
anticipating lock-in, hence, ends up in a hold-up situation,
which in either case, leads to inefficient results [9].

Ewerhart et al. [12] summarized that in a lock-in situation,
market forces are no longer effective and there is a risk of ex-
post opportunistic behaviour. A party being forced to accept
sub-optimal conditions cannot escape the situation due to the
lock-in and finds itself in a hold-up [13].

III. CLOUD FEDERATION

Cloud federation comprises services from different
providers aggregated in a single pool supporting three
basic interoperability features - resource migration, resource
redundancy and combination of complementary resources
resp. services. Migration allows the relocation of resources,
such as virtual machine images, data items, source code,
etc. from one service domain to another domain. While
redundancy allows concurrent usage of similar service
features in different domains, combinations of complementary
resources and services allows combining different types to
aggregated services. Service disaggregation is closely linked
to Cloud Federation as federation eases and advocates the
modularization of services in order to provide a more efficient
and flexible overall system.

We identify two basic dimensions of Cloud Federation: hor-
izontal, and vertical. While horizontal federation takes place
on one level of the Cloud Stack, e.g., the application stack,
vertical federation spans multiple levels. In the following we
focus on horizontal federation; aspects of vertical federation
are out of the scope of this publication.

Several aspects of horizontal federation can be distin-
guished, e.g., provider domain and geography. Horizontal
federation across provider domains may decrease provider
dependency and thereby lower the risks of vendor lock-in
and hold-up. Increased availability may be achieved through
horizontal federation across multiple geographic regions. Also,
vertical federation scenarios along similar aspects are imagin-
able.

Cloud Federation can be of interest for providers as well
as for customers. Customers may profit from lower costs and
better performance, while providers may offer more sophisti-
cated services. However, hereinafter we focus on the customer
perspective.

Two types of scenarios can be linked to Horizontal Feder-
ation:

33

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 43 / 237

• Redundancy: is used whenever there is a subset of (prop-
erly organized) service offerings that provide better util-
ity to a client than any single service offering xi, i.e.,
∃X ⊆

⋃
i xi where ∀xi : u(X) > xi. the duration is,

at least regarding a near time horizon, permanent as the
user purposefully uses multiple service providers at the
same time.
• Migration: can be triggered when a new service offering

offers better utility to a client than any previously used
service offering, i.e., ∃xnew∀xi : u(xnew) > u(xi)+u(cs)
where cs are the total switching costs and xnew 6∈

⋃
i xi.

Figure 1 illustrates the behavior over time of the two
scenarios.

Fig. 1. Migration vs. Redundancy

A. Redundancy

Following the technical Cloud Stack [5], we can distinguish
IaaS, PaaS and SaaS as different levels where horizontal
redundancy can be used.

1) IaaS:
a) Compute services: know 3 kinds of redundancy:

• Redundant deployment: The same application logic is
deployed to different providers. Still, incoming requests are
processed by only one instance. Redundant deployment is
used to increase the availability while decreasing provider
dependence. Other reasons to do so could be compliance
with regulations, which require instances in particular
geographic locations. Also, customer proximity could be
an issue to reduce latency.
• Redundant computation: The same application logic is

deployed to different providers. Nevertheless, in contrast to
redundant deployment here every request is processed by
more than one instance. Reasons to do so could be either
to improve performance by reducing the risk of an instance
failing right before completing a task, an approach, e.g.,
taken in Google’s MapReduce [14], or limited trust in the
provider returning correct results.
• Parallel computation: Here, the data is broken down at bit

level and processed at different providers’ sites following
the same application logic or complimentary services are

deployed to different providers. Reasons for the 1st case
could be security considerations where each provider only
knows a tiny subset of the data. In the 2nd case, tasks
are spread to the best fitting VMs to optimize latency and
throughput.

b) Storage Services: know 3 kinds of redundancy:

• Replication: Data items are distributed as a whole and
multiple copies are stored to increase availability while
removing a single point of failure [15, 16, 17, 3] and re-
ducing vendor lock-in. Furthermore, an increased number
of replica may improve read latency due to customer prox-
imity and increases durability. This is especially of interest
when addressing resilience to correlated failures. However,
whenever copies of the same data are kept at different
sites there is a general tradeoff between consistency and
availability as well as latency depending on how a storage
system updates replica. This may happen synchronously,
asynchronously in the background or as a combination of
both.

• Erasure coding: Erasure coding uses RAID-like algorithms
[18, 19] to distribute parts of data. If those parts overlap it
is possible to restore data items even if a limited number
of parts is missing. This obviously improves security as
each provider knows only a tiny subset of the data item.

• Fragmentation: Here, items of type 1 are stored at provider
A while type 2 is stored at provider B. This is useful when
functional (e.g., data structure) and non-functional require-
ments (e.g., geographic location, durability, consistency)
differ for different types of data.

2) PaaS:
PaaS offerings are hard to use redundantly as they usually

not only follow a different programming model and support
only a limited number of programming languages but also
do applications developed for a particular PaaS offering make
use of an entire ecosystem of services provided just within
that PaaS offering. Furthermore, PaaS generally introduces
limitations on the programming model they build upon so that
applications need to be fine-tuned for a particular platform.
So, the only sensitive alternative when trying to use federated
PaaS offerings is to use one, for which an open source offering
exists, which can, hence, be hosted by the customer or on
top of IaaS compute resources. An example would be to
redundantly use Google App Engine and AppScale running
on top of Amazon EC2.

3) SaaS: Multiple SaaS offerings can be used redundantly
with focus on different aspects:

• Focus on user experience: In this case, software services
with similar functionality are used concurrently. An appli-
cation could, e.g., allow the end user to toggle between
visualization using Google or Bing Maps. This could
enhance user experience by enabling a user to use a service
he is used to. As a side effect, it would increase availability.

• Focus on availability: In this case software services with
similar functionality are required but not used concurrently.

34

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 44 / 237

An application might switch over to a backup service in
case of unavailability of the primary service.

While fine-grained SaaS offerings, e.g., Map services, can
be used in a federation context relatively easy, it is very
hard and probably cost-intensive to federate more complex
services like, e.g., Salesforce. The difficulty to federate such
offerings is caused by the fact, that it is virtually impossible to
isolate smaller building blocks of the service as no competing
solutions exist, which offer exactly the same functionality.
Also, the potentially proprietary data formats and APIs of
such services increase the problem. We believe that the issues
related to the federation of SaaS offerings with larger gran-
ularity cannot be addressed in an adequate way by technical
approaches and are therefore beyond the scope of this paper.

B. Migration

Migration incorporates scenarios where data respectively
resources are being transferred from one Cloud provider A to
another Cloud provider B. We identify two types of migration:

• Shadowed or redundant migration: In a migration scenario
multiple similar services are usually only used for a limited
amount of time, during which the old service is still
operational while the new service is introduced. In the
beginning, the new service is shadowing the old service to
test it with live data. After switching over, the old service
is shadowing the new one as a fallback solution in case of
unanticipated failures. Finally, the old service is put out of
service and the migration is finished.
• Non-redundant migration: Here, there is a hard switch-

over. There is no shadowing period before or after.

In addition to those two types, we distinguish between full
and partial migration:

• In the case of full migration an entire service stack
is migrated, i.e., all components belonging to a certain
service are migrated, e.g., a web server along with its
database.
• Partial migration is linked to service disaggregation and

describes the migration of service components or modules.
A service composed of multiple components can be dis-
aggregated into sub-services, some of which may then be
migrated, before being reestablished as separate service.

IV. TOWARDS A REFERENCE ARCHITECTURE

Cloud services offer access to services, which are associ-
ated with pools of stateful resources, e.g., virtual machines,
data storage, queues, e-mail systems, etc. Our concept of a
resource is similar to the notion of resources within the WS-
Resource framework [20], however, less formalized because
cloud services do not necessarily standardize on Web Service
specifications.

We distinguish between two types of programmatic access
to these resources:

• Resource API
• Management API

Applications implement the Resource API to access and
utilize resources, which are exposed as business logic. For
example, Amazon S3 offers a Resource API to create, read,
update, and delete basic storage volumes (“buckets”) as well
as to upload or download data objects. Within the business
logic of a photo-sharing application, buckets could be used as
photo albums and a data object within a bucket could represent
a photo image file. Table I illustrates that a photo-sharing
application could be implemented with Cloud services from
either Amazon or Google - or with a mix of services from
both providers.

TABLE I
EXAMPLE PHOTO-SHARING APPLICATION.

Application feature AWS Google App Engine

Photo storage S3 buckets & obj. Data store or Blobstore
Photo notification SQS or SNS Channel service
Image editing N/A Image service
Photo sharing SES Mail service

The Management API helps application developers and
administrators to manage resources efficiently. This includes
a variety of activities: monitoring, deployment, data man-
agement, and so on. For example, Amazon EC2 offers a
Management API for managing virtual machines (e.g., launch,
stop, terminate) along with related settings and add-on ser-
vices (e.g., security groups, block storage volumes, static IP
addresses). Google App Engine offers a Management API
to deploy application packages into the runtime environment
and a dashboard for monitoring and administration (e.g., logs,
cron jobs, datastore indexes, application versions and release
management).

A. Two Perspectives on Interoperability

Interoperability challenges can be viewed from the per-
spective of a service provider or from the perspective of
a service user. A service provider could be interested in
offering distributed system services, which are interoperable
with established, proprietary de-facto standards. Service users,
on the other side, could design and implement applications
with adaptors to multiple service providers, thereby enabling
federation.

Table II shows 5 open source systems, which offer services
similar to Amazon EC2 and Amazon S3. These systems
support the interface definitions and protocols of their Amazon
Web Services counterparts. Currently, all of the open source
systems offer merely a small subset of comparable services
and therefore only cover a subset of the Amazon Web Services
API. The quality of a hosted open source solution, however,
significantly depends on the system management skills of the
hosting provider with regard to system scalability, performance
and fault-tolerance. The systems could for example be backed
with open source distributed system solutions, such as Apache
HBase or Apache Cassandra, thereby providing a basis for
achieving higher quality levels. Still, this induces even more
integration challenges.

35

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 45 / 237

TABLE II
AMAZON WEB SERVICES (AWS) COMPATIBLE OPEN SOURCE CLOUD

MANAGEMENT SYSTEMS.

Name API AWS-compatible services

Eucalyptus AWS Eucalyptus (EC2), Walrus (S3)
OpenNebula OCCI, AWS OpenNebula (EC2)
CloudStack CloudStack, AWS CloudStack + CloudBridge (EC2)
OpenStack OpenStack, AWS OpenStack: Compute, Image Ser-

vice (EC2) & Object Storage (S3)
Nimbus WSRF, AWS Nimbus (EC2), Cumulus (S3)

TABLE III
COMPARISON OF MULTI-CLOUD LIBRARIES AND UTILITY PROGRAMS.

Name Lang. License AWSa RAXb GOOGc VMWd MSe GGf

jclouds Java Apache2 yes yes yes yes yes yes
JetS3t Java Apache2 yes no yes no no no
fog Ruby MIT yes yes yes no no yes
boto Python MIT yes no yes no no no
libcloud Python Apache2 yes yes no yes no yes
deltacloud Ruby Apache2 yes yes no no no yes
Whirr Java Apache2 yes yes no no no no
PyStratus Python Apache2 yes no no no no no

aAmazon bRackspace cGoogle dVMWare eMicrosoft fGoGrid

Table III shows a list of multi-cloud libraries, which enable
interoperability across similar cloud services on a higher level
than the systems discussed before. During the implementation
of an application, the libraries jclouds, JetS3t, fog, boto,
libcloud, and deltacloud are linked into the build path. When
the application has been implemented, it can be deployed using
any of the library-supported cloud services. This simplifies
migration processes and redundancy setups as described in the
sections before as there is no need to re-design the application.
Instead, simple configuration options, usually just the service
endpoints, must be changed. Figure 2 illustrates the migration
of a service and the impacts on the service endpoints and the
thereon based application.

Fig. 2. Migration scenario illustrating impact on service endpoints

Additionally, utilities like Whirr (based on jclouds) and
PyStratus can be used to deploy complex distributed systems
on top of exchangeable compute clouds, such as EC2 or the
Rackspace Cloud.

Both strategies, interoperable open source solutions and
multi-cloud application code, can be employed to facilitate
transparent application migration. Redundancy is more com-
plicated to establish: Either it is explicitly foreseen in the
application’s code or there is a federation system providing a
suitable programming abstraction. An additional layer decou-
ples the application from the actual resources and permits their
transparent reconfiguration, e.g., change redundancy strategy
to erasure coding. Figure 3 illustrates the two strategies.

Fig. 3. Redundancy Strategies

B. Potential Reference Architecture Components

The open source cloud management systems in Table II
and the multi-cloud software libraries in Table III are crucial
elements for creating a federated cloud application. However,
the systems and libraries should be discussed in a wider
context to answer how applications can be migrated from one
cloud service to another or operated on top of redundant cloud
services.

We suggest that a reference architecture should contain the
following components:

• Provisioning Engine: takes an application package along
with policies and maps business logic components to
a pool of resources. The projected mapping along with
management configurations is then executed and enforced
through a Distribution Manager.

• Distribution Manager: contains multiple sub-
components, through which it enforces guarantees
specified with policies. For example, enforce consistency
between data replica; enforce the same deployment
configuration on multiple servers. It may also serve as a
redundancy decoupling layer. Principal components are:

– Deployment Manager: is a component of the Distri-
bution Manager. Based on a deployment description
the manager executes resource management com-
mands through Resource Managers. It guarantees the
avalabillity and the correct configuration of provi-
sioned resources.

– Configuration Manager: is a component of the
Deployment Manager. It recreates virtual appliances

36

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 46 / 237

resp. application stacks based on stored configuration
informations.

– Data Distribution Manager: is a component of the
Distribution Manager. It manages the distribution of
data, e.g., data replication, data redundancy, accord-
ing to the distribution strategies.

The distribution managers secondary components are:
– Transformation: is used to transform incompatible

formats, e.g., virtual machine images and to map
between different data formats.

– Monitoring: gathers information about resource
states and information about their configuration
through the Resource Managers. In case of unex-
pected conditions the Distribution Manager adapts
the system to match the projected provision mapping.

• Resource Manager: manages all resources in a unified
way. It can be realized as a collection of resource-
localized components. The Resource Manager provides
an abstraction of the APIs of the underlaying services and
allows the Distribution Manager to configure resources in
different clouds in a unified way. It may use adaptors, for
example multi-cloud libraries, to perform its tasks.

Figure 4 depicts our current vision of the reference archi-
tecture. We have to point out, that we are still doing research
on the reference architecture and that the figure should only
be considered a snapshot of our momentary work in progress.

Fig. 4. Reference Architecture

V. DISCUSSION

A. Vendor Lock-In and Cloud Computing

As depicted in Section II, vendor lock-in exists when
potential switching costs surpass the benefits the customer
would enjoy by switching to another provider. This is currently
the case with Cloud Computing: by switching the provider
the initial ex-ante investments could be largely lost and new

investments, to adapt the software and retrain employees, will
be necessary, thus exceeding the benefits of the provider-
change. This implicates, that in Cloud Computing, lock-in, and
in consequence hold-up, is a result of the different, proprietary
interfaces, services and service offerings and the complexity
involved in coping with this issues.

Since Cloud Federation resolves the above mentioned issues
or - at the least - lowers the costs involved, we claim that it
thereby resolves lock-in as well as hold-up and is a key enabler
of Cloud marketplaces.

B. Future Work

Thoughts on Vertical and Secondary Services Federation are
not incorporated in this article and will be subject to future
works. Also the proposed federation reference architecture has
to be elaborated in more detail in future works. Notably, we
did not outline details on our vision of application packages
and how the architecture’s components could be realized.

VI. CONCLUSION

Cloud Federation is a concept, which has a large potential
and might have an enormous influence on the way computing
resources and applications will be handled, developed and
used. It is a further step of providing computing resources
in an utility-services-like way, similar to other services, e.g.,
electricity or water. However the evolution of Cloud Com-
puting and related concepts and technologies is extremely
dynamic and it is very difficult to make long-term prognoses.
We believe anyhow, that this article can be a substantial
contribution to future works on Cloud Federation.

ACKNOWLEDGMENT

The work presented in this paper was performed in the
context of the Software-Cluster project EMERGENT [21]. It
was partially funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) under grant no. “01IC10S01”.
The authors assume responsibility for the content.

REFERENCES

[1] R. Harms and M. Yamartino, “The economics of
the cloud,” Microsoft Corporation, Redmond, WA,
USA, Microsoft Whitepaper, November 2010. [Online].
Available: http://www.microsoft.com/presspass/presskits/
cloud/docs/The-Economics-of-the-Cloud.pdf [Accessed:
June 24, 2011]

[2] “Microsoft: Smb hosted it commentary report,” 2010.
[3] M. Armbrust et al., “Above the clouds: A berkeley

view of cloud computing,” University of California
at Berkeley, Tech. Rep., February 2009. [Online].
Available: http://berkeleyclouds.blogspot.com/2009/02/
above-clouds-released.html [Accessed: June 26, 2011]

[4] P. Mell and T. Grance, “The nist definition of
cloud computing,” National Institute of Standards
and Technology, vol. 53, no. 6, p. 50, 2009.
[Online]. Available: http://csrc.nist.gov/groups/SNS/
cloud-computing/cloud-def-v15.doc [Accessed: June 16,
2011]

37

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 47 / 237

[5] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm,
“What’s inside the cloud? an architectural map of the
cloud landscape,” Software Engineering Challenges of
Cloud Computing, ICSE Workshop on, vol. 0, pp. 23–
31, 2009.

[6] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Com-
puting: Web-basierte dynamische IT-Services, ser. Infor-
matik im Fokus. Berlin: Springer-Verlag, Oktober 2009.

[7] R. Cowan, “Tortoises and hares: Choice among
technologies of unknown merit,” The Economic Journal,
Jan. 1991. [Online]. Available: http://links.jstor.org/sici?
sici=0013-0133(199107)101%253A407%253C801%
253ATAHCAT%253E2.0.CO%253B2-S [Accessed: June
20, 2011]

[8] B. Klein, R. G. Crawford, and A. A. Alchian,
“Vertical integration, appropriable rents, and the
competitive contracting process,” Journal of Law
& Economics, vol. 21, no. 2, pp. 297–326, October
1978. [Online]. Available: http://ideas.repec.org/a/ucp/
jlawec/v21y1978i2p297-326.html [Accessed: June 17,
2011]

[9] B. Holmstrom and J. Roberts, “The boundaries
of the firm revisited,” Journal of Economic
Perspectives, vol. 12, no. 4, pp. 73–94, Fall 1998.
[Online]. Available: http://ideas.repec.org/a/aea/jecper/
v12y1998i4p73-94.html [Accessed: June 17, 2011]

[10] P. A. Grout, “Investment and wages in the absence
of binding contracts: A nash bargining approach,”
Econometrica, vol. 52, no. 2, pp. 449–60, March 1984.
[Online]. Available: http://ideas.repec.org/a/ecm/emetrp/
v52y1984i2p449-60.html [Accessed: June 18, 2011]

[11] J. Tirole, “Procurement and renegotiation,” Journal
of Political Economy, vol. 94, no. 2, pp. 235–59,
April 1986. [Online]. Available: http://ideas.repec.org/a/
ucp/jpolec/v94y1986i2p235-59.html [Accessed: June 18,
2011]

[12] C. Ewerhart and P. W. Schmitz, “Der lock in effekt
und das hold up problem,” University Library of
Munich, Germany, MPRA Paper 6944, 1997. [Online].
Available: http://ideas.repec.org/p/pra/mprapa/6944.html
[Accessed: June 21, 2011]

[13] O. E. Williamson, Markets and hierarchies: An analysis
and antitrust Implications. The Free Press, 1975.

[14] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” in Proceedings of the
6th conference on Symposium on Opearting Systems
Design & Implementation - Volume 6. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10.
[Online]. Available: http://portal.acm.org/citation.cfm?
id=1251254.1251264 [Accessed: June 19, 2011]

[15] J. Broberg, R. Buyya, and Z. Tari, “Metacdn: Harnessing
’storage clouds’ for high performance content delivery,”
J. Network and Computer Applications, vol. 32, no. 5,
pp. 1012–1022, 2009.

[16] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-
availability and integrity layer for cloud storage,” in ACM

Conference on Computer and Communications Security,
2009, pp. 187–198.

[17] D. Bermbach, M. Klems, M. Menzel, and S. Tai, “Metas-
torage: A federated cloud storage system to manage
consistency-latency tradeoffs,” in Proceedings of the
IEEE Cloud 2011 - to appear, 2011.

[18] H. Weatherspoon and J. Kubiatowicz, “Erasure coding
vs. replication: A quantitative comparison,” in Revised
Papers from the First International Workshop on
Peer-to-Peer Systems, ser. IPTPS ’01. London,
UK: Springer-Verlag, 2002, pp. 328–338. [Online].
Available: http://portal.acm.org/citation.cfm?id=646334.
687814 [Accessed: June 23, 2011]

[19] Y. Saito, S. Frølund, A. C. Veitch, A. Merchant, and
S. Spence, “Fab: building distributed enterprise disk
arrays from commodity components,” in ASPLOS, 2004,
pp. 48–58.

[20] K. Czajkowski et al., “The ws-resource frame-
work,” Tech. Rep. 1.0, March 2004. [Online].
Available: http://www.ibm.com/developerworks/library/
ws-resource/ws-wsrf.pdf [Accessed: June 17, 2011]

[21] “Software-cluster emergent.” [Online]. Available: www.
software-cluster.org [Accessed: June 26, 2011]

APPENDIX

Table A - Cloud product overview
Name URI

Amazon’s EC2 http://aws.amazon.com/ec2/
Amazon’s Elastic Beanstalk http://aws.amazon.com/elasticbeanstalk/
Amazon’s S3 http://aws.amazon.com/s3/
AppScale http://code.google.com/p/appscale
CloudKick http://www.cloudkick.com/
Google App Engine http://code.google.com/appengine/
Microsoft Azure http://www.microsoft.com/windowsazure/
SalesForce’ Force.com http://www.salesforce.com/platform/
ScaleUp http://www.scaleupcloud.com/
SpotCloud http://spotcloud.com
Zimory http://www.zimory.com

Table B - Multi-cloud library overview
Name URI

boto http://code.google.com/p/boto/
deltacloud http://incubator.apache.org/deltacloud/
fog http://github.com/geemus/fog
jclouds http://code.google.com/p/jclouds/
JetS3t http://jets3t.s3.amazonaws.com/
libcloud http://incubator.apache.org/libcloud/
PyStratus https://github.com/digitalreasoning/PyStratus/
Whirr http://incubator.apache.org/whirr/

Table C - Open source cloud management systems overview
Name URI

CloudStack http://cloud.com/
Eucalyptus http://open.eucalyptus.com/
Nimbus http://www.nimbusproject.org/
OpenNebula http://opennebula.org/
OpenStack http://www.openstack.org/

38

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 48 / 237

Abstract—The increasing amount of data collected in the
fields of physics and bio-informatics allows researchers to build
realistic, and therefore accurate, models/simulations and gain a
deeper understanding of complex systems. This analysis is often
at the cost of greatly increased processing requirements. Cloud
computing, which provides on demand resources, can offset
increased analysis requirements. While beneficial to
researchers, adaption of clouds has been slow due to network
and performance uncertainties. We compare the performance
of cloud computers to clusters to make clear the advantages
and limitations of clouds. Focus has been put on understanding
how virtualization and the underlying network effects
performance of High Performance Computing (HPC)
applications. Collected results indicate that performance
comparable to high performance clusters is achievable on cloud
computers depending on the type of application run.

Keywords – Cloud Computing, Benchmarking, Performance,
System Biology, N-body simulation

I. INTRODUCTION

Cloud computing provides on demand computational
resources of the Internet through use of virtualization,
services and a pay-per-use paradigm. There has been interest
in applying this computing technology to solve large
scientific and industrial problems. By drawing resources
from the cloud, even small research groups can solve these
problems without investing in large amounts of computer
infrastructure. However, cloud computing is still a
developing technology and there have been many concerns
about the overhead of virtualization and communication
latency.

Virtual machines are used in Infrastructure as a Service
(IaaS) clouds to provide users with dedicated systems which
share underlying physical hardware. However there is a cost
to create and maintain these isolated systems, a
virtualization overhead, which is constantly subtracted from
a user’s allocated virtual resources [1]. Inconsistent network
traffic flow also exists in clouds, which is problematic when
running communication heavy applications [2]. It is in
response to these issues, that some cloud providers have
provided compute nodes which utilize hardware found in
high performance computer clusters [3]. It is claimed that
these High Performance Computing (HPC) enabled cloud
nodes are optimized for running HPC applications yet it has
not been proven in a practical manner.

This paper shows results of both the investigation of the

feasibility of running HPC applications on clouds through
benchmarking and the comparison of these results to cluster
results. Two practical applications, an embarrassingly
parallel bio-informatics visualization and communication
bound N-body physics simulation, were chosen to represent
classes of parallelization, data and functional parallelization.
Using these applications HPC enabled clouds, standard IaaS
clouds and a HPC cluster have been tested and compared.
Of interest are the effects of virtualization and network
latency, which have been documented to be the main
performance issues [1][2].

The rest of this paper is as follows; Section II describes
previous cloud benchmarks, their results and short fallings.
Section III introduces the applications used during the
benchmark; this is followed by a section introducing each
computing platform and their specifications. Section V
describes the methodology taken to setup each machine.
Section VI presents performance results from the
benchmarking, which is followed by a section investigating
execution cost of the Amazon Elastic Compute Cloud (EC2)
[13]. Finally, a conclusion and future work section is
presented.

II. STATE OF THE ART

There are many advantages in using cloud computing for
scientific research. For bio-informatics, running sequence
alignment on the cloud (on a once per experiment basis)
represents significant savings. Despite the increased range of
cloud compatible bio-informatics software [4], adoption of
on demand computing has been slow. Reasons for this slow
adoption include usability and performance uncertainties [5].

A number of recent studies have investigated the
performance of cloud computers. A solution by Napper and
Bientinesi [6] runs LINPACK on Amazon Extra-Large
instances (in both the Standard and High-CPU categories).
Results indicate that these Amazon instances are not yet
mature enough for HPC computations. Suggestions are
made to offer better interconnects or nodes provisioned with
more physical memory.

A study done by Indiana University measures the
virtualization overhead of Xen and Eucalyptus through three
practical applications (matrix multiplication, k-means
clustering and the concurrent wave equation solver) Results
showed a moderate-to-high virtualization overhead when
running Message Passing Interface (MPI) applications [1].

IaaS Clouds vs. Clusters for HPC: A Performance Study

Philip C. Church and Andrzej Goscinski

Deakin University, School of IT
75 Pigdons Road, Waurn Ponds, Victoria, 3216, Australia

Email: pcc@deakin.edu.au, andrzej.goscinski@deakin.edu.au

39

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 49 / 237

A recent study by W. Guohui and T. S. E. Ng [2]
investigated the network interconnect of EC2. An
application called CPUtest was used to measure processor
sharing, Round-trip Delay Time, Transmission Control
Protocol (TCP)/User Datagram Protocol (UDP) throughput
and packet loss. Observed results show abnormally large
packet delay variations between cloud instances. Unstable
TCP/UDP throughput was also seen, caused by end host
virtualization.

The main criticisms of these studies were addressed by
Amazon’s recent addition of HPC cluster instances. These
instances have 10 Gb Ethernet interconnect and more
physical memory. Limited performance results exist for this
machine, the most relevant is a LINPACK study run on a
cluster of Amazon’s EC2 Cluster Compute instances
(consisting of 7040 cores). Results ranked the Amazon EC2
cluster 231 on the TOP500 super computer list [7].

As seen in the above examples, previous performance
studies made use of scientific applications, profiling tools or
LINPACK. Results from these studies indicate there are
problems when running communication bound applications
on the cloud. While the LINPACK result from the Amazon
EC2 cluster instances indicates these problems are resolved,
the EC2 HPC offering has not been studied through practical
applications. In addition, cloud setup and cost of running
scientific applications on the cloud has not been addressed.

It is because of these short fallings that a cloud
benchmark is presented. Focus has been put on investigating
the effects of network speed and virtualization on HPC
optimized clouds. The financial cost of executing
applications on the cloud is also examined. By basing this
study on solving common scientific problems in bio-
informatics and physics, a realistic case can be made for or
against the use of cloud computing for scientific research.
Comparisons are made between clouds and the currently
used high performance clusters in order to quantify results.

III. APPLICATIONS

Scientific computing is a source of large scale problems.
The amount of data collected in the fields of bio-informatics
and physics has been exceptional, and data analysis can
exceed the available computational time and storage. Cloud
computing could be used to support large data analysis and
solve large problems. A common application from each
scientific field was chosen; in this way the measurements
could be applicable to real life problems. This section
describes the operation of applications used during the
benchmarking study.

A. Bio-informatics Application

A patient’s genome can be screened for cancers before any
visible symptoms appear, and finding the inflicted subtype
of cancer can lead to personalized cancer treatments. To
facilitate these personalized treatments of cancer, signatures
of cancer subtypes need to be collected. A common bio-
informatics workflow used to find these subtypes involves
building system models [8]. System models show the
interaction of genes in a biological system, and are built by

correlating genes together. Building a system model is an N
× N problem, given a list of N genes; N correlations are
required for each gene. This workflow consists of many
steps including; normalization and filtering of data,
statistically correlating genes and then visualizing these
results in a network diagram.

The system network workflow presented in Fig. 1 makes
use of data representing the amount of activated genes, also
known as gene expression, in a biological sample. In order
to find accurate relationships between genes, collecting both
trait exhibiting and control expression datasets is necessary.
Collecting this gene expression data involves multiple
observations of genes in the biological system of interest.
During this observation process human error can be
introduced through uneven handling or scanning of samples.
Normalization removes this bias by removing background
noise from signal intensities and standardizing data so that
distribution remains the same. Normalized data is then
filtered, reducing the problem set by selecting genes that
contain large variation. Correlation algorithms are then used
to find the relationships between genes; commonly used
correlation algorithms include Pearson’s coefficient and
Spearman’s rho [9].

B. Physics Application

Data collected by particle accelerators such as
synchrotrons and the Large Hadron Collider generate
terabytes of data. By comparing simulations to collected
results, it is possible to gain a better understanding of the
laws that govern the universe [10]. We run a simulation of
two disk galaxies colliding using an astrophysics application
called GADGET [11]. This application is designed to
simulate collision-less simulations and smoothed particle
hydrodynamics on massively parallel computers. GADGET
uses a combination of a physical mesh and tree based
algorithms to simulate large range and small range particle
interactions.

Before each simulation step, physical mesh data
decomposition is used to break the simulation area into

Fig. 2. 3D Representations of the Peano–Hilbert Curve.

Fig. 1. A Common System Network Workflow.

40

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 50 / 237

pieces. To achieve equal load balancing, GADGET makes
use of the Peano–Hilbert curve to map 3D space onto a one
dimensional curve. The Peano–Hilbert curve (see Fig. 2) is a
space-filling curve variant which visits every point of a
square grid. Once calculated, this curve is cut into pieces
that define the individual domains. After the problem state
has been reduced, it is distributed to multiple processors.
Because this decomposition step occurs after every
simulation step, load on processors are balanced.

In order to simulate the movement of galaxies the
gravitational forces operating on close range particles need
to be calculated. Calculation of force can be simplified by
treating groups of similar particles as a single entity. In this
way it is possible to summarize gravitational interactions
between particles using a single force value. This force is
calculated by adding together the mass of all particles in an
area. While this method is quick, it is only accurate when
particles are far away and will not work when particles are
close. The accuracy of this method is improved through sub-
division of the starting area.

IV. INTRODUCTION TO BENCHMARKED PLATFORMS

One physical machine and three cloud systems were used
during this benchmarking. Naming conventions of the
machines are as follows; the cluster is hereby referred to as
the InfiniBand Cluster, while each cloud is referred to by the
cloud management interface (vSphere [12], Amazon [13],
HPCynergy [14] [15]). The vSphere and HPCynergy clouds
are private clouds whereas Amazon is a public cloud. In
terms of hardware, these computer platforms were chosen to
be as similar as possible to each other, when possible
utilizing the same pool of hardware. Of the four machines
described below, HPCynergy, the vSphere and InfiniBand

Cluster use the same hardware; the Amazon machines use
their own individual hardware.

Despite the large effort taken to minimize hardware
differences, some Amazon instances differ in the amount of
cores per processor. Because of this variation, each process
was mapped to a single core and when possible a single
node. To validate the mapping process CPU usage was
monitored during data collection, for example a duel core
system with a single process would be using 50% capacity.
This methodology was chosen as it is similar to that used by
the cloud computers, in that virtual machines are mapped to
physical hardware.

Three Amazon instance types [3] were tested; Small,
Large and Cluster. It has been documented that Amazon
uses a modified version Xen as the hypervisor. In each case
the Amazon Elastic Block Store (an Amazon service which
provides persistence storage of virtual hard-drive) was used
to store the state of the deployed virtual machines. Amazon
measures the performance of CPU’s in Amazon Compute
Units (ACUs); this is equivalent to an Intel Xeon chip. Each
Amazon Small Compute instance contained 1 ACU and 1.7
GB RAM. Large instances contain four ACU and 7.5 GB of
RAM. The Amazon Cluster Compute instances contain two
Intel “Nehalem” quad-core CPU running at 2.98 GHz and
26 GB of RAM.

The second cloud used in this benchmarking was based
on VMware virtualization technology. This private cloud
made use of the same physical machines as the InfiniBand
Cluster. A ten node virtual cluster was deployed through this
VMware cloud, each with duel core processors running at
2.33 GHz. A 10 GB InfiniBand network was used to provide
inter-node communication. VMware vSphere is used as the
management software providing the ability to create, deploy
and access virtual machines.

TABLE I
LIST OF BENCHMARKED COMPUTER PLATFORMS

Names Nodes Hypervisor Platform Hard Drive CPU RAM Network Interface

Amazon
(Cluster)

8 Modified Xen:
HVM

64-bit
CentOS

Elastic Block
Store

2 x Intel
quad-core Nehalem

(2.93 GHz)

23 GB 10Gb
Ethernet

Web-based
console.
SSH.

Amazon
(Large)

17 Modified Xen:
Paravirtual

64-bit
Ubuntu 9.10

Elastic Block
Store

2 x Xeon equivalent
(2.2 GHz)

7.5 GB High I/O Web-based
console.
SSH.

Amazon
(Small)

17 Modified Xen:
Paravirtual

64-bit
Ubuntu 9.10

Elastic Block
Store

2007 Xeon
equivalent
 (1.6 GHz)

1.7 GB Low I/O Web-based
console
SSH.

vSphere
Cloud

10 VMware 64-bit
Ubuntu 9.10

Separate
Drives

2.33 Ghz
Intel Duel Core

2 GB InfiniBand
10Gb

Web-based
console,
SSH.
Remote Display.

InfiniBand
Cluster

10 None 64-bit
CentOS

Shared
Drives

2.33 GHz
Intel Quad Core

Duo

8 GB InfiniBand
10Gb

SSH.

HPCynergy 20 VMware 64-bit
CentOS

Shared
Drives

Virtual: Hexa-cores
(2.33 GHz)

Physical: Dual

Quad Cores

8 GB InfiniBand
10Gb

Web Interface.
Web Service.

41

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 51 / 237

The third cloud used in this benchmarking was
HPCynergy [14]. HPCynergy is a HPC cloud solution
developed at Deakin University which incorporates a
publishing service and broker. This cloud platform exposed
VMware virtualized nodes running on the InfiniBand
Cluster. A total of seventeen compute nodes were utilized
through HPCynergy, each node containing a hexa-core
processor running at 2.33 Ghz. A 10Gb InfiniBand network
provided inter-node communication.

The InfiniBand Cluster used in this benchmarking is a
bare-metal system consisting of 10 nodes each with an Intel
Quad Core Duo processor running at 2.33 GHz. Each node
utilizes 8 GB of RAM and runs a 64-bit version of CentOS
to take advantage of this amount of RAM. As a machine
dedicated to HPC, nodes are connected using 10 GB
InfiniBand and a mounted network drive allows users to
easily setup MPI applications. In terms of CPU speed and
RAM size, this machine is equivalent to the documented
specification of the Large Amazon instance. This machine
differs from the Amazon instance having a faster network
interconnect. Specifications of all platforms used in the
following benchmarking are summarized in Table I.

V. SETTING UP THE CLOUD: METHODOLOGY

Setting up computer resources for High Performance
Computing is both a time consuming task, and one that
serves as an interruption to research. While the InfiniBand
Cluster used in these benchmarking could be used once code
had been compiled, the Amazon and vSphere clouds
required modification to enable HPC. The HPCynergy cloud
solution aims to reduce setup time by exposing systems
which have middleware already setup.

Amazon and vSphere clouds required a number of steps
including; transferring source code, configuring the
compiler’s dynamic linker, compiling the source code and
any dependencies, configuring the sshd client, generating
public and private keys, passing public keys to all nodes and
creating a machineFile for MPI. The above steps were not
required when setting up HPCynergy due to its unique
interface. Like other clouds, HPCynergy monitors and acts
as a broker to linked (physical and virtual) hardware.
However instead of hiding the state and specification of
hardware from the users, the opposite approach is taken.
Users are informed of the software and underling (virtual)
hardware specifications of each machine. This allows jobs to
be optimized to the CPU architecture as well as minimizing
the need to install specific libraries.

Some clouds had limitations which required additional
setup time. The vSphere system did not contain any VM
templates thus installation of the Ubuntu OS was required
before operation. While all Amazon EC2 instances used in
these benchmarks did not have common utilities such as the
g++ compiler, the g77 compiler, vim or zip. Software
compilation was more time consuming on the cloud systems.
Missing library dependencies and compiler specific code
meant that software would often fail during compilation.

Once each system was setup, input data and generated
results had to be transferred from the user terminal to the

cloud. Table II shows the total input/output transfer time and
data size for each benchmarked system. For each
benchmark, a total of 300 Mb was transferred between
computers. Private clouds completed upload and download
within seconds, however public Amazon clouds took many
minutes. Results indicate that the time taken for data transfer
is not just dependent on data size and network speed. Xen
virtualization and differences in cloud interconnects can
explain the variation between Amazon transfer times [3].

VI. BENCHMARKING

Comparisons made between collected results highlight the
effects of virtualization and network latency of specific
cloud platforms for high performance scientific computing.
HPCynergy and Amazon’s Cluster compute claim to address
many of these weaknesses [3], [14]. HPCynergy is a
software based solution while Amazon makes use of faster
hardware. Benchmarking is used to prove that these HPC
cloud platforms are feasible in regards to performance. To
test performance, the system biology pipeline (Section III.A)
and GADGET application (Section III.B) were run on a
number of commercial cloud solutions, dedicated clusters, as
well as virtual nodes discovered and used via HPCynergy.
To ensure optimal performance, before analysis, input data
was transferred to the local file system of each machine.

A. Bio-informatics Benchmarking

Performance of the system biology pipeline (described in
Section III.A) was recorded from five machines, the Small
and Large Amazon virtual clusters, the private vSphere
cloud, the HPCynergy cloud and the InfiniBand Cluster.
Results for each machine were measured up to four nodes;
each test was run three times in order to ensure the validity
of results.

As seen in Fig. 3, results show an almost linear increase of
performance to available resources; this is expected as most
of the system network workflow is embarrassingly parallel.
When compared to physical hardware, the VMware based
cloud shows a noticeable increase in required computational

TABLE II
TOTAL DATA TRANSFER TIME

Computer
Platforms

Input
(Min)

Input
Data Size

Output
(Min)

Output
Data Size

Amazon
(Cluster)

3.8 85.2 Mb 4.3 231.2 Mb

Amazon
(Large)

5.5 85.2 Mb 5.8 231.2 Mb

Amazon
(Small)

6.8 85.2 Mb 23.8 231.2 Mb

vSphere
Cloud

0.2 85.2 Mb 0.4 231.2 Mb

InfiniBand
Cluster

0.2 85.2 Mb 0.4 231.2 Mb

HPCynergy

0.2 85.2 Mb 0.4 231.2 Mb

42

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 52 / 237

time. It is likely that this increase is due to virtualization
overhead, in which part of the CPU is constantly being
delegated to simulate the specified environment. Additional
cloud services may also be responsible for decreased
performance; this is seen in the HPCynergy platform which
makes use of the same resource pool as the VMware cloud.
When compared to the vSphere cloud, average performance
is improved by 16%. The simple interface of HPCynergy
allows for this improved performance, but it is not
streamlined enough to match the physical hardware.

Additionally, collected results show an interesting
relationship where the quicker a job runs the closer cloud
performance matches physical hardware. This is due to
virtualization overhead being distributed over many nodes.
In the system biology pipeline, once job execution time
became less than 35 minutes, virtualization overhead of
clouds were indistinguishable from clusters.

In conclusion, different hypervisors and cloud service
implementations have varying effects on performance.
Amazon which uses a modified Xen hypervisor is very close
to physical hardware, while the vSphere cloud which makes
use of VMware virtualization suffered the most overhead.
This virtualization overhead is minimised as jobs are spread
across nodes.

B. Physics Benchmarking

The Small, Large and Cluster Amazon EC2 clouds, the
private vSphere and HPCynergy clouds and an InfiniBand
Cluster (see Section IV for extended specification details)
were also utilized for the physics benchmarking.
Benchmarking made use of full machine capacity, tests
running up to 17 nodes. Each point was run three times in
order to ensure the validity of results.

The results from this benchmarking can be seen in Fig. 4.
As seen in the physical hardware results, the ideal
performance of this GADGET benchmarking is a constant

decrease as more compute nodes are added. The vSphere
cloud, which runs on the same hardware, shows this shape
with a similar offset seen in the bio-informatics study
(Section A). Despite utilizing the same pool of resources and
hypervisor, the HPCynergy solution sees an average
performance improvement of 16% compared to the vSphere
cloud. It is this simple interface of HPCynergy that allows
for the improved performance results, but it is not
streamlined enough to match the performance of the
physical hardware.

Performance of the Amazon EC2 cloud varies depending
on the instance type chosen. Performance of the Amazon
Small instance shows a sharp computational increase at 2
nodes before performance becomes optimal at 3 nodes. The
Amazon Large instance with higher I/O shows a similar
early computational spike before optimizing at 5 nodes.
Both the Small and Large Amazon EC2 cloud instances
show an increase in computation time as more nodes are
added past this optimal performance threshold. This
relationship is an indication of a communication bottleneck,
where each node is spending more time communicating then
processing. Amazon’s recently added Cluster Compute
instance [13] has been optimized for running computation
heavy applications. The performance of this instance shows
a decrease in execution time mirroring other high speed
clusters. This optimal performance is only guaranteed when
allocating cluster instances at the same time. Because of this
requirement the user loses one of the biggest draws to the
cloud, the ability to elastically scale their applications.

Unlike the system biology problem presented in Section
III.A, this N-body algorithm requires communication
between nodes. Collected results from Amazon show that
performance is not necessarily linked to amount of machines
used. When running communication based applications, it is
important that load is balanced between nodes and that

Fig. 3. IaaS Cloud Performance Comparison: Biological System Networks.

43

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 53 / 237

communication is minimized. If each node is
communicating more than it is processing, the computation
time will increase as resources are added. Cloud computers
resources are highly distributed and performance of
communication heavy applications can vary depending on
the network architecture and the location of machines that
have been allocated to the user.

VII. COST INVESTIGATION

One of the big draws to the cloud is hardware scalability.
Running a single machine for 5 hours costs the same as
running 5 machines for 1 hour. Theoretically, this means the
cost running an application should be the same regardless of
time. This however may not be the case. Fig. 5 presents the
cost per execution time of the Amazon instances run during
the benchmark.

In terms of cost, the embarrassingly parallel bio-
informatics application was the most efficient. While
originally under-performing, the expected cost stabilization
does occur in both the Small and Large Amazon instances at
5 nodes. Results from the physics benchmark did not show
this trend. Running GADGET on the Small Amazon
instance was wasteful, performance decreasing with each
dollar spent. The large and cluster instances showed
performance improvements with cost, the cluster instance
scaling more consistently.

In conclusion, embarrassingly parallel applications are
well suited to the pay on demand cloud model. Results show
that execution time can decrease while maintaining the same
total cost. Communication bound applications are not as cost
efficient. Collected results show inconsistent performance
per node and inconsistent cost-performance ratios. The main
problem when utilizing the cloud for communication bound
HPC applications is this performance unpredictability. Even
the cluster instance, which showed the most consistent

improvements did not show any hint of eventual cost
stabilization.

VIII. CONCLUSION AND FUTURE WORK

The results presented in this paper show that even
standard public and even more private clouds can achieve
performance similar to that of dedicated HPC clusters
depending on the class of problem. When running
embarrassingly parallel applications a near linear speed up is
achievable and the results are comparable to those achieved
on a cluster.

Clearly the effects of virtualization vary with the type of
hypervisor used; Xen seems to have minimal performance
effect on computation while VMware is noticeable. When
running communication bound applications performance
results vary. On the clouds with slow network speeds the N-
body application achieved maximum performance at 5 nodes
and then required compute time steadily increased due to
communication overhead. The two clouds with HPC
hardware (Amazon Cluster Compute instance, HPCynergy
and VMware) showed the same decreasing performance
trend as the InfiniBand Cluster. These performance results
indicate that communication bound applications should be
run only on clouds which provide high speed interconnect.

While some performance issues have been resolved, cloud
setup is difficult and time consuming. A user must construct
a virtual cluster and install analysis software. This setup
process often starts through modifying of a pre-existing
template. Templates can be difficult to utilize as they are
often not documented, missing common dependencies
(compilers, text editors, etc.) and may have a range of
security access setups.

Benchmarking showed that transferring data to public
clouds was a major issue. Compared to local clouds and
clusters, public clouds increased data transfer requirements

Fig. 4. IaaS Cloud Performance Comparison: N-body Simulations.

44

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 54 / 237

by a factor of 25. This is problematic as the scientific
applications described in this paper can make use and
generate gigabytes of experimental data. At first glance the
large transfer times are merely an artefact of the physical
distance between cloud storage and user terminal. However
collected data transfer results show significant variation
between Amazon Cloud instances. This indicates that
differences in cloud interconnects is also a concern, cloud
storage and cloud instances often being separated. It is
hoped that the adoption of faster broadband technologies
should remove much of this data transfer delay.

Future work is planned to investigate the performance of
clouds when running a wide range of applications. Of
interest are other bio-informatics applications including;
protein simulation and sequence alignment. With increased
data, these applications will have profound effects in the
fields of medicine and drug discovery.

It is also important to devise algorithms that take
advantage of the cloud platform. To obtain maximum
benefit from clouds, these algorithms must scale to large
amounts of data and compute nodes while integrating
solutions to minimise data transfer. It is possible to reduce
the amount of input data by devising analysis methods
which use compressed data. Another possibility is to devise
cloud workflows which utilize the power of the user’s
desktop computer to perform data filtering and pre-
processing. Currently we are investigating ways to stream
data to the cloud; this allows faster processing turn-around
(by minimizing idle compute time).

ACKNOWLEDGMENT

This work was supported in part by an Amazon Web
Service Research Grant and the “Innovations through
Broadband” FRC through the Deakin University, Faculty of
Science and Technology contact.

REFERENCES
[1] D. R. Avresky, et al., "High Performance Parallel Computing with

Clouds and Cloud Technologies," in Cloud Computing. vol. 34, O.
Akan, et al., Eds., ed: Springer Berlin Heidelberg, 2010, pp. 20-38.

[2] W. Guohui, and T. S. E. Ng, "The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center." pp. 1-9.

[3] Amazon (2010) Amazon EC2 Instance Types. Accessed 24 September
2010, http://aws.amazon.com/ec2/instance-types/

[4] B. Langmead, et al., "Cloud-scale RNA-sequencing differential
expression analysis with Myrna," Genome Biology, vol. 11, p. R83,
2010.

[5] H.-L. Truong and S. Dustdar, "Cloud computing for small research
groups in computational science and engineering: current status and
outlook," Computing, vol. 91, pp. 75-91, 2011.

[6] Jeffery Napper and Paolo Bientinesi, “Can Cloud Computing Reach
the TOP500?” Proceedings of the combined workshops on
UnConventional high performance computing workshop plus memory
access workshop (2009).

[7] Top500 (11/2010) Amazon EC2 Cluster instances - TOP500.
Accessed 15 June 2010, http://www.top500.org/system/details/10661

[8] Khalil, I., Brewer, M.A., Neyarapally, T. and Runowicz, C.D. (2010)
“The potential of biologic network models in understanding the
etiopathogenesis of ovarian cancer.” Gynecol Oncol. 116(2):282-5

[9] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the
correlation coefficient. The American Statistician, 42(1):59–66,
February 1988.

[10] J S Bagla and T Padmanabhan (2008), ‘Cosmological N-body
simulations’, Pramana, 49 (2), 161-192.

[11] Springel V (2005), ‘The cosmological simulation code GADGET-2’,
MNRAS, submitted, astro-ph/0505010

[12] VMware (2010) VMware vSphere 4: Private Cloud Computing,
Server and Data Center Virtualization. Accessed 15 January 2011

http://www.vmware.com/products/vsphere/
[13] Amazon (2010) Amazon Elastic Compute Cloud. Accessed 24

September 2010, http://aws.amazon.com/ec2/
[14] A. Goscinski and M. Brock. Toward dynamic and attributed-based

publication, discovery and selection for cloud computing. Future
Generation Computer Systems V. 26, I. 7, 2010.

[15] Andrzej Goscinski, Michael Brock and Philip Church. “HIGH

PERFORMANCE COMPUTING CLOUDS”, Cloud computing:
methodology, system, and applications (2011). CRC, Taylor & Francis
group.

Fig. 5. Comparison of cost and execution time of the EC2 cloud.

45

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 55 / 237

Introducing Federated WebDAV Access

to Cloud Storage Providers

Sebastian Rieger

Steinbuch Centre for Computing

Karlsruhe Institute of Technology

Karlsruhe, Germany

sebastian.rieger@kit.edu

Harald Richter

Department of Informatics

Clausthal University of Technology

Clausthal-Zellerfeld, Germany

hri@tu-clausthal.de

Yang Xiang

Rechenzentrum Garching

Max-Planck-Society

Garching, Germany

yang.xiang@rzg.mpg.de

Abstract—Affordable access to large online hard disks via the

Internet has emerged by the continuous evolving of public and

private storage clouds. However, difficulties arise as soon as

users of such storages want to employ services from different

cloud providers simultaneously, e.g., for collaboration among

institutions that use different storage providers or for

distribution of data backups. The reasons for this are

dissimilar user accounts and incompatible access methods.

This contribution describes a solution to that problem that

does not need additional middleware to achieve the goal of

unified authentication, authorization (AA) and access except

WebDAV, which is an open standard. Our method is based

upon a dynamic localization of the user by means of a world-

wide unique user name. The solution is thus suitable for

implementing federations of storage clouds in which multiple

organizations can jointly provide a unified access to file

systems that are distributed across the Internet.

Keywords-Dynamic Federation; SAML; WebDAV; Storage;

Cloud Computing

I. INTRODUCTION

A continuously increasing number of providers are
offering online storage over the Internet. These providers are
utilized by home users and professionals as well, for example
to backup or to share files. The access to these files -
although stored at different physical hard disks in the
Internet - is transparent to the users because the services are
cloud-based. Since the number of storage providers is
already high, users also want to benefit from more than one
provider at the same time, e.g., for exploiting the free storage
space the providers offer them. We propose WebDAV [20]
as a convenient way to access files in the cloud and over the
Web. It is supported by various operating systems. However,
WebDAV relies on the AA mechanisms of the underlying
Web servers, which is why users have to maintain different
credentials for each provider using an individual Web server.
Furthermore, they have to login separately to every provider,
thus creating multiple sessions simultaneously. A unified
access across different public cloud storage providers is
therefore not possible as of today. This also holds for private
storage clouds that are established to offer access to
distributed storage for users across different institutions.
These problems are addressed in part by federated and user-

centric identity management systems based on SAML [22]
or OpenID [34] that offer Single Sign-On and unified AA
across distributed Web applications.

In this paper, we introduce a solution developed to
enhance WebDAV access to online storage with federated,
SAML-based AA. An augmented WebDAV client was
implemented by us to support HTTP redirects and sessions,
as defined in the SAML profiles. The client is based on
Shibboleth [17], which is a widespread SAML
implementation in scientific communities.

Shibboleth is focusing on Web applications and requires
the user to access his resources using a fully configured Web
browser to handle HTTP sessions with storage providers and
to manage the JavaScript- or HTTP redirects that enable the
SAML-based Single Sign-On or the selection of the
institution the user is affiliated to. To allow direct WebDAV-
based file access e.g., in a file explorer without using a Web
browser, we extended our client to support dynamic
federation that allows an automatic discovery of the users’
institution. The solution described in this paper allows
consistent file access across different providers as in a single
virtual file system. It enables federations that are spanning
over multiple locations and companies to build-up a
distributed, scalable and fault-tolerant file system across
multiple cloud storage providers.

In Section 2, the state-of-the-art in WebDAV-based
storage clouds is explained. Section 3 describes the
mechanisms to enable federated AA for WebDAV-based file
access in storage clouds using our novel combination of
these techniques. Section 4 presents the implementation,
together with the extensions to WebDAV and Shibboleth.
Finally, Section 5 summarizes the results and gives an
outlook to future research.

II. STATE-OF-THE ART IN WEBDAV-BASED STORAGE

CLOUDS

There are several research groups such as [2] and [25]
that are also working on Shibboleth-compatibility in
WebDAV, however at the server side. An early version of
this concept was for instance introduced by [17]. A solution
similar to that but for grid environments was described in
[10]. It is based on iRODS [10]. Other differences of these
projects to our concept are that they do not employ
WebDAV clients to support Shibboleth- and SAML-based

46

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 56 / 237

AA and focus on a Web browser instead. Additionally they
treat storage providers as isolated items and therefore do not
allow a unified, transparent access to different storage
locations as offered in storage clouds.

A. Isolated Storage Clouds

State-of-the-art in storage cloud technology is that clouds
are isolated as islands. Each cloud can be accessed by a user
individually, and without any relation to other clouds as an
online hard disk, either via a proprietary Web interface or via
special software delivered by the cloud provider. Both
methods allow to access and administer directories
(sometimes called buckets) and files. Recent examples for
such storage clouds are Amazon S3 [21], Google Storage [8]
and Microsoft Azure Storage [1]. Based on these isolated
clouds, additional services and providers have come into
existence, which simplify access to and usage of online cloud
storage for the end-user, such as DropBox [6], Mozy [16] or
Ubuntu One [30]. However, a common de-facto or de-jure
standard for an overall AA and access to multiple storage
clouds does not exist yet. The industry consortium SNIA
(Storage Networking Industry Association) [27] is working
on such a standard called Cloud Data Management Interface
[3] but it is unknown when it will be available. Furthermore,
beside public clouds that already exist in IT infrastructures of
scientific communities, private clouds are more and more
emerging, e.g., as described in [11] and [28].

Private clouds are often based on open source
implementations of online storage such as Eucalyptus
Walrus [31]. They excel by providing a unified and thus
simplified access method for a closed group of users from
different institutions that is independent of the specific
location the user wants to access his files from. The
realization of such comfortable access normally needs
proprietary applications and user interfaces to handle the
AA. An example therefor is the AA infrastructure (AAI) of
the Internet2 [4] or of the German research network DFN
[5]. The underlying technology is usually SAML [22].
Shibboleth enables Single Sign-On and therefore unified AA
across services, such as storage providers, that are joined in a
cloud.

Cloud Storage Provider BCloud Storage Provider A

WebDAV /
REST

storage cloud X storage cloud Y

user a
WebDAV /

REST

Figure 1. Access to WebDAV- or REST-based online file systems of

different storage clouds.

This method is shown in Figure 1, together with a

WebDAV- or REST-based access method. The REST
application protocol is described in [18]. Providers for public
storage clouds may also have a proprietary user interface.
Examples therefore are the REST-based APIs in Amazon S3
or Google Storage which can be accessed only by special

API function calls and by clients that are downloadable from
these companies. The clients needed therefore typically map
all file and directory accesses onto the HTTP methods PUT,
GET, POST and DELETE which is similar to a REST-based
approach. On top of these services, a few other providers
offer a WebDAV access which enables users to create, read,
write, move, rename and delete files and directories in an
isolated storage cloud without proprietary applications or
APIs. This was a paragon to us.

B. User Credentials

AA is typically performed with username and password
as credentials. However, users must keep and maintain
individual usernames and passwords for every provider e.g.,
because of company-dependent regulations with respect to
password lengths and restrictions in the usage of numbers
and special characters, because of the users’ security
concerns and because of the disjoint management of storage
clouds used by different providers. As a consequence, no
contemporary provider offers Single Sign-On across cloud
borders yet. Additionally, the granting of read and write
permissions is technically possible only within the runtime
environments of the individual Web servers of a cloud
storage provider that are in turn limited by their underlying
file systems.

III. AA AND ACCESS IN FEDERATED STORAGE CLOUDS

The natural extension of isolated storage clouds lies in
the coupling of them into federations. In [33], such a
federation is described, which is based on REST and which
uses uniform resource identifiers (URIs) instead of uniform
resource locators (URLs). Beside HTML, it employs XML
in its REST response packets. The disadvantage of that
solution is that additional middleware is needed at the client
side for accessing online file systems.

This paper describes a new approach for utilizing
federations of storage clouds without extra middleware. To
achieve this, the WebDAV protocol was employed that
substantially augments the REST paradigm. Additionally, a
Shibboleth-capable WebDAV-Client was developed by us as
a replacement for Web browser-based user localization. It
substitutes also static authentication and authorization by AA
for a dynamic federation as it was described in [33]. By these
measures, end-users can access federations that are evolving
over time with respect to the number of users (which is
mostly the case) and that are composed of various cloud
providers (which is new) without installing middleware and
without repetitive login. The latter feature results in Single
Sign-On.

Using our approach, the WebDAV module mod_dav
[12], which is native to the Apache Web-Server, can be
engaged together with the mod_shib Shibboleth module [13]
without any extensions on the server side and without using
a Web browser to access the files on the client side, while
maintaining Shibboleth compatibility at the same time. Our
solution is also compatible with other Web servers such as
Microsoft IIS. Only the WebDAV functionality at the client
side had to be extended.

47

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 57 / 237

A. Unique User IDs and Access Rights

In our concept, user rights are not mapped to a username
for the purposes of each individual provider but to a world-
wide unique user ID, which is the email address [29]. From
the email address, a second mapping is made to user rights
that are valid for a service within a federation, i.e., also
across cloud boundaries. Other examples for world-wide
unique IDs are the Mícrosoft Security Identifier (SID) [26],
the Globally Unique Identifier (GUID) e.g., for DCOM in
Windows, or the Universal Unique Identifier (UUID) e.g., in
the Interface Definition Language (IDL) of the Distributed
Computing Environment (DCE). Usual Unix/Linux systems,
however, have only the User Identifier (UID) [29] as defined
in the POSIX standard, which is not globally unique. Thus,
the simultaneous access to multiple storage clouds results in
a problem when mapping the user name to a UID in Unix.
Using our solution, this can be circumvented by outsourcing
AA to an extra service, which is called identity provider, as
described in the next section.

B. Identity Provider

In SAML-based federations [22], service providers (SPs)
completely outsource the authentication to one or more
identity providers (IdPs). A prominent example for such a
federation in a scientific environment is the AA
infrastructure of the Internet2 (= InCommon [4]) or the
German research network DFN (= DFN-AAI [5]). We
explain the functioning of DFN-AAI by means of an
arbitrary employee at Max-Planck Society. This employee is
easily authenticated and authorized by the IdP that is located
at his home institute because the user is registered there. The
IdP is responsible for all users of that specific institute and
manages a well-defined set of access rights for its users via
their usernames. However, the example employee can also
profit from services that are offered at institutions outside of
his home institute, even outside of Max-Planck Society itself,
solely by his institute username, provided that those
institutions also participate in DFN-AAI.

With this concept, Single Sign-On is possible across
cloud borders because only the IdP that is responsible for its
user performs AA. This holds if all cloud service providers
(CSPs) of a (dynamic) federation make use of this IdP that is
responsible for the example user. The described method is
depicted in Figure 2.

CSP A

storage cloud X

CSP B

storage cloud Y

IdP and home institute of user a

user a

local file system

Figure 2. Single Sign-On in a (dynamic) federation of storage clouds by

means of an Identity Provider (IdP).

Because of better scalability and the inclusion of many
institutes, typically more than one IdP will exist in a
federation of multiple cloud storage providers (CSPs). All
IdPs must be registered at every provider. To simplify the
operation, administration and management of this set of
IdPs, the federation can make use of a function that is called
„Identity as a Service“ (IDaaS).

In a scenario of CSPs, IdPs and IDaaS, the identity
service is a central instance that is connected to the CSPs in a
star topology and that acts for them as a proxy of the IdPs.
The advantage for the CSPs resulting from the star topology
and the proxy method is a significant simplification in AA
because CSPs have to establish only a trust relationship to
this central identity service and not to all IdPs. Subsequently,
three indirections of trust come into existence according to
the law of transitivity, starting with the trust relation from
one CSP to the central IDaaS, and continuing with the trust
relation to the individual IdP and finally to the user.

CSP Central IDaaS

tru
sts

truststrusts
trusts

IdP

IdP

IdP users a

users b

users c

Figure 3. Multiple indirection of trust for AA in a federation according to

[33].

This chain of indirection is depicted in Figure 3 and was

first described in [33].

C. Discovery Service

In the following, it is assumed that the SAML-based
Shibboleth system is used for AA. This is the groundwork
for our solution. Shibboleth in turn, employs for user
localization, i.e., for the determination of the user’s home
institute or organization a so-called discovery service (DS).
The DS provides a Web page to all users under a static URL
that is a priori known so that the CSPs can redirect the users
to this page. If subsequent users request a service from a
provider in the federation, the request is redirected first to the
DS’s Web site. On this Web page, a list of organizations that
constitute the federation is presented to the user. Then, the
user selects his home organization from the list, and thereby
the IdP that is responsible for him. Afterwards, the browser
window of the user is redirected a second time by an HTTP
method to the responsible IdP, and the user must enter his
username and password for AA.

D. Confederations

Several federations of storage clouds may even be
coupled to an umbrella organization called confederation, for
instance by using eduGAIN [7]. Then, the DSs of the
constituting federations are cascaded, and the user must
select first his home federation on the Web page of that DS

48

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 58 / 237

of the highest level, and proceed afterwards to the Web sites
of the next lower levels. For this hierarchical procedure, the
first DS presents a list of federations to the user that build the
confederation, and in which the user selects his own storage
cloud federation. After the selection, the Web page is
redirected via HTTP to the DS of that federation where the
user can select his home organization, and finally from there
to his IdP where AA is accomplished as described.

E. User Comfort

Users wish for reasons of comfort a direct connection to
their online file systems in the way of a virtual file system, as
it was depicted in Figure 2, and they do not want to open an
extra browser for this purpose, i.e., in order to select their
federation or home organization. Nor do they want to switch
continuously between a file explorer, such as Windows
Explorer, and a Web browser for every list, move, rename
and delete operation across cloud borders. A direct Web-
based file access is instead accomplished by WebDAV.
Furthermore, separate logins into all storage providers would
result in a user-unfriendly approach. Finally, a Web page in
the browser would fail if the number of IdPs in a storage
cloud is rapidly changing over time or if the number of all
clouds in a federation is time-dependent. Because of these
reasons, we implemented a dynamic discovery service for
user localization similar to that described in [32].

F. Dynamic User Localization

For dynamic user localization, the user first enters a static
and a priori known URL of his CSP. Then he enters his
email address instead of selecting his home organization, and
our dynamic discovery service sends a DNS request to the
responsible DNS server based on the domain name of his
email address. The DNS response is a DNS NAPTR record
in which his home organization has previously entered the IP
address of the IdP that is responsible for him. If later a login
of one of the users has to be performed then the user’s
NAPTR record is evaluated by the CSP, and with the data
contained herein the proper IdP can be requested for AA
([33]). By this dynamic user localization, users can perform
AA at their IdP from everywhere, and cloud borders are
irrelevant. After successful AA, the user is automatically
logged-in to all other CSPs of the federation (= Single Sign-
On).

It is also possible to use the domain name of the user's
email address as a shortcut to the domain of the IdP that is
responsible for him. Another alternative to allow a domain-
based DS using cascaded IdPs was described in [24].

IV. SOFTWARE ARCHITECTURE OF OUR

IMPLEMENTATION

In this section, the software architecture of a Shibboleth-
capable WebDAV client is described that can access
federations of storage clouds. The client is based on an
extension of the open source WebDAV client Sardine [23]
and is therefore written as a Java Swing application. Our
prototype supports down- and upload of directories and files
from and to the online file system with a simple drag-and-
drop command. Sardine in turn utilizes the known Apache

HTTP Client [9] to access the WebDAV server. To allow for
AA with Shibboleth, Sardine was extended to support HTTP
sessions, redirects and SAML profiles.

This extension processes the HTTP redirects that are
needed for the SAML-based Shibboleth system.
Additionally, the extension provides the dynamic user
localization for the CSP. Furthermore, it extracts the SAML
response and the so-called relay state the user’s IdP has sent
after successful AA and transmits these data back to the
user’s CSP via a SAML HTTP POST profile. We have also
extended Sardine with a simple session management to allow
for stateful connections of the user while he is logged in. The
user state is preserved in HTTP session cookies [19] that the
CSP and the IdP have written by means of the WebDAV
client during the user session. The WebDAV client can make
use of this state information as needed. The session
management enables Single Sign-On across different
federated CSPs. Finally, the AA procedure of the IdP is
performed such that the user’s IdP and CSP exchange SAML
attributes that define his access rights. Beside the CSP, also
the WebDAV server can utilize the attributes (represented in
HTTP headers), which grant or deny access to the underlying
file system.

Inside of the Apache Web server used at the CSP, two
modules named mod_dav and mod_davfs constitute the
WebDAV server. While mod_dav implements the WebDAV
protocol handling, the mod_davfs allows direct usage of the
file systems that are available on the server side. The module
mod_dav uses the module mod_auth from the Apache server
and extensions of it for AA. Shibboleth is such an extension
to mod_auth called mod_shib.

Using these modules it is possible to configure a so-
called WebDAV location inside of Apache that uses the
access control features of mod_shib. By requesting a
resource from this location, the user is redirected to the DS
and a subsequent AA is performed as described in the
previous section. After successful AA (using the email
address), the files in the location can be accessed and
modified by our WebDAV client.

An example of an HTTP session offering Single Sign-On
across different storage clouds and federations is shown in
Figure 4.

IdP

user a

federated WebDAV
client CSP A

federation f1

f2

CSP B

CSP C

1

2
4

5

6

3

Figure 4. Federated WebDAV access to multiple cloud storage providers

(CSP) and federations.

49

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 59 / 237

In step 1, our federated WebDAV client is used to access
a cloud storage resource of CSP A, which is a member of
federation f1. The corresponding request contains the e-mail
address of user a. CSP A uses the e-mail address provided in
step 1 to dynamically discover the user’s home organization
and IdP as described in the previous section. Step 2 depicts
the redirection of the user to the corresponding IdP using the
SAML redirection profile. The IdP requests the user to
provide his e-mail address and password as login credentials
using the WebDAV client in step 3. During the redirection
process the WebDAV client stores the session cookies
initialized by CSP A and the IdP. If the IdP is able to
successfully authenticate the user by the credentials
provided, then it transmits a SAML assertion to CSP A in
step 4. Technically this is again performed using a
redirection process.

As shown in Figure 4, the user has access to different
folders via the federated WebDAV client. In step 5, the user
requests a resource from CSP B that is also a member of
federation f1. Using the e-mail address of the user sent by the
federated WebDAV client in step 5, CSP B discovers the
same IdP and redirects the client to ensure the AA. As the
federated WebDAV client has already established an HTTP
session with the IdP, we include the corresponding session
cookie in the request on the client side. Hence the IdP does
not require an additional authentication of the user, and the
user gains seamless access to the resource.

One of the application areas of our solution is the
federation of storage providers for private storage clouds.
Such private clouds can be found, for example, in scientific
communities in which bodies that are funded by the same
organization and that are members of the same federation
want to jointly aggregate their storage environments.
Another scenario could be the aggregation of multiple public
cloud storage providers e.g., in order to enhance flexibility
and fault tolerance on the users’ side.

In such scenarios, the need to access resources offered by
CSPs that are not members of the same federation arises,
especially with respect to distributed scientific communities
that cooperate between multiple countries. Step 6 in Figure 4
illustrates this case. It is shown how resources of CSP C are
accessed while C is a member of federation f2 and therefore
outside the boundaries of federation f1. As we use a dynamic
discovery of the user, our solution is able to handle such
confederations.

A severe problem with respect to security arises if the
federation is time-dependent in the number of their
constituting CSPs, and thus in their number of users because
the reliability and trustworthiness of new users may be
unknown to the other users and to the CSPs as well. To
overcome this problem, we have developed a so-called Trust
Estimation Service (TES) [32][33]. This service can be
incorporated into every IdP and CSP to increase security.
The service is implemented as an extension to Shibboleth
and it is thereby also an extension to the dynamic discovery
service (DS). The extension utilizes the Internet Domain
Name System DNS as described. The basic procedure of
trust estimation is depicted in Figure 5.

user

TESSPCSP SPIdPTES

trust
table

https://idp1.sam
ple.com/SSO

https://sp.sampl
e.com/sp

entity-id trust value Location

0.5

1.0

...

...

https://idp1.sam
ple.com/SSO

https://sp.sampl
e.com/sp

entity-id trust value location

1.0

0.5

...

...

trust
table

5

6

9
DNS

1

2 3

4

7

8

(2)

Figure 5. Extension of Shibboleth with a Trust Estimation Service

according to [33].

In step 1, the user accesses a CSP and is requested to provide
an e-mail address that is transmitted to the TES in step 2.
The TES uses the domain name system (DNS) to obtain the
Entity-ID of the user’s home IdP (steps 3 and 4). Using this
Entity-ID, the local TES selects the corresponding end-
location in his trust table (steps 5 and 6). If the IdP is trusted,
according to its previously calculated trust value (as
described in [33]), the local TES of the CSP sends a request
to the IdP’s TES to retrieve the IdP’s meta data in steps 7
and 8. Finally, the meta data is forwarded to the CSP in step
9.

Figure 6. User interface to access federations of storage clouds via

Shibboleth and WebDAV.

The resulting user interface of our WebDAV client is

shown in Figure 6.

V. CONCLUSION AND FUTURE WORK

The proposed solution allows unified authentication,
authorization and data access in a federation of storage
clouds. It can simultaneously present multiple online file
systems from different cloud service providers to users as a
virtual file system. It is based on Shibboleth and WebDAV
that are extended by a dynamic user localization and a trust
estimation service. This allows for Single Sign-On across
cloud borders, for increased security in the federation, and
for user-friendly access to the various storage clouds.
Applications for the solution may be the federation between
the scientific institutes of the Max-Planck-Society MPG-AAI
[14] and the universities of the country of Lower Saxony
Nds-AAI [15].

In the future, we will evaluate the performance of our
approach and the influence of the WebDAV server
configuration and protocol headers. The performance

50

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 60 / 237

evaluation will include an in-depth analysis of the TES and
the established dynamic federation.

Additionally we’ll focus on how object-oriented file
systems e.g., based on NoSQL databases, can be integrated
as a backend on the WebDAV server side. Furthermore we
are planning to evaluate the inclusion of user-centric
authentication (e.g., OpenID) and special authorization
mechanisms such as OAuth to allow for the delegation of
access rights across aggregated global file systems.

REFERENCES

[1] Windows Azure Storage, http://www.microsoft.com/windowsazure/
9.5.2011.

[2] T. Bellembois and R. Bourges, “The open-source ESUP-Portail
WebDAV storage solution”, http://www.esup-portail.org/download/
attachments/43515911/ESUPWebDAV.pdf 9.5.2011.

[3] Cloud data management interface, SNIA Web Site, April 2010,
http://cdmi.sniacloud.com 9.5.2011.

[4] InCommon Identity and Access Management, http://www.
incommonfederation.org/ 9.5.2011.

[5] DFN-AAI - Authentication and authorization infrastructure, https://
www.aai.dfn.de 9.5.2011.

[6] Dropbox, http://www.dropbox.com/ and http://en.wikipedia.org/wiki/
Dropbox_%28service%29 9.5.2011.

[7] eduGAIN, http://www.edugain.org/ 9.5.2011.

[8] Google Storage, http://code.google.com/intl/de-DE/apis/storage/
9.5.2011.

[9] Apache HttpComponents, http://hc.apache.org/ 9.5.2011.

[10] S. Zhang, P. Coddington, A. Wendelborn, and A. Davis, “A generic
interface for iRODS and SRB”, 10th IEEE/ACM International
Conference on Grid Computing, Banff, 2009.

[11] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,
“Science Clouds: Early Experiences in Cloud Computing for
Scientific Applications”, Cloud Computing and Applications, 2008.

[12] Apache Module mod_dav, http://httpd.apache.org/docs/2.0/mod/
mod_dav.html 9.5.2011.

[13] R. L. Morgan, S. Cantor, W. Hoehn, and N. Klingenstein, “Federated
Security: The Shibboleth Approach”, EDUCAUSE Quarterly, Vol.
27, 2004, S. 12-17.

[14] Max-Planck-Gesellschaft - MPG-AAI, https://aai.mpg.de 9.5.2011.

[15] Nds-AAI, Authentifizierungs- und Autorisierungs-Infrastruktur für
Niedersachsen: http://www.daasi.de/projects/ndsaai.html 9.5.2011.

[16] Mozy, http://mozy.com and http://en.wikipedia.org/wiki/Mozy
9.5.2011.

[17] L. Ngo and A. Apon, “Using Shibboleth for Authorization and
Authentication to the Subversion Version Control Repository
System”, Fourth International Conference on Information Technology
- ITNG ’07, Las Vegas, 2007.

[18] R. T. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures”. PhD thesis, University of California,
Irvine, 2000 and http://de.wikipedia.org/wiki/Representational_State_
Transfer 9.5.2011.

[19] D. Kristol and L. Montulli, “HTTP State Management Mechanism”,
ftp://ftp.rfc-editor.org/in-notes/rfc2965.txt 9.5.2011.

[20] L. Dusseault, “HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV)” ftp://ftp.rfc-editor.org/in-notes/rfc4918
.txt 9.5.2011.

[21] Amazon Simple Storage Service (Amazon S3), http://aws.amazon
.com/de/s3/ 9.5.2011.

[22] OASIS: Security Services (SAML) TC, http://www.oasis-open.org/
committees/security/ 9.5.2011.

[23] sardine - an easy to use webdav client for java, http://code.google
.com/p/sardine/ 9.5.2011.

[24] S. Rieger, “User-Centric Identity Management in Heterogeneous
Federations”, Fourth International Conference on Internet and Web
Applications and Services, 2009.

[25] DataFinder: A Python Application for Scientific Data Management,
EuroPython 2008: The European Python Conference, Vilnius, 2008

[26] Security Identifier, http://en.wikipedia.org/wiki/Security_Identifier
9.5.2011.

[27] Storage Networking Industry Association, http://www.snia.org and
http://en.wikipedia.org/wiki/Storage_Networking_Industry_
Association 9.5.2011.

[28] J. Staten, S. Yates, J. Rymer, and I. Nelson, “Which Cloud
Computing Platform is Right for You?”, Forrester Research, 2009.

[29] User identifier, http://en.wikipedia.org/wiki/User_identifier 9.5.2011.

[30] Ubuntu one, https://one.ubuntu.com/ 9.5.2011.

[31] Interacting with Walrus (2.0) - Storage Service, http://open.
eucalyptus.com/wiki/EucalyptusWalrusInteracting_v2.0 9.5.2011.

[32] Y. Xiang, J. A. Kennedy, H. Richter, and M. Egger, “Network and
Trust Model for Dynamic Federation”, The Fourth International
Conference on Advanced Engineering Computing and Applications
in Sciences, Florence, 2010.

[33] Y. Xiang, S. Rieger, and H. Richter, “Introducing a Dynamic
Federation Model for RESTful Cloud Storage”, The First
International Conference on Cloud Computing, GRIDs, and
Virtualization, Lisbon, 2010.

[34] OpenID specification, OpenID Web site, http://openid.net/developers/
specs/ 9.5.2011.

51

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 61 / 237

Cloud Capacity Reservation for Optimal Service
Deployment

Iñigo San Aniceto, Rafael Moreno-Vozmediano, Ruben S. Montero, Ignacio M. Llorente
Distributed System Architecture Research Group (dsa-research.org)

Dept. de Arquitectura de Computadores y Automática
Universidad Complutense de Madrid, 28040

Madrid, SPAIN
Email: inigosananiceto@pdi.ucm.com, rmoreno@dacya.ucm.es, rubensm@dacya.ucm.es, llorente@dacya.ucm.es

Abstract—Cloud computing is a profound revolution in the
way it offers the computation capability. The Information Tech-
nology organizations do not need to oversize their infrastructure
anymore, potentially reducing the cost of deploying their services.
The main objective now is to reduce the cost of deploying a service
in the cloud. Some research attempts have focus on deploying
one service in multiple clouds, to benefit from different billing
models. In this work, we propose a way to minimize that cost
by using a single cloud provider with an optimal mixture of
reserved and on-demand instances to take advantage of different
billing models within the same provider. We tested this optimal
combination of reserved and on-demand instances with real
world workload traces. The results show a 32% deployment cost
reduction compared to on-demand deployment.

Index Terms—Cloud computing; capacity reservation; resource
provisioning; service deployment; cost optimization

I. INTRODUCTION

Cloud computing takes advantage of workload consolidation
to operate more efficiently the resources and provide a service
at lower cost. This itself is a tremendous advantage and makes
the cloud computing services competitive in terms of prices.
Information Technology (IT) companies used to oversize their
resources to meet peak demands but now they have the option
of using cloud computing [1][2][3][4][5][6][7].

Apart from the typical on-demand instances, current
providers also offer reserved capacity. Although the pric-
ing schemes for this reserved instances vary among cloud
providers, they all offer discounts in the hour rates on one side
and obligations or one-time payments on the other [8]. This
means it is necessary a minimum amount of running hours to
reduce the final price compared to on-demand instances.

In this paper, we present a novel algorithm to cover variable
computation demands with mixed reserved and on-demand
instances with the minimum cost. The idea is to eliminate the
over-provisioning in the reserved instances to use the number
of reserved instances that minimizes the final cost for the IT
companies.

In addition, to avoid the performance degradation of the
system, this novel algorithm estimates the number of instances
that might be required in the next period, and provisions the
instances in advance to hide start-up times. The provisioned
instances are started-up and ready to use and they are a
combination of reserved and on-demand instances.

The algorithm works as follows. In the first stage, the
algorithm has to determine the optimal number of reserved
instances.

The algorithm selects the number of reserved instances to
reduce the cost of service for the IT companies This number
is directly related with the number of running hours each
reserved instance has.

Then the algorithm has to evaluate, for each period, the
optimum number of provisioned instances. If the number of
requested instances is lower than the number of reserved
instances, all the provisioned instances are mapped on reserved
instances. Otherwise, the difference would be fulfilled with on-
demand instances.

To test the algorithm, reservation and provision cost of a
standard instance in Amazon cloud provider [8] and real world
traces from the Grid Workloads Archive are used [9].

The main contributions of this paper are the following:
1) We present an algorithm that minimizes the final cost of

deploying a service in the cloud.
2) We present a model that predicts the optimal number of

reserved instances for each period and use an algorithm
to reserve them.

3) The model also predicts the optimum number of provi-
sioned instances, and make advanced provision of those
instances to hide start-up times.

This paper is organized as follows: Section II presents
the state of the art and the current cloud computing mar-
ket. Section III presents the definition of the problem with
an appropriate statistical definition. Section IV presents the
statistical analysis. Section V presents the reservation and
provisioning algorithm. Section VI presents the improvements
and Section VII presents the conclusions of the work and
future work.

II. CURRENT CLOUD COMPUTING MARKET AND STATE OF
THE ART

Currently, there are different pricing models in the market,
being On-demand, Reservation and Spot the most common
pricing schemes. Although these are the leading pricing con-
figuration groups, there are differences among different cloud
providers.

52

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 62 / 237

• On-demand: Probably, the most common pricing model.
The main idea of this pricing configuration is to pay for
the actual use with no other commitments. Most of the
large providers offer this pricing model: Amazon [8],
GoGrid [10], Rack Space [11] and Cloud Sigma [12]
among others. Although the pricing model is similar in
all the cloud providers, there are some differences.
Amazon, for example, has some preconfigured instances
with a certain amount of RAM, CPU, Storage, etc. For
the following analysis, it is interesting to focus on the
standard instance. It has 1.7GB of RAM, 1 Virtual core
with 1 GHz and 160GB of storage. For this standard
configuration, the price is 0.085$/h in N.Virginia [8].
The situation in RackSpace is similar to the one in
Amazon. There are preconfigured instances with different
amount of RAM and storage and each one has a fixed
price. The most similar configuration to the Amazon
standard instance has 2GB of RAM, and 80 GB of storage
and its price is 0.12$/h [11].
Go Grid also offers preconfigured on-demand instances
for 0.19$/h with 1GB of RAM, 1 CPU with 1GHz, and
50GB of storage [10].
In Elastic Host, the on-demand pricing configuration is
slightly different to the previous ones. There are not pre-
configured instances, instead the instance types are user
defined, and prices for the components are CPU(1GHz)
0.036$/h, RAM (1GB) 0.05$/h, Storage (1GB) 0.20$
/month. Comparing with the Amazon standard instance
the price would be 0.164$/h [13].
In Cloud Sigma, the on-demand pricing configuration
is similar to Elastic Host but with price variability.
The cost of RAM, CPU, Storage, etc. is not a fixed
amount, but it is conditioned by the servers load. The
boundary rates, for each charasteristic, are: CPU (1GHz)
0.0121-0.0504$/h. RAM (1GB) 0.0196-0.0579$/h. With
this prices, an instance similar to the Amazon standard
instance would cost 0.045-0.252$/h [12].

• Reserved: It is also a common pricing model. In this
price configuration, there are always long-term commit-
ments on one side, and discounts in the hour rates on the
other. It is offered by most of the big cloud providers:
Amazon [8], Rack Space [11], GoGrid [10] and Cloud
Sigma [12] among others. The different providers also
present some differences.
Amazon establishes a one-time payment for the reserva-
tion. For each standard instance it is 227.5$ for 1 year
reservation and 350$ for 3 year reservation. After the one-
time payment, the discounts in hourly rates are fixed for
each instance type, and they are approximately of 60%-
65% depending on the type. For the standard instance the
price reduces from 0.085$/h to just 0.03$/h without any
compromise of use, i.e., the hourly price is charged only
if the instances are running [8].
Elastic Host uses a similar price configuration. It estab-
lishes one-time payment for reservation as Amazon does.
The prices for the subscription are 77.76$ per month or

777.60$ per year, after the payment the instance prices
have a fixed 50% discount regardless of the subscription
period[13].
In Cloud Sigma, the situation is different. It offers differ-
ent discounts depending on the reservation period going
from 3% for 3 months up to 45% for a 3 year reservation
period, after the reservation is made the user has to pay
for each instance as running [12].
In Go Grid, the reserved price configuration is also
slightly difference from the previous ones. It requires a
monthly payment to acquire a certain quantity of usage
hours. For the smallest instance, this payment is of
199$/month acquiring 2500 RAM hours. Considering 1
month has 744h a instance with 3.35GB of RAM can be
used 100% of the time [10].

• Spot instances: This price configuration is not available
in many cloud providers. The main idea of this pricing
configuration is to set the maximum rate for the service
hour, called bid price. Depending on the servers load, on
the cloud providers, the spot pricing can change so that
if the price is smaller than the bid price, the user have
set the service will become available, on the other hand,
a higher spot price makes the service unavailable. One of
the few cloud providers that offer this price configuration
is Amazon[8] .

These differences in the pricing models have lead to the
creation of multiple cloud brokers. This cloud brokers try to
minimize the cost of deploying the cloud service choosing the
best price model across different cloud providers. There are
many commercial solutions: RightScale, SpotCloud, Kavoo or
CloudSwitch among others.

There are also some European projects especially oriented
for Multi-Cloud deployment. Mosaic [14] is one of them
and offers an open-source cloud API to develop multi-cloud
oriented applications, and Optimis [15] is another that offer
tools to simplify the construction and usage of hybrid clouds.

Finally, there is also some research works in this area:
in [5], Moreno studies with the cost per-job with different
cluster configurations. In the work we present, we also target to
minimize the cost of deploying the cloud service by choosing
the best price models, however, we do not use multiple-clouds;
instead, we use the different price models within the cloud:
on-demand and reserved instances.

For the availability problems that cloud computing might
generate, some studies [16][17] focused on how to avoid
availability problems, the algorithm we present faces the
problem of availability with advanced provisioning based on
load prediction instead of using instance leasing.

In [18], Konstanteli studies the flexible reservation periods
to schedule the workflow and maintain the QoS. In this work,
we have focused on the Amazon cloud provider and this
provider, only offers 1 and 3 year reservation periods. After a
brief study we have conclude that a 3 year reservation period
is too long because the predictions are not accurate enough,
and hence, we have used a 1 year fixed reservation period

53

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 63 / 237

In [19], Gardfjäll studies the credit based regulation of grid
capacity allocation to avoid the performance loss due to the
overuse also known as the ”tragedy of the commons”.

In conclusion, there are several pricing models in the
market, and cloud brokers, take advantage of these differences
to reduce the final prices. However, this produces several prob-
lems such as compatibility across different cloud providers
that researches are trying to solve with some new tools
such as Mosaic or Optimis. In this work, we targeted the
same price reduction for service deployments, but we use the
combination of reserved and on-demand instances in the same
cloud provider. Hence, we have not any compatibility issues
the multi-cloud environments produce.

III. DEFINITION OF THE PROBLEM

The goal of the IT companies is to reduce the cost of
deploying their service in the cloud provider without any
performance degradation.

To achieve that, we propose a prediction model based on
the historical data. With this prediction, the IT companies will
use a mixture of reserved and on-demand instances to cover
their demand.

This model estimates the number of reserved instances
that minimizes the final cost, and the number of provisioned
instances that fulfils the service requirements in 99.95% of
cases. With this advance provisioning, it hides the start-up
time (2-5 minutes [1]).

In order to create the prediction model, we obtain the cost
of the cloud services and define the statistic sample space.

A. Costs
First we obtain the provisioning and reservation costs. For

this analysis, we use the price configuration of a standard
instance in the Amazon cloud provider [20].

Hence, the reservation cost of an instance is 227.5$/year
with a provisioning cost of 0.03$/h, and on-demand instances
have just a 0.085$/h provisioning cost [8].

With the previous values, we calculate the cost of the service
for the IT companies. This cost will have two parts:

1) The first is the cost of reserving instances in the cloud
provider

Cost1(t) = Pres⇥ [Res(t)�Res(t� 1)] (1)

where Pres = 227.5$ is the reservation cost and Res(t)
is the number of reserved instances at t [8].

2) The second is the cost of provisioning the instances.
The cost of provisioning the instances will be Pc1 =
0.03$/h for reserved instances and Pc2 = 0.085$/h for
on-demand instances [8].

Cost2(t) = (R(t)⇥ Pc1) (2)

Cost2(t) = (Res(t)⇥Pc1) + ((R(t)�Res(t))⇥Pc2)
(3)

where R(t), is the number of requested instances at t.
The total cost will be

Algorithm 1 Instance mapping algorithm for cost calculation
if R(t) Res(t) then

All the requested instances can be mapped to reserved
instances and equation 2 is used.

else
On-demand instances are necessary and equation 3 is
used.

end if

Cost1year =
1yearX

t=0

[Cost1(t) + Cost2(t)] (4)

This is the equation that should be minimized by optimizing
the resource reservation and provisioning of instances.

B. Definition of the Sample Space
In this work, we present a prediction tool. This prediction

tool is based in a statistical analysis of the problem and hence
it needs a proper definition of the sample space.

For now on, an instance will be treated as an indivisible
unit being the total number of requested instances a discrete
number. With this assumption the sample space will be finite
and numerable. ⌦ = (0, 1, ..., L) where L is the maximum
number of instances the service might need.

The algorithm provision a certain number of instances
dividing the sample space in two relevant subsets representing
mutually exclusive events.

The first A ⇢ ⌦ represents the case in which the necessary
instances are less than the provisioned instances and, hence,
there is no performance degradation. The second B ⇢ ⌦
where the IT companies need more instances than the ones
the algorithm has provisioned and, hence, a performance
degradation due to start-up time may occur [1]. Obviously
the sample space satisfies A\B = � and A[B = ⌦ creating
a complete event system.

IV. STATISTICAL ANALYSIS

As stated in the previous section, the goal of this work is
to reduce the cost of deploying a service in the cloud provider
without any performance degradation. The first step to get that
reduction is to develop a statistical analysis of the workload
of the IT companies. In this section, we first introduce the
data used for the statistical analysis and then we describe the
statistical analysis.

A. Trace data
We get the trace used for the study from the Grid Workload

Archive [9]. In this website, different workload traces of
different grids around the world are available.

These traces contain historical information about JobID,
SubmitTime, WaitTime, RunTime, Number of Processors, Av-
erage instances Time Used, Used Memory, Requested Number
of Processors, Requested Time, Requested Memory, Status,
among other information.

54

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 64 / 237

Fig. 1. Number of requested and new instances in 10 min samples from
Nordugrid

From this data, we can easily obtain the number of new
requested instances at each moment:

N(t) =
X

P

i

(S
t

= t) 8JobID (5)

where N(t) are the new requested instances, P
i

is the number
of processors of the job i and S

t

the submit time.
We can also calculate the number of terminated instances

as:

F (t) =
X

P

i

((S
t

+W

t

+D

t

) = t) 8JobID (6)

where F(t) are the instances that are not requested any more,
W

t

is the wait time and D

t

is the demanded running time. The
total number of requested instances at each moment is:

R(t) = R(t� 1) +N(t)� F (t) 8t (7)

To evaluate the implementation of the novel algorithm
we use a real world trace from NorduGrid [21]. This trace
represents the load of the NorduGrid grid for nearly 3 years.
With this trace, and using the equations (5) and (7) we get the
number of requested instances R(t) and the number of new
instances N(t) every 10 min. Figure 1 shows this values for
the 3 year period.

This information is the base for the statistical analysis.

B. Statistical data model
To calculate the optimum number of reserved and provi-

sioned instances, it is necessary to know the average usage of
each instance. The instance reservation period is 1 year; hence,
we use the normal distribution of the requested instances over
1-year to obtain the average utilization [22].

f

x

(R(t)) =
1p
2⇡�2

⇥ e

� 1
2�2 (R(t)�µ)2

, R(t)✏[0, ...L] (8)

Where µ is the average requested instances, � is the variance
of requested instances and R(t) is the number of requested
instances that can be any number from 0 to L.

However, this is not all the statistical information we have.
The number of new instances can be statistically modelled as

a Poison distribution if we assume that the number of users is
large [22].

We model the number of new instances in the period �t

with:

p

t

(N(t)) =
(�t)N(t)

N(t)!
(9)

where N(t) is the number of new instances at the moment
and �t is the expected number of new instances in provisioning
interval.

This last equation predicts the required number of provi-
sioned instances. The provisioned instances are the instances
that are started-up and ready to use. If the number of requested
instances is lower than the number of reserved instances,
all the provisioned instances will be mapped on reserved
instances. Otherwise, the difference would be fulfilled with
on-demand instances.

The reason to calculate the expected new instances for
the following provisioning interval, and provision that value
is to hide the performance degradation that the 2-5 minute
launching time [1] might cause.

V. RESERVATION AND PROVISIONING ALGORITHM

In the previous section, a statistical analysis of the histor-
ical data has been presented. Using that statistical analysis,
we present two algorithms to determine the reservation and
provisioning values. These algorithms use the historical load
data of the IT companies and make the load predictions from
different time periods.

1) With the long-term load prediction, the algorithm
chooses the optimum number of reserved instances to
reduce the cost of the service. The reason to use a long-
term prediction is that reserved instances have 1-year
utilization.

2) With the short-term load prediction, the algorithm
chooses the optimal number of provisioned resources
dynamically to hide launching delays. The algorithm
start-up the instances the IT companies might need to
offer the service to his clients.

A. Reserved Instances
In this section, we present a solution of the reservation

problem.
As previously mentioned, due to the importance Amazon

has on the cloud computing market, this is the cloud provider
that will be used for the study.

We use the expected Differential Reservation Cost (DRM)
to determine the reserved instances. Any time the expected
differential reservation cost is negative, statistically reserving a
new instance will reduce the final cost of deploying the service.
On the other hand, if the expected differential reservation cost
is positive, reserving a new instance will probably increase the
final cost of deploying the service.

The expected DRC represents the difference in the expected
statistical value of the cost of reserving one more instance in
the cloud provider.

55

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 65 / 237

In this section, we explain all the steps given to obtain the
optimum number of reserved instances. First, we introduce
the expected differential reservation cost and then based on
the statistical analysis, we develop a reservation algorithm that
minimizes the cost.

1) Expected differential reservation cost: Suppose the IT
company has already reserved n instances in the cloud
provider. The IT company will provision the following in-
stance only if more than n instances are provisioned.

From the statistics obtained from the users historical work-
load, the probability of provisioning more than n instances
⇢

>n

can be obtained.
The expected differential reservation cost is:

�P

R:n+1 = Pres� (Res

hours

⇥�P

c

⇥ ⇢

>n

) (10)

where �Pc = Pc2�Pc1 is the difference in the provision-
ing cost between reserved and on-demand instances, ⇢

>n

is the
probability of having more than n provisioned instances, and
Res

hours

is the period (in hours) that the instance is reserved.
Let us see this with one example: The cost of a standard

instance in Amazon is 0.085$/h for on-demand and 0.03$/h
for reserved instances. The instances are reserved for 1 year
(8760h) paying 227.5$ for this reservation. Imagine that the
provisioned instances follow a normal distribution with a mean
of 100 and a variance of 10.

An iteration starts checking the first machine to see if is
worthwhile reserving based on the expected DRC. In order
to make the example concise, we show only the two key
iterations:

• Iteration n

�1 to 100:

�P

R:n ⌧ 0 n = 1, 2, ...100 (11)

At the end of the reservation period the IT company ex-
pects to pay a lot less in each iteration. In this experiment,
the IT company pays a total of 74192.3$ with no reserved
machines and 50929.7$ with 100 reserved machines.

• Iteration n

� 101: The DRC off adding the 101-th reserved
machine is:

�P

R:101 = 227.5$� (8760h⇥ (0.085$/h� 0.03$/h)

⇥(1� normcdf(100, 100, 10))) = �13.4$
(12)

where normcdf is the normal cumulative distribution
function with the values: test value, mean and variance.
At the end of the reservation period the IT company
expects to pay 13.4$ less to the cloud provider than
reserving 100 machines. In this experiment, it pays a total
of 50923.8$ or 5.9$ less than with 100 reserved machines.
Hence, it is worthwhile to reserve the 101-th machine.

• Iteration n

� 102: The DRC off adding the 102-th reserved
machine is:

�P

R:102 = 227.5$� (8760h⇥ (0.085$/h� 0.03$/h)

⇥(1� normcdf(101, 100, 10))) = +5.8$
(13)

Fig. 2. Total cost in a year vs the number of reserved instances

This time the IT company expects to pay more to the
cloud provider because the expected DRC of the 102-
th machine is positive. In this experiment it pays a
total of 50938$ or 14.2$ more than with 101 reserved
reserving 102 machines. The 102 instance will not reach
the minimum number of hours that make the reservation
worthwhile. Hence, the reservation cost will be higher
than the discount obtained from the price difference.

The algorithm conclude that reserving 101 machines is the
most economical option. The Figure 2 shows the final cost of
the service for the IT company in this experiment after a year
with different number of reserved instances.

To make the algorithm faster, the implemented method does
not calculate the expected DRC. The method just gets the last
reserved instance with a negative expected DRC.

To obtain that number of reserved instances, the method
uses the limiting percentage of utilization that provide a
negative value of the DRC.

2) Reservation Algorithm: Applying the previous statistics
and the utilization value that makes the expected DRC negative
we have that:

F

x

(Res(t)) =

Z 1

Res(t)

1p
2⇡�(t)2

e

� 1
2�(t)2

(R(t)�µ(t))2
dR(t) =

⇢

min

res

(14)
where Res(t) is the number of reserved instances, µ is the

mean of R(t) in the last year, � is the variance of R(t) in the
last year and ⇢

min

res

is the minimum load to make the expected
DRC negative which in Amazon is 47% [8].

This equation does not get the expected DRC of each
instance, however, it calculates which is the last instance that
has a negative expected DRC.

In Amazon, we can only change Res(t) to a higher value
and it is necessary to wait one year to reduce. Hence, the

56

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 66 / 237

following algorithm is used to determine the Res(t) at each
moment.

Algorithm 2 Instance reservation algorithm
if Res(t) � Res(t� 1) then

Res(t)
else {Res(t) < Res(t� 1) and No reservation expires}

Res(t) = Res(t� 1)
else {Res(t) < Res(t� 1) and n reservations expire}

if Res(t) (Res(t� 1)� n) then
Res(t)� n

else
Res(t)

end if
end if

In the next section, we present the results for reserved and
provisioned instances.

B. Provisioned Instances
In this section, we present a solution for the provisioning

problem. This problem has a direct relationship with the
possible performance degradation due to the 2-5 minute launch
time of new instances [1]. In this paper, we set this parameter
to 0.05% because this percentage will produce a negligible
performance degradation (the new provisioned instances will
be ready to use in 99.95% of the time).

With the Poisson distribution represented in (9), the algo-
rithm sets the value of provisioned instances P as

P

t

(P (t)�R(t� 1)) =
1X

P2(t)�R(t)

(�t)N (t)

N(t)!
= ⇢

opt

up

(15)

where P (t) � R(t � 1), is the difference between the
requested and the provisioned instances. The reason to use this
difference is that this statistical distribution calculates expected
new instances at t.

C. Results
The optimum algorithm would provision in advance ex-

actly the same instances that the ones requested and reserve
instances in advance, only with more than 47% of load, as
explained in the Section V-A. However, this is impossible
because it means that the IT company knows his computation
needs in advance.

Knowing which is the optimum result, the closer the algo-
rithm is to this result the better it is. A good algorithm is the
one that provision close to the requested instances, but always
provisioning more than the requested instances, because if it
provisions less a possible performance degradation occurs.

Figure 3 shows the number of provisioned and reserved
instances compared to the number of requested instances at
each moment.

In Figure 4, the percentage of time in which under-
provisioning occur is shown. This is a way to show the

Fig. 3. Provisioning and reserved instances vs requested instances

Fig. 4. Percentage of underprovisioning in each provisioning period

performance loss that occur in the system in a standardized
way. The mean time of under-provisioning is 0,05%. This was
the goal when defining the provisioning value and hence, the
prediction model is accurate.

One of the most influential factors is the cost of the service
for the user. This cost is the one that would determine if the
service is competitive or if another solution is preferable.

To show this factor the cost for the user of using this
algorithm has been recorded and compared with Amazons on-
demand instances. Figure 5 shows the cost for the service user
of using the broker.

At the end of the period the IT company have spent 5x105
dollars or 32% less in cloud computing services.

VI. IMPROVEMENTS

In this section, we present the improvements of the basic
prediction model and test the performances of each improve-

57

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 67 / 237

Fig. 5. Cost of the service for the user.

ment.

A. Reconfiguration based on under-provisioning

If an under-provisioning occur, the actual provisioned in-
stances and requested instances should be analysed to see if
there should be a change in the provisioned instances. This is
extremely crucial to avoid performance degradation.

Even if the prediction model forecasts the necessary provi-
sioned instances for a certain probability of under-provisioning
there may be a change in the user patterns at a certain
moment. If this change in the patterns creates continuous
under-provisioning the performance of the service drops [23].
When under-provisioning occur, the algorithm recomputes the
number of provisioned instances as the number of requested
instances at the moment plus the number of expected new
instances in the prediction interval.

B. Close control loop

The second improvement was focused in adjusting the
statistic and prediction intervals to determine which was the
one with the smaller prediction error in the expected under-
provision value.

The statistic interval is the period in which the algorithm
apply the Poisson distribution to predict the future values. The
prediction interval is the period in which this future values are
predicted.

The results presented in Table I represent the average error
in the prediction of the algorithm at the end of the trace.

What we see here is that the error is not the same for
different statistic and prediction ranges. If the predictions were
perfect, they all should present the same error value and this
value should be zero.

|⇢opt
up

� ⇢

alg

| = 0 (16)

TABLE I
MEAN ERROR OF THE PREDICTOR AT THE END OF THE TRACE

CONSIDERING DIFFERENT STATISTIC AND PREDICTION RANGES

Statistics 1 day 2 days 3 days 1 week 2 weeks 3 weeks
Prediction

3 hours 0.025 0.024 0.023 0.022 0.019 0.019
6 hours 0.023 0.024 0.02 0.02 0.019 0.018
9 hours 0.024 0.019 0.019 0.019 0.017 0.013
12 hours 0.02 0.013 0.014 0.012 0.014 0.012
18 hours 0.025 0.021 0.021 0.017 0.014 0.007
24 hours 0.013 0.02 0.011 0.02 0.012 0.002

Fig. 6. Close control loop that sets optimum ranges

where ⇢

opt

up

is the probability of under-provisioning for
which the algorithm is designed, and ⇢

alg

the real under-
provisioning it achieves.

In this experiment, it is clear that the bigger the statistics
and prediction ranges we take, the smaller the error is, but
this can not be applied in all cases. To solve that situation, we
present a tool that automatically set the optimum historic and
prediction range.

The algorithm first select many different statistic and pre-
diction ranges in a near past. With the results, it compares
the errors, and it applies the statistic and prediction range that
generates the smallest error for the next prediction .

With this method, we get the expected probability of under-
provision with the best accuracy.

This is useful because the number of requested instances
may exhibit a variance in the statistics with the time. Figure
6 shows a schematic view of the close control loop that the
algorithm implements to select the best ranges.

The algorithm used to implement this control loop is ex-
plained in the following lines.

Algorithm 3 Close control loop algorithm
for i = 1 : Statistic ranges do

for j = 1 : Prediction ranges do
| ⇢

opt

� ⇢

real

|= error

ij

if error
ij

< errormin then
errormin = error

ij

! best

ij

end if
end for

end for

58

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 68 / 237

Applying this solution to the trace the average under-
provisioning obtained at the end of the trace is remarkably
close to 0,05%.

VII. CONCLUSION AND FUTURE WORK

This work studies the reservation and provisioning val-
ues that minimize the cloud computing service cost with a
controlled performance degradation. To reduce the cost, the
algorithm uses mixed on-demand and reserved instances a
single cloud provider.

We tested the algorithm that reserve and provision dynami-
cally with real world traces obtained from the Grid Workload
Archive, and compared the result after different improvements.
The results show that the IT companies reduce their cost
of service deployment by up to 32% with less than 0.05%
performance degradation.

As future work, we will consider flexible reservation periods
with different discounts. As well as, other kinds of workloads
to determine, how the statistic models change and how are
results altered.

VIII. ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Unions Seventh Framework Programme
([FP7/2007-2013]) under grant agreement no 261552 (Stratus-
Lab); from Consejerı́a de Educación of Comunidad de Madrid,
Fondo Europeo de Desarrollo Regional, and Fondo Social
Europeo through MEDIANET Research Program S2009/TIC-
1468; and from Ministerio de Ciencia e Innovación of Spain
through research grant TIN2009-07146.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A
berkeley view of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Tech. Rep., 2009.

[2] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky computing,”
Internet Computing, IEEE, pp. 43 –51, sept 2009.

[3] E. Walker, “The real cost of a cpu hour,” University of Texas at Austin,
Tech. Rep., April 2009.

[4] M. D. Assunção, A. D. Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,”
Proceedings of the 18th ACM international symposium on High Perfor-
mance Distributed Computing, pp. 141–150, 2009.

[5] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Multi-cloud
deployment of computing clusters for loosely-coupled mtc applications,”
Transactions on Parallel and Distributed Systems, 2010.

[6] M. de Assunção, A. di Costanzo, and R. Buyya, “A cost-benefit analysis
of using cloud computing to extend the capacity of clusters,” Cluster
Computing, Jan 2010.

[7] R. Harms and M. Yamrtino, “EU Public Sector Cloud Economics,”
Microsoft, Tech. Rep., 2011.

[8] “Amazon pricing web page, http://aws.amazon.com/ec2/pricing,” May
2011. [Online]. Available: http://aws.amazon.com/ec2/pricing

[9] “The grid workload archieve web page, http://gwa.ewi.tudelft.nl/
pmwiki/pmwiki.php?n=Main.Home,” May 2011. [Online]. Available:
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Main.Home

[10] “Gogrid pricing web page, http://www.gogrid.com/cloud-hosting/
cloud-hosting-pricing.php,” May 2011. [Online]. Available: http:
//www.gogrid.com/cloud-hosting/cloud-hosting-pricing.php

[11] “Rackspace pricing web page, http://www.rackspacecloud.com/
cloud\ hosting\ products/servers/pricing/,” May 2011. [Online].
Available: http://www.rackspacecloud.com/cloud\ hosting\ products/
servers/pricing/

[12] “Cloud sigma pricing web page, http://www.cloudsigma.com/en/
pricing/price-schedules,” May 2011. [Online]. Available: http://www.
cloudsigma.com/en/pricing/price-schedules

[13] “Elastichost pricing web page, http://www.elastichosts.com/
cloud-hosting/pricing,” May 2011. [Online]. Available: http:
//www.elastichosts.com/cloud-hosting/pricing

[14] M. Armbrust, A. Fox, R. Griffith, and A. Joseph, “mOSAIC,” European
Commission: Information Society and Media, Tech. Rep., May 2010.
[Online]. Available: www.mosaic-cloud.eu

[15] “Optimis home page, http://www.optimis-project.eu/content/
welcome-optimis,” May 2011. [Online]. Available: http://www.
optimis-project.eu/content/welcome-optimis

[16] B. Sotomayor, “A resource management model for vm-based virtual
workspaces,” Master’s thesis, The University of Chicago, 2007.

[17] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity
leasing in cloud systems using the opennebula engine,” Workshop on
Cloud Computing and its Applications, October 2008.

[18] K. Konstanteli, D. Kyriazis, T. Varvarigou, T. Cucinotta, and G. Anastasi,
“Real-Time Guarantees in Flexible Advance Reservations,” in Computer
Software and Applications Conference, 2009. COMPSAC ’09. 33rd
Annual IEEE International, 2009, pp. 67–72.

[19] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm,
“Scalable grid-wide capacity allocation with the swegrid accounting
system (sgas),” Concurr. Comput. : Pract. Exper., vol. 20, pp.
2089–2122, December 2008. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1458640.1458641

[20] “Amazon instances web page, http://aws.amazon.com/ec2/
instance-types/,” May 2011. [Online]. Available: http://aws.amazon.
com/ec2/instance-types/

[21] “Nordugrid trace web page, http://gwa.ewi.tudelft.nl/pmwiki/reports/
gwa-t-3/trace\ analysis\ report.html,” May 2011. [Online]. Avail-
able: http://gwa.ewi.tudelft.nl/pmwiki/reports/gwa-t-3/trace\ analysis\
report.html

[22] G. Zhao, J. Liu, Y. Tang, W. Sun, F. Zhang, X. Ye, and N. Tang, “Cloud
computing: A statistics aspect of users,” Cloud Computing, pp. 347–358,
2009.

[23] V. Machiraju, M. Sayal, A. V. Moorsel, and F. Casati, “Automated
sla monitoring for web services,” IEEE International Symposium on
Integrated Network Management, pp. 28–41, 2002.

59

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 69 / 237

Debit: A Diversity-based Method for Implicit Role Transition in RBAC
Deployments

Shanshan LI, Qingbo WU, Lianyue HE, Lisong SHAO, Jie YU
School of Computer

National University of Defense Technology
Changsha, China

{shanshanli, qingbo.qu, lianyuehe, lisongshao, jieyu} @nudt.edu.cn

Abstract-Role-based access control (RBAC) is a widely used
access control paradigm in operating system due to its
simplicity, scalability and fine-grained control ability. Current
approaches need re-login to transit role when the permissions
of assigned role are inadequate for operation. This usage is
easy for secure administration, while inflexible in practical use,
especially for those authenticated users. This paper describes a
diversity-based access control model supporting implicit role
transition, called DRT-RBAC. By measuring users’
authentication trustworthiness, a range for role transition can
be computed, and user whose diversity between the old role
and the new one fall into this range is allowed for automated
role transition. Further, we propose Debit, which calculates the
diversity between roles in operating system through an analytic
hierarchy process. In Debit, the roles are decomposed to fine
grained system privileges, capability. Debit computes a weight
for each category of capability through constructing a pair
wise comparisons matrix. The diversity of two roles is finally
obtained based on the weight of each capability category and
the number difference of capabilities on the category. We
implement Debit in Centos 5.4 to support implicit role
transition based on Authentication Trustworthiness of login
user.

Keyword-DRT-RBAC; authentication trustworthiness; Debit.

I. INTRODUCTION

Access control is an indispensable component of
operating system, which mediates requests to resources of
the system and makes decisions about whether or not they
should be granted. Relative to Classical Discretionary Access
control (DAC), Mandatory Access Control (MAC), Role-
based Access Control (RBAC) model is more emphasized
recently due to its simpleness, scalability, fine-grained
control ability, and has been proven to be efficient to
improve security administration with flexible authorization
management. In RBAC, users are assigned to roles, and
permissions are granted to roles. The protection state is
characterized by the triple <UA, PA, RR>, where UA is the
user-role assignment relation, PA is the permission role
assignment relation and RH is a role composition in systems.
RBAC can greatly simplify the management of
authorizations within a system, because a group of subjects
are usually given the same permissions.

For many mainstream operating systems, a user is
generally assigned a role either selected in system
authentication module or based on the least privilege

principle. For ease of secure administration, once the
permissions of assigned role are inadequate for operation, the
user need re-login and select another role from his available
list. Actually, if user can pass strong authentication, he is
well trustworthy and should be allowed to transit role
transparently. Current usage of roles requires manual
intervene of users, thus inflexible in practical use.

In this paper, we investigate a diversity-based access
control model supporting implicit role transition, called
DRT-RBAC. DRT-RBAC model associates the strength of
authentication trustworthiness with a transition range of role,
which takes the diversity between roles as the decision
condition to transit role. Only those users whose diversity
between the old role and the new one fall into the transition
range can make transition implicitly. The model keeps the
advantage of permission management, while emphasizes on
the flexibility of user-role assignment and makes operating
system friendly to users.

Based on DRT-RBAC model, we propose Debit, an
analytic hierarchy process to measure the diversity between
roles in operating system. Debit analyzes the inherent factors
which result in the difference among roles, and constructs a
hierarchy with fine-grained system privileges, capability,
each layer is analyzed independently. Through constructing a
pair wise comparisons matrix, Debit computes a weight for
each category of capability. The diversity of two roles is
finally obtained based on the weight of each capability
category and the number difference of capabilities on the
category.

The rest of this paper is organized as follows. We briefly
review the related work in Section 2. In Section 3, we
present some basic knowledge, including the concept of
authentication trustworthiness in single and multiple
authentication mechanisms. In Section 4, we describe the
diversity-based RBAC model DRT-RBAC supporting
implicit role transition, and present an analytic hierarchy
process Debit to calculate diversity. In Section 5, we
implement Debit in Centos 5.4 and verify its effectiveness.
We conclude the work in Section 6.

II. RELATED WORK
One of the most challenging problems in managing

operating systems is the complexity of security
administration. Role-based access control has become the
predominant model for advanced access control since it
reduces the cost of security management. There has been

60

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 70 / 237

much work done to explore the role assignment, time
constraint and security controlled mobility to enhance the
network performance.

Odell and Parunak [1] found that an important
characteristic of real-world systems is that the roles of
subject may change over time. These changes can be of
several different kinds. They analyze and classify the various
kinds of role changes over time that may occur, and show
how this analysis is useful in developing a more formal
description of the application. Liao and Hong [2] found that
IRBAC 2000 model [3] had not considered the separation of
duties, and they analyze the scenarios where dynamic role
translations violate statically mutually exclusive role
constraints, then propose a protective mechanism utilizing
prerequisite conditions to enforce the security of the IRBAC
2000 model. These works provide guide for role transition
among multiple domains in theory; however, they are not fit
for local role transition, especially for operating system.

Some works consider role transition from temporal and
spatial perspective [4-7], that is, roles of subject may change
in different time periods and environments. Bertino et al.
proposed the Temporal-RBAC (TRBAC) model that
addresses some of the temporal issues related to RBAC [8].
The main features of this model include periodic enabling of
roles and temporal dependencies among roles which can be
expressed through triggers. James, et al. argued that TRBAC
model addresses the role enabling constraints only. They
proposed a Generalized Temporal Role-based Access
Control (GTRBAC) model capable of expressing a wider
range of temporal constraints [9]. In particular, the model
allows expressing periodic as well as duration constraints on
roles, user-role assignments, and role-permission
assignments. Joshi and Ghafoor [10] showed how RBAC can
be extended to incorporate environmental contexts, such as
time and location.

For remote access control, a few models have been
proposed [11-13] � which benefit from the advantages of
both RBAC and trust management systems in an open
environment. In particular, the TrustBAC model [12]
supports automatic user-role assignment based on not only
credentials of a stranger but its past behavior and
recommendations. Saffarian et al. proposed a new dynamic
user-role assignment approach for remote access control [14].
It addresses the principle of least privilege without degrading
the efficiency of the access control system. Moreover, it
takes into account both credentials and the past behavior of
the requestor in such a way that he cannot compensate for
the lack of necessary credentials by having a good past
behavior.

Due to the uncertainty of execution time and task
allocation, the methods mentioned above cannot fit well
access control in operating systems.

III. BACKGROUND CONCEPT

For most secure operating systems, user is treated as
trustworthy if he passes the authentication mechanism. This

principle, however, is hard to apply for current uses. In one
side, hackers may obtain the authentication credence of users
and login system bypassing the authentication module,
obviously, these hackers cannot be regarded as trusted users.
In the other side, trustworthiness is a value of experience and
should differ in different authentication mechanism.

In our previous work [15], we borrowed the idea of
uncertainty reasoning in expert system and proposed a
reasoning model for measuring authentication
trustworthiness. In this paper, we associate the authentication
mechanism with access control in supporting automated role
transition.

Definition 1. Authentication Trustworthiness: the
trustworthy degree of the subject who has passed system

authentication, denoted by
�� �� � � . The value of

�� �� � � is
between 0 and 1. The larger the value is, the more the degree
of trustworthy is.

)|()(EHputau =
�������� (1) �

denotes that user is trustworthy and � is the
authentication mechanism. The precondition 	 is
independent of
 . When user selects a role r, the
authentication trustworthiness of current role inherits that of

the user, that is, ���� ��� � �� � = .
Definition 2. Trustworthiness Increase Degree reflects

the trustworthy increase after passing the system
authentication, denoted by ������� � � �

, � is the system
authentication mechanism.

�
�

�
�

�

=
=

<
−

−

���
������

��� �
�!�

" #$
#$#$

#$%#$
%#& ' () (2)

Normally, *+,.-/0 132 4
 is given by experience, with (2),

we can get the Authentication Trustworthiness by (3):
 565 57686576596 :;<:= > ? @<:= > ? @<:; −+= (3)

IV. DIVERSITY-BASED ROLE TRANSITION

In this section, we investigate a diversity-based implicit
role transition method in RBAC model. As we know, explicit
role transition needs user intervene thus inflexible for
application, while complete implicit transition may result in
privilege management out of control. In order to reduce the
risk while keeping flexibility, we introduce the DRT-RBAC
model, which enforce some restriction on implicit role
transition. According to the strength of authentication
mechanism, a range for role transition can be computed, and
users whose diversity between the old role and the new one
fall into this range are allowed for automated transition.

Based on DRT-RBAC model, a diversity measurement
method, Debit, is further proposed for real system
deployments.

61

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 71 / 237

Figure 1. DRT-RBAC Model

A. DRT-RBAC Model
DRT-RBAC inherits basic elements from RBAC96

model and makes some extensions, as illustrate in Figure 1.
Similar to RBAC96 model, users are assigned to roles

and the roles are mapped to permissions. While
distinguishingly, DRT-RBAC adds a new concept of role
diversity and support automated role transition. A user is
usually assigned several roles in a given system, and only
selects one in login. Automated role transition means a user
can transit to that role implicitly if the current role of the
user has no the privilege for current operation, while another
available role has the corresponding privilege.

Definition 4. Role Diversity: the difference between
roles, denoted by ABC BDFEG H .

Automated role transition do not need manual intervene
and largely enhance the flexibility of user operation. While
unlimited transition may render system security, we enforce
some restriction on automated transition, only those whose
diversity between the old role and the new one fall into a
transition range are allowed for automated transition.
Transition range is decided on his authentication
trustworthiness. Basically, the stronger the authentication
mechanism, the larger the transition range. Transition
threshold defines the maximum transition range. DRT-
RBAC model keeps the advantage of permission
management, while emphasizes on the flexibility of user-
role assignment and made operating system friendly to users.
Figure 2 illustrates the role transition decision process.

Figure 2. Role Transition Decision Process

Definition 5. Transition threshold: the maximum role
diversity in current authentication mechanism, denoted by IJK L MONP .

Rule 1. Role transition rule: With authentication
trustworthiness of QRTSUV W X , user can transit role implicitly

from 1r to 2r if YZ[\]^_ ` abcde db < .
The role transition decision module is the centre part in

the transition process. We will give the measurement of its
input, role diversity and transition threshold, in the following
sections.

B. Debit Design
Basically, role diversity can be measured from many

aspects. In operating system, capability differentiates roles
on system privilege and is a good reflector on role diversity;
therefore, we proposed a capability based method named
Debit to measure role diversity in this paper.

Different capabilities weigh differently since each of
them has different effect on system, such as system
management, security management, network management
and so on. In order to measure role diversity accurately,
Debit uses an analytic hierarchy process [16], in which we
have two layers, capability and role. Through constructing a
pair wise comparisons matrix, Debit calculates a weight for
each category of capability. The diversity of two roles is
finally obtained based on the weight of each capability
category and the number difference of capabilities on the
category.

Supposed we have k roles and n capabilities. Debit
works as followed:
(1) Capability categorization

According to their function, capabilities are classified

into m categories, fgh ij k k k k k k jiji , let lmn o be the

number of pq capabilities in rs t u v .
(2) Constructing Pair wise comparisons matrix in

capability layer

62

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 72 / 237

TABLE I. THE FUNDAMENTAL SCALE FOR PAIR WISE COMPARISONS

Intensity of
importance Definition Explanation

1 Equal
importance

Two elements contribute
equally

3 Moderate
importance

Experience and judgment
slightly favor one element

over another

5 Strong
importance

Experience and judgment
strongly favor one element

over another

7 Very strong
importance

One element is favored very
strongly over another, its

dominance is demonstrated in
practice

Through comparing the effect of each category on

operating system, we construct a pair wise comparisons
matrix. Pair wise comparing matrix reflects the intensity of
importance between each pair of capability categories. The
scale of the intensity is referenced from table I. The pair
wise comparisons matrix of capability is shown in figure 3,

iia shown is one of the value 1, 3,5,7,9 or it’s reciprocal,
iia =1, jia = i/1 ja .

(3) Checking Consistency
Debit should check the consistency of the pair wise

comparisons matrix. The reason which results in the
inconsistency is the improper decision of the intensity of
importance between each pair of capability categories.

TABLE II. RI REFERENCED VALUE

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Rule 2. Consistency checking rule: the pair wise
comparisons matrix is consistent if jkijaa = ika , nkji ≤≤ ,,1
or the maximal matrix eigenvalue equal to its order.

1T

2T

2T

1m−T

1m−T

mT

mT

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

−

−−−−−

−

−

mmmmmm

mmmmmm

mm

mm

aaaa

aaaa

aaaa

aaaa

1

11111

1

1

...

...
...............

...

...

21

21

222221

111211

1T

Figure 3. Pair wise comparisons matrix of capability

 Basically, incomplete consistency is acceptable in some
extend. Debit uses (4) to judge whether the matrix has a
satisfying consistency. If 1.0<CR , it’s acceptable, else we
should adjust the matrix V until satisfying.

RICICR /= (4) w x
is computed through (5), and y x is obtained from

table z z .
1
)(max

−
−= n

nV
CI

λ
 (5)

(4) Computing weight for each category of capability
Debit computes the maximal matrix eigenvalue W,

which is corresponding to the weight of each capability
category.
(5) Measuring diversity for roles

In role layer, in order to measure the diversity between
two roles, for example, role a and role b, we need to
construct one pair wise comparisons matrix for each
capability category, thus we are able to measure the
difference on each capability category between role a and
role b. And their diversity is finally got through the weighed
summation of these differences.

For each category of capability, we construct a pair wise
comparisons matrix for each pair of roles. In these matrixes,
the intensity of importance is decided by their number

difference of each capability category, k
iCN

h
iCN − , and also

referenced from table I. For role i, capability category h, k,
let its matrix eigenvalue is),b(bW ikihi = , then the
diversity between role i and role j is:

|)
1

(| jn
m

n
inji bbW),RD(R � =

−×= (6)

C. Transition Threshold
In this paper, we use authentication trustworthiness to

get the transition threshold. Let the maximum authentication
trustworthiness is 1, the transition threshold of current
authentication mechanism is in proportion to the
corresponding authentication trustworthiness. User who
needs implicit role transition checks the diversity between
two roles; and only those whose diversity between the old
role and the new one fall below the threshold are allow for
implicit transition.

V. IMPLEMENTATION IN CENTOS 5.4

We implement DRT-RBAC model and Debit in Centos
5.4. The kernel version is linux 2.6.18, in which we have 31
capabilities. Each bit of the low 32 bits denotes one
capability and the high 32 bits are left for extension. We

TABLE III. THE),(EHASTF UNDER DIFFERENT

AUTHENTICATION MECHANISMS

authentication
mechanism

{|}�~�� �3� �

password 0.1

u-key 0.3

fingerprint 0.6

63

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 73 / 237

implement three authentication mechanisms, which are
password, u-key and fingerprint. Their trustworthiness
increase degree is set in table III.

According to (4), we are able to get the authentication
trustworthiness of each authentication mechanisms, and set
it in the structure of current active task by PAM module.

We set five roles in Centos 5.4, which is system admin,
security admin, audit admin, net admin and default role. The
capability of each role is illustrated using hexadecimal mode
in table IV. The triples represent inherit (i), permitted (p)
and effective (e) capability respectively. In general, the
execute capability of a process denotes the active capability,
and is inherited from the inherit capability of its role. Thus
we use the first element in the triples of role, inherit
capability, to measure diversity between roles.

TABLE IV. CAPABILITY OF EACH ROLE

role Capability <i,p,e>
default role <0 � 0 � 0>
net admin <9800feff � 0 � 0>

system admin <9ffffeff � 0 � 0>
security admin <200006 � 0 � 0>

audit admin <60810000 � 0 � 0>

We classify the 31 capabilities into 5 categories, which is

system management (SYM), security management (SEM),
audit management (AUM), net management (NEM) and
routine (ROU). By weighing their importance, we get the
pair wise comparisons matrix of capability. Table V gives
the composition of capabilities of each category in each role.

This matrix is consistent, we get the normalized maximal
eigenvalue,W= � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � � .
This is the relative weight of all roles.

TABLE V. CAPABILITIES OF EACH CATEGORY IN EACH ROLE

role ROU NEM SYM SEM AUM

Default
role 0 0 0 0 0

net admin 11 4 0 0 0

system
admin 13 4 11 0 0

security
admin 2 0 1 1 0

audit
admin 0 0 2 0 2

In role layer, we construct several pair wise comparison

matrixes for each pair of roles. Each matrix denotes their
difference on each category of capability. The intensity of
importance is decided on the number difference in Table 4,
and the diversity between roles is finally obtained from (6).

In the pair wise comparison matrix, the maximal
intensity of importance is 7, and thus we are able to compute

the maximal diversity between roles, which is 0.75. Figure 5
illustrate the transition threshold for all pairs of roles.

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

12/15/15/15/1
214/14/14/1

54111
54111
54111

Figure 4. Pair wise comparisons matrix of capability in CentOS 5.4

I. CONCLUSION

In this paper, we propose a diversity-based access
control model DRT-RBAC. DRT-RBAC support implicit
role transition according to the authentication
trustworthiness of users. This model keeps the advantage of
permission management, while emphasizes on the flexibility
of user-role assignment and made operating system friendly
to users. In our future work, we will consider the temporal
factor affecting the transition on roles.

Figure 5. Transition threshold of each pair of roles

REFERENCES

[1] J. Odell, H.V.D. Parunak, S. Brueckner, and J. Sauter, "Changing

Roles: Dynamic Role Assignment," Journal of Object Technology,
vol 2, no 5, pp 77-86, 2003.

[2] J. Liao, X. Zhu, H. Xiao, "Separation of Duty in Dynamic Role
Translations Between Administrative Domains," Journal of
Computer Research and Development, pp. 43(6):1065~1070, 2006.

[3] A. Kapadia, J. Al-Muhtadi, R.H. Campbell, and M.D. Mickunas,
"IRBAC 2000: Secure interoperability using dynamic role
translation," In Proceedings of the 1st International Conference on
Internet Computing, pp. 231-238, 2000.

[4] A. Samuel, A. Ghafoor, and E. Bertino, "A Framework for
Specification and Verification of Generalized Spatio-Temporal Role-
based Access Control Model," Technical report, Purdue University,
CERIAS TR 2007-08, February 2007.

64

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 74 / 237

[5] V. Atluri and S.A. Chun, "A geotemporal role-based authorisation
system," International Journal of Information and Computer Security,
v.1 n.1/2, pp.143-168, 2007.

[6] S.M. Chandran and J.B.D. Joshi, "LoT-RBAC: A Location and
Time-based RBAC Model," In Proceedings of the 6th International
Conference on Web Information Systems Engineering, pp. 361-375,
New York, NY, USA, November 2005.

[7] I. Ray and M. Toahchoodee, "A Spatio-Temporal Role-Based Access
Control Model," In Proceedings of the 21th Annual IFIP WG 11.3
Working Conference on Data and Applications Security, pp.211-226,
Redondo Beach, CA, July 2007.

[8] E. Bertino, P.A. Bonatti, and E. Ferrari, "TRBAC: A Temporal Role-
based Access Control Model," In Proceedings of the 5th ACM
workshop on Role-based access control, pp.21-30, Berlin, Germany,
July. 2001.

[9] J.B.D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, "A generalized
temporal role-based access control model," IEEE Transactions on
Knowledge and DataEngineering, pp.17(1):4~23, January 2005.

[10] I. Ray and M. Toahchoodee, "A Spatio-temporal Access Control
Model Supporting Delegation for Pervasive Computing
Applications," In Presented at Proceeding of the 5th international

conference on trust, privacy and security in Digital Business, Turin,
Italy, 2008.

[11] A. Herzberg, Y. Mass, J. Michaeli, Y. Ravid, and D. Naor, "Access
control meets public key infrastructure, or: Assigning roles to
strangers," In Proceedings of the 2000 IEEE Symposium on Security
and Privacy, pp.2-9, Washington, DC,USA, 2000.

[12] S. Chakraborty and I. Ray, "TrustBAC: integrating trust relationships
into the RBAC model for access control in open systems," In
Proceedings of the eleventh ACM symposium on Access control
models and technologies, New York, NY, USA, 2006.

[13] Y. Zhong, B. Bhargava, and M. Mahoui, "Trustworthiness based
authorization on www," Department of Computer Science, Purdue
University CERIAS Tech Report 2002-08, 2002.

[14] M. Saffarian, Q. Tang., W. Jonker, and P. Hartel, "Dynamic User-
Role Assignment in Remote Access Control," CTIT-09-14, 2009.

[15] L. Wang, L. Wei, X. Liao, and H. Wang, "AT-RBAC: an
Authentication Trustworthiness-based RBAC Model," In Proceeding
of the 3rd Grid and Cooperative Computing -GCC 2004 Workshops,
2004.

[16] T.L. Saaty, "How to make a decision: the analytic hierarchy process,"
Interfaces, vol. 24, pp.19-27, 1994.

65

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 75 / 237

Trust Model for File Sharing in Cloud Computing
Edna Dias Canedo, Robson de Oliveira Albuquerque and Rafael Timóteo de Sousa Junior

Electrical Engineering Department– University of Brasília – UNB
Brasília – DF, Brazil, 70910-900.

E-mails: {ednacanedo@unb.br}{robson@unb.br} {desousa@unb.br}

Abstract—The recent advances in cloud computing have risen
a number of unforeseen security related issues in different
aspects of cloud environments. Among these, the problem of
guaranteeing secure access to computing resources in the cloud
is gathering special attention. In this paper, we address open
issues related to trust in cloud environments proposing a new
trust model for cloud computing which considers a higher level
view cloud resources. A simulation of trust calculation between
the nodes of the clouds is performed. The simulation was
possible to verify that a node is reliable when it reaches the
minimum index of trust.

Keywords-Cloud Computing; Distributed Computing;
Security; Integrity; Confidentiality; Trust and Availability.

I. INTRODUCTION

The widespread use of Internet connected systems and
distributed applications has triggered a revolution towards
the adoption of pervasive and ubiquitous cloud computing
environments. These environments allow users and clients to
purchase computing power according to necessity, elastically
adapting to different performance needs while providing
higher availability. Several web-based solutions, such as
Google Docs and Customer Relationship Management
(CRM) [2] applications, now operate in the software as a
service model. Much of this flexibility is made possible by
virtual computing methods, which can provide adaptive
resources and infrastructure in order to support scalable on-
demand sales of such applications. Virtual computing is also
applied to stand-alone infrastructure as a service solutions,
such as Amazon Elastic Cloud Computing (EC2) and Elastic
Utility Computing Architecture Linking Your Programs to
Useful Systems (Eucalyptus) [2].

As a result, the cloud computing frameworks and
environments are able to address different issues in current
distributed and ubiquitous computing systems.

The availability of infrastructure as a service and
platform as a service environments provided a fundamental
base for building cloud computing based applications. It also
motivated the research and development of technologies to
support new applications. As several large companies in the
communications and information technology sector have
adopted cloud computing based applications, this approach is
becoming a de facto industry standard, being widely adopted
by different organizations.

Since the adoption of the cloud computing paradigm by
IBM Corporation around the end of 2007, other companies
such as Google (Google App Engine), Amazon (Amazon
Web Services (AWS), EC2 (Elastic Compute Cloud) and S3
(Simple Storage Service)), Apple (iCloud) and Microsoft

(Azure Services Platform) have progressively embraced it
and introduced their own new products based on cloud
computing technology [11]. However, cloud computing still
poses risks related to data security in its different aspects
(integrity, confidentiality and authenticity).

Cloud computing provides a low-cost, scalable, location
independent infrastructure for data management and storage.
The rapid adoption of Cloud services is accompanied by
increasing volumes of data stored at remote servers, so
techniques for saving disk space and network bandwidth are
needed. A central up and coming concept in this context is
deduplication, where the server stores only a single copy of
each file, regardless of how many clients asked to store that
file. All clients that store the file merely use links to the
single copy of the file stored at the server. Moreover, if the
server already has a copy of the file, then clients do not even
need to upload it again to the server, thus saving bandwidth
as well as storage (this is termed client-side deduplication).
Reportedly, business applications can achieve deduplication
ratios from 1:10 to as much as 1:500, resulting in disk and
bandwidth savings of more 90%. Deduplication can be
applied at the file level or at the block level.

In a typical storage system with deduplication, a client
first sends to the server only a hash of the file and the server
checks if that hash value already exists in its database. If the
hash is not in the database then the server asks for the entire
file. Otherwise, since the file already exists at the server
(potentially uploaded by someone else), it tells the client that
there is no need to send the file itself. Either way the server
marks the client as an owner of that file, and from that point
on the client can ask to restore the file (regardless of whether
he was asked to upload the file or not).

The client-side deduplication introduces new security
problems. For example, a server telling a client that it need
not send the file reveals that some other client has the exact
same file, which could be sensitive information. A malicious
client can use this information to check whether specific files
were uploaded by other users, or even run a brute force
attack which identifies the contents of certain fields in files
owned by other users, by trying to upload multiple variants
of the same file which have different values for that field.
The findings apply to popular file storage services such as
MozyHome and Dropbox, among others.

In this paper, we review the main cloud computing
architecture patterns and identify the main issues related to
security, privacy, trust and availability. In order to address
such issues, we present a high level architecture for trust
models in cloud computing environments.

This paper is organized as follows. In Section II, we
present an overview of cloud computing, presenting a

66

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 76 / 237

summary of its main features, architectures and deployment
models. In Section III, we present related works. In section
IV, we introduce the proposed trust model. Finally, in
Section V, we conclude with a summary of our results and
directions for new research.

II. CLOUD COMPUTING

Cloud computing refers to the use, through the Internet,
of diverse applications as if they were installed in the user’s
computer, independently of platform and location. Several
formal definitions for cloud computing have been proposed
by industry and academia. We adopt the following
definition: “Cloud computing is a model for enabling
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [14]. This definition includes
cloud architectures, security, and deployment strategies.

Cloud computing is being progressively adopted in
different business scenarios in order to obtain flexible and
reliable computing environments, with several supporting
solutions available in the market. Being based on diverse
technologies (e.g. virtualization, utility computing, grid
computing and service oriented architectures) and
constituting a whole new computational paradigm, cloud
computing requires high level management routines. Such
management activities include: (a) service provider selection;
(b) virtualization technology selection; (c) virtual resources
allocation; (d) monitoring and auditing in order to guarantee
Service Level Agreements (SLA).

Computational trust can be leveraged in order to establish
an architecture and a monitoring system encompassing all
these needs and still supporting usual activities such as
planning, provisioning, scalability and security. Chang et al.
[15] present a few challenges related to security,
performance and availability in the cloud.

A. Characteristics of Cloud Computing

One advantage of cloud computing is the possibility of
accessing applications directly from the Internet, with minor
requirements of user computing resources. There are other
significant advantages and disadvantages [13], as shown in
Table I.

Cloud computing combines a shared and statistical
service model. It presents three basic characteristics [1]: a)
hardware infrastructure architecture – based on low cost
scalable clusters. The computing infrastructure in the cloud
is composed of a great number of low cost servers, such as
standard X86 server nodes; b) collaborative development of
basic services and applications with maximal resource
utilization, thus improving traditional software engineering
processes. In the traditional computational model,
applications become completely dependent on the basic
services; c) the redundancy among several low cost servers is
guaranteed through software. Since a large number of low
cost servers is used, individual node failures cannot be
ignored. Therefore, node fault tolerance must be taken into
account in the design of software.

TABLE I. ADVANTAGES AND DISADVANTAGES OF CLOUD
COMPUTING

Advantages Disadvantages

Lower IT infrastructure cost Requires a constant Network
connection

Increased computing power Dependable of network bandwidth

Unlimited storage capacity Features might be limited

Improved compatibility between
operating Systems

Stored data might not be secure

Easier group collaboration If the cloud loses your data, you will
not have access to your information. Universal access to documents

B. Cloud Computing Architecture

Cloud computing architecture is based on layers. Each
layer deals with a particular aspect of making application
resources available. Basically there are two main layers: a
lower and a higher resource layer. The lower layer comprises
the physical infrastructure and is responsible for the
virtualization of storage and computational resources. The
higher layer provides specific services. These layers may
have their own management and monitoring system,
independent of each other, thus improving flexibility, reuse
and scalability. Figure 1 presents the cloud computing
architectural layers [11].

Figure 1. Cloud Computing Architecture [11]

C. Software as a Service

Software as a Service (SaaS) provides all the functions of
a traditional application, but provides access to specific
applications through Internet. The SaaS model reduces
concerns with application servers, operating systems,
storage, application development, etc. Hence, developers
may focus on innovation, and not on infrastructure, leading
to faster software systems development.

SaaS systems reduce costs since no software licenses are
required to access the applications. Instead, users access
services on demand. Since the software is mostly Web based,
SaaS allows better integration among the business units of a
given organization or even among different software
services. Examples of SaaS include [2]: Google Docs and
Customer Relationship Management (CRM) services.

67

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 77 / 237

D. Platform as a Service

Platform as a Service (PaaS) is the middle component of
the service layer in the cloud. It offers users software and
services that do not require downloads or installations. PaaS
provides an infrastructure with a high level of integration in
order to implement and test cloud applications. The user does
not manage the infrastructure (including network, servers,
operating systems and storage), but he controls deployed
applications and, possibly, their configurations [4].

PaaS provides an operating system, programming
languages and application programming environments.
Therefore, it enables more efficient software systems
implementation, as it includes tools for development and
collaboration among developers. From a business standpoint,
PaaS allows users to take advantage of third party services,
increasing the use of a support model in which users
subscribe to IT services or receive problem resolution
instructions through the Web. In such scenarios, the work
and the responsibilities of company IT teams can be better
managed. Examples of SaaS [2] include: Azure Services
Platform (Azure), Force.com, EngineYard and Google App
Engine.

E. Infrastructure as a Service

Infrastructure as a Service (IaaS) is the portion of the
architecture responsible for providing the infrastructure
necessary for PaaS and SaaS. Its main objective is to make
resources such as servers, network and storage more readily
accessible by including applications and operating systems.
Thus, it offers basic infrastructure on-demand services. IaaS
has a unique interface for infrastructure management, an
Application Programming Interface (API) for interactions
with hosts, switches, and routers, and the capability of
adding new equipment in a simple and transparent manner.
In general the, user does not manage the underlying
hardware in the cloud infrastructure, but he controls the
operating systems, storage and deployed applications.
Eventually he can also select network components such as
firewalls.

The term IaaS refers to a computing infrastructure, based
on virtualization techniques that can scale dynamically,
increasing or reducing resources according to the needs of
applications. The main benefit provided by IaaS is the pay-
per-use business model [4]. Examples of IaaS [2] include:
Amazon Elastic Cloud Computing (EC2) and Elastic Utility
Computing Architecture Linking Your Programs To Useful
Systems (Eucalyptus).

F. Roles in Cloud Computing

Roles define the responsibilities, access and profile of
different users that are part of a cloud computing solution.
Figure 2 presents these roles defined in the three service
layers [3].

The provider is responsible for managing, monitoring and
guaranteeing the availability of the entire structure of the
cloud computing solution. It frees the developer and the
final user from such responsibilities while providing
services in the three layers of the architecture.

Developers use the resources provided by IaaS and PaaS
to provide software services for final users.

This multi-role organization helps to define the actors
(people who play the roles) in cloud computing
environments. Such actors may play several roles at the same
time according to need or interest. Only the provider
supports all the service layers.

Figura 2. Roles in cloud computing [3].

G. Cloud Computing Deployment

According to the intended access methods and
availability of cloud computing environments, there are
different models of deployment [4]. Access restriction or
permission depends on business processes, the type of
information and characteristics of the organization. In some
organizations, a more restrict environment may be necessary
in order to ensure that only properly authorized users can
access and use certain resources of the deployed cloud
services. A few deployment models for cloud computing are
discussed in this section. They include private cloud, public
cloud, community cloud and hybrid cloud, which are briefly
analyzed below.

TABLE II. MODELS OF DEPLOYMENT OF CLOUD SERVICES [4]

Cloud Model Description

Private In this model, the cloud infrastructure is exclusively used
by a specific organization. The cloud may be local or
remote, and managed by the company itself or by a third
party. There are policies for accessing cloud services.
The techniques employed to enforce such private model
may be implemented by means of network management,
service provider configuration, authorization and
authentication technologies or a combination of these.

Public Infrastructure is made available to the public at large and
can be accessed by any user that knows the service
location. In this model, no access restrictions can be
applied and no authorization and authentication
techniques can be used.

Community Several organizations may share the cloud services.
These services are supported by a specific community
with similar interests such as mission, security
requirements and policies, or considerations about
flexibility. A cloud environment operating according to
this model may exist locally or remotely and is normally
managed by a commission that represents the community
or by a third party.

Hybrid Involves the composition of two or more clouds. These
can be private, community or public clouds which are
linked by a proprietary or standard technology that
provides portability of data and applications among the
composing clouds.

68

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 78 / 237

Private Cloud computing presents a few challenges
related to protection, trust, privacy and security of user data.

III. CLOUD RELATED WORK ON SECURITY AND TRUST

This section review some related work about security,
file system and trust in the cloud.

A. Security in the Cloud

A number of technologies have been employed in order
to provide security for cloud computing environments. The
creation and protection of security certificates is usually not
enough to ensure the necessary security levels in the cloud.
Cryptographic algorithms used with cloud applications
usually reduce performance and such reduction must be
restricted to acceptable levels [21].

Cloud computing offers users a convenient way of
sharing a large quantity of distributed resources belonging to
different organizations. On the other hand, the very nature of
the cloud computing paradigm makes security aspects quite
more complex. Trust is the main concern of consumers and
service providers in a cloud computing environment [7]. The
inclusion of totally different local systems and users of quite
diverse environments brings special challenges to the
security of cloud computing. On one hand, security
mechanisms must offer users a high enough level of
guarantees. On the other hand, such mechanism must not be
so complex as to make it difficult for users to use the system.
The openness and computational flexibility of popular
commercially available operating systems have been
important factors to support the general adoption of cloud
computing. Nevertheless, these same factors increase system
complexity, reduce the degree of trust and introduce holes
that become threats to security [7].

Huan et al. [22] investigate the different security
vulnerability assessment methods for cloud environments.
Experiments show that more vulnerabilities are detected if
vulnerable tools and servers are in the same LAN. In other
word, the hackers can find an easier way to get the target
information if it is on the same LAN of compromised
systems. Experimental results can be used to analyze the
risk in third party compute clouds.

Popovic et al. [23] discuss security issues, requirements
and challenges that Cloud Service Providers (CSP) face
during cloud engineering. Recommended security standards
and management models to address these are suggested both
for the technical and business community.

B. Filesystem Security

As the number of devices managed by users is
continually increasing, there is a growing necessity of
synchronizing several hierarchically distributed file systems
using ad-hoc connectivity. Uppoor et al. [6] present a new
approach for synchronizing of hierarchically distributed file
systems. Their approach resembles the advantages of peer-
to-peer synchronization, storing online master replicas of
the shared files. The proposed scheme provides data
synchronization in a peer-to-peer network, eliminating the

costs and bandwidth requirements usually present in cloud
computing master-replica approaches.

The work in [9] presents CDRM, a scheme for dynamic
distribution of file replicas in a cloud storage cluster. This
scheme periodically updates the number and location of file
block replicas in the cluster. The number of replicas is
updated according to the actual availability of cluster nodes
and the expected file availability. The dynamic distribution
algorithm for replica placement takes into account the
storage and computational capacity of the cluster nodes, as
well as the bandwidth of the communication network.
An implementation of the proposed scheme using an open
source distributed file system named HDFS (Hadoop
Distributed File System) is discussed. Experimental
measurements point out that the dynamic scheme
outperforms existing static file distribution algorithms.

C. Trust

The concepts of trust, trust models and trust management
have been the object of several recent research projects.
Trust is recognized as an important aspect for decision-
making in distributed and auto-organized applications [19]
[20]. In spite of that, there is no consensus in the literature
on the definition of trust and what trust management
encompasses. In the computer science literature, Marsh is
among the first to study computational trust. Marsh [19]
provided a clarification of trust concepts, presented an
implementable formalism for trust, and applied a trust
model to a distributed artificial intelligence (DAI) system in
order to enable agents to make trust-based decisions. Marsh
divided trust into three categories: 1. Basic Trust – This is
the level of trust which represents the general trust
disposition of agent X ∈2 A at time t. 2. General Trust –
Given agents x, y ∈A, the general trust Tx(y)t represents
the amount of trust that x has in y at time t. 3. Situational
Trust – Given agents x, y ∈ A, and a situation α, the
situational trust Tx(y,α)t represents the amount of trust that
x has in y in situation α at time t.

Beth et al. [20] also proposed a trust model for distributed
networks. They derived trust recommendations from direct
trust and gave them formal representations, as well as rules
to derive trust relationships and algorithms to compute trust
values. Josang et al. [24] describe a trust model where
positive and negative feedback about a specific member is
accumulated. The model is based on the Bayesian network
model, using the beta probability density function to
calculate a member’s expected future behavior.

Trust is considered to be more than the authorized nature
of security relations between human societies, which achieve
stable and healthy operation, to a large extent thanks to the
trust relationship between the individuals, groups and
organizations. Therefore, in a large number of dynamic user-
oriented open network environments, the study of the trust
relationships between the trust-based security mechanisms to
ensure the safe operation of distributed applications has
become a fundamental topic. Currently, most scholars have

69

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 79 / 237

reached a consensus that trust should have three important
features [25], which are discussed bellow.

1) Subjectivity (different entities of the same view of
things which will be affected by factors such as individual
preferences may vary);

2) The expected probability (the degree of trust can be
extracted and formalized as the estimated likelihood of a
given event);

3) Relevance (trust is an aspect of things, for specific
content).

In recent works on trust, mainly two distinct methods are
used for subjective trust reasoning: probabilistic reasoning
based on statistical hypothesis testing; and approaches based
on fuzzy theory, expert systems and artificial intelligence
techniques. However, these methods do not fully reflect the
essential nature of trust. Subjective trust, in essence, is based
on the belief that it has great uncertainty. In the subjective,
objective world, random and fuzzy uncertainties are the two
main forms that have become the industry consensus [26].
Thus, the axiomatic methods based on probability theory or
fuzzy set theory do not achieve a comprehensive assessment
of trust information.

D. Trust in the Cloud

Trust and security have become crucial to guarantee the
healthy development of cloud platforms, providing solutions
for concerns such as the lack of privacy and protection, the
guarantee of security and author rights.

Privacy and security have been shown to be two
important obstacles concerning the general adoption of the
cloud computing paradigm. In order to solve these problems
in the IaaS service layer, a model of trustworthy cloud
computing which provides a closed execution environment
for the confidential execution of virtual machines was
proposed [5]. This work has shown how the problem can be
solved using a Trusted Platform Module. The proposed
model, called Trusted Cloud Computing Platform (TCCP),
is supposed to provide higher levels of reliability,
availability and security. In this solution, there is a cluster
node that acts as a Trusted Coordinator (TC). Other nodes in
the cluster must register with the TC in order to certify and
authenticate its key and measurement list. The TC keeps a
list of trusted nodes. When a virtual machine is started or a
migration takes place, the TC verifies whether the node is
trustworthy so that the user of the virtual machine may be
sure that the platform remains trustworthy. A key and a
signature are used for identifying the node. In the TCCP
model, the private certification authority is involved in each
transaction together with the TC [5].

Shen et al. [7] presented a method for building a
trustworthy cloud computing environment by integrating a
Trusted Computing Platform (TCP) to the cloud computing
system. The TCP is used to provide authentication,
confidentiality and integrity [7]. This scheme displayed
positive results for authentication, rule-based access and
data protection in the cloud computing environment.

 Cloud service providers (CSP) should guarantee the
services they offer, without violating users’ privacy and
confidentiality rights. Li et al. [8] introduced a multi-
tenancy trusted computing environment model (MTCEM).
This model was designed for the IaaS layer with the goal of
ensuring a trustworthy cloud computing environment to
users. MTCEM has two hierarchical levels in the transitive
trust model that supports separation of concerns between
functionality and security. It has 3 identity flows: a) the
consumers, who hire the CSP cloud computing services; b)
the CSP, that provides the IaaS services; c) the auditor
(optional, but recommended), who is responsible for
verifying whether the infrastructure provided by the CSP is
trustworthy on behalf of users. In MTCEM, the CSP and the
users collaborate with each other to build and maintain a
trustworthy cloud computing environment.

Zhimin et al. [12] propose a collaborative trust model for
firewalls in cloud computing. The model has three
advantages: a) it uses different security policies for different
domains; b) it considers the transaction contexts, historic
data of entities and their influence in the dynamic
measurement of the trust value; and c) the trust model is
compatible with the firewall and does not break its local
control policies. A model of domain trust is employed. Trust
is measured by a trust value that depends on the entity’s
context and historical behavior, and is not fixed. The cloud
is divided in a number of autonomous domains and the trust
relations among the nodes is divided in intra and inter-
domain trust relations. The intra-domain trust relations are
based on transactions operated inside the domain. Each node
keeps two tables: a direct trust table and a recommendation
list. If a node needs to calculate the trust value of another
node, it first checks the direct trust table and uses that value
if the value corresponding to the desired node is already
available. Otherwise, if this value is not locally available,
the requesting node checks the recommendation list in order
to determine a node that has a direct trust table that includes
the desired node. Then it checks the direct trust table of the
recommended node for the trust value of the desired node.
The process continues until a trust value for the desired
node is found in a direct trust table of some node. The inter-
domain trust values are calculated based on the transactions
among the inter-domain nodes. The inter-domain trust value
is a global value of the nodes direct trust values and the
recommended trust value from other domains. Two tables
are maintained in the Trust Agents deployed in each
domain: form of Inter-domain trust relationships and the
weight value table of this domain node.

In [17] a trusted cloud computing platform (TCCP) which
enables IaaS providers to offer a closed box execution
environment that guarantees confidential execution of guest
virtual machines (VMs) is proposed. This system allows a
customer to verify whether its computation will run
securely, before requesting the service to launch a VM.
TCCP assumes that there is a trusted coordinator hosted in a
trustworthy external entity. The TCCP guarantees the

70

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 80 / 237

confidentiality and the integrity of a user’s VM, and allows
a user to determine up front whether or not the IaaS enforces
these properties.

The work [18] evaluates a number of trust models for
distributed cloud systems and P2P networks. It also
proposes a trustworthy cloud architecture (including trust
delegation and reputation systems for cloud resource sites
and datacenters) with guaranteed resources including
datasets for on-demand services.

IV. HIGH LEVEL TRUST MODEL FOR FILE SHARING

According to the review and related research [5] [6] [7]
[8] [10] [12] [17], it is necessary to employ a cloud
computing trust model to ensure the exchange of files among
cloud users in a trustworthy manner. In this section, we
introduce a trust model to establish a ranking of trustworthy
nodes and enable the secure sharing of files among peers in a
public cloud.

We propose a trust model where the selection and trust
value evaluation that determines whether a node is
trustworthy can be performed based on node storage space,
link and processing capacity. For example, if a given client
has access to a storage space in a public cloud, it still has no
selection criterion to determine to which cloud node it will
send a particular file.

When a node wants to share files with other users, it will
select trusted nodes to store this file through the following
metrics: processing capacity (the average workload
processed by the node, for example, if the node’s processing
capacity is 100% utilized, it will take longer to attend any
demands), storage capacity and link (better communication
links and storage resources imply greater trust values, since
they increase the node’s capacity of transmitting and
receiving information). The trust value is established based
on queries sent to nodes in the cloud, considering the metrics
previously described.

Figure 3. Proposed Trust Model.

Each node maintains two trust tables: direct trust table
and the recommended list. a) If a node needs to calculate the

trust value of another node, it first checks the direct trust
table and uses the trust value if the value for the node exists.
If this value is not available yet, then the recommended lists
are checked to find a node that has a direct trust relationship
with the desired node the direct trust value from this node’s
direct trust table is used. If there’s no value attached, then it
sends a query to its peers requesting information on their
storage space, processing capacity and link. The trust values
are calculated based on queries exchanged between nodes.
 b) The requesting node will assign a greater trust value to
nodes having greater storage capacity and / or processing and
better link.

The trust value of a node indicates its suitability for
storage and cloud operations. This value is calculated based
on the historical interactions of the node, being represented
by Tnp, for a given node. Its value may range from 0 to 1. As
we have previously stated, the value of Tnp is calculated from
queries exchanged between nodes regarding their overall
system capacities. Figure 3 presents a high level view the
proposed trust model, where the nodes query their peers to
obtain the information needed to build their local trust table.

In this model, a trust rank is established, allowing a node
A to determine whether it is possible to trust a node B to
perform storage operations in a public cloud. In order to
determine the trust value of B, node A first has to obtain
basic information on this node. Figure 4 depicts the query
exchange process used for gathering the necessary trust
information from a node B by a node A.

Figure 4. Scenario of Information Request

Node A needs to exchange a file in the cloud and wants
know if the node B can be trusted to store and send the file.
The protocol Trust Model can be described as follows: In
step 1, A sends a query to B regarding its storage capacity,
operating system, processing capacity and link. In step 2, B
sends a response to he query sent by A, providing the
requested information. In step 3, node A evaluates the
information received from B and, if the information is
consistent, it is stored in A’s local trust table. In general, the
trust of node A in node B, in the context of a public cloud
NP, can be represented by:

b
np

np
ba VT =,

 (1)

Where
b

npV
is the trust value of B in the public cloud NP

analyzed by A and
np
baT , represents the trust of A in B, in the

public cloud NP. According to the definition of trust,
b

npV
equals the queries sent and received (interaction) by A and B
in the cloud NP.

71

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 81 / 237

The trust information may be stored as individual records
of interaction with the respective node, being recorded in a
local database that contains information about the behavior
of each node in the cloud. Thus, the trust of node A in node
B in the cloud NP can be represented by:

j

V
T

j

i

b
npi

fnp
ba

∑
== 1

, , for j > 0 (2)

fnp
baT , represents the final trust of A in B in the cloud NP,

while j represents the number of interactions / querys
between nodes A and B in the cloud NP.

A. Trust Calculation

Three aspects can have an impact on calculating
the direct trust of a node, as shown in the table III. A
larger storage space and processing capacity have greater
weight in the choice of more reliable nodes, because these
characteristics ensure the integrity and storage
of files. Thus, to calculate the direct trust of the node, storage
space and processing capacity is assigned with weights
of 40% and the links with the remaining 20%.

Knowing that any node can have its trust value ranging
from 0 to 1, and knowing that these values vary in time, it
means that one node can have its storage capacity increasing
or decreasing, becoming necessary the behavior reflection of
the Direct Trust be in time. This way, nodes
with characteristics more constant are more
reliable because they have less sway in its basic features.

TABLE III. ISSUES AFFECTING THE DIRECT TRUST OF A NODE

STORAGE
SPACE

PROCESSING
CAPACITY

L INK
CAPACITY

DIRECT TRUST

HIGH HIGH HIGH HIGH
HIGH HIGH LOW HIGH
HIGH LOW HIGH MEDIUM

(ACCORDING TO

THE VALUES OF

STORAGE

AND PROCESSING)
HIGH LOW LOW LOW
LOW HIGH HIGH MEDIUM

(ACCORDING TO

THE VALUES OF

STORAGE

AND PROCESSING)
LOW HIGH LOW LOW
LOW LOW HIGH LOW
LOW LOW HIGH LOW
LOW LOW LOW LOW

Below is shown the simulation of direct trust and trust

index. To perform the simulation, it was used the method of
Monte Carlo [28] to generate random or pseudo-random
numbers for storage, processing and link, due to
the nodes attributes of a cloud not having variations no-
correspondent to deterministic behavior but the stochastic
behaviors. The values of each attribute are numbers ranging
from 0 to 1 corresponding the percentages to each node. For

the trust index, the conditions were established as
in the following table.

TABLE IV. CONDITIONS OF THE TRUST INDEX

Index Situation

I a,b
fnp => 0,1

Do not trust on the node

I a,b
fnp < 0,1

Trust on the node

TABLE V. REFERENCE VALUES FOR CONSENSUS IN TRUST

Value Description Decision
0 No Trust in the node Cloud Public No opinion
[0, 0.39] Low Trust in the node Cloud Public Not trust
[0.4, 0.59] Medium Trust in the node Cloud

Public
Not trust

[0.6, 0.89] High Trust in the node Cloud Public Trust
[0.9, 0.99] Very High Trust in the node Cloud

Public
Trust

Figure 5. Direct Trust and Storage

Figure 6. Direct Trust and Processing

Figure 7. Direct Trust and Link

With simulation you can see how values influence the
trust index.

72

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 82 / 237

V. CONCLUSION

 We have presented an overview of the cloud
computing paradigm, as well as its main features,
architectures and deployment models. Moreover, we
identified the main issues related to trust and security in
cloud computing environments.

In order to address these issues, we proposed a trust
model to ensure reliable exchange of files among cloud users
in public clouds. In our model, the trust value of a given
node is obtained from a pool of simple parameters related to
its suitability for performing storage operations. Nodes with
greater trust values are subsequently chosen for further file
storage operations.

As a future work, we plan to implement the proposed
trust model and analyze node behavior after the ranking of
trustworthy nodes is established.

REFERENCES
[1] Chen Kang and Zen WeiMing, “Cloud computing: system

instance and current research,” Journal of Software, pp.
20(5):1337-1347. 2009.

[2] Minqi Zhou, Rong Zhang, Dadan Zeng, and Weining Qian,
“Services in the cloud computing era: a survey,” Software
Engineering Institute. Universal Communication. Symposium
(IUCS), 4th International. IEEE Shanghai, pp. 40-46. China.
978-1-4244-7821-7 (2010).

[3] A. Marinos and G. Briscoe, “Community cloud
computing,” in First International Conference Cloud
Computing, CloudCom, volume 5931 of Lecture Notes in
Computer Science, pp. 472–484. Springer (2009).

[4] P. Mell and T. Grance, The NIST Definition of Cloud
Computing (Draft). National Institute of Standards and
Technology. http://csrc.nist.gov/groups/SNS/cloud-
computing. 2009. 30 may 2011.

[5] Wang Han-zhang and Huang Liu-sheng, “An improved
trusted cloud computing platform model based on DAA and
Privacy CA scheme,” IEEE International Conference on
Computer Application and System Modeling (ICCASM
2010). 978-1-4244-7235-2. 2010.

[6] S. Uppoor, M. Flouris, and A. Bilas, “Cloud-based
synchronization of distributed file system hierarchies,”
Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS), IEEE International Conference, pp. 1-4.
2010.

[7] Zhidong Shen, Li Li, Fei Yan, and Xiaoping Wu, “Cloud
Computing System Based on Trusted Computing Platform,”
Intelligent Computation Technology and Automation
(ICICTA), IEEE International Conference on Volume: 1, pp.
942-945. China. 2010.

[8] Xiao-Yong Li, Li-Tao Zhou, Yong Shi, and Yu Guo, “A
Trusted Computing Environment Model in Cloud
Architecture,” Proceedings of the Ninth International
Conference on Machine Learning and Cybernetics, 978-1-
4244-6526-2. Qingdao, pp. 11-14. China. July 2010.

[9] Qingsong Wei, Bharadwaj Veeravalli, Bozhao Gong,
Lingfang Zeng, and Dan Feng, “CDRM: A Cost-Effective
Dynamic Replication Management Scheme for Cloud Storage
Cluster,” 2009 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 188-196, 2010.

[10] Kai Hwang, Sameer Kulkareni, and Yue Hu, “Cloud Security
with Virtualized Defense and Reputation-Based Trust
Mangement,” 2009 Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing (DASC ’09),
pp. 717-722, 2009.

[11] Xue Jing and Zhang Jian-jun, “A Brief Survey on the
Security Model of Cloud Computing,” 2010 Ninth
International Symposium on Distributed Computing and
Applications to Business, Engineering and Science
(DCABES), Hong Kong IEEE, pp. 475 – 478. Aug 2010.

[12] Zhimin Yang, Lixiang Qiao, Chang Liu, Chi Yang, and
Guangming Wan, “A collaborative trust model of firewall-
through based on Cloud Computing,” Proceedings of the 2010
14th International Conference on Computer Supported
Cooperative Work in Design. Shanghai, China. pp. 329-334,
14-16. 2010.

[13] M. Miller, Cloud Computing – Web-Based Applications That
Change the Way You Work and Collaborate Online, Que
Publishing, Pearson Education, Canada 2008.

[14] P. Mell and T. Grance, "Draft nist working definition of cloud
computing - v15," 21. Aug 2009.

[15] T. Dillon, Chen Wu, and E. Chang, “Cloud Computing: Issues
and Challenges,” 24th IEEE International Conference on
Advanced Information Networking and Applications (AINA),
pp. 27-33. Australia, 2010.

[16] Li Xiaoqi, Lyu M R, and Liu Jiangchuan. “A trust model
based routing protocol for secure AD Hoc network,”
Proceedings of the 2004 IEEE Aerospace Conference, pp.
1286-1295. 2004.

[17] N. Santos, K. Gummadi, and R. Rodrigues, “Towards Trusted
Cloud Computing,” Proc. HotCloud. June 2009.

[18] Kai Hwang, Sameer Kulkareni, and Yue Hu, “Cloud Security
with Virtualized Defense and Reputation-Based Trust
Mangement,” 2009 Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing (DASC),
Chengdu, pp.717-722. China 2009.

[19] S. P. Marsh, “Formalising Trust as a Computational
Concept”, Ph.D. Thesis, University of Stirling, 1994.

[20] T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in
open networks,” In ESORICS 94. Brighton, UK, November
1994.

[21] H. Takabi, J. B. D. Joshi, and G. Ahn, “Security and Privacy
Challenges in Cloud Computing Environments,” IEEE
Security and Privacy, vol. 8, no. 6, pp. 24-31, Nov./Dec.
2010, doi:10.1109/MSP.2010.186.

[22] Huan-Chung Li, Po-Huei Liang, Jiann-Min Yang, and
Shiang-Jiun Chen, “Analysis on Cloud-Based Security
Vulnerability Assessment,” 2010 IEEE 7th International
Conference on e-Business Engineering (ICEBE), pp. 490-494,
2010.

[23] K. Popovic and Z. Hocenski, “Cloud computing security
issues and challenges,” MIPRO, 2010 Proceedings of the 33rd
International Convention, pp. 344-349, 24-28 May 2010
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb
er=5533317&isnumber=5533310.

[24] A. Jøsang and R. Ismail, “The Beta Reputation System,” In
Proceedings of the 15th Bled Electronic Commerce
Conference, pp. 17-19. June 2002.

[25] A. Abdul-Rahman and S. Hailes, “A distributed trust model,”
In Proceedings of the 1997 New Security Paradigms
Workshop, pp. 48-60, 1998.

[26] A. Jφsang and S. J. Knapskog, “A metric for trusted systems,”
Global IT Security, pp. 541-549, 1998.

[27] Zhao-xiong Zhou, He Xu, and Suo-ping Wang, “A Novel
Weighted Trust Model based on Cloud,” AISS: Advances in
Information Science and Service Sciences, Vol. 3, No. 3, pp.
115- 124, April 2011.

73

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 83 / 237

Security Management of a Cloud-based U-City Management System

Sung Min Kim, Jun Oh Kim, Chang Ho Yun,

Jong Won Park, Yong Woo LEE (Corresponding Author)
School of Electrical & Computer Engineering

University of Seoul, Ubiquitous-City (Smart City) Consortium
Seoul, Korea

{smkim, kjo, touch011, comics77, ywlee}@uos.ac.kr

Hae Sun Jung
Ubiquitous-City (Smart City) Consortium

Seoul, Korea
holylife7@hotmail.com

Abstract— In this paper, we introduce a user authentication
methodology for a cloud-based U-City management system to
manage the U-City which includes ubiquitous resources and
cloud computing resources. Cloud computing enables the
integrated urban operation center of the U-City to provide
limitless computing power without having its own computing
center. However, because huge number of services and users
use the U-City service and the cloud computing power and they
should be carefully screened, we need a specially designed
security management to protect the U-City and its facilities.
For it, we propose the cloud-based U-City management system,
UTOPIA which uses SAML-based Single-Sign-On (SSO)
authentication for the security management to do user
authentication and privilege management for the cloud
computing in the U-City.

Keywords-U-City; Cloud Computing; SAML; U-City Security
Management; Single-Sign On.

I. INTRODUCTION

With ubiquitous computing, we are seeking the way to
satisfy human beings’ desire to enjoy IT services with any
device, anytime and anywhere. In U-City, every possible
information system such as residential, environmental,
medical, business, governmental, social and the like is linked
through ubiquitous computing technologies and the whole U-
City acts as virtually one system or a global system which
works for human beings and takes care of them.

U-City is usually centrally managed by the central
operation center which processes the huge amount of the
data and often needs huge computing power. The irregularity
of need in computing power makes it very attractive that the
U-City uses cloud computing since the cloud computing
obviously save the cost of computing power [1].

Cloud computing is defined as “a style of computing
where scalable and elastic IT-related capabilities are
provided as a service to customers using Internet
technologies.” [2]. To use cloud service requires generally
better security than to use private system. In order to include
cloud computing in U-City, we should keep it in mind. As
well-publicized cases of cloud computing vulnerability, we
can think Amazon S3 malfunction over seven-hour on July
20, 2008 [3], Gmail outage over one-day in mid-October
2008 [4] and Google Docs vulnerabilities [5].

Security issues such as user authentication, information
protection and access control should be carefully solved in

order that we provide U-City services using the cloud
computing to users. For it, we propose a U-City Management
System named UTOPIA, which uses SSO authentication
technology based SAML as a part of the security
management [6]. Users who use the U-City Management
System do not need to be bothered to login again and again
whenever they use difference service of UTOPIA but login
just once.

This paper is organized as follows. Section 2 briefly
introduces related works and confirms that this work is the
first and only work till now. Section 3 outlines our U-City
management system, UTOPIA, which is composed of the
three tiers. Sections 4 explains our SAML based SSO user
authentication as a part of our security management. Section
5 describes the implementation of the SAML based SSO user
authentication into UTOPIA. Finally, Section 6 gives
conclusions and explains future works.

II. RELATED WORK

A. U-City Management
U-City management system enables citizens to easily use

U-City services. There are many U-Cities in Korea as shown
in Table 1.

Seoul Metropolitan Government Information Agency,
Seoul in Korea has been building many U-Towns based on
U-Seoul Master Plan which aims U-Care, U-Fun, U-Green,
U-transport, U-Business and U-Government [7]. They have
central operation centers, which use their own U-City
management systems but they are different from UTOPIA
which uses the three tier U-City Management System
Paradigm based on U-City middleware and U-City portal.
They have various kinds of user services, but they are not
integrated together and do not provide SSO based user
authentication.

U-Dongtan U-City provides many kinds of public services
such as surveillance of public areas, environment pollution
information, water leakage management, media board, traffic
information and so on. It uses user authentication with just
identity and password and does not use SSO authentication
[8]. The U-city has central operation center which use a
platform but does not use U-City middleware. Like these, we
are the only U-City management system which uses three
tier U-City paradigm, U-City middleware and the U-City

74

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 84 / 237

portal and uses SSO authentication. That is, currently, there
is no U-City which is based on our concept.

TABLE I. SOME MAJOR U-CITY PROJECTS IN KOREA

U-city Project
Name

Period Goal

Digital Media
City

2001~2010 The world best IT town. Northeast
Asian IT hub.

U-Gangnam 2004~2007 Seamless Connectivity. Mobile
Environment. Teleportation &
Telework.

U-
cheonggyeche

on

2007 3D-based GIS. A U-City testbed.

U-
Myengdong/

U-ljiro

2007~2010 Digital media plaza. Digital media
stree, Digital media gallery.

Eunpyeong
New Town

2006~2011 A ubiquitous new-town.

U-Busan 2004~2010 The World first u-city. U-port, U-
Traffic, U-convention.

U-Gwangju 2004~2012 Centered on U-home.
U-Daejeon 2004~2007 U-cluster. U-wellbeing.

U-Gyeongbuk 2004~2010 The largest U-City testbed. U-
culture.

U-Pyong
Chang

2006~2010 U-city for winter sports.

U-Chungbuk 2005~2009 3D GIS. U-cluster.
U-Jeju 2004~2006 Focused on telematics.

U-Sejong 2005~2030 U-government
Gwanggyo
New-town

2005~2011 A ubiquitous well being town.

Pangyo New-
town

2006~2010 A U-echo city.

U-Dongtan 2003~2007 GIS. ITS. BcN. IBS.
U-Jeonju 2005~2008 U-culture. U-tour. U-traffic.
U-Paju 2005~2009 Total Life-Card. Smart transport.

U-Bucheon 2010~2014 U-home network, U-traffic, U-tour.
U-echo. U-safety.

U-Changwon 2004~2008 Digital broadcasting. Media center.
U-Ansan 2007~2012 U-Industry. U-tour.

B. Security management using personal authentication
technology

Table 2 summarizes major personal authentication
methods case by case. Currently SSO is popular and widely
used [9]. We think SSO is one of the best solutions to the
security management in U-City, since so many kinds of U-
City services are provided, so many kinds of organizations
such as public agencies, financial institutions, large
corporations, educational institutions are integrated in U-City
and the separately developed U-Cities can be merged into a
larger U-City later. Currently no U-City uses SSO for their
security management, and this work is the first case and the
only research at the moment.

TABLE II. THE PERSONAL AUTHENTICATION

Security Technology Description
ID/Password It is a typical personal authentication method. It

requires periodic renewal [10].
Public key certificate

It uses a digital signature to bind a public key with
an identity. The private keys are stored in
certificate storage location. Encryption / decryption
processing, cryptography transmission method are
usually used to protect them. By implementing
programs to protect private key and certificate into
client computers, the security can be improved.
However, it requires users’ agreement and actions
and causes extra maintenance expenses. [11]

SSO
(Single Sign On)

Users log in once and gain access to all systems
without being prompted to log in again at each
system [12].

MTM (Mobile
Trusted Module)

It is a hardware-based authentication which was
proposed by TCG (Trusted Computing Group). It
is usually used for the authentication of mobile
devices and is recently used for cloud computing
authentication with SIM (Subscriber Identity
Module) [13].

Finger Print
and Identifier

It uses user’s bio profiles such as finger print and
etc. which are usually kept in the file system and
are used to identify the user. But, it is weak to
Trojan horse attacks, memory hacking and key-
logging because users’ profiles are store in the file
system [14].

IP-Geographic
location
Identification

It uses user’s IP location and is helpful to prevent
MITM attacks [14].

Knowledge-based
authentication

It asks the question about specific knowledge of
user information. But, it is usually used with other
methods because it is vulnerable to MITM attacks
[14].

OTP(One-Time
Password)

It uses a password which is valid during only one
login session to avoid a shortcoming of static
passwords. In order to deliver the OTP, text
messaging or proprietary tokens or web-based
method is used. It is vulnerable to key logging and
MITB because it relies on a key input [14].

Out-of-Band
authentication

Each time, it uses a different communication
channel to verify a transaction request. It
guarantees very high security but it requires initial
registration. Thus it can be expensive [14] [15].

Internet Personal
Identification
Number (i-PIN)

It uses the Resident Registration Number for login.
It is used in South Korea [16] [17].

III. CLOUD-BASED U-CITY MANAGEMENT
Our U-City management system, UTOPIA, supports the

unified ubiquitous cloud environment by providing dynamic
service deployment based on context-awareness, high
performance and collaborative computing on Grid and cloud.
It is based on three tiers paradigm as shown in Figure 1. The
feeling tier is composed of U-City infrastructure such as
buildings, bridges, loads, etc., and ubiquitous IT devices
including sensors and video cameras and connected to the
processing tier through Broadband Convergence Network
(BcN) and Ubiquitous Sensor Network (USN). The
processing tier plays a role of brain in human body, receives
data from the feeling tier and processes them intelligently.
Finally, the presentation tier receives the request of users and

75

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 85 / 237

sends it to processing tier and show the result from the
processing tier to them. It acts as a window to the U-City
system.

Our middleware in the processing tier, which we call
SOUL, supports cloud computing and security management
facilities including user authentication. It also supports
Computational Grid so that it can smoothly satisfy
applications which require real-time high performance
computing. It supports computer supported cooperative work
(CSCW) through Access Grid that is the best choice
currently and a next generation CSCW.

It has the following additional characteristics. First, it
provides common device interface which was designed to
support variable sensor network data-sinks and protocols.
Therefore, it can be used as the common gateway for various
kinds of sensors and ubiquitous sensor networks which
collect sensed data.

Second, it uses ontology-based intelligent inference
engine which provides context-aware, that is, intelligent
information using the sensed data through the common
device interface. Third, it provides a user-transparent
infrastructure that generates and provides intelligent services,
which are invisible to users, to various applications. Fourth,
it enables user to control remote devices in real-time mode so
that remote control devices such as fire doors and other
emergency devices can be controlled remotely in real-time
mode. Fifth, it has the advantages of layered architecture
since it is designed to have layer architecture. Lastly and
sixth, it can directly be connected to easy-to-use, yet
convenient, user interfaces, the U-City portal.

We believe that these advantages make SOUL possible to
be used in various kind of U-city applications of our project
and it can shorten the period and expense to develop the U-
city applications. [18]

Figure 1. UTOPIA: A U-City Management System.

The U-City portal has the security management

component and beyond it, it has two distinctive components
as shown in figure 2. One is the application platform and the
other is the system platform. The environment management

application is one of the application services which belongs
to the application platform and give services in the
management of noise, air-pollution and water quality using
GIS visualization technology. The cloud management
belongs to the system platform [19][20].

Figure 1. The architecture of the U-City portal.

Figure 2. The architecture of the U-City portal.

IV. SSO AND SAML IN UTOPIA
The advantage of the adopting SSO in the U-City

management system can be explained in following two
viewpoints.

76

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 86 / 237

1) Users’ viewpoint:

Without SSO, users are asked to log in each service or
each organization when they want to use the U-City service
and therefore users should remember their IDs and
passwords in each login. With SSO, users just should log in
one time. It is more convenient, easier and more efficient
than without SSO.

2) Administrators’ viewpoint:

With SSO, administrators can trace users activities and
manage users security at the level of overall or total
management of U-City, not at the level of individual
organization or services. That is, U-City can have total
solution for security management with easy administration
and more consistant manner with SSO.

SSO in UTOPIA is operated as shown in Figure 3 and

Figure 4. When a user accesses UTOPIA through the U-City
portal to use the U-City services, the login facility starts. The
SSO agent in the login facility for the security management
in UTOPIA sends the user’s information to the
authentication manager using the SAML request. SAML
messages at each step are encrypted using the SSL protocol.
Then, the authentication manager does the security screening
by asking the credential database and makes a decision.
Since UTOPIA uses SSO, the user does not have to be
bothered by login many times if he/she wants to use several
services in UTOPIA.

.

Figure 3. SSO management in UTOPIA.

Figure 4. Single-Sign-On Service in UTOPIA.

V. IMPLEMENTATION
Figure 5 shows how UTOPIA processes SAML-based

SSO for U-City. SAML supports implementing SSO. We use
OpenSAML2 Library and openssl. The RSA key pair is
generated with openssl for authentication. The RSA key
pairs are UTOPIA_sso_private.der and
UTOPIA_sso_public.der. SSO is implemented with original
RSA public key. The user accesses the service provider, the
U-City portal of UTOPIA, to use the U-City service.
ServiceProviderForm in U-City portal is the access web page.
The elements of ServiceProviderForm are loginForm,
providerName, RelayState, acsURI. LoginForm is for
authentication in identity provider. ProviderName is the
name of service provider providing the service. RelayState is
the redirected service page after ACS authentication.
AcsURI is the URL to verify SAMLResponse in identity
provider. The U-City service provider generates
SAMLRequest in a XML format. SAMLRequest is sent to
authentication provider, that is, Identity Provider, through the
user’s browser. The authentication provider parses the
SAMLRequest and process user authentication. The
authentication provider generates a SAMLResponse. The
authentication provider sends SAMLResponse to the
Assertion Consumer Service (ACS) through the user browser.
The ACS in the service provider receives the
SAMLResponse sent by the authentication provider and
validates it. If it is o.k., then the service provider gives the
user a permit to log in UTOPIA. Now, the user can
successfully log in to UTOPIA and use the wanted U-City
service.

77

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 87 / 237

Figure 5. The sequence diagram of security management in UTOPIA.

VI. CONCLUSION
This paper explained the security management of U-City

management system which uses cloud computing heavily.
Our U-City management system, UTOPIA, adopted SAML-
based SSO as a user authentication methodology for our
security management facility. It is the first and the only U-
City management system to use SSO currently. Users can
use the services of UTOPIA through the U-City portal with
unified authentication which uses one-time login for all
UTOPIA services. The work is still in progress since we
have been continuously adding many organizations and more
services and in future work, we will continue to support a
more fine-grained privilege management.

ACKNOWLEDGMENT

This study was supported by the Seoul Research and
Business Development Program (10561), Smart (Ubiquitous)
City Consortium, Seoul Grid Center. We would like to give
thanks to Mr. Cheol Sang Yoon, Mr. Tae Ho Hong, Mr. Eui
Dong Hwang, Mr. Kyoung-gyu Lee and the staffs of Seoul
Grid Center and the members of Smart (Ubiqitous) City
Consortium for their contribution to this research.

REFERENCES

[1] J. W. Park, C. H. Yun, S. Kim, H.Y. Yeom and Y. W. Lee,
“Cloud Computing Platform for GIS Image Processing in U-
City,” 13th International Conference on Advanced
Communication Technology (ICACT), pp. 1151-1155, 2011.

[2] Gartner’s Cloud Computing website [online], May 2011,
Available from: http://www.gartner.com/technology/research/
cloud-computing/index.jsp.

[3] Amazon S3 Availability Event: July 20, 2008 [online], May
2011, Available from: http://status.aws.amazon.com/s3-
20080720.html.

[4] Extended Gmail outage hits Apps admins [online], May 2011,
Available from: http://www.computerworld.com/action/
article.do?command=viewArticleBasic&articleId=9117322.

[5] Google’s response to Google Docs concerns. [online], May
2011, Available from: http://googledocs.blogspot.com/2009/
03/just-to-clarify.html.

[6] T. Gross, “Security Analysis of the SAML Single Sign-on
Browser/Artifact Profile,” Annual Computer Security
Applications Conference, vol.19, pp. 298-307, 2003.

[7] U-City of Seoul website [online], May 2011, Available from :
http://info.seoul.go.kr/.

[8] U-City of Hwasong Dongtan website [online], May 2011,
Available http://www.udongtan.or.kr.

[9] Alessandro Armando, Roberto Carbone, Luca Compagna,
Jorge Cuellar, Llanos Tobarra, “Formal Analysis of SAML
2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps,” the 6th ACM workshop on
Formal methods in security engineering, 2008

[10] P. Beynon-Davies, “Personal identity management as a socio-
technical network,” Technology analysis & strategic
management, vol.22, no.4, pp. 463-478, 2010.

[11] G. Bick, M. C. Jacobson and R. Abratt, “The Corporate
Identity Management Process Revisited,” Journal Of
Marketing Management, vol.19, no.7-8, pp. 835-856, 2003.

[12] Y. Y. Chan, “Weakest Link Attack on Single Sign-On and Its
Case in SAML V2.0 Web SSO,” Lecture Notes in Computer
Science, vol. 3982, pp. 507-516 , 2006.

[13] Trusted Computing Group website [online], May 2011,
Available from: http://www.trustedcomputinggroup.org.

[14] H. S. Kim, “Cloud Computing and Personal Authentication
Service”, Information & Communications Magazine, vol. 20,
no. 2, pp. 11-92, 2010.

[15] A. Litan, “Where String Authentication Fails and What You
Can About It,” Gartner Research, 2009.

[16] Y. Oh, T. Obi, J. S. Lee, H. Suzuki, and N. Ohyama,
“Empirical analysis of internet identity misuse: case study of
south Korean real name system,” he 6th ACM workshop on
Digital identity management (DIM '10), pp. 27-34, 2011.

[17] S. K. Un, N. S. Jho, Y. H. Kim and D. S. Choi, “Cloud
Computing Security Technology,” Electrical Communication
Trend Analysis, vol. 24, no. 4, pp. 79-88, 2009.

[18] H. S. Jung, C. S. Jeong, Y. W. Lee and P. D. Hong, “An
Intelligent Ubiquitous Middleware for U-city: SmartUM,”
Journal of Information Science and Engineering, vol. 25, no.
2, pp.375-388, 2009.

[19] S. W. Rho and Y. W. Lee, “U-city Portal For Smart
Ubiquitous Middleware," 2010 The 12th International
Conference Advanced Communication Technology (ICACT),
pp. 609-613, 2010.

[20] S. W. Rho, C. H. Yun and Y. W. Lee, "Provision of U-city
web services using cloud computing," 13th International
Conference on Advanced Communication Technology
(ICACT), pp. 1545-1549, 2011.

78

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 88 / 237

Evaluating a Distributed Identity Provider Trusted Network with Delegated
Authentications for Cloud Federation

Antonio Celesti, Francesco Tusa, Massimo Villari and Antonio Puliafito
Dept. of Mathematics, Faculty of Engineering, University of Messina

Contrada di Dio, S. Agata, 98166 Messina, Italy.
e-mail: {acelesti, ftusa, mvillari, apuliafito}@unime.it

Abstract—Federation offers an affordable opportunity for
small and medium cloud providers to become as competitive
as the biggest counterparts. However, in order to establish
a federated cloud ecosystem, it is needed to rely on an
efficient security infrastructure enabling authentication among
clouds. Assuming a scalable federated cloud environment, the
management of security can become very hard due to the
number of authentications and trusted relationships that have
to be established. Nowadays, the latest trend in authentication
is the Identity Provider/Service Provider model. This paper
aims to investigate a distributed IdP/SP infrastructure based on
the concept of delegated authentications, evaluating its possible
utilization in a federated cloud scenario.

Keywords-Cloud Computing, Federation, Distributed IdPs,
Trusted Network.

I. INTRODUCTION

By now, the cloud ecosystem has been characterized by
the steady rising of hundreds of independent and heteroge-
neous cloud providers, managed by private subjects which
yield various services to their clients. Using this computing
infrastructure it is possible to pursue new levels of efficiency
in delivering Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS) to clients
(e.g., companies, organizations, end-users, and so on).

Despite such an ecosystem includes hundreds of indepen-
dent, heterogeneous clouds, many business operators have
predicted that the process toward interoperable federated
Intracloud/Intercloud environments will begin in the near
future [1], even involving standardization boards (i.e., IEEE
[2]). Nowadays, small/medium cloud providers are becom-
ing popular even though their virtualization infrastructures
(i.e., deployed in their datacenters) cannot directly com-
pete with the bigger counterparts, including mega-providers
such as Amazon, Google, and Saleforce. The result is that
frequently small/medium cloud providers have to exploit
services of mega-providers in order to develop their business
logic and their cloud-based services. This means that the
role of market leader is intended to remain in the hands
of bigger players in the near future. To this regard, a
possible future alternative scenario is based on the concept
of cooperating clouds constituting the federation. Federation
has always had both political and historical implications: the
term refers, in fact, to a type of system characterized by
an aggregation of partially “self-governing” entities with a

“central government”. In a federation, each self-governing
status of the component entities is typically independent
and may not be altered by a unilateral decision of the
“central government” [3]. Federation is also a concept
which is adopted in many information systems. Considering
small/medium independent self-governing cloud providers,
federation means a cooperation enabling the sharing of
part of their computational and storage resources with the
purpose to provide new business opportunity. The advantage
of a federated cloud scenario is twofold. On one hand,
small/medium cloud providers, which rent resources to other
providers, can optimize the use of their infrastructure, which
often is under utilized, at the same time earning money for
the use of their resources. On the other hand, external smal-
l/medium cloud providers can elastically scale their logical
virtualization infrastructure, borrowing resources and paying
other providers for their use. Therefore, cloud federation
allows another form of pay-per-use economic model for ICT
companies, universities, research centers and organizations
that usually do not fully exploit the resources of their phys-
ical infrastructure. The benefits of cloud federation include
provisioning of distributed cloud-based services, resource
sharing, resource optimization and power saving [4].

However, several issues have to be faced from the point of
view of security. Security is a wide topic in cloud computing
and in this work we specifically focus on the establishment
of trusted relationships between clouds, that can become
very hard to be managed in scalable scenarios. Usually a
trusted relationship among two or more systems is performed
by means of authentication mechanisms.

In this paper, we discuss two possible authentication
scenarios for the establishment of trust contexts between
federated clouds: 1) Single Sign-On (SSO) Authentica-
tion using the traditional Identity Provider/Service Provider
(IdP/SP) model; 2) Single Sign-On (SSO) authentication
using a system of distributed Identity Providers (IdPs) with
delegated authentications.

The paper is organized as follows: Section II describes
the state of the art in authentication for distributed system,
focusing on the IdP/SP model. In Section III, we analyze
in detail the two authentication scenarios. A comparison
between them is discussed in Section IV. Conclusions are
summarized in Section V.

79

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 89 / 237

II. RELATED WORKS

A. Authentication Systems

With the term “authentication” we refer to any process by
which it is possible to verify that someone is who claims
to be. Username/password is the most widely used form of
authentication. Another method is based on the private/pub-
lic key cryptography. A stronger form of authentication is
based on digital certificate [5], an electronic document which
uses a digital signature to bind a public key with an identity
described by information such as the name of a person or
an organization.

Considering the evolving Internet scenarios, where entities
need to access different services in a dynamic fashion, the
requirement of interoperability among authentication tech-
nologies, also reducing the number of needed credentials and
authentications is more and more compelling. To this regard,
the latest trend in term authentication is represented by
the Identity Provider/Service Provider (IdP/SP) model along
with the Security Assertion Markup Language (SAML) [6],
an XML-based standard that allows to exchange authenti-
cation and authorization data. The IdP/SP model allows to
plan Single Sign-On (SSO) authentication scenarios when
software/human entities can login once an IdP gaining the
access to all SPs which rely on that target Idp.

Although SSO and SAML technologies are strictly related
to the web context, some recent works are trying to employ
the same approach on new scenarios where many entities
that belong to different domains need to perform authen-
tication [7], [8]. This is also the case of cloud federation
[1], [9], where clouds cooperate together establishing trust
contexts in order to provide new business opportunities.
Recently, trust has been identified as a beneficial concept in
large scale networks [10]. Considering trust relations when
selecting service providers as partners leads to more efficient
cooperation and composition of services [11].

SAML, offers the possibility of adding extensions in order
to achieve dynamic federation in a generic way, regardless
the specific scenario where it is applied. Considering fed-
erated cloud environments, in [12] it is discussed a new
SAML profile named Cross-Cloud Authentication Agent
SSO (CCAA-SSO) defining the steps needed for a secure
cloud SSO authentication. However, the bottleneck of the
IdP/SP model is represented by the presence of a central
IdP per trust context. In order to overcome such a limitation,
an approach [13] is proposed to minimize the dependence
on central IdPs with a priori configuration, making entities
more autonomous and capable of taking trust decisions.
Another solution is exploiting the concept of delegation.
Unfortunately, SAML natively lacks of delegation capabil-
ities. Nevertheless, there are several works in Grid, Web
Service, and Ubiquitous Computing environments where
SAML is extended with the purpose to benefit of delegation
capabilities [14], [15], [16].

B. Propagation of Trustiness

Scenario we are addressing can be defined as simplified
context for trustiness in Cooperating Clouds, thus because
Clouds may strongly leverage IdPs entities. Many works
have been done in area of trustiness even in the propagation
of trustiness. Of course our concept of delegation relies on
some pre assumptions, those are: a) Each Cloud Provider
uses well-know IdP (either its own or in the shared config-
uration). b) Each Cloud is able to decide if use/not-use the
delegation against some specific IdPs (it may perform its
filtering of IdPs existing in trustiness chains).

The complexity of evaluating the level of trust of a Subject
insisting in the Internet determines to carefully face the
topic, especially for large networks (i.e., Social Networks).
Huang [17] developed a framework of trust propagation
schemes evaluating them on a large trust network consisting
of 800K trust scores expressed among 130K people. An
interesting work has been conducted in [18] about the Ontol-
ogy of Trust reporting a formal semantics and defining the
concept of Transitivity. The authors highlighted that Trust
Transitivity is not always an applicable concept at all. Chen
et al [19] tried to determine a formula for expressing the
trustiness. In particular they introduced the Mean operator
(Transitive mean degree), that is the trust degree of a path
(from source to destination considering the weights of edges
existing in the between). It is calculated with the geometric
or arithmetic mean of those weights of all edges along that
path.

The security and trustiness in distributed environments
are topics widely assessed. Our main aim is to investigate
Clouds and adopt existing security solutions for overcoming
issues related to the federation.

III. AUTHENTICATION BETWEEN CLOUDS

Due to the high dynamism of federated cloud environ-
ments, a flexible method for building dynamic trust contexts
should be provided.

According to [1], in this work, we assume that, regard-
less the adopted cloud middleware, the federation process
is accomplished according to three different phases that
is: Discovery, Match-Making and Authentication. In our
solution a specific module named Cross-Cloud Federation
Manager (CCFM) including three agents is able to perform
such activities.

The Discovery Agent (DA) manages the discovery process
of the resources and services made available by all the clouds
belonging to the dynamic distributed environment. Once the
clouds’ service discovery has been performed, the Match-
Making Agent (MA) will accomplish the task of choosing
the more convenient cloud(s) wherewith to establish the fed-
eration according to requirements and policies. Finally, the
Authentication Agent (AA) will perform the authentication
with the selected clouds, creating a trust context, hence a
federation. Once the security context has been created, a

80

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 90 / 237

cloud will be able to exploit resources and services offered
by other federated cloud. In this Section, we focus on
the authentication phase debating two different scenarios
involving IdPs. In order to clarify the idea on using the
IdP/SP model, we consider the following as a basic example:
according to the IdP/SP terminology the AA of cloud A
borrowing resources plays the role of “client”, the AA of
cloud B lending resources plays the role of “SP” (Relying
Party), and IdP X plays the role of trust third party (Asserting
Party) assuring to cloud B that cloud A is which claims
to be. In order to allow cloud A to be authenticated by
cloud B, it is needed that cloud A is enrolled in IdP X
and that cloud B relies on IdP X. Once the authentication
has been accomplished, cloud A will be able to log-in all
clouds relying on IdP X without further authentications.

A. Traditional IdP/SP Scenario for Cloud Federation

Assuming an ecosystem with N clouds, the most obvious
approach consists of using M,M < N different IdPs.
Basically, we can distinguish three main cases:

1) Case 1. M = 1. It is the simplest case. It consists
of using a unique IdP for all federated clouds, thus
enabling SSO authentications. In this way each cloud
has to manage only one credential. However, this
solution is out of place, because a unique central IdP
would be a bottleneck for the whole authentication
system.

2) Case 2. M < N,M 6= 1. It is the case in which
a cloud, in order to perform authentications with the
other N − 1 clouds, has to perform an enrollment on
M IdPs, thus managing M different credentials. For
example, let us consider three different IdPs X, Y, Z,
and clouds 1, 2, 3, 4, 5, 6, 7, 8, 9. Clouds 1, 2, 3, 4 rely
on IdP X, clouds 5, 6, 7 rely on IdP Y, and clouds
8, 9 rely on IdP Z. In order to allow cloud 10 to be
authenticated on all the other clouds, it has to perform
enrollments on IdP X, Y, and Z, thus managing three
credentials.

3) Case 3. M = N − 1. In this case each of the N − 1
clouds rely on a different IdP. A cloud, in order to
perform authentications with the other N − 1 clouds,
needs to perform enrollments on N − 1 IdPs, thus
managing N − 1 different credentials.

In cases 2 and 3, if an IdP is corrupted, it will not affect the
whole authentication system, however case 3 represents the
worst case from the point of view of needed trust relation-
ships, i.e, enrollments of clouds in IdPs. In this paper, we
analyze this latter case. Considering a federation including N
clouds, the number of trust relationships tr needed to obtain
the total overlay (i.e., each cloud is authenticated with each
other) can be computed as:

tr = N(N − 1) (1)

Figure 1. Authentication between clouds using the traditional IDP system
where each cloud relies on a different IdP (worst case from the point of
view of needed trust relationships).

In Figure 1, 5 clouds are depicted with their associated
IdPs. Using eq. (1), tr = 5 ∗ 4 = 20. This means
that the full overlay of the network can be reached after
the establishment of 20 trust relationships (i.e., performed
enrollments of clouds in IdPs). In Figure 1, the existence
of a trust relationship is indicated by an arrow connecting
the AA of the CCFM of each cloud with the corresponding
IdP(s), where the cloud has an enrollment. For example, in
order to allow cloud 1 to be authenticated in clouds 2, 3,
4, and 5, it as to perform enrollments in IdPs B, C, D, E.
All the consideration we will assume in the following are
based on the possibility of extending the SAML protocol as
described in some recent works we have cited [13], [14],
[15] and [16].

B. Distributed IdP Trusted Network (DIdP-TN) Scenario for
Cloud Federation

As the authentication based on the traditional IdP system
can imply high management costs especially in case 3,
starting from the idea of delegation, we investigated an
alternative authentication scenario able to reduce the number
of required authentications in a federated cloud environment.
We named such a system Distributed IdP Trusted Network
(DIdP-TN). As depicted in Figure 2, the authentication
system is based on the concept of delegation between IdPs.
Cloud 1 has an enrollment on IdP A and therefore is able to
perform a SSO authentication on cloud 2 and 3. As trusted
relationships exist between IdP A, B, C, D, E, cloud 1 is
also able to perform a SSO authentication on all the clouds
of the federation. For example, as clouds 6, 7 rely on IdP
E, cloud 1 is able to perform an authentication on cloud
7, because IdP E trusts IdP B and IdP B trusts IdP A. In
this scenario, trust relationships have to be managed by the
DIdP-TN and not by clouds themselves as in the traditional
scenario. In this case the number of trust relationships tr
needed to obtain the full coverage of the network of clouds

81

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 91 / 237

Figure 2. Authentication between clouds using the DIDP-TN system.

will be:
tr ≤ N(N − 1) (2)

IV. EVALUATION OF THE DIDP-TN

In order to compare the DIDP-TN with a traditional
IDP/SP authentication system for cloud federation, we mod-
eled them using the graph theory and performed several
experiments.

A. Modeling the two Authentication Systems

Let V and E(V) = {{a, b} (for simplicity ab) |a, b ∈
V, a 6= b} two finite sets. We define a pair G = (V,E)
with E ⊆ E(V) the cyclic digraph (or directed graph)
representing a cloud federation. The elements of V are
vertices of G, and those of E the edges of G. Vertices a
and b are adjacent if the edge ab ∈ G. The vertices set of
the digraph G is denoted by VG and its edge set by EG.
The number υG = |VG| of vertices is called the order of G,
and εG = |EG| is the size. The E are oriented, that is, the
edges are oriented: E ⊆ V ×V where ab 6= ba. The digraph
does not allow loops, that is, it is not allowed an edge aa.
Let ei = vivi+1 ∈ G be edges of G for i ∈ [1, k]. The
sequence WG = e1e2 . . . ek is a walk of length k from v1 to
vk. Here ei and ei+1 are compatible in the sense that e1 is
adjacent to ei+1 for all i ∈ [1, k − 1]. We will write a→ b
if it exists at least one walk between a and b. We denote
with ωG = |WG| the number of walks from a vertex a to a
vertex b. A digraph will be named complete if ∀a, b ∈ VG,
a is adjacent with b. In this case, if υG = N , it will be
εG = N(N − 1). Furthermore, a digraph will be named
connected, if ∀a, b ∈ VG it exists at least one walk a→ b.

Let GIdP a subgraph of the graph G, denoted by GIdP ⊆
G, if VIdP ⊆ VG and EIdP ⊆ EG. GIdP represents
the traditional IdP/SP authentication system in a federated
cloud environment. GIdP is built according to K events.
An event represents the need of authentication of cloud
a in cloud b, and each oriented edge ab ∈ E represents
a trust relationship, i.e., the enrollment of cloud a in the

Figure 3. Example of digraph representing the traditional IDP-based
authentication system for a federated cloud environment, where each cloud
relies on a different IdP (worst case from the point of view of authentication
management).

IDP on which cloud b relies, so that a will be read cloud
and b IdP. Given an event with two equiprobable random
vertices a, b, a 6= b, if a walk of length k = 1 exists,
that is, if an edge ab exists, nothing is done; else an edge
ab is created. Considering the set F with all the clouds
belonging to the federation with υV = N each cloud
a ∈ F , in order to be federated with the other N − 1
clouds, must have a walk of length l = 1 toward all the
other N − 1 clouds of the federation. This implies that the
digraph representing the federation has to be connected, so
that N(N − 1) trust relationships (i.e., enrollments of cloud
in IdPs) have to be performed. In this case, considering
GIdP , ω = ε = N(N − 1) is the number of needed
trust relationships tr in order that each clouds is able to
be authenticated in each other. Figure 3 depicts an example
of digraph representing the authentications in a federated
clouds environment with total overlay using the traditional
IDP-based system with υ = 10 and ω = ε = 90.

Let GDIdP−TN a subgraph of the graph G, denoted by
GDIdP−TN ⊆ G, if VDIdP−TN ⊆ VG and EDIdP−TN ⊆
EG. GDIdP−TN represents a DIdP-TN in a federated clouds
environment. GDIdP−TN is built according to K events. An
event represents the need to establish a trust relationship, i.e.,
an agreement between two IdPs, and each oriented edge ab ∈
E represents the a trust relationship between IdP a and IdP
b where delegated authentications take place. Given an event
with two equiprobable random vertices a, b, a 6= b, if it exists
one and at least one walk from the vertex a to the vertex
b, nothing is done, else an edge ab is created. The meaning
of each element ab ∈ V of GDIdP−TN is the following: if
we read ab, it will be read the IdP b is trusts IdP a. It is
important to notice that as we are considering a digraph, if
IdP a trusts IdP b it does not mean that IdP b trusts IdP a.
This implies that the digraph representing the DIdP-TN has
to be only complete (and not connected as in the previous
scenario). In this case, a walk a → b of length 1 ≤ l ≤
N −1 from IdP a to the IdP b represents a trust relationship
between the two IdPs. Note that in this case considering
GDIdP−TN , ε ≤ ω ≤ N(N − 1), that is, the number of
needed trust relationships between IdPs is less or equal to

82

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 92 / 237

Figure 4. Example of digraph representing a distributed system of IdPs
with delegated authentication in federated cloud environment.

tr. Figure 4 depicts an example of a digraph representing the
trusted relationships between IdPs, by means of each cloud
is able to perform a SSO authentication on each other.

B. Comparison Between the two Authentication Approaches

For each authentication scenario we built a digraph cre-
ating edges according to the simulation of K events. For
both graphs, we assumed an order υ = 25. In simple terms,
we considered a scenario including 25 Idps. For each event
i, i = 1, 2, . . . ,K, we stored the number εi of edges created
and the percentage Xi of total overlay on the whole digraph
up to event i as:

Xi =
εi · 100

N(N − 1)
(3)

The total overlay is a parameter indicating how clouds cover
the network of federated clouds from the point of view
of authentications. The 100% of total overlay is obtained
when each cloud of the federation is able to perform the
authentication with all the other ones.

For simplicity, all the simulations have been performed
with equiprobable events, and without the possibility of
cancellation of a created edge, i.e., without the possibility
to break trusted relationships. For each of the two authen-
tication scenarios, we assumed 25 IdPs and 8000 events,
repeating the simulations 50 times, picking up the mean
values of both the created edges and the total overlay
percentage for each i − th event. For each simulation, we
also calculated variances and confidence intervals at 95%.
The goodness of our experiment is motivated by the fact that
we have obtained confidence intervals rather small.

Figures 5 and 6 depict a comparison between the two
authentication scenarios respectively considering the per-
centages of overlay on the whole cloud federation and the
number of established trust relationships. In Figure 5, on the
x-axis is reported the number of simulated events instead
on the y-axis is reported the percentage of overlay on the
whole cloud federation. Regarding the traditional IdP/SP
authentication scenario, we obtained the 100% of overlay
on the whole cloud federation after 6765 events (i.e, the
need of establish authentications between clouds), instead
in the case of the DIdP-TN we obtained the 100% of

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
e
a
n
 o

v
e
rl

a
y
 p

e
rc

e
n
ta

g
e
s

Number of Events

Comparison between the mean overlay percentages

DIdP-TN system
Traditional IdP system

Figure 5. Comparison between the two authentication systems, considering
the overlay percentages.

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
e
a
n
 c

re
a
te

d
 t

ru
st

 r
e
la

ti
o
n
sh

ip
s

Number of Events

Comparison between the established authentications

DIdP-TN system
Traditional IdP system

Figure 6. Comparison between the two authentication systems, considering
the mean value of created authentications.

total overlay after 285 events (i.e., the need of establish
agreements between IdPs). In Figure 6, on the x-axis is
reported the number of simulated events, instead on the
y-axis is the number established trusted relationships. We
remark that for the traditional IdP/SP authentication scenario
a trust relationship is an enrollment of a cloud in one IdP, and
that in the case of DIDP-TN authentication scenario a trust
relationship is an agreement between two IdPs. Regarding
the traditional IdP system scenario, we can observe that we
obtained a connected digraph after 6765 events. In fact,
after 6765 events, we obtain N(N − 1) = 25 · 24 = 600
enrollments of clouds on IdPs. Instead, regarding the DIdP-
TN system, we obtained a system in which each cloud is
able to perform authentication on each other after 285 events,
and 47,860 mean established agreements between IdPs. In
both cases the variance had a Gaussian trend. This meant
that the confidence intervals had their maximum amplitude
around the midpoint of all the curves, before their saturation.
Saturation is reached when each cloud is able to perform
the authentication with each other, i.e., when the overlay
percentage is 100%.

83

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 93 / 237

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

Pe
rc

e
n
ta

g
e
 o

f
to

ta
l
o
v
e
rl

a
y

Mean created trust relationships

Comparison between the two approaches

DIdP-TN system
Traditional IdP

Figure 7. Comparison between the two approaches considering both the
number of created authentications and the respective overlay percentages.

Figure 7 depicts a comparison between the two ap-
proaches considering both the number of created trust re-
lationships on the x-axis and the respective overlay percent-
ages on the y-axis. It is possible to notice how for the DIdP-
TN system the 100% of overlay is obtained faster than the
traditional IdP system.

C. Overcoming issues with Transitive Trust

The paper we are presenting is a preliminary work that
needs to be refined. In the context of Transitive Trust, sys-
tems authentication performed along through the delegation
mechanism might raise problems. In particular in our case
a subset of IdPs that are nor recognized in the chain of
trustiness of whatever cloud provider. To address such a
problem we introduced the Access Control List (ACL) for
preventing the involvement of untrusted IdPs no directly
accesses but present in the list of delegation. Indeed there
could be the possibility that even though a trust relationship
exists from an IdP a to an IdP b through a cloud c, the
cloud a decide to create a direct trust relationship with
cloud b because it considers too much risky a delegated
authentication through a cloud c. For example cloud a could
consider cloud c not so reliable from the point of view of
security. We are looking at a much more complex trustiness
scenarios in which the links weight of trusting walks along
with the IdP reputation must be taken into account (i.e.,
[20]).

V. CONCLUSIONS

In this paper, we focused on two authentication scenarios
for federated cloud environments: the first based on the
adoption of a traditional IdP system, and the second based
on a DIdP-TN. From the simulations, it is evident how the
DIdP-TN system allows to drastically reduce the needed op-
erations for clouds, simplifying the management of accounts
and enrollments. However, even if on one hand it is possible
to reduce the number of needed authentications, on the other

hand a few problems might rise. In this work, we assumed
equiprobable events, but if we consider also the possibility
of breaking the trust relationships, the scenario on one hand
might be fault tolerant as alternative trust relationships (i.e.,
walks considering the digraph) might exist, whereas on the
other hand the scenario might become more complicated.

REFERENCES

[1] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to
enhance cloud architectures to enable cross-federation,” in
Proceedings of IEEE CLOUD ’10, pp. 337–345, IEEE, July
2010.

[2] April 2011. IEEE works towards cloud interoperability
standards:
http://www.cloudcomputingzone.com/2011/04/ieee-works-
towards-cloud-interoperability-standards/.

[3] Forum of Federations: http://www.forumfed.org/en/index.php.

[4] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy,
K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clayman,
E. Levy, A. Maraschini, P. Massonet, H. Munoz, and G. Tof-
fetti, “Reservoir - when one cloud is not enough,” Computer,
vol. 44, pp. 44–51, 2011.

[5] “C. Adams and S. Farrell, Internet X.509 Public Key In-
frastructure: Certificate Management Protocols, RFC 2510:
http://tools.ietf.org/html/rfc2510.”

[6] “Security assertion markup language, oasis, http://www.oasis-
open.org/committees/security.”

[7] K. Traw, S. Yang, and P. Comitz, “Federated identify manage-
ment in service oriented architectures,” in Integrated Commu-
nications, Navigation and Surveillance Conference (ICNS),
pp. 1–6, May 2008.

[8] R. McKenzie, M. C. M, and C. Wallis, “Use cases for identity
management in e-government,” in Security & Privacy, IEEE,
vol. 6, pp. 51–57, March-April 2008.

[9] Goiri, J. Guitart, and J. Torres, “Characterizing cloud feder-
ation for enhancing providers’ profit,” Proceedings of IEEE
Cloud ’10, pp. 123–130, 2010.

[10] D. Artz and Y. Gil, “A survey of trust in computer science
and the semantic web,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, pp. 58 – 71,
2007.

[11] S. Florian, S. Daniel, and D. Schahram, “The cycle of trust
in mixed service-oriented systems,” in Proceedings of SEAA
’09, pp. 72–79, 2009.

[12] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Three-phase
cross-cloud federation model: The cloud sso authentication,”
Second International Conference on Advances in Future
Internet (AFIN), pp. 94–101, 2010.

[13] P. Arias Cabarcos, F. Almenárez Mendoza, A. Marı́n-López,
and D. Dı́az-Sánchez, “Enabling saml for dynamic identity
federation management,” in Wireless and Mobile Networking,
vol. 308, pp. 173–184, Springer Boston, 2009.

84

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 94 / 237

[14] T. Komura, Y. Nagai, S. Hashimoto, M. Aoyagi, and K. Taka-
hashi, “Proposal of delegation using electronic certificates
on single sign-on system with saml-protocol,” in SAINT,
pp. 235–238, 2009.

[15] S. Shen and S. Tang, “Cross-domain grid authentication
and authorization scheme based on trust management and
delegation,” in CIS, pp. 399–404, 2008.

[16] W. Jun, D. V. David, and H. Marty, “Extending the security
assertion markup language to support delegation for web
services and grid services,” in Proceedings of IEEE ICWS
’05, pp. 67–74, 2005.

[17] M. S. F. Jingwei Huang, “An ontology of trust: formal
semantics and transitivity,” in ICEC, pp. 259–270, 2006.

[18] J. Huang and M. S. Fox, “An ontology of trust: formal seman-
tics and transitivity,” in Proceedings of the 8th international
conference on Electronic commerce: The new e-commerce:
innovations for conquering current barriers, obstacles and
limitations to conducting successful business on the internet,
ICEC ’06, (New York, NY, USA), pp. 259–270, ACM, 2006.

[19] Y. Chen, T.-M. Bu, M. Zhang, and H. Zhu, “Max-
minimum algorithm for trust transitivity in trustworthy net-
works,” Web Intelligence and Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on, vol. 3, pp. 62–
64, 2009.

[20] Y. Chen, T.-M. Bu, M. Zhang, and H. Zhu, “Measurement
of trust transitivity in trustworthy networks,” Journal of
Emerging Technologies in Web Intelligence, vol. 2, no. 4,
2010.

85

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 95 / 237

Testing the Suitability of Cassandra for Cloud Computing Environments

Consistency, Availability and Partition Tolerance

Felix Beyer, Arne Koschel,

Christian Schulz, Michael Schäfer

Irina Astrova
Institute of Cybernetics

Faculty IV, Department for Computer Science

Applied University of Sciences and Arts

Tallinn University of Technology

Tallinn, Estonia

Hannover, Germany irina@cs.ioc.ee

{felix.beyer, christian.schulz2, michael.schaefer}@stud.fh-

hannover.de, arne.koschel@fh-hannover.de
 Alexander Reich
BeEvolution GmbH

Stella Gatziu Grivas, Marc Schaaf Hannover, Germany

Institute for Information Systems

University of Applied Sciences Northwestern Switzerland

alexander.reich@beevolution.de

Olten, Switzerland

{stella.gatziugrivas, marc.schaaf}@fhnw.ch

Abstract—Since relational database management systems

(DBMSs) are ill-suited to cloud computing environments,

multiple efforts are now underway to offer a viable alternative

to relational DBMSs. These efforts have led to the rise of a new

kind of DBMSs called NoSQL. One of the most visible

products in this rise is Cassandra. Cassandra is a NoSQL

DBMS, which can also be used as a clustered file system.

Cassandra was claimed to be particularly well suited for cloud

computing environments. Our goal in this paper was to

confirm or deny that claim. Towards this goal, we conducted

tests on Cassandra to determine what levels of consistency,

availability and partition tolerance can be achieved and if these

can be achieved without sacrificing performance.

Keywords—Cloud computing, Cassandra, consistency,

availability, partition tolerance, experiments.

I. INTRODUCTION

Consistency, availability and partition tolerance are of
great importance to cloud computing environments. These
can be achieved by using relational or NoSQL database
management systems (DBMSs). Since NoSQL DBMSs are
still a new research area, various definitions exist that may
even contradict each other. For this paper, we have chosen
the following definition: NoSQL is a movement grouping all
efforts, which intend to provide a viable alternative to (SQL-
based) relational databases for storing and processing data
[1].

Relational DBMSs [3] are 30 years old. They have been
the dominant storage technology behind websites. The past
few years have seen the emergence of cloud computing
environments, which are going to be an increasingly
common backbone for websites. But cloud computing
environments and relational DBMSs do not fit well together
[10]. In particular, relational databases can scale, but usually
only when this scaling happens on a single node (i.e., vertical
scaling). When the capacity of that single node is reached,
relational databases need to scale horizontally and be

distributed across multiple nodes over a network. This is
when the suitability of relational DBMSs for cloud
computing environments is reduced.

A. Consistency

Consistency guarantees that every node in the cluster has
the same view on data. So once one node has written some
data, all other nodes in the cluster will see those data.

The importance of consistency for cloud computing
environments is perhaps best explained by example.
Consider an airline company that provides a booking
website. Assume that the airline company’s database is
distributed over a network, so data can be accessed from
different nodes. Consistency is endangered now because one
node may change data without knowing about the changes
have been made by other nodes. In particular, assume that a
customer opens a session on the booking website and a last
available seat for the selected flight is displayed to the
customer. This seat has already been booked, but the node
serving the customer’s session does not know about it yet.
The result is that the customer can still book the last seat.
Next time when the nodes synchronize each other,
inconsistency shows up as there will be two bookings for one
and the same seat.

To avoid a situation like the above, NoSQL DBMSs
should provide consistency. Relational DBMSs typically use
ACID (Atomicity Consistency Isolation Durability)
transactions for this purpose. But ACID transactions are not
distributed-system friendly. Therefore, NoSQL DBMSs
typically either skip them entirely or comply with BASE
(Basically Available Soft-state Eventual Consistency).

Compliance with BASE means that the latest version of
data on one node might not match that on other nodes; so
every node in the cluster is only guaranteed to see writes
eventually. As a result, NoSQL DBMSs might not handle
long running business processes [6] like booking flights,
where the current state of data, e.g., seats availability on the
plane, should be shown to all other customers while one

86

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 96 / 237

customer, who is booking a flight, has not finished the
booking yet.

B. Availability

Availability guarantees that if one node fails, there will
still be some copies of data on other nodes in the cluster, so
the availability of the whole cluster will not be endangered
by that node failure.

Continuing the previous example, assume that the node
serving the customer’s session experiences a failure during
which the customer cannot book the last seat anymore.

To avoid a situation like the above, NoSQL DBMSs
should provide availability. Relational DBMSs typically use
replication for this purpose. The same technique is used by
NoSQL DBMSs.

C. Partition Tolerance

Partition tolerance guarantees that the cluster remains
operational even when communication between nodes in the
cluster is lost.

Continuing the previous example, assume that the airline
company’s database is running on multiple nodes across a
network. Also, assume that a network connection with the
node serving the customer’s session is lost due to a network
failure. The database is now partitioned. If the database is
tolerant of it, then the cluster can still perform read and write
operations, i.e., the customer can still book the last seat. If
not, the cluster will be completely inaccessible.

To avoid a situation like the above, NoSQL DBMSs
should provide partition tolerance – they typically use
quorum for this purpose. Being single-node, relational
databases cannot be partitioned.

II. CONTRIBUTION

In this paper, we deal with using NoSQL DBMSs in
cloud computing environments. Unlike many other papers,
we do not focus on traditional approaches that use clustered
file systems like Gluster [2] or relational DBMSs like
MySQL and Oracle. Rather, we introduce a novel approach
that uses Cassandra.

Cassandra [5] was claimed to be particularly well suited
for cloud computing environments. Our goal was to confirm
or deny that claim. For this purpose, we experimented with
Cassandra. In particular, we built a test setup, developed a
test application and conducted tests on Cassandra using this
application.

III. CASSANDRA

Cassandra is a recently upcoming NoSQL DBMS that
can also be used as a clustered file system [4]. It was
originally developed as an open source by Facebook in 2007
to horizontally scale their internal application; viz. Inbox
Search. Later in 2009 Facebook released Cassandra to
Apache. This allowed Cassandra to move forward in the
direction that is more general to the public than just to
Facebook’s in-house needs.

Recently, Cassandra has acquired great popularity and
showed high potentials for cloud computing. This is because
Cassandra offers a variety of possibilities to provide the

desired levels of consistency, availability and partition
tolerance.

A. Consistency

In Cassandra, every operation is assigned a consistency
level, so that it can be decided whether the consistency
should be guaranteed among all nodes in the cluster or it is
acceptable if some node might not contain the latest version
of data, e.g., in case of a node failure. In particular,
Cassandra supports the following consistency levels:

ANY: W + R > N

ONE: W = 1 or R = 1

QUORUM: W = Q or R = Q

ALL: W = N or R = N,
where R is the number of records to read (i.e., the

number of reads on a replica), W is the number of records to
write (i.e., the number of writes on a replica), N is a
replication factor and Q = N / 2 + 1.

Even though Cassandra complies with BASE, it is still
possible to have ACID transactional consistency guarantees
using ZooKeeper [7], a coordination service for distributed
systems. For short running business processes, single path

locking can be used (classes ZkReadLock and

ZkWriteLock). However, in distributed systems with
many interactions, the use of single path locking is not
recommended since it often results in deadlocks. It is better

to use multi-path locking (a class ZkMultiLock) since this
class contains methods, which check for deadlocks and
handle them before they occur. A downside of multi-path
locking is decreased performance. For simple applications,
both single and multi-path locking is sufficient to ensure
consistency. More complex applications, however, require

the use of a class ZkTransaction. This class works in

conjunction with ZkMultiLock. It provides a simplified
Thrift API, which allows for specification of a series of data
mutation operations to be performed by a transaction. After

the transaction has been specified, a method commit is

executed with an instance ZkMultiLock passed it as a
parameter. At this point, cages will add a reference to a
transaction node, which is created by ZooKeeper. Next, the
transaction can read the current values of the data, which are
to be updated. At this point, the original state will be written
into the transaction node [8]. Once this has been done, the
data mutations will be performed. After that, all references to
the transaction node from within the locks will be removed.
The transaction node gets deleted and the transaction itself
has been committed.

If the node fails during the execution of a sequence of
individual data mutations, the cages will immediately be
unlocked. The transaction, which has already been executed,
will be rolled back to the “written before” state in the
transaction node. So the state of the database will be
identical to the original state before the node has performed
its operations. This guarantees consistency of the database
and complies with so-called relaxed ACID since changes one
node makes during a long running business process will be
seen by other nodes in the cluster [9].

87

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 97 / 237

B. Availability

In Cassandra, availability is achieved through replication.
Every node in the cluster that needs access to data has its
own replica, so a failure of one node will not make all
replicas unavailable at the same time.

C. Partition Tolerance

In Cassandra, partition tolerance is achieved through
quorum (e.g., if one node is separated from the other two
nodes in the cluster, it stops processing).

IV. TEST SETUP

The test setup consisted of a cluster having two nodes:
primary and secondary. Writes are directed at both nodes,
while reads are directed to just one of the nodes, which is
known as the primary node. Because the other node is kept
updated, it is known as a secondary node. It is always ready
to take over. If the primary node should fail or become
inaccessible for any reason, Cassandra will redirect reads to
the secondary node and processing will continue
uninterrupted. Before the failed node comes back on line,
any interim updates will be applied to synchronize it with the
other node.

A. Cluster Infrastructure

To configure the first node, we adjusted some variables
in the configuration file. In particular, we set both

ThriftAddress and ListenAddress to the IP address
of the first node to enable intra-cluster communication and
data access. (The database was accessed using Thrift API.)

Also, we set ReplicationFactor to a value that was
equal to the number of nodes in the cluster (i.e., 2) to ensure
that a failure of one of the nodes would not make both
replicas unavailable at the same time. (In general, the cluster
can be configured with more than two replicas, depending on
the probability of failures and the requirements for
availability.)

For the second node, we set both ThriftAddress and

ListenAddress to the IP address of the second node. In

addition, we set Seed to the IP address of the first node so
that the second node would know to which server it had to
connect for getting data when it was added to the cluster.

Finally, we set AutoBootstrap to true. This resulted in
the second node being added to the cluster automatically. (If
a new node is added, only seed nodes in the cluster need to
be configured, instead of adjusting all node configurations.)

After the cluster configuration had been completed, we
checked if the two nodes would connect to each other. We

did it by using a command ring, which returned a list of all
available nodes. Although this check showed that the two
nodes were available in the cluster, we analyzed entries in
the log file generated by Cassandra to see if the cluster
remained operational over some period of time.

The following listing shows an excerpt from the resulting
log file:

INFO 16:50:25,966 Starting up server gossip
INFO 16:50:26,045 Binding thrift service to 192.168.5.132:9160

INFO 16:50:26,050 Cassandra starting up ...
DEBUG 16:50:26,132 attempting to connect to 192.168.5.134
INFO 16:50:26,160 Node 192.168.5.134 is now part of the
 cluster
DEBUG 16:50:26,161 Resetting pool for 192.168.5.134
DEBUG 16:50:26,793 attempting to connect to 192.168.5.134
INFO 16:50:26,798 InetAddress 192.168.5.134 is now UP
INFO 16:50:26,800 Started hinted handoff for endpoint
 192.168.5.134
INFO 16:50:26,811 Finished hinted handoff of 0 rows to
 endpoint 192.168.5.134

As can be seen, the second node (192.168.5.134) was
added to the cluster, and a synchronization process called

hinted handoff was started and finished.

B. Test Database Schema

Cassandra supports a data model that is based on column
families. A column family is a container for columns,
analogous to a table in relational DBMSs; it holds the
columns as an ordered list (a column family row), which can
be referenced by the column name. There are two kinds of
column families: simple and super. Simple column families
consist of columns, which are grouped. Super column
families can be viewed as a column family within another
column family.

In Cassandra, a database is a distributed multi-
dimensional map, which is indexed by a key. The top
dimension is referred to as a key space and under this key
space, column families follow. The key space is divided up
by a cluster into ranges delimited by tokens.

In Cassandra, a database schema is flexible, meaning that
we do not have to decide what columns we need in the
records ahead of time. Rather, we can just add or delete
columns on the fly. This is by contrast to relational DBMSs,
where a database schema is fixed and pre-defined.

In the test setup, we used a simple database schema

Address. There was only one key space Keyspace1

containing a column family Standard2, which in its turn

contained the following columns: firstname,

lastname, street, housenumber, zip, city, and

country. To populate the column family with data sets, we
used the following statements:

setKeyspace1.Standard2["1"]["firstname"]="MyFirstname"
setKeyspace1.Standard2["1"]["lastname"]="MyLastname"
setKeyspace1.Standard2["1"]["street"]="MyStreet"
setKeyspace1.Standard2["1"]["housenumber"]="MyHouseNumber
"
setKeyspace1.Standard2["1"]["zip"]="MyZip"
setKeyspace1.Standard2["1"]["city"]="MyCity"
setKeyspace1.Standard2["1"]["country"]="MyCountry"

In this listing, the key value was set to 1. However, for

any next data sets, this value was increased by one in order
to differentiate the data sets from each other.

88

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 98 / 237

V. TEST APPLICATION

To experiment with Cassandra, we developed a test
application in Java. This application took the following
arguments as input: a node IP, a Cassandra port, a command

to be performed (viz., put, delete or get), data for the
command and optionally a key ID of the data. The test
application consisted of the following classes.

A. SelectClient

This class was used to determine the time periods for
every method execution.

B. CassandraClient

This class was used to open and close a connection to the
database.

C. PutCassandraData

This class was used to insert data into the database. The

class had a method putDataIntoCassandra, which
defines the column names, generates new records and adds
them to the database. The record generation was performed
by a random generator, which combines data from the
specified lists, and could be repeated any number of times
using a loop.

D. GetCassandraData

This class was used to retrieve records from the database.
Retrieving records was performed by the following methods:

 getKeyList, which sets a range for the specified
key space and gets a key range from Cassandra.

 getData, which reads all records in the specified
key range and returns the result.

 getDataByKey, which defines a slice range, reads
one specific record identified by its key ID and
returns the result.

 printData, which displays on the shell all records
in the specified maximum range.

 printDataByKey, which displays on the shell
one specific record identified by its key ID.

E. DeleteCassandraData

This class was used to remove records from the database.
Removing records was performed by the following methods:

 deleteCassandraData, which creates a key
range and deletes all records in the specified key
range.

 deleteCassandraDataByKey, which deletes
one specific record identified by its key ID.

VI. EXPERIMENTS

After setting up the cluster infrastructure, we performed
the following test cases using the test application. After each
test case, we analyzed the log file entries generated by
Cassandra.

A. Test Case 1: Putting Data to Database

In this test case, we checked if records could be inserted
into the database. For this purpose, we tried to add data to the
first node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 16:52:47,373 insert
DEBUG 16:52:47,381 insert writing local key 1
DEBUG 16:52:47,383 insert writing key1 to 432@192.168.5.134
DEBUG 16:52:47,391 Processing response on a callback from
 432@192.168.5.134

At first, an insert was executed, following by a local
write. Then a remote write was executed, following by a
response from the second node (192.168.5.134) to check if
this node had received the data.

B. Test Case 2: Getting Data from Database

In this test case, we checked if records could be removed
from the database. For this purpose, we tried to read data
from the first node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 16:53:42,116 range slice
DEBUG 16:53:42,117 RangeSliceCommand{keyspace
 =’Keyspace1’, columnfamily=’Standard2’,
 supercolumn=null, predicate=SlicePredicate(
 columnnames:[[B@1b7c76]),
 range=[0,0], maxkeys=1}<somerangesliceoutput>
DEBUG 16:53:42,191 get slice <somegetsliceoutput>
DEBUG 16:53:42,203 Reading consistency digest for 1
 from 606@[192.168.5.134,192.168.5.132]

At first, a range slice was executed; it set the key space,
the column family and the range. It was followed by a get

slice, which collected the requested data. An entry reading

consistency digest in the log file indicated that the
database was checked for consistency.

C. Test Case 3: Deleting Data from Database

In this test case, we checked if records could be removed
from the database. For this purpose, we tried to delete data
from the first node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 16:54:04,475 remove
DEBUG 16:54:04,476 insert writing local key 1
DEBUG 16:54:04,477 insert writing key 1 to 676@192.168.5.134
DEBUG 16:54:04,480 Processing response on a callback
 from 676@192.168.5.134

At first, a remove was executed, following by a local
write, which set the data values to null. Then a remote write
was executed, following by a response from the second node
(192.168.5.134) to check if this node set the data to null.
Thus, deleting data was somehow similar to adding data.

89

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 99 / 237

D. Test Case 4: Consistency

In this test case, we checked if all nodes in the cluster had
the same view on data even in the presence of updates. For
this purpose, we added some data to the first node and tried
to read the data back from the second node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 18:09:55,489 Adding hint for 192.168.5.134
 <some row mutation operation which adds new data on
 the first node>
DEBUG 18:11:29,284 Node 192.168.5.134 state normal, token

115100908670755235738753006493737225538
INFO 18:11:29,284 Node 192.168.5.134 state jump to normal
INFO 18:11:29,284 Will not change my token ownership to
 192.168.5.134
INFO 18:11:29,284 Started hinted handoff for endpoint
 192.168.5.134 <some data mutation operation>
INFO 18:11:29,385 Finished hinted handoff of 2 rows to
 endpoint 192.168.5.134

At first, some data mutation was performed. Then a token
was sent to the second node, following by starting and
finishing a synchronization process with the second node
(192.168.5.134) as the endpoint.

The following listing shows an excerpt from the resulting
log file for the second node:

DEBUG 16:58:13,064 Node 192.168.5.132 state normal, token

115100908670755235738753006493737225538
 <some row mutation operation which adds the changed
 data of the first node>
INFO 16:58:13,344 Started hinted handoff for endpoint

192.168.5.132
INFO 16:58:13,351 Finished hinted handoff of 0 rows to
 endpoint 192.168.5.132

At first, the token was received from the first node. Then
some data mutation was performed, following by starting
and finishing another synchronization process with the first
node (192.168.5.132) as the endpoint. After the
synchronization process had finished, the data on the second
node were one and the same as on the first node, thus
indicating that the database was in a consistent state.

It should be noted that since we wrote data with a

consistency level of ONE and wanted to get the same data
back while reading, we read the data with a consistency level

of ALL.

E. Test Case 5: Availability

In this test case, we checked if the database was available
even in the presence of node failures. For this purpose, we
disconnected the first node to simulate its failure and tried to
read data from the second node to see if some copy of the
data was still available.

Since data were replicated within a single cluster, they
were available even after the first node had been
disconnected. The performance for a read operation became

half as fast as before. But this was fine for a two-node
cluster.

F. Test Case 6: Partition Tolerance

In this test case, we checked if the database was tolerant
to partitions in the presence of network failures. For this
purpose, we disconnected the second node to simulate a loss
of a network connection between the two nodes and tried to

write data with a consistency level of ONE to the first node to
see if that node could still process the write (even knowing
that data on the second node could not be updated
immediately).

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 18:11:29,116 range slice
DEBUG 18:11:29,117 RangeSliceCommand{keyspace
 =’Keyspace1’, columnfamily=’Standard2’,
 supercolumn=null, predicate=SlicePredicate(
 columnnames:[[B@1b7c76]),
 range=[0,0], maxkeys=1}<somerangesliceoutput>
DEBUG 18:11:29,191 get slice <somegetsliceoutput>
DEBUG 18:11:29,460 Processing response on an async result
 from 5678@192.168.5.134

As can be seen, the first node performed a write
operation, thus favoring availability over consistency. An

entry async result in the log file indicated that the
second node would not know about interim updates until the
network connection was restored.

In our next step, we repeated the same test but with a

consistency level of QUORUM. Since the first node could not
communicate with the second node to inform it about interim
updates, the first node stopped processing the write, thus
favoring consistency over availability. The cluster became
read-only.

G. Test Case 7: Performance

In this test case, we checked if consistency could be
achieved without sacrificing performance. For this purpose,
we ran Test Case 1, Test Case 2 and Test Case 3 with 100,
1000, 10000 and 100000 data iterations.

We also experimented with different consistency levels
to gain extra speed for read or write operations. For example,
when we ran the tests with 10000 and 100000 data iterations,
we were more concerned about write performance than read
performance. Therefore, we wrote data with a consistency

level of ONE (W=1) and read data with a consistency level of

ALL (R=N). As a result, each read had to access all copies of
data to determine which of them contained the latest version
of data, whereas each write had to update only one copy of
data. This time when we ran the tests with 100 and 1000 data
iterations, we were more concerned about read performance
than write performance. Therefore, we wrote data with a

consistency level of ALL (W=N) and read data with a

consistency level of ONE (R=1).
Figure 1 shows the result of our tests. As can be seen,

consistency was achieved at expense of performance because

90

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 100 / 237

of the need for starting and finishing a synchronization
process every time when the database was updated.

Figure 1. Performance test results.

VII. CONCLUSION

During many years clustered file systems like Gluster
and (SQL-based) relational DBMSs like MySQL and Oracle
have been the dominant technologies for providing an
efficient and reliable data store in cloud computing
environments. However, with the trend towards cloud
computing, these systems get new competitors – NoSQL
DBMSs. One of them is Cassandra, which was evaluated in
this paper.

Cassandra was claimed to be particularly well suited for
cloud computing environments. Our goal was to confirm or
deny that claim. Towards this goal, we experimented with
Cassandra. Our experiments showed that Cassandra did offer
an efficient and reliable data store in cloud computing
environments, either while favoring availability and partition
tolerance over consistency or while favoring consistency and
partition tolerance over availability.

The result of our experiments was in agreement with the
CAP (Consistency, Availability and Partition tolerance)
theorem [11]. This theorem simply states that out of
consistency, availability and partition tolerance, a distributed
system can choose to provide two but never three at the same
time, as shown in Figure 2. For example, relational DBMSs
typically provide both consistency and availability, but not
partition tolerance. By contrast, NoSQL DBMSs typically
provide both availability and partition tolerance, but not
consistency.

Figure 2. CAP theorem [12].

VIII. FUTURE WORK

In the future, we are going to increase a number of nodes
in the cluster. Eventually applying the results of our tests to
real-world applications is also part of our future work.

ACKNOWLEDGMENT

Irina Astrova’s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF).

REFERENCES

[1] Definition “NoSQL” term. http://data.story.lu/2010/11/16/definition-
nosql-term, acc. 12.02.2011.

[2] Gluster. http://www.gluster.org/, acc. 12.02.2011.

[3] R. Elmasri and S. Navathe. Fundamentals of Database Systems (5th
Edition). Addison Wesley, U.S.A, 2006.

[4] A. Lakshman and P. Malik. Cassandra - a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, April 2010.

[5] Cassandra. http://cassandra.apache.org/, acc. 17.04.2011

[6] U. Dayal, M. Hsu, and R. Ladin. Business Process Coordination:
State of the Art, Trends, and Open Issues, 27th VLDB Conference,
Roma, Italy, 2001.

[7] ZooKeeper, http://zookeeper.apache.org/, acc. 10.02.2011.

[8] P. Hunt, M. Konar, F. Junqueira, and B. Reed. ZooKeeper: wait-free
coordination for internet-scale systems. 2010 USENIX conference on
USENIX annual technical conference (USENIXATC'10). USENIX
Association, Berkeley, CA, USA, 2010.

[9] ZooKeeper. http://ria101.wordpress.com/tag/zookeeper/, acc.
10.02.2011.

[10] T. Bain. Is the relational database doomed?
http://www.readwriteweb.com/enterprise/2009/02/is-the-relational-
database-doomed.php, acc. 21.10.2010.

[11] E. Brewer. Towards Robust Distributed Systems, PODC Keynote,
July 19, 2000. http://www.cs.berkeley.edu/~brewer/cs262b-
2004/PODC-keynote.pdf, , acc. 10.02.2011.

[12] M. Woodward. Caveats of Evaluating Databases.
http://blog.mattwoodward.com/caveats-of-evaluating-databases-jan-
lehnardt, acc. 21.10.2010.

91

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 101 / 237

Designing an Elastic and Scalable Social Network Application

Xavier De Coster, Matthieu Ghilain, Boris Mejı́as, Peter Van Roy
ICTEAM institute

Université catholique de Louvain
Louvain-la-Neuve, Belgium

{decoster.xavier,ghilainm}@gmail.com {boris.mejias,peter.vanroy}@uclouvain.be

Abstract—Central server-based social networks can suffer
from overloading caused by social trends and make the service
momentarily unavailable preventing users to access it when
they most want it. Central server-based social networks are
not adapted to face rapid growth of data or flash crowds.
In this work we present a design for a scalable, elastic and
secure Twitter-like social network application, called Bwitter,
built on the top of a scalable transactional key/value datastore,
such as Beernet or Scalaris. The application runs on a cloud
infrastructure and is able to scale its resource usage up
and down quickly to avoid overloading and resource wasting.
We measure performance, scalability, and elasticity for our
prototype and show it performs satisfactorily up to 18 nodes
with realistic loads.

Keywords-Scalability; elasticity; cloud application; social net-
work; Twitter; Beernet; Scalaris; key/value store.

I. INTRODUCTION

Social networks are an increasing popular way for people
to interact and express themselves. People can now create
content and easily share it with other people. The servers of
those services can only handle a given number of requests
at the same time, so if there are too many requests the
server can become overloaded. Social networks thus have
to predict the amount of load they will have to face in
order to have enough resources at their disposal. Statically
allocating resources based on the mean utilisation of the
service would lead to a waste during slack periods and
overloading during peak periods. Twitter shows the “Fail
Whale” graphic whenever overloading occurs [1]. This is a
tricky situation as this load is related to many social factors,
some of which are impossible to predict. For instance we
want to be able to handle the high amount of people sending
Christmas or New Year wishes but also reacting to natural
disasters. This is why we want to turn towards scalable and
elastic solutions, allowing the system to add and remove
resources on the fly in order to fit the required load. This
work focuses on the design of a social network with elastic
and scalable infrastructure: Bwitter, a secure Twitter-like
social network built on the transactional key/value store
Beernet [2].

This paper summarizes the results of a master’s thesis
[3]. Section II defines the basic required operations for a
Twitter-like social network. Section III explains why we
chose a transactional key/value store, such as Beernet, for

implementing Bwitter, and Section IV explains how to run
multiple services on top of it. In this section we also discuss
some possible improvements for DHTs in order to increase
their security and offer a richer application programming
interface. Section V presents the application design and
Section VI gives our cloud-based architecture. Section VII
describes the implementation of our prototype, and Section
VIII evaluates its performance (including scalability and
elasticity). We then conclude in Section IX.

II. A QUICK OVERVIEW OF REQUIRED OPERATIONS

Bwitter is designed to be a secure social network based
on Twitter. Twitter is a microblogging system, and while it
looks relatively simple at first sight it hides some complex
functionalities. We included almost all of those in Bwitter
and added some others. We will only depict the relevant
functionalities here that will help us to analyse the design
of the system and the differences between a centralised and
decentralised architecture.

A. Nomenclature

There are only a few core concepts on which our appli-
cation is based. A tweet is basically a short message with
additional meta information. It contains a message up to 140
characters, the author’s username and a timestamp of when
it was posted. If the tweet is part of a discussion, it keeps
a reference to the tweet it is an answer to and also keeps
the references towards tweets that are replies to it. A user
is anybody who has registered in the system. A few pieces
of information about the user are kept in memory by the
application, such as her complete name and her password,
used for authentication. A line is a collection of tweets and
users. The owner of the line can define which users he wants
to associate with the line. The tweets posted by those users
will be displayed in this line. This allows a user to have
several lines with different topics and users associated.

B. Basic operations

1) Post a tweet: A user can publish a message by posting
a tweet. The application will post the tweet in the lines to
which the user is associated. This way all the users following
her have the tweet displayed in their line.

92

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 102 / 237

2) Retweet a tweet: When a user likes a tweet from an
other user she can decide to share it by retweeting it. This
will have the effect of “sending” the retweet to all the lines
to which the user is associated. The retweet will be displayed
in the lines as if the original author posted it but with the
retweeter’s name indicated.

3) Reply to a tweet: A user can decide to reply to a tweet.
This will include a reference to the reply tweet inside the
initial tweet. Additionally a reply keeps a reference to the
tweet to which it responds. This allows to build the whole
conversation tree.

4) Create a line: A user can create additional lines with
custom names to regroup specific users.

5) Add and remove users from a line: A user can asso-
ciate a new user to a line, from then on all the tweets this
newly added user posts will be included in the line. A user
can also remove a user from a line, she will then not see the
tweets of this user in her line anymore and will not receive
her new tweets either.

6) Read tweets: A user can read the tweets from a line
by packs of 20 tweets. She can also refresh the tweets of a
line to retrieve the tweets that have been posted since her
last refresh.

III. WHY BEERNET?

Beernet is a transactional, scalable and elastic peer-to-peer
key/value data store built on top of a Distributed Hash Table
(DHT) [2][4]. Peers in Beernet are organized in a relaxed
Chord-like ring [5] and keep O(log(N)) fingers for routing.
This relaxed ring is more fault tolerant than a traditional ring
and its robust join and leave algorithm to handle churn make
Beernet a good candidate to build an elastic system. Any
peer can perform lookup and store operations for any key in
O(log(N)), where N is the number of peers in the network.
The key distribution is done using a consistent hash function,
roughly distributing the load among the peers. These two
properties are a strong advantage for scalability of the system
compared to solutions like client/server.

Beernet provides transactional storage with strong con-
sistency, using different data abstractions. Fault-tolerance is
achieved through symmetric replication, which has several
advantages that we will not detail here compared to a
leaf-set and successor list replication strategy [6]. In every
transaction, a dynamically chosen transaction manager (TM)
guarantees that if the transaction is committed, at least the
majority of the replicas of an item stores the latest value
of the item. A set of replicated TMs guarantees that the
transaction does not rely on the survival of the TM leader.
Transactions can involve several items. If the transaction is
committed, all items are modified. Updates are performed
using optimistic locking.

With respect to data abstractions, Beernet provides not
only key/value-pairs as in Chord-like networks, but also

key/value sets, as in OpenDHT-like networks [7]. The com-
bination of these two abstractions provides more possibilities
in order to design and build the database, as we will explain
in Section V. Moreover, key/value sets are lock-free in
Beernet, providing better performance. We opted for Beernet
because of these native data abstractions. But any scalable
and elastic key/value store providing transactional storage
with strong consistency could be used as well.

IV. RUNNING MULTIPLE SERVICES ON BEERNET

Multiple services using the same DHT can conflict with
each other. We will now discuss two mechanisms designed
to avoid those conflicts.

A. Protecting data with Secrets

Early in the process, we elicited a crucial requirement.
The integrity of the data posted by the users on Bwitter
must be preserved. A classical mechanism, but not without
flaws, is to use a capability-based approach. Data is stored at
random generated keys so that other applications and users
using Beernet cannot erase others values because they do not
know at which keys these values are stored. But in Bwitter,
some information must be available for everybody and thus
keys must be known by all users, meaning that we cannot use
random keys. For example, any user must be able to retrieve
the user profile of another user, it must thus know the key
at which it is stored. The problem is that Beernet does not
allow any form of authentication so key/value pairs are left
unprotected, meaning that anybody able to make requests to
Beernet can modify or delete any previously stored data.

We make a first and naive assumption that services
running on Beernet are bug free and respectful of each other.
They thus check at each write operation that nothing else is
stored at a given key otherwise they cancel the operation.
Thanks to the transactional support of Beernet the check and
the write can be done atomically. This way we can avoid
race conditions where process A reads, the process B reads,
both concluding that there is nothing at a given key and both
writing a value leading to the lost of one of the two writes.

This assumption is not realistic and adds complexity to the
code of each application running on Beernet. We thus relax
it and assume that Beernet is running in a safe environment
like the cloud, which implies that no malicious node can
be added to Beernet. We allow any application to make
requests directly to any Beernet node from the Internet. We
designed a mechanism called “secrets” to protect key/value
pairs and key/value sets stored on Beernet enriching the
existing Beernet API.

Applications can now associate secrets to key/value pairs
and key/value sets they store. This secret is not mandatory,
if no secret is provided a “public” secret is automatically
added. This secret is needed to modify or delete what is
stored at the key protected. For instance we could have the
following situation. A first request stores at the key bar the

93

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 103 / 237

value foo using the secret ASecret, then another request tries
to store at key bar another value using a secret different
from ASecret. Because secrets are different Beernet rejects
the last request, which will thus have no effect on the data
store. A similar mechanism has been implemented for sets,
allowing to dissociate the protection of the set as a whole
and the values it contains.

Secrets are implemented in Beernet and have been tested
through our Bwitter application. A similar but weaker mech-
anism is proposed by OpenDHT [7].

B. Dictionaries

At the moment in Beernet, as in all key/value stores we
know, there is only one key space. This can cause problems
if multiple services use the same key. For instance two
services might design their database storing the user profiles
at a key equal to the username of a user. This means they can
not both have a user with the same username. This problem
cannot be solved with the secrets mechanism we proposed.
We thus propose to enhance the current Beernet API with
multiple dictionaries. A dictionary has a unique name and
refers to a key-space in Beernet. A new application can
create a dictionary as it starts using Beernet. It can later
create new dictionaries at run-time as needed, which allows
the developpers to build more efficient and robust imple-
mentation. Dictionaries can be efficiently created on the fly
in O(log(N)), where N is the number of peers in the Beernet
network. Moreover dictionaries do not degrade storing and
reading performance of Beernet. If two applications need to
share data they just have to use the same dictionary. This
has not yet been implemented, but API and algorithms are
currently being designed. An open problem is how to avoid
malicious applications to access the dictionary of another
application.

V. DESIGN PROCESS

We will now present our design choices and explain
how we prevent machines hosting popular values from
overloading.

A. Main directions

We will start by discussing the main design choices we
made for our implementation.

1) Make reads cheap: While designing the construction
mechanism of the lines we were faced with the following
choice: Either push the information and put the burden on
the write, making the “post tweet” operation add a reference
to the tweet in the lines of each follower. Or pulling the
information and build the lines when a user wants to read
them, by fetching all the tweets posted by the users he
follows and reordering them. As people do more reads than
writes on social networks, based on the assumption that each
posted tweet is at least read one time, we opted to make
reads cheaper than writes.

2) Do not store full tweets in the lines but references:
There is no need to replicate the whole tweet inside each
line, as a tweet could be potentially contain a lot of in-
formation and should be easy to delete. To delete a tweet
the application only has to edit the stored tweet and does
not need go through every line that could contain the tweet.
When loading the tweet the application can see if it has been
deleted or not.

3) Minimise the changes to an object: We want the
objects to be as static as possible to enable cache systems.
This is why we do not store potentially dynamic information
inside the objects but rather have a pointer in them, pointing
to a place where we could find the information. For instance,
Tweets are only modified when we delete them, if there is a
reply to them, the ID of the new child is stored in a separated
set.

4) Do not make users load unnecessary things: Loading
the whole line each time we want to see the new tweets
would result in an unnecessarily high number of messages
exchanged and would be highly bandwidth consuming. This
is why we decided to cut lines, which in fact are just big
sorted set, into subsets, which are sets of x tweets, that can
be organised in a linked list fashion, where x is a tunable
parameter. This way the user can load tweets in chunks of
x tweets. The first subset contains all the references to the
tweets posted since the last time the user retrieved the line,
it can thus be much larger than x tweets, it is not a problem
as users generally want to check all the new tweets when
they consult a line. The cutting is then done as follows: the
application removes the x oldest references from the first
set, posts them in an new subset and repeats the operation
until the loaded first set is smaller than x.

5) Retrieve tweets in order: Due to the cutting mecha-
nism and delays in the network we can not be sure that
each reference contained in a subset is strictly newer than
the references stored in the next subset. So we also retrieve
the tweet references from this one and only select the first
20 newest references before fetching the tweets.

6) Filter the references: When a user is dissociated from
a line we do not want our application to still display
the tweets he posted previously. We decided not to scan
the whole line to remove all the references added by this
user, but rather remove the user from the list of the users
associated with the line and filter the references-based on
this list before fetching the corresponding tweets.

7) Only encrypt sensitive data: Most of the data in Twit-
ter is not private so there would be no point in encrypting
it. Only the sensitive data such as the password of the users
should be protected by encryption when stored.

8) Modularity: Even if our whole design and architecture
relies on the features and API offered by Beernet it is always
better to be modular and to define clear interfaces so we can
replace a whole layer by an other easily. For instance any
other DHT could easily be used, provided it supports the

94

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 104 / 237

same data abstractions or they can be simulated.

B. Improving overall performance by adding a cache

1) The popular value problem: Given the properties of
the DHT, a key/value pair is mapped to a node or f
nodes, where f is the replication factor, depending of the
redundancy level desired. This implies that if a key is
frequently requested, the nodes responsible for it can be
overloaded while the rest of the network is mostly idle
and adding additional machines is not going to improve
the situation. It is not uncommon on Twitter to have wildly
popular tweets that are retweeted by thousands of users. In
the worst case the retweets can be seen as an exponential
phenomenon as all the users following the retweeter are
susceptible to retweet it too [8].

2) Use an application cache as solution: Adding nodes
will not solve the problem, because the number of nodes
responsible for a key/value pair will not change. In order to
reduce this number of requests we have decided to add a
cache with a LRU replacement strategy at the application
level. This solves the retweet problem because now the
application, which is in charge of several users, will have
in its cache the tweet as soon as one of its user reads the
popular tweet. This tweet will stay in the cache because the
users frequently make requests to read it. This way we will
reduce the load put on the nodes responsible for the tweet.

We now have to take into account that values are not
immutable, they can be deleted and modified. A naive
solution would be to do active pulling to Beernet to detect
changes to the key/value pair stored in the cache. This would
be quite inefficient as there are several values, like tweets,
that almost never change. In order to avoid pulling we need
a mechanism that warns us when a change is done to a
key/value pair stored in the cache. Beernet, as described
in [2], allows an application to register to a key/value pair
and to receive a notification when this value is updated. Our
application cache will thus register to each key/value pair
that it actually holds and when it receives a notification from
Beernet indicating that a pair has been updated it will update
its corresponding replicas. This mechanism has the big
advantage of removing unnecessary requests. Notifications
are asynchronous, so the replicas in the cache can have
different values at a given moment, leading to an eventual
consistency model for the reads. On the other hand writes do
not go through the cache but directly to Beernet, this allows
to keep strong consistency for the writes inside Beernet.
This is an acceptable trade off as we do not need strong
consistency for reads inside a social network.

VI. ARCHITECTURE

Bwitter is designed as a cloud application in which both
the Beernet and Bwitter nodes run on a cloud infrastructure
and the users are purely clients. We can thus easily add
or remove Bwitter and Beernet nodes to meet the demand,

Figure 1. Architecture of the Bwitter social network application

increasing the efficiency of the network. A Bwitter node is a
machine running Bwitter but generally also a Beernet node.
This solution also allows us to keep a stable DHT as nodes
are not subject to high churn as it was the case in the first
architecture we presented. The Beernet layer is monitored in
order to detect flash crowds and Beernet nodes are added and
removed on the fly to meet the demand. We were not able
to compare our system with the current Twitter architecure
due to the lack of official documentation. But we know that
Twitter is centralized, being able to handle only a limited
number of concurrent request.

Our application consists of three loosely coupled layers.
From top to bottom: the Graphic User Interface (GUI), the
Bwitter layer which implements the operations described
in Section II and finally the Beernet layer. The overall
architecture is very modular and each layer can be changed
assuming it respects the API of the layer above. The Beernet
layer could be replaced by any key/value store with similar
properties (in particular, with transactions and strong consis-
tency). We recall that the data store must provide read/write
operations on values and sets as well as implementing the
secrets we described before.

The intermediate layer, also running on the cloud, is the
core of Bwitter. It communicates both with Beernet and the
GUIs. This layer can be put on the same machine as a
Beernet node or on another machine. Normally there should
be less Bwitter nodes than Beernet nodes. One Bwitter node
is associated to a Beernet node but can be relinked to another
Beernet node if it goes down. Each Bwitter node should
be connected to a different Beernet node in order to share
the load. In practice the Bwitter nodes are not accessible
directly. They are accessed through a fast and transparent
reverse proxy that splits the load between Bwitter nodes.

The top layer is the GUI, which runs on the client nodes
and connects to a Bwitter node using a secure connection
channel that guarantees the authenticity of the Bwitter node

95

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 105 / 237

and encrypts all the communications between the GUI and
the Bwitter node. Multiple GUI modules can connect to the
same Bwitter node.

A. Elasticity

We previously explained that to prevent the Fail Whale
error, the system needs to scale up to allocate more resources
to be able to answer an increase in user requests. Once the
load of the system gets back to normal, the system needs to
scale down to release unused resources. We briefly explain
how a ring-based key/value store can handle elasticity in
terms of data management.

1) Scale up: When a node j joins the ring in between
peers i and k, it takes over part of the responsibility
of its successor, more specifically all keys from i to j.
Therefore, data migration is needed from peer k to peer j.
The migration involves not only the data associated to keys
in the range]i, j], but also the replicated items symmetrically
matching the range. Other NoSQL databases such as HBase
[9] do not trigger any data migration upon adding new nodes
to the system, showing better performance scaling up.

2) Scale down: There are two ways of removing nodes
from the system: by gently leaving or by failing. It is very
reasonable to consider gentle leaves in cloud environments,
because the system explicitly decides to reduce the size of
the system. In such case, it is assumed that the leaving peer
j has time enough to migrate all its data to its successor,
which becomes the new responsible for the key range]i, j],
being i the predecessor.

VII. IMPLEMENTATION

We implemented Bwitter using the cloud-based archi-
tecture of Figure 1. Source code is available at [10]. We
made implementations both using Beernet [2] and Scalaris
[11]. The architecture has three main layers: the GUI layer,
the Bwitter layer, and the DHT layer. The GUI layer is
implemented as a Rich Internet Application (RIA) using
the Adobe Flex technology. The DHT layer is implemented
using Beernet, built in Mozart v1.3.2 [12] enhanced with
the secret mechanism. Beernet is accessible by the Bwitter
layer through a socket API.

The Bwitter layer is connected to the DHT layer using
sockets to communicate with an Oz agent controlling Beer-
net. The Bwitter layer is connected to the GUI layer with
a Tomcat 7.0 application server using Java servlets from
Java EE. The Bwitter nodes are accessible remotely via
an http API that conforms to REST. The Tomcat servers
are accessed indirectly through a reverse proxy server, in
this case nginx. This nginx server is in charge of serving
static content as well as doing load balancing for the Tomcat
servers. This load balancing is performed so that messages
of the same session are always mapped to the same Tomcat
server. This is necessary as authentication is needed to
perform some of the Bwitter operations and we did not

Figure 2. Scalability of the Scalaris transactional key/value store

want to share the state of the user sessions between the
Bwitter nodes for performance reasons. The connection to
the Web-based API is performed using https to meet the
secure channel requirement of our architecture.

VIII. EVALUATION

We evaluated a prototype implemented with Scalaris v0.3
running on Amazon EC2 with up to 20 compute nodes.
Note that we used Scalaris for the evaluation instead of
Beernet, for technical reasons unrelated to Bwitter. This
section summarizes our most important results; many more
measurements and details can be found in [3]. Scalaris and
Beernet both have very similar architecture and function-
ality: both provide a scalable transactional key/value store
implemented on top of a replicated DHT and both use Paxos
consensus for the transaction commit [2][11]. Since Scalaris
underlies our Bwitter prototype (each Bwitter tweet requires
many Scalaris operations), we first verified the performance
and scalability of Scalaris. Figure 2 shows throughput for
20000 operations (reads or writes) as the number of compute
nodes increases. This clearly shows that Scalaris is scalable
for both reads and writes, on both Small and Medium size
compute node instances in Amazon EC2.

For the Bwitter tests, we use one Large node for the
dispatcher and many Small nodes for the Bwitter application.
We simulated a network with two kinds of users, “Stars”
and “Fans’, where Stars are followed by many Fans. We
simulated two kinds of network: a Light network with 4000
users and 25 followers per user (each user follows 0.625% of
the network) and a Heavy network with 2000 users and 50
followers per user (each user follows 2.5% of the network).
Remark that both Light and Heavy networks have greater
connectivity between users than the actual Twitter system,
so that we can safely assume they are realistic loads.

Figure 3 shows aggregate throughput (number of success-
ful operations per second) as a function of number of nodes.
Here, an “operation” is defined in terms of what users do:

96

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 106 / 237

0

10

20

30

40

50

60

70

4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (o

ps
/s

)

Number of nodes

Heavy network Light network

Figure 3. Scalability of the Bwitter application implemented with Scalaris

0

10

20

30

40

50

60

70

80

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700 740 780 820 860 900

Th
ro

ug
hp

ut
 (o

ps
/s

)

Time (seconds)

No nodes added 1 node added each minute Node booting
6 nodes added each 5 minutes 12 nodes added after 1 minute Node launched

Figure 4. Elasticity of the Bwitter application implemented with Scalaris

it is either posting a tweet (20% of operations) or reading a
set of recent tweets (reading all unread tweets counts as one
operation; on average 20 tweets are read in one operation)
(80% of operations). This means that Bwitter handles 66
operations/second with 18 nodes, which is slightly more
than 1000 read/writes of individual tweets per second, in
a network with 4000 users. Up to 18 nodes, the number
of operations per second increases linearly with number of
nodes for both Heavy and Light networks.

Figure 4 shows the elasticity behavior over a period of
15 minutes with four elasticity strategies, i.e., four ways
of adding nodes to face increasing load. The black (lowest,
almost horizontal) curve gives the baseline (no nodes added).
The yellow (intermediate) curve shows the effect of adding
one node every minute: the graph shows that this is not
a good strategy. The best strategies are the gray and violet
ones (highest throughput), in which larger numbers of nodes
are added less frequently.

IX. CONCLUSION

The goal of Bwitter was to build a Twitter-like social
network that is able to withstand flash crowds by using

an elastic and scalable architecture. We used a scalable
transactional key/value store, namely Beernet or Scalaris,
as the data storage. We built an architecture on top of this
store that is able to handle users with large numbers of
followers and users following a large number of other users.
We avoid overloading single nodes because we do not rely
on any global keys and we use a cache to avoid the retweet
problem. Scalability and elasticity tests performed on Ama-
zon EC2 give encouraging results up to 18 nodes with
realistic loads. During the implementation we came across
two potentially important improvements for key/value stores,
namely duplicating the key space using multiple dictionaries
and protecting data via secrets (a form of capability). Secrets
are now implemented in Beernet.

REFERENCES

[1] Y. Lu, “What is Fail Whale?” www.whatisfailwhale.info,
2009.

[2] B. Mejı́as and P. Van Roy, “Beernet: Building self-managing
decentralized systems with replicated transactional storage,”
IJARAS: International Journal of Adaptive, Resilient, and
Autonomic Systems, vol. 1, no. 3, pp. 1–24, Jul.-Sep. 2010.

[3] X. De Coster and M. Ghilain, “Designing an Elastic and
Scalable Social Network Application,” pldc.info.ucl.ac.be,
Programming Languages and Distributed Computing (PLDC)
Research Group, Université catholique de Louvain, Tech.
Rep., Aug. 2011.

[4] B. Mejı́as, “Beernet: pbeer-to-pbeer network, version 0.9,”
beernet.info.ucl.ac.be, 2011.

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications,” in Proceedings of the 2001 ACM
SIGCOMM Conference, 2001, pp. 149–160.

[6] A. Ghodsi, “Distributed k-ary system: Algorithms for dis-
tributed hash tables,” Ph.D. dissertation, KTH –- Royal Insti-
tute of Technology, Stockholm, Sweden, Dec. 2006.

[7] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu, “OpenDHT: A public DHT
service and its uses,” citeseer.ist.psu.edu/rhea05opendht.html,
2005.

[8] D. Boyd, S. Golder, and G. Lotan, “Tweet, tweet, retweet:
Conversational aspects of retweeting on Twitter,” in Hawaii
International Conference on System Sciences, 2010, pp. 1–10.

[9] Apache, “HBase,” hbase.apache.org, 2011.

[10] X. De Coster and M. Ghilain, “Bwitter source code,”
www.info.ucl.ac.be/∼pvr/BwitterSources.zip, Aug. 2011.

[11] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable
transactional p2p key/value store,” in ERLANG ’08: Proceed-
ings of the 7th ACM SIGPLAN workshop on ERLANG. New
York, NY, USA: ACM, 2008, pp. 41–48.

[12] Mozart Consortium, “Mozart Programming System,”
www.mozart-oz.org, 2011.

97

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 107 / 237

A Social Network Approach to Provisioning and Management of Cloud Computing

Services for Enterprises

Eric Kuada, Henning Olesen
Center for Communication, Media and Information Technologies

 Aalborg University

Copenhagen, Denmark

kuada@cmi.aau.dk, olesen@cmi.aau.dk

Abstract - This paper proposes a social network approach

to the provisioning and management of cloud computing

services termed Opportunistic Cloud Computing Services

(OCCS), for enterprises; and presents the research issues

that need to be addressed for its implementation. We

hypothesise that OCCS will facilitate the adoption process of

cloud computing services by enterprises. OCCS deals with

the concept of enterprises taking advantage of cloud

computing services to meet their business needs without

having to pay or paying a minimal fee for the services. The

OCCS network will be modelled and implemented as a social

network of enterprises collaborating strategically for the

provisioning and consumption of cloud computing services

without entering into any business agreements. We conclude

that it is possible to configure current cloud service

technologies and management tools for OCCS but there is a

need for new approaches that view enterprises as both

service providers and consumers to facilitate the easy

implementation of OCCS networks.

Keywords-cloud service brokerage; social networking; and

opportunistic cloud computing services.

I. INTRODUCTION
Though faced with several challenges which are

mostly security and risk management related, cloud
computing adoption is gaining grounds with enterprises
[1] because of the flexibility, scalability, elasticity, and
potential cost savings that it offers to businesses [2]. With
the support of industry analysts (e.g., Gartner,
PricewaterhouseCoopers) and companies such as
Amazon, Google, IBM, VMware, Microsoft, Sun, Dell,
etc., this trend is not expected to change. Additionally,
Vinod, et al. [3][4] suggest that instead of perceiving
cloud computing simply as a way to make internal
Information Technology services cheaper and efficient,
businesses could take advantage of cloud computing to
drive business growth by developing a new business
model which is termed as the extensible enterprise.

The benefits of cloud computing has caught the
attention of all stakeholders in research efforts to address
its challenges to pave the way for an accelerated adoption
of cloud computing services. There are therefore currently
numerous research efforts by Information Technology
industry giants, academic institutions, governments and
union of countries (e.g., European Union) to promote the

adoption of cloud computing services [5][6][7]. These
efforts are resulting in diverse cloud computing service
offerings from cloud service providers which have left
enterprise consumers trying to make sense of the offerings
of service providers. This situation is increasingly
necessitating the services of a special group of cloud
service providers that offer brokerage services for
enterprise consumers on the more fundamental services
such as Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS)
provided by cloud service providers.

This research work proposes a social network
approach to the provisioning and management of cloud
computing services termed Opportunistic Cloud
Computing Service (OCCS) that has some resemblance to
Cloud Service Brokerage (CSB). OCCS deals with the
concept of enterprises taking advantage of cloud
computing services to meet their business needs without
having to pay or paying a minimal fee for the services.

This innovative approach of OCCS can facilitate the
adoption process since enterprises will require no
financial commitments to begin using cloud computing
services, and discovery of services on an OCCS network
will be easier in light of how information spreads on
social networks. Commercial cloud service providers can
benefit tremendously in the long run by introducing some
of their services onto such a network; especially new
services can be introduced onto the OCCS network for a
period of time to gain popularity before being withdrawn
later. Additionally OCCS can promote SaaS
collaboration, scalability for resource aggregation for
particular services when needed, fostering of business
collaboration and further reduction of cost in Information
Technology services. Since the idea of OCCS will be to
provide a governance platform and its associated cloud
management tools with which interested enterprises will
provision SaaS, PaaS, IaaS and other resources that would
be used by other interested enterprises, but not necessarily
create new technologies, the platform is compatible with
future cloud computing technologies and solutions.

The remainder of the paper is organised as followers:
Section II explains the OCCS concept and outlines some
of the background ideas and concepts that have inspired
it. Section II also presents cloud service brokerage and
outlines the similarities of OCCS in functionality with
CSB. We present the research challenges that must be

98

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 108 / 237

addressed for the implementation of OCCS in Section III.
Section IV discusses some unintended advantages that
could be leveraged from OCCS implementation and
Section V concludes the paper.

II. OPPORTUNISTIC CLOUD COMPUTING

SERVICES
This section begins with an overview of the

opportunistic cloud computing services concept, an
outline of some background developments inspiring it,
then a discussion of its Cloud Services Brokerage features
and then presents detailed reference architecture for its
implementation.

A. Overview
Opportunistic Cloud Computing Service (OCCS) is a

social network approach to the provisioning and
management of cloud computing services for enterprises.
Previous works that link cloud computing with social
networks such as [8], looked at leveraging the pre-
established trust formed through friend relationships
within social networking sites to enable friends to share
resources; and most other examples use Cloud platforms
to host social networks or create applications within the
social network. There is however no literature on a social
network infrastructure for enterprises currently; and this is
where OCCS comes in. OCCS deals with the concept of
enterprises taking advantage of cloud computing services
to meet their business needs without having to pay or
paying a minimal fee for the services. The OCCS network
will form a social network of enterprises collaborating
strategically (possibly selfishly or even maliciously) for
the provisioning and consumption of cloud computing
services without entering into any business agreements.
Unlike social networking sites for individual use where
users creates their own network of friends, in an OCCS
network, members do not explicitly create ties with other
members but these ties comes indirectly through the
services and resource contribution and consumption
mechanism.

This concept is derived from the combination of the
concepts of peer-to-peer network services and the utility
model of cloud computing. As in peer-to-peer networks
where users are both resource providers and consumers,
the idea will be to provide a governing platform that
serves as the social networking platform for the
enterprises and also consisting of interoperable Cloud
management tools with which interested enterprises will
provision SaaS, PaaS, IaaS and other resources that would
be used by other enterprises interested in these services. A
major challenge besides risk management and security
issues that such a network will face is how to develop
incentive schemes that ensure sustainability of the
network.

It is anticipated that such a network will not always
provide all the cloud service needs of an enterprise; hence

OCCS will also seek to explore the utility model of cloud
computing for enterprises to consume services provided
by commercial cloud computing service providers at
specific times, geographic locations, and Service Level
Agreement (SLA) requirements for which a utility
function defined by the enterprise is minimized. Here
again the framework will try to employ open source
brokerage tools instead of employing the services of a
commercial Cloud Service Broker (CSB) for arbitrating
between the cloud service providers and the enterprises.

Furthermore, preliminary investigations indicate that
the OCCS network will not be most ideal for large
corporation and financial institutions but will be well
suited for small and medium sized enterprises. There have
however been indications of larger corporations joining
an OCCS network mainly as services and resource
contributors in promoting their businesses.

Figure 1 shows an overview of the major parts in an
OCCS network. It consists of two layers – the service
layer and the management layer. The service layer
consists of all the services contributed by members. These
will normally be fundamental cloud services such as
SaaS, PaaS, and IaaS; but, it can also include value added
services normally provided by cloud service brokers. The
management layer consists of two main components – the
governance component that manages the services from
members and CSB component that serves as an interface
between the OCCS network and commercial cloud
services providers and cloud service brokers.

OCCS is derived from two main concepts: peer-to-
peer network services and the utility model of cloud
computing. It however has also been inspired by equally
important phenomenon such as social network theory,
social networking, Web2.0, and the open source
movement.

Social network theory has been used to examine how
companies interact with each other, characterizing the
many informal connections that link executives together,
as well as associations and connections between
individual employees at different companies. These
networks provide ways for companies to gather
information, deter competition, and even collude in
setting prices or policies. It forms the basis of the OCCS
feature of having no formal business agreements between
the participating member enterprises. The other
characteristics of OCCS stem from concepts and ideas
such as user-generated content, harnessing the power of
the crowd, architecture of participation, data on a epic
scale, and openness [9] that characterises Web 2.0, social
networking and the open source movement. OCCS
however focus on corporate organisations instead of
individual users and deals with replacing simple data and
files as resources with cloud computing services that
would normally have been provided by commercial cloud
service providers.

99

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 109 / 237

Figure 1. Major components of an OCCS network

 OCCS Network

CSP

CSB

OCCS Network Management Platform

OCCS governance

 Member profiling

 Service profiling

 Sevice life cyle mgt.

CSB

component

OCCS services from members

B. Cloud Service Brokerage Functionalities
Cloud services brokerage is a business model where a

company or other entity adds value to one or more
(generally public or hybrid, but possibly private) cloud
services on behalf of one or more consumers of those
services [10]. The major functionalities that CSB provide
to enterprises include service aggregation, customization,
governance, new applications, services billing and
arbitration, security, and insurance services. The services
of CSB are becoming increasingly necessary to both
enterprises and cloud service providers because of their
different perspectives, objectives, and expectations from
the cloud computing industry, coupled with the challenges
enterprises have to deal with in selecting from cloud
service providers and using the diverse cloud computing
services.

An OCCS network consists of two main components -
a platform for managing the services provisioned by
members and a brokerage component for interfacing with
commercial cloud service providers. The OCCS concept
thus inherently provides new applications, service
aggregation to multiple consumers, governance, and
service arbitration and billing.

C. OCCS Architecture
In light with the principles on which the OCCS

concept is built – namely: user-generated content,
architecture of participation and openness; a successful
implementation of an OCCS network will have to in the
barest minimum provide the following features

- Support for the management of fundamental

cloud computing services (SaaS, PaaS, IaaS)

- Support for the management of any arbitrary

cloud computing service – anything as a service

(XaaS)

- Interoperability with major cloud computing

standards

- Interoperability with major cloud computing

management tools

- Support for future cloud computing technologies

These factors have been considered in the design of the

OCCS network reference architecture shown in Figure 2.

OCCS Services: these consist of all the services and
resources that have been contributed to the network by
members. These could be coming from contributing
member’s data center, private cloud, etc. Services are
mainly fundamental cloud computing services such as
SaaS, PaaS, IaaS; and other cloud computing services
(XaaS) and resources.

Resource Manager: this together with the cloud
computing deployment and management tools found in
the Contributions Component and the Discovery &
Utilization Component abstract the contributed services
from the services layer and interface it to the OCCS
management platform.

Contributions Component: it is responsible for
handling the resource contribution process. Its main
objective is to simplify and make it easy for members to
contribute resources to the network. It performs two sub
functions – providing cloud computing management tools
and service life cycle management. It thus consists of
cloud computing deployment and management tools for
all types of services and resources. The service
management involves service creation, service
certification and service profiling which includes service
review and ranking by users and service ranking by
platform administrators.

Discovery & Utilization Component: its role is to
simplify services and resources discovery and utilization
process. It performs service recommendation by taking
service requirements description by members and
matching these with service properties description by
contributors together with the profile rank of services. It
also consists of cloud computing management tools for
services and resources provisioning and utilization.

Categorization Component: this component is needed
to ensure OCCS network supports arbitrary services while
also ensuring easy management of these services. It is
responsible for the categories creation process. It handles
service category creation requests from members which is
evaluated for approval by the platform administrators; and

100

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 110 / 237

Figure 2. OCCS network Reference Architecture

Discovery &

Utilization

component

Categorization

component

Contributions

component

Governance component

Membership Mgr.

Cost manager

QoS & Pseudo SLA

Manager

CSB component

Business Intelligence Component

OCCS Services

Commercial Cloud

Services

Resource Manager

also delegates privileges of categories creation given to
some level of membership.

Membership Manager: this is the main social
network user management module for the OCCS network
management platform. It is responsible for managing
existing users and the registration of new members
(enterprises, companies, institutions, etc.). It handles
membership requests and in cooperation with the
Governance Component performs company profile
verification based on data provided by enterprises during
registration to make decisions on membership approval or
rejection.

Incentives Manager: Dynamic re-computation of cost
in real time to be credited to service contributors and
debited to resource users. Cost of service or resource
utilization is dependent on demand.

QoS & Pseudo SLA Manager: it uses information
from the Incentives Manager to provide service
differentiation and pseudo SLA management to members.

Governance Component: it is the logical module that
provides supervision for all the other components in the
OCCS network management platform. It is implemented
as the interfaces through which platform administrators
interact with the platform to make governance decision.

Business Intelligence Component: this module is not
essentially required for the operation of the OCCS
network but provides means for the gathering of business
intelligence from the platform and may include for
example:

 Analysis of services contributed, their

categories, utilization and their profile

performance

 Analysis of member profiles with their

contributed services and the enterprises that

are utilizing these services

 Analysis of the services and resources

requests that are not currently being

provided by the platform

CSB Component: it consists of cloud computing
management tools and processes that interface the OCCS
network to commercial cloud computing services and
provide cloud brokerage services to members.

D. Implementation Strategy for OCCS

To ensure that the barest minimum features required
for a successful implementation of a OCCS network is
met, a typical OCCS network implementation will use the
feature requirements of support for the management of
fundamental cloud computing services, support for the
management of any arbitrary cloud computing service,
interoperability with major cloud computing standards
and cloud computing management tools, and support for
future cloud management technologies, in selecting a
suitable cloud management tool (likely a non proprietary
cloud management tool) which will form the base on
which other functionalities can be added. The various
components outlined in the OCCS reference architecture
in Section III C above can then be developed on this base
cloud management tool.

III. RESEARCH ISSUES WITH OCCS
Some of the major challenges of cloud computing

receiving research attention currently include legal and
compliance risk management, migration of applications,
meeting SLA requirements, managing cloud services, and
security concerns. The introduction of OCCS brings new
research issues and adds a complexity dimension to some
of the existing ones. This section outlines some of these
research issues and the intuitive approaches of addressing
them, which will have to be researched carefully for the
successful implementation of OCCS networks.

A. Sustainability and Pseudo SLA
The sustainability of an OCCS network revolves

around the concepts of architecture of participation and
harnessing the power of the crowd. A potential problem
that such a network will face is that of free-riding where
member enterprises will want to only use services on the
network without contributing [10]. The challenge here
will be to develop appropriate incentive mechanisms for
the sustainable operation of the network.

Another challenge is that of service differentiation and
service quality management. Unlike conventional cloud
computing service offerings by commercial service

101

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 111 / 237

providers, no SLA exist between the participating
members in an OCCS network, hence such service quality
differentiation must be handled through the incentive
mechanisms that will be designed so that when limited
resources are being contended for by multiple candidates
those that have supported the system more can be given
some form of preference. Additionally, there will be the
need for transparency in dynamic demands and cost of
service utilisation. Several research efforts have applied
game theoretic approach to the modelling of incentives in
peer-to-peer networks to solve the free-riding problem in
peer-to-peer networks. [12] presents a resource allocation
mechanism based on a distributed algorithm to enable
service differentiation in peer-to-peer networks that also
increases the aggregate utility in the whole network.
Work on incentives for sharing in peer-to-peer networks
by [13] analyzes several different payment mechanisms
designed to encourage file sharing in peer-to-peer
systems. The game theoretic approach can be explored in
the design of incentive mechanisms for OCCS networks
and the concept of pseudo SLA introduced for service
differentiation and service quality management.

B. Reliability and Fault resilience

An OCCS network will need to provide a certain level
of reliability to its members under normal operations and
must be resilient enough to recover from faults. The
reliability and resilience is however threatened by poor
quality of services provisioned by members, failure and
withdrawal of services from members, and the
introduction of malicious services. Dynamic algorithms
are required for detection, notification and responding to
faults and poor quality services. Of particular importance
is how to respond to faults in the network. A simple
approach will be to notify service consumers of
problematic events for them to take their own decisions; it
may however be necessary to develop mechanisms that
reassign alternative services to consumers based on
certain usage policies and preferences indicated by the
service consumers. The challenge here is the precise
capturing of the properties of services in service
descriptors and effectively matching these to the usage
policies and SLA requirements of potential service
consumers so that the entire process is transparent to them
and their customers; and more so this transparency in
fault handling must be achieved in the context of the fact
that no SLA exists between the contributors of the
services and the consumers of these services.

C. Network Governance
The purpose of the OCCS network governance will be

to promote the overall quality of the system. Of particular
research interest is the development of community
management enabling technologies for profiling, service
life cycle management and transparency in the pseudo
SLA management. Both network members (enterprises)
and the services they provision will have to be profiled to
maintain trust in the individual services, member
enterprises and the entire system platform. For example

service provisioning will have to be in phases such as
testing, and various levels of certification through
continual ranking of services. Both central ranking by the
platform administrators and peer review ranking by the
members may have to be adopted. The service ranking
and certification will need to promote new services from
good profiled enterprises while quickly identifying
malicious and poor quality services and revoking their
certification.

D. Security

Security is the ability to protect information and
information systems from unauthorized access, use,
disclosure, disruption, modification or destruction and to
respond and recover in case of a fault or incident. The
implementation of OCCS will not bring any new technical
demands on security in terms of confidentiality and data
integrity apart from what is already necessary in ordinary
cloud computing implementations. An area of research
interest however is how to harness the available resources
on the platform and the collaboration of members in
combating security threats. If we consider the introduction
of malicious services onto the OCCS platform, the OCCS
network governance which includes member profiling,
service profiling and life cycle management should
prevent such occurrences. In the event of such an
occurrence however, the system has to respond and
recover quickly. It is therefore useful to research into
mechanisms for harnessing the available resources on the
platform and the collaborative efforts of members in
dealing with such a threat.

E. Other Research Issues

Some other issues that are of importance and worth
looking at are regulations and service provisioning.
Current cloud computing vendor technologies and
management tools assume distinct roles for the service
providers and service consumers. But with some cloud
management tools offering features such as delegated
control and autonomous virtual enterprises [14]; and
support for the technologies of most of the major cloud
solution providers [15], it will be possible to configure
these cloud management tools for OCCS. There may
however be a need for new approaches for cloud
management that view enterprises as both resource
providers and consumers to facilitate the easy
implementation of an OCCS network.

An issue with regulatory authorities for enterprises
joining the OCCS platform could be that of tax evasion
implications. This is because enterprises will be offering
and using services, which are not being paid for and
hence may not be subject to taxes depending on the
country in which they are. Also most enterprises have
internal policies that need adherence, and there may be
industry specific laws and regulations that they need to
comply with. Furthermore, different countries have their
own laws concerning user data handling. Storing data in
the Cloud therefore presents enterprises and service

102

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 112 / 237

providers with several risk management challenges. These
challenges are further compounded by the concept of
OCCS and hence can hamper its successful
implementation.

IV. POSSIBLE FUTURE BENEFITS
This section gives brief discussions on some of the

unintended benefits that can be leveraged from the
implementation of an OCCS network. Some of benefits as
discussed below include platform for new business
models, promotion of SaaS collaborations, and promotion
of cloud computing standardization.

A. Platform for new Business Models

OCCS can serve as a platform for enterprises to adopt
new business models such as the extensible-enterprise
model (deep B2B integration and highly modular web
services). The adoption of cloud computing by any two
companies in general reduces the complexities in
business-to-business (B2B) integration. Companies can
therefore leverage cloud computing by exposing their
business processes to potentially large ecosystems of
partners who often find ways of joining and integrating
their business processes in the value chain. It is envisaged
that OCCS will promote the adoption of cloud computing
by enterprises and hence indirectly promoting such new
business models. Secondly, enterprises on an OCCS
network would already have been using similar services
with similar cloud management tools; this should
facilitate the integration of their business processes.

Additionally, the platform can foster the creation of
new business that will provide commercial cloud
brokerage services to members on the OCCS network.

B. Promotion of SaaS collaborations

The implementation of an OCCS network can
promote SaaS collaborations. Enterprises on an OCCS
network are very likely to participate in collaboration
efforts in the development of software solutions that they
deem useful to their own business. As an example, a
construction company in need of a specialized software
for design simulation that is currently not being provided
by any member on an OCCS platform can initiate a SaaS
project to involve other interested members in the
development of the software which can then be
contributed to the platform upon completion. Such SaaS
collaborations could also come about by a member
enterprise identifying an application of interest and
providing the development platform with specific tools
and providing it as a PaaS on the OCCS network; this
could spark interest in the development of such an
application by other members and can eventually lead to
collaboration by interested members in its development.

C. Promotion of Cloud Computing Standardization

 As already indicated in Section II C and Section II D,
a successful implementation of an OCCS network must
provide support for the management of fundamental cloud
computing services, support for the management of any
arbitrary cloud computing service, interoperability with
major cloud computing standards and cloud computing
management tools, and support for future cloud
management technologies. Thus to start with, the OCCS
concept must carefully follow cloud computing standards;
the situation is however reversed if OCCS network
implementations become successful. Thus those standards
that are dominant on the OCCS platform will then be
followed closely by cloud management tool developers
and cloud service providers. This will further promote the
success of the OCCS platform; and hence the promotion
of cloud computing standardization and promotion of the
OCCS implementations will be in a virtuous cycle.

V. CONCLUSION
Support for major hypervisors and role-based

delegated control make it possible to configure current
cloud computing technologies and management tools for
OCCS even though they assume distinct roles for the
service providers and service consumers. There is
however a need for new approaches to cloud management
that view enterprises as both resource providers and
consumers which when complemented with standards for
interoperability will facilitate the easy implementation of
an OCCS network.

Successful implementation of OCCS networks can
result is some unintended benefits such as serving as a

platform for new business models, promotion of SaaS
collaborations, and promotion of cloud computing
standardization. These benefits together with providing a
platform for enterprises to start using cloud computing
services without any initial financial commitment will
however be possible only if the research challenges
identified in Section III (namely, developing appropriate
incentive mechanisms and the associated quality of
service differentiation, security, reliability and fault
resilience, network governance and regulatory issues) are
carefully dealt with.

REFERENCES

[1] Justin Pirie, "Setting the Standards," European Communications,
pp. 30-31, Autumn 2010.

[2] Vinod Baya and Randy Myers, "How CFOs should audit the
cloud balance sheet," PricewaterhouseCoopers Technology
Forecast, no. 4, pp. 44-53, 2010.

[3] Vinod Baya and Galen Gruman, "Making the Extensible
Enterprise a reality," PricewaterhouseCoopers Technology
Forecast, no. 4, pp. 26-35, 2010.

103

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 113 / 237

[4] Vinod Baya, Bud Mathaisel, and Bo Parker, "The cloud you
don’t know: An engine for new business growth,"
PricewaterhouseCoopers Technology Forecast, no. 4, pp. 4-13,
2010.

[5] OPTIMIS: Optimized Infrastructure Services. (2011, March)
OPTIMIS. [Online]. http://www.optimis-project.eu/project
11-07-2011

[6] Contrail consortium 2010. (2011, March) Contrail. [Online].
http://http://contrail-
project.eu/objectives;jsessionid=E1961F3D98F3B602D34CFC9
445D63DC7 11-07-2011

[7] RESERVOIR. (2011, March) RESERVOIR. [Online].
http://www.reservoir-fp7.eu/ 11-07-2011

[8] Kyle Chard, Simon Caton, Omer Rana, Kris Bubendorfer,
"Social Cloud: Cloud Computing in Social Networks," in 2010
IEEE 3rd International Conference on Cloud Computing, Miami,
Florida, 2010, pp. 99 - 106.

[9] Paul Andeson, "What is Web 2.0? Ideas, technologies and
implications for education," JISC , JISC Technology and
Standards Watch Feb. 2007.

[10] Benoit Lheureux. (2010, December) Gartner Inc. [Online].
http://www.gartner.com/it/content/1461800/1461813/december_
2_cloud_services_brokerage_blheureux.pdf 12-07-2011

[11] Markus Hofmann and Leland R. Beaumont, Content Networking:
Architecture, Protocols, and Practice, Rick Adams and Karyn
Johnson, Eds. San Francisco, USA: Elsevier, 2005.

[12] Richard T. B. Ma, et al, "A Game Theoretic Approach to Provide
Incentive and Service Differenciation in Peer-to-Peer Networks,"
in SIGMETRICS/Performance’04, New York, NY, USA., June
12–16, 2004.

[13] Philippe Golle, Kevin Leyton-Brown, Ilya Mironov, and Mark
Lillibridge, "Incentives for Sharing in Peer-to-Peer Networks," in
Springer WELCOM 2001, LNCS 2232, Verlag Berlin
Heidelberg, 2001, pp. 75-87.

[14] Abiquo, Inc. (2011, March) abiquo. [Online].
http://www.abiquo.com/products/features-and-
benefits.php?lang=en 11-07-2011

[15] enStratus Networks LLC. (2011, April) enStratus. [Online].
http://www.enstratus.com/page/1/cloud-providers.jsp
11-07-2011

104

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 114 / 237

Competitive P2P Scheduling of Users’ Jobs in

Cloud

Beniamino Di Martino, Rocco Aversa, Salvatore Venticinque, Luigi Buonanno

Department of Information Engineering

S.U.N. (Seconda Università di Napoli)

Aversa (Italy)

[Beniamino.DiMartino,Rocco.Aversa,Salvatore.Venticinque,Luigi.Buonanno]@unina2.it

Abstract— Existing distributed solutions for distributed

computing (Grid, Cloud, etc.) pose a high threshold for

potential customers. The reason deals with the technical

background and effort that are usually required in order to

successfully access the computing facilities, thus limiting their

massive adoption. By exploiting the features offered by

different distributed paradigms (P2P and Cloud), we propose

here an approach that reverses the role of resource requestors

and resource providers, allowing potential customers to access

the distributed infrastructures in a user-friendly fashion. In

the proposed scenario, the task of retrieving the user’s

submitted jobs and configure accordingly the necessary

resources is in charge of the providers, thus lowering the

threshold required to successfully exploit the computing

facilities. The experimental activities, described in the paper,

validate the hypothesis that a competitive approach, in

distributed scheduling environments, can decrease the

threshold required to access the facilities and lead, if properly

set up, to substantial performance gains.

Keywords- P2P; cloud; competitive scheduling.

I. INTRODUCTION

Cloud computing [26] is a recent model for enabling
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction. On one hand, thanks to the
virtualization technology, providers can rent their hardware
resources in a very flexible way. On the other hand, users
may have a dedicated data center as a service without the
burden of buying and managing expensive hardware, but
rather paying their utilization according to a pay-per-use
business model.

 Despite the benefits provided, many open issues have to
be addressed with regard to this emerging computing
paradigm. Some of them are portability of applications, lock-
in proprietary solutions, negotiation and check of SLAs
(Service Level Agreement) with Cloud providers. Among
the others, an open issue has affected most of the distributed
paradigms which have been spreading for the last few years:
existing solutions require the customer to hold an advanced

technical background in order to successfully exploit the
computing facilities, thus limiting their massive adoption.

The list of issues a potential user has to deal with
includes: the discovery of the architecture that is compliant
with the application requirements, the setup of the execution
environment, the research of the most convenient offer, the
configuration of the acquired resources, the tuning of the
applications, the uncertainty of execution time due to a best
effort policy for resource sharing, etc.

Other distributed paradigms (e.g., inverted client-server
systems [3]) do not pose such a high threshold to potential
customers, but they do not encourage the intensive
exploitation of resources.

P2P (Peer-to-Peer) [23] refers to logical organization of
computing entities where each individual knows its
neighbors and can behave both as a server and a client. There
are some relevant examples of P2P systems, oriented to
parallel and/or distributed computing, which have been
successful in their exploitation.

In order to address the described issues, we propose a
distributed paradigm that:

 Aims at implementing the same ease of use of P2P
file sharing applications.

 Reverses the roles of requestors and providers, by
charging the providers of all the overhead required to
setup the execution environment, manage the job
requirements, etc. In our model, clients just publish
their jobs on the platform, specifying the software
and hardware requirements, the application details,
the deadline and the offered reward. Service
providers, on the other hand, are in charge of
discovering the published jobs and of addressing all
the issues related to the jobs’ requirements
management;

 Adopts a competitive approach, where providers
compete for satisfying the client’s requests and are
awarded with credits in case of successful
elaborations, thus optimizing client’s satisfaction and
reducing the cost.

In the next section, we discuss related work. The third

section introduces a comparison of policies for resource
sharing in centralized and P2P networks. In the fourth

105

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 115 / 237

section, we present our competitive approach for job
scheduling in P2P. In the fifth section, we provide a
description of a prototype implementation and we show
experimental results aimed at evaluating the effectiveness of
the proposed solution. Finally, we present the conclusion.

II. RELATED WORK

Cloud computing is an on-demand distributed paradigm
that refers to providers offering a large pool of easily usable
and accessible virtualized resources in a pay-per-use model
[1]. The services can be delivered within different layers,
that are usually classified as SaaS (Software as a Service),
PaaS (Platform as a Service) and IaaS (Infrastructure as a
Service) [24]. This paper mainly refers to SaaS and IaaS
clouds. Cloud computing allows data centers to transparently
offer services through the Internet by exploiting their
computing and storage fabric of resources. In SaaS and IaaS
clouds, applications and nodes are virtualized and
dynamically provisioned on-demand as a personalized
resource collection to meet a specific service-level
agreement, which is established through a negotiation. A
market-oriented resource management is necessary to
regulate the supply and demand of Cloud resources [9],
providing feedback in terms of economic incentives for both
Cloud consumers and providers, and promoting QoS-based
(Quality of Service) resource allocation mechanisms that
differentiate service requests based on their utility [2]. Many
research contributions aim at supporting the user with
negotiation services based on Service Level Agreement that
delegate to agents the discovery and agreement of the best
offer from multiple providers [7], [11]. The main aim of this
paper is to bring this mechanism a step further, by delegating
this task to providers.

Security is still a big concern in cloud frameworks. While
in Grid [25] environments, indeed, both resources and users
need to be registered and to get a digital certificate for
authentication and authorization purposes, before they are
allowed to start a session. This mechanism is feasible when
the number of nodes are not many. Security in cloud
computing infrastructures, instead, is still, mostly, a work in
progress. Nevertheless, some analysis on this topic have been
performed [17]. Furthermore, it must be said that the very
subject of security is what is slowing down the adoption of
cloud computing over other forms of distributed scheduling
[18].

Current P2P systems have the perk of allowing a very
high number of users (hundreds of thousands is a common
figure). They offer few services, without doing assumptions
on the reliability of the peers themselves [14]. However, it is
very complicated to ensure a given QoS level [13] without
any sort of distributed scheduling. From a security point of
view, P2P systems are, by definition, environments where it
is difficult to be aware of the identity and trustability of
hosts: the chance of exploiting a malicious resource is
intrinsically high. While this risk is largely accepted for file
sharing systems, in order to make it acceptable for
distributed computing many issues must be addressed to
ensure the safety of both the code owner and the code
executor.

In [11], an architecture for the resource sharing on large
scale networks has been described (CompuP2P). CompuP2P
uses a protocol based on Chord [16] and detects a set of
”dynamic markets”, each of them groups all the peers that
are willing to buy or sell the same ”amount” of computing
power. The main bottleneck is represented by a special peer
(”Market Owner), that is responsible for the association
between requests and offers of computing power. In [15], a
solution for the scheduling of multiple applications, in a
concurrent fashion, is proposed. Authors propose a
decentralized scheduling pattern and do a comparative
analysis of different heuristic logics. Many Grid solutions for
task scheduling and workload distribution exist. For
example, Condor [12] is a high-throughput distributed batch
computing system that provides job management
mechanisms, scheduling policies, resource monitoring, and
resource management. However, it can hardly be defined as
a P2P system, cause of the presence of a central manager that
accepts job submissions. Conversely, the objective of our
research is to design a P2P infrastructure that is not relying
on any centralized element and that enables a huge numbers
of machines, which connect/disconnect dynamically to the
network without any guaranties on their reliability, to easily
access the resources offered by cloud providers.

III. CRITICAL COMPARISON OF DIFFERENT

APPROACHES FOR RESOURCES SHARING

In the computational grids model, providers offer their
services with a best effort policy and a collaboration pattern
is usually adopted among different parties, which share their
resources belonging to a virtual organization, in order to
optimize the global performances. Grid clients compete to
use the resources: this model exploits the competition of
clients and the collaboration of servers.

According to a common opinion, the business Grid
model was unsuccessful because providers are business
competitors and, usually, do not collaborate. However, even
if theoretically the market should rely on the competition of
providers, often, in real-world scenarios, sellers cooperate
rather than competing while, at the same time, trying to
create competition among buyers.

It is a model similar to the one that is currently adopted in
the automotive, where different companies share engines and
other components, or in the insurance field, where prices are
fixed above a threshold using a behavior that is, at least, at
the edge of the law. Great companies have much interests
and resources to organize themselves for collaborating. Even
if powerful ones should give they usually take, by choosing
to collaborate, rather than fighting, when it means a bigger
return. Collaboration of providers is exploited to take.

In volunteer computing, clients are asked to donate CPU
cycles when their computers are idle.

Users’ resources are then managed and exploited by
powerful big organizations. In fact, they have the capacity to
exploit all the limited resources shared by a huge number of
distributed users. The lack of this kind of organization
ability, and, at the same time, the great capability of users in
terms of availability is evident in real life and in distributed
computing. In volunteer computing, collaboration among

106

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 116 / 237

users is exploited to give. The most well-known case of
volunteer computing is the SETI@Home project [3].

P2P is a successful example of decentralized resource
sharing among clients. In P2P file sharing systems, users
compete to download files from the available sources and are
asked to share their data (“collaborate”) in change of credits
that can be spent for acquiring download privileges.
Competition is easier to be implemented, because
organization is not required. Competition among users is
exploited to take, while the collaboration is used to give.

Cloud computing is a new paradigm that was born in a
business context. The business model is pay per use and it is
not based on resource sharing. A limitation of this approach
is that, if a user chooses a solution from a particular provider,
he will be locked by that choice because of the lack of
portability.

In this scenario, it would be useful to design a
technological solution that implements a business model
aimed at optimizing the QoS at user side, and to maximize
the incomes at server side.

A free market model, that exploits the competition of
sellers to give computing power and collaboration of users
to take it, could be the best solution.

Our approach proposes the utilization of a P2P model
that allows the users to collaborate by publishing their jobs
as “calls for proposal” (cfp), in the same way as it occurs in
file sharing systems. On the other hand, the business model
is based on the competition among servers, which seek
shared proposals and try to answer as soon as possible in
order to obtain the offered reward.

IV. P2P COMPETITIVE SCHEDULING OF USERS’

JOBS

In this section, we propose a competitive approach for
P2P distributed computing, whereas the roles of involved
parties are inverted if compared to the Grid, Cloud
computing or web services models: clients publish jobs on a
P2P network overlay (“call for execution”) while the servers
look for these and compete to deliver the results. Calls for
execution describe the requirements of the application, the
credits the user would pay and, optionally, a deadline before
which the results should be available.

While in the Grid model, and in traditional architectures
for distributed scheduling, the job owner is in charge to
choose the execution node, to check its compliance with the
application requirements and to ask for the execution, in the
proposed model these issues must be managed at server
side. We think that the proposed approach would be very
effective in the Cloud market, where providers can set up
virtual, specialized environments for the execution of
different jobs and use the idle ones to satisfy the user’s
request. Virtualization is commonly used by Cloud providers
to improve the throughput of their hardware resources:
thanks to the modern Cloud computing paradigms, the
configuration of the task execution environment can be
easily adapted to match the application requirements by
exploiting the virtualization technology.

 In our model, providers can exploit at the best their
resources, and the Cloud IAAS, by managing both their

overbooking and their smart scheduling. We try to design
our model as much similarly as possible to current P2P
systems for file sharing whose success in the Internet
community has been bigger than the Grid.

It is evident, according to what has been discussed in the
previous paragraphs, that many issues must be addressed in
order to consider the P2P model as a viable relay for
distributed computing at business level. This topic is out of
the scope of this paper.

In the model, two kind of peers are defined: buyer and
seller peers. User peers publish application descriptors, in the
same way a file is commonly shared in P2P file sharing
systems. The descriptor includes all the hardware and
software requirements, as well as other constraints like the
time within the results must be delivered and the offered
reward. Clearly, it includes the info required for retrieving
the task code and data. Seller peers crawl the network
looking for published jobs, analyze the constraints, and
choose to accept the proposals according to their own policy.
For each retrieved request, the seller peer is able to evaluate
its ability to fulfill the requirements and its convenience to
accept the task. Multiple seller peers can accept the same
task, and different patterns can be defined, e.g. the buyer
could state that only the first business peer that delivers the
results will be awarded, so that the seller peers will have to
compete for being be the first one that completes the job.
However, this is not the only possible pattern (e.g. in
SETI@Home, multiple peers execute the same tasks and
results are matched against each other).

Our model allows asynchronous mechanisms to be
adopted: the user peer who published its job can disconnect,
being aware that the results will be delivered according to
what is specified in the job descriptor. This approach could
be effective within today business scenario, where multiple
providers exist and compete to promote their own services..
Furthermore, it allows for some flexibility (e.g. sellers could
act as brokers that use resources provided by commercial
Clouds providers).

Some keystones of the approach are:

 Client peers publish ”calls for execution”;

 Server peers discover and download calls for
execution. Furthermore, they retrieve the code to be
executed and the data;

 Server peers compete to complete as many as
possible jobs to maximize their incomes;

 Clients can disconnect at any time: computation
continues at server side;

 Workload balancing can be implemented.

 A business model is required to promote the
execution of one’s own applications.

 It is effective in an industrial environment.

 Configurations of virtual machines, or general
computing resources, are set up according to the
application’s specific requirements.

107

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 117 / 237

V. IMPLEMENTATION

A prototype implementation of the above described
model has been developed. In our implementation, the client
and business peers are named, respectively, Buyers and
Sellers, to highlight the market-like modeling of the system.

We have extended jKad [20], a publicly available open
source implementation of the Kademlia [19] protocol
released under GNU Lesser GPL. Each actor is composed by
a set of different modules, each one performing a specific
task. Figure 1 shows the modular architecture we have
implemented.

The Buyer is composed of three modules:

 The P2P GUI, that implements a Graphical interface
that allows the user to define the job properties
according to the ontology.

 The Job Sharing is responsible for publishing the
jobs submitted by the user into the P2P overlay.

 A Network module, that interacts with the Sellers,
exchanging data files and results.

The Seller is composed of:

 A Job Discovery module, that is in charge of
crawling the network in order to discover available
CFEs (Call for Execution).

 A Parser, that analyzes the retrieved jobs.
Furthermore, it interacts with the Buyer’s Network
module to retrieve the data required for the job’s
execution.

 A Job Queue Manager, that sequentially schedule
the jobs.

 A Result manager, responsible for interacting with
the Buyer’s Network module in order to return the
results.

A. P2P technology

The underlay system is a Kademlia-like P2P network. It
has been chosen because of the major properties that DHT-
based (Distributed Hash Tables) [27] P2P systems bring to
applications (predictability of key research, robustness
against node failures, etc.) and because of its simple
protocol. In fact, only four messages are defined by the
protocol:

 PING (node): to verify if a peer is still alive.

 STORE (key,value): to store a (key,value) pair in
one or more nodes of the network.

 FIND NODE (node): to retrieve the k nodes that are
closest (according to a XOR metric) to the node used
as parameter.

 FIND VALUE (key): a node receiving this message
returns the corresponding value if it has the
requested key in his store. Otherwise, it will behave
as upon receiving a FIND NODE.

As described in Figure 2, Buyers can publish jobs at any

moment. Sellers look for shared CFEs and choose, for each
job, whatever it is convenient or not to accept it. Once the
job’s descriptor is downloaded, the Seller can start the job

execution. Results are then returned to the Buyer;
consequently, the Seller can get its reward if the results and
the timing are compliant to the job requirements.

As already mentioned in the previous paragraphs,
multiple patterns are possible: the reward could be awarded
to the first Seller who executes the task, or to all those able
do deliver the results before a given deadline, or to the first
“n”, etc. The analysis of this topic is beyond the scope of this
paper.

B. Prototype description

The P2P GUI module allows users to specify the job
requirements and to publish CFEs. The input form (Figure 3)
is dynamically drawn by the application according to an
OWL template. A hash of the data entered by the user is then
calculated and published into the P2P overlay network.

Publishing is performed by the Job Sharing module and it
is implemented as a simple STORE message on the
Kademlia network, using a special label as a key that
identifies the shared job descriptor.

Figure 1. The architectural model

Figure 2. Sequence diagram describing the seller and buyer interactions.

108

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 118 / 237

Figure 3. User interface for job publishing and discovery

Sellers, through the Job Discovery module, crawl the
network looking for CFEs, using the FIND VALUE
message. Once a job is retrieved, its descriptor is analyzed by
the Parser module. The descriptor contains information about
the type of executable, application requirements, the time
constraints, the reward and further details that are
summarized in Table I. The Parser, then, will interact with
the Buyer’s Network module to download code and data
required by the job. Notice that, for simplicity, no
negotiation mechanism has been implemented: once a job
descriptor is retrieved, the Seller checks if the requirements
can be fulfilled, then decides if it is worth to accept the task.

The decision-making mechanism does not take in
consideration whatever any other Seller could be already on
the same CFE. Accepted jobs are managed by the Job Queue
module, that will sequentially schedule them. Finally, the
Result Manager will interact with the Buyer’s Network
module in order to return the outputs.

An ontology has been created, that allows to define the
application details and the application specific
hardware/software requirements in a not ambiguous way.
Some of the concepts are listed in Table II.

VI. EXPERIMENTAL RESULTS

In order to evaluate the behavior of the described
prototypal implementation, under both functional and
performance points of view, a testing environment has been
set up. The developed software platform emulates the
proposed approach, enabling the analysis of the system
dynamics, including the overhead introduced by the adoption
of the Kademlia protocol. In Figure 4, a communication
diagram of the software platform is showed.

TABLE I. APPLICATION DETAILS

Variable Meaning

Universe

Specific the kind of application that is been submitted

(Exe file, java executable, etc.)

Unique ID

Identifier used to retrieve the code and data inputs on the

overlay network.

Executable file The name of the main executable file

Input The url where the package can be retrieved

Output The url where the results can be sent

Contract owner A unique indentifier of the job submitter

Budget The reward offered for the job execution

Deadline The date by which the task must be completed

Owner email Email contact of the owner

TABLE II. APPLICATION SPECIFIC HARDWARE AND SOFTWARE

REQUIREMENTS

Variable Meaning

CPU
Architecture Possible constraints on the CPU type

N.of CPUs Number of required CPUs

RAM Minimun amount of available ram required

Libraries Possible required libraries – Optional

OS Possible required OS – Optional

Storage Minimum amount of free storage required

Different test cases have been defined. Each of them is

characterized by a set of meaningful parameters, whose
combination leads to a different statistical behavior of the
system. The most relevant parameters that can be set for each
test case are:

 Job Arrival rate.

 Number of peers in the system.

 Mean and standard deviation. It depend both on the
computational requirement of the task and on the
computing power of the seller peer. Times are
modeled as Gaussian distributions.

 Cool down (time between subsequent network
scans).

 Maximum allowed concurrency level (MAC). It is
the number of peers that can simultaneously compete
on a single task.

The test analysis has allowed us to detect interesting
system dynamics. In particular, we evaluated the mean queue
time that a job has been waiting inside a buyer’s queue, the
mean execution time and the mean time of permanence
within the overlay network.

109

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 119 / 237

Figure 4. Testing platform: communication diagram

The results are compared with the values obtainable by
running the reference job on a single dedicated server: we
can model it as a scenario with reference mean execution
time, and mean queue time equal to zero. Considering that a
traditional PaaS environment allows the customer to
autonomously manage the obtained server instance, the
reference scenario correspond to what a user would expect
by executing the same kind of tasks on a commercial PaaS
cloud service (e.g., Amazon EC2 [21]).

For testing purposes, specific assumptions have been
made: the first one is that the service providers have,
globally, enough available resources to manage the overhead
introduced by the competitive scheduling layer.

In other words, it means that, for the set job arrival rate,
the global permanence time converges to a finite value. As
long as this assumption is proved true, our tests show an
improvement in mean system permanence times. Test set 3
describes a scenario where this assumption becomes untrue
for one of the tested MAC values. The second assumption is
that service providers consider cost-effective to commit
resources to compete for job executions rather than keeping
them idle.

A. Test set 1

The test has been performed with the following
parameter settings:

 Job Arrival rate: 5 jobs per minute.

 Mean: 300 s.

 Standard deviation: 40 s.

 Number of peers: 300.

 Cool down: 120 s.

The test has been performed with two distinct MAC level
values. As it is evident in Figure 5 and in Table III, in both
cases, the mean permanence time of jobs in the system is
lower than the mean execution time of the single job. This
result is due to multiple peers competing to execute the job
and deliver the results, so the actual execution time is
definite by the peer that is the quickest one to perform the
execution. Notice how an increase of the MAC value has
lead to get a better mean of the system permanence times,
despite the increasing queue time.

Figure 5. Performance results of test set 1

110

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 120 / 237

TABLE III. PERFORMANCE RESULTS OF TEST SET 1

First test

(MAC =3)

Second test

(MAC=6)

Reference

Platform

Mean queue time 1,339689655 2,348795559

0

Mean execution

time 262,7362816 250,6696798

300

Mean system

permanence time 264,2982312 253,0184754

300

B. Test set 2

The test has been performed with the following
parameter settings:

 Job Arrival rate: 6 jobs per minute.

 Mean: 400 s.

 Standard deviation: 40 s.

 Number of peers: 2000.

 Cool down: 120 s.

As it has already been done in the previous scenario, this

test has been performed with two distinct MAC level values.
Figure 6 and Table IV summarize the results.

This test shows again, for both test cases, an
improvement of the system permanence time compared to
the baseline execution time. Notice, however, how the
increased MAC value (test case 2) does not lead to better
overall system permanence times: the increased queue time,
due to having too many business peers fighting over each
CFE and so less frequent network crawling.

Figure 6. Performance results of test set 2

TABLE IV. PERFORMANCE RESULTS OF TEST SET 2

First Test

(MAC = 2)

Second Test

(MAC=5)

Reference

Platform

Mean queue time 0,878025466 7,532815631

0

Mean execution

time 378,506824 372,9120812

400

Mean system

permanence time 379,3848495 380,4448968

400

C. Test set 3

The test has been performed with the following
parameter settings:

 Job Arrival rate: 6 jobs per minute.

 Mean: 600 s.

 Standard deviation: 40 s.

 Number of peers: 300.

 Cool down: 120 s.

Once again, this test has been performed with two
different MAC level values. Results are summarized by
Figure 7 and Table V. It is evident that, for a MAC = 6, the
assumption of mean permanence time converging to a finite
value is not proved: in this case, the reference platform
would perform better than the system with the added
competitive scheduling overlay.

Figure 7. Performance results of test set 3

TABLE V. PERFORMANCE RESULTS OF TEST SET 3

First test

(MAC =3)

Second test

(MAC=6)

Reference

Platform

Mean queue time 2,2465506542 →+∞

0

Mean execution

time 567,44207082 554,254621

600

Mean system

permanence time 569,68862147 →+∞

600

VII. CONCLUSION

We presented a competitive approach for job scheduling
in a P2P overlay of Cloud providers. Cloud technology is
used for effective set-up of virtual resources which are
compliant with application’s requirements. The P2P overlay
is used to publish and discover jobs’ “calls for execution”
and to overcome the complexity of negotiation mechanisms.
Competition of providers is investigated to implement a
business model where the cost is fixed by the users and
providers try to respond and adapt.

We investigated the effectiveness of the proposed
approach by implementing a framework that emulates the

111

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 121 / 237

network protocols and the peers behaviors. The experimental
activities validate our hypothesis that a competitive
approach, in distributed scheduling environments, does not
only decreases the threshold required to access the facilities,
but it can also lead, if properly set up, to substantial
performance gains. More specifically, this objective can be
achieved by setting an appropriate level of competition
between the infrastructure managers. A fine balancing must
be pursued: too many competitors increase the concurrence
over each submitted job. As a result, we notice a degradation
of the system performances due to longer queue times.

VIII. ACKNOWLEDGMENT

This research is supported by the grant FP7-ICT- 2009-5-
256910 (mOSAIC [22]).

IX. REFERENCES

[1] e-IRG, “White paper 2009,” June 2009, http://www.e-
irg.eu/images/stories/publ/white-papers/e-
irg_white_paper_2009_final.pdf, (last accessed 18/8/2011).

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Generation
Computer Systems, vol. 25, n. 6, June 2009, pp. 599-616,
doi:10.1.1.144.8397.

[3] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“Seti@home: massively distributed computing for Seti,” Computing
in Science and Engg., vol. 3, n. 1, 2001, pp. 78-83,
doi:10.1109/5992.895191.

[4] A. Forestiero, C. Mastroianni, and M. Meo, “Self-Chord: a Bio-
Inspired Algorithm for Structured P2P Systems,” 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGrid 2009), Shanghai, May 2009, pp. 44-51,
doi:10.1109/CCGRID.2009.39.

[5] A. Forestiero, E. Leonardi, C. Mastroianni, and M. Meo, “Self-Chord:
a Bio-Inspired P2P Framework for Self-Organizing Distributed
Systems,” IEEE/ACM Transactions on Networking, vol. 18, n. 5,
October 2010, pp. 1651-1664, doi: 10.1109/TNET.2010.2046745.

[6] J. Linnolahti, “QoS routing for P2P networking,” Helsinki University
of Technology, Department of Computer Science, 2004,
doi:10.1.1.58.7192, http://www.tml.tkk.fi/Studies/T-
110.551/2004/papers/Linnolahti.pdf, (last accessed 18/8/2011).

[7] Y. Wang, L. Wang, and C. Hu, “A QoS Negotiation Protocol for Grid
Workflow,” Grid and Cooperative Computing (GCC 2006), Fifth
International Conference, Dec. 2006, pp. 195-198,
doi:10.1109/GCC.2006.14.

[8] G. Antoniu, M. Jan, and D. Noblet, “A practical example of
convergence of P2P and grid computing: an evaluation of JXTAs
communication performance on grid networking infrastructures,”
Proc. IEEE Symp. Parallel and Distributed Processing (IPDPS 2008),
June 2008, pp. 1-8, doi:10.1109/IPDPS.2008.4536338.

[9] R. Buyya , D. Abramson, J. Giddy, and H. Stockinger, “Economic
models for resource management and scheduling in Grid computing,”
Concurrency Computat.: Pract. Exper., 2002, vol. 14, pp. 1507–1542,
doi:10.1002/cpe.690.

[10] B. Cao, B. Li, and Q. Xia, “A Service-Oriented Qos-Assured and
Multi-Agent Cloud Computing Architecture,” CloudCom’09, LNCS,
vol. 5931, Springer, 2009, pp. 644-649, doi:10.1007/978-3-642-
10665-1_66.

[11] S. Venticinque, R. Aversa, B. Di Martino, and D. Petcu, “Agent
based cloud provisioning and management: design and protoypal
implementation,” Proc. of Cloud Computing and Services Science
(CLOSER), SciTePress, 2011, pp. 184-191.

[12] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in
Practice: The Condor Experience,” Concurrency and Computation:
Practice and Experience, vol. 17, 2005, pp. 2-4, doi:10.1.1.6.3035.

[13] N. Drost, R. V. van Nieuwpoort, and H. Bal, "Simple Locality-Aware
Co-allocation in Peer-to-Peer Supercomputing," Sixth IEEE
International Symposium on Cluster Computing and the Grid
Workshops (CCGRIDW'06), 2006, p. 14, doi:10.1.1.78.1535.

[14] I. Foster and A. Iamnitchi, “On death, taxes, and the convergence of
peer-to-peer and grid computing,” In 2nd International Workshop on
Peer-to-Peer Systems (IPTPS03), 2003, pp. 118-128,
doi:10.1.1.104.7210.

[15] A. Ghatpande, H. Nakazato, O. Beaumont, and H. Watanabe,
“Analysis of divisible load scheduling with result collection on
heterogeneous systems,” IEICE Transactions, vol. 91-B, n. 7, 2008,
pp. 2234-2243, doi: 10.1093/ietcom/e91-b.7.2234.

[16] I. Stoica, “Chord: a scalable peer-to-peer lookup protocol for internet
applications,” IEEE/ACM Transactions on Networking (TON), vol.
11, n. 1, Feb. 2003, pp. 17-32, doi:10.1109/TNET.2002.808407.

[17] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards Trusted
Cloud Computing,” USENIX, Proceedings of the 2009 conference on
Hot topics in cloud computing (HotCloud'09), San Diego, CA, USA,
2009, doi:10.1.1.149.2162.

[18] Survey: “Cloud Computing ’No Hype’, But Fear of Security and
Control Slowing Adoption,” July 2011,
http://www.circleid.com/posts/20090226_cloud_computing_hype_sec
urity/, (last accessed 18/8/2011).

[19] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric,” Revised Papers from
the First International Workshop on Peer-to-Peer Systems (IPTPS'01),
2002, pp. 53-65, doi:10.1.1.18.6160.

[20] B. Penteado, “JKad: Java implementantion of the Kademlia
Network,” http://code.google.com/p/jkad/, (last accessed 18/8/2011).

[21] Amazon Elastic Compute Cloud (Amazon EC2), July 2011,
http://aws.amazon.com/ec2/, (last accessed 18/8/2011).

[22] mOSAIC, July 2011, http://mosaic-cloud.eu/, (last accessed
18/8/2011).

[23] C. Gonzalo, “Peer-to-Peer (P2P) architecture: Definition, taxonomies,
examples, and applicability," Internet Requests for Comment, RFC
Editor, Fremont, CA, USA, Tech. Rep. 5694, Nov. 2009,
http://www.rfc-editor.org/rfc/rfc5694.txt, (last accessed 18/8/2011).

[24] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
National Institute of Standards and Technology, vol. 53, n. 6, 2009, p.
50.

[25] C. Kesselman and I. Foster, “The Grid: Blueprint for a New
Computing Infrastructure,” Morgan Kaufmann Publishers, Nov.
1998.

[26] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and R. Katz, “Above
the Clouds: A Berkeley View of Cloud Computing,” Electrical
Engineering and Computer Sciences University of California at
Berkeley, Technical Report No. UCB/EECS-2009-28, Feb. 2009,
doi:10.1.1.149.7163,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-
28.pdf, (last accessed 18/8/2011).

[27] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Looking up data in P2P systems,” Communications of the ACM,
2003, vol. 46, no. 2, pp. 43-48, doi:10.1145/606272.606299.

112

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 122 / 237

Towards Green HPC Blueprints

Goran Martinovic, Zdravko Krpic
Faculty of Electrical Engineering

Josip Juraj Strossmayer University of Osijek
Osijek, Croatia

e-mail: goran.martinovic@etfos.hr, zdravko.krpic@etfos.hr

Abstract—Effectiveness and power consumption is becoming a
major problem in high-performance computing. Numbers of
researchers are working on methodologies in order to increase
efficiency of these systems on hardware and software levels.
Several “green” technologies are explained in this paper along
with their pros and cons, with the aim of improving the power
efficiency for high performance computers and cloud
computing systems. Many of the aspects of green HPC are still
in their initial stages, so this paper analyzes recent
contributions in that respect, and proposes related work for
every “green” improvement of HPC systems. It gives detailed
blueprints for the Green HPC using state-of-the-art
technologies from this field of research.

Keywords - green computing; high performance computing;
cloud computing; energy efficiency.

I. INTRODUCTION
Throughout the history of High Performance Computing

(HPC), raw processing power was a primary concern.
Various companies have had tendencies to build bigger
computer systems in order to solve demanding computing
tasks which could not be done on mainstream computer
machines, or at least, in a reasonable time. As computer
power grew, so did its “pat on the back” - heat dissipation,
power consumption, production costs and software costs. A
mere “petaflop race” became too expensive to participate in,
although some institutions ignored the phenomenon of power
consumption increase, claiming that this is a normal
evolution of HPC. The “Green Destiny” Project [1] proved
them wrong, and caught a tremendous amount of interest in
both the computing and business industries. This revelation
lead to different theories, but in the end, most computer
scientists agreed that the energy footprint from the computers
must be reduced, trying thereby to preserve performance.
This being the case, various “Green” standards, such as
EPEAT; for details see [2], Energy Star 5.0, [3], and RoHS
directive [4], that were established as a guide for HPC
equipment manufacturers and Cloud Computing (CC)
vendors.

The second important reason for reducing HPC energy
consumption is of a financial nature. HPC centers and CC
system holders tend to exploit their resources in the most
economic way, thus increasing the profit. In the world of

ever-growing HPC systems, CC systems and service
computing, the ability to offer more resources imply large
expenses for maintenance, cooling and electric bills.

The purpose of this paper is to give a basic insight into
available and proposed methods for the “Greening” of HPC
and CC systems, as well as their positive and negative
impact on performance and energy savings. Every method
will be referred to related work.

The rest of the paper is organized as follows: Section 2
introduces possible “green” solutions for HPC and CC
systems, while in Section 3, every solution is elaborated and
supported by examples from available sources. Section 4
uses tiered HPC design to pinpoint objects for implementing
proposed solutions. Finally, Section 5 concludes the paper
and announces future research by authors.

II. SOLUTIONS AND RELATED WORK
Hardware manufacturers are constantly introducing lower

power Integrated Circuits (ICs), which are the basis for
reducing power consumption, and overall running costs of
HPC/CC systems. Certain authors, as in [5] and [6], claim
that advanced power management plays a key role in
“greening” the computing systems. Some authors, e.g., [7]
and [8] propose their vision of reducing the footprint of HPC
energy footprint reduction through the use of advanced task
management tools (high and low level schedulers and
mappers) and frameworks. Other sources partially rely,
amongst others, on “smarter applications”, efficient
programming and reconfigurable compilers, such as in [9]
and [10]. However, a true energy-efficient HPC is an ideal
combination of all the aspects mentioned. Careless disabling
of the compute nodes while they are not in use, switching
power states too often, reducing CPU frequency too much,
incorporating bulky resource monitoring systems, using
over-complicated scheduling systems and algorithms, can do
more damage than good, resulting in even minor
performance systems and bigger power consumption. The
more “Green” technologies are used, the greater care should
be taken to successfully balance their impact on reducing
power consumption, while trying to keep acceptably high
performance. The existing research in this area is based on
testing the green methods for computing systems, as in [11]
and [12]. In [11], a bit more technical approach is given, and
the authors are based mostly on greening the data centers and

113

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 123 / 237

servers. In [12], a survey and taxonomy for green computing
systems is given, but not all the green aspects are covered.
Other topics are discussed in detail.

III. THE “GREENING” LEVELS OF AN HPC SYSTEM

A. Hardware General
Driven by large expenses of running HPC systems,

vendors prompted computer manufacturers to build their
systems in a more eco-friendly manner. Creating power-
efficient hardware is undoubtedly the basis for building
Green HPC/CC systems. A single PC consumes on average
200W, which is the power of two light bulbs, but HPC
systems such as computer grids and clouds consume much
more. Computer grids punched the MW limit in power
consumption, and every upgrade demands a new approach
for cooling systems and power sources. As the world’s top
supercomputing organizations found that mere increase in
size and number of their systems has a negative impact on
running costs, green supercomputing ideas were born. The
process of greening computing resources started at hardware
level. There were several key technologies that lead to
significant energy savings. First, there was denser Very-
large-scale Integration (VLSI) of chips, which ultimately led
to multi-core chips and an increasing number of integrated
components in the CPU die. Intel, for example, has recently
announced a 22nm 3-D Tri-Gate technology, [13], which
offers lower operating voltages and leaking currents in order
to gain more performance per Watt (increasingly popular
metrics used for measuring power-efficiency of a computer
system). The same manufacturer has announced a 15nm
technology by 2013 and 10nm by 2015, continuing to follow
Moore’s Law. In this way, unnecessary buses are removed
from the system, cache and memory bandwidth are
increased, providing at the same time solutions to a major
problem of HPCs – memory bandwidth limitation. Since
these modern HPCs have the memory bandwidth bottleneck,
increased energy efficiency is granted. Also, a new era of
low power chips emerged, providing less horse power, but
with greatly increased power savings and reliability.
Hardware technology advances also promise greater control
over energy consumption of other components in the
computer system. Leading CPU manufacturers, including
AMD, Intel, Sun and IBM, offered their representative low
power CPUs, which clearly states the importance of power
savings, especially for HPCs. The importance of the given
fact applies also to Graphics processing units (GPUs), which
have recently evolved from a special purpose to an efficient
high performance processing units. The Chinese Tianhe-1A
is a good example of harnessing GPU power in order to
achieve true supercomputing performance, but at lower
energy footprint.

With respect to gains, manufacturers claim that the 22nm
technology could bring up to a 37% performance increase at
low voltage compared to actual 32nm, and a 50% power
reduction at constant performance. An increase in VLSI
density resulted in multicore processors, CPU-GPU
integration and high performance GPUs. Even the other
components such as chipsets, PSUs, disk drives and network

systems, tend to have reduced energy footprint by using
more advanced microcontrollers and ICs.

In relation with cons, as any other new technology, new
production facilities should be built, which again questions
the “greener process” of technology advance. But,
considering many platforms based on the new technology,
power saving benefits should be able to overcome
production costs.
B. Power Management

The drive towards sustainable IT, which encompasses
HPC and CC systems, has encouraged the creation of metrics
claiming to quantify energy usage and apply objective math
to the measurement of data center efficiency. Even different
benchmarks for new age supercomputing systems are
proposed, e.g., [14]. There are several metrics proposed for
measuring data center power efficiency. The Green Grid, a
consortium of IT industry experts has presented a series of
proposals for IT facilities power measurement. The Green
Grid proposes two key metrics for data center efficiency, and
these are: Power Usage Effectiveness (PUE) and Data Center
Efficiency (DCE), as in [15]. For example, the metrics of the
former is based on the ratio between Total Facility Power
(TFP) and IT Equipment Power (IEP):

IEP
TFPPUE = . (1)

The Green Grid consortium, along with some others,

including the work from [5], offer proposals for a complete
power assessment of IT installations, which consist of
analyzing present states, pinpointing weak points of systems
which cause power inefficiency and giving propositions for
improvements. Establishing a good Green metrics gives
organizations valuable guidelines to reduce their costs by
utilizing power management.

In addition, advanced power states have been
incorporated in systems for years now. In green HPC, the
reason for using multiple power states is to adapt HPC power
consumption to real needs. The Advanced Configuration and
Power Interface (ACPI) replaced old Advanced Power
Management (APM), and introduced new techniques for
more thorough power consumption suppression. The ACPI
has the ability not only to reduce the processor speed, but
also to monitor other components, thus providing greater
versatility in a disabling system which is not used. The
biggest power consumers in the computer system can be seen
in Fig. 1, based on the survey in [11]. The low power states
(also called the S-states) are used at the node level. The S-
states which have the best power saving/wake up time ratio
as suggested by authors, are S3 (“Suspend to RAM”), S4
(“Suspend to disk”) and S5 (“soft off”). By using these
states, nodes are deactivated when they are not needed, and
woken up or turned on when the running HPC/CC system
demands more performance. This approach can greatly
reduce power consumption, if the time and energy needed to
power down or wake up the node do not affect the overall
revenue. That is, changing power states can be performance
and energy consuming, as highlighted in [16].

114

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 124 / 237

Gains can vary depending on the level of power plan
adaptation, power state changing frequency, power changing
cost of a system, etc. Researchers in [6] predict about 10 –
13% of power saved, up to 32% with energy proportional
devices with deviance less than 5%.

Figure 1. Power consumption in a typical HPC node, based on data from

[14]

Power saving policies can significantly improve system
scalability.

Cons are mainly based on the power changing costs
(wake up time and energy), reduced reliability (especially for
hard drives, because of their limited power on/off cycles -
40,000 on-off cycles claimed by HP for their machines),
financial burden of adaptation to power requirements, etc.

C. Dynamic Voltage and Frequency Scaling, CPU and
Memory Throttling
The primary power saving technology at CPU level is

DVFS (Dynamic Voltage and Frequency Scaling), which
enables current, voltage and frequency reduction of CPU
when its utilization is below some threshold. Since energy
consumption is proportional to frequency squared, DVFS
offers a promising approach to reduce energy usage. Another
benefit of lowering the frequency is the reliability. In the
time of the “GHz race” (in 1990s and early 2000s),
processors became more and more subject to failure, which
from the perspective of a multi-processor system, such as
Grid or Cloud, is an important issue to be reckoned with.
However, larger voltage ranges do not improve power
efficiency, as shown in [17]. They demonstrated that for sub-
threshold supply voltages, leakage energy becomes
dominant, making “just in time completion” energy
inefficient. They also showed that extending voltage range
below half Vdd will improve energy efficiency for most
processor designs while extending this range to sub-
threshold operations is beneficial only for specific
applications. Supply voltage can be reduced if frequency of
operation is reduced. If reduction in supply voltage is
quadratic, then an approximately cubic reduction of power
consumption can be achieved. However, it should be noted
that frequency reduction slows the operation.

Memory throttling is similar to CPU throttling, but
instead of lowering the frequency, it is basically the
limitation of memory bandwidth based on the current
memory bandwidth request. There are several memory

throttling technologies already in use, e.g., Intel’s Closed
Loop Thermal Throttling (CLTT), and Open Loop
Throughput Throttling (OLTT).

The benefits of memory throttling are studied in [18],
where authors managed to achieve up to 35% reduction of
the total memory power consumption. There were some
limitations, however, because the results have shown that
40% of memory power consumption is not controllable, also,
a memory bandwidth was limited to 75%. In the system with
the memory throughput up to 100%, as much as 60% of
memory power consumption can be saved if memory is not
needed.

Authors in [18] offer an insight into the types of
applications where memory throttling does not improve
power savings. These are the applications with low memory
requirements, or highly optimized applications with heavy
cache usage.

D. Power Aware OS
Low power operating systems are mainly researched for

mobile platforms, and embedded systems. But the advances
in these operating systems can be applied to the world of
HPC. HPC/CC operating systems play the key role in
resource efficiency. First, the OS should be aware of the
current load of the node, and when the node is loaded, other
non-essential tasks should be treated as low priority tasks
and be given only a portion of resources. The OS should be
aware of the task priority and adjust the resources
accordingly. Other features of Green computing such as
DVFS, advanced power states, throttling, task scheduling,
load balancing and a dynamic adaptation of the HPC
environment to the current need should be all issued by the
HPC/CC operating system.

Greening level: as much power saving as a combination
of installed power saving technologies (if the OS contains
routines which successfully exploit them).

Cons: The OS with many processes (which manipulate
the power saving technologies) can degrade performance of
the HPC.

E. Virtualization
Virtualization is one of the fundamental software

technologies that leads to a development of CC systems.
Even though virtualization mostly applies to CC systems,
migration of this technology to HPC is almost inevitable, so
its energy savings can be taken into account when sketching
“greener” HPC. Virtualization enables more thorough use of
CC systems' resources, because it provides an abstraction of
real resources and resource transparency. If a node is to be
used, a Virtual Machine(s) (VM) takes possession of the
nodes’ resources up to VMs maximum. If not all of nodes’
resources are taken, another VM or VMs can occupy the rest
of the same physical node, which enables efficient use of the
resources and application scaling. There are several
virtualization technology vendors active, such as Xen,
VMWare, KVM and Virtualbox, and a lot of work is based
on virtualization in the HPC world (e.g., [12], [19], [20]),
thus the term can be regarded as one of the postulates of
Green HPC/CC. VMs are the media which can hold other

115

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 125 / 237

“green” technologies, such as dynamic power policies,
managing Source Level Agreements (SLAs) in cloud
computing systems, DVFS, and workload balancing.

Gains are the combination of gains from other “green”
technologies contained in VM, especially excellent
scalability and resource provisioning.

Cons: VMs can be inert, so resource scaling can be slow.
Every VM contains resources for its internal functionality
(by OS), so if there are several VMs on one physical node, a
great deal of resources is dedicated to it (mostly memory and
disk space).
F. Task Scheduling, Application Granulation

A lot of work was conducted in this area even before
green computing ideas were born, cf. [21]. The high
application granularity level is a key for economical resource
provisioning and application scalability, especially on
heterogeneous computer systems. That includes optimal
parallel programming in the way of making independent
tasks that can be executed concurrently. After the application
is submitted to HPC resources a high level scheduler takes
care of running the application instances, and a low level
scheduler/mapper assigns tasks to resources (nodes,
processors, cores) in HPC environment, more in [7]. The
tasks should be kept as small as possible, so that the
applications could be more scalable, and efficiently use up
computing resources. There are newer approaches, which
already implement energy aware scheduling, for details see
[8].

Gains: An intelligent scheduling/mapping system can
lead to significant utilization efficiency, good resource
provisioning and increased scalability. The exact energy
savings can vary.

Problems in this area are caused by different task sizes,
which refer to highly heterogeneous jobs for running on
computer systems, data dependencies among tasks,
scheduling duration and Amdahl’s law.
G. Power Aware Compilers

Not only that power aware compilers should be present in
embedded systems to reduce power consumption while
compiling an application, they could also improve power
efficiency of applications running on HPC nodes. These
compilers would have direct control over DVFS, DCD
(Dynamic Component Deactivation) and power management
routines for resources in the HPC system. At the moment of
compiling a code, a compiler should adapt the application for
efficient execution on the proposed systems, and be aware of
the past executions of similar applications and adjust
resource usage accordingly. Automatic parallelization
compilers could serve as a potent platform for additional
power, voltage and frequency aware compilation, and could,
in addition to efficient parallelization, improve usage of HPC
system resources.

An interesting example, see [19, p. 72], shows that by
using the ifort 9.1 compiler for compiling a simple matrix
times a matrix (MxM) operation on Pentium 4 running at
2.8GHz, the two loops deliver 0.97GF/s, and by using ifort
10.0 performance rises to 2.6GF/s. From the aforementioned

example it can be seen that a certain code can be several
times faster on a more efficient compiler. Some of the
compiler optimization methods are automatic loops
exchange, automatic loop enrolling, replacing the subroutine
calls with direct kernels, ignoring the “if” statements in the
loops, etc.

Cons: sometimes a more advanced compiler has a trouble
understanding the programmer’s intention, which can output
wrong results.

H. Resource Utilization Monitors
Resource Utilization Monitors (RUMs) should contain

up-to-date information about resource utilization in the
systems. The information about system load would then be
transferred to other vital components of HPC, such as OS,
Virtual Machine Managers (VMMs), power aware
compilers, prediction policies and task schedulers. Such
monitor is the basis for a highly promising green technology
– the prediction. Various logs about application runs, errors,
power state changes, voltage and frequency changes, VM
migrations, CPU and memory load, and other components
usage over time can enhance statistical analysis of resource
use. An example of such proposed system can be found in
[22], describing the OVIS project – an attempt to exploit
HPC resources over cloud services. The approach addresses
a scalable collection and analysis of resource metrics from
both component-health and resource utilization perspectives,
and hence it can contribute to the application-tailored
resource allocation of hardware and the subsequent
allocation and/or migration of virtual resources on the
hardware.

Pros: works concurrently with prediction technologies
and task scheduling. RUMs can enhance statistics for
investing in a HPC upgrade.

Cons: a resource monitor and load balancer uses
resources as well, and in the case of a highly heterogeneous
environment it can lead to periodic slowdowns.

I. Prediction, Analysis of Past Executions
By monitoring the HPC system load, efficient tuning and

adjustments can be made in order to improve future
application executions. That involves smart application
mapping, removing unnecessary resources, disabling error-
prone nodes, analysis of power wastage sources, etc.
Significant improvements can be made to reduce power
consumption in HPC systems by applying knowledge gained
by resource monitoring systems. It is essential that the latest
information collected has the greatest priority in future run-
time decisions because this technique ensures acceptance of
every system change, hardware and/or software-wise without
the need to reset the logs.

Pros: most benefits of prediction can be felt in large
systems, where statistics is less prone to errors.

Cons: The “bed in” time of such system can make it
inoperable in the first period of use. Also, in smaller systems
there is more influence of special cases in the statistics of the
load, which can lead to false analysis.

116

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 126 / 237

J. Component-based Software Engineering
Based on [10], Component-Based Software Engineering

(CBSE) is an approach that deals with making different
software by combining reusable software components.
Making reusable/recyclable software lowers the software
production costs significantly, by reducing the equipment
and programmer utilization, what indirectly leads to power
savings. However, an impact of CBSE to Green HPC is not
entirely known, and it is part of future research that will be
done by authors.

Pros: Lower software production costs.
Cons: Components can often be very large, leading to

unnecessary overhead and diminished gains.

K. Programmer’s Contribution
All the research in making “greener” HPCs in the world

would not suffice if the programmer’s role in efficient use of
resources is ignored. This is the final frontier for a battle
against the energy spill in HPC/CC systems, and thus the
most important one. Programmer’s role gives utter
importance to conducting research in performance
optimizations in programming, and making the right tools for
parallel programming, debugging and compiling. After all, if
all of the technologies mentioned in this work are
inaccessible by the programmer, they cannot be utilized.

Pros: A high level of power adaptation for every aspect
of HPC/CC systems.

Cons: Programmer’s role is becoming more automated,
and error-prone.

L. Cyber-physical Approaches
Several researches regarding usage of physical

characteristics of HPC nodes in order to reconfigure the
system or reschedule tasks are conduced, but they are still in
their infant phase. In [20], thermal-aware scheduling was
proposed with the purpose of reducing hot air recirculation
among nodes in the HPC system. The load is balanced by
means of scheduling tasks according to the node
temperature. Other propositions involve various real-time
power meters attached to nodes with the purpose of scaling
the load corresponding to current power consumption.

Pros: Many physical characteristics can complement the
information needed to increase energy efficiency. These
characteristics often carry true information about the node
state, and bring valuable information on how to upgrade
energy efficiency.

Cons: Cyber-physical approaches demand additional
systems, which inject supplementary problems into HPC
environment. There is also limited physical information
which is relevant to power efficiency improvement.

IV. GREEN HPC BLUEPRINT
If the taxonomy from [9] is adopted, the HPC or CC

systems can follow the multi-tiered hardware architecture
shown in Fig. 2. Every method/solution from Section 3 can
be applied to (a) certain HPC components tier(s).

Figure 2. Tiered architecture of a typical HPC system

Fig. 2 in conjunction with Table 1 forms a picture for
green HPC blueprints. Table 1 represents corresponding tiers
for “greening” method implementations. Tiers are
deliberately arranged from the highest to the lowest, because
the purpose is to show the highest tier of implementation
first, and also because without power efficiency of high tier
components, power gains in the lower ones cannot be
efficiently exploited. The first level of improvement is
undoubtedly the manufacturing technology of hardware. The
improvements at these levels stretch through the whole HPC
systems, and present the basis for power production. Power
management can be applied to tiers 6, 5 and 4, as well as to
the network. Changing power states at tier 3 level is not
convenient. DVFS and throttling can achieve power savings
at tiers 6 and 5. Lower tiers can gain much and improve
greening technologies at these levels. A power-aware OS is
implemented in tier 4; these are nodes and virtual machines.
Virtualization integrates at tier 5 or tier 4, depending on the
SLA in the CC systems. Scheduling can be applied to
multiple tiers of the HPC system. Scheduling abstraction is
based on the current needs and application properties.
Power-aware compilers are implemented at tier 4, but they
can directly benefit from all the power-saving technologies
of higher tiers. Resource monitoring systems and prediction
based methods share the same tier of implementation. These
are often tiers below 4, depending on the amount of control
over HPC. CBSE, as the majority of software power saving
techniques, is implemented at tier 4. Programmer’s
contribution can be indirectly installed at every tier, but most
frequently controllable tiers today are tier 4 and 3. With the
advances of future systems, high tier components are
becoming more tightly coupled, so the hybrid green methods
are going to be introduced. These will comprise several
green technologies combined in power efficient fashion, so
either of which does not diminish gains of other ones.

Tier 2

Tier 1

Tier 3

Tier 4

Tier 5

Tier 6

SITE

CPU Core

NODE

RESOURCE

NODE

MEMORY

MEMORY
Bank

NODE

RESOURCE

CPU

GRID

SITE

CPU Core

HDD

RESOURCE

Internet

Bus

Cache

LAN

High speed
LAN

Inter-tier
communication

type

Abstraction
level

components

Abstraction
level

117

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 127 / 237

TABLE I. POWER EFFICIENT TECHNOLOGIES – TIERS OF
APPLICATIONS

“Greening” technology The tier of implementation
Hardware production technology tier 6, tier 5
Power management tier 6, tier 5, tier 4
DVFS, Throttling tier 6, tier 5
Power-aware OS tier 4
Virtualization tier 5, tier 4
Scheduling tier 6, tier 5, tier 4, tier 3
Power-aware compilers tier 4
Resource monitoring systems tier 4, tier 3, tier 2
Prediction tier 4, tier 3, tier 2
CBSE tier 4
Programmer contribution tier 4, tier 3

V. CONCLUSION AND FUTURE WORK
Future HPC and CC systems will have to deal not only

with the performance upgrades, but also with the
increasingly present green standards. Energy costs of running
these systems can be overwhelming even for large
institutions. Numerous projects try to address various issues
regarding the reduction of power consumption in these
systems. These are primarily hardware advances, which
cannot be exploited without appropriate software. Prior to
applying green techniques for HPC and CC systems their
overall revenue should be investigated, because not all of
them bring power savings and high performance. This is the
reason which implies that such attempts should be
thoroughly modeled first. We presented different
technologies for “greening” the HPC/CC systems, their pros
and cons, and a level of HPC/CC system where these can be
applied. Every “green” technology was referred to related
work and an example was given. In future work, we plan to
extend modeling of “green” technologies in HPC and CC
environments, and to investigate new means of enhancing
power savings in these systems. The possible combinations
of green technologies and hybrid green technologies are
going to be researched, as well as their gains compared to
contemporary ones. Also, the impact of reusable software in
terms of software cost reduction, and thereby also in terms of
green HPC systems, is going to be evaluated.

ACKNOWLEDGMENT
This work was supported by research project grant No.

165-0362980-2002 from the Ministry of Science, Education
and Sports of the Republic of Croatia.

REFERENCES

[1] M. Warren, E. Weigle and W-C Feng, “High-Density
Computing: A 240-Node Beowulf in One Cubic Meter”, Proc.
ACM/IEEE High-Performance Networking and Computing
Conf., Baltimore, MD, USA, Nov. 16-22. 2002, pp. 1-11.

[2] IEEE Standard 1680.1, Section 4, “Environmental
Performance Criteria for Desktop Personal Computers,
Notebook Personal Computers and Personal Computer
Displays”, http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?
arnumber=1633760, accessed: April 2011.

[3] ENERGY STAR Program Requirements for Computer
Servers, www.energystar.gov/ia/partners/product_specs/
programreqs/Computer_Servers_Program_Requirements.pdf,
2010, accessed: March 2011.

[4] Restriction of the Use of Certain Hazardous Substances in
Electrical and Electronic Equipment Directives,
www.rohs.gov.uk, accessed: March 2011.

[5] J.R. Stanley, K.G. Brill and J. Koomey, “Four Metrics Define
Data Center Greenness”, http://uptimeinstitute.org/
wp_pdf/(TUI3009F)FourMetricsDefineDataCenter.pdf 2007,
accessed: Feb 2011.

[6] T. Minartz, J. M. Kunkel and T. Ludwig, “Simulation of
Power Consumption of Energy Efficient Cluster Hardware”,
Computer Science - Research and Development, Vol. 25,
Numbers 3-4, 2010, pp. 165-175.

[7] Ripal Nathuji, Canturk Isci, and Eugene Gorbatov,
“Exploiting Platform Heterogeneity for Power Efficient Data
Centers”, Proc. IEEE Int. Conf. on Autonomic Computing,
Jacksonville, FL, USA, 11-15 June 2007, p. 5.

[8] L. Wang, G. von Laszewski, J. Dayal and F. Wang, Towards
Energy Aware Scheduling for Precedence Constrained
Parallel Tasks in a Cluster with DVFS, Proc. IEEE/ACM Int.
Conf. on Cluster, Cloud and Grid Computing, Melbourne,
Victoria, Australia, 17-20 May, 2010, pp. 368-377.

[9] R. Gruber and V. Keller, HPC@Green IT, Springer, 2010.
[10] J. Sametinger, Software Engineering with Reusable

Components, Springer-Verlag, 1997.
[11] L. Minas and B. Ellison, “Energy Efficiency for Information

Technology: How to Reduce Power Consumption in Servers
and Data Centers”, Intel Press, 2009.

[12] A. Beloglazov, R. Buyya, Y.C. Lee and A. Zomaya, “A
Taxonomy and Survey of Energy-Efficient Data Centers and
Cloud Computing Systems”, Advances in Computers, Vol.
82, 2011, pp. 47-111.

[13] J. Bruner, "Intel 22nm 3-D Tri-Gate Transistor Technology",
Intel Newsroom, http://newsroom.intel.com/docs/DOC-2032,
May 2011, accessed: May 2011.

[14] Graph 500, http://www.graph500.org, accessed: Jan. 2011.
[15] Recommendations for Measuring and Reporting Overall Data

Center Efficiency, www.thegreengrid.org/~/media/
WhitePapers/RecommendationsforMeasuringandReportingOv
erallDataCenterEfficiency2010-07-15.ashx?lang=en, 2010,
accessed: May 2011.

[16] N. Vasić, M. Barisits, V. Salzgeber and D. Kostić, “Making
Cluster Applications Energy-Aware”, Proc. 1st

[17] B. Zhai, D. Blaauw, D. Sylvester and K. Flautner,
“Theoretical and Practical Limits of Dynamic Voltage
Scaling”, Proc. 41

 Workshop on
Automated Control for Datacenters and Clouds, Barcelona,
Spain, June 19, 2009, pp. 37-42.

st

[18] H. Hanson and K. Rajamani, “What Computer Architects
Need to Know About Memory Throttling”, Proc. IBM
Workshop on Energy Efficient Design, Saint Malo, France,
May 14, 2010, pp. 44-49.

 Ann. Design Automation Conf., San
Diego, CA, USA, June 7-11, 2004, pp. 868-873.

[19] D.A. Menasce and M.N. Bennani, “Autonomic virtualized
environments”, Proc. Int. Conf. Autonomic and Autonomous
Systems, Silicon Valley, CA, USA, July 19-21, 2006, p. 28.

[20] T. Mukherjee, A. Banerjee, G. Varsamopoulos, S.K.S. Gupta
and S. Rungta, “Spatio-Temporal Thermal-Aware Job
Scheduling to Minimize Energy Consumption in Virtualized
Heterogeneous Data Centers”, Computer Networks, Vol. 53,
Issue 17, 2009, pp. 2888-2904.

[21] H.J. Siegel and S. Ali, “Techniques for Mapping Tasks to
Machines in Heterogeneous Computing Systems”, Journal of
Systems Architecture, Vol. 46, Issue 8, 2000, pp. 627-639.

[22] J. Brandt, A. Gentile, J. Mayo, P. Pébay, D. Roe, D. Thompson and
M. Wong, “Resource Monitoring and Management with OVIS to
Enable HPC in Cloud Computing Environments”, Proc. IEEE Int.
Symp. Parallel & Distributed Processing, Anchorage, AK, USA,16-
20 May 2009, pp. 1-8.

118

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 128 / 237

A Risk Assessment Framework and Software Toolkit for Cloud Service Ecosystems

Karim Djemame

School of Computing

University of Leeds

Leeds, UK LS2 9JT

scskd@leeds.ac.uk

Django J. Armstrong

School of Computing

University of Leeds

Leeds, UK LS2 9JT

een4dja@leeds.ac.uk

Mariam Kiran

School of Computing

University of Leeds

Leeds, UK LS2 9JT

scsmk@leeds.ac.uk

Ming Jiang

School of Computing

University of Leeds

Leeds, UK LS2 9JT

scsmj@leeds.ac.uk

Abstract—As the realization of Cloud computing environments

advances from a simple and single private Cloud towards a

more complex Cloud Service Ecosystem consisting of multiple

coexisting public or hybrid Clouds, there are emerging high

level concerns such as risk, trust, ecological, security, cost and

legal factors that underpin the non-functional properties of the

ecosystem. These concerns are beyond the traditional focus of

providing functionalities at levels close to a single Cloud

infrastructure such as hardware resource virtualization. In this

paper we present ongoing research work to analyze and

address the risk factor in such a Cloud Service Ecosystem for

the purpose of optimizing Cloud service. The main

contributions of the work are the design and implementation of

an effective and efficient risk assessment framework

(methodologies of risk identification, evaluation, mitigation

and monitoring) for Cloud service provision. Together with the

corresponding mitigation strategies, the framework provides

technological assurance that will lead to a higher confidence of

Cloud service consumers on one side and a cost-effective and

reliable productivity of Cloud Service Provider (SP) and

resources organized by individual Infrastructure Provider (IP)

on the other side. The design of the risk assessment framework

and its software toolkit implementation is part of the research

and development work of the OPTIMIS (Optimized

Infrastructure Services) project whose objective is to enable

an open and dependable Cloud Service Ecosystem that delivers

IT services that are adaptable, reliable, auditable and

sustainable both ecologically and economically.

Keywords-risk assessment; Cloud services; service provider;

infrastructure provider; optimization.

I. INTRODUCTION

The current model of a single Cloud service
infrastructure mainly focuses on providing functionalities at
levels close to the infrastructure, e.g., improved performance
for virtualization of all, compute, storage, and network
resources, as well as necessary raw functionality such as
virtual machine migrations and server consolidation.
However, for a Cloud Service Ecosystem that consists of
multiple coexisting Cloud architectures, there are higher
level concerns (e.g., risk, trust, ecological and legal factors)
that should be addressed for the purpose of an optimized
Cloud service provision. The purpose of this research work
is to analyze and address the risk factor in a Cloud Service
Ecosystem. Although in its most general sense, risk can be
defined as the combination of the probability of an event

occurring and its consequences and constitutes both
“opportunities” for benefit (upside) and “threats” to success
(downside) [20], in the context of this work, only those
undesirable events with negative consequences are
considered and need to be mitigated.

One of the hurdles that prevent a Cloud service consumer
from adopting Cloud services is the lack of adequate
confidence of those services in term of the uncertainties
associated with their qualities and levels in the ecosystem.
Although the provision of a zero-risk service is not practical,
if not impossible, an effective and efficient risk assessment
of service provision, together with corresponding mitigation
mechanisms, may at least provide a technological insurance
that will lead to a higher confidence of Cloud service
consumers on one side and a cost-effective and reliable
productivity of Cloud Service Provider (SP) and resources
organized by individual Infrastructure Provider (IP) on the
other side. In this research, confidence is defined as the
expectation of a successful fulfillment of a Service Level
Agreement (SLA) agreed between a Cloud service consumer
and an SP. The notion of “cost-effective and reliable
productivity” is defined as a provider’s capability of
fulfilling an SLA through the entire cycle of the service
provision, and at the same time realizing its own business
level objects of an SP (e.g., make a certain amount of profits)
and high resource utilization efficiency of an IP. By aiming
this win-win target, this research work proposes a general
risk assessment framework of Cloud service provision in
term of assessing and improving the reliability and
productivity of fulfilling an SLA in a Cloud. Based on this
framework, a software toolkit is being designed and
implemented, as a basic risk factor related optimization
module, which is able to be integrated into other high level
Cloud management and control software systems for both SP
and IP.

Although risk factor related assessments for deciding risk
levels are the main concerns of this work, we also consider
that the decision making procedure of how to apply
corresponding mitigation solutions to already identified risks
in a Cloud Service Ecosystem may involve considerations on
other higher level factors such eco-efficiency, cost, security
and trust. In case such factors constrain the application of
mitigation solutions in one way or another, certain mitigation
strategies should be identified to optimize the executions of
these mitigation solutions.

119

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 129 / 237

The main objective of OPTIMIS (Optimized
Infrastructure Services) project [6] is to enable an open and
dependable Cloud Service Ecosystem that delivers IT
services that are adaptable, reliable, auditable and sustainable
both ecologically and economically. The key goal of
OPTIMIS is to allow organizations to automatically and
seamlessly externalize services and applications to
trustworthy and auditable Cloud providers. In the context of
OPTIMIS, risk assessment will be applied at the Cloud
service construction, deployment and operation phases
supporting a wide range of scenarios such as Cloud bursting
and Cloud brokerage that will be present in a fully developed
Cloud Service Ecosystem of the future. Such mechanisms for
managing risk for Cloud-based services which consider
inherent aspects of Clouds such as energy consumption, the
cost of reconfiguration and migration, and the reliability and
dependability of the provided services will maintain secure,
cost-effective and energy-efficient operations.

The main contributions of this paper are the design and
implementation of an effective and efficient risk assessment
framework (methodologies of risk identification, evaluation,
mitigation and monitoring) for Cloud service provision.
Together with the corresponding mitigation strategies, the
framework provides technological assurance that will lead to
higher confidence in Cloud providers for Cloud service
consumers on one side and cost-effective, reliable and
productive Cloud service provider’s resources on the other
side.

The rest of the paper is structured as follows: in Section
II, related work on applying risk management methodologies
into utility computing areas, such as Grids and Clouds is
surveyed. The risk assessment framework for Cloud Service
Ecosystems proposed by this research work is described in
Section III; the corresponding software toolkit for the
implementation of this risk assessment framework is
discussed and introduced in Section IV; in Section V, use
cases of the framework and software toolkit in the context of
the OPTIMIS project are introduced. Finally, the conclusion
of current work in progress is presented in Section VI, in
which future work is also introduced and discussed.

II. RELATED WORK

In recent years, the principles and practices of risk

assessment/management were being introduced into the

world of utility computing such as Grid and Clouds either as

a general a methodology [5][7]14] or focusing on a specific

type of risk, such as security and SLA fulfilment [13] and

[19]. In this section, we conduct a balanced introduction to

cover these two aspects.

In [1], an extended Confidentiality Risk Assessment and

Comparison (CRAC) method [2], CRAC++, is proposed to

assess confidentiality risk in IT outsourcing. The aim of this

method is to enable the specification of confidentiality

requirements in an SLA between a client and IT resource

provider. The method claims that it is able to satisfy six

criteria of confidentiality level specification approach:

specified confidentiality level is not based on percentages of

data loss; assessment is not based on monitoring incidents,

no disclosure of confidential information is required to a

provider, ease of use; it is repeatable and will increase the

client’s understanding of confidentiality risks in this

outsourcing relationship. The most unique feature of the

method is that it tackles two hard problems regarding the

specification of confidentiality requirements: 1)

confidentiality incidents cannot be monitored, since

attackers who breach confidentiality try to do this

unobserved by both client and provider, and 2) providers

usually do not want to reveal their own infrastructure to the

client for monitoring or risk assessment.

In [3], the design, implementation and evaluation of

separate and integrated risk analysis methods for a

commercial computing service to support successful utility

computing model is introduced. By departing from two new

challenges facing a commercial computing service in order

to support a utility computing model: (i) “what are the

objectives or goals it needs to achieve in order to support

the utility computing model”, and (ii) “how to evaluate

whether these objectives are achieved or not”, the paper

identifies four essential objectives that are required to

support the utility computing model: (i) manage wait time

for SLA acceptance, (ii) meet SLA requests, (iii) ensure

reliability of accepted SLA, and (iv) attain profitability.

Based on the analysis on the nature of these objectives, “risk

assessment on resource management policy” is identified as

the key evaluation methodology to examine whether

resource management policies are able to achieve the

objectives. Both the separate and integrated risk analysis

methods evaluate a policy using two indicators:

performance, as the value measure of the policy, and

volatility, as the risk measure, that is able to “reflect how

performance values fluctuate and thus the consistency of the

policy in returning similar performance values”. The

separate risk analysis analyses the performance and

volatility involved in a single objective for a particular

scenario and the integrated risk analysis assesses a

combination of multiple objectives with different weights

used to denote the importance of each objective. These

weights for various objectives provide a flexible means for

the service provider to easily adjust the importance of an

objective and determine its level of impact on the overall

achievement of a combination of objectives. Most

importantly, the crucial impact of the integrated risk

analysis method is emphasised by simulation results that “an

objective that is not achieved can severely impact on the

overall achievement of other objectives. Thus, it is essential

to examine the achievement of all key objectives together,

rather than each standalone objective to correctly identify

the best policy that can meet all the objectives.”

In [4], a novel “insurance” mechanism is proposed as a

risk management method that is “primarily used to hedge

against the risk of a contingent loss due to unfavourable and

uncontrollable events”. According to this mechanism, a

service insurer in the Cloud is established to decide and

collect insurance premium from a service provider, send

120

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 130 / 237

compensation to a service consumer; a service provider

negotiates an insurance contract with the service insurer; a

service consumer submits a claim to the service insurer.

Since a service consumer is not the payer of premium but

able to claim compensation in case a loss was caused by the

service provider, it will be relatively “risk free” for the

consumer to use the service confidently. A Cloud Risk

Assessment and Management (Insurance) Reference Model,

is established based on the extended Zachman framework

[9] with the service/information assurance, integrity and

analysis, and also the layered reference Service Oriented

Architecture (SOA) security reference model [10].

In [13], a quantitative risk and impact assessment

framework (QUIRC) is presented to assess the security risks

associated six key categories of security objectives (SO)

(i.e., confidentiality, integrity, auditability, multi- party

trust, mutual auditability and usability) in a Cloud

computing platform. The quantitative definition of risk is

proposed as a product of the probability of a security

compromise, i.e., an occurring threat event, and its potential

impact or consequence. The overall platform security risk

for the given application under a given SO category would

be the average over the cumulative, weighted sum of n

threats which map to that SO category. In addition, a weight

that represents the relative importance of a given SO to a

particular organization and/or business vertical is also

necessary and their sum always adds up to 1. This

framework adopts a wide-band Delphi method [18], using

rankings based on expert opinion about the likelihood and

consequence of threats, as a scientific means to collect the

information necessary for assessing security risks. The

advantage of this quantitative approach of risk assessment is

that it enables vendors, customers and regulation agencies

the ability to comparatively assess the relative robustness of

different Cloud vendor offerings and approaches in a

defensible manner. However, the challenge and difficulty of

applying this approach is the meticulous collection of

historical data for threat events probability calculation,

which requires data input from those to be assessed Cloud

computing platforms and their vendors.
In [5], a SEmi-quantitative BLO-driven Cloud Risk

Assessment (SEBCRA) approach that is aware of the
Business-Level Objectives (BLOs) of a given Cloud
organization is presented. The approach is designed for a
Cloud Service Provider (CSP) to improve the achievement of
a BLO, i.e., profit maximization, by managing, assessing,
and treating Cloud risks. The core concept on which this
approach is based is that “Risk Level Estimation for each
BLO is proportional to the probability of a given risk and its
impact on the BLO in question”. Once risk has been
assessed, the Risk Treatment sub-process defines potential
risk-aware actions, controls, and policies to conduct an
appropriate risk mitigation strategies, such as, avoid the risk,
by eliminating its cause(s), reduce the risk by taking steps to
cut down its probability, its impact, or both, accept the risk
and its related consequences or transfer or delegate the risk
to external organizations. In an exemplary experimentation,

the risk assessment approach demonstrates that it enables a
CSP to maximize its profit by transferring risks of
provisioning its private Cloud to third-party providers of
Cloud infrastructures. This risk assessment approach can be
extended to tackle scenarios where multiple BLOs are
defined by a CSP and also work as an autonomic risk-aware
scheduler, which will be based on business-driven policies
and heuristics that help the CSP to improve its reliability.

The work in this paper focuses on a framework that
supports risk assessment at the Cloud service deployment
and operation phases. It supports not only service and
infrastructure providers, but a wide range of scenarios such
as Cloud bursting and Cloud brokerage as well.

III. A RISK ASSESSMENT FRAMEWORK

Risk assessment allows improving the foundations of the
Cloud infrastructure to help manage and anticipate the risks
or opportunities:

 Helping to provide a framework for identifying the
risks that present threats to the Cloud.

 Facilitating discussion among the various partners
during the development process.

 Foresee potential dangers or risks before they occur and
implement mitigation strategies to compensate for
them.

 Building an infrastructure for monitoring these risks
over time and identifying new risks when they arise.

In Cloud computing, risk needs to be considered at all
phases of interactions and investigated at each service stage
in relation to the assets which need to be protected. Two
stakeholders are involved: Service Providers (SP) during the
service deployment and operation, and the Infrastructure
Providers (IP) during admission control and internal
operations. In OPTIMIS, various use cases will be
considered for depicting a Cloud scenario as discussed in
Section V. These use cases will affect the assets involved as
well as the kind of interactions taking place presenting new
challenges for risk assessment.

In addition to the different use cases and interactions, risk
will be assessed based on categories which will help to
manage it and the mitigation strategies to be applied. For
instance all risks associated with service level agreements
(SLAs) can be identified as legal issues and would thus need
mitigation strategies from the legal realm.

In addition to identifying the risk categories, each risk
item will be assessed thanks to a level of impact and
likelihood. For simplicity, the risk level can be labeled in the
range from 1 to 5 to show its intensity (1-very low, 2- low, 3-
medium, 4- high, 5-very high). The risk level will help
manage the risk items from most threatening to the least
impact helping with the mitigation strategies to be adopted
later. This information will be available in the risk inventory.

A. Service Provider

A service provider is responsible for matching the end-
user requirements with the correct IPs to ensure the required
demand is met. To achieve this, the SP needs to be risk
aware of each IP and ranks them accordingly.

121

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 131 / 237

Figure 1. Service Provider – Risk Assessment Components.

Figure 1 shows the various components the SP will use to

fulfill its purpose - a Confidence Service (comprising a Risk
Assessor and a provider assessor), a risk inventory and a
Historical Database for recording past SLA transactions. The
confidence service will take into account the various risks of
working with the different IPs accessing the providers. This
will be part of the Service Deployment Optimizer (SDO).
The SDO will make these decisions based on a stored
database of history of working with the different IPs and the
risk inventory associated with the different assets involved.
A risk inventory is a simple database of risks associated with
each asset, their vulnerabilities and threats. This would also
contain risk mitigation strategies following risk assessment.
All these factors will be accessed by the SDO to choose an
efficient selection of the infrastructure provider to run the
deployed service.

B. Infrastructure Provider

Performing risk assessment at this level increases the
performance and quality of the IP. When the SP assesses the
IP, the IP would also be assessing the service to be deployed.
It will determine an estimated risk if it were to accept the
SLA taking into account fault tolerance mechanisms and
actions following an SLA violation, in turn improving the
IP's reliability and quality of service.

The SP would send a service manifest request to the IP
containing the feasibility of admitting the new service, with
respect to current infrastructure load, predicted future
capacity, as well as risk. This helps the IP to determine
where to place the virtual machines (VMs) by combining its
local management policy with the functional and non-
functional requirements.

Figure 2 depicts the structure of the IP risk assessment
components. The consultant service takes into account the
risk assessor and the database to estimate the risk. This may
use data mining tools on the previous history of events of
running similar services or working with the same SP. The
consultant service can also have access to all the monitoring
information keeping the IP on track with the changes. This
data can be static or dynamic in nature about its resources
and the current service execution.

Figure 2. Infrastructure Provider – Risk Assessment Components.

Examples of such information are the current workload,
system outages, temporary performance shortages,
monitored network traffic, experts' availability, or general
information regarding the number of services to operate. The
monitored data helps to determine bottlenecks in the IP’s
infrastructure so that the provider can improve its capacity
planning, administration, and management of its resources.
This leads to higher, cost-effective productivity of virtualized
resources [21][22].

C. Risk Inventory

Various research areas such as business have developed
risk inventories for determining how certain risks can be
managed and evaluated to be brought up to an acceptable
level. Most of the steps towards creating and refining of a
risk inventory differ in relation to their purpose and context
in which they are applied. A set of processes are identified to
create and manage a risk inventory for the implementation of
the framework:
1. Determine which use case scenario to focus on.
2. Determine the areas of interaction in the Cloud.

Interaction takes place at various levels such as end-user
to service provider or service provider to infrastructure
provider. During each of these levels an SLA is agreed
between parties and its fulfillment monitored.

3. Identify the assets involved which need to be protected
from external or internal dangers (risk), as well as the
vulnerabilities and threats these assets may have during
operation.

4. Identify the risk triggering factors for these assets.
5. Identify the relationships between assets and various

factors or events which may lead to risk mitigation.
Therefore the risk mitigation strategy would depend on

the use case, asset at risk, and the event which may lead to
activate the risk mitigation strategy to reduce it. Risk may
also be dynamic and change depending on the situation and
activities in the Cloud. These could be changes in policies,
transactions etc. This introduces an additional dimension to
the risk mitigation strategies which may vary with time.

122

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 132 / 237

D. Risk Assessment Models and Risk Categories

Risk assessment also depends on the time of operation
during the Cloud service lifecycle. This allows the risk level
to change over time. Various risk models can then be
introduced to choose relevant mitigation strategies related to
concrete situations and recognized threats. The risk models
being investigated for this purpose are as follows:

 Probabilistic Risk Model - Risk is a compound of the
probability of a problem occurring and the impact of the
problem occurring. The probability would depend on the
frequency of past problems over time.

 Possibilistic Risk Model – using stochastic processes
such as Gamma distributions to predict the failure of a
physical machine, Virtual Machine (VM) etc.

 Hybrid Risk Model – A combination of the two above
models to predict and assess the risk on the probability
of occurring events. Hybrid risk models allow different
kinds of risks to be measured. This is because certain
aspects can have a numerical probability attached to it
for the risk actually occurring, but some events may
have a dynamic nature to them, as certain exposures
may lead to various relationships among the variables to
actually propagate the risk.

Such models have been the focus of the work in [19] to

enable a Grid provider to identify infrastructure bottlenecks

(considering physical machines only) and mitigate potential

risk, in some cases by identifying fault-tolerance

mechanisms to prevent SLA violations. Moreover, a Grid

broker provides the functionality to evaluate the risk

associated with such provider by incorporating provider

reliability into the risk models in order to verify the

expected integrity of a provider’s guarantees when they

make any SLA offer [23].

Risk Category: Technical
Asset identified: Hardware
Vulnerability of asset: Poor maintenance
Threat to asset: Unresponsive system
Resulting risk item: Reduction in availability
Risk Likelihood: Low (2) [Range 1-5]
Risk Impact: Medium (3) [Range 1-5]
Resulting Risk level: Product of risk likelihood and risk
impact [Range 1-25]
Risk event: Hardware failure
Resulting risk mitigation: Duplicate data, maintain
hardware

Risk Category: Policy
Asset identified: SLA
Vulnerability of asset: Lack of jurisdiction information
Threat to asset: Breach in data confidentiality
Resulting risk item: Changes in jurisdiction
Risk Likelihood: Very high (5) [Range 1-5]
Risk Impact: High (4) [Range 1-5]
Resulting Risk level: Product of risk likelihood and risk
impact [Range 1-25]
Risk event: Redeployment of data
Resulting risk mitigation: Seek legal advice

Risk Category: General
Asset identified: Security
Vulnerability of asset: Unprotected password
Threat to asset: Unrestricted access to data
Resulting risk item: Data leaks
Risk Likelihood: High (4) [Range 1-5]
Risk Impact: High (4) [Range 1-5]
Resulting Risk level: Product of risk likelihood and risk
impact [Range 1-25]
Risk event: System hacks
Resulting risk mitigation: Encrypting data

Risk Category: Legal
Asset identified: SLA
Vulnerability of asset: Illegal clauses in the contract
Threat to asset: Sued
Resulting risk item: Ongoing legal dispute
Risk Likelihood: Low (2) [Range 1-5]
Risk Impact: High (4) [Range 1-5]
Resulting Risk level: Product of risk likelihood and risk
impact [Range 1-25]
Risk event: Negligence
Resulting risk mitigation: Audit SLAs

Figure 3. Examples of Risk Categories.

The risk models under investigation will be applied to
assess the risk on a number of groups of risks or categories.
The various risk categories identified, with an example of an
associated risk are:

 Technical – Hardware, VM failure

 Policy – Data jurisdiction policies or other issues which
match requirements and considerations (prior to
deployment).

 General – Various general issues such as security, data
applications or processes (as assets to be protected
during the different phases of the cloud lifecycle).

 Legal – SLA issues
An example of each of category is presented in Figure 3.

E. Risk Mitigation Strategies

Following the assessments on various risk factors and
identification of associated mitigation solutions, where
possible, appropriate mitigation strategies will be decided to
implement these solutions. In general, mitigation strategy
can be risk avoidance, limitation, retention, transfer and
acceptance [11]. Within the context of our work, risk
avoidance and limitation are the main strategies to be applied
and the selection and execution of mitigation solutions will
be considered as an optimization problem.

Since the nature of mitigation is to take precautionary
actions before the occurrence of risk, time constraint and cost
of a mitigation solution are key factors for deciding which
mitigation strategies to choose and how to deploy them.
When multiple risk factors need to be mitigated at the same
time, it will be more complex to make an optimized decision
under time and cost constraints. One example is that a set of

123

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 133 / 237

risk mitigation tasks with known, arbitrary execution times,
need to be implemented by some identical high level risk
mitigation solution executers by a given deadline. The
problem is to schedule all of the mitigation tasks onto the
least number of executers so that the deadline is met. This is
a classic One-Dimensional Bin Packing problem in particular
and combinatory optimization problem in general. Hence,
this work is investigating optimization algorithms to help
make decisions for scenarios as illustrated in these examples.

IV. A RISK ASSESSMENT SOFTWARE TOOLKIT

One of key design principles of a risk assessment
software toolkit is to make it a self-contained independent
functional component that is able to perform for
Infrastructure Providers (IPs) and Service Providers (SPs)
and be adopted, in either full or in part, by higher level Cloud
management and control software system for higher level
optimization purposes such as SP’s brokerage for multiple
IPs.

Following the logical structure of the risk assessment
framework described in Section III, the toolkit is designed to
physically consist of two independent parts: SP Risk
Assessment Tool (SPRAT) and IP Risk Assessment Tool
(IPRAT). For the SPRAT, its high level functions (e.g.,
evaluate the reliability of a specific IP offer) are mainly
exposed by its external interfaces defined in its Confidence
Service sub-component. Other lower–level functions such as
the evaluation of the risk associated with an IP’s offer and
evaluation of IP’s profile is provided by the external
interfaces of the Risk Assessor sub-component and the
Provider Assessor sub-component respectively. The Risk
Inventory and Historical Database sub-components are
private to the SPRAT and no external interfaces are provided
by them. The Risk Inventory is designed as a knowledge
base to consist of facts, scenarios, and reasoning rules for
risk assessments related decision-making activities of the
SPRAT.

For the IPRAT, its high level functions (e.g., evaluate the
risk fulfilling a given service manifest of a specific SLA) are
mainly exposed by its external interfaces defined in its Risk
Assessor sub-component. Other lower–level functions such
as data-mining of past failure events in an IP are provided by
the Consultant Service sub-component. These lower-level
functions are not purely private for the IPRAT. The Risk
Inventory and Historical Database sub-components are also
private to the IPRAT and no external interfaces are provided
by them. For the IPRAT, its Risk Inventory is designed as a
knowledge base to consist of facts, scenarios, and reasoning
rules that are related to lower level hardware and software
resources. The Historical Database sub-components is also
private to the IPRAT. In addition, IPRAT’s Monitoring sub-
component includes two parts: one is the risk event detection
and alarm part, and the other one is the lower-level hardware
and software runtime status collectors. From the
implementation perspective, the second part can be based on
a third-party data monitoring and collection software, such as
Nagios [12], as a plug-in, and will depend on the scalability
and efficiency of it.

V. USE CASES IN THE CONTEXT OF OPTIMIS

In the OPTIMIS toolkit, risk is analyzed in the context of

three dimensions: use case, actor and time. The toolkit

tackles five Cloud uses cases that are in various stages of

realization in the current Cloud ecosystem. They are: i)

Private, ii) Bursting, iii) Multi-Cloud, iv) Federated and v)

Brokerage [6]. These use cases have various implications

for OPTIMIS as the differing goal of each contribute to

what vulnerabilities an asset may have and thus its

associated risk factors. The different Business Level

Objectives of the SP and IP actors play a part in deciding

the importance of risk because the execution of high-level

strategies alter the importance and applicability of risk in a

given situation. In addition, the lifecycle of a Cloud service

adds a temporal aspect to risk assessment. Cloud Service

Lifecycle is comprised of three phases: Service

Construction, Service Deployment and Service Operation.

At Service Construction a service is developed,

composed and configured. This entails packaging the core

elements of a service and its dependencies together, the

configuration of the service manifest that describes the

functional parameters of each core element within the

service and preparation of the VM images used to run the

service. The Service Deployment phase sees the deployment

of a service onto an IP. An IP is selected using a filter

mechanism to decide, using Trust, Risk, Eco-efficiency and

Cost (TREC) factors, which IP is most suitable to use for a

given service manifest.

Finally at Service Operation, a service begins execution

on a selected IP and is continually monitored.

A. Optimis Cloud Use Cases

The use cases are outlined in the following subsections

and illustrated in Figure 4 which provides the vision of the

OPTIMIS Cloud ecosystem.

1) Private Cloud

In the Private Cloud use case an SP and IP within the

same administrative domain cooperate to provision

resources for one or more services using internal

infrastructure.

2) Cloud Bursting

In the Cloud Bursting use case an IP at some point

during the operation of a service may require additional

capacity to manage increases in demand above that which

its local infrastructure can accommodate. This requires an IP

to initiate the SLA negotiation process with another IP.

3) Multi-Cloud

The Multi-Cloud use case is an extension of the Cloud

Bursting use case where by an IP may make use of multiple

IPs to provision additional resources. The use case can be

distinguished from bursting in regards to the IP selection

mechanism used, which evaluates the functional and non-

functional requirements of the service manifest and chooses

the most appropriate IP for a given component of a service.

4) Federated Cloud

124

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 134 / 237

Figure 4: Interactions between Actors on a per Use Case Basis: (a)

Federation, (b) Private, (c) Multi-Cloud, (d) Brokerage, and (e) Bursting.

In the Federated Cloud use case an IP provides resources

for an SP on behalf and across a collective of IPs working in

collaboration. This use case differs from the Multi-Cloud

use case as the IPs have previously entered into a mutual

SLA between all members of the federation before coming

into contact with the SP.

5) Cloud Brokerage

The Cloud Brokerage use case sees the addition of a third

actor into the Cloud ecosystem the Broker. The broker acts

as an intermediary that facilitates the Cloud Lifecycle and

adds value through maintaining a historic database of its

encounters with SPs and IPs providing a mechanism to

gauge the past performance of an actor and its ability to

adhere to SLAs.

B. Stages of Risk Assessment in the Use Cases

Taking into consideration the Cloud Service Lifecycle in

the context of the Risk Assessment Tools, assessment will

be performed at many stages and will be reliant on the

specific use case. Figure 5 depicts the general view of risk

assessment in all the different use cases in OPTIMIS. The

risk assessment stages will be dependent on the use cases

being represented. The different use cases will influence the

different actors allowing similar risk assessment between

them. In the case of the private cloud, the actors involved

were the Service Provider and the Infrastructure Provider

(as shown in Figure 5). In the cases of Cloud bursting,

federated and multi-Cloud, this will allow further actors to

be involved depicting infrastructure provider and

infrastructure provider interactions.

There are six action stages which are dependent on the

interaction of an SP and IP and what tasks it is performing

and will dictate what risk models and input data are utilized

in the assessment.

Figure 5: Risk Assessment Steps 1-11 in the Different Use Cases.

The six action stages are as follows:

 Action 1: The sender, before sending an SLA

request to an IP, assesses the risk of dealing with all

known IPs.

 Action 2: An IP receives an SLA request and

assesses the risk of dealing with the SP from which

the request came from.

 Action 3: The IP assesses the risk of the SLA from

the sender and evaluates the risk associated with the

service manifest.

 Action 4: The sender then receives the IPs SLA

offer and assesses the risk associated against other

IP SLA offers.

 Action 5: The sender performs continual risk

assessment at Service Operation, monitoring service

level non-functional QoS metrics such as response

time.

 Action 6: The receivers perform continual risk

assessment at Service Operation, monitoring low

level events from the infrastructure such as risk of

VM failure.

For the private cloud the 6 stages in Figure 5 will be

from steps 1-6 in which each of the 6 actions take place. The

order in which each of the action stages is (Step 1-Action 1),

(Step 2 -Action 2), (Step 3-Action 3), (Step 4-Action 4),

(Step 5-Action 5) and (Step 6-Action 6).

In Cloud Bursting use case four further stages of risk

assessment occur between the IP1 and IP2 that replicate the

risk assessment performed by the SP in the Private Cloud

use case, where by IP1 takes on the negotiation roles of the

SP to facilitate the acquisition of additional resources. The

additional number of action stages is (Step 7-Action 1),

(Step 8 -Action 2), (Step 9-Action 3), (Step 10-Action 4),

(Step 11-Action 6).

In the Federated Cloud use case, due to the collaborative

nature of the IPs and the assumed prior SLA between the

members of the federation, this use case is a simplification

of Cloud Bursting with the exception that any number of IPs

125

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 135 / 237

can be burst to and a single IP resumes the role of being the

point of entry into and controller of the federations. This

means no risk assessment is necessary in regards to risk

assessment steps 7 to 10 of the Cloud Bursting use case.

Therefore there are only Steps 1-6 with an additional Step

11.

Finally, in the Multi-Cloud use case the missing steps of

risk assessment in the Federated Cloud use case are

necessary as IP1 is required to select and negotiate with

several IPs. Therefore it will use all the steps from Step 1-11

for its risk assessment in multi-cloud scenario.

VI. CONCLUSION AND FUTURE WORK

 This paper presents various methodologies being

designed and developed for performing risk assessment on

both SP and IP levels. The main contributions of the work

are the design and implementation of an effective and

efficient risk assessment framework (methodologies of risk

identification, evaluation, mitigation and monitoring) for

Cloud service provision. Four risk categories, namely legal,

technical, policy, and general have already been identified.

SP and IP risk models are being investigated in conjunction

with a risk inventory for Cloud computing specific to

OPTIMIS through various use cases: private cloud, cloud

bursting, multi-clouds, federated cloud, and cloud

brokerage. This inventory is populated with Assets,

Incidents/Risk Scenarios and Impact/Consequences, as well

as associated mitigation strategies. The novel risk

assessment models will be built and developed as a

combination of probabilistic, possibilistic and hybrid

models to suit each risk category identified in the risk

inventory.

ACKNOWLEDGMENT

This work has been partially supported by the EU within
the 7th Framework Programme under contract ICT-257115 -
Optimized Infrastructure Services (OPTIMIS).

REFERENCES

[1] A. Morali and R. J. Wieringa, Risk-Based Confidentiality

Requirements Specification for Outsourced IT Systems, pp. 199-208,

Proceedings of the 18th IEEE International Requirements
Engineering Conference, 2010, DOI 10.1109/RE.2010.30.

[2] A. Morali and R. J. Wieringa, Risk-Based Confidentiality
Requirements Specification for Outsourced IT Systems (ex-tended
version), Technical Report TR-CTIT-10-09, Centre for Telematics
and Information Technology, University of Twente, 2010.

[3] C. S. Yeo and R. Buyya, Integrated Risk Analysis for a Commercial
Computing Service in Utility Computing, Journal of Grid Computing,
Volume 7, Number 1, pp. 1-24, ISSN: 1570-7873, Springer,
Germany, March 2009.

[4] M. Luo, L. J. Zhang, and F. Lei, An Insurance Model for
Guaranteeing Service Assurance, Integrity and QoS in Cloud
Computing, pp. 584-591, Proceedings of the 2010 IEEE International
Conference on Web Services, DOI 10.1109/ICWS.2010.113.

[5] J. O. it , M. Ma as, and J. Guitart, Towards Business-driven Risk
Management for Cloud Computing, pp. 238-241, Proceedings of the
2010 International Conference on Network and Service Management
– CNSM 2010.

[6] A. J. Ferrer, F. Hernandez, J. Tordsson, E. Elmroth, C. Zsigri, R.
Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T.
Dimitrakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou,
B. Hudzia, A. Kipp, S. Wesner, M. Corrales, N. Forgo, T. Sharif, and
C. Sheridan, OPTIMIS: a Holistic Approach to Cloud Service
Provisioning, in the Proceedings of the 1st International Conference
on Utility and Cloud Computing (UCC 2010), Chennai, India,
December 2010.

[7] K. Djemame, I. Gourlay, J. Padgett, K. Voss, and O. Kao, Risk
Management in Grids, In R. Buyya and K. Bubendorfer, editors,
Market-Oriented Grid and Utility Computing, pp. 335–353. Wiley,
2009.

[8] R. Alsoghayer and K. Djemame, Probabilistic Risk Assessment for
Resource Provision in Grids, pp. 99-110, in the Proceedings of the
25th UK Performance Engineering Workshop, Leeds, UK, July 2009.

[9] J. A. Zachman, "A Framework for Information Systems
Architecture", IBM SYSTEMS JOURNAL, VOL 26. NO 3, 1987.

[10] J. Heaney, D. Hybertson, A. Reedy, S. Chapin, T. Bollinger, D.
Williams, and M. Kirwan, Jr. Information Assurance for Enterprise
Engineering, in Proceedings of PLoP, Monticello, Illinois, 8-12
September 2002.

[11] G. Stoneburner, A. Goguen, and A. Feringa, Risk Management guide
for Information Technology Systems, NIST Special Publication 8-00-
30

[12] Nagios <http://www.nagios.org> 30.06.2011

[13] P. Saripalli and B. Walters, QUIRC: A Quantitative Impact and Risk
Assessment Framework for Cloud Security , pp. 280-288, In the

Proceedings of the IEEE 3rd International Conference on Cloud

Computing, 2010
[14] X. Zhang, N. Wuwong., H. Li, and X. J. Zhang, Information Security

Risk Management Framework for the Cloud Computing

Environments, pp. 1328-1334, in the Proceedings of the 10th IEEE
International Conference on Computer and Information Technology,

2010 (CIT 2010)

[15] IDC Cloud Computing Survey <http://blogs.idc.com/ie/?p=210>
30.06.2011

[16] ENSIA Report on Cloud Computing Security Risk Assessment

<http://www.enisa.europa.eu/act/rm/files/deliverables/Cloud-
computing-risk-assessment> 30.06.2011

[17] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, Above
the Clouds: A Berkeley View of Cloud Computing, Technical Report.

University of California at Berkeley, 2009.

[18] H. A. Linstone, The Delphi Method: Techniques and Applications.
Addison-Wesley, 1975.

[19] K. Djemame, J. Padgett, I. Gourlay, and D. Armstrong, Brokering of

Risk-Aware Service Level Agreements in Grids, Concurrency and
Computation: Practice and Experience, 2011.

[20] The Risk Management Standard, Institute of Risk Management, The

Association of Insurance and Risk Managers, National Forum for
Risk Management in the Public Sector, Volume 2008, 21st August,

2002.
[21] Optimis Consortium, Architecture Design, WP 1.1: Requirements

Elicitation, 2010 <http://www.optimis-project.eu/publications>

30.06.2011.
[22] Optimis Consortium, Architecture Design, WP 1.2: Reference

Architecture, 2010 <http://www.optimis-project.eu/publications>

30.06.2011.
[23] C. Carlsson, Risk Assessment for Grid Computing with Predictive

Probabilities and Possibilistic Models, in proceedings of the 5th

International Workshop on Preferences and Decisions, Trento, Italy,
April, 2000.

126

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 136 / 237

A Linear Programming Approach for Optimizing Workload Distribution in a Cloud

Vadym Borovskiy, Johannes Wust, Christian Schwarz, Alexander Zeier
Hasso-Plattner-Institut, Potsdam, Germany

{vadym.borovskiy, johannes.wust, christian.schwarz, alexander.zeier}@hpi.uni-potsdam.de

Wolfgang Koch
SAP AG, Walldorf, Germany

wolfgang.koch@sap.com

Abstract—Cloud computing’s usage-based pricing model
creates an incentive for subscribers to optimize the utilization
of the rented resources. The goal of the current work is to
devise a formal approach for distributing workload among a
minimum number of servers. The paper models this problem
as a set partitioning problem and describes two solution
approaches. The first one generates a set of candidate blocks
and then composes an optimal partition by solving an integer
programming problem. The second approach solves the set
partitioning problem with column generation technique. Both
methods were implemented and evaluated. The experiment
results led to a conclusion that the second approach delivers
the best results.

Keywords-Workload distribution; Set partitioning; Column
generation

I. INTRODUCTION

Cloud computing continues to gain momentum due to
its ability to provide on-demand computing resources in
both an economically and computationally efficient manner.
The economic benefit of cloud computing from a provider’s
point of view comes from economies of scale [1]. The
more resources a data center has, the lower the cost of
individual resource. From a resource consumer’s point of
view, the benefit derives from converting the fixed cost
of owning and maintaining on-premise infrastructure into
the variable cost of renting it on demand. On average, on-
premise infrastructure is underutilized, because its capacity
is driven by the system’s peak load. But peak loads only
account for a small part of a systems’ operating time.
Companies make large investments in their infrastructure
only to find it idle for a majority of the time. By subscribing
to cloud services companies pay only for the resources they
actually use, whereas with on-premise hardware, the amount
of resources they pay for is driven by peak workload [2].

Cloud computing’s usage-based pricing model creates an
incentive for subscribers to optimize the utilization of the
rented resources. This is especially relevant for multi-module
systems, because of many possible deployment options.
Selecting a particular number of servers and the distribution
of the system’s modules among the servers produces visible
effects. If few modules are installed on each server, the
overall number of servers is bigger than absolutely neces-
sary, which implies extra cost. On the other hand, when
too many modules are deployed on each server, bottlenecks
appear, which implies lower throughput and lower quality of

service. Thus, by choosing a proper deployment configura-
tion subscribers can [1]: (i) avoid resource over-provisioning;
(ii) maintain the desired quality of service in the face of
increasing workload by provisioning on-the-fly additional
resources.

The paper is structured as follows. Section III presents a
formal model of the workload distribution problem. Section
IV describes a straightforward solution procedure based on
the suggested model. Section V describes how a column
generation technique can improve the solution procedure.
Section VI presents computational results of the suggested
algorithms. Section VII concludes the paper.

II. RELATED WORK

Even though load balancing has received much attention
in the research community [3], [4], [5], [6], no conven-
tional techniques can be applied to the discussed problem.
A fundamental obstacle limiting the applicability of the
conventional techniques is the violation of the requirement
that any server in a cluster can handle any request coming
from any client (i.e., the servers must be interchangeable).
In our case servers are not interchangeble, because they
perform different tasks (i.e., run different modules). The
lack of existing approaches motivated us to apply knowledge
from other areas. In particular, our work has been inspired
by research in airline crew scheduling [7], [8], where the
set partitioning approach has been successfully applied for
resource allocation problems. With regards, to column gen-
eration as a method of dealing with large linear programs,
many researchers have observed that it is a very powerful
technique for solving a wide range of industrial problems
to an optimum or to a near optimum. Ford and Fulkerson,
for example, suggested column generation in the context
of a multi-commodity network flow problem [9]. Gilmore
and Gomory then demonstrated its effectiveness in a cutting
stock problem [10]. More recently, vehicle routing, crew
scheduling, and other integer-constrained problems were
successfully solved with column generation [11].

III. MATHEMATICAL MODEL OF THE PROBLEM

The goal of the current work is to devise a formal
approach for distributing modules of a system among a
number of servers. Given the workload of each module, we
want to assign it to one of the available servers with given

127

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 137 / 237

capacity. The workload of a module and the capacity of a
server must be measured in the same units that represent the
amount of a resource consumed or provided. The resource
can be, for example, CPU time, memory, storage or network
bandwidth. Measuring the exact workload of a module may
be impossible, due to its dynamic nature. However, we
believe that with the help of profiling tools, a reasonably
precise workload estimate is feasible to obtain.

A simpler way of figuring out the workload of a module
is to measure it relatively to the capacity of a server. For
that, install multiple instances of a module on the same
server as long as the service level of each module satisfies
requirements. If a server can handle four instances of a
module, then the module’s workload is 25% of the server’s
capacity. Assuming server capacity is 100, the workload
of an item is 25. If the workload of modules changes
significantly over time, then no distribution can be optimal
for a long time. In this case the workload distribution
procedure must be carried out more frequently.

In set theory terms the workload distribution problem is
stated as follows: divide a set into one or more disjoint
subsets called blocks. This problem is called set partitioning
and is well-known in computer science [12]. Through parti-
tioning a set of workload items and assigning each block of
a partition to one processing unit the workload distribution
is carried out. The following example demonstrates the
idea. Suppose there are four workload items, denoted as
wi, i = 1..4. In order to distribute them among processing
units, a partition of the set W = {w1, w2, w3, w4} must be
generated. The set W can be partitioned in 15 different ways.

w1w2w3w4, w1w2w3|w4, w1w2w4|w3,

w1w2|w3w4, w1w2|w3|w4, w1w3w4|w2,

w1w3|w2w4, w1w3|w2|w4, w1w4|w2w3,

w1|w2w3w4, w1|w2w3|w4, w1w4|w2|w3,

w1|w2w4|w3, w1|w2|w3w4, w1|w2|w3|w4

(1)

Each of the partitions represents a possible workload
distribution. The seventh partition, for instance, consists of
two blocks: w1w3 and w2w4. Therefore, the corresponding
distribution will require two processing units (one per block).
Multiple ways of partitioning a set create the possibility of
choice and the task of finding the best partition. This leads
to an optimization formulation: Given a set of workload
items find its feasible partition that has minimum number of
blocks. A partition is called feasible if the workload created
by any of its blocks is less than or equal to the capacity
of a processing unit. For simplicity reasons we assume all
processing units have the same capacity.

The next step is the formalization of the above statement.
As with any optimization problem, the set partitioning
problem must have three parts: (i) Decision variables: the
representation of possible partitions; (ii) Objective function:
a criterion of evaluating the ”quality” of a partition; (iii)

Constraints: feasibility restrictions on possible partitions.
In the current work, we use the classic integer pro-

gramming formulation of the set partitioning problem. The
formulation assumes a two-step solution procedure:

1) Generation of a set B = {bj : j = 1..N} of feasible
candidate blocks bj = {wl : l ∈ 1..n}, where n is the
number of workload items and N is the number of
candidate blocks.

2) Construction of an optimal partition out of the previ-
ously generated blocks with the help of the following
integer program:

N∑
j=1

xj → min (2)

N∑
j=1

aij · xj = 1 i = 1..n (3)

xj ∈ {0,1} j = 1..N (4)

where a decision variable xj equals 1 if the jth block
is included in the optimal partition and 0 otherwise;
aij is an element of matrix A of size n × N and
calculated as:

aij =

{
1 if wi ∈ bj
0 if otherwise

(5)

The objective function (2) favors partitions with the
smallest number of blocks. The constraints (3) force each
workload item wi to appear only in one block of the optimal
partition. For convenience these constraints can be expressed
in matrix form:

A · x = 11 (6)

where A is defined by the expression (5), x is the vector
with N decision variables and 11 is a vector of size n with
all elements equal 1.

The reason for choosing the two-step procedure and the
formulation (2) – (5) of the set partitioning problem is their
wide and successful application in other areas, in particular
airline crew pairing and stock cutting. Research results from
these areas form a solid foundation for our own effort.
Subsequent sections of the paper discuss different aspects
of the solution procedure that influence its computational
characteristics and the quality of the solution it produces.

To illustrate the usage of this set partition problem formu-
lation, we apply it to the example mentioned earlier. Suppose
the feasible candidate blocks are

w1, w2, w3, w4, w1w2, w3w4,

w1w3, w2w4, w1w4, w2w3

(7)

while the rest of the blocks present in (1) are deemed
infeasible. Hence, n = 4 (the number of workload items)
N = 10 (the number of blocks to be considered). Given

128

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 138 / 237

the feasible blocks, the following integer program can be
constructed:

10∑
j=1

xj → min
1 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1 1 0

×

x1
x2
. .
x10

 =

1
1
.
1

xj ∈ {0, 1} j = 1..10

(8)
The solution of the problem corresponds to the optimal

partition (that has the smallest number of blocks). Given the
small size of the problem, it is not difficult to see the three
optimal solutions:

x1opt = {0, 0, 0, 0, 1, 1, 0, 0, 0, 0} ⇒ {w1w2}, {w3w4}
x2opt = {0, 0, 0, 0, 0, 0, 1, 1, 0, 0} ⇒ {w1w3}, {w2w4}
x3opt = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1} ⇒ {w1w4}, {w2w3}

Note that there may be both multiple optimal solutions or
no solution at all, in the case that there is at least one item
with workload higher than the capacity of a processing unit.

IV. THE ”FULL SET” APPROACH

As presented in the previous section the solution process
starts with the generation of feasible candidate blocks. In
our work we use two different methods to generate these
blocks. The first one is a brute-force method that generates
all possible combinations of workload items (i.e., all possible
blocks). After that, the blocks must be validated against
the feasibility constraints, that is, the workload of a block
must not exceed the capacity of a processing unit. The total
number of blocks to be considered will always be less than
the number of all possible combinations of workload items:

N ≤
n∑

i=1

Ci
n =

n∑
i=1

n!

i!(n− i)!
(9)

Having generated the candidate blocks, the integer pro-
gram is composed and solved. We call this method the basic
version of the ”full set” approach, because we explicitly
consider all possible solutions. Section VI shows that this
version is applicable only for a very small number of
workload items. The reason is obvious: N , defined by the
expression (9) grows very fast and the set of candidate
blocks (B) quickly becomes unmanageable (either exceeds
the amount of RAM or takes too much time to be processed).
Nevertheless, considering all feasible combinations guaran-
tees the best possible result. The example from Section III
is solved by the ”full set” approach.

In order to achieve better performance of the candidate
generation, more appropriate limits for i in the expression

(9) can be found. Experimenting with the ”full set” approach
we found that considering the blocks with too few or too
many workload items is useless. Such blocks never appear
in optimal partitions. Intuitively, big-size blocks are most
probably infeasible, while small-size blocks increase the
number of required processing units, which is not favored
by criterion (2) and is therefore rejected. By considering
only medium-size blocks the performance of the ”full set”
approach can be significantly improved. Restricting the set
of candidate partitions is a very common approach used
to improve the solution of the set partitioning problem.
Experiments showed that in comparison with brute-forcing,
the following limits produce better computational character-
istics (e.g., lower memory consumption and faster processing
time) without deteriorating the quality of the solution.

N =

upper∑
i=lower

Ci
n =

upper∑
i=lower

n!

i!(n− i)!

lower = d1
2
navge, upper = b

3

2
navgc

navg =
Capacity

wavg
=
Capacity · n∑n

i=1 wi

(10)

Here navg is the average number of items in a block, wavg

is the average workload of an item and Capacity is the
capacity of processing units. We call this modification ”size-
restricted” modification of the ”full set” approach.

As one can see the expression (10) takes into account
only the number of items in a block. This, however, is
not the only factor that can reduce the size of the set B.
Another tendency was revealed by observing the results of
the conducted experiments: the workload is distributed in
such a way that every processing unit is utilized to the
highest possible extent. In other words, every processing
unit is packed with workload items as much as possible.
Based on this observation, we suggest a second way of
generating set B. By sequentially iterating through the set
of workload items, we select items as long as the total
selected workload is less than or equal to the capacity
of the processing units. We call this version of the ”full
set” approach load-restricted. The listing below presents the
details of the algorithm.
generate (items, eps, capacity) {
iter = items.begin();
while (items.size() > 0) {
s1 = s2 = count = 0;
//select items to a new block
while (count < items.size() && items.size() > 0) {
s2 = s1 + iter->value;
if (s2 < capacity - eps) {
//add the workload item to the block and continue
s1 = s2; count = 0;
block.add(iter.value);
items.remove(iter); iter++;

}
else if (s2 <= capacity) {
//add the item and stop selecting more items
block.add(iter.value);
items.remove(iter); iter++;
if (iter == items.end())

129

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 139 / 237

iter = items.begin();
break;

}
else {
//skip the item and continue
count++;
item++;

}
if (iter == items.end())
iter = items.begin();

}
B.add(block);
block.clear();

}
return B;

}

At the end of the procedure, the set B contains a number
of blocks constituting a feasible partition of a given set. By
running the generate procedure multiple times and shuffling
the set of items before each run a required number of
candidate blocks (i.e., the set B) can be generated.

The run-time complexity of the both versions of the ”full
set” algorithm is determined by the algorithm used for
solving the integer problem (2)-(4). We used the branch-
and-bound algorithm. Its complexity is exponential [13].
Hence, the complexity of the ”full set” algorithms is also
exponential, O(2N), where N is the number of candidate
blocks.

V. THE ”COLUMN GENERATION” APPROACH

Two factors make the ”full set” approach impractical. The
first one is the size of N , which can be enormous, even when
n is still reasonable (say, less than 10000). The second factor
is the integrality constraint (4). Solving large-scale integer
programming problems is not a trivial exercise, and requires
more a complex solution procedure in comparison to linear
programming problems. These two factors significantly limit
the applicability of the approach.

This section shows how these difficulties can be overcome
by a method suggested in [14]. The main idea is to enhance
the ”pricing out” stage of the simplex method. At this stage,
Danzig and Wolfe [14] suggest generating a useful column
by solving an auxiliary integer programming problem in-
stead of looking over a vast existing collection of columns
to pick out a useful one.

Put simply, column generation means beginning with a
manageable part of a linear optimization problem, solving
that subproblem, and then discovering the way of improving
the solution by extending the subproblem with the parts
of the original problem. This process is repeated until a
satisfactory solution to the original problem is achieved
[15]. In formal terms, column generation is a modification
to the simplex method that adds columns corresponding to
constrained variables during the pricing phase [13].

Column generation relies on the fact that in the simplex
method, the solver does not need access all the variables
of the problem simultaneously. In fact, a solver can begin
working with only the basis (a particular subset of the

constrained variables) and then use reduced cost to decide
which other variables are needed [16].

To solve a set partition problem by column generation we
start with a subproblem, called the master problem. That is,
we choose several feasible blocks and solve the problem (2)
– (5) for them. This will surely work in that it produces
some answer (a feasible solution) to the problem, but it
will not necessarily produce a satisfactory answer. To move
closer to a satisfactory solution, we can then generate other
columns. Other decision variables (other xj) will be chosen
to add to the model. Those decision variables are chosen
on the basis of their favorable reduced cost with the help
of a subproblem. This subproblem is defined to identify the
coefficients of a new column of the master problem with
minimal reduced cost.

Let π be the vector of the dual variables of the current
solution to the master problem. The subproblem is then
defined as follows:

1−
n∑

i=1

πici → min (11)

n∑
i=1

wici ≤ capacity (12)

ci ∈ {0,1} i = 1..n (13)

The solution to the problem (11) – (13), vector copt,
represents the coefficients of a new column of the constraint
matrix A of the master problem. Adding a new decision
variable (i.e., a new candidate block) to the master problem
with the constraints coefficients copt will result in the best
possible improvement of its solution. In this way, instead
of explicitly considering a fixed set of columns (candidate
blocks), we generate and add new ones to the master
problem only if they improve its solution. This avoids the
need of explicitly enumerating candidate blocks.

Having discussed all necessary aspects of column gener-
ation we present the basic five-step algorithm of solving the
set partitioning problem with column generation.

S1 Compose the master problem (2) – (5) for a lim-
ited set of candidate blocks. The simplest way to
generate this set is to place each of the n workload
items to a separate block. In this case the matrix A
is a diagonal matrix: elements of the main diagonal
equal 1, while non-diagonal ones 0.

S2 Solve the master problem.
S3 Given the optimal dual solution of the master

problem, compose the auxiliary column generation
problem (11) – (13).

S4 Generate a new column (i.e., a new candidate
block) by solving the auxiliary problem.

S5 Add the new column to the master problem and
return to the step S2. Repeat the procedure until
the improvement of the master problem solution
becomes negligible.

130

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 140 / 237

Having experimented with the algorithm, we observed
an even stronger tendency to pack blocks with as many
items as possible. In comparison to the blocks generated
by the ”full set” algorithms, column generation produced
blocks with workload closer to the capacity of a processing
unit. This tendency is true for every n, large or small. This
fact, in turn, created a hypothesis that if the correlation
between the block fulfillment and n is weak, we can split
a sufficiently large set of workload items into a number of
smaller subsets of the size k, k ≤ n, and run the algorithm
on each subset independently without deterioration of the
quality of the overall solution. The prime reason for this
is decreasing the execution time. In linear and integer
programming the solution time increases non-linearly with
the size of a problem. This implies that solving two problems
with 50 variables takes less time than solving one problem
with 100 variables. In order to check this hypothesis, we
modified the basic column generation algorithm accordingly.
The resulting version of the algorithm is called parallel.
As one can see from the experiment results, the hypothesis
proved to be true and allowed a very efficient algorithm.

The run-time complexity of both versions of the ”column
generation” algorithm is determined by the complexity of
the simplex method, which is exponential [13]. Thus, the
complexity of the basic version is O(2N), where N is
the number of considered blocks and corresponds to the
number of generated columns. The complexity of the parallel
version slightly differs and is n·O(2k)

k , where n is the number
workload items to be distributed and k is described above.
In our experiments, we took k = 50. One can now clearly
see that the expected speed-up of the parallel version equals
to O(2N)− n·O(2k)

k .

VI. COMPUTATION RESULTS

This work contributes, in total, five workload distribution
algorithms: three versions of the ”full set” algorithm, and
two versions of the column generation algorithm. In order
to validate them a number of experiments were conducted.
This section describes the set up of the experiments and
reports their results.

All suggested algorithms were implemented in C++ and
used the IBM ILOG CPLEX V12.1 optimization engine
in order to solve the linear programming problems. All
algorithms were run on a Quad-core Intel Xeon E5450
3.00GHz machine with 8 GB of RAM. The experiments
were conducted as follows. First, n workload items were
obtained with a random number generator. In the experi-
ments we used random number equally distributed in the
range from 12 to 40. The capacity of a processing unit has
been fixed at 100 in all experiments. Second, each of the
five algorithms was run on the generated set of workload
items and the execution time was measured. Table I contains
the results of the conducted experiments. In addition to
the execution time, the obtained solution (the number of

required processing units) is presented. For the ”full set”
algorithms we also report N - the number of candidate
blocks considered. For the column generation algorithms
the number of generated columns is reported. Because basic
and size-restricted versions of the ”full set” algorithm fail
to distribute more than 15 items, the statistics on them are
not included in the table.

For example, during the ninth experiment 600 workload
items were generated. The basic and size-restricted versions
of the ”full set” algorithm failed due to size of the set
B. The load-restricted version distributed the items among
162 processing units, but took 4 minutes to complete, and
processed 86390 candidate blocks. The basic version of the
column generation algorithm distributed the same workload
items among 155 processing units. The algorithm generated
1541 columns and took 6 minutes while the parallel version
of the algorithm was able to achieve the same result in only
24 seconds.

VII. CONCLUSION

Cloud computing’s pricing model creates an incentive
for subscribers to minimize the consumption of rented
resources. In the case of modularized software, multiple
deployment options may exist, creating different possibible
distributions of workload and resource consumption. The
current research aims to developing a formal approach of
distributing multiple workload items among a minimum
number of processing units.

We designed and evaluated five algorithms that, given a set
of workload items, distribute them among processing units
of specified capacity. The algorithms can be classified into
two different types: those that explicitly consider a fixed set
of candidate options (the ”full set” algorithms) and those that
gradually improve the solution by considering dynamically
generated options (column generation algorithms).

The combinatorial nature of the workload distribution
problem makes any algorithm based on explicit enumeration
of possible alternatives intractable. That is, even for reason-
ably sized input, the algorithms fail due to the overwhelming
number of alternatives to be processed. The experimental
results clearly demonstrated this phenomenon.

The results also showed that the basic version of the
column generation algorithm produces the best solution. The
solution found by the parallel version of the column gener-
ation algorithm is worse by approximately 1%. However,
the speed of parallel version is much better. For this reason,
we conclude that the best results are achieved with parallel
version of the column generation algorithm.

ACKNOWLEDGMENTS

The authors want to express special thanks to Nick
Lanham for the numerous improvements he contributed to
this paper.

131

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 141 / 237

Table I
EXPERIMENT RESULTS

Full Set Column Generation
Load-restr. Basic Parallel

No n Sol. N Time Sol. Cols. Time Sol. Cols. Time
1 10 3 100 1 sec 3 15 1 sec 3 15 1 sec
2 15 4 137 1 sec 4 23 1 sec 4 23 1 sec
3 30 9 300 1 sec 8 25 1 sec 8 25 1 sec
4 50 14 473 2 sec 13 121 2 sec 13 121 2 sec
5 100 28 793 3 sec 26 233 6 sec 26 243 3 sec
6 150 40 2870 15 sec 39 322 21 sec 39 348 5 sec
7 250 71 8800 36 sec 69 672 45 sec 70 1523 11 sec
8 400 108 20000 1 min 104 912 3 min 104 938 17 sec
9 600 162 86390 4 min 155 1541 6 min 156 1523 24 sec
10 1000 275 133000 7 min 262 2637 22 min 263 2654 40 sec
11 1300 349 219240 19 min 330 3674 42 min 333 3243 60 sec
12 1500 405 303750 27 min 389 3853 93 min 390 3789 75 sec
13 2000 536 549000 31 min 514 5201 168 min 516 5017 84 sec
14 2500 670 846250 39 min 651 6435 274 min 654 6337 95 sec
15 3000 807 1200000 45 min - - - 774 7519 112 sec
16 5000 1342 3365000 74 min - - - 1296 12595 200 sec
17 10000 2698 12146396 193 min - - - 2598 25170 378 sec

Full Set
Basic Size-restr.

No n Sol. N Time Sol. N Time
1 10 3 35673 5 sec 3 27990 3 sec
2 15 4 3012765 12 min 4 2366910 9 min
3 30 - - - - - -

REFERENCES

[1] P. Murray, “Enterprise grade cloud computing,” in Proceed-
ings of the Third Workshop on Dependable Distributed Data
Management, European Conference on Computer Systems,
2009, pp. 1–1.

[2] R. L. Grossman, “The case for cloud computing,” IT Profes-
sional, pp. 23–27, March 2008.

[3] W. Tang and M. W. Mutka, “Load distribution via static
scheduling and client redirection for replicated web servers,”
in International Conference on Parallel Processing, 2000.

[4] N. Nehra, R. B. Patel, and V. K. Bhat, “A framework for
distributed dynamic load balancing in heterogeneous cluster,”
2007.

[5] D. Grosu and A. T. Chronopoulos, “A game-theoretic model
and algorithm for load balancing in distributed systems,”
in 16th International Parallel and Distributed Processing
Symposium, 2002, pp. 146–153.

[6] S. Iqbal and G. F. Carey, “Performance analysis of dynamic
load balancing algorithms with variable number of proces-
sors,” Journal of Parallel and Distributed Computing, vol. 65,
pp. 934–948, 2005.

[7] J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather, “The
airline crew scheduling problem: A survey.” Transportation
Science, vol. 3, no. 2, p. 140, 1969.

[8] R. E. Marsten and F. Shepardson, “Exact solution of crew
scheduling problems using the set partitioning model: Recent
successful applications,” Networks, vol. 11, no. 2, pp. 165–
177, 1981.

[9] J. Ford, L. R. and D. R. Fulkerson, “A suggested computation
for maximal multi-commodity network flows,” MANAGE-
MENT SCIENCE, vol. 5, no. 1, pp. 97–101, 1958.

[10] P. C. Gilmore and R. E. Gomory, “A linear programming
approach to the cutting-stock problem,” Operations Research,
vol. 9, no. 6, pp. 849–859, 1961.

[11] M. Minoux, “Column generation techniques in combinatorial
optimization: A new approach to the crew pairing problems,”
in 24th AGIFORS Symposium, 1984, pp. 15–29.

[12] D. Knuth, The Art of Computer Programming, Volume 4,
Fascicle 3. Addison-Wesley, 2005.

[13] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column
generation. Springer, 2005.

[14] G. B. Dantzig and P. Wolfe, “Decomposition principle for
linear programs,” OPERATIONS RESEARCH, vol. 8, no. 1,
pp. 101–111, 1960.

[15] M. E. Lübbecke and J. Desrosiers, “Selected topics in column
generation,” Operations Research, vol. 53, pp. 1007–1023,
November 2005.

[16] D. Feillet, “A tutorial on column generation and branch-
and-price for vehicle routing problems,” 4OR: A Quarterly
Journal of Operations Research, vol. 8, pp. 407–424, 2010.

132

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 142 / 237

Chaavi: A Privacy Preserving architecture for Webmail Systems

Karthick Ramachandran, Hanan Lutfiyya and Mark Perry

Department of Computer Science
University of Western Ontario

London, Ontario, Canada
Email: {kramach, hanan, markp}@csd.uwo.ca

Abstract—The last two decades have seen major innovations
in the Internet and transformation of the way people do
business, communicate and live. Concomitant with the Internet
bringing the advantages of new services, is a growing awareness
of threats to Privacy that the Internet can enable. When
considered in this context, the Cloud Computing paradigm
requires users forgive disturbing levels of trust by users in the
servers that hold their information. There is a pressing need
for innovative architectures to allow the user to rely on the
server with little or no need for trust in the service provider.
In this work, we give an introduction of privacy issues in
Cloud Computing and discuss the state of art in the privacy
enhancing technologies that can be used for Cloud Computing.
We focus on webmail services and propose a privacy preserving
architecture in which users can retain their mail in the servers
of their service providers in a cloud without compromising
functionality or privacy. We benchmark our system and present
the results showing that it is feasible to architect a privacy
preserving solution for webmail systems.

Keywords-privacy-preserving; webmail; encrypted search.

I. INTRODUCTION

Cloud Computing is a model of computing in which the
users can rent infrastructure, platform or software services
from other vendors without requiring the physical access
to the rented service [18]. There are three main types of
cloud offerings: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS).
IaaS offers virtualized instances of bare machines leaving
the installation and customization of softwares including
the Operating System to cloud computing customers. In
PaaS, an application framework is provided to the cus-
tomers for developers to develop their software with. A
SaaS provider offers a particular application as a web
service, which customers can customize to their needs. The
Cloud Service Provider (CSP) focuses on infrastructure and
software expertise and aims to optimize their utility by
providing centralized services for one or many clients. The
benefit to the cloud service client (CSC) is that the cost
associated with the underlying infrastructure and software
services needed to support the CSC’s application is reduced.
There are two reasons for the cost reduction. One reason
is that the underlying infrastructure and software services
are shared among CSCs. The second reason is that since a
CSP manages data, it can use creative business models like

Contextual Advertising Model [16] for generating revenue
by delivering advertisements to users based on the data.
For example, webmail services such as Google can provide
Gmail for free. As a result, Cloud Computing has been
widely adopted. MarketsandMarkets [17] estimates that the
cloud computing global market will increase from $12.1
billion (US) to $37.8 billion (US) in 2015 at a compound
annual growth rate of 26.2 percent.

In spite of this widespread adoption, organizations are still
wary of storing their sensitive data with a CSP. Privacy risk
remains a major concern in the cloud computing environ-
ment [11].

The definition of privacy that we use was defined by
Warren et al. [23] in 1890. Warren et al. described privacy
as the ”right to be let alone” with the focus on protect-
ing individuals and is recognized in Convention for the
Protection of Human Rights and Fundamental Freedoms.
There are a variety of ways that the privacy of data can
be compromised in a cloud service environment [4]. This
includes the following:

1) Sharing of data with an unauthorized party: The
Cloud provider could compromise the confidentiality of the
data by sharing the data that it stores with unauthorized
parties. This can go against the terms and conditions of the
service and will qualify as a breach of security and contract.
The end user may never be aware of such a breach.

2) Corruption of data stored: The Cloud Computing
provider’s root access to physical machines allows the Cloud
Provider to have access that allows the Cloud Provider to
modify/delete data. The Cloud Provider could tamper with
the data making the data non-usable or modify the data in a
way that system cannot detect the modification. This poses
a serious threat to the integrity of the application.

3) Malicious Internal Users: The employee of a Cloud
Computing Provider who has root access to these physical
machines, could access the data and use it for their own
advantage.

4) Data Loss or Leakage: When a virtual machine is used
in an infrastructure, it poses a variety of security issues [10]
which could lead to a compromise of the data. Moreover,
when the facility that hosts the user’s data is subjected to a
natural calamity, it could risk the loss of the user’s data.

133

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 143 / 237

5) Account or Service Hijacking: Another risk for the
Cloud Computing provider is, if the service is hijacked, or
the computer is hacked into by an intruder, the hacker will
have access to data.

This work focuses on the following threats: (a) Sharing
with an unauthorized party, b) Malicious internal users,
and c) Account or service hijacking. Our work applies to
the class of cloud services that stores data and provide
searching as its primary functionality. This includes services
such as webmail, collaborative document authoring (Google
documents) and private blogs. The example used throughout
this paper is webmail.

We proposed Chaavi, a webmail infrastructure that builds
on the public/private key model to encrypt email with a
custom implementation of encrypted indices for keyword
searches using the server’s infrastructure. Chaavi is the first
system that addresses the above threats in a real working
environment.

The rest of paper is organized as following. A motivating
example of webmail services is described in Section II.
Section III presents some of state of the art in preserving
privacy for cloud computing services. Section IV reviews
background and related work for searching on encrypted
data. Section V presents the architecture of Chaavi system.
The implementation details are discussed in Section VI.
Section VII presents the experiments conducted to study
the system and we conclude by stating our contribution and
future work in Section VIII.

II. MOTIVATING EXAMPLE: WEBMAIL SERVICES

Webmail services offer user convenience. With a user-
name, password, and Internet access users, are not tied to any
particular equipment or location. Webmail services primarily
offer the following functionality:

1) Mail Storage
2) Organization of mail
3) Keyword Searching
For (1) and (2), the service provider need not know the

exact content of the mail. However, for performing a plain-
text keyword search on email the user needs the service
provider to know the content of the mail, so that the cloud
provider’s infrastructure can be used to index the mail
content, which can in turn be used for the search process.

The usage of webmail services, has the following short-
comings:

1) The need to trust the service provider (e.g., Google,
Yahoo, or Microsoft) as the mail is stored as plain-text
in the service providers’ servers (or using single key
encryption). The mail is then prone to insider attacks
(anyone with the access control will be able to read
the mails).

2) There is an assumption that the provider is honest, and
the security level is sufficient.

3) When the mail is transferred from one domain to
another, it is transmitted through SMTP [19]. SMTP as

a protocol does not support encryption. Technologies
like Transport Layer Security [9] are used to transfer
mail to other domains. However, the data is still
protected only up to the layer at which it reaches
the target mail server. Once it reaches the target mail
server, the mail is again prone to insider attacks in the
new domain.

To address such problems, various client encryption sys-
tems, such as Pretty Good Privacy (PGP) [26], have been
developed. However, encryption using PGP make the mail
non-searchable in the web server.

III. RELATED WORK

Privacy Enhancing Technologies (PET) can be used by
the developers of the application to enhance the individuals
privacy in an application development environment. In this
section, we survey state of the art in PET.

Homomorphic Functions: Homomorphic encryption
schemes refer to asymmetric encryption techniques, where
algebraic operations on plain text can be performed directly
on a respective cipher text. This was first introduced by
Goldwasser et al. [12], where the authors performed modular
addition of two bits using multiplication of ciphertexts
(Quadratic Residuosity Problem). The best result so far is
a scheme by Boneh et al. [7], where additions are freely
performed on encrypted domain. This still remains in the
theoretical realm as more advanced abstractions need to
be created for using homomorphic functions in practical
applications.

Privacy By Secure Computation: The objective of
secure computation is to evaluate a function f that takes
inputs from two parties A and B without revealing the exact
inputs to each other. The Yaos protocol [25] provides some
of the basic techniques to perform a computation in a secure
way without revealing the inputs. The Yaos protocol forces
the expression of a computation problem in terms of logical
circuit using gates. The input of each gate is randomly
encrypted and then the final resulting output is decrypted
to get the exact answer of the computation. The encryption
and the decryption is done at the client’s end. The expression
of a simple problem using the Yaos protocol is found to be
complex. Applications that typically reside in the cloud (e.g.,
mail) are too complex for this.

Privacy By Using Secure CoProcessors: Secure co-
processors are currently the only realistic way to perform
general-computing even when an adversary has direct phys-
ical access to the server. In our case the adversary could be
the cloud service provider itself. It is a very limited computer
with ROM, RAM and battery backup for persistent storage
and an ethernet card. When installed in a computer, co-
processors can be seen as a secure area inside a computer,
which even the main processor cannot access. Privacy as
a Service [13] recognizes these factors and proposes a
system architecture in which a coprocessor is installed in
every Cloud Computing system. The data loaded into the

134

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 144 / 237

cloud is classified based on its significance and security by
the cloud user (No Privacy, Privacy with Trusted Provider,
Privacy with Non-Trusted Provider). The data tagged with
Privacy with Non-Trusted Provider level is processed by the
secure co processor. Secure co-processors needs a separate
hardware installation in each server. Also co-processors are
expensive and are not yet economical to be used in a cloud
computing environment.

Privacy By Encryption: Privacy can be enforced by
encrypting all the data that is stored in the cloud. The main
issue is that the cloud can be only used for storage of the
data. As the data will be unrecognizable to the cloud service
provider, it will not be possible for the cloud service provider
to process the data nor to perform some number crunching
tasks. Searchable encryption uses an algorithm which allows
users to encrypt the data and then provides the server with
trapdoor information [6], so that the server can search for
a given string through the searchable encryption algorithm.
This part is discussed in detail in Section IV-C.

Privacy-Preserving Multi-keyword Ranked Search over
Encrypted Cloud Data [8] proposes a new encryption scheme
for keyword search over encrypted data in cloud computing
environment with privacy and performance requirements.

In our work we achieve privacy by encryption by using
searchable encryption scheme for a webmail software. Our
focus is to study how this the encryption schemes can be
engineered in a real working environment.

IV. BACKGROUND

In this section, we review the basic elements common to
webmail infrastructures. We also present an introduction to
PGP and searchable encryption.

A. Mail Architecture

The webmail infrastructure is responsible for end to end
delivery of email. Figure 1 presents architectural components
and protocols typically used to support webmail applica-
tions.

bob@a.com
Mail User

Agent

alice@a.com
Mail User Agent

Mail
Transfer

Agent

Mail
Transfer

Agentalice@a.com
Mail User

Agent

Internet

bob@b.com
Mail User

Agent

alice@a.com
Mail User Agent

alice@b.com
Mail User

Agent

SMTP POP
/IMAP

Figure 1. Email Architecture

1) Components: This subsection describes the architec-
tural components.

Mail User Agent: The Mail User Agent (MUA) is
used to manage a user’s email. It acts on behalf of the
user to send and receive mail from the Mail Transfer Agent
(MTA). Popular MUAs include Microsoft Outlook, Mozilla
Thunderbird, Apple Mail. In a webmail system, the MUA
runs in the server and the pages are rendered as HTML pages
for the browser.

Mail Transfer Agent: The Mail Transfer Agent (MTA)
transfers messages from one server to another. It receives
email either from another MTA or MUA. The transmission
of email follows standardized protocols for message trans-
fers.

2) Protocols: This subsection describes commonly used
protocols.

Simple Mail Transfer Protocol (SMTP): SMTP refers
to the standard for the transfer of messages from one server
to another. It is used by MUA to relay mail through MTA
and it is also used by MTA to send and receive mail between
other MTAs. SMTP as a standard does not encrypt messages
(unless Transport Layer Security encryption is used).

Post Office Protocol (POP) / Internet Mail Access
Protocol (IMAP): POP/IMAP are email retrieval protocols
that specify standards for downloading messages from the
MTA for MUA. Examples of use is found with support for
POP version 3 and IMAP as provided by Gmail.

3) Privacy Threats: In webmail systems, there is a server
for webmail introduced into the standard mail system (Fig-
ure 1). It acts as the Mail User Agent for a number of users
and manages email for all the users. The MUA, unlike the
standard model (Figure 1), is centralized at the server. The
webmail server uses POP/IMAP to download messages from
MTA.

There are several privacy concerns with respect to email
systems. If the connection to the webmail server is not
secured using Hypertext Transfer Protocol Secure (HTTPS)
all the data between a user’s browser and the server will
be in plain text. SMTP, unless used with Transport Layer
Security (TLS) layer, is insecure. Even if the TLS layer is
used, the mail will still be accessible by the owner of the
MTA, through which the mail is routed. This is because
TLS is designed to protect data in an insecure network (like
Internet) and not from the communicating parties. Some of
the security threats involved in email systems are identified
by Kangas et al. [14], and Kaufman et al. [15]. These are
detailed below.

Eavesdropping: When email is unencrypted, potential
hackers who have access to network packets flowing through
the network will be able to read the email sent. This can
be achieved by enabling the promiscuous mode on ethernet
cards.

Identity Theft: If the user’s username and password
is obtained, then hackers have full access to all the email
content. Such password information can be obtained by
eavesdropping on the network.

135

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 145 / 237

Invasion of Privacy: The recipient of the mail is able to
get more information from the email header information than
what the sender intends to reveal. For example, the header
will reveal the sender’s SMTP IP address and subject of the
email sent.

Message Modification: Anyone who has administrator
access to the webmail server can modify the messages stored
in the server. It is not always possible for a recipient to
determine that email has been tampered with.

False Messages: It is relatively easy to create false
messages and send it as if it is from any person (as evidenced
by spam).

Message Replay: Akin to message modification, the
message created by user can be saved and sent again and
again.

Unprotected Backups: Messages are stored in plain-text
on SMTP servers, and backups will also contain complete
copies of the messages. Even when the user deletes a
message from the server, the backup will still hold the
content.

Repudiation: As email messages can be forged (for
example see your spam box), there is no way of validating
that the email has been in-fact sent by a particular person.
This has serious implications in business communications,
electronic commerce.

B. Pretty Good Privacy
PGP was created by Zimmermann et al. [26], in 1991

to address the security issues with email. PGP encryption
uses a serial combination of hashing, data compression,
symmetric-key cryptography, and public-key cryptography.
Each public-key is bound to an email address. It serves
as the verification mechanism for the origin of the email.
As the email is encrypted using the private key of the
user and the encrypted version is sent into the network, it
addresses many security issues of the email infrastructure.
For webmail systems, software such FireGPG [1] provide
a browser extension that implements PGP. As PGP support
enhances the security of the email system by encrypting the
mails, the mail becomes unreadable by server. Hence the
server cannot perform keyword searches on the mail.

C. Searchable Encrypted Data
Public Key Encryption with Keyword Search (PEKS) [6]

is one of the seminal works in the area of making encrypted
data searchable. The authors of PEKS propose to encrypt the
message using the Public-Private key infrastructure. Along
with this cipher text a Public-Key Encryption with Keyword
Search (PEKS) of each keyword (the words that make up
the message) is appended to the final message. To send a
message M with keywords W1, W2, ... Wm the following
information is transmitted to the server:

EApub
(M) GPEKS(Apub,W1) G... GPEKS(Apub,Wm)

where Apub is the public key of the user, EApub
(M) is the

encrypted message, PEKS is the function that encrypts the

keywords using Apub. To test whether a word W is a part of
the message, a user supplies PEKS(Apub,W) along with
a trapdoor function Tw to the server, that can test whether
W = W ′ (W ′ being the keywords that are stored in the
encrypted form in the server). If W 6= W ′ the server learns
nothing more about W ′.

Public Key Encryption with Keyword Search Revisited
[5] identifies some of the issues with the original PEKS and
proposed a provably secure algorithm. The authors argue
that if in PEKS the server starts learning the trapdoor then
there can be a categorization of mail formed just based on
the learned trapdoor information. The trapdoor information
is the extra information sent to the server along with the
encrypted keyword for the server to test for the existence of
a keyword.

The authors also identify that in PEKS there is an assump-
tion that the communication channel between the sender
and the server is secure. To enable secure communication
through insecure channels the authors propose a Secure
Channel Free Public Key Encryption with Keyword Search
(SCF-PEKS), that uses a server’s public-private key pair for
communication.

V. ARCHITECTURE

This section describes the various components of Chaavi.
Figure 2 gives the overall architecture of the system.

Browser

Browser
Extension

(Encryption
Engine)

Web
Applicat

ion

Web Server

Database

Mail
Server

Encrypted
Mail and

Keywords

Encrypted
Mail

Keywords

Figure 2. Chaavi - Architecture

A. Browser

The browser is responsible for rendering the pages created
by the web application. Its default behavior can be modified
or enhanced by using extensions in the browsers. Modern
browsers such as Mozilla Firefox, Google Chrome provide
functionality to write extensions and install the extensions
locally.

B. Browser Extension

A browser extension is used in Chaavi to encrypt the
secure message sent to the server. It is also used to decrypt
the messages that are sent from the server. Additionally it
has key generation and key management functionality. The
extension is composed of the following modules.

136

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 146 / 237

Public-Private Key Generation: As stated earlier,
Chaavi uses a public/private key model for securely commu-
nicating messages. In a public/private key model, a public-
private key pair is generated when the system is initiated for
the first time, for a particular user. The messages encrypted
by the public key can be decrypted only by use of the private
key. The public key as the name implies is shared in a public
forum.

Keyword Encryption Key Generation: Public-Private
key pair is used for secure message communication. A
symmetric key is also generated to encrypt the individual
keywords present in the mail. A symmetric algorithm (unlike
the Public-Private key) is used here as the keywords need
not be decrypted by anyone else other than the sender of the
message.

Key Management: Key management is performed using
a graphical user interface (GUI). The GUI enables the user
to add or delete the public keys of the recipients with whom
the user wants to communicate through mails.

Encryption: The functionality of the encryption module
is to encrypt the messages that are sent to the server from
the browser. It also extracts and encrypts the individual key-
words in the message. The encryption module is triggered
from the web application when the user submits a mail to
send it to the web server. This module encrypts the message
using the recipients’s public key and the keywords with the
keyword encryption key.

Decryption: When an encrypted message is sent from
the server to the browser, the decryption module decrypts the
messages using the private key of the user that is generated
during system initialization.

C. Web Application
The webmail application provides graphical user inter-

faces for the users to read, send and search messages.
It comprises of both server-side and client-side (browser)
functionality.

When a user sends a message from the web application,
the Encryption module encrypts the message and extracts
and encrypts the keywords. The web application sends the
encrypted message and keywords to the web server. On
receiving the encrypted message and the keywords, at the
server-side the application saves the encrypted message
alongside the encrypted keywords in a database for future
retrieval. The application then transfers the mail to the Mail
Server (SMTP server) for the mail to be be delivered to
recipient.

When the user wants to search for a particular keyword
in their inbox, the encrypted keyword is sent to the server-
side. The web application then searches for the mails cor-
responding to that particular encrypted word and then sends
the encrypted mails back to the user.

D. Database
The mail storage and organizational functionality is al-

ready handled by the web application. One custom ta-

ble, search is added to the database which stores the
< message id, encrypted keyword > pair. This database
is looked up when the user performs a keyword search.

E. Mail Server
The mail server sends and receives email communicated

to it through the Internet. The mail server functionality is not
modified by our system. The web application communicates
with the mail server to send and receive messages.

VI. IMPLEMENTATION

The following software is used to implement the different
components in the system:
• Browser - Google Chrome
• Browser Extension - Google Chrome using Javascript
• RSA encryption/decryption library from hanewin.net

[3]
• AES encryption library [2]
• Web Application - Squirrelmail over PHP and MySQL
• Mail Server - Using the POP3 interface of the

csd.uwo.ca mail server
The implementation details of individual modules of the

system are detailed below.

A. Browser Extension
Public-Private Key Generation: The RSA algorithm

[20] is used for the creation of keys. The key requires two
large prime numbers as the input along with a random seed.
All of these inputs are created by the extension randomly
and provided as input for key generation. The keys are then
stored locally along with the user name, for future retrieval
in the local browser database.

AES Key Generation: The symmetric AES key algo-
rithm is used to encrypt the individual keywords present in
the mail. The AES key generation algorithm takes as input
a random seed which is provided by requesting the user to
move the mouse over the browser window. That generates
some random co-ordinates which is then used to generate
the key.

AES is a natural choice for the symmetric key algorithm
as it has been analyzed extensively and used worldwide [24].
However, unlike PEKS [5], AES algorithm does not support
trapdoor and hence it is susceptible to chosen plaintext
attacks (The attacker has the capability to choose arbitrary
plaintext and the corresponding cipher texts). Moreover
the encryption of the keywords under AES negates the
possibility of performing range searches (e.g., 10 < b <
20) or similarity searches (name staring with ‘ka’).

Key Management: The GUI for key management is
developed using the options functionality provided by the
Chrome extension framework. It is used to insert the public
keys of the recipients with whom the user wants to commu-
nicate. The private key of the user cannot be managed using
this interface (the system automatically generates it when
the user logs in for the first time). The keys are stored in
the local storage database provided by HTML5.

137

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 147 / 237

Encryption: The user is provided with a HTML form
from the web application which contains input fields to
enter the recipient email address, subject and the contents
of the mail. The form submission event (onsubmit event)
is associated with a custom submit event handler, which is
hooked to the encryption module. The encryption module
encrypts the contents of the mail using the user’s public key
and replaces the value in the field (contents of the mail)
with the encrypted message. Along with this, the keywords
in the message are extracted by the keyword extraction
function and each keyword is encrypted using the AES key
and stored in an object. This object is serialized in JSON
(Javascript Object Notation) and sent to the server along
with the encrypted message.

Decryption: When an encrypted message is sent from
the server to the browser the server adds the attribute value
post−deencrypt to attribute class. The extension identifies
these messages and decrypts the messages using the private
key of the user. This decrypted message replaces the original
encrypted message in the html page so that the user can see
the message in the encrypted mail.

B. Web Application

An open source web application (Squirrelmail) is iden-
tified and it is modified for our application. Squirrelmail
is responsible for storage and organization of the mails.
Our custom module is developed in PHP and added to
Squirrelmail to save the encrypted messages alongside the
encrypted keywords and for the retrieval of the messages
based on the given encrypted keyword.

VII. EXPERIMENTS

The performance of algorithms used in Chaavi (Privacy
Preserving Web Mail with Keyword Searches) is studied in
terms of space and time consumed by the algorithm in the
local client system. Even though the performance of the
encryption algorithms has been studied before, we focus
on the performance of our system. The results presented
in this section are intended to provide some insight on the
overhead provided by the algorithms in a browser based
extension environment. Since encryption and decryption is
performed in the client browser system, the encryption and
decryption is independent of the number of users currently
using the system. Hence, we focus on the performance of
the encryption algorithms for a browser-based extension
environment.

All the experiments are executed in a Pentium IV Core 2
Duo processor using Google Chrome 5.0.375.99 beta.

A. Time Complexity

The following algorithms are studied with respect to the
execution time.
• Key Generation
• Encryption and Decryption (RSA Algorithm)
• Keyword Encryption (AES Algorithm)

1) Key Generation: Key generation is expensive since
it involves finding two large random prime numbers and
finding a product of the prime numbers based on the given
random seed. The length of keys (as measured by bits)
can be of sizes: 128, 256, 512, 1024. The higher the
number of bits used, the more difficult it is to break the
key (According to Schneier et al. [21], for breaking AES
with key size greater than or equal to 256-bit through brute
force will require fundamental breakthroughs in physics and
understanding of universe). However, generating larger keys
is time consuming. We present the average time taken for
key generation for different bit sizes in Figure 3.

Figure 3. Key Generation

As can be seen the keyword bit size increases the creation
time exponentially. The 1024 bit key generation takes around
41 seconds. However, as this is a one time activity (when
the user sets up the system) the usability and inconvenience
is minimal.

2) Encryption and Decryption: When the user wants to
send an email the encryption module is executed each time,
and the decryption module is activated when the user wants
to read an email. This is a frequent activity and therefore
more computation time spent on these modules will impact
usability. The encryption and decryption algorithm is run
over random data (which represents an email message)
set using the Javascript library in Chrome browser. The
performance of RSA algorithm is studied here in a browser
environment. The following are the results using a 512 bit
key.

It can be seen that at a relatively larger message size,
around 212 KB, the time taken for encryption and decryption
is less than 2 seconds. However as the message size increases
in the order of megabytes, the time is around 16 seconds. A
67 MB message takes around 16 seconds to encrypt and 9
seconds to decrypt, which is still acceptable for sending such
a large message. Moreover, most webmail systems have a
limit of 10 MB on message sizes.

138

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 148 / 237

Figure 4. Encryption and Decryption

3) Keyword Encryption: In this phase the performance of
AES algorithm is studied. Each word from the message is
extracted and is encrypted using the AES algorithm. There
is no decryption phase here, as the encrypted words are
checked against each other.

Figure 5. Keyword Encryption Time

It can been seen that there is a linear relationship between
the message size and time taken for encrypting keywords. It
has to be also noted that when there are duplicate words the
encryption is not done twice. However, in these experiments
each word was generated at random with a random size (with
maximum as 25 bytes). The probability of the same word
repeating is very low for this case.

B. Space Complexity

In our study of the space complexity, we were interested
in the following:

1) Increase in size of the keyword index
2) Increase in the size of the final mail
1) Impact of increase in size on the keyword index: The

AES algorithm is executed over the generated keywords
and the impact of the size of the encrypted keywords on
execution time is examined. There is close to a 10 times
increase in the generated encrypted keywords compared to
the keyword’s actual size. This can pose a design challenge
at the database level on how to store these keywords for
efficient lookups at the server level.

Figure 6. Keyword Encryption Size

2) Impact of increase on Final Message size: Here we
study the total increase in the email size. The email that is
sent to the server of the recipient will be in this format and
the any increase in size, will increase the overall network
traffic.

Figure 7. Message Size

It can be seen from the graph (Figure 7) that initially,
when the message is transferred, there is not much of an

139

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 149 / 237

increase in the encrypted message size (8 bytes to 186
bytes, 18 bytes to 199 bytes, 404 bytes to 722 bytes).
However as the size increases beyond 4MB there is a steep
increase in the difference between the message size and
encrypted message (4MB to 5MB, 8MB to 11MB, 66MB to
90MB). On average, there is a 3 times increase in size when
encrypted using RSA. This is another major factor that has
to be taken into consideration while using this system.

VIII. CONCLUSION

We proposed a privacy preserving architecture for our
webmail system, that enables secure communication of
messages using a public/private key model and privacy
preserving keyword search functionality using AES key
encryption algorithm.

Our approach requires every client to install an exten-
sion to their browser and the cloud computing provider
to modify their webmail application to support encrypted
keyword search. Even though technically this is a possible
solution, economically a cloud provider might not prefer this
approach. Most of the business models in web application
are built around the contextual advertising model, where
the cloud provider relies on the user’s data to deliver the
relevant advertisements to the user. In our case as the
data is encrypted in the server, the cloud provider will not
have access to the user’s data. Works such as Toubiana
et al. [22], try to address this problem by offloading the
keyword extraction in contextual advertising to the client
browser. Approaches like [22] needs to be modified for our
architecture so that our system remains economically viable.

Unlike in PEKS [5], our system does not use a trapdoor
function. This makes our system more susceptible to chosen
plaintext attacks. If a recipient of a mail is also a potential
attacker, the recipient can eavesdrop the encrypted keyword
information sent from the sender to the server, and make a
guess on what keyword represents the encrypted cipher by
analyzing a number of mails sent to the recipient (attacker)
from the same sender. However, our contribution is the
proposal of the framework. The encryption algorithms used
can be modified to utilize more secure alternatives in our
architecture.

In our performance study, we see a considerable increase
in the size of the message and the keywords after encryption.
This will have a direct effect in the database storage and the
keyword look up time.

We have also not implemented the functionality to add the
incoming messages to the encrypted search database. Future
work should address this. Future work also involves detailed
study on the strength of the encryption, support to range
and similarity searches, improvements to the algorithms used
whilst maintaining performance.

ACKNOWLEDGEMENTS

The authors would like to thank the IBM Center of
Advanced Studies and NSERC for their funding.

REFERENCES

[1] http://getfiregpg.org/s/home. Online at 27th June 2011.
[2] http://www.hanewin.net/encrypt/aes/aes.htm. Online at 27th

July 2011.
[3] http://www.hanewin.net/encrypt/rsa/rsa.htm. Online at 27th

June 2011.
[4] Top threats to cloud computing v1.0. Cloud Security Alliance.
[5] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption

with keyword search revisited. Computational Science and Its
Applications–ICCSA 2008, pages 1249–1259, 2008.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In Advances in
Cryptology-Eurocrypt 2004, pages 506–522. Springer, 2004.

[7] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF
formulas on ciphertexts. Theory of Cryptography, pages 325–
341, 2005.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-
Preserving Multi-keyword Ranked Search over Encrypted
Cloud Data. In IEEE INFOCOM, 2011.

[9] T. Dierks. The transport layer security (tls) protocol version
1.2. 2008.

[10] T. Garfinkel and M. Rosenblum. When virtual is harder than
real: Security challenges in virtual machine based computing
environments. In Proceedings of the 10th conference on Hot
Topics in Operating Systems-Volume 10, page 20. USENIX
Association, 2005.

[11] R. Gellman. Privacy in the clouds: Risks to privacy and
confidentiality from cloud computing. In World Privacy
Forum, pages 1–26, 2009.

[12] S. Goldwasser and S. Micali. Probabilistic encryption & how
to play mental poker keeping secret all partial information.
In Proceedings of the fourteenth annual ACM symposium on
Theory of computing, STOC ’82, pages 365–377, New York,
NY, USA, 1982. ACM.

[13] W. Itani, A. Kayssi, and A. Chehab. Privacy as a Service:
Privacy-Aware Data Storage and Processing in Cloud Com-
puting Architectures. In 2009 Eighth IEEE International Con-
ference on Dependable, Autonomic and Secure Computing,
pages 711–716. IEEE, 2009.

[14] E. Kangas and L. President. The Case for Email Secu-
rity. Published as a Lux Scientiae Article, available at
http://luxsci. com/extranet/articles/email-security. html (ac-
cessed 1 May 2007), 2004.

[15] L. Kaufman. Data security in the world of cloud computing.
IEEE Security and Privacy, 7(4):61–64, 2009.

[16] D. Kenny and J. Marshall. Contextual marketing–the real
business of the Internet. Harvard Business Review, 78(6):119,
2000.

[17] MarketsandMarkets.com. Cloud computing market - global
forecast (2010 -2015).

[18] P. Mell and T. Grance. The nist definition of cloud computing.
National Institute of Standards and Technology, Information
Technology Laboratory, Version 15, 10-7-09:2, 2009.

[19] J. Postel. RFC821: Simple mail transfer protocol, 1982.
[20] R. Rivest, A. Shamir, and L. Adleman. A method for

obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[21] B. Schneier. Snake oil. crypto-gram newsletter
(http://www.schneier.com/crypto-gram-9902.htmlsnakeoil)
[online on 05th september 2011], February., 1999.

[22] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted advertis-
ing. In 17th Annual Network & Distributed System Security
Symposium, San Diego, CA, USA. Citeseer, 2010.

[23] S. Warren and L. Brandeis. The right to privacy. Harvard
Law Review, pages 193–220, 1890.

[24] H. B. Westlund. Nist reports measurable success of advanced
encryption standard - news briefs - national institute of
standards and technology - brief article. Journal of Research
of the National Institute of Standards and Technology, 2002.

[25] A. Yao. Protocols for secure computations. Proceedings of
the 23rd Annual IEEE Symposium on . . . , Jan 1982.

[26] P. Zimmermann. The official PGP user’s guide. MIT Press,
May 1995.

140

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 150 / 237

Distributed Storage Support in Private Clouds Based on Static Scheduling
Algorithms

Dariusz Król
Academic Computer Center CYFRONET AGH

Cracow, Poland
dkrol@agh.edu.pl

Jacek Kitowski
Academic Computer Center CYFRONET AGH, and

Institute of Computer Science, AGH
Cracow, Poland
kito@agh.edu.pl

Abstract—This paper is focused on an extension to an open
source Infrastructure as a Service Cloud called Eucalytpus for
supporting distributed storage according to a defined storage
strategy. As a proof of concept, three algorithms known from
the scheduling theory were implemented, namely MonteCarlo,
Round Robin and Weighted Queuing. To evaluate the
extension, a set of tests were performed on a sample Cloud
installation using a modified version of the Eucalyptus cloud.
The paper ends up with a discussion on choosing the most
eficient static algorithm for data storing based on the obtained
results.

Keywords - cloud computing; storage management;
Eucalyptus; scheduling.

I. INTRODUCTION

Gartner has identified the Cloud computing as one of the
top 10 strategic technologies in 2011 [1]. Today, most of the
big Information Technology (IT) companies offer some of
their products within public clouds already. These suppliers
applied the Cloud paradigm to provide a wide set of
applications in an easily accessible manner, starting with e-
mail clients, through office suites to content resource
management systems. Although, each of those applications
provides different functionality, they have a few things in
common, e.g., they can be accessed via a web browser, and
they are provided using the pay-as-you-go manner.

Besides examples in the industry, many scientific
facilities started adapting the Cloud computing. This is
possible due to the existence of several open-source projects
which implement the Cloud computing paradigm with open
standards. While the adaption of clouds in the industry is
often focused on applications, the scientific centers rather
aims at providing infrastructure-level services which
facilitate access to compute and storage resources.

A similar approach to resource provisioning is well
known from many previous works concerning Grid
environments [2]. While Clouds are business-oriented from
the beginning, Grids are science oriented. From the user
point of view, the main difference is the orientation on
different usage modes [3]. While Clouds expose a small but
well-defined interface set, Grids provides a wide-set of
functions regarding similar functionality.

Existing clouds can be divided into three different groups
with regard to the visibility and availability of a cloud from
the users point of view. The most available are public clouds
that can be used by everyone without any constraints. This
category includes Amazon Elastic Compute Cloud (Amazon

EC2) [4], Microsoft Azure [5], Google AppEngine [6] and
many others. The opposite of public clouds are private
clouds. In most cases, they are limited to the resources of a
single organization and can be accessed only from within the
organization's network and by an organization member. The
third group concerns private clouds whose computation
power and storage capacity can be extended by resources of
public clouds. This group includes also hybrid clouds.

Another taxonomy of clouds concerns styles in which the
customer uses Cloud. This taxonomy includes:

• Infrastructure as a Service (IaaS) Clouds which
provide access to virtualized pool of resources
using which customers assemble virtual machines,

• Platform as a Service (PaaS) Clouds which provide
access to a well defined runtime environments and
programming services which are used to develop
applications without troubling with virtual
machines,

• Software as a Service (SaaS) Clouds which deliver
concrete applications which are deployed at the
providers infrastructure.

Finally, clouds can be divided base on the type of
resources which are provided. Today, this taxonomy includes
two elements: compute clouds and storage clouds. The first
group comprises clouds which provide access to
computational power by running virtual machines or
applications on a specified virtualized hardware, e.g., a
virtual machine with a single, normalized, virtual CPU, 512
MB of RAM and 10 GB of hard drive capacity. On the other
hand, the storage clouds enable users to store data sets in a
number of ways, i.e., in files, (non-)relational databases or
block devices. In theory, the storage clouds can provide an
infinity storage capacity on demand.

In this paper, we focus on private, storage clouds. They
can be used as an convenient way for storing users data, e.g.,
application results on storage resources of a single
organization by organization members. It can be also used to
virtualize different types of storage systems, e.g., disk arrays,
local disks etc., to be visible as a single storage system from
the end user point of view, thus it can increase the simplicity
of sharing data between different users and applications. A
storage cloud can be used to store different types of data,
starting with text files and ending with binary files. As long
as data can be written to a file, they can be stored in the
Cloud.

To build a private, storage cloud in an effective way, a
cloud implementation has to provide support for
heterogeneous storage resources and different data
distribution algorithms.

141

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 151 / 237

The former functionality provides a capability of
connecting existing storage devices into a single system. The
latter functionality is used to increase the performance of the
cloud, e.g., read and write transfer rate.

In this paper, we intend to describe an extension for an
existing, open-source Cloud which aims at providing a data
distribution functionality based on static scheduling
algorithms. Although, the developed extension is
independent from a concrete data distribution algorithm, this
paper focuses only on a few popular algorithms known from
the queuing theory.

The rest of the paper is organized as follows. In Section
2, we describe a number of existing Cloud solutions as well
as a few data management systems. Then, in Section 3, the
Eucalyptus project is described in more details. In Section 4,
a design of the extension of the Eucalyptus system which
provides support for distributed storage is presented. Next, in
Section 5 an implementation of our extension is presented. In
Section 6, we come to an experimental evaluation of the
presented extension. The paper is concluded in Section 7.

II. RELATED WORKS

OpenNebula [7] is an open-source toolkit for building
compute-oriented private, public or hybrid clouds. The
toolkit provides an abstraction layer on top of physical
resources of a data center using the virtualization
mechanism. It is oriented on deploying multitier services as
virtual machines on distributed infrastructure. OpenNebula
aims to overcome shortcomings of existing virtual
infrastructure solutions, i.e., inability to scale to external
clouds, a limited choice of interfaces with the existing
storage and network management solutions, few
preconfigured placement policies or the lack of support for
scheduling, deploying and configuring groups of virtual
machines. OpenNebula is fully open source and its source
code can be freely checkout from a public repository. It
supports different hypervisors, i.e., Xen [8], Kernel-based
Virtual Machine (KVM) [9], VMware [10], for running
virtual machines. In terms of storage mechanisms, it is
limited to a repository of Virtual Machine (VM) images
only. The repository can be shared between available nodes
with the Network File System (NFS). It is also possible to
take advantage of block devices, e.g., Logical Volume
Manager (LVM) to create snapshots of images in order to
decrease time needed to run a new instance of image. Due to
this limitation, it is not a suitable tool for building storage
clouds.

Another open-source solution for building different types
of clouds is OpenStack. It is a joint effort of NASA and
RackSpace. NASA contributed to the project by releasing its
middleware, called Nebula [11], for managing virtual
machines at physical infrastructure. RackSpace contributed
with its storage solution known as Cloud Files [12].
OpenStack [13] is a collection of tools for managing data
centers resources to build a virtual infrastructure. In terms of
computations, OpenStack provides OpenStack Compute
(Nova) solution which is responsible for managing instances
of virtual machines. In terms of storage, OpenStack provides
OpenStack Object Storage (Swift) which is an object storage
solution with built-in redundancy and failover mechanisms.
There is also a separate subsystem, called OpenStack

Imaging Service, which can be used to lookup and retrieving
virtual machine images. Since the first release of OpenStack
was in October 2010, there are no articles about production
deployments of the toolkit in either industry or scientific area
yet. Thus, there is no information about the performance and
stability of OpenStack. Also, OpenStack lacks of an interface
that would be compatible with the Amazon clouds which is a
de facto standard in the Cloud ecosystem.

Eucalyptus system [14] is an example of an open source
project which became very popular outside the scientific
community and is exploited by many commercial companies
to create their own private clouds. It was started as a research
project in the Computer Science Department at the
University of California, Santa Barbara in 2007 and today is
often treated as a model solution for providing infrastructure
as a service. Eucalyptus aims at providing an open source
counterpart of the Amazon EC2 and Simple Storage Service
(Amazon S3) [15] clouds in terms of interfaces and available
functionality.

There are two versions of the Eucalyptus Cloud:
Community and Enterprise. The Community edition will be
described in the next section in more details. The Enterprise
Eucalyptus provides direct integration with Storage Area
Networks (SANs) [16], e.g., Dell Equallogic or NetApp.
However, to our best knowledge, this integration does not
allow to combine different types of storage systems within a
single Cloud installation. Also, a Cloud administrator can`t
provide policy for data distribution among available storage
resources.

Another commercial product is EMC2 Atmos which is a
complete Cloud Storage-as-a-Service solution [17]. It
provides massive scalability by allowing to manage and
attach new storage resources from a single control center.
Atmos delivers policy-based information management
feature which allows to define bussiness level policies how
the stored information should be distributed between
available resources. It also reduces required effort for
administration by implementing auto-configuring, auto-
managing and auto-healing capabilities. Although, Atmos
provides many interesting features and capabilities, it does
not provide integrations with existing Clouds to our best
knowledge. It is rather a separate solution oriented on the
storage only which operates besides a computing Cloud.

DCache [18] is a data management system which
implements all the requirements for a Storage Element in the
Grid. It was developed at CERN to fulfil the requirements of
the Large Hadron Collider for data storage. One of its main
features is the separation of the logical namespace of its data
repository from the actual physical location of the data.
DCache exposes a coherent namespace built from files
stored on different physical devices. Moreover, dCache
autonomously distributes data among available devices
according to the currently available space on devices,
workload and the Least Recently Used algorithms to free
space for the incoming data. Although dCache distributes
data in an autonomic way, there are settings which can be
configured to tune the dCache installation to specific
requirements of a concrete user. This parameter set contains
rules which can take as an input a directory location within
the dCache file system and storage information of the
connected Storage Systems as well as the IP address of the
client and as an output such a rule returns a destination

142

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 152 / 237

where the data should be sent. DCache is a Grid-oriented
tool by design, thus it is not compatible with existing Cloud
solutions. DCache provides a programming interface similar
to a filesystem interface which is at a lower level of
abstraction comparing to the storage cloud interface.
However, dCache could be used as a storage system which is
used by a storage cloud rather than being a complete storage
cloud solution.

III. EUCALYPTUS – OPEN SOURCE PRIVATE CLOUD

As describe above, Eucalyptus is one of the existing
solutions for building private, public or hybrid clouds. It
supports both compute and storage clouds. The most
characteristic feature of Eucalyptus is the fact that it is fully
compatible with the Amazon EC2 and S3 clouds at the
interface layer. Therefore, it can be used interchangeably
with the Amazon clouds without any modification of the
users application.

Every Eucalyptus installation consists of a few loosely
coupled components, each being able to run on a separate
physical machine to increase scalability. The front end of
such a cloud is “Cloud controller” which is an access point to
the features related to virtual machines management. While
“Cloud controller” is responsible for computation, the
“Walrus” component is responsible for data storage. Each
virtual machine runs on a physical host which is controlled
by the “Node controller” element. A group of nodes can be
gathered into a cluster which exposes a single access point,
namely “Cluster controller” from the virtual machine
management side and “Storage controller” from the virtual
machine images repository side.

A. Data storage functionality

In terms of data storage, Eucalyptus provides two means
for persisting the data generated by applications running in
the Cloud: Object Storage and Elastic Block Storage (EBS).

The former one allows for storing virtual machine images
along with any other files which are divided into a flat
hierarchy of buckets and can be treated as the Amazon
Simple Storage Service (S3) counterpart in the Eucalyptus
system. Amazon S3 is a Cloud storage service which allows
storing any type of data in form of files in a number of
buckets (each with a unique name within a bucket) using a
simple programming interface, i.e., put, get, list and del. The
Eucalyptus Object Storage provides exactly the same set of
functions which can be executed using a Representational

State Transfer (REST) based interface. There are also several
tools available which wrap the interface, e.g., a simple
command line tool or programming language bindings.

The latter mechanism, i.e., Elastic Block Storage allows
for providing virtual machines with block devices which are
attached to virtual machines at runtime. However, unlike a
virtual machine local disk, such an attached block device is
not erased after the VM shutdown.

B. Data storage implementation

A part of the current implementation of storing an object
within the Eucalyptus cloud is depicted in Figure 2. Due to
high complexity, only one part of the “storing data” use case
is presented, namely the one related to actual writing data to
physical devices. The first part of the use case is related to
handle HTTP requests which contain raw data that is going
to be stored. Eucalyptus uses queues to handle incoming
requests. Then, the WalrusManager object retrieves all the
message objects from these queues, opens a file which is
accessible with standard IO functions, and finally writes the
data to the file.

The most important part of the sequence diagram which
concerns data distribution is the preparingForWrite() call. In
the current version of Eucalyptus this method returns an
object which uses the Java FileChannel class to write data.
Moreover, a mapping between Eucalyptus objects and
filesystem files implies that all the data has to be stored in a
single directory. Moreover, this directory can be located only
on a Walrus local disk or a volume that is attached to the
Walrus machine, e.g., a disk array via Internet Small
Computer System Interface (iSCSI) or a Network Attached
Storage via NFS.

However, this means there is only one option to
distribute the cloud data, i.e., using a distributed file system
on an disk array attached to the Walrus machine which
encompasses a number of storage resources. This limitation
prevents from exploiting heterogeneous storage systems to
build consistent storage cloud from the end user point of
view. Moreover, even if heterogeneity is not an issue,
distributed file systems do not provide a capability of
defining storage strategies for data distribution. In most

Figure 1: A sequence diagram of the “data storage”
operation.

Figure 2: A sequence diagram of the modified storing data
use case.

143

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 153 / 237

cases, distributed file systems aim at either balancing the
workload between storage devices or balancing the free
space of storage devices. However, if clouds are in our
scope, such a basic functionality is not sufficient.

IV. DATA DISTRIBUTION WITH STATIC SCHEDULING
ALGORITHMS

In this section, we describe our solution to the problem of
data distribution among several, possibly heterogeneous,
storage resources. Starting with our motivation, an extension
to the Eucalyptus cloud is next presented along with a
sample storage strategies which are based on well-known
scheduling algorithms.

A. Motivation

As described in the previous section, data distribution is
poorly supported in the current version of the Eucalyptus
cloud. Low-level mechanisms, i.e., distributed file systems,
lack of flexibility in defining the storage strategies that
exploit information about the Cloud in particular.

Just to mention a few possible applications of such
strategies, let us imagine a situation where we have several
disk arrays in our data center which can be used to provide
storage capacity for our Cloud. However, we cannot use
them all because they are shared between a number of other
different projects and users thus their configuration, e.g.,
filesystem, cannot be modified. In such a situation, we could
use only one of the available disk arrays which would
probably not meet our needs because Eucalyptus does not
provide means for connecting several disk arrays together
into a single cloud storage.

Another possible situation is when we would like to
separate users' data, based on groups a particular user
belongs to. Such a users' group can be bound to a Service
Level Agreement between the user and the Cloud provider.
From the Cloud provider point of view, each users' group
could be handled by a different physical device, i.e., the
users who pay more are treated with more reliable and
efficient resources.

Also many other situations can be described where
support for distributed storage is crucial to succeed but the
importance of this functionality should be clearly visible in
advance.

B. Design and implementation

When designing an extension to Eucalyptus that provides
support for distributed storage, we focused on making it as
non-intrusive as possible. Thus, we decided to replace an
existing implementation of the StorageManager Java
interface, namely an instance of the
FileSystemStorageManager class (depicted in Figure 1) with
its another implementation which is aware of the distributed
storage. By doing so, we can activate this functionality with
only two modifications to the Eucalyptus source code, i.e., in
the places where the StorageManager variables are
instantiated. Even these modifications can be eliminated by
using the Dependency Injection pattern [19] and one of its
Java implementation, e.g., the Spring framework [20].

A modified version of the “data storage” use case is
shown in Figure 2. Due to being part of the Eucalyptus
cloud, this extension has access to the whole information

about cloud users, user data, etc. Therefore, it can implement
a storage strategy on a higher level of abstraction than a
distributed file system.

The implemented prototype of this extension enables a
Cloud administrator to decide which storage strategy should
be used by only modifying one configuration file that besides
information about the storage strategy, contains information
about available storage resources.

C. Implemented data distribution strategies

Although, the described extension is versatile, i.e.,
various storage strategies can be implemented and used at
runtime, we implemented three strategies as a proof of
concept. We exploited algorithms known from the
scheduling theory:

• MonteCarlo strategy which randomly (with a
uniform distribution) chooses a place to store the
given data.

• RoundRobin strategy which stores the given data
alternately on each of the available resources.

• WeightedQueue strategy which divides the
available bandwidth to a number of channels whose
“width” is proportional to weights assigned to
storage resources. In the basic version of this
algorithm, the weights are assigned to each device
arbitrarily by the administrator.

The proposed strategies represent a group of so called
static scheduling algorithms. As opposed to dynamic
scheduling algorithms, they do not change the scheduling
scheme, i.e., the order of storage resources, as a response to
changes in the environment, e.g., infrastructure workload.

Although, the static scheduling algorithms can be less
efficient than the dynamic ones, they are more predictable
and straightforward. Thus, they are more suitable for testing
the described functionality comparing the currently available
Eucalyptus version. Also, they are more suitable than
business-level algorithms because they allow to focus to
performance analysis rather than on functional requirements,

Figure 3: A map of a testing environment.

144

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 154 / 237

e.g., distributing data of different users groups to different
storage resources.

V. EXPERIMENTAL EVALUATION

In order to evaluate the implemented extension, a proper
testing infrastructure has been composed and a number of
tests were performed. The evaluation aimed at finding which
storage strategy provides the highest throughput of the Cloud
infrastructure. In addition, we would like to find out whether
a cloud storage can be built based on commodity hardware,
e.g., standard hard drives connected with a commodity
ethernet network, instead of expensive disk arrays connected
with a special network such as Storage Area Network (SAN)
based on FibreChannel, with maintaining the Cloud
performance at the same level.

A. Testing environment

Testing environment is a very important aspect of the
experimental evaluation. Thus, we prepared a sample
configuration for building a small Cloud installation based
on a blade-class cluster nodes and a disk array. As a base
server for an extended version of the Eucalyptus cloud we
use a worker node with the following parameters:

• 2x Intel Xeon CPU L5420 @ 2.50GHz (4 cores
each)

• 16 GB RAM
• 120 GB hard drive (5400 RPM)
• Ubuntu Linux 10.04.1 LTS.

Apart from the Cloud front end where the Cloud
controller and Walrus components were installed, we also
have three similar nodes for running virtual machines
connected with the front end by Gigabit Ethernet.

However, a more interesting part of the environment
concerns the storage. As a main storage for our cloud
installation we used a part of a disk array accessible via
iSCSI protocol, with 6 TB of storage capacity. Such a disk
array, however, with a greater storage capacity available,
could be used in a production cloud. As an additional
storage, we decided to use hard drives from the additional
worker nodes which are exposed via the NFS protocol.

To summarize, we depicted a map of the testing
environment in Figure 4. In our opinion, the presented
environment can be effectively used to evaluate different
storage strategies because it contains heterogeneous storage
resources such as hard drives and disk array distributed
among a few machines all connected with open protocols
and commodity network fabric.

B. Testing scenario

In the presented case, we proposed a scenario in which a
number of users stores files in the Cloud simultaneously.
Such a scenario is parametrized with the following elements:

• number of users running in parallel – 10
• file size – 128, 256, 512, 1024, 2048 MB
• storage strategy – MonteCarlo, RoundRobin,

WeightedQueue (with a number of different weight
vectors)

Each test scenario was perfomed 5 times and the mean
value was computed. The performance evaluation metric

used in the presented tests is the Cloud write throughput. The
metric represents the total rate of writing data by the Cloud
to its storage resources. This metric allows to compute the
overhead generated by Eucalyptus to the storing data
operation. Moreover, we can analyze the utilization rate of
the storage resources with respect to different storage
strategies.

C. Results and discussion

Firstly, the results coming from the tests performed with
a single storage resource and with storage resources
accessible via NFS are depicted in Figure 4. The results
show a huge difference between the performance of the
Cloud which uses a disk array and the Cloud which uses a
common hard drive connected via NFS. The difference
increases with the file size. This is expected due to the cache
mechanism. When the file size is greater then the system
cache then the performance of the Cloud gets stable. A
second thing to notice is the performance of the Cloud which
uses three connected hard drives via NFS. The mean
performance of this configuration is smaller than in the
configuration with a disk array but they are comparable.
Also we can notice a slight performance gain when the
RoundRobin strategy has been used. Also, we should notice a
large diversity of measurement values in the storage
configuration with a single NFS disk. The smallest diveristy
of measurement values was obtained with a configuration of
the disk array.

The second part of the results which contains the
measured throughput with regard to the selected storage
strategy is depicted in Figure 5. This test was performed with
a Cloud installation which includes a disk array and three
hard drives, exposed via NFS.

The results show that the MonteCarlo strategy is the
worst one. For 1024 MB files the Cloud throughput for the
MonteCarlo is less by 1/5 than the Cloud throughput for the
RoundRobin strategy. The performance achieved in other
strategies are similar and are close to 95 MB/s. Since the
theoretical network performance is about 125 MB/s the
achieved throughput is about 76% of the theoretical value
and slightly more then 80 % in the best case.

Comparing the distributed storage to non-distributed
storage, the results show about 10% of performance gain.
Such a small gain is probably due to the limited network
bandwidth rather than storage resources throughput

Figure 4: The Cloud throughput depending on a file size
with 10 clients run in parallel.

145

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 155 / 237

limitations. Thus, it is highly probable that, if there would be
more than one physical network interface (as in our testing
environment) coming from the Cloud front end, the Cloud
throughput would scale better with the additional resources.

Table 1: Statistical parameters (in MB/s) for the throughput
measurement for different storage strategies.

Storage Strategy Mean Variance Confidence interval (α=0.05)

Round Robin 96.98 10.07 [93.96; 100.01]

Monte Carlo 90.50 110.43 [80.48; 100.52]

WQ-32111 96.71 6.91 [94.21; 99.22]

WQ-21111 95.33 0.21 [94.88; 95.77]

WQ-31111 96.37 1.26 [95.29; 97.44]

In Table 1, we gathered important statistical parameters
which describe data from the second test case. Although the
RR storage strategy leads to the largest mean throughput, the
narrowest confidential interval can be obtained with the
weighted queue strategy. The MC strategy is the most
unpredictable.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we aimed at emphasizing the necessity of
supporting distributed storage in building storage clouds.
Upon having compared several open-source toolkits for
building private clouds we decided to use Eucalyptus due to
its compatibility at the interface level with the de facto
standard in Cloud ecosystem, i.e., the Amazon clouds. As
described in Section III, the current version of Eucalyptus
does not provide sufficient functionality regarding data
management. A non-intrusive extension to Eucalyptus has
been proposed and implemented. The results from a number
of performed tests show that a distributed storage can
improve the Cloud throughput comparing the original
implementation even if commodity hardware is used.
Moreover, when using a distributed storage, the Cloud
performance gets stable near the theoretical value of the
network bandwidth.

The future work concerns improving the stability of the
proposed extension. Also some new storage strategies,
similar to those described in Section 4, are going to be
provided.

ACKNOWLEDGMENT

This research is supported partly by the European
Regional Development Fund program no. POIG.02.03.00-
00-007/08-00 as part of the PL-Grid Project . The authors are
grateful to Dr. Dr. Łukasz Dutka, Renata Słota and
Włodzimierz Funika for valuable discussions.

REFERENCES

[1] Gartners report about the Top 10 Strategic Technologies for
2011, [online: http://www.gartner.com/it/page.jsp?
id=1454221, as of April 16, 2011].

[2] The iRODS project website: [on-line: https://www.irods.org,
as of April 16, 2011].

[3] S. Jha, A. Merzky, and G. Fox, “Using clouds to provide grids
with higher levels of abstraction and explicit support for
usage modes”, Journal Concurrency and Computation:
Practice & Experience, vol. 21 (8), pp. 1087-1108, June 2009.

[4] Amazon Elastic Compute Cloud website [on-line:
http://aws.amazon.com/ec2, as of April 16, 2011].

[5] Microsoft Windows Azure Platform website [on-line:
http://www.microsoft.com/windowsazure/, as of April 16,
2011].

[6] Google AppEngine website [on-line:
http://code.google.com/appengine/, as of April 16, 2011]

[7] D. Milojičić, I. Llorente, and R. Montero, "OpenNebula: A
Cloud Management Tool," IEEE Internet Computing, vol.
15(2), pp. 11-14, Mar./Apr. 2011, doi:10.1109/MIC.2011.44.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, and A.
Warfield, "Xen and the art of virtualization," in SOSP '03:
Proceedings of the nineteenth ACM symposium on Operating
systems principles. NY, USA: ACM, 2003, pp. 164-177.

[9] Kernel-based Virtual Machine project wiki. [on-line:
http://www.linux-kvm.org, as of April 16, 2011].

[10] VMware website. [on-line: http://www.vmware.com, as of
April 16, 2011].

[11] NASA Nebula website. [on-line: http://nebula.nasa.gov/, as of
April 16, 2011].

[12] RackSpace CloudFiles solution website. [on-line:
http://www.rackspace.com/cloud/cloud_hosting_products/file
s/, as of April 16, 2011].

[13] OpenStack project website. [on-line: http://www.openstack.org,
as of April 16, 2011].

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov, “The Eucalyptus
Open-Source Cloud-Computing System”, CCGRID '09
Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, IEEE
Computer Society Washington, DC, USA 2009.

[15] Amazon Simple Storage Service project website, [on-line:
http://aws.amazon.com/s3/, as of April 16, 2011].

[16] Introduction to Storage Area Networks, IBM redbook, [on-
line: http://www.redbooks.ibm.com/abstracts/sg245470.html?
Open, as of April 16, 2011].

[17] EMC2 Atmos product web site, [on-line:
http://www.emc.com/storage/atmos/atmos.htm, as of April
16, 2011].

[18] G. Behrmann, P. Fuhrmann, M. Gronager, and J. Kleist, “A
distributed storage system with dCache”, in G .Behrmann et
al Journal of Physics: Conference Series, 2008.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
1995, ISBN: 0-201-63361-2.

[20] Spring Framework website. [on-line:
http://www.springsource.org/, as of April 16, 2011].

Figure 5: The Cloud throughput depending on a storage
strategy.

146

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 156 / 237

Open Environment for Collaborative Cloud Ecosystems

Oleksiy Khriyenko

Industrial Ontologies Group, MIT Department

University of Jyväskylä, P.O. Box 35(Agora)

Jyväskylä, Finland

oleksiy.khriyenko@jyu.fi

Michael Cochez

Industrial Ontologies Group, MIT Department

University of Jyväskylä, P.O. Box 35(Agora)

Jyväskylä, Finland

michael.s.l.cochez@jyu.fi

Abstract — Cloud computing can be defined as accessing and

utilizing third party software, services and resources and

paying as per usage. It facilitates scalability and virtualized

resources over the Internet as a service; providing cost

effective and scalable solution to customers. There are two

emerging methodologies for constructing infrastructure:

“Cloudcenters” and “Infrastructure Web Services”.

Cloudcenters can be regarded as a virtualized data center.

Infrastructure Web Services are more analogous to Service-

Oriented-Architectures (SOA), require significant

programming skills and are much more comfortable for

software developers. It is a robust ecosystem of services which

you can use in order to build your application, getting the

traditional benefits of Cloud Computing such as self-service,

pay-as-you-go, and massive scalability. Unfortunately, talking

about openness and interoperability in cloud computing, cloud

providers still operate very much in their own silos and

private-cloud APIs drift further and further apart. Most data

center vendors do not offer users complete vertically integrated

cloud stacks. However, they are often providing solutions

which imply a strong vendor lock-in. A lot of activities are

currently aimed at the development of various Cloud

computing environments and software engineering practices

for the management of distributed applications, services and

other resources. We are thinking about a future vision of a

network of clouds. It should be an open market for

components (applications, services, data sources, etc.) and

composed ecosystem infrastructure services that facilitate

appropriate collaboration for personalized needs. In this paper

we would like to slightly modify the original cloud stack

towards the development of an open environment for task-

oriented personalized cloud ecosystems and apply a resource

integration platform for this ecosystem elaboration.

Keywords-collaborative clouds; cloud interoperability;

component-based ecosystem infrastructure; semantic integration

I. INTRODUCTION

Cloud Computing refers to both the applications
delivered as services over the Internet and the hardware and
system software in the data centers which provide these
services. ‗Cloud Computing, the long-held dream of
computing as a utility, has the potential to transform a large
part of the IT industry by making software as a service even
more attractive and shaping the way IT hardware is designed
and purchased. Developers with innovative ideas for new
Internet services no longer require the large capital outlays in

hardware to deploy their service or the human expense to
operate it.‘ [1].

Clouds have emerged as a computing infrastructure that
enables rapid delivery of computing resources as a utility in a
dynamically scalable and virtualized manner. The
advantages of cloud computing over traditional computing
include: agility, lower entry cost, device independence,
location independence, and scalability. There are two
emerging methodologies for constructing infrastructure:
―Cloudcenters‖ and ―Infrastructure Web Services‖.
Cloudcenters provide the same kinds of tools that data center
and server operators are already accustomed to, but with all
the advantages of cloud (i.e., self-service, pay-as-you-go and
scalability). Instead of creating completely new paradigms,
cloudcenters are a methodology by which you, the customer,
can have a virtual data center hosted in the ―sky‖. It allows
the use of the same tools, paradigms and standards that are
deployed in an industry standard data center today.
Cloudcenters provide a direct equivalent to traditional data
centers including all of the regular components you expect
such as hardware firewalls, hardware load balancers,
network storage, virtualized servers, dedicated networks, and
the option for physical servers for workloads that should not
be virtualized. Thus they are usually more desirable for IT
staff, systems operators, and other data center specialists.
Infrastructure Web Services on the other hand are more
analogous to Service Oriented Architecture (SOA), require
significant programming skills, and are much more
comfortable for software developers. In this case, the
infrastructure provides a number of different services
(Object-based file storage, Servers on demand, Distributed
database functionality, Content distribution, Messaging &
queuing, Payment processing, etc.) that can be consumed
individually or together to facilitate different kinds of
applications. This is a robust ecosystem of services which
you can use in order to build your application.

For all the talk about openness and interoperability in
cloud computing, both public-cloud and private-cloud
providers still operate very much in their own silos [2]. The
cloud ecosystem is challenged by the fact that cloud service
providers provide their own ways on how users or cloud
applications interact with their cloud, resulting in vendor
lock-in, non-portability and inability to use the cloud
services provided by multiple vendors. This often includes
the inability to use an organization‘s own existing data center
resources seamlessly with the offered infrastructure. Cloud

147

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 157 / 237

computing is gaining popularity and IT giants such as
Google, Amazon, Microsoft and IBM have started their
cloud computing infrastructure. All of them are doing
wonderful things — but they are doing so largely within
their own environments. ‗And while (most) data center
vendors don‘t offer users complete vertically integrated
cloud stacks, they are more than happy to lock users into
their product lines as much as possible and form strong
partnerships in areas they don‘t play.‘[2]. Golden [3] states
that current cloud implementations do not allow enterprise
applications to be migrated conveniently; imply legal,
regulatory, and business risks; are difficult to maintain ; lack
service level agreements and do often not give a cost
advantage.

 Nowadays, activities are mainly aimed at the
development of various Cloud computing environments and
software engineering practices for management of
distributed applications, services and other resources.
However, development is still focused on enterprise level
clouds, which may result in the creation of architectures with
the drawback of heterogeneity, non-interoperability of
components, and inability of the systems to be
reconfigurable on demand. Effort is already done in order to
make providers‘ offers interchangeable. One such example is
the Open Virtualization Format (OVF). ‗The OVF
specification is a hypervisor-neutral, efficient, extensible,
and open specification for the packaging and distribution of
virtual appliances composed of one or more VMs. It aims to
facilitate the automated, secure management not only of
virtual machines but the appliance as a functional unit.‘ [4].
The same source states however that ‗For the OVF format to
succeed it must be developed and endorsed by ISVs, virtual
appliance vendors, operating system vendors, as well as
virtual platform vendors, and must be developed within a
standards-based framework.‘ This requirement might show
to be to strong in reality.

We think that it is time to start thinking about a future
vision of a network of clouds. It should be an open market
for components (applications, services, data sources, etc.)
and composed ecosystem infrastructure services that
facilitate appropriate collaboration for personalized needs.
Such ecosystem-based environment allows the collection and
management of applications and the composition of mash-
ups based on them. The applications used to compose mash-
ups can be found from the users own private pool of
components and services or from the open marketplace
provided by different cloud service providers. Furthermore,
the ecosystem-based environment allows enterprises and
individuals to choose what kind of ecosystem infrastructure
services to utilize for the service collaboration and
personalized user experience. Such architecture allows us to
create personalized abstract clouds. An abstract cloud is a
description of infrastructure, platforms and software which
does not have to mention all concrete components. These
concrete components can later on be selected, even on the
fly, by the user of the abstract cloud. Abstract clouds can be
made available through the open marketplace to be used as
application oriented infrastructure or as a sub-cloud for own
personalized infrastructure cloud composition. In this paper

we would like to slightly modify the original cloud stack
towards the development of an open environment for task-
oriented personalized cloud ecosystems. We will apply a
resource integration platform for this ecosystem elaboration.

II. SMART RESOURCE INTEROPERABILITY

A. Technologies Towards Intelligent Interoperability

With the presence of numerous vendors, the need for
interoperability between clouds emerges. The goal is to make
complex and developed business applications in the cloud
interoperable. To achieve the vision of ubiquitous
knowledge, the next generation of integration systems might
need different technologies as the ones currently used.
Technologies such as Semantic Web [5][6], Web Services
[7][8], Agent Technologies [9], and Mobility[10]. Semantic
technologies are viewed today as a key technology to resolve
the problems of interoperability and integration within the
heterogeneous world of ubiquitously interconnected objects
and systems. Still, aspects of proactivity of these resources
are quite in demand nowadays and should be considered
more comprehensively.

In recent years, the complexity of computing
environments has grown beyond the limits of human system
administrators‘ management capabilities. With the advent of
service-oriented computing (SOC), computing environments
have become open and distributed, and components are no
longer under a single organization‘s control. Moreover, the
typical enterprise computing environment is a
heterogeneous, irregular, multivendor pastiche which is
difficult to configure, maintain, and trouble-shoot.
Autonomic computing systems are expected to free system
administrators to focus on higher-level goals [11]. Self-
configuration (systems configuring themselves automatically
when computing resources are added or removed), self-
healing (discovering when, where and why systems are
ailing and performing the appropriate self-repair and fault-
correction operations), self-optimization (monitoring and
controlling resources to ensure optimal functioning with
respect to defined requirements, as well as optimizing
performance and efficiency by reconfiguring themselves)
can be performed by autonomic computing systems without
human intervention. Autonomic computing systems can
perform these functions at both the infrastructure and
application levels. As such, autonomic computing systems
strongly resemble multi-agent systems (MAS). MAS, in turn,
interact with services, as designed and developed within
SOC. When it comes to developing complex, distributed
software based systems; the agent based approach is
advocated in Jennings [12]. The vision of autonomic
computing emphasizes that the run-time self-manageability
of a complex system requires its components to be, to a
certain degree autonomous themselves. From the
implementation point of view, agents are the next step in the
evolution of software engineering approaches and
programming languages, a step following the trend towards
increasing degrees of localization and encapsulation in the
basic building blocks of programming models [13].

148

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 158 / 237

Developing and maintaining large-scale, distributed
applications is a complex task. Middleware has traditionally
been used to simplify application development by hiding
low-level details and by offering generic services that can be
reused and configured by application developers. However,
middleware technology has not kept up with the growing
demands that emerge in the digital society: the scale of
distributed applications is rapidly increasing, the range of
users that compose and configure applications has expanded
significantly, and the increased scope of distributed
applications has also resulted in more advanced application
composition scenarios.

B. UBIWARE Platform: Integration Infrastructure for

Heterogeneous Distributed Components

As a basis for our research towards open environment for
personalized task/domain oriented cloud ecosystems we use
the UBIWARE platform [14]. This platform follows the
GUN vision described in [15]. The UBIWARE platform is a
development framework for creating multi-agent systems. It
is built on top of the Java Agent Development Framework
JADE [16], which is a Java implementation of IEEE FIPA
specifications. The name of the platform comes from the
name of the research project, in which it was developed. The
UBIWARE project introduced a new paradigm in software
engineering and elaborated an approach towards creation of
semantically enhanced agent-based integration middleware
that makes heterogeneous resources proactive, goal-driven
and able to interoperate with each other in collaborative
environment [17]. In this project, a multi-agent system was
seen, first of all, as a middleware providing interoperability
of heterogeneous resources and making them proactive and
in a way smart.

The core of the platform gives every resource a
possibility to be smart by connecting a software agent to it.
This agent enables the component to proactively sense,
monitor and control its own state and communicate with
other components which are also represented by agents in the
system. Furthermore, the component can compose and utilize
internal and external experiences and functionality for self-
diagnostics and self-maintenance. UBIWARE enables the
resources to automatically discover each other and to
configure a system with complex functionality based on the
atomic functionalities of the resources. It ensures a
predictable and systematic operation of the components and
the system as a whole by enforcing that the smart resources
act as prescribed by their organizational roles and by
maintaining the ―global‖ ontological understanding among
the resources [18]. The main goal of the platform is to
provide interoperability between heterogeneous resources
(applications and systems in our case) through semantic
adaptation and the proactive agent assigned to each of the
resources. All communication, resource discovery and use of
resources (e.g., application and systems) are performed
trough its corresponding agent. The platform has inter-
platform communication mechanisms and allows integration,
orchestration and choreography of resources registered and
located on different platforms. UBIWARE is not an
application like an operating system, word processing

software or Internet browser. It is a set of tools that helps
people develop software. With respect to cloud-based
integration environment interoperability, we consider the
UBIWARE platform as a tool that enables automatic
discovery, orchestration, choreography, invocation and
execution of different Business Intelligence services.

III. OPEN ENVIRONMENT FOR COLLABORATIVE CLOUD

ECOSYSTEM

A. Cloud Stack for Collaborative Cloud Ecosystem

Most of the current cloud implementations are built on
top of data centers. According to NIST [19] cloud computing
incorporates Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS), and
provide these services as utilities. Data centers are a
foundation of cloud computing which provides the hardware
clouds run on. IaaS is built on top of the data centers and
virtualizes the computing power, storage and network
connectivity of the data centers, and offers them as
provisioned services to consumers. In other words,
consumers have the possibility to configure a virtual
computer, where he can select a configuration of CPU,
memory and storage that is suitable for the intended
application. The whole cloud infrastructure (i.e., servers,
routers, hardware based load-balancing, firewalls, storage,
and other network equipment) are provided by the IaaS
provider. The customer buys these resources as a service as
needed. Examples of this layer include the Amazon EC2
service [20] and Microsoft‘s Windows Azure platform [21].
PaaS provides a development platform with a set of services
to assist application design, development, testing,
deployment and monitoring, hosted on the cloud. It is
sometimes referred to as cloudware. Google App Engine,
Microsoft Azure, Amazon Map Reduce/Simple Storage
Service, etc are among examples of services residing in this
layer. In SaaS, Software is presented to the end users as
services on demand, usually in a web browser. It saves the
users from the troubles of the software deployment and
maintenance. The software is often shared by multiple
tenants, automatically updated from the cloud, and no
additional license needs to be purchased. Because of its
service characteristics, SaaS can often be integrated easily
with other mashup applications. One example of SaaS is
Google Maps and its mashups across the Internet. However,
the separation in IaaS, Paas and Saas is mainly a service
model. Components and features of one layer can in practice
also be implemented on another layer and the upper layer
does not have to be built on top of its immediate lower layer.

In the cloud computing environment, everything can be
implemented and treated as a service. Software development
"in the cloud" has been one of the really interesting
developments to come out of the cloud computing market so
far. Regarding PaaS, more and more cloud providers
enhance their platforms with specific services that simplify
application development for their customers and, in such a
way, bind the customers to their platforms. There are
services like payment systems, information search systems,
GEO-systems, specific data bases, etc. One example of this

149

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 159 / 237

kind of services is the datasets provided by Amazon [22].
Together with private specific services from cloud providers
there are quite many freely open sources and commercial
services provided by third parties. To generalize the concept
of this kind of services, and take into account that users of
such services are not human, but other applications and
services, we name them as a SaaS for Software (SaaS4S) or
SaaS for SaaS (SaaS4SaaS).

In the proposed solution, a service (be it infrastructure,
platform or software) should be registered (connected
through adapter) to the integration environment UBIWARE
and be semantically annotated according to common
ontology in order to enable the environment to discover and
orchestrate them. Any service can have access restrictions.
This gives an opportunity to use own capabilities together
with, or instead of, others when security and privacy of
processed data is crucial. Using the UBIWARE platform as a
tool for application and service integration, we may create an
open environment for the components across different
clouds.

Figure 1 shows the proposed extended cloud stack which
allows us to organize collaboration between services and
applications located in different clouds. As in the original
cloud stack, there are Application Development Tools that
users of the PaaS layer use to develop and run their
applications.

SaaS4SaaS

IaaS

Platform Services Application Development Tools

PaaS

EIaaS

SaaS

UBIWARE Platform based

SaaS

Ecosystem Infrastructures

SaaS4SaaS

IaaS

Platform Services Application Development Tools

PaaS

EIaaS

SaaS

UBIWARE Platform based

SaaS

Ecosystem Infrastructures

SaaS4SaaS

IaaS

Platform Services Application Development Tools

PaaS

EIaaS
SaaS

UBIWARE Platform
based

SaaS

Ecosystem Infrastructures

Applications and Services

Figure 1. Cloud Stack for Collaborative Cloud Ecosystem.

There are services and functionalities that many of cloud
providers supply with their platforms to facilitate users
application development. Using the UBIWARE platform as
one of the applications run on top of PaaS layer we may:

 transform applications that are presented for humans
on the SaaS layer to services available for other
software (SaaS4SaaS);

 support the users of the PaaS layer to develop and
register applications directly for SaaS4SaaS layer;

 make specific platform services available for use on
the SaaS4SaaS layer.

The UBIWARE platform allows semantic adaptation of
different data sources and makes them accessible as services
for other services and applications that operate through the
platform. With correspondent tools (provided by the
UBIWARE platform) users may create and define task and
domain specific Personalized Ecosystem Infrastructures
(PEIs) as compositions of services (addressed by ecosystem
Infrastructure Modules) and data sources. They can then use
them as services on demand – Ecosystem Infrastructure as a
Service (EIaaS). Thus, on the EIaaS layer, the UBIWARE
platform provides a possibility to create new services on top
of cross-cloud semantic orchestration and choreography of
distributed components.

B. Personalized Context-Aware and Self-Configurable

Cloud Ecosystem

A component-based approach for the Cloud Ecosystem
development provides us a flexible way to elaborate an
ecosystem through the composition of different
(heterogeneous) modules on the level of Ecosystem
Infrastructure and on the level of Application composition
(Figure. 2). We utilize the same approach of component-
based system development on both levels and provide an
interoperability of heterogeneous components (modules)
developed by various providers in an open collaborative
environment. As a foundation for a collaborative ecosystem
environment, we consider a network of platforms that
provide cross-platform communication, interoperability of
heterogeneous components and a toolbox for their
composition. The UBIWARE platform is developed as a
smart semantic middleware for ubiquitous computing and is
based on integration of several technologies: semantic web,
distributed artificial intelligence, agent technologies,
ubiquitous computing, SOA, Web X.0 and related concepts.
We regard this platform as our basis and intend to extend its
functionality towards the needs of this Cloud Ecosystem
elaboration.

The Core Ecosystem Engine is an engine which provides
a mechanism for a component-based Ecosystem
Infrastructure composition. On the Ecosystem Infrastructure
development level we have a pool of components –
Ecosystem Infrastructure Modules (EIMs). These EIMs can
be used for Personalized Ecosystem Infrastructure (PEI)
creation where only relevant EIMs are composed. With
respect to openness of our collaborative environment, such
PEI can itself be published to the public zone and be used as
sub-PEI in other personalized ecosystem infrastructures.

150

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 160 / 237

C
o

re
 E

co
sy

st
e

m
 E

n
gi

n
e

C
o

re
 E

co
sy

st
em

 E
n

gi
n

e

C
o

re
 E

co
sy

st
e

m
 E

n
gi

n
e

Personalized Ecosystem Infrastructures (PEI). Personalized
clouds that contain Infrastructure Modules as well as other
PEIs (sub-PEIs) as a component from private and public zone.

Private Infrastructure Module (PIM). Ecosystem Infrastructure
Module from private zone of Ecosystem that provides certain
functionality and used as a component of PEI.

Ecosystem Engine Modules (EEM):
functional components of the
platform.

Application/Service that utilize other
Applications/Services from private and
public zone as a components. Can be
published to private and/or public zone to
be used as a component.

Private Application
or Service that can be
used as a component
by other applications.

Publicly available Application/Services, Infrastructure Modules and Personalized Ecosystem Infrastructures that can be connected by Core Ecosystem Engine on a phase of
Ecosystem Infrastructure composition and a phase of Application/Service creation.

Figure 2. Open environment for collaborative component-based Ecosystems.

In the same way, the Core Ecosystem Engine of the
platform provides a mechanism for component-based service
composition on top of the selected Personalized Ecosystem
Infrastructure. The user may have a private zone containing
the set of available applications and services on the platform.
At the same time, the platform allows the connection of
publicly available services, published to the public zone of
the environment. Semantic policy-based control of the
platform brings security aspects to the system. This policy
based control allows users to distinguish between public and
private components and guarantees protection of sensitive
data.

In order to make a valuable step towards intelligent
services, we should not to limit ourselves to the creation of
specific services. We have to think about more flexible
solutions that allow us to create new services through
orchestration of reusable collaborative intelligence and about
a supportive integration environment that gives us the
possibility to create new context-aware services through the
integration of various data sources and intelligent capabilities
with a flexible semantic process. To increase the flexibility
and reliability of the applications and the services created on
top of Ecosystem Infrastructures, we consider a semantic
definition of Abstract Infrastructure. According to the
semantic web vision, not only programs and data are

distinguishable, but also components of more complex
systems are considered as separate modules. These
components may be replaced by components which are
semantically similar and more suitable in the current context.

Applying a semantic web approach for the Ecosystem
Infrastructure creation, the user may define a so called
Abstract cloud, which will be on-the-fly transformed into
concrete appropriate Infrastructure based on the available
components from different Clouds depending on the
correspondent context. Providing interoperability of
heterogeneous components, Ecosystems should be flexible
and at certain level intelligent. Utilizing the semantic web
approach, the UBIWARE platform makes the Ecosystem
proactive and able to configure itself on-the-fly depending on
context and user needs. The platform provides a possibility
for the user to define a process with preferences and
constrains and executes it as an on-the-fly orchestration of
available capabilities and available data, based on their
semantic descriptions, through semantic matching and
discovery mechanisms (Figure 3).

Although we have a complex network of heterogeneous
services, applications and data sources distributed among
different clouds, users of EIaaS layer see the Ecosystem as
one common entity accessible through the common
UBIWARE interface. Figure 4 shows us the general structure

151

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 161 / 237

of the Ecosystem. The UBIWARE platform provides
corresponding tools for the Ecosystem Users (the providers
and users of personalized Ecosystem Infrastructures) and
transparency for collaboration of distributed components.
Through interoperability between other UBIWARE
platforms this automatically organizes an open market place
of publicly available ecosystem infrastructures and services
keeping the possibility of private zones for sensitive
information.

C. Case Scenario: Creation of Personalized Ecosystem

Infrastructure and Launching Self-configurable

Application as a Set of Composed Services

This is a joint use case with two players that shows
nested utilization of the ecosystem platform on two layers. It
can also be regarded as two separate scenarios.

Player 1 is an ecosystem infrastructure provider who has
a set of own components - infrastructure modules. The
player would like to create a Personalized Ecosystem
Infrastructure (PEI) as a set of (a) own modules, (b) some
publicly available modules shared in the open marketplace of
the components and (c) specific services provided by his
cloud provider. To achieve that goal, Player 1 has to:

 register his own components locally to the platform's
private zone (through the registration tool of the
platform) and connect them via semantic adapters;

 find other necessary components from the open
shared space provided by third parties;

 provide a semantic description of the abstract
components that will be on-the-fly transformed
(discovered and invoked) to appropriate ones for the
current context;

 create appropriate adapters to make cloud-specific
services available through them;

 Provide a semantic annotation of the created
Ecosystem Infrastructure.

Thus, using features of the platform such as: adapter-
based connection of components (data sources and services),
component discovery (based on their semantic specification),
browsing of available resources based on their semantic
description and the tool for semantic annotation of resources,
Player 1 may create a PEI, annotate it and publish it to the
marketplace.
Player 2 is a user of the PEI (provided by Player 1 or any
other EI provider) and a service provider at the same time.
The player would like to find an appropriate ecosystem
infrastructure to create and launch his own application on top
of it, as a publicly available service. An application is meant
to be a dynamic self- configurable composition of several
services. The way the application should work is context
dependant. Among the relevant context variables are service
availability, reliability, cost, and user and service location.

Semantic

Data Source

Semantically
annotated

Capabilities

Semantic Abstract

Business Process

Semantic Business Process Editor

Executable Business Process Engine

Ontology

Ontology

Figure 3. Semantic Abstract Business Process of UBIWARE.

Player 2 enters the platform and selects or finds (via the
corresponding tools of the platform) an appropriate
Ecosystem Infrastructure which fits the requirements of the
player depending on task and domain specifics of the
planned service. Utilizing the infrastructure components of
the corresponding ecosystem and the abstract process
definition tool of the platform, Player 2 defines a partially
abstract process. Components are described through their
semantic annotations and will at run-time be selected among
appropriate available components, depending on the context.
Thus, concrete instances of the composed service will be
built on-the-fly and executed by the platform engine. After
Player 2 has published his/her application, it can be used by
service users on the web.

IV. CONCLUSIONS

Within this paper we aimed at showing possible steps on
how openness and interoperability of cloud ecosystems can
potentially be achieved. To achieve this goal, we utilized the
UBIWARE platform as a tool for proactive interoperability
of distributed heterogeneous components. We presented an
open environment for collaborative ecosystems with
personalized cloud architecture in a sense of task- and
domain-specific application development. We extend the
cloud stack which allows us to organize collaboration
between services and applications located in different clouds.
All the components that can be considered as task and
domain-specific are put to the Ecosystem Infrastructure layer
(EIaaS). To increase flexibility and reliability of the
applications and services created on top of PEI, we
considered a semantic definition of Abstract Infrastructure.
This way, it becomes possible to define context-dependent
Data and services to be used by applications and services.
Utilizing semantic web and multi-agent system approaches,
the UBIWARE platform makes the ecosystem proactive and
able to configure itself on-the-fly. This configuration
happens depending on context and user needs, using the
advantage of semantically adapted data, intelligent
capabilities, and semantic abstract business process
definition techniques.

152

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 162 / 237

Application User Interface

Application/Service

Personalized Ecosystem Infrastructure

Pu
bl

ic
 z

on
e

U
B

IW
A

R
E

Pl
at

fo
rm

A
pp

lic
at

io
ns

an

d
Se

rv
ic

es

In
fr

as
tr

uc
tu

re

m
od

ul
es

 a
nd

su

b-
PE

Is

Application USER

Ec
os

ys
te

m
 U

SE
R

Co
re

 E
co

sy
st

em
 E

ng
in

e

M
od

ul
es

Private Ecosystem Infrastructure
Modules

Private Applications/Services

Figure 4. General structure of the Ecosystem.

ACKNOWLEDGMENT

This research is based on activities of the project under
the Cloud Software program in TIVIT SHOK (funded by
TEKES and consortium of industrial partners) and the
cCloud project (Academy of Finland) in the Department of
Mathematical Information Technology (University of
Jyvaskyla, Finland). We are very grateful to the members of
the Industrial Ontologies Group for a fruitful cooperation
within this research topic.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, ―Above the Clouds: A Berkeley View of Cloud Computing‖.
Technical Report No. UCB/EECS-2009-28. EECS Department,
University of California, Berkeley. February 10, 2009.

[2] D. Herris, ―For Open Cloud Computing, Look Inside Your Data
Center‖, 2010 [Online] URL: http://gigaom.com/2010/03/28/for-
open-cloud-computing-look-inside-your-data-center/ [Accessed 30
June 2011]

[3] Bernard Golden. (2009, January) Computer World. [Online]. URL:
http://www.computerworld.com/s/article/9126620/The_case_against_
cloud_computing_part_one [Accessed 30 June 2011]

[4] Distributed Management Task Force, (2009, June) ―Open
Virtualization Format White Paper‖, Version 1.0.0, DSP2017.

[5] Semantic Web, 2001. [Online] URL: http://www.w3.org/2001/sw/
[Accessed 30 June 2011]

[6] T. Berners-Lee, J. Hendler and O. Lassila, ―The Semantic Web‖,
Scientific American 284(5), 2001, pp. 34-43.

[7] Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D. L.,
McDermott, D., McIlraith, S. A., Narayanan, S., Paolucci, M., Payne,
T. R. and Sycara, K. (2002) DAML-S: Web Service Description for
the Semantic Web. In: International Semantic Web Conference
(ISWC), June 9th - 12th, Sardinia, Italy. pp. 348-363.

[8] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. 2002.
―Importing the Semantic Web in UDDI.‖ In Revised Papers from the
International Workshop on Web Services, E-Business, and the
Semantic Web (CAiSE '02/ WES '02), Christoph Bussler, Richard
Hull, Sheila A. McIlraith, Maria E. Orlowska, Barbara Pernici, and
Jian Yang (Eds.). Springer-Verlag, London, UK, UK, 225-236.

[9] FIPA, ―FIPA Interaction Protocol Library Specification
Specification‖, FIPA00025, 2001. URL:
http://www.fipa.org/specs/fipa00025/ [Accessed 30 June 2011]

[10] F. Curbera, M. Dufler, R. Khalaf, W. Nagy, N. Mukhi and S.
Weerawarana, ―Unraveling the Web Services Web: An introduction
to SOAP, WSDL and UDDI‖, Internet computing, 2002.

[11] F.M.T.Brazier, J.O. Kephart, H. Parunak and M.N. Huhns, "Agents
and Service-Oriented Computing for Autonomic Computing: A
Research Agenda," IEEE Internet Computing, vol. 13, no. 3, pp. 82-
87, May/June 2009, doi:10.1109/MIC.2009.51

[12] N. Jennings, ―An agent-based approach for building complex
software systems‖. Communications of the ACM 44, 4, 2001, pp. 35–
41.

[13] N. Jennings, ―On agent-based software engineering‖, Artificial
Intelligence 117(2), 2000, pp. 277–296

[14] UBIWARE Project [Online] URL:
http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_details.htm [Accessed
30 June 2011]

[15] O. Kaykova, O. Khriyenko, D. Kovtun, A. Naumenko, V. Terziyan
and A. Zharko, ‖General Adaption Framework: Enabling
Interoperability for Industrial Web Resources‖, In: International
Journal on Semantic Web and Information Systems, Idea Group,
ISSN: 1552-6283, Vol. 1, No. 3, July-September 2005, pp.31-63.

[16] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa, ―Jade, A White
Paper‖ [Online]

URL: http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf
[Accessed 30 June 2011]

[17] A. Katasonov and V.Terziyan, ―SmartResource Platform and
Semantic Agent Programming Language (S-APL)‖, In: P. Petta et al.
(Eds.), Proceedings of the 5-th German Conference on Multi-Agent
System Technologies (MATES‘07), 24-26 September, 2007, Leipzig,
Germany, Springer, LNAI 4687 pp. 25-36.

[18] O. Khriyenko, S. Nikitin and V. Terziyan, ―Context-Policy-
Configuration: Paradigm of Intelligent Autonomous System
Creation‖, In: Joaquim Filipe and Jose Cordeiro (Eds.), Proceedings
of the 12th International Conference on Enterprise Information
Systems (ICEIS-2010), 8-12 June, 2010, Funchal, Madeira - Portugal,
ISBN: 978-989-8425-05-8, pp. 198-205.

[19] P. Mell, T. Grance, ―The NIST Definition of Cloud Computing
(Draft)‖ Special Publication 800-145, January 2011.

[20] Amazon EC2, [Online] URL: http://aws.amazon.com/ec2/ [Accessed
30 June 2011]

[21] Microsoft Windows Azure [Online]

URL: http://www.microsoft.com/windowsazure/ [Accessed 30 June
2011]

[22] Amazon EC2 Publicly available datasets [Online]
http://aws.amazon.com/publicdatasets/ [Accessed 30 June 2011]

153

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 163 / 237

Measuring Elasticity for Cloud Databases

Thibault Dory, Boris Mejı́as
Peter Van Roy

ICTEAM Institute
Univ. catholique de Louvain

dory.thibault@gmail.com, peter.vanroy@uclouvain.be,
boris.mejias@uclouvain.be

Nam-Luc Tran
Euranova R&D

Mont-Saint-Guibert, Belgium
namluc.tran@euranova.eu

Abstract—The rise of the Internet and the multiplication
of data sources have multiplied the number of “Bigdata”
storage problems. These data sets are not only very big but
also tend to grow very fast, sometimes in a short period.
Distributed databases that work well for such data sets need to
be not only scalable but also elastic to ensure a fast response
to growth in demand of computing power or storage. The
goal of this article is to present measurement results that
characterize the elasticity of three databases. We have chosen
Cassandra, HBase, and mongoDB as three representative
popular horizontally scalable NoSQL databases that are in
production use. We have made measurements under realistic
loads up to 48 nodes, using the Wikipedia database to create
our dataset and using the Rackspace cloud infrastructure.
We define precisely our methodology and we introduce a
new dimensionless measure for elasticity to allow uniform
comparisons of different databases at different scales. Our
results show clearly that the technical choices taken by the
databases have a strong impact on the way they react when
new nodes are added to the clusters.

Keywords-Cloud computing; key/value store; elasticity;
NoSQL; Cassandra; mongoDB; HBase; Wikipedia.

I. INTRODUCTION

Nowadays there are a lot of problems that require
databases capable of storing huge quantities of unstructured
data. The datasets are so big that they must be stored on
several servers and, as new data are gathered and new users
appear, it must be possible to extend the available storage
and computing power. This can only be done by adding
more resources into the cluster, e.g., adding servers. This
addition is likely to have an impact on performance and
therefore the goal of this paper is to present the definitions,
methodology and results that are the outcome of our study
of elasticity for a few chosen distributed databases. We also
have defined a new dimensionless number to characterize
the elasticity that ease the comparison between databases.
The results are analyzed to explain the reason of some
unexpected behaviors, but some stay unexplained for now.

This paper summarizes the results of a master’s thesis
[1]. We present first the detailed methodology and defini-
tions, followed by the databases chosen, the measurement
conditions, and the benchmark implementation. Finally, we
present and analyze the measurement results.

II. STATE OF THE ART

The Yahoo! Cloud Servicing Benchmark [2] is the most
well known benchmarking framework for NoSQL databases.
It was created by Yahoo!. It currently supports many differ-
ent databases and it can be extended to use various kinds
of workloads. The benchmark used for the measurements
presented here could have been implemented on top of
YCSB as a new workload but it has not been for various
reasons. The first reason is simplicity: it seemed easier to
implement its functionalities directly instead of extending
the big and far more complex YCSB where it would not
have been so easy to control all the parameters. The second
reason is that we wanted to explore the best methodology for
measuring elasticity without being tied to the assumptions
of an existing tool.

III. METHODOLOGY

A. Definitions

1) Performance: The performance is characterized by
the time needed to complete a given number of requests
with a given level of parallelization. The chosen levels
of parallelization and number of requests used during the
measurements are explained in the step by step methodology.
In all the measurements of this article, we perform requests
in batches called request sets. This allows us to decrease
variability and improve accuracy in measurement time.

2) Elasticity: The elasticity is a characterization of how
a cluster reacts when new nodes are added or removed
under load. It is defined by two properties. First, the time
needed for the cluster to stabilize and second the impact
on performance. To measure the time for stabilization, it
is mandatory to characterize the stability of a cluster, and
therefore a measure of the variation in performance is
needed. The system can be defined as stable when the
variations between request set times are equivalent to the
variations between request set times for a system known
to be stable. That is, a system in which there are no data
being moved across the nodes and when all the nodes are up
and serving requests. These variations are characterized by
the delta time, which is the absolute value of the difference

154

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 164 / 237

in time needed to complete a request set and the time
needed to complete the previous request set. Concretely, for
a given database, data set, request set, and infrastructure,
the variability is characterized by the median value of the
delta times and the system is said to be stable if the last X
sets have a delta time smaller than the previously observed
value. In this article we fix the value of X to 5, which gives
satisfactory results for the measurements done.

We make the hypothesis that just after the bootstrap of
the new nodes, the execution time will first increase and
then decrease after an elapse of time. This is illustrated
graphically in Figure 1 by the shape of the curve. In case
the time needed for stabilization is very short, the average
value and therefore the shape of the curve could be nearly
unaffected by overhead related to elasticity, but at least the
standard deviation will increase due to the additional work
needed to move data to new nodes. It is important to take
this standard deviation into account because highly variable
latency is not acceptable. To characterize the elasticity in
this article, we will take both the execution time and the
standard deviation into account.

To characterize the elasticity with a single dimensionless
number, we therefore propose the following formula:

Elasticity =
A+B

(Rt1 +Rt2)2 ∗ F
(1)

Here A and B are the surface areas shown in Figure 1,
where A is related to the execution time increase and B is
related to the standard deviation, Rt1 is the average response
time of one request for a given load before the bootstrapping
of the new nodes, Rt2 is the average response time once the
cluster has stabilized with the same load applied. Finally, F
is the factor to suppress the dependency to the number of
requests per node in the cluster. It is given by

F =
Number of requests

cluster size
(2)

In all the measurements of this article, we assume that N =
M , that is, we double the number of nodes.

The triangular area defined by the edges (Rt1,Rt2), (Boot-
strap,Stable), and (Rt1,Stable) is not counted because even
for perfect elasticity this triangle will exist as a performance
ramp from level Rt1 to Rt2. The area A + B is then
purely due to elasticity and has a dimension of time squared.
The value Rt1 + Rt2 are both inversely proportional to
the average performance and have a dimension of time.
The elasticity is therefore the ratio of the elastic overhead
A + B to the absolute performance (Rt1 + Rt2)2 ∗ F and
is a dimensionless number. The division by F removes the
scaling factor of the size of the request set (e.g., the 10000
mentioned above).

B. Step by step methodology

Figure 3 illustrates the step by step methodology used
during the tests. It is based on the following parameters : N

Figure 1. Surface areas used for the characterization of the elasticity

Figure 2. Observed standard deviations for 10000 requests with 80% reads

the number of nodes, R the size of a request set and r the
percentage of read requests. In practice, the methodology is
defined by the following steps:

1) Start up with a cluster of N = 6 nodes and insert all
the Wikipedia articles.

2) Start the elasticity test by performing request sets that
each contain R = 10000 requests with r = 80%
read requests and as many threads as there are nodes
in the cluster when the elasticity test begins. The
time for performing each request set is measured.
(Therefore the initial request sets execute on 6 threads
each serving about 1667 (≈10000/6) requests.) This
measurement is repeated until the cluster is stable,
i.e., we do enough measurements to be representative
of the normal behavior of the cluster under the given
load. We then compute the median of the delta times
for the stable cluster. This gives the variability for a
stable cluster.

3) Bootstrap new nodes to double the number of nodes
in the cluster and continue until the cluster is stable
again. During this operation, the time measurements
continue. We assume the cluster is stable when the
last 5 request sets have delta times less than the one
measured for the stable cluster.

4) Double the data set size by inserting the Wikipedia
articles as many times as needed but with unique IDs
for each insert.

5) To continue the test for the next transition, jump to step
(2) with a doubled number of requests and a doubled
number of threads.

155

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 165 / 237

Figure 3. Step by step methodology

C. Justification of the methodology

One approach to characterize the variability is to use the
standard deviation of request set times and a statistical test
to compare the standard deviations. However, our experience
shows that the standard deviation is too sensitive to normal
cluster operations like compaction and disk pre-allocations.
Figure 2 shows that the standard deviation can vary more
than a factor of 4 on a stable cluster made of six 4GB
Rackspace instances. This is why we use the delta time
characterization instead. Because it is based only on the
average values, it tends to smooth these transient variations.
The median of all the observed delta times is used instead
of the average to be less sensitive to the magnitude of the
fluctuations.

Remark that we still use the standard deviation as part
of the characterization of the elasticity. This characteri-
zation captures all the important information about the
elasticity (time needed to stabilize, loss of performance,
and variability) with the two surface areas (A and B) and
normalizes it into a dimensionless number that can be used
for comparisons.

Finally, the number of observations needed to have an
idea of the normal behavior of a database cluster cannot be
fixed in advance. Experience shows that, from one system to
another, high variability in performance can arise at different
moments. This variability is mainly due to the writes of big
files on the disk, like compactions, disk flushes, and disk
pre-allocations, all of which can happen at very different
moments due to the randomness of the requests and the
technical choices made by each database. The variability
has a measurable result that will be discussed in the result
section. In practice, the observations were stopped when
the performance and standard deviation got back to the
level observed before the compactions or disk pre-allocations
happened.

D. Properties of the methodology

All the parameters are updated linearly in respect to the
number of nodes that are bootstrapped in the elasticity test,
but all those parameters are not updated at the same time
during the methodology. However, the measurements obey
several invariants, which are given in italics below.

The size of the request sets is always increased at the
same time as the number of client threads, which implies
that on the client side, the number of requests done by each
client thread is independent of cluster size. On the database
nodes, there are two different situations. When the elasticity
test begins and during the entire first phase of the test, as
many threads as there are nodes in the cluster are started,
and therefore, the amount of work done by each node in the
cluster is independent of cluster size.

The second phase starts when new nodes are bootstrapped
and lasts as long as the cluster needs time to stabilize. During
this time, the amount of work done by the nodes already
present in the cluster should decrease progressively as newly
bootstrapped nodes start to serve part of the data set. In a
perfect system, all the nodes in the enlarged cluster should
eventually do an amount of work that has decreased linearly
regarding to the number of nodes added in the cluster. It is
important to note that the eventual increase in performance
that would appear at this point is not a measure of the
scalability as defined earlier. This is due to the fact that,
at this point, neither the data set nor the number of client
threads has been increased linearly regarding to the number
of nodes added. The goal of the elasticity test is only to
measure the impact of adding new nodes to a cluster that
serves a constant load.

Once the elasticity test ends, the size of the data set
inserted into the database is increased linearly according to
the number of nodes just added. As a consequence, during
the next round of the elasticity test the amount of data served
by each node has not changed. Therefore, once the number
of threads is increased at the beginning of the next elasticity
test, the total amount of work (number of requests served
and data set size) per database node does not change.

IV. DATABASES CHOSEN

The three databases selected for this study are Cassandra
[3] 0.7.2, HBase [4] 0.90.0 and mongoDB [5] 1.8.0 because
they are popular representatives of the current NoSQL world.
All three databases are horizontally scalable, do not have
fixed table schemas, and can provide high performance on
very big data sets. All three databases are mature products
that are in production use by many organizations [6] [7] [8].
Moreover, they have chosen different theoretical approaches
to the distributed model, which leads to interesting compar-
isons.

All three databases are parameterized with a common
replication factor of 3 and strong consistency for all requests
in order to ensure a comparable environment on both the
application and server side.

V. MEASUREMENT CONDITIONS

This section describes the budget allocated, the infras-
tructure and the data set used as well as the benchmark
implementation.

156

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 166 / 237

A. Budget and infrastructure

We first explain our decisions regarding budget and infras-
tructure, since they affect the whole measurement process.
The budget allocated for all the tests of this article is 800
euros. We choose to use the 4 GB cloud instances from
Rackspace. This allowed us to perform measurements at full
load for up to 48 nodes with all three databases.

Using cloud instances instead of dedicated servers has
consequences on performance. Indeed several instances are
sharing the same physical computer and therefore using
cloud instances adds variability, depending on the resources
usage of the other instances, to the measurements.

Finally, the data set per node has been chosen large
enough to be sure that the subset of the data stored on each
node could not fit entirely in RAM. It is important to remind
the reader that the databases studied here are made to handle
“Bigdata” problems where typically it would cost too much
to fit all the dataset into memory. Therefore, with a focus
on “Bigdata”, it is natural to consider databases that cannot
fit into memory.

B. Data set

The data set is made of the first 10 million articles of the
English version of Wikipedia. They can be downloaded as a
single archive provided [9] by Wikimedia itself. The dump
was downloaded on March 7, 2011 and it takes 28 GB of
disk space.

C. Benchmark implementation

The benchmark is written in Java and the code source is
available as a GitHub repository under a GPL license [10].
The benchmark framework is used to automate the parts of
the methodology that concerns the insertion of articles as
well as applying the load and computing the results.

To approximate the behavior of Wikipedia users, the
requests are fully random. Meaning that for each request,
a uniform distribution (the Java class java.util.Random,
initialized without seed) is used to generate a integer in
the range of the IDs of the inserted documents. Then, after
the article has been received by the client, a second integer
is generated using a uniform distribution to decide if the
client thread should update this article or not. Update simply
consist in appending the string “1” at the end of the article.

VI. RESULTS

Figures 4 to 11 give graphs showing the elastic behavior
of all databases at all transition sizes. These graphs represent
the measured average time in seconds needed to complete
a request set versus the total execution time in minutes.
Standard deviations are indicated using symmetric (red)
error bars, but it is clear that this does not imply improved
performance during stabilization (downward swing)! The
first part of each graph shows the normal behavior of
the cluster under load. The first arrow indicates when the

Table I
STABILIZATION TIME (IN MINUTES, LOWER IS BETTER)

Database Cluster size variation Data tr. time Add. time Total time
Cassandra 6 to 12 nodes 113 28 141
HBase 6 to 12 nodes 3.3 9 12.3
mongoDB 6 to 12 nodes 172 11 183
Cassandra 12 to 24 nodes 175 26 201
HBase 12 to 24 nodes 3.2 14 17.2
mongoDB 12 to 24 nodes 330 22 352
Cassandra 24 to 48 nodes 86 2 88
HBase 24 to 48 nodes 8 37 45

Table II
ELASTICITY (LOWER IS BETTER)

Database Cluster old and new size Score
Cassandra 6 to 12 nodes 1735.
HBase 6 to 12 nodes 646.
mongoDB 6 to 12 nodes 4626.
Cassandra 12 to 24 nodes 1044.
HBase 12 to 24 nodes 70.
mongoDB 12 to 24 nodes 4009.
Cassandra 24 to 48 nodes 3757.
HBase 24 to 48 nodes 73.

new nodes are bootstrapped and the second arrow indicates
when all the nodes report that they have finished their data
transfers. The graphs also show the standard deviations and
the two thin (red) lines show the acceptable margins for the
delta time that are computed from the first part of the graph.

Table I shows the stabilization times (in minutes), which
consists of the times for all the nodes to finish their data
transfers as well as the additional times needed for the whole
cluster to achieve stabilization once all the data transfers
are done. The time needed to finish all the data transfers is
measured using tools provided by the databases to monitor
data transfers across the cluster. The additional time to
achieve stabilization is the time when the cluster reaches
a stable level minus the time when the cluster reported that
all the data transfers were done.

Table II shows the dimensionless elasticity scores accord-
ing to the definition in Section III-A. In practice, the curves
have been approximated by cubic splines interpolating the
given point and those splines have been integrated using
a recursive adaptive Simpson quadrature. The lower the
elasticity score, the better the elasticity.

A. Analysis of the results

Analysis of the measurement results is made more difficult
by the variability of the cluster performance under load
before new nodes are bootstrapped. Those variabilities are
very clear for Cassandra on Figure 4 and 5, for HBase
on Figure 8 and for mongoDB on Figure 11. These big
variabilities in performance have different origins but all of

157

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 167 / 237

Figure 4. Elasticity under load Cassandra (6→12 n.)

Figure 5. Elasticity under load Cassandra (12→24)

Figure 6. Elasticity under load Cassandra (24→48)

Figure 7. Elasticity under load mongoDB (6→12 n.)

Figure 8. Elasticity under load HBase (6→12 nodes)

Figure 9. Elasticity under load HBase (12→24 n.)

Figure 10. Elasticity under load HBase (24→48 n.)

Figure 11. Elasticity under load mongoDB (12→24)

158

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 168 / 237

them have the same immediate cause: the writing of at least
one big file on the disk. First, for Cassandra and HBase,
big writes are triggered when compactions or disk flushes
occur. The flushes occur when the memtable is full, and com-
pactions follow after a few flushes [3] [11]. A load constantly
updating data will, sooner or later, trigger compactions and
disk flushes. Second, for mongoDB: big writes are only
triggered when disk pre-allocations occur. mongoDB uses
the mmap function provided by the operating system instead
of implementing the caching layer itself, meaning that it is
the OS itself that decides when to flush. mongoDB pre-
allocates big files when it needs new storage space instead
of increasing the size of existing files. In practice, mongoDB
allocates space on disk each time it needs to store a lot of
new data, like during chunks movements or big inserts.

Note that compaction is part of normal database operation
that is needed both when handling client requests and when
handling bootstrapped nodes during elastic growth. So we
make no effort to remove the compaction cost from our
measurement of elasticity. It is important to note that the
only requests that will be slowed down by the writing of
big files are the ones sent to nodes currently writing those
big files. Therefore, when the number of nodes increases, the
probability to send requests to a node currently doing a lot of
I/O decreases. Indeed, looking at Figure 6 for Cassandra and
Figure 10 for HBase, we observe the overall performance is
more stable for bigger clusters.

On this infrastructure, the technical choice taken by
mongoDB to make small but frequent disk flushes leads to
less variability in performance than Cassandra. One could
wonder what is the cause of the variability observed at the
beginning of the chart on Figure 11 for mongoDB as no
new nodes were bootstrapped at this time. This is caused by
the fact that during the insertion, some nodes stored more
chunks than the other and only started to distribute them
across the cluster during the start of the test.

The variability of HBase performance is quite different
from Cassandra even if their technical choices are close.
By default the memtable’s size of Cassandra is 64MB
and HBase is 256MB, leading to more frequent flushes
and compactions for Cassandra but on the other hand, the
compactions are also made on smaller files for Cassandra.
The effect of compactions is only visible on Figure 8 and
not on Figure 9 nor on Figure 10. This could be because the
number of nodes is bigger and the effect of the compaction
impacted a smaller number of requests.

Finally, there are no results for mongoDB going from
24 to 48 nodes. This is due to several problems encoun-
tered with mongoDB during the insertion of the articles.
Starting with a cluster of size 12, mongod processes started
to crash because of segmentation faults that caused data
corruption, even with the journaling enabled. This problem
was temporarily fixed by increasing the maximum number
of files that can be opened by the mongod processes. But

for 24 nodes, the segmentation faults were back with another
problem. Eight threads were used to insert the articles, each
of them making its requests to a different mongos router
process, but all the writes were done on the same replica
set. The elected master of this replica set was moving the
chunks to other replica sets but not as fast as it was creating
them, leading to a disk full on the master and at this point
all the inserts stopped instead of starting to write chunks on
other replica sets.

Elasticity

For the analysis of the elasticity results, we first explain
some technical choices of the databases. The databases can
be divided in two groups depending on the kind of work
that the databases have to do when new nodes are added.

In the first group, which contains Cassandra and mon-
goDB, the databases have to move the data stored on the old
nodes to the new nodes that just have been bootstrapped. In
the case of a perfectly balanced cluster, that means moving
half of the data stored on each of the old nodes to the new
ones.

In the second group, which in this article contains only
HBase, the database (HBase itself) and the storage layer
(Hadoop Distributed File System [12]) have been separated
to be handled by two distinct entities in the cluster. At the
HBase level, each region server is responsible for a list of
regions meaning that it has to record the updates and writes
into memtables and it also acts as a cache for the data
stored in the HDFS level. When new nodes running both
a region server and a datanode are bootstrapped, the new
region servers will start to serve a fair share of the available
regions but the existing data will not be moved to the new
datanode. Therefore there will be not big data transfer on
new node bootstrapping.

The fact that HBase does not have to move all the data
appears very clearly on the charts. HBase only needs a
few minutes to stabilize while Cassandra and mongoDB
take hours. The technical choices taken by HBase are a
big advantage in terms of elasticity for this methodology. In
Figures 9 and 10, HBase moves new regions to the region
servers quickly, but the new region servers still need to load
data, this is why the peaks happen after the new nodes are
integrated.

For Cassandra, the impact of bootstrapping new nodes
is less than the variability induced by normal operations
for clusters smaller than 24 nodes, after that the impact
is much more important than the usual variability of the
cluster’s normal operations. Note that the performance of
Cassandra only improves when all the nodes are fully
integrated because new Cassandra nodes only start serving
requests when they have downloaded all the data they should
store. The time needed for the cluster to stabilize increased
by 54% between the tests of 6 to 12 nodes and 12 to 24
nodes, while it decreased by an impressive 50% between the

159

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 169 / 237

tests of 12 to 24 nodes and 24 to 48 nodes. The nonlinear
increase is due to the fact that new nodes know which are the
old nodes that should send them data thanks to the nodes’
Tokens, leading to simultaneous data transfers between nodes
across the cluster. On the other hand, the 50% decrease is
still to be explained.

With mongoDB, the variability in performance added
by the bootstrap of new nodes is much bigger than the
usual variability of the cluster. Unlike Cassandra, newly
bootstrapped mongoDB nodes start serving data as soon
as complete chunks have been transferred. Therefore newly
bootstrapped nodes that serve the few chunks already re-
ceived will pre-allocate files to make room for the next
chunks received leading to a lot of requests potentially
served by nodes writing big files to disk and therefore
degrading the performance. The time needed for the cluster
to stabilize increased by 92% between the tests of 6 to 12
nodes and 12 to 24 nodes. This almost linear increase is due
to the fact that there is only one process cluster wide, the
balancer, that moves the chunks one by one.

The elasticity scores give an accurate idea of the elasticity
performance of the databases, disadvantaging databases for
the height of the peak and the time needed before stabi-
lization. Note that, for HBase, the decreasing score is due
to relatively smaller peaks as the cluster grows and the last
one can also be explained by the fact that the performance
is less, so the elasticity is relatively better with respect to
this worse performance. Globally, the elasticity score also
shows the advantage of HBase for clusters of all sizes.

VII. CONCLUSIONS AND FUTURE WORK

The main conclusion of our measurements is that the
technical choices taken by each database have a strong
impact on the way each of them reacts to the addition of
new nodes. For this definition of elasticity, HBase is a clear
winner. This is due to its technical choices and architecture
leading to much less data transfer on node addition.

This article gives measurement results only for systems
that scale up, and not for systems that scale down. We
decided for this limitation because we wanted to explore
in detail what happens when a system scales up, and expe-
rience has borne out that these measurements are sufficiently
surprising and technically difficult to carry out. We expect
that future work measuring systems that scale down will give
a fresh set of surprises.

We plan to continue expanding the cluster sizes to see if
the current trends will last or if some other bottleneck will
appear at some point. For example it would be interesting
to see if it is possible to reach any bottleneck with systems,
like HBase and mongoDB, using a centralized approach to
store the localization information in the cluster.

We also intend to solve the problems encountered for
mongoDB to measure its performance optimally. Then it
would also be interesting to do the same tests but with

different values for the parameters like the read-only percent-
age or using a different statistical distribution. We plan to
extend our coverage of the measurement space and continue
to refine our new elasticity measure. Finally, we intend to
measure the performance of other databases like Riak and
distributed caches like infinispan and ehcache.

VIII. ACKNOWLEDGEMENTS

We would like to thank Euranova for the idea of studying
the elasticity of distributed databases and for their support
that helped us improve this article [13]. Special thanks go
to the director of Euranova R&D, Sabri Skhiri, for his
insightful comments. We also thank Ivan Frain and Samuel
Richard for their constructive comments.

REFERENCES

[1] T. Dory, “Study and Comparison of Elastic Cloud Databases:
Myth or Reality?” pldc.info.ucl.ac.be, Programming Lan-
guages and Distributed Computing (PLDC) Research Group,
Université catholique de Louvain, Tech. Rep., Aug. 2011.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in SoCC, 2010, pp. 143–154.

[3] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” SIGOPS Oper. Syst. Rev.,
vol. 44, pp. 35–40, April 2010. [Online]. Available:
doi.acm.org/10.1145/1773912.1773922

[4] Apache HBase, “Frontpage,” hbase.apache.org, Jun. 2011.

[5] mongoDB, “Frontpage,” www.mongodb.org, Jun. 2011.

[6] Apache Cassandra, “Frontpage,” cassandra.apache.org, Jun.
2011.

[7] HBase Wiki, “PoweredBy,” wiki.apache.org/hadoop/Hbase/
PoweredBy, Jun. 2011.

[8] mongoDB, “Production Deployments,” www.mongodb.org/
display/DOCS/Production+Deployments, Jun. 2011.

[9] Wikipedia, “Latest dump of Wikipedia English,” download.
wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.
bz2, Jun. 2011.

[10] GitHub, “Wikipedia-noSQL-Benchmark,” https://github.com/
toflames/Wikipedia-noSQL-Benchmark/, Jun. 2011.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst., vol. 26, no. 2, 2008.

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop distributed file system,” in Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), ser. MSST ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–10. [Online].
Available: dx.doi.org/10.1109/MSST.2010.5496972

[13] Euranova, “Frontpage,” euranova.eu, Jun. 2011.

160

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 170 / 237

Facilitating Bioinformatic Research with Mobile
Cloud

Jinhui Yao1,2, Jingyu Zhang2, Shiping Chen1, Chen Wang1, David Levy2

1Information Engineering Laboratory, CSIRO ICT Centre, Australia

{Firstname.Lastname}@csiro.au
2School of Electrical and Information Engineeering, University of Sydney

{jinhui, jyzhang, dlevy}@ee.usyd.edu.au

Abstract—In this paper, we propose a concept of mobile-cloud by
combining mobile and cloud together in a bioinformatic research
application scenario. A mobile-cloud framework is developed,
which facilitates the use of mobile devices to manipulate and
interact with the scientific workflows running in the Cloud. In
this framework, an independent trusted accountability service is
used to provide data provenance and enforce compliance among
the participants of a bioinformatic workflow. We have
implemented a prototype which allows the bioinformatic
workflow design and participation using mobile devices. We
prove the concept of mobile-cloud with the prototype and
conducted performance evaluation for the significant points of
the bioinformatic workflow.

Keywords-cloud computing; accountability; service orieanted
architecture; mobile cloud.

I. INTRODUCTION
The emergence of computing resource provisioning known

as the Cloud has revolutionized the modern day computing. It
has provided a cheap and yet reliable outsourcing model for
whoever with huge needs for computing resources. Given the
fact that many scientific breakthroughs need to be powered by
advanced computing capabilities that help researchers
manipulate and explore massive datasets [1], Cloud offers the
promise of “democratizing" research as a single researcher or
small team can have access to the same large-scale compute
resources as large, well-funded research organizations without
the need to invest in purchasing or hosting their own physical
infrastructure.

On the other hand, the concept of Service Oriented
Architecture (SOA) allows flexible and dynamic
collaborations among different service providers. A service can
either directly be used for its mere function or be composed
with other services to form new value-added workflows [2].
Through SOA, scientific workflows can be used to bring
together these various scientific computing tools and compute
resources offered as services in the Cloud to answer complex
research questions. Workflows describe the relationship of the
individual computational components and their input and
output data in a declarative way. In astronomy, scientists are
using workflows to generate science-grade mosaics of the sky
[3], to examine the structure of galaxies [4]. In bioinformatics,
researchers are using workflows to understand the
underpinnings of complex diseases [5].

 In scientific workflows, certain critical steps need the
participation of respective research personnel or experts. For

example, how the workflow should be designed and which
scientific tools need to be involved must be decided by the
expert in the area. And some complex patterns generated from
the experiments need to be visually inspected by the scientists
who will based on their domain knowledge and experience
determine the next a few steps for further analysis. In this
regard, it is highly desirable that scientists can have easy
access to the services in the Cloud so that they can design and
participate in the workflows efficiently.

To address the above need, with the impressive advanced
in the technology, we believe using mobile devices can be an
ideal solution. The processes in a workflow can be thoroughly
integrated with portable devices. All activities are decided and
monitored on time from the way that fit the human
environment instead of forcing users to passively accept the
computing results from cloud service. In this paper, we
propose a novel design which facilitates the use of mobile
devices to manipulate and interact with the scientific
workflows running in the Cloud. In our system, the users can
choose the services in the Cloud to form the workflows via
their mobile devices, and each mobile device can serve as one
service node to be involved in the workflows designed. The
contribution of this paper is two fold, we first elaborate our
framework enabling mobile devices to compose and participate
in the workflows running in the Cloud. Then, we further
propose our approach to incorporate accountability into the
system in order to enforce compliance and provide data
provenance.

II. THE APPLICATION SCENARIO
In the area of gene research, the recent development of the

microarray technology [6] have led to rapid increase in the
variety of available data and analytical tools. Some recent
surveys published in Nucleic Acids Research describes 1037
databases [7] and over 1200 tools [8]. The analysis of
microarray data commonly requires the biologist to query
various online databases and perform a set of analysis using
both local and online tools.

To illustrate with an example, here we explain the research
study of the genetic cause of colorectal cancer, i.e., identify the
genetic variation in human DNA that makes people susceptible
to colorectal cancer. By studying the functions of the genes
involved, biologists can have a better understanding of the
cancer and find possible cure. The first step in this study is to
perform experiments on mice, which share more than 90%
DNA with human. Microarray experiments are performed on

161

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 171 / 237

both cancerous and healthy mouse colon tissues [6]. By
comparing the results from mice with and without colorectal
caner, biologists can identify candidate genes that may cause
the cancer. Further analysis—such as searching for the
functions known to these genes—are commonly performed to
examine whether and how the candidate genes relate to the
colorectal cancer. The followings are some standard analysis
that are required for the study of microarray experiment results:

Quality Control. The raw microarray result data are processed,
visualized and inspected by an expert, who can identify errors
and discard the experiment.

Normalization. Microarray results from different samples
need to be normalized before any meaningful comparison can
be conducted.

Gene Differentiation. By contrasting the results from
cancerous and healthy tissues, differentially expressed genes—
genes that are active in cancer but not healthy tissue or vice
versa—are identified.

Gene Study. Most differentially expressed genes are further
studied to understand the biological foundation of the disease.
Many resources are available to study these genes, such as the
gene sequence, pathway database (e.g., KEGG), and gene
function ontology. Experts need to be involved to make good
decision as which study to conduct and which database to use.

We can see that the four standard analysis procedures we
listed above not only can be extremely computing intensive but
also require some decision making from the research scientists
or experts at certain critical steps (e.g., quality control). It
easily follows that, a viable approach to conduct such
researches must utilize certain computing platform that has
enormous computing capacity, yet research scientists can
easily interact with the platform and the computing process
conducted. This is essentially the reason for which we promote
the “Mobile Cloud” - a composition of the Cloud, and the
mobile devices – to be a suitable paradigm for complicated
bioinfomatics researches.

III. A MOBILE-CLOUD SYSTEM FOR BIOINFORMATIC
REARCH

Figure 1. Overview of the proposed system

As we have established in previous sections, we propose to
compose the Cloud and the mobile devices to conduct complex
bioinformatice researches. The bioinformatic research scenario

we chose is the study for the cause of colorectal cancer. Fig. 1
shows our proposed system with this research scenario.

In the Cloud, different computing intensive gene research
tools are deployed by different research bodies and provided as
services. Outside the Cloud, research scientists or gene
analysts locate the desired services in the Cloud, and use them
to compose a workflow for studying the cancer. The workflow
starts with retrieving raw microarray data from the nominated
“Gene Lab”, after going through a sequence of processing,
produce the final output to send to the “Output client-end”.
Multiple research personnel may be involved in the workflow,
they participate in the workflow by using mobile devices to
invoke or receive output from the services.

Our argument for using mobile devices to design and
participate in the workflows is intuitive. As mentioned, in the
workflow there are “critical steps” that require decision
making by experts in the respective area, in order to continue
the process. For example, after the quality check, an important
decision needs to be made about whether the quality of the raw
data suffices the requirements of the experiment. The
experiment should be paused before the expert in charge has
reviewed the quality check reports and confirmed the usability
of the raw data. Therefore, mobile devices are indeed ideal for
this task for its outstanding mobility compared to desktop
computers or even laptop computers, i.e., one can freely use
his mobile devices while waiting in a queue, on a bus, or even
walking. Further, given the recent impressive advances in the
mobile technology, the computing capability of mobile devices
- however limited compared to desktops or laptops - is more
than enough to run basic UI or display data sets and processing
reports. Therefore, we believe mobile devices such as smart
phones or tablet computers are indeed ideal to be used as light
client-end to drive the heavy bioinformatic research workflows
in the Cloud.

To enable mobile devices to construct and participate in the
workflows running the Cloud, we have developed the Mobile
Cloud middleware layer (MC-layer) to facilitate these. Fig. 2
provides an overview of the architecture, which consists of a
user interface (residing on mobile devices), a Cloud
environment containing various services and a middleware
layer consists of three function units. Their respective
functionalities are summarized as follows:

 Cloud Environment provides various services deployed
by respective providers. The services have registered
their access end point with the MC-layer.

 Service Repository stores the informtion about the
services in the Cloud that has registered with it. Once a
search request is received, it will find the best service or
workflow that satisfy the functional and non-functional
requirements specified.

 Service Composition is responsible of composing
individual services into workflows.

 Service Execution conducts two jobs: (a) orchestrating
workflows; (b) invoking Web services.

 User Interface allows users to register, design workflows
and participate in a running workflow.

162

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 172 / 237

For mobile devices to construct workflows, they first need
to send a search request to the Service Repository in order to
get a list of the services/workflows they are looking for. A
convenient UI has been implemented on the mobile devices to
allow the users to easily design the workflows using the
services listed by the Service Repository (the UI will be
elaborated in the evaluations). Once the workflow have been
designed, a representative XML based description script is
generated to be submitted to the Service Composition unit. The
Service Composition unit thus according to the script,
composes the services to form the desired workflows. The
services can be composed in two ways: i) centrally composed,
where the MC-layer invokes the services in the sequence
designed by the user; and ii) remotely orchestrated, where
certain orchestration scripts such as BPEL will be generated
and distributed to all the services involved for deployment.

In our system, the workflow designed by the users is an
abstract workflow, that is, the users only need to specify the
type of service needed, and the MC-layer will search its
service reporsitory and select the best suited ones according to
the user’s specifications. Table 1 gives a sample of the
workflow description script. As it is developed based on the
BPEL, “sequences” and “flows” are used to specify serial and
parallel composition, and “Actions” are used define the
invocation operations. The sample describes the first half of
the gene analysis workflow in Fig. 1. In some actions, the
endpoint is set to be “OPTIMAL”. This is to tell the Service
Composition unit to choose the best suited services.

TABLE I. SAMPLE WORKFLOW DESCRIPTION SCRIPT

<sequence name="main">
<Action operation="start" invoker="client" endpoint="QualityCheck"
type="send&forget".../>
<Action operation="fetchGene" invoker="QualityCheck"
endpoint="GeneLab" type ="send&receive".../>
<flow>

<Action operation="sendForApproval" invoker="QualityCheck"
endpoint="OPTIMAL" type ="send&forget".../>
<Action operation="normalization" invoker="QualityCheck"
endpoint="OPTIMAL" type ="send&forget".../>

</flow>
…

</sequence>

As we have established in our system design, mobile
devices will be involved in the workflows as web services. To
facilitate this, we created a customized web service engine to
run on the mobile devices. Using this engine, mobile devices
can both send and receive service requests, as well as
interpreting the workflow description scripts delivered by the
MC-layer. Once a user has designed and submitted a workflow,
the workflow description script will be forwarded to the
research personnel that are involved. The mobile devices they
are using will interpret the workflow script and save the
workflow logic. When a service request is received during the
execution of the workflow, the UI will allow the user to view
the content (e.g., quality check reports) and provide the list of
the services that the user should send output request to
according to the workflow logic (e.g., normalization services).
For the technical details of the MC-layer, please refer to our

previous publications about the Web Service Management
System (WSMS) [12].

Figure 2. Overview of Mobile Cloud architecture

IV. ACCOUNTABILITY FOR COMPLIANCE AND PROVENANCE
The workflows in the Cloud are constructed using services

provided by different parties who barely know each other. The
correctness of the resultant workflow relies on the individual
correctness of all participators. That is, if the service is
compliant to the pre-defined workflow logic, or Service Level
Agreement (SLA). The scientific integrity of the gene analysis
results will be highly questionable if the services involved can
act willy-nilly and get away with processing errors.

On the other hand, for scientific experiments not only the
resultant data are considered, the steps of how these data are
derived along the process can also be very valuable. It has been
widely realized that data provenance plays an important role in
the scientific researches [13]. It follows that, a mechanism is
clearly needed to preserve the intermediate data forms
generated by different services during the execution of the
workflow, for compliance monitoring and provenance of the
analysis results. We regard this mechanism critical for the
viability of the paradigm we have proposed. In this section, we
illustrate our design to incorporate accountability into the
“Mobile Cloud” to address these issues.

Accountability can be interpreted as the ability to have an
entity account for its behaviors to some authorities [9]. This is
achieved by binding each activity conducted to the identity of
its actor with proper evidence [10]. Such binding should be
achieved under the circumstance that all actors within the
system are semi-trusted. That is, each identified actor may lie
according to their own interest. Therefore, accountability
should entail a certain level of stringency in order to maintain a
system's trustworthiness. Below, we identify several desirable
properties of a fully accountable system:

 Verifiable: The correctness of the conducted process can be
verified according to the actions and their bindings recorded.

 Non-repudiable: Actions are bound to the actors through
evidence, and this binding is provable and undeniable.

163

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 173 / 237

 Tamper-evident: Any attempt to corrupt to recorded
evidence inevitably involves the high risk of being detected.

We illustrate our proposed approach in Fig. 3. In our
approach, accountability can be incorporated into activity-
based workflow by requiring the entity conducting the process
to log non-disputable evidence about the activities in a separate
entity. In the figure, after incorporating accountability into an
ordinary process, entity A is now required to perform logging
operations before and after conducting the activity in its
process. The evidence is logged in a separate entity - entity B -
so that entity A cannot access the logged evidence. The
evidence needed to be logged should contain enough
information to describe the conducting activity. In our simple
example, which is intuitive enough, the evidence should
include the states of the factors concerning the start of the
activity (e.g., the input variables) and the factors concerning its
completion (e.g., the output value).

Figure 3. Example of incorporating accountability into process

The logging operations require the employment of PKI in
all involved service entities. Each of them has its own
associated public-private key pair issued by certificated
authorities. The logging operations are as follows:

1. The logger (entity A) signs the evidence (E) by its private
key (KA-) to create a digital signature of the evidence (SA).

2. The evidence and its signature are then logged in a
separate entity (entity B).

3. When received, entity B creates a receipt by signing entity
A’s signature with entity B’s private key (KB-).

4. Lastly, the receipt (SB) is sent back to the logger (entity A)
in the reply.

B

Assuming the digital signature is un-forgeable, the signed
evidence in entity B can be used to verify entity A's
compliance; and yet any corruption or deletion applied to the
evidence will be discovered using the receipt received by
entity A. Under the circumstance that neither of the service
entities is trusted; and assume they will not conspire to cheat,
this structure manages to ensure the proper preservation of
evidence associated with the process conducted.

To have the separate entity B to preserve the evidence, we
propose to have special service nodes, dedicated to provide
accountability to all underlying services involved in the
workflow. Those special nodes are referred to as the

accountability service (AS) nodes. Fig. 4 shows the structure.
All the mobile devices, service nodes in the Cloud as well as
local computing nodes that are involved in the workflow,
register with AS nodes and submit evidence during the
execution of the workflow. The implementation details of the
incorporation of accountability have been elaborated in our
previous work [11].

Figure 4. Accountability Service (AS) for compliance and provenance

Here the evidence can be any intermediate gene analysis
data generated by the tools in the Cloud, or the decisions made
by research personnel participated. With the evidence data
logged, the core functionalities provided by the AS nodes are:

 Compliance verification. Through the analysis of the
evidence data, the correctness of the behaviors of the
underlying services is continuously validated.

 Data provenance. The evidence recorded capture the
evolution path of the data as well as the entities
responsible for each step.

 Workflow status monitoring. A global view over the
workflow is maintained by the AS nodes. Such
information can be used to assist the functioning of
the MC-layer and the underlying services.

The AS nodes can either be provided by the Cloud, or by
other third parties as long as they receive no benefit whether
the underlying services are being compliant or incompliant.
They play a neutral role. Note that it is undesirable to build the
accountability mechanisms into the MC-layer as it is the entity
which designs and orchestrates the workflow and is also
subject to errors. Using AS nodes provided by unrelated third
parties offers a higher level of honesty and stringency.

V. EVALUATIONS
We prototyped a demonstration system to showcase our

mobile-cloud concept. Our system consists of four parts: i) a
client UI deployed in the mobile device; ii) an MC-layer to
search and compose services; iii) a number of demonstrating
service nodes in Amazon EC2; and iv) an accountability
service. In this section, we will first elaborate the
implementation of the client UI; then we compare the
communication latency when the accountability service is
involved and uninvolved; finally we shows some processing
latency when a real gene database (KEGG) is involved in a
workflow running in the Cloud.

164

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 174 / 237

(a) Main User Interface of MGMS (b) Design a workflow in MGMS

(c) Communication cost with AS and without AS in our system (d) Performance of invoking KEGG service from the workflow einge

Figure 5. Mobile User Interface and Performance Evaluation

The UI on mobile device is developed using Java platform,
micro edition (J2ME). The mobile web service feature is
deployed and runs on a HTC 9500 mobile phone, which is
running on IBM Websphere Everyplace Micro Environment
that supports a connected device configuration (CDC1.1).
Figure 5 (a) and (b) show two screen shots of the Mobile Gene
Management System (MGMS) - a scientific workflows design
and surveillance tools. A user can define or edit a scientific
process from the “New Work” button or “Previous Work”
button as shown in Figure 5 (a). Then, the user can select into
process items and specify their detail information as shown in
Figure 5 (b). System users define the steps from four aspects,
what services carry out these tasks; the number of child nodes;
which methods/services are invoked; and what are the inputs
and outputs of each step. Finally, an abstract workflow in
BPEL will be generated and uploaded to the WSMS in Cloud,
which will instantiate the abstract workflow by filling up the
endpoints in the BPEL with the best concrete services URLs.

Figure 5 (c) shows the interaction latency between mobile
device, cloud nodes and the AS, with the average value being
492.7msec at 1kB and 3251.2msec after the communication
size is increased to 100kB. According to our processes, mobile
and cloud nodes need to communicate with the AS so the
average value being 660.5msec for the whole system
regardless the underlying operation work load. From the curve
of this figure, we see the percentage that cost on AS is

decreased from 54% to 19% with the communication size
increasing from 1kB to 100kB.

To evaluate the performance of gene retrieving from gene
bank services, we selected 6 example genes which are the
genetic causes of colorectal cancer and retrieve their genetic
neighbors from KEGG disease Database [21]. We test the
response time from 0 neighbors to 50 neighbors. As shown in
Figure 5 (d), it is clear that the latency is slowly increasing
with changing the number of neighbors. The has-581
continually kept the best performance at all stages from the
1427msec for retrieving 0 gene neighbor to 2746.8msec for
getting 50 neighbors. However, has-10297 spent 2078msec to
search 0 neighbors and it cost 2912.6msec for finding 50
neighbors.

VI. RELATED WORK
Mobile computing provides a luggable computation model

for users. Its portability makes it very ideal for many
application scenarios. To extend its limited computing power,
research communities have proposed novel designs to
leverage the Cloud. Huerta-Canepa and Lee [22] proposed a
virtual cloud system, Zhang et al. [23] detailed a distributed
computing platform using mobile phones. They improve the
capacities of mobile phones in the purpose of storage and
computation. Works like [24-26] presented some compu-

165

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 175 / 237

tation offloading methods that move some parts of the
applications to run on the Cloud. Executing parts of
application remotely can save battery lifetimes and
significantly extend computing resources. However, these
solutions do not support platform-independent cooperative
interaction over an open network. In addition, after moving
some parts of applications from stand-alone handheld devices
to the cloud, several issues need to be considered in advance
such as privacy, trustworthy or provenance.

The importance of provenance for scientific workflows has
been widely acknowledged by various research communities.
Many approaches have been proposed to record the
derivations of the data during the scientific process.
Approaches like [14][15] allow the designer to capture the
intermediate data forms generated by the experiments at
different granularities. In our work, we introduced the concept
of accountability which not only provides data provenance but
can enforce compliance among the service providers.
Compliance assurance has been studied decently in recent
years, some remarkable works include [17] [18] [19] [20].
Our work differs from them at the point that we consider a
more hostile environment where all service entities are
expected to behave in any possible manner and deceive for
their own benefit. Cryptographic techniques are deployed in
our system to ensure the evidence are undeniable.

VII. CONCLUSION
In this paper, we have proposed a novel design to enable

mobile devices to design and participate in the scientific
workflows running in the Cloud. The scientific researchers can
use mobile devices to sketch an abstract workflow design to be
submitted to the mobile cloud middleware layer, which will
choose and compose the optimal services according to the
designer’s requirements. On top of that, we further
incorporated accountability mechanisms not only to provide
data provenance during the process but also enforce
compliance among all the service providers involved. Our
testing data indicate that the cost of incorporating
accountability is acceptable and becomes negligible when the
transmission data become large.

REFERENCES
[1] W. Lu, J. Jackson, and R. Barga. AzureBlast: A Case Study of

Developing Science. In proc. Workshop on Scientific Cloud Computing,
pp. 413-420, 2010.

[2] O. Moser, F. Rosenberg, and S. Dustdar. Non-Intrusive monitoring and
service adaptation for WS-BPEL. In proc. international conference on
World Wide Web, pp. 815-824, 2008.

[3] Montage. http://montage.ipac.caltech.edu. Last accessed 8th Sep 2011.
[4] I, Taylor, M, Shields, I. Wang, and R. Philp. Distributed P2P computing

within Triana: A galaxy visualization test case. In proc. IEEE
International Parallel and Distributed Processings Symposium, 2003.

[5] T. Oinn, P. Li, D.B. Kell, C. Goble, A. Goderis, M. Greenwood, D. Hull,
R. Stevens, D. Turi, and J. Zhao. Taverna/myGrid: Aligning a workflow
system with the life sciences community. In Workflows in e-Science,
Springer, 2006.

[6] M. Schena, D. Shalon, R.W. Davis, and P. O. Brown. Quantitative
monitoring of gene expression patterns with a complementary dna
microarray. Science, 270(5235):467–470, October 1995.

[7] M. Y. Galperin. The molecular biology database collection: 2008 update.
Nucleic Acids Research, pages gkm1037+, November 2007.

[8] M. D. Brazas, J. A. Fox, T. Brown, S. McMillan, and B. F. F. Ouellette.
Keeping pace with the data: 2008 update on the bioinformatics links
directory. Nucleic acids research, 36, July 2008.

[9] R. Mulgan. Accountability: An ever-expanding concept? In: Public
Administration, pp. 555–573, 2000.

[10] A. R. Yumerefendi, and J. S. Chase. Trust but verify: accountability for
network services. In proc. ACM SIGOPS European workshop, article
No. 37, 2004.

[11] J. Yao, S. Chen, C. Wang, D. Levy, and J. Zic. Accountability as a
service for the cloud, in proc. IEEE International Conference on
Services Computing, pp. 81–90, 2010.

[12] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed. Deploying and
managing web services: issues, solutions, and directions. VLDB J.,
17(3):537–572, 2008.

[13] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance
in e-science, in trans. ACM SIGMOD Record, volume 34, issue 3, pp.
31-36, September 2005.

[14] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. Chimera: A Virtual
Data System for Representing, Querying, and Automating Data
Derivation, in SSDBM, 2002.

[15] J. Zhao, C. A. Goble, R. Stevens, and S. Bechhofer. Semantically
Linking and Browsing Provenance Logs for Escience, in ICSNW,
2004.

[16] J. Myers, C. Pancerella, C. Lansing, K. Schuchardt, and B. Didier.
Multi-Scale Science, Supporting Emerging Practice with Semantically
Derived Provenance, in ISWC workshop on Semantic Web
Technologies for Searching and Retrieving Scientific Data, 2003.

[17] E. Mulo, S. Dustdar, and U. Zdun. Monitoring Web Service Event
Trails for Business Compliance. In Proc. International Conference on
Service-Oriented Computing and Applications , pp. 1-8, 2009.

[18] M. Huang, L. Peterson, and A. Bavier. PlanetFlow:maintaining
accountability for network services. In Proc. ACM SIGOPS Operating
Systems Review, pp. 89-94, 2006.

[19] Y. Zhang, K. Lin, and J. Y. J. Hsu. Accountability monitoring and
reasoning in service-oriented architectures. In Trans. Service Oriented
Computing and Applications, Volume 1, Number 1, pp. 35-50, 2007.

[20] A. C. Squicciarini, W. Lee, B. Thuraisingham, and E. Bertino. End-to-
end accountability in grid computing systems for coalition information
sharing. In Proc. Workshop on Cyber Security and Information
Intelligence Research , 2008.

[21] M. Kanehisa, S. Goto, M. Furumichi, M. Tanable, and M. Hirakawa.
KEGG for representation and analysis of molecular networks involving
diseases and drugs. In trans. Nucleic Acids Research, volume 38,
Database issue, pp. 355-360, 2010.

[22] G. Huerta-Canepa and D. Lee. A virtual cloud computing provider for
mobile devices. presented at the Proceedings of the 1st ACM Workshop
on Mobile Cloud Computing Services: Social Networks and Beyond,
San Francisco, California, pp. 61-65, 2010.

[23] J. Zhang, David Levy, Shiping Chen, and John Zic. mBOSSS+: A
Mobile Web Services Framework. in Services Computing Conference
(APSCC), 2010 IEEE Asia-Pacific, pp. 91-96, 2010.

[24] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso. Calling the
cloud: enabling mobile phones as interfaces to cloud applications. the
10th ACM/IFIP/USENIX International Conference on Middleware, pp.
83-102, May,2009

[25] K. Kumar and Y. Lu. Cloud Computing for Mobile Users. Computer,
vol. 18, issue 99, pp. 51-56, 2010.

[26] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a Computation
Offloading Framework for Smartphones. In MobiCASE '10:
Proceedings of The Second International Conference on Mobile
Computing, Applications, and Services, pp. 62-81, 2010.

166

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 176 / 237

Efficient Management of Hybrid Clouds

Sofie Van Hoecke, Tom Waterbley, Jan Devos
Electronics and Information Technology Lab (ELIT)

University College West-Flanders (Howest)
Ghent University Association - Courtrai, Belgium

{sofie.van.hoecke, tom.waterbley, jan.devos}@howest.be

Tijl Deneut, Johan De Gelas
Sizing Servers Lab

University College West-Flanders (Howest)
Ghent University Association - Courtrai, Belgium

{tijl.deneut, johan.de.gelas}@howest.be

Abstract—Cloud computing has become a significant tech-
nology trend driven by big players that is transforming our
current IT industry. Public cloud computing comes with advan-
tages such as cost savings, high availability, and easy scalability.
However, Small and Medium-sized Enterprises are driven by
different reasons for not outsourcing their IT infrastructure
entirely. By combining the benefits of the private and public
cloud, hybrid cloud computing allows Small and Medium-
sized Enterprises to optimize their infrastructure and run
their virtual machines where they will be most effective and
efficient. We present in this paper a virtual infrastructure
management tool that allows to set-up and manage hybrid
clouds efficiently in a user-friendly way. Our tool provides
automatic load balancing between the private and public clouds
at the virtual machine level, and dynamically upscales on-
premise virtual machines to public cloud servers based on cost
and performance information.

Keywords-hybrid cloud, virtual infrastructure management,
SME, load balancing.

I. INTRODUCTION

Cloud computing has become a significant technology
trend, driven by big players like Amazon, Microsoft, Google
and VMware, and transforming our current IT industry.
Cloud computing delivers large-scale utility computing ser-
vices to a wide range of consumers. Within cloud computing,
users on various types of devices access programs, stor-
age, processing and applications over the Internet, offered
by cloud computing providers, resulting in a previously
unprecedented elasticity of resources. Through economies
of scale, cloud computing comes with advantages such as
cost savings, high availability, easy scalability [1], and the
transformation of capital IT expenditures into operational
IT expenditures. Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS)
relieves cloud users from maintaining their infrastructure,
development areas, and respectively software.

The increasing adoption rate of cloud computing is cur-
rently driving developers, integrators and hosting compa-
nies to take cloud computing into account. The last few
years, especially the number of providers delivering IaaS
has increased quickly [2]. Consequently, companies need to
revise their current assets as cloud computing is becoming a
strategic weapon. The expansion of IaaS providers increases

the options available to companies when acquiring resources
in a cost effective manner. Berkeley even predicts that the
economy of scale and statistical multiplexing may ultimately
lead to a handful of cloud computing providers and “data
center-less” companies [3].

However, we do not believe that most Small and Medium-
sized Enterprises (SMEs) will become “data center-less” in
the near future [4][5]: SMEs cover a wide spectrum of
industries [6] and the number of SMEs far exceeds the
number of large and very large organizations in almost every
country all over the world. Besides the large number of
SMEs worldwide, it is also recognized that SMEs constitutes
a growing importance as providers of employment oppor-
tunities and key players for the well-being of local and re-
gional communities. SMEs are driven by different reasons to
maintain their own data center, such as legislation of storing
data in-house, investments in the current infrastructure, or
the extra latency and performance requirements. This drive
is supported by the fact that SMEs have already invested
heavily in their own private server equipment and software.

Consequently, we feel that a hybrid approach makes more
sense for SMEs. Through the creation of hybrid clouds [7],
one can use the internal infrastructure combined with public
cloud resources (see Figure 1). This way, on one hand,
critical applications can run on the hardware in the private
data center or collocated at an SME hosting provider, and,
on the other hand, the public cloud can be used as a solution
to manage peak demands (cloudbursting) or for disaster
recovery. These hybrid clouds capitalize on investments
made on the private IT infrastructure, and upscale to the
public cloud for specific application requirements.

The architectural concept of a hybrid cloud is overpow-
ering: being able to dynamically move virtualized servers
between your data center and a public cloud provider.
However, there are still many research challenges to be
tackled before hybrid cloud computing can become a reality.
One key question is how to enable virtual infrastructure
management, meaning the dynamic orchestration of virtual
machines (VMs). The scaling efficiency and elasticity of
hybrid cloud computing all depend on the efficiency of
the virtual infrastructure management [8]. As many cloud
providers are incompatible and use proprietary cloud soft-

167

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 177 / 237

Figure 1. Hybrid cloud computing model

ware and APIs, it is hard to set-up hybrid clouds integrating
different cloud solutions, resulting in vendor lock-ins. This
is even more the case when it comes to SMEs as they depend
strongly on external IT expertise [9][10]. There is little
general support with respect to how to set up hybrid clouds
and how to manage resources in hybrid environments where
management has to act across different resource infrastruc-
tures [8]. Existing solutions for hybrid cloud computing and
virtual infrastructure management require multiple tools to
cooperate and a lot of manual configuration. To the author’s
knowledge, user-friendly tools that allow SMEs to manage
the virtual infrastructure themselves are non-existing.

Therefore, the aim of this research is to design and
implement an integrated virtual infrastructure management
tool that allows SMEs to set-up and manage hybrid clouds
efficiently in a user-friendly way. Our virtual infrastructure
management tool provides automatic load balancing between
the private and public clouds at the VM level, and dynam-
ically upscales on-premise VMs to the public cloud servers
based on cost and performance information. This way, SMEs
can optimize their infrastructure and run their VMs where
they will be most effective and efficient.

The remainder of this paper is as follows. The next
section outlines the benefits and challenges of hybrid cloud
computing for SMEs. Subsequently, related work in the
field is presented in Section III, after which we define
the objectives, design and implementation of our virtual
infrastructure management tool in Section IV. Section V
covers our experimental evaluation and results, after which
we summarize the most important conclusions of our work
in Section VI.

II. BENEFITS AND CHALLENGES OF HYBRID CLOUD
COMPUTING FOR SMES

The hybrid cloud model extends the private cloud model
by using both local and remote resources. These remote
cloud resources are seamlessly integrated in the private
infrastructure. Hybrid clouds are usually used to scale out
when the local resources are exhausted, called cloudbursting.
This way, companies can create highly elastic environments.

The benefits of hybrid clouds are amongst others [3][11]:

• Optimal utilization
As peak loads can be up to ten times higher than the
average load, traditional data centers need to be over-
dimensioned, resulting in idle servers during average
load and unnecessary costs. Hybrid clouds scale out
to the public cloud to handle peak loads, so the private
infrastructure can be dimensioned to handle the average
case.

• Risk transfer
The risk of downtime is reduced. Whenever there are
problems with the private IT infrastructure, the load
can be transferred to the public cloud who ensures high
uptimes.

• Availability
Hybrid clouds can upscale to the public cloud or even
let the public cloud completely take over operations,
this way providing high availability without requiring
redundancy and geographic dissemination in the private
infrastructure.

However, there are also many challenges and issues for
hybrid cloud computing [3][11][12], especially when target-
ting SMEs:

• Interoperability and vendor lock-in
Vendor lock-ins were already identified as a major risk
factor in IT outsourcing [13]. Additionally, failures can
also hit public cloud providers, even the big players.
According to [3], the only solution is using multiple
cloud providers, but, again here, this is only possible
when vendor lock-ins are avoided.

• Hybrid cost
Hybrid cloud infrastructures have on one hand a setup
and operating cost for the private IT infrastructure (such
as hardware, power, cooling, maintenance) and, on the
other hand, a pay-per-use cost for the public part at the
cloud provider. This hybrid cost model makes it hard
to reveal and predict the total costs and benefits of an
IT investment project.

• Security
Hybrid cloud computing requires solid service level
agreements with and trust in the public cloud providers.
As the servers are no longer shielded by the company’s
firewall, other security measures have to be applied.

III. STATE OF THE ART

Today, large technology vendors as well as open-source
software projects both address the hybrid cloud market
and are developing virtual infrastructure management tools
to set-up and manage hybrid clouds. VMware’s vCloud
offers live migration of virtual appliances and machines
between data centers and allows service providers to offer
IaaS while maintaining compatibility with internal VMware
deployments. HP provides three offerings for hybrid cloud
computing: HP Operations Orchestration for provisioning,
HP Cloud Assure for cost control, and HP Communications

168

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 178 / 237

as a Service for service providers to offer small businesses
on-demand solutions. Also Amazon reaches towards hybrid
cloud models with its Virtual Private Cloud service.

In addition to the large technology vendors, also open-
source software projects are providing on-premise and public
cloud integration. Eucalyptus Enterprise provides a software
infrastructure for on-premise cloud computing and enables to
work within VMware environments and provision resources
to Amazon Web Services. Ubuntu Enterprise Cloud (UEC)
is shifting from Eucalyptus towards OpenStack and is also
compatible with Amazons EC2. OpenNebula [7] is another
open-source project that supports the dynamic execution of
multi-tier services on a distributed infrastructure consisting
of both data center resources and remote cloud resources.
Nimbus also provides a virtualization framework to help
manage cloud deployments for IaaS. Finally, openQRM
extended its focus and now also supports public clouds,
currently however limited to Amazon EC2.

Although many options are on the table, and many
advertise they support hybrid cloud computing, the cur-
rent initiatives of the large vendors either result in (i) a
hypervisor and/or vendor lock-in, (ii) require a separate
interface to manage the private and public cloud, or (iii)
require additional tools to implement the load balancing.
vCloud only supports ESX as hypervisor, UEC Xen and
KVM, and openQRM ESX, Xen and KVM as hypervisor.
The virtual infrastructure management capabilities of the
open-source solutions provide more choice but require a
lot of scripting and are difficult to configure and use. If a
flexible hybrid cloud is the goal, the choice of the underlying
virtualization platform is crucial, putting the open-source
solutions afront. As Nimbus only supports a limited number
of hypervisors, and Eucalyptus is more appropriate for
private clouds [7][11], OpenNebula and openQRM are the
best options today [14].

However, although OpenNebula and openQRM are the
best options today, important features are missing like mon-
itoring VM instances or retrieving the VM’s IP addresses in
order to implement advanced load balancing mechanisms.
Also, a graphical interface is either missing or not user-
friendly. As general speaking, SMEs are lacking behind in
adoption of IT compared to larger companies [15], a good,
user-friendly, vendor-independent virtual infrastructure man-
agement tool is needed to help SMEs efficiently set-up and
manage hybrid clouds. To our knowledge, we are the first
to provide such a tool that allows automatic load balancing
between the private and public clouds at the VM level, and
dynamically upscales on-premise VMs to the public cloud
servers based on cost and performance information.

IV. DESIGN OF THE VIRTUAL INFRASTRUCTURE
MANAGEMENT TOOL

Below the objectives, general concept and implementation
of the virtual infrastructure management tool are described.

A. Objectives

Three requirements for hybrid clouds will be fulfilled:
firstly, the hybrid cloud should be able to autonomously
handle different load patterns, including peak demands,
balance the load and upscale when needed to the public
cloud. Secondly, the hybrid cloud should be transparent for
the VMs in the infrastructure. This makes sure that the
hybrid cloud logic needs only to be implemented in our
tool, and standard virtualization software can be used on
the VMs. And thirdly, the hybrid cloud architecture should
be easy and user-friendly to set-up and configure. Human-
platform interaction for configuring the hybrid cloud should
be straightforward by using user-friendly user interfaces so
that training and dependency on external IT expertise can
be minimized. Current hybrid cloud initiatives do not fulfill
these requirements and therefore a new tool is designed and
presented in this paper.

B. General concept

Consider the use case of the SME Nieuws.be to illustrate
the general concept and show how current SME data centers
can be optimized in order to gain competitive assets to
the public cloud. Nieuws.be is an internet company that
aggregates and distributes national and international news on
the web, collected by the redaction or contributed by one of
their readers. By providing filtering and news-on-demand,
they fulfill new market requirements and gain market share
within the widely spread news business. As a result, they
need an infrastructure to support their heavily visited news
site.

In the traditional way, Nieuws.be buys and maintains an
infrastructure of six load balanced web servers and one
database. Using virtualization and by setting up a hybrid
cloud, they can optimize their infrastructure by consolidating
lightly used servers. Using virtualization, three web servers
can be ran on a single machine. The database is heavily
used, so is virtualized on a dedicated machine. As a result,
the same performance can be achieved by only three (heav-
ily used) physical servers. In case of peak demands, the
heavily used servers cannot handle the load, and therefore
cloudbursting is used to automatically allocate additional
resources in the public cloud. Additionally, as Nieuws.be is
a local news site, the request pattern also depends strongly
on the time of the day. As can be seen in Figure 2, during
night hours, requests to Nieuws.be fall back to a minimum.
Therefore, during down times, the hybrid cloud can further
optimize by migrating lightly used VMs to a single host,
allowing to shutdown one of the servers.

One can immediatly see that this hybrid cloud architecture
results in a two-fold cost reduction: on one hand, only three
instead of six servers need to be bought; on the other hand,
the infrastructure has a huge energy saving. Besides the
cost benefit of consuming less energy, it additionally has
the social benefit of reducing their energy footprint.

169

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 179 / 237

Figure 2. Request pattern of Nieuws.be

Other use cases that illustrate the benefit of hybrid cloud
computing to handle peak loads are the Hallmark infrastruc-
ture around Valentine’s day, or the Colruyt infrastructure in
December due to holiday purchases and gifts (see Figure 3).

Figure 3. Request pattern of Colruyt

C. Implementation

The main functionality of the virtual infrastructure man-
agement tool provides efficient management of hybrid
clouds through automatic scaling and load balancing. Figure
4 illustrates the architecture for the virtual infrastructure
management tool.

Figure 4. Architecture of the virtual infrastructure management tool

As can be seen in this figure, two parts make up the virtual
infrastructure management tool: on one hand, a proxy that
implements different load balancing algorithms and provides
configurable thresholds for upscaling to the public cloud;
on the other hand, a management interface that visualizes
and manages the hybrid cloud, clusters VMs and remotely
configures the proxy.

The major task of the proxy is forwarding the incom-
ing requestst to the appropriate VMs. The proxy supports

different load balancing algorithms in order to do so. At
the moment round robin and weighted round robin are
supported, but more algorithms will follow in the future.
Round robin is especially suited for load balancing when the
different VMs have (almost) the same performance. If the
VMs have different specifications, weighted round robin can
be used to compensate for these differences. There, servers
are presented requests in proportion to their weighting
resulting in fairly distributing the requests amongst VMs,
instead of equally distributing the requests. To support the
weighted load balancing, the performance of all VMs needs
to be monitored and the thresholds for up- and downscaling
need to be configured. As each public cloud instance type
differentiates itself from the others in terms of price, number
of virtual cores, available memory and I/O bandwidth, these
pricing and performance models are used to derive the
weights for the weighted round robin load balancing and
can also be used to implement more advanced load balancing
and upscaling algorithms in the proxy.

The management interface, presented in Figure 5, pro-
vides a tab for visualizing the current VMs in the infrastruc-
ture, both private and public ones, as well as the functionality
to start and stop these VMs. New VMs can also be added,
and clusters can be generated. A cluster is a group of VMs
providing the same service. Each cluster can use its own load
balancing and scaling settings. The management interface
also provides a tab to configure the proxy’s load balancing
algorithms and scaling thresholds.

Both the proxy and management tool are implemented
using C# in combination with the .NET Framework. In order
to fulfill the defined requirements above, it is important that
the VMs in the private cloud can be addressed the same way
as the VMs in the public cloud in order to simplify the hybrid
cloud management. Therefore, the proxy is implemented on
a dedicated VM in the cloud without an interface, and uses
a plug-in system to communicate with different private and
public cloud providers. In order to support the automatic
upscaling, the VMs also need to be monitored. In order
to do so, the APIs of the different cloud providers are
used. All requests sent to the proxy are load balanced and
forwarded to the according VM (private or public); the
response however is directly sent to the client, skipping the
proxy. The communication between the management tool
and the proxy is implemented using Web service technology
and WCF. In order to adjust the proxy settings, the user
can use the graphical management interface which sends
Web service requests to the proxy in order to configure the
thresholds and load balancing algorithms. At the backend, a
database is used to store the properties of the hosts, clusters,
VMs, scaling thresholds and load balancing constraints. This
database is updated by periodically monitoring the VMs in
the background. The database is implemented using SQL
Server and the Entity Framework. This way, the relational
structure of the database is abstracted and one can directly

170

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 180 / 237

Figure 5. Screenshot of the management tool presenting the infrastructure overview

work with the created object classes.
Currently, VMware is supported for the private part of the

hybrid cloud, and Amazon for the public part of the hybrid
cloud. More cloud providers will be added in the future.
For the public cloud part, the Amazon EC2 service is used
to manage the public VMs, and the Amazon CloudWatch
service is used to monitor the status of the VMs. The
Amazon AWS API can be used starting from Microsoft
.NET Framework v2.0. The VMware vSphere API is similar
to the Amazon AWS API for .NET, but then applied to a
VMware cloud. In order to set up the hybrid cloud, the
VMware vSphere PowerCLI API is used. This PowerCLI
offers in the first place an interface to Windows PowerShell
(which is a new and advanced command-line shell for
Windows), but the dlls can also be imported in .NET projects
resulting in the same functionality being available using
programming code.

V. EVALUATION AND RESULTS

The components of the virtual infrastructure management
tool have been implemented and are currently being evalu-
ated.

Figure 5 presents a screenshot of the management inter-
face where the current infrastructure is visualized, presenting
all private and public VMs and their properties. Each of
these VMs can be started, stopped, rebooted or suspended.
The management tool also provides tabs to add additional
VMs to the infrastructure or to create service clusters. The
proxy configuration can also be done in the graphical tool:
thresholds for up- and downscaling can be configured (see
Figure 6) and a load balancing algorithm can be selected
and tuned.

The operation of our virtual infrastructure management
tool was verified through an experimental performance
study. During the evaluation, we started with two web

Figure 6. Screenshot of the management tool presenting the scaling
tresholds configuration

Figure 7. Average response time and amount of VMs in function of the
requests per second

servers in the private cloud and upscaled to maximum six
web servers in the public cloud, resulting in an infrastructure
consisting of eight VMs. The number of requests per second

171

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 181 / 237

was increased over time. The test results are presented
in Figure 7. As can be seen in this figure, the response
time initially increases as the requests per second increases.
When the upscaling thresholds are reached, VMs are added,
stopping the response time from further increasing as the
load is now balanced over an expanded infrastructure.

VI. CONCLUSIONS

This paper highlights the opportunities of hybrid cloud
computing for SMEs and presents a virtual infrastructure
management tool that can be used by SMEs to set-up and
manage their hybrid cloud. Different reasons can drive SMEs
to maintain their own data center instead of becoming “data
center-less”.

Providing a tool to easily set-up and manage these hybrid
clouds takes into account the technical possibilities, the
SMEs perspective, and the economic tradeoff between the
different business models such as classic data centers, private
cloud computing and public cloud computing. We are aware
of the fact that these hybrid clouds are not the best solution
for every SME. If the restrictions of the public cloud not
apply and the SMEs only have a limited IT infrastructure
and expertise, then outsourcing to public clouds can be very
interesting due to economy of scale.

Results clearly illustrate that current SME data centers
can be optimized to compete with the public cloud. As
the number of SMEs far exceeds the number of large and
very large organizations in almost every country all over the
world, this approach results in interesting business benefits.
By using hybrid clouds, SMEs critical or latency sensitive
applications are kept on the infrastructure (collocated or not)
in which they have already invested, and applications are
moved toward cloud computing enabled data centers in order
to handle occasional peak requests. This methodology allows
SMEs to freeze capital investments and move applications
toward cloud computing enabled data centers. Hybrid cloud
computing may therefore become a very important compet-
itive feature of SME data centers to leverage the economies
of scale that the “public clouds” offer.

We will continue the design of more advanced load
balancing algorithms by taking into account the different
pricing and performance models. Future work also includes
the development of additional plug-ins for our proxy so
on one hand more private and public cloud providers are
supported, and on the other hand also security can be
managed. Especially the latter is challenging as classical
security models may be insufficient as data is replicated and
distributed in potentially worldwide infrastructures [8].

REFERENCES

[1] N. Leavitt, Is Cloud Computing Really Ready for Prime Time?,
Computer, 42(1), pp. 15-20, 2009.

[2] D. Hilley, Cloud computing: A taxonomy of platform and
infrastructure-level offerings, Georgia Institute of Technology,
Technical Report GIT-CERCS-09-13, April 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, et
al., Above the Clouds: A Berkeley View of Cloud Computing,
Technical Report, February 10, 2009.

[4] J.A. Welsh and J.F. White, A Small Business Is Not a Little Big
Business, Harvard Business Review, 59(4), pp. 18-32, 1981.

[5] N.A. Sultan, Reaching for the cloud: How SMEs can manage,
International Journal of Information Management, 31, pp. 272-
278, 2011.

[6] J. Bolton, Small Firms: Report of the Committee of Inquiry
on Small Firms, Cmnd 4811, HMSO, London, 1971.

[7] B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster, Vir-
tual Infrastructure Management in Private and Hybrid Clouds,
IEEE Internet Computing, 13(5), pp. 14-22, 2009.

[8] K. Jeffery and B. Neidecker-Lutz, The Future of Cloud Com-
puting: Opportunities for European Cloud Computing Beyond
2010, Expert Group Report, European Commission, 2010.

[9] J. Thong, C.S. Yap, and K.S. Raman, Top management support,
external expertise and information systems implementation in
small businesses, Information Systems Research, 7(2), pp. 248-
267, 1996.

[10] C.S. Yap, C. Soh, and K.S. Raman, Information systems
succes factors in small business, Omega - The International
Journal of Management Science, 5(6), pp. 597-609, 1992.

[11] P.C. Heckel, Hybrid Clouds: Comparing Cloud Toolkits,
Seminar Paper Business Informatics, University of Mannheim,
2010.

[12] S. Fraser, R. Biddle, S. Jordan, K. Keahey, B. Marcus,
et al., Cloud computing beyond objects: seeding the cloud,
Proceeding of the 24th ACM SIGPLAN Conference on Object
oriented programming systems languages and applications, pp.
847-850, 2009.

[13] B.A. Aubert, M. Patry, and S. Rivard, A Framework for Infor-
mation Technology Outsourcing Risk Management, Database
for Advances In Information Systems, 36(4), pp. 9-28, 2005.

[14] P. Sempolinski and D. Thain, A Comparison and Critique of
Eucalyptus, OpenNebula and Nimbus, Proceedings of the IEEE
International Conference on Cloud Computing Technology and
Science, pp. 417-426, 2010.

[15] J.G. Devos, H. Van Landeghem, and D. Deschoolmeester,
IT/IS and Small and Medium-Sized Enterprises: Literature
Overview, paper submitted for publication in the Journal of
Small Business Management.

172

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 182 / 237

Cloud Computing and its Application to Blended Learning in Engineering

Sanda Porumb, Bogdan Orza, Aurel Vlaicu

Communication Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

{sporumb, orza, aurel.vlaicu}@com.utcluj.ro

Cosmin Porumb, Ioan Hoza

R&D Department

HyperMedia Ltd

Cluj-Napoca, Romania

{cosmin, ionut}@hpm.ro

Abstract—The education process in engineering means theory

and practice, individual study, group-based projects or

experimental work that involves equipment,

simulation/emulation software packages and laboratory

applications. In order to develop e-learning platforms for

higher and postgraduate education in engineering, new

methodologies should be taken into consideration: project- and

problem based learning, virtual laboratory (remote access to

laboratory infrastructure and task evaluation) or remote

assistance for diploma projects and mobility grants. This paper

presents new blended learning methodologies and the manner

they can be customized for higher and postgraduate education

in engineering by using the cloud computing paradigms.

Keywords - cloud computing; blended learning; virtual

laboratory; hybrid classware; project-based learning; problem-

based learning

I. INTRODUCTION

In recent years, with the advances of the Internet and e-
learning technologies, a blended mode of learning, which
effectively combines the traditional face-to-face learning and
e-learning, has evolved. Yet, this blended learning mode is
not widely adopted in higher and postgraduate education in
engineering. One major reason is that teachers are not
familiar with the practice of designing courses under
the blended learning environment. Another important aspect
is that many teachers do not consider the e-learning
methodologies as stable and functional enough for
engineering, especially for laboratory and project task
completion. The third reason is that academic staff considers
the act of teaching/learning engineering as more than
individual study and online assessment.

Engineering consists of lecture attendance, project
development, hands-on laboratory-based activities and
computer simulation work. In this way, the educational act
can be considered as learner-centered. Manseur [5]
presented the synchronous distance learning concept (SDL)
and its application to Electric and Computer Engineering
and Mathematics. Students follow lectures live via
videoconferencing but they attend laboratory sessions taught
by on-site faculty. The advanced technology has been used
for linking the local and the remote classrooms: the lecturer
teaching in one location is videotaped and can be seen live
on a TV screen in the other classroom. The hands-on
experimentation is difficult to conduct without access to
often expensive equipment and components and without

competent on-site laboratory tutors. In order to complete the
lab, the SDL environment consists of two sets of fully
equipped and staffed laboratories, one on each end of the
SDL-connected campuses.

Qiu [7] proposed a blended learning environment that
implements the face-to-face teaching and e-learning
capabilities in Advanced Software Engineering. A set of
integrated projects was selected as stimulus to learning.
Both inter- and intra-group collaborative learning are
encouraged. A survey conducted at the end of the course
revealed that students accept the problem-based learning
quite well, and their academic achievements were also better
than expected. The methodology consists of grouping
student in teams, dividing the semester in project phases and
developing the project using iterations.

This paper is organized as follows: the related works and
proposals are presented in Section II. Section III is dedicated
to the blended learning models for higher and postgraduate
education. Several important aspects are taken into
consideration: how to improve the retention factor in the
individual study, how to provide remote access to laboratory
infrastructure and applications and how to support
fundamental and applied research activities within
individual, group-based projects or international
partnerships. Section IV starts with the technological aspects
and continues with the deployment diagram of the blended
learning platform for technical education and continues with
the elastic cloud environment presentation. The experimental
results, especially the platform deployment for “Economic
and Exact Sciences” and “Applied Electronics,
Telecommunications and Information Technology” domains,
including the blended learning support, practice and
assessment processes, are highlighted in Section V of this
paper. In conclusion, the authors underline the importance of
SaaS (Software as a Service), PaaS (Platform as a Service)
and IaaS (Infrastructure as a Service) concepts in higher and
postgraduate education by presenting a complex scenario for
extending legacy e-learning systems in order to support
blended learning capabilities.

II. RELATED WORKS

Mendez [3] illustrates that in traditional web-based
learning mode, system construction and maintenance are
located inside the educational institutions or enterprises,
which led to a lot of problems, such as significant
investment needed but without capital gains for them, which

173

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 183 / 237

leads to a lack of development potential. In contrast, cloud-
based e-learning model introduces scale efficiency
mechanism, i.e. construction of e-learning system is
entrusted to cloud computing suppliers, which can make
providers and users to achieve a win-win situation. The
cloud-based environment supports the creation of new
generation of e-learning systems, able to run on a wide
range of hardware devices, while storing data inside the
cloud.

Laisheng [9] highlighted a new business paradigm in
educational area by introducing the cloud computing in
order to increase the scalability, flexibility and availability
of e-learning systems. The authors have evaluated the
traditional e-learning networking model, with its advances
and issues, and the possibility to move the e-learning system
out of schools or enterprises, inside a cloud computing
infrastructure. The separation of entity roles and cost
effectiveness can be considered important advantages:

 The schools and enterprises will be responsible for
the education process, as well as for content
management and delivery, and the vendor takes
care of system construction, maintenance,
development and management;

 The e-learning system can be scaled, both
horizontally and vertically, and the educational
organization is charged according to the number of
used servers that depend on the number of students.

Ouf [10] has presented an innovative e-learning
ecosystem based on cloud computing and Web 2.0
technologies. The article analyzes the most important cloud-
based services provided by public cloud computing
environments such as Google App Engine, Amazon Elastic
Compute Cloud (EC2) or Windows Azure, and highlights
the advantages of deploying E-Learning 2.0 applications for
such an infrastructure. The authors also identified the
benefits of cloud-based E-Learning 2.0 applications
(scalability, feasibility, or availability) and underlined the
enhancements regarding the cost and risk management.

Chandral [11] focused on current e-learning architecture
model and on issues in current e-learning applications. The
article presents the Hybrid Instructional Model as the blend
of the traditional classroom and online education and its
customization for e-learning applications running on the
cloud computing infrastructure. The authors underline the e-
learning issues, especially the openness, scalability, and
development/customization costs. The existing e-learning
systems are not dynamically scalable and hard to extend –
integration with other e-learning systems is very expensive.
The article proposed the hybrid cloud delivery model that
can help in fixing the mentioned problems.

The e-learning platforms for higher and postgraduate
education in engineering should provide remote access to
both educational materials and laboratory infrastructure.
They also need to implement synchronous/asynchronous
collaborative learning features, as well as blended
assessment functionality. Such a platform is expensive and
its development can take much time. The cheapest solution
is to opt for public cloud computing services, even if the

component integration and customization will need
important investments.

The learning cloud prototype presented here is a fully
functional, application-oriented, and in the same time, low-
cost solution that provides SaaS (Software as a Service),
PaaS (Platform as a Service) and IaaS (Infrastructure as a
Service) capabilities. Software as a Service is used to
deliver the educational applications to the browser of the
user/ customer from the learning cloud. It helps the faculties
and departments with limited IT resources to deploy and
maintain needed software in a timely manner while, at the
same time, reducing energy consumption and expenses.
Platform as a Service facilitates the development and
deployment of applications, such as laboratory simulation
software packages, without the cost and complexity of
buying and managing the underlying infrastructure
(hardware and associated software). Infrastructure as a
Service gets on-demand computer infrastructure (virtual
desktop or data center, e.g.).

III. BLENDED LEARNING MODELS

From the teaching point of view, six essentials are
identified: teaching subjects, teaching content, teaching
environment, teaching models, teaching organizers and
teaching administration. In order to improve their knowledge
and skills, the students (subjects) actively participate to both
real and virtual educational acts. So, the learning service
providers should pay attention to both teaching modes: face-
to-face and Internet-based. The advances point out the
manner of getting them together, in order to expand the real
educational environment and make the virtual platforms an
important part of the educational system.

A. Blended Learning Model for Higher Education

The traditional e-learning platforms consist of the
learning management system, learning content management
system, assessment and communication modules (especially
forum and messaging). The third generation of e-learning
platforms provides with advanced services such as online
courses, tutorials and webinars. The education process in
engineering means theory and practice, individual study,
team projects or experimental work and involves laboratory
equipment, simulation/emulation software packages and
applications.

Figure 1. Blended Lerning Model for Higher Education in Engineering.

The e-learning platforms for higher education in
engineering implement new methodologies such as: project-
and problem based learning, virtual laboratory (remote
access to laboratory equipment and applications and task

174

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 184 / 237

evaluation) or remote assistance for diploma projects and
mobility grants. The blended learning model illustrated in
Figure 1 proposes the following educational phases:
asynchronous/synchronous collaborative learning,
individual study support, virtual laboratory and blended
assessment. Two main blocks should be taken into
consideration in the e-learning system architecture: hybrid
classware and asynchronous collaborative learning modules.
The hybrid classware is a complex blended learning
approach that provides with classroom-based education,
synchronous collaborative learning (online
course/tutoring/mentoring), virtual laboratory (remote
access to laboratory equipment and applications) and
blended assessment (practice and theory) capabilities. The
problem-/project-based learning and individual study
(interactive courses/tutorials) features are implemented in
the asynchronous collaborative learning section.

B. Blended Learning Model for MSc Programmes

In MSc programmes the students are focused on research
and career development activities. The educational schema
consists of live lectures, hands-on experimentation,
individual and group-based projects, virtual team
cooperation and mobility grants. It is defined around the
following skills: information synthesis in theory and hands-
on experimentation or online simulation, requirement
analysis, project design, implementation, or result
presentation.

Figure 2. Blended Lerning Model for MSc Programmes in Engineering.

The blended learning model illustrated in Figure 2
proposes the two main phases in the educational act: regular
teaching and Internet-based learning. Information
technology is important in education, even when regular
teaching involves advanced technologies such as
multimedia presentations, video projectors, or smartboards.
Self-learning means individual study starting from
educational materials created and posted onto the e-learning
platform by the teachers, then browsing the Internet to find
and select correct information about subjects related to the
educational materials.

Online tutoring approach consists of interactive tutorials
and face-to-face Internet-based learning. Interactive tutorials
can be also used as the introduction part of hands-on

experimentation activities. The face-to-face Internet-based
learning includes the online classroom/webinar sessions and
remote assistance during the international research projects
or mobility grants.

C. Blended Learning Model for PhD Programmes

Blended learning is not new - what is new is the
recognition of its potential to help in fundamentally
redesigning the learning experience in ways that could
enhance the traditional values of higher education and
postgraduate scholarship (MSc and PhD programmes).
Preparing PhD students according to a blended strategy can
be challenging, since it requires gaining different teaching
skills and technologies. Redesigning the educational process
takes into account new teaching and learning opportunities,
managing the educational content both online and in-class,
and preparing PhD students to work in a hybrid format.

In Romania, the PhD scholarship based on European
Social Funds (ESF) constrains the students to complete their
PhD in three years, so, the activities should be well defined
and supported by clear results. This aspect completely
changed the PhD methodology (illustrated in Figure 3). For
the moment, the PhD students must be integrated within
research projects and work close to real and efficient
research teams. Most of the research projects are developed
according to the Scrum methodology [2]. This way, the
authors took into consideration the blended learning and
Scrum methodology for improving the education and
research activities in PhD scholarship based on ESF Funds.

Figure 3. Blended Lerning Model for PhD Programmes in Engineering.

The PhD programme means theory, practice and research
activities with results published in scientific journals and
conference proceedings. This way, the problem- and project-
based learning should be considered as necessary. The
Technical University of Cluj-Napoca provides with PhD
programmes in the following domains of interests:
Automation, Computer Science, Electric Engineering,
Applied Electronics and Telecommunications, Civil
Engineering, Mechanics, etc. With the big number of
domains and the increasing number of MSc and PhD
students, the blended learning environment that supports
MSc and PhD activities should be both horizontally and

175

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 185 / 237

vertically scalable. In conclusion, an elastic learning cloud
infrastructure should be implemented.

IV. E-LEARNING CLOUD INFRASTUCTURE

From the beginning, the role of blended learning was to
improve the educational process by increasing the degree of
students’ satisfaction, retention factor and students’
enrollment and developing students’ skills. In higher
education, especially in engineering, the blended learning is
a need because of the diversity of teaching/learning
activities. The quality of the learning act can be considered
another important aspect, so increasing number of students
enrolled should not affect the educational process. The
learning cloud means reliability and scalability, as well as
cost effectiveness.

Laisheng [9] proposed a generic e-learning cloud and
identified several challenges such as: charge, bandwidth,
security, user’s awareness and acceptance, educational
forms and methods and resource development, and proposed
solutions for each challenge. By setting up a market-
oriented charging mechanism and by combining two types
of fees, school fees and individual fees (with school
charging for general resources and individual charging for
special resources) can be considered a solution. The
bandwidth problem is almost fixed in Romania because
between RoEduNet and each important Internet service
provider there are peering services. In order to keep the
integrity and confidentiality of data an encryption
mechanism should be implemented for both storage and
transmission.

The e-learning cannot completely replace teachers; it is
only an updating for technology, concepts and tools, giving
new content, concepts and methods for education, so the
roles of teachers cannot be replaced. The teachers will still
play leading roles and participate in developing and making
use of e-learning cloud. The blended learning strategy
should improve the educational act. Moreover, the
interactive content and virtual collaboration guarantee a
high retention factor (up to 80%) [4].

A. E-Learning Cloud Architecture

Figure 4. Learning Cloud Architecture.

The proposed learning cloud architecture illustrated in
Figure 4 can be divided into the following layers: hardware
resource layer as a dynamic and scalable physical host pool,
software resource layer that offers a unified interface for e-
learning developers, resource management layer that
achieves loose coupling of software and hardware resources,
service layer, containing three levels of services (software as
a service, platform as a service and infrastructure as a
service), application layer that provides with content
production, content delivery, virtual laboratory,
collaborative learning, assessment and management
features.

B. E-Learning Cloud Setup

In the classic blended learning model, teachers assign
teaching tasks, conduct regular lectures, or train students’
skills. The students attend the online autonomous learning
act and cooperative learning sessions, or accomplish
teachers’ assignments. The teachers make assessments over
students’ learning effect and solve their problems. So,
teachers set objectives and tasks of different levels, they put
forward requirements and suggestions according to the
teaching contents and make assessments to students’
learning effects through task-based activities. Teachers also
answer students’ questions and offer essential teaching to
major and difficult points. In addition, teachers can also use
multimedia to enhance teaching content. Of course, teachers
create flexible and diversified theoretical and practical
scenarios and teaching contents, using authentic materials to
let students come upon more technical information related
to real problems/projects. Students work out their own
learning plans, determining learning methods
autonomously. They conduct on-line autonomous learning
when they study each unit, finish its test via Internet and do
some statistics to the test results. Teachers also encourage
students to cooperate with each other to finish simple
learning tasks or complex group-based projects. Through
cooperative learning, students cannot only acquire
knowledge, their team spirit and coordination will also be
fostered, skills in dealing with people will be improved and
abilities to express themselves will be enhanced. In applied
electronics, telecommunications and information
technology, the learning environment also provides with
hands-on experimentation work, simulation software
packages and semester/diploma projects.

We proposed a learning cloud environment built around
Citrix XenServer. XenServer is an enterprise-ready, cloud-
proven virtualization platform that contains all the
capabilities required to create and manage a virtual
infrastructure and provides an efficient management of
Windows and Linux virtual servers and delivers cost-
effective server consolidation [1]. The initial setup,
illustrated in Figure 5, must support the teaching/learning
activities and practice. It should be a dynamic environment,
able to create university/programme instances. Each
instance consists of six virtual machines: two allocated for
web hosting, two for the data warehouse and two for the
virtual library. The initial setup also includes the
collaborative work environment that hosts the

176

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 186 / 237

asynchronous/synchronous collaborative learning tools:
course authoring tool, interactive tutorial, messaging, forum,
web conferencing, online focus group, or virtual classroom.

Figure 5. E-learning cloud setup.

The learning management system allows the students to
schedule online laboratory activities. The e-learning cloud
infrastructure implements an advanced resource pooling
mechanism (see Figure 6) that dynamically allocates twenty
virtual machines for each university instance when the first
student scheduled a virtual laboratory session. When fifteen
of the initial virtual machines are allocated, the resource
pooling mechanism allocates other twenty. The virtual
machine will not be a powerful one. Its role is to provide
students with remote access to lab equipment and simulation
software packages needed for completing the tasks. The
activity starts with an interactive tutorial, where the tutor
describes the tasks and gives some suggestive examples
related to the current work. The students remotely access the
lab equipment and/or applications and complete the tasks.

Figure 6. Virtual Lab Approach.

At the end of the lab session, each student saves its own
work, in order for the tutor to verify it. If the tasks are not
properly done, the tutor notifies the student to repeat the
work or to attend a collaborative session in order to fix the
problems together.

The online access to the laboratory infrastructure
complies with a well-defined schedule. It is almost
impossible to allocate one virtual machine for each student
enrolled in the educational program. This way, the students
will access the virtual laboratory in groups of ten students.
At the same time, we can have groups of ten virtual
machines to be allocated for each field/line of study.

V. EXPERIMENTAL RESULTS

Each educational organization should have its own staff
that manages both educational act and content. When
registering, the account manager should specify the number
of students, form of study, education domain, then an
intelligent block processes the information and provides
with the most appropriate configuration needed for such a
programme.

The “Aurel Vlaicu” University of Arad opted for an e-
learning cloud-based service, in order to support blended
learning in the Faculties of Economic and Exact Sciences.
The manager of the Distance Learning Department
completed the registration forms and defined a clear
structure of BSc programme for 2 faculties, 5 domains, 3
years of study, 72 teachers and more than 3000 students.
The educational process in the Faculty of Economic
Sciences consists of flexible individual study, individual and
group-based projects, online and face-to-face teaching,
online and classroom-based assessment, webinars and web
meetings between students and/or students and tutors. In
the Faculty of Exact Sciences, it also includes virtual
laboratory activities, especially remote access to lab
applications (software development environment), and
semester/diploma project support.

The configuration block automatically creates the virtual
machines (VM) and allocates the hardware and software
resources: two VM allocated for web hosting, two for the
warehouse and two for the virtual library. In the Faculty of
Exact Sciences, the virtual laboratory involves one virtual
machine allocated for each student, the virtual desktop that
allows the student to complete his own work, and a reduced
storage space necessary for saving the work at the end of the
laboratory session. The virtual machine has minimal
hardware and software requirements: it should support the
software packages needed for completing the current tasks.

The e-learning cloud prototype is also implemented in
the Technical University of Cluj-Napoca, Faculty of
Electronics, Telecommunications and Information
Technology, for MSc and PhD programmes. One of the
pilot courses, “E-Business Technologies”, involves 25
students, some of them involved in Erasmus mobility grants.
By using the hybrid classware component, the Erasmus
students have been able to actively participate to courses
and lab activities. The teachers were also assisting the
students during semester or diploma projects.

177

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 187 / 237

The virtual educational environment will provide with
classroom-based lectures, online courses, interactive
tutorials, virtual laboratories (especially access to simulation
software packages), problem- and project-based learning,
and remote assistance for semester and diploma projects.
The e-learning cloud automatically deploys an instance for
each educational progamme that consists of six virtual
machines. The management component processes the
learning schedule related to each programme, controls and
re-allocates the hardware and/or software resources, invokes
the interactive/collaborative tools and provides online
access to educational resources and laboratory
infrastructure.

The hybrid classware, illustrated in Figure 7, supports
both synchronous collaborative leaning and face-to-face
teaching. It enables the teachers to present the educational
material in the classroom and simultaneously project it in
the virtual space. The students can opt for assisting the
presentation in the classroom or using the virtual classroom
component.

Figure 7. Hybrid classware implementation.

A complementary tool that allows the lecturer to
dynamically handle the educational content is integrated
into the learning cloud. Two types of educational content
are stored into the virtual library: public and private content.
If the lecturer considers one of his/her materials as really
important for the public interest, that material will be
uploaded on the server, converted to an internal format
(SCORM compliant) and stored into the virtual library as a
public material. If the material is private, or if the lecturer
has no rights to make it public, it will be converted to the
slideshow format and then stored into the library as private.
The tutor is able to browse the media library, load it on the
shared space and share it among the virtual classroom
session. Asynchronous collaborative learning is also
allowed. The lecturer is able to create interactive learning
content by using the course authoring tool and store it into
the virtual library. The student accesses the virtual library,
browses the content and manages his own schedule.

When setting up the hardware and software resources for
the MSc Programme “Multimedia Technologies”, the staff

should evaluate the laboratory equipment and applications
to be integrated. For example, the lab activities for
“Distributed Databases” and “Multimedia Databases”
courses involve SQL Server and Oracle support, the ones
for “Speech Synthesis and Recognition”, “Multimedia Data
Compression and Encoding” and “Speech Compression”
courses need Matlab. The lab activities for “Advanced
Software Methods in Telecommunications” course need
Rational, Visual Studio and JBuilder.

Each laboratory activity should be performed according
to the tutor’s specifications. The specifications consist of
theory, objectives, interactive tutorials, demonstrations and
external resources. If the laboratory objectives are related to
software development, customization or analysis, the virtual
machine allocated to each student just creates an instance of
the development environment or software package used for
completing the tasks.

There are courses, such as “Mobile communications –
3G and 4G”, that also involve simulation packages and
hardware equipment. The simulation packages such as
QualNet network simulator, can be exposed in the same
manner as the software packages or the development
environments, even if they are connected to real hardware
devices or not.

LabView can be also used for handling hardware
devices. If exposing the hardware equipment via LabView,
within the virtual machine, only one student or team can
control it, at a moment. In order to avoid conflicts and
protect the equipment and student work, the remote access
to hardware devices must be optimized.

In the Technical University of Cluj-Napoca there are
3019 MSc students and 1432 PhD students registered in 9
faculties and following different educational programmes.
Not just the diversity of themes and interdisciplinary
character of MSc and PhD recommend the implementation
of a learning cloud environment. Another important aspect
refers to research management during the PhD mobility
grants, where important priorities are knowledge transfer
and approaching of new technologies.

Figure 8. Scrum implementation in research projects.

178

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 188 / 237

Most of the diploma, dissertation and research projects
comply with the Scrum methodology. So, the authors
propose the blended learning approach and Agile Scrum
methodology to be implemented in the project-based
learning module. The semester and diploma projects will be
developed according to Agile Scrum methodology. It allows
iterative development and full control of the project phases.
The students are grouped in virtual teams (2-3 members).
Forum, messaging and online focus group, document
management and sharing capabilities (see Figure 8) are
added to the project module in order to allow team members
to collaborate during the project.

In traditional engineering education, knowledge
assessment consists of complex procedures such as
periodical evaluation, project evaluation and the final
knowledge assessment and it involves the teachers and
students. The assessment model in the third generation of e-
learning is learner-centered and it consists of questions with
one or more correct answers, as well as open answers. So,
the students should complete the online assessment tests and
the teacher will receive notifications about students’ tests
and centralizes the results before closing the educational act.
The presented prototype proposes a blending assessment
method that preserves the traditional assessment methods
and the flexibility the online assessment tools grant.

The learning environment allows the management staff to
setup the own educational platform or invoke needed
interactive/collaborative tools. The cloud computing
paradigms (SaaS, PaaS and IaaS) enable transparent access
to services, software packages or hardware infrastructure.
This way, the head of a department/programme manager that
already implemented an educational platform and prefers to
use it instead of re-implementing a new approach can opt for
transferring the platform onto the new e-learning cloud setup
(based on the Infrastructure as a Service paradigm) or extend
the existing functionality in order to support more features. It
assumes the integration of the legacy system by using the
Software as a Service paradigm.

The cloud computing environment, it is open for
organizations and enterprises. The registration procedure is
very simple: the responsible of an educational/training
programme (MSc, PhD, even BSc) must complete the
registration forms by specifying the requirements, then the
intelligent configuration block automatically allocates the
needed resources and creates the hardware and software
components that support such a programme.

The learning management features include the statistics
and reporting capabilities. The reporting and statistics
components provide with the information related to
education and research activities the actors performed within
the platform:

 The number of educational resources and interactive
materials created and uploaded into the platform;

 The number of assessment sessions the tutors
created and scheduled per month/week/day;

 The number of synchronous collaborative learning
sessions scheduled per month/week/day;

 How many students accessed the interactive
materials per month/week/day and completed the
periodical assessment sessions;

 How many students collaborated within the
research/team projects and the contribution of each
team member;

 How many topics have been created within the
course forum and how many students participated to
a topic;

 How many students used the multimedia messaging
in order to communicate to the colleagues;

 The number of collaborative sessions the students
scheduled within the research/team projects;

 The number of interactive tutorials the students met
tutors in order to clarify important aspects regarding
the educational content and activities;

 The number of students that completed the
laboratory tasks according to the pre-defined
schedule;

 The number of students that needed help during the
laboratory tasks and how fast and clear was the
tutor’s support;

 How many team/research projects have been
completed according to the pre-defined scheduled;

 How many students studying abroad have been
assisted remotely;

 The number of MSc and PhD students are involved
in virtual research teams;

 The number of interactive training sessions has
been scheduled and delivered via hybrid classware;

 The number of virtual machines has been allocated
for laboratory activities;

 The bandwidth usage per month/week/day (Figure
9);

 The CPU usage per virtual machine;

 The memory usage per virtual machine;

 The overloading per virtual setup.

Figure 9. “Aurel Vlaicu” Univeristy. Bandwidth usage (February, 2011).

VI. CONCLUSIONS

The article presents the blended learning concept based
on cloud computing paradigms and the manner it can be
customized for higher and postgraduate education in

179

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 189 / 237

engineering. It starts from a functional analysis between
traditional e-learning platforms and blended learning
environments dedicated to higher and postgraduate
education then it continues with the technological aspects
and the deployment diagram of an e-learning cloud
environment for engineering education.

If analyzing the e-learning cloud setup with the
platforms presented in the introduction and related works,
the advantages are conclusive: individual study support,
Internet-based collaborative learning features, online access
to lab infrastructure, collaborative research capabilities,
project-based learning and problem-based learning
functionality delivered using a complex but low cost
infrastructure. Due to cloud computing (SaaS, IaaS and
PaaS paradigms) implementation, the e-learning service
providers can easily setup new learning environments or
extend their existing systems in order to support blended
learning capabilities.

The most important advantage of the cloud computing is
the cost effectiveness. Instead of investing funds in the own
e-learning infrastructure and educational software packages,
the educational institutions should pay more attention to the
content, staff, marketing and student enrollment, which can
grant the service improvement. If opting for cloud-based
services there are no IT costs, neither IT specialists to
employ. The educational institutions register in the e-
learning cloud and pay just what they consumed. The online
access to collaborative learning tools and flexible individual
study are implementing using SaaS paradigm. The
development and deployment of laboratory applications use
the PaaS concept. In order to implement laboratory
equipment/infrastructure sharing or virtual desktop
functionality, the faculties and departments can opt for IaaS
services.

Such systems allow students to enroll in educational
programmes even if the job is very restrictive because most
of the learning activities can be remotely done. Several
enhancements in the educational act have been identified.
The implementation of the interactive learning approach in
individual study grants a high retention factor (up to 80%)
and the collaborative learning develops the soft skills and
teamwork capabilities. The hybrid classware approach
implements the synchronous collaborative learning
methodologies and allow the students to actively participate
to the educational act. Its main role is to keep the
responsibility of learning on the teacher’s end but also make
students more responsible, communicate to each other and
work and study as a team. Fundamental and applied
research support, task management features and remote
access to lab equipment and applications are also supported.
The e-learning cloud setup should be considered as the most
reliable solution for virtual laboratory and student assistance

during the semester, diploma, dissertation or research
projects.

ACKNOWLEDGMENT

The paper was supported by the project "Development
and support of multidisciplinary postdoctoral programmes in
major technical areas of national strategy of Research -
Development - Innovation" 4D-POSTDOC, contract no.
POSDRU/89/1.5/S/52603, project co-funded by the
European Social Fund through Sectorial Operational
Programme Human Resources Development 2007-2013.

REFERENCES

[1] D. E. Williams, “Virtualization with Xen(tm): Including

XenEnterprise, XenServer, and XenExpress”, Syngress Publishing
House, ISBN: 1597491675 2010, 2007.

[2] M. Hicks and J.S. Foster, “Adapting Scrum to Managing a Research
Group”, Technical Report CS-TR-4966, University of Maryland,
Department of Computer Science, 2010.

[3] J. A. Méndez and E. J. González, “Implementing Motivational
Features in Reactive Blended Learning: Application to an
Introductory Control Engineering Course“, IEEE Transactions on
Education, Volume: PP, Issue: 99, 2011.

[4] A. Vlaicu, S. Porumb, C. Porumb, and B. Orza, “Advanced Concepts
for Interactive Learning”, WSEAS Engineering Education, ISSN
1790-1979, Issue 6, Vol.3, 2006.

[5] R. Manseur and Z. Manseur, “A Synchronous Distance Learning
Program Implementation in Engineering and Mathematics“, Proc. 39th
ASEE/IEEE Frontiers in Education Conference, San Antonio, Texas,
USA, Pages 1-6, 2009.

[6] Y. Huixin, “Development of Blended Learning Modes and Its
Practice in Computer Aided Language Learning Danikas“, Proc. 2nd
International Conference on Information Science and Engineering
(ICISE), pages 2021-2024, 2010.

[7] M. Qiu and L. Chen, “A Problem-based Learning Approach to
Teaching an Advanced Software Engineering Course“, Proc. 2nd
International Workshop on Education Technology and Computer
Science, pages 252-255, 2011.

[8] Z. Hu and S. Zhang, “Blended/Hybrid Course Design in Active
Learning Cloud at South Dakota State University“, Proc. 2nd
International Conforence on Education Technology and Computer
(ICETC), pages V1-63-V1-67, 2010.

[9] X. Laisheng and W. Zhengxia, „Cloud Computing: a New Business
Paradigm for E-learning”, Proc. 3rd International Conference on
Measuring Technology and Mechatronics Automation, pages 716-
719, 2011.

[10] S. Ouf, M. Nasr, and Y. Helmy, „An Enhanced E-Learning
Ecosystem Based on an Integration between Cloud Computing and
Web2.0”, Proc. IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), pages 48-55, 2011.

[11] D. Chandran and S. Kempegowda, „Hybrid E-learning Platform
based on Cloud Architecture Model: A Proposal”, Proc. International
Conference on Signal and Image Processing (ICSIP), pages 534-537,
2010.

180

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 190 / 237

On-demand Data Integration On the Cloud

Mahmoud Barhamgi
1
, Parisa Ghodous

2
, Djamal Benslimane

3

Claude Bernard University (Lyon1)

69622 Villeurbanne, France
1Mahmoud.barhamgi@liris.cnrs.fr

2Parisa.Ghodous@liris.cnrs.fr
3Djamal.benslimane@liris.cnrs.fr

Abstract— On-demand data integration is among the key

challenges in Cloud Computing. In this paper, we present an

ontology-based framework for describing and integrating data

on the fly to answer transient business needs. We provide a

semantic modeling for cloud’s data services. The proposed

modeling makes it possible to automatically resolve the

different types of data heterogeneity that would arise when

data from heterogeneous and autonomous providers need to be

combined together to answer the business’s data needs. We

validate our approach with a prototype.

The main contribution of this paper is an efficient on-demand
integration system for the clouds.

Keywords— On-demand data integration; Ontologies;

Services.

I. INTRODUCTION

Cloud computing has recently emerged as a new

paradigm for hosting and delivering services over the

Internet. Cloud computing is attractive to business owners

as it eliminates the requirement for users to plan ahead for

provisioning, and allows enterprises to start from the small

and increase resources only when there is a rise in service

demand. However, despite the significant benefits offered

by cloud computing, the current technologies are not mature
enough to realize its full potential. Many key challenges in

this domain need to be addressed and solved. Data

management and integration is among the key challenges

that will keep receiving a particular attention from the

research community over the coming years [6] [8] [14]. The

Data-as-a-Service concept has been introduced in recent

year as first step to virtualize access to data sources in

clouds and SOA architectures [2][3][5][12]. A DaaS (Data-

as-a-Service) service provides a simplified, integrated view

of real-time, high-quality information about a specific

business entity, such as a Customer or Product. The

information that it provides may come from a diverse set of
information resources, including operational systems,

operational data stores, data warehouses, content

repositories, collaboration stores, and even streaming

sources in advanced cases.

Even though the introduction of DaaS services has

allowed to shield the applications developers from having to

directly interact with the various data sources that give

access to business objects (i.e., customers, orders, invoices,

etc.) and enabled them to focus on the business logic only,

most of the time the business needs require the combination

of multiple DaaS services from different service providers

[13]. For instance, let us consider the following query:
“what are the driving directions for a facility of a given type

(e.g., Restaurant, Theater, etc.) in a given city?” -this is a

typical application of Google maps maps.google.com. Let

us assume that we have the following two DaaS services: S1

returns the addresses of facilities of a given type in a given

city; S2 returns the driving directions between two given

addresses. The execution of the above mentioned query

involves the composition of S1 and S2 services. However,

DaaS services composition is a hard task that may involve

many data integration challenges. First, the semantics of

DaaS services needs to be formally defined to automate

their selection. The standardized service description
languages (e.g., WSDL [17]) do not provide means for

defining the services’ semantics. Second, services may

define different data structures for their manipulated data

entities. For instance, the same piece of data such as

“Address” may be represented differently by different DaaS

services; i.e., the same data item has different XML

structures. Structural data heterogeneities need to be

addressed to allow for the automatic composition of DaaS

services.

In this paper, we present an approach to compose

cloud’s DaaS services on the fly for the purpose of
answering on-demand data integration needs. In the

proposed approach, the semantics of DaaS services are

defined using domain ontologies. This allows for

automating their selection and composition and makes it

possible to resolve the schematic data heterogeneities (a.k.a.

structural data heterogeneities) of data items exchanged

among heterogeneous DaaS services. We present also a

system that exploits the proposed semantic modeling to

compose DaaS services.

181

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 191 / 237

Semantic Data

Integration

Annotating Service

description files with

views over domain

ontologies

Composition

Query

(SPARQL)

Interface to the

Composition /

Results

Proprietary

Data

Sources

Sa

Sb Si

Sk

Sj

DB

Service

Registry

WSDL-S

Files

Cloud DaaS

Services

SOAP Messages

DBDB

SfSn

Client

RDFS Domain

ontology

RDF Views

Interactive query

formulator

RDFS Domain

ontology

Service

Locator

Composition

Plan Generator

Execution

Engine

RDF Query

Rewriter

UP Cast/Down Cast

messages Transformer

Figure 1: An overview of the proposed declarative approach to cloud services composition

The rest of this paper is organized as follows. In

Section 2, we describe our framework for on demand data

integration. In Section 3, we present our modeling to cloud

DaaS services and users’ queries. In Section 4, we

showcase through an example how data integration queries

are resolved by query rewriting and DaaS service

composition. In Section 5, we overview related work. We

provide concluding remarks in Section 6.

II. A DECLARATIVE APPROACH TO COMPOSE CLOUD

DAAS SERVICES

In this section, we present a declarative framework for

composing cloud DaaS services that addresses the

challenges discussed earlier in the introduction. We show

the different phases involved in DaaS services composition,

starting from the service modeling to the generation of the

final composition that will be returned to users.

Figure 1 presents our DaaS service composition

framework. The first step towards the automation of DaaS

services composition is to semantically represent their

capabilities. In our approach, we model DaaS services as
RDF views over domain ontologies. An RDF view uses

concepts and relations whose meanings are formally defined

in domain ontologies to define the semantics of a DaaS

service. The RDF views are then used to annotate the

service description files (e.g., WSDL files, SA-Rest, etc.).
Users (i.e., cloud application developers) in our approach

formulate their composition queries over domain ontology
using the do facto ontology query language SPARQL [18].
Non-savvy users can be assisted in formulating their queries

by the Interactive Query Formulator component.
Based on our proposed modeling to DaaS services (i.e., RDF
views), the well-known query rewriting techniques can be
used to compose them; i.e., our composition system rewrites
the received queries in terms of available DaaS services
using a query rewriting algorithm. For that purpose, we have
devised an efficient RDF-oriented query rewriting algorithm

[1]. The algorithm is implemented by the RDF Query

Rewriter component and exploits the semantic
annotations that we added in the service description files to
select and compose the DaaS services that are relevant to the
query. The composition system will then arrange the selected
services in the composition execution plan (this is carried out

by the Composition Plan Generator component).
The composition plan will be displayed to the users, who can
then invoke the compositions with their inputs. Note that
when service providers define the semantics of their DaaS
services using the RDF views over domain ontologies, they
also provide the mappings between the defined views and the
XML schemas of input and output messages of their

182

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 192 / 237

O:Facility

F

O:address

rdf:type

$t

O
:ty

pe

?n

O
:nam

e

O:Route

R
O:Start_Address

rdf:type

?r

O:route

description

A2

$c2

O
:c

it
y

$b2

O
:bulding

$s2

O
:street

O:Address

O:End_Address

A1

$c1

O
:c

it
y

$b1

O:bulding

$s1

O
:street

O:Address

rdf:type rdf:type

A

$c

O
:c

it
y

?b

O
:bulding

?s

O
:street

O:Address

rdf:type

S1($t,$c,?n,?s,?b) S2($c1,$s1,$b1,$c2,$s2,$b2,?r)

O:Facility

F

O:address

rdf:type

$x

O
:ty

pe

?z

O
:nam

e

O:Route

R
O:Start_Address

rdf:type

?u

O:route

description

A2

$x2

O
:c

it
y

?w2

O
:bulding

?y2

O
:street

O:Address

O:End_Address

A1

$x1

O
:c

it
y

$w1

O:bulding

$y1

O
:street

O:Address

rdf:type rdf:type

(B) Composition Query

(A) DaaS Services

Figure 2: (A) the RDF views of services in the running example; (B) the user mashup query formulated on domain ontologies.

services. The mappings are also attached to the service

description files as annotations and are used by the Up-
Cast/Down-Cast Messages Transformer
component when invoking component services. This is
necessary since the same data item may have different
structures between the ontology and the XML schemas of
Input and Output messages (for instance, a (datatype)
property in the ontology like “NAME” may be represented
by two elements “FirstName” and “LastName” in an Input or
Output XML schema). We detail all of the previous steps in
the subsequent subsections.

III. A SEMANTIC DESCRIPTION FOR DAAS SERVICES AND

COMPOSITION QUERIES

In our approach, we model DaaS services as RDF views

over domain ontologies. An RDF view describes the

semantics of a DaaS service in a declarative way using

concepts and relations whose meanings are formally defined

in domain ontologies. Consider, for example, the services:

S1($t,$c,?n,?s,?b) and S2($c1,$s1,$b1,$c2,$s2,$b2,?r) that we

will use throughout the paper. Inputs are prefixed with “$”

and outputs with “?”. S1 returns the facilities of a given type

“t” (e.g., hospitals, hotels, etc) in a given city “c”. The

service S2 returns the driving directions “r” between two

addresses represented by the cities (“c1” and “c2”), the

streets (“s1” and “s2”) and the buildings (“b1” and “b2”).

These two services can be composed together to look for

facilities of a given type and obtain the driving directions to

them. Figure 2 (Part-A) shows a graphical representation of
the RDF views defined for S1 and S2. The RDF views in

Figure 2 describe the semantics of services from the

ontology point of view, where the blue ovals are concepts in

ontology (e.g., Facility, Address and Route) whereas the

arcs are properties. The defined RDF views are then used to

annotate the service description files (e.g., WSDL files, SA-

Rest, etc). These views define the semantics of services in a

formal way and will be used during the selection and

composition of DaaS services.

In the proposed approach, users (i.e., application

developers) need only to focus on the needed data by

formulating their composition queries over domain
ontologies. They are not required to manually select services

and build the composition plan by mapping the inputs and

outputs of component services to each other and drop code to

resolve data incompatibilities. Figure 2 (Part-B) shows a

graphical representation of the query in the running example.

183

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 193 / 237

We will see in subsequent sections that they are still able to

select the services participating in the resulting composition.

IV. COMPOSING DAAS SERVICES BY QUERY REWRITING

Our proposed composition approach relies on an RDF
query rewriting algorithm (presented in [1]) to resolve the
users’ composition queries. Specifically, users’ queries are
matched against the RDF views of available services. These
RDF views can be retrieved from the services description
files (e.g., WSDL files). In the matching process, our
matching algorithms identify the RDF sub-graphs of the
query that can be covered by individual DaaS services. For
example, as we can see in Table 1, the service S1 covers the
following nodes of the query: F($x,?z), A2($x2,?y2,?w2) and
the object property linking the two address(F,A2). The
service S2 covers the following nodes of the query:
A2($x2,?y2,?w2),R(?d), A1($x1,?y1,?w1) and the object
properties : end_address(R, A2), start_address(R,A1).

Service Covered sub-graphs

S1($x,?z,$x2,?y

2,?w2)

F($x,?z), A2($x2,?y2,?w2),

address(F,A2)

S2($x1,$y1,$w1,$

x2,$y2,$w2, ?u)

A2($x2,?y2,?w2), R(?d),

A1($x1,?y1,?w1),end_address(R,

A2), start_address(R,A1)

Table 1: the query’s sub-graphs that are covered by services in the running

example

If these two services are combined together, the whole

nodes and object properties sets of the query will be

covered. Therefore, our composition algorithm will combine

both of these services and consider the combination as a

rewriting of the query as follows:

Q(?z,?y2,?w2,?u):- S1($x,?z,$x2,?y2,?w2)×

S2($x1,$y1,$w1,$x2,$y2,$w2,?u)

The composition algorithm will then orchestrate the used
DaaS services in the rewriting to produce the composition
execution plan that will be displayed to the user for further
customization (if desired).

Figure 3 (A) shows the interface to the composition
system. Users formulate their composition queries in the
query panel using SPARQL language and submit the query
to the system. The composition system will compose the
DaaS services and present the user with composition plan in
Figure 3 (B), where users can refine the composition by
selecting the desired services among the possible ones and
validate the composition. The composition system will then
present the user with an interface where the users can specify
specific values for the mashup parameters and invoke it.
Figure 3 (A) shows the composition inputs values and the
obtained outputs for the running example.

 V. RELATED WORKS

Since the DaaS services composition research problem is
relatively new, there has been only a small amount of

research work addressing it. In the following, we review the
most prominent ones of these works.

A considerable body of recent work addresses the

problem of composition (or orchestration) of multiple web

services to carry out a particular task, e.g., [15][16]. In

general, that work is targeted more toward workflow-

oriented applications (e.g., the processing steps involved in

fulfilling a purchase order), rather than applications

coordinating data obtained from multiple DaaS services, as
addressed in this paper. Although these approaches have

recognized the importance of automating the composition

process, they have not, as far as we are aware, addressed the

DaaS services.

The Web Service Mediator System WSMED [9] allows

users to mashup data services by defining relational views

on top of them. Users can then query data by formulating

their mashup queries over defined views. Users can also

enhance defined views with primary-key constraints which

can be exploited to optimize the mashups. The main

drawback of the WSMED system is its high reliance on
users; i.e. users are supposed to import the services relevant

to their needs; define views on top of them and enhance the

views with primary key constraints. The latter task requires

from users to have a good understanding of the services’

semantics. In our system, DaaS Web services are modeled

as RDF views over domain ontologies where primary key

constraints are defined explicitly by the concepts’ skolem

functions, thus the discussed Primary key based

optimizations are included by default in our query

processing model.

In other academic mashup systems [4][7][10][11], data
mashup users are required to select the data services

manually (which assumes they are able to understand their

semantics), figure out the execution plan of selected services

(i.e. the services orchestration in the mashup) and connect

them to each other and drop code (in JavaScript) to mediate

between incompatible inputs/outputs of involved services.

This prevents average users from mashing up DaaS services

at large. Our composition system addresses this limitation

by proposing a declarative composition approach, where

users need only to focus on the required data and the system

will find and compose the services for them.

VI. CONCLUSION

In this paper, we presented an approach that caters for

on-demand data integration for cloud business’s data needs.

We presented an ontology-based semantic modeling for

cloud DaaS services. The proposed modeling makes it

possible to automatically combine heterogeneous DaaS

services and resolve the different types of data heterogeneity

that would arise when data needs to be exchanged between

composed services. We also validated our approach with a

prototype. As a future work, we intend to contextual data

heterogeneities between composed services (i.e., when

composed services have different interpretation contexts for
the data they exchange).

184

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 194 / 237

(Figure 3-A): The Mashup Interface: users type their mashup queries in the query panel, they will be presented then with the interface “Mashup Inputs”
that is used to specify the values of input parameters to execute the mashup

(Figure-3-B): The Mashup Customization Interface MCI: the MCI allows users to select the desired services among the possible ones.

185

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 195 / 237

REFERENCES

[1] Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed, "A

Query Rewriting Approach for Web Service Composition," EEE

Transactions on Services Computing (TSC), pp. 206-222, 2010.

http://www.computer.org/portal/web/csdl/doi/10.1109/TSC.2010.4

[2] Michael J. Carey, "Data delivery in a service-oriented world: the BEA

aquaLogic data services platform.," in SIGMOD Conference, 2006,

pp. 695-705.

[3] Asit Dan, Robert Johnson, and Ali Arsanjani, "Information as a

Service: Modeling and Realization," in International Conference on

Software Engineering (Workshop on Systems Development in SOA

Environments), 2007, pp. 2-10.

[4] Hazem Elmeleegy, Anca Ivan, Rama Akkiraju, and Richard

Goodwin, "Mashup Advisor: A Recommendation Tool for Mashup

Development," in 2008 IEEE International Conference on Web

Services (ICWS 2008), Beijing, China, pp. 337-344.

[5] Mike Gilpin et al., "Information-As-A-Service: Waht's Behind This

Hot New Trend?," Forrester Research, Research Report 2007.

http://www.forrester.com/rb/Research/information-as-a-

service_whats_behind_this_hot_new_trend/q/id/41913/t/2, accessed

on 29 June, 2011.

[6] Hector Gonzalez et al., "Google fusion tables: data management,

integration and collaboration in the cloud," in SoCC, 2010, pp. 175-

180.

[7] Anne H. H. Ngu, Michael Pierre Carlson, Quan Z. Sheng, and Hye-

young Paik, "Semantic-Based Mashup of Composite Applications,"

IEEE Transactions on Services Computing, vol. 3, no. 1, pp. 2-15,

2010.

[8] Raghu Ramakrishnan, "Data Management in the Cloud," in ICDE

2009, pp. 5, 2009.

[9] Manivasakan Sabesan and Tore Risch, "Adaptive Parallelization of

Queries over Dependent Web Service Calls," in 1st IEEE Workshop

on Information & Software as Services, WISS 2009, Shanghai, China,

2009.

[10] Junichi Tatemura, "UQBE: uncertain query by example for web

service mashup," in SIGMOD Conference, Vancouver, Canada, 2008,

pp. 1275-1280.

[11] Junichi Tatemura, "Mashup Feeds: : continuous queries over web

services," in SIGMOD Conference, 2007, pp. 1128-1130.

[12] Hong-Linh Truong and Schahram Dustdar, "On Analyzing and

Specifying Concerns for Data as a Service," in The 2009 Asia-Pacific

Services Computing Conference (IEEE APSCC 2009), Singapore,

2009, pp. 7-11.

[13] Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed,

"Deploying and managing Web services: issues, solutions, and

directions," VLDB Journal, vol. 17, no. 3, pp. 537-572, 2008.

[14] Qi Zhang, Lu Cheng, and Raouf Boutaba, "Cloud computing: state-

of-the-art and research challenges," Journal of Internet Services and

Applications, vol. 1, no. 1, pp. 7-18, 2010.

[15] Mazen Shiaa, Jan Ove Fladmark, and Benoit Thiell, “An Incremental

Graph-based Approach to Automatic Service Composition” Proc. of

the Int. Conf. on Services Computing (SCC’08), Honolulu, pp. 212-

220, 2008.

[16] Patrick Hennig and Wolf-tilo Balke, “Highly Scalable Web Service

Composition Using Binary Tree-Based Parallelization,” Proc. of the

Int. Conf. on Web Services (ICWS’10), Los Alamitos, pp.123-130,

USA, 2010.

[17] http://www.w3.org/TR/wsdl, accssed on 29 June, 2011

[18] http://www.w3.org/TR/rdf-sparql-query/, accssed on 29 June, 2011

186

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 196 / 237

UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service

Eduardo Rosales, Harold Castro, Mario Villamizar
Department of Systems and Computing Engineering

Universidad de los Andes
Bogotá D.C., Colombia

{ee.rosales24, hcastro, mj.villamizar24}@uniandes.edu.co

Abstract—This paper presents UnaCloud: an opportunistic
cloud computing Infrastructure as a Service (IaaS) model
implementation, which provides at lower cost than dedicated
cloud infrastructures, basic computing resources (processing,
storage and networking) to run arbitrary software, including
operating systems and applications. The IaaS model is
provided through the opportunistic use of idle computing
resources available in a university campus. UnaCloud deals
with the problems associated to use commodity, non-dedicated,
distributed, and heterogeneous computing resources that are
part of different administrative domains. We propose an IaaS
architecture based on two strategies: an opportunistic strategy
that allows the use of idle computing resources in a non-
intrusive manner, and a virtualization strategy to allow the on-
demand deployment of customized execution environments.
The proposed solution was implemented and tested through
the provision of an opportunistic IaaS model, evidencing high
efficiency in the deployment of virtual machines for academic
and scientific projects.

Keywords; grid computing; cloud computing; desktop grid;
infrastructure as a service; unacloud; unagrid.

I. INTRODUCTION

Grid computing and cloud computing appear to be the
two latest and most promising computing paradigms [1].
Grid computing is considered a paradigm in production,
which surged as a vanguard technology for supporting the
development of different scientific projects at a global scale
[2]. In contrast, cloud computing is still an evolving
paradigm. Its definitions, use cases, underlying technologies,
issues, risks, and benefits will be refined in a spirited debate
by the public and private sectors. These definitions,
attributes, and characteristics will evolve and change over
time [3]. However, cloud computing is considered the grid
computing successor [4], because it represents a disruptive
evolution, aimed at the customization and delivery of
computing services. These services hide most of the
complexities associated with the underlying infrastructure
administration, can be deployed on demand and are accessed
remotely via Internet [1].

There are high expectations about cloud computing
paradigm for the next 1-5 years [5]. Cloud computing is
attracting a lot of attention around the world [6], not only of
experts in ICTs, but also academics, scientists, researchers,
businessmen and common people, who are attracted by the
delivery of on-demand computing services. However, there

are a few cloud computing implementations, most of them
exclusively based in the IaaS model, due in part to the
complexity associated to the different cloud computing
service delivery models (IaaS, Platform as a Service – PaaS,
and Software as a Service - SaaS). Furthermore, all IaaS
implementations (open source or commercial) require
expensive, dedicated, robust and high performance
underlying infrastructures, so they are unviable in
organizations and countries with low financial resources.

Taking into account the emerging importance of cloud
computing paradigm, the need of independent investigation
testing of commercial providers, the financial difficulties
associated with expensive underlying infrastructures, and the
different cloud computing service models, in this paper we
present UnaCloud, an IaaS model implementation, which
provides basic computing resources through the
opportunistic use of idle computing resources available in a
university campus.

UnaCloud is able to deploy, manage and deliver an
opportunistic IaaS model based on preexisting, non-
dedicated, distributed, and heterogeneous computing
resources that are part of different administrative domains.
These resources are in part, conventional desktop computers,
as those daily used by employees, professors or students in a
university campus. These desktop computers tend to be
underutilized for significant periods, resulting in plenty of
idle computing resources. Due to the large amount of
available computing resources on a university campus,
UnaCloud represents an economically attractive solution for
constructing and deploying large scale computing
infrastructures, avoiding not only underutilization of non-
dedicated computing resources, but also financial
investments in hardware and maintenance costs associated.

UnaCloud has been initially deployed at Universidad de
los Andes and, in this work, the design and details of the
implementation deployed are presented along with the results
obtained. The paper is organized as follows: section 2
presents the related works to IaaS model implementations
and Desktop Grids and Volunteer Computing Systems
(DGVCS's). Section 3 presents the UnaCloud architecture in
terms of its services. Section 4 presents UnaCloud
implementation. Section 5 presents the UnaCloud testing
and results. Finally, Section 6 presents the conclusions and
future work.

187

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 197 / 237

II. RELATED WORK

UnaCloud represents a convergence between cloud
computing and DGVCS's. The service delivery model of the
cloud computing paradigm is taken into account as an
objective, mainly in relation to the IaaS model. The design
aspects of the DGVCSs are kept into account as a mean to
provide an opportunistic underlying infrastructure to support
cloud computing services at lower cost. This type of
convergence has been theoretically analyzed in [7], on the
perspective of software engineering principles.

In the context of IaaS models, Amazon Web Services
(AWS) [8] is considered a precursor because it is in
productive use since 2006, offering basic processing and
storage capabilities via Internet. Amazon Elastic Compute
Cloud (Amazon EC2) [9] and Amazon Simple Storage
Service (Amazon S3) [10] popularized a commercial IaaS
model, based on a pay-per-use contract and the provision of
resizable compute capacity in the cloud. The OpenNebula
[11] project was the first open source tool that extended the
benefits of cloud computing technologies to data centers and
clusters, transforming physical infrastructures in virtual
infrastructures of high flexibility and performance.
Eucalyptus [12] is the first research-oriented open source
software implementation that utilizes compute clusters in
order to foster community research exploration of cloud
computing systems. Nimbus [13] is an open source toolkit
that allows transforming clusters into an IaaS model able to
interoperate with grid computing conventional tools,
including: Globus Toolkit, Sun Grid Engine (SGE) or PBS.

On the other hand, in the context of DGVCS's, the Worm
[14] and Condor [15] projects are pioneers in the
opportunistic use of homogeneous computing resources
connected by LAN infrastructures. The GIMPS [16] and
SETI@home [17] projects are characterized by their unique
purpose, Internet scalability and the ability to leverage non-
dedicated, distributed and heterogeneous computing
resources (at the hardware, system and administrative
domain level).

 The Distributed.net [18] and BOINC [19] projects are
characterized by an approach not limited to a unique
purpose, being able to support multiple distributed scientific
research projects. The last four projects described, are based
on lightweight, portable and easy to install agents/clients that
are continuously running as a background process in low
priority, leveraging idle computing resources in a non-
intrusive manner. Finally, projects like Bayanihan
Computing. NET [20], OurGrid [21], Integrade [22] and
UnaGrid [23], offer specialized support to cluster and grid
computing initiatives with large processing demands,
assuming the deployment of middleware and workload
management systems to process multiple jobs. In the
Nebulas project [24], different requirements and possible
solutions to build customizable clouds (called Nebulas) using
distributed voluntary resources are proposed; however, they
are neither implemented, nor evaluated.

Unlike the commercial and academic IaaS model
implementations, UnaCloud does not require large financial
investments to purchase and maintain cluster architectures

composed by multiple nodes exclusively dedicated to the
provision of the virtual machines resources. In contrast,
UnaCloud uses a commodity and non-dedicated underlying
infrastructure, implementing opportunistic design concepts
broadly studied in the context of DGVCS's.

UnaGrid is the first on-demand opportunistic Desktop
Grid [23]. It uses virtualization technologies to deploy
Customized Virtual Clusters (CVC) based on an
opportunistic underlying infrastructure. Due to the above, the
UnaGrid infrastructure is able to support cloud computing
service models, even though UnaGrid functionalities are
currently focused on cluster and grid computing
technologies.

To the best of our knowledge, our work is the first to
analyze the prospect and performance of using an
opportunistic underlying infrastructure to support an IaaS
model.

III. UNACLOUD ARCHITECTURE

UnaCloud began as a research effort to explore and
obtain the innovative features and advantages of cloud
computing paradigm. This effort is aimed at the provision of
computing infrastructures for the development of e-Science
projects and to support computing related activities. To
achieve this, one of our most important limitations is the
funds to purchase the dedicated computing resources
required by all IaaS model implementations (even open
source IaaS model implementations).

Therefore, the UnaCloud objectives require the extension
of DGVCS's design concepts to provide an opportunistic
underlying infrastructure able to support an experimental
IaaS model at lower cost. In spite of the multiple problems
related to use a non-dedicated infrastructure, functionalities
included in UnaCloud are supposed to be similar to those
available in conventional IaaS models. However the
availability of the computing resources is dependent on the
behavioral pattern of their currently owners, so it is normally
not effective to ensure any type of QoS or SLA. Thus,
UnaCloud works on a best-effort basis.

UnaCloud architecture is based on the integration of an
information system with an underlying computing
infrastructure, that is, a Web portal capable of coordinating
information and communications on opportunistic
infrastructures to provide basic computing services,
operating systems and applications through a cloud
computing IaaS model. The UnaCloud architecture overview
is illustrated in Fig. 1.

As shown in Fig. 1, there are four types of UnaCloud
users. An IaaS user demands the IaaS model without
specifying the deployment location. IaaS users access the
UnaCloud Web interface to customize and/or deploy virtual
machines with general-purpose configurations (e.g., virtual
machines used to support academic activities). Grid users
demand IaaS model specifying the deployment location on
specific underlying infrastructure computers. Grid users
access the UnaCloud Web interface to customize and/or
deploy suitable execution environments for e-Science
applications (e.g., cluster, grid or cloud computing
environments). IaaS-Grid users can take any of the above

188

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 198 / 237

roles. Additionally, Administrators access to all available
Web interfaces, with all privileges and get exclusive access
to administration services.

Figure 1. UnaCloud architecture overview.

UnaCloud architecture is divided into two main
components: UnaCloud Server and UnaCloud Client. These
components are implemented using open source and loose
coupling information and communication technologies,
which promote the UnaCloud interoperability and
extensibility, and are appropriated to the special conditions
of a commodity opportunistic underlying infrastructure.

A. UnaCloud Server Architecture

UnaCloud Server is a Web application whose main
function is to provide an entry to all UnaCloud services,
including the provision of customization, deployment,
access, management and monitoring interfaces. As shown in
Fig. 2, UnaCloud Server is composed of three layers:

 Interface layer: is a Web portal that supports a user

Web Interface (WI), which supports the presentation
for accessing and consuming all available UnaCloud
services. This interface provides an IaaS model
based on self-service. This layer is also responsible
for managing the user information, including secure
access through authentication and authorization
mechanisms. The Web portal is available via
Internet and so, can be accessed using any Web
browser.

 Core layer: is responsible for processing all user
requirements and deliver solutions in the form of
UnaCloud services. The first service supported is
the Customized Environment Manager (CEM),
which processes and prepares orders related to all of
customization settings (made through WI), including
availability verifications of the computing resources.
The availability verifications are performed through
a virtual and physical resources information database
that is managed by a service named Persistence
Manager (PM). PM is also responsible for managing
the operations used to provide basic IaaS traceability
reports. The next core layer service is Virtual

Machine Manager (VMM), which works in
conjunction with PM to manage the virtual machine
information. VMM is also responsible for preparing
hypervisor orders to operate all the IaaS virtual
machines, including: start, stop, restart and monitor
operations. Finally, Physical Infrastructure Manager
(PIM) service, works in conjunction with PM to
manage the physical machines information. PIM is
also responsible for preparing operating system
orders to operate the entire underlying infrastructure,
including basic operations such as: turn off, restart,
logout and monitoring.

Figure 2. UnaCloud server architecture.

 External layer: is responsible for managing the

communication services on the server side to deliver
all the UnaCloud Server orders to the UnaCloud
Clients. The first service supported is Server
Communication Manager (SCM), which supports
the connection, disconnection and message passing
between UnaCloud Server and UnaCloud Client.
SCM works in conjunction with Server Security
Manager (SSM) service, which is responsible for
managing the security schema in communications,
including confidentiality and non-repudiation
mechanisms.

B. UnaCloud Client Architecture

UnaCloud Client is a lightweight, highly portable and
easy to install client which is installed and run directly on the
underlying opportunistic infrastructure. This Client is based
on the design concepts of agents/clients implemented on

UnaCloud Client Serv ices

UNACLOUD SERVER

Ia
a

S
 C

u
s

to
m

iz
a

ti
o

n

UnaCloud Client Serv ices

Ia
a

S
 D

e
p

lo
y

m
e

n
t

Ia
a

S
 A

d
m

in
is

tr
a

ti
o

n

Ia
a

S
 M

o
n

it
o

ri
n

g

Ia
a

S
 T

ra
c

e
a

b
il

it
y

P
h

y
s

ic
a

l

A
d

m
in

is
tr

a
ti

o
n

P
h

y
s

ic
a

l

M
o

n
it

o
ri

n
g

EXTERNAL LAYER

SSM

INTERFACE LAYER

CORE LAYER

WI

CEM
VMM PM

PIM

SCM

<<uses>>

189

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 199 / 237

DGVCS's such as: GIMPS, Distributed.net and SETI@home
(studied in Section 2). These design concepts proposed the
execution of background and low priority processes to use
idle computing resources in a non-intrusive manner.
UnaCloud Client incorporates these concepts, but apply them
to the virtual machine execution processes, facilitating not
only the deployment of an opportunistic IaaS model, but also
the continuous and optimized utilization of the underlying
infrastructure in a time-sharing hardware model.

UnaCloud Client is responsible for receiving and
processing all of UnaCloud Server orders to provide a
dynamic and on-demand IaaS model. To achieve this, as
shown in Fig. 3, UnaCloud Client is composed of two layers:

Figure 3. UnaCloud client architecture.

 External layer: is responsible for managing the
communication services on the client side. The first
service supported is Client Communication Manager
(CCM), which supports the connection,
disconnection and message passing between
UnaCloud Client and UnaCloud Server. CCM works
in conjunction with the Client Security Manager
(CSM) service, which supports confidentiality and
non-repudiation mechanisms for secure message
passing.

 Core layer: is responsible for attending and meeting
UnaCloud Server orders through local operating
system and hypervisor invocations. The first service
supported is Context Manager (CM), which is the
counterpart in the client of CEM, and is responsible
for adapting the virtual machine execution context to
all of customization settings required by an end-user
through WI. The next service is Local Executor
Manager (LEM), which executes multiple
commands using invocations to the local operating
system services. LEM executes all commands

required to meet the orders sent by VMM and PIM
from the UnaCloud Server side. The next service is
Hypervisor Manager (HM), which executes multiple
commands using invocations to the local hypervisor.
HM executes all commands required to meet the
orders sent by VMM from the UnaCloud Server
side. Finally, Monitoring Manager (MM) service is
responsible for monitoring the state of CPU, RAM
and SWAP memory, hard disk, network and
operating system variables on the physical machine
where UnaCloud Client is running.

UnaCloud Client can be installed on any desktop
computer or server using Windows, Linux or Mac operating
systems. It supposes a horizontal scaling model, based on
the easy aggregation of single desktop computers or entire
computer laboratories.

IV. UNACLOUD IMPLEMENTATION

To meet UnaCloud objectives, its implementation of an
opportunistic IaaS model is able to provide the following
services:

 IaaS customization: UnaCloud allows the
customization of execution environments through
five settings: software, hardware, quantity, location
(optional) and time. Software settings allow
customizing the type of operating system, its version
and all applications installed on it, after the
deployment new applications can be installed on the
VMs. Hardware settings allow customizing hard disk
and RAM memory sizes, and the CPU cores number.
Quantity setting allows choosing the instances
number to deploy. Location setting allows choosing
the IaaS model deployment location on specific
underlying infrastructure computers. The last setting
only applies to Grid users who desire to optimize
and document the use of the opportunistic
infrastructure. Finally, time setting allows
configuring the IaaS execution time. For users who
want to skip the full IaaS customization process,
settings only involve the selection of the IaaS
deployable image name, the instances number to
deploy, the location (only for Grid users) and the
execution time of the deployment.

 IaaS deployment: UnaCloud allows the on-demand
deployment of the execution environments,
customized in the previous service. The IaaS
deployment includes the provision of necessary data
for its remote access, using standard mechanisms
such as: Remote Desktop, VNC or SSH. The remote
access data provided includes: the virtual machine
name and IP address, the remote access mechanism
name and port and, the guest operating system root
user and password (UnaCloud deliver virtual
machines with root privileges).

 IaaS administration: UnaCloud allows operating
virtual machines, including basic operations such as
start, stop, restart, change execution time and
monitoring.

Operating System
Serv ices

Hyperv isor
Serv ices

UNACLOUD CLIENT

Ia
a

S
 C

u
s

to
m

iz
a

ti
o

n

Ia
a

S
 D

e
p

lo
y

m
e

n
t

Ia
a

S
 A

d
m

in
is

tr
a

ti
o

n

Ia
a

S
 M

o
n

it
o

ri
n

g

P
h

y
s

ic
a

l

A
d

m
in

is
tr

a
ti

o
n

P
h

y
s

ic
a

l

M
o

n
it

o
ri

n
g

Operating System
Serv ices

Hyperv isor
Serv ices

EXTERNAL LAYER

CORE LAYER

CCM

CSM

LEM
MM

HMCM

<<uses>>

190

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 200 / 237

 IaaS traceability: UnaCloud allows checking the
IaaS model traceability at user level. UnaCloud
delivers a basic report that includes information
associated with deployed virtual machines, the
underlying infrastructure used on the deployment,
IaaS customization settings chosen by the UnaCloud
user and the execution period selected.

 Physical infrastructure administration: UnaCloud
allows operating physical machines that compose the
underlying infrastructure, including basic operations
such as: turn off, restart, logout and monitoring. This
functionality is only available for administrators.

V. UNACLOUD TESTING AND RESULTS

UnaCloud Client has been deployed in three computer
laboratories (Waira I, Waira II and Alan Turing) at
Universidad de los Andes. Each laboratory has 35 computers
with Intel Core 2 Duo (1.86GHz) processors, 4GB of RAM
and Windows XP as their main operating system. In
addition, UnaCloud Server was deployed on a virtual
machine running on a server, which is located in the data
center (for availability reasons) of the Department of
Systems and Computing Engineering. As illustrate in Fig. 4,
the networking infrastructure is based on three switches and
a multilayer switch interconnected via a GigE LAN.

Figure 4. UnaCloud deployment.

UnaCloud Client runs only one virtual machine per
desktop computer, mainly to avoid resource competition
between virtual machines. Due to the fact that the
opportunistic underlying infrastructure is not capable of type
I hypervisors, the virtualization operations request the
assistance of type II hypervisors suitable for desktop
computer based on x86 architectures. Due to the above, each
desktop computer has installed the VMware Workstation
type II hypervisor, which assists the virtual machines
operations to deploy the opportunistic IaaS model. All
hypervisor services are accessed through the VMware
platform with VIX libraries.

A. Cloud evaluation

As show in Fig. 4, in order to test the UnaCloud services
for Grid users, some grid computing components were used,
including a master node that has assigned two CPU cores

and 2GB of RAM memory, and 35 slave nodes that have
assigned two CPU cores and 1GB of RAM memory. This
virtual infrastructure supports the e-Science experimentation
of the Department of Biological Sciences, which is
developing projects that analyze the coffee, cassava and
potatoes genome, to improve production affected by
biological organisms [25], [26] and [27].

Figure 5. UnaCloud IaaS located deployment.

As illustrate in Fig. 5, the virtual infrastructure
deployment was assisted by UnaCloud following an IaaS
located deployment. Grid users deployed the 35 grid slave
nodes in about 7 seconds. The average time that each virtual
machine took in parallel to load the guest operating system
(Debian 4) and to enabling network services (to be accessed
via SSH) was approximately 4 minutes, time in which a
slave is ready to receive jobs from its cluster master.

As show in Fig. 4, in order to test the UnaCloud services
for IaaS Users, some IaaS virtual machines were used,
including software development and data mining,
customized execution environments. This virtual
infrastructure supports the academic activities of students of
the Department of Systems and Computing Engineering. As
illustrate in Fig. 6, the virtual infrastructure deployment was
assisted by UnaCloud following a non-located IaaS
deployment. IaaS users deployed 70 virtual machines in
about 13 seconds. The average time that each virtual
machine took in parallel to load the guest operating system
(Windows XP) and to enabling network services (to be
accessed via Remote Desktop) was approximately 5 minutes.

Figure 6. UnaCloud IaaS non-located deployment.

Data Center

GigE

Computer laboratories with UnaCloud Client

UnaCloud
Server

Grid
Masters

Alan Turing

IaaS
virtual

machines

IaaS users

Administrators

Waira I Waira II

Cluster
Slaves

Grid users

191

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 201 / 237

Both case studies demonstrate how UnaCloud provides
an opportunistic IaaS model and validates all of its services.
The validation process shows that UnaCloud incorporates
relevant features in the cloud computing context. These
features are summarized in Table 1. As mentioned before,
concepts like SLA or QoS are not part of the UnaCloud
initial scope.

TABLE I. UNACLOUD CLOUD COMPUTING FEATURES

Feature Description

Usability
UnaCloud provides Web interfaces, whose
operation is almost intuitive, requiring basic IT
knowledge.

Self-service
UnaCloud users can unilaterally consume basic
computing resources on a self-service model.

Broad
network
access

UnaCloud provides basic computing services
that are available over the network and are
consumed through standard secure remote
access mechanisms.

On-demand
services

customization

UnaCloud provides services to customize
execution environments required on demand by
the end-user. This customization is able to meet
large scale computational requirements.

Time-sharing
hardware

UnaCloud incorporates an opportunistic strategy
that allows the use of idle computing resources
in a non-intrusive manner. This strategy allows
the simultaneous opportunistic use of the
underlying infrastructure by multiple users.

Virtualization
UnaCloud uses a virtualization strategy to allow
the on-demand deployment and assign of
customized execution environments.

Scalability
UnaCloud uses an opportunistic commodity
horizontal scaling infrastructure and is based on
a private cloud deployment model.

Interoperability
and

loose coupling

UnaCloud is based in loose coupling and
interoperability services that can operate over
highly heterogeneous, distributed and non-
dedicated infrastructures.

Extensibility
UnaCloud is based in open source tools, broadly
diffused in order to facilitate its extensibility.

Delegated
administration

UnaCloud hides the underlying infrastructure
complexity to end-users and provides services to
support common administration tasks.

Security
UnaCloud uses authentication, authorization,
confidentiality and non-repudiation mechanisms
to secure the IaaS model deployment.

Measured
service

UnaCloud records and reports the IaaS model
traceability at user level.

B. Performance degradation perceived by the owner user

In order to analyze the performance impact perceived by
resource owners due to the simultaneous execution of the
virtual machine as a background and low priority process,
three tests were performed. In the first tests we evaluated the
performance when a virtual machine executes intensive
processing applications. To achieve this, the execution of a
CPU intensive application was performed by the resource
owner, using three different environments: without executing
the virtual machine in background and executing the virtual
machine (making intensive use of processing) having one
core and two cores assigned, respectively; the results of the
tests are shown in Table 2. The results show that the
execution of the processing virtual machine in background

affected the performance perceived by resource owners by
less than 1%.

TABLE II. CPU PERFORMANCE IMPACT

Environment/Test
Task Completion Time (seconds)

Test 1 Test 2 Test 3 Test 4

Without VM 53,94 81,01 108,05 134,99

With a VM (1 Core) 54,16 81,42 108,39 135,58

With a VM (2 Cores) 54,21 81,46 108,58 135,60

In the second set of tests, the performance impact on the

resource owners was evaluated when they execute storage
intensive applications (I/O). To achieve this, file
compression operations of different sizes were executed by
resource owners. These tests were executed within the same
environments as the first tests and the results are shown in
Table 3. The results evidence a low impact, less than 3%, in
the performance perceived by resource owners. It is justified
in the operating systems default mechanisms to manage the
local processes priority. These mechanisms ensure
computing resources to higher priority processes, while
dynamically reducing the computing resources allocated to
lower priority processes. The third tests confirm this fact.

TABLE III. I/O PERFORMANCE IMPACT

Environment/Test
Task Completion Time (seconds)

Test 1
200 MB

Test 2
500 MB

Test 3
1 GB

Test 4
2 GB

Without VM 104,10 259,85 521,16 1041,42

With a VM (1 Core) 105,66 262,43 526,63 1060,75

With a VM (2 Cores) 106,02 263,03 527,06 1063,07

A third set of tests were executed in order to monitoring

the processor usage from both the resource owner processes,
and the background and low priority virtual machine
processes, which had two CPU cores assigned. Intensive
processing tasks were executed within both environments.
The results are shown in Fig. 7.

In the test, after measuring CPU usage with no virtual
machine running, we initiate (time 3) a virtual machine using
nearly 50% of the CPU, and at 5, we increase its
computational requirements to nearly 100%. We then modify
the CPU need from the resource owner. Between 7 and 8 the
resource owner demands a 50% of the CPU and the virtual
machine load automatically decreases to 50%. Between 9
and 10 the resource owner increases the consumption to
about 100% and the virtual machine automatically reduces
their consumption to a minimum. Between 11 and 12 the
resource owner goes back to a 50% demand, and after 12, the
resource owner leaves the physical machine.

The results show that the virtual machine only consumes
idle processor cycles, or all cycles in the case of a fully
available resource (not temporarily used or a dedicated
resource). This fact guarantees a very low impact on the
performance perceived by the resource owners. Based on the
tests results, we conclude that virtualization and
opportunistic strategies incorporated in UnaCloud represent a
non-intrusive solution for deploying large scale virtual

192

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 202 / 237

infrastructures, encouraging the use of idle computing
resources and providing an efficient solution to preexisting
resources underutilization problem.

Figure 7. CPU usage for virtual machine and resource owner.

VI. CONCLUSIONS AND FUTURE WORK

UnaCloud is an opportunistic cloud computing IaaS
model implementation, which provides at lower cost, basic
computing resources (processing, storage and networking) to
run arbitrary software, which include operating systems and
applications. UnaCloud deals with the problems associated
to the use of commodity, non-dedicated, distributed, and
heterogeneous computing resources that are part of different
administrative domains. To achieve this, we proposed an
IaaS architecture based on two main strategies: a
virtualization strategy to allow the on-demand deployment of
customized execution environments and, an opportunistic
strategy based on the validation and extension of DGVCS's
design concepts to provide a commodity, non-dedicated, and
heterogeneous underlying infrastructure.

Our IaaS architecture supposed a convergence between
cloud computing paradigm and DGVCS’s. The results not
only demonstrate the convergence viability, but also offer
promising opportunities to meet customized computational
requirements thought the use of open source, low cost,
extensible, interoperable, efficient, scalable and opportunistic
IaaS model. In addition, UnaCloud represents an
economically attractive solution for constructing and
deploying large scale computing infrastructures, avoiding not
only, underutilization of non-dedicated computational
resources, but also financial investments in hardware and
costs associated with physical space, temperature-controlled
environment, maintenance process, etc.

UnaCloud cloud computing features are promising to
reduce the development cycle and the generation of results
time of any activity or project depending on the agile
provision of computing resources, including academic,
scientific and even commercial initiatives.

New challenges will have to be faced in order to improve
the IaaS model offered: a requirement is to analyze how to
guarantee statistic QoS, improving the best-effort scheme
currently in use. Future work also includes UnaCloud
extension to provide networking on-demand customization,
creation of an API that allows that new services or
applications can be incorporated to UnaCloud, compatibility
with other type II hypervisors, PaaS and SaaS service

models, and public, community and hybrid cloud computing
deployment models. We also are preparing the UnaCloud
solution as an Open Source project that will be released on
2012.

REFERENCES
[1] R. Buyya, Y. Shin, and S. Venugopal, "Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities," Proc. 10th IEEE International Conference on
High Performance Computing and Communications, IEEE Press,
2008, pp. 5-13, doi:10.1109/HPCC.2008.172.

[2] Carl Kesselman and Ian Foster, The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, Nov. 1998.

[3] P. Mell and T. Grance, "NIST Definition of Cloud Computing".
National Institute of Standards and Technology (NIST), 2009.

[4] M. Vouk, "Cloud computing - Issues, research and implementations,”
Proc. 30th International Conference on Information Technology
Interfaces, IEEE Press, 2008, pp. 31-40,
doi:10.1109/ITI.2008.4588381.

[5] R. Buyya, S. Pandey, and C. Vecchiola, "Cloudbus toolkit for market-
oriented cloud computing," Lecture Notes in Computer Science, vol.
5931, 2009, pp. 24-44, doi:10.1007/978-3-642-10665-1_4.

[6] Google Trends Labs, "Cloud Computing", [Online],
http://www.google.com/trends?q=cloud+computing&ctab=0

[7] V. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, "Applying
Software Engineering Principles for Designing Cloud@Home," Proc.
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), May 2010, pp. 618-624,
doi:10.1109/CCGRID.2010.76.

[8] Amazon Web Services, LLC, "Amazon Elastic Compute Cloud
(Amazon EC2)", [Online], http://aws.amazon.com/, Aug. 10, 2011.

[9] Amazon Web Services, LLC, "Amazon Elastic Compute Cloud
(Amazon EC2) ", [Online], http://aws.amazon.com/ec2, Aug. 10,
2011.

[10] Amazon Web Services, LLC, "Amazon Simple Storage Service
(Amazon S3) ", [Online], http://aws.amazon.com/s3, Aug. 10, 2011.

[11] OpenNebula.org, [Online], http://opennebula.org, Aug. 10, 2011.

[12] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, "The Eucalyptus open-source cloud-
computing system," Proc. 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID), IEEE Press, May
2009, pp. 124-131, doi:10.1109/CCGRID.2009.93.

[13] Nimbus, [Online], http://workspace.globus.org/, Aug. 10, 2011.

[14] J. Shoch and J. Hupp, "The "worm" programs-early experience with a
distributed computation," Communications of the ACM, vol. 25,
March 1982, pp. 172-180, doi: 10.1145/358453.358455.

[15] M. Litzkow, M. Livny, and M. Mutka, "Condor - A Hunter of Idle
Workstations,” Proc. 8th International Conference of Distributed
Computing Systems, IEEE Press, June 1988, pp. 104-111,
doi:10.1109/DCS.1988.12507.

[16] Mersenne Research, Inc, "GIMPS: Great Internet Mersenne Prime
Search", [Online], http://www.mersenne.org, Aug. 10, 2011.

[17] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@home An Experiment in Public-Resource Computing,”
Communications of the ACM, vol. 45, Nov. 2002, pp. 56-61,
doi:10.1145/581571.581573.

[18] Distributed.Net, [Online], http://www.distributed.net, Aug. 10, 2011.

[19] D. Anderson, “BOINC: A System for Public-Resource Computing
and Storage,” Proc. 5th IEEE/ACM International Workshop on Grid,
IEEE Press, Nov. 2004, pp. 4-10, doi:10.1109/GRID.2004.14.

[20] L. Sarmenta, S. Chua, P. Echevarria, J. Mendoza, R. Santos, S. Tan,
and R. Lozada, “Bayanihan Computing .NET: Grid Computing with
XML Web Services,” Proc. 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, IEEE Press, 2002.
pp. 434-435, doi:10.1109/CCGRID.2002.1017182.

0,0

20,0

40,0

60,0

80,0

100,0

120,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Virtual Machine Process Owner User Process

193

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 203 / 237

[21] B. Francisco and M. Rodrigo, “The OurGrid Approach for
Opportunistic Grid Computing,” Proc. First EELA-2 Conference,
Feb. 2009, pp. 11-19.

[22] A. Goldchlegery, F. Kon, A. Goldman, M. Finger, and G. Bezerra,
"InteGrade: object-oriented Grid middleware leveraging the idle
computing power of desktop machines," Concurrency and
Computation: Practice and Experience, vol. 16, 2004, pp. 449-459,
doi:10.1002/cpe.824.

[23] H. Castro, E. Rosales, M. Villamizar, and A. Miller, "UnaGrid - On
Demand Opportunistic Desktop Grid," Proc. 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing,
IEEE Press, June 2010, pp. 661-666, doi:10.1109/CCGRID.2010.79.

[24] A. Chandra and J. Weissman, "Nebulas: Using Distributed Voluntary
Resources to Build Clouds," Proc. 9th Workshop on Hot Topics in
Cloud Computing (HotCloud09), USENIX, June 2009.

[25] A. González, H. Castro, M. Villamizar, N. Cuervo, G. Lozano, S.
Orduz, and S. Restrepo, "Mesoscale Modeling of the Bacillus
thuringiensis Sporulation Network Based on Stochastic Kinetics and
Its Application for in Silico Scale-down", Proc. HIBI '09.
International Workshop on High Performance Computational
Systems Biology, IEEE Press, Oct. 2009, pp. 3-12,
doi=10.1109/HiBi.2009.17.

[26] S. Restrepo et al., “Computational Biology in Colombia,” PLOS
Computational Biology, vol. 5, Oct. 2009,
doi:10.1371/journal.pcbi.1000535.

[27] A. Vargas et al., “Characterization of Phytophthora infestans
Populations in Colombia: First Report of the A2 Mating Type,”
Phytopathology, Sep. 2009, pp. 82-88, doi:10.1094/PHYTO-99-1-
0082.

194

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 204 / 237

Making VM Consolidation More Energy-efficient by Postcopy Live Migration

Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi
National Institute of Advanced Industrial Science and Technology (AIST)

Central 2, Umezono 1-1-1, Tsukuba, Japan 305-8568
Email: t.hirofuchi@aist.go.jp, hide-nakada@aist.go.jp, satoshi.itoh@aist.go.jp, s.sekiguchi@aist.go.jp

Abstract—Dynamic consolidation of virtual machines (VMs)
is a promising technology for reducing energy consumption of
data centers. Existing studies on VM consolidation, however,
are based on precopy live migration; it is difficult to optimize
VM locations aggressively due to its long and undeterminable
migration process. In this paper, we propose an energy-efficient
VM consolidation system exploiting postcopy live migration,
which always allows quick live migration for any VMs. The
consolidation system can optimize VM locations and server
power states more frequently than those of using precopy live
migration. In our previous work, we implemented postcopy live
migration for KVM, and in this paper, we developed the pro-
totype of our consolidation system, where excessive hardware
nodes were suspended by means of ACPI S3 and all power
usages were monitored with watt meters. Our experiments
showed that our consolidation system with postcopy live migra-
tion eliminated more excessive power consumption than that of
using precopy live migration. Postcopy live migration allowed
the prototype system to eliminate 11.8% energy overheads of
actively-running VMs, which was improved by approximately
50% from precopy live migration.

Keywords-Virtual Machine; Live Migration; Consolidation;
Data Center; Energy Saving.

I. INTRODUCTION

Dynamic consolidation of virtual machines (VMs) is a
promising technology for reducing energy consumption of
data centers. The number of power-on server nodes is kept to
a minimum at any time, so that the excessive power used for
running idle server nodes can be eliminated. The locations of
VMs are continuously reoptimized in response to resource
requirements of VMs. When there are many idle VMs, a
management system consolidates them onto fewer server
nodes, and temporarily shuts down the rest of the server
nodes. When these idle VMs become active, the system
wakes up power-off server nodes, and relocates VMs onto
them.

Live migration of VMs greatly contributes to realizing
dynamic consolidation. A VM is relocated onto a new server
node without any visible disruption. It should be noted that
power consumption incurred by live migration itself is a
relatively small value, compared to power saving gains by
consolidation. As discussed in Section II, in our experiment
environment, making an idle server to the suspend state of
ACPI reduces 40W and more, and the network traffic and
CPU overhead of a live migration consumes approximately
only 7W. This means that a management system is required

to perform live migrations as many times as possible in order
to maximize the energy-efficiency of VM consolidation.

Widely-used live migration mechanisms, however, are not
suitable for dynamic consolidation, which cannot relocate
VMs frequently due to their long migration duration. These
live migration mechanisms are known as precopy live mi-
gration; all states of a VM are completely copied to a
destination node before the execution host is switched to the
destination. Until the whole migration process is completed,
the VM is still running on a source node. Updated memory
pages during previous page copies are repeatedly transferred
to the destination. This iteration process results in a long and
undeterminable migration time for actively-running VMs.

On the other hand, there are also postcopy live migra-
tion mechanisms, performing memory page copies after the
execution host is switched. This migration does not need
iterative memory copies. A migrating VM updates memory
pages at a destination node, not at a source node, which
do not generate additional data to be transferred. The total
amount of transferred data is smaller than precopy; the whole
live migration process is shorter and determinable.

We believe postcopy live migration enables more energy-
efficient VM consolidation than precopy live migration. To
the best of our knowledge, however, all existing studies
on VM consolidation are based on precopy live migration.
There are open questions regarding how postcopy live mi-
gration contributes to power savings of data centers.

In this paper, we propose an energy-efficient VM consol-
idation system exploiting postcopy live migration. Postcopy
live migration enables the consolidation system to aggres-
sively control VM locations and server power states. The
proposed system achieves more frequent live migrations and
server power state changes. This fine-grained optimization
allows the system to eliminate excessive energy consumption
much more than using precopy live migration.

The contribution of this paper is clear; this study is
the first work that applies postcopy live migration to an
energy-saving VM consolidation system. Although postcopy
migration techniques themselves have been discussed in re-
search papers ([1], [2]), these implementations have not been
seen in publicly-available VMMs. We therefore developed
a postcopy live migration mechanism [3] for KVM [4]. In
our previous work [5], we discussed the advantages of our
postcopy live migration from the viewpoint of performance

195

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 205 / 237

assurance for VM consolidation. In this paper, we address
the remaining questions of how much energy savings are
possible with our postcopy live migration. We have de-
veloped a consolidation system using the ACPI S3 mode
and evaluated the effectiveness of postcopy live migration
through various experiments.

Section II explains how VM consolidation systems ba-
sically work, and summarizes why postcopy live migration
has great advantages for energy savings. Section III presents
our VM consolidation system. Section IV discusses its eval-
uation. Section V describes related work. Finally, Section
VI concludes this paper.

II. BACKGROUND

Energy saving technologies are keys to success in the
data center business, which allow service providers to reduce
daily running costs. The recent processors technologies, such
as Dynamic Voltage and Frequency Scaling (DVFS) and
ACPI C State [6], contribute to reducing energy consump-
tion of running server nodes. However, these technologies
cannot cut the excessive power usage of other hardware
components, such as a power supply unit and a mainboard.
A study on a large data center mentioned servers were
operating most of the time at between 10 and 50 percent
of their maximum utilization levels; however, the energy
efficiency of server hardware in these utilization levels is
less than half at peak performance [7]. Although recent data
center facilities, such as direct current power supply systems,
mitigate this issue, the deployment of these technologies
requires large modifications to existing server platforms and
facilities. This results in high implementation costs in most
data centers.

Emerging virtualization technologies allow VM-based
server consolidation for data centers. A consolidation system
monitors resource usage of VMs and continuously optimizes
VM locations. The system packs VMs onto the fewest
possible server nodes and powers off unused server nodes.
When detecting the overloading of a server node, the system
powers up unused server nodes and relocates some VMs
onto them. Even though most VMs are operating at lower
utilization levels, the utilization levels of power-on server
nodes are always kept high by packing all VMs onto
them. Ideally, the energy consumption of all server nodes
is proportional to the total resource usage of all VMs. VM
consolidation allows service providers to eliminate exces-
sive energy consumption that are not used for customers’
computations.

Figure 1 illustrates the overview of our consolidation
system. Load Monitor collects resource usage data every one
second and put it into a database. Relocation Planner peri-
odically calculates optimal locations for VMs from the latest
resource usage histories in the database. VM Controller re-
quests live migration to server nodes according to the results
from Relocation Planner. Although consolidation systems

Figure 1. System components of our consolidation system

Table I
SPECIFICATION OF SERVER NODE AND NETWORK SWITCH

Server Node

Dell Optiplex 960
CPU: Intel Core2 Q9400, RAM: DDR3 16GB
HDD: ST380815AS Seagate 80GB
GbE NIC: Intel 82567LM-3
GbE NIC: Broadcom NetXtreme BCM5721

Network Switch Planex FXG-24IRM (GbE, 24 port)

have different design details, the above system overview is
basically common to most consolidation systems.

Next, we explain the energy consumption breakdown
of our VM consolidation system, and then point out why
postcopy live migration is suitable for VM consolidation.

A. Energy Consumption Breakdown of VM Consolidation

1) Power Consumption of a Server Node: Before dis-
cussing requirements for energy-efficient VM consolidation,
we measured power consumption of a server node in our
cluster. The specification of the server node is summarized
in Table I.

We use a customized Dell Optiplex 960, which supports
the ACPI S3 mode and an out-of-band hardware manage-
ment system (Intel AMT) [8]. Our consolidation system
requires a hardware mechanism that allows VM Controller
to wake server nodes up via a network. We first tried to
use the Wake-On-LAN (WOL) feature, which is widely
supported by most network interface cards. However, we
found that WOL was not reliable enough to be used in a
server cluster. The WOL message is transferred by a UDP
datagram, which is likely dropped in congested networks.
In practice, if the consolidation system is deployed on a
large server cluster, each server node also needs to support
more powerful remote hardware management than WOL; the
hardware and software settings of all server nodes should
be reconfigurable from a remote administrative program.
Intel AMT (Active Management Technology), working in
the firmware level, allows powerful remote management
including power status control, console redirection, and OS
installation. Intel AMT exploits TCP connections for its
RPCs, making remote control more reliable than other UDP-
based remote management mechanisms (e.g., IPMI [9]).

196

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 206 / 237

Table II
SERVER ENERGY CONSUMPTION (POWER ON)

CPU Usage (%) C-State Watt
100 Enabled 100
100 Disabled 100

0 Enabled 53
0 Disabled 64

Table III
SERVER ENERGY CONSUMPTION (POWER OFF/SUSPENDED)

State Intel AMT Watt
Power Off Enabled 6
Power Off Disabled 0
Suspended Enabled 7
Suspended Disabled 7

Tables II and III show energy consumption of a server
node in its various states and settings. The server node,
running at its full CPU utilization, consumes approximately
100W. The idle server node consumes 64W without the
power saving feature. The ACPI C State, which enables an
idle CPU to stop its clock cycle, contributes to reducing only
11W. Even though the server node is idle, it still consumes
approximately half of the power usage at the maximum
utilization level. It should be noted, DVFS (i.e., scaling
up/down CPU’s clock frequency), cannot reduce idle CPU
power additionally; the clock cycle is already stopped by the
C State feature.

When the server node is suspended, its power consump-
tion is only 7W; this is a much smaller value than an idle
power-on state. An interesting finding is that when Intel
AMT is enabled the powered-off sever node still consumes
7W. Even though an operating system has been shut down,
the firmware OS of Intel AMT is still running. When Intel
AMT is disabled, the power consumption is approximately
0W. However, as mentioned before, this feature is required
to control server power states remotely.

The results are summarized as follows: First, the contri-
bution of CPU’s power saving features is much smaller than
making a server node shutdown. Second, because the recent
out-of-band management technology, Intel AMT, requires its
firmware OS to keep always running, the power consumption
in the power-off state is not zero; in our experiments, it is
approximately 7W, which is equal to the suspended state.

2) Power Consumption of a Live Migration: Figure 2
shows energy consumption of server nodes and a network
switch when a live migration was performed in our exper-
iment environment. An idle VM with 2GB memory was
migrated between two server nodes via a GbE network. The
normal live migration mechanism of KVM was used. It took
approximately 60 seconds to be completed. While the live
migration was being performed, the power consumption of
each server node increased by 3W or less; this was mainly
caused by the CPU overhead of the live migration. Although
more than 2GB data was transferred via the network switch,

 65

 70

 0 20 40 60 80 100 120 140 160

P
ow

er
 (

W
)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 20 40 60 80 100 120 140 160

P
ow

er
 (

W
)

Time (s)

Server (Source)
Server (Destination)

Network Switch

Figure 2. Energy consumption of server nodes and a network switch (A
live migration is performed from 45 seconds to 105 seconds. The upper
graph shows details around 65W.)

its energy consumption did not show a visible increase. It
should be noted that the power consumption of the network
switch is nearly invariable while being powered on; the
power consumption does not depend on how much data is
being transferred now.

In our experiment environment, the additional power
consumption incurred by a live migration is approximately
0.08Wh, which is calculated by integrating the power in-
crease during the migration period. This value is much
smaller than that of continuing to run a server node; 0.08Wh
is corresponding to the power consumption of running an
idle server node only in 5 seconds.

B. Requirements for Energy-Efficient VM Consolidation

These results have pointed out design criteria for energy-
saving VM consolidation. First, to get the maximum energy
saving, a VM consolidation system should exploit the ACPI
S3 feature to turn off idle server nodes. The amounts of
power consumption at the S3 state and power-off state
are the same in our experiment environment. By using the
ACPI S3 feature, the consolidation system can turn off/on
a server node only in 5 seconds or less. This is much
shorter than powering off/on the server node. To power off
the server node, it takes approximately 20 seconds after
the shutdown command is invoked. After the power-
on command is invoked via Intel AMT, the VMM on it
becomes operational approximately in 60 seconds. These
long transitional periods result in increasing excessive power
usage, which is not consumed by actual computations of
VMs.

Second, the VM consolidation system should repack
VMs as aggressively as possible to make excessive server
nodes temporarily sleep. As discussed previously, at the
viewpoint of power consumption, the overhead of a live
migration is far less than that of continuing to run an
excessive node; although the power consumption during
the transition period of a suspend (e.g., 5 seconds) is also
considered, the repacking overhead with one migration and

197

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 207 / 237

one node suspend incurs only 0.15Wh (i.e., corresponding
to approximately 10 seconds power consumption of an idle
node). This means, to get the maximum energy saving,
the consolidation system should be designed to be able to
optimize VM locations at shorter intervals than one minute.
Existing studies concerning VM packing have not addressed
this kind of frequent optimization at such short intervals. On
the other hand, we aim to establish fine-grained, aggressive
optimization at the level of every 10 seconds, not in daily
and weekly cycles.

C. Limitation of Precopy Live Migration

Prior studies regarding VM consolidation are based on
precopy live migration, which is already available in widely-
used VMMs (e.g., Xen [10], KVM, and VMware [11]). We
believe, however, precopy live migration is not suitable for
energy-efficient VM consolidation, because of its undeter-
minable (and possibly large) migration time.

It reconstructs a VM’s memory image at a destination host
before switching its execution node ([12], [13], [14]). After
live migration is initiated, this basically works as follows.

1: Start dirty page logging at a source host. This mecha-
nism detects updates of memory pages during the following
memory copy steps. 2: Copy all memory pages to the
destination. Since the VM is running at the source host,
memory pages are being updated during this period. 3: Copy
dirtied memory pages to the destination again. Repeat this
step until the number of remaining memory pages is small
enough. 4: Stop the VM at the source. Copy the content of
virtual CPU registers, the states of devices, and the rest of
the memory pages. 5: Resume the VM at the destination
host.

The problem of precopy live migration is caused by the
third step; dirtied pages must be iteratively copied to the
destination again and again. If the VM is running a memory-
update-intensive workload, numerous dirty pages are created
and transferred continuously. The total time of precopy live
migration basically becomes much larger than that of cold
migration (i.e., stop the VM, send its state to a destination,
and restart the VM). In the worst case, live migration is
never completed; i.e., a workload dirties VM memory faster
than network bandwidth can accommodate.

This large migration time prevents a consolidation system
to optimize VM locations frequently. It is not possible to
maximize energy efficiency of VM consolidation.

III. ENERGY-EFFICIENT VM CONSOLIDATION WITH
POSTCOPY LIVE MIGRATION

We propose an energy-efficient VM consolidation sys-
tem exploiting postcopy live migration. In this section, we
explain the advantage of using postcopy live migration,
and describe the design and implementation of our VM
consolidation system.

A. Postcopy Live Migration

In previous work [3], we developed a postcopy live
migration mechanism for KVM. In contrast with precopy
migration, memory pages are transferred after a VM is
resumed at a destination host. The key to postcopy migration
is an on-demand memory transfer mechanism, which traps
the first access to a memory page at the destination and
copies its content from a source host. Postcopy migration
basically works as follows:

1: Stop the VM at the source host. Copy the content
of virtual CPU registers and the states of devices to the
destination. 2: Resume the VM at the destination without
any memory content. 3: If the VM touches a not-yet-
transferred memory page, stop the VM temporarily. Copy the
content of the memory page from the source. Then, resume
the VM.

The third step is repeated until all memory pages are
transferred to the destination. In addition, in parallel with the
on-demand page retrievals, a background copy mechanism
works to make bulk copies of not-yet-transferred pages.
Because on-demand page copy may not cover all ranges
of VM memory in a short period of time, the background
copy mechanism gets rid of dependency on a source host
as soon as possible. The background copy mechanism an-
alyzes important memory areas with page fault statistics,
and starts to deal with hot-spot memory pages for current
VM workloads. On-demand memory page retrievals over a
network are reduced by this mechanism. These mechanisms
are transparent to the users of the VM. Our postcopy live
migration mechanism supports any guest operating systems
without any modifications to them.

A postcopy live migration is always completed in
Ramsize/Bandwidth seconds, which is much shorter than
precopy. On the other hand, a precopy live migration requires
Ramsize/Bandwidth + α seconds to be completed. α
depends on the memory update speed of the guest operating
system; if a VM intensively updates memory or a network
is congested, α becomes larger, and in the worst case the
migration is never completed.

The possible downside of postcopy migration is the risk
to failure of VMs. A migrating VM depends on not-yet-
transferred memory pages on its source host. If the source
host is unexpectedly terminated during the migration, the
VM cannot continue running anymore. However, consider-
ing that IaaS data centers do not assure 100% reliability of
their services, we believe that this trivial downside does not
adversely affect the feasibility of postcopy migration. As
explained in the later sections, postcopy migration greatly
improves energy efficiency of dynamic consolidation, which
results in great benefits for service providers.

B. VM Consolidation System

Figure 3 shows the design overview of our VM consolida-
tion system. Broadly speaking, there are 3 types of physical

198

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 208 / 237

Figure 3. Design overview of our consolidation system

nodes in our server cluster. Management Node periodically
determines optimal VM locations and controls migration and
node power status, where the aforementioned software com-
ponents are running (See also SectionII). Power Monitor
Node collects power consumption of all nodes and network
switches. Host Nodes (i.e., Warehouse/Server Nodes) launch
VMs and execute live migrations of VMs.

1) Management Node: Load Monitor receives resource
usage statistics from each host node, such as CPU usage,
network I/O, and disk I/O of both a host node and the VMs
running on it. This information is retrieved from /proc/ of
the host Linux operating system and the monitor interface
of KVM. All the collected statistics are stored in an SQLite
database. In order to support hundreds of host nodes, the
latest statistics are temporarily cached in the memory of
Load Monitor, thereby reducing database requests.

Relocation Planner retrieves resource usage histories from
the database, determines whether a host node is overloaded
or not, and calculates a relocation plan. We carefully de-
signed this component to be independent from the others,
so that it is possible to implement various consolidation
algorithms.

VM Controller executes live migration according to the
relocation plan. We use XML-RPC to control VMs on host
nodes remotely; three request messages (e.g., CREATE_VM,
MIGRATE_VM, and DESTROY_VM) are defined to create,
migrate, and destroy the requested VM. On each host node,
there is a server daemon handling these XML-RPC requests.
VM Controller also executes the suspend/resume of host
nodes. When all VMs on a host node are removed from
it, VM Controller requests the host operating system of
the node to invoke the pm-suspend command. When a
suspended host node is required to run a VM, VM Controller
requests the firmware of the host node to wake it up via Intel

Figure 4. Power Measuring System

AMT.
2) Power Monitor Node: We developed a power measur-

ing system of our server cluster, which periodically collects
power consumption of host nodes and network switches
individually. The current, voltage, and active power of a
target component are measured by a customized watt meter;
we use Watt Checker (MWC-01) of Osaki Electric Co, Ltd.
The accuracy of active power is ±2%. The measurement
interval of the watt meter is one second. All watt meters
are connected to a monitoring server (i.e., Power Monitor
Node) via USB interfaces. It is possible to measure power
consumption of 120 target components. Figure 4 is a photo
of a part of our power measuring system; a 2U rackmount
measuring board for 8 target components is installed into a
19-inch rack.

3) Host Nodes (Warehouse and Server Nodes): To con-
solidate VMs efficiently, our consolidation system introduces
two types of host nodes, Server Nodes and Warehouse
Nodes. Actively-running VMs are assigned onto Server
Nodes, and idle VMs are packed into Warehouse Nodes. If a
VM running at a Server Node becomes idle (i.e., consuming
few CPU resources), the system migrates the VM to a
Warehouse Node, and suspends the Server Node if there
are no VMs anymore.

This design choice is made by considering hardware costs
and use cases. To pack idle VMs into the minimum host
nodes, the system should have a special host server with
a large amount of physical memory; a Warehouse Node is
dedicated to hosting as many idle VMs as possible. On the
other hand, Server Nodes have a small amount of memory
to host a few active VMs. Because active VMs will make
substantial impacts on CPU and I/O resources, these VMs
should be located on other nodes than Warehouse Nodes.

C. Packing Algorithm

Our consolidation system is designed to be independent
of packing algorithms. It is possible to implement any kinds

199

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 209 / 237

of packing algorithms. In the first prototype system, we
implemented a simple heuristic algorithm that determines
near-optimal locations swiftly. An active VM is exclusively
assigned to a Server Node; on the other hand, idle VMs
share a Warehouse Node.

First, all the VMs are launched at one of the Warehouse
Nodes, and then the following steps are iterated every
second.

Distribution Phase: When the latest 10-seconds CPU
load average of a Warehouse Node reaches 90% (i.e., is
regarded as overloaded), the most CPU-consuming VM
is migrated to a Server Node. By using usage statistics
measured in outside of VMs, it is difficult to accurately
determine the amount of a CPU resource is actually required.
Therefore, simply, we pick up the VM that is probably in
a ’race-to-halt’ state. A target Server Node is selected from
sleeping Server Nodes, and then resumed to accept the VM.
The VM is migrated to the Server Node. Finally, if there are
no VMs on the Warehouse Node, the consolidation system
suspends it.

Consolidation Phase: The system does not move the
migrated VM for at least 20 seconds after the migration
ends, in order to avoid overreaction. After that, the resource
monitoring daemon of the VM is started to periodically
check whether the latest CPU load average of the VM is
under a return threshold value (50%). If the load average is
under the threshold, the monitoring daemon tries to move
the VM back to one of the Warehouse Nodes; it tries to find
the Warehouse Node that has sufficient CPU and memory
resources for the VM. If the Warehouse Node is suspended,
the consolidation system resumes it. An admission ticket
to a Warehouse Node is given to the VM on a ’first
come, first served’ basis, in order to serialize migrations to
the Warehouse Node. If a Warehouse Node with sufficient
resources is found, the VM is migrated to it. Otherwise, the
VM remains at the Server Node; the daemon pauses at one
second intervals and tries the above steps again.

It should be noted that the algorithm is currently based on
only CPU usage statistics, not including disk and network
I/O data. At the time this paper is being written, KVM does
not support live migration for paravirtualized devices, such
as VirtIO Block Device and VirtIO Network Device. All the
VMs on our consolidation system must use fully-virtualized
devices incurring relatively high CPU overheads.

IV. EVALUATION

In our testbed cluster, we performed experiments to evalu-
ate the effectiveness of our consolidation system; our consol-
idation system with postcopy live migration was compared
with that of using precopy live migration. We measured
energy consumption of our consolidation system with simple
and complex workload scenarios.

 0

 20

 40
 60

 80

 100

 0 50 100 150 200 250 300

T
ar

ge
t L

oa
d

(%
)

Time (s)

vm0
vm1

vm2-4

Figure 5. The CPU Load Changes of VMs in a Simple Consolidation
Scenario

A. Experiment Settings

Our testbed cluster includes 6 host nodes of the specifi-
cation in Table I; one node is used for a Warehouse Node,
and other 5 nodes are used for Server Nodes. Each host
node is connected to a shared disk server, which is required
to perform live migrations among different host nodes.
Additionally, as mentioned in Section III-B, a Management
Node controls VM consolidation, and a Power Monitor Node
collects power consumption. These nodes are connected to a
private network segment. The host nodes are also connected
to a migration network segment, which is intended to isolate
busty migration traffic from other management traffic. In our
experiments, our consolidation system controls 5 VMs; each
VM has one virtual CPU core and 1 GB RAM.

We developed a workload generator program running on
a guest operating system. The packing system consolidates
VMs in response to their CPU loads. Live migrations are
deeply affected by their memory update speeds. To identify
characteristics of our consolidation system, therefore, the
program can generate any specified CPU loads and mem-
ory update intensities by interlacing short busy loops and
sleeps. It is designed to emulate a server-type workload like
web/mail applications. A small computational task is period-
ically generated at a calculated average rate conforming to
the Poisson distribution; as is well known, the arrival rate of
a new request to a network application is basically explained
by the Poisson distribution.

B. Simple Scenario

First, we evaluate the basic effectiveness of using post-
copy live migration for dynamic consolidation. In this eval-
uation, we used a simple load change scenario as shown in
Figure 5. The load of VM0 is first set to 80%, and then reset
to 40% at 75 seconds. The loads of other VMs are first set
to 0.05%, and then the load of VM1 is reset to 30% at 175
seconds. The memory update intensity of workloads is set
to 0.6; with this value, the memory update speed at a 100%
CPU usage is approximately 200MB/s.

Figure 6 shows the CPU usage of host nodes and VMs.
Figure 7 shows the power consumption of host nodes and
network switches.

The left side of the figures shows the case of using
postcopy live migration. At 85 seconds, the consolidation

200

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 210 / 237

 0
 20
 40
 60
 80

 100
 120
 140

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

PM 0 (Warehouse Node)

others
vm00
vm01
vm02
vm03
vm04

 0
 20
 40
 60
 80

 100
 120
 140

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

PM 0 (Warehouse Node)

others
vm00
vm01
vm02
vm03
vm04

 0
 20
 40
 60
 80

 100
 120
 140

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

PM 1 (Server Node)

others
vm00

 0
 20
 40
 60
 80

 100
 120
 140

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (s)

PM 1 (Server Node)

others
vm00

Figure 6. The CPU usage of Host Nodes and VMs (left: using postcopy, right: using precopy)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Time (s)

pm00
pm01
pm02
pm03
pm04

switch0
switch1

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Time (s)

pm00
pm01
pm02
pm03
pm04

switch0
switch1

Figure 7. The Power Consumption of Host Nodes and Network Switches (left: using postcopy, right: using precopy)

system decided to consolidate all VMs into Warehouse Node
(PM0), and then started to relocate VM0 to it. This live
migration finished approximately at 100 seconds, and then
Server Node (PM1) was suspended. As shown in Figure 7,
the total power consumption was reduced by approximately
60W. It should be noted that the live migration incurred
energy overheads (i.e., 20W or less) until completed; how-
ever, the overheads were far less than the power consumption
saved by this dynamic consolidation. At 175 seconds, VM1
started consuming 40% CPU usage. After detecting the
overloading of Warehouse Node (PM0), the consolidation
system resumed Server Node (PM1) again, and relocated
the most CPU-consuming VM (VM0) to it.

As shown in the right side of the figures, the con-
solidation system with precopy live migration started to
relocate VM0 to Warehouse Node (PM0) at the same time
as using postcopy (i.e., at 85 seconds). In this case, however,
the live migration did not finish until 160 seconds. The
memory update speed of VM0 was over 80 MB/s during
the migration, which was relatively close to the available

bandwidth (approximately 120 MB/s) of the migration net-
work. Because precopy live migration needs to transfer
updated memory pages repeatedly, the consolidation system
could not promptly relocate VM0 to Warehouse Node (PM0)
as performed with postcopy live migration. Resultingly,
Server Node (PM1) was suspended only in 20 seconds (i.e.,
approximately 25% of using postcopy). In addition, energy
overheads of the live migration were higher than using
postcopy. A 20W increase of power consumption continued
until the migration was completed, which was involved by
dirty page tracking of the migrating VM.

Through these experiments, we confirmed that our con-
solidation system with postcopy live migration successfully
worked, which dynamically optimized VM locations and
server power states. In comparison with precopy live migra-
tion, postcopy live migration allowed the consolidation sys-
tem to eliminate excessive power usage more aggressively
for memory-intensive VMs.

201

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 211 / 237

 0

 5

 0 100 200 300 400 500 600 700 800

of

 N
od

es

Time (s)

no consolidation
ideal

postcopy
precopy

Figure 8. The Number of Active Host Nodes

 0

 200

 400

 600

 0 100 200 300 400 500 600 700 800

(W
)

Time (s)

no consolidation
ideal

postcopy
precopy

Figure 9. The Total Power Consumption of Host Nodes and Network Switches

C. Complex Scenario

Next, we evaluated our consolidation system with a com-
pound load change scenario. We randomly generated an
approximately 15-minutes scenario with the following rules,
considering race-to-halt-like workloads. A workload on each
VM changes its state between active and idle modes at 75%
and 25% probabilities, respectively. A new mode continues
for a random duration between 30 and 60 seconds. The
workload generates a random CPU load between 70% and
100% in the active mode, and between 0% and 30% in the
idle mode. The memory update intensity of workloads is set
to 0.6, the same value as the previous experiments.

Figure 8 shows the number of active host nodes. ideal
shows the theoretical number of host nodes required to pack
all VMs at each time step, which is calculated from the load
change scenario by using First Fit Algorithm; this number
assumes that all migrations finish instantaneously at any
time.

The consolidation system with postcopy live migration
basically used fewer active host nodes than that of using
precopy live migration. In the case of using precopy, a live
migration sometimes prevented other following migrations
from being started for a long time; VM locations were not
sometimes optimized in response to load changes.

As shown in Figure 9, the consolidation system with
postcopy live migration more closely fits to the ideal total
power consumption, which is estimated on the assumption
that the power consumption of a host node is proportional
to the total CPU loads generated by VM workloads on it 1.

Table IV summarizes the total power consumption ac-
cumulated during the load change scenario. The power
consumption was reduced by 11.8% with postcopy live

1From Table III, the power consumption of a host node is roughly
estimated to be at 53 + (100 − 53) ∗ L, where L is the total CPU loads
generated by VM workloads on it.

Table IV
ACCUMULATED ENERGY CONSUMPTION

Energy (Ws) Saved Energy (%)
no consolidation 390175 -
ideal 294033 24.6
postcopy 344204 11.8
precopy 369877 5.2

migration, and by 5.2% with precopy live migration. It
should be noted that the consolidation system addresses en-
ergy consumption overheads between the ideal case and no
consolidation case; the consolidation system with postcopy
live migration eliminated approximately half of the energy
overheads, which is improved by approximately 50% from
that of using precopy live migration.

V. RELATED WORK

A. Postcopy Live Migration

SnowFlock [1] provides a VM cloning system enabling
developers to easily program distributed systems. A post-
copy technique is used to rapidly copy the state of a master
VM to worker VMs. It is required to modify the memory
management code of the Xen’s hypervisor and the para-
virtualized Linux system. A study [2] developed a postcopy
live migration mechanism for the paravirtualization mode of
Xen, which extends the swap-in/out code of the Linux kernel
for on-demand memory transfer. A special device driver is
required to be installed into the guest Linux system.

As described in our previous work [3], we have developed
a postcopy live migration mechanism for KVM. In compar-
ison with the above work, our mechanism supports guest
operating systems without any modifications to them (i.e,
no special device drivers and programs are needed in VMs);
all guest operating systems including Windows, Linux, and
*BSD are supported. It is implemented as a lightweight

202

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 212 / 237

extension to KVM. It is not required to modify critical
parts of the VMM code. We named our postcopy migration
mechanism as Yabusame, and are now preparing to publish
its source code under an open source license [15].

B. Dynamic VM Consolidation using Precopy Live Migra-
tion

To the best of our knowledge, this paper is the first
work exploiting postcopy live migration for energy-efficient
VM consolidation. The following studies regarding VM
consolidation are based on precopy live migration.

Sandpiper [16] is a consolidation management system that
dynamically optimizes VM locations in order to remove host
overloading. This study showed that using workload-specific
activity data, such as request arrival rates and response
time, makes more optimized relocations possible; resource
demand of VMs is estimated and predicted by queuing
theory and autoregression analysis. In [17], a consolidation
system uses a threshold value of resource usage to trigger
VM repacking; if the CPU usage of a host exceeds this
value, the system reoptimizes VM locations, so that miti-
gates the risk that application response times (e.g., service
level agreement in this study) are adversely affected. The
study [18] exploits an anomaly detection technique based
a stochastic model, which determines the VMs and hosts
subject to significant state changes. This study argues that
a threshold-based algorithm incorrectly detects overloading
and mistakenly determines a reconfiguration plan. The study
[19] discusses the way of finding turning points of resource
demands, where reconfiguration of VM locations is advis-
able. This technique aims to determine whether repacking
is required or not with small calculation cost. Entropy [20]
is a VM packing management system exploiting constraint
programming techniques. It first determines the minimum
number of nodes that are necessary to host all VMs, and
then computes an optimal order of migrations to minimizing
the overall reconfiguration time. The study [21] presents a
network-aware migration scheduling algorithm, which tries
to minimize the bandwidth usage while holding migration
deadlines.

We consider that these techniques are also applicable to
our consolidation system. We can extend our current packing
algorithm with the above techniques, thereby improving
scalability of our consolidation system for large-scale data
centers. In future work, we will discuss the advantage
of postcopy migration with other packing algorithms. In
our previous work [22], we experimentally developed a
genetic algorithm that determines near-optimal VM locations
quickly. We have a plan to apply this algorithm to our
consolidation system.

VI. CONCLUSION

In this paper, we have proposed an energy-efficient VM
consolidation system exploiting postcopy live migration.

Postcopy live migration greatly contributes to eliminat-
ing excessive power consumption, which allows our con-
solidation system to aggressively optimize VM locations.
In postcopy live migration, the whole migration process
finishes much more quickly than precopy live migration.
We developed the prototype of our consolidation system,
where excessive hardware nodes were suspended by means
of ACPI S3 and all power usages were monitored with
watt meters. Our experiments showed that our consolidation
system with postcopy live migration eliminated more ex-
cessive power consumption than that of using precopy live
migration. Postcopy live migration allowed the prototype
system to eliminate 11.8 % energy overheads of actively-
running VMs, which was improved by approximately 50%
from precopy live migration.

In future work, we have a plan to integrate our consol-
idation mechanism into an open source cloud management
system such as Eucalyptus [23] and OpenStack [24]. In
addition, we are now preparing to apply our consolidation
mechanism to a large-scale data center composed of hun-
dreds of physical hosts. Further details will be reported in
our upcoming papers.

ACKNOWLEDGMENT

This work was partially supported by KAKENHI
(20700038 and 23700048) and JST/CREST ULP.

REFERENCES

[1] H. A. Lagar-Cavilla, J. A. Whitney, A. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satya-
narayanan, “SnowFlock: Rapid Virtual Machine Cloning for
Cloud Computing,” in Proceedings of the fourth ACM euro-
pean conference on Computer systems, Apr 2009, pp. 1–12.

[2] M. R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic
self-ballooning,” in Proceedings of the 5th International Con-
ference on Virtual Execution Environments, Mar 2009, pp.
51–60.

[3] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “En-
abling instantaneous relocation of virtual machines with a
lightweight VMM extension,” in Proceedings of the 10th
IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, May 2010, pp. 73–83.

[4] A. Kivity, Y. Kamay, D. Laor, and A. Liguori, “kvm: the
Linux virtual machine monitor,” in Proceedings of the Linux
Symposium, Jul 2007, pp. 225–230.

[5] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Reactive
consolidation of virtual machines enabled by postcopy live
migration,” in Proceedings of the 5th International Workshop
on Virtualization Technologies in Distributed Computing, Jun
2011, pp. 11–18.

[6] Hewlett-Packard Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., and Toshiba Cor-
poration, Advanced Configuration and Power Interface Spec-
ification, Apr. 2010.

203

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 213 / 237

[7] L. A. Barroso and U. Hölzle, “The case for energy-
proportional computing,” Computer, vol. 40, pp. 33–37, Dec
2007.

[8] K. Cline, L. Grindstaff, S. Grobman, and Y. Rasheed, “Inno-
vating above and beyond standards,” Intel Technology Jour-
nal, vol. 12, no. 04, pp. 255–268, 2008.

[9] Intel Corporation, Hewlett-Packard Company, NEC Corpora-
tion, and Dell Computer Corporation, -IPMI- Intelligent Plat-
form Management Interface Specification Second Generation
v2.0, Feb. 2004.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” in Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003, pp. 164–
177.

[11] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing
I/O devices on VMware workstation’s hosted virtual machine
monitor,” in Proceedings of USENIX Annual Technical Con-
ference, 2001, pp. 1–14.

[12] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent
migration for virtual machines,” in Proceedings of USENIX
Annual Technical Conference, 2005, pp. 25–25.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proceedings of the 2nd Symposium on
Networked Systems Design and Implementation, 2005, pp.
273–286.

[14] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers
checkpointing and live migration,” in Proceedings of the
Linux Symposium 2008, Jul 2008, pp. 85–92.

[15] AIST Cloud Computing Research, http://grivon.apgrid.org/;
Last accessed: June 30, 2011.

[16] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif,
“Black-box and gray-box strategies for virtual machine mi-
gration,” in Proceedings of the 4th Symposium on Networked
Systems Design and Implementation, 2007, pp. 229–242.

[17] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application
performance management in virtualized server environments,”
in Proceedings of the IEEE/IFIP Network Operations and
Management Symposium, Apr 2006, pp. 373–381.

[18] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori,
“Dynamic load management of virtual machines in a cloud
architectures,” in Proceedings of the IEEE Conference on
Cloud Computing, Oct 2009.

[19] T. Setzer and A. Stage, “Decision support for virtual machine
reassignments in enterprise data centers,” in Proceedings of
the 5th IEEE/IFIP International Workshop on Business-driven
IT Management, Apr 2010.

[20] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. L.
Lawall, “Entropy: a consolidation manager for clusters,” in
Proceedings of the 5th International Conference on Virtual
Execution Environments, 2009, pp. 41–50.

[21] A. Stage and T. Setzer, “Network-aware migration control
and scheduling of differentiated virtual machine workloads,”
in Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, 2009, pp. 9–
14.

[22] H. Nakada, T. Hirofuchi, H. Ogawa, and S. Itoh, “Toward
virtual machine packing optimization based on genetic al-
gorithm,” in Distributed Computing, Artificial Intelligence,
Bioinformatics, Soft Computing, and Ambient Assisted Living,
ser. Lecture Notes in Computer Science, vol. 5518, Jun 2009,
pp. 651–654.

[23] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system,” in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2009, pp. 124–131.

[24] The OpenStack Project, http://www.openstack.org/; Last ac-
cessed: June 30, 2011.

204

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 214 / 237

Deterministic Execution of Multiprocessor Virtual Machines
Junkang Nong, Qingbo Wu, Yusong Tan

 School of Computer, National University of Defense Technology,
 Changsha 410073, Hunan, China

e-mail: {njk.jackson,wu.qingbo2008,yusong.tan}@gmail.com

Abstract—Deterministic execution offers a lot of benefits for
debugging, fault tolerance, security of multiprocessor systems.
Most previous work to address this issue either depends on
custom hardware or needs to recompile the program. Some
others combine the hardware and software technologies. Our
goal in this work is to provide deterministic execution and
repeatability of arbitrary, unmodified, multiprocessor systems
without custom hardware. To this end, we propose a new
abstraction of a multiprocessor virtual machine named
Deterministic Concurrency State Machine (DCSM). With the
virtual private memory model, the multiprocessor virtual
machine can execute deterministically as a DCSM. With the
replay of the DCSM, better debugging methods and intrusion
analysis can be obtained to improve the availability and
security of the whole system, not only a program. We
implemented DCSM on the Kernel-based Virtual Machine
(KVM) and the performance cost can be acceptable if some
parameters and optimization strategies are chosen correctly
based on the preliminary evaluation results.

Keywords-availability; concurrency; deterministic execution;
security

I. INTRODUCTION
Nowadays, cloud computing is accelerating the market

for parallel software development. However, the
concurrency in multithreaded programs brings the problem
of non-determinism. This non-determinism makes a
concurrency system produce different outputs, even given
the same input. Such weak repeatability may not ensure that
a server running in the cloud can rerun to the previous state
right before the physical machine crashed. Then, the wrong
results may be sent to clients.

Determinism is the foundation of replay, debugging, fault
tolerance and auditing. Many intrusion analysis tools assume
that the system can enforce determinism even on malicious
code designed to evade analysis [1]. The replicated state
machine technology [2] is also based on the assumption that
the virtual machine can execute deterministically.

To address the issue of non-determinism, some work that
depends on custom hardware [4-5] can obtain a good
performance. For software-only solutions, some of them
need to recompile the program [6, 12]. When referring to the
non-determinism of the whole system, previous software-
only solutions [7] primarily focus on pure record-and-replay
technology, which incurs high overheads and large space
costs. Other software-only technologies [15-16] are tailored
to specific classes of programs, but they do not notice that
the environment of the program can also induce an

unexpected bug (e.g., one Mozilla bug cannot be triggered
unless another program modifies the same file concurrently
with Mozilla [3]).

In order to provide deterministic execution of arbitrary,
unmodified, multiprocessor systems without custom
hardware support, we propose Deterministic Concurrency
State Machine (DCSM). The deterministic execution of
DCSM is enforced by our modified hypervisor or virtual
machine monitor which we call dVMM. This solution can
ensure the repeatability of the environment-caused bug,
improving the ability of debugging. Given an external input,
this DCSM will make a deterministic state transition based
on current execution state. Therefore, the record-and-replay
technology is used on this DCSM to ensure the repeatability
of the execution of a multiprocessor virtual machine.

This paper makes the following contributions. First, we
propose the virtual private memory model and relative
scheduling algorithm. With this model and algorithm, the
multiprocessor virtual machine that encapsulates
multithreaded programs can execute deterministically. As a
result, the controllability can be obtained. Second, we define
the Deterministic Concurrency State Machine. With this
DCSM, the record-and-replay technology can be used to
improve the repeatability of the whole virtual machine’s
execution. Meanwhile, it eliminates the large space costs due
to recording the interleaving of CPUs.

The outline of this paper is as follows. In Section 2, we
define the DCSM, propose the virtual private memory model
and describe how the dVMM ensures the deterministic
execution with a scheduling algorithm and record-and-replay
technology. Section 3 describes some implementation issues.
Section 4 provides some evaluation results. Section 5
discusses relevant issues. Section 6 outlines related work and
Section 7 concludes.

II. DETERMINISTIC EXECUTION AND REPLAY OF
MULTIPROCESSOR VIRTUAL MACHINES

A. The Problem of Non-determinism
Figure 1 [3] shows a concurrency bug in Mozilla. In this

figure, if thread 2 writes the variable io_pending after thread
1 writes it, there will be an expected correct execution path.
But if thread 1 writes the variable io_pending after thread 2
writes it, the expectation of the program will be violated. By
default, thread 1 should initialize the variable before they
execute concurrently.

This is a common concurrency bug, which makes
contribution to the non-determinism of multithreaded

205

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 215 / 237

programs. If a multiprocessor system is intruded, this non-
determinism will make the replay of the intrusion more
difficult and result in inaccurate intrusion analysis.

Another example is shown in Figure 2, which is
mentioned in DMP [4]. The table inside the figure shows the
frequency of the outcome of 1000 runs on a Intel Core 2 Duo
machine [4].

Figure 1. An order violation bug in Mozilla [3].

The result demonstrates that the underlying parallel
architecture can affect the result of a system. The Symmetric
MultiProcessor (SMP) model is used widely nowadays. But,
Figure 2 shows the case of non-determinism in a SMP
system. The non-determinism in parallel is caused by the
data races of concurrent memory accesses in a SMP system.
Our DCSM solution is a software-only approach to solve
such a system-level issue. In addition to DCSM, external
non-determinism is considered with the record-and-replay
technology, which can improve the repeatability of the whole
system’s execution.

Figure 2. A simple program with a data race between two threads and
runs 1000 times [4].

Next section describes the characteristics of DCSM,

while its building methods are described in two following
sections. The record-and-replay section specifies the method
to deal with external non-determinism outside DSCM.

B. Deterministic Concurrency State Machine
Bocchino Jr. et al. [9] argue that parallel programming

must be deterministic by default. But many programs are
coded serially. They can reach parallel with the support of
other tools such as compiler. Further more, people are used
to thinking serially, which will probably result in buggy
programs. Therefore, some measures must be taken to make
the multithreaded programs execute deterministically. Those
measures must also consider the environments influence on
the programs. To meet these demands, a deterministic
multiprocessor virtual machine is used to encapsulate the
multithreaded programs and their environments. This kind of
virtual machines ensures deterministic execution of the

whole system. And their execution is controlled by dVMM
to ensure a deterministic execution path. Such a deterministic
multiprocessor virtual machine is called a Deterministic
Concurrency State Machine (DCSM).

Figure 3 depicts the behaviors of a DCSM. A DCSM can
be represented by a tuple {(V, M), I, A}, where V is the set
of cpus’ states, M is the set of memory states, I is the set of
inputs, A is the set of actions. Given the initial state (V0, M0)
and certain input, the DCSM will take a subset of actions in
A and reach a deterministic state, thus produce a
deterministic result. During the actions, DCSM will not
receive any external inputs. The actions DCSM takes are the
concurrent instructions; the size of these instructions is
further determined and controlled to realize the DCSM in the
following sections.

Figure 3. State transitions of a DCSM. The DCSM will deterministically
take certain actions to reach state (V1, M1) if given certain input and

certain initial state.

C. Virtual Private Memory Model
In a multiprocessor VM, if one virtual cpu (vcpu) is hung

up after it acquires a lock, then other running vcpus that want
to acquire this lock will waste their time in trying to get the
lock. In that case, it is very difficult to control the
concurrency for deterministic synchronization because of its
complexity. Therefore, the basic scheduling strategy is that
all vcpus in the multiprocessor VM must be running
concurrently on physical cpus. Otherwise, they must be
paused at the same time.

Figure 4 shows the virtual private memory model. There
are two main stages-when virtual memory is created and
when it is merged or synchronized.

This basic scheduling strategy makes the situation
simpler. Based on that strategy, an algorithm can be designed
to ensure a multiprocessor VM’s deterministic execution. To
be deterministic, the concurrent execution must be
synchronized at some critical points. So, our algorithm is
mainly based on the idea of quantum, which is composed of
certain quantity of instructions. These quanta are the actions
that DCSM will take to reach the next deterministic state. At

206

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 216 / 237

system level, data races are happened on the shared memory.
So the virtual private memory model is proposed to provide
each vcpu an illusion that each has its own memory. This
illusion makes each vcpu executes concurrently without
considering the memory interactions. As a result, without the
interference from external non-determinism, an isolation of
the executions of the quanta is provided before the
synchronization stage. So this memory model provides the
concurrent stages to fully execute and the synchronization
stages to make the result of previous executions deterministic.
Algorithms can use these two stages to get fully parallel
execution and make the result deterministic when
synchronizing.

Figure 4. Virtual private memory model.

D. DMP-VPM Algorithm
At the virtualization level, the virtual private memory

model ensures the virtual memory isolation of concurrent
executions. According to the characteristics of virtualization
level, our quantum based algorithm utilizes the virtual
private memory model and privatizes the shared memory.
And it synchronizes the concurrent quanta to make the result
deterministically. This algorithm is called DMP-VPM
(Deterministic Shared Memory Multiprocessing based on
Virtual Private Memory). Figure 5 tells how a vcpu behaves
in DCSM.

Figure 5 describes how the algorithm works. Each vcpu
executes after obtaining its virtual private memory. When the
quantum finishes, it is time to merge the private memory in
order. So for the sake of the sequence guarantee at the
merging or synchronization stage, the idea of token ring is
utilized. The token is passed in a deterministic sequence
among vcpus. A vcpu with the token has the right to merge
its private memory and create a new virtual private memory.
Otherwise, it must wait for its turn. In the algorithm, when a
vcpu with the token wants to merge, it must make sure that
the vcpu has not read the pages merged or written by the
previous vcpus in this memory version. Otherwise it will
create its new virtual memory and re-execute the quantum.
After merging successfully, the vcpu with the token will
create its new virtual memory, pass the token to the next
vcpu and execute its next quantum. Such a deterministic
sequence in accessing or modifying memory will result in a

deterministic memory state. Note that the design of DCSM
does not consider the external non-determinism which will
change the execution sequence of a quantum. Under such a
condition, vcpus can also reach a deterministic state.

Figure 5. Each vcpu’s execution diagram with virtual private memory.

E. The Record and Replay of DCSM
A deterministic executing VM can be regarded as a

deterministic state machine. Because given current state and
some external input, such a VM can produce a deterministic
result, namely make a transition to another deterministic
state. Then this VM can be replayed with the initial state and
the recorded external inputs. This is the main characteristic
of the DCSM. Although the record-and-replay technology
has been used in many fields, the record and replay of the
DCSM is kind of different.

To replay a DCSM, external non-determinism must be
injected during replay at the exactly right time when the
injection will not break the execution sequence of a quantum.
Which vcpu needs the injection must be recorded. Some
information about the non-determinism must also be
recorded. When recording the DCSM, the external injections
are controlled to happen at the beginning of each quantum,
making the replay easier. Such an injecting method further
improves the isolation between the quantum and external
world and makes sure that the DCSM will not receive any
input when taking actions. As a result, the quantum’s result
is deterministic. But some special instructions like RDTSC
must be treated differently. The results of such instructions

207

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 217 / 237

and the exact occurrence time must be recorded for the
replay.

III. IMPLEMENTATION ISSUES BASED ON KVM
The hardware virtual technology VT, which is developed

in some Intel’s cpus, makes the implementation easier and
will be of great help in performance. KVM is a module in
linux and makes the whole operating system a hypervisor
based on VT. It utilizes the kernel’s memory management
mechanism to provide the guest virtual machine with a fake
contiguous guest physical memory. To implement the
DCSM and its record-and-replay, the interface
VMEntry/VMExit is a good place for coding. The
implementation framework is shown in Figure 6. According
to this figure, some implementation issues are described as
follows.

Figure 6. The framework of the dVMM.

A. Implementation of DCSM
When implementing DCSM, we have to take into

account the implementation of the virtual private memory
model. The implementation of that model will be described
along with the DMP-VPM algorithm. The EPT (Extended
Page Table) mechanism in intel’s VT technology can be used
to implement that model. In EPT’s page table, each entry has
several relevant control bits, namely readable bit, writable bit
and executable bit. To provide each vcpu an isolated virtual
private memory, we utilize the copy-on-write technology.

In KVM, each EPT violation will cause a VMExit which
will call the relevant handler handle_ept_violation(). Then
the function kvm_mmu_page_fault() is called to process this
violation. In this function, the key memory process function
tdp_page_fault() is called. Therefore, the process in this
function can be changed to realize our goal. Note that each
vcpu is designed to have its own page table. During the
creation of the EPT page table, lazy allotment strategy is
used. Once the guest accesses a page not present in the EPT
page table, we first identify whether it is a write or a read. If

it is a read, the EPT page is allotted, set as readable and not
writable and the read action on this page is recorded. And if
it is a write, a new host physical page is allocated and the
original page’s data are copied to the new page. Then
dVMM will make the relevant EPT page entry redirect to the
new page, set corresponding control bits and record this
redirection for merging. Again, if it is a write on a page that
has the EPT page present and not writable, it will be checked
whether it is caused for recording. If so, dVMM will do the
same thing for the write. All the records are produced during
the first attempt to read or write for the sequential merging;
these records are not written to the log file. After the first
access to the page, the same subsequent accesses will not be
interposed. So, there are only limited times of the control
actions of dVMM.

B. Implementation of DCSM’s record and replay
To record and replay the DCSM, some external non-

determinism must be treated differently. For instructions like
RDTSC, the exact logical time of the result delivery after the
instruction’s execution must be logged and replayed. For
other external non-determinism, signals are delivered at the
beginning of the quantum.

To record the exact logical time of non-determinism’s
occurrence, a tuple <eip, bc, ecx> is used to represent the
logical time, where eip is the instruction counter, bc is the
performance counter and ecx is a register used for string
operations. As in figure 6, the recorder program in user space
will communicate with KVM by forwarding custom
commands through the ioctl() interface of the kvm device.
With these commands, users can run an assigned VM as a
DCSM and replay it if needed. During recording, the
recorder is wakened to read the records from KVM. Then the
recorder writes the records in the log file. During replay, the
recorder keep extracting the records from the log file and
passing them to KVM with the ioctl() interface. After
receiving enough records, the assigned VM is able to run. If
KVM does not have any records for replay, it will check
whether the recorder has marked that all records have been
sent. If not, the assigned VM will be paused until new
records arrive. Otherwise, the VM continues running.

IV. EVALUATION
To get the performance evaluation of DCSM, we have to

know exactly the overheads caused by the VMEXITs of the
quanta for synchronization. In our virtual environment, we
ran the SPLACH2 benchmark suite [17] to evaluate the
design of parallel processors. For some applications, we
chose input parameters to make them run for around 60
seconds so that the actual workload can be distinguished.
The tests we ran were fmm, ocean, water-spatial, lu and
radix. The modified virtual machine monitor KVM ran on a
machine with a dual Intel Core (TM) 2 64-bit processor (2
cores total) clocked at 2.93 GHz, with 4GB of memory
running linux 2.6.38.5.

Figure 7 shows the overheads of a two processor KVM
guest that ran the tests in it. In the experiment, the guest’s
processors didn’t re-execute their quanta even the quanta
visited the same page. And we didn’t record anything to a

208

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 218 / 237

log file. Therefore, the result mainly does not include the
overheads caused by the re-execution of the quanta, nor can
the record size be gained. The results of different quantum
sizes as 8K, 32K, 128K were compared with that of the
normal execution of the guest.

The results show that a larger quantum can reduce the
VMEXITs and page faults’ frequency. With a quantum size
larger than 32K, the overheads are less than 3x. So a larger
quantum can have a better performance in the experiment.
But if quanta’s re-execution is taken into account, a larger
quantum will generate a longer re-execution time. In this
case, the quantum size must be chosen carefully.

Figure 7. Overhead of DCSM for a two processor KVM guest without

quanta’s re-execution.

V. DISCUSSION
In the cloud, virtual machine monitors like KVM can

provide users with some virtual resources based on the vast
physical resources. Many servers are developed as parallel
programs and can run in a virtual machine in the cloud. They
may encounter an intrusion or a bug when providing service.
Our solution can be applied to replay the execution and help
developers fix those problems.

Our solution is quite similar to dOS [8], while dOS is
implemented in an operating system and our dVMM can
enforce the whole guest operating system. Based on our
virtual private memory model, many other scheduling
algorithms can also be applied. All evaluation experiments of
dOS are done on 8-core 2.8GHz Intel Xeon E5462 machines
with 10GB of RAM. Without recording the internal non-
determinism due to interleaving of threads, dOS produces
about 1000 times smaller logs than SMP-ReVirt [7]. The log
size of dVMM depends on the communication between the
virtual machine and external environment. When dealing
with the entire system, dVMM can eliminate much more
logs due to the interleaving of CPUs. So dVMM can have a
smaller log size than SMP-ReVirt. Since dVMM have to
deal with all the processes in an operating system, it will
produce more logs than dOS if more processes communicate
with external environment.

However, the main overhead of dVMM is due to the
communication between quanta, the same as dOS. According
to the evaluation of dOS, the overhead of Chromium with a

scripted user session opening 5 tabs and 12 urls is about 1.7x
on average. The main factors causing the overhead are the
quantum size, single-stepping and the communication
between quanta. Due to the cost of VMExit of each quantum
for synchronization, the slowdown of dVMM is no more
than 7x in our tests. But it will become much smaller if the
multithreaded program has a good locality of or only a few
memory accesses, as well as a suitable quantum size chosen.

There are also many optimizations that can be used to
improve dVMM’s performance. First, to reduce the
probability of re-execution of a quantum, some methods like
forward in DMP [4] can also be applied. Second, some
binary translation technologies can be used to pre-process the
instructions and pre-allocate some shadow pages for the
vcpus to reduce more page faults and VMExits in future
execution. Other optimizations can also be applied to
improve dVMM’s performance.

VI. RELATED WORK
At language level, parallel languages such as SHIM [10]

and DPJ [9, 11] can enforce determinism, but require
rewriting the code. Determinator [1] is implemented on a
microkernel and proposes a new programming model. The
whole new programming type may not be suitable for some
common used applications and it is only implemented on a
microkernel now. dOS [8] proposes Deterministic Process
Groups (DPG) to ensure the concurrency determinism and a
shim layer to replay DPG, which is a solution only
implemented in linux. But our solution does not need a
whole new programming model and supports different
multithreaded programs in different operating systems.

Some hardware-based system such as DMP [4] and
Calvin [5] can obtain a good performance, but require
custom hardware support. DMP provides different methods
to gain determinism. Some of the methods utilize the
transactional memory, which is similar to our solution.
However, their implementations need custom hardware
support, which may not be suitable for the community
hardware in the cloud. Some technologies like RCDC [12]
and CoreDet [6] use a combination of hardware and software
support. They not only use custom hardware, but also need
software support like compliers, which forces an application
to be recompiled before running. On the contrary, dVMM is
a software only solution and can support arbitrary,
unmodified software.

There are also many technologies focused on record and
replay of a multithreaded program. Like dVMM, SMP-
ReVirt [7] can replay the whole system which encapsulates
multithreaded programs and their environments.
Unfortunately, it has high overheads and large space costs,
which is largely owing to the recording of the execution
interleaving. However, DCSM does not have to record the
interleaving of CPUs compared with SMP-ReVirt. PRES [13]
and ODR [14] log a subset of shared memory interactions,
reduce the log size, but have increased costs in replay when
doing the search of the execution space. dVMM utilizes the
hardware VT technology and enforces the deterministic
execution with very few controls. Therefore, without logging
shared memory interactions, dVMM can have much smaller

209

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 219 / 237

log size than SMP-ReVirt. Without searching the execution
space, dVMM can perform better in replay than PRES and
ODR.

VII. CONCLUSION
This paper proposed a virtual private memory model.

Based on this model, DMP-VPM algorithm is introduced to
control the deterministic execution of the multiprocessor
virtual machine. This controlled virtual machine is called
deterministic concurrency state machine. And a record-and-
replay scheme for this DCSM is designed. With the internal
determinism and the record of external non-determinism, the
repeatability of the whole system can be ensured, providing
support for debugging, intrusion analysis, etc. Without
quanta’s re-execution and quantum size no less than 32K, the
DCSM generates overheads less than 3x. With a carefully
chosen quantum size, the DCSM is supposed to have
acceptable overheads.

REFERENCES

[1] A. Aviram, S. Weng, S. Hu, and B. Ford. Efficient System-
Enforced Deterministic Parallelism. In OSDI. 2010, pp. 193-
206.

[2] J. R. Douceur and J. Howell. Replicated Virtual Machines.
Technical Report MSR TR-2005-119, Microsoft Research,
Sep 2005.

[3] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes-
A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS. 2008, pp. 329-339.

[4] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
Deterministic Shared Memory Multiprocessing. In ASPLOS.
2009, pp. 85-96.

[5] D. Hower, P. Dudnik, D. Wood, and M. Hill. Calvin:
Deterministic or Not? Free Will to Choose. In HPCA. 2011,
pp. 333-334.

[6] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D.
Grossman. CoreDet: A Compiler and Runtime System for
Deterministic Multithreaded Execution. In ASPLOS. 2010, pp.
53-64.

[7] G. W. Dunlap, D. G. Lucchetti, P. M. Chen, and M. A.
Fetterman. Execution Replay for Multiprocessor Virtual
Machines. In VEE. 2008, pp. 121-130.

[8] T. Bergan, N. Hunt, L. Ceze, and S. Gribble. Deterministic
Process Groups in dOS. In OSDI. 2010. pp. 177-191.

[9] R. L. Bocchino Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel Programming Must Be Deterministic by Default. In
HotPar. 2009, pp. 4-4.

[10] S. A. Edwards, N. Vasudevan, and O. Tardieu. Programming
shared memory multiprocessors with deterministic message-
passing concurrency: Compiling SHIM to Pthreads. In DATE.
2008, pp. 1498-1503.

[11] R. Bocchino, V. Adve, D. Dig, S. Adve, S. Heumann, R.
Komuravelli, J. Overbey, P. Simmons, H. Sung, and M.
Vakilian. A Type and Effect System for Deterministic Parallel
Java. In OOPSLA. 2009, pp. 97-116.

[12] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: A Relaxed Consistency Deterministic Computer. in
ASPLOS. 2011, pp. 67-78.

[13] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. Lee, S. Lu, and Y.
Zhou. Do You Have to Reproduce the Bug at the First Replay
Attempt? - PRES: Probabilistic Replay with Execution
Sketching on Multiprocessors. In SOSP. 2009, pp. 177-192.

[14] G. Altekar and I. Stoica. ODR: Output-Deterministic Replay
for Multicore Debugging. In SOSP. 2009, pp. 193-206.

[15] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight
Deterministic Multi-processor Replay of Concurrent Java
Programs. In FSE. 2010, pp. 385-386.

[16] E. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C++.. In OOPSLA. 2009,
pp. 81-96.

[17] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In ISCA, 1995, pp. 24-36.

210

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 220 / 237

A Generalized Approach for Fault Tolerance and Load Based Scheduling of
Threads in Alchemi .Net

Vishu Sharma, Manu Vardhan, Shakti Mishra, Dharmender Singh Kushwaha
Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology, Allahabad
Allahabad, India

Email: {cs0916, rcs1002, shaktimishra, dsk}@mnnit.ac.in

Abstract— Computational grids can be best utilized by the
divide and conquer approach, when it comes to executing a
large process. In order to achieve this, building multithreaded
application is one of the efficient approaches. The threads are
scheduled on different computational nodes for execution. One
of the frameworks that support multithreaded applications is
Alchemi, but it does not incorporate any load based scheduling
and fault tolerance strategy. In Alchemi, a manager node uses
first come first serve (FCFS) scheduling to schedule threads on
executors (node that execute independent thread), but it does
not consider any CPU load on which the executors are
running. Moreover if an executor fails in between, then the
manager node reschedules the thread on other executor node.
One solution for the above problem is to save intermediate
results from each thread and reschedule these threads on
another executor. We propose an approach that provides fault
tolerance in Alchemi by using Alchemi Replica Manager
Framework (ARMF), where the manager node will be
replicated on one of its executor node. The proposed algorithm
is 6-16 percent more efficient than FCFS, when implemented in
Alchemi.

Keywords-ARMF; FCFS; fault tolerance; load based scheduling.

I. INTRODUCTION

A computational grid provides distributed environment in
which user jobs can be executed either on local or on remote
machines [2]. In grid, user jobs are considered as
applications that contain the tasks to be executed. Further,
each independent task is represented by a single thread.
Whenever a user is having a job which contains multiple
individual tasks it is better to use multithreading environment
because thread creation and management is easier and faster
than process creation. Threads provide following advantages
over processes [20]:

• Thread creation takes less time because it uses the
address space of process that owns it.

• Thread termination is easier than process
• There is less communication overhead between

threads because address space is shared.
Figure 4 shows the architecture of Alchemi. It shows a

manager connected with four executors. Alchemi provides
API’s that are used to create grid applications. In Alchemi,
Gthread class is used to implement the multithreading [13].
Figure 1 shows the Gthread class and its structure. It contains
an abstract method start ().Each thread is given a priority by

a user. Alchemi .NET has the 5 priority levels from lowest to
highest. Each application consists of several threads. The
manager node is responsible for the scheduling of threads on
different executors and collects the results from these
executors after successful completion. The two issues related
with Alchemi are scheduling of threads and fault tolerance.

 The first issue is that of scheduling, where the manager
node uses FCFS [17] policy for scheduling. It stores the
threads according to their priority and schedules the highest
priority thread on next available executor. It does not
consider the CPU load of the processors on which the
executors are running. If more than one executor is available
at a time, it might happen that a thread is scheduled on a
more loaded executor which can degrade the performance.

Figure 1. Structure of Gthread class.

Second issue is that of Fault tolerance, this helps system
to recover from faults [4]. In case of Alchemi grid, if a thread
is scheduled on an executor and due to some reasons, the
executor crashes, the thread running on this executor also
crashes. In such a case, the manager reschedules this thread
on another executor and the thread is restarted from the
scratch. Moreover there may be the case when the Alchemi
manager can crash and all the executors currently registered
with the manager will come to halt.

One solution to the above problem is discussed in [5].
The authors have used a file based implementation in which
a file stores the intermediate results and if thread crashes it is
rescheduled on another executor and resumes its execution
from last successful result, without starting from the scratch.
It reads the last successful result from the stored file.

The second limitation in [5] is that all the fault tolerance
code overhead is on the user who submits the application.
The Alchemi manager is not responsible for any kind of
activity. Thus we came across the following issues that are
yet to be resolved in Alchemi .NET.

• If a thread execution fails in between, then how the
values produced by this thread (till the point of
failure) can be saved at manager node and how the

public abstract class GThread : MarshalByRefObject
{
public abstract void Start();
/* method is overridden by the class that inherits the

Gthread class*/ }

211

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 221 / 237

remaining work of the failed thread is assigned to
other thread. Approach given in [5] does not talk
about how this kind of fault tolerance mechanism
can be implemented in manager node. It completely
relies on user. Neither have they discussed about the
possibility of Alchemi manager failure.

• If the more than one executor is available at same
time and the CPUs on which these executors are
running might be overloaded then how to schedule
threads to get a better solution.

To address above mentioned issues, a generalized
approach is proposed as under, in which fault tolerance is
provided for computational applications [12] running on a
global grid.

• To provide a kind of check pointing scheme which
stores the intermediate results produced by threads
and the Alchemi manager node is incorporated with
the facility to control the execution of failed threads
and reschedule these threads on other available
executors. In case of Alchemi manager failure the
ARMF is proposed, which will provide the backup
in such cases.

• To choose the best available executor on the basis of
the load of CPU.

For more complex scientific application this approach
may not work well as it requires users input. Hence, the
proposed approach is confined to the computation intensive
processes.

 Rest of the paper is organized as follows. Section 2
describes the existing work done in fault tolerance and
scheduling in grids. Section 3 shows the proposed approach.
Section 4 shows the case study using the proposed algorithm
and Section 5 derives the conclusion.

II. RELATED WORK

In load-based scheduling [18], load information can’t be
exchanged much frequently due to network communication
overheads [2]. It is desirable to exchange the load
information only when it is needed.

In a system, fault tolerance is achieved by means of some
redundancy that could be hardware, software or time
redundancy [19].

Vladimir et al. [7] discuss about the scheduling of
divisible load applications, where the resources are selected
dynamically, based on the intermediate results. In this
approach, application specific requirement also plays a vital
role in selecting the resources. But this approach is applied at
application level and does not concentrate on multi-threaded
grid [15] environment.

Zeljko et al. [8] discusses an improved scheduling
strategy in Alchemi. This approach still relies on a static
strategy for selecting the executors and adds nothing to fault-
tolerance. To achieve fault tolerance, a file based technique
is proposed in [5]. First problem with this approach is that it
places the burden of creating and manipulating the file on the
user who creates the application and the manager does not
contribute in any kind of fault tolerance activity. Second
problem is that for each thread there is a single file, means

incurring more overhead on the manager node. This
approach [5] has been shown only for one application.
Authors have not discussed how other applications can be
implemented using this approach.

One of the characterization techniques is given in [10]. In
this technique, individual machine faults are defined as,
resource level fault and faults in global environment of grid
are considered as service level faults. This paper does not
elaborate much about the resumption of jobs from the point
where it was crashed.

Another improved approach is given in [11]. Fault
tolerance is achieved at job level but as each job can be
divided into individual tasks using multithreading so several
issues like which thread got faulted, how to combine the
results from faulted threads etc remain unhandled.

An approach for thread scheduling is shown in [16],
where different threads are scheduled to download files from
different servers. But in this approach if a thread fails to
execute, it is rescheduled after all threads complete their
execution.

All the above discussed literature work motivated us to
put efforts for providing a novel solution to fault tolerance
and load based scheduling in Alchemi .NET.

III. PROPOSED APPROACH

In our approach two concepts, first is fault tolerance and
second is scheduling of threads, based upon CPU load are
integrated into single algorithm. We first discuss about the
fault tolerance approach followed by the thread scheduling
based on CPU load. The proposed approach did not consider
the manager load, as the thread will always execute on the
executor node, not on the manager node. There may be the
case of manager failure, which we have discussed below.

A. Fault Tolerance Approach

In Alchemi .NET the applications are divided into
individual threads and these threads are scheduled on
currently available executors. If a thread execution stops in
between then the work done by that thread till that point will
be lost.

In [5], an approach is proposed in which file is created
for each thread which keeps track of thread execution. This
approach puts extra burden of creating and using the file over
the application programmer who creates the application.

We propose an approach that enhances this idea [5] by
incorporating the manager with the capability of creating and
maintaining the file. Each application, submitted by a
different user is different and hence the intermediate results
(variables) would be different. We try to generalize this
approach so that different kind of applications can be
executed in the same way. To support this kind of
dynamicity, we are using the XML-file. As the application is
submitted, the manger node creates an XML-file with
relevant information loaded into it. This information is
responsible for resuming a crashed thread.

A big challenge in this approach is how to identify these
variables. In our approach these variables are supplied by the
user who submits the application because the user knows
what and where the values must be stored. During the thread

212

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 222 / 237

execution, the executor is responsible for saving these values
into the XML-file that is on manager. Whenever a crashed
thread is rescheduled on different executor the manager node
will extract the values from that XML-file and will pass it to
the thread so that it can resume its operations.

Figure 2. Proposed structure of thread implementation.

Figure 2 shows the structure of the threaded class that a
user implements. This class extends the Gthread class given
in Figure 1. The Structure of the XML file is given in Figure
3. This file contains the values for threads for which
processing has been successful.

Figure 3. Structure of XML file.

In the existing file-based fault tolerance approach [5],
fault tolerance is supported at user end. Fault tolerance is
completely dependent on application user. In our proposed
approach, fault tolerance is supported by the Alchemi
manager, application user need not to concern about its
implementation.

Next, in Alchemi architecture, there is no provision for
handling the situation where manager can fail. Under these
circumstances all the Executors registered with the failed
manager will stop executing, and the whole system will
come to halt. There should always be some backup / replica
manager, so that single point failure can be avoided.

Alchemi manager which is responsible for managing the
execution of grid applications can be replicated. This can be

achieved by replicating the Alchemi manager at its one of the
Executor, which is currently registered with this manager.

Figure 4 describes the whole scenario. The manager node
is connected with four executors. Each executor executes an
independent thread. User application is containing 3 threads.

Figure 4. Architecture of Alchemi and Alchemi Replica manager.

P1, P2, P3 are the thread priorities assigned by the user
for the respective thread. T1’, T2’, T3’ are the thread
associated with the Replica manager which is on Executor 4.

The information that needs to be transferred to the
Executor node, so that the Alchemi manager can continue
functioning from the point of failure and not from the
scratch, is stored in a XML file with the manager. This XML
file needs to be replicated to that Executor node, which is
acting as a replica of Alchemi manager. Periodic updation of
this XML file is required, so as to maintain the consistency
of the system.

 The information that needs to be transferred to the
executor node is stored in a XML file with the manager, so
that the Alchemi manager can continue functioning from the
point of failure and not from the scratch. This XML file
needs to be replicated to that Executor node, which is acting
as a replica of Alchemi manager. Periodic updation of this
XML file is required, so as to maintain the consistency of the
system.

 In the present Alchemi framework, an executor can
register itself only with one manager. Issue associated here,
from the developers/programmers perspective is “how the
Executor will register itself with the new manager i.e., the
replicated manager in case of manager failure”. With the
present framework, if the manager fails, the new replica
manager needs to inform all the executors, registered with
the failed manager, to get them registered with the new
replica manager. Or there should be some provision by
which an executor can register it with more than one
manager.

B. Modified Scheduling Algorithm

Alchemi .NET provides its grid API that is used to
develop grid applications to be submitted to the Alchemi.
Each application contains threads. Number and priority of

 Public class table: Gthread /* user code */ { table (
int starting_number, int last_number)

{/* constructor initializes the values in XML file */
/* initialization of values done by manager */
} Public void start()
{for(num=starting_number;num<=last_number;

number++)
 for(int i=1; i<= 10; i++)
 { result=num*i; }
savetofile(num, result);
}} Savetofile(values)/* method runs on executor */
{ /* sends intermediate values to the manager node

*/ }

<file application_id= “ “><thread>
<init><thread_id> 123</thread_id>
<first number>1</first number>
<last number>5<last number>
<completed>yes</completed></init></thread>
<thread>
<init><thread_id>163</thread_id>
<first number>6</first number>
<last number>10<last number>
<completed>no</completed>
</init>
</thread> </file>

213

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 223 / 237

threads are defined by the application programmer. It does
not consider current performance of the CPU on which the
executor is running. If at the same time two executors are
available and one of these is overloaded whereas other is not,
so it might happen that a highest priority thread is scheduled
on an executor that is overloaded. In those cases when the
higher priority thread execution duration is large, this
overloaded executor might degrade the performance.

In the proposed approach, an executor does not send its
load information periodically, rather it sends it whenever an
executor finishes execution of a thread and it is ready to
receive a new thread from the manager. We assume that no
thread is interrupted during its execution due to the load
information on its machine.

In Figure 5 default mechanism of selecting the executors
is shown.

Figure 5. Default scheduling mechanism in Alchemi.

Figure 6 shows the modified algorithm, if more than one
executor is available at the same time our algorithm selects
the best one.

Figure 6. Modified mechanism.

C. Algorithm

The algorithm combines both the approaches discussed
above. Its theoretical description is given in Figure 7.
The architecture of the proposed approach is shown in Figure
8. A ft_thread is added at manager and executor nodes. At
manager node the ft_thread is running continuously and is
responsible for receiving the intermediate values from the
ft_thread running on executors. It writes the intermediate
values into the XML file and reads them in case a faulty
thread needs to be rescheduled.

Figure 7. Proposed algorithm.

 Manager Node Executor Node
Figure 8. Architecture of Fault Tolerant Alchemi.

Step1: Thread=gethighestprioritythread();
Step2: Executor=Getnextavailableexecutor()
Step3: create new schedule with executor and thread.
Step4: Schedule(dedicateschedule);

Step1: Thread= Gethighestprioritythread();
Step2: Execut_available[]=Getcurrent_avail_executor()
 Executor= Executoravailable[].getleastloaded().
Step3: Create new schedule with executor and thread.
Step4: schedule(dedicateschedule);

1. Get the highest priority thread from the database.
2. Create the entry in XML file for that thread.
3. Get the available executors check their load factor

and if more than one executor is available get the
minimally loaded executor.

4. Receive the intermediate values sent by the executor
for that thread.

5. Replace the existing value in XML file with the
recently received values.

6. If executor gets disconnected then check the thread
status allocated to that executor. If it is not
completed create new thread with the same thread id
that was executing on the crashed executor.

7. Supply the last successful results to that newly
created thread so that it can resume its execution.

8. Get the minimally loaded executor and assigned this
thread to that executor.

9. Repeat steps 1 to 8 until the thread database is empty.

214

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 224 / 237

IV. CASE STUDY

We evaluate the scenario where an overloaded executor
might be a bottleneck for the performance. In Figure 9, we
show an example with three executors on which threads are
scheduled. We assume that all executors that are not
overloaded execute the threads in approximately same time.

In Figure 9, an executor is marked as overloaded and it
takes more time to execute a thread as compared to an
average loaded or underloaded executor.

An average loaded or underloaded executor takes 4 units
of time to execute a high priority thread and 2 units of time
to execute a low priority thread whereas an overloaded
executor takes 6 units of time for high priority thread and 3
units of time for low priority thread. Hence the completion
time for this application according to FCFS scheduling is 9
units of time.

In Figure 10, we see another arrangement of threads on
the executors. In this low priority threads are scheduled on
overloaded executor and all high priority threads are
scheduled on less overloaded executors. The completion
time of the application is 8 units of time.

Figure 9. Arrangement of threads on executors according to default

mechanism.

Load information collected from the executor also helps
in selecting the best available executor whenever a thread is
rescheduled after a crash. In our approach we assume that if
at any point of time two executors are available we select
one which is less loaded.

In the simulated environment we analyze the behavior of
proposed application with different applications. These
applications are included in random. In Alchemi, different
executor nodes are connected to manager node. From these
available executor nodes some are overloaded in comparison
to others.

Table I shows five applications, number of high and low
priority threads for each application. In this table, column
name A.N. stands for application number, N.T. for Total
number of threads in an application, N.H.P for Number of
high priority threads, N.L.P. for Number of low priority
threads and E.E.T. for Expected execution time on normal
executor. In Table II, completion time for FCFS and
proposed algorithm is shown. The total number of threads in
a single application is shown in Table I. The execution time

for a thread is shown on a normal executor. We assume that
an overloaded executor takes 50% more time to execute a
thread. In Table I application number 4 has threads of same
type, i.e., all the threads are having same priority. In this case
also, our proposed algorithm performs well.

Figure 10. Arrangement of threads on executors according to proposed

algorithm.

TABLE I. APPLICAION CHARACTERISTICS. H RPRESENTS THE HIGH
PRIORITY THREAD AND L REPRESENTS THE LOW PRIORITY THREAD

Figure 11 shows the results obtained from FCFS and
proposed algorithm in simulated environment. It shows that
our proposed algorithm gains better completion time. Figure
8 also shows that for a given application set, our proposed
algorithm is 6-16 % more efficient in comparison to FCFS
algorithm. In case where all the threads have same priority, it
is 11% more efficient than the FCFS algorithm.

V. CONCLUSION

An approach that achieves fault tolerance supported by
manager node of Alchemi is presented in this paper. In
comparison to other approaches, the scheduling of threads on
various nodes after the crash requires no user intervention.
Rather the proposed approach implements fault tolerance in
system by using manager node and executor node. We also
propose an Alchemi Replica Manager Framework (ARMF)
and a scheduling algorithm based on the load information of
executor nodes. ARMF replicates the XML-file, which is
maintained by the manager node and stores all the required
information about the threads executing on the executors, to
one of its executor, which will be acting as the replica
manager in case of manager failure. Our proposed algorithm
selects the executors depending upon the load information of
currently available executors. This helps Alchemi manager
to select best executor (least loaded for a high priority

A.N. N.T. N.H.P N.L.P E.E.T.
 H L

1 7 2 5 4 2
2 14 2 12 6 4
3 11 2 9 10 6
4 9 9 0 6 -
5 6 4 2 10 5

215

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 225 / 237

thread) amongst available ones. In performance study, it has
been found that the proposed approach is 6 – 16 % more
efficient than FCFS, when implemented in Alchemi.
Alchemi Replica Manager Framework (ARMF) provides a
mechanism to replicate manager node to one of its executor.

TABLE II. COMPARISON BETWEEN PROPOSED ALGORITHM AND FCFS

Figure 11. Performance study of both algorithms.

REFERENCES
[1] Sunita Bansal, Gowtham K, and Chittrnjan Hotta: Novel

adaptive scheduling Algorithm for computational grids.
Proceeding IMSAA'09 Proceedings of the 3rd IEEE
international conference on Internet multimedia services
architecture and applications, pp. 1-5, 2009.

[2] Ruchir Shah, Bhardwaj Veeravalli, and Manoj Misra: On the
Design of Adaptive and Decentralized load balancing
algorithms with Load estimation for computational grid
environments, IEEE transactions on parallel and distributed
systems, vol. 18, no. 12, pp. 1675-1685, 2007.

[3] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and
Srikumar Venugopal: Alchemi: A .NET-based Grid
omputing Framework and its Integration into Global Grids.
In: Grid Computing and Distributed Systems (GRIDS),
Technical Report, GRIDS-TR-2003-8, Grid Computing and
Distributed Systems Laboratory, University of Melbourne,
Australia, pp. 1-17, 2003

[4] William C. carter: Fault-Tolerant Computing: An Introduction
and a Viewpoint, IEEE TRANSACTIONS ON
COMPUTERS, vol. C-22, no. 3, pp. 225 – 229, 1973.

[5] Md. Abu Naser Bikas, AltafHussain, Abu Awal Md. Shoeb,
Md. Khalad Hasan, and Md. Forhad Rabbi: File Based GRID
Thread Implementation in the .NET-based Alchemi

Framework, Multitopic ConferenceI, NMIC. IEEE Intern., pp.
468-472, 2008.

[6] Veeravalli Bharadwaj, Debashish Ghose, and Thomas G.
Robertazzi: Divisible Load Theory: A New Paradigm for
Load Scheduling in Distributed Systems, Cluster Computing
6, pp. 7–17, 2003, 2003.

[7] Vladimir V. Korkhov, Jakub T. Moscicki, and Valeria V.
Krzhizhanovskaya: The User-Level Scheduling of Divisible
Load Parallel Applications With Resource Selection and
Adaptive Workload Balancing on the Grid, IEEE systems
journal, vol. 3, no. 1, pp. 121-129, 2009.

[8] Zeljko Stanfel, Goran artinovic, and ZeljkoHocenski:
Scheduling Algorithms for Dedicated Nodes in Alchemi Grid.
IEEE International Conference on Systems, Man and
Cybernetics, pp., 2531 – 2536, SMC 2008.

[9] Gracjan Jankowski, Radoslaw Januszewski, and Rafal
Mikolajczak.: Improving the fault-tolerance level within the
GRID computing environment - integration with the low-level
checkpointing packages, CoreGRID Technical Report
Number TR-0158, June 16, 2008.

[10] Jes´us Montes CeSViMa, Alberto S´anchez, and Mar´ıa S.
P´erez.: Improving grid fault tolerance by means of global
behavior modeling, Ninth International Symposium on
Parallel and Distributed Computing, pp. 101-108, 2010.

[11] HwaMin Lee1, DooSoon Park1, Min Hong1, Sang-Soo Yeo2,
SooKyun Kim3, and SungHoon Kim4.: A Resource
Management System for Fault Tolerance in Grid Computing,
International Conference on Computational Science and
Engineering, pp. 609-614, 2009

[12] Nirmalya Roy and Sajal K. Das: Enhancing Availability of
Grid Computational Services to Ubiquitous Computing
Applications, IEEE transactions on parallel and distributed
systems, vol. 20, no. 7, pp. 953-967, 2009.

[13] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar
Venugopal: Alchemi: A .NET-based Enterprise Grid
Computing System, 6th International Conference on Internet
Computing. Las Vegas, pp. 1-10, 2005.

[14] Sandeep Singh Rawat and Dr. Lakshmi ajamani:
Experiments with CPU Scheduling Algorithm on a
Computational Grid, IEEE International Advance Computing
Conference (IACC 2009), pp. 71-75, India, 2009

[15] Jos´e Augusto Andrade Filho, Rodrigo ernandes de Mello,
and Evgueni Dodonov: Toward an efficient Middleware for
Multithreaded Applications in Computational Grid, 11th
IEEE International Conference on Computational Science and
Engineering, pp. 147-154, 2008.

[16] Suvarna N. A and Dinesh Chandra: Evaluation of
Improvement Algorithms for dynamic Co-Allocation with
respect to parallel downloading in Grid Computing, First
International Conference on Integrated Intelligent Computing,
pp. 79-83, 2010.

[17] U. Schwiegelshohn and R. Yahyapour: Analysis of first-
come-first serve parallel job scheduling, Proceedings of the
ninth annnal ACMSIAM symposium on Discrete algorithms
(SODA'98), pp. 629-638, 1998.

[18] Cui Zhendong and Wang Xicheng.: A Grid Scheduling
Algorithm Based on Resources Monitoring and Load
Adjusting, Knowledge Acquisition and Modeling Workshop,
2008, KAM Workshop, pp. 873-876, 2008.

[19] Nils Mullner, Abhishek Dhama, and Oliver Theel: Deriving a
Good Trade-off between System Availability and Time
Redundancy, Symposia and Workshops on Ubiquitous,
Autonomic and Trusted Computing, pp. 61-67, 2009.

[20] http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/
threads.htm accessed on 10-05-2011.

Application
number

No.of
exec-
utors

No.of
over

loaded
CPUs

FCFS
Comp-
letion
time

Proposed
algorithm
completion

time

1 3 1 9 8

2 4 2 21 18
3 3 1 33 28
4 3 1 18 16
5 3 1 22.5 20

216

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 226 / 237

Reducing the Human Cost of Grid Computing
With glideinWMS

Igor Sfiligoi, Frank Würthwein,
Jeffrey Michael Dost, Ian MacNeill

University of California San Diego
La Jolla, CA 92093, USA

email: isfiligoi@ucsd.edu, fkw@ucsd.edu,
jdost@ucsd.edu, imacneill@ucsd.edu

Burt Holzman, Parag Mhashilkar
Fermi National Accelerator Laboratory

Batavia, IL 60510, USA
email: burt@fnal.gov, parag@fnal.gov

Abstract—The switch from dedicated, tightly controlled
compute clusters to a widely distributed, shared Grid
infrastructure has introduced significant operational
overheads. If not properly managed, this human cost could
grow to a point where it would undermine the benefits of
increased resource availability of Grid computing. The
glideinWMS system addresses the human cost problem by
drastically reducing the number of people directly exposed to
the Grid infrastructure. This paper provides an analysis of
what steps have been taken to reduce the human cost problem,
alongside the experience of glideinWMS use within the Open
Science Grid.

Keywords-Grid; glideinWMS; human cost

I. INTRODUCTION

Over the past decade, the science community has been
moving from dedicated, tightly controlled compute clusters
to a widely distributed, shared Grid infrastructure in an effort
to both increase the average equipment utilization and gather
additional compute resources in times of need. One such
Grid infrastructure is the US-based Open Science Grid
(OSG) [1,2], an umbrella organization gluing together
groups of scientists from many scientific domains. These
groups are normally referred to as Virtual Organizations
(VOs), since they have an internal structure. Each VO brings
to the community both people and compute resources, with
the understanding that their compute resources can be used
by other VOs when not needed by the owning VO, and
conversely that their users can access resources they don't
own, when available.

This system has greatly benefited several VOs, but the
early adopters have noticed that using the Grid can have a
very high human cost. While the Grid is quite easy to use as
long as everything works fine, when something goes wrong,
it can take a significant amount of human time to debug and
fix the problem. Given that the OSG currently encompasses
O(100k) CPU cores distributed over O(100) geographic
locations, having at least a few misbehaving nodes at any
given time is pretty much a given. And with a community of
O(10k) users, each broken node is likely to affect hundreds
of users before being fixed. If each user were to spend even

half an hour debugging the problem, the total human cost can
easily exceed a week worth of time for each such event.

The glideinWMS system [3,4] attempts to reduce the
human cost in two ways. It creates a dynamic overlay on top
of Grid resources, thus insulating the final users from Grid
problems, and it cleanly separates the VO policy handling
from the actual Grid interfaces, allowing for a generic Grid-
facing service, called a glidein factory, that further limits the
exposure to the complexities of the Grid. To the best of our
knowledge, this is the only system that supports that.

The glideinWMS has been in use on OSG with a shared
glidein factory for over 2 years, and has proven to be a major
success, drastically reducing the human cost of several VOs.

Section II provides an overview of the pilot paradigm,
and the cost savings associated with it. Section III describes
the cost savings due to the glideinWMS approach of
separating VO policy from Grid submission. Finally, Section
IV provides the analysis of the cost savings that OSG
achieved in using the glideinWMS with a shared glidein
factory.

II. COST ADVANTAGE OF PILOT INFRASTRUCTURES

A pilot system [3] creates a dynamic overlay pool of
compute resources on top of the Grid, as shown in Fig. 1.
From the end user point of view, this overlay pool looks and
feels exactly like a dedicated, tightly controlled compute
cluster of the past, it is just a dynamic one, growing and
shrinking depending on workloads and Grid resource
availability.

Pilot infrastructures use two mechanisms to shield the
users from Grid errors. The first and most important
protection is provided by the pilots themselves; if a
malfunctioning node kills the pilot before it is able to join the
overlay pool, the users will never be aware of the existence
of such node, preventing any error condition at its root.
Starting the pilot is however not a sufficient condition to
assure job success, since user jobs may need access to
resources not needed by the pilot itself, e.g., scientific
libraries, or they may need them in larger quantities, e.g.,
disk space. To account for that, most pilot system
implementations, and in particular glideinWMS, allow for
additional validation procedure to be run before joining the
overlay pool; if even one test fails, the pilot aborts and never

217

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 227 / 237

joins the pool. This allows for the overlay pool to be well
behaved, at least within the limits of the tested properties.

Figure 1. Schematic view of a pilot system

For the final user, the human cost of using this pool is
thus comparable to using a truly dedicated compute pool.
However, someone still has to create this overlay pool by
submitting pilot jobs to the Grid. This pilot administrator will
thus be exposed to the Grid-related errors affecting the pilot
jobs themselves, and will be responsible for debugging them.
While the human cost of this individual will obviously be
much higher compared to the human cost of any individual
user in the direct Grid submission paradigm, its cost is
arguably still much smaller than the aggregate human cost of
all the individuals.

There are two reasons for the cost savings. The first one
is due to the difference in the type of jobs failing. Each user
job is precious, so users have to spend some time recovering
each and every one of them. Pilots are instead disposable,
since they by themselves don't carry any useful payload, and
any failure before an actual user job is started does not
represent any loss of data, just reduced efficiency on the
failing node. The human cost thus scales only with the
number of failing nodes, not failing jobs. As shown in
Table I, for a sizable OSG VO of O(1k) users running
O(10M) compute jobs per month on O(1k) nodes, if even 1%
of those jobs were to fail due to Grid problems, the use of a
pilot infrastructure would reduce the effort from debugging
O(100k) user jobs to debugging O(10) Grid nodes, thus
decreasing the human cost by several orders of magnitude.

TABLE I. COMPARISON OF DEBUGGING COSTS FOR A SIZABLE OSG VO

Direct submission Pilot system

Metric (/month) O(10M) jobs O(1k) nodes

Error rate O(1%) O(1%)

Entities to debug O(100k) O(10)

The second reason is due to the difference in expertise.
End users are typically not interested in computing, being

scientists and viewing computing just as a tool, so they will
likely spend a large amount of time trying to understand the
occasional set of Grid-related problems. Pilot administrators
can instead be IT professionals, who are well versed in
debugging and fixing these kind of problems. Moreover,
they will see similar errors with a much higher frequency,
making the time-to-resolution dramatically shorter.

III. IMPORTANCE OF PARTIAL SHARING IN PILOT
INFRASTRUCTURES

The typical way of using pilot infrastructures is for each
Virtual Organization to install a completely independent
instance. This has been the approach of the early adopters of
pilot infrastructures, such as the LHCb [5], CDF [6] and
ATLAS [7] VOs.

The net result of this approach, however, is the
proliferation of pilot administrators. Given that many Grid
sites provide resources to many VOs, it also likely results in
duplicate effort of debugging errors for pilots that happen to
land on the same malfunctioning compute nodes. Offloading
the operational load of many VOs to a single operations
group would thus result in significant human cost savings,
for the same reasons described in the previous section.

One of the reasons why early adopters did not go for a
shared solution is that while sharing of a pilot instance is in
theory possible, e.g., by simply allowing users from different
communities to submit to the same overlay pool, in practice
VOs cherish their autonomy, and will not delegate all control
to a third party. As long as pilot submission is tightly
integrated with the overlay pool operations, as it was the case
for the solutions referenced above, partial sharing is not an
option.

The glideinWMS addresses the above problem by clearly
splitting the pilot infrastructure in two logical pieces, and
thus separating the pilot submission from the operation of the
overlay pool itself. The pilot submission is handled by one or
more glidein factories, while the overlay pool is handled by
the Condor batch system [8,9], with an additional process,
called the VO frontend, providing the logic for requesting
pilot submission from a glidein factory. Each glidein factory,
in turn, can serve multiple VO frontends. The complete
architecture is summarized in Fig. 2; please note that Condor
pilots are labeled as glideins.

Using the glideinWMS, each VO operates its own
Condor batch system instance and the associated VO
frontend. Since almost all the policies are implemented in
this layer, the VO maintains the full control of the overlay
pool, thus retaining the look-and-feel of a dedicated, tightly
controlled compute cluster.

A VO could also run a glidein factory, but it can instead
delegate this activity to a third party without relinquishing
any control of the system. The glidein factory is effectively a
slave to the VO frontends, submitting pilots on their request.
The added value of a glidein factory is mostly in the
insulation of a VO frontend, and through it the associated
Condor batch system, from the Grid world, providing Grid
site specific configuration and validation, and handling all
the Grid-related monitoring and error debugging. All of these
activities are completely generic, and can be shared among
any number of VOs.

218

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 228 / 237

Figure 2. A glideinWMS glidein factory serving two VO frontends

One obvious concern in concentrating all operations to a
single entity is that it may become the single point of failure.
However, the glideinWMS architecture addresses this
concern by allowing each VO frontend to be interfaced with
multiple glidein factories, if so desired. While having more
than one glidein factory will likely raise the overall cost of
the system, it allows to hedge the risk of badly run services,
scalability limits as well as complete service shutdowns.

As stated above, the cost savings of using a common
glidein factory stem from the fact that many Grid sites
provide resources to many VOs; pilots from many VOs will
thus land on any malfunctioning or misconfigured worker
node. Since the human cost scales with the number of failing
nodes being debugged by a pilot administrator, having
multiple pilot administrators debug the same node is
obviously more expensive compared to a single team doing
this task. A quantitative comparison is available in the next
section.

IV. GLIDEINWMS IN OSG

The Open Science Grid has been financing the operation
of a glidein factory located at University of California San
Diego (UCSD) since 2009, with additional contribution
coming from the CMS experiment [10]. This instance is
operated by three people on part-time basis, with an average
effort of little less than one FTE. This glidein factory is open
to all OSG VOs, and is currently used by 12 of them, varying
in size from small campus-Grid groups to large world-wide
communities.

The UCSD glidein factory submits pilot jobs to about
100 Grid sites; out of these, about 30% are used by multiple
VOs, as shown in Fig. 3. Grid sites are selected mostly based
on which VOs they support. The glidein factory operators
obtain this information from multiple sources, including Grid
information systems, VO-specific information systems and
community knowledge. As far as possible, all information is
cross-checked and all new Grid sites validated before being
advertised to the served VO frontends. This effort invested in
the early validation is usually orders of magnitude smaller
than the effort that would be needed to debug misconfigured
or malfunctioning sites after the fact, saving precious human
time.

Figure 3. Fraction of OSG glidein factory Grid sites by number of VOs

As shown in Table II, in a typical week, this glidein
factory submits about 200k pilot jobs, with about 130k or
65% running on shared Grid sites. Of all the submitted pilot
jobs, about 25k or 12% fail the basic node validation, out of
which about 22k running on shared Grid sites, yielding a
slightly higher 16% error rate. About 25% of all human time
is being spent on monitoring these kind of errors, identifying
the root cause and collaborate with the affected Grid site
administrators in resolving them. Given that significantly
more than half of all failing pilots run on shared Grid sites, if
each VO had to perform these functions by itself, it would
have to spend at least 15% of a person's effort on this, which
would result in at least 1.5FTE effort OSG-wide being
dedicated to just Grid monitoring and debugging. Using a
common glidein factory instance thus saves the OSG
community well over a full time person time equivalent.

TABLE II. WEEKLY STATISTICS OF THE OSG GLIDEIN FACTORY

All sites Shared sites

Total glideins 200k 130k

Failing glideins 25k 22k

As can be seen, the major effort is currently not dedicated
to day-to-day operations. Of the remaining time, about 40%
is spent in helping the debugging of problems arising directly
between Grid sites and the VO Condor batch system, another
20% writing tools to reduce the needed human effort in the
long term, and the final 40% to help VOs to effectively use
the glideinWMS. These numbers are also shown in Fig. 4.

Figure 4. Allocation of effort at the OSG glidein factory

219

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 229 / 237

While problems arising from the use of Grid resources by
the VO's Condor batch system is technically beyond the
glidein factory control, the relevant error logs may not get
propagated back to the VO, since the VO communication
mechanisms are based on Condor itself. The glidein factory
will instead always get them, since it is using the regular
Grid mechanisms. The glidein factory operators are thus
expected to monitor for these kind of errors as well.

The operators of the OSG-sponsored glidein factory
instance also often take a leading role in solving such
problems. These problems are often very similar in nature
between different VOs; a typical example of such problems
are firewall issues. As such, the glidein factory operators
have extensive experience in debugging such errors,
reducing the total human effort needed. This is especially
important since these events, while relatively rare, often
don't result in any obvious error messages in the logs, but
require speculative thinking in order to be solved. Some of
these speculative actions may be scriptable, so time is being
invested into the R&D of such tools.

Finally, some of the OSG factory operators also help
managing a CMS VO frontend and the related Condor batch
system, so together with the experience of supporting several
additional VOs from the glidein factory side, they are experts
in troubleshooting every component of the glideinWMS
system. As such, it is cost-effective to use these people to
help all the OSG VOs in the configuration of their
glideinWMS components. This does not mean they are
involved in day-to-day operations, but they do advise on
major configuration decisions.

The number of VOs supported by the OSG glidein
factory has been gradually increasing with time. In this
period, we noticed that new VOs typically require significant
hand-holding, both in terms of configuration help as well as
Condor problems on Grid resources during the initial setup
period and during major changes in their operation mode, but
require relatively little effort most of the remaining time. The
human time required by the glidein factory operations team
has thus been pretty much constant for all but the initial few
months of the glidein factory lifetime, and is expected to
significantly decrease once the influx of new VOs slows
down.

TABLE III. FTE COST ESTIMATES FOR GLIDEINWMS USE IN OSG

Shared
factory

VO provided factory

Per VO OSG-wide
(12 VOs)

Grid debugging 25% 15% 180%

Pilot Debugging 28% 15% 180%

Automation R&D 14% 10% 120%

Total 67% 40% 480%

The actual cost savings of using a shared OSG glidein
factory are difficult to measure, since most VOs using it
switched directly from direct submission to the shared-
factory pilot paradigm. We thus made an educated guess

about the operational costs a typical OSG VO would incur
by running its own glidein factory, and presented them in
Table III. Given that more than half of all pilots run on
shared Grid sites, we estimated that the per-VO cost of both
Grid and pilot debugging would scale approximately at the
same rate; the automation R&D would instead likely be
almost the same as in the shared glidein factory scenario,
although the shared glidein factory does need to produce
more complex tools. As can be seen, we estimate that the
OSG VOs would each use about 40% of an FTE, for an
OSG-wide total of about 5 FTEs. This is significantly higher
than the 2/3 FTE currently being used by the shared glidein
factory.

V. CONCLUSION AND FUTURE WORK

Using Grid resources directly can have a high human
cost. While the Grid is quite easy to use as long as
everything works well, when something does go wrong, it
can take a significant amount of human time to debug and fix
the problem. Several OSG Virtual Organizations have thus
switched to the use of glideinWMS, which allows for
significant cost savings.

The major cost savings come from glideinWMS being a
pilot system, i.e. creating a dynamic overlay pool of compute
resources on top of the Grid. This shields the end users from
Grid errors, and delegates their debugging to a dedicated
team of professionals. Furthermore, to achieve savings
across different VOs, the glideinWMS architecture separates
the pilot submission services from the VO logic, shielding
even the VO administrators themselves from the Grid, and
allowing for the outsourcing of the Grid error handling to an
experienced operations team.

 The Open Science Grid has thus invested into a common
glidein factory instance, creating an expert operations team
that handles the Grid-related monitoring and debugging tasks
for all the interested VOs. This allows these VOs to
drastically reduce the human effort needed, resulting in
global savings of several full time persons time compared to
running the complete pilot infrastructure themselves. The
cost savings compared to direct Grid submission can instead
be counted in tens of FTE, given the thousands of scientists
using the Grid resources.

Moreover, the outsourcing of Grid-related activities also
contributes to a much better user experience, since most
Grid-related problems are caught before the users are
exposed to them, and the remaining ones get solved quickly
thanks to the experience of the dedicated glidein factory
operations team. This contributes to a greater usage of Grid
resources by scientists who would otherwise avoid them, due
to the high human cost involved.

The system has served OSG well, both in terms of
effectiveness and human cost, and is expected to continue to
operate in the foreseeable future, with most OSG VOs
eventually using it. The only major operational change
currently planned is the creation of a second glidein factory
instance at a different location, for high availability reasons.
While this is expected to slightly increase the operations
costs, it is a highly desirable step now that a large
community depends on it.

220

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 230 / 237

ACKNOWLEDGMENT

This work is partially sponsored by the US Department
of Energy under Grant No. DE-FC02-06ER41436
subcontract No. 647F290 (OSG), and the US National
Science Foundation under Grants No. PHY-0612805 (CMS
Maintenance & Operations), and OCI-0943725 (STCI).

REFERENCES

[1] R. Pordes et al., “The open science grid,“ J. Phys.: Conf. Ser., vol. 78,
012057, pp. 1-5, 2007, doi: 10.1088/1742-6596/78/1/012057.

[2] “Open Science Grid home page,” http://www.
opensciencegrid.org/, Accessed June 2011.

[3] I. Sfiligoi et al., "The pilot way to grid resources using
glideinWMS," CSIE, WRI World Cong. on, vol. 2, pp. 428-432,
2009, doi: 10.1109/CSIE.2009.950.

[4] “glideinWMS,” http://tinyurl.com/glideinWMS, Accessed June
2011.

[5] A. C. Smith and A. Tsaregorodtsev, “DIRAC: reliable data
management for LHCb,” J. Phys.: Conf. Ser., vol. 119, 062045, pp. 1-
6, 2008, doi: 10.1088/1742-6596/119/6/062045.

[6] S. Belforte et al. “GlideCAF: A late binding approach to the grid,”
Proc. Comp. in High Ener. and Nucl. Phys. (CHEP2006), 2006, id
147, http://indico.cern.ch/materialDisplay.py?contribId=147&
sessionId=8&materialId=paper&confId=048, Accessed June 2011.

[7] T Maeno, “PanDA: distributed production and distributed analysis
system for ATLAS,” J. Phys.: Conf. Ser., vol. 119, 062036, pp. 1-4,
2008, doi: 10.1088/1742-6596/119/6/062036.

[8] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Conc. and Comp.: Practice and
Experience, vol. 17, issue 2-4, pp. 323–356, 2005, doi:
10.1002/cpe.938.

[9] “Condor project homepage,” http://www.cs.wisc.edu/condor/,
Accessed June 2011.

[10] The CMS Collaboration et al. “The CMS experiment at the CERN
LHC,” J. Inst, vol. 3, S08004, pp. 1-334, 2008, doi: 10.1088/1748-
0221/3/08/S08004.

221

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 231 / 237

On the Performance Isolation Across Virtual Network Adapters in Xen

Blazej Adamczyk, Andrzej Chydzinski
Institute of Computer Sciences

Silesian University of Technology
44-100 Gliwice, Poland

{blazej.adamczyk,andrzej.chydzinski}@polsl.pl

Abstract—Virtualization has recently become a very popular
technique for utilizing hardware capabilities and lowering
infrastructure and maintenance costs. However, making several
virtual machines share the same resources can potentially
introduce performance isolation problems. Depending on the
application, proper quality of service and the performance
isolation may present critical requirements for the system.
In this paper, we focus on network performance isolation
among virtual adapters in Xen. We present several experi-
ments demonstrating how activity of one virtual machine can
affect the network performance of any other. Additionally, we
examine the network I/O scheduler in Xen to see if it is fair,
predictable and configurable enough. Finally, we propose an
idea on how to modify Xen back-end drivers to improve the
network performance isolation.

Keywords-performance isolation; Xen; virtualization; ne-
twork scheduler.

I. INTRODUCTION

The increasing number of different IT services are making
the virtualization idea a very important aspect of computer
science. Virtual Machine Monitors (VMMs) bring about the
dynamic resource allocation and enable full utilization even
of the most powerful servers, while still maintaining good
fault isolation between virtual machines (VMs). However,
the services provided over the network may require a certain
quality, which is not easy to ensure in a virtualized envi-
ronment. Several VMs can share the same physical network
interface as well as other hardware (processor, memory etc.)
what likely makes one VM affect other VMs performance.
Therefore, the performance isolation is crucial in case of
some applications and has to be carefully verified.

In this paper, we focus on Xen VMM, [1], which is one
of the most popular virtualization platforms and an Open
Source project. Firstly, we present a study of the network
performance isolation between Xen virtual machines. Diffe-
rent test scenarios allowed us to identify several problems.
Secondly, we carefully analyze the Xen CPU scheduler and
the network IO scheduler to find out their possible source
and resolution method.

The remaining part of the paper is structured as follows. In
Section III, Xen general architecture is overviewed. Then, a
description of the Xen schedulers is presented in Section
IV. Section V describes the testing environment and its
parameterizations. The results and discussion on them are

contained in Section VI. Finally, an idea of improving the
network performance isolation in Xen is presented in Section
VII. Conclusions are gathered in Section VIII.

II. STATE OF THE ART

This study verifies that there are problems related with
performance and isolation of virtualized network resources.
Several previous studies (see [9], [10], [11], [12], [13], [14],
[15]) focus on analysis of the performance of IO operations
and some of them present partial solutions. Unfortunately,
these studies do not examine isolation and manageability
in the field of resource sharing in considered virtualization
platforms. In [7], however, the authors tried to approach
the performance isolation problem focusing on all kinds of
resources. Unfortunately, this study was performed on older
version of Xen with an older CPU scheduler implementation.
They assumed that the main source of the problem is connec-
ted with CPU assignment and scheduling. We think however,
that to achieve good performance isolation across virtual
network adapters the proposed CPU scheduler improvement
could be used but is not sufficient. We present that even on
a low CPU utilization the problem is still noticeable and
is related with network scheduler itself. We have verified
that applying a modified for virtualization Weighted Round
Robin (WRR) network scheduler improves the performance
isolation and provides better control over virtual network
devices.

III. XEN VMM

Different virtualization environments have been developed
throughout the years. Xen, due to its unique architecture
(Fig. 1), is one of the leading solutions. The core of Xen,
which is responsible for control over all virtual machines,
is a tiny operating system called Xen Hypervisor. Its main
tasks are CPU scheduling, memory assignment and interrupt
forwarding. In contrast to other VMMs, the virtualization of
all other resources is moved outside the hypervisor. Such
original approach has the following advantages:

• Device drivers are not limited to the hypervisor ope-
rating system because they are installed on a virtual
machine (any OS),

222

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 232 / 237

• Device drivers, as the most vulnerable software, are
isolated from the hypervisor, significantly increasing
the stability,

• Distributed virtualization of resources allows creation
of several driver domains, eliminating the single point
of failure,

• Small hypervisor operating system is much more relia-
ble, efficient and stable.

CPUs

Hypervisor
CPU Scheduler

?

NIC

Dom0 DomU

VCPUs

?
VCPUs

-

Standard driver

?

Back-end IO Sched.
?

Front-end driver�

Figure 1. Xen architecture (Dom0 - Xen primary virtual machine, DomU -
other Xen virtual machine, Hypervisor - main Xen operating system running
directly on hardware, NIC - Network Interface Card, VCPU - virtual CPU)

There are two main virtualization methods. The first one
allows to run any kind of OS and emulates all the necessary
hardware to create an impression that the guest system is
running on a physical machine. Second approach is to run a
modified guest operating system, which is ”aware” of being
virtualized. The latter, called paravirtualization, is much
more efficient, but limited to some operating systems only.
Xen provides both methods, but performs much better in the
paravirtualization mode, which will be the only method used
further in this paper.

To make the IO operations as fast as possible, Xen
introduced also paravirtualized device drivers. Each guest
domain (Xen VMs are also called ”domains”) has the front-
end drivers installed. Such drivers, provided with Xen,
are communicating with the back-end drivers running on
a special driver domain (Dom0 in Fig. 1). All requests
addressed to a certain hardware are first scheduled and
processed by the back-end driver, then are sent to the
standard device driver inside the driver domain and finally
reach the hardware. Thanks to Xen internal page-flipping
mechanism called XenBus, (see [2], [3]), such solution is
much more efficient than the standard emulation technique.

IV. XEN SCHEDULERS

The main goal of this study is to examine the network
performance isolation across Xen guest domains. It means
to check, if activity of one virtual machine influences the
network performance of any other. The resulting knowledge

is of great importance from the perspective of many network-
related applications.

There are two elements in Xen, which may influence such
isolation, namely the CPU scheduler and the network IO
scheduler [6]. In the following two sections a description of
these two schedulers is given.

A. CPU Scheduler

The fundamental part of each multitasking operating sys-
tem is the CPU scheduler. Its aim is to create an impression
that all running processes are executed in parallel. Typically,
there are much more processes than available physical CPUs
and the processes have to share CPU time. The scheduler is
responsible for this division.

Inside Xen VMM, the hypervisor is the main operating
system running on the physical machine. It is responsible
for scheduling physical CPU time among virtual machines.
To make the process easier the term virtual CPU (VCPU)
is introduced. Every VM in Xen can have multiple virtual
processors. Also, every domain is running operating system
with another scheduler, which divides a VCPU time among
processes running inside the guest operating system. The
hypervisor on the other hand, schedules the physical CPU
time among VCPUs.

The newest version of Xen uses the credit scheduler [4]
[5]. It assigns two parameters for each domain - weight and
cap. The weight defines how much CPU time a domain
gets comparing to other virtual machines. The cap parameter
is optional and describes the maximum amount of CPU a
domain can consume. Using this two parameters the number
of credits can be calculated. As a VCPU runs, it consumes
credits. While VCPU has existing credits, its priority is
called under and it gets CPU time normally. When there are
no credits left, the priority changes to over. Each physical
CPU maintains its own local VCPU queue. In the first place,
the VCPU tasks with priority under from the local queue are
executed. Then, if there are no VCPUs with priority under,
the scheduler looks for such tasks in other CPU queues. If
there are no tasks with priority under, the tasks with priority
over from the local queue are executed. The credit scheduler
in Xen can by summarized in the following algorithm and
diagram (Fig. 2):

1) Process preemption - the scheduler takes control over
CPU.

2) Last taken VCPU inserted back into the local queue
according to its credits number.

3) Have the highest priority VCPU from the local queue
used all its credits?

• No: Highest priority VCPU taken from the local
queue.

• Yes: SMP Load Balancing - highest priority
VCPU taken from other CPU queues.

4) Switching context to the currently taken VCPU - the
VCPU takes control over CPU.

223

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 233 / 237

Figure 2. Xen CPU scheduler

Considering this CPU scheduler in the context of the
network performance isolation, it is worth noticing that the
scheduler operates on virtual CPUs only, so it should not
have a strong impact on IO performance. However, it may
happen that one misbehaving VM will slow down the total
responsiveness and performance of other domains. Also, as
it was presented in [7], the Xen CPU scheduler does not
take into account the amount of CPU consumed by the
driver domain on behalf of other VM. This may also have
an impact on the network performance isolation, as some
domains may use more CPU time than they are allowed.
Furthermore, a different type of IO request (e.g., more
demanding, like disk driver requests) can potentially slow
down the driver domain and affect the network performance
of other VMs.

B. Network IO scheduler

Looking at Xen architecture and analyzing its source code
from the network performance isolation point of view, one
can easily note that the most interesting part is the back-end
network driver, called Netback. It contains another scheduler,
responsible for gathering all IO requests sent to a certain
physical network adapter. This network scheduler is not a
complex mechanism and probably can be improved. Its only
configuration parameter is the maximum rate (parameter
rate) - in fact it can be perceived as the credits number in the
scheduler. The administrator can specify only the maximal
throughput achieved by a certain virtual network adapter.
Unfortunately, there is no way to prioritize and control the
quality of service in more details.

The scheduler itself counts the amount of data
sent/received in given periods. If rate has been reached, it
sets a callback to process the request in next periods. Such
solution is efficient, but does not guarantee any fair share or
quality. In fact, a misbehaving VM can theoretically flood
driver domain with requests.

V. EXPERIMENTAL SETUP

To perform the tests, we installed Linux Gentoo with Xen
4.0.0 on Intel Quad Core 2 (2.83GHz), 2GB RAM, with

hardware virtualization support. Two guest domains, each
having 1 VCPU and 1GB of RAM, were created. Although
there were separate physical CPU available for each VM,
both VCPUs were pinned to the same physical CPU. Such
configuration was used in order to check the influence of
the CPU scheduler on the network performance. All network
measurements were taken using iperf application. The UDP
protocol transferring datagrams of 1500B to an external host
over 100Mb link was used. We used the 100Mb link instead
of 1Gb to present that the isolation problems are still present
without a heavy CPU utilization. Only outgoing traffic was
measured, as this was our main point of interest. The testing
environment is presented in Fig. 3.

Physical machine

PV 1

PV 2
NIC

-

-

100Mb/s-

External machine

NIC

Figure 3. Testbed configuration. (PV1, PV2 - Xen paravirtualized
machines, NIC - Network Card Interface)

VI. RESULTS

In the first experiment, we observed how activity of one
VM can affect the performance of another, when both VMs
are configured with the same rate parameter. Four values
of rate were used in different test runs: 25Mb/s, 30Mb/s,
35Mb/s and 40Mb/s. In every run one machine started its
transfer at the very beginning and the other started after 5s
of delay. For every rate value, the experiment was repeated
10 times and the 0.95 confidence intervals were derived. The
results are presented in Fig. 4.

Firstly, we can see that the actual rate is always a little
smaller than rate parameter. As for the performance isola-
tion, it is not too bad for low values of rate. However, with
growing rate, the confidence intervals are getting larger and
larger - in sample runs we can observe stronger variations of
the throughput achieved by each VM. For the value of rate
equal to 35Mb/s, the performance isolation becomes rather
weak (although only about 60 percent of the total bandwidth
is consumed).

Thus the only way to achieve a good isolation is to limit
virtual adapters by far, which is not a satisfactory solution.
Also, it is worth mentioning that having only the upper limit
parameter is not enough in many cases. It would be much
better to have any means to prioritize certain virtual adapter
or even to have a minimum rate parameter and a scheduler
satisfying these requirements.

In the second experiment, different rate values per each
VM were used. Fig. 5 shows results for rate = 30Mb/s
in one VM, and rate = 40Mb/s in another. The isolation

224

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 234 / 237

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 4. The throughput per VM for different values of rate parameter,
namely for 25Mb/s, 30Mb/s, 35Mb/s and 40Mb/s, counting from the
top.

problem still remains but, what is worth noticing, both VMs
affects each other similarly.

In the presented two experiments the performance iso-
lation problem was either mild or moderate, depending on
the configuration. In the following two experiments, we will
demonstrate more severe performance isolation issues.

In the third experiment, we verified how Xen divides
available bandwidth among two VMs when the maximal rate
is not set. A sample path of the throughput achieved by each
VM in time is presented in Fig. 6. Surprisingly, sometimes
one virtual machine gets the total throughput and the other’s

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 5. Total throughput per VM for different values of rate parameter
(30Mb/s and 40Mb/s.

throughput decreases to 0. Moreover, there are long periods
when one VM dominates the other by far. Therefore, we
have in fact no performance isolation at all in this case.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 6. Sample throughput processes in time for two separate VMs
without limits

In the fourth set of tests, we wanted to verify if a
very abusive virtual machine can take more bandwidth then
others. This time we wanted to check the performance
isolation of the network IO scheduler only, therefore we
pinned one physical CPU to each VM.

In the first test, one domain was trying to transfer data
over one connection using full available speed, while the
second domain was using two connections, both of them
trying to achieve full available speed. In the next test, the
second domain was using three connections at full available
speed.

The results are presented in Fig. 7. As it can be observed,
the more abusive domain is, the better throughput it achieves.
Naturally, if the rate parameter had been set, the overactive

225

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 235 / 237

domain would never have crossed the maximum rate. In the
lower ranges however, the problem remains.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2 (2x more active)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2 (3x more active)

Figure 7. Bandwidth division with one overactive VM.

In the last experiment, we wanted to check if non-network
IO requests can influence the network performance isolation
of another domain. During the experiment one VM was
constantly sending datagrams at full speed, while the second
VM was performing some extensive disk operations (fio tool
was used for this purpose). The results are presented in Fig.
8; t0 and t1 are points in time when the extensive disk
operations were initiated and finished, respectively.

We can see that other IO request can also have a strong
impact on the network performance. This is probably caused
by driver domain not being able to process all the IO
requests. Block device access is being handled by separate
block device back-end drivers. Disk operations are much
more demanding in the driver domain than the Netback
drivers.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

B
i
t
r
a
t
e

M
b
/
s

Time s

t
0

t
1

VM 1

Figure 8. Disk IO influence on network performance. (t0 - disk IO start,
t1 - disk IO finish)

VII. IMPROVEMENT IDEA

After detailed analysis of the problem, we have gathered
some ideas on how to modify Xen to improve the network
performance isolation. Currently, in the driver domain se-
veral Netback kernel threads can be running, depending
on the number of VCPUs. Furthermore, several virtual
network adapters are mapped with one Netback kernel thread
dynamically and this single Netback thread schedules the
work using a simple round-robin algorithm, additionally
taking into account rate parameter (omitting adapters, which
used up all their bandwidth in the current period). Our idea
is to introduce two additional parameters for every virtual
adapter, namely priority and min rate. To implement the
former, it would be necessary to change the round-robin
mechanism to a more advanced priority based queue. Of
course, we have to remember that the algorithm should not
increase significantly the time complexity. The min rate
parameter could use the same prioritization mechanism,
assigning higher priorities to interfaces, which have not yet
achieved the minimum rate. Depending on the results, it may
be also necessary to introduce a user level application for
maintaining the niceness level of each Netback thread inside
the driver domain, according to actual needs.

A. Prioritization

The very first step to solve all the aforementioned pro-
blems is to introduce a prioritization mechanism into Xen’s
Netback driver. To achieve such functionality we implemen-
ted the simple Weighted Round Robin algorithm (see [8]). In
virtualized environment where a packet passes several virtual
adapters before it reaches the actual real interface and each
interface has its own input buffer the WRR scheduler has
to be modified to guarantee that the scheduled packets will
not be dropped before they reach the wire. Dynamic and
real-time priority assignment in this scheduler was created
by additional Linux kernel sysctl parameters, i.e., prioritize,
priorities and delay. The first parameter defines whether to
use the WRR scheduler or not. Second parameter is an array
of the actual priority values for each virtual adapter and the
delay is used to define the inactivity period (i.e. a period of
time after, which the vif is treated as inactive).

Each vif has a separate queue of data to transfer and
a priority. The latter corresponds to the weight in the
implemented WRR algorithm. Total bandwidth available at
the physical link is shared proportionally between all active
virtual interfaces according to their weights.

To test the prioritization we performed simple experiment
where two VMs transmit data to an external host. In the
meantime the priorities were changed every second. At the
begging VM 1 had much bigger priority, in the end VM 2
was favored in the same proportion (i.e., 30/1). The results
are presented in Figure 9.

226

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

 236 / 237

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

B
i
t
r
a
t
e

M
b
/
s

Time s

VM 1

VM 2

Figure 9. Results of the improved scheduler for changing priorities of
each VM.

B. Further improvements

Prioritization brings a lot of new possibilities and impro-
ves the performance isolation by far. Nevertheless, in high
CPU utilization scenarios it is not sufficient. Much more
complicated mechanisms have to be created. Virtualization
makes the problem very complex, as three different sche-
dulers may affect the isolation: CPU Scheduler, Domain 0
VCPU Scheduler and Netback IO Scheduler. To achieve best
results it might be necessary to synchronize all schedulers.
Thus, partial solutions providing the minimal rate parameter
for given virtual interface may prove very valuable. Finally,
a modification proposed in [7] may also help to increase the
performance isolation taking the aggregate CPU consump-
tion into consideration. All these are subjects of our future
study.

VIII. CONCLUSION

Xen is a powerful and stable virtualization platform, what
accompanied with its Open Source formula makes it one of
the most interesting VMMs, especially for research purpo-
ses. However, when the network virtualization is considered,
the weak point of Xen is its lack of proper performance
isolation. We demonstrated this using five sets of tests. The
problems with isolation are caused by several factors mostly
connected with CPU and IO schedulers. We proposed the
Netback driver modification using WRR algorithm to provide
prioritization. We have also briefly presented an idea for
future improvements.

IX. ACKNOWLEDGMENT

This work is partially funded by the European
Union, European Funds 2007-2013, under contract number
POIG.01.01.02-00-045/09-00 ”Future Internet Engineering”.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield: Xen and the art of
virtualization. In: Proc.of the 19th ACM SOSP, New York,
2003, Vol. 37, pp. 164–177.

[2] Y. Xia, Y. Niu, Y. Zheng, N. Jia, C. Yang, and X. Cheng:
Analysis and Enhancement for Interactive-Oriented Virtual
Machine Scheduling, IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing, 2008, Vol. 2, pp. 393–
398.

[3] Xen Wiki, http://wiki.xensource.com/xenwiki/XenBus, 29-06-
2011.

[4] L. Cherkasova, D. Gupta, and A. Vahdat: Comparison of the
three CPU schedulers in Xen, SIGMETRICS Performance
Evaluation Review; September 2007, Vol. 35, No. 2., pp. 42-
51.

[5] G. W. Dunlap: Scheduler development update, Xen Sum-
mit North America 2010, http://www.xen.org/files/xensummit
intel09/George Dunlap.pdf, 29-06-2011.

[6] J. Matthews, E.M. Dow, T. Deshane, W. Hu, J. Bongio, P.F.
Wilbur, and B. Johnson: Running Xen: A Hands-on Guide to
the Art of Virtualization; Prentice Hall; April 2008.

[7] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat: Enfor-
cing Performance Isolation Across Virtual Machines in Xen;
In Proceedings of the 7th ACM/IFIP/USENIX Middleware
Conference, 2006, pp. 342-362.

[8] A. K. Parekh and R. G. Gallager: A generalized proces-
sor sharing approach to flow control in integrated services
networks: The single-node case; IEEE/ACM Transactions on
Networking; 1993, Vol. 1, pp. 344-357.

[9] P. Padala et al.: Adaptive control of virtualized resources
in utility computing environments, ACM SIGOPS Operating
Systems Review, Vol. 41, No. 3, 2007, pp. 289-302.

[10] Y. Song, Y. Sun, H. Wang, and X. Song: An adaptive
resource flowing scheme amongst VMs in a VM-based utility
computing, in Computer and Information Technology, 2007.
CIT 2007. 7th IEEE International Conference on, 2007, pp.
10531058.

[11] J. Liu, W. Huang, B. Abali, and D. K. Panda: High perfor-
mance VMM-bypass I/O in virtual machines, in Proceedings
of the annual conference on USENIX, 2006, Vol. 6, pp. 3-3.

[12] V. Chadha, R. Illiikkal, R. Iyer, J. Moses, D. Newell, and
R. J. Figueiredo: I/O processing in a virtualized platform: a
simulation-driven approach, in Proceedings of the 3rd interna-
tional conference on Virtual execution environments, 2007, pp.
116-125.

[13] D. Ongaro, A. L. Cox, and S. Rixner: Scheduling I/O in
virtual machine monitors, in Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual execu-
tion environments, 2008, pp. 1-10.

[14] G. Liao, D. Guo, L. Bhuyan, and S. R. King: Software tech-
niques to improve virtualized I/O performance on multi-core
systems, in Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
San Jose, California, 2008, pp. 161-170.

[15] S. R. Seelam and P. J. Teller: Virtual I/O scheduler: a
scheduler of schedulers for performance virtualization, in
Proceedings of the 3rd international conference on Virtual
execution environments, 2007, pp. 105-115.

227

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Powered by TCPDF (www.tcpdf.org)

 237 / 237

http://www.tcpdf.org

