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BIOTECHNO 2016

Foreword

The Eighth International Conference on Bioinformatics, Biocomputational Systems and
Biotechnologies (BIOTECHNO 2016), held between June 26 - 30, 2016 - Lisbon, Portugal, covered these
three main areas: bioinformatics, biomedical technologies, and biocomputing.

Bioinformatics deals with the system-level study of complex interactions in biosystems providing
a quantitative systemic approach to understand them and appropriate tool support and concepts to
model them. Understanding and modeling biosystems requires simulation of biological behaviors and
functions. Bioinformatics itself constitutes a vast area of research and specialization, as many classical
domains such as databases, modeling, and regular expressions are used to represent, store, retrieve and
process a huge volume of knowledge. There are challenging aspects concerning biocomputation
technologies, bioinformatics mechanisms dealing with chemoinformatics, bioimaging, and
neuroinformatics.

Biotechnology is defined as the industrial use of living organisms or biological techniques
developed through basic research. Bio-oriented technologies became very popular in various research
topics and industrial market segments. Current human mechanisms seem to offer significant ways for
improving theories, algorithms, technologies, products and systems. The focus is driven by
fundamentals in approaching and applying biotechnologies in terms of engineering methods, special
electronics, and special materials and systems. Borrowing simplicity and performance from the real life,
biodevices cover a large spectrum of areas, from sensors, chips, and biometry to computing. One of the
chief domains is represented by the biomedical biotechnologies, from instrumentation to monitoring,
from simple sensors to integrated systems, including image processing and visualization systems. As the
state-of-the-art in all the domains enumerated in the conference topics evolve with high velocity, new
biotechnologes and biosystems become available. Their rapid integration in the real life becomes a
challenge.

Brain-computing, biocomputing, and computation biology and microbiology represent advanced
methodologies and mechanisms in approaching and understanding the challenging behavior of life
mechanisms. Using bio-ontologies, biosemantics and special processing concepts, progress was achieved
in dealing with genomics, biopharmaceutical and molecular intelligence, in the biology and microbiology
domains. The area brings a rich spectrum of informatics paradigms, such as epidemic models, pattern
classification, graph theory, or stochastic models, to support special biocomputing applications in
biomedical, genetics, molecular and cellular biology and microbiology. While progress is achieved with a
high speed, challenges must be overcome for large-scale bio-subsystems, special genomics cases, bio-
nanotechnologies, drugs, or microbial propagation and immunity.

The BIOTECHNO 2016 conference also featured the following symposium:
- BIOCOMPUTATION 2016 - The International Symposium on Big Data and BioComputation
-
We take here the opportunity to warmly thank all the members of the BIOTECHNO 2016

Technical Program Committee, as well as the numerous reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to BIOTECHNO 2016. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.
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Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the BIOTECHNO 2016 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that BIOTECHNO 2016 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the fields of
bioinformatics, biocomputational systems and biotechnologies.

We also hope that Lisbon provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city.

BIOTECHNO 2016 Chairs:

Stephen Anthony, The University of New South Wales, Australia
Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany
Hesham H. Ali, University of Nebraska at Omaha, USA
Ganesharam Balagopal, Ontario Ministry of the Environment - Toronto, Canada
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Matroska Feature Selection Method for Microarray Data 

Shuichi Shinmura 
Faculty of Economics, Seikei Univ. 

Tokyo, Japan 
e-mail: shinmura@econ.seikei.ac.jp 

 
 

Abstract— We propose a Matroska feature selection method 
(Method 2) for microarray datasets (the datasets). We had 
already established a new theory of the discriminant analysis 
(Theory) and developed an optimal Linear Discriminant 
Function (OLDF) named Revised IP-OLDF. This LDF can 
naturally select features for the datasets. The dataset consists of 
several small genes subspaces that we call small Matroskas 
(SMs) and are linearly separable. We confirmed this feature 
selection of Revised IP-OLDF by Swiss banknote data and 
Japanese automobile data, also. Therefore, we need not struggle 
with high-dimension genes space. In this paper, we develop a 
LINGO program to find all SMs and confirm that the dataset 
consists of disjoint union of SMs and high-dimension subspace 
that is not linearly separable. Because it is very easy for us to 
analyze these SMs that are small samples, we may be able to find 
new facts of gene analysis. Lasso researchers will have better 
results compared with our results. 

Keywords- Minimum Number of Misclassifications (MNM); 
Revised IP-OLDF; SVM; Fisher’s LDF; Gene Analysis; Small 
Matroska (SM); Basic Gene Subspase (BGS); Lasso. 

I. INTRODCTION 
Fisher [6] [7] developed a Linear Discriminant Function 

(Fisher’s LDF) under Fisher’s assumption and established the 
theory of discriminant analysis. Because Fisher’s assumption 
was too strict for the real data, a Quadratic Discriminant 
Function (QDF) was developed. In addition to two 
discriminant functions, logistic regression [4] and a 
Regulalized Discriminant Analysis (RDA) [9] were proposed 
as the statistical discriminant functions. These statistical 
discriminant functions apply for many applications, and 
statistical software packages became essential tools for the 
science and industries. On the other hand, it is well known 
that Mathematical Programming (MP) can define the 
discriminant models [16]. Linear Programming (LP) sets out 
Least Absolute Deviation (LAD) discriminant function. 
Quadratic Programming (QP) defines an L2-norm 
discriminant function (Least square method). Nonlinear 
Programming (NLP) defines Lp-norm discriminant functions. 
Before 1997, there were many papers of MP-based 
discriminant functions summarized by Stam [57]. We think 
the first generation research ended in 1997 because these 
researches lacked examination of real data and comparison 
with statistical discriminant functions. Vapnik [61] proposed 
three Support Vector Machines (SVMs) such as a Hard-
margin SVM (H-SVM), Soft-margin SVM (S-SVM) and 
kernel SVM in 1995. H-SVM clearly defined a Linearly 
Separable Data (LSD) and generalization ability. However, 
because most real data are not LSD, and H-SVM can be used 

only for LSD, we use S-SVM for actual data. QP defines 
these SVMs. Although kernel SVM is one of nonlinear 
discriminant function and provides an attractive idea, we do 
not discuss it in this research because our concern is a 
comparison of LDFs. Many researchers use SVMs because 
there are many examinations of real data compared with the 
first generation research of MP-based discriminant theory. 
From 1971 to 1974, we became a member of the project to 
develop a computer system for an Electrocardiogram (ECG) 
data. Project leader, Doc. Nomura gave us a theme to develop 
a diagnostic logic using Fisher’s LDF. Our research was 
inferior to Nomura’s experimental decision tree algorithm. At 
first, we thought this failure was caused by our poor 
experience and knowledge of statistics. However, we 
considered the discriminant functions based on the variance-
covariance matrices were not suitable for the medical 
diagnosis discussed in Section Ⅱ. Moreover, we found all 
LDFs cannot correctly discriminate the cases on the 
discriminant hyperplane (Problem 1). 

In Section Ⅱ, although Fisher established discriminant 
analysis based on variance-covariance matrices, we explain a 
new theory of MP-based discriminant analysis (Theory) [53]. 
At first, we developed an Optimal LDF based on a Minimum 
Number of Misclassifications (minimum NM, MNM) 
criterion (IP-OLDF) in (1) [19] - [21]. It reveals two 
important facts of discriminant analysis. Those are 1) the 
relation of NM and LDF in the discriminant coefficient space, 
2) monotonic decrease of MNM that is very crucial for gene 
analysis. It shows the good result by comparison with 
Fisher’s LDF and QDF using Fisher’s iris data [2] and 
Cephalo Pelvic Disproportion (CPD) data [14]. It finds Swiss 
banknote data is LSD [8]. All LDFs except for H-SVM and 
Revised IP-OLDF in (2) cannot discriminate LSD 
theoretically (Problem 2). Experimentally, Revised LP-
OLDF in (2), one of L1-norm LDF using LP, can 
discriminate LSD. Nevertheless, it tends to gather cases on 
the discriminant hyperplane (Problem 1). Student data [24] 
reveals the defect of IP-OLDF caused by Problem 1. 
Therefore, Revised IP-OLDF is developed. It is only LDF to 
solve Problem 1. The pass/fail determination using exam 
scores [28]  shows the defect of QDF and RDA caused by the 
defect of generalized inverse of variance-covariance matrices 
(Problem 3). If we add random noise to constant values of 
some particular variable, we can solve Problem 3. Japanese 
automobile data [35] explain Problem 3, also. Because Fisher 
never formulate the equation of Standard Error (SE) of error 
rate and discriminant coefficient, discriminant analysis is not 
traditional inferential statistics based on normal distribution 
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(Problem 4). A 100-fold cross-validation for small sample 
method (Method 1) offers the 95% Confidence Interval (CI) 
of error rate and discriminant coefficient [23] [25] - [27]. 
Moreover, because the best model with minimum mean of 
error rate in the validation samples is powerful model 
selection method and we can explain the meaning of 
discriminant coefficient [51][52], we understand to establish 
Theory. However, we know many researchers have been 
struggling in the gene analysis for more than ten years 
(Problem 5) [12]. 

In Section Ⅲ, we propose a Matroska feature selection 
method for gene analysis (Method 2). When we discriminate 
six microarray datasets (the datasets) [12], our three OLDFs 
can naturally select features [37] - [44]. However, three 
SVMs cannot select features. Moreover, Fisher’s LDF cannot 
discriminate six datasets correctly because six NMs are not 
zero. In [42] [43] we explained in detail the results of Fisher’s 
LDF. Revised IP-OLDF by Method 2 reveals the dataset 
consists of disjoint union of small linearly separable 
subspaces (SMs) and high-dimensional subspace that is not 
linearly separable (MNM >=1). This perception is essential 
for gene analysis. 

In Section Ⅳ, we explain how to analyze each SM and 
find a Basic Gene Subspace (BGS) in each SM by ordinary 
statistical methods. We can analyze each SM very easy 
because all SMs are small samples. Moreover, we can 
understand the structure of dataset by BGSs because of 
monotonic decrease of MNM. 

II. NEW THEORY OF DISCRIMINANT ANALYSIS 
      We develop four OLDF including IP-OLDF that find two 
new facts and solve four problems. Moreover, we confirm the 
best models of Revised IP-OLDF are better than other seven 
LDFs by six ordinary data introduced in Section Ⅰ. 

A. Four Problems of Discriminant Analysis 
There are four problems with the discriminant analysis 

[31][35] [36].              

Problem 1: The discriminant rule is very simple. Let f(x) 
be LDF and yi*f(xi) be a discriminant score for xi. If yi*f (xi) 
> 0, xi is classified to class1/class2 correctly. If yi*f(xi) < 0, 
xi is misclassified. We cannot properly discriminate xi on the 
discriminant hyperplane (f(xi) = 0). Many researchers ignore 
this unresolved problem until now. They consider a 
discriminant rule as follows: If f (xi) >= 0, xi is classified to 
class 1 correctly. Otherwise, if f (xi) < 0, xi is classified to 
class 2 correctly. Their discriminant rule is not logical. Only 
Revised IP-OLDF can treat this problem appropriately. 
Indeed, except for Revised IP-OLDF, no LDFs can count the 
NMs correctly. These LDFs should count the number of cases 
where f(xi) = 0, and display this figure alongside the NM in 
the output. Student data tells us the defect of IP-OLDF. 
Therefore, we develop Revised IP-OLDF. 

Problem 2: Only H-SVM and Revised IP-OLDF can 
recognize LSD theoretically. Experimentally, Revised LP-
OLDF discriminates LSD correctly. Nevertheless, it tends to 

collect cases on the discriminant hyperplane (Problem 1). If 
we discriminate exam scores by four testlets score, and the 
pass mark is 50 point, we can obtain a trivial LDF such as f = 
T1 + T2+ T3+ T4 -50 [36]. We can judge the student pass the 
exam if f(xi) >= 0 and fail the exam if f(xi) < 0. However, 
error rates of Fisher’s LDF and QDF are very high [35] 
because exam scores do not satisfy Fisher’s assumption. 
Therefore, these LDFs should not be used in important 
applications such as medical diagnosis, pattern recognition, 
and rating.  

Problem 3: Problem 3 is the defect of generalized inverse. 
When we discriminated math exam scores by QDF and RDA, 
all pass students were misclassified in the failed class because 
all pass students answered some item scores correctly, and 
scores of failed student vary. In this case, if we add random 
noise to the constant values, we can solve this problem.  

Problem 4: Fisher never formulated the equation of SE of 
discriminant coefficients and error rates based on the normal 
distribution. Because there is no model selection procedure 
instead of a leave-one-out (LOO) procedure [13], we propose 
Method 1. It offers the 95% CI of error rates and discriminant 
coefficients. Moreover, it offers simple and powerful model 
selection procedure such as the best model with a minimum 
mean of error rate in the validation samples. We confirmed 
the best models of Revised IP-OLDF were better than 
Fisher’s LDF, logistic regression and five MP-based LDFs 
using six ordinary data [29] [30] [33] [34]. Fisher’s LDF and 
logistic regression discriminate these data by JMP script [15]. 
JMP division of SAS Institute Inc. Japan supports us to 
develop it. Six MP-based LDFs are Revised IP-OLDF, 
Revised LP-OLDF, Revised IPLP-OLDF, H-SVM and two 
S-SVMs such as SVM4 (penalty c = 10000) and SVM1 
(penalty c = 1) by LINGO program that is supported by 
LINDO Systems Inc [17]. We can establish Theory by JMP 
and LINGO. 

B. MP-based LDFs 
Although we developed a diagnostic logic of ECG data 

by Fisher’s LDF, our research was inferior to the decision tree 
logic developed by the medical doctor. After this experience, 
we concluded it is not adequate for the discrimination of the 
normal and abnormal diseases because of two main reasons 
[18]. 

1) There are many cases nearby the discriminant 
hyperplane. Medical doctors are striving to discriminate the 
cases nearby the discriminant hyperplane. 

2) If the value of some variable increases or decreases, 
the probability belonging to abnormal disease increases from 
0 to 1. Fisher’s LDF assumes the typical abnormal patients 
are the average of the abnormal classes. However, the typical 
patients are far from the normal patients. Taguchi et al. [58] 
method was one of multi-class discrimination by 
Mahalanobis-distance based on the variance-covariance 
matrices. The authors claim that the cases belonging to 
abnormal states are far from the normal state. Their claim is 
the same perception as our claim. If some independent 
variable of logistic regression increases or decreases, the 
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probability ‘p’ belonging to class1 (abnormal symptom) 
increases from 0 (class2) to 1 (class1). Therefore, most 
medical users use logistic regression instead of Fisher’s LDF. 
However, because JMP does not support logistic regression 
for the datasets, we never discuss logistic regression in 
Section Ⅲ.                                                                                      

After many experiences of the discriminant analysis [14] 
[22], we developed IP-OLDF in (1). Because we fix the 
intercept of IP-OLDF to one, it is in the p-dimensional 
coefficient space. Although yi*(txib+1) is discriminant scores, 
yi*(txib+ 1) = 0 is a linear hyperplane and divides 
discriminant space to two half planes such as plus half plane 
(yi*(txib+1) > 0) and minus half plane (yi*(txib+1) < 0). If we 
choose bk in plus hyperplane as LDF, LDF such as 
yi*(tbkxi+1) discriminate xi correctly because of yi*(tbkxi+1) 
= yi*(txibk+1) > 0. On the other hand, if we choose bk in 
minus hyperplane, LDF misclassify xi because of yi*(tbkxi+1) 
= yi*(txibk+1) < 0.  However, we must solve other two models 
such as the intercept = -1 and 0. It looks for the right vertex 
of an Optimal Convex Polyhedron (optimal CP, OCP) if data 
is a general position. There are only p-cases on the 
discriminant hyperplane, and it becomes the vertex of OCP. 
On the other hand, if data is not general position, it may not 
look for the correct vertex of OCP because there are over 
(p+1) cases on the discriminant hyperplane, and we cannot 
correctly discriminate these cases. Therefore, we developed 
Revised IP-OLDF that looks for the interior point of true 
OCP in (2) directly. Because b0 is free variable, it is defined 
in (p+1)-dimensional coefficient space. If it discriminates xi 
correctly, ei = 0 and yi*(txib+b0) >= 1. If it cannot 
discriminate xi correctly, ei = 1 and yi* (txib+b0) >= -9999. 
Although support vector (SV) for classified cases are 
yi*(txib+b0) = 1, SV for misclassified cases are yi*(txib+b0) = 
-9999. Therefore, we expect a discriminant score of 
misclassified cases are less than -1, and there are no cases 
within two SVs. Therefore, if M is small constant, it does not 
work correctly [27]. Because there are no cases on the 
discriminant hyperplane, we can understand the optimal 
solution is an interior point of OCP defined by IP-OLDF. All 
LDFs except for Revised IP-OLDF cannot solve Problem 1 
theoretically. Therefore, these LDFs must check the number 
of cases (h) on the discriminant hyperplane. Correct NM may 
increase (NM + h). 
 

MIN = Σ ei; yi*(txib + 1) >= - ei ;                         (1) 
ei: 0/1 integer variable corresponding to    

classified/misclassified cases.  
yi: 1/-1 for class1/class2 or object variable.   
xi: p-independent variables.                
b: discriminant coefficients.  

 
Because we can consider IP-OLDF in (1) on the data and 

discriminant coefficients spaces, we find two relevant facts 
as follows.  

1) We explain the notation of IP-OLDF by the Golub et 
al. dataset [10]. It consists of two classes such as “All (47 

cases)” and “AML (25 cases)” with 7,129 genes. Our 
primary concern is to discriminate two classes by 7,129 
variables (genes). The 72 linear hyperplane, the 7,129 
coefficients of those are values of each case, divide the 
discriminant coefficient space into finite CP. The interior 
points of each CP correspond to the discriminant coefficient 
of LDF that discriminates the same cases correctly and 
misclassifies another same case. Therefore, because the 
interior points of each CP have unique NM, we can define the 
OCP with MNM. Many examinations show the best models of 
Revised IP-OLDF are better than other seven LDFs. 

2)  Let MNMk be MNM in the k-dimensional subspace. 
MNM decreases monotonously (MNMk >= MNM(k+1)). If 
MNMk = 0, all MNMs including these k-variables (genes) are 
zero. This fact tells us the smallest Matroska (Basic Gene 
Subspace, BGS) can completely describe the structure of 
gene space by monotonic decreases of MNM. 

When we discriminate Swiss banknote data with six 
variables, IP-OLDF finds two-variables models, such as (X4, 
X6), is linearly separable. By the monotonic decrease of 
MNN, 16 MNMs including these two variables are zero 
among 63 models (= 26-1 = 63). Other 47 MNMs are greater 
than one. Revised IP-OLDF in (2) can naturally select 
features for ordinary data and six datasets. However, we 
develop more powerful model selection procedure such as the 
best model by Method 1. Therefore, we had ignored the 
natural feature selection for ordinary data before Method 2.  

 
MIN = Σei ;   yi* ( txib + b0) >= 1 - M* ei ;     (2)   

b0: free decision variables. 
M: 10,000 (Big M constant). 
 

If ei is non-negative real variable, equation (2) changes 
Revised LP-OLDF. Revised IPLP-OLDF [32] is a mixture 
model of Revised LP-OLDF in the first phase and Revised 
IP-OLDF in the second phase. The equation (3) is S-SVM. 
If we set c=104 or c=1, it becomes SVM4 or SVM1. If we 
omit “c* Σei” and “- ei”, it becomes H-SVM. QP solves both 
SVMs.  

 
MIN = ||b||2/2 + c*Σei ;   yi* ( txib + b0) >= 1 - ei ;     (3)   

c: penalty c to combine two objectives. 
ei: non-negative real value. 

C. New Theory of Discriminant Analysis (Theory) 
We explain the outlook of Theory. There are four serious 

problems with the discriminant analysis. We developed four 
MP-based OLDFs. IP-OLDF finds two new facts of 
discriminant analysis. Revised IP-OLDF solves Problem 1 
and Problem 2 related to this paper. Because Method 1 solves 
Problem 4 and four problems are solved completely, we 
misunderstand to establish Theory. In 2015, when we 
discriminated six datasets by MP-based LDFs and Fisher’s 
LDF, only Revised IP-OLDF could naturally select features 
because coefficients less than 173 are not zero and other 
coefficients become zeroes [37]. After we recognize this fifth 
problem, we completely solve Problem 5 by Method 2 in Dec. 
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2015. Although we had observed the feature selection of 
Revised IP-OLDF by Swiss banknote data and Japanese 
automobile data that are LSD, we ignore this fact because the 
best model is an excellent model selection procedure for 
ordinary six data. In gene analysis, if we call all linearly 
separable models as Matroskas that are linearly separable 
gene subspaces, Revised IP-OLDF reduces the high-
dimension gene space, the big Matroska, to small subspace 
(SM) drastically. After we remove genes in the first SM1 
from the big Matroska, Revised IP-OLDF discriminates the 
new gene space (the second big Matroska), again. It can find 
the second different SM2. We repeat this process and locate 
the dataset that consists of the disjoint union of SMs and high-
dimension gene subspace (MNM>=1). Therefore, we 
develop Method 2. We make a program of Method 2 by 
LINGO and can list up all SMs of the six datasets very easy. 
Although many researchers have been struggling to analyze 
the high-dimension gene datasets by a statistical approach 
[55] [60], we can analyze each SM very easy because it is a 
small sample. In Section Ⅳ, we show how to find BGSs by 
manual operation and analyze one of each SM by the ordinary 
statistical approach. In Section Ⅴ,  we discuss the use and 
application of our results. 

D. Short Story of  Feature Selection 
At the end of October 2015, we presented our Theory at 

Japanese statistical conference and knew six datasets  
presented by another researcher presentation. After the 
conference, we discriminated six datasets by seven LDFs. 
Because error rates of Fisher’s LDF were very high for 
eighteen exam scores [35], it is self-evident we cannot obtain 
better results in the gene datasets. Therefore, users never use 
it for gene analysis. Although NMs of three SVMs are zero, 
all coefficients are not zero. Therefore, three SVMs are not 
helpful for the feature selection. Several coefficients of 
Revised IP-OLDF are not zero, and most of the coefficients 
are zero. It can naturally select features of the datasets within 
few seconds and reduce high-dimension genes spaces to the 
smaller subspace that is one of the Matroska. Next, when we 
discriminate the Matroska again, we can find smaller 
Matroska. Therefore, the dataset has the structure of 
Matroska. When we cannot locate the smaller Matroska 
again, we call the last subspace as the Small Matroska (SM1). 
Moreover, after we exclude the first SM1 from the dataset, 
we find the second different SM2. At last, we can list up all 
SMs by a LINGO program of Method 2 and conclude the 
dataset consists of the disjoint union of SMs and another 
high-dimension gene subspace that is not linearly separable. 
Six studies [45] - [50] include full genes lists of the SMs 
about six datasets. If we analyze all SMs, we may be able to 
obtain new facts of gene analysis. Although some 
researchers try to discriminate the dataset by LASSO based 
on variance-covariance matrices, our Theory showed only 
H-SVM and Revised IP-OLDF can discriminate LSD 
theoretically, and revealed the structure of datasets. If 
LASSO researchers compare their results with our results 
using our two ordinary data and six datasets, it is expected to 
improve the research of feature selection method more 
deeply.  

III. MATROSKA FEATURE SELECTION METHOD 
      In this section, we introduce Method 2. 

A. Outlook of Method 2 
When we discriminate Shipp et al. data [54] on Oct. 28, 

2015, only Revised IP-OLDF can select thirty-two genes 
among 7129 genes [37]. Although we misunderstand the 
discrimination having 7129 variables requests huge CPU time, 
Fisher’s LDF by JMP ver.12 (JMP12) and other MP-based 
LDFs coded by LINGO can solve the datasets less than 20 
seconds because the datasets are LSD. However, most 
coefficients of these LDFs except for Revised IP-OLDF are 
not zero. Therefore, these LDFs are not helpful for feature 
selection for gene analysis in addition to ordinary data. In this 
research, we call the smallest Matroska as the BGS with k-
variables. The biggest Matroska with 7129 variables includes 
many smaller Matroskas from 7128 (= 7129 - 1) variables to 
k variables. LINGO program found the datasets are the 
disjoint union of SMs with h-variables (p > h >= k) and 
another high-dimension gene subspace with “MNM >= 1.” 
Now, we must survey the BGSs from SM by manual operation. 
If Revised LINGO program can find all list of BGSs,we can 
understand the structure of the dataset by these BGSs 
completely. Because we can analyze each SM using ordinary 
statistical methods, we expect to obtain new facts of gene 
analysis and hope many researchers try to analyze these SMs. 
By our breakthrough, the feature selection becomes exciting 
theme.  

We guess the reason why Revised IP-OLDF can naturally 
select features as follows. 

1) MNM criterion works well for the feature selection. 
This expectation will be right if LASSO cannot list up all SMs 
or BGSs correctly as same as Revised IP-OLDF because it 
does not use MNM criterion. We consider the discrimination 
of LSD requests MNM criterion or maximization of two SVs. 

2) The algorithm of LINGO IP solve uses the branch and 
bound. We believe Revised IP-OLDF coded by another IP 
algorithm cannot naturally select features. On the other hand, 
we cannot control the flow of the branch and bound. When IP 
solver finds the model with MNM=0 at first, LINGO program 
output it and end. This treatment is the reason why LINGO 
program may not be able to find BGS directly. This research 
is our future theme. 

B. Results of Six Microarray Data 
Table Ⅰ shows the summary of six datasets. Rows 

“Description” show two classes. Rows “Size” are the case 
number by the gene number. Rows “SM: Gene” are the 
number of SM [with reference number]: the total number of 
genes including in all SMs. Six lists of full gene name are in 
the references. Rows “Min, Mean, Max” are the minimum, 
mean and maximum values of genes including in all SMs. 
Rows “JMP12” are 2 by 2 tables of the discrimination by 
Fisher’s LDF. Six NMs are 5, 3, 8, 3, 10 and 29. Rows “% 
and error rate” are the percentages of (Maximum value/case 
number) and error rates of JMP12. Maximum percent is 63% 
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by Alon et al. dataset. Minimum percent is 43% by Golub et 
al. dataset. Maximum error rate is 17% by Tian et al. dataset 
and minimum error rate is 1% by Chiaretti et al. dataset 

TABLE I.  SUMMARY OF SIX MICROARRAY DATASETS 

Data Alone et al. [1] Chiaretti et al. [2] 

Description Normal (22) vs. 
 tumor cancer (40) 

B-cell (95) vs. 
 T-cell (33) 

Size 62 *2000 128*12625 

SM: Gene 64 [47]:1152 270 [50]:5385 

Min/Mean/Max 11/18/39 9/19/62 

JMP Ver.12 20:2/3:37 94:1/2:31 

% and error rate 63%, 8% 49%, 1% 

Data Golub et al. [10] Shipp et al. [54] 

Description All (47) vs.  
AML (25)  

Follicular lymphoma 
(19) vs. DLBCL (58) 

Size 72*7129 77 *7130 

SM: Gene 69 [46]:1238 213 [45]:3032 

Min/Mean/Max 10/18/31 7/14/43 

JMP12 20:5/3:44 17:2/1:57 

% and error rate 43%, 11% 56%, 4% 

Data Singh et al. [56] Tian et al. [59] 

Description Normal (50) vs.  
tumor prostate (50) 

False (36) vs.  
True (137) 

Size 102 *12626 173 *12625 

SM: Gene 179 [48]:3990  159 [49]:7221 

Min/Mean/Max 13/22/47 28/45/104 

JMP Ver.12 46:4/6:46 16:20/9:128 

% and error rate 46%, 10% 60%, 17% 

C. Detail of the Matroska Feature Selection Method 
We explain Method 2 briefly. TableⅡis the output of 

Golub et al. dataset by LINGO program. Two columns 
“LOOP1 and LOOP2” are the sequence number of big and 
small loops of Method 2. Revised IP-OLDF discriminate the 
dataset with 7129 genes in the LOOP1=1 and LOOP2=1, and 
only 34 coefficients of Revised IP-OLDF are not zero. In 
general, this number is less than the case number such as 72. 
In the second small loop (LOOP1=1, LOOP2=2), we 
discriminate the smaller Matroska with 34 genes again, and 
only 11 coefficients are not zero. Therefore, we get the 
Matroska sequence such as Matroska7129 → Matroska34 → 
Matroska11. We stop at LOOP2=4 because we cannot find 
the smaller Matroska. We call Matroska11 as the SM1 
because Revised IP-OLDF cannot locate the smaller 
Matroska. We exclude the first SM1 with 11 genes from the 

big Matroska with 7129 genes and make the second big 
Matroska with 7118 genes. In the second big loop at LOOP1 
= 2, we get the second SM2 with 16 genes.  

TABLE II.  THE OUTLOOK OF THE THEORY 2 

SN LOOP1 LOOP2 Gene MNM 

1 1 1 7129 0 

2 1 2 34 0 

3 1 3 11 0 

4 1 4 11 0 

16 2 1 7118 0 

17 2 2 36 0 

18 2 3 18 0 

19 2 4 16 0 

20 2 5 16 0 
 

After LINGO program finds sixty-nine SMs in Table Ⅲ, it 
stops the big loop when we find MNM is greater than one at 
LOOP1=70. However, we can continue this loop until it 
cannot naturally select features and list up all small subspaces 
with “MNM >= 1.” Therefore, Method 2 can discriminate 
other types of genes datasets that are not LSD. Because Golub 
et al. dataset consists 69 SMs that are linearly separable 
models or subspaces, it is very easy for us to analyze all SMs 
because the 68th and 69th SMs are the biggest samples with 72 
cases by 31 genes.  

TABLE III.  ALL SMALL MATROSKA OF GOLUB ET AL. DATA 

LOOP1 LOOP2 Gene n MNM 35 11 6630 17 0 

1 11 7129 11 0 36 11 6613 19 0 

2 11 7118 16 0 37 11 6594 12 0 

3 11 7102 11 0 38 11 6582 16 0 

- - - - - - - - - - 

32 11 6683 19 0 67 11 5976 23 0 

33 11 6664 16 0 68 11 5953 31 0 

34 11 6648 18 0 69 11 5922 31 0 

IV. BGS AND STATISTICAL ANALYSIS 
     In this section, we introduce how to find BGS and analyze 
it. 

A. How to find BGSs 
Because we cannot control the flow of branch and bound 

algorithm, there may be several BGSs in the SM. We propose 
how to find BGSs by manual operation as follows: 

1) To find the smaller linear separable model in SM 
We analyze the first SM1 with 11 genes by the forward 

stepwise procedure and obtain the five columns from ‘Step’ to 
‘BIC’ in Table Ⅳ . The last column is NM of logistic 
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regression. Although there is no theoretical guarantee that 
logistic regression can discriminate LSD correctly [5], we 
judge it discriminates LSD correctly under the condition of 
“MNM=0 and NM=0”. Therefore, we can judge BGS exists 
among all combination models in four genes subspace [11]. 
We know the four-variable model is linearly separable. Cp, 
AIC and BIC recommend this model. Usually, these three 
statistics recommend the different models by our many trials. 

TABLE IV.  FORWARD STEPWISE AND LOGISTIC REGRESSION. 

Step Gene Cp AIC BIC logistic 

1 M11722_at 72.56  137.78  144.26  5 

2 X59871_at 38.42  118.62  127.13  2 

3 U05259_rna1_at 9.92  96.07  106.54  2 

4 D21063_at 3.88  90.15  102.52  0 

5 M22919_rna2_at 3.80  90.30  104.49  0 

6 M21624_at 4.27  91.09  107.02  0 

7 M25280_at 4.63  91.79  109.38  0 

8 L13210_at 6.15  93.93  113.09  0 

9 X82240_rna1_at 8.02  96.56  117.21  0 

10 HG3039-HT3200_at 10.01  99.44  121.47  0 

11 L76159_at 12.00  102.41  125.73  0 

TABLE V.  FIFTEEN MODEL BY FOUR GENES 

p X1 X2 X3 X4 ｃ MNM ZERO 

4 1 1 1 1 1 0 0 

3 1 1 1 0 1 1 0 

3 1 1 0 1 1 1 0 

3 1 0 1 1 1 3 0 

3 0 1 1 1 1 2 0 

2 1 1 0 0 1 2 0 

2 1 0 1 0 1 4 0 

2 0 1 1 0 1 3 0 

2 1 0 0 1 1 4 0 

2 0 1 0 1 1 13 0 

2 0 0 1 1 1 6 0 

1 1 0 0 0 1 5 0 

1 0 1 0 0 1 25 0 

1 0 0 1 0 1 10 0 

1 0 0 0 1 1 17 0 

2) Search BGSs by all possible combination models 
We search BGSs by all possible combination models 

using Revised IP-OLDF. Table Ⅴ is the 15 models by four 

genes that are four combinations of 0/1 values from the 
second column to the fifth column. Column “c” is the 
intercept of Revised IP-OLDF. The column “p” is the number 
of independent variables from four-variable model (p=4) to 
four one-variable models (p=1). The binary values, such as 
1/0, mean each model include or not include four variable in 
the model. Column “MNM” is MNM of 15 models. Column 
“ZERO” is the number of cases on the discriminant 
hyperplane. Only full model is linearly separable. Therefore, 
we find one BGS in the first SM, such as (X1: M11722_at, 
X2: X59871_at, X3: U05259_rna1_at, X4: D21063_at). All 
MNMs including these four genes are linearly separable in 
Golib et al. dataset.  Therefore, although there are numerous 
Matroskas in the dataset, we can understand the structure of 
Matroska by BGS because of the monotonic decrease of 
MNM. The big Matroska with 7129 genes includes numerous 
smaller Matroska from 7128 genes to four genes. Although 
there are 7129 subspaces with 7128 genes, there are 7125 
smaller Matroska with 7128 genes and four subspaces with 
7128 genes that are not Matroska. By monotonic decrease of 
MNM, we can completely understand the structure of 
Matroska. It is hard for us to analyze the dataset by the 
ordinary statistical methods without knowledge of this fact. 

B. How to analyze each SM 
Figure 1 is the output of principal component analysis 

(PCA). Left figure is the eigenvalues. Two eigenvalues are 
greater than one and contribution ratio is about 0.75. The 
middle figure is the scatter plot.  The symbol + are “AMLs” 
that are in the third quadrant. Forty-seven cases of “ALL” are 
situated in the fourth, first and second quadrant. The right plot 
is the factor loading plot. “M11722_at” is overlapped on the 
first component and “X59871_at” is overlap on the second 
component. It is very important for specialists of gene 
analysis to consider the reason why two groups are 
orthogonal. We expect specialists of gene analysis to examine 
the meaning of statistical outputs of SMs. 
 

 
Figure 1.  The principal component analysis. 

 
Figure 2 is two score plots. X-axis is the first component. 

Y-axis of left and right score plots correspond the second 
component and the third component. Because PCA cannot 
separate two classes, ordinary statistical analysis such as one-
way ANOVA, cluster analysis, and PCA cannot conclude 
clear results for the datasets directly. Jeffery et al. compared 
the efficiency of the ten feature selection methods using 
conventional statistical approaches. It tells us the limitation 
of conventional statistical methods.  
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  Figure 2.  Two score plots. 

 
Table Ⅵ is the correlation matrix. The absolute correlations 
of “X59871_at” with other three genes are less than 0.088 
that are the same result as the factor loading plot.  

TABLE VI.  CORRELATION MATRIX. 

Var. X1 X2 X3 X4 
M11722_at 1 0.076 0.713 0.371 
X59871_at 0.076 1 -0.088 0.052 
U05259_rna1_at 0.713 -0.088 1 0.220 
D21063_at 0.371 0.052 0.220 1 

V. CONCLUSION 
We developed Theory, Method 1 and Method 2. Revised 

IP-OLDF solves Problem 1, Problem 2 and Problem 5. 
Moreover, the best models of Revised IP-OLD are better than 
another seven LDFs. Although H-SVM discriminate LSD 
correctly, it cannot naturally select features for six datasets. 
Because Problem 3 is the defect of the generalized inverse and 
error rates of Fisher’s LDF and QDF are very high for LSD, 
we guess the discriminant analysis and regression analysis 
based on variance-covariance matrices may not be helpful for 
gene analysis. Although the discriminant analysis is not the 
traditionaly inferential statistical method, Method 1 offers the 
95% CI of error rate and discriminant coefficient and the 
validation of Revised IP-OLDF by six ordinary data. In this 
paper, we do not discuss the validation of six microarray 
datasets. However, because Method 1 validated already six 
ordinary data, we will validate the results of six microarray 
datasets in near future. Because the best model is powerful 
model selection procedure for ordinary data, we ignore some 
parameters of Revised IP-OLDF are zeroes in ordinary data. 
Because other LDFs cannot naturally select features, they may 
be difficult for gene datasets. If we can develop Revised 
LINGO program that can find all BGSs, it will be more useful 
in gene analysis. LINGO program is useful for other gene 
dataset, such as RNA-Seq., in addition to the six datasets. 
Although we surveyed to clarify the long-term survivors of the 
Maruyama vaccine (SSM) administration patients, our trial 
failed [22]. If we compare two lists of cancer genes, (normal 
and cancer patient data) vs. (normal and SSM Administration 
patient data), and find the differences between two gene lists, 
it may show the proof of the effectiveness of SSM. Now, we 
plan this new theme and have proposed a joint research with 
the inspection agency of microarray in Japan. 

We would like to propose a joint research with medical 
doctors in the world. 
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Abstract – We study the dynamics of transcription initiation 

of the T7 Phi 10 promoter as a function of temperature, 

using quantitative polymerase chain reaction (qPCR) and in 

vivo single-cell, single-ribonucleic acid (RNA) time-lapse 

microscopy. First, from the mean and squared coefficient of 

variation of the empirical distribution of intervals between 

consecutive RNA appearances in individual cells, we find 

that both the mean rate and noise in RNA production in-

crease with temperature (from 20oC to 43oC). Next, the pro-

cess is shown to be sub-Poissonian in all conditions, suggest-

ing the existence of more than one rate-limiting step and 

absence of a significant ON-OFF mechanism. Next, from the 

kinetics of RNA production for varying amounts of T7 RNA 

polymerases, we find that as temperature increases, the frac-

tion of time that the T7 RNA polymerase spends in open 

complex formation increases relative to the time to commit 

to closed complex formation, due to changes in the kinetics of 

open complex, closed complex, and reversibility of the closed 

complex formation. We conclude that the initiation kinetics 

of the T7 Phi 10 promoter changes with temperature due to 

changes in the kinetics of its rate-limiting steps. 

 
Keywords – Transcription; Open and closed complex for-

mation; T7 Phi 10 promoter  

I. INTRODUCTION 

The bacteriophage T7 is an obligate lytic phage that 

infects Escherichia coli, using the host system to produce 

up to 100 progeny phages in less than 25 min, in optimal 

conditions [1]. One of the major gene products of T7 bac-

teriophage is the T7 RNA polymerase (T7 RNAP) [2]. 

This is a single subunit enzyme, with a high specificity 

towards T7 promoters via the recognition of a highly con-

served 23bp consensus sequence [3]. Early studies have 

shown that the T7 RNAP transcription rate is sequence 

dependent and depends on environmental conditions 

[4][5][6]. Given that the infection process of T7 bacterio-

phage is not only fast but it also requires a balance be-

tween the number of phages and the amount of capsid 

proteins produced [7], the phage needs to coordinate the 

dynamics of transcription of the viral genes, as this is 

likely critical for its success. 

It is known that the dynamics of gene expression, as 

well as of many other cellular processes, depends on envi-

ronmental factors, particularly temperature [8]. Conse-

quently, microorganisms have evolved mechanisms that 

allow them to cope with both sudden as well as slow tem-

perature changes [9][10]. E. coli, for example, can survive 

in a wide range of temperatures. Similarly, it has also 

been shown that the T7 bacteriophage is capable of coping 

with these fluctuations and wide ranges [5].   

Even though robustness to sudden temperature 

changes and wide temperature ranges is crucial for the 

survival of microorganisms, so far, little is known about 

what are the consequences of these environmental chang-

es on the in vivo transcription kinetics of the T7 promoter. 

In addition, most studies characterizing the transcription 

initiation kinetics of T7 promoters have mostly used in 

vitro measurement techniques [5][11].  

To address this issue, here we use recently developed 

measurement strategies that use single-cell, single-RNA in 

vivo detection techniques [12] and use them to study in 

detail the kinetics of transcription initiation of the T7 

Phi10 (Φ10) promoter as a function of temperature.  

The remaining of this article is organized as follows: 

Section II describes the methods used and measurements 

conducted. Section III presents the results from these ex-

periments. In Section IV, we conclude by presenting our 

interpretation of the results and our assessment of their 

relevance, as well as additional considerations for future 

work.    

II. METHODS 

In this section, we describe the measurements con-

ducted in this study. Each subsection presents a detailed 

explanation of the experiments performed.  

A. Strain and plasmids 

The strain E. coli BL21(DE3) (New England Biolabs, 

USA) was used to express the target and reporter genes. 

This strain has a copy of the T7 bacteriophage gene 1 

coding for T7 RNAP controlled by the PlacUV5 promoter 

and integrated in the chromosome [13] (Figure 1A). 

The single copy F-plasmid pBELOBAC11, carrying 

the Φ10-mCherry-48bs sequence (constructed for this 

work) was inserted in the host strain. It produces the target 

RNA, with an array of 48 MS2 binding sites (48bs) under 

the control of a T7 Φ10 promoter, cloned from the plas-

mid pRSET/EmGFP (ThermoScientific, USA). 

A second plasmid, pZA25-GFP (Green Fluorescent 

Protein) [14] (a gift from Orna Amster-Choder, Hebrew 

University of Jerusalem, Israel), was also inserted in the 

host strain. It contains the reporter gene ms2-gfp, placed 

under the control of PBAD promoter. This reporter gene 

encodes for the fusion protein MS2-GFP, which binds the 

target RNAs and renders them visible as bright spots un-

der the confocal microscope [15] (Figure 1B). From here 

onwards we refer to the T7 Φ10 promoter as T7 promoter. 
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B. Microscopy 

For live cell microscopy, BL21(DE3) cells were incu-

bated in M63 medium supplemented with Glucose (0.4%) 

and the appropriate concentration of Chloramphenicol and 

Kanamycin (Sigma Aldrich, USA) and was grown over-

night at 30
o
C, with shaking (250 rpm). Cells from the 

overnight culture were then diluted in fresh M63 medium, 

with an initial OD600 ~ 0.05, and incubated at 37
o
C, for 

90 minutes with shaking (250 rpm). Then, cells were pel-

leted and re-suspended in ~100 µl of M63 medium. Four 

microliters of cells were placed between a 3% agarose gel 

pad, made with M63 medium, and a glass coverslip before 

assembling the imaging chamber (CFCS2, Bioptechs, 

USA). Two hours before the microscopy measurements, a 

flow of fresh M63 medium at 37
o
C containing the reporter 

inducer (0.8% L-arabinose) was initiated with a peristaltic 

pump at a rate of 1 ml/min to produce sufficient MS2-

GFP molecules in the cells to detect the target RNA in all 

experiments. Note that we shifted the temperature in the 

chamber from 37
o
C to 20

o
C or to 43

o
C (depending on the 

condition studied), 20 minutes prior to inducing the target 

system. 

To activate the target system, we induced the produc-

tion of T7 RNAP, controlled by PlacUV5, by introducing a 

new flow (1 ml/min) of M63 medium containing 0.8% L-

arabinose and Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) at various concentrations (see below). Once syn-

thesized, T7 RNAPs will bind the T7 promoter and tran-

scribe 48bs RNAs, which are quickly bound by MS2-GPF 

molecules and appear under the confocal microscope as 

bright spots (Figure 1B).  

 

 
 

Figure 1. (A) Diagram of the measurement system, depicting the 

target and reporter genes along with the MS2-GFP tagging process. (B) 

Confocal microscope images at subsequent time points showing the cells 

and the MS2-GFP tagged RNA molecules inside. (C) Segmented cells 

and RNA spots within. 

Cells imaging was started at the same time as the in-

troduction of the flow containing IPTG. Images were 

captured every minute for 2 hours using an inverted mi-

croscope Nikon Eclipse (Ti-E, Nikon, Japan). Both confo-

cal images (confocal C2+ scanner connected to LU3 laser 

system, Nikon) and phase contrast images (DS-Fi2 CCD-

camera) were collected. 

Examples of confocal images of cells are shown in 

Figure 1B. Note that, at the end of the time series, the 

fluorescent background in some cells becomes dimmed 

due to the produced RNAs having bound most MS2-GFP 

molecules in the cytoplasm. 

C. Image analysis 

The segmentation of cells and detection of RNA spots 

were performed by the software “iCellFusion” [16]. It first 

applies the cell segmentation on phase contrast images 

using a Gradient Path Labelling Algorithm [17]. Then, it 

performs the inter-modal image registration between 

phase-contrast images and the corresponding fluorescence 

images and exports the segmentation results on fluores-

cence images. The spot detection was performed as in 

[18]. Results from the segmentation and spot detection 

algorithms are shown in Figure 1C. 

D. Data analysis 

The cell-to-cell variability in the kinetics of intake of 

IPTG, which affects the activation of PlacUV5 [19][20], 

creates extrinsic variability regarding when the first RNA 

appears in each cell. Since we are only interested in the 

intrinsic noise of the transcription process, to correct for 

this, we fit the total spot intensity in each cell over time 

with an activation function: 

 

( , , ) ( ) ( )activation activation actiovationx t c t c H t t t t      (1) 

 

where t is time, tactivation is activation time of T7 when the 

48bs RNA production reaches steady state, c is the mean 

increment rate of total spot intensity and H is a unit step 

function. With the function in (1) fitted using least mean 

squared, we find tactivation for each cell. The total spot in-

tensities are then aligned using the inferred tactivation, so as 

to compare the kinetics of active T7 promoters in individ-

ual cells. 

We found by inspection that, at 37
o
C, in the first ~18 

minutes, the mean curve of the aligned total spot intensi-

ties can be well fitted with a linear function, indicating 

that RNA production in most cells reached a steady state 

after their corresponding tactivation. After the 18
th

 minute, 

the mean spot intensity increases with decreasing speed, 

visibly due to increasing shortage of free MS2-GFP. 

Therefore, for this condition, we select the data in the first 

18 minutes for RNA quantification as in [18][21]. Note 

also that for different temperatures and IPTG concentra-

tions, the window for RNA quantification differs (data not 

shown). 

E. qPCR 

Cells grown to OD600 ~0.4 were induced with the ap-

propriate IPTG concentration (5-250 µM) for 1 hour, at 

the specific temperature (20
o
C, 37

o
C and 43

o
C). After-

wards, cells were fixed with RNAprotect bacteria reagent 

(Qiagen, Germay), followed by total RNA isolation, 

DNase I treatment (ThermoScientific, USA) and cDNA 
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synthesis (BioRad, USA). The qPCR master mix con-

tained iQ SYBR Green supermix (Biorad, USA) with 

primers for the target gene, the T7 RNAP and the refer-

ence gene at a final concentration of 200 nM. The primers 

for the target gene were (Forward: 5’ 

CACCTACAAGGCCAAGAAGC 3’ and Reverse: 5’ 

TGGTGTAGTCCTCGTTGTGG 3’) for the mCherry 

region. To quantify the T7 RNAP, the primers used were 

(Forward: 5’ TCCTGAGGCTCTCACCGC 3’ and Re-

verse: 5’ GATACGGCGAGACTTGCGA 3’). For the 

reference gene 16SrRNA, the primers were (Forward: 5’ 

GCTACAATGGCGCATACAAA 3’ and Reverse: 5’ TT 

CATGGAGTCGAGTTGCAG 3’). The data from CFX 

Manager TM Software was used to obtain the relative 

gene expression and standard error [22]. 

F. Model of T7 promoter transcription kinetics 

To study how the kinetics of the T7 promoter changes 

with temperature, we assume the modelling strategy of 

transcription proposed in [23][24][25], derived from both 

in vitro and in vivo studies on viral [11][26] and E. coli 

promoters [8][25][27][28][29]. The model of transcription 

kinetics of T7 promoter is as follows: 

 

'

cc
oc

cc

k k

cc ock
R Pr Pr Pr Pr R RNA      (2) 

 

where R is an active T7 RNAP, Pr is a free promoter, Prcc 

is a fully formed closed complex, and Proc is a fully 

formed open complex. The closed complex formation 

occurs at the rate kcc. Once the closed complex is formed, 

the promoter can either be unbound by the R at the rate 

k’cc or undergo open complex formation at the rate koc. 

Due to fast promoter escape [30], the low frequency of 

abortive initiation [6] and the fast rate of elongation of T7 

RNAP [5][11][31], we assume that the RNAP and target 

RNA are released soon after completion of the open com-

plex. Note that this model does not include an ON-OFF 

mechanism since T7 is a constitutive promoter. 

From (2), the mean of the interval distribution 

(Δt) between consecutive transcription events is: 

 

( ' ) 1 1 1
( ) ( )cc oc

oc

cc oc oc cc oc

k k K
t R R

Rk k k Rk k
 

 
      

 

(3) 

 

where R is the abundance of T7 RNAP in the cell, K is 

ratio between k’cc and koc indicating the reversibility of the 

closed complex, τ(R) is the time for an RNAP to commit 

to the open complex formation, and τoc is time for open 

complex formation. From (3), the production interval 

Δt(R) is a linear function of the inverse of T7 RNAP level 

(1/R), and thus: 

 

( )oc t R    
 (4) 

 

With each set of values of R.kcc, K, and koc, we use the 

Chemical Master Equation (CME) to find the distribution 

of intervals between consecutive RNA production events, 

from which the mean rate and noise in transcription are 

extracted. 

III. RESULTS  

This section comprises the results, obtained from the 

measurements, which are presented into three separate 

subsections.  

A. Validation of the construct with the T7 promoter 

First, to validate that the T7 promoter inserted in the 

F-plasmid (Methods) is active, we measured the RNA 

levels of the T7 RNAP and of the target gene by qPCR for 

varying IPTG concentrations (which control the expres-

sion of T7 RNAP). Results are shown in Figure 2.  
 

 

Figure 2. Relative RNA levels of T7 RNAP (light grey) and target 

gene (48bs) (dark grey) at 37oC with varying IPTG concentrations as 

measured by qPCR. Also shown for each condition are the standard 
errors from 3 technical replicates. 

From Figure 2, first, both the T7 RNAP’s and target 

gene’s levels do not increase significantly with increasing 

IPTG concentrations beyond 100 µM, suggesting that the 

lacUV5 promoter is fully induced at this concentration. In 

Figure 2, the data is normalized by the RNA levels at 250 

µM IPTG. We validated these measurements, in the case 

of the target RNA, by observing its production dynamic at 

175 µM, 250 µM and 1000 µM IPTG at 37
o
C under the 

microscope (via MS2-GFP tagging, Methods). 

While we observed changes in the mean activation 

time of the T7 promoter with changing IPTG concentra-

tion (data not shown), we did not observe a significant 

change in mean transcription rate (µΔt ~350 s). 

Finally, we find an increase in both the T7 RNAP’s 

and target gene’s RNA expression with increasing IPTG 

concentration, demonstrating that both genes are active. 

Note the close correlation between the activities of the 

two genes, indicating that the T7 promoter is, as expected, 

under the control of the T7 RNAP. 

B. T7 promoter dynamics at various temperatures 

We next observed the transcription dynamics of T7 

promoter at different temperatures (within sub-optimal 

intervals). The IPTG concentration used was 250 µM, in 

order to ensure that lacUV5 is fully induced in all condi-

tions. Under the microscope, all cells appeared to grow 

normally, with reduced division rates at lower tempera-

tures. In particular, cells’ mean doubling times were 50 

min, 60 min and 100 min at 43
o
C, 37

o
C and 20

o
C respec-

tively. 
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From the RNA numbers over time in individual cells 

as observed by microscopy at different temperatures, we 

extracted the mean duration (µ) and coefficient of varia-

tion squared (CV
2
) of the intervals between consecutive 

RNA appearances in individual cells as in [18][32]. Re-

sults are shown in Table I.  

For each temperature, the number of cells observed, 

the number of samples collected (intervals between con-

secutive RNAs in individual cells), and the mean and CV
2
 

of the intervals between consecutive RNA appearances in 

individual cells are shown. The final column shows the 

relative RNA levels of T7 RNAP measured by qPCR 

(normalized by RNA levels at 37
o
C).  

TABLE I. IN VIVO TRANSCRIPTION INITIATION DYNAMICS 
OF THE T7 PROMOTER AT DIFFERENT TEMPERATURES 

MEASURED BY MS2-GFP TAGGING OF RNA.  

 

T (°C) 
No. 

Cells 

No. 

Samples 
µ (s) 

CV2 

(σ2/ µ2) 

Relative T7 

RNAp no. 

43 150 508 320 0.95 0.86 

37 111 311 352 0.85 1 

20 68 105 518 0.62 0.46 

 

From Table I, somewhat surprisingly but in agreement 

with a previous observation by in vitro methods [5], the 

mean length of the RNA production intervals, µ, increases 

with decreasing temperature. Overall, this indicates that 

the in vivo kinetics of transcription initiation of the T7 

promoter is temperature dependent. 

Notably, the mean transcription rates in vivo are ap-

proximately one order of magnitude smaller than those 

reported from in vitro tests [5][11]. This weaker activity 

in live cells is likely due to the more limited amount of T7 

RNAP (bound by the limits in lacUV5’s activity) and 

limited resources (ATP, ribonucleotides, etc.) in the host 

cells to support the viral transcription process. 

Also in Table I, the noise in transcription (as measured 

by CV
2
) decreases with decreasing temperature. A previ-

ous work reported a similar result for PtetA, a native pro-

moter of E. coli [8]. 

In addition, in all conditions, the RNA production ap-

pears to be a sub-Poissonian process (CV
2
<1). This sug-

gests that it consists of multiple rate-limiting steps rather 

than being dominated by an ON-OFF process [11]. Simi-

lar in vivo sub-Poissonian dynamics of transcription has 

been observed in several E. coli promoters, native and 

synthetic, when under full induction [8][28][33]. 

Overall, the results suggest that the process of tran-

scription initiation of the T7 promoter by the T7 RNAP is 

similar to that of E. coli native promoters. 

Meanwhile, from the relative numbers of T7 RNAP as 

measured by qPCR, we find that unlike when controlling 

with IPTG concentrations, the kinetics of RNA production 

of the target promoter T7 no longer follows solely the T7 

RNAP numbers, as its production rate is not maximized at 

37
o
C while T7 RNAP numbers are. Therefore, we con-

clude that the observed changes in the T7 promoter dy-

namics are due to changes in both the kinetic rates of T7 

transcription and in T7 RNAP numbers. 

C. Estimation of kinetic rates of the T7 promoter  

We searched for changes in the underlying kinetics of 

transcription initiation of the T7 promoter (i.e. in the dura-

tion of the closed and open complex formation) with tem-

perature that can explain the changes in the target RNA 

production with changing temperature. 

To quantify how the kinetic rates of T7 promoter 

evolve with temperature, we followed the strategy pro-

posed in [12] by investigating, for each temperature, how 

the transcription activity on T7 promoter is affected by the 

T7 RNAP abundance. This abundance should affect the 

kinetics of the closed complex formation, but not that of 

the steps following the closed complex [12]. 

Here, the T7 RNAP levels, varied by employing dif-

ferent IPTG concentrations (5 µM, 10 µM, 25 µM, 50 µM 

and 250 µM), and the T7 promoter’s activity are measured 

relatively by qPCR. From these, we infer what would be 

the relative rate of RNA production given an infinite 

amount of T7 RNAP in cells (Methods). This rate should 

correspond to the fraction of time of the transcription 

initiation process that corresponds to the open complex 

formation alone [12]. Results for each temperature condi-

tion are shown in ‘ plots’ in Figure 3. 

Figure 3.  plots for T7 promoter activity at different temperatures: 

(A) 43°C (B) 37°C and (C) 20°C. 

In Figure 3, the data is shown relative to the RNA and 

RNAP levels at 250 µM IPTG. Error bars represent the 
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standard error of the mean (SEM) of the estimate of the 

inverse of the relative rates of transcription for the target 

RNA and T7 RNAP in each condition. The lines are 

Weighted Total Least Squares fits [34]. Errors are calcu-

lated including the uncertainty in the 250 µM IPTG condi-

tion in the plot (thus removing the error from that point). 

From Figure 3, the ratio between the inverse of the T7 

RNA production rate for infinite T7 RNAP numbers in the 

cells (R
-1

=0) equals 0.82 at 43
o
C, 0.81 at 37

o
C, and 0.21 at 

20
o
C. These numbers correspond also to the ratio between 

open complex formation (τoc) and mean transcription in-

terval (Δt), described in Table I (Methods). 

Next, from the ratio (τoc /Δt), we calculated the rate of 

open complex formation (koc). Given the value of koc, we 

can find the values of kcc and K to achieve the same mean 

and noise (with 95% accuracy) of the transcription inter-

vals shown in Table I (Methods). Results are shown in 

Table II. Shown are the rate of open complex formation 

(koc), the reversibility of the closed complex formation (K) 

and the rate of closed complex formation (R.kcc), given 

the empirical values of the ratio (τoc/Δt) extracted from 

Figure 3. 

TABLE II. ESTIMATION OF THE KINETIC RATES OF THE T7 

PROMOTER INITIATION PROCESS VERSUS TEMPERATURE.  

 

T (°C) τoc/Δt koc (s-1) K R.kcc (s
-1) 

43 0.822 263-1 > 2.00 > 20-1 

37 0.808 284-1 1.2±0.5 (32±8)-1 

20 0.206 107-1 <0.11 (351±77)-1 

 

From Table II, the formation of the open complex, fol-

lowing the T7 RNAP commitment to the closed complex, 

is faster at 20
o
C and slower at 37

o
C and 43

o
C. This seem-

ingly counterintuitive response suggests that, at higher 

temperatures, the open complex may be less stable and 

that, has a consequence, it becomes more reversible to the 

previous state rather than to committing to the elongation 

complex. 

Namely, the reversibility of the closed complex (K) 

increases with increasing temperature. At 43
o
C, the closed 

complex appears to be highly unstable and T7 RNAP 

likely binds and unbinds from the T7 promoter several 

times before being able to form a stable open complex, 

thus reducing the rate of RNA production. At 37
o
C, the 

closed complex appears to be more stable, with a ~50% 

chance of the RNAP unbinding. At 20
o
C, the chance of 

this RNAP unbinding appears to become negligible, likely 

due to both more stable closed complex formation and 

faster rate of open complex formation. 

Finally, the rate of closed complex formation (R.kcc) 

becomes slower with decreasing temperature. It should be 

noted that this rate is highly dependent on lacUV5’s 

strength (which determines R) and therefore is not a prop-

erty of the natural system. In the future, direct measure-

ments of the relative T7 RNAP protein levels should help 

revealing the temperature dependence of the closed com-

plex (kcc) of this system. 

IV. CONCLUSION AND FUTURE WORK 

The T7 bacteriophage has only the lytic cycle. Once 

infecting an E. coli cell, its genes transcription is activated 

and proceeds uninterruptedly until the replication of the 

viral DNA it achieved [2]. The dynamics of transcription 

(mean and noise), should therefore play a key role in the 

success rate of this process. Consequently, for this process 

to be successful in temperature-fluctuating environments, 

the transcription process ought itself to be robust to a wide 

range of temperature conditions. 

To assess this robustness, we observed for the first 

time the in vivo transcription initiation kinetics of the T7 

promoter at the single RNA level as a function of temper-

ature. Our results suggest that, as temperature decreases, 

both the mean rate of RNA production and the noise in 

this process decrease. This somewhat surprising result 

appears to be made possible by the stabilization of the 

closed complex formation at lower temperatures. 

Our results are, to some extent, similar to those report-

ed for a natural promoter of E. coli, PtetA. Namely, its ini-

tiation kinetics is also sub-Poissonian, with two rate-

limiting steps, the closed and the open complex, whose 

duration is temperature dependent [8]. However, in PtetA, 

the noise increases for decreasing temperature.  

At the moment, it is unknown what specificities the 

configuration or composition of the T7 promoter allow 

this opposite behavior, but this knowledge should be of 

value to the future engineering of synthetic genes and 

circuits with robust behaviors at low temperature condi-

tions. From the evolutionary point of view, such noise 

reduction with lowering temperatures could be associated 

with the need of the virus for balancing the numbers of 

phages and capsid proteins more accurately as their total 

numbers are reduced due to the lowering of the mean 

production rate [2][7]. 

In this regard, note from Table I that the relative in-

crease in the interval between RNA productions as tem-

perature decreases from 37
o
C to 20

o
C is smaller than the 

decrease in T7 RNAP numbers (which here are artificially 

controlled by the LacUV5 promoter). This suggests that, 

provided a constant number of T7 RNAP for changing 

temperature, the mean rate of transcription from the T7 

promoter will not decrease heavily for decreasing temper-

ature in this range. 

In the future, we will employ the system used here 

and, among other, make use of different promoters con-

trolling the expression of the T7 RNAP so as to, by com-

paring the various results, isolate the effects of tempera-

ture on the T7 promoter alone. Also, we observed that this 

system is capable of quickly depleting cells from MS2-

GFP. This may allow studying the kinetics of binding and 

unbinding of MS2-GFP to the target RNA as a function of 

temperature, which might give insights, e.g., on the pro-

cess by which viral RNAs are protected from the host 

degradation mechanisms. 
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Abstract—The respiratory system of a human embodies complex
assembly of tissues and organs (typically internal and external
intercostal muscles, diaphragm, lung and rib cage), which are
coordinated in a fashion that allows the influx and efflux of air
into the airways and lungs. Like all other biological systems,
the respiratory system is susceptible to injuries and diseases.
Where ventilation has been severely impaired leading to poor
gaseous exchange across the lung tissue, biomechanical thera-
peutic modalities such as continuous positive airway pressure
(CPAP) and mechanical ventilators have been prescribed for
such patients. Currently, Nasal High Flow therapy (NHFT), a
novel ventilation technique has been reported to improve gaseous
exchange in both neonates and adults by supplying a constant flow
of humidified and warmed air into the lungs. NHFT is presently
applied in the management of apnoea of prematurity, respiratory
distress syndrome, bronchiolitis, and acute lung injury. In spite
of reported success, its mechanisms of action (MOA) are not
wholly understood. This work, in terms of relevance, provides
some insights into the MOA of NHFT by underscoring the math-
ematical basis for reported improved gaseous exchange during
the administration of NHFT. The mathematical model predictions
appreciably agreed with bench-top measurements - indicating 17
% and 24% reduction in end tidal CO2 concentration upon the
respective administration of 30 l/min and 60 l/min NHFT.

Keywords–nasal high flow therapy; capnography; dead space;
alveolar CO2 tension.

I. INTRODUCTION

Capnography is the process of analysing the partial pres-
sure of CO2 in respiratory gases [1]. Owing to the importance
of capnography in current medical practice, medical bodies in-
cluding the American Association for Respiratory Care [1] and
American Society of Anesthesiologists [2] [3] have endorsed it
as a method for verifying the correct placement of endotracheal
tubes for the provision of respiratory support. Where blood
acidosis is clinically diagnosed, capnography may be used to
identify the cause by checking for hypercarbia (PaCO2 > 45
mmHg) [4]. Additionally, since CO2 is transported from the
cells (sites of metabolism) to the lungs via the circulatory
system, events such as pulmonary and vascular embolism can
be detected using capnography [5].

The CO2 profile recorded during a breathing cycle is
unique in terms of morphology for healthy individuals [6][2].
A CO2 tension profile for a healthy state is shown in Figure
1. Phase I denotes the baseline where inspiration is about to
end. The transition stage, Phase II, physically represents a

blending of alveolar CO2-rich air and dead space air. Phase
III (alveolar plateau) indicates an almost complete saturation
of the airway with alveolar air and peaks at point EtCO2,
known as end-tidal concentration of CO2 . Inspiration begins
immediately after EtCO2 - marking the commencement of
phase IV, where influx of fresh atmospheric air speedily
dilutes airway air until the baseline value is reached [6][5][7].
Essentially, deviations from healthy state morphology may be
suggestive of a pathological condition of the respiratory system
[7][3]. It has been mentioned that changes in baseline level,
steadiness of the alveolar plateau and slope of transitional
portion may be cardinal to the clinical diagnosis of CO2

rebreathing and pneumothorax [3][5].

Figure 1. Morphology of a healthy adult capnogram.

Figure 2 shows two polymer models of the upper airway
geometry fabricated for experimental work. To fabricate this,
a set of computer tomography (CT) images obtained from
an adult (age = 44 years and gender = male) was used to
reconstruct an in silico anatomically representative 3-D model
of the upper airway. A detailed description of model making
methods has been outlined by Geoghegan et al. [8]. A physical
upper airway model, patterned according to the in silico model,
was built by the use a 3-D printer (fused deposition modelling
type), which utilized acrylonitrile butadiene styrene (ABS) as
print material.

Nasal high flow therapy (NHFT) involves the administra-
tion of humidified and heated air (up to normothermia) at
a constant flow rate. Figure 3 is a pictorial representation
of the administration of NHFT via a nasal cannula using
Fisher & Paykel Healthcare Airvo2 device. It has been reported
that NHFT washes the nasopharygeal dead space resulting
in an increased proportion of inhaled oxygen content and
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Figure 2. Polymer model of upper airway.

Figure 3. Setup for NHFT administration.

a subsequent improvement in gaseous exchange across the
blood-gas barrier [9][10][11]. Arthur et al. [12] pioneered
the use of physico-mathematical models to investigate CO2

fluctuations in the pulmonary system. Their analysis explained
the effect of rebreathing on pulmonary CO2 tension profile.
Authors such as Finchman et al. [13] and Milhorn et al
[14] used sophisticated compartmental models which included
homeostatic response mechanisms, to provide insight into
arterial and alveolar reactions to step changes in inhaled CO2

amounts. Quite recently, Swanson et al. [15] and Benallal et
al. [16] applied a two compartment model to shed light on
alveolar gas changes during exercise. In the present work,
an identical two compartment model has been modified to
investigate the amount of CO2 flushing from the dead space
under the influence of NHFT.

In Section 2, formulation of the mathematical model along
with the experimental setup is presented. Section 3 comprises
of results obtained from both mathematical simulation and
bench-top experiment. A discussion of results and concluding
observations are presented in Sections 4 and 5 respectively.

II. METHOD

A. Modelling setup
The model presented in this work is identical to that used
by Benallal et al. [16] however the inclusion of a constant
volumetric flow term to cater for NHFT distinguishes
the present model (Figure 4) from it. In this model, the
volume of the respiratory system has been thought of as
compartmentalized into two main units, namely dead space
unit and alveolar unit. The dead space unit represents the
volume of all airway regions where gaseous exchange does not
occur whilst the alveolar unit denotes the combined volume
of lung and airway regions that exchange gas with pulmonary
capillaries. Assumptions made during the formulation of
model equations include the following (a) administration of
NHFT does not change the dead space volume (time invariant)
(b) alveolar volume changes due to NHFT is insignificant (c)
there is negligible gas loss across the walls of the dead space.

Figure 4. Model representation of respiratory system.

A description of the symbols used in Figure 4 and model
equations (1-5) is presented in Table I. Tidal flow data of a
healthy male adult (age 23, BMI = 24.6), acquired using a
spirometer setup, was used as an input signal to the model.
The flow signal was scaled to produce a tidal volume of 500
ml, which is the estimated average for healthy adults [17].
For a resting phase spontaneous breathing of an adult, the
functional residual capacity, average metabolic CO2 produc-
tion rate (V̇met) and O2 exchange rate (V̇ O2) across the blood
gas barrier were specified as 2500 ml, 240 ml/min and 300
ml/min respectively as used by several authors [16][15][14][5].
Equations (1) and (2) are descriptive of the CO2 balance in the
dead space unit during inspiration and expiration, respectively.
In a like manner, the material balance of CO2 in the alveolar
compartment during the breathing cycle is represented by (4)
and (5). The alveolar volumetric transience is described by
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equation 3. In equations 1, 2, 4 and 5, V̇ie = Ḟth + Ḟie.
To solve this 5 non-linear system of equations, a Runge-

Kutta (4,5) based solver, ode45, custom-packaged in Matlab
(Version 2014b) was employed. The simulation was performed
using 50 breathing cycles, which is equivalent to 3.5 minutes
of breathing.

TABLE I. MODEL AND EQUATION PARAMETERS.

Symbol Parameter Value

fd dead space CO2 fraction -
fa alveolar CO2 fraction -
Ḟie ventilatory flow -
Ḟth NHFT flow 30 and 60 l/min
fi inspiratory CO2 fraction -
Va alveolar volume (time variant) -
Vd dead space volume (constant) 150 ml
V̇met metabolic CO2 influx 240 ml/min
V̇ O2 O2 exchange rate 300 ml/min

dfdCO2

dt
=

(V̇ie)(fi − fd)

Vd
(1)

dfdCO2

dt
=

V̇ie(fa − fd)

Vd
(2)

dVa

dt
= V̇ie + V̇met − V̇ 02 (3)

dfaCO2

dt
=

V̇iefd + V̇met − fa(V̇ie + V̇met − V̇ O2)

Va
(4)

dfaCO2

dt
=

V̇met − faV̇ie + fa(V̇ie + V̇met − V̇ O2)

Va
(5)

A sensitivity study was performed to evaluate the inde-
pendent contribution of the model parameters to EtCO2. The
resolution of the sensitivity scale was limited to a 1 % change
in EtCO2 because a 1 % change significantly affects amount
of CO2 flushed when NHFT is applied. Findings for a 10
% increment on each parameter value is presented in Table
II. EtCO2 was found to be most responsive to initial value
of alveolar CO2 partial pressure (PACO2) and metabolic CO2

production rate. Variation in initial dead space CO2 fraction
produced the least change in EtCO2.

TABLE II. SENSITIVITY STUDY.

Parameter 10% value increment Change in EtCO2 Comment

initial PACO2 5.86 % 7.71% very sensitive
V̇met 275 ml 1.06 % sensitive
initial fi 0.048 % 0.05 % less sensitive
FRC 2750 ml 0.12 % less sensitive
Vd 165 ml 0.43 % less sensitive
V̇ O2 330 ml/min 0.15% less sensitive

B. Experimental work
The same physiological flow signal as specified for the

mathematical model was programmed into a LabVIEW (Ver-
sion 8.6) application that operates a pulsatile pump (Figure
5). See component labelling of Figure 5 for setup description.
The pulsatile pump (2) connects to a 3-D printed upper airway
model via a tubing. NHFT is administered through a nasal
cannula (4) by means of a Fisher & Paykel Airvo2 device (3).
In performing CO2 experiments, CO2 was metered at a bleed
rate of 250 ml/min into the pump chamber (piston barrel) ,
allowing a back pressure of 101.3 KPa in the CO2 source (1).
Measurement of CO2 concentration at the trachea opening of
the airway model is performed using a capnograph (5). After
a minute, a steady CO2 profile peaking at EtCO2 of 5.2% was
observed on the computer (6) connected t the capnograph.

Figure 5. Complete experimental setup

At this point, recording of CO2 data was performed for 3
minutes followed by 30 l/min NHFT - administered using
Fisher & Paykel Healthcare Airvo2 device. Two minutes was
allowed for equilibration after which CO2 recording proceeded
for 3 more minutes. An identical procedure was repeated
for 60 l/min NHFT, after residual effects from the previous
experiment had been eliminated by shutting off CO2 bleed
valve whilst the pump was in operation - allowing CO2 levels
to plummet to near atmospheric values.

III. RESULTS

On Figure 6, plot A shows fractional CO2 profile in
the alveolar unit during a 50 breathing cycle simulation.
Transience in breath-by-breath CO2 fraction is observable
up to 60 seconds and then a steady state is reached. The
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flow wave used for both simulation and experiment had a
period of 4.3 seconds - inspiratory time being 2 seconds
and expiratory time being 2.3 seconds. Plot B (Figure 6)
represents two cycles of zero-therapy (ZT) ventilatory flow
patterns superimposed on corresponding alveolar CO2 fraction
profile at steady state. The distortions on the flow wave at
the interface between inspiration and expiration are artefacts
introduced by the limited resolution of the spirometer flow
device, which is directly linked to the observable local
perturbations in fractional alveolar CO2 profile at the flow
transition points. The alveolar CO2 fraction is seen to rise
up to 0.3 seconds into inspiration. Furthermore, over the
respiratory cycle, alveolar CO2 fraction fluctuates between
4.9 % and 5.3 % with a mean value corresponding to 5.1 % .

Figure 6. Variation of alveolar CO2 tension with time.

Figure 7. Variation of deadspace CO2 tension with time.

Figure 7 shows a single respiratory cycle plot of exper-
imental and simulated dead space CO2 fraction profiles for
both ZT and 30 l/min NHFT conditions. When 30 l/min
NHFT was applied , dead space EtCO2 fell from 5.2 % to
about 4.3 % (17% decrement). It is observable from Figure
8 that for 60 l/min NHFT, model simulation under predicts
experimental EtCO2 by a margin of 8%. In morphology,

Figure 8. Variation of deadspace CO2 tension with time.

the simulated dead space CO2 fraction does not match very
well with the experimental measurements. This may be due
to the inherent perfect mixing of CO2 in the dead space
compartment (not realistic) which can be made physiological
by sub-dividing the dead space volume into several control
volumes. The area under the plots (Figures 7 and 8) contain
information about dead space CO2 volume. In quantitative
terms, mathematical simulation over-predicts the combined
inspiratory and expiratory CO2 volume for both ZT and 30
l/min NHFT by 8 %. On the same note, CO2 volume over the
respiratory cycle for 60 l/min NHFT is over-predicted by 4%.

IV. DISCUSSION

Generally, the pulsatile pump setup differs from in vivo
conditions in two aspects, i.e., compliance mismatch (high
rigidity of piston barrel) and absence of O2 exchange mech-
anism. Since lung elasticity does not enter into the model
equations (1-5) and the pulsatile pump is able to deliver the
expected tidal volume, the influence of tissue elasticity is
eliminated. Given that the ratio of exchanged O2 volume to
tidal volume is quite small (1:25), the present experimental
results may therefore considerably approximate the results
for the case where an O2 absorption unit is included in the
pulsatile pump assembly. Simulation of no-oxygen condition,
however, has indicated a 5 % reduction in expired CO2 volume.

EtCO2 obtained via simulation is comparable to corre-
sponding experimental values for ZT and 30 l/min NHFT. For
all cases, slopes of capnogram phases II and IV as predicted
by simulation are lesser compared to experimental observations
(Figures 7 and 8). This may be due to the model compartmental
configuration, which allows for full CO2 mixing at all times
whilst in the experimental setup (same as in vivo ) there is
an established CO2 front which takes a finite time to travel
along the airway. For 60 l/min NHFT, the model under-
predicts experimental EtCO2 by a change of 8 %. This may
be considered as a pronounced effect of the afore-mentioned
full CO2 mixing (not physiological), being heightened by high
levels of NHFT.

ZT EtCO2 of 5.2 % obtained from simulation corresponds
to a tension of 38 mmHg . This value is within physiologic
range (37 - 44 mmHg) for healthy adults [18]. The mean
alveolar CO2 fraction of 5.1 % is equivalent to alveolar CO2

tension (PACO2) of 39 mmHg, which agrees with the reported
physiologic range of 35 mmHg to 45 mmHg [19][20][21].
The rise in alveolar CO2 fraction for about 0.3 seconds into
inspiration is suggestive of rebreathing of CO2 from the dead
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space unit [12].
Over a spontaneous breathing cycle, mean arterial CO2

pressure (PaCO2) is approximately the mean of PACO2. It has
been reported that the lungs can sufficiently engage in oxygen
exchange when it is in the state of apnoea, however in this
state, CO2 diffusing across the blood-gas barrier accumulates
in the lung and can potentially cause blood acidosis (PaCO2 >
45 mmHg). Several studies have mentioned an increase in
ventilatory rate in severe COPD patients experiencing hy-
percapnic events (PACO2 > 45 mmHg), which has been
interpreted as a homeostatic reaction to maintain PACO2 in
physiological range [14]. The mean PACO2 output from the
present model may potentially provide some insights into
expected PaCO2 for COPD related hypercapnic events under
NHFT conditions. On Figure 7, there is a 17 % fall in EtCO2

when 30 liters/min NHFT is applied. The washout volume
of CO2 during expiration, as predicted by the model is 2
ml - representing 15 % of the total expired CO2 volume for
spontaneous breathing. Experimentally, administration of 60
l/min NHFT yielded 24% reduction of ZT EtCO2 though
the simulated results over-predicts this change. It is however
noticeable that the amount of reduction in EtCO2 is dependent
on flow rate at which NHFT is administered.

Spence et al. [11] used particle imaging velocimetry (PIV)
techniques to investigate flow distribution in a silicone up-
per airway model under NHFT conditions. Their conclusion
was that recirculation currents observed in the nasopharynx
resulted in CO2 flushing. Chatila et al. investigated exercise
tolerance of severe COPD patients and concluded that NHFT
leads to a gain in exercise endurance attributable to increased
oxygenation. Flushing of CO2 may increase the proportion of
alveolar ventilation in reference to minute ventilation, thereby
boosting oxygen exchange across the blood-gas interface in
the lungs [10]. In the light of these reports, the presented
two-compartment model , in spite of the outlined limitations,
appreciably predicts changes in EtCO2 of the bench-top model
capnogram for both zero-therapy and NHFT conditions.

V. CONCLUSION

The results from this work show that it is possible to make
appreciably satisfactory predictions of the end tidal CO2 frac-
tion, alveolar CO2 tension and flushed CO2 volume for nasal
high flow therapy conditions though in terms of morphology,
results from the presented two-compartment model show a
width-wise disparity from physiologic CO2 profiles.
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Abstract—Even though the processes of protein production and 

folding are not immune to errors, Escherichia coli lineages are 

capable to maintain a stable cell lineage, provided viable 

environmental conditions. One of the internal processes that 

makes this possible consists of segregating unwanted protein 

aggregates to the cell poles by nucleoid exclusion, which, 

combined with cell divisions, generates asymmetries in the 

aging process of the population, with some individuals aging 

faster while others exhibit rejuvenation. A recent study showed 

that this process is not immune to sub-optimal temperature 

conditions due to increased cytoplasm viscosity, which weakens 

the anisotropy in aggregate displacements at the nucleoid 

borders. This was made possible by the usage of a synthetic 

fluorescent probe, consisting of a RNA sequence with multiple 

binding sites for the MS2-GFP synthetic protein, which can be 

tracked in time-lapse microscopy images. Here we provide a 

description of the findings from these measurements and 

investigate with an In Silico model the consequences in the 
context of cell lineages.  

Keywords-segregation; polar retention; protein aggregates; 

cold temperature conditions; synthetic probes; cell lineages. 

I.  INTRODUCTION  

Escherichia coli are able to segregate unwanted protein 
aggregates to the cell poles by nucleoid exclusion. This 
process is essential for cell lineages to generate cells that are 
free from aggregates. Such ‘rejuvenated’ cells have been 
shown to exhibit faster division time than ‘older’ cells, where 
aggregates accumulate at, and are thus essential for the 
maintenance of vitality of the lineages [1].  

The exclusion of aggregates from midcell is made 
possible by the presence of the nucleoid at midcell, which 
causes anisotropy in the dynamics of the aggregates that 
generates the preference for polar localization [2].  

Recent studies, making use of a synthetic fluorescent 
probe that allows observing the processes of segregation and 
retention with single aggregate sensitivity, showed that at 
lower temperatures, the degree of viscosity of the cytoplasm 
increases, which hampers the anisotropy [3]. These synthetic 
probes are ideal in that they behave similarly to natural 
aggregates, have long life-times with highly stable 
fluorescence levels, and are robust to photobleaching [2]. In 
addition, and contrary to natural aggregates, the synthetic 
aggregates have all the same fluorescence level and do not 
interact with one another or with other cellular components, 
facilitating their counting from the images.  

Here, based on the empirical data that was obtained by 
observing cells containing these probes and placed in 
environments at different temperatures while under 
microscope observation, we investigate the long-term 
consequences to future cell generations of the temperature-
dependence of the aggregate segregation and subsequent 
polar retention processes, following the occurrence of sub-
optimal conditions. 

 

II. PREVIOUS FINDINGS 

In our previous study [3], we compared the efficiency 
with which aggregates are segregated to and retained at the 
cell poles by the nucleoids in optimal and in sub-optimal 
temperature conditions.  

Observing cells with one nucleoid, and by probing the 
positioning of both nucleoids and aggregates, we found that 
at lower temperatures the aggregates are not preferentially 
located at the poles. Results are shown in Table I.  

From the table, note how the relative concentration of 
aggregates at the poles is close to 1 (corresponding to 
uniform distribution along the major cell axis) for low 
temperatures. Meanwhile, at the higher temperatures, it is 
much larger than 1. Note also how, according to the 
Kolmogorov-Smirnov test, the behavioral change is 
statistically significant between 24 and 37 degrees. 

 
TABLE I. AGGREGATES AT THE POLES 

 

T (°C) 
Concentration of Aggregates at the poles 

Relative 

nucleoid length 

Relative concentration of 

Aggregates at poles 

P value of 

KS test 

10 0.63 1.32  

24 0.56 1.09 0.11 

37 0.53 1.86 < 0.01 

43 0.47 1.79 0.05 

 
Next, in cells with two nucleoids, the concentration of 

aggregates in between the nucleoids was measured. From 
Table II, the relative concentration of aggregates in between 
nucleoids in cells close to division decreases significantly as 
the temperature increases [3]. Thus, one can conclude that 
the relative concentration of the aggregates at the poles is 
increasing with increasing temperature. 
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TABLE II.  AGGREGATES IN BETWEEN NUCLEOIDS 

 

T (°C) 

Concentration of Aggregates in between nucleoids in 

cells close to dividing 
Relative 

nucleoids 

length 

Relative concentration of 

Aggregates in between 

nucleoids 

P value of the 

permutation 

test 

10 0.75 0.85  

24 0.68 0.78 < 0.01 

37 0.72 0.69 < 0.01 

43 0.70 0.68 < 0.01 

 

III. RESULTS AND DISCUSSION 

 
Note that, in division, while the aggregates at the poles 

will remain at the old pole of the cells of the new generation, 
those at midcell will be at the new poles. As such, changes in 
the fractions at midcell prior to division should affect the 
distributions of aggregates in individual cells of future 
generations. In particular, we hypothesized that at lower 
temperatures, as the ability of cells to exclude the aggregates 
to the poles is significantly reduced, future cell generations 
will have more homogenous distributions of unwanted 
protein aggregates, which is expected to hamper the 
rejuvenation process of the lineage. To validate our 
hypothesis, we developed a simple stochastic model.  

In this model, we start with a cell near division 
(generation 0), with 200 aggregates whose location (in 
between nucleoids or at the poles) is defined by the empirical 
values in Table II. Then, the cell divides and the aggregates 
are placed in the ‘old’ and ‘new’ pole of the two daughter 
cells, in accordance with their location in the mother cell 
prior division (i.e., in the pole or in between nucleoids, 
respectively). In this regard, the aggregates that were at 
midcell were placed randomly in either daughter cell. Note 
that, at this stage (i.e., generation 1) all aggregates are at the 
poles in all cells. Finally, these daughter cells also divide, 
producing four cells (generation 2). Two of these cells will 
inherit the original poles of the mother cell, while the 
remaining ones will inherit only poles generated during the 
two division processes. Meanwhile the partitioning processes 
of the aggregates follow the same rules as before. 

Using this model, we compared the outcomes at different 
temperatures, by setting different concentrations of 
aggregates in between nucleoids of the original mother cell 

in accordance with the empirical values in Table II. Namely, 
for each condition, we obtained the mean and standard 
deviation of the numbers of aggregates in individual cells in 
the last generation from 10.000 independent simulations. 
Results are shown in Table III.  

 
TABLE III.  AGGREGATES IN THE LAST GENERATION 

 

T (°C) 
Distributions of aggregates in cells of the last generation 

Mean number of 

Aggregates per cell 

Standard deviation of the 

number of aggregates per cell 

10 50 10.5 

24 50 12.2 

37 50 16.7 

43 50 17.4 

 
From Table III, first, as expected, temperature does not 

affect the mean number of aggregates in each cell (50 as we 
started with 200 and 2 rounds of division took place). Also, 
we find that as temperature increases (and thus, the relative 
concentration of aggregates at the poles decreases), as 
expected, the variability in the aggregates numbers in cells of 
future generations increases. The decrease at lower 
temperatures, most likely, will result in the hampering of the 
rejuvenation process of the lineage in these conditions. 

We conclude that the effects of lower temperatures at the 
single cell level have long term consequences in the 
functioning of cell lineages aging and rejuvenation 
processes. 
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Abstract—We argue that virus-host interactions mediated by
short linear motifs can be used to analyze common viral attack
strategies. In this direction we develop a method for predicting
interactions between human protein-synthesis machinery and
viral proteins mediated by linear motifs in order to study
common protein-synthesis subversion strategies. The method
consists in finding viral instances of host linear motifs. We filter
these instances by conservation in viral sequences, location in
protein disordered regions and scarcity in randomized protein
sets. With the filtered motifs we deduce virus-host interactions
using the motif-domain associations in the Eukaryotic Linear
Motifs (ELM) database. We validate the results against the
Linear Motif mediated Protein Interaction Database (LMPID)
and obtain a network of interactions between the human protein-
synthesis machinery proteins and viruses influenza AH1N1,
Dengue1, Ebola, MERS, Rotavirus, WestNile, and Zika.

Index Terms—virus; host; protein; interaction; short; linear;
motif; prediction; eukarya; protein-synthesis; subversion

I. INTRODUCTION

The objective of this paper is to present a work in progress
for predicting virus-host protein-protein interactions (VHPPIs)
between several viruses and the human protein-synthesis ma-
chinery (HPSM) mediated by short linear motifs (SLiMs). Our
motivation to conduct this study is to unveil common viral
strategies to subvert protein translation.

There is no known virus that encodes a complete protein-
synthesis system. This implies that viruses are forced to
use the HPSM to translate their messenger RNA (mRNA)
into products: microRNA (miRNA), peptides and proteins.
Viruses must control the HPSM and disrupt innate host defense
systems capable of disabling protein synthesis [1].

The control and disruption of host signaling pathways is
conducted through VHPPIs like the ones DNA viruses engage
with the PI3K–Akt–mTOR pathway (phosphatidylinositol 3-
kinase-Akt-mammalian target of rapamycin) [2]. The conse-
quences of VHPPIs can be as significant as the shutdown of
host protein synthesis done by Rotavirus protein NSP3 [3].

There are open questions about the viral control of the
HPSM like the role of phosphorylation in activity of protein
eIF4E and how viral mRNA is preferentially translated [4].
These questions could be investigated with a systems biology
approach.

Systems biology uses VHPPIs for the discovery of infection
mechanisms [5]. However, the scarcity of virus-host PPIs with
experimental evidence is an obstacle to system approaches [6].
This lack of data has encouraged the development of VHPPI
prediction methods.

VHPPI prediction methods have been mostly based on ma-
chine learning classifiers like random forests [7] and support
vector machines [8]–[10]. Most of these classifiers use protein
sequences and other features like gene ontology (GO) function
and gene expression as inputs to infer the interactions because
structural data for viral proteins is scarce [11].

There are other prediction methods like information inte-
gration [12], asking experts [13], literature mining [14] and
focusing on PPIs mediated by SLiMs [15].

We focus our study on SLiM-mediated interactions. The
inference of this kind of interactions is guided by biological
hypotheses like the conservation of motifs and localization of
motifs in protein disordered regions.

Recently, the role of SLiMs has been studied in a wide set
of viruses. These pathogens use SLiMs extensively as means
to interact with host proteins [16]. Human proteins targeted
by viruses have a high number of SLiMs [17].

If virus-host PPIs are divided in domain-motif interactions
(DMI) and domain-domain interactions (DDI), DMI are the
predominant ones. Furthermore, DMI are used by several
viruses while DDI are virus-specific [17]. This supports our
use of SLiMs as a way to find common viral subversion
strategies.

Eukaryotic organisms use SLiM instances as as mechanisms
to tune the regulation of multi-protein complexes. These
instances are short, allowing viruses to evolve them de novo
and retain them if they are useful to disrupt o subvert a host
protein complex [18]. If the SLiM instances are encoded in
different host genomic locations, the viral evolution of SLiM
instances is robust in a virus-host coevolutionary arms race
[19].

SLiMs are represented computationally as regular expres-
sions like PxIxIT for the PCNA-binding PIP box motif of
Flap endonuclease 1 (FEN1), where the x stands for any amino
acid. A SLiM instance is a subsequence in a protein that
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matches the regular expression, like PRIEIT in the human
protein NFATC1 [18].

Viral instances of regular expressions representing host
SLiMs can be found by chance. For this reason, filtering
methods of viral instances must be implemented.

Evans et al. find that HIV-1 instances of human SLiMs are
significantly conserved in HIV-1 proteins [15]. They propose
a criterion to filter SLiMs if they are conserved above a 70%
in the available viral sequences.

Hagai et al. propose two criteria to filter SLiMs: the first is
based on SLiM location in protein disordered regions and the
second in SLiM rarity in a big set of randomized (chimeric)
proteins [16]. A SLiM is judged as rare, or hard to form by
pure chance, if it is counted in less than a fraction of the
sequences in the set of randomized proteins, e.g. 1% of the
sequences.

We implement a combinaion of filtering criteria: 1) conser-
vation, 2) location in disordered region and 3) difficulty to
find the SLiM by chance. Our contribution is computational,
the development of a platform to predict SLiM-mediated
interactions that can be generalized to other subsystems and
hosts. The clear limitation of our platform is our reliance on
the ELM motifs database that makes the method appropriate
for eukaryotic hosts only.

The organization of this paper is as follows. In Section III
we present the results or our work. In Section II we describe
the computational methods used and the Section IV contains
the conclusion and directions for further research.

II. METHODS

Algorithmically, the prediction of SLiM-mediated VHPPI
we propose is divided into: 1) collecting regular expressions
representing SLiMs in the HPSM proteins, 2) finding instances
of the collected SLiMs in viral proteins, 3) filtering the
instances, 4) infer VHPPIs using SLiM instances in viral
proteins and counter domains (CDs) in host proteins.

In order to complete the phases enumerated above we: 1)
use the ELM database as a catalog of SLiMs [22], 2) imple-
ment software to find SLiM instances in protein sequences,
3) develop three filtering criteria described below, and 4) use
the SLiM-domain associations in the ELM database together
with Pfam protein-domain associations to infer protein-protein
interactions [23].

A. Sequences and disorder prediction

HPSM proteins are taken from reference [1] and the Ri-
bosomal Protein Gene database (RPG) [24]. All proteins are
mapped to Uniprot identifiers in order to match protein entries
in the ELM database [25].

Viruses are selected for their availability of protein se-
quences in the National Center for Biotechnology Informa-
tion (NCBI) viral genomes resource: Dengue virus, West
Nile virus, Middle East Respiratory Syndrome coronavirus
(MERS), Ebolavirus, Rotavirus and Zika virus [26]. For in-
fluenza we choose type A, subtype H1N1, for Dengue we
choose type 1, for Ebola the Zaire species.

We download every viral protein for each virus. For all
viruses, we set the parameter region as any, the parameter
“Full-length sequences only” to true and the parameter host as
human. For Influenza AH1N1 proteins we set the parameter
collapsed sequences, with the exception of proteins M1,M2
and NS2 for which the collapsed sequences option was deac-
tivated.

For viruses Dengue type 1, West Nile and Zika the NCBI vi-
ral genomes resource gives the complete polyprotein sequence
that must be manually cleaved. The viral reference genomes
stored in Genbank files are computationally translated to
protein sequences that are used as reference for cleaving the
polyprotein into viral proteins.

Disorder prediction is computed with IUPred [27]. We
develop a wrapper to call IUPred on each protein sequence
to compute the disordered regions with a sliding-window
algorithm proposed by Hagai et al. [16].

B. SLiMs

We download all the SLiMs, instances and interactions from
the ELM database and create a SLiM dictionary indexed by the
ELM unique identifiers containing the SLiM name, class and
its full regular expression [28]. We develop scripts to compute
for a set of sequences: the number of sequences with a given
SLiM, the number of SLiM instances per protein, the number
of SLiMs conserved above a percentage of sequences (set C)
and the number of SLiMs in disordered regions (set D).

We write a script to randomize viral sequences. For each
sequence in a protein file, we create 1000 shuffled versions
randomizing the residues located in disordered regions of the
sequence, as computed with IUPred. Then, we counted the
rare (scarce) SLiMs in these shuffled data sets, i.e. the SLiMs
that are found in 1% of the randomized sequences or less (set
R).

Finally, we use the scripts to generate the sets C,D and
R for every viral protein using all the SLiMs in the ELM
database.

C. Interactions

We compute the SLiM instances in viral proteins for all
the human SLiM regular expressions in the set C ∪ D ∪ R.
With the SLiM instances we infer PPIs between humans and
the corresponding virus using the SLiM-domain associations
in the ELM database and the protein-domain associations in
the Pfam database [23]. We validate the interactions obtained
with the LMPID database [29].

D. Analysis of the interactions

The PPIs inferred are analyzed statistically. The proteins in
the HPSM are sorted by the number of interactions predicted
with viral proteins. The viral proteins are classified by the
number of interactions with different human proteins.

We classify the interactions as tentatively disrupting or
bridging the human protein-protein interaction network. A
viral protein that interacts with only one protein in the HPSM
probably disrupts a pathway, while a viral protein that interacts
with two or more HPSM proteins probably wires a new path.
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TABLE I
NUMBER OF INTERACTIONS PREDICTED WITH VIRAL PROTEINS

Human HPSM protein Interactions with viral proteins
EIF4A1 30
EIF4A2 30
EIF4A3 30
EIF3B 44
EIF3G 44
PABPC5 44
PABPC1 50
PABPC3 50
PABPC4 50
EIF4E 55
EIF4E1B 55
EIF4E2 55
EIF4E3 55
EIF3I 78

Fig. 1. Protein-protein interaction network predicted for protein-synthesis and
viral proteins. Human protein-synthesis proteins are represented as ellipses and
viral proteins as boxes. Boxes are colored differently for each virus.

The disrupting or wiring interactions are contrasted with
the information in the KEGG pathway database [21] and gene
ontology [20].

III. RESULTS

There are only two kinds of human proteins in the HPSM
targeted by the selected viruses: 1) eukaryotic Initiation Fac-
tors (EIF*), 2) polyadenilate-binding proteins (PABPC*). No
cytoplasmic ribosomal proteins or components of the ribo-
somal units are predicted to interact with the viral proteins.
The number of interactions with viral proteins for the targeted
proteins is reported in Table I.

Targeted proteins EIF3B, EIF3G and EIF3I belong to the
module A of the EIF3 complex involved in the recruitment of
the 43S ribosomal complex at the translation initiation phase.

Proteins EIF4A1, EIF4A2, EIF4A3, EIF4E, EIF4E1B,
EIF4E2 and EIF4E3 are part of the EIF4 complex that binds
to capped mRNAs in the translation initiation phase.

Finally, proteins PAPBPC1, PAPBPC3, PAPBPC4 and
PAPBPC5 bind to the tail (end) of mRNAs recognizing
poly(A) regions. This helps to mRNA circularization.

We obtain a network of interactions between human proteins
in the HPSM subsystem and the proteins of the selected viruses
represented in Figure 1.

We present two degree distributions for the network, one for
the human proteins with respect to the number of interactions

TABLE II
DEGREE DISTRIBUTION FOR HUMAN PROTEINS

Human protein degree Number of proteins
30 3
44 3
50 3
55 4
78 1

TABLE III
DEGREE DISTRIBUTION FOR VIRAL PROTEINS

Viral Degree Number of proteins
1 16
4 1
5 11
7 5
8 5

10 1
11 11
14 27

with viral proteins in Table II, and other for viral proteins with
respect to the number of interactions with human proteins in
Table III. For human proteins there is a clear hub, the protein
EIF3I, predicted to interact with 78 viral proteins through
SLiMs, but the other proteins have a large degree, Table II.
On the other hand, there are 27 viral hub proteins that have
14 interactions with human proteins, Table III.

We classify the viral proteins in two groups: 1) the ones
that have only one interaction with human proteins, poten-
tially disrupting the protein-synthesis process and 2) the ones
that have two or more interactions with human proteins,
potentially bridging unexpected interactions between human
protein-synthesis proteins or proteins in other pathways. These
first group of potentially disrupting proteins is presented in
Table IV and the viral hubs are presented in table V.

We find that the protein EIF3I, the Eukaryotic translation
initiation factor 3 subunit I is the hub of the HPSM system,
with 78 interactions. EIF3I is involved in the formation of
translation preinitiation complex, regulation of translational

TABLE IV
VIRAL PROTEINS WITH ONE INTERACTION (POTENTIALLY DISRUPTING)

Virus Viral protein
Zika PR

MERS NS5
Rotavirus NSP6
WestNile C
Dengue1 NS4B
Dengue1 NS4A
WestNile C-anchored
Dengue1 M
WestNile M
Dengue1 NS2A
MERS E

WestNile NS4A
WestNile NS4B

Zika C
AH1N1 NS2

Zika Canchored
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TABLE V
VIRAL HUB PROTEINS (POTENTIALLY BRIDGING)

Virus Protein
AH1N1 NP
AH1N1 M1
AH1N1 NS1
AH1N1 PA
AH1N1 PB1
AH1N1 PB2
Dengue1 NS3
Dengue1 NS5

Ebola GPspike
Ebola MA
Ebola NP
Ebola NPminor
Ebola POL
Ebola POLc
MERS N
MERS ORF1AB

Rotavirus NSP4
Rotavirus NSP5
Rotavirus VP2
Rotavirus VP4
WestNile E
WestNile NS1
WestNile NS3
WestNile NS5

Zika NS1
Zika NS3

initiation and assembly of the eukaryotic 48S preinitiation
complex [20]. The EIF3I protein is in the hsa03013 RNA
transport KEGG pathway, in which it is part of a multifactor
complex with EIF1, EIF2 and EIF5 [21].

We tried to validate the interactions found against the
LMPID database but did not found any candidate interaction
there. Perhaps the coverage of SLiM-mediated VHPPIs is too
limited at the moment.

IV. CONCLUSION AND FUTURE WORK

We propose the prediction of SLiM-mediated host-virus
PPIs between the human HPSM and some selected viruses.
Further analysis of the interactions obtained might yield clues
about common viral strategies for subverting protein transla-
tion.

Our main contribution is the combination of SLiM filtering
methods. Having a general implementation of SLiM finding
and filtering allows that the methods can be extended to other
subsystems like the interferon [30] and apoptosis proteins [31]
to investigate viral infection mechanisms at different stages.
The methods can even be used with non-human eukaryotic
hosts.
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Abstract—Current bioinformatics databases provide huge
amounts of different biological entities such as genes, proteins,
diseases, microRNA, annotations, literature references. In many
case studies, a bioinformatician often needs more than one type
of resource in order to fully analyse his data. In this paper, we
introduce BioGraphDB, a bioinformatics database that allows the
integration of different types of data sources, so that it is possible
to perform bioinformatics analysis using only a comprehensive
system. Our integrated database is structured as a NoSQL graph
database, based on the OrientDB platform. This way we exploit
the advantages of that technology in terms of scalability and
efficiency with regards to traditional SQL database. At the
moment, we integrated ten different resources, storing and linking
data about genes, proteins, microRNAs, molecular pathways,
functional annotations, literature references and associations
between microRNA and cancer diseases. Moreover, we illustrate
some typical bioinformatics scenarios for which the user just
needs to query the BioGraphDB to solve them.

Keywords–Integrated database; Graph database; GraphDB; Ori-
entDB; Bioinformatics database.

I. INTRODUCTION

In the last years, the use of computational approaches
allowed researchers in bioinformatics and systems biology
to produce, store and share a lot of data, such as genes,
proteins, metabolic pathways, and so on. In most cases, data
are collected in different databases, each of which has a proper
framework and storage technology. For this reason, although
the scientific community makes available to biologists and
bioinformaticians a large amount of data, it is a big challenge
to interconnect results from heterogeneous data sources, where
each database can identify the same biological entity on one’s
own account. For all those reasons, it is important to provide
an integrated database offering, in a modular framework, all
the information contained in different available databases.

In this work, we propose BioGraphDB, an efficient bioin-
formatics NoSQL graph database, collecting data related to
genes, microRNA (miRNA), proteins, pathways and diseases
from 10 online public resources. Since we aim at integrating
heterogeneous resources modelling pathways, interactions and
relations among a lot of biological entities, we chose to
implement a graph database; it has been highlighted by [1]
that graph databases both allow for efficient queries and
give advantages in scalability with respect to any relational
database. The proposed database is built on the OrientDB
platform [2], because previous works [3], [4] demonstrated
that it outperforms the other NoSQL databases in terms of
flexibility and performances.

Moreover, in this work we propose some cases of study in
the field of biological and clinical research that can be resolved

using the proposed database. The paper has the following
structure: in Section II similar integrated DBs are presented;
Section III presents the main components of the proposed
DB; in Section IV it is described how the different resources
have been imported and linked each other; in Section V we
present four application scenarios and finally in Section VI
some conclusions, as well as future developments, are drawn.

II. RELATED WORKS

Due to the overwhelming size and type of biological
data, the need of biological databases that integrate many
different resources has risen. The National Center for Biotech-
nology Information (NCBI) [5] perhaps offers the most pop-
ular platform of integrated biological databases. It includes,
among the others, the Entrez database [6] consisting of 37
different databases containing data related to genes, proteins,
taxonomy, gene expression and so on; the PubMed system
[7] for the scientific literature, the RefSeq [8] database that
hosts non-redundant sets of curated genomic, proteomic and
transcriptomic sequences; and the BioSystems [9] database that
integrates and cross-links information about molecular path-
ways. The molecular pathways are at the basis of the KEGG
integrated databases project [10]. In addition to information
about pathways, KEGG has also information about genes,
compounds, reactions, diseases and drugs.

In recent years, with the focus on the study of non-
coding RNA and especially miRNA, many integrated resources
have been developed considering miRNA as their core. The
miRò knowledge base [11] is a system that integrates data
about miRNAs, their validated and predicted gene targets,
functional annotations provided by Gene Ontology (GO) [12]
and gene-disease relations taken from the Genetic Associ-
ation Database (GAD). Another miRNA-centric integrated
database is miRWalk 2.0 [13], [14]. Besides data about miR-
NAs, GO annotations, miRNA-mRNA interactions and gene-
disease associations, miRWalk stores and integrates data about
pathways and gene and protein classes. Moreover miRWalk
web service implements several pre-defined search methods
that allow the user to query the database in order to find,
for example, gene-miRNA-pathway relations, gene-miRNA-
GO annotations, disease-miRNA relations. Even if miRWalk
integrates several type of biological data, it however only
allows to query them using the above described pre-defined
search tools. The proposed BioGraphDB, in turn, lets the user
access all of the data in order to assemble his own set of
queries, thanks to its graph structure and a specialized query
language (see Section IV and Section V).

Since in many cases it is needed only a limited set of
bioinformatics resources, it would be useful to build a cus-
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Figure 1. A graphical representation of the proposed integrated database based on OrientDB framework.

tom integrated database. The Java BioWareHouse (JBioWH)
platform [15] offers a Java library that allows the importation
and integration of different data sources into a SQL-based
framework which defines a set of data types related to bio-
entities, such as genes, proteins, pathways and drugs.

All the above described integrated databases, as well as the
JBioWH library, are built upon a standard SQL architecture.
With advances in the developing of NoSQL databases, which
provide a more flexible and performing environment, new
ways for integrating different resources have been studied.
For example authors in [16] presented ncRNA-DB, a NoSQL
database based on the OrientDB platform that put together
many biological resources that deal with several classes of
non-coding RNA (ncRNA) such as miRNA, long-non-coding
RNA (lncRNA), circular RNA (circRNA) and their interactions
with genes and diseases. More recently a graph-based database,
called Bio4j, has been developed by [17]. Bio4j is based on
a Java library that allows to build an integrated cloud-based
data platform upon a graph structure. Bio4j is protein-centric,
in fact it only includes data about proteins, GO and enzymes.

Since Bio4j has fewer resources rather than our proposed
BioGraphDB (see Section III-B), it is difficult do directly
compare them, especially because the number and type of
resolvable scenarios are quite different (see [17] and Section
V).

III. BIOGRAPHDB COMPONENTS

All the components used in this work are discussed in the
following. In details, in the next subsection we introduce the
OrientDB framework, that represents the platform used to build
the proposed work. In the subsection III-B we define all the
databases we used in this work. Figure 1 shows a graphical
representation of public databases integration.

A. OrientDB
OrientDB is an open source NoSQL database management

system (DMBS) developed in Java by Orient Technologies
LTD. It collects features of document databases and graph
databases, including object orientation. In graph mode, ref-
erenced relationships are like edges, accessible as first-class
objects with a start vertex, end vertex, and properties. This
interesting feature let us represent a relational model as a
document-graph model, maintaining the relationships.

OrientDB supports an extended version of SQL, to allow all
sort of Create, Read, Update and Delete (CRUD) and query
operations, and Atomicity, Consistency, Isolation, Durability
(ACID) transactions, helpful to recover pending document at
the time of crash. It is easily embeddable and customizable
and it handles HTTP Requests, RESTful protocols and JSON
without any 3rd party libraries or components. Finally, it is
fully compliant with TinkerPop Blueprints [18], the standard of
graph databases. It is distributed under the open source Apache
2 license [19], therefore it is totally free for any kind of use
and its enterprise features are not limited.

B. Data Source
In order to build a database containing the most updated

resources related to genes, proteins, miRNAs, metabolic path-
ways and their references in literature, it is useful to integrate
the last versions of different publicly available data sources.
For this aim, we take into account those on-line databases that
represent the state-of-art in bioinformatics. In the following
the list of databases we have considered for populating the
proposed graph database, as showed in Figure 1.

1) miRBase [20]: The microRNA database (miRBase) is
a searchable database of published miRNA sequences and
annotation. It contains both hairpin and mature sequences of
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223 species, and for each of them, it provides name, keywords,
genomic location, references and annotations.

2) UniProtKB [21]: The UniProt Knowledgebase (UniPro-
tKB) is the largest public collection of annotated functional
information on proteins and it is updated every four weeks. It
stores both computationally analysed and manually annotated
records, including classifications, cross-references and quality
indications available to scientific researchers.

3) Gene Ontology [12]: The Gene Ontology (GO) is the
most complete and daily updated public resource for genes and
proteins annotation. It provides annotations for gene products
in biological processes, cellular components and molecular
functions.

4) Reactome [22]: Reactome is a database containing
validated metabolic pathways in human biology and compu-
tationally inferred pathways for 20 non-human species. Each
pathway is annotated as a set of biological events, dealing with
genes and proteins.

5) Entrez Gene [6]: The NCBI Entrez Gene database
contains a wide set of details related to all the genes that
have been studied in literature. For each gene, there is a
record containing a lot of information, such as the genomic
context, a list of ortholog/homolog genes, annotated pathways,
interactions with other genes and so on.

6) Refseq [8]: The Reference Sequence (RefSeq) database
is a collection of computationally and manually curated an-
notations for identification and characterization of genomes,
transcripts and proteins.

7) Pubmed: Pubmed is a structured information resource
on scientific publications in the field of biomedical literature.
It allows to perform clinical queries for specific studies,
categories and scopes. Due to copyright restrictions, only an
open-access subset of this database is available for download.

8) mirCancer [23]: The microRNA Cancer association
database (mirCancer) provides associations between miRNAs
and related human cancers Pubmed entries. These associations
are first extracted from Pubmed database by means of text
mining algorithms and then manually revised. In addition,
mirCancer gives, for each association, the miRNA expression
profile.

9) HGNC [24]: The HUGO Gene Nomenclature Com-
mittee (HGNC) is the authority responsible for the gene
nomenclatures (also known as gene symbols) for the human
species. The HGNC database contains, for each gene symbol, a
list of synonyms and a list of corresponding entries in the most
popular gene databases (e.g. Refseq, Entrez gene). HGNC is
the main source for synonyms disambiguation for genes and
proteins.

10) miRNA-Target Interactions: This resource is a collec-
tion of publicly available miRNA-target interactions databases.
It contains both validated and predicted interactions. The
published experimentally validated interactions, including their
experimental conditions, are provided by mirTarBase database
[25]. A list of putative interactions are obtained by combining
results of five different databases: miRNATIP [26], TargetScan
[27], Diana micro-T [28], Pita [29] and miRanda [30].

IV. DATA INTEGRATION

The publicly databases listed in the previous section give
us a huge amount of data, that we have to integrate in an

harmonious and consistent way. It is relatively easy to read
and parse the various source files, but they often contain
redundancies and useless data for our purpose, because, for
example, at the moment we are only interested in the human
species. Loading and linking the actual useful data is the goal.

Moreover, the databases are available for download in
several different formats, such as tab-delimited plain-text,
structured XMLs, SQL database dumps. The latest available
release of OrientDB has a powerful tool to move data from
and to a database by executing an Extract-Transformer-Loader
(ETL) process, described by a JSON configuration file. How-
ever, its Extractor supports almost all data source types but
XML. Therefore, in order to avoid mixed solutions, we decided
to develop an ad hoc set of Java based ETLs.

As general rule, each biological entity and its properties
have been mapped respectively into a vertex and its attributes,
and each relationship between two biological entities has been
mapped into an edge. If a relationship has some properties,
they are also saved as edge’s attributes. Vertices and edges are
grouped into classes, according to the nature of the entities.
For example, all the genes imported from NCBI Gene become
instances of the gene vertex class, and all the proteins from
UniProtKB become instances of the protein vertex class.
Moreover, all the relationships between genes and proteins
extracted from HGNC, in the form of “gene G codes for
protein P”, become instances of the coding edge class.

The ETLs can be grouped in the following five categories:
• Pubmed ETL: It is not a real ETL, because actually we

do not import any Pubmed publication. It is just used
to create a vertex class used to store those Pubmed
IDs found in the other databases.

• Tab-delimited ETLs: They were used to import NCBI
Gene, miRNA-target interactions, HGNC, and mir-
Cancer. Because all interactions have several virtually-
searchable attributes, they have been mapped to ver-
tices and then linked to the related gene and miRNA.
By using the protein-coding gene field from HGNC,
we were able to link each gene to its encoded proteins.

• XML ETLs: Starting from the related XML Schema
Definition (XSD) [31] file and thanks to the unmar-
shalling capabilities of the standard JAXB library [32],
they were used to import UniprotKB and GO.

• miRBase ETL: miRBase is available in a EMBL
format text file, hence we used the BioJava library
[33], in order to process the data in a simple and
efficient way.

• Reactome ETL: The Reactome database import was
not so easy. It is available for download only as SQL
database dumps and its schema is not documented,
hence we have installed the relational DBMS MySQL
[34] and followed the available installation guide [35]
in order to properly load the database from the dumps.
After studying the database structure and tables defi-
nitions, we have created some ad hoc SQL views to
extract the useful data, afterwards exported as a set
of tab-delimited text files. Finally, we were able to
import pathways data and to link the proteins to their
pathways.

HGNC and UniprotKB databases provide conversion tables
storing the synonyms for respectively gene and protein names,
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TABLE I. OVERALL SIZE OF BOTH IMPORTED AND PROPOSED
DATABASES.

External DBs BioGraphDB

Public DBs size Overall input lines Vertices Edges

> 10 GB > 185 millions ∼ 7.4 millions ∼ 15 millions

as well as their accession IDs to the most common biobanks.
In our BioGraphDB we inserted those data into two different
vertexes and linked them to the corresponding gene and protein
vertexes. The same strategy can be applied for managing
synonyms for other kinds of data.

The imported DBs have not overlapping information, that
eventually could be contradictory, because we selected one
source for each considered biological entity. In any case, when
a new database will be imported, its data will be labelled (as
attribute) with details about the source. For instance, if we
import more than a miRNA target prediction database, then
each prediction will contain an attribute declaring its original
source. The advantage of this representation is that a user
can define specific queries implementing consensus among
different predictors or apply proper filters.

In order to guarantee data consistency and proper rela-
tionships, ETLs were executed in a precise order. Since each
imported DB has dependencies with the other ones, it is of
course important that all the depending resources are already
present into the graphDB when a new resource is loaded.
The following importation order assures that the dependencies
among the integrated resources are correctly satisfied:

1) Pubmed (schema creation)
2) NCBI gene (import)
3) miRBase (import, links to Pubmed)
4) mirCancer (import, links to miRBase and to Pubmed)
5) miRNA-target interactions (import, links to gene and

to miRBase)
6) UniprotKB (import, links to Pubmed)
7) HGNC (links from genes to proteins, gene synonyms

import, links from synonyms to gene)
8) Reactome (import, links from pathways to proteins)
9) GO (import, links to genes and to pathways)

The import process lasted several hours and most of the time
was spent in the creation of the vertices and links related to the
miRNA-gene interactions. The size of both imported DBs, in
terms of data size and number of input lines, and BioGraphDB,
in terms of number of vertices and edges, is reported in Table
I. The whole graph assembled by means of the intgration of
all the DBs can be traversed using proper query languages,
such as Gremlin [18]. Each graph traversal represents a set of
queries that are enough in order to solve several bioinformatics
scenarios, and some of them will be described in Section V.

V. RESULTS

BioGraphDB can be used for the analysis in clinical re-
search of different real life problems. Here we briefly introduce
four scenarios representing typical bioinformatics problems
that can be faced by means of suitable queries over the
proposed DB. As an example, for the last scenario we provide
a more detailed explanation and a query in the graph traversal
language Gremlin [18] that resolves it.

Figure 2. A gremlin query for the proposed “Target analysis of differentially
expressed miRNAs in cancer” scenario.

• Analysis of gene functions and pathways. Starting
from the gene ID or gene sequence it is possible to
investigate its role in the cellular context by exploring
its functional annotations and location in pathways.
Moreover it can be investigated the enrichment of
that gene. This scenario requires the use of different
databases: Entrez gene, RefSeq, GO, Reactome.

• Analysis of protein motifs linked to cellular pathway.
The aim is searching the most representative protein
motifs related to a specific cellular pathway. In this
context, the study can be implemented by means of
functional annotations related to these proteins. This
scenario can be resolved using 3 databases: UniProt,
Reactome, Gene Ontology.

• Analysis of tumour-suppressor/oncogenic miRNA.
Starting from group of genes involved in a specific
cellular pathway or cellular condition it is possible
to identify potential miRNA targets that could have
oncogenic or tumour-suppressor functions. This im-
plies the use of 4 resources: Reactome, miRNA-target
interactions, mirBase, mirCancer.

• Target analysis of differentially expressed miRNAs in
cancer. Starting from a list of differentially expressed
miRNAs linked to a specific disease, we would verify
what are the major target proteins of these miRNAs
belonging to particular cellular pathways. This analy-
sis needs the use of 4 resources: mirCancer, mirBase,
miRNA-target interactions, Reactome.

With regard to the last scenario, using publicly available
resources, the following interactions steps are required. First of
all, starting from a specific cancer type, a set of differentially
expressed (DE) miRNAs can be obtained by the miRCancer
database. The obtained miRNAs represent the input for the
miRNA target interaction tools. Querying those tools, a list
of putative miRNA targets is obtained. Filtering by energy
scores, it is possible to evidence those targets that are more
strongly linked to the DE miRNAs. The last step of the analysis
is to verify if there are specific pathways that the selected
targets belong to. This last step can be done through the use
of pathways analysis tools such as Reactome. Reactome, in
fact, given a list of input genes, provides a set of pathways
containing those genes. A typical way in order to solve
the described scenario would be to use each different DB
(mirCancer, mirBase, miRNA-target predictors, Reactome) at
once. In this situation, the user has to collect intermediate
results and has to gain enough skill for using all the DBs.
Instead of querying each biological resource singularly, all
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Figure 3. BioGraphDB response to the gremlin query depicted in Figure 2 for the proposed “Target analysis of differentially expressed miRNAs in cancer”
scenario.

Figure 4. A graphical representation of the response produced by BioGraphDB, as seen in Figure 3. Starting from a specific disease (“acute lymphoblastic
leukaemia”), we obtain 11 correlated biological pathways, marked with their Reactome ID.

of these steps can be easily performed using our integrated
database by means of the Gremlin query shown in Figure 2.

For instance, if we set the cancer name to “acute lym-
phoblastic leukaemia” and the energy score threshold to
“−30”, we obtain as result eleven pathways, as showed in
Figure 3. Figure 4 reports a graph representation of this result:
starting from the “acute lymphoblastic leukaemia” disease, we
obtain the “hsa-let-7b” DE miRNA, that interact with three
genes (SLC35B4, ZNF589, PDP2). Each gene codes for a
protein, that, in turns, is contained in at least a biological

pathway. In this scenario, the query provides eleven Reactome
pathways, marked with their Reactome ID. The complete set
of results is summarized in Table II, where we reported the
miRNA name and the pathway descriptions lacking in Figure
4.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed BioGraphDB, an integrated
graph database for biological data. This database was designed
to overcome problems related to the lack of a structural orga-
nization and interoperability of publicly available biological
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TABLE II. RESULT OF THE GREMLIN QUERY IN FIGURE 2.

Pathology Mature miRNA Gene Reactome Pathway Pathway Description

Acute
lymphoblastic

leukemia
hsa-let-7b-5p

SLC35B4

R-HSA-425407 SLC-mediated transmembrane transport
R-HSA-727802 Transport of nucleotide sugars
R-HSA-382551 Transmembrane transport of small molecules
R-HSA-425397 Transport of vitamins, nucleosides, and related molecules

PDP2

R-HSA-1430728 Metabolism
R-HSA-70268 Pyruvate metabolism
R-HSA-1428517 The citric acid cycle and respiratory electron transport
R-HSA-204174 Regulation of pyruvate dehydrogenase
R-HSA-71406 Pyruvate metabolism and Citric Acid

ZNF589 R-HSA-74160 Gene Expression
R-HSA-212436 Generic Transcription Pathway

resources. Finally we presented some cases of study where
the use of the database can give a concrete advantage to the
scientific community. Because our BioGraphDB stands at a
prototypal stage, we are unable to provide at the moment a
full performance evaluation, that will be done in future works.

Further developments will be done in the near future. Of
course, thanks to the flexibility of the proposed database, other
biological resources will be integrated where necessary. At the
same time, we are developing proper automated mechanism in
order to update on a regular schedule our BioGraphDB with
the latest releases of its integrated DBs. After the data sources
integration, we will develop a collection of web services
with a common user-friendly web-interface and explicit search
methods implementing proper database views. This way, it will
be possible to solve some of the most common bioinformatics
scenarios, like the ones proposed in this paper. In addition, we
are working on a web service in order to provide the users a
computer aided methodology to build their own custom views
and search methods.
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Abstract—The Nuclear Magnetic Resonance (NMR) based 

metabolomics approach is implemented in medicine and 

pharmacology to assess, identify and quantify metabolites in 

different biological samples. Metabolite determination, which 

is a challenging task due to the complexity of the biological 

matrices, can benefit from bioinformatics tools. In this context, 

our research has focused on the development of a new 

computational metabolite identification method from 1H-NMR 

spectra. 

Keywords- metabolomics; automated metabolite 

identification; 1H NMR. 

I.  INTRODUCTION 

Metabolomics is the research discipline that is concerned 
with the qualitative and quantitative assessment of the 
metabolic response of biological systems to 
pathophysiological stimuli or genetic modifications. 
Metabolomics provides information of in vivo multi-organ 
functional integrity in real time [1]. The NMR metabolomics 
approach has a number of applications, such as the 
identification of biomarkers of disease and 
pharmacodynamic response. 

In alignment with the increasing applications of the NMR 
metabolomics, the chemoinformatics field has evolved 
focusing on data processing and the metabolite identification 
algorithms. Several methods have targeted the task of 
metabolite profiling with line fitting and Bayesian modelling, 
[2-4]. Another strategy has been based on the matching of 
the input spectrum with a set of reference compounds [5-6].  

Herein, we introduce a new computational method for the 
automatic identification of metabolites from 1D 1H-NMR 
spectra. In Section II, the main steps of the method are 
presented. In Section III, preliminary results from the 
analysis of two mixtures are described. 

II. METHOD 

The steps A, B presented below are preprocessing steps, 
while step C constitutes the core of our method.  

A. Preprocessing 

The input spectrum can be preprocessed by removing 
low significance regions. Denoising and thresholding can be 
performed if necessary. The mean, median and Gaussian 
denoising filters were tested and the last one has been chosen 
as the best. However, denoising was performed frugally as 
an auxiliary step, and therefore the filter selection did not 
affect significantly the results. 

B. Data Reduction 

The Adaptive Intelligent binning algorithm [7] is applied 
to the spectrum, resulting in a number of bins corresponding 
to the local minima across the frequency spectrum. 
Subsequently, peak picking is performed, selecting for every 
bin the frequency corresponding to the maximum intensity. 

C. Metabolite Search 

The input spectrum is screened for metabolites, as 
defined by a specific database (see Section II.D). For each 
multiplet peak of every candidate metabolite in the database, 
a number of peak combinations are being considered as a 
possible fit. A candidate peak combination p = {pc1, pc2, ... , 
pcn} for a multiplet is scored differently depending on the 
order of the spectral lines (first order or higher order 
multiplets, singlets and multiplets without rules). The scoring 
of a multiplet is based on its properties, such as the j 
coupling and the height ratios. The optimal peak 
combination is chosen for each metabolite.  

D. Database 

A database file containing 850 metabolites was 
synthesized from the available Human Metabolome 
Database (HMDB) [8]. For every metabolite, information 
such as the multiplet type, the expected frequency ranges, the 
number of hydrogen atoms, the j coupling values, the height 
ratios, as well as the number of peaks has been stored. 
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III. RESULTS 

The method described in Section II has been tested on an 
amino acid mixture and a human amniotic fluid sample. The 
former comprised of L-Alanine, L-Valine, L-Methionine, L-
Proline, L-Glutamic acid, L-Leucine, L-Isoleucine, L-
Arginine, Trigonelline, which were all successfully 
identified. The latter was screened for the presence of 40 
metabolites (experimentally identified), 36 of which were 
positively recognized. 

The performance of our method upon those spectra has 
been compared to an existing metabolite recognition tool, 
MetaboHunter (Table 1) [5] and proved to be enhanced 
despite a higher execution time. Our method seems to be 
more robust seeking the optimal peaks for a candidate 
metabolite at each input spectrum with a four digit accuracy, 
as opposed to assigning predetermined peaks to a metabolite. 

In Figure 1, we can see characteristic multiplet peaks 
assigned to metabolites in an area of the spectrum of the 
human amniotic fluid mix.  

IV. DISCUSSION 

This work presents briefly a new chemoinformatics 
method for metabolite recognition under development. Also, 
preliminary results from the application of the method on 
two spectra have been described.  

A limitation of our method is the fact that its 
performance has not been verified on different sample types. 
Our future goals include the refinement of the method and 
the default parameter values used. Further validation of the 
proposed method and comparison with other metabolite 
identification methods are also necessary.  
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Figure 1. Peak assignment in an area of the human amniotic fluid spectrum. 

TABLE I.  COMPARATIVE PEAK ASSIGNMENT FOR THREE 

METABOLITES OF THE HUMAN AMNIOTIC FLUID SPECTRUM  

Metabolites 
Metabolite identification methods 

Our method MetaboHunter 

L-Valine 

0.9269, 0.9389, 0.9789, 
0.9909, 3.5571, 3.5641, 

2.1900, 2.2020, 2.2100, 

2.2140, 2.2200, 2.2270, 
2.2320 

0.98, 1.02, 1.04, 2.23, 

2.24, 2.25, 2.26, 2.27, 

2.28, 2.29 

L-Isoleucine 

0.9469, 0.9589, 1.0059, 

1.0179, 1.9430, 1.9570, 
1.9690, 1.9790, 1.9910 

0.91, 0.93, 0.94, 0.99, 

1, 1.21, 1.22, 1.26, 
1.28, 1.42, 1.43, 1.44, 

1.45, 1.46, 1.47, 1.48, 

1.49, 1.94, 1.96, 1.97, 
1.98, 1.99, 2, 3.66 

L-Leucine 

0.8929, 0.9029, 0.9139, 

1.6470, 1.6590, 1.6720, 
1.6840, 1.6980, 3.7001, 

3.7111, 3.7191 

0.94, 0.95, 0.96, 1.65, 

1.67, 1.69, 1.7, 1.71, 
1.72, 1.73, 1.75, 3.71, 

3.72, 3.73, 3.74 
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